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Preface

Since the discovery of the existence of the injective hull of an arbitrary module
independently in 1952 by Shoda and in 1953 by Eckmann and Schopf, there have
been numerous papers dedicated to the study and description of various types of
hulls or “minimal” extensions of rings and modules satisfying some generalizations
of injectivity or of related conditions. The study of these overrings, overmodules
and extensions satisfying these conditions has been dealt with in detail in different
papers. The question of when do certain properties transfer from any ring R to
its many types of extensions such as matrix ring extensions, (skew-)group rings,
polynomial ring extensions and Ore extensions, has also been of interest to many
for a long time. It appears that the research work on various types of hulls and
on the wide varieties of extensions is spread throughout the literature in disparate
research papers. Thus, a book which presents (at least some part of) the state of the
art on the subject and includes some of the most recent work done on these topics,
is needed. That there has not been a comprehensive treatment of these topics, is one
of the main reasons for us to write this research monograph.

Since the properties such hulls and extensions satisfy may be unlimited and thus
cannot possibly be covered in one book, we wish to emphasize that in this mono-
graph we have focused mainly on hulls and extensions that satisfy certain conditions
on direct summands. We have however also made an attempt to provide a general
theory for hulls belonging to arbitrary classes of rings (or modules) which can sat-
isfy other properties.

Among other reasons, the need to present the results on the transference of cer-
tain algebraic properties to and from base rings and modules to various ring and
module extensions belonging to specific classes, in a systematic way, has also been
a motivation in writing this research monograph. To ensure some efficiency in the
transfer of information between a ring or a module to its overrings or overmodules,
respectively, we use the notion of a “minimal essential extension” with respect to
belonging to a special class. We term this a “hull” (belonging to that particular class)
and show that the “closeness” of such hulls to the base ring (or module) enriches
the transfer of information from the base ring (or module) to such a hull. This will
be shown as a useful tool in analyzing the structure of a ring (or of a module). Our
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viii Preface

desire is to present research work we have been involved in for over two decades as
well as that done by others on the various topics of this monograph. We also wish to
showcase the various applications of this research to Algebra and Functional Anal-
ysis.

Our view in writing this book is also to stimulate new and further research on the
topics presented. A number of open research problems are listed at the end of the
book to generate interest in research on these topics. It is our hope that the reader
will find the material presented in an accessible and unified manner. The book is in-
tended for research mathematicians in algebra and analysis and for advanced grad-
uate students in mathematics. Each section includes exercises of varying degrees of
difficulty for graduate students.

While we have attempted to make this monograph as self-contained as possible,
it has been difficult in view of the limitations on the size of this book. To keep the
book to a reasonable length, some proofs (including a few highly technical ones)
have been omitted and appropriate references to research papers or books have been
included. Some results have been included as exercises in various chapters, with
proper references, for a motivated reader. We have also listed other references re-
lated to the material presented in the book. These, and the brief historical notes
provided at the end of each chapter, should be useful for researchers interested in
further investigations. There are many excellent papers which we regrettably could
not include in this book in order to keep it within a moderate length.

We are very thankful to Gangyong Lee, Cosmin Roman, Henry E. Heatherly, and
Toma Albu, for their numerous constructive comments, painstaking proof-reading,
and suggestions for improvements in this book. The technical help provided by Cos-
min Roman and Gangyong Lee, and corrections in several proofs they pointed out
have been crucial during the preparation of this manuscript. There are many others
who helped in proof-reading various parts of the book. These include Mohammad
Ashraf, Xiaoxiang Zhang, Asma Ali, Shakir Ali, and Faiz Rizvi. We are thankful to
them for their time and efforts. The errors that still may remain in the book, are our
own fault.

There are others who have also played an important role, directly or indirectly,
in the formation of this book. We are thankful to (late) E.H. Feller, Bruno J. Müller,
Joe W. Fisher, T.Y. Lam, Barbara L. Osofsky, S.K. Jain, Efraim P. Armendariz,
Sergio López-Permouth, Dinh Van Huynh, Pere Ara, Edmund R. Puczyłowski, and
Mikhail Chebotar for their influence on our work, words of encouragement, advice
and support.

The work on the book was supported by grants from The Ohio State University
at Lima, Mathematics Research Institute, The Ohio State University, Columbus,
Ohio, USA, Busan National University, Busan, South Korea, and the University
of Louisiana at Lafayette, Lafayette, Louisiana, USA. We express our gratitude to
these institutions for their support. S.T. Rizvi wishes to acknowledge the support of
a 3-Year Stimulus Research Grant from the Mathematics Research Institute, Ohio
State University, Columbus, USA, for his work in the final stages of this mono-
graph. Jae Keol Park was supported by a 2-Year Research Grant of Pusan National
University.
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strength for us for which we are truly very grateful.

We are grateful to Ann Kostant for the support and cooperation in the earlier
stages of processing of this research monograph. The helpful cooperation and pa-
tience we received from Allen Mann and Mitch Moulton in the final processing
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Introduction

Among the major efforts in Ring Theory, one has been to find, for a given ring R, a
“well behaved” overring S in the sense that S has better properties than R and such
that some useful information can transfer between R and S. Alternatively, given a
well behaved ring, to find conditions describing those subrings for which there is a
fruitful inheritance of properties between the given ring and its subrings. A similar
quest between a module and an overmodule has been pursued in Module Theory.
These have been important topics of research and have been crucial in the devel-
opment of Algebra—especially of Ring and Module Theory. Having yielded such
important classes of rings and modules, as the rings and modules of quotients, in-
jective hulls and right orders, this quest has been truly rewarding to ring and module
theorists.

Another effort has been, to investigate when properties of a given ring R trans-
fer to its various ring extensions and vice versa. A number of research papers have
been published on investigations to address such questions. The ring extensions (for
example, polynomial extensions, matrix ring extensions, triangular matrix ring ex-
tensions, group ring extensions, and skew group ring extensions, etc.) form impor-
tant classes of rings and have been a focus of extensive research. While results on
some particular types of ring extensions and the transfer of some limited algebraic
properties have been included in a few existing research books or graduate texts, it
appears that there is presently no research monograph covering the wide varieties of
extensions and much of the recent work is spread in disparate research papers.

The focus of our book is related to the two quests mentioned above. As we men-
tioned in the preface, for a given ring R (or a given module M), we consider a
“minimal essential extension” of R (or of M) with respect to belonging to a partic-
ular class. We call this a “hull” of R (or of M) belonging to that particular class and
show that such hulls lie closer to the ring R (or to the module M) than its injective
hull. This in turn allows for a better transfer of information between R (or M) and
the hull of R (or of M) from these classes than between R (or M) and its injec-
tive hull. These hulls prove to be useful tools for the study of the structure of R (or
of M).
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xii Introduction

While some of the techniques presented here can be applied in more general set-
tings, our focus in this book is on certain properties of rings and modules related
to their direct summands and direct sums. In 1940, R. Baer [35] introduced the no-
tion of an injective module and showed that a module MR is injective if and only
if, whenever MR ≤ NR , MR is a direct summand of NR . This generalization of a
vector space is one of the cornerstones of Module Theory. The notion of injectiv-
ity and its generalizations have been a direction of extensive research. The need to
study generalizations of injectivity arises from the fact that such classes of modules
properly contain the class of injective modules while still enjoying some worthwhile
advantages of injective modules. One such generalization that has been of interest
for about three decades, is the notion of extending (or CS) modules, namely modules
in which every submodule is essential in a direct summand. This notion was explic-
itly named for the case of rings (as CS-rings) by Chatters and Hajarnavis in 1977
[119] and was also studied earlier by Utumi [398]. It is easy to see that such a mod-
ule is a common generalization of injective and semisimple modules. Analogously,
a module M is called an FI-extending module if every fully invariant submodule of
M is essential in a direct summand of M . These classes of modules and related no-
tions will form an important focus of results in this book because of the interesting
connections, as we will see later, to other topics of our study.

Among overrings of R, its right rings of quotients provide handy tools for study-
ing R. However they become useless when R coincides with its maximal right ring
of quotients such as when R is a right Kasch ring. To study overrings of such rings
one can consider classes of rings that lie between R and its right injective hull
E(RR). This motivates the notion of essential overring extensions that we present
in Chap. 7 and further utilize in later chapters. We call an overring S of a ring R, a
right essential overring of R if RR is essential in SR . This notion will prove to be
a useful tool. The study of such extensions is also motivated by a result in Chap. 8
which shows that any right essential overring of a right FI-extending ring is right
FI-extending. Therefore, all right essential overrings of a right FI-extending hull (if
it exists) of a ring R are right FI-extending. A ring is called quasi-Baer if the left
annihilator of an ideal is generated by an idempotent. Any right and left essential
overring of a quasi-Baer ring is quasi-Baer. Also right essential overrings provide a
natural setting for defining the notion of ring hulls in Chap. 8.

In 1936, Murray and von Neumann [311] developed the theory of von Neumann
algebras (also called W ∗-algebras) in an attempt to provide a rigorous mathematical
model for quantum theory (see also [403–406], and [407]). Their theory was based
on rings of operators on a Hilbert space. Rickart [353] in 1946 studied C∗-algebras
(i.e., Banach ∗-algebras such that ‖xx∗‖ = ‖x‖2) which satisfy the condition that
the right annihilator of every single element is generated by a projection (an idem-
potent e is called a projection if e = e∗). Rickart also showed that all von Neumann
algebras satisfy this property (i.e., the right annihilator of any element is generated
by a projection). These algebras were later named Rickart C∗-algebras by Kaplan-
sky.

Motivated by the work of Murray, von Neumann, and Rickart, Kaplansky in the
1950s showed that von Neumann algebras, in fact, satisfied a stronger annihilator
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condition, namely, that these are rings with identity in which the right annihilator
of any nonempty subset is generated by an idempotent. He termed a ring with this
property a Baer ring to honor R. Baer who had studied this condition in [36]. The
Baer ring property is left-right symmetric. Kaplansky recognized that the notions of
a Baer ring and a Baer ∗-ring provide a framework to study the algebraic properties
of operator algebras and each is interesting in its own right. The theory of Baer
rings, Baer ∗-rings, and AW ∗-algebras (C∗-algebras which are Baer ∗-rings) have
been studied in [246] and [45].

Maeda in 1960 [287] defined a Rickart ring. He called a ring right (left) Rickart
if the right (left) annihilator of any single element is generated by an idempotent. It
is clear that every Baer ring is right and left Rickart. The same year, Hattori [200]
introduced the notion of a right PP ring, namely a ring in which every principal
right ideal is projective. It was later discovered that a right Rickart ring is precisely
the same as a right PP ring.

While the classes of Baer rings and right Rickart rings have many noteworthy
properties, these are not closed under matrix ring or polynomial ring extensions.
Finding additional conditions which allow for the transfer of the Baer and right
Rickart properties to various types of ring extensions, has attracted interest.

A quasi-Baer ring (i.e., a ring for which the left annihilator of every ideal is gen-
erated by an idempotent) was defined by Clark in 1967 [128]. Similar to the Baer
ring property, the quasi-Baer ring property is left-right symmetric. He also showed
that any finite distributive lattice is isomorphic to a sublattice of the lattice of all ide-
als of an Artinian quasi-Baer ring. Remarkably, Pollingher and Zaks [347] in 1971
proved that unlike the class of Baer rings, the class of quasi-Baer rings is indeed
closed under full and triangular matrix extensions. By [128] and [347], the quasi-
Baer property is a Morita invariant property. It was shown in [77] that in contrast to
the Baer property, the quasi-Baer property transfers, without any additional require-
ments, from a ring R to many types of its ring extensions (this will be a topic of our
discussions). Therefore, at least a “weaker form” of the Baer property does transfer
to several of the ring extensions of a Baer ring R.

Analogous to a right Rickart ring, a ring R is called right principally quasi-Baer
(simply, right p.q.-Baer) if the right annihilator of any principal ideal is generated by
an idempotent as a right ideal [78]. A generalization of the quasi-Baer notion, this
property is also a Morita invariant and the class of right p.q.-Baer rings is closed
under triangular matrix ring and polynomial ring extensions without any additional
conditions on the base ring.

There are strong bonds between Baer and right extending rings. In particular, ev-
ery regular right extending (e.g., regular right self-injective) ring is Baer. In 1980,
Chatters and Khuri [121] provided an important characterization connecting the
class of Baer rings to that of right extending rings. More specifically, they showed
that a ring R is right nonsingular right extending if and only if R is Baer and right
cononsingular. This useful link and its analogues provide another motivation for sev-
eral topics that are included in this book. In a similar fashion, there are close links
between the FI-extending property and the quasi-Baer property (not only for rings
but also for modules). The algebraic properties we discussed in the preceding, will
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be of special interest in our discussions throughout the book. After the introductory
first chapter, Chap. 2 is devoted to a discussion of the injective property and related
notions. We shall discuss basic properties and results on (quasi-)Baer, Rickart, and
p.q.-Baer rings in Chap. 3.

Module theoretic analogues of Baer and quasi-Baer rings using the endomor-
phism ring of a module were introduced in [357] in 2004 (see also [359, 360], and
[361]). These will be the topics of our discussions in Chap. 4. Similar to the fact
that every Baer ring is nonsingular, we will see that a Baer module also satisfies
a weaker notion of nonsingularity of modules (called K-nonsingularity) which de-
pends on the endomorphism ring of the module. Strong connections between a Baer
module and an extending module are demonstrated via an effective use of this weak
nonsingularity and its dual notion. It is shown that an extending module which is
K-nonsingular is precisely a K-cononsingular Baer module. This provides a useful
module theoretic analogue of the Chatters-Khuri theorem. We shall use module the-
oretic methods to obtain conditions for the transfer of the Baer property to certain
matrix ring extensions. The chapter also includes a section on some of the latest
work on Rickart modules ([269, 270], and [271]). A Rickart module generalizes the
notion of a Baer module analogous to the case of rings.

In Chap. 5, we consider generalized triangular matrix representations and discuss
triangulating idempotents. A structure theorem for a quasi-Baer ring with a com-
plete set of triangulating idempotents will be presented. The following well-known
results are among the consequences of this structure theorem: Levy’s decomposi-
tion theorem of semiprime right Goldie rings, Faith’s characterization of semiprime
right FPF rings with no infinite set of central orthogonal idempotents, Gordon and
Small’s characterization of piecewise domains, and Chatters’ decomposition theo-
rem of hereditary Noetherian rings.

Continuing the study of the transference of some properties to matrix ring exten-
sions that were initiated in Chap. 3, we further consider the transference of various
algebraic properties to other matrix, Ore, and group ring extensions, in Chap. 6.

Chapter 7 is mainly devoted to the study of right essential overring extensions of a
ring and their ring structures. The techniques introduced here allow us to investigate
overrings which are incomparable with the maximal ring of quotients of a ring.
A ring R is said to be right Osofsky compatible if an injective hull E(RR) of RR

has a ring structure for which the ring multiplication extends the R-module scalar
multiplication of E(RR) over R. We discuss and show when certain rings are (or
are not) right Osofsky compatible.

Motivated by the results and examples of Chap. 7, in Chap. 8 we introduce the
notion of a ring hull belonging to a particular class. This important concept pro-
vides a basis for a general theory of hulls. To facilitate our search for ring hulls
from various classes of rings satisfying certain conditions related to idempotents,
we determine exactly the set of ideals of R which are dense in ring direct sum-
mands of Q(R), the maximal right ring of quotients of R. We note the ubiquity of
these hulls by showing that every semiprime ring has a quasi-Baer ring hull and
also has a right (and a left) principally quasi-Baer ring hull. As a consequence, a
commutative semiprime ring has a Baer and a Rickart ring hull. Further, if R is a
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semiprime ring, then the quasi-Baer ring hull of R is explicitly described and it is
proved that this quasi-Baer ring hull of R coincides with the FI-extending ring hull
of R. It is shown that there is a fruitful transmission of information between rings
and their quasi-Baer ring hulls. In the concluding part of the chapter, we discuss the
notion of module hulls and show the existence of various module hulls including
those which generalize injective hulls. Furthermore, using quasi-Baer ring hulls, we
show that every finitely generated projective module over a semiprime ring has an
FI-extending module hull. Continuing our discussions on hulls from Chap. 8, we
next focus on ring hulls of ring extensions in Chap. 9. In particular, we obtain and
describe ring hulls of monoid and matrix ring extensions belonging to the various
classes of rings we discussed earlier.

Chapter 10 is devoted to applications of the results presented in earlier chapters
to Ring Theory and Functional Analysis. In particular, among applications to the
structure of rings of quotients, necessary and sufficient conditions are shown for a
ring R such that Q(R) can be decomposed into a direct product of indecomposable
rings or a direct product of prime rings. Among applications to C∗-algebras, a C∗-
algebra with only finitely many minimal prime ideals is characterized. It is shown
that a unital C∗-algebra A is boundedly centrally closed if and only if A is a quasi-
Baer ring. For a cardinal number ℵ and a C∗-algebra A, we see that the extended
centroid of A is C

ℵ (where C is the field of complex numbers) if and only if the
local multiplier algebra Mloc(A) of A is a C∗-direct product of ℵ prime C∗-algebras.
A characterization of boundedly centrally closed intermediate C∗-algebras between
a C∗-algebra and Mloc(A) is presented.

We have taken an opportunity in the book to improve and extend some of the
results that appeared in our earlier papers. A few of the results in those papers have
been corrected and some new unpublished ones have been included. We could not
include all of the fascinating literature that is presently available, however we en-
courage the motivated reader to consult the papers cited in the references at the end
of the book and other related papers for further research on the topics considered
in this book. A number of open problems and questions are proposed for further
investigations as well.
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Qm(R) The Martindale right ring of quotients of R
Qs(R) The symmetric ring of quotients of R
Mod-R The category of right R-modules
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Chapter 1
Preliminaries and Basic Results

We begin with basic notions, definitions, results, terminology, and notations used in
the book. While we recommend standard graduate text books such as [8, 259], or
[262] for more details on this material, we include some preliminary material in this
chapter for the convenience of the reader.

1.1 Basic Notions and Definitions

Most of the material in this section is standard and is intended to provide background
information.

1.1.1 All our rings are assumed to have identity unless indicated otherwise. Mod-
ules are assumed to be unitary. For a ring R, we use 1R or 1R to denote the identity
of R. In using subscripts, when the context is clear, the subscript may be omitted.
A subring S of a ring R with 1R means a subring S ⊆R with 1R ∈ S. Ideals without
the adjective left or right mean two-sided ideals. When R is a ring, I � R denotes
that I is an ideal of R. A Noetherian (resp., Artinian) ring means both a right and
left Noetherian (resp., a right and left Artinian) ring.

1.1.2 Matn(R) and Tn(R) denote the n× n matrix ring and the n× n upper trian-
gular matrix ring over a ring R, respectively. The notation [rij ] stands for the matrix
whose (i, j)-position is rij .

Further, I(R) and B(R) are used for the set of idempotents and the set of central
idempotents of R, respectively. The center of R is denoted by Cen(R). For X ⊆ R,
〈X〉R denotes the subring of R generated by X.

The letters Z, Zn, Q, R, and C are used for the ring of integers, the ring of
integers modulo n (n is an integer greater than 1), the field of rational numbers,
the field of real numbers, and the field of complex numbers, respectively. For given
subsets A and B of a set X, A \B = {a ∈A | a �∈ B}, and we use |X| to denote the
cardinal number for X.

G.F. Birkenmeier et al., Extensions of Rings and Modules,
DOI 10.1007/978-0-387-92716-9_1,
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2 1 Preliminaries and Basic Results

1.1.3 For right R-modules MR and NR , we use Hom(MR,NR), HomR(M,N), or
Hom(M,N) to denote the set of all R-homomorphisms from MR to NR . Likewise,
End(MR), EndR(M), or End(M) denotes the endomorphism ring of an R-module
M . For an R-homomorphism f ∈ Hom(M,N), Image(f ) and Ker(f ) denote the
image and the kernel of f , respectively. Further, for X ⊆ M , f (X) or fX is used
for the image of X under f . For a submodule V of M , f |V means the restriction of
f to V . Also, “homomorphism” is used for “R-homomorphism”. When the context
is clear, the subscript R may be omitted.

A submodule W of a module V is said to be a fully invariant submodule of V
if f (W) ⊆ W for each f ∈ End(V ). We use W � V to denote that W is a fully
invariant submodule of V . When R is a ring, the fully invariant submodules of RR

are precisely the ideals of R.
A submodule N of a module M is said to be essential (or large) in M if N ∩U �=

0 for every nonzero submodule U of M . For a submodule V of a module M , Zorn’s
lemma guarantees the existence of a submodule W of M such that W is a maximal
essential extension of V in M . In this case, there is no proper essential extension
of W in M . A submodule N of M is said to be closed in M if N does not have a
proper essential extension in M . A maximal essential extension of N in M is called
a closure of N in M . A right ideal I of a ring R is called closed if IR is closed in
RR . A closed left ideal is defined similarly.

For a module M , N ≤M and L≤ess M denote that N is a submodule of M and
L is an essential submodule of M , respectively. When N ≤ M , N ≤⊕ M indicates
that N is a direct summand of M .

Let S and R be rings. Then we use SMR to denote that M is a left S-right R-
bimodule, or simply an (S,R)-bimodule. The notion SNR ≤ SMR means that N is
an (S,R)-subbimodule of M . If an R-module M is a direct sum M =U ⊕ V of R-
modules U and V , the R-homomorphism f :M →U defined by f (u+ v)= u, for
any u ∈U and v ∈ V , is called the canonical projection from M onto U .

1.1.4 Let M be a right R-module. Then the annihilator of M in R is the set
rR(M) = {a ∈ R | Ma = 0}. It is easy to see that rR(M) � R. In general, if
∅ �= U ⊆ M , rR(U) = {a ∈ R | Ua = 0} is a right ideal of R. Similarly, for a left
R-module M , we denote �R(M) = {a ∈ R | aM = 0}, and for any ∅ �= V ⊆ M , we
let �R(V )= {a ∈R | aV = 0}. Then �R(M)�R and �R(V ) is a left ideal of R.

A right R-module MR (resp., a left R-module RM) is called faithful if rR(M)= 0
(resp., �R(M)= 0). If M is a right R-module and ∅ �= B ⊆ R, then the annihilator
of B in M is the set �M(B)= {m ∈M |mB = 0}. Similarly, for a left R-module M
and ∅ �=D ⊆R, the annihilator of D in M is rM(D)= {m ∈M |Dm= 0}.
1.1.5 When M = R and ∅ �= X ⊆ R, rR(X) = {a ∈ R | Xa = 0} and �R(X) =
{a ∈ R | aX = 0}, which are called the right annihilator of X in R and the left
annihilator of X in R, respectively.

1.1.6 For a module M and an index set Λ, let M(Λ) and MΛ denote the direct
sum and the direct product of |Λ| copies of M , respectively. When Λ is finite with
|Λ| = n, then direct product and direct sum coincide and we use M(n) to denote it.
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1.1.7 (Modular Law) Let M be a module and V, W be submodules of M . Then,
for any N such that V ≤ N ≤ M , N ∩ (V + W) = V + (N ∩ W). In particular, if
M = V +W and V ≤N ≤M , then N = V + (N ∩W).

1.1.8 The submodule Z(MR) = {m ∈ M | rR(m) ≤ess RR}, of a right R-module
M , is called the singular submodule of M . The module MR is said to be nonsin-
gular if Z(MR) = 0. The submodule Z2(MR) of MR is defined by the condition
Z2(MR)/Z(MR)= Z(M/Z(MR)R). It is known that Z2(MR) is the unique closure
of Z(MR). The submodule Z2(MR) is called the second singular submodule of M .
It is easy to see that each of Z(M) and Z2(M) is a fully invariant submodule of
M . The singular submodule and the second singular submodule for a left module
are defined similarly. A ring R is called right (resp., left) nonsingular if Z(RR)= 0
(resp., Z(RR)= 0). It can be verified that if N ≤ess M , then Z(M/N)=M/N .

1.1.9 For a module M , the socle of M is the sum of all simple submodules of M
and is denoted by Soc(M). It is well known that Soc(M) is the intersection of all
essential submodules of M . A module M is said to be semisimple if M is a sum
of simple modules. Therefore, M is semisimple if and only if M = Soc(M). When
M = RR , then Soc(RR) is called the right socle of R. The left socle Soc(RR) of R
is defined similarly. When Soc(RR) = Soc(RR), we write Soc(R) for Soc(RR) or
Soc(RR).

We use Rad(M) to denote the intersection of all maximal submodules of M ,
which is called the (Jacobson) radical of M . The Jacobson radical J (R) of a ring R
is the intersection of all maximal right ideals of R. It is also the intersection of all
maximal left ideals of R.

An element a of a ring R is called right (resp., left) quasi-regular if 1 − a is
right (resp., left) invertible in R. An element a of a ring R is called quasi-regular if
1 − a is invertible in R. A one-sided ideal I of R is called (resp., right, left) quasi-
regular if every element of I is (resp., right, left) quasi-regular. A right ideal I is
right quasi-regular if and only if I is quasi-regular (see [8, Proposition 15.2]). The
Jacobson radical J (R) of R is the sum of all quasi-regular ideals of R. Furthermore,

J (R)= {r ∈R | ra is quasi-regular for all a ∈R}.

1.1.10 Let R be a ring and I an ideal of R. We say that each idempotent of R/I
lifts to an idempotent of R if for each idempotent α ∈ R/I , there is an idempotent
e ∈R such that α = e+ I . If I is a nil ideal of a ring R, then every idempotent of the
ring R/I lifts to an idempotent of R. Further, let V ⊆ J (R) be an ideal of R such
that each idempotent of R/V lifts to an idempotent of R. Then for any countable
(possibly finite) set of orthogonal idempotents {α1, α2, . . . } in R/V , there exists a
set of orthogonal idempotents {e1, e2, . . . } of R such that ei + V = αi for all i (see
[259, Proposition 21.25]).

1.1.11 An ideal P of a ring R is said to be a prime ideal if AB ⊆ P with A,B �R

implies A⊆ P or B ⊆ P , or equivalently, for all a, b ∈ R, aRb ⊆ P implies a ∈ P
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or b ∈ P . A ring R is said to be a prime ring if 0 is a prime ideal. The intersection of
all prime ideals of a ring R is called the prime radical of R and is denoted by P(R).
A ring R is said to be a semiprime ring if P(R)= 0. Thus, a ring R is semiprime if
and only if for any a ∈ R, aRa = 0 implies a = 0 if and only if R has no nonzero
nilpotent ideal.

1.1.12 A ring is said to be reduced if it contains no nonzero nilpotent elements.
Reduced rings are semiprime. It is known that a commutative ring R is semiprime
if and only if R is reduced if and only if R is nonsingular. Also if a ring R is
reduced, then ab = 0 with a, b ∈ R implies aRb = 0. Thus, for a reduced ring R,
eR(1 − e)= 0 and (1 − e)Re = 0 for e2 = e ∈R. Hence, all idempotents are central
in a reduced ring. So every reduced ring is an Abelian ring (a ring is called Abelian
if every idempotent is central).

A ring R is called regular (in the sense of von Neumann) if for any x ∈ R there
exists y ∈ R such that x = xyx. It is well known that a ring R is regular if and only
if every finitely generated right ideal is generated by an idempotent. A ring R is said
to be strongly regular if R is regular and reduced. We remark that R is a strongly
regular ring if and only if R is an Abelian regular ring.

1.1.13 A ring R is said to be right hereditary if every right ideal of R is projective as
a right R-module. A ring R is called right semihereditary if every finitely generated
right ideal of R is projective. A left hereditary ring and a left semihereditary ring
are defined similarly. A ring R is called (semi)hereditary if it is both right and left
(semi)hereditary.

The projective dimension pd(MR) of a module MR is defined to be the shortest
length n of an exact sequence

0 → Pn → Pn−1 → ·· · → P0 →M → 0

of modules, where Pn,Pn−1, . . . ,P0 are projective. If no such sequence exists,
then we write pd(MR) = ∞. The right global dimension r.gl.dim(R) of a ring
R is sup{pd(M) | M is a right R-module}. For a ring R, it is well known that
r.gl.dim(R)= 0 if and only if R is a semisimple Artinian ring; and r.gl.dim(R)≤ 1
if and only if R is right hereditary.

1.1.14 A ring R is called semilocal if R/J (R) is semisimple Artinian. A semilocal
ring is called semiperfect if each idempotent of R/J (R) lifts to an idempotent of R;
a semilocal ring R is said to be semiprimary if J (R) is nilpotent. A ring R is called
right perfect if every right R-module has a projective cover. A left perfect ring is
defined similarly. By a result of Bass [38], a ring R is right perfect if and only if R
satisfies DCC on principal left ideals (see [8, Theorem 28.4]). If R is a right perfect
ring, then Soc(RR) ≤ess

RR (see [259, Theorem 23.20]). Also, if R is a right (or
left) perfect ring, then J (R)= P(R) (see [259, Proposition 23.15]).

1.1.15 A nonzero module M is called uniform if every nonzero submodule of M
is essential in M . We say that a module M has uniform dimension n (written
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udim(M) = n) if there is an essential submodule V of M which is a direct sum
of n uniform submodules. On the other hand, if no such integer n exists, we write
udim(M) = ∞. A ring R is called right Goldie if R has ACC on right annihilators
and udim(RR) is finite. A left Goldie ring is defined similarly.

1.1.16 Let R be a ring. A subset {eij | 1 ≤ i, j ≤ n} of R is called a set of matrix
units if

∑n
i=1 eii = 1 and eij ek� = δjkei�, where δjk is the Kronecker delta. The set

A= {a ∈R | aeij = eij a for all i, j, 1 ≤ i, j ≤ n} forms a ring. Then R ∼= Matn(A)
and A∼= e11Re11 (see [221, Proposition 6, p. 52]).

1.1.17 An overring T of a ring R is called the classical right ring of quotients of R
if (i) every nonzero-divisor of R is invertible in T ; (ii) every x ∈ T is of the form
x = as−1, where a, s ∈ R and s is a nonzero-divisor. We write T = Qr

c�(R). For a
ring R, Qr

c�(R) exists if and only if R satisfies the right Ore condition, that is, for
a and s in R with s a nonzero-divisor, there exist b and t in R with t a nonzero-
divisor such that at = sb (see [382, Proposition 1.6, p. 52]). A ring R is said to
be right Ore if R satisfies the right Ore condition. A domain with the right Ore
condition is called a right Ore domain. The classical left ring of quotients of a ring,
the left Ore condition, a left Ore ring, and a left Ore domain are defined similarly. If
R is a right Ore domain, then Qr

c�(R) is a division ring.

1.2 Idempotents-Some Basic Results

Idempotents play an important role in the structure theory of rings and modules
as they generate the direct summands in any ring direct sum decomposition and
provide an analogous decomposition for any module. We include some basic results
and facts related to idempotents.

Definition 1.2.1 Let R be a ring. An idempotent e ∈ R is called left (resp., right)
semicentral if ae = eae (resp., ea = eae) for all a ∈R.

We use S�(R) (resp., Sr (R)) to denote the set of all left (resp., right) semicentral
idempotents of R.

Proposition 1.2.2 Let e2 = e ∈R. Then the following are equivalent.

(i) e ∈ S�(R).
(ii) eR is an ideal of R.

(iii) 1 − e ∈ Sr (R).
(iv) R(1 − e) is an ideal of R.
(v) (1 − e)Re = 0.

Proof The proof is routine from Definition 1.2.1. �
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Example 1.2.3 (i) Say R = T2(A), where A is a ring. Let eij ∈R be the matrix with
1 in the (i, j)-position and 0 elsewhere. Then for any a ∈A, e11 +ae12 ∈ S�(R) and
ae12 + e22 ∈ Sr (R).

(ii) Let R be a ring and e2 = e ∈R. If Re (resp., eR) contains no nonzero nilpo-
tent elements, then e ∈ S�(R) (resp., e ∈ Sr (R)).

Proposition 1.2.4 (i) Let e, f ∈ S�(R). Then e+ f − ef ∈ S�(R) and ef ∈ S�(R).
Further, eR + fR = (e+ f − ef )R and eR ∩ fR = efR.

(ii) Let e, f ∈ Sr (R). Then e + f − ef ∈ Sr (R) and ef ∈ Sr (R). Further,
Re+Rf =R(e+ f − ef ) and Re ∩Rf =Ref .

Proof The proof is straightforward. �

For a more comprehensive list of results on semicentral idempotents, see [79]
and [202].

Proposition 1.2.5 Let R be a ring. Then {eR | e ∈ S�(R)} is a distributive sublattice
of the lattice of ideals of R. More generally, if {eλ}λ∈Λ ⊆ S�(R) and f ∈ S�(R), then
fR ∩ (

∑

λ∈Λ eλR)=∑

λ∈Λ(fR ∩ eλR).

Proof By Proposition 1.2.4, {eR | e ∈ S�(R)} forms a sublattice of the lattice of
all ideals of R. Say e1, e2, and f are in S�(R). Put e = e1 + e2 − e1e2. Then by
Proposition 1.2.4, we observe that fR ∩ (e1R + e2R) = fR ∩ eR = f eR and that
(fR ∩ e1R)+ (fR ∩ e2R)= f e1R + f e2R = f eR. �

Proposition 1.2.6 Let R be a ring. Then:

(i) B(R)= S�(R)∩ Sr (R).
(ii) If R is semiprime, then S�(R)= Sr (R)= B(R).

Proof The proof is routine. �

We now consider semicentral idempotents of polynomial rings. It can be easily
seen that B(R) = B(R[x]) by routine computation. But the next example shows
that, in general, S�(R) �= S�(R[x]).

Example 1.2.7 Let R = T2(A), where A is a ring. Say eij is the matrix in R with 1
in the (i, j)-position and 0 elsewhere. Then e = e11 + e12x ∈ S�(R[x]), however
e �∈R.

In spite of Example 1.2.7, we have the following result which describes semicen-
tral idempotents of R[x] (see [71] for the proof).

Theorem 1.2.8 Let e(x)2 = e(x) ∈ R[x]. If e(x) ∈ S�(R[x]), then e0 ∈ S�(R) and
e(x)R[x] = e0R[x], where e0 is the constant term of e(x).
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The notations R[x, x−1] and R[[x, x−1]] stand for the Laurent polynomial ring
and the Laurent formal power series ring over a ring R, respectively. For more de-
tails on these rings, see [259]. Motivated by Theorem 1.2.8, the next interesting
result describes semicentral idempotents of R[x, x−1] and R[[x, x−1]]. See [77] for
the proof.

Theorem 1.2.9 Assume that T = R[x, x−1] or T = R[[x, x−1]] for a ring R,
and say e(x)2 = e(x) ∈ T with e0 the constant term. If e(x) ∈ S�(T ), then
e0 ∈ S�(R) and e(x)T = e0T .

Definition 1.2.10 A nonzero idempotent e of a ring R is called left (resp., right)
semicentral reduced if S�(eRe)= {0, e} (resp., Sr (eRe)= {0, e}). A ring R is called
left (resp., right) semicentral reduced if 1 is left (resp., right) semicentral reduced.

Proposition 1.2.11 (i) A ring R is left semicentral reduced if and only if R is right
semicentral reduced.

(ii) A nonzero idempotent e of a ring R is left semicentral reduced if and only if
e is right semicentral reduced.

Proof The proof follows easily from Proposition 1.2.2. �

In view of Proposition 1.2.11, we say that a nonzero idempotent e is semicentral
reduced if it is left (or right) semicentral reduced. Let R = T2(F ), where F is a
field. Let eij ∈ R be the matrix with 1 in the (i, j)-position and 0 elsewhere. Then
e11 and e22 are semicentral reduced idempotents.

Definition 1.2.12 A ring is said to be orthogonally finite if there is no set of in-
finitely many orthogonal idempotents.

Right Noetherian rings, rings with finite right uniform dimension, and semilocal
rings are orthogonally finite.

Proposition 1.2.13 The following are equivalent for a ring R.

(i) R is orthogonally finite.
(ii) {eR | e2 = e ∈R} has ACC.

(iii) {eR | e2 = e ∈R} has DCC.
(iv) {Re | e2 = e ∈R} has ACC.
(v) {Re | e2 = e ∈R} has DCC.

Proof See [262, Proposition 6.59] for the proof. �

Definition 1.2.14 A nonzero idempotent e of a ring R is called primitive if it cannot
be written as a sum of two nonzero orthogonal idempotents. A ring R is said to
have a complete set of primitive idempotents if there is a set of nonzero orthogonal
idempotents {e1, e2, . . . , en} for which each ei is primitive, and e1 + · · · + en = 1.
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It is easy to see that a nonzero idempotent e ∈R is primitive if and only if eRR is
indecomposable if and only if RRe is indecomposable (see [259, Proposition 21.8]).
Thus, R has a complete set of primitive idempotents if and only if RR (resp., RR) is
a finite direct sum of nonzero indecomposable submodules of RR (resp., RR). The
proof of the next result is straightforward.

Proposition 1.2.15 If R is orthogonally finite, then R has a complete set of primi-
tive idempotents.

The converse of Proposition 1.2.15 does not hold true. Shepherdson in [368] has
shown that there is a domain D with a, b ∈ R := Mat2(D) satisfying ab = 1 and
ba �= 1. Let eij be the matrix in R with 1 in (i, j)-position and 0 elsewhere. Then
{e11, e22} is a complete set of primitive idempotents. But R is not orthogonally
finite as bn(1 − ba)an for all positive integers n, form an infinite set of orthogonal
idempotents (see [120, pp. 112–113]).

A ring R is called an I-ring (also called a Zorn ring by Kaplansky [246, p. 19]) if
every nonnil right ideal of R contains a nonzero idempotent (see [221, Definition 1,
p. 210]). We see that R is an I-ring if and only if every nonnil left ideal contains a
nonzero idempotent.

Theorem 1.2.16 Assume that R is an I-ring. Then either R contains an infinite
number of orthogonal idempotents, or else R is semilocal.

Proof Let R be an orthogonally finite I-ring. We prove that R is semilocal. As R
is an I-ring, J (R) is nil. We note that A := R/J (R) is orthogonally finite as R is
orthogonally finite, and any countable set of orthogonal idempotents of A lifts to a
countable set of orthogonal idempotents of R (see 1.1.10). Also A is an I-ring. By
Proposition 1.2.13, we can choose an idempotent e1 of A such that e1A is minimal in
the set {hA | 0 �= h2 = h ∈A}. As every nonzero right ideal of A contains a nonzero
idempotent, the right ideal e1A is a nonzero minimal right ideal of A. Thus, Ae1AA

is a semisimple A-module.
We claim that Ae1A is a simple Artinian ring. Put f1 = e1. If rAe1A(f1) = 0,

then the map ϕ : Ae1AA → Ae1AA defined by ϕ(x) = f1x for x ∈ Ae1A is
a monomorphism. Therefore, Ae1AA

∼= ϕ(Ae1A)A ≤⊕ Ae1AA. Thus, we have
that Ae1A = ϕ(Ae1A) ⊕ N with NA ≤ Ae1AA. Since ϕ is a monomorphism,
ϕ2(Ae1A) ∩ ϕ(N)= 0, so ϕ(Ae1A)= ϕ2(Ae1A)⊕ ϕ(N). On the other hand, note
that ϕ(Ae1A) = e1Ae1A, so ϕ2(Ae1A) = ϕ(Ae1A). So we have that ϕ(N) = 0
and hence N = 0. Thus, Ae1A = ϕ(Ae1A), so f1Ae1A = Ae1A. Note that
f1A = f1f1A = f1e1A ⊆ f1Ae1A, so f1A = f1Ae1A = Ae1A. Because f1A� A

and A is semiprime, f1 ∈ B(A) by Propositions 1.2.2 and 1.2.6(ii). So
Ae1A = f1Af1 ∼= End(f1AA) is a division ring as f1AA = e1AA is simple (note
that f1 = e1).

If rAe1A(f1) �= 0, then choose e2
2 = e2 ∈ rAe1A(f1) such that e2AA is a nonzero

minimal right ideal of A as Ae1AA is semisimple and rAe1A(f1)A ≤Ae1AA. Since
e2AA ≤ Ae1AA, e2AA

∼= e1AA. Now f1e2 = 0, so f1 + e2 − e2f1 ∈ Ae1A is an
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idempotent and f1A+ e2A= (f1 + e2 − e2f1)A. Put f2 = f1 + e2 − e2f1. Because
f1e2 = 0, f1A ∩ e2A = 0 and so f2A = f1A + e2A = f1A ⊕ e2A = e1A ⊕ e2A.
Further, f1A� f2A.

If rAe1A(f2) = 0, then f2Ae1A = Ae1A as in the preceding argument. As
e2 ∈Ae1A, f2A= e1A⊕ e2A⊆Ae1A. Hence, f2A= f2f2A⊆ f2Ae1A, so f2A=
f2Ae1A = Ae1A. Thus, f2 ∈ B(A) by Propositions 1.2.2 and 1.2.6(ii). Hence
f2A = f2Af2 ∼= End(f2AA) = End(e1AA ⊕ e2AA) ∼= Mat2(D), where
D = e1Ae1 is a division ring because e1AA

∼= e2AA and e1AA is simple. There-
fore, the ring f2A is a simple Artinian ring.

Next, suppose that rAe1A(f2) �= 0. As in the previous step, we can choose
e2

3 = e3 ∈ rAe1A(f2) such that e3AA is a simple A-module. Since e3AA is simple and
e3AA ≤ Ae1AA, e3AA

∼= e1AA. We note that f2e3 = 0. Put f3 = f2 + e3 − e3f2.
Then f 2

3 = f3 ∈Ae1A, f2A∩ e3A= 0, and f2A⊕ e3A= f2A+ e3A= f3A. Thus

f3A= e1A⊕ e2A⊕ e3A such that e1AA
∼= e2AA

∼= e3AA.

So we get f1A� f2A� f3A, and so on.
As A is orthogonally finite, this process will be finished within finite steps

by Proposition 1.2.13, thereby there exists a smallest positive integer n satisfy-
ing rAe1A(fn) = 0 and Ae1A = fnA = e1A ⊕ e2A ⊕ · · · ⊕ enA with fn a central
idempotent in A. Put f = fn. Then fA∼= Matn(D), where D ∼= e1Ae1. Therefore,
A= fA⊕ (1 − f )A (ring direct sum) with Ae1A= fA a simple Artinian ring. We
may continue in this fashion to split off simple Artinian ring direct summands. If the
process does not terminate, we get an infinite number of orthogonal idempotents, a
contradiction. Thus, A is a semisimple Artinian ring, so R is semilocal. �

A ring R is called π -regular if for each a ∈ R there exist a positive integer n
(depending on a) and x ∈ R such that an = anxan. It is well known that π -regular
rings are I-rings (see [221, Proposition 1(1), p. 210]).

On the other hand, as a generalization of rings with minimum condition, a ring
R is called right π -regular if for each a ∈R there exist x ∈R and a positive integer
n (depending on a) such that an = an+1x. The right π -regularity of R is equivalent
to each descending chain of right ideals of the form aR ⊇ a2R ⊇ . . . terminating.
A left π -regular ring is defined similarly.

A ring which is either left or right π -regular is called strongly π -regular. The next
result exhibits a relationship between the strong π -regularity and the π -regularity
of a ring.

Theorem 1.2.17 (i) Every strongly π -regular ring is π -regular (see [33]).
(ii) A ring R is right π -regular if and only if R is left π -regular (see [138]).

Theorem 1.2.18 The following conditions for a ring R are equivalent.

(i) R is strongly π -regular.
(ii) Each prime factor ring of R is strongly π -regular.

Proof (i)⇒(ii) is obvious. For (ii)⇒(i), we need to see that for each a ∈ R there
is a positive integer n with anR = an+1R. Assume on the contrary that there exists
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a ∈ R such that the descending chain {aiR | i = 1,2, . . . } of right ideals does not
terminate. By Zorn’s lemma, choose an ideal I of R which is maximal with respect
to the property that the descending chain {aiR+I | i = 1,2, . . . } does not terminate.
Clearly, I is not prime from (ii). By passing to R/I , we may assume that I = 0 and
R is not a prime ring. Hence, there exist nonzero ideals J and K of R such that
JK = 0. By the choice of I , there is a positive integer m with am ≡ am+1x ≡
am+rxr (modJ ) with x ∈ R and am ≡ am+1y ≡ am+ryr (modK) with y ∈ R for
any r . Take r = m + 1, and from (am − am+rxr ) (am − am+ryr ) = 0, we deduce
that a2m = a2m+1z for some z ∈ R. This contradicts the choice of I . Thus, R is
strongly π -regular. �

A ring R is said to have bounded index (of nilpotency) if there exists a positive
integer n such that xn = 0 whenever x is a nilpotent element of R. The least such
positive integer is called index of nilpotency of R. Hence, a reduced ring is exactly
a ring with index of nilpotency 1.

Say R is a ring not necessarily with identity. Then R is called a nil ring if every
element of R is nilpotent. Next, R is said to be nilpotent if there exists a positive
integer n such thatRn = 0. We say that R is locally nilpotent if the subring generated
by every finite subset of R is nilpotent.

Theorem 1.2.19 If R is a nil ring with bounded index (of nilpotency), then R is
locally nilpotent.

Proof See [139, Theorem 53]. �

Theorem 1.2.20 Let R be a semiprime ring with index of nilpotency at most n.
Then:

(i) For each x ∈R, rR(xn)= rR(x
k) for any integer k ≥ n.

(ii) R is right and left nonsingular.

Proof (i) Choose x ∈ R. We put X1 = rR(x)x,X2 = rR(x
2)x2, . . . , and

Xn = rR(x
n)xn. Then yiyj = 0 for i ≥ j , where yi ∈ Xi and yj ∈ Xj . We claim

that y1y2 · · ·yn = 0 for yi ∈ Xi , 1 ≤ i ≤ n. Indeed, take yi ∈ Xi for 1 ≤ i ≤ n and
put z = y1 + y2 + · · · + yn. Then zn = y1y2 · · ·yn and zn+1 = 0 since yiyj = 0
for i ≥ j . As R has index of nilpotency at most n, zn = 0 and so y1y2 · · ·yn = 0.
Therefore, rR(x)[xrR(x2)] · · · [xn−1rR(x

n)]xn = 0.
We observe that xnrR(x

n+1) ⊆ rR(x), xnrR(x
n+1) ⊆ xrR(x

2), . . . , and
xnrR(x

n+1) ⊆ xn−1rR(x
n). Thus, [xnrR(xn+1)]n+1 = 0. As R is semiprime,

xnrR(x
n+1) = 0. Hence, rR(x

n+1) ⊆ rR(x
n). Therefore, rR(x

n) = rR(x
n+1).

Hence, we see that rR(xn)= rR(x
k) for each integer k ≥ n.

(ii) Take x ∈ Z(RR). If xn �= 0, then there exists 0 �= b ∈ rR(x) ∩ xnR because
rR(x) ≤ess RR . Say b = xnr with r ∈ R. Then xb = 0 and hence xn+1r = 0. As
rR(x

n+1) = rR(x
n) by part (i), r ∈ rR(x

n), and so b = xnr = 0, a contradiction.
Hence, xn = 0 for each x ∈ Z(RR). By Theorem 1.2.19, Z(RR) is locally nilpotent.
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Let F be a finite subset of Z(RR), and let S be the subring of Z(RR) generated
by F . Then S is nilpotent. Thus, there exists a smallest positive integer k such that
SkR is nilpotent. We claim that k ≤ n. Assume on the contrary that k > n. Note that
I :=RSkR is nilpotent, so R/I has index of nilpotency at most n. Put Yi = Sk−iRSi

for i = 1,2, . . . , n. Then for i ≥ j , YiYj = Sk−iRSi−j SkRSj ⊆ I . Take

Vi = {y + I ∈R/I | y ∈ Yi}
for i = 1,2, . . . , n. Then ViVj = 0 for i ≥ j . Since R/I has index of nilpotency at
most n, V1V2 · · ·Vn = 0 as in the proof of part (i). So Y1Y2 · · ·Yn ⊆ I . Thus we have
that (Sk−1RS)(Sk−2RS2)(Sk−3RS3) · · · (Sk−nRSn)⊆ I .

So (Sk−1R)nSn ⊆ I . Because k > n, k − 1 ≥ n and thus it follows that
(Sk−1R)n+1 = (Sk−1R)nSk−1R = (Sk−1R)nSnS(k−1)−nR ⊆ I . Hence, Sk−1R is
nilpotent, a contradiction to the choice of k. Thus k ≤ n, so SnR is nilpotent. Since
R is semiprime, SnR = 0, and hence Sn = 0. Consequently Z(RR)

n = 0, and hence
Z(RR)= 0. Similarly, Z(RR)= 0. �

1.3 Rational Extensions

We discuss dense submodules and rational extensions in this section. A brief de-
scription of maximal right rings of quotients is also included.

Definition 1.3.1 A right R-module E is said to be injective if it satisfies any one
of the following equivalent conditions.

(i) For any right R-module V and any W ≤ V , every R-homomorphism W → E

can be extended to an R-homomorphism V →E.
(ii) (Baer’s Criterion) Every R-homomorphism from a right ideal I of R to E can

be extended to an R-homomorphism from R to E.
(iii) For any right R-module U , every R-monomorphism E →U splits.

A ring R is called right self-injective if RR is injective. A left self-injective ring
is defined similarly. There exists a right self-injective ring which is not left self-
injective. For example, let R be the endomorphism ring of an infinite dimensional
right vector space over a division ring. Then R is right self-injective, but it is not left
self-injective (see [262, Example 3.74B]).

Theorem 1.3.2 Every module M has a minimal injective extension which is, equiv-
alently, a maximal essential extension of M . This extension of M is unique up to
isomorphism.

Proof See [264, Sect. 4.2]. �

A minimal injective extension of a module M is called the injective hull of M .
The injective hull of M is denoted by E(M) or E(MR).
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Definition 1.3.3 A ring R is called quasi-Frobenius (simply, QF) if R is right self-
injective and right Artinian (right Noetherian).

Theorem 1.3.4 Let R be a ring. Then the following are equivalent.

(i) R is a QF-ring.
(ii) R is right self-injective left Artinian.

(iii) R is left self-injective right Artinian.
(iv) R is left self-injective left Artinian.
(v) R is right self-injective left Noetherian.

(vi) R is left self-injective right Noetherian.
(vii) R is left self-injective left Noetherian.
(viii) R is right Noetherian with rR(�R(I ))= I and �R(rR(J )) = J for each right

ideal I and each left ideal J of R, respectively.

Proof See [262, Theorem 15.1]. �

Definition 1.3.5 A submodule NR of MR is called dense (or rational) in MR if for
any x, y ∈M with y �= 0, there exists r ∈R such that xr ∈N and yr �= 0. We denote
this by NR ≤den MR .

Every dense submodule of M is an essential submodule of M . But the converse
is not true. For example, take M = Z/pn+1

Z and N = pZ/pn+1
Z as Z-modules,

where p is a prime integer and n is an integer such that n ≥ 1. Then N is essential
in M , but N is not dense in M . We will see from Proposition 1.3.14 that these two
notions coincide if M is nonsingular.

To consider a rational hull (or rational completion) of a module and a maximal
right ring of quotients of a ring, we start with the following well known result.

Proposition 1.3.6 For modules N ≤M , the following are equivalent.

(i) N ≤den M .
(ii) Hom(M/N, E(M))= 0.

(iii) For any K with N ≤K ≤M , Hom(K/N,M)= 0.

Proof See [262, Proposition 8.6]. �

Let MR be a right R-module, and we let S = End(E(M)). Put

˜E(M)= {x ∈E(M) | h(M)= 0 with h ∈ S implies h(x)= 0}.

Then M ≤ ˜E(M)≤E(M). The next two results are related to ˜E(M).

Proposition 1.3.7 Assume that M ≤ V ≤ E(M). Then M ≤den V if and only if
V ≤ ˜E(M).
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Proof Assume that M ≤den V . Put E = E(M). From the short exact sequence
0 →M → V → V/M → 0, we have the short exact sequence

0 → Hom(V/M, E)→ Hom(V , E)→ Hom(M, E)→ 0

by the injectivity of E. As M ≤den V and E(V ) = E, Hom(V/M, E) = 0 from
Proposition 1.3.6. So Hom(V , E) ∼= Hom(M,E). Take h ∈ S := End(E) with
h(M)= 0. Then h(V )= 0 as Hom(V , E)∼= Hom(M,E). So V ≤ ˜E(MR).

Conversely, let M ≤ V ≤ ˜E(M). Then we obtain the short exact sequence

0 → Hom(˜E(M)/M,E)→ Hom(˜E(M),E)→ Hom(M,E)→ 0

from the short exact sequence 0 →M → ˜E(M)→ ˜E(M)/M → 0.
Say f ∈ Hom(M,E) and ϕ is an extension of f to E. If f (M) = 0, then

ϕ(˜E(M)) = 0 because ϕ ∈ End(E). So Hom(˜E(M),E) ∼= Hom(M,E), and hence
0 = Hom(˜E(M)/M,E) = Hom(˜E(M)/M,E(˜E(M))). Therefore M ≤den

˜E(M)

by Proposition 1.3.6. As M ≤ V ≤ ˜E(M), M ≤den V . �

Proposition 1.3.8 Let M be a right R-module and M ≤den V . Then there exists a
unique monomorphism g : V → ˜E(M) extending the inclusion map M ↪→ ˜E(M).

Proof As M ≤ess V , the inclusion map M ↪→ E(M) extends to a monomorphism
g : V →E(M). Clearly M = g(M)≤den g(V ) as M ≤den V , and so g(V )≤ ˜E(M)

by Proposition 1.3.7. Suppose that g1, g2 : V → ˜E(M) both extend the inclusion
map M ↪→ ˜E(M). As M ≤ess V , g1 and g2 are monomorphisms. Consider the map
f : V → ˜E(M) defined by f (v) = g1(v) − g2(v) for v ∈ V . Say ϕ ∈ End(E(M))

such that ϕ|V = f . Because ϕ(M) = f (M) = 0, ϕ(˜E(M)) = 0 and therefore
ϕ(V )= f (V )= 0. So g1(v)= g2(v) for all v ∈ V . Thus g1 = g2. �

By Propositions 1.3.7 and 1.3.8, ˜E(MR) is the unique maximal rational extension
of MR . We call it the rational hull (or rational completion) of MR .

Let R be a ring, E = ER = E(RR) be an injective hull of RR , and let
H = End(ER), operating on the left of ER . Furthermore, let Q = End(HE), op-
erating on the right of E. Thus E = HEQ is an (H,Q)-bimodule.

Theorem 1.3.9 (i) HE is a cyclic H -module generated by 1R .
(ii) Let ε : Q → E be defined by ε(q) = 1R · q , for q ∈ Q. Then ε is an R-

isomorphism from Q onto ˜E(RR).

Proof (i) Let x ∈ E. The R-homomorphism RR → ER sending 1R to x can be
extended to some h ∈ End(ER)=H , so x = h(1R) ∈H · 1R .

(ii) Clearly, ε is an R-homomorphism. If q ∈ Ker(ε), then 1R · q = 0. By part (i),
0 =H · (1R · q)= (H · 1R) · q =E · q . Hence q = 0, so ε is one-to-one.

We claim that Image(ε)= ˜E(RR). For this, say h ∈H such that h(R)= 0. Then
h(1R ·Q)= (h · 1R) ·Q= 0. Hence Image(ε)= 1R ·Q⊆ ˜E(RR).
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Next, let y ∈ ˜E(RR). Define

φ :E =H · 1R →E by φ(h · 1R)= h(y) for h ∈H.

If h · 1R = 0, then h(1R)= 0 and so h(R)= 0. Thus h(˜E(RR))= 0, h(y)= 0.
Therefore φ is well-defined and it is an H -homomorphism of HE. Thus there is

q ∈ Q with h(y) = φ(h · 1R) = (h · 1R) · q for all h ∈ H . When h = 1, we get that
y = 1R · q = ε(q) ∈ Image(ε). So Image(ε)= ˜E(RR). �

Definition 1.3.10 By using the R-isomorphism ε in Theorem 1.3.9, Q is identified
with ˜E(RR). This then gives ˜E(RR) a ring structure extending its given right R-
module structure. The ring Q is denoted by Q(R) and is called the maximal right
ring of quotients of R. Any intermediate ring between R and Q(R) is called a right
ring of quotients of R. The maximal left ring of quotients Q�(R) and a left ring of
quotients of R are defined similarly.

Another description of Q(R) will be provided in Theorem 1.3.13. For this, we
need some preparations.

Proposition 1.3.11 (i) Assume that D is a dense right ideal of R. Then for any
q ∈Q(R), q−1D := {r ∈R | qr ∈D} is a dense right ideal of R.

(ii) If D is a dense right ideal of R, then �Q(R)(D)= 0.
(iii) If D1 and D2 are dense right ideals of R, then so is D1 ∩D2.
(iv) For D �R, DR ≤den RR if and only if �R(D)= 0.

Proof (i) Clearly, q−1D is a right ideal of R. Since DR ≤den RR ≤den Q(R)R ,
DR ≤den Q(R)R . Take x, y ∈R such that y �= 0. There is a ∈R such that (qx)a ∈D

and ya �= 0. So xa ∈ q−1D and ya �= 0. Hence, (q−1D)R ≤den RR .
(ii) If xD = 0 for some 0 �= x ∈ Q(R), then there is r ∈ R with 0 �= xr ∈ R. By

part (i), r−1DR ≤den RR . So there is a ∈ R such that a = 1a ∈ r−1D and xra �= 0.
Thus 0 �= xra ∈ xr(r−1D)⊆ xD = 0, a contradiction.

(iii) The proof is routine.
(iv) Say DR ≤den RR . Then �R(D) = 0 by part (ii). Conversely, take x, y in R

with y �= 0. Then yD �= 0. There is d ∈D with yd �= 0. As xd ∈D, DR ≤den RR . �

Proposition 1.3.12 Assume that D is a dense right ideal of R and put
(R :D)= {q ∈Q(R) | qD ⊆R}. Then ((R :D),+)∼= (Hom(DR,RR),+).

Proof Define θ : (R : D) → Hom(DR,RR) by θ(q)(d) = qd for q ∈ (R : D) and
d ∈D. Then θ is additive. To show that θ is one-to-one, assume that θ(q)= 0 with
q ∈ (R : D). Then qD = 0, so q = 0 by Proposition 1.3.11(ii). Hence, θ is one-to-
one.

We show that θ is onto. Say f ∈ Hom(DR,RR) and g ∈ End(ER) is an extension
of f , where ER is an injective hull of RR . Then f (d)= g(d)= g(1R)d for d ∈D.
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To see that g(1R) ∈Q(R), take h ∈ End(ER) such that h(R)= 0. If h(g(1R)) �= 0,
then there exists a ∈R with 0 �= h(g(1R))a ∈R. Also

h(g(1R))a(a
−1D)⊆ h(g(1R))D = h(g(D))= h(f (D))⊆ h(R)= 0.

Since a−1D is a dense right ideal of R by Proposition 1.3.11(i), h(g(1R))a = 0
from Proposition 1.3.11(ii), a contradiction. Whence h(g(1R)) = 0, so it follows
that q := g(1R) ∈ Q(R). Thereby f (d) = qd for all d ∈ D. Thus q ∈ (R : D) and
θ(q)= f . Therefore θ is onto. �

Our next theorem provides a construction for the maximal right ring of quotients
of a ring R. For the existence of the maximal right ring of quotients of R, we need
not assume that R has an identity; but we assume that �R(R)= 0. This construction
is due to Johnson [234] and Utumi [395].

Let D be the set of all dense right ideals of R and let

Q =
⋃

D∈D
HomR(D,R)/∼,

where ∼ is an equivalence relation on
⋃

D∈D HomR(D,R) such that, for given
f ∈ HomR(D,R) and g ∈ HomR(D

′,R), f ∼ g means that f = g on D ∩D′. Let
[f ] denote the equivalence class of f .

Say f1 ∈ HomR(D1,R) and f2 ∈ HomR(D2,R). We define

f1 + f2 ∈ HomR(D1 ∩D2,R) and f1f2 ∈ HomR(f
−1
2 (D1),R)

by (f1 + f2)(d)= f1(d)+ f2(d) for d ∈D1 ∩D2; and (f1f2)(d)= f1(f2(d)) for
d ∈ f−1

2 (D1). Define [f1] + [f2] = [f1 + f2] and [f1] · [f2] = [f1f2].

Theorem 1.3.13 Q(R)∼= (Q,+, ·).

Proof The proof is a routine verification. Here we first show that f−1
2 (D1) is a dense

right ideal of R. Thus, the description of multiplication makes sense, and gives an
indication of the ring isomorphism between Q(R) and Q.

Say x, y ∈ R with y �= 0. As D2 is a dense right ideal of R, there is a ∈ R

such that xa ∈ D2 and ya �= 0. Next, since D1 is a dense right ideal of R, there is
b ∈R with f2(xa)b ∈D1 and yab �= 0. So xab ∈ f−1

2 (D1) and yab �= 0. Therefore,
f−1

2 (D1) is a dense right ideal of R.
Let q ∈ Q(R). Then D := q−1R is a dense right ideal of R by Proposi-

tion 1.3.11(i). Therefore q ∈ (R : D), where q corresponds to f ∈ HomR(D,R)

such that f (d) = qd for all d ∈ D by Proposition 1.3.12. Say qi ∈ (R : Di) corre-
spond to fi ∈ HomR(Di,R) for i = 1,2. Then q1 = q2 if and only if [f1] = [f2]. In
fact, if q1 = q2, then f1 = f2 on D1 ∩ D2. Thus, [f1] = [f2]. Conversely, assume
that [f1] = [f2]. Then f1(d)= f2(d) for all d ∈D1 ∩D2. Thus, q1(d)= q2(d) for
all d ∈D1 ∩D2, so (q1 −q2)(D1 ∩D2)= 0. Thus, q1 = q2 by Proposition 1.3.11(ii)
and (iii). Also we see that q1 + q2 and q1q2 of Q(R) correspond to [f1 + f2] and
[f1f2], respectively. �
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Proposition 1.3.14 Let M be a nonsingular right R-module and N a submodule
of M . Then N ≤ess M if and only if N ≤den M .

Proof Assume that N ≤ess M . Let x, y ∈ M and y �= 0. Then we see that
x−1N := {r ∈ R | xr ∈ N} is an essential right ideal since N ≤ess M . As M is
nonsingular, y · x−1N �= 0. Thus, N ≤den M . The converse is obvious. �

Corollary 1.3.15 Let a ring R be right nonsingular. Then RR ≤den E(RR), and so
Q(R)= ˜E(RR)=E(RR).

Proof Because Z(RR) = 0, E(RR) is also nonsingular. By Proposition 1.3.14,
RR ≤den E(RR), so Q(R)= ˜E(RR)=E(RR) from Proposition 1.3.7. �

If R is a semiprime ring and I � R, then �R(I) = rR(I ). Thereby, in this case,
we also use AnnR(I) to denote �R(I) or rR(I ).

Proposition 1.3.16 Assume that R is a semiprime ring and I � R. Then the fol-
lowing are equivalent.

(i) AnnR(I)= 0.
(ii) IR ≤den RR .

(iii) IR ≤ess RR .
(iv) RIR ≤ess

RRR (i.e., I ∩ J �= 0 for any 0 �= J �R).

Proof The proof is straightforward. �

Definition 1.3.17 Assume that R is a semiprime ring and we let F be the set of all
ideals I of R such that AnnR(I)= 0. Observe that each I ∈F is a dense right ideal
of R by Proposition 1.3.11(iv) or Proposition 1.3.16.

Now we define Qm(R)= {q ∈Q(R) | qI ⊆R for some I ∈F} and

Qs(R)= {q ∈Q(R) | qI ⊆R and Jq ⊆R for some I, J ∈ F}.
If I1, I2 ∈F , then I1I2, I2I1 ∈F and so I1 ∩ I2 ∈F . Take q1, q2 ∈Qm(R) such that
q1I1 ⊆R and q2I2 ⊆R, with I1, I2 ∈F . Then

q1q2(I2I1)⊆ q1RI1 ⊆ q1I1 ⊆R.

Thus q1q2 ∈ Qm(R). The other ring axioms for Qm(R) can be routinely verified,
therefore Qm(R) is a subring of Q(R).

Let q1, q2 ∈ Qs(R) with q1I1 ⊆ R, J1q1 ⊆ R and q2I2 ⊆ R, J2q2 ⊆ R, where
I1, I2, J1, J2 ∈ F . Then as above, q1q2(I2I1)⊆R. Also

(J2J1)q1q2 ⊆ J2(J1q1)q2 ⊆ J2Rq2 ⊆ J2q2 ⊆R.

Thus, q1q2 ∈ Qs(R). The other ring axioms for Qs(R) can be routinely checked.
Thus Qs(R) is a subring of Q(R) and Qs(R)⊆Qm(R)⊆Q(R).
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The ring Qm(R) is called the Martindale right ring of quotients of R, and the
ring Qs(R) is known as the symmetric ring of quotients of R.

Let N = {q ∈ Q(R) | qR = Rq}. Then the ring RN is called the normal clo-
sure of R. The central closure of R is defined to be RCen(Q(R)). Then RN and
RCen(Q(R)) are subrings of Qs(R) and RCen(Q(R)) ⊆ RN (see [262, Theo-
rem 14.30 and Corollary 14.31]).

A ring R is called right Kasch if every simple right R-module is embedded in
RR . The next result provides information about right Kasch rings.

Proposition 1.3.18 Let R be a ring. Then the following are equivalent.

(i) R is right Kasch.
(ii) If M is a maximal right ideal of R, then M = rR(v) for some v ∈R.

(iii) The left annihilator of any maximal right ideal is nonzero.
(iv) The only dense right ideal of R is R itself.

In this case, R =Q(R).

Proof See [262, Corollaries 8.28 and 13.24]. �

Example 1.3.19 There exists a ring R with R = Q(R), but R is not right Kasch.
Indeed, let R be the endomorphism ring of an infinite dimensional right vector space
over a field. Then R is a prime, regular, and right self-injective ring, so R =Q(R).
Let I = {f ∈R | f (V ) is finite dimensional}. Then I is a nonzero proper ideal of R
and hence �R(I)= 0 because R is prime. Thus, IR ≤den RR by Proposition 1.3.16.
So R is not right Kasch from Proposition 1.3.18 because I �=R.

Historical Notes Semicentral idempotents in Definition 1.2.1 were initially de-
fined and studied by Birkenmeier in [57]. Proposition 1.2.5 appears in [78]. The-
orem 1.2.16 was obtained by Kaplansky [243], while Theorem 1.2.18 was shown
by Fisher and Snider [170]. Theorem 1.2.19 is due to Levitzki in [278]. Theo-
rem 1.2.20 was obtained by Hannah [195]. Theorem 1.3.9 is due to Lambek [263]
(see also [264]). In [234], Johnson developed the notion of the right singular
ideal and gave the construction in Theorem 1.3.13 for Q(R) when Z(RR) = 0.
Utumi [395] introduced the notion of a dense right ideal and generalized Johnson’s
construction to a ring R for which Z(RR) is not necessarily zero. Most results of
Sect. 1.3 can be found in [262] and [264]. See [317] for further materials on QF-
rings. Additional references on related material include [22, 51, 134, 165–167, 174],
and [346].



Chapter 2
Injectivity and Some of Its Generalizations

Recall that an injective module generalizes a vector space as well as a divisible
Abelian group. This generalization is one of the cornerstones of Module theory.
The fact that every module has a unique (up to isomorphism) injective hull makes
this notion very useful. Among many basic properties, one which characterizes an
injective module is that it is a direct summand of every overmodule of itself (see
Definition 1.3.1). Moreover, the class of injective modules is closed under direct
summands and direct products (hence finite direct sums).

In view of the above, it is natural to seek effective generalizations of injectivity in
order to obtain classes of modules properly containing the class of injective modules
which further enjoy some of the advantages of these modules. From the preceding
properties, one can see that an injective module satisfies the condition that each
submodule is essential in a direct summand. This is known as the (C1) condition in
the literature and is a common generalization of injective and semisimple modules.
Modules with the (C1) condition are called extending modules (also known as CS-
modules).

In this chapter, we introduce various conditions which are related to extending
or injective modules. It is known that direct summands of modules satisfying ei-
ther of (C1), (C2) or (C3) conditions, or of (quasi-)injective modules, or of (quasi-)
continuous modules inherit these respective properties. On the other hand, these
classes of modules are generally not closed under direct sums. One focus of this
chapter is to discuss conditions which ensure that such classes of modules are closed
under direct sums. Applications of these conditions, which include decomposition
theorems, are also considered.

We shall also discuss FI-extending modules (i.e., modules for which every fully
invariant submodule is essential in a direct summand). This provides a (natural)
generalization of the extending property. An ongoing open problem is the precise
characterization of when a direct sum of extending modules is extending. However,
in Theorem 2.3.5, we shall see that an arbitrary direct sum of extending modules
satisfies at least the extending property for fully invariant submodules without any
additional conditions. Direct summands of FI-extending modules will also be con-
sidered. Later in Chaps. 3 and 4, we shall observe that there are strong connections
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between the (FI-)extending and the (quasi-)Baer properties for rings and for mod-
ules, respectively.

2.1 Quasi-continuous and Extending Modules

We introduce some generalizations of injectivity which are related to the extending
property of modules. More specifically, we discuss the notions of quasi-injective,
continuous, quasi-continuous, and extending modules. Examples, characterizations,
and basic results for these modules are provided in this section. We begin with the
following definition of relative injectivity.

Definition 2.1.1 Let M and N be modules.
(i) M is called N -injective if, for any W ≤N and f ∈ Hom(W,M), there exists

φ ∈ Hom(N,M) such that φ|W = f .
(ii) M and N are said to be relatively injective if M is N -injective and N is

M-injective.

If N is semisimple, then every module M is N -injective. A module M is injec-
tive if and only if it is N -injective for all modules N . By Baer’s Criterion, a right
R-module MR is injective if and only if MR is RR-injective.

The next result is a useful criterion for the relative injectivity between two mod-
ules.

Theorem 2.1.2 Let M and N be right R-modules. Then M is N -injective if and
only if ϕ(N)⊆M for every ϕ ∈ Hom(E(N), E(M)).

Proof Assume that M be N -injective. Take ϕ ∈ Hom(E(N),E(M)). Now we let
W = {w ∈ N | ϕ(w) ∈ M}. Then ϕ|W ∈ Hom(W,M). As M is N -injective, there
is f ∈ Hom(N,M), an extension of ϕ|W . Suppose that f (n0) �= ϕ(n0) for some
n0 ∈N . Then 0 �= (f (n0)−ϕ(n0))r ∈M for some r ∈R as M ≤ess E(M). We may
note that f (n0)r ∈M . So ϕ(n0)r = ϕ(n0r) ∈M and n0r ∈W .

Thus f (n0r) = ϕ(n0r), a contradiction. Hence f (n) = ϕ(n) for all n ∈ N , and
so ϕ(N)= f (N)⊆M .

Conversely, to see that M is N -injective, let W ≤N and φ ∈ Hom(W,M). There
exists α ∈ Hom(E(N),E(M)) with α|W = φ. Thus, M is N -injective. �

Corollary 2.1.3 Assume that A and B are relatively injective modules. If E(A) ∼=
E(B), then A∼= B .

Proof Let ϕ :E(A)→E(B) be an isomorphism. As B is A-injective, we have that
ϕ(A)⊆ B by Theorem 2.1.2. Similarly, ϕ−1(B)⊆A. Therefore,

B = ϕϕ−1(B)⊆ ϕ(A)⊆ B.

So ϕ(A)= B and hence A∼= B . �



2.1 Quasi-continuous and Extending Modules 21

Theorem 2.1.4 Let M = M1 ⊕ M2 with M1 and M2 modules. Then M1 is
M2-injective if and only if, for every K ≤M with M1 ∩K = 0, there exists N ≤M

such that K ≤N and M =M1 ⊕N .

Proof See [145, Lemma 7.5] for the proof. �

Proposition 2.1.5 Let N be a module and {Mi | i ∈ Λ} be a set of modules. Then
∏

i∈ΛMi is N -injective if and only if Mi is N -injective for all i ∈Λ.

Proof Exercise. �

Proposition 2.1.6 Let M and N be modules.
(i) Assume that M is N -injective and K ≤ N . Then M is both K-injective and

N/K-injective.
(ii) Let N =⊕

i∈ΛNi , a direct sum of modules Ni . Then M is Ni -injective for
each i ∈Λ if and only if M is N -injective.

Proof See [301, Propositions 1.3 and 1.5]. �

Theorem 2.1.7 Assume that M1,M2, . . . ,Mk and N1,N2, . . . ,Nn are modules.
Then Mi and Nj are relatively injective, for each i and j , if and only if
M1 ⊕M2 ⊕ · · · ⊕Mk and N1 ⊕N2 ⊕ · · · ⊕Nn are relatively injective.

Proof The proof follows from Propositions 2.1.5 and 2.1.6. �

Definition 2.1.8 A module M is called quasi-injective if M is M-injective.

Theorem 2.1.9 A module M is quasi-injective if and only if M �E(M).

Proof Theorem 2.1.2 and Definition 2.1.8 yield the result. �

Let M be a module and N ≤M . By Zorn’s lemma, there is a submodule C of M
which is maximal with respect to N ∩ C = 0. Then N ⊕ C ≤ess M . In this case, C
is called a complement of N in M .

Proposition 2.1.10 Let M be a quasi-injective module. Then:

(C1) Every submodule of M is essential in a direct summand of M .
(C2) If V ≤M and V ∼=N ≤⊕ M , then V ≤⊕ M .

Proof (C1) Assume that N ≤M and K a complement of N in M . Then we have that
N ⊕K ≤ess M . So E(M)=E(N)⊕E(K). Since M �E(M) from Theorem 2.1.9,
M = (E(N)∩M)⊕ (E(K)∩M) (see Exercise 2.1.37.2). Therefore, it follows that
N ≤ess (E(N)∩M)≤⊕ M .

(C2) Since M is M-injective, N is M-injective by Proposition 2.1.5. So V is M-
injective, hence the identity map of V extends a homomorphism f :M → V . Thus,
M = V ⊕ Ker(f ). �
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Proposition 2.1.11 A module M with (C2) satisfies the following condition.

(C3) If M1 and M2 are direct summands of M with M1 ∩M2 = 0, then M1 ⊕M2 is
a direct summand of M .

Proof Let M satisfy (C2) condition. Say M = M1 ⊕ V1 for some V1 ≤ M , and let
π : M = M1 ⊕ V1 → V1 be the canonical projection. Then Ker(π |M2

) = 0 since
M1 ∩M2 = 0. So π |M2

:M2 ∼= π(M2).
From (C2) condition, π(M2) ≤⊕ M . Let M = π(M2) ⊕ K with K ≤ M . Then

V1 = π(M2)⊕ (K ∩ V1) by the modular law as π(M2)≤ V1. Hence,

M =M1 ⊕ V1 =M1 ⊕ π(M2)⊕ (K ∩ V1).

Now M1 ⊕M2 ∼=M1 ⊕ π(M2)≤⊕ M , so M1 ⊕M2 ≤⊕ M by (C2) condition. �

Quasi-injectivity is an important generalization of injectivity. We will see that
conditions (C1), (C2), and (C3) satisfied by quasi-injective modules are also inter-
esting in their own right. The next definition provides three useful generalizations of
(quasi-)injectivity. While we discuss some properties of these three notions in this
chapter, the reader is referred to [145, 301], and [317] for more details.

Definition 2.1.12 Let M be a module.
(i) M is called continuous if it satisfies (C1) and (C2) conditions.
(ii) M is said to be quasi-continuous if it has (C1) and (C3) conditions.
(iii) M is called extending (or CS) if it satisfies (C1) condition.

A ring R is said to be right (quasi-)continuous if RR is (quasi-)continuous. A ring
R is called right extending (or right CS) if RR is extending. A left (quasi-)continuous
ring and a left extending (or left CS) ring are defined similarly. From the preceding,
the following implications hold true for modules:

injective ⇒ quasi-injective ⇒ continuous ⇒ quasi-continuous ⇒ extending,

while the reverse implications do not hold as illustrated in Example 2.1.14.

Lemma 2.1.13 If R is a semiprime ring, then IR ≤ess rR(�R(I ))R for any I �R.

Proof Exercise. �

Example 2.1.14 (i) Every injective module and every semisimple module are quasi-
injective. There exists a simple module which is not injective (e.g., Zp for any
prime integer p as a Z-module). Further, there is a quasi-injective module which
is neither injective nor semisimple. Let R = Z and M = Zpn , with p a prime in-
teger and n an integer such that n > 1. Then E(M) = Zp∞ , the Prüfer p-group,
and End(E(M))=̂Zp , the ring of p-adic integers. Thus, f (M) ⊆ M for any
f ∈ End(E(M)). So M is quasi-injective by Theorem 2.1.9. But M is neither injec-
tive nor semisimple (see [153, Example, p. 22]).
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(ii) Let K be a field and F be a proper subfield of K . Set Kn = K for all
n = 1,2 . . . . Take R = {(an)∞n=1 ∈ ∏∞

n=1 Kn | an ∈ F eventually}, which is a sub-
ring of

∏∞
n=1 Kn. Say I � R. Then rR(I ) = eR with e2 = e ∈ R (see also Exam-

ple 3.1.7). From Lemma 2.1.13, IR ≤ess rR(�R(I ))= (1 − e)RR as R is semiprime.
So RR is extending.

Further, since R is regular, RR also satisfies (C2) condition. Thus, RR is contin-
uous. As E(RR) =∏∞

n=1 Kn, RR is not injective, so RR is not quasi-injective. For
another example of a continuous module, which is not quasi-injective, see Exam-
ple 2.1.36.

(iii) Let R be a right Ore domain which is not a division ring (e.g., the ring Z

of integers). Then RR is quasi-continuous. Take 0 �= x ∈R such that xR �=R. Then
xRR

∼=RR , but xRR is not a direct summand of RR . Thus RR is not continuous.
(iv) Let F be a field and R = T2(F ). Then we see that RR is extending. Let

eij ∈R be the matrix with 1 in the (i, j)-position and 0 elsewhere. Put e = e12 + e22
and f = e22. Then e2 = e and f 2 = f . Note that eR ∩ fR = 0. But eRR ⊕ fRR is
not a direct summand of RR . Thus, RR is not quasi-continuous.

It can be checked that a submodule N of a module M is closed if and only if N
is a complement of some submodule of M (Exercise 2.1.37.3).

Proposition 2.1.15 Let M be a module. Then the following are equivalent.

(i) M is an extending module.
(ii) Every closed submodule of M is a direct summand of M .

(iii) Every complement submodule of M is a direct summand of M .

Proof Exercise. �

Motivated by Proposition 2.1.15, an extending module is also called a
CS-module. It is well known that every right R-module is injective if and only if
R is semisimple Artinian (see [259, Theorem 2.9]). The next result has been ob-
tained by Dung and Smith [144] (see also Vanaja and Purav [400]).

Theorem 2.1.16 Let R be a ring. Then the following are equivalent.

(i) Every right R-module is extending.
(ii) R is Artinian serial and J (R)2 = 0.

Proof See [145, 13.5] for the proof. �

The following result is [155, Corollary 25.4.3].

Proposition 2.1.17 If R is a semiprimary ring such that R/J (R)2 is QF, then R is
Artinian serial.

Let a ring R be QF with J (R)2 = 0. From Proposition 2.1.17, R is Artinian
serial. So every right R-module is extending by Theorem 2.1.16. However, in the
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next example, there exists a QF-ring R such that J (R)3 = 0 and R is serial, but not
even every principal right ideal of R is extending.

Example 2.1.18 Let R = Z3[S3] be the group algebra of the symmetric group S3
on three symbols {1,2,3} over the field Z3. It is well known that R is QF. Denote
σ = (123) and τ = (12) in S3. Then R has the following properties (see [72] for
more details).

(i) J (R)3 = 0.
(ii) Each of (2 + τ)RR and (2 + 2τ)RR has a unique composition series. So

RR = (2 + τ)RR ⊕ (2 + 2τ)RR is serial. Similarly, RR = RR(2 + τ) ⊕RR(2 + 2τ)
is serial.

(iii) There exist a principal right ideal I of R and a right ideal J of R such that
JR ≤ess IR ≤ess RR and JR is extending. However, IR is not extending. In fact,
I = (1 + σ + τ)R is such a principal right ideal and J is the sum of all nonzero
ideals of R contained in I .

Let M be a module. A (finitely generated) submodule of a factor module of M is
called a (finitely generated) subfactor of M . A cyclic submodule of a factor module
of M is called a cyclic subfactor of M .

Theorem 2.1.19 Let M be a finitely generated module such that every finitely gen-
erated subfactor of M is extending. Then M is a finite direct sum of uniform mod-
ules.

Proof From [145, 7.12], M satisfies ACC on direct summands. Thus, we have that
M = M1 ⊕ · · · ⊕Mn, a finite direct sum of indecomposable modules Mi . As M is
extending, so is each Mi . Thus, each Mi is uniform. �

The next important result, due to Osofsky and Smith [333, Theorem 1], can also
be found in [145, Corollary 7.13].

Theorem 2.1.20 Let M be a cyclic module. Assume that all cyclic subfactors of M
are extending. Then M is a finite direct sum of uniform modules.

A module M is called a V-module if every simple module is M-injective, or
equivalently, if any submodule of M is an intersection of maximal submodules.

Lemma 2.1.21 Let M be a V-module such that every factor module of M has finite
uniform dimension. Then M is Noetherian.

Proof See [145, 16.14]. �

The next result appears in [145, Corollary 7.4].

Lemma 2.1.22 Let M be a uniserial module with a unique composition series
M �U � V � 0. Then M ⊕ (U/V ) is not extending.
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Let {Sα} be the socle series of M defined as follows:

S1 = Soc(M), Sα/Sα−1 = Soc(M/Sα−1)

and for a limit ordinal α, Sα = ∪β<αSβ . If there exists the least ordinal α such that
M = Sα , then α is called Loewy length of M .

Let M be an R-module. Then an R-module N is called M-generated if there
exists an epimorphism M(Λ) → N for some index set Λ. For a module M , σ [M]
denotes the full subcategory of the category of R-modules whose objects are sub-
modules of M-generated modules (see [412]).

For convenience, we say that a module M satisfies (�) if every finitely generated
module in σ [M] is extending.

Theorem 2.1.23 Let M be a finitely generated right R-module satisfying (�). Then
M is Noetherian.

Proof Let {Sα} be the socle series of M . Put S = ∪Sα . Then the module H =M/S

has zero socle. We first show that H is Noetherian. This is trivial if H = 0. There-
fore, we assume that H �= 0.

Observe that H is finitely generated. Say H/K is a factor module of H . By (�),
every finitely generated subfactor of H/K is extending (in particular H/K is also
extending). From Theorem 2.1.19, H/K is a finite direct sum of uniform modules.
Thus, every factor module of H is a finite direct sum of uniform modules. Hence,
it is enough to show that H is a V-module, since we then apply Lemma 2.1.21 to
obtain that H is Noetherian. So we may assume that H is uniform without loss of
generality.

Let X be a simple right R-module. We claim that X is H -injective. First, assume
that X �∈ σ [H ]. Then X is H -injective. Indeed, say g ∈ Hom(A,X), where A≤H .
Then there exists ϕ ∈ Hom(H,E(X)) such that ϕ|A = g. If ϕ(H) ∩ X �= 0, then
ϕ(H) ∩ X = X, since X is simple. So X ≤ ϕ(H) ∈ σ [H ]. Hence X ∈ σ [H ], a
contradiction. Therefore, ϕ(H)∩X = 0, so ϕ(H)= 0 as X ≤ess E(X). Thus ϕ = 0,
so g = 0. Hence, X is H -injective.

Next, assume that X ∈ σ [H ]. Then it is easy to see that X ∈ σ [M]. Since
Soc(H) = 0, X ∩ H = 0. Also, K := X ⊕ H is finitely generated. Hence by (�),
K is extending since K ∈ σ [M]. Let 0 �= V ≤H and f ∈ Hom(V ,X). Put

U = {a − f (a) | a ∈ V } ≤K.

If U = 0, then a = f (a) for all a ∈ V . Hence V ≤ X, so X = V ≤ H . But since
Soc(H)= 0, X = 0, a contradiction. Therefore, U �= 0.

Since K is extending and U ≤ K , U is essential in a direct summand U∗ of
K , say K = U∗ ⊕ U1 for some submodule U1 of K . To see that U∗ ∩ X = 0, let
a− f (a)= x ∈X, where a ∈ V . Then a = f (a)+ x ∈ V ∩X ⊆H ∩X = 0. Hence
x = a − f (a)= 0, so U ∩X = 0. Therefore, U∗ ∩X = 0 as U ≤ess U∗.

We show that X ≤ U1. In fact, Soc(K) = Soc(U∗) ⊕ Soc(U1) = X as
K = X ⊕ H and Soc(H) = 0. Since X is simple, X = xR for some 0 �= x ∈ X.
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So x ∈ Soc(U∗)⊕ Soc(U1), thus x = y + z, where y ∈ Soc(U∗) and z ∈ Soc(U1).
Suppose yR �= 0. Define θ : xR → yR by θ(xr)= yr . Then θ �= 0, so yR is simple
and hence yR ⊆ Soc(K)=X. As yR ⊆U∗, yR ⊆X ∩U∗ = 0, a contradiction. So
x = z ∈ Soc(U1), and thus X = xR ⊆ Soc(U1)⊆U1.

Note that udim(K) = 2, U∗ �= 0, U1 �= 0, and K = U∗ ⊕ U1. So we have that
udim(U∗) = 1 and udim(U∗ ⊕X) = 2. As udim(U1) = 1 and X ≤ U1, X ≤ess U1.
But X is closed in K , therefore X =U1, and so

K =X ⊕H =U∗ ⊕U1 =U∗ ⊕X.

Now let π be the canonical projection from U∗ ⊕X onto X. For a ∈ V ,

a = (a − f (a))+ f (a) ∈U∗ ⊕X,

where a − f (a) ∈ U ≤ U∗ and f (a) ∈ X. Thus π |H (a) = f (a) for a ∈ V , so π |H
is an extension of f from H to X. This shows that X is H -injective. Therefore, H
is a V-module. Consequently, by Lemma 2.1.21, H is Noetherian.

Assume that S3/S2 �= 0 (where S2 and S3 are the second and the third socles of
M , respectively). Then there is 0 �= y + S2 ∈ S3/S2. Take Y = yR. Let C/B be a
cyclic submodule of Y/B , where B ≤ C ≤ Y . Then

C/B ≤ Y/B ≤M/B ∈ σ [M],
so C/B ∈ σ [M]. By (�), C/B is extending. Thus from Theorem 2.1.20, we see that
Y = Y1 ⊕ · · · ⊕ Yk , where each Yi is uniform. Hence one of the Yi , say Y1, has
Loewy length 3.

Because Y is cyclic, so is Y1 and hence Y1/Soc(Y1) is also cyclic. Say
D/Soc(Y1) ≤ Y1/Soc(Y1), and consider (Y1/Soc(Y1))/(D/Soc(Y1))(∼= Y1/D), a
factor module of Y1/Soc(Y1). Let (B/Soc(Y1))/(D/Soc(Y1))(∼= B/D) be a cyclic
submodule of (Y1/Soc(Y1))/(D/Soc(Y1)). Then B/D ≤ M/D ∈ σ [M]. As a con-
sequence, B/D ∈ σ [M].

By (�), B/D is extending. So every cyclic subfactor of Y1/Soc(Y1) is extending.
By Theorem 2.1.20, Y1/Soc(Y1) = T1 ⊕ · · · ⊕ Tm, where each Ti is uniform and
one of Ti , say T1, has Loewy length 2. Thus, we have that Soc(T1) is simple and
Soc(T1/Soc(T1))= T1/Soc(T1).

Say T0/Soc(T1) is a simple submodule of T1/Soc(T1). Then since T0 ≤ T1 and
T1 is uniform, T0 is uniform and Soc(T0) = Soc(T1) is simple. So T0 is a uniserial
module with a unique composition series T0 � Soc(T1) � 0. Let W be the inverse
image of T0 and W1 be the inverse image of Soc(T1) in Y1, respectively. Then W is
a uniserial module with a unique composition series W �W1 � Soc(Y1)� 0.

As T0/Soc(T0) and Soc(T1) = Soc(T0) are simple, T0 is finitely generated.
Next Soc(Y1) is simple (note that Y1 is uniform). Since W/Soc(Y1) = T0, W
is finitely generated. Therefore W ⊕ (W1/Soc(Y1)) is finitely generated and
W ⊕ (W1/Soc(Y1)) ∈ σ [M]. By (�), W ⊕ (W1/Soc(Y1)) is extending. But from
Lemma 2.1.22, W ⊕ (W1/Soc(Y1)) is not an extending module, a contradiction.
Hence S3 = S2, and so S = ∪Sα has Loewy length at most 2.
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To see that udim(M) is finite by applying Theorem 2.1.19, say M/A is a factor
module of M and L/A is a finitely generated submodule of M/A. We observe that
M/A ∈ σ [M], so L/A ∈ σ [M]. By (�), L/A is extending. Hence, every finitely
generated subfactor of M is extending. By Theorem 2.1.19, udim(M) is finite, and
hence Soc(M) is semisimple Artinian. Similarly, udim(M/Soc(M)) is finite. So
S/Soc(M) = Soc(M/Soc(M)) is semisimple Artinian. Therefore, S is a module
of finite composition length. Because H = M/S is Noetherian by the preceding
argument, M is Noetherian. �

If we put M =R in Theorem 2.1.23 and we assume that every finitely generated
R-module is extending, then the factor ring R/S has zero right socle and it is a
right Noetherian, right V-ring (recall that a ring A is called a right V-ring if AA is a
V-module, so any right ideal of A is an intersection of maximal right ideals). Thus
J (R/S)= 0 and hence J (R)⊆ S, so J (R)3 = 0.

Corollary 2.1.24 Let R be a ring such that every finitely generated right R-module
is extending. Then R is right Noetherian and J (R)3 = 0.

One of the reasons which makes the notion of quasi-continuous modules of in-
terest, is their useful characterization in Theorem 2.1.25 given below. This result
allows one to transfer from any given decomposition of the injective hull E(M) of
a quasi-continuous module M , to a similar decomposition for M . This fact is also
helpful in the transference of properties between M and its injective hull E(M).

Theorem 2.1.25 The following are equivalent for a module M .

(i) M is quasi-continuous.
(ii) M =X ⊕ Y for any two submodules X and Y which are complements of each

other.
(iii) fM ⊆M for every f 2 = f ∈ End(E(M)).
(iv) E(M)=⊕

i∈ΛEi implies M =⊕

i∈Λ(M ∩Ei).
(v) Any essential extension V of M with a decomposition V =⊕

α∈Γ Vα implies
M =⊕

α∈Γ (M ∩ Vα).

Proof (i)⇒(ii) From (C1) condition, X ≤⊕ M and Y ≤⊕ M by Proposition 2.1.15.
Thus X⊕ Y ≤⊕ M by (C3) condition. Therefore, M =X⊕ Y since X⊕ Y ≤ess M .

(ii)⇒(iii) Take f 2 = f ∈ End(E(M)). We put

A1 =M ∩ fE(M) and A2 =M ∩ (1 − f )E(M).

Let B1 be a complement of A2 such that A1 ⊆ B1 and let B2 be a complement of
B1 with A2 ⊆ B2. Then B1 is a complement of B2. By assumption, we have that
M = B1 ⊕ B2. Let π : M → B1 be the canonical projection. Now we show that
M ∩ (f − π)M = 0. Let x, y ∈M such that y = (f − π)(x). Then

f (x)= y + π(x) ∈M,
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so f (x) ∈A1. Also (1 − f )(x) ∈M and hence (1 − f )(x) ∈A2. As

x = f (x)+ (1 − f )(x) ∈A1 ⊕A2 ⊆ B1 ⊕B2,

π(x) = f (x). So y = 0. Hence M ∩ (f − π)M = 0. As M ≤ess E(M), we obtain
that (f − π)M = 0 and so fM = πM = B1 ⊆M .

(iii)⇒(iv) Let E(M) = ⊕i∈ΛEi . Clearly, ⊕i∈Λ(M ∩ Ei) ⊆ M . Take m ∈ M .
There is a finite subset F of Λ with m ∈ ⊕i∈FEi , E(M) = (⊕i∈FEi) ⊕ V , and
V ≤E(M). Let fi :E(M)→Ei be the canonical projection for i ∈Λ. By assump-
tion, fiM ⊆ M for each i. Now m = ∑

i∈F fi(m) ∈ ⊕i∈F (M ∩ Ei) because
fi(m) ∈ fiM ⊆M . Hence M ⊆ ⊕i∈Λ(M ∩Ei). So M = ⊕i∈Λ(M ∩Ei).

(iv)⇒(i) Let A ≤ M . Then E(M) = E(A) ⊕ E2 for some E2 ≤ E(M). So
M = (M ∩ E(A)) ⊕ (M ∩ E2) by assumption. We note that A ≤ess M ∩ E(A),
so M has (C1) condition.

To see that M has (C3) condition, let M1 ≤⊕ M and M2 ≤⊕ M such that
M1 ∩ M2 = 0. Then E(M) = E(M1) ⊕ E(M2) ⊕ E3 for some E3 ≤ E(M). By
assumption, M = (M ∩E(M1))⊕ (M ∩E(M2))⊕ (M ∩E3).

On the other hand, M =M1 ⊕W for some W ≤M . By the modular law, we get
that M ∩E(M1)=M1 ⊕ (W ∩ (M ∩E(M1))) since M1 ≤M ∩E(M1). Further, as
M1 ≤ess M ∩E(M1), M ∩E(M1)=M1. Similarly, M ∩E(M2)=M2.

From M = (M ∩E(M1))⊕ (M ∩E(M2))⊕ (M ∩E3),

M =M1 ⊕M2 ⊕ (M ∩E3).

So M satisfies (C3) condition. Thus M is quasi-continuous.
(iv)⇒(v) Let M ≤ess V and V = ⊕α∈Γ Vα . Then ⊕α∈Γ (M ∩ Vα) ⊆ M . Next,

let m ∈ M . Then there exists a finite subset, say F , of Γ such that
m ∈ ⊕α∈FVα . Then E(M)=E(V )=E(⊕α∈FVα)⊕ E(⊕α∈Γ \FVα). By assump-
tion, M = (⊕α∈F (M ∩ E(Vα))) ⊕ (M ∩ E(⊕α∈Γ \FVα)). Comparing the repre-
sentation of m in decompositions, m ∈ ⊕α∈F (M ∩ Vα) ⊆ ⊕α∈Γ (M ∩ Vα). So
M ⊆ ⊕α∈Γ (M ∩ Vα). Hence, M = ⊕α∈Γ (M ∩ Vα).

(v)⇒(iv) The proof is evident. �

Corollary 2.1.26 Let M be a quasi-continuous module and N ≤ M . Then
N ≤ess M ∩E(N)≤⊕ M .

Proof The proof follows from Theorem 2.1.25(iv). �

For the case of extending modules, an analogue to the equivalence of parts (i)
and (iii) of Theorem 2.1.25 is presented next.

Proposition 2.1.27 A module M is extending if and only if for any given
e2 = e ∈ End(E(M)) there exists f 2 = f ∈ End(M) with eE(M)∩M = fM .

Proof Assume that M is extending and let eE(M) ∩M ≤ess C ≤⊕ M for some C.
Then eE(M) = E(C), so C ≤ eE(M) ∩ M . Hence, C = eE(M) ∩ M and thus
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eE(M) ∩ M = fM for some f 2 = f ∈ End(M). Conversely, say N ≤ M . Then
there exists e2 = e ∈ End(E(M)) such that N ≤ess E(N) = eE(M). By hypothe-
sis, eE(M) ∩ M = fM with f 2 = f ∈ End(M). So N ≤ess fM , and hence M is
extending. �

Lemma 2.1.28 Let MR be a right R-module and S = EndR(M). Then:

(i) Δ := {s ∈ S | Ker(s)R ≤ess MR} is an ideal of S.
(ii) If {ei | i ∈Λ} is a set of idempotents in S such that {ei +Δ | i ∈Λ} are orthog-

onal in the ring S/Δ, then
∑

i∈Λ eiM =⊕

i∈Λ eiM .

Proof (i) Let f,g ∈ Δ and ϕ ∈ S. Then Ker(f ) ≤ess M and Ker(g) ≤ess M . As
Ker(f ) ∩ Ker(g) ⊆ Ker(f − g) and Ker(f ) ⊆ Ker(ϕf ), Ker(f − g) ≤ess M and
Ker(ϕf )≤ess M . So f − g ∈Δ and ϕf ∈Δ.

Take N = {m ∈ M | ϕ(m) ∈ Ker(f )}. Then NR ≤ess MR and N ⊆ Ker(f ϕ).
Hence f ϕ ∈Δ.

(ii) It is enough to consider a finite family ei , 1 ≤ i ≤ n. For j �= k, ej ek ∈ Δ,
and so Ker(ej ek) ≤ess M . Note that a finite intersection of essential submodules
of M is again essential in M . Thus, there exists K ≤ess M such that ej ekK = 0
for all j �= k, 1 ≤ j, k ≤ n. Hence,

∑n
i=1 eiK = ⊕n

i=1eiK . But as eiK ≤ess eiM ,
∑n

i=1 eiM = ⊕n
i=1eiM . So

∑

i∈Λ eiM = ⊕i∈ΛeiM . �

Theorem 2.1.29 Assume that M is a continuous right R-module and let
S = EndR(M). Then:

(i) S/J (S) is regular and every idempotent of S/J (S) lifts to an idempotent of S.
(ii) J (S)=Δ.

(iii) S/J (S) is a right continuous ring.
(iv) Further, if M is quasi-injective, then S/J (S) is right self-injective.

Proof (i) and (ii) By Lemma 2.1.28(i), Δ � S. We show that Δ ⊆ J (S). For this,
take s ∈ Δ. Then, we note that Ker(s) ≤ess M . Thus, Ker(1 − s) = 0 because
Ker(s) ∩ Ker(1 − s) = 0. So (1 − s)M ∼= M . By (C2) condition, (1 − s)M ≤⊕ M .
As Ker(s)≤ (1 − s)M and Ker(s)≤ess M , (1 − s)M =M and so 1 − s is invertible.
For any t ∈ S, st ∈ Δ by Lemma 2.1.28(i), so 1 − st is invertible by the preceding
argument. Hence, st is quasi-regular for all t ∈ S, and thus s ∈ J (S) (see 1.1.9).
Therefore, Δ⊆ J (S).

Next, we show that the ring S/Δ is regular. Take α ∈ S. By (C1) condition
of M , Ker(α) ≤ess P ≤⊕ M with P ≤ M . Say M = P ⊕ N for some N . Then
αN ∼= N ≤⊕ M , and so αN ≤⊕ M from (C2) condition. Write M = αN ⊕ W

for some W ≤ M . Define a map β : M = αN ⊕ W → M by β(αn + w) = n,
where n ∈ N and w ∈ W . Now we let π : M = P ⊕ N → N be the canoni-
cal projection. Then βαπ = π . Take τ = απβ . So τ 2 = τ since π2 = π . Also
Ker(α) ⊕ N ⊆ Ker(α − απβα). Thus, α − απβα ∈ Δ since Ker(α) ⊕ N ≤ess M .
So α + Δ = (α + Δ)(πβ + Δ)(α + Δ) in S/Δ, hence S/Δ is regular and thus
J (S)⊆Δ. Therefore J (S)=Δ and S/J (S) is regular.
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We claim that each idempotent of S/J (S) lifts to an idempotent of S. Take e ∈ S

such that e2 − e ∈ Δ. Put K = Ker(e2 − e). Then K ≤ess M as e2 − e ∈ Δ. Note
that eK ∩ (1 − e)K = 0 and K ⊆ eK ⊕ (1 − e)K . So eK ⊕ (1 − e)K ≤ess M . Thus,
E(M)=E(eK)⊕E((1 − e)K). Because M is continuous, Theorem 2.1.25 yields
that M = (M ∩E(eK))⊕ (M ∩E((1 − e)K)).

Put M1 = M ∩ E(eK) and M2 = M ∩ E((1 − e)K). Then M = M1 ⊕ M2,
eK ≤ess M1, and (1 − e)K ≤ess M2. Let h : M1 ⊕ M2 → M1 be the canoni-
cal projection. Then (h − e)K ⊆ (h − e)eK + (h − e)(1 − e)K . Observe that
(h − e)eK = (e − e2)K = 0 because eK ⊆ M1 = hM . Also we observe that
(h− e)(1 − e)K ⊆ h(1 − e)K + e(1 − e)K ⊆ hM2 = 0. Thus, (h− e)K = 0 and so
h−e ∈Δ. Hence h+Δ= e+Δ with h2 = h ∈ S. Since J (S)=Δ, each idempotent
of S/J (S) lifts to an idempotent of S.

(iii) To show that S/J (S) is right continuous, it is enough to prove that S/J (S)
satisfies (C1) condition, since S/J (S) is regular. Let S = S/Δ and let A be a right
ideal of S. By Zorn’s lemma, there exists a maximal direct sum ⊕i∈Λei S of princi-
pal right ideals ei S of S which contained in A. Since S is regular, we may assume
that each ei is an idempotent. By the maximality, ⊕i∈Λei S is essential in A. Since
idempotents of S lift to idempotents of S, we may assume that all ei are idempotents
in S.

We claim that
∑

i∈Λ eiM = ⊕i∈ΛeiM . For this, it is enough to consider a fi-
nite number of idempotents, say e1, . . . , en. Note that ⊕n

i=1ei SS ≤⊕ SS , since S is
regular. Thus there exist orthogonal idempotents gi in S such that ei S = gi S for
i = 1, . . . , n. By Lemma 2.1.28(ii),

∑n
i=1 giM = ⊕n

i=1giM . Also since ei S = gi S,
ei = gi ei and hence ei − giei ∈ Δ. So there is Ki ≤ess M , for each i = 1, . . . , n,
such that (ei − giei)Ki = 0. Thus, eiKi ⊆ giM . Since

∑n
i=1 giM = ⊕n

i=1giM ,
also

∑n
i=1 eiKi = ⊕n

i=1eiKi . Now eiKi ≤ess eiM for each i = 1, . . . , n yields that
∑n

i=1 eiM = ⊕n
i=1eiM . So it follows that

∑

i∈Λ eiM = ⊕i∈ΛeiM . From (C1) con-
dition, there exists e2 = e ∈ S such that ⊕i∈ΛeiM ≤ess eM .

We show that ⊕i∈Λei SS ≤ess e SS . Let (⊕i∈Λei S) ∩ f S = 0 for some f in
e S. We may assume that f is an idempotent in S as in the preceding argu-
ment. As ⊕i∈Λei S + f S = ⊕i∈Λei S ⊕ f S, by the preceding proof, we have that
(⊕i∈ΛeiM)+ fM = (⊕i∈ΛeiM)⊕ fM . So (⊕i∈ΛeiM)∩ fM = 0.

Since f ∈ e S, e f = f and so ef − f ∈ Δ. Hence, (ef − f )V = 0 for some
V ≤ess M . Thus fV = ef V ⊆ eM . So fV = 0 because ⊕i∈ΛeiM ≤ess eM . Thus
f ∈Δ and so f = 0. Therefore, ⊕i∈Λei S ≤ess e S.

Finally, we claim that AS ≤ess e SS . For this, first we show that A ⊆ e S. Say
a ∈A. Since (⊕i∈ΛeiS)S ≤ess AS , it follows that [a S ∩ (⊕i∈Λei S)]S is essential in
aS ∩A = a S. As a S ∩ (⊕i∈Λei S) ⊆ a S ∩ e S ⊆ a S, a S ∩ e S is essential in a S.
Since S is regular, a S ∩ e S is generated by an idempotent. So a S ∩ e S = a S, thus
a S ⊆ e S. Thus, a ∈ e S, and hence A ⊆ e S. Since ⊕i∈Λei S ⊆ A and ⊕i∈Λei S is
essential in e S, A is essential in e S. Thus SS satisfies (C1) condition, so S is right
continuous.

(iv) Further, assume that MR is quasi-injective. To prove that S = S/J (S) is
right self-injective, let A be a right ideal of S and ϕ : AS → SS be a homomor-
phism. As in the proof of part (iii), there is a set {ei | i ∈ Λ} of idempotents in S
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with ⊕i∈ΛeiS essential in A and
∑

i∈Λ eiM = ⊕i∈ΛeiM . Let ϕ(ei)= xi ∈ S. Then
ϕ(ei)= ϕ(ei ei)= ϕ(ei)ei = xi ei . For each i, define

φi : eiM →M by φi(eim)= xieim,

where m ∈ M and let φ(
∑

i eimi) = ∑

i φi(eimi) = ∑

i xieimi . Since M is
quasi-injective, there exists h ∈ S, an extension of φ. Then it follows that
(h− xiei)ei = hei − xiei = 0. So hei − ϕ(ei)= hei − xi ei = 0 for all i ∈Λ.

Take a ∈ A. As ⊕i∈ΛeiSS ≤ess AS , there is an essential right ideal K of S with
aK ⊆ ⊕i∈Λei S. Now (ha − ϕ(a))K = 0 since hei − ϕ(ei) = 0 for all i ∈ Λ and
aK ⊆ ⊕i∈Λei S. As S is regular, it is right nonsingular. Hence, ha = ϕ(a) for all
a ∈A. By Baer’s Criterion, S is right self-injective. �

A ring R is called semiregular if R/J (R) is a regular ring and every idempo-
tent of R/J (R) lifts to an idempotent of R. In Theorem 2.1.29(i), we show that
S = End(M) is semiregular when M is a continuous right R-module (see [314]
and [317] for more details on semiregular rings). Now Theorem 2.1.29 yields the
next two useful results.

Corollary 2.1.30 Assume that R is a right continuous (resp., right self-injective)
ring. Then R is semiregular, J (R)= Z(RR), and R/J (R) is right continuous (resp.,
right self-injective).

Proof The proof follows immediately from Theorem 2.1.29. �

Theorem 2.1.31 Let R be a ring. Then R is right nonsingular if and only if Q(R)

is right self-injective and regular.

Proof Let R be right nonsingular. By Corollary 1.3.15, Q(R) = E(RR) and hence
Q(R)R is injective. Put Q=Q(R) and E =E(RR).

Observe that Q = End(HE), where H = End(ER), and E = HEQ is an
(H,Q)-bimodule. Thus h(x)q = h(xq) for h ∈ End(ER), x ∈E, and q ∈Q. There-
fore, End(ER) ⊆ End(EQ). Obviously, End(EQ) ⊆ End(ER). Hence
End(EQ)= End(ER). As E =Q, End(QQ)= End(QR).

From Theorem 2.1.29, J (Q) = Δ = {q ∈ Q | Ker(q)R ≤ess QR} because QR

is injective and End(QR) ∼= Q. Note that QR is nonsingular since RR is nonsin-
gular. Say q ∈ J (Q). Then Ker(q)R ≤ess QR , so (Ker(q) ∩ R)R ≤ess RR . Take
I = Ker(q) ∩ R. Then qI = 0 and IR ≤ess RR . Thus, q ∈ Z(QR). Because
Z(QR) = 0, q = 0 and so J (Q) = 0. Therefore, Q is right self-injective regular
by Theorem 2.1.29.

Conversely, let Q be a right self-injective regular ring. Then Z(QQ) = 0. Let
q ∈Z(QR). Then there exists IR ≤ess RR with qI = 0. As RR ≤ess QR , IR ≤ess QR

and so IQR ≤ess QR . Thus, IQQ ≤ess QQ. As q(IQ) = (qI)Q = 0, q ∈ Z(QQ),
and so q = 0. Therefore, Z(QR)= 0, hence Z(RR)= 0. �

By the proof of Theorem 2.1.31, we are motivated to consider the following.
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Proposition 2.1.32 Let R be a ring and T a right ring of quotients of R. Then
End(TT )= End(TR).

Proof It is enough to see that End(TR) ⊆ End(TT ). Let ϕ ∈ End(TR). Assume on
the contrary that there are q1, q2 ∈ T such that ϕ(q1q2) − ϕ(q1)q2 �= 0. As RR is
dense in TR , there is r ∈R with q2r ∈R and (ϕ(q1q2)− ϕ(q1)q2)r �= 0. Now

(ϕ(q1q2)− ϕ(q1)q2)r = ϕ(q1q2)r − ϕ(q1)q2r = ϕ(q1q2r)− ϕ(q1q2r)= 0,

as q2r ∈R, which is a contradiction. Thus, End(TT )= End(TR). �

Similar to self-injectivity, none of the conditions, continuous, quasi-continuous,
or extending is left-right symmetric for a ring. Examples 2.1.33 and 2.1.36 illustrate
this lack of symmetry.

Example 2.1.33 Let R be a right Ore domain which is not left Ore (see [262,
p. 308]). Then RR is uniform. However, RR is not uniform. We note that RR is
quasi-continuous (hence RR is extending), but RR is not extending (hence RR is
not quasi-continuous).

Lemma 2.1.34 If M is an extending module with ACC on essential submodules,
then M =K ⊕N , where K is semisimple and N is Noetherian.

Proof See [145, Corollary 18.6] for the proof. �

Theorem 2.1.35 Let R be a right continuous ring with ACC on essential right ide-
als. Then R is right Artinian.

Proof By Lemma 2.1.34, R is right Noetherian. Now J (R) = Z(RR) from
Corollary 2.1.30. Let x ∈ J (R). Take a maximal element rR(x

n) in the set
{rR(xk) | k = 1,2, . . . }. Put a = xn. Then we see that aR ∩ rR(a) = 0. Since
a ∈ Z(RR), aR = 0 and so a = 0. Thus, J (R) is nil. As every nil ideal of a right
Noetherian ring is nilpotent, J (R) is nilpotent. By Corollary 2.1.30, R/J (R) is
regular. So R/J (R) is semisimple Artinian as R is right Noetherian. Hence R is
semiprimary, and thus R is right Artinian. �

The next example (see [154, Example 7.11′.1]) exhibits a left continuous left
Artinian ring with ACC on essential right ideals, which is not right continuous.

Example 2.1.36 Let F = Q(x1, x2, . . . ) be the field of fractions of the polynomial
ring Q[x1, x2, . . . ] with indeterminates x1, x2, . . . , and we take K = Q(x2

1 , x
2
2 , . . . ).

Then F is infinite dimensional over K . Define f : F → K by f (xi) = x2
i , and

f (q)= q for i = 1,2, . . . and q ∈Q. Let

R =
{[

a b

0 f (a)

]

| a, b ∈ F

}

,
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which is a subring of the ring T2(F ). Then R has only three left ideals 0, J (R), and
R itself. Clearly R is left continuous. Now Soc(RR)= J (R) and R/Soc(RR)∼= F .
So R has ACC on essential right ideals since every essential right ideal of R contains
Soc(RR). As F is infinite dimensional over K , R is not right Artinian. So R is not
right continuous by Theorem 2.1.35.

We remark that R is also not left self-injective since otherwise R will be QF,
forcing it to be Artinian on both sides (see Theorem 1.3.4).

Exercise 2.1.37

1. Prove Proposition 2.1.5.
2. Let M = ⊕i∈ΛMi be a direct sum of modules Mi and N � M . Show that

N = ⊕i∈Λ(N ∩Mi).
3. Prove that a submodule N of a module M is closed in M if and only if N is a

complement of a submodule of M .
4. Prove Lemma 2.1.13 and Proposition 2.1.15.
5. ([177, Goel and Jain]) By Goel and Jain, a module M is called π -injective if

for every pair of submodules M1, M2 of M with M1 ∩M2 = 0, each canonical
projection πi :M1 ⊕M2 →Mi , i = 1, 2 can be extended to an endomorphism
of M . Show that M is π -injective if and only if M is quasi-continuous.

6. ([25, Armendariz and Park]) Suppose that R is a right self-injective ring and the
ring R/Soc(RR) is orthogonally finite. Show that Soc(RR) is a finitely gener-
ated right R-module.

7. ([25, Armendariz and Park]) Prove that if R is a right self-injective ring and
R/Soc(RR) has ACC on right annihilators, then R is semiprimary.

8. ([25, Armendariz and Park]) Prove that if R is a right self-injective ring and the
ring R/Soc(RR) is right Goldie, then R is QF.

9. ([18, Ara and Park]) Show that if R is a right and left continuous ring and
R/Soc(RR) is right Goldie, then R is QF.

10. ([83, Birkenmeier, Müller, and Rizvi]) Assume that R is a right quasi-
continuous ring with Z(RR)= 0. Show that R is semiprime.

11. ([54, Birkenmeier]) A module K is said to be ker-injective if given any
monomorphism f ∈ Hom (A,B) and any homomorphism g ∈ Hom (A,K),
there exists h ∈ Hom (B,K) such that Ker(hf ) ⊆ Ker(g). Show that the fol-
lowing are equivalent for a module M .

(i) M is injective.
(ii) M is ker-injective and satisfies (C2).

(iii) M is ker-injective and for every monomorphism α ∈ End(M), there exists
β ∈ End(M) such that βα is an isomorphism.

12. ([53, 56, Birkenmeier]) A right ideal I of a ring R is called densely nil (simply,
DN) if I = 0 or if for each 0 �= x ∈ I there exists r ∈ R such that xr �= 0 but
(xr)2 = 0. Prove the following.
(i) Z(RR) is DN.

(ii) Assume that R is a right extending (resp., right continuous) ring. Then
R = A⊕ B (right ideal decomposition), where A is a reduced right quasi-
continuous (resp., strongly regular continuous) ring, and B is DN and min-
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imal among direct summands containing the set of all nilpotent elements
of R.

2.2 Internal Quasi-continuous Hulls and Decompositions

In this section, we first discuss direct sums and decompositions of quasi-continuous
modules. Using these results, we obtain the uniqueness of internal quasi-continuous
hulls (up to isomorphism). Some applications of this result will be presented.

Let M be a module and N ≤⊕ M . It is well known that if M is injective, quasi-
injective, continuous, quasi-continuous, or extending, then so is N . A finite direct
sum of injective modules is injective. However, as we mentioned earlier, none of
the classes of quasi-injective, continuous, quasi-continuous, or extending modules
is closed even under finite direct sums. The next example illustrates this fact.

Example 2.2.1 (i) It is well known that any direct sum of injective right R-modules
is injective if and only if R is right Noetherian (see [262, Theorem 3.46]). Thereby,
if a ring R is not right Noetherian, then there is a family of injective right R-modules
whose direct sum is not injective.

(ii) We note that Zp and Zp3 are quasi-injective Z-modules, where p is a
prime integer (see Example 2.1.14(i)). But recall that M = Zp ⊕ Zp3 is not ex-
tending (see [145, p. 56]). Hence, the classes of quasi-injective, continuous, quasi-
continuous, and extending modules are not closed under direct sums.

(iii) Take R = T2(Z) and let eij be the matrix in R with 1 in the (i, j)-position
and 0 elsewhere. Then RR = e11RR ⊕ e22RR is a direct sum of uniform (hence
extending) modules. We may observe that (e12 + 2e22)RR is not essential in a direct
summand of RR , so RR is not extending.

Proposition 2.2.2 Let M1,M2, . . . ,Mn be modules. Then the following are equiva-
lent.

(i) M1 ⊕M2 ⊕ · · · ⊕Mn is quasi-injective.
(ii) Mi and Mj are relatively injective for i, j = 1,2, . . . , n.

Proof Theorem 2.1.7 immediately yields the result. �

Corollary 2.2.3 Let M be a module and n a positive integer. Then M(n) is quasi-
injective if and only if M is quasi-injective.

In the next result, we see that a direct summand of a quasi-continuous module is
always relatively injective to all other direct summands.

Lemma 2.2.4 Let M =⊕

i∈ΛMi . If M is quasi-continuous, then each Mi is quasi-
continuous and Mj -injective for all j �= i.
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Proof Let M = ⊕i∈ΛMi be quasi-continuous. Each Mi is quasi-continuous since
Mi ≤⊕ M . Let j �= i, where i, j ∈Λ. We show that Mi is Mj -injective. For this, put
Vj = ⊕k �=jMk . Then E(⊕i∈ΛMi)=E(Mj)⊕E(Vj ).

Say g ∈ Hom(E(Mj ),E(Mi)). Then g ∈ Hom(E(Mj ),E(Vj )). Consider an
idempotent

e =
[

1 0
g 0

]

∈
[

End(E(Mj )) Hom(E(Vj ),E(Mj ))

Hom(E(Mj ),E(Vj )) End(E(Vj ))

]

= End(E(Mj )⊕E(Vj ))

= End(E(M)).

By assumption M = Mj ⊕ Vj is quasi-continuous. Hence e(Mj ⊕ Vj ) ⊆ Mj ⊕ Vj
from Theorem 2.1.25. Thus,

[

1 0
g 0

][

Mj

Vj

]

⊆
[

Mj

Vj

]

.

Therefore, g(Mj ) ⊆ Vj . Thus, g(Mj ) ⊆ Vj ∩ E(Mi) ⊆ M ∩ E(Mi). Now we put
K = ⊕k �=iMk . Because M = Mi ⊕ K and Mi ≤ M ∩ E(Mi), by the modular law
M ∩ E(Mi) = Mi ⊕ (K ∩ M ∩ E(Mi)) = Mi , so g(Mj ) ⊆ Mi . Hence, Mi is
Mj -injective by Theorem 2.1.2. �

Corollary 2.2.3 and Lemma 2.2.4 yield that: for a module M and an integer n
such that n > 1, M(n) is quasi-injective if and only if M(n) is quasi-continuous. For
the case of quasi-continuous modules, we have the following.

Theorem 2.2.5 Let M = ⊕

i∈ΛMi , and assume that
⊕

i∈ΛE(Mi) is an injec-
tive right R-module (e.g., Λ is finite or R is right Noetherian). Then M is quasi-
continuous if and only if each Mi is quasi-continuous and Mj -injective for all j �= i.

Proof The necessity follows from Lemma 2.2.4. For the sufficiency, let all Mi be
quasi-continuous and Mj -injective for j �= i. That M is quasi-continuous, will
be established by Theorem 2.1.25 once we show that eM ⊆ M , for every e2 =
e ∈ End(E(M)). Since ⊕i∈ΛE(Mi) is injective by assumption,E(M)= ⊕i∈ΛE(Mi).
Thus, e can be written as a matrix e = [eik], with eik ∈ Hom(E(Mk),E(Mi)). By
Theorem 2.1.2, the Mk-injectivity of Mi yields that eik(Mk) ⊆ Mi , for all k �= i.
Hence, it is enough to show that eii(Mi)⊆Mi for all i.

Now e2 = e implies that eik =∑

j eij ejk . Write βi =∑

j �=i eij eji . Then

eii − e2
ii = βi :E(Mi)→E(Mi).

Put Ki = Ker(βi). So (eii − e2
ii )(Ki)= 0. As βieii = eiiβi , eii(Ki)⊆Ki . Therefore

eii |Ki
is an idempotent in the ring End(Ki). Hence

Ki =Xi ⊕ Yi, where Xi = eii(Ki) and Yi = Ker(eii)∩Ki.
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Since Xi ⊕ Yi = Ki ⊆ E(Mi), E(Mi) = E(Xi) ⊕ Fi with Yi ≤ Fi ≤ E(Mi). By
Theorem 2.1.25, Mi = (Mi ∩E(Xi))⊕ (Mi ∩ Fi) as Mi is quasi-continuous.

We show that Ker(βi |E(Xi))=Xi and Ker(βi |Fi )= Yi . Indeed,

Ker(βi |E(Xi)) = Ker(βi)∩E(Xi)=Ki ∩E(Xi)

= (Xi ⊕ Yi)∩E(Xi)=Xi,

because Ki = Ker(βi) and Yi ∩ E(Xi) = 0. Similarly, we can prove that
Ker(βi |Fi ) = Ker(βi) ∩ Fi = Ki ∩ Fi = (Xi ⊕ Yi) ∩ Fi = Yi since Yi ≤ Fi and
Xi ∩ Fi = 0.

We note that the map g : E(Xi)/Xi → E(Mi) defined by g(t + Xi) = βi(t),
with t ∈ E(Xi), is a monomorphism since Ker(βi |E(Xi)) = Xi . Also, the map
f : E(Xi)/Xi → E(Mi) defined by f (t + Xi) = (1 − eii)(t), with t ∈ E(Xi), is
a homomorphism, as Xi = eii(Ki) ⊆ Ker((1 − eii)|E(Xi)). Since E(Mi) is injec-
tive and g is a monomorphism, there is ϕ : E(Mi) → E(Mi) with f = ϕg. Hence
(ϕβi)|E(Xi) = (1 − eii)|E(Xi). This implies that

(1 − eii)(Mi ∩E(Xi)) = ϕβi(Mi ∩E(Xi))

=
∑

j �=i

(ϕeij )eji(Mi ∩E(Xi))

⊆ Mi,

as (ϕeij )eji(Mi ∩E(Xi)) ⊆ (ϕeij )eji(Mi) ⊆ (ϕeij )(Mj ) ⊆ Mi , by the relative in-
jectivity of Mi and Mj (Theorem 2.1.2). So eii(Mi ∩E(Xi))⊆Mi .

To show that eii(Mi ∩ Fi) ⊆ Mi ∩ Fi , we define h : Fi/Yi → E(Mi) by
h(t + Yi) = βi(t) for t ∈ Fi . Then since Yi = Ker(βi |Fi ), h is a monomorphism.
Consider the map k : Fi/Yi →E(Mi) defined by k(t + Yi)= eii(t). Then k is a ho-
momorphism as Yi = Ker(eii)∩Ki . Hence, there is ψ ∈ End(E(Mi)) with k =ψh.
So eii(Mi ∩ Fi) = ψβi(Mi ∩ Fi) =∑

j �=i (ψeij )eji(Mi ∩ Fi) ⊆ Mi by the relative
injectivity of Mi and Mj .

Consequently, eii(Mi) ⊆ Mi since Mi = (Mi ∩ E(Xi)) ⊕ (Mi ∩ Fi), and the
proof is completed. �

A module is said to be directly finite if it is not isomorphic to a proper direct
summand of itself. A module is called purely infinite if it is isomorphic to the direct
sum of two copies of itself. Recall that a ring R is called directly finite if xy = 1
implies that yx = 1 for x, y ∈R. We remark that a module M is directly finite if and
only if the endomorphism ring End(M) is directly finite (see [183, Lemma 5.1]). If
a module M is not directly finite, then M contains an infinite direct sum of nonzero
isomorphic submodules (see [301, Lemma 1.26]). When M is an injective module,
we have the next result.

Proposition 2.2.6 The following are equivalent for an injective module M .

(i) M is not directly finite.
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(ii) M contains an infinite direct sum of nonzero isomorphic submodules.
(iii) M has a nonzero direct summand B such that B ∼= B ⊕B .

Proof See [183, Proposition 5.7]. �

Lemma 2.2.7 Let M be a directly finite injective module.
(i) If M =A1 ⊕B1 =A2 ⊕B2 with A1 ∼=A2, then B1 ∼= B2.
(ii) If M ⊕X ∼=M ⊕ Y (where X and Y are modules), then X ∼= Y .

Proof See [301, Theorem 1.21, Propositions 1.23 and 1.28]. �

Refer to Exercise 2.2.19.5 for an extension of Lemma 2.2.7(ii) to the class of
directly finite continuous modules. A module N is said to be subisomorphic to a
module M if N is isomorphic to a submodule of M . Theorem 2.2.9 provides an
algebraic proof of a result of Goodearl [181] (proved in a categorical way). This
also shows “uniqueness” of the decomposition. We shall see later that this result is
extended to a similar decomposition of a quasi-continuous module. For the proof of
Theorem 2.2.9, we begin with an auxiliary observation.

Lemma 2.2.8 Assume that A is a submodule of C and E(A) is directly finite, and
assume that C is subisomorphic to an injective module I . Then every monomor-
phism f :A→ I extends to a monomorphism C → I .

Proof Let g : C → I be a monomorphism. Then f and g extend to monomorphisms
ϕ : E(A) → I and γ : E(C) → I , respectively. Because E(C) = E(A) ⊕ X for
some X ≤E(C), I = γ (E(C))⊕ Y = γ (E(A))⊕ γ (X)⊕ Y with Y ≤ I . Also, we
get that I = ϕ(E(A))⊕Z for some Z ≤ I .

Note that ϕ(E(A))∼=E(A)∼= γ (E(A)) is directly finite injective, and

ϕ(E(A))⊕Z = γ (E(A))⊕ γ (X)⊕ Y ∼= ϕ(E(A))⊕ γ (X)⊕ Y.

Hence from Lemma 2.2.7(ii), Z ∼= γ (X) ⊕ Y . Therefore there exists a monomor-
phism μ : X → Z, and ϕ ⊕ μ : E(C) = E(A) ⊕ X → ϕ(E(A)) ⊕ Z = I is a
monomorphism, whose restriction (ϕ ⊕μ)|C extends f . �

Theorem 2.2.9 Every injective module E has a direct sum decomposition,
E = U ⊕ V with U directly finite, V purely infinite, and no nonzero isomorphic
direct summands (or submodules) between U and V . If E =U1 ⊕V1 =U2 ⊕V2 are
two such decompositions, then E = U1 ⊕ V2 holds too, and consequently U1 ∼= U2
and V1 ∼= V2.

Proof Step 1. Consider the set of triples (V ,ϕ′, ϕ′′), where V ≤ E and ϕ′, ϕ′′ are
monomorphisms of V into itself such that V = ϕ′(V ) ⊕ ϕ′′(V ). We order such
triples: (V ,ϕ′, ϕ′′)≤ (W,ψ ′, ψ ′′) if V ⊆W and ϕ′ =ψ ′|V , ϕ′′ =ψ ′′|V . By Zorn’s
lemma, there is a maximal triple (V ,ϕ′, ϕ′′).
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We note that ϕ′(V ) ∼= V ∼= ϕ′′(V ) and V = ϕ′(V ) ⊕ ϕ′′(V ). Thus V is purely
infinite. Also V is injective because ϕ′ and ϕ′′ extend to isomorphisms

φ′ :E(V )→E(ϕ′(V )), φ′′ :E(V )→E(ϕ′′(V ))

of the injective hulls, and so (V ,ϕ′, ϕ′′)≤ (E(V ),φ′, φ′′). Hence V =E(V ).
The injectivity of V implies that E = U ⊕ V for some U ≤ E. We show that U

is directly finite. In fact, if U is not directly finite, then by Proposition 2.2.6, there
are nonzero submodules A′ and A′′ of U such that A′ ⊕A′′ ≤U with isomorphisms
α′ :A′ ⊕A′′ →A′ and α′′ :A′ ⊕A′′ →A′′. Thus we obtain

(V , ϕ′, ϕ′′) < (V ⊕A′ ⊕A′′, ϕ′ ⊕ α′, ϕ′′ ⊕ α′′),

a contradiction to the maximality of (V , ϕ′, ϕ′′). Therefore, U is directly finite.
Step 2. We study now a fixed but arbitrary decomposition E = U ⊕ V , with

U directly finite and V purely infinite. The set of all pairs (A,f ), where A ≤ U

and a monomorphism f : A → V , ordered by restriction, allows again the appli-
cation of Zorn’s lemma. So there is a maximal pair (A,f ). Since f extends to a
monomorphism E(A) → V , A = E(A) and so A is injective. Put U = U ′ ⊕ A,
where U ′ ≤U . Thus A and U ′ are directly finite.

Let V ′ = A ⊕ V . We claim that V ′ ∼= V (consequently, V ′ is purely infinite).
Indeed, V ∼= V ⊕ V and V = X ⊕ f (A) ∼= X ⊕ A for some X ≤ V , yield that
V ∼= X ⊕ A ⊕ V . Whence V = X1 ⊕ A1 ⊕ V1, where X1,A1,V1 ≤ V such that
X1 ∼=X, A1 ∼=A, and V1 ∼= V .

Iterating this procedure, V = (X1 ⊕ A1) ⊕ · · · ⊕ (Xn ⊕ An) ⊕ Vn, where
Xi

∼= X, Ai
∼= A, and Vn ∼= V . Therefore ⊕∞

i=1Ai ⊆ V , thus it follows that
V =E(⊕∞

i=1Ai) ⊕ Y for some Y ≤ V . So we have that

V = E(⊕∞
i=1Ai) ⊕ Y =A1 ⊕E(⊕∞

i=2Ai)⊕ Y

∼= A⊕E(⊕∞
i=1Ai)⊕ Y =A⊕ V = V ′.

So far, we have obtained a new decomposition, E = U ′ ⊕ V ′, again with U ′
directly finite and V ′ purely infinite. We claim now that it enjoys the additional
property that U ′ and V ′ have no nonzero isomorphic submodules.

To this end, we consider a submodule B of U ′ which is subisomorphic to V ′.
Then B ⊕A is subisomorphic to V , via B ⊕A→ V ′ ⊕A∼= V ⊕A∼= V . Note that
A is directly finite since it is a direct summand of U . We can apply Lemma 2.2.8,
with C = B ⊕A and I = V , and we get a monomorphic extension h : B ⊕A→ V

of f . Consequently, (A,f )≤ (B ⊕A,h) holds. The maximality of (A,f ) implies
that B = 0.

Step 3. We turn now to the uniqueness statement. Thus, we are given two decom-
positions E =U1 ⊕ V1 =U2 ⊕ V2 with Ui directly finite, Vi purely infinite, and no
nonzero isomorphic direct summands between Ui and Vi (i = 1,2).

The immediate goal is to show that U1 and V2 have no nonzero isomorphic di-
rect summands either. We claim that for any nonzero injective module H which is
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subisomorphic to both U1 and V2, there exists a positive integer n such that H(n) is
subisomorphic to U1, but H(n+1) is not.

Assume on the contrary that H(n) is subisomorphic to U1 for all n. Using induc-
tion on n, we show that U1 =Xn ⊕Hn ⊕ · · · ⊕H1 with Hi

∼=H .
For n = 1, this is true by assumption. If it holds for n, then we have that

U1 ∼= Xn ⊕ H(n); but we also have that U1 ∼= Y ⊕ H(n+1). Since H , being iso-
morphic to a direct summand of U1, is directly finite and injective, Xn

∼= Y ⊕H by
Lemma 2.2.7(ii). Thus Xn = Xn+1 ⊕Hn+1 with Xn+1 ∼= Y and Hn+1 ∼= H . So we
deduce that U1 contains ⊕∞

i=1Hi , a contradiction to the fact that U1 is directly finite
(see Proposition 2.2.6).

If U1 and V2 have nonzero isomorphic direct summands, then by our claim we
can find a nonzero injective module A, which is subisomorphic to both U1 and
V2, but such that A⊕A is not subisomorphic to U1. We obtain that U1 = A1 ⊕ B

with A1 ∼= A, so E = U1 ⊕ V1 = A1 ⊕ B ⊕ V1 and there exists a monomorphism
A⊕A→ V2 ⊕V2 ∼= V2 →E. Thus, E =A2 ⊕A3 ⊕C such that A2 ∼=A3 ∼=A and
C ≤E. Therefore,

E =A1 ⊕B ⊕ V1 ∼=A⊕B ⊕ V1 and E =A2 ⊕A3 ⊕C ∼=A⊕A3 ⊕C.

Because A is directly finite and injective, B ⊕ V1 ∼= A3 ⊕ C by Lemma 2.2.7(ii).
As a consequence, B ⊕ V1 = A4 ⊕ C′, where A4, C′ ≤ B ⊕ V1 with A4 ∼= A3 and
C′ ∼= C.

Let π : B ⊕ V1 → V1 be the canonical projection. Then we show that
B ∩ A4 = Ker(π |A4) ≤ess A4. For this, let X ≤ A4 with X ∩ Ker(π |A4) = 0. Then
X is subisomorphic to V1 via π . Also we note that X is subisomorphic to U1 via
X ⊆ A4 ∼= A → U1. So X = 0 by assumption on the decomposition E = U1 ⊕ V1.
Since B ∩A4 ≤ess A4, A4 = E(B ∩A4) ≤⊕ B . So B = A4 ⊕D for some D ≤ B .
Hence, U1 =A1 ⊕B =A1 ⊕A4 ⊕D has the submodule A1 ⊕A4 which is isomor-
phic to A⊕A, contrary to the choice of A.

We showed that U1 and V2 have no nonzero isomorphic direct summands.
Thus U1 ∩ V2 = 0 as the injective hulls of U1 ∩ V2 in U1 and in V2 are isomor-
phic direct summands. So E = U1 ⊕ V2 ⊕ F for some submodule F of E. From
E = U1 ⊕ V1 = U1 ⊕ V2 ⊕ F , it follows that V1 ∼= V2 ⊕ F . Also from E =
U1 ⊕ V2 ⊕ F = U2 ⊕ V2, we see that U2 ∼= U1 ⊕ F . This shows that F yields
isomorphic direct summands of U2 and V1. Now F = 0 as U2 and V1 cannot have
nonzero isomorphic direct summands by symmetry of our preceding arguments. So
E =U1 ⊕ V2. �

In Theorem 2.2.14, we shall show that this result also holds true for the larger
class of quasi-continuous modules instead of injective modules.

Lemma 2.2.10 The following holds for a quasi-continuous module M .

(i) M is purely infinite if and only if E(M) is purely infinite.
(ii) M is directly finite if and only if E(M) is directly finite.
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Proof (i) Let M be purely infinite. Then M ∼= M ⊕ M , thus we have that
E(M)∼=E(M)⊕E(M). So E(M) is purely infinite.

Conversely, let E(M) be purely infinite. Then E(M) ∼= E(M) ⊕ E(M). Thus
E(M)=E1 ⊕ E2, with E1 ∼=E(M) and E2 ∼=E(M). Since M is quasi-continuous,
M = (M ∩ E1) ⊕ (M ∩ E2) by Theorem 2.1.25. Next, we set M1 = M ∩ E1 and
M2 = M ∩ E2. From Lemma 2.2.4, M1 and M2 are relatively injective. We ob-
serve that E1 =E(M1) and E2 =E(M2). Hence E(M1)∼=E(M2), so M1 ∼=M2 by
Corollary 2.1.3, and M1 ⊕ M2 is quasi-injective by Proposition 2.2.2. So M1 and
M2 are quasi-injective.

From Theorem 2.1.7, M1 ⊕M2 and M1 are relatively injective. Further, note that
E(M1 ⊕M2)= E(M)∼= E1 =E(M1). By Corollary 2.1.3, M1 ⊕M2 ∼=M1. Since
M1 ∼=M2, M1 ∼=M1 ⊕M2 ∼=M1 ⊕M1. Similarly, M2 ∼=M2 ⊕M2. So we get that
M ∼=M ⊕M . Thus, M is purely infinite.

(ii) Let M be directly finite, and assume on the contrary that, E(M) is not di-
rectly finite. By Proposition 2.2.6, there is 0 �= B ≤⊕ E(M) such that B ∼= B ⊕ B .
Say E(M)= B ⊕ Y for some Y ≤E(M). Because M is quasi-continuous, by The-
orem 2.1.25 M = (M ∩B)⊕ (M ∩ Y). Therefore, M ∩B is quasi-continuous from
Lemma 2.2.4.

Also because M ∩ B ≤ess B and B is injective, B = E(M ∩ B) and therefore
E(M ∩B)∼=E(M ∩B)⊕E(M ∩B) from B ∼= B ⊕B . Thus E(M ∩B) is purely
infinite. Hence, M ∩ B is also purely infinite by part (i) since M ∩ B is quasi-
continuous. Note that M = (M ∩ B) ⊕ (M ∩ Y) with 0 �= M ∩ B purely infinite.
Since M is directly finite, so is M ∩B . This is absurd as M ∩B is purely infinite.

Conversely, let E(M) be directly finite. If M is not directly finite, then there-
fore ⊕∞

i=1Ai ≤ M , where for each i, 0 �= Ai ≤ M and Ai
∼= A for some A. Hence,

⊕∞
i=1Ai ≤ E(M). By Proposition 2.2.6, E(M) is not directly finite, a contradic-

tion. �

Definition 2.2.11 Given a quasi-continuous module M and an arbitrary submodule
A of M , there is a direct summand P of M containing A as an essential submodule
(take P =M ∩E(A)) by Corollary 2.1.26. The overmodule P is called an internal
quasi-continuous hull of the submodule A of M .

The next theorem shows that the internal quasi-continuous hull of A is unique up
to isomorphism.

Theorem 2.2.12 Let M be a quasi-continuous module, and for i = 1,2, assume
that Ai ≤ess Pi ≤⊕ M (i = 1,2). If A1 ∼=A2, then P1 ∼= P2.

Proof Put D = A1 ∩A2, and we let Xi be a complement of D in Ai , for i = 1,2.
Then D ⊕Xi ≤ess Ai . Hence Ei ⊕E(Xi)= E(Ai)= E(Pi), where Ei denotes an
injective hull of D in E(Ai) for i = 1,2. We note that E1 ∼=E2. Also X1 ∩X2 = 0
because X1 ∩X2 ⊆A1 ∩A2 ∩X2 =D ∩X2 = 0.

Write M = Pi ⊕ Qi and let Ei = Ui ⊕ Vi be a decomposition according
to Theorem 2.2.9, for i = 1,2. We obtain that E(M) = E(Pi) ⊕ E(Qi) and
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E(Pi) = Ei ⊕ E(Xi) = Ui ⊕ Vi ⊕ E(Xi). Because E(M) = E(Pi) ⊕ E(Qi),
we have that M = (M ∩ E(Pi)) ⊕ (M ∩ E(Qi)) by Theorem 2.1.25. Since
M = Pi ⊕ Qi , M ∩ E(Pi) = Pi and M ∩ E(Qi) = Qi by using the modular law.
Hence, E(Pi)= E(M ∩E(Pi)) = Ui ⊕ Vi ⊕E(Xi). Note that Pi = M ∩E(Pi) is
quasi-continuous by Lemma 2.2.4. Thus,

M ∩E(Pi)= (M ∩E(Pi)∩Ui)⊕ (M ∩E(Pi)∩ Vi)⊕ (M ∩E(Pi)∩E(Xi)).

We see that M ∩ E(Pi) ∩ Ui = M ∩ Ui and M ∩ E(Pi) ∩ Vi = M ∩ Vi because
Ui ⊆E(Pi) and Vi ⊆E(Pi). Observe that M ∩E(Pi)∩E(Xi)=M ∩E(Xi) since
E(Xi)⊆E(Pi). Hence, for i = 1, 2,

Pi =M ∩E(Pi)= (M ∩Ui)⊕ (M ∩ Vi)⊕ (M ∩E(Xi)).

Let Y be a complement of D in M . Then D ⊕ Y ≤ess M . As D ≤ess E1 ≤ E(M)

and D ∩ Y = 0, E1 ∩ Y = 0 and E1 ⊕ Y ≤ess E(M). Thus E(M) = E1 ⊕ E(Y).
Similarly, E(M)=E2 ⊕E(Y). Hence, there is an isomorphism σ :E1 →E2, which
is determined by σ(e1)= e2 if and only if e1 − e2 ∈E(Y).

Because E(M) = Ei ⊕ E(Y) and M is quasi-continuous, it follows that
M = (M ∩E1)⊕ (M ∩E(Y))= (M ∩E2)⊕ (M ∩E(Y)) by Theorem 2.1.25. So
there is an isomorphism σ ′ :M ∩E1 →M ∩E2, determined by σ ′(m1)=m2 if and
only if m1 −m2 ∈M ∩E(Y), if and only if m1 −m2 ∈E(Y). Thus, σ ′ = σ |M∩E1 ,
so σ(M ∩E1)=M ∩E2.

From Ei = Ui ⊕ Vi and σ(E1) = E2, we obtain the two decompositions
E2 =U2 ⊕V2 = σ(U1)⊕σ(V1). The uniqueness part of Theorem 2.2.9 implies that
E2 =U2 ⊕ σ(V1)= σ(U1)⊕ V2.

On the other hand, from E(M) = E2 ⊕ E(Y) and the quasi-continuity of M ,
M = (M ∩ E2) ⊕ (M ∩ E(Y)) by Theorem 2.1.25. Thus C := M ∩ E2 is quasi-
continuous from Lemma 2.2.4. Also, E(C) = E(M ∩ E2) = E2 = U2 ⊕ V2 since
(M ∩ E2) ≤ess E2. As U2 ⊆ E2, C ∩ U2 = M ∩ E2 ∩ U2 = M ∩ U2. Also since
V2 ⊆E2, C ∩ V2 =M ∩ V2.

Observe that C = (C ∩ U2) ⊕ (C ∩ V2) = (C ∩ σ(U1)) ⊕ (C ∩ V2) by Theo-
rem 2.1.25 since E(C)=U2 ⊕ V2 = σ(U1)⊕ V2. So C ∩U2 ∼= C ∩ σ(U1). Thus,

M ∩U2 = C ∩U2 ∼= C ∩ σ(U1)= (M ∩E2)∩ σ(U1)

= σ(M ∩E1)∩ σ(U1)= σ(M ∩E1 ∩U1)

= σ(M ∩U1)∼=M ∩U1.

Similarly, M ∩ V2 ∼=M ∩ V1. The given isomorphism A1 ∼=A2 yields that

U1 ⊕ V1 ⊕E(X1)=E(A1)∼=E(A2)=U2 ⊕ V2 ⊕E(X2).

As U2 ∼= σ(U1) from the fact that E2 = U2 ⊕ V2 = σ(U1)⊕ V2, U2 ∼= σ(U1)∼= U1
and hence

U1 ⊕ V1 ⊕E(X1)∼=U2 ⊕ V2 ⊕E(X2)∼=U1 ⊕ V2 ⊕E(X2).
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Now U1 is directly finite and injective by Theorem 2.2.9. So by Lemma 2.2.7(ii),
V1 ⊕E(X1)∼= V2 ⊕E(X2). Also we observe that

(M ∩ Vi)≤ess Vi and M ∩E(Xi)≤ess E(Xi).

Thus Vi =E(M ∩ Vi) and E(Xi)=E(M ∩E(Xi)) for i = 1,2.
So, from V1 ⊕E(X1)∼= V2 ⊕E(X2),

E(M ∩ V1)⊕E(M ∩E(X1))∼=E(M ∩ V2)⊕E(M ∩E(X2)).

Thus, E[(M ∩ V1) ⊕ (M ∩ E(X1))] ∼= E[(M ∩ V2) ⊕ (M ∩ E(X2))]. We see that
E(M)= E(Pi)⊕E(Qi)=Ei ⊕E(Xi)⊕E(Qi)= Ui ⊕ Vi ⊕E(Xi)⊕E(Qi) as
M = Pi ⊕Qi for i = 1,2. Therefore,

M = (M ∩Ui)⊕ (M ∩ Vi)⊕ (M ∩E(Xi))⊕ (M ∩E(Qi))

for i = 1,2 by Theorem 2.1.25 since M is quasi-continuous. Thus, from Lem-
ma 2.2.4, (M ∩ Vi)⊕ (M ∩E(Xi)) is quasi-continuous for i = 1,2.

We claim that (M ∩ V1) ⊕ (M ∩ E(X1)) and (M ∩ V2) ⊕ (M ∩ E(X2))

are relatively injective. Because V1 is purely infinite and V1 = E(M ∩ V1),
Lemma 2.2.10(i) yields that M∩V1 is purely infinite (as M∩V1 is quasi-continuous
by Lemma 2.2.4), so (M ∩ V1)⊕ (M ∩ V1)∼=M ∩ V1. As M ∩ V2 ∼=M ∩ V1,

(M ∩ V1)⊕ (M ∩ V2)∼= (M ∩ V1)⊕ (M ∩ V1)∼=M ∩ V1 ≤⊕ M.

Hence, (M ∩ V1) ⊕ (M ∩ V2) is quasi-continuous as M ∩ V1 is quasi-continuous.
By Lemma 2.2.4, M ∩ V1 and M ∩ V2 are relatively injective.

Note that (M ∩ V1) ⊕ (M ∩ E(X2)) ∼= (M ∩ V2) ⊕ (M ∩ E(X2)) ≤⊕ M . The
quasi-continuity of M implies that of (M ∩ V1) ⊕ (M ∩ E(X2)) by Lemma 2.2.4.
Again from Lemma 2.2.4, M ∩ V1 and M ∩ E(X2) are relatively injective. Simi-
larly, (M ∩ V2)⊕ (M ∩E(X1))∼= (M ∩ V1)⊕ (M ∩E(X1))≤⊕ M and the quasi-
continuity of M imply that M ∩ V2 and M ∩E(X1) are relatively injective.

Recall that X1 ∩ X2 = 0. Hence, E(M) = E(X1) ⊕ E(X2) ⊕ F for some
F ≤ E(M). By Theorem 2.1.25, M = (M ∩ E(X1)) ⊕ (M ∩ E(X2)) ⊕ (M ∩ F).
Therefore, (M ∩ E(X1)) ⊕ (M ∩ E(X2)) is quasi-continuous by Lemma 2.2.4.
Hence, M ∩E(X1) and M ∩E(X2) are relatively injective from Lemma 2.2.4. Con-
sequently, (M ∩ V1) ⊕ (M ∩ E(X1)) and (M ∩ V2) ⊕ (M ∩ E(X2)) are relatively
injective by Theorem 2.1.7.

Since E[(M ∩ V1) ⊕ (M ∩ E(X1))] ∼= E[(M ∩ V2) ⊕ (M ∩ E(X2))], Corol-
lary 2.1.3 yields that (M ∩ V1)⊕ (M ∩E(X1))∼= (M ∩ V2)⊕ (M ∩E(X2)). Con-
sequently,

P1 = (M ∩U1)⊕ (M ∩ V1)⊕ (M ∩E(X1))

∼= (M ∩U2)⊕ (M ∩ V2)⊕ (M ∩E(X2))

= P2,

because M ∩U1 ∼=M ∩U2, which completes the proof. �
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In the following series of results, we apply Theorem 2.2.12 to provide a decom-
position of a quasi-continuous module into a directly finite direct summand and a
purely infinite direct summand. Moreover, we obtain an analogue of Theorem 2.2.5
for continuous modules (see also Theorem 2.2.13 and Exercise 2.2.19.5 for other
consequences of Theorem 2.2.12).

It may be worth noting that the isomorphism between P1 and P2 in Theo-
rem 2.2.12 is not an extension of the isomorphism between A1 and A2 (see [308]). If
A and B are direct summands of a quasi-continuous module M such that A∩B = 0
and E(A)∼=E(B), then A and B are relatively injective by Goel and Jain [177], so
A∼= B from Corollary 2.1.3. However, if A ∩B �= 0, then this conclusion becomes
difficult. Theorem 2.2.12 allows us to prove a powerful result, Theorem 2.2.13,
showing that if A and B are direct summands of a quasi-continuous module M

and E(A)∼=E(B), then A∼= B even when A∩B �= 0.

Theorem 2.2.13 Let A and B be direct summands of a quasi-continuous module
M . If E(A)∼=E(B), then A∼= B .

Proof Let ϕ :E(A)→E(B) be an isomorphism. Put

A1 = ϕ−1(B)∩A and A2 = ϕ(A)∩B.

Then ϕ|A1 :A1 →A2 is an isomorphism. Since A≤ess E(A) and B ≤ess E(B),

ϕ(A)≤ess ϕ(E(A))=E(B)

and so ϕ(A) ∩ B ≤ess B . Hence A2 ≤ess B . Similarly, A1 ≤ess A. By Theo-
rem 2.2.12, A∼= B because A≤⊕ M and B ≤⊕ M . �

Theorem 2.2.14 Every quasi-continuous module M has a direct sum decomposi-
tion, M = U ⊕ V with U directly finite, and V purely infinite such that U and V

have no nonzero isomorphic direct summands (or submodules). If M = U1 ⊕ V1 =
U2 ⊕ V2 are two such decompositions, then M = U1 ⊕ V2 holds too, and conse-
quently U1 ∼=U2 and V1 ∼= V2.

Proof Let M be a quasi-continuous module. Note that if M = A ⊕ B is any de-
composition, such that A and B have no nonzero isomorphic direct summands,
then they have no nonzero isomorphic submodules either. Indeed, say X and Y are
isomorphic submodules of A and B , respectively. Note that A and B are quasi-
continuous from Lemma 2.2.4. So X ≤ess P and Y ≤ess Q with P ≤⊕ A and
Q ≤⊕ B by (C1) condition. Therefore, X ≤ess P ≤⊕ M and Y ≤ess Q ≤⊕ M . By
Theorem 2.2.12, P ∼=Q. Thus, X = Y = 0 as P =Q= 0. We apply Theorem 2.2.9
to E(M) and obtain E(M) = A ⊕ B , where A is directly finite and B is purely
infinite. So M = (M ∩ A) ⊕ (M ∩ B) by Theorem 2.1.25. As A = E(M ∩ A)
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and B = E(M ∩ B), M ∩ A is directly finite and M ∩ B is purely infinite from
Lemma 2.2.10.

Put U =M∩A and V =M∩B . Then M =U⊕V , where U is directly finite and
V is purely infinite. Clearly, U and V cannot have nonzero isomorphic submodules
since A and B do not have nonzero isomorphic submodules.

For uniqueness, let M =U1 ⊕ V1 =U2 ⊕ V2 be two such decompositions. Then
E(M) = E(Ui) ⊕ E(Vi) with E(Ui) directly finite and E(Vi) purely infinite, for
i = 1,2, by Lemma 2.2.10.

If X and Y are isomorphic direct summands of E(Ui) and E(Vi), respectively,
then from Theorem 2.1.25 X ∩Ui and Y ∩Vi are direct summands of Ui and Vi re-
spectively, by the quasi-continuity of Ui and Vi . Hence, X∩Ui and Y ∩Vi are direct
summands of M . Since E(X ∩ Ui) = X ∼= Y = E(Y ∩ Vi), Theorem 2.2.13 yields
that X∩Ui

∼= Y ∩Vi . So X∩Ui = Y ∩Vi = 0 and hence X = Y = 0. Therefore the
uniqueness statement from Theorem 2.2.9 gives

E(M)=E(U1)⊕E(V2), and hence M = (M ∩E(U1))⊕ (M ∩E(V2)).

Consequently, we obtain M ∩ E(U1) = U1 and M ∩ E(V2) = V2 by the modular
law because M =U1 ⊕ V1 and M =U2 ⊕ V2. Therefore, M =U1 ⊕ V2. �

A homomorphism f : V →W is said to be essential if f (V )≤ess W .

Lemma 2.2.15 Let M be a quasi-continuous module. Then the following are equiv-
alent.

(i) M is continuous.
(ii) Every essential monomorphism M →M is an isomorphism.

(iii) No direct summand of M is isomorphic to a proper essential submodule of
itself.

Proof (i)⇒(ii) Say f : M → M is an essential monomorphism. Then we have
that M ∼= f (M) ≤ess M . As M ≤⊕ M , f (M) ≤⊕ M by (C2) condition. Hence,
f (M)=M .

(ii)⇒(iii) Assume that P ∼=A≤ess P ≤⊕ M . Then there exists Q≤M such that
M = P ⊕Q∼=A⊕Q≤ess P ⊕Q=M . By hypothesis, this is an isomorphism, and
A= P .

(iii)⇒(i) To show that M is continuous, we only need to prove that M sat-
isfies (C2) condition because M is quasi-continuous. Assume that A ≤ M and
A∼= B ≤⊕ M . By (C1) condition, A≤ess P ≤⊕ M for some P .

Since B ≤ess B ≤⊕ M and A∼= B , we have that P ∼= B by Theorem 2.2.12. Thus
P ∼=A≤ess P ≤⊕ M . Hence A= P by assumption. So M has (C2) condition, thus
M is continuous. �

The next result is obtained as an application of Theorems 2.2.5 and 2.2.12.

Theorem 2.2.16 Let M =⊕

i∈ΛMi , and assume that
⊕

i∈ΛE(Mi) is an injective
right R-module (e.g., Λ is finite or R is right Noetherian). Then M is continuous if
and only if all Mi are continuous and Mj -injective for all j �= i.
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Proof Let M = ⊕i∈ΛMi be continuous. Then all Mi are continuous. Further, all Mi

are Mj -injective for all j �= i by Lemma 2.2.4.
Conversely, let all Mi be continuous and Mj -injective for all j �= i. Then

⊕i∈ΛMi is quasi-continuous by Theorem 2.2.5. From Lemma 2.2.15, it suf-
fices to show that each essential monomorphism f : M → M is onto. Since
M ∼= f (M) = ⊕i∈Λf (Mi) ⊆ M and M is quasi-continuous, there is a direct sum-
mand Pi of M such that f (Mi)≤ess Pi ≤⊕ M for each i by (C1) condition. Because
Mi ≤ess Mi ≤⊕ M , Theorem 2.2.12 yields that Mi

∼= Pi . Hence the essen-
tial monomorphism Mi

∼= f (Mi) ≤ess Pi ∼= Mi , becomes an isomorphism from
Lemma 2.2.15 because Mi is continuous. Therefore f (Mi) = Pi ≤⊕ M , so
M ∩E(f (Mi))= f (Mi) by the modular law.

Since f (Mi) ∼= Mi , it follows that E(f (Mi)) ∼= E(Mi). Thus, ⊕i∈ΛE(f (Mi))

is injective by assumption, and it is therefore a direct summand of E(M). So
E(M)= [⊕i∈ΛE(f (Mi))] ⊕N for some N ≤E(M).

As M is quasi-continuous, M = [⊕i∈Λ(M ∩ E(f (Mi)))] ⊕ (M ∩ N) by The-
orem 2.1.25. So M = [⊕i∈Λf (Mi)] ⊕ (M ∩ N) = f (M) ⊕ (M ∩ N) because
M ∩E(f (Mi)) = f (Mi) for each i. But f (M) ≤ess M , so M ∩N = 0. Therefore
M = f (M). By Lemma 2.2.15, M is continuous. �

We remark that there are weaker finiteness conditions which yield necessary and
sufficient conditions for arbitrary direct sums of (quasi-)continuous modules to be
(quasi-)continuous. We refer the reader to [301] and [324] for more details.

Proposition 2.2.17 Let M = M1 ⊕M2 with M1 and M2 extending modules. Then
M is extending if and only if every closed submodule K of M with K ∩M1 = 0 or
K ∩M2 = 0 is a direct summand of M .

Proof See [145, Lemma 7.9] for the proof. �

Theorem 2.2.18 Let M = M1 ⊕ · · · ⊕ Mn such that Mi is Mj -injective for any
i �= j . Then M is extending if and only if each Mi is extending.

Proof The necessity is clear because every direct summand of an extending module
is extending. Conversely, let each Mi be extending. First say n= 2. Let K ≤M be
closed in M and suppose that M1 ∩ K = 0 or M2 ∩ K = 0. We may assume that
M1 ∩K = 0. By Theorem 2.1.4, M =M1 ⊕N for some N such that K ≤N ≤M .
Thus N ∼= M2, so N is extending. As K ≤ N ≤ M , K is closed in N . So K ≤⊕ N

by Proposition 2.1.15. Say N =K ⊕W for some W ≤N . Then M =M1 ⊕K ⊕W ,
so K ≤⊕ M . Thus, M is extending by Proposition 2.2.17.

Next, say M = M1 ⊕ · · · ⊕ Mn with n > 2 such that Mi is Mj -injective for all
i �= j . By induction, M1 ⊕ · · · ⊕Mn−1 is extending. Further, M1 ⊕ · · · ⊕Mn−1 and
Mn are relatively injective by Theorem 2.1.7. So M1 ⊕· · ·⊕Mn is extending by the
proof for the case when n= 2. �
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Exercise 2.2.19

1. ([392, Tercan] and [121, Chatters and Khuri]) Let R be a right Ore domain. Prove
the following.
(i) R is a right extending ring.

(ii) If (R ⊕R)R is an extending module, then R is a left Ore domain.
(Hint: see [145, Corollary 12.9].)

2. ([69, Birkenmeier, Kim, and Park]) Let M be an extending module. Assume
that the lattice of submodules of M is a distributive lattice. Show that every
submodule of M is extending.

3. ([69, Birkenmeier, Kim, and Park]) Let R be a right extending ring and M a
cyclic right R-module. Show that the following are equivalent.

(i) M is nonsingular.
(ii) Every cyclic submodule of M is projective and extending.

(iii) Every cyclic submodule of M is projective.
4. ([54, Birkenmeier]) A module V is said to be cancellative if V ⊕ X ∼= V ⊕ Y

(X and Y are modules), then X ∼= Y (cf. Lemma 2.2.7). Assume that M is a non-
cancellative injective module. Prove that exactly one of the following holds.
(i) M = A ⊕ B , where A is cancellative, and B is semisimple and non-

cancellative.
(ii) M =E(K), where K is ker-injective (see Exercise 2.1.37.11).

5. ([308, Müller and Rizvi]) Show that every directly finite continuous module is
cancellative. Give an example of a directly finite quasi-continuous module which
is not cancellative.

2.3 FI-Extending Property

The notion of an FI-extending module generalizes that of an extending module by
requiring that only every fully invariant submodule is essential in a direct summand
rather than every submodule. In Theorem 2.3.5, we show that any direct sum of
FI-extending modules is FI-extending without any additional requirements. Thus,
while a direct sum of extending modules may not be extending, it does satisfy the
extending property for all its fully invariant submodules (which include many well-
known submodules of any given module). Similar to the close connections that exist
between the extending property and the Baer property (see Sect. 3.3), there are also
close connections between the FI-extending property and the quasi-Baer property
for rings (see Sect. 3.2).

Definition 2.3.1 A module M is called FI-extending if every fully invariant sub-
module of M is essential in a direct summand of M .

The complete sublattice of fully invariant submodules of the lattice of submod-
ules of a module M is both extensive and contains many important submodules such
as Soc(M), Rad(M), Z(M), in fact ρ(M) for any preradical ρ (see [382] for more
details on preradicals). Moreover, for each ideal J of a ring R, �M(J ) and MJ
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are fully invariant. The FI-extending property, introduced in this section, effectively
generalizes the extending property by targeting only the fully invariant submodules
of M to be essential in direct summands. Thereby the FI-extending property ensures
that the aforementioned preradicals are “essentially split-off”.

Because the fully invariant submodules of a ring R are precisely all ideals of R,
RR is FI-extending if every ideal of R is right essential in a direct summand of RR .
Such a ring is called right FI-extending. A left FI-extending ring is defined similarly.
A ring is called FI-extending if it is both right and left FI-extending.

Proposition 2.3.2 Let M be a module. Then the following are equivalent.

(i) M is FI-extending.
(ii) For N � M , there is e2 = e ∈ End(E(M)) such that N ≤ess eE(M) and

eM ≤M .
(iii) Each N �M has a complement which is a direct summand of M .

Proof (i)⇒(ii) Assume that N � M . Then there is f 2 = f ∈ End(M) such that
N ≤ess fM . Let e :E(M)→E(fM) be the canonical projection. Then we see that
N ≤ess eE(M) and eM = fM ≤M .

(ii)⇒(iii) Let N � M . Then there exists e2 = e ∈ End(E(M)) such that
N ≤ess eE(M) and eM ≤ M . Take g = (1 − e)|M . Then g2 = g ∈ End(M). We
show that gM is a complement of N . For this, first note that gM ∩ N = 0 as
gM = (1 − e)M . Say K ≤M such that gM = (1 − e)M ≤K and K ∩N = 0.

From M = (1 − e)M ⊕ eM , K = (1 − e)M ⊕ (K ∩ eM) by the modular law. As
K ∩N = 0 and N ≤ess eE(M), K ∩ eE(M)= 0 and so K ∩ eM = 0. Thus, we get
that K = (1 − e)M , then K = gM . Therefore gM is a complement of N .

(iii)⇒(i) Say N �M . There exists h2 = h ∈ End(M) so that hM is a comple-
ment of N . As N �M , hN ≤N ∩ hM = 0. Hence, N = (1 − h)N .

To show that M is FI-extending, we claim that N ≤ess (1 − h)M . For this, as-
sume that K ≤ (1 − h)M such that N ∩K = 0. Then note that hM ∩K = 0. Take
hm + k = n ∈ (hM ⊕ K) ∩ N with m ∈ M , k ∈ K , and n ∈ N . Then
(1 − h)hm+ (1 − h)k = (1 − h)n, so k = n ∈ K ∩N because K ≤ (1 − h)M and
N = (1−h)N . Now as K ∩N = 0, k = n= 0. Thus, (hM⊕K)∩N = 0. Since hM
is a complement of N , hM ⊕K = hM and so K = 0. Therefore, N ≤ess (1 − h)M .
Hence, M is FI-extending. �

The following are some basic facts about fully invariant submodules.

Proposition 2.3.3 The following hold true for a right R-module M .

(i) If Ni �M for i ∈Λ, then
⋂

i∈ΛNi �M and
∑

i∈ΛNi �M .
(ii) If W � V and V �M , then W �M .

(iii) If e2 = e ∈ End(M), then eM �M if and only if e ∈ S�(End(M)).
(iv) If e2 = e ∈ End(M) and V �M with V ≤ess eM , then eM +Z(M)�M .
(v) Let M = M1 ⊕ · · · ⊕ Mn, where Mi �M for i = 1, . . . , n. If N ≤⊕ M , then

N = (M1 ∩N)⊕ · · · ⊕ (Mn ∩N).
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Proof The proof of parts (i)–(iii) is routine.
(iv) Let S = End(M). First, we show that (1 − e)SeM ⊆ Z(M). For this, say

m ∈ M . Then there exists KR ≤ess RR such that emK ⊆ V because V ≤ess eM .
Now (1−e)SemK ⊆ (1−e)M∩V = 0, thus (1−e)Sem⊆ Z(M). Hence, it follows
that (1 − e)SeM ⊆ Z(M). Therefore,

S(eM +Z(M))= (eS + (1 − e)S)(eM +Z(M))⊆ eM +Z(M).

So eM +Z(M)�M .
(v) Assume that M = N ⊕ V with V ≤ M . Then Mi = (Mi ∩ N) ⊕ (Mi ∩ V )

(see Exercise 2.1.37.2) because Mi � M , for i = 1,2, . . . , n. Therefore, we have
that M = ⊕n

i=1Mi = [⊕n
i=1(Mi ∩ N)] ⊕ [⊕n

i=1(Mi ∩ V )]. From the modular law,
N = [⊕n

i=1(Mi ∩N)]⊕ [(⊕n
i=1(Mi ∩V ))∩N ]. Because V ∩N = 0, it follows that

N = ⊕n
i=1(Mi ∩N). �

Proposition 2.3.4 Any fully invariant submodule of an FI-extending module is FI-
extending.

Proof Let M be an FI-extending module and N �M . Take V � N . By Proposi-
tion 2.3.3(ii), V �M . Therefore V ≤ess D for some D ≤⊕ M . Say M = D ⊕ W ,
where W ≤ M . So N = (D ∩ N) ⊕ (W ∩ N) (see Exercise 2.1.37.2). Thus, N is
FI-extending because V ≤ess (D ∩N)≤⊕ N . �

The next result shows that a direct sum of FI-extending modules inherits the
property without any additional requirements.

Theorem 2.3.5 Any direct sum of FI-extending modules is FI-extending.

Proof Let M = ⊕i∈ΛMi with each Mi an FI-extending module. Take V �M . Then
V = ⊕i∈Λ(V ∩Mi) (see Exercise 2.1.37.2), and V ∩Mi �Mi for each i ∈ Λ. As
Mi is FI-extending, there is Di ≤⊕ Mi with (V ∩Mi) ≤ess Di for every i ∈ Λ. So
V = ⊕i∈Λ(V ∩Mi)≤ess ⊕i∈ΛDi ≤⊕ ⊕i∈ΛMi . Therefore M is FI-extending. �

Corollary 2.3.6 Let M be a direct sum of extending (e.g., uniform) modules. Then
M is FI-extending.

By Corollary 2.3.6, we see that while a direct sum of extending modules may
not be extending in general (see Example 2.2.1(ii) and (iii)), it has to be always
FI-extending without any additional conditions.

Corollary 2.3.7 Let G be an Abelian group. If G satisfies any one of the following
conditions, then G is an FI-extending Abelian group.

(i) G is finitely generated.
(ii) G is of bounded order (i.e., nG= 0 for some positive integer n).

(iii) G is divisible.
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Proof (i) and (ii) follow from Corollary 2.3.6 as G is a direct sum of uniform Z-
modules in each case. (iii) is obvious as being divisible, G is injective. �

In contrast to Theorem 2.3.5, a direct product of FI-extending modules is not
FI-extending as shown in the following example.

Example 2.3.8 Let M =∏

p Z/pZ, where p varies through all prime integers. Then
the torsion subgroup t (M) of M is fully invariant and closed. But t (M) is not a
direct summand of M (see [362, Theorem 9.2]). Hence, the Z-module M is not
FI-extending.

It is presently an open problem to determine if a direct summand of an FI-
extending module is always FI-extending (see [356]). The following three results
show instances where this inheritance does occur.

Proposition 2.3.9 If a module M = B ⊕ C is FI-extending and B �M , then both
B and C are FI-extending.

Proof From Proposition 2.3.4, B is FI-extending. To prove that C is FI-extending,
let D � C. As B �M , Hom(B,C) = 0. Thus B ⊕ D �M , so there is N ≤⊕ M

with B ⊕ D ≤ess N . Say M = N ⊕ W for some W ≤ M . From M = B ⊕ C,
N = B ⊕ (N ∩C) by the modular law. Since B ⊕D ≤N and D ≤ C, D ≤N ∩C.
Further, D ≤ess N ∩C as B ⊕D ≤ess N . Now M =N ⊕W = (N ∩C)⊕B ⊕W .
Thus, C = (N ∩C)⊕ ((B⊕W)∩C) by the modular law. So D ≤ess (N ∩C)≤⊕ C.
Therefore, C is FI-extending. �

Proposition 2.3.10 Let M be a module. Then M is FI-extending if and only if
M = Z2(M)⊕N , where Z2(M) and N are FI-extending.

Proof Assume that M is FI-extending. Since Z2(M) � M and Z2(M) is closed
in M , M = Z2(M)⊕N for some N ≤M . By Proposition 2.3.9, Z2(M) and N are
FI-extending. The converse follows from Theorem 2.3.5. �

Proposition 2.3.11 The following hold true for a ring R and e ∈ S�(R).

(i) RR is FI-extending if and only if eRR and (1 − e)RR are FI-extending.
(ii) If R is right FI-extending, then so is (1 − e)R(1 − e).

Proof (i) We see that RR = eRR ⊕ (1 − e)RR and eRR � RR since e ∈ S�(R).
Hence, Theorem 2.3.5 and Proposition 2.3.9 yield the desired result.

(ii) Let W � (1 − e)R(1 − e). Then WR � (1 − e)RR because 1 − e ∈ Sr (R) and
End((1 − e)RR) ∼= (1 − e)R(1 − e). By part (i), since (1 − e)RR is FI-extending,
there exists g2 = g ∈ (1 − e)R(1 − e) such that WR ≤ess g(1 − e)RR . We see that
W(1−e)R(1−e) ≤ess g(1 − e)R(1 − e)(1−e)R(1−e) as 1 − e ∈ Sr (R). Further,

g(1 − e)R(1 − e)(1−e)R(1−e) ≤⊕ (1 − e)R(1 − e)(1−e)R(1−e).
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Hence (1 − e)R(1 − e) is right FI-extending. �

Theorem 2.3.12 Let R be a right FI-extending ring. Then Matn(R) is a right FI-
extending ring for all positive integer n.

Proof Let K � Matn(R). Then K = Matn(I ) for some I � R. As R is right FI-
extending, there exists e2 = e ∈ R such that IR ≤ess eRR . This yields that as
a right ideal of Matn(R), K is essential in a direct summand (e1)Matn(R) of
Matn(R), where 1 is the identity matrix of Matn(R). Therefore Matn(R) is right
FI-extending. �

Motivated by Theorem 2.3.12, the right FI-extending property for matrix rings
will be discussed in Chap. 6, where matrix ring extensions will be dealt with in
detail (e.g., see Theorem 6.1.17).

Example 2.3.13 Let R be a commutative domain. Then Matn(R) is right FI-
extending by Theorem 2.3.12. However, if R is not semihereditary and n > 1, then
Matn(R) is neither right nor left extending (see Theorem 6.1.4).

Example 2.3.14 Let R =
[

Z2 Z2
0 Z

]

. By computation, we see that the ring R is

right FI-extending, but it is not left FI-extending (see Theorem 5.6.10 and Corol-
lary 5.6.11 related to this example).

By Example 2.3.14, the FI-extending property for rings is not left-right symmet-
ric. This motivates us to consider rings which are FI-extending on both sides.

Theorem 2.3.15 Let R be a ring and A � R. Assume that R is right and left FI-
extending, A∩ �R(A)= 0, and A∩ rR(A)= 0. Then there exists c ∈ B(R) such that
AR ≤ess cRR , RA ≤ess

RRc, and �R(A)= rR(A)= (1 − c)R.

Proof There is e2 = e ∈ R such that AR ≤ess eRR . Say 0 �= y ∈ eR(1 − e).
Then there is s ∈ R with 0 �= ys ∈ A. But ysA ⊆ eR(1 − e)A = 0. Therefore
ys ∈A∩ �R(A)= 0, a contradiction. So eR(1 − e)= 0, thus e ∈ Sr (R) by Proposi-
tion 1.2.2. Similarly, there is f ∈ S�(R) such that RA≤ess

RRf .
To show that rR(A)= (1 − e)R, we notice that A(1 − e)⊆ eR(1 − e)= 0. Thus

(1−e)R ⊆ rR(A). Next, if e rR(A) �= 0, then take 0 �= ex ∈ e rR(A) with x ∈ rR(A).
Since AR ≤ess eRR , there exists r ∈ R satisfying 0 �= exr ∈ A. Observe that
Aexr ⊆ Axr = 0 since x ∈ rR(A), so exr ∈ rR(A) ∩ A = 0. Thus exr = 0, it is
absurd. So e rR(A) = 0, hence rR(A) ⊆ (1 − e)R. Therefore, rR(A) = (1 − e)R.
Similarly, �R(A)=R(1 − f ).

As A∩ �R(A)= 0 by assumption, A�R(A)= 0, therefore �R(A)⊆ rR(A). From
A ∩ rR(A) = 0, rR(A) ⊆ �R(A). Thus, �R(A) = rR(A), so (1 − e)R = R(1 − f ).
Hence, e = f ∈ S�(R) ∩ Sr (R), so e ∈ B(R) by Proposition 1.2.6(i). Take c = e.
Then c is the desired idempotent. �
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Let R be a ring. An ideal K of R is said to be a regular ideal if for each x ∈ K

there exists y ∈K satisfying x = xyx. Put

M(R)= {x ∈R |RxR is a regular ideal ofR}.
Then M(R) is a regular ideal of R containing all regular ideals of R (and is a
Kurosh-Amitsur radical, see [183, Proposition 1.5] and [176]). We use ϕ to denote
an assignment on the class of all rings such that ϕ(R) is an ideal of R. A ring R is
called ϕ-regular if R/ϕ(R) is regular and ϕ(R)∩M(R)= 0. A ring R is said to be
J -regular if R/J (R) is regular (automatically J (R)∩M(R)= 0). A right (or left)
ideal K of a ring R is said to be ideal essential in R if K has nonzero intersection
with every nonzero ideal of R. In this case, R is called an ideal essential extension
of K .

Theorem 2.3.16 Let a ring R be right FI-extending.
(i) If R is left FI-extending and ϕ-regular, then R = M(R)⊕B (ring direct sum)

and B is an ideal essential extension of ϕ(R).
(ii) If R is left continuous, then R = M(R)⊕B (ring direct sum), where B is an

ideal essential extension of J (R).

Proof (i) We note that M(R) is a semiprime ring since it is regular. Thus, we
have that M(R) ∩ rR(M(R)) = 0 because M(R) ∩ rR(M(R)) � M(R) and
[M ∩ rR(M(R))]2 = 0. Similarly, M(R) ∩ �R(M(R)) = 0. By Theorem 2.3.15,
there is c ∈ B(R) such that M(R)R ≤ess cRR . As M(R)∩ϕ(R)= 0, cR∩ϕ(R)= 0
and so ϕ(R)c = 0. Whence ϕ(R)⊆ (1 − c)R, thus R/(1 − c)R is a ring homomor-
phic image of the regular ring R/ϕ(R). So R/(1 − c)R ∼= cR is a regular ring. Thus
cR is a regular ideal, and hence M(R) = cR. Therefore, R = M(R) ⊕ B , where
B = (1 − c)R.

Let I � B with ϕ(R) ∩ I = 0. Take a ∈ I . Then there exists r ∈ R satisfying
a− ara ∈ ϕ(R) as R/ϕ(R) is regular. Thus, a− ara = 0 since a− ara ∈ I . Hence,
a(rar)a = (ara)ra = ara = a and rar ∈ I . So I is a regular ideal of B (hence I is
a regular ideal of R). Thus I ⊆ M(R)∩B = 0, so B is an ideal essential extension
of ϕ(R).

(ii) As R is left continuous, R is J -regular by Corollary 2.1.30. Therefore,
R = M(R)⊕B and B is an ideal essential extension of J (R) by part (i). �

Let R be the ring of Example 2.1.36. Then R is right FI-extending and left con-
tinuous, but R is not right continuous. Thereby, Theorem 2.3.16 is a proper gener-
alization of the result of Faith [158] for two-sided continuous rings.

Upon examining the FI-extending property, it is natural to ask when a module
has the property that every fully invariant submodule is essential in a fully invariant
direct summand. This question motivates the next definition.

Definition 2.3.17 A module M is said to be strongly FI-extending if every fully in-
variant submodule of M is essential in a fully invariant direct summand of M . A ring
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R is called right strongly FI-extending if RR is strongly FI-extending. A left strongly
FI-extending ring is defined similarly. A ring R is called strongly FI-extending if R
is right and left strongly FI-extending.

While every strongly FI-extending module is FI-extending, there exists an FI-
extending module which is not strongly FI-extending. By Theorem 2.3.5, the mod-
ule M = Z⊕Zp is FI-extending Z-module for any prime integer p. However, M is
not strongly FI-extending by [80, Theorem 7.1] (see also Exercise 2.3.34.7).

It should be noted that unlike the FI-extending property, the strongly FI-
extending property does not generalize injective modules. In Example 2.3.18, a right
self-injective ring which is not right strongly FI-extending is provided. Thus, the
right strongly FI-extending property does not belong to a hierarchy of generaliza-
tions of injectivity. However, the strongly FI-extending property coincides with the
FI-extending property for nonsingular modules (Theorem 2.3.27). Also, the strongly
FI-extending modules will be helpful in our study of FI-extending module hulls (see
Sect. 8.4).

Example 2.3.18 Let R = Z3[S3], the group algebra of the symmetric group S3 on
three symbols {1,2,3} over the field Z3 (see Example 2.1.18). Then R is a QF-
ring. Let σ = (123) and τ = (12) in S3. Put e = 2 + τ ∈ R. Then e2 = e and hence
eR = {a + bσ + cσ 2 + 2aτ + 2cστ + 2bσ 2τ | a, b, c ∈ Z3}.

Let ω(Z3[N ])= {a + bσ + cσ 2 | a + b+ c = 0, a, b, c ∈ Z3}, the augmentation
ideal of Z3[N ], where N = {1, σ, σ 2}. Then J (R) = ω(Z3[N ])R by [341, Exer-
cise 8, p. 106]. We see that

Soc(RR)= {a(1 + σ + σ 2)+ b(1 + σ + σ 2)τ | a, b ∈ Z3}
since Soc(RR)= �R(J (R))= �R(ω(Z3[N ])). Therefore,

Soc(eRR)= eR ∩ Soc(RR)= {a(1 + σ + σ 2)+ 2a(1 + σ + σ 2)τ | a ∈ Z3}.
We observe that Soc(eRR) � R. Also Soc(eRR) ≤ess eRR . By direct compu-
tation, R is semicentral reduced (Exercise 2.3.34.2). If R is right strongly FI-
extending, then there is f ∈ S�(R) with Soc(eRR) ≤ess fRR . Thus, f = 1. Hence
Soc(eRR) ≤ess RR , a contradiction because Soc(eRR) ≤ess eRR . Thus, R is not
right strongly FI-extending.

Generally, if R is an indecomposable QF-ring with 0 �= I � R such that IR is
not essential in RR , then R is neither right nor left strongly FI-extending by [262,
Exercise 16, p. 421]. As mentioned earlier, at present it is unknown if a direct
summand of an FI-extending module is FI-extending. However, the strongly FI-
extending property of a module is inherited by its direct summands.

Theorem 2.3.19 Every direct summand of a strongly FI-extending module is
strongly FI-extending.
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Proof Let MR be a strongly FI-extending module and N ≤⊕ M . We let S =
End(M). Then N = eM with e2 = e ∈ S. Let V � N . Then SV � M . Since M

is strongly FI-extending, there is f ∈ S�(S) such that SV ≤ess fM . Obviously,
V ⊆ SV ∩ eM . As V � eM and eSe = End(eM), eSeV ⊆ V . So

SV ∩ eM = eSV ∩ eM = eSeV ∩ eM ⊆ V ∩ eM = V.

Hence it follows that V = SV ∩ eM ≤ess fM ∩ eM . Furthermore, (ef )2 = ef and
efM ⊆ eM ∩ fM because f ∈ S�(S).

Let y ∈ eM ∩ fM . Then there are m,m′ ∈ M with y = em = fm′. Thus, we
get that y = ey = efm′ ∈ efM , so efM = eM ∩ fM holds. Hence, we have that
V ≤ess eM ∩ fM = efM . From M = efM ⊕ (1 − ef )M and efM ≤ eM , by the
modular law eM = efM ⊕ (eM ∩ (1 − ef )M).

To see that efM � eM , note first that End(eM)= eSe. As f ∈ S�(S), we see that
(eSe)efM = ef (Se)fM ⊆ efM , so V ≤ess efM � eM = N and efM ≤⊕ eM .
Therefore, N is strongly FI-extending. �

Unlike the FI-extending modules, a direct sum of strongly FI-extending modules
is not, in general, strongly FI-extending.

Example 2.3.20 Let R = Z3[S3], the group algebra as in Example 2.3.18. Say VR is
a nonzero proper direct summand of RR . The vector space dimension of Soc(RR)

over Z3 is 2. Thus Soc(V ) is a one dimensional vector spaces over Z3. Hence VR
is uniform, and so it is strongly FI-extending. Thus, every proper direct summand
of RR is strongly FI-extending. But RR itself is not strongly FI-extending from
Example 2.3.18.

In spite of Example 2.3.20, certain direct sums of strongly FI-extending modules
are strongly FI-extending.

Theorem 2.3.21 Let M =⊕

i∈ΛMi and let Mi �M for each i ∈Λ. If each Mi is
strongly FI-extending, then M is strongly FI-extending.

Proof Assume that each Mi is strongly FI-extending. Write Mi = eiM , where
e2
i = ei ∈ S := End(M). Say V � M . Then V = ⊕i∈Λ(V ∩ Mi) = ⊕i∈ΛeiV

(see Exercise 2.1.37.2). Observe that eiV � eiM = Mi , for each i ∈ Λ, because
(eiSei)(eiV ) = ei(SeiV ) ⊆ eiV and V � M . Thus there is Wi ≤⊕ Mi , where
Wi �Mi and eiV ≤ess Wi . So V = ⊕i∈ΛeiV ≤ess ⊕i∈ΛWi . As Wi ≤⊕ Mi for each
i ∈ Λ, ⊕i∈ΛWi ≤⊕ ⊕i∈ΛMi = M . Also Wi � Mi and Mi � M for each i ∈ Λ,
by Proposition 2.3.3(ii) Wi �M for each i ∈ Λ. So ⊕i∈ΛWi �M from Proposi-
tion 2.3.3(i). Thus, M is strongly FI-extending. �

Lemma 2.3.22 Let N ≤ess eM with e ∈ S�(End(M)). If N ≤ess fM with f 2 =
f ∈ End(M), then eM = fM .
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Proof We observe that eM ∩ fM = f eM and (f e)2 = f e ∈ End(M) because
e ∈ S�(End(M)). Since N ≤ess f eM , f eM = eM and f eM = fM from the mod-
ular law. Thus eM = fM . �

Theorem 2.3.23 Let M = ⊕

i∈ΛMi , where Mi
∼= Mj , and Mi is strongly FI-

extending for all i, j ∈Λ. Then M is strongly FI-extending.

Proof Assume that N �M . Then N = ⊕i∈Λ(N ∩Mi), where N ∩Mi �Mi . Since
Mi is strongly FI-extending, Mi = eiMi ⊕ (1− ei)Mi , where ei ∈ S�(End(Mi)) and
N ∩Mi ≤ess eiMi . Set σji to be the the isomorphism from Mi to Mj .

As N �M , σji(N ∩Mi)⊆N ∩Mj and σ−1
ji (N ∩Mj)⊆N ∩Mi . Whence

σ−1
ji σji(N ∩Mi)⊆ σ−1

ji (N ∩Mj)⊆N ∩Mi,

so N ∩ Mi ⊆ σ−1
ji (N ∩ Mj) ⊆ N ∩ Mi , thus σ−1

ji (N ∩ Mj) = N ∩ Mi . Therefore
σji(N ∩Mi)=N ∩Mj .

Note that N ∩ Mj = σji(N ∩ Mi) ≤ess σji(eiMi) ≤⊕ σji(Mi) = Mj be-
cause N ∩ Mi ≤ess eiMi ≤⊕ Mi . From Lemma 2.3.22, σji(eiMi) = ejMj since
ej ∈ S�(End(Mj )), N ∩ Mj ≤ess ejMj , and N ∩ Mj ≤ess σji(eiMi) ≤⊕ Mj . Be-
cause N ≤ess ⊕i∈ΛeiMi and ⊕i∈ΛeiMi ≤⊕ M , to complete the proof it suffices to
show that ⊕i∈ΛeiMi �M .

Let h ∈ End(M), and let x ∈ ⊕i∈ΛeiMi . Without loss of generality, we as-
sume that x = eimi for some i ∈ Λ. So h(x) = h(eimi) = ∑

j∈J m′
j for a finite

subset J of Λ. To prove that h(eimi) ∈ ⊕i∈ΛeiMi , we consider, without loss
of generality, πjh(eimi) = m′

j (where πk : M → Mk, k ∈ Λ, are the canonical
projections), and show that m′

j ∈ ejMj . Then πjh(eimi) = πjhπi(eimi), hence

σ−1
ji (πjhπi)(eimi)= σ−1

ji (m
′
j ). Note that (σ−1

ji πjhπi)|Mi
∈ EndR(Mi).

We see that (eiσ
−1
ji πjhπi)(eimi) = σ−1

ji (πjhπi)(eimi) = σ−1
ji (m

′
j ), where

ei(σ
−1
ji πjhπi)(eimi) ∈ eiMi , because ei ∈ S�(EndR(Mi)). Hence, it follows that

σji(eiσ
−1
ji πjhπi)(eimi) = m′

j ∈ σji(eiMi) = ejMj . Thus, ⊕i∈ΛeiMi is a fully in-
variant direct summand of M . So M is strongly FI-extending. �

Corollary 2.3.24 Let R be a right strongly FI-extending ring. Then every projective
right R-module is strongly FI-extending.

Proof The proof follows from Theorems 2.3.23 and 2.3.19. �

Lemma 2.3.25 Assume that P is a generator in the category Mod-R of right
R-modules. Let S = End(P ) and let A, B be right ideals of S. Then
(A∩B)P =AP ∩BP .

Proof See [229, Theorem 1.3]. �



2.3 FI-Extending Property 55

Theorem 2.3.26 The right strongly FI-extending property is a Morita invariant
property.

Proof Assume that R is a right strongly FI-extending ring. Let PR be a progenera-
tor in the category Mod-R of right R-modules. By Corollary 2.3.24, PR is strongly
FI-extending. Let S = End(P ) and I � S. Then IP � P . As P is strongly FI-
extending, there is e ∈ S�(S) with IP ≤ess eP = eSP . We show that IS ≤ess eSS .
For 0 �= es ∈ eS with s ∈ S, assume on the contrary that I ∩ esS = 0. Then
0 = (I ∩ esS)P = IP ∩ esP by Lemma 2.3.25. But since 0 �= esP ⊆ eP and
IP ≤ess eP , a contradiction. Thus, IS ≤ess eSS and eS � S. Hence, S is right
strongly FI-extending. So the right strongly FI-extending property is Morita invari-
ant. �

Theorem 2.3.27 A nonsingular module M is FI-extending if and only if M is
strongly FI-extending.

Proof Let M be FI-extending. Take N � M . There is e2 = e ∈ EndR(M) with
N ≤ess eM . From Proposition 2.3.3(iv), eM �M as Z(M) = 0. So M is strongly
FI-extending. The converse is obvious. �

Remark 2.3.28 We remark that Theorem 2.3.27 can be extended as follows: A K-
nonsingular module M is FI-extending if and only if M is strongly FI-extending.
(See Definition 4.1.3 for definition of K-nonsingular modules.)

Let R be a right nonsingular ring. By Theorem 2.1.25 and Corollary 1.3.15, R
is right quasi-continuous if and only if every idempotent of Q(R) lies in R. The
following result is a result along similar lines.

Theorem 2.3.29 Let R be a right nonsingular ring. Then the following are equiva-
lent.

(i) R is right FI-extending.
(ii) For every e2 = e ∈ Q(R) with Re = eRe, there exists f ∈ S�(R) such that

eQ(R)= fQ(R).

Proof (i)⇒(ii) Assume that R is right FI-extending. Take e2 = e ∈Q(R) such that
Re = eRe. Then R∩ eQ(R)�R. By Theorem 2.3.27, there is f in S�(R) such that
(R ∩ eQ(R))R ≤ess fRR . As (R ∩ eQ(R))R ≤ess eQ(R)R , it follows that

(R ∩ eQ(R))R ≤ess (fQ(R)∩ eQ(R))R, and (fQ(R)∩ eQ(R))R = f eQ(R)R

since f e = ef e. Thus f eQ(R)R = eQ(R)R as f eQ(R)R ≤ess eQ(R)R and f e is
an idempotent. Also f eQ(R)R = fQ(R)R . Hence eQ(R)= fQ(R).

(ii)⇒(i) Let A � R. As Z(RR) = 0, Q(R) = E(RR) by Corollary 1.3.15.
From Proposition 2.1.32, EndR(E(RR)) = EndR(Q(R)) ∼= Q(R), so there is
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e2 = e ∈ Q(R) with AR ≤ess eQ(R)R . We take I = {r ∈ R | er ∈ A}. Then
IR ≤ess RR and eI ⊆A. Thus (1 − e)ReI ⊆ (1 − e)RA⊆ (1 − e)A= 0.

We observe that Z(Q(R)R)= 0 and so (1 − e)Re = 0 because IR ≤ess RR . Thus
Re = eRe holds. Therefore, eQ(R) = fQ(R) for some f ∈ S�(R) by assumption.
Hence, AR ≤ess fQ(R)R , so AR ≤ess fRR . Therefore, R is right FI-extending. �

Two modules are said to be orthogonal if they have no nonzero isomorphic
submodules (this concept was used in Sect. 2.2, for example, Theorems 2.2.9
and 2.2.14). For a class A of modules, A⊥ denotes the class of modules orthog-
onal to all members of A. Classes A and B form an orthogonal pair if A⊥ = B

and B⊥ = A. To obtain a ring direct sum decomposition of a right nonsingular right
FI-extending ring whose summands are from a given orthogonal pair (see Theo-
rem 2.3.31), we need the next lemma, which is of interest also in its own right.

Lemma 2.3.30 Let Z(RR) = 0. Given an orthogonal pair A and B of classes
of right R-modules, there exist ideals A and B of R, such that A and B are
maximal among the right ideals of R contained in A and B, respectively, and
(A⊕B)R ≤ess RR .

Proof Let A and B be an orthogonal pair. We use Zorn’s lemma to obtain a right
ideal A which is maximal among the right ideals (of R) in A which is orthogonal to
all members of B, and a right ideal B maximal among the right ideals (of R) in B

which is orthogonal to all members of A.
Obviously, A∩B = 0. We show that (A⊕B)R ≤ess RR . If not, then there exists

a nonzero right ideal I of R such that (A⊕B)∩ I = 0.
Case 1. I has a nonzero submodule J in A. We show that A⊕ J ∈ A. For this,

assume on the contrary that A⊕J is not orthogonal to some 0 �= C ∈B. Then there
exists 0 �= v = a + y ∈ A ⊕ J with a ∈ A and y ∈ J such that vR is subisomor-
phic to C. Define f : vR → aR by f (vr) = ar , where r ∈ R. If Ker(f ) = 0, then
vRR

∼= aRR , and so aRR is nonzero and it is subisomorphic to C. But since
aRR ≤AR , it is absurd. If Ker(f ) �= 0, then

Ker(f )= {vr ∈ vR | ar = 0, r ∈R} = {yr | r ∈R},
thus 0 �= Ker(f )R ≤ JR . Since vR is subisomorphic to C, so is Ker(f ). However,
Ker(f ) ⊆ J , it is also absurd as J ∈ A. Thus A⊕ J ∈ A. By the maximality of A,
this cannot happen.

Case 2. I does not have any nonzero submodule J in A. First, we show
that B ⊕ I ∈ B. Assume on the contrary that B ⊕ I is not orthogonal to some
0 �=D ∈ A. Then there exists 0 �=w = b+x ∈ B⊕ I with b ∈ B and x ∈ I such that
wRR is subisomorphic to D. Define g : wR → bR by g(wr) = br , where r ∈ R.
If Ker(g) = 0, then wRR

∼= bRR and so bRR is subisomorphic to D ∈ A, which is
impossible.

If Ker(g) �= 0, then Ker(g) = {xr | r ∈ R} is subisomorphic to D because
Ker(g)R ≤ wRR . So we have that 0 �= Ker(g)R ≤ IR and it is subisomorphic to
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D ∈ A. Say D1 ≤ D such that Ker(g) ∼= D1. We note that D1 ∈ A because D ∈ A

and D1 ≤ D. Thus, 0 �= Ker(g) ∈ A and Ker(g)R ≤ IR , which contradicts the hy-
pothesis. Hence, B ⊕ I is orthogonal to A, so B ⊕ I ∈ A⊥ = B. This is impossible
by the maximality of B . So this case also cannot happen. Consequently, by Cases 1
and 2, (A⊕B)R ≤ess RR .

We claim that A and B are ideals of R. Since R is right nonsingular, we get that
Q(R)=E(RR) from Corollary 1.3.15. So Q :=Q(R)=E(AR)⊕E(BR).

Put E(AR)= eQ and E(BR)= (1−e)Q for some e2 = e ∈Q. Let t ∈Q. Define
a map f : (1 − e)Q→ eQ such that f ((1 − e)q)= et (1 − e)q for q ∈Q.

For the claim, we show that Ker(f )R ≤ess (1 − e)QR . If not, then there exists
0 �= CR ≤ (1 − e)QR with Ker(f ) ∩ C = 0. Put V = C ∩ B . Then V �= 0 because
BR ≤ess (1 − e)QR . Since Ker(f ) ∩ V = 0, the restriction f0 of f to V is an iso-
morphism to f0(V )R ≤ eQR . We let A0 = f0(V ) ∩ A and V0 = f−1

0 (A0). Then
A0 is a nonzero submodule of AR and is isomorphic to V0R ≤ BR , a contradiction.
Therefore Ker(f )R ≤ess (1 − e)QR , and hence Ker(f )Q ≤ess (1 − e)QQ.

From [(1 − e)Q/Ker(f )]Q ∼= et (1 − e)QQ, Z(et (1 − e)QQ)= et (1 − e)Q (see
1.1.8) for all t ∈Q. Note that Z(QQ)= 0 since Q is regular from Theorem 2.1.31.
Thus, et (1 − e)Q = Z(et (1 − e)QQ) = 0 for all t ∈ Q. So eQ(1 − e) = 0, so e is
central by Propositions 1.2.2 and 1.2.6(ii). Because AR ≤ess (eQ∩R)R , eQ∩R ∈ A

and so maximality of A yields that A= eQ∩R. Similarly, B = (1 − e)Q∩R. Thus
A and B are ideals of R as e is central. �

Theorem 2.3.31 Let R be a right FI-extending ring with Z(RR) = 0. Then any
orthogonal pair A and B of classes of R-modules yields a ring direct sum decom-
position R = R1 ⊕R2, where R1 and R2 are maximal among the right ideals of R
in A and B, respectively.

Proof We let Q = Q(R). From Lemma 2.3.30, (R1 ⊕ R2)R ≤ess RR , where
R1 = eQ ∩ R and R2 = (1 − e)Q ∩ R for some e ∈ B(Q). Because R is right
FI-extending, R1R ≤ess fRR , where f 2 = f ∈ R. Also R1R ≤ess eQR . Since
R1R ≤ess fRR ≤ess fQR and e ∈ B(Q), it follows that e = f ∈ R. Therefore,
R1 = eR, R2 = (1 − e)R, and R =R1 ⊕R2. �

The next example shows that Theorem 2.3.31 fails if R is not right FI-extending
in the hypothesis (the example also illustrates Lemma 2.3.30).

Example 2.3.32 Let F be any field and let Fi = F , i ∈Λ, where Λ is infinite. Define
R = ⊕i∈ΛFi +F 1, which is an F -subalgebra of

∏

i∈Λ Fi , where 1 is the identity of
∏

i∈Λ Fi . Then R is a regular ring. Let Λ=Λ1 ∪Λ2 be a nontrivial disjoint union.
Then A= ⊕i∈Λ1Fi and B = ⊕i∈Λ2Fi are ideals of R.

Let A = {A}⊥⊥ and B= {A}⊥. We see that (A⊕B)R ≤ess RR and A⊕B �=R.
Note that AR and BR are closed in RR . Also A ∈A and B ∈B.

To show that A and B are maximal among ideals of R in A and B, respectively,
say A≤ C and C ∈ A. Assume on the contrary that A �= C. Then AR is not essential
in CR (as AR is closed in RR), so there exists 0 �= V ≤ C such that A∩V = 0. Since
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(A⊕B)R ≤ess RR , (A⊕B)∩V �= 0. We note that A⊕B is a semisimple R-module,
so there is 0 �= v ∈ (A⊕B)∩ V such that vR is a simple R-module. Say v = a + b

with a ∈A and b ∈ B .
If a �= 0 and b �= 0, then vR ∼= aR by the R-homomorphism corresponding vr to

ar for r ∈ R. Also vR ∼= bR. Hence, aR ∼= bR. But since aR ≤ A and bR ≤ B ,
this cannot happen. If a �= 0 and b = 0, then vR = aR ≤ A, which contradicts
A∩V = 0. If a = 0 and b �= 0, then vR = bR ≤ B . Since vR ≤ C, C �∈A, a contra-
diction. Therefore A= C, so A is maximal among ideals of R in A. Similarly, B is
maximal among ideals of R in B.

Remark 2.3.33 (G-extending and C11-Modules) Let M be a module. Consider two
relations ω and β on submodules of M : Let L,N ≤ M . Then we say that L ω N

if L ≤ess L + N and N ≤ess L + N . We say that L β N if L ∩ N ≤ess L and
L∩N ≤ess N . The relation β has been initially defined (as the relation ρ) and stud-
ied in [374]. It is an equivalence relation and was introduced in [178] for right ideals
of a ring. Note that if LωN , then Lβ N .

We routinely see that a module M is extending if and only if for each N ≤ M ,
there is D ≤⊕ M such that N ωD. Motivated by this fact and the use of the equiv-
alence relation β by Goldie [178], another interesting generalization of extending
modules is defined in [1]. A module M is called G-extending (i.e., Goldie extending)
if for each N ≤M , there exists D ≤⊕ M such that N βD (see [1]). Thus an extend-
ing module is a G-extending module. When M is a UC-module (UC for unique
closure) (e.g., M is nonsingular), M is G-extending if and only if M is extending.
Every canonical cogenerator is G-extending; but, in general, it is not extending [1].

In [2], G-extending modules over a Dedekind domain and those over a commuta-
tive PID are characterized which extend the characterization of G-extending Abelian
groups [1]. These characterizations involve the condition that pure submodules are
direct summands. From these results, it is shown in [2] that every finitely generated
module over a Dedekind domain is G-extending (this result also appears in [3] with a
different proof). Also, in [2], it is proved that the class of G-extending modules over
a commutative PID is closed under direct summands, and the class of G-extending
torsion modules over a Dedekind domain is closed under finite direct sums.

Furthermore in [3], G-extending 2 × 2 generalized triangular matrix rings and
Tn(R) (n > 1) over a ring R are characterized. From these characterizations, it fol-
lows that Tn(R) (n > 1) over a right self-injective ring R is right G-extending, but
not, in general, right extending.

Another class of modules generalizing the class of extending modules is the class
of C11-modules. The investigation of these modules was posed as Open Problem 9
in [301]. A module is called a C11-module if every submodule has a complement
which is a direct summand (see [376]). Every G-extending module is a C11-module
and every C11-module is an FI-extending module, the reverse implications do not
hold. In [376], it is shown that a direct sum of C11-modules is a C11-module.
Thereby any direct sum of extending modules is a C11-module. Further work on
C11-modules appears in [67].
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Exercise 2.3.34

1. Prove Proposition 2.3.3(i), (ii), and (iii).
2. Let R = Z[S3] as in Example 2.3.18. Show that R is semicentral reduced.
3. ([83, Birkenmeier, Müller, and Rizvi]) Let a ring R be right and left FI-extending.

Prove that every ideal, which is semiprime (as a ring), is right and left essential
in a ring direct summand.

4. ([83, Birkenmeier, Müller, and Rizvi]) Show that a right and left FI-extending
ring is a direct sum of a reduced ring and a ring in which every nonzero ideal
contains a nonzero nilpotent element.

5. ([84, Birkenmeier, Park, and Rizvi]) Assume that R is a right strongly FI-
extending ring. Prove that if R is right (semi-)hereditary, then every (finitely
generated) submodule of a projective right R-module is strongly FI-extending.

6. ([84, Birkenmeier, Park, and Rizvi]) Let MR be a free R-module and let
S = End(M). Prove that if MR is FI-extending or strongly FI-extending, then
so is SS (cf. Theorem 6.1.17).

7. ([80, Birkenmeier, Călugăreanu, Fuchs, and Goeters]) Show that an Abelian
group A is strongly FI-extending if and only if A= B ⊕C ⊕D, where
(1) B is a direct sum of p-groups each of which is the direct sum of cyclic groups

of the same order;
(2) C is a torsion-free FI-extending group; and
(3) D is a divisible group
such that if B has a nontrivial p-component, then C is p-divisible.

Historical Notes Quasi-injective modules were defined by Johnson and Wong
in [238]. Theorem 2.1.23 was shown by Huynh, Rizvi, and Yousif in [219]. Theo-
rem 2.1.25 comprises results of Jeremy [230], Goel and Jain [177], and Oshiro and
Rizvi [324]. Theorem 2.1.29(ii) and the fact that S/J (S) is regular were first proved
for injective modules by Utumi [396], and were extended to quasi-injective modules
by Faith and Utumi [161].

For an injective module M , it was proved that if Δ = 0, then S is right self-
injective by Johnson and Wong [238]. This result was generalized by Osofsky [330]
showing that if M is quasi-injective, then S/Δ is right self-injective and orthogonal
idempotents of S/Δ lift to orthogonal idempotents of S. For a right continuous
ring R, Utumi [398] proved that J (R) = Δ and R/J (R) is right continuous. This
result was generalized by Mohamed and Bouhy [300] to continuous modules. The
endomorphism ring of a quasi-continuous module has been studied by Jeremy [230].
Theorem 2.1.35 is due to Jain, López-Permouth, and Rizvi [223].

Theorem 2.2.5 is due to Müller and Rizvi [308]. For quasi-continuity of a direct
sum of modules, see also [301]. Refer to [410] for Lemma 2.2.7. Regarding fur-
ther developments on Lemma 2.2.7(ii), it was shown that cancellation property also
holds for the larger class of directly finite quasi-injective modules by Fuchs [173]
and Birkenmeier [52] (see also [389] for Lemma 2.2.7(i)). This result was further
extended to the class of directly finite continuous modules by Müller and Rizvi [308]
as described in Exercise 2.2.19.5. It was also proved by Müller and Rizvi [308, Ex-
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amples (1), p. 206] that the result cannot be further weakened to the class of directly
finite quasi-continuous modules.

It was shown in [184] that any nonsingular injective module has a (unique) direct
sum decomposition into a directly finite and a purely infinite part. The existence part
of the decomposition in Theorem 2.2.9 for arbitrary injective modules was shown
by Goodearl [181] using categorical techniques. Uniqueness (up to isomorphism)
of the decomposition for an arbitrary injective module was shown together with
direct proof (without categorical methods) by Müller and Rizvi in [308] and has
been included here. A (relatively) short and direct proof of Theorem 2.2.9, due to
Müller and Rizvi [308] has been provided. Internal quasi-continuous hulls were de-
fined by Müller and Rizvi [308]. Theorem 2.2.12 is due to Müller and Rizvi [308]
which shows that, for quasi-continuous modules, the isomorphism type of the in-
ternal quasi-continuous hull of any submodule is determined by the isomorphism
type of the submodules. Theorem 2.2.13, Theorem 2.2.14, Lemma 2.2.15, and The-
orem 2.2.16 appear in [308]. Theorem 2.2.18 is [145, Proposition 7.10].

A number of mathematicians have contributed greatly to the development of the
theory of extending and (quasi-)continuous modules. These include B.J. Müller,
M. Harada, K. Oshiro, S.H. Mohamed, P.F. Smith, B.L. Osofsky, D.V. Huynh,
R. Wisbauer and many others who we could not list here. For further results and
materials on (quasi-)continuous and extending modules can be found, for example,
in [35, 37, 44, 144, 145, 149, 198, 199, 211, 213–216, 219, 220, 223, 224, 227, 228,
230, 241, 242, 284, 324, 338, 355, 375, 376], and [377], etc. Some other papers on
injectivity or its generalizations have also been included in references.

Definition 2.3.1 is from [83], where FI-extending modules were defined. FI-
extending Abelian groups have been initially defined and investigated by Birken-
meier, Călugăreanu, Fuchs, and Goeters in [80]. The equivalence of (i) and (ii)
of Proposition 2.3.2 is in [83]. Proposition 2.3.3(i)–(iv) appears in [83], while
Lemma 2.3.3(v) is [361, Lemma 1.3.18]. Its proof is due to Gangyong Lee. Re-
sults 2.3.4–2.3.8 and 2.3.10 appear in [83]. Proposition 2.3.9 is in [80]. Proposi-
tion 2.3.11(ii) is in [59]. Theorem 2.3.12 is in [83]. Example 2.3.14 is taken from
[85]. Theorems 2.3.15 and 2.3.16 are due to Birkenmeier, Müller, and Rizvi in [83]
(see also [60, Theorem 3.9 and Corollary 3.10]).

Strongly FI-extending modules were defined and studied in [84] and [85]. Ex-
ample 2.3.18 appears in [72] and [84]. Results 2.3.19, 2.3.21, 2.3.23, 2.3.24, 2.3.26,
2.3.27, and 2.3.29 appear in [84]. Lemma 2.3.30, Theorem 2.3.31, and Exam-
ple 2.3.32 appear in [83]. Exercise 2.3.34.4 generalizes a result on quasi-continuous
rings in [230].

There has been an extensive work done on injectivity and its generalizations.
While we cannot cite all such references, some related references include [5, 6, 21,
31, 41, 106, 126, 146, 150, 152, 207, 217, 218, 222, 225, 237, 306, 309, 310, 315,
318, 326, 328, 331, 390, 399], and [408].



Chapter 3
Baer, Rickart, and Quasi-Baer Rings

The notion of a Baer ring was introduced by Kaplansky in 1955 [245] (Kaplansky’s
book [246] was published in 1968). A ring is called Baer if the right (left) annihilator
of every nonempty subset of R is generated by an idempotent, as a right (left) ideal.
Kaplansky and Berberian were instrumental in developing the theory of Rickart
and Baer rings ([246] and [45]). In 1960, Maeda [287] defined Rickart rings in an
arbitrary setting. A ring is called right Rickart if the right annihilator of any single
element is generated by an idempotent. In 1960, Hattori [200] introduced the notion
of a right PP ring (i.e., a ring with the property that every principal right ideal is
projective). It was later shown that right PP rings are precisely right Rickart rings.

A ring for which the left annihilator of every ideal is generated by an idempotent
was termed a quasi-Baer ring by Clark in 1967 [128]. He also showed that any finite
distributive lattice is isomorphic to a certain sublattice of the lattice of all ideals of
an Artinian quasi-Baer ring. Analogous to a right Rickart ring, a ring R is called
right principally quasi-Baer (simply, right p.q.-Baer) if the right annihilator of any
principal ideal is generated by an idempotent as a right ideal. Principally right quasi-
Baer rings were initially defined and studied in [78]. The concept of a right p.q.-Baer
ring generalizes those of a quasi-Baer ring and a biregular ring.

In this chapter, we begin with basic properties and results on these classes of rings
which will be instrumental in developing the subject of our study in later chapters.
It will be shown that the Baer and the Rickart properties of rings do not transfer to
the rings of matrices or to the polynomial ring extensions, while the quasi-Baer and
the principally quasi-Baer properties of rings do so. In particular, for a commutative
domain R, Matn(R) is Baer (Rickart) for every positive integer n if and only if R
is a Prüfer domain. We shall compare and contrast the notions of Baer and Rickart
rings in Sect. 3.1 and the notions of quasi-Baer and principally quasi-Baer rings
in Sect. 3.2, respectively. Also in Sect. 3.2, we shall observe that there are close
connections between the FI-extending and the quasi-Baer properties for rings.

A result of Chatters and Khuri shows that there are strong bonds between the
extending and the Baer properties of rings (Theorem 3.3.1). We shall also see some
instances where the two notions coincide.

G.F. Birkenmeier et al., Extensions of Rings and Modules,
DOI 10.1007/978-0-387-92716-9_3,
© Springer Science+Business Media New York 2013
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One of the motivations for the study of the quasi-Baer and principally quasi-Baer
rings is the fact that they behave better with respect to various extensions than the
Baer and Rickart rings. For example, as we shall see in this chapter, each of the
quasi-Baer and the principally quasi-Baer properties is Morita invariant. This useful
behavior will be applied in later chapters.

The results on the transference (or the lack of transference) of these properties
to matrix and polynomial ring extensions included here are intended to motivate
further investigations on when these properties transfer to various extensions. A de-
tailed treatment of this topic will be included in Chaps. 5 and 6.

3.1 Baer and Rickart Rings

The focus of our discussion in this section is mainly on the properties of Baer and
Rickart rings. We shall observe similarities and contrasts between these two classes
of rings. While most of the basic material can be found in [45, 246], and [47], we
introduce several new results. These results will also provide motivation for the
study of quasi-Baer rings and principally quasi-Baer rings treated in Sect. 3.2.

Proposition 3.1.1 Let R be a ring not necessarily with identity. Then any two of the
following conditions imply the third condition.

(i) For each ∅ �=X ⊆R, there exists e2 = e ∈R such that rR(X)= eR.
(ii) For each ∅ �= Y ⊆R, there exists f 2 = f ∈R such that �R(Y )=Rf .

(iii) R has an identity.

Proof Assume that (i) and (ii) hold. Note that rR(0) = R. By (i), R = eR with
e2 = e ∈R. Thus, e is a left identity. Similarly (ii) implies that R has a right identity.
Thus R has an identity and hence (iii) holds.

Suppose that (ii) and (iii) hold. Take ∅ �=X ⊆R. First, we observe that rR(X)=
rR(�R(rR(X))). Say A= �R(rR(X)). By (ii), A=Rf for some f 2 = f ∈R. Hence,
rR(X) = rR(A) = (1 − f )R by (iii) as R has an identity. Put e = 1 − f . Then
e2 = e ∈ R and rR(X) = eR. So (ii) and (iii) imply (i). Similarly, (i) and (iii) im-
ply (ii). �

Proposition 3.1.1 suggests the following definition.

Definition 3.1.2 A ring R is called Baer if R satisfies any two (hence, all three) of
the conditions of Proposition 3.1.1.

By Proposition 3.1.1, any Baer ring always has an identity, and the condition for
a ring to be Baer is left-right symmetric. The next result, essentially due to the work
of Baer [36], has been an important model for defining a Baer ring by Kaplansky.
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Theorem 3.1.3 The endomorphism ring of a semisimple module is Baer.

Proof Assume that MR is a semisimple R-module and let S = EndR(M). Take
∅ �= X ⊆ S and put X = {ϕα}α∈Λ. Let U =∑

α∈Λ ϕα(M). Then M = U ⊕ W for
some WR ≤ MR . Let e be the canonical projection from M onto W . We claim that
�S(X) = Se. For this, note that eϕα(M) = 0 for each α ∈ Λ. So eϕα = 0 for every
α ∈Λ. Thus, e ∈ �S(X), so Se ⊆ �S(X).

Next, let g ∈ �S(X). Then gϕα = 0 for each α ∈ Λ. Take m ∈ M . Then
m= u+w with u ∈U and w ∈W . Hence, g(m)= g(u)+ g(w)= g(w)= ge(m),
so (g−ge)(m)= 0 for each m ∈M . Thus, g = ge ∈ Se. Hence, �S(X)⊆ Se. There-
fore, �S(X)= Se and e2 = e ∈ S. So S is a Baer ring. �

Example 3.1.4 (i) The endomorphism ring of a vector space over a field is Baer (see
Theorem 3.1.3).

(ii) A ring R is a domain if and only if R is Baer and 1 is a primitive idempotent.
(iii) Every von Neumann algebra is a Baer ring.
(iv) Every orthogonally finite right semihereditary ring is Baer (see Theo-

rem 3.1.25). In particular, every right Noetherian right hereditary ring is a Baer
ring.

(v) Any right extending right nonsingular ring is Baer (see Theorem 3.3.1). In
particular, any right self-injective regular ring is Baer.

Proposition 3.1.5 (i) Let {Ri | i ∈ Λ} be a set of rings and R =∏

i∈ΛRi . Then R

is Baer if and only if each Ri is Baer.
(ii) If R is a subring of a Baer ring S and R contains all idempotents of S, then

R is a Baer ring.

Proof (i) The proof is straightforward.
(ii) Let ∅ �= X ⊆ R. Then we see that rS(X) = eS, where e2 = e ∈ S. Hence,

rR(X)= eS ∩R = eR. Therefore, R is a Baer ring. �

A subring R of
∏

i∈Λ Si is called a subdirect product of rings Si, i ∈ Λ, if
Si ∼= R/Ki , where each Ki is an ideal of R and ∩i∈ΛKi = 0. Note that any
semiprime ring is a subdirect product of its prime factor rings.

Example 3.1.6 In contrast to Proposition 3.1.5(i), a subdirect product of Baer
rings need not be Baer, in general. Let R = Z[C2] be the group ring, where
C2 = {1, g} is the group of order 2. Then R has only trivial idempotents. Because
(1 + g)(1 − g)= 0, R is not Baer (see also Example 6.3.11). But as R is commuta-
tive semiprime, it is a subdirect product of commutative domains.

The next example illustrates how Proposition 3.1.5 can be used to check when a
subring of a Baer ring will also be Baer.



64 3 Baer, Rickart, and Quasi-Baer Rings

Example 3.1.7 Let A be a domain and B a subring of A. Set An = A for every
n = 1,2 . . . . Take R = {(an)∞n=1 ∈ ∏∞

n=1 An | an ∈ B eventually}, a subring of
∏∞

n=1 An. From Proposition 3.1.5(i),
∏∞

n=1 An is a Baer ring. Also, R contains all
idempotents of

∏∞
n=1 An, so R is a Baer ring by Proposition 3.1.5(ii).

Theorem 3.1.8 A ring R is Baer if and only if eRe is Baer for every idempotent e
of R.

Proof Assume that R is a Baer ring and let ∅ �=X ⊆ eRe. Then rR(X)= fR with
f 2 = f ∈R. We show that reRe(X)= rR(X)∩ eRe = fR ∩ eRe = ef eRe. Indeed,
X(ef eRe)=Xf eRe = 0 because X ⊆ eRe and Xf = 0. Hence ef eRe ⊆ rR(X)=
fR. So ef eRe ⊆ fR ∩ eRe. Next, take y ∈ fR ∩ eRe. Then y = fy and y = eye,
and so y = eye = efye = ef eye ∈ ef eRe. Whence reRe(X)= fR∩ eRe = ef eRe.
As X(ef − f e) = 0, ef − f e ∈ rR(X) = fR. Thus, ef − f e = f (ef − f e) =
f ef − f e, so ef = f ef . Hence (ef e)2 = ef e ∈ eRe. Therefore, the ring eRe is a
Baer ring. The converse is clear by taking e = 1. �

The next example of a ring R shows that even when eRe is Baer for all noniden-
tity idempotents e, R itself may not be Baer.

Example 3.1.9 Let R = T2(Z). Then eRe ∼= Z for any nontrivial idempotent e, is a
domain and hence eRe is Baer, but R is not Baer.

Remark 3.1.10 Rizvi and Roman [357] extended the notion of a Baer ring to a
Baer module by using the endomorphism ring of a module. Theorem 3.1.8 served
as one of the motivations for initial results on Baer modules. We shall discuss Baer
modules and their applications in Chap. 4. Among other results, Theorem 3.1.8 can
also be proved using module theoretic methods. (Indeed, if a ring R is Baer, then
eRR is a Baer module for each e2 = e ∈ R by Theorem 4.1.22. Hence, the ring
eRe = End(eRR) is Baer by Theorem 4.2.8.)

Theorem 3.1.11 Let R be a Baer ring with only countably many idempotents. Then
R is orthogonally finite. Additionally, if R is regular, then R is semisimple Artinian.

Proof Assume on the contrary that R has an infinite set E = {en}∞n=1 of nonzero
orthogonal idempotents. Let U and V be nonempty distinct subsets of E. As R is a
Baer ring, rR(U) = fuR and rR(V ) = fvR for some idempotents fu and fv of R.
We claim that fu �= fv . For this, suppose that fu = fv . Then rR(U)= rR(V )= fuR.
Now there exists ei ∈ V and ei �∈ U . Observe that ei ∈ rR(U)= fuR, so ei = fuei .
Since ei ∈ V and rR(V )= fuR, eifu = 0 and hence ei = e2

i = eifuei = 0, a contra-
diction. So fu �= fv . Thus R has uncountably many idempotents, also a contradic-
tion. Hence, R is orthogonally finite. Additionally, assume that R is regular. Since
R is orthogonally finite, R has a complete set of primitive idempotents by Proposi-
tion 1.2.15. Thus R is semisimple Artinian. �
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Corollary 3.1.12 Let R be a regular Baer ring with only countably many idempo-
tents. If R is an algebra over an uncountable field, then R is a finite direct sum of
division rings.

Proof By Theorem 3.1.11, R is semisimple Artinian, so R = ⊕k
�=1Matn�(D�) for

some positive integers n� and division rings D�, 1 ≤ � ≤ k. Suppose that n1 > 1.
Let eij be the matrix in Matn1(D1) with 1 in the (i, j)-position and 0 elsewhere. As
D1 is uncountable, {e11 + xe12 | x ∈D1} is an uncountable set of idempotents in R,
a contradiction. So n1 = 1. Similarly, each ni = 1. Hence, R =D1 ⊕ · · · ⊕Dk . �

A structural property for a π -regular Baer ring with only countably many idem-
potents will appear in Corollary 5.4.18. The next result, due to Rangaswamy [350],
follows from Theorem 3.1.11.

Corollary 3.1.13 A countable regular Baer ring is semisimple Artinian.

We shall later see that every right nonsingular right extending ring is Baer (The-
orem 3.3.1). Therefore, Corollary 3.1.13 yields that every countable regular right
extending ring is semisimple Artinian. The next example shows that being Baer and
being regular are independent notions for a ring.

Example 3.1.14 (i) Let R be a domain which is not a division ring. Then R is Baer,
but not regular.

(ii) Assume that F is a field and take Fn = F , for n = 1,2, . . . . Consider R =
{(an)∞n=1 ∈ ∏∞

n=1 Fn | an is constant eventually}, which is a subring of
∏∞

n=1 Fn.
Take x1 = (1,0,0, . . . ), x3 = (0,0,1,0, . . . ), and so on. We let X = {x1, x3, . . . }.
Then there is no e2 = e ∈R such that rR(X)= eR. Thus R is not Baer. But observe
that R is regular.

Definition 3.1.15 A ring R is called right Rickart if the right annihilator of any el-
ement is generated by an idempotent. A left Rickart ring is defined similarly. A ring
which is right and left Rickart is called Rickart.

One can easily see that the class of right Rickart rings is a generalization of the
classes of Baer rings and regular rings. Similar to the case of Baer rings, a ring R

is a domain if and only if R is right Rickart and 1 is a primitive idempotent (cf.
Example 3.1.4(ii)). The next example provides a Rickart ring that is neither Baer
nor regular.

Example 3.1.16 Let An = Z for n= 1,2, . . . , and put

R = {(an)∞n=1 ∈
∞
∏

n=1

An | an is constant eventually},
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a subring of
∏∞

n=1 An. Then R is a Rickart ring. Indeed, say α = (an)
∞
n=1 ∈ R. Let

e = (en)
∞
n=1, where en = 1 if an = 0 and en = 0 if an �= 0. Since an is constant

eventually, so is en. We see that e2 = e ∈ R and rR(α)= eR. But R is neither Baer
(similar to the case of Example 3.1.14(ii)) nor regular.

Proposition 3.1.17 A ring R is right Rickart if and only if aR is a projective right
R-module for each a ∈R.

Proof Assume that R is a right Rickart ring and let a ∈ R. Then rR(a) = eR with
e2 = e ∈ R. Thus, (1 − e)R ∼= R/rR(a) ∼= aR as right R-modules, so aRR is pro-
jective. Conversely, suppose that every principal right ideal of R is projective. Take
x ∈ R. Then the homomorphism θ : RR → xRR , defined by θ(r) = xr , splits be-
cause xRR is projective. So Ker(θ) = rR(x) = fR for some f 2 = f ∈ R. Thus, R
is right Rickart. �

Because of Proposition 3.1.17, right (left) Rickart rings are also called right (left)
PP rings. A ring R is called PP if it is both right and left PP.

Proposition 3.1.18 Every right Rickart ring is right nonsingular. Therefore, every
Baer ring is right and left nonsingular.

Proof Let R be a right Rickart ring and take a ∈ Z(RR). Then rR(a) = eR with
e2 = e ∈ R and eRR ≤ess RR . Thus e = 1, so rR(a) = R. Hence a = 0, therefore
Z(RR)= 0. �

The following example presents a right and left nonsingular ring which is neither
right nor left Rickart.

Example 3.1.19 The ring R = T2(Z) is right and left nonsingular. Let eij ∈ R be
the matrix with 1 in the (i, j)-position and 0 elsewhere. Then rR(2e11 + e12) is not
generated by an idempotent, so R is not right Rickart. It can also be checked that R
is not left Rickart.

Recall from 1.1.13 that a ring R is called right (semi)hereditary if every (finitely
generated) right ideal of R is projective. A left (semi)hereditary ring is defined sim-
ilarly. Right semihereditary rings are right Rickart. The hereditary, semihereditary,
and Rickart notions need not be left-right symmetric as shown in the next example.

Example 3.1.20 There is a ring R such that R is left hereditary (hence left Rickart),
but R is not right Rickart. Take Fn = Z2 for n= 1,2, . . . .

We let A = {(an)∞n=1 ∈∏∞
n=1 Fn | an is constant eventually}, which is a subring

of
∏∞

n=1 Fn, and let I = {(an)∞n=1 ∈∏∞
n=1 Fn | an = 0 eventually}, which is an ideal

of A.
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Put S =A/I and

R =
[

S S

0 A

]

.

Then R is left hereditary (see [120, Example 8.2]). Hence, R is a left Rickart ring.

Say α =
[

0 1S
0 0

]

∈ R, where 1S is the identity of S. Then rR(α) is not generated

by an idempotent of R. Therefore, R is not right Rickart.

Proposition 3.1.21 Let {Ri | i ∈ Λ} be a set of rings and R =∏

i∈ΛRi . Then R is
right Rickart if and only if each Ri is right Rickart.

Proof The proof is routine. �

In contrast to Proposition 3.1.21, Example 3.1.6 also shows that a subdirect prod-
uct of right Rickart rings need not be right Rickart. Similar to the case of Baer rings
in Theorem 3.1.8, we obtain the following for Rickart rings.

Theorem 3.1.22 (i) If R is a right Rickart ring, then eRe is a right Rickart ring for
every e2 = e ∈R.

(ii) The center of a right Rickart ring is a Rickart ring.

Proof (i) Assume that R is a right Rickart ring and e ∈R is an idempotent. Similar
to the proof of Theorem 3.1.8, eRe is a right Rickart ring.

(ii) Let R be a right Rickart ring and put C = Cen(R), the center of R. Say
a ∈ C. Then rR(a) = eR with e2 = e ∈ R. Since a ∈ C, rR(a) = eR is an ideal,
hence e ∈ S�(R) from Proposition 1.2.2.

Say z ∈ R. Then rR(ez − ze) = fR with f 2 = f ∈ R. Since (ez − ze)a = 0,
a ∈ fR and thus a = f a. Hence (1 − f )a = a(1 − f )= 0, so 1 − f ∈ rR(a)= eR.
Therefore, (1 − e)(1 − f ) = 0. Because e ∈ S�(R), ze = eze and we have that
(ez − ze)(1 − f ) = (ez − eze)(1 − f ) = ez(1 − e)(1 − f ) = 0. Therefore, we
see that 1 − f ∈ rR(ez − ze) = fR, thus 1 − f = 0, and so f = 1. Hence,
rR(ez − ze) = fR = R, therefore ez − ze = 0 and e ∈ C. From rR(a) = eR,
rC(a)= eC with e ∈ C. Consequently, C is a Rickart ring. �

The module theoretic methods also yield an alternate proof of Theorem 3.1.22(i)
(see Proposition 4.5.4(i) and (v)). The next result provides conditions on a Rickart
ring which ensure that the ring is Baer.

Theorem 3.1.23 Let R be a ring and let R = {eR | e2 = e ∈R}. Then the following
are equivalent.

(i) R is a Baer ring.
(ii) R is Rickart and R is a complete lattice under inclusion.
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Proof (i)⇒(ii) Assume that R is a Baer ring. Then R is a Rickart ring.
Consider a subset {eiR | i ∈ Λ} of R. As R is Baer, rR(�R(

∑

eiR)) = hR for
some h2 = h ∈ R. Note that eiR ⊆ hR for each i. Next, let g2 = g ∈ R such that
eiR ⊆ gR for all i. Then

∑

eiR ⊆ gR, so hR = rR(�R(
∑

eiR)) ⊆ gR. Hence
hR = sup{eiR | i ∈ Λ}. As R is a partially ordered set under inclusion, R is a
complete lattice under inclusion by [382, Proposition 1.2, p. 64].

(ii)⇒(i) Let ∅ �=X = {xi | i ∈Λ} ⊆ R. As R is Rickart, there exists e2
i = ei ∈ R

with rR(xi) = eiR. Then rR(X) = ∩i∈ΛrR(xi) = ∩i∈ΛeiR. Since R is complete,
there exists e2 = e ∈R such that eR = inf {eiR | i ∈Λ}.

We show that eR = ∩i∈ΛeiR. As eR ⊆ eiR for each i, eR ⊆ ∩i∈ΛeiR. Next,
take x ∈ ∩i∈ΛeiR. Then �R(x) = Rh for some h2 = h since R is Rickart. There-
fore, rR(�R(x))= (1 − h)R ∈R. As x ∈ eiR, rR(�R(x))⊆ rR(�R(eiR))= eiR. So
rR(�R(x))⊆ eiR for each i ∈Λ. As rR(�R(x)) ∈R and eR = inf {eiR | i ∈Λ}, we
get rR(�R(x))⊆ eR.

Therefore x ∈ rR(�R(x)) ⊆ eR, and hence ∩i∈ΛeiR ⊆ eR. Consequently, we
have that eR = ∩i∈ΛeiR = rR(X). Whence R is a Baer ring. �

We remark that the proof (ii)⇒(i) of Theorem 3.1.23 shows that RR satisfies the
SSIP (see Definition 4.1.20 and Theorem 4.1.21 for the SSIP). Completeness under
inclusion of the lattice of principal right ideals for a regular ring yields that it is Baer
as shown the following corollary.

Corollary 3.1.24 Let R be a regular ring. Then the following are equivalent.

(i) R is Baer.
(ii) The set of principal right ideals of R forms a complete lattice under inclusion.

Proof The result follows immediately from Theorem 3.1.23. �

The next result (due to Small [372]) shows that when a ring is orthogonally finite,
the notion of a right Rickart ring coincides with that of a Baer ring.

Theorem 3.1.25 Any orthogonally finite right Rickart ring is Baer.

Proof Let R be an orthogonally finite right Rickart ring. Say L is a nonzero
left annihilator, write L = �R(X) with ∅ �= X ⊆ R. Take 0 �= s ∈ �R(X). Then
rR(�R(X))⊆ rR(s)= gR for some g2 = g ∈R. Hence, we have that

R(1 − g)= �R(gR)= �R(rR(s))⊆ �R(rR(�R(X)))= �R(X)= L.

If g = 1, then rR(s) = gR = R, so s = 0, a contradiction. Hence, L contains a
nonzero idempotent 1 − g.

As R is orthogonally finite, we can choose an idempotent e ∈ L with �R(e) min-
imal in {�R(h) | h2 = h ∈ L} by Proposition 1.2.13. We claim that �R(e) ∩ L = 0.
Assume on the contrary that �R(e) ∩ L �= 0. As �R(e) ∩ L is a left annihilator,
�R(e) ∩L contains f 2 = f �= 0 from the preceding argument. Let b = e + f − ef .
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Then b ∈ L and b2 = b since f e = 0. Note that bR = eR + fR, so eR ⊆ bR and
hence �R(b)⊆ �R(e). But, f e = 0 and f b = f �= 0. Thus �R(b)� �R(e) and b ∈ L,
a contradiction to the choice of e. So �R(e) ∩ L = 0. If x ∈ L, then (x − xe)e = 0
and x − xe ∈ L. Hence x − xe ∈ �R(e)∩L= 0, so x = xe ∈ Re. Thus L= Re. So
R is Baer. �

For the case of right p.q.-Baer rings, it will be shown that an orthogonally finite
right p.q.-Baer ring is quasi-Baer (see Propositions 5.2.13 and 5.4.5). Using the
endomorphism ring of a module, the notion of a Rickart module will be introduced
and discussed in Sect. 4.5. Theorem 3.1.25 will be extended to Theorem 4.5.13 in a
general module theoretical setting to Rickart modules.

In the next theorem, we consider an orthogonally finite right Rickart (hence Baer
by Theorem 3.1.25) ring which is an I-ring.

Theorem 3.1.26 Let R be an orthogonally finite right Rickart ring. Then the fol-
lowing are equivalent.

(i) R is an I-ring.
(ii) R is a semiprimary ring.

(iii) R is a strongly π -regular ring.
(iv) R is a π -regular ring.

Proof (i)⇒(ii) Let R be an I-ring. By Theorem 1.2.16, R is semilocal because R is
orthogonally finite. To show that R is semiprimary, we need to prove that J (R) is
nilpotent. Write R =∑n

i=1 eiR, where {e1, e2, . . . , en} is a complete set of primitive
idempotents (recall that R has a complete set of primitive idempotents from Propo-
sition 1.2.15 since R is orthogonally finite). Hence J (R)= e1J (R)+· · ·+ enJ (R).

We claim that each eiJ (R) is nilpotent. Assume on the contrary that there ex-
ists some ekJ (R) which is not nilpotent. Then (ekJ (R))

2 �= 0, hence ekxek �= 0 for
some x ∈ J (R). Consider the map θ : ekR → ekR defined by θ(ekr) = ekxekr . As
R is right Rickart, Image(θ)= ekxekR is a projective right R-module (see Proposi-
tion 3.1.17). Hence, Ker(θ) is a direct summand of ekRR . Since ekRR is indecom-
posable, Ker(θ)= 0 or Ker(θ)= ekR. But ekxek �= 0, so θ �= 0. Hence, Ker(θ)= 0.
Note that J (R) is nil (as R is an I-ring) and ekx ∈ J (R). So there is a positive
integer m such that (ekx)m = 0 and (ekx)

m−1 �= 0. But (ekx)m−1 ∈ Ker(θ) = 0, a
contradiction. Hence each eiJ (R) is nilpotent. Thus, we see that e1J (R)+ e2J (R)

is nilpotent by direct computation. Since e1 and e2 are orthogonal,

e1J (R)+ e2J (R)= (e1 + e2)J (R),

and hence e1J (R) + e2J (R) + e3J (R) = (e1 + e2)J (R) + e3J (R) is nilpotent
by the same method, since (e1 + e2)J (R) and e3J (R) are nilpotent. Inductively,
J (R)= e1J (R)+ · · · + enJ (R) is nilpotent.

(ii)⇒(iii) Let R be semiprimary. Say P is a prime ideal of R. Then R/P is simple
Artinian, so R/P is strongly π -regular for each prime ideal P of R. Therefore, R
is strongly π -regular by Theorem 1.2.18.
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(iii)⇒(iv) It is obvious from Theorem 1.2.17.
(iv)⇒(i) From [221, Proposition 1(1), p. 210], every π -regular ring is an

I-ring. �

The following example provides a Baer (hence right Rickart) ring which is an
I-ring, but is not π -regular. Thereby, the condition that “R be orthogonally finite” in
Theorem 3.1.26 is not superfluous.

Example 3.1.27 Let D be a commutative domain which is not a field, and let
F be the field of fractions of D. Put Fn = F for n = 1,2, . . . . Now consider
R = {(an)∞n=1 ∈ ∏∞

n=1 Fn | an ∈ D eventually}, a subring of
∏∞

n=1 Fn. Then
∏∞

n=1 Fn is Baer. Also R contains all idempotents of
∏∞

n=1 Fn. Hence, R is a Baer
ring by Proposition 3.1.5(ii). So R is a right Rickart ring.

Next to see that R is an I-ring, let V be a nonnil (right) ideal of R. Then there is
0 �= x ∈ V with a nonzero k-th coordinate, say xk for some k. Let y ∈∏∞

n=1 Fn with
the k-th coordinate x−1

k and 0 for all other coordinates. Then y ∈ R and xy ∈ V is
a nonzero idempotent. Hence, R is an I-ring. Finally, let 0 �= a ∈ D which is not
invertible in D, and put α = (a, a, . . . ) ∈ R. If R is π -regular, then there exist a
positive integer n and an element β ∈ R such that αn = αnβαn. Hence, there is
b ∈D so that an = anban. Thus, a is invertible in D, a contradiction. Whence R is
not π -regular.

From Example 3.1.19, we have already seen that, the Baer and Rickart properties
of a ring R are not inherited by triangular matrix rings over R (note that Z is a Baer
ring while T2(Z) is not even right or left Rickart). Similarly, the Baer and Rickart
properties of a ring R are not inherited by matrix rings and by polynomial rings
over R, as shown by the next example.

Example 3.1.28 Let S = Mat2(Z[x]). Then obviously Z[x] is Baer. But S is not

Baer. Say α =
[

2 0
x 0

]

∈ S. P.M. Cohn (see [239]) has shown that �S(α) is not

generated by an idempotent in S. Thus, the Baer ring property cannot transfer to the
matrix ring from the base ring. Further, the right (left) Rickart property of a ring
also cannot transfer to the matrix ring from the base ring. The ring Mat2(Z) is Baer.
But, S = Mat2(Z)[x] = Mat2(Z[x]) is not Baer (also neither right nor left Rickart
by Theorem 3.1.25). So in general the Baer ring property and the right (left) Rickart
ring property of the base ring cannot transfer to the polynomial ring extension.

The following result shows that for Matn(R) to be right Rickart, we need stronger
conditions on the base ring R than just being right Rickart.

Theorem 3.1.29 A ring R is right semihereditary if and only if Matn(R) is right
Rickart for all positive integers n.

Proof If R is right semihereditary, then so is Matn(R) for every positive integer n
because the right semihereditary property is Morita invariant.
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Conversely, let I = a1R+· · ·+anR with ai ∈R. Put α = [cij ] ∈ Matn(R) where
c1i = ai for i = 1, . . . , n and all other entries of α are 0. Then αMatn(R) is a pro-
jective right Matn(R)-module by Proposition 3.1.17. So αMatn(R) is a projective
right R-module because Matn(R)R is a free right R-module. As right R-modules,
αMatn(R) is isomorphic to I (n). So IR is projective. Hence, R is right semiheredi-
tary. �

The topic of the transference of the Baer, Rickart, and other related proper-
ties to various matrix and polynomial ring extensions will be dealt with further in
Chap. 6.

Exercise 3.1.30

1. Prove that the central idempotents of a Baer ring form a complete Boolean alge-
bra.

2. ([148, Endo]) Let a ring R be Abelian. Prove that R is right Rickart if and only
if R is left Rickart.

3. Show that a ring R is right Rickart if and only if for any nonempty finite set F
of R there exists e2 = e ∈R with rR(F )= eR (see also Proposition 4.5.4(iv)).

4. A ring R is called compressible if Cen(eRe) = eCen(R) for each idempotent
e ∈R. Not every Baer ring is compressible. Let

R =
[

C H

0 H

]

,

where H is the division ring of real quaternions. Prove that R is a Baer ring, but
not compressible. (This example is due to Armendariz [46].)

5. ([231, Jeremy]) Show that a right self-injective regular ring is compressible.
6. ([27, Armendariz, Koo, and Park]) Let F [G] be a semiprime group algebra of a

group G over a field F . Prove that Matn(F [G]) is compressible for every positive
integer n.

7. ([59, Birkenmeier]) Let R be a ring and NI(R)(R) = ∪e∈I(R)eR(1 − e), where
I(R) is the set of all idempotents of R. Assume that R is right Rickart. Show
that the subring (not necessarily with identity) generated by NI(R)(R) is the ideal
generated by the set of all nilpotent elements of R.

3.2 Quasi-Baer and Principally Quasi-Baer Rings

As shown in Example 3.1.28, the Baer ring property and the Rickart ring property
do not transfer from a ring R to two of its important ring extensions, namely, the
matrix rings and the polynomial rings over R. Thus, neither the Baer ring prop-
erty nor the Rickart ring property is Morita invariant. The difficulties in these cases
motivate the need to study classes of rings for which such transfers can take place
easily—even under somewhat weaker conditions. This brings us to the notions of
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quasi-Baer (resp., principally quasi-Baer) rings where one studies a “generalized”
Baer property in which the annihilators of ideals (resp., principal ideals) instead of
nonempty subsets of the rings are generated by idempotents.

In this section, we introduce quasi-Baer rings and their basic properties. Two re-
markable results show that the quasi-Baer ring property can transfer to matrix rings
(Theorem 3.2.12) and to polynomial ring extensions (as shown in Theorem 6.2.4)
without any additional requirements. It is shown that the quasi-Baer ring property is
Morita invariant. These results stimulate further investigations on the transference
of the quasi-Baer property for various other types of ring extensions which will be
presented in Chap. 6. We will see that there are strong connections between the
quasi-Baer and the FI-extending properties for rings.

Right principally quasi-Baer rings generalize the class of quasi-Baer rings analo-
gous to the way right Rickart rings generalize the class of Baer rings. The right prin-
cipally quasi-Baer property unifies the quasi-Baer property and the biregular prop-
erty of a ring into one concept. It is shown that this property is also Morita invariant
among other included results. We shall see that the right principally quasi-Baer prop-
erty and the right Rickart property are independent (Examples 3.2.28 and 3.2.31).
Connections between quasi-Baer rings and biregular rings are presented.

Among applications, the results on quasi-Baer rings will be used to establish the
existence of the quasi-Baer ring hull of a semiprime ring in Chap. 8. We shall then
use the quasi-Baer ring hulls to investigate boundedly centrally closed C∗-algebras
and extended centroids of C∗-algebras in Chap. 10.

Let S be a semigroup with zero, F a field, and let ϕ : S × S → F satisfy the
following.

(i) ϕ(s, t)= 0 if and only if st = 0.
(ii) ϕ(r, st)ϕ(s, t)= ϕ(rs, t)ϕ(r, s) whenever rst �= 0.

Further, let Fϕ[S] denote the vector space of all formal finite linear combinations
∑

αisi , where αi ∈ F , si ∈ S, and si �= 0 for each i. Define a multiplication by
s · t = ϕ(s, t)st for s and t nonzero elements of S, and extend this multiplication
linearly to all of Fϕ[S]. Then we see that (ii) above is exactly what is required to
ensure the associativity of Fϕ[S]. In this case, Fϕ[S] is called a twisted semigroup
algebra of S over F . If S has no zero, Fϕ[S] is defined similarly with the obvious
modification.

Say n is a positive integer and let MU(n) denote the full semigroup of matrix
units {eij | 1 ≤ i, j ≤ n} ∪ {0}, where ehiejk = δij ehk and δij is the Kronecker delta.
By a matrix units semigroup is meant a subsemigroup of MU(n) which contains
e11, . . . , enn.

In the next result, due to Clark [128], a finite dimensional algebra over an alge-
braically closed field which is a twisted semigroup algebra is characterized.

Theorem 3.2.1 Let R be a finite dimensional algebra over an algebraically closed
field F . Then the following are equivalent.

(i) R ∼= Fϕ[S] for some matrix units semigroup S.
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(ii) The left annihilator of every ideal of R is generated by an idempotent and R

has a finite ideal lattice.

Furthermore, every finite distributive lattice is isomorphic to a certain sublat-
tice of the lattice of all ideals of an Artinian ring satisfying condition (ii) of Theo-
rem 3.2.1 as follows.

Theorem 3.2.2 Let L be a finite distributive lattice. Then there exists an Artinian
ring R such that:

(i) the left annihilator of any ideal of R is generated by an idempotent;
(ii) the lattice L is isomorphic to the sublattice {�R(I) | RI ≤ RR} of the lattice of

all ideals of R.

Therefore, the condition (ii) of Theorem 3.2.1 and the condition (i) of Theo-
rem 3.2.2 motivate the following definition.

Definition 3.2.3 A ring R is called quasi-Baer if the left annihilator of every ideal
of R is generated by an idempotent of R.

Proposition 3.2.4 Let R be a ring. Then the following are equivalent.

(i) R is a quasi-Baer ring.
(ii) For each I �R, there exists e2 = e ∈R such that rR(I )= eR.

Proof The proof is routine (see also Exercise 3.2.44.1). �

From Proposition 3.2.4, the quasi-Baer condition is left-right symmetric. If R is
a quasi-Baer ring and I �R, then rR(I )= eR and �R(I)=Rf for some e2 = e ∈R

and f 2 = f ∈R, respectively. We note that eR �R and Rf �R, thereby e ∈ S�(R)
and f ∈ Sr (R) (see Proposition 1.2.2).

In the next result, prime rings are described in terms of quasi-Baer rings.

Proposition 3.2.5 A ring R is prime if and only if R is quasi-Baer and semicentral
reduced.

Proof Assume that R is a prime ring. Say e ∈ S�(R). Then (1−e)Re = 0 by Propo-
sition 1.2.2. Thus e = 1 or e = 0, and so R is semicentral reduced. Take I � R. If
I = 0, then rR(I )=R. If I �= 0, then rR(I )= 0 as R is prime. Thus R is quasi-Baer.
Conversely, suppose that R is quasi-Baer and semicentral reduced. Say I � R and
J � R with IJ = 0. Then J ⊆ rR(I ) = fR for some f 2 = f ∈ R. As fR � R,
f ∈ S�(R) from Proposition 1.2.2. Thus f = 0 or f = 1. If f = 0, then J = 0. If
f = 1, then I = 0. So R is prime. �

Some examples of quasi-Baer rings are provided in the following.
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Example 3.2.6 (i) Every Baer ring is a quasi-Baer ring.
(ii) If R is a quasi-Baer ring, then Matn(R) is a quasi-Baer ring for every positive

integer n. When R is a commutative domain, Matn(R) is Baer for every positive
integer n if and only if R is semihereditary (see Theorems 3.2.12 and 6.1.4).

(iii) If a ring R is quasi-Baer, then Tn(R) is quasi-Baer for every positive integer
n. When R is a commutative domain, Tn(R) is Baer for every positive integer n if
and only if R is a field (see Theorems 5.6.7 and 5.6.2).

(iv) The endomorphism ring of a projective (hence a free) module over a quasi-
Baer ring is quasi-Baer (see Theorem 4.6.19).

(v) If a ring R is quasi-Baer, then R[x] is quasi-Baer (see Theorem 6.2.4).
(vi) Any group algebra F [G] of a polycyclic-by-finite group G over a field F

with characteristic zero is quasi-Baer (see Corollary 6.3.4).
(vii) Every semiprime right FPF ring is quasi-Baer [157, p. 168] (a ring R is

called right FPF if every faithful finitely generated right R-module generates the
category Mod-R of right R-modules).

(viii) The local multiplier algebra Mloc(A) of a C∗-algebra A is a quasi-Baer ring
(see Theorem 10.3.10).

(ix) Any unital boundedly centrally closed C∗-algebra is a quasi-Baer ring (see
Theorem 10.3.20).

By Proposition 3.1.18, a Baer ring is right and left nonsingular. Hence any prime
ring which is not right nonsingular is quasi-Baer but not Baer. Such examples appear
in [107, 267], and [329]. In Example 3.2.7(ii), there is a simple ring (hence quasi-
Baer) which is not Baer.

Example 3.2.7 (i) Let A= Z2{x, y0, y1, y2, . . . } be the free algebra over Z2. A word
w in A is a finite product of generators w = xi1yj2x

i2 · · ·yjnxin , where ik, jk ≥ 0,
n ≥ 1, and x0 = 1. The length of the word w is defined by
�(w)=∑n

k=1 ik , and the maximum subscript of w is defined by m(w), where m(w)
is the largest subscript of y in w if n≥ 2, and m(w)= 0 if n= 1.

Let I be the ideal of A generated by all words w such that m(w) > 0 and
�(w) > m(w)k(m(w)), where k(m(w)) is the number of times ym(w) appears in
w. Put R =A/I . It is shown in [329] that R is a prime ring, but Z(RR) �= 0.

(ii) By Zalesskii and Neroslavskii, there is a simple Noetherian ring R with only
trivial idempotents 0 and 1, which is not a domain. Clearly R is quasi-Baer. But R
is not Baer (see [120, Example 14.17] and [182]).

Proposition 3.2.8 Let {Ri | i ∈ Λ} be a set of rings and R =∏

i∈ΛRi . Then R is
quasi-Baer if and only if each Ri is quasi-Baer.

Proof The proof is straightforward. �

A subdirect product of quasi-Baer rings is not quasi-Baer from Example 3.1.6.
We remark that a quasi-Baer analogue of Proposition 3.1.5(ii) is something like: If
R is a subring of a quasi-Baer ring S and R contains all left and all right semicentral
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idempotents of S, then R is quasi-Baer. This statement is not true as evident by the
following example.

Example 3.2.9 For a field F , let

R =
⎡

⎣

F1 Mat2(F ) Mat2(F )
0 F1 Mat2(F )
0 0 F1

⎤

⎦

be a subring of S := T3(Mat2(F )), where 1 is the identity matrix in Mat2(F ). The
ring S is quasi-Baer (see Theorem 5.6.7). Furthermore, S�(S)⊆R, and Sr (S)⊆R.
So R contains all left semicentral and all right semicentral idempotents of S. But
R is not quasi-Baer by direct computation (or Corollary 5.4.2). Thus, a quasi-Baer
analogue of Proposition 3.1.5(ii) does not hold.

Theorem 3.2.10 If R is a quasi-Baer ring, then eRe is a quasi-Baer ring for each
e2 = e ∈R.

Proof Let R be a quasi-Baer ring and I � eRe. Then �R(RI) = Rf for some
f 2 = f ∈ R. We first show that �eRe(I ) = e �R(RI)e. Let x ∈ �eRe(I ). Then
xRI = xeReI ⊆ xI = 0. Thus, x ∈ e �R(RI)e. Next, if y ∈ e �R(RI)e, then
y = eue with u ∈ �R(RI) and so yI = eueI ⊆ euRI = 0. Hence, y ∈ �eRe(I ). This
shows that �eRe(I ) = e�R(RI)e = eRf e. Because Rf � R, f ∈ Sr (R) by Propo-
sition 1.2.2, hence (ef e)2 = ef e. Let g = ef e. Then eReg = eRe(ef e) ⊆ eRf e.
Further, eRf e = eRf ef e = eRf e(ef e) ⊆ eReg. Therefore, eReg = eRf e. So
�eRe(I )= eRf e = eReg = eRe(ef e). Hence, eRe is quasi-Baer. �

As one of the motivations for the study of the quasi-Baer property, our next result
shows that the quasi-Baer property is Morita invariant.

Theorem 3.2.11 The endomorphism ring of a finitely generated projective mod-
ule over a quasi-Baer ring is a quasi-Baer ring. In particular, the quasi-Baer ring
property is Morita invariant.

Proof Let P be a finitely generated projective right R-module over a quasi-Baer
ring R. Then there exist a positive integer n and e2 = e ∈ Matn(R) such that
End(P )∼= eMatn(R)e. Take A� Matn(R). Then A= Matn(I ) for some I �R, and
thus rR(I ) = fR for some f 2 = f ∈ R. Say 1 is the identity matrix of Matn(R).
Then we see that rMatn(R)(A) = (f 1)Matn(R) and (f 1)2 = f 1 ∈ Matn(R). So
Matn(R) is a quasi-Baer ring.

As End(P )∼= eMatn(R)e, End(P ) is quasi-Baer by Theorem 3.2.10. In particu-
lar, the quasi-Baer ring property is Morita invariant. �

Motivated by Theorems 3.2.10 and 3.2.11, the notion of a quasi-Baer module us-
ing the endomorphism ring of the module will be introduced and studied in Sect. 4.6.
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As an application of this module theoretic notion, we shall see in Theorem 4.6.19
that every projective module over a quasi-Baer ring is a quasi-Baer module and its
endomorphism ring is a quasi-Baer ring.

In contrast to Example 3.1.28 (cf. Theorems 6.1.3 and 6.1.4), the quasi-Baer
property transfers from a ring R to its n × n matrix ring over R and vice versa
without any additional requirements.

Theorem 3.2.12 The following are equivalent for a ring R.

(i) R is a quasi-Baer ring.
(ii) Matn(R) is a quasi-Baer ring for every positive integer n.

(iii) Matk(R) is a quasi-Baer ring for some integer k > 1.
(iv) Mat2(R) is a quasi-Baer ring.

Proof (i)⇒(ii) Theorem 3.2.11 yields the implication.
(ii)⇒(iii) It is obvious.
(iii)⇒(iv) Let eij be the matrix in Matk(R) with 1 in the (i, j)-position and

0 elsewhere. Put f = e11 + e22. Then f 2 = f ∈ Matk(R). Further, we get that
Mat2(R)∼= fMatk(R)f . By Theorem 3.2.10, Mat2(R) is quasi-Baer.

(iv)⇒(i) Let e ∈ Mat2(R) be the matrix with 1 in (1, 1)-position and 0 elsewhere.
Then e2 = e and eMat2(R)e ∼=R. From Theorem 3.2.10, R is quasi-Baer. �

Theorem 3.2.13 The center of a quasi-Baer ring is a Baer ring.

Proof Let R be a quasi-Baer ring. Put C = Cen(R). Take ∅ �= Y ⊆ C. Then there
exists e ∈ S�(R) such that rR(Y )= rR(YR)= eR. We observe that

rR(Y )= �R(Y )= �R(RY)=Rf for some f ∈ Sr (R).

Because eR = Rf , e = f ∈ S�(R) ∩ Sr (R)= B(R) by Proposition 1.2.6(i). There-
fore e ∈ C, so rC(Y )= rR(Y )∩C = eR ∩C = eC. Hence Cen(R) is Baer. �

The following example provides a reduced ring whose center is a Baer ring, but
the ring itself is not quasi-Baer.

Example 3.2.14 Let K be a field, x, y, z not necessarily commuting indetermi-
nates and take R = K[x, y, z] subject to xy = xz = zx = yx = 0 and yz �= zy.
Then R is a reduced ring with Cen(R) = K[x] and K[x] is a Baer ring. However,
rR(y) = Rx = K[x]x, so rR(y) contains no nonzero idempotent. Thus, R is not a
Baer ring. Thereby, R cannot be a quasi-Baer ring since otherwise R will be Baer
because R is reduced.

Theorem 3.2.13 and Example 3.2.14 motivate us to discuss conditions under
which a ring R is quasi-Baer if Cen(R) is Baer.
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Definition 3.2.15 A ring R (not necessarily with identity) is said to satisfy a poly-
nomial identity or simply, PI, if there is a polynomial f (x1, . . . , xn) with integer
coefficients and not necessarily commuting indeterminates x1, . . . , xn such that the
coefficient of one of the monomials in f (x1, . . . , xn) of maximal degree is 1 and
f (a1, . . . , an)= 0 for all a1, . . . , an in R.

The next theorem due to Rowen shows that ideals of a semiprime PI-ring R have
a close connection with the center of R (see [364] or [366]).

Theorem 3.2.16 Let R be a semiprime PI-ring. Then I ∩ Cen(R) �= 0 for any
nonzero ideal I of R.

Let R be a ring and S a subring of R. Then R is said to be an ideal intrinsic
extension of S if I ∩ S �= 0 for any 0 �= I � R. If R is a semiprime PI-ring with
identity, then by Theorem 3.2.16 R is an ideal intrinsic extension of Cen(R). See
[30] for more details on ideal intrinsic extensions.

Theorem 3.2.17 (i) If a ring R is ideal intrinsic over Cen(R), then R is quasi-Baer
if and only if Cen(R) is Baer.

(ii) If R is a semiprime PI-ring with identity, then R is quasi-Baer if and only if
Cen(R) is Baer.

(iii) If R is a reduced PI-ring with identity, then R is Baer if and only if Cen(R)
is Baer.

Proof (i) We only need to prove the sufficiency in view of Theorem 3.2.13. So
assume that C := Cen(R) is Baer. Note that the commutative ring C is semiprime
because C is nonsingular from Proposition 3.1.18. Let I �R. If I = 0, then rR(I )=
R, so we are done. Next, suppose that I �= 0. Then I ∩C �= 0, and rC(I ∩C)= eC

for some e2 = e ∈ C. If Ie �= 0, then 0 �= Ie ∩ C ⊆ (I ∩ C) ∩ rC(I ∩ C). As C

is semiprime, (I ∩ C) ∩ rC(I ∩ C) = 0, hence Ie ∩ C = 0, a contradiction. Thus,
Ie = 0, so eR ⊆ rR(I ).

By the modular law, rR(I )= eR⊕[(1− e)R∩ rR(I )]. To show that rR(I )= eR,
put A= (1−e)R ∩ rR(I )�R. If A �= 0, then A∩C �= 0. Say 0 �= z ∈A ∩ C. Then
(I ∩ C)z = 0 as A ⊆ rR(I ). Therefore, we have that z ∈ rC(I ∩ C) = eC ⊆ eR, so
z ∈ eR ∩ A = 0, a contradiction. Whence A = 0, thus rR(I ) = eR. So R is quasi-
Baer.

(ii) The proof follows immediately from Theorem 3.2.16 and part (i).
(iii) We observe that any reduced quasi-Baer ring is Baer (see also Exer-

cise 3.2.44.10). So the proof follows from part (ii). �

We remark that there exists a PI-ring R with identity such that Cen(R) is Baer,
but R is not quasi-Baer (see Example 3.2.9 and Theorem 3.2.17(ii)).

For an algebra R over a commutative ring C, we can form the enveloping algebra
Re = R ⊗C Ro, where Ro denotes the algebra opposite to R. We see that R has a
structure as a left Re-module induced by (x ⊗ y) r = xry for x, r ∈ R and y ∈ Ro.
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The algebra R is called separable if R is a projective left Re-module (see [137] for
more details on separable algebras). In contrast to Example 3.2.14, we obtain the
next result for a separable algebra.

Corollary 3.2.18 Any separable algebra with its center Baer is quasi-Baer.

Proof Since R is an ideal intrinsic extension of Cen(R) (see [137, Corollary 3.7,
p. 54 and Theorem 3.8, p. 55]), the result follows immediately from Theo-
rem 3.2.17(i). �

Theorem 3.2.19 Let R be a prime PI-ring and let F =Q(Cen(R)). Then Q(R)=
Matn(D) for a positive integer n and a division ring D. Further, Cen(D) = F and
D is finite dimensional over the field F .

Proof See [348] and [366, Theorems 1.5.16 and 1.7.9]. �

The next example illustrates Theorem 3.2.17 and Corollary 3.2.18.

Example 3.2.20 (i) There exists a semiprime ring R which is not PI, but R is ideal
intrinsic over Cen(R) and Cen(R) is Baer, hence by Theorem 3.2.17(i) R is quasi-
Baer. Take R = Z{x, y}/A, where Z{x, y} is the free algebra over Z and A is the
ideal of Z{x, y} generated by yx − xy − 1. Then R is a domain. By direct compu-
tation, we see that R is intrinsic over Cen(R)= Z.

We note that W := Q{x, y}/K , where K is the ideal of Q{x, y} generated by
yx − xy − 1, is the first Weyl algebra over Q. Then Q(R) = Q(W) is a division
ring and it is infinite dimensional over its center Q. So R is not a PI-ring by Theo-
rem 3.2.19.

(ii) There is a semiprime PI-ring R with Cen(R) Baer, but R is not Baer. Let
R = Matn(Z[x]) (n > 1). Then R is semiprime PI. Further, R is a separable algebra
over Z[x]. Observe that Cen(R)∼= Z[x] is Baer, and by Theorem 3.2.12 R is quasi-
Baer, but R is not Baer (see Example 3.1.28).

A ring R is called biregular if for each x ∈R there is a central idempotent e ∈R

with RxR = eR.

Example 3.2.21 The following rings are biregular: (i) Boolean rings; (ii) simple
rings; (iii) reduced π -regular rings [221, Proposition 1(3), p. 210]; (iv) right self-
injective regular PI-rings; and (v) the maximal right ring of quotients of a semiprime
PI-ring.

Theorem 3.2.22 Let R be a biregular ring. Then:

(i) J (R)= 0.
(ii) The concepts of prime, right primitive, and maximal ideals coincide.
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(iii) R is a subdirect product of simple rings.
(iv) Every ideal is the intersection of the maximal ideals containing it.

Proof Exercise. �

We see that a biregular ring is an ideal intrinsic extension of its center. In fact,
let I be a nonzero ideal of a biregular ring R. Then for 0 �= a ∈ I , RaR = eR for
some e ∈ B(R), so 0 �= e ∈ I ∩ Cen(R). Hence, if R is a biregular ring, then R is
quasi-Baer if and only if Cen(R) is Baer by Theorem 3.2.17(i).

Recall that a ring is regular if and only if every principal right ideal is generated
by an idempotent. Thus, a biregular ring is an ideal analogue of a regular ring. But
the following example shows that the two notions are independent.

Example 3.2.23 (i) Let R be the endomorphism ring of an infinite dimensional right
vector space V over a field (see Example 1.3.19). Then R is regular. Further, R is
prime. Thus if R is biregular, then R is simple by Theorem 3.2.22(ii). Consider
I = {f ∈ R | f (V ) is finite dimensional}. Then I is a proper nonzero ideal of R, a
contradiction. Hence, R is not biregular.

(ii) Let R be the first Weyl algebra over a field F with characteristic zero. That
is, R = F {x, y}/A, where F {x, y} is the free algebra over F and A is the ideal of
F {x, y} generated by yx−xy−1. Then R is a simple domain, hence R is biregular.
But R is not regular because R is not a division ring.

Being a quasi-Baer ring and being a biregular ring are independent notions for a
ring. The ring in Example 3.1.14(ii) is biregular but it is not quasi-Baer, while the
ring of Example 3.2.23(i) is quasi-Baer but it is not biregular.

Definition 3.2.24 A ring R is called right principally quasi-Baer (simply, right p.q.-
Baer) if the right annihilator of any principal ideal is generated by an idempotent
as a right ideal. A left principally quasi-Baer (simply, left p.q.-Baer) ring is defined
similarly. Rings which are right and left principally quasi-Baer are called principally
quasi-Baer (simply, p.q.-Baer).

We note that the class of right p.q.-Baer rings is a generalization of the classes of
quasi-Baer rings and biregular rings. In the next result, prime rings are described in
terms of right p.q.-Baer rings (cf. Proposition 3.2.5).

Proposition 3.2.25 A ring R is a prime ring if and only if R is a right p.q.-Baer
ring and semicentral reduced.

Proof The proof is similar to that of Proposition 3.2.5. �

The ring R in Example 3.1.16 is p.q.-Baer, but R is neither quasi-Baer nor bireg-
ular. Another similar example will given in Example 3.2.31.



80 3 Baer, Rickart, and Quasi-Baer Rings

Proposition 3.2.26 A ring R is right p.q.-Baer if and only if for each finitely gener-
ated ideal I of R, there exists e2 = e ∈R such that rR(I )= eR.

Proof Assume that R is a right p.q.-Baer ring and let I = ∑n
i=1 RaiR. Then

rR(I ) = ∩n
i=1rR(RaiR) = ∩n

i=1eiR, where each rR(RaiR) = eiR and e2
i = ei .

So each ei ∈ S�(R). From Proposition 1.2.4(i), rR(I ) = ∩n
i=1eiR = eR for some

e ∈ S�(R). The converse is obvious. �

The following is an effective criterion for a ring to be regular.

Proposition 3.2.27 Let e1, . . . , en be orthogonal idempotents in a ring R such that
e1 + · · · + en = 1. Then R is regular if and only if for each x ∈ eiRej there exists
y ∈ ejRei such that x = xyx.

Proof See [183, Lemma 1.6]. �

The ring S = Mat2(Z[x]) is quasi-Baer (hence p.q.-Baer) by Theorem 3.2.12.
But S is neither right nor left Rickart as in Example 3.1.28. We note that a domain
which is not a division ring is p.q.-Baer, but it is not regular. In the next example,
there is a regular ring (hence a Rickart ring) which is neither right nor left p.q.-Baer.
Thereby the notions of being right (or left) p.q.-Baer and being right (or left) Rickart
are independent.

Example 3.2.28 The ring R described below is a regular ring (hence a Rickart ring)
that is neither right nor left p.q.-Baer. For a field F , take Fn = F for n = 1,2, . . . ,
and let

R =
[∏∞

n=1 Fn ⊕∞
n=1Fn⊕∞

n=1Fn 〈⊕∞
n=1Fn,1〉

]

,

a subring of the 2 × 2 matrix ring over the ring
∏∞

n=1 Fn, where 〈⊕∞
n=1Fn,1〉 is the

F -subalgebra of
∏∞

n=1 Fn generated by ⊕∞
n=1Fn and 1 = 1∏∞

n=1 Fn
.

Take e1 =
[

1 0
0 0

]

∈ R and e2 =
[

0 0
0 1

]

∈ R. Then for each x ∈ eiRej , there

exists y ∈ ejRei such that x = xyx, where i, j = 1,2. Thus by Proposition 3.2.27,
R is a regular ring. Obviously, R is a PI-ring.

Let a = (an)
∞
n=1 ∈∏∞

n=1 Fn such that an = 1Fn if n is odd and an = 0 if n is even,

and let α =
[

a 0
0 0

]

∈ R. Assume that there is e2 = e ∈ R such that rR(αR) = eR.

Then e ∈ S�(R). Since R is semiprime, e ∈ B(R) by Proposition 1.2.6(ii). But this
is impossible. Whence R is not right p.q.-Baer. Similarly, R is not left p.q.-Baer.

From Example 3.2.21(iv), a right self-injective regular PI-ring is biregular. How-
ever, Example 3.2.28 shows that a regular PI-ring need not be biregular. For further
illustration of Definition 3.2.24, we present a left p.q.-Baer ring which is not right
p.q.-Baer. Thus, similar to the Rickart property, the p.q.-Baer property is not left-
right symmetric (unlike the Baer and the quasi-Baer properties).
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Example 3.2.29 Let R be the ring as in Example 3.1.20. Then R is left p.q.-Baer by
computation. Let α be the element of R as in Example 3.1.20. Then rR(αR) is not
generated by an idempotent. So R is not right p.q.-Baer.

Proposition 3.2.30 Let {Ri | i ∈Λ} be a family of rings and R =∏

i∈ΛRi . Then R

is right p.q.-Baer if and only if each Ri is right p.q.-Baer.

Proof The proof is routine. �

In contrast to Proposition 3.2.30, Example 3.1.6 also shows that a subdirect prod-
uct of right p.q.-Baer rings need not be right p.q.-Baer. In the next example, we pro-
vide a right p.q.-Baer ring which is neither quasi-Baer nor right Rickart. Moreover,
it is also not biregular.

Example 3.2.31 Let S = A ⊕ R, where A is a prime ring which is not right non-
singular (see Example 3.2.7(i)) and R is the ring in Example 3.1.14(ii). Hence A

is not right Rickart by Proposition 3.1.18. But A is right p.q.-Baer by Proposi-
tion 3.2.25. Observe that the ring R is not quasi-Baer, but R is p.q.-Baer. From
Propositions 3.1.21, 3.2.8, and 3.2.30, S is the desired example. Further, S is not
biregular, since otherwise so is A and hence A is simple by Theorem 3.2.22(ii), a
contradiction.

The following result shows that in a quasi-Baer ring, the lattice of principal right
ideals, each generated by a left semicentral idempotent, is complete. This is analo-
gous to Theorem 3.1.23 for the case of Baer rings.

Theorem 3.2.32 Let R be a ring and let LS = {eR | e ∈ S�(R)}. Then the following
are equivalent.

(i) R is a quasi-Baer ring.
(ii) R is p.q.-Baer and LS is a complete lattice under inclusion.

Proof (i)⇒(ii) Assume that R is a quasi-Baer ring. Then R is a p.q.-Baer ring.
Consider a subset {eiR | i ∈ Λ} of LS . As

∑

eiR is an ideal and R is quasi-
Baer, rR(�R(

∑

eiR)) = fR for some f ∈ S�(R). We can easily check that
fR = sup{eiR | i ∈ Λ}. As LS is a partially ordered set under inclusion, LS is
a complete lattice under inclusion by [382, Proposition 1.2, p. 64].

(ii)⇒(i) Let I � R and write I =∑

i∈ΛRxiR. Because R is p.q.-Baer, there is
ei ∈ S�(R) for each i with rR(I ) = ∩i∈ΛrR(RxiR) = ∩i∈ΛeiR. By completeness,
there exists e ∈ S�(R) such that eR = inf {eiR | i ∈Λ}. Thus, eR ⊆ ∩i∈ΛeiR. Now
let y ∈ ∩i∈ΛeiR. Then �R(Ry) = Rh for some h ∈ Sr (R) since R is p.q.-Baer. As
y ∈ eiR and eiR �R, Ry ⊆ eiR. Thus, we have that

(1 − h)R = rR(�R(Ry))⊆ rR(�R(eiR))= eiR

for each i.



82 3 Baer, Rickart, and Quasi-Baer Rings

Note that 1 − h ∈ S�(R) by Proposition 1.2.2. Thus (1 − h)R ⊆ eR, so
y ∈ Ry ⊆ rR(�R(Ry)) = (1 − h)R ⊆ eR. Hence, ∩i∈ΛeiR ⊆ eR. Therefore,
eR = ∩i∈ΛeiR, and so rR(I )= eR. Hence, R is quasi-Baer. �

By Proposition 1.2.5, LS is a sublattice of the lattice of ideals of a ring R. So
one may expect that LS is a complete sublattice of the lattice of ideals of R if R
quasi-Baer. But this does not hold. For example, let F be a field and Fn = F for
n = 1,2, . . . . Put R = ∏∞

i=1 Fn. Then R is Baer (hence quasi-Baer) by Proposi-
tion 3.1.5(i).

Consider e1 = (1,0,0, . . . ), e2 = (0,1,0,0, . . . ), and so on. Now we let
f ∈ S�(R) such that fR = sup{eiR | i = 1,2, . . . }. As

∑∞
i=1 eiR ⊆ fR, we

see that f = 1 and so fR = R. Hence, sup{eiR | i = 1,2, . . . } = R. Note that
∑∞

i=1 eiR = ⊕∞
i=1Fn. So there is no e ∈ S�(R) such that

∑∞
i=1 eiR = eR. There-

fore, LS cannot be a complete sublattice of the lattice of ideals of R.
The next corollary shows that the completeness of the lattice of principal ideals

for a biregular ring yields that it is quasi-Baer.

Corollary 3.2.33 Assume that R is a biregular ring. Then the following are equiv-
alent.

(i) R is quasi-Baer.
(ii) The set of principal ideals of R forms a complete lattice under inclusion.

Proof Theorem 3.2.32 yields the result. �

Similar to the case of quasi-Baer rings in Theorems 3.2.10 and 3.2.13, we obtain
the following for right p.q.-Baer rings.

Theorem 3.2.34 Let R be a right p.q.-Baer ring. Then:

(i) eRe is a right p.q.-Baer ring for each e2 = e ∈R.
(ii) The center Cen(R) is a Rickart ring.

Proof (i) Let R be a right p.q.-Baer ring. Say x ∈ eRe. Then it follows that
reRe(xeRe) = reRe((exe)(eRe)) = rR((exe)R) ∩ eRe. As R is right p.q.-Baer,
rR((exe)R) = fR with f ∈ S�(R). So reRe((exe)(eRe)) = fR ∩ eRe. Because
f ∈ S�(R), ef e is an idempotent. Also, fR ∩ eRe = (ef e)(eRe), as a consequence
reRe(xeRe)= (ef e)(eRe). Therefore, eRe is right p.q.-Baer.

(ii) Assume that R is a right p.q.-Baer ring and let C = Cen(R). Take a ∈ C.
Then �R(a) = �R(Ra) = rR(aR) = eR with e ∈ S�(R) from Proposition 1.2.2.
Note that �R(Ra) = �R[rR(�R(Ra))] = �R(rR(eR)). Say rR(eR) = fR with
f ∈ S�(R). Therefore 1 − f ∈ Sr (R) by Proposition 1.2.2. Hence, we have
that

eR = �R(Ra)= �R(rR(eR))= �R(fR)=R(1 − f ).
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So e = 1 − f . Because e ∈ S�(R) and 1 − f ∈ Sr (R), e = 1 − f ∈ B(R) by
Proposition 1.2.6(i). Thus rC(a) = rR(a) ∩ C = eR ∩ C = eC. So Cen(R) is
Rickart. �

In Theorem 3.2.11, we showed that the quasi-Baer ring property is Morita in-
variant. The next result proves that the right p.q.-Baer ring property is also a Morita
invariant property.

Theorem 3.2.35 The endomorphism ring of a finitely generated projective module
over a right p.q.-Baer ring is a right p.q.-Baer ring. In particular, the right p.q.-Baer
ring property is Morita invariant.

Proof Let n be a positive integer and take α ∈ Matn(R). Then we see that
Matn(R)αMatn(R) = Matn(K) for a finitely generated ideal K of R. Since R is
right p.q.-Baer, there exists e2 = e ∈R with rR(K)= eR by Proposition 3.2.26. We
see that rMatn(R)(Matn(R)αMatn(R))= (e1)Matn(R), where 1 is the identity matrix
of Matn(R). So Matn(R) is right p.q.-Baer.

Let P be a finitely generated projective right R-module. Then there exist a posi-
tive integer n and f 2 = f ∈ Matn(R) such that End(P )∼= fMatn(R)f . As Matn(R)
is right p.q.-Baer, End(P ) is right p.q.-Baer by Theorem 3.2.34(i). In particular, the
right p.q.-Baer ring property is Morita invariant. �

Theorem 3.2.36 The following are equivalent for a ring R.

(i) R is a right p.q.-Baer ring.
(ii) Matn(R) is a right p.q.-Baer ring for every positive integer n.

(iii) Matk(R) is a right p.q.-Baer ring for some integer k > 1.
(iv) Mat2(R) is a right p.q.-Baer ring.

Proof By Theorems 3.2.34 and 3.2.35, we see that the proof is similar to that of
Theorem 3.2.12. �

We next present some strong connections between the quasi-Baer and the FI-
extending properties for rings. The following result shows that, for a semiprime ring,
the right FI-extending, left FI-extending, right strongly FI-extending, left strongly
FI-extending, and the quasi-Baer properties coincide.

Theorem 3.2.37 Assume that R is a semiprime ring. Then the following are equiv-
alent.

(i) R is quasi-Baer.
(ii) If I �R, then IR ≤ess eRR for some e ∈ B(R).

(iii) R is right FI-extending.
(iv) R is left FI-extending.
(v) R is right strongly FI-extending.

(vi) R is left strongly FI-extending.
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(vii) If I �R, then rR(I )R ≤ess eRR for some e2 = e ∈R.

Proof (i)⇒(ii) Let I � R. By Lemma 2.1.13, IR ≤ess rR(�R(I ))R . Since R

is semiprime quasi-Baer, rR(�R(I )) = eR for some e ∈ B(R) from Proposi-
tion 1.2.6(ii), so IR ≤ess eRR . (ii)⇒(iii) is obvious.

For (iii)⇒(i), say I � R. Then IR ≤ess eRR for some e2 = e ∈ R. So we get
that R(1 − e) ⊆ �R(I). By the modular law, �R(I) = R(1 − e) ⊕ (�R(I ) ∩ Re).
We put J = �R(I) ∩ Re. Then Je = J . If J �= 0, then J 2 = JeJe �= 0 since R is
semiprime. Hence, eJ �= 0. Take 0 �= ex ∈ eJ ⊆ eR ∩ �R(I). As IR ≤ess eRR , it
follows that 0 �= exr ∈ I with r ∈ R. So 0 �= exr ∈ I ∩ �R(I), a contradiction as R
is semiprime. Thus �R(I)=R(1 − e), hence R is a quasi-Baer ring.

(ii)⇔(v) follows from Proposition 1.2.6(ii) since R is semiprime.
(i)⇔(vii) If R is quasi-Baer, then (vii) follows from (ii). For (vii)⇒(i), let

I � R. Using the proof of (iii)⇒(i) by replacing I with rR(I ), we obtain that
�R(rR(I ))=R(1 − e), so rR(I )= rR(�R(rR(I )))= eR. Thus, R is quasi-Baer.

The equivalences (i)⇔(iv)⇔(vi) can be proved similarly. �

The condition (vii) of Theorem 3.2.37 is considered in Definition 8.1.1. When
R is a right nonsingular ring, the next result demonstrates the connection between
right FI-extending property and the quasi-Baer property.

Theorem 3.2.38 Let R be a right nonsingular ring. Then RR is FI-extending if and
only if R is quasi-Baer and AR ≤ess rR(�R(A))R for every A�R.

Proof Let R be right FI-extending and A � R. Then AR ≤ess eRR for some e2 =
e ∈ R. Obviously, �R(eR) ⊆ �R(A). Take x ∈ �R(A). To show that x ∈ �R(eR),
say a ∈ R. We let V = {r ∈ R | ear ∈ A}. Then we can check that VR ≤ess RR .
Now xeaV = 0 and Z(RR) = 0. Therefore, xea = 0 and hence x ∈ �R(eR). Thus,
�R(A)= �R(eR)=R(1 − e). So R is quasi-Baer.

Also, AR ≤ess eRR = rR(�R(eR))= rR(�R(A)). The converse is obvious. �

In Theorem 4.6.12, a complete characterization of FI-extending modules in terms
of quasi-Baer modules will be provided. By Theorem 3.2.38, every right nonsingular
FI-extending ring is a quasi-Baer ring. However, there is a right nonsingular quasi-
Baer ring which is not right FI-extending in the next example.

Example 3.2.39 Let F be a field and

R =
⎧

⎨

⎩

⎡

⎣

a 0 x

0 a y

0 0 b

⎤

⎦ | a, b, x, y ∈ F

⎫

⎬

⎭

∼=
[

F F ⊕ F

0 F

]

.

Then Q(R) = Mat3(F ), so R is right nonsingular. By calculation R is quasi-Baer
(or see Theorem 5.6.5). Also by direct computation, R is not right FI-extending (or
see Corollary 5.6.11).
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By Theorems 2.3.27, 3.2.37, and 3.2.38, one may wonder if there is a right
strongly FI-extending ring that is neither semiprime, nor quasi-Baer, nor right non-
singular. The next example provides a class of such rings.

Example 3.2.40 Let p be a prime integer and let R = T2(Zpn), where n is a integer
such that n≥ 2. Then R satisfies the following properties.

(i) R is not semiprime.
(ii) R is not right nonsingular.

(iii) R is not quasi-Baer (see Theorem 5.6.7).
(iv) R is right strongly FI-extending (see Theorem 5.6.18).

We say that a ring R is right principally FI-extending (resp., right finitely gen-
erated FI-extending) if every principal ideal (resp., finitely generated ideal) of R is
essential in a direct summand of RR .

Proposition 3.2.41 Assume that R is a semiprime ring. Then the following are
equivalent.

(i) R is right p.q.-Baer.
(ii) If I is a finitely generated ideal of R, then IR ≤ess eRR for some e2 = e ∈ B(R).

(iii) R is right finitely generated FI-extending.
(iv) R is right principally FI-extending.
(v) R is left p.q.-Baer.

Proof (i)⇒(ii) Say I is a finitely generated ideal. Then IR ≤ess rR(�R(I ))R by
Lemma 2.1.13. Because R is semiprime, �R(I) = rR(I ). From Proposition 3.2.26,
�R(I) = rR(I ) = fR for some f ∈ S�(R) since R is right p.q.-Baer. By Propo-
sition 1.2.6(ii), f ∈ B(R). Thus rR(�R(I )) = (1 − f )R. Take e = 1 − f . Then
e ∈ B(R) and IR ≤ess eRR .

(ii)⇒(iii)⇒(iv) These implications are clear.
(iv)⇒(i) Let I be a principal ideal of R. By hypothesis, IR ≤ess eRR with

e2 = e ∈ R. Now �R(I) = R(1 − e) similar to the proof of (iii)⇒(i) in Theo-
rem 3.2.37. Since R(1 − e)� R, 1 − e ∈ B(R) by Propositions 1.2.2 and 1.2.6(ii).
As R is semiprime, rR(I )= �R(I)= (1 − e)R. So R is right p.q.-Baer.

(i)⇔(v) The proof follows from the fact that for a semiprime ring, left and right
annihilators of ideals coincide and from Proposition 1.2.6(ii), semicentral idempo-
tents are central. �

Homomorphic images of quasi-Baer rings are not quasi-Baer, in general
(e.g., Z/4Z). If R is a quasi-Baer ring, then there exists e ∈ S�(R) such that
P(R) ≤ess eRR and (1 − e)R = (1 − e)R(1 − e) is a semiprime quasi-Baer ring
(see Theorem 3.2.10 and Exercise 3.2.44.8). Moreover, each semiprime ring has a
right ring of quotients which is quasi-Baer (see Theorem 8.3.17). Thus it is natural
to ask: If R is a quasi-Baer ring, must R/P (R) be quasi-Baer? In the following
example, we provide a negative answer to this question in general. Nevertheless, in
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Theorem 3.2.43 we exhibit a positive answer by considering the nilpotency of the
prime radical.

Example 3.2.42 Let A be a prime ring and S the upper triangular (column finite)
ℵ0 × ℵ0 matrix ring over A. We let R be the ring of [sij ] ∈ S such that sij = 0 for
all but finitely many i �= j and snn is constant eventually. Then:

(i) R is quasi-Baer.
(ii) R/P (R) is not quasi-Baer.

Say I is a nonzero right ideal of R with I =∑

k∈Λ ukR for an index set Λ. Let
uk = [kaij ] ∈R for each k ∈Λ. Since A is prime, it is quasi-Baer.

We see that there exist ei ∈ S�(A), i = 1,2, . . . such that

rA(
∑

k∈Λ
ka11A)= e1A, rA(

∑

k∈Λ
ka11A+ ka12A+ ka22A)= e2A,

rA(
∑

k∈Λ
ka11A+ ka12A+ ka13A+ ka22A+ ka23A+ ka33A)= e3A,

and so on. Since A is a prime ring, S�(A)= B(A)= {0,1}. So ei = 0 or 1 for each i.
Also ejA⊆ eiA when j ≥ i. If ei = 0, then ej = 0 for any j ≥ i.

Let g be the diagonal matrix with ei in the (i, i)-position for each i. Since ei
is eventually constant to 0 or 1, and g2 = g ∈ R. We show that rR(I ) = gR so
that R is quasi-Baer. Indeed, Ig = 0, so gR ⊆ rR(I ). Next, let [zij ] ∈ rR(I ). Then
I [zij ] = 0. Thus z1m ∈ rR(

∑

k∈Λ ka11A) = e1A for all m = 1,2, . . . . Let α1m ∈ A

for m = 1,2, . . . such that z1m = e1α1m and α1m = 0 when z1m = 0. We see that
z2m ∈ rR(

∑

k∈Λ ka11A+ ka12A+ ka22A)= e2A, where m= 2,3, . . . . Let α2m ∈A

for m= 2,3, . . . such that z2m = e2α2m and α2m = 0 when z2m = 0. Next

z3m ∈ rA(
∑

k∈Λ
ka11A+ ka12A+ ka13A+ ka22A+ ka23A+ ka33A)= e3A,

for m= 3,4, . . . . Let α3m ∈A for m= 3,4, . . . such that z3m = e2α3m and α3m = 0
when z3m = 0, and so on. Then we see that [eiαij ] ∈ R as [zij ] ∈ R. Moreover,
[zij ] = g[αij ] ∈ gR. Thus rR(I )⊆ gR, so rR(I )= gR. Hence R is quasi-Baer.

For i, j with i ≤ j and a ∈ A, let aeij be the matrix in R with a in the (i, j)-
position and 0 elsewhere. Then we see that aeijRaeij = 0 for i < j . As a conse-
quence, aeij ∈ P(R) for any a ∈ A and i, j with i < j . Therefore, P(R) is the set
of all matrices in R with zero diagonal.

Note that R/P (R) ∼= {(sn) ∈ ∏∞
n=1 A | sn is constant eventually}. As in Exam-

ple 3.1.14(ii), the ring R/P (R) is not quasi-Baer.

In spite of Example 3.2.42, we obtain the following result when the prime radical
is nilpotent.

Theorem 3.2.43 Let R be a quasi-Baer (resp., Baer) ring such that P(R) is nilpo-
tent. Then the ring R/P (R) is quasi-Baer (resp., Baer).
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Proof We may assume that P(R)n = 0 and P(R)n−1 �= 0 for some integer n ≥ 2.
We give a proof by induction on n.

First, assume that n = 2. Since R is quasi-Baer, there exists e ∈ S�(R) such
that rR(P (R)) = eR. Thus P(R)e = 0, so P(R) ⊆ R(1 − e). Since P(R)2 = 0,
P(R) ⊆ rR(P (R)) = eR. So P(R) ⊆ eR ∩ R(1 − e) = eR(1 − e). Note that
(1 − e)Re = 0 because e ∈ S�(R). Thus,

R =
[

eRe eR(1 − e)

0 (1 − e)R(1 − e)

]

.

Now [eR(1 − e)]2 = 0 and eR(1 − e) � R, so eR(1 − e) ⊆ P(R). Thus
P(R)= eR(1 − e), so R/P (R)=R/eR(1 − e)∼= eRe⊕ (1 − e)R(1 − e). Since R
is quasi-Baer, eRe and (1 − e)R(1 − e) are quasi-Baer by Theorem 3.2.10. Thus,
R/P (R) is quasi-Baer by Proposition 3.2.8.

Assume that S/P (S) is quasi-Baer for a given quasi-Baer ring S, when-
ever P(S)m = 0 for m < n. We let rR(P (R)k) = fkR, where fk ∈ S�(R) and
k = 1, . . . , n − 1. By the modular law, fk+1R = fkR ⊕ [(1 − fk)R ∩ fk+1R], for
k = 1, . . . , n− 2.

As fk, fk+1 ∈ S�(R), we have that (1 − fk)R ∩ fk+1R = (1 − fk)fk+1R and
(1 − fk)fk+1 is an idempotent. So fk+1R = fkR ⊕ (1 − fk)fk+1R. Put

e1 = f1, e2 = (1 − f1)f2, . . . , en−1 = (1 − fn−2)fn−1, and en = 1 − fn−1.

Therefore f1R = e1R,f2R = e1R ⊕ e2R, . . . , and fn−1R = e1R ⊕ · · · ⊕ en−1R.
Also R = e1R ⊕ e2R ⊕ · · · ⊕ enR.

Note that fn−1 ∈ S�(R), hence (1 − fn−1)Rfn−1 = 0 by Proposition 1.2.2. From
0 = (1 − fn−1)Rfn−1R = enR(e1R ⊕ · · · ⊕ en−1R), enRei = 0, i = 1, . . . , n − 1.
So en−1Rfn−2R ⊆ en−1R ∩ fn−2R as en−1Rfn−2R = fn−2en−1Rfn−2R.

Now en−1R ∩ fn−2R = en−1R ∩ (e1R ⊕ · · · ⊕ en−2R) = 0, thus we have
that en−1R(e1R ⊕ · · · ⊕ en−2R) = en−1Rfn−2R = 0. Hence en−1Rei = 0 for
i = 1,2, . . . , n− 2.

Continue this process to obtain ejRei = 0 for i < j . Thus,

R =

⎡

⎢

⎢

⎢

⎣

e1Re1 e1Re2 · · · e1Ren
0 e2Re2 · · · e2Ren
...

...
. . .

...

0 0 · · · enRen

⎤

⎥

⎥

⎥

⎦

.

Therefore, R/P (R)∼= ⊕n
i=1[eiRei/P (eiRei)].

In general, for e2 = e ∈ R, eP (R)e is a semiprime ideal of eRe, and thus
P(eRe) ⊆ eP (R)e. Because P(R)e1 = 0, P(e1Re1) ⊆ e1P(R)e1 = 0, and so
e1Re1 is a semiprime ring. Also, for k = 2, . . . , n− 1,

[ekP (R)ek]n−1 ⊆ ekP (R)
n−1ek = ekP (R)

n−1−kP (R)kek = 0
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since rR(P (R)
k) = e1R ⊕ · · · ⊕ ekR. Note that P(R)n−1 ⊆ rR(P (R)) = e1R, so

P(R)n−1 = e1P(R)
n−1. Since P(enRen) ⊆ enP (R)en and enRe1 = 0, it follows

that [P(enRen)]n−1 ⊆ enP (R)
n−1en = ene1P(R)

n−1en = 0. Hence,

R/P (R)∼= e1Re1 ⊕ [e2Re2/P (e2Re2)] ⊕ · · · ⊕ [enRen/P (enRen)]

and [P(ekRek)]n−1 = 0 for k = 2, . . . , n. Since R is quasi-Baer, ekRek is quasi-
Baer for each k by Theorem 3.2.10. Thus by induction ekRek/P (ekRek) is quasi-
Baer for k = 2, . . . , n. By Theorem 3.2.10, e1Re1 is quasi-Baer as R is quasi-Baer.
Therefore, R/P (R) is quasi-Baer by Proposition 3.2.8.

From Theorem 3.1.8, if R is Baer, then eRe is also Baer for any e2 = e ∈R. Thus
by the same argument for the case of quasi-Baer rings, we see that R/P (R) is Baer
if R is Baer. �

Exercise 3.2.44

1. Let R be a ring not necessarily with identity. Show that any two of the following
conditions imply the third condition.

(i) For each I �R, there exists e2 = e ∈R such that rR(I )= eR.
(ii) For each J �R, there exists f 2 = f ∈R such that �R(J )=Rf .

(iii) R has an identity.
2. ([73, Birkenmeier, Kim, and Park]) Prove that any semiprimary quasi-Baer ring

is right nonsingular.
3. ([128, Clark]) Let e be a primitive idempotent in an Artinian quasi-Baer ring.

Show that eRe is a division ring.
4. Prove Theorem 3.2.22.
5. ([56, Birkenmeier]) Let R be a right essentially quasi-Baer ring (see Defini-

tion 8.1.1). Prove the following.
(i) There is a unique smallest idempotent generated right ideal B of R con-

taining all nilpotent elements of R (B is called the minimal direct sum-
mand containing the nilpotent elements, MDSN).

(ii) B is an ideal of R such that RNRR ≤ess BR , where N is the set of nilpotent
elements of R.

(iii) R = A ⊕ B (right ideal direct sum), where A is a right ideal that is a
reduced Baer ring.

6. Assume that R is a semiprime quasi-Baer ring.
(i) Show that for each I � R, there is e ∈ B(R) such that IR ≤ess eRR and

R/I = (eR/I) ⊕ ((1 − e)R + I )/I (ring direct sum). Further, R/I is a
quasi-Baer ring (resp., right FI-extending ring) if and only if eR/I is a
quasi-Baer ring (resp., right FI-extending ring).

(ii) Prove that every homomorphic image of R is a quasi-Baer ring (resp., right
FI-extending ring) if and only if R/I is a quasi-Baer ring (resp., right FI-
extending ring), for all I �R with IR ≤ess RR .

7. Show that if R is a quasi-Baer ring with I a nilpotent ideal, then IR is not
essential in RR .
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8. ([73, Birkenmeier, Kim, and Park]) Prove that a ring R is quasi-Baer if and only
if for each I � R, there exists e ∈ S�(R) such that I ⊆ eR and �R(I) ∩ eR =
eR(1 − e). In this case, (I + eR(1 − e))R ≤ess eRR and eR(1 − e) � R. If
I = P(R), then P(R)R ≤ess eRR .

9. ([78, Birkenmeier, Kim, and Park]) Show that a ring R is right p.q.-Baer if and
only if whenever I is a principal ideal of R there exists e ∈ Sr (R) such that
I ⊆Re and rR(I )∩Re = (1 − e)Re.

10. Let R be a ring. Prove the following.
(i) R is Abelian and Baer if and only if R is reduced and quasi-Baer.

(ii) R is Abelian and Rickart if and only if R is reduced and p.q.-Baer.
11. ([192, Han, Hirano, and Kim]) Let R be a semiprime ring. Show that R is

a quasi-Baer ring if and only if R is extending as a left Re-module, where
Re =R ⊗Z R

o.

3.3 Extending versus Baer Rings

The Chatters-Khuri theorem below states that a ring R is right extending and right
nonsingular if and only if R is Baer and right cononsingular. This result indicates
an interrelationship between the extending property and the Baer property of rings.
As an application of the Chatters-Khuri theorem, it is shown that a right nonsingular
ring R with Q(R) = Q�(R) is right extending if and only if R is left extending if
and only if R is Baer. Thus a semiprime PI-ring R is right extending if and only
if R is left extending if and only if R is Baer. Further close connections between
extending rings and Baer rings will be discussed in Sects. 5.6 and 6.1.

A ring R is called right cononsingular if �R(I) = 0 with IR ≤ RR implies
IR ≤ess RR .

Theorem 3.3.1 The following are equivalent for a ring R.

(i) R is right nonsingular and right extending.
(ii) R is Baer and right cononsingular.

Proof (i)⇒(ii) Take ∅ �= X ⊆ R and let I = XR. By (C1) condition, there is
e2 = e ∈ R with IR ≤ess eRR . Thus, R(1 − e) = �R(eR) = �R(I) as in the proof
of Theorem 3.2.38. So �R(X)= �R(I)=R(1 − e). Therefore, R is Baer.

To show that R is right cononsingular, let AR ≤ RR with �R(A)= 0. Since R is
right extending, AR ≤ess gRR with g2 = g ∈ R. Thus (1 − g)A = 0, so 1 − g = 0.
Hence g = 1 and AR ≤ess RR . Whence R is right cononsingular.

(ii)⇒(i) Since R is Baer, Z(RR) = 0 by Proposition 3.1.18. To show that R is
right extending, let VR ≤ RR . Then �R(V ) = Rf for some f 2 = f ∈ R. Therefore
V ⊆ rR(�R(V ))= rR(Rf )= (1 − f )R.

If VR is not essential in (1 − f )RR , then there exists 0 �=WR ≤ (1 − f )RR such
that V ∩W = 0. Let K be a complement of W in R with V ⊆K . Then

K ∩W = 0 and (K ⊕W)R ≤ess RR.
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Since KR is not essential in RR and R is right cononsingular, �R(K) �= 0. Take

0 �= s ∈ �R(K)⊆ �R(V )=Rf.

Then s(1−f )= 0, so sW = s(1−f )W = 0 because W ⊆ (1−f )R. Thus, we have
that s(K ⊕W)= 0. As (K ⊕W)R ≤ess RR and Z(RR)= 0, s = 0, a contradiction.
Thus, VR ≤ess (1 − f )RR , so R is right extending. �

Motivated by Theorem 3.3.1, in Chap. 4 this result will be extended to a general
module theoretic setting by the introduction of the notion of Baer modules (see
Theorem 4.1.15). Recall that Q�(R) denotes the maximal left ring of quotients of R.

Proposition 3.3.2 Assume that R is a right nonsingular ring such that
Q(R)=Q�(R). Then R is right cononsingular.

Proof Let A be a closed right ideal of R. We claim that A= rR(�R(A)). Indeed, if
A �= rR(�R(A)), then rR(�R(A)) is not an essential extension of A as A is closed
in R. Thus, there is 0 �= CR ≤ rR(�R(A))R with A ∩ C = 0. Let DR be a comple-
ment of CR in RR with A ⊆ D. Then D is a closed right ideal of R (see Exer-
cise 2.1.37.3). By Corollary 1.3.15 and Proposition 2.1.32, there is e2 = e ∈ Q(R)

with DQ(R)R ≤ess eQ(R)R .
For DR ≤ess DQ(R)R , say 0 �= α = d1x1 + d2x2 + · · · + dnxn ∈DQ(R), where

di ∈D and xi ∈Q(R), i = 1,2, . . . , n. As RR ≤den Q(R)R , there is r1 ∈R such that
x1r1 ∈ R and αr1 =∑n

i=1 dixir1 �= 0. Again there is r2 ∈ R with x2r1r2 ∈ R and
αr1r2 =∑n

i=1 dixir1r2 �= 0. Continuing this procedure, we get r = r1r2 · · · rn ∈ R

such that x1r, x2r, . . . , xnr ∈ R and αr �= 0. So αr ∈ D. Thus, DR ≤ess DQ(R)R .
Since DQ(R)R ≤ess eQ(R)R and DR ≤ess DQ(R)R , DR ≤ess (eQ(R) ∩ R)R . So
D = eQ(R)∩R because D is a closed right ideal of R. Note that C �= 0, so D �=R.
Thus e �= 1, hence Q(R)(1 − e) �= 0. Therefore, Q(R)(1 − e) ∩ R �= 0 because
Q(R) = Q�(R). Now take 0 �= a ∈ Q(R)(1 − e) ∩ R. Then aD = 0, and hence
aA = 0. Therefore, a ∈ �R(A) = �R(rR(�R(A))), so arR(�R(A)) = 0 and aC = 0.
Hence, a(C⊕D)= 0. Since (C⊕D)R ≤ess RR and Z(RR)= 0, we have that a = 0,
a contradiction. So A= rR(�R(A)).

To show that R is right cononsingular, say IR ≤RR such that �R(I)= 0. Let KR

be a closure of IR in RR . Because K is a closed right ideal of R, K = rR(�R(K))

by the preceding argument. Now as I ⊆ K and �R(I) = 0, �R(K) = 0 and thus
K = rR(�R(K)) = R. Whence IR ≤ess RR , and therefore R is right cononsingu-
lar. �

The next result provides another connection between the Baer property and the
extending property of rings.

Corollary 3.3.3 Let R be a right nonsingular ring such that Q(R)=Q�(R). Then
the following are equivalent.
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(i) R is right extending.
(ii) R is left extending.

(iii) R is a Baer ring.

Proof For (i)⇔(iii), let R be right extending. Since R is right nonsingular, R is Baer
by Theorem 3.3.1. Conversely, let R be a Baer ring. By Proposition 3.3.2, R is right
cononsingular. So R is right extending by Theorem 3.3.1.

Next, for (ii)⇔(iii), let R be left extending. Since Q(R) = Q�(R) is regular
by Theorem 2.1.31, Q�(R) is left nonsingular. As in the proof of Theorem 2.1.31,
we see that R is left nonsingular. So R is Baer by the left-sided version of Theo-
rem 3.3.1. Conversely, if R is Baer, then R is left nonsingular by Proposition 3.1.18.
From the left-sided version of Proposition 3.3.2, R is left cononsingular. Therefore,
R is left extending by the left-sided version of Theorem 3.3.1. �

Theorem 3.3.4 Let R be a semiprime PI-ring. Then:

(i) R is right and left nonsingular.
(ii) Q(R)=Qs(R)=Q�(R).

(iii) Q(R) is a self-injective regular PI-ring.

Proof Let R be a semiprime PI-ring. Then R is right and left nonsingular by Fisher
[168]. Also Q(R) = Q�(R) by Martindale [292] and Rowen [365], and Q(R) is a
PI-ring by Martindale [292]. Further, Q(R)=Qs(R) by Armendariz, Birkenmeier,
and Park [30]. �

Corollary 3.3.5 Let R be a semiprime PI-ring. Then R is right extending if and
only if R is left extending if and only if R is Baer.

Proof The proof follows from Corollary 3.3.3 and Theorem 3.3.4. �

Exercise 3.3.6

1. ([69, Birkenmeier, Kim, and Park]) Prove that the following are equivalent for a
ring R.

(i) R is right extending and right nonsingular.
(ii) R is right extending and Baer.

(iii) R is right extending and right Rickart.
(iv) R is right nonsingular and every principal right ideal of R is extending.

Historical Notes Proposition 3.1.1, Definition 3.1.2, Proposition 3.1.5, and The-
orem 3.1.8 are in [246]. Theorem 3.1.11 was obtained by Kim and Park [253]. Ex-
ample 3.1.20 is due to Chase [115]. It has been treated in detail in [73, 78], and
[120]. Proposition 3.1.21 and Theorem 3.1.22 are in [287]. Also Theorem 3.1.22(ii)
appears in [48]. Theorem 3.1.23 is due to Maeda [287]. Theorem 3.1.26 and Ex-
ample 3.1.27 appear in [76]. Theorem 3.1.29 was shown by Small [372] and its
proof is taken from that of [262, Proposition 7.63]. Theorem 3.1.29 also appears



92 3 Baer, Rickart, and Quasi-Baer Rings

in [277]. Exercises 3.1.30.1 and 3.1.30.4 are in [47]. Exercise 3.1.30.4 appears also
in [46]. Bergman [49] constructed an example of a compressible ring R for which
Mat2(R) is not compressible. See also [23, 46, 47], and [112] for compressible
rings.

Propositions 3.2.5 and 3.2.8 are in [78]. Example 3.2.7(i) is from [329]. Exam-
ple 3.2.9 is in [82]. Theorem 3.2.10 was shown in [128]. Theorems 3.2.11 is essen-
tially due to Clark [128], and Pollingher and Zaks [347]. Theorem 3.2.12 is in [347].
Theorem 3.2.13 is taken from [73]. By Kaplansky [246], the center of a Baer ring is
a Baer ring. Example 3.2.14 is due to Armendariz [20]. Theorem 3.2.17(i) and (ii),
Corollary 3.2.18, and Example 3.2.20 appear in [73]. Theorem 3.2.17(iii) appears
in [20].

Stone [385] showed that a Boolean ring with identity is isomorphic to the ring
of all continuous functions from a zero-dimensional compact space to the field Z2
(with discrete topology). Arens and Kaplansky [19] defined biregular rings and ex-
tended several results on Boolean rings to biregular rings. Example 3.2.21(iv) is
due to Armendariz and Steinberg [26], while Example 3.2.21(v) follows from [26]
and [292]. Theorem 3.2.22 is in [19].

Right principally quasi-Baer rings were defined and studied by Birkenmeier,
Kim, and Park in [78]. Proposition 3.2.25 appears in [78] and [70], while Propo-
sition 3.2.26 is in [78]. Examples 3.2.28, 3.2.29, 3.2.31, Proposition 3.2.30 are
in [78]. Theorem 3.2.32 is a corrected version of Theorem 3.3 in [78]. Corol-
lary 3.2.33 appears in [73]. In Lemma 3.3 [73] and Lemma 3.2 [78], “complete
sublattice of the lattice of ideals” should be replaced by “complete lattice under
inclusion”. Results 3.2.34–3.2.36 are in [78]. Theorems 3.2.37 and 3.2.38 appear
in [83] (see also [58]). Example 3.2.39 is in [89], while Example 3.2.40 is taken
from [85] (also see [84]). Right principally FI-extending rings and right finitely gen-
erated FI-extending rings are defined in [101]. Proposition 3.2.41 appears in [78].
Example 3.2.42 and Theorem 3.2.43 are in [103].

Theorem 3.3.1 appears in [121]. Proposition 3.3.2 is taken from [382, Proposi-
tion 4.7, p. 251]. For further material on Baer and Rickart rings, see [132, 148, 151,
200, 210, 282, 287, 379, 380], and [381]. For results on Baer and quasi-Baer near-
rings see [61, 62], and [63]. Additional references include [24, 51, 127, 160, 283,
291, 316, 349], and [417].



Chapter 4
Baer, Quasi-Baer Modules, and Their
Applications

In this chapter, the Baer and the quasi-Baer properties for arbitrary modules are
introduced and studied. The definition of a Baer module using its endomorphism
ring is proposed in Sect. 4.1. It was shown in Proposition 3.1.18 that every Baer ring
is nonsingular. We shall see that a Baer module also satisfies a weaker nonsingularity
of modules (called K-nonsingularity) which depends on the endomorphism ring of
the module. Strong connections between a Baer module and an extending module
will be exhibited via this weak nonsingularity and a dual notion. We shall see that
an extending module which is K-nonsingular is precisely a K-cononsingular Baer
module. This provides a module theoretic analogue of the Chatters-Khuri theorem
for rings (Theorem 3.3.1).

Direct summands of Baer and quasi-Baer modules respectively inherit these
properties. This provides us a rich source of examples of Baer and quasi-Baer mod-
ules. For example, one can readily see that for any Baer ring R and an idempotent
e ∈ R, the right R-module eRR is always a Baer module. Among other results, a
Baer module is characterized in terms of the strong summand intersection property.
The connections between a (quasi-)Baer module and its endomorphism ring will
be discussed. Characterizations of classes of rings via the Baer property of certain
classes of free modules over them, will be presented. These results are applied later
to matrix ring extensions in Chap. 6.

We shall apply the results of this chapter to present a type theory for Baer mod-
ules. An application also yields a type theory for (K-)nonsingular extending (con-
tinuous) modules which, in particular, improves the type theory for nonsingular in-
jective modules provided by Goodearl and Boyle [184]. Analogous to right Rickart
rings, we shall include the notion of Rickart modules as another application of the
theory of Baer modules. Some recent results on Rickart modules are included.

Similar to the case of Baer modules, close links between quasi-Baer modules
and FI-extending modules are established and a characterization connecting the two
notions is shown. The concepts of FI-K-nonsingularity and FI-K-cononsingularity
are introduced to obtain this.
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4.1 Baer Modules

We begin this section with the definition of a Baer module MR via its endomor-
phism ring S = End(MR) in contrast to defining this notion in terms of the base
ring R. The use of the endomorphism ring instead of the base ring R appears to
offer a more natural generalization of Baer rings in the module theoretic setting (see
Definition 4.1.1 and the comment after Definition 4.1.1).

Properties of Baer modules are investigated and examples are provided in this
section. Similar to the ring theoretic concepts of nonsingularity and cononsingu-
larity, the K-nonsingularity and the K-cononsingularity respectively, are introduced
for modules. These conditions provide a characterization of a K-cononsingular Baer
module as an extending module which is K-nonsingular, generalizing the Chatters-
Khuri theorem to the module theoretic setting.

Throughout this section, we let S = End(MR).

Definition 4.1.1 A right R-module M is called a Baer module if �S(N)= Se with
e2 = e ∈ S for all N ≤M . A left R-module which is Baer is defined similarly.

In [274, Definition 2.1], Lee and Zhou also called a module M Baer if, for any
nonempty subset X of M , rR(X) = eR with e2 = e ∈ R. But our Definition 4.1.1
is distinct from their definition. In fact, any semisimple module is a Baer module
by Definition 4.1.1, but it may not be a Baer module in the sense of Lee and Zhou
[274] (for example, Zp as a Z-module, where p is a prime integer, is a Baer module
in our sense).

From Proposition 3.1.1, the Baer property of rings is a left-right symmetric prop-
erty. The next result shows a module theoretic analogue of this fact.

Proposition 4.1.2 The following are equivalent for a right R-module M .

(i) M is a Baer module.
(ii) For any left ideal I of S, rM(I)= fM with f 2 = f ∈ S.

Proof (i)⇒(ii) Let I be a left ideal of S. Then rM(I)≤M , so �S(rM(I))= Se with
e2 = e ∈ S. Hence, rM(I)= rM(�S(rM(I)))= rM(Se)= (1 − e)M . Put f = 1 − e.
Then rM(I)= fM and f 2 = f ∈ S.

(ii)⇒(i) Let N ≤M . Then �S(N) is a left ideal of S. So rM(�S(N))= fM with
f 2 = f ∈ S. So �S(N) = �S(rM(�S(N))) = �S(fM) = S(1 − f ). Let e = 1 − f .
Then �S(N)= Se and e2 = e ∈ S. �

All Baer rings viewed as right modules over themselves are Baer modules, and
as was noted before all semisimple modules are obviously Baer modules. Several
other examples will follow from our results later (for example, if R is any Baer ring,
then eRR is a Baer module, where e2 = e ∈ R). Next, we introduce the following
concept of nonsingularity, in utilizing the endomorphism ring of a module.
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Definition 4.1.3 Let M be a module. Then M is called K-nonsingular if, for φ ∈ S,
rM(φ)= Ker(φ)≤ess M implies φ = 0. We observe that M is K-nonsingular if and
only if Δ= 0 (see Lemma 2.1.28 for Δ).

Example 4.1.4 Any semisimple module is K-nonsingular. In general, any Baer
module is K-nonsingular (see Lemma 4.1.18).

A module M is called polyform (also called non-M-singular) if every essential
submodule of M is a dense submodule.

Proposition 4.1.5 Every polyform module is K-nonsingular.

Proof Let M be a polyform right R-module. Say φ ∈ S = End(M) such that
Ker(φ) ≤ess M . If φ(M) �= 0, then there is x ∈ M such that φ(x) �= 0. Since
Ker(φ) ≤den M , there exists r ∈ R such that xr ∈ Ker(φ) and φ(x)r �= 0, a con-
tradiction. Thus φ(M)= 0, so φ = 0. �

Corollary 4.1.6 Every nonsingular module is K-nonsingular.

Proof The proof follows from the fact that every nonsingular module is polyform
by Proposition 1.3.14. �

While the nonsingularity of a module M provides the uniqueness of closures
in M (i.e., M is a UC-module), the K-nonsingularity provides the uniqueness of
closures which are direct summands of M .

Theorem 4.1.7 Assume that M is a K-nonsingular module, and let N ≤ M . If
N ≤ess Ni ≤⊕ M , for i = 1,2, then N1 =N2.

Proof Write M = N1 ⊕ V1 and M = N2 ⊕ V2 with V1,V2 ≤ M . Consider
(1 − π1)π2, where πi is the canonical projection of M onto Ni , i = 1,2. Then
((1 − π1)π2)N = (1 − π1)(π2N) = (1 − π1)(π1N) = 0, since N ⊆ N1 ∩N2. Also
((1 − π1)π2)V2 = (1 − π1)(π2V2) = 0. Hence N ⊕ V2 ⊆ Ker((1 − π1)π2), but
N ⊕ V2 ≤ess N2 ⊕ V2 =M . Thus, Ker((1 − π1)π2)≤ess M , so (1 − π1)π2 = 0 be-
cause M is K-nonsingular. Hence π2 = π1π2. Similarly, π1 = π2π1. We see that
N2 = π2(M) = π1π2(M) = π1(N2) ⊆ π1(M) = N1. Similarly, N1 ⊆ N2. There-
fore, N1 =N2. �

Definition 4.1.8 Let M and N be modules. Then M is called K-nonsingular rela-
tive to N if for ϕ ∈ Hom(M,N), Ker(ϕ)≤ess M implies ϕ = 0.

Theorem 4.1.9 Let {Mi}i∈Λ be a set of modules. Then
⊕

i∈ΛMi is K-nonsingular
if and only if Mi is K-nonsingular relative to Mj for all i, j ∈Λ.
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Proof Let M = ⊕i∈ΛMi be K-nonsingular. Say ϕ ∈ Hom(Mα,Mβ), where
α,β ∈Λ, such that Ker(ϕ) ≤ess Mα . Define ψ ∈ End(M) by ψ(x) = ϕ(x)

for x ∈ Mα and ψ(x) = 0 for x ∈ ⊕i∈Λ,i �=αMi . Now we see that Ker(ψ) is
Ker(ϕ)⊕ (⊕i∈Λ, i �=αMi), so Ker(ϕ) ≤ess M . As M is K-nonsingular, ψ = 0 and
hence ϕ = 0.

Conversely, suppose that Mi is K-nonsingular relative to Mj for all i, j ∈ Λ.
Say φ ∈ End(M) and Ker(φ)≤ess M . Let πj be the canonical projection of M onto
Mj . As Ker(φ) ∩ Mi ≤ess Mi and Ker(φ) ∩ Mi ≤ Ker(πjφ|Mi

) for each i ∈ Λ,
Ker(πjφ|Mi

)≤ess Mi for each i ∈Λ. Because Mi is K-nonsingular relative to Mj ,
πjφ|Mi

= 0 for all j ∈ Λ. Hence φ|Mi
= 0 for all i ∈ Λ, and so φ = 0. Therefore,

M is K-nonsingular. �

The next example shows that the K-nonsingularity of modules is a proper gener-
alization of the concepts of polyform and nonsingularity; in particular, the converse
of Proposition 4.1.5 and Corollary 4.1.6 do not hold true.

Example 4.1.10 (i) The Z-module Zp , where p is a prime integer, is K-nonsingular.
However, the module Zp is not nonsingular.

(ii) Let M = Q ⊕ Z2. Then Q � M and Z2 � M as Hom(Q,Z2) = 0 and
Hom(Z2,Q) = 0. From Theorem 4.1.9, M is a K-nonsingular Z-module be-
cause Q is K-nonsingular (in fact it is nonsingular) and Z2 is K-nonsingular. But
0 �= (0,1) ∈ Z(MZ), so Z(MZ) �= 0. Consider (0,1), (1/2,0) ∈ M . Then there is
no a ∈ Z with (1/2,0)a ∈ Z ⊕ Z2 and (0,1)a �= 0. So Z ⊕ Z2 is not dense in M .
However, Z⊕Z2 is essential in M . Thus, M is neither nonsingular nor polyform.

However, when the module M =R, the three concepts coincide.

Proposition 4.1.11 Let R be a ring. Then RR is K-nonsingular if and only if RR is
nonsingular if and only if RR is polyform.

Proof The proof easily follows from Proposition 1.3.14 and the fact that End(RR)

consists of left multiplications by elements of R. Further, assume that RR is poly-
form. Say x ∈Z(RR). Then xI = 0 for some IR ≤ess RR . Thus IR ≤den RR . There-
fore x = 0 from Proposition 1.3.11(ii), so R is right nonsingular. �

Proposition 4.1.12 The following are equivalent for a right R-module M .

(i) M is K-nonsingular.
(ii) For each left ideal I of S, rM(I)≤ess eM with e2 = e ∈ S implies I ∩ Se = 0.

(iii) For every left ideal J of S, rM(J )≤ess M implies J = 0.

Proof For (i)⇒(ii), let I be a left ideal of S such that rM(I) ≤ess eM with
e2 = e ∈ S. Then rM(I)⊕ (1 − e)M ≤ess M and rM(I)⊕ (1 − e)M ⊆ rM(I ∩ Se).
So rM(I ∩ Se)≤ess M , and hence I ∩ Se = 0 by K-nonsingularity of M .

(ii)⇒(iii) is evident. For (iii)⇒(i), take φ ∈ S with Ker(φ) ≤ess M . Then
Ker(φ)= rM(Sφ). Hence Sφ = 0, so φ = 0. Thus, M is K-nonsingular. �
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We introduce a module theoretic version for cononsingularity as follows.

Definition 4.1.13 A right R-module M is said to be K-cononsingular if, for
N ≤M , �S(N)= 0 implies N ≤ess M .

Proposition 4.1.14 A right R-module M is K-cononsingular if and only if, for
N ≤M , rM(�S(N))≤⊕ M implies N ≤ess rM(�S(N)).

Proof Let M be K-cononsingular and NR ≤ MR . If rM(�S(N)) = eM for some
e2 = e ∈ S, then �S(N) = �S(rM(�S(N))) = �S(eM) = S(1 − e). Therefore, we
obtain �S(N ⊕ (1 − e)M)= S(1 − e) ∩ Se = 0. From K-cononsingularity of M , it
follows that N ⊕ (1 − e)M ≤ess M . Thus, N ≤ess eM = rM(�S(N)).

Conversely, let V ≤M such that �S(V )= 0. Then rM(�S(V ))=M , so V ≤ess M

by assumption. Therefore, M is K-cononsingular. �

Now we are ready to extend Theorem 3.3.1 for arbitrary modules in the following
theorem.

Theorem 4.1.15 A module M is extending and K-nonsingular if and only if M is
Baer and K-cononsingular.

The proof of Theorem 4.1.15 is comprised of the next four lemmas, each of which
is of interest in its own right. These results also provide us with a good source of
examples.

Lemma 4.1.16 Each extending module is K-cononsingular.

Proof Let M be an extending right R-module. Take N ≤ M with �S(N) = 0.
Because M is extending, N ≤ess eM for some e2 = e ∈ S. Thus it follows that
S(1 − e)= �S(eM)⊆ �S(N). Hence 1 − e = 0, and so N ≤ess M . �

Lemma 4.1.17 Any K-nonsingular extending module is a Baer module.

Proof Let M be a K-nonsingular extending right R-module. Say N ≤ M . Then
there is e2 = e ∈ S with N ≤ess eM . So S(1 − e)= �S(eM)⊆ �S(N).

Say φ ∈ �S(N). Then φeN = 0 as N ⊆ eM . So φe(N ⊕ (1 − e)M) = 0. Now
since N ⊕ (1 − e)M ≤ess M , φe = 0 from the K-nonsingularity of M . Hence, we
obtain φ = φ(1 − e) ∈ S(1 − e), so �S(N)= S(1 − e). Thus, M is Baer. �

Lemma 4.1.18 Every Baer module is K-nonsingular.

Proof Let M be a Baer right R-module. Say φ ∈ S with Ker(φ) ≤ess M . Since M

is Baer, Ker(φ) = rM(Sφ) = fM for some f 2 = f ∈ S by Proposition 4.1.2. Thus
Ker(φ)=M , and so φ = 0. Hence, M is K-nonsingular. �

Lemma 4.1.19 Any K-cononsingular Baer module is extending.
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Proof Let a right R-module M be K-cononsingular and Baer. By Lemma 4.1.18,
M is K-nonsingular. To show that M is extending, say N ≤ M . Then �S(N) =
Sf with f 2 = f ∈ S. So N ⊆ rM(�S(N)) = (1 − f )M . Assume on the con-
trary that N is not essential in (1 − f )M . Then there is 0 �= P ≤ (1 − f )M

with N ∩ P = 0. Let K be a complement of P in M such that N ⊆ K . Note
that �S(K) �= 0 by K-cononsingularity of M as K is not essential in M . Take
0 �= s ∈ �S(K)⊆ �S(N)= Sf , so s(1 − f ) = 0. Hence s(1 − f )M = 0, and thus
sP = 0. So s(K ⊕P)= 0. But K ⊕P ≤ess M . By K-nonsingularity of M , s = 0, a
contradiction. Thus, we obtain N ≤ess (1 − f )M , so M is extending. �

Definition 4.1.20 A module M is said to have the summand intersection property
(SIP) if the intersection of any two direct summands of M is a direct summand.
A module M is said to have the strong summand intersection property (SSIP) if the
intersection of any family of direct summands of M is a direct summand.

Every free module over a commutative PID has the SIP (see [247, Exercise 51(b),
p. 49]). If R is a regular ring, which is not a Baer ring, then R satisfies the SIP, but R
does not have the SSIP. A characterization of Baer modules via the SSIP is provided
as follows.

Theorem 4.1.21 Let M be a right R-module. Then M is Baer if and only if M has
the SSIP and Ker(φ)≤⊕ M for any φ ∈ S.

Proof Let M be Baer and let {eiM} be a set of direct summands of M , where
each e2

i = ei ∈ S. Then ∩ieiM = rM(
∑

i S(1 − ei)). Since M is Baer, we get that
rM(

∑

i S(1 − ei)) ≤⊕ M by Proposition 4.1.2. Thus ∩ieiM ≤⊕ M , so M has the
SSIP. Next, Ker(φ) = rM(Sφ) = eM for some e2 = e ∈ S from Proposition 4.1.2.
Hence Ker(φ)≤⊕ M .

Conversely, assume that I is a left ideal of S. Then Ker(f ) ≤⊕ M for each f

in I , by assumption. Also we have that rM(I) = ∩f∈IKer(f ) ≤⊕ M by the SSIP.
Therefore M is Baer. �

Theorem 4.1.22 Every direct summand of a Baer module is a Baer module.

Proof Let M be a Baer right R-module and N ≤⊕ M . Say M = N ⊕ P for some
P ≤ M . By Theorem 4.1.21, M satisfies the SSIP. Thus, N also has the SSIP by
using the modular law. Let H = End(N). Then for h ∈H , there exists φ ∈ S defined
as φ = h ⊕ 0, where 0 is the zero map of P . Since φ ∈ S, Ker(φ) ≤⊕ M from
Theorem 4.1.21. Thus, Ker(h)⊕ P ≤⊕ M .

Say M = Ker(h)⊕P ⊕ V with V ≤M . Then N = Ker(h)⊕ (N ∩ (V ⊕P)) by
the modular law since Ker(h) ≤ N . So Ker(h) ≤⊕ N . Hence, N is a Baer module
by Theorem 4.1.21. �

Example 4.1.23 Let R be a Baer ring and e2 = e ∈R. Then by Theorem 4.1.22, the
R-module eRR is Baer.
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As an application of the previous results, we obtain the next characterization of
a certain class of Baer modules over a commutative PID.

Theorem 4.1.24 Let M = ⊕

α∈ΛMα be a direct sum of cyclic R-modules Mα ,
where Λ is a countable set, over a commutative PID R. Then the following are
equivalent.

(i) M is a Baer module.
(ii) M is either semisimple or torsion-free.

Proof (i)⇒(ii) Let M be a Baer module. Say M = t (M) ⊕ f (M), where t (M) is
the torsion submodule of M and f (M) is the torsion-free submodule of M . As each
Mα is cyclic, note that f (Mα)∼=R or t (Mα)= ⊕Pi∈Pα

R/Pi
ni , where Pα is a finite

set of nonzero prime ideals Pi and ni is a positive integer (depending on Pi ) for
each Pi ∈Pα .

Suppose that f (M) �= 0 and t (M) �= 0. Then there are Mα and Mβ such that
Mα

∼= R and Mβ
∼= R/P0

n0 ⊕ (⊕Pi∈PR/Pini ), where P0 and each Pi are nonzero
prime ideals of R such that n0 ≥ 1.

Let ϕ : R → R/P0
n0 be the homomorphism defined by ϕ(x) = x + P0

n0 for
x ∈ R. Then Ker(ϕ) = P0

n0 is not a direct summand of RR . Say η : Mα → R is
the given isomorphism and μ : R/P0

n0 → Mβ is the given monomorphism. Put
φ = μϕη. Then Ker(φ) is not a direct summand of Mα .

Write M = Mα ⊕ V for some V ≤ M . Define h : M = Mα ⊕ V → M by
h(x + v) = φ(x) for x ∈ Mα and v ∈ V . Then Ker(h) = Ker(φ) ⊕ V . Since
M is Baer, M = Ker(h) ⊕ U for some U ≤ M by Theorem 4.1.21. Then
M = Ker(φ)⊕ (V ⊕U). By the modular law, Mα = Ker(φ) ⊕ (Mα ∩ (V ⊕ U)),
a contradiction. Therefore, f (M)= 0 or t (M)= 0.

Assume that f (M) = 0. Then t (M) = M = ⊕α∈ΛMα . We note that each
Mα

∼= ⊕Pi∈Pα
R/Pi

ni , where each Pi is a nonzero prime ideal of R and each ni
is a positive integer. So every R/Pi

ni is a Baer module by Theorem 4.1.22.
Suppose that there exists Pi such that ni > 1. Note that we can choose

a ∈ Pi
ni−1 \ Pini . Define g : R/Pini → R/Pi

ni by g(x + Pi
ni ) = ax + Pi

ni . Then
g(1 + Pi

ni ) = a + Pi
ni �= 0. So g �= 0. Further, 0 �= a + Pi

ni ∈ Ker(g) because
ni > 1. Since Ker(g)≤ess R/Pi

ni and Ker(g) �=R/P
ni
i , Ker(g) is not a direct sum-

mand of R/Pini . Thus R/Pini is not a Baer module by Theorem 4.1.21, a contra-
diction. So each ni = 1. Therefore M = t (M) = ⊕Pi∈PR/Pi , where P is a set of
nonzero prime ideals of R (possibly in multiple instance). Thus M is semisimple
because every nonzero prime ideal of a commutative PID is maximal.

Next, if t (M)= 0, then M is torsion-free.
(ii)⇒(i) If M is semisimple, then M is trivially a Baer module. Next, assume that

M is torsion-free. Then M is a free module of countable rank over R. As R is a com-
mutative PID, M has the SSIP (see [247, Exercise 51(c), p. 49]). Let ϕ ∈ EndR(M).
Since R is a commutative PID, R is a hereditary ring. So ϕ(M) is projective as M is
free and ϕ(M) ≤ M . Thus, Ker(ϕ) is a direct summand of M . Hence, M is a Baer
module by Theorem 4.1.21. �
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All finitely generated Baer modules over a commutative PID can be characterized
as follows.

Corollary 4.1.25 Let M be a finitely generated module over a commutative PID.
Then M is a Baer module if and only if either M is semisimple Artinian or M is
torsion-free.

Theorem 4.1.26 A module M is an indecomposable Baer module if and only if any
nonzero endomorphism of M is a monomorphism.

Proof Let M be indecomposable and Baer. Take 0 �= φ ∈ S. By Proposition 4.1.2,
Ker(φ) = Ker(Sφ) ≤⊕ M . Thus, Ker(φ) = 0 or Ker(φ) = M , and so Ker(φ) = 0.
Hence, φ is a monomorphism.

Conversely, assume on the contrary that M = M1 ⊕ M2 with M1 �= 0 and
M2 �= 0. Take φ = π1, the canonical projection of M onto M1. Then φ �= 0 and
Ker (φ)=M2 �= 0, a contradiction. Thus, M is indecomposable. Next, let I be a
left ideal of S. Then rM(I) = 0 (if I �= 0) or rM(I) = M (if I = 0). Thus, M is
Baer. �

Corollary 4.1.27 Every indecomposable Baer module is Hopfian (i.e., every epi-
morphism is an isomorphism).

Proof Let M be an indecomposable Baer module and f ∈ S an epimorphism. Then
f �= 0, so Ker(f )= 0 by Theorem 4.1.26. So f is an isomorphism. �

Exercise 4.1.28

1. ([359, Rizvi and Roman]) Let M be a K-nonsingular module. Show that M(Λ)

for any index set Λ and any direct summand of M are K-nonsingular.
2. ([357, Rizvi and Roman]) Let M be a K-nonsingular module, V � M , and

V ≤ess N ≤⊕ M . Prove that N �M .
3. ([359, Rizvi and Roman]) Assume that M is a module and S = End(M). Let

ZK(M)=∑{ϕ(M) | ϕ ∈ S and Ker(ϕ)≤ess M}, which is called the K-singular
submodule of M . Show that a module M is K-nonsingular if and only if
ZK(M)= 0.

4. ([359, Rizvi and Roman]) Let M be a module. Prove the following.
(i) ZK(M)�M and ZK(M)⊆ Z(M).

(ii) If E(M) is K-nonsingular, then M is K-nonsingular.
5. ([357, Rizvi and Roman]) Let M be a K-nonsingular module. Prove that M is

FI-extending if and only if M is strongly FI-extending (cf. Theorem 2.3.27).

4.2 Direct Sums and Endomorphism Rings of Baer Modules

We begin with showing the connections between the Baer property of a module and
that of its endomorphism ring. A characterization of a Baer module via its endomor-
phism ring is established. We shall see that a direct sum of Baer modules may not
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be Baer, in general. Some results on when a direct sum of Baer modules is Baer are
obtained. We start with the definition of retractable modules and their generaliza-
tions.

Definition 4.2.1 Let M be a right R-module and S = End(M). Then M is said to
be retractable if, for every 0 �=N ≤M , there exists 0 �= φ ∈ S such that φ(M)⊆N

(i.e., Hom(M,N) �= 0).

Examples of retractable modules include free modules, generators, and semisim-
ple modules. For a full characterization of a Baer module via its endomorphism
ring, a more general form of retractability (which we shall see that every Baer mod-
ule satisfies) is defined as follows.

Definition 4.2.2 Let M be a right R-module and S = End(M). Then M is called
quasi-retractable if Hom(M, rM(I)) �= 0 for every left ideal I of S with rM(I) �= 0.

We remark that a module MR is quasi-retractable if and only if rS(I ) �= 0 for
every left ideal I of S with rM(I) �= 0. The following fact shows that the concept of
quasi-retractability is a generalization of retractability.

Proposition 4.2.3 Every retractable module is quasi-retractable.

Proof Assume that MR is a retractable module. Take a left ideal I of S such that
rM(I) �= 0. By retractability, there is φ ∈ S with 0 �= φ(M) ⊆ rM(I). As a conse-
quence, 0 �= φ ∈ Hom(M, rM(I)). Therefore, MR is quasi-retractable. �

The next example exhibits a module which is quasi-retractable but not re-
tractable, showing that the class of retractable modules is a proper subclass of the
class of quasi-retractable modules.

Example 4.2.4 Let K be a field. Put

R =
[

K K

0 K

]

and e =
[

1 0
0 0

]

∈R.

Consider the module M = eR. Observe that S = End(MR) ∼= eRe ∼= K , which is a
field. Let I be a left ideal of S such that rM(I) �= 0. Then I = 0 and so rM(I)=M .
Hence, Hom(MR, rM(I))= End(MR)∼=K �= 0. Thus, MR is quasi-retractable. But
MR is not retractable, since the endomorphism ring of MR , which is isomorphic to
K , consists of isomorphisms and the zero endomorphism. On the other hand, as MR

is not simple, retractability of MR implies that there exist nonzero endomorphisms
of MR which are not onto (note that MR is extending and nonsingular, hence MR is
Baer by Theorem 4.1.15).

The following result shows that the property of retractability passes to arbitrary
direct sums of retractable modules.
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Proposition 4.2.5 Let {Mi}i∈Λ be a set of retractable right R-modules. Then
⊕

i∈ΛMi is retractable.

Proof Note that retractability of a right R-module M is equivalent to the fact that for
each 0 �= x ∈ M there is 0 �= φ ∈ End(M) with φ(M) ⊆ xR. Let 0 �= x ∈ ⊕i∈ΛMi .
Then there is a finite subset F ⊆ Λ such that x ∈ ⊕i∈FMi . So xR ⊆ ⊕i∈FMi .
Hence, it suffices to show that any finite direct sum of retractable modules is re-
tractable.

Let M1 and M2 be retractable and 0 �= N ≤ M1 ⊕M2. If N ∩M1 �= 0, then we
are done by the retractability of M1. Let π2 :M1 ⊕ M2 →M2 be the canonical pro-
jection. If N ∩M1 = 0, then π2(N)∼=N , so 0 �= π2(N)⊆M2. As M2 is retractable,
Hom(M2,π2(N)) �= 0. Hence Hom(M2,N) �= 0, so Hom(M1 ⊕M2,N) �= 0. Thus,
M1 ⊕ M2 is retractable. Similarly, any finite direct sum of retractable modules is
retractable. �

A direct summand of a retractable module may not be retractable, as the follow-
ing example demonstrates.

Example 4.2.6 Let M be a right R-module which is not retractable. Take P =
R ⊕ M . Then the module PR is retractable. Indeed, let 0 �= N ≤ P and take
0 �= x ∈ N . Define a homomorphism f from P to N by sending 1 ∈ R to x and
mapping elements from M to 0. Then 0 �= f ∈ Hom(P, N).

Proposition 4.2.7 A module M is retractable if and only if any direct sum of copies
of M is retractable.

Proof The necessity follows from Proposition 4.2.5. For the sufficiency, let M(Λ) be
retractable for a set Λ. Take 0 �=N ≤M , and view M as one of the direct summand
of M(Λ). Therefore, N ≤ M ≤ M(Λ). Hence, there exists 0 �= φ ∈ End(M(Λ)) with
φ(M(Λ))⊆N . As φ �= 0, there is k ∈Λ such that φ ιk �= 0, where ιk is the canonical
injection of the k-th coordinate in M(Λ). So 0 �= φ ιk ∈ Hom(M,N), thus M is
retractable. �

Next, we provide a characterization of a module M whose endomorphism ring is
a Baer ring.

Theorem 4.2.8 A module M is a Baer module if and only if S = End(M) is a Baer
ring and M is quasi-retractable.

Proof Assume that MR is Baer. Let I be a left ideal of S. Then rM(I) = eM with
e2 = e ∈ S by Proposition 4.1.2. We show that rS(I ) = eS. Indeed, as IeM = 0
from rM(I)= eM , Ie = 0 and so IeS = 0. Thus, eS ⊆ rS(I ). Next, say φ ∈ rS(I ).
Since Iφ = 0, Iφ(M)= 0 and so φ(M)⊆ rM(I)= eM . Hence, φ(m)= eφ(m) for
each m ∈M , so φ = eφ. Thus, rS(I )⊆ eS. Therefore rS(I )= eS. Thus, S is a Baer
ring. To see that MR is quasi-retractable, suppose that rM(J ) �= 0, where J is a left
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ideal of S. Then rM(J ) = fM with 0 �= f 2 = f ∈ S from Proposition 4.1.2, as M
is a Baer module. Thus 0 �= f ∈ Hom(M, rM(J )), so M is quasi-retractable.

Conversely, let S be a Baer ring and MR be quasi-retractable. Say I is a left ideal
of S. As S is a Baer ring, rS(I )= eS for some e2 = e ∈ S. So

I ⊆ �S(rS(I ))= S(1 − e),

hence eM ⊆ rM(I). Next, let m ∈ rM(I). Then 0 = Im= I (em+ (1 − e)m). Thus,
we obtain I (1 − e)m= 0 as Ie = 0. Put J = I + Se. Then

rS(J )= rS(I )∩ rS(Se)= eS ∩ (1 − e)S = 0.

Thus, rM(J )= 0 because M is quasi-retractable.
Now J (1 − e)m = 0 since I (1 − e)m = 0. Hence, (1 − e)m ∈ rM(J ). Conse-

quently, m = em and thus rM(I) ⊆ eM . So rM(I) = eM . Therefore, M is a Baer
module by Proposition 4.1.2. �

The following example shows that there is a module M whose endomorphism
ring S is Baer, but M is not a Baer module. Thus, quasi-retractability of M is re-
quired for it to be Baer.

Example 4.2.9 Let M = Zp∞ (p a prime integer), considered as a Z-module. Then
S = End(M) =̂Zp , the ring of p-adic integers. Hence, S is a Baer ring. But M is
not a Baer module.

Corollary 4.2.10 A module M is an indecomposable Baer module if and only if
S = End(M) is a domain and M is quasi-retractable.

Proof Let M be indecomposable Baer. By Theorem 4.2.8 S is a Baer ring. Say
x, y ∈ S with xy = 0. If x �= 0, then rS(x) = 0 as S is a Baer ring with trivial
idempotents, so y = 0. Thus, S is a domain. From Theorem 4.2.8, M is quasi-
retractable. Conversely, if S is a domain and M is quasi-retractable, then S is a Baer
ring, so M is a Baer module by Theorem 4.2.8. Since 0 and 1 are only idempotents
in S, M is indecomposable. �

The next corollary exhibits a relationship between certain Baer modules and ex-
tending modules when the base ring is a semiprime PI-ring.

Corollary 4.2.11 Let R be a semiprime PI-ring and n a positive integer. Then R
(n)
R

is a Baer module if and only if R(n)
R is an extending module.

Proof Note that R(n)
R is quasi-retractable. By Theorem 4.2.8, R(n)

R is a Baer module
if and only if Matn(R) is a Baer ring. The rest of the proof follows from Corol-
lary 3.3.5 (see also Exercise 6.1.18.1). �

In general, a direct sum of Baer modules is not a Baer module, as the next exam-
ples show.

Example 4.2.12 (i) Note that Z and Z2 are Baer Z-modules, but Z ⊕ Z2 is not a
Baer Z-module by Corollary 4.1.25.
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(ii) Even a (finite) direct sum of copies of a Baer module may not be Baer. Let
M = Z[x]. Then M ⊕ M is not Baer as a Z[x]-module (see Example 3.1.28 and
Theorem 4.2.8).

Definition 4.2.13 Let M and N be R-modules. We say that M is N -Rickart if
Ker(φ)≤⊕ M for each φ ∈ Hom(M,N). Modules M and N are said to be relatively
Rickart if M is N -Rickart and N is M-Rickart.

Proposition 4.2.14 Let M and N be modules. If M is N -Rickart, then U is V -
Rickart for any U ≤⊕ M and V ≤N .

Proof There exists e2 = e ∈ End(M) with U = eM . Let ψ ∈ Hom(eM,V ). Define
φ ∈ Hom(M,N) by φ(m) = ψ(em) for m ∈ M . Since M is N -Rickart, Ker(φ) =
Ker(ψ)⊕ (1 − e)M ≤⊕ M . Say M = Ker(ψ)⊕ (1 − e)M ⊕K for some K ≤ M .
Therefore eM = Ker(ψ) ⊕ [eM ∩ ((1 − e)M ⊕ K)] by the modular law because
Ker(ψ)≤ eM . So Ker(ψ)≤⊕ eM , and thus eM is V -Rickart. �

Proposition 4.2.15 Let {Mλ}λ∈Λ be a set of modules. If
⊕

λ∈ΛMλ is a Baer mod-
ule, then for all i, j ∈Λ, Mi and Mj are relatively Rickart.

Proof Put M = ⊕λ∈ΛMλ. Then M is M-Rickart by Theorem 4.1.21. From Propo-
sition 4.2.14, for all i, j ∈Λ, Mi and Mj are relatively Rickart. �

Lemma 4.2.16 Let {Mi}1≤i≤n be a finite set of modules such that Mi is Mj -
injective for all i < j , and let N be a module. Then

⊕n
i=1 Mi is N -Rickart if and

only if Mi is N -Rickart for all i = 1, . . . , n.

Proof The necessity follows from Proposition 4.2.14. Conversely, suppose that Mi

is N -Rickart for all i. We show that ⊕n
i=1Mi is N -Rickart by induction on n. Start

with n= 2. Suppose that Mi is N -Rickart for i = 1,2 and M1 is M2-injective. Say
ϕ ∈ Hom(M1 ⊕M2,N). Let ϕ1 = ϕ|M1 and ϕ2 = ϕ|M2 .

We claim that Ker(ϕ) ≤⊕ M1 ⊕ M2. For the claim, set K = Ker(ϕ). As Mi is
N -Rickart, there exists Vi such that Mi = Ker(ϕi) ⊕ Vi for i = 1,2, and hence
M = Ker(ϕ1)⊕ Ker(ϕ2)⊕V1 ⊕V2. Since Ker(ϕ1)⊕ Ker(ϕ2)≤K , by the modular
law K = Ker(ϕ1) ⊕ Ker(ϕ2) ⊕ (K ∩ (V1 ⊕ V2)). Also, since Vi ≤⊕ Mi , Vi is N -
Rickart for i = 1,2 by Proposition 4.2.14.

Now to see that V1 ∩K = Ker(ϕ|V1) = 0, we take v1 ∈ V1 ∩K . Then it follows
that 0 = ϕ(v1)= ϕ1(v1), so v1 ∈ Ker(ϕ1)∩ V1 = 0. Hence, V1 ∩K = 0. So

V1 ∩ [K ∩ (V1 ⊕ V2)] = V1 ∩K = Ker(ϕ|V1)= 0.

Since V1 is V2-injective from Propositions 2.1.5 and 2.1.6, there is L ≤ V1 ⊕ V2
such that K ∩ (V1 ⊕ V2)≤ L and V1 ⊕ V2 = V1 ⊕L from Theorem 2.1.4.

We see that Ker(ϕ|L)=K ∩L⊆K ∩ (V1 ⊕ V2)⊆ L, so we get

K ∩L⊆K ∩ (V1 ⊕ V2)⊆K ∩L.

Thus, Ker(ϕ|L)=K ∩L=K ∩ (V1 ⊕ V2).
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Now ϕ|L ∈ Hom(L,N) and L ∼= V2, thus L is N -Rickart because V2 is N -
Rickart. So K ∩ (V1 ⊕ V2) = Ker(ϕ|L) ≤⊕ L. Say L = [K ∩ (V1 ⊕ V2)] ⊕ U for
some submodule U ≤ L. Then V1 ⊕ V2 = V1 ⊕ L = V1 ⊕ [K ∩ (V1 ⊕ V2)] ⊕ U .
Therefore,

M =M1 ⊕M2 = Ker(ϕ1)⊕ Ker(ϕ2)⊕ V1 ⊕ V2 =K ⊕ V1 ⊕U,

as K = Ker(ϕ1)⊕ Ker(ϕ2)⊕ (K ∩ (V1 ⊕ V2)). Hence, M1 ⊕M2 is N -Rickart.
Put Wn := ⊕n−1

i=1Mi . From Proposition 2.1.5, Wn is Mn-injective. By induction
hypothesis, Wn is N -Rickart. Because Mn is N -Rickart, Wn ⊕Mn is N -Rickart by
similar arguments as in the preceding case for n= 2. �

In the next result, necessary conditions are provided for a direct sum of Baer
modules to be Baer (cf. Example 4.2.12). Also, under the additional requirement of
relative injectivity for each Mi , we obtain the converse for Proposition 4.2.15.

Theorem 4.2.17 Let {Mi}1≤i≤n be a finite set of Baer modules. Assume that, for
any i �= j , Mi and Mj are relatively Rickart, and Mi is Mj -injective for any i < j .
Then

⊕n
i=1 Mi is a Baer module.

Proof The result will be shown by induction n. We start with n= 2.
Step 1. Assume that n= 2. Let {φj }j∈Λ be a set of endomorphisms of M1 ⊕M2.

We claim that

K := ∩j∈ΛKer(φj )≤⊕ M1 ⊕M2.

Let π1, π2 be the canonical projections of M1 ⊕M2 onto M1 and M2, respectively,
and ι1, ι2 be the canonical injections. Then we see that

Ker(φj ) ∩ M1 = Ker(π1φj ι1)∩ Ker(π2φj ι1).

Note that Ker(π1φj ι1)≤⊕ M1, since M1 is Baer. Also as M1 and M2 are relatively
Rickart, we have that Ker(π2φj ι1) ≤⊕ M1. Note that M1 has the SSIP by Theo-
rem 4.1.21. Therefore,

Ker(φj )∩M1 = Ker(π1φj ι1)∩ Ker(π2φj ι1)≤⊕ M1.

Further, K ∩ M1 = [∩j∈ΛKer(φj )] ∩ M1 = ∩j∈Λ(Ker(φj ) ∩ M1) ≤⊕ M1 by the
SSIP of M1. Similarly, K ∩M2 ≤⊕ M2.

Say M1 = (K ∩M1)⊕U1 with some U1 ≤M1 and M2 = (K ∩M2)⊕U2 with
some U2 ≤M2. So M1 ⊕M2 = (K ∩M1)⊕ (K ∩M2)⊕U1 ⊕U2. By the modular
law, we obtain that K = (K ∩ M1) ⊕ (K ∩ M2) ⊕ (K ∩ (U1 ⊕ U2)). Now, we set
W =K ∩ (U1 ⊕U2). Then

K = (K ∩M1)⊕ (K ∩M2)⊕W

and W ∩U1 =K ∩ (U1 ⊕U2) ∩U1 =K ∩U1 = (K ∩M1) ∩U1 = 0 as U1 ⊆M1.
Similarly, W ∩U2 = 0.

It suffices to show that W ≤⊕ U1 ⊕U2 for the claim. By assumption M1 is M2-
injective. So U1 is U2-injective by Propositions 2.1.5 and 2.1.6. Since W ≤U1 ⊕U2
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and U1 ∩W = 0, there is V2 ≤ U1 ⊕ U2 with U1 ⊕ U2 = U1 ⊕ V2 and W ≤ V2 by
Theorem 2.1.4. Hence, U2 ∼= V2.

For j ∈ Λ, we put ψj = φj |U1⊕U2 : U1 ⊕ U2 → M1 ⊕ M2. Then clearly
Ker(ψj )= Ker(φj )∩ (U1 ⊕U2), therefore

∩j∈ΛKer(ψj )= [∩j∈ΛKer(φj )] ∩ (U1 ⊕U2)=K ∩ (U1 ⊕U2)=W.

Next, we observe that

M1 ⊕M2 = (K ∩M1)⊕ (K ∩M2)⊕U1 ⊕U2

= (K ∩M1)⊕ (K ∩M2)⊕U1 ⊕ V2.

Let q1, q2, q3, and q4 be the canonical projections from M1 ⊕ M2 onto K ∩ M1,
K ∩ M2, U1, and V2, respectively. Also let κ : V2 → U1 ⊕ V2 = U1 ⊕ U2 be the
canonical injection.

Note that x ∈ W if and only if ψjκ(x) = 0 for all j ∈ Λ if and only if
q1ψjκ(x)= 0, q2ψjκ(x)= 0, q3ψjκ(x)= 0, and q4ψjκ(x)= 0 for all j ∈Λ, be-
cause W ⊆ V2. Therefore,

W = ∩j∈Λ[Ker(q1ψjκ)∩ Ker(q2ψjκ)∩ Ker(q3ψjκ)∩ Ker(q4ψjκ)].
Because M2 is M1-Rickart and M2 = (K ∩ M2) ⊕ U2, U2 is K ∩ M1-Rickart by
Proposition 4.2.14.

Further, as V2 ∼= U2, V2 is K ∩ M1-Rickart. So Ker(q1ψjκ) ≤⊕ V2. Note that
M1 = (K ∩M1)⊕U1, M2 = (K ∩M2)⊕U2, and M1, M2 are relatively Rickart. So
Proposition 4.2.14 yields that U2 is U1-Rickart. Hence V2 is U1-Rickart as V2 ∼=U2,
and so Ker(q3ψjκ)≤⊕ V2.

Since M2 = (K ∩ M2) ⊕ U2 is a Baer module, U2 is K ∩ M2-Rickart by
Proposition 4.2.15. Thus, V2 is K ∩ M2-Rickart as V2 ∼= U2. So we have that
Ker(q2ψjκ) ≤⊕ V2. As U2 is a Baer module by Theorem 4.1.22, U2 is U2-Rickart
from Theorem 4.1.21, so V2 is V2-Rickart. Hence, Ker(q4ψjκ) ≤⊕ V2. Since U2
is a Baer module and V2 ∼= U2, V2 is a Baer module. Hence, V2 has the SSIP by
Theorem 4.1.21. So W ≤⊕ V2 ≤⊕ U1 ⊕U2. Thus K ≤⊕ M1 ⊕M2.

Let I be a left ideal of S = End(M1 ⊕M2). Say I =∑

i∈Λ Sφi with φi ∈ S and
i ∈ Λ. Then rM1⊕M2(I ) = ∩i∈ΛKer(φi) ≤⊕ M1 ⊕ M2 by the preceding argument.
So rM1⊕M2(I ) = f (M1 ⊕ M2) for some f 2 = f ∈ S. Thus, M1 ⊕ M2 is a Baer
module by Proposition 4.1.2.

Step 2. Assume that ⊕n−1
i=1Mi is a Baer module. We claim that ⊕n−1

i=1Mi and Mn

are relatively Rickart. First, to show that Mn is (⊕n−1
i=1 Mi)-Rickart, we assume that

f : Mn → ⊕n−1
i=1Mi is a homomorphism. Let πi be the canonical projections from

⊕n−1
i=1Mi onto Mi , for i, 1 ≤ i ≤ n−1. Then Ker(f )= ∩n−1

i=1 Ker(πif ). Because Mn

is Mi -Rickart for i, where 1 ≤ i ≤ n− 1, Ker(πif ) is a direct summand of Mn for
each i, 1 ≤ i ≤ n − 1. Thus, Ker(f ) ≤⊕ Mn from the SSIP because Mn is a Baer
module (see Theorem 4.1.21). So Mn is (⊕n−1

i=1 Mi)-Rickart.
Next, by Lemma 4.2.16, ⊕n−1

i=1Mi is Mn-Rickart. We note that ⊕n−1
i=1Mi is Mn-

injective by Proposition 2.1.5. Hence, ⊕n
i=1Mi is a Baer module by the argument in

Step 1. �
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Theorem 4.2.18 Let V be a nonsingular injective module and M be a nonsingular
extending module. Then V ⊕M is a Baer module.

Proof By Theorem 4.1.15, V ⊕E(M) is a Baer module because V ⊕E(M) is a non-
singular injective module. First, to show that V is M-Rickart, let f ∈ Hom(V ,M)⊆
Hom(V ,E(M)). Consider g ∈ End(V ⊕ E(M)) defined by g(x + y) = f (x), for
x ∈ V and y ∈ E(M). Then Ker(g) = Ker(f ) ⊕ E(M). As V ⊕ E(M) is Baer,
V ⊕ E(M) = Ker(g) ⊕ U for some U ≤ V ⊕ E(M) by Theorem 4.1.21. So
V ⊕E(M)= Ker(f )⊕E(M)⊕U . By the modular law,

V = Ker(f )⊕ (V ∩ (E(M)⊕U)).

So Ker(f )≤⊕ V , thus V is M-Rickart. As V ⊕E(M) is Baer, V is E(M)-Rickart
and E(M) is V -Rickart by Proposition 4.2.15.

Next to prove that M is V -Rickart, let ϕ ∈ Hom(M,V ). Then there exists
φ ∈ Hom(E(M),V ) an extension of ϕ. So Ker(ϕ) = Ker(φ) ∩ M ≤ess Ker(φ).
Because E(M) is V -Rickart, Ker(φ) ≤⊕ E(M). Also since M is extending,
Ker(ϕ) ≤ess L for some L ≤⊕ M . Thus Ker(ϕ) ≤ess E(L) ≤⊕ E(M). Therefore
Ker(φ) and E(L) are closures of Ker(ϕ) in E(M).

Since E(M) is nonsingular, Ker(ϕ) has a unique closure in E(M). Thus,
Ker(φ) = E(L), so L ≤ Ker(φ) ∩ M = Ker(ϕ). Hence, Ker(ϕ) = L ≤⊕ M . So M

is V -Rickart. Note that V is M-injective. From Theorem 4.1.15, M and V are Baer
modules. Thus, V ⊕M is a Baer module by Theorem 4.2.17. �

Remark 4.2.19 The preceding proof of Theorem 4.2.18 via Baer module theory was
provided by G. Lee and C. Roman using ideas from [271]. In [1], Proposition 1.8(ii)
and Corollary 3.3(i) obtained earlier by Akalan, Birkenmeier, and Tercan imply that
V ⊕M is extending for a nonsingular injective module V and a nonsingular extend-
ing module M . An application of Theorem 4.1.15 now yields that V ⊕M is Baer.

The study of rings R for which a certain class of R-modules is Baer is of natural
interest. We see that R is semisimple Artinian if and only if every R-module is Baer.

Theorem 4.2.20 The following are equivalent for a ring R.

(i) Every injective right R-module is Baer.
(ii) Every right R-module is Baer.

(iii) R is semisimple Artinian.

Proof To show (i)⇒(iii), we let B = E(M) ⊕ E(E(M)/M), where M is a right
R-module. Since B is injective, B is a Baer module by hypothesis. Let

ϕ :E(M)→E(E(M)/M) be defined by ϕ(x)= x +M

for x ∈ E(M). By Proposition 4.2.15, E(M) and E(E(M)/M) are relatively
Rickart. Thus, Ker(ϕ) = M ≤⊕ E(M), so M = E(M). Hence, every right R-
module is injective. So R is semisimple Artinian.

(iii)⇒(ii)⇒(i) are obvious. �
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Exercise 4.2.21

1. ([251, Khuri]) Let MR be a nonsingular and retractable module. Show that
End(M) is a right extending ring if and only if MR is an extending module.

2. ([360, Rizvi and Roman]) Assume that M = ⊕i∈ΛMi , where each Mi is an in-
decomposable Baer module and relatively Rickart to Mj , for every i, j ∈Λ. Let
N ≤⊕ M . Prove that for each i ∈Λ either N ∩Mi =Mi or N ∩Mi = 0.

3. ([359, Rizvi and Roman]) Let MR be a K-nonsingular continuous module. Show
that S = End(M) is regular and right continuous.

4. ([359, Rizvi and Roman]) Assume that M is a module such that End(M) is reg-
ular. Show that M is K-nonsingular.

5. ([359, Rizvi and Roman]) Let M be a retractable K-nonsingular right R-module.
Prove that End(M) is right nonsingular.

6. ([359, Rizvi and Roman]) Assume that R is a ring. Show that the following are
equivalent.

(i) Every right R-module is K-nonsingular.
(ii) Every injective right R-module is K-nonsingular.

(iii) R is semisimple Artinian.
7. ([359, Rizvi and Roman]) Assume that M is an extending module and

S = End(M) is a regular ring. Prove that M is a Baer module.
8. ([359, Rizvi and Roman]) Let MR be a Baer module with only countably many

direct summands. Show that MR is semisimple Artinian if any one of the follow-
ing conditions holds.

(i) MR is retractable and End(M) is a regular ring.
(ii) Every cyclic submodule of MR is a direct summand of MR .

(iii) For each m ∈M there is f ∈ HomR(M, R) with m=mf (m) (i.e., MR is a
regular module in the sense of Zelmanowitz [420]).

4.3 Applications to Free Modules

Results shown in previous sections are applied in this section to characterize a ring R
for which every (finitely generated) free R-module is a Baer module. It will be seen
that every free right R-module is a Baer module if and only if R is a semiprimary
hereditary ring. Also it will be shown that if R is an n-fir, then R(n)

R is a Baer module.
This result yields an example of a module M such that M(n) is Baer, but M(n+1) is
not Baer, for n > 1. The utility of the theory of Baer modules will be seen as the
results of this section are applied to consider the Baer property of various matrix
ring extensions in Sect. 6.1.

An R-module M is said to be finitely presented if there exists a short exact se-
quence of R-modules 0 → K → R(n) → M → 0, where n is a positive integer
and K is a finitely generated R-module. The following result is due to Chase [114,
Theorem 3.3] which characterizes when the direct product of projective modules is
projective.
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Theorem 4.3.1 For a ring R, the following are equivalent.

(i) The direct product of any family of projective right R-modules is projective.
(ii) The direct product of any family of copies of RR is projective.

(iii) The ring R is right perfect, and every finitely generated left ideal is finitely
presented.

A ring satisfying the condition “every finitely generated left ideal is finitely pre-
sented” in Theorem 4.3.1(iii) is called a left coherent ring. A right coherent ring is
defined similarly.

Proposition 4.3.2 Let R be a semiprimary ring. Then R is right hereditary if and
only if R is left hereditary.

Proof See [262, Corollary 5.71]. �

The following result provides a characterization of rings R for which every free
R-module is Baer.

Theorem 4.3.3 The following are equivalent for a ring R.

(i) Every free right R-module is a Baer module.
(ii) Every projective right R-module is a Baer module.

(iii) R is a semiprimary hereditary (Baer) ring.

Proof (i)⇔(ii) The equivalence follows from Theorem 4.1.22.
(i)⇒(iii) Let I be a right ideal of R. Then there exist a free R-module FR and

an epimorphism f : FR → IR . Thus, f can be viewed as an endomorphism of FR .
As FR is Baer, Ker(f ) ≤⊕ F by Theorem 4.1.21, so IR is isomorphic to a direct
summand of FR . Thus, IR is projective, so R is right hereditary.

To show that R is semiprimary, we prove first that R is right perfect. For this,
let M be an arbitrary direct product of copies of RR , say M = RJ . There is a set A
such that we can construct a short exact sequence of right R-modules

0 →K →R(A) ϕ→M → 0.

Then K = ∩j∈JKer(πjϕ), where πj is the canonical projection from M onto its
j -th component. But each πjϕ can be viewed as an endomorphism of R(A), so
Ker(πjϕ) ≤⊕ R(A) from Theorem 4.1.21 as R(A) is a Baer module. Further, R(A)

has the SSIP by Theorem 4.1.21. So K = ∩j∈JKer(πjϕ) ≤⊕ R(A). Thus M is iso-
morphic to a direct summand of R(A), hence M is projective. By Theorem 4.3.1, R
is right perfect. So R/J (R) is semisimple Artinian and thus R is orthogonally finite.
From 1.1.14, R satisfies DCC on principal left ideals. Therefore R is left π -regular
(i.e., R is strongly π -regular). Moreover, since R is a Baer ring, R is semiprimary
by Theorem 3.1.26.

(iii)⇒(i) Let F be a free right R-module. Since R is right hereditary, Image(ϕ)
is projective for each ϕ ∈ End(FR). Therefore ϕ splits, and so Ker(ϕ) ≤⊕ F . We
only need to show that F satisfies the SSIP to obtain that F is a Baer module by
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Theorem 4.1.21. As R is semiprimary and right hereditary, R is left hereditary from
Proposition 4.3.2. Let I be a finitely generated left ideal of R. Then RI is projective
since R is (left) hereditary. So there is a positive integer k such that the short exact
sequence

0 → RK → RR
(k) g→ RI → 0

splits, where K = Ker(g). Hence RK is a direct summand of RR
(k), so RK is

finitely generated. Thus, every finitely generated left ideal of R is finitely presented.
Using Theorem 4.3.1, the direct product of any family of projective right R-modules
is projective since R is semiprimary.

To show that F satisfies the SSIP, let {Vj }j∈Λ be an arbitrary family of direct
summands of F . Say Wj ≤⊕ F such that F = Vj ⊕ Wj for each j ∈ Λ. Now we
define Ππj : F →∏

j∈ΛWj by (Ππj )(x)= (πj (x)) ∈∏j∈ΛWj , where πj is the
canonical projection from F = Vj ⊕Wj to Wj . Since

∏

j∈ΛWj is a direct product
of projective modules, it is projective. Thus the submodule Image(Ππj ), of the
module

∏

j∈ΛWj , is projective as R is right hereditary. So the short exact sequence,

0 → ∩j∈ΛVj → F
Ππj→ Image(Ππj )→ 0

splits, and hence ∩j∈ΛVj ≤⊕ F . Thus, F satisfies the SSIP. From Theorem 4.1.21,
F is a Baer module. �

In Example 4.2.12(ii), we observed that even a (finite) direct sum of copies of a
Baer module M may not Baer. The next result provides a characterization for this
to happen for an arbitrary direct sum when M is finitely generated and retractable.
For a ring A and a nonempty ordered set Γ , CFMΓ (A) denotes the ring of Γ × Γ

column finite matrix ring over A.

Corollary 4.3.4 Let M be a finitely generated retractable right R-module. Then an
arbitrary direct sum of copies of M is a Baer module if and only if S = End(M) is
semiprimary hereditary.

Proof We note that, for a finitely generated module M and S = End(M), End(M(J ))∼= CFMJ (S), where J is an arbitrary nonempty set. So, if M(J) is a Baer module,
its endomorphism ring is a Baer ring by Theorem 4.2.8. Thus CFMJ (S) is a Baer
ring. So S

(J )
S is a Baer module by Theorem 4.2.8 since S(J )S is retractable. Hence, S

is semiprimary hereditary by Theorem 4.3.3.
Conversely, for an arbitrary set J , S(J )S is a Baer module by Theorem 4.3.3. So

CFMJ (S) is a Baer ring by Theorem 4.2.8. Thus, End(M(J )) is a Baer ring because
End(M(J )) ∼= CFMJ (S). Since M(J) is also retractable from Proposition 4.2.5,
M(J) is a Baer module by Theorem 4.2.8. �

A module MR is called torsionless if it can be embedded in a direct product of
copies of RR . The following result characterizes a ring R for which every finitely
generated free right R-module is a Baer module.
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Theorem 4.3.5 The following are equivalent for a ring R.

(i) Every finitely generated free right R-module is a Baer module.
(ii) Every finitely generated projective right R-module is a Baer module.

(iii) Every finitely generated torsionless right R-module is projective.
(iv) Every finitely generated torsionless left R-module is projective.
(v) Matn(R) is a Baer ring for every positive integer n.

Proof (i)⇔(ii) The equivalence is a direct consequence of Theorem 4.1.22.
(i)⇒(iii) Let M be a finitely generated torsionless right R-module. Then there ex-

ist sets A and B with A finite, and ϕ ∈ Hom(R
(A)
R ,RB

R) where M = Image(ϕ)⊆RB .
In the short exact sequence of right R-modules

0 → Ker(ϕ)→R(A) ϕ→M → 0,

Ker(ϕ) = ∩b∈BKer(πbϕ), where πb is the canonical projection of RB onto its b-th
component. But each πbϕ can be considered as an endomorphism of R(A).

Because R
(A)
R is a Baer module, by Theorem 4.1.21 Ker(πbϕ) ≤⊕ R

(A)
R and

Ker(ϕ) = ∩b∈BKer(πbϕ) ≤⊕ R
(A)
R . Therefore, M is isomorphic to a direct sum-

mand of R(A)
R , so M is projective.

(iii)⇒(i) Let A be a finite set. Take ϕ ∈ End(R(A)
R ). Then Image(ϕ) is a finitely

generated torsionless R-module. Thus Image(ϕ) is projective by assumption, so the
short exact sequence

0 → Ker(ϕ)→R(A) ϕ→ Image(ϕ)→ 0

splits. Hence, Ker(ϕ) ≤⊕ R
(A)
R . To show that R(A)

R is a Baer module, by The-

orem 4.1.21, we only need to prove that R
(A)
R satisfies the SSIP. For this, let

{Vb}b∈B be a family of direct summands of R(A), where B is an index set. Say
R(A) = Vb ⊕ Wb for some submodule Wb for each b ∈ B . Let ϕb : R(A) → Wb be
the canonical projection, where b ∈ B . Then Vb = Ker(ϕb) for b ∈ B .

Now we define Πb∈Bϕb : R(A) → (R(A))B by (Πb∈Bϕb) (x) = (ϕb(x))b∈B for
x ∈R(A). From the following short exact sequence

0 → Ker(Πb∈Bϕb)→R(A) Πb∈Bϕb→ Image(Πb∈Bϕb)→ 0,

we see that Image(Πb∈Bϕb) is a finitely generated torsionless R-module as R(A)
R

is finitely generated, hence it is projective. So Ker(Πb∈Bϕb) ≤⊕ R
(A)
R . Note that

∩b∈BKer(ϕb) = Ker(Πb∈Bϕb) ≤⊕ R
(A)
R . Thus ∩b∈BVb ≤⊕ R

(A)
R , and hence R

(A)
R

has the SSIP. So R
(A)
R is a Baer module by Theorem 4.1.21.

(i)⇔(v) It follows from Theorem 4.2.8 since any free right R-module is re-
tractable.

(iv)⇒(v) Assume that (iv) holds. From the left-sided version of (i)⇔(iii), every
finitely generated free left R-module is a Baer module. Thus RR

(n) is a Baer module
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for every positive integer n, and hence End( RR(n)) ∼= Matn(R) is a Baer ring by
Theorem 4.2.8.

(v)⇒(iv) Assume that Matn(R) is a Baer ring for every positive integer n. Then
by Theorem 4.2.8, RR

(n) is a Baer module for every positive integer n. Thus, we
obtain (iv) from the left-sided version of (i)⇒(iii). �

We will discuss C∗-algebras and AW ∗-algebras in Sect. 10.3, but it is worth-
while to mention that every AW ∗-algebra is a Baer ring. Hilbert C∗-modules are
introduced in [17] and [105]. For the convenience of the reader, we include a defi-
nition for the next consequence of Theorem 4.3.5.

Let A be a C∗-algebra. A right A-module M is called a (right) Hilbert A-module
[17, p. 38] (also called a (right) C∗-module in [105, Definition 8.1.1]) if there is
an A-valued inner product 〈 , 〉 satisfying the following properties for all x, y, z in
M,a in A, and α,β in C:

(i) 〈x,αy + βz〉 = α〈x, y〉 + β〈x, z〉;
(ii) 〈x, ya〉 = 〈x, y〉a;

(iii) 〈y, x〉 = 〈x, y〉∗;
(iv) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0;
(v) M is complete with respect to the norm given by ||x||2 = ||〈x, x〉||.

Corollary 4.3.6 Any finitely generated right Hilbert A-module over an AW ∗-
algebra A is a Baer module.

Proof Say M is a finitely generated right Hilbert A-module over an AW ∗-algebra
A. Then M is a finitely generated projective right A-module (see [105, p. 352(a)]).
Since A is an AW ∗-algebra, Matn(A) is an AW ∗-algebra for all positive integers n
(see [45, Corollary 62.1]). Hence, Matn(A) is a Baer ring. By Theorem 4.3.5, every
finitely generated projective right A-module is a Baer module. Therefore, M is a
Baer module. �

For a positive integer n, recall that an n-generated module means a module which
is generated by n elements. A ring R is said to be right n-hereditary if every n-
generated right ideal of R is projective. Thus, a ring R is right semihereditary if
and only if it is right n-hereditary for all positive integers n. Given a fixed positive
integer n, we obtain the following characterization for every n-generated free R-
module to be Baer.

Corollary 4.3.7 Let R be a ring and n a positive integer. Then the following are
equivalent.

(i) Every n-generated free right R-module is a Baer module.
(ii) Every n-generated projective right R-module is a Baer module.

(iii) Every n-generated torsionless right R-module is projective (thereforeR is right
n-hereditary).

(iv) Matn(R) is a Baer ring.
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Proof The proof follows the same outline as in Theorem 4.3.5, where we replace
“finite” with “n elements”. �

Corollary 4.3.8 Let R be a ring. Then R is a Baer ring if and only if every cyclic
torsionless right R-module is projective.

Proof It is an immediate consequence of Corollary 4.3.7. �

Definition 4.3.9 A ring R is said to be an n-fir if any right ideal of R generated by
at most n elements is free of unique rank.

We note that if R is an n-fir, then R is a domain. Indeed, take a ∈ R. Then
aR ∼= R/rR(a). As R is an n-fir, aRR is free. Now R = rR(a) ⊕ V as right R-
modules, where VR ∼= aRR , shows that rR(a) is a homomorphic image of R, hence
rR(a) is principal. So rR(a) is free. By the uniqueness of the rank of RR , either
rR(a)= 0 or aR = 0. Thus, R is a domain (see [130] for more details on n-firs).

Recall that a ring R is said to have IBN (invariant basis number) if each finitely
generated free right R-module has a unique rank. Thus, a ring has IBN if and only
if R(m)

R
∼= R

(n)
R with m,n positive integers implies that m= n. It is well-known that

every right Ore domain has IBN. See [342, p. 18] or [262, p. 3] for rings with IBN.
We note that if M ⊕M is an injective module, a quasi-injective module, a con-

tinuous module, or a quasi-continuous module, respectively, then so is M ⊕M ⊕M

(see Corollary 2.2.3, Theorems 2.2.5, and 2.2.16). In contrast, if M ⊕M is a Baer
module, it does not imply that M ⊕M ⊕M is also Baer. To see this, we begin with
the next lemma.

Lemma 4.3.10 Let R be an n-fir. Then:

(i) Any submodule of a free right R-module generated by at most n elements is
free.

(ii) If R(m)
R

∼=R
(k)
R with 1 ≤m≤ n and k a positive integer, then m= k.

Proof (i) Let F be a free right R-module and M be a submodule of F generated
by at most n elements. Then M is a submodule of a free right R-module with finite
rank. So we may assume that F =R

(�)
R for some positive integer � since M can only

involve finitely many components of F .
We use induction on �. If � = 1, then M is free by Definition 4.3.9. Assume

that every submodule of R
(�−1)
R generated by at most n elements is free. Let

π :R(�) =R(�−1) ⊕R →R be the canonical projection on the last component R
of R(�). Then π(M) is generated by at most n elements, so π(M) is free since R is
an n-fir. Hence, the short exact sequence

0 → Ker(π |M)→M → π(M)→ 0

splits, so M ∼= Ker(π |M) ⊕ π(M). Also Ker(π |M) ≤ Ker(π) = R(�−1). By induc-
tion hypothesis, Ker(π |M) is a free module. So M is a free module.
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(ii) As was noted before, R is a domain. If R is right Ore, then R has IBN.
Therefore, any finitely generated free right R-module has a unique rank.

Next, assume that R is not right Ore. Then there are two nonzero elements
a, b ∈R with aR ∩ bR = 0. Hence

bR + abR + a2bR + · · · = bR ⊕ abR ⊕ a2bR ⊕ · · · ,
and aibRR

∼= RR for each i. Let 1 ≤ m≤ n and assume that R(m)
R

∼= R
(k)
R . We note

that R(m)
R

∼= bRR ⊕ abRR ⊕ · · · ⊕ am−1bRR.

Because 1 ≤m≤ n and bRR ⊕ abRR ⊕ · · · ⊕ am−1bRR
∼= R(k) by assumption,

we see that m = k as R is an n-fir and bRR ⊕ abRR ⊕ · · · ⊕ am−1bRR is a right
ideal of R generated by m elements. �

Theorem 4.3.11 Let R be an n-fir. Then R
(n)
R is a Baer module. Hence, Matn(R) is

a Baer ring.

Proof Since R is an n-fir, it is a domain. Thus, R is a Baer ring and so RR is a Baer
module. We prove the result by induction on n.

Assume that R is a 2-fir. We claim that R(2)
R is a Baer module. First, we show

that R(2)
R satisfies the SSIP. For this, take a set of nonzero proper direct summands

{Ni}i∈Λ of R(2)
R , and fix an index i0 ∈Λ. Then R

(2)
R =Ni0 ⊕ V for some V ≤ R

(2)
R .

By Lemma 4.3.10(i), Ni0 and V are free. As Ni0 and V must have lower rank than

that of R(2)
R (otherwise conflicting with the uniqueness of rank of R(2)

R ), we obtain
that Ni0

∼=RR
∼= V . Thus, Ni0 and V are Baer modules. Since RR is a Baer module,

Ni0 and V are relatively Rickart by Proposition 4.2.15.
By the same argument, Ni

∼= RR and so, for each i ∈ Λ, Ni
∼= Ni0 . For i ∈ Λ,

say R
(2)
R = Ni ⊕ Vi for some Vi . Then similarly Ni and Vi are relatively Rickart.

Hence, Ni0 and Vi are relatively Rickart for each i ∈Λ.
Let πi : Ni ⊕ Vi → Vi be the canonical projection for each i ∈ Λ. Then

Ker(πi |Ni0
) = Ni0 ∩ Ni ≤⊕ Ni0 for each i ∈ Λ because Ni0 is Vi -Rickart. Since

Ni0 is a Baer module, it has the SSIP from Theorem 4.1.21. Thus, we obtain that

∩i∈ΛNi = ∩i∈Λ(Ni0 ∩Ni)≤⊕ Ni0 ≤⊕ R
(2)
R . So R

(2)
R has the SSIP.

The image of every endomorphism of R(2)
R is free from Lemma 4.3.10(i). So

the kernel of every endomorphism of R(2)
R is a direct summand of R(2)

R . By Theo-

rem 4.1.21, R(2)
R is a Baer module.

We suppose that if a ring T is an (n − 1)-fir, then T
(n−1)
T is a Baer module.

Let R be an n-fir. To prove that R(n)
R is a Baer module, take ϕ ∈ End(R(n)). Then

Image(ϕ) is generated by n elements. Thus, Image(ϕ) is a free R-module from
Lemma 4.3.10(i). Hence, the short exact sequence

0 → Ker(ϕ)→R
(n)
R → Image(ϕ)→ 0

splits. Therefore, Ker(ϕ) ≤⊕ R
(n)
R . Thus to show that R(n)

R is a Baer module, we

only need to prove that R(n)
R has the SSIP by Theorem 4.1.21. Let {Ni}i∈Λ be a set
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of nonzero proper direct summands of R(n)
R . Select one particular direct summand

Ni0 ∈ {Ni}i∈Λ. Then R
(n)
R = Ni0 ⊕ V for some V ≤ R

(n)
R . By Lemma 4.3.10(i),

Ni0
∼=R

(k)
R and V ∼=R

(s)
R . Thus, R(n)

R
∼=R

(k)
R ⊕R

(s)
R =R

(k+s)
R . Thus, n= k+ s from

Lemma 4.3.10(ii). So 1 ≤ k ≤ n− 1.
Note that R is also a k-fir, so R

(k)
R is a Baer module by induction hypothesis,

and Ni0 is a Baer module since Ni0
∼= R

(k)
R with 1 ≤ k ≤ n − 1. For each i ∈ Λ,

say R
(n)
R = Ni ⊕ Vi for some Vi ≤ R

(n)
R . Then Vi is free by Lemma 4.3.10(i). Let

ϕi ∈ HomR(Ni0,Vi). Then ϕi(Ni0) is a free R-module by Lemma 4.3.10(i). So
Ker(ϕi)≤⊕ Ni0 . Thus, Ni0 is Vi -Rickart for i ∈Λ.

Let πi : Ni ⊕ Vi → Vi be the canonical projection for each i ∈ Λ. Then
Ker(πi |Ni0

) = Ni0 ∩ Ni ≤⊕ Ni0 for each i ∈ Λ because Ni0 is Vi -Rickart. Since
Ni0 is a Baer module, it has the SSIP from Theorem 4.1.21. As a consequence,

∩i∈ΛNi = ∩i∈Λ(Ni0 ∩ Ni) ≤⊕ Ni0 ≤⊕ R
(n)
R . So R

(n)
R has the SSIP. By Theo-

rem 4.1.21, R(n)
R is a Baer module. �

Example 4.3.13, due to Cohn and Jøndrup, shows that for each positive integer
n, there exists a module M such that M(n) is a Baer module, but M(n+1) is not Baer
(see [239]). First, a result from the same paper is the following.

Theorem 4.3.12 For every integer n ≥ 1, there exists a ring R such that any n-
generated left ideal is flat, while there exists a nonflat (n+ 1)-generated left ideal.
We can choose R to be an n-fir.

Proof See [239, Theorem 2.3]. �

Example 4.3.13 Let n be a positive integer and let R be the K-algebra (K is a
field) on the 2(n+ 1) generators xi, yi, i = 1, . . . , n+ 1, with the defining relation
x1y1 + · · · + xnyn + xn+1yn+1 = 0.

It is shown that R is an n-fir [239, Example]. Hence R
(n)
R is a Baer module by

Theorem 4.3.11. However, not every (n+ 1)-generated left ideal of R is flat [239,
Example]. Thus R is not left (n + 1)-hereditary, so RR

(n+1) is not a Baer module
by the left-sided version of Corollary 4.3.7. Whence Matn+1(R) is not a Baer ring
from Theorem 4.2.8. So R

(n+1)
R is not a Baer module again by Theorem 4.2.8.

Exercise 4.3.14

1. ([360, Rizvi and Roman]) Let MR be a retractable Baer right R-module and let
S = End(M). Prove that any finite direct sum of copies of M is a Baer module
if and only if S is left semihereditary and right Π -coherent. (A ring R is called
right Π -coherent if every finitely generated torsionless right R-module is finitely
presented. A left Π -coherent ring is defined similarly.)

2. ([360, Rizvi and Roman]) Let MR be a K-nonsingular right R-module and
S = End(M). Show that the following hold true.
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(i) If M(n) is extending, where n is a positive integer, then every n-generated
torsionless right S-module is projective. Therefore, S is a right n-hereditary
ring.

(ii) If M(n) is extending for every positive integer n, then S is a right semihered-
itary and left Π -coherent ring.

(iii) If M is finitely generated and M(Λ) is extending for every index set Λ, then
S is a semiprimary hereditary ring.

3. Prove Theorem 4.3.12.

4.4 Applications to Type Theory

A useful type theory was provided by Kaplansky [246] for Baer rings who classified
Baer rings into five types and showed that every Baer ring can be uniquely decom-
posed as a ring direct sum of these five types (Theorem 4.4.7). As a generalization
of this theory, Goodearl and Boyle [184] established a type theory for nonsingular
injective modules following similar lines as the one done by Kaplansky for Baer
rings. One benefit of such a decomposition into types is that one can then study
each type separately in a more effective manner and obtain a better understanding
of the structure.

We apply K-nonsingularity to various generalizations of injective modules, such
as the extending modules or the (quasi-)continuous modules to extend and general-
ize a number of results from the type theory of Kaplansky [246], and of Goodearl
and Boyle [184]. In particular, we weaken the hypotheses for the existing type the-
ory for nonsingular injective modules in two ways: Firstly, we replace the nonsin-
gular condition in the hypothesis by the more general K-nonsingular condition, and
secondly, we replace the class of injective modules by the larger and more general
class of extending (or continuous) modules. Internal characterizations for type I, II,
and type III K-nonsingular continuous modules are obtained similar to the case of
nonsingular injective modules.

A module M is called Abelian if the endomorphism ring of M is an Abelian ring
(i.e., every idempotent is central). A characterization of Abelian modules on the
lines of Goodearl and Boyle [184] is provided. Our proof, however, is for arbitrary
modules instead of nonsingular injective ones.

Theorem 4.4.1 The following are equivalent for a module M .

(i) M is Abelian.
(ii) Every direct summand of M is fully invariant.

(iii) Isomorphic direct summands of M are equal.
(iv) If N1 and N2 are direct summands of M and N1 ∩ N2 = 0, then

Hom(N1,N2)= 0.

Proof (i)⇒(ii) Let N ≤⊕ M . Then N = eM for some e2 = e ∈ S, where
S = End(M). Since M is Abelian, e is central and so ϕ(eM) = e(ϕM) ⊆ eM for
each ϕ ∈ S. Thus N = eM �M .
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(ii)⇒(iii) Let N1,N2 ≤⊕ M and f : N1 → N2 be an isomorphism. Put
M =N1 ⊕ V with V ≤ M . As N2 � M , N2 = (N2 ∩ N1) ⊕ (N2 ∩ V ) (Ex-
ercise 2.1.37.2). We claim that N2 ∩ V = 0. Note that N2 ∩ V ≤⊕ N2, so
f−1(N2 ∩ V )≤⊕ N1. Hence, N1 = f−1(N2 ∩ V )⊕W for some W ≤N1.

Define g : N1 → V which is equal to f on f−1(N2 ∩ V ) and zero on W . Then
g(N1) = N2 ∩ V . Extend g to h ∈ S = End(M) by h(x) = g(x) for x ∈ N1 and
h(x)= 0 for x ∈ V .

As N1 � M by hypothesis, g(N1) = h(N1) ⊆ N1. So N2 ∩ V = g(N1) ⊆ N1,
hence N2 ∩ V ⊆ N1 ∩N2. Thus, N2 ∩ V = (N2 ∩ V ) ∩ (N1 ∩N2) = 0. Therefore,
we have that N2 = (N2 ∩N1)⊕ (N2 ∩ V ) = N2 ∩N1. Hence N2 ⊆ N1. Similarly,
N1 ⊆N2. Therefore, N1 =N2.

(iii)⇒(iv) Let N1, N2 ≤⊕ M with N1 ∩ N2 = 0. Assume on the contrary that
Hom(N1,N2) �= 0. Say 0 �= ϕ ∈ Hom(N1,N2). Let M =N1 ⊕ V with V ≤M , and
let π : M → V be the canonical projection. If πϕ(N1) = 0, then we obtain that
0 �= ϕ(N1)⊆N2 ∩N1 = 0, a contradiction. Hence, πϕ(N1) �= 0.

Let P = {n + πϕ(n) | n ∈ N1} ≤ M . Then P ∩ V = 0 and M = P + V . Thus,
M = P ⊕ V . Since M = N1 ⊕ V , N1 ∼= P and thus N1 = P by hypothesis. For
n ∈ N1, n + πϕ(n) ∈ N1 and so πϕ(n) ∈ N1 ∩ V = 0. Thus πϕ(n) = 0 for any
n ∈N1, so πϕ(N1)= 0, a contradiction. Hence, Hom(N1,N2)= 0.

(iv)⇒(i) Take e2 = e ∈ S = End(M). Let N1 = eM and N2 = (1 − e)M . Then
(1−e)Se = Hom(N1,N2)= 0. Also eS(1−e)= Hom(N2,N1)= 0. Consequently,
we get e ∈ S�(S)∩ Sr (S)= B(S) by Propositions 1.2.2 and 1.2.6(i), so e is central.
Therefore, M is Abelian. �

Proposition 4.4.2 Let M be an Abelian Baer module. If N ≤⊕ M , then N is an
Abelian Baer module.

Proof Let V ≤⊕ N . As M is Abelian, V � M by Theorem 4.4.1. Note that any
endomorphism of N is extended to an endomorphism of M . So V �N , hence from
Theorem 4.4.1, N is Abelian. By Theorem 4.1.22, N is Baer. �

Definition 4.4.3 An idempotent endomorphism e of M is said to be directly finite
if eM is a directly finite module.

We note that a module M is directly finite if and only if End(M) is directly finite.
Thus for e2 = e ∈ End(M), e is directly finite if and only if End(eM) is a directly
finite ring. We remark that Lemma 4.4.4(ii) has been used in Sect. 2.2 implicitly.

Lemma 4.4.4 (i) Every Abelian module is directly finite.
(ii) Any direct summand of a directly finite module is directly finite.

Proof (i) Say M is an Abelian module and S = End(M). Let x, y ∈ S with xy = 1.
Then (yx)2 = yx. Since M is Abelian, yx is central in S, and so

1 = (xy)(xy)= x(yx)y = (yx)(xy)= yx.

Hence, M is directly finite.
(ii) The proof is routine. �
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Let R be a Baer ring and x ∈ R. Take U = {ui | i ∈ Λ}, the set of all central
idempotents ui of R satisfying xR ⊆ uiR. Since R is a Baer ring,

∩i∈ΛuiR = rR
({1 − ui}i∈Λ

)= eR

for some e2 = e ∈ R. Further, rR({1 − ui}i∈Λ) = �R({1 − ui}i∈Λ) = Rf for some
f 2 = f ∈R. We note that e ∈ S�(R) and f ∈ Sr (R).

Because eR = Rf , e = f ∈ S�(R) ∩ Sr (R) = B(R) from Proposition 1.2.6(i).
If xR ⊆ wR with w2 = w ∈ B(R), then eR ⊆ wR. So e is the smallest central
idempotent in R satisfying xR ⊆ eR (i.e., x = ex). We write e = C(x) and e is
called the central cover of x.

Definition 4.4.5 (i) A nonzero idempotent e in a Baer ring is called faithful if
C(e) = 1. Equivalently, e is faithful if 0 is the only central idempotent orthogonal
to e.

(ii) An idempotent f of a ring R is said to be Abelian if the ring fRf is Abelian.
(iii) An idempotent g of a ring R is called directly finite if the ring gRg is directly

finite.

Next, we include the description of the various types which occur in the decom-
position theory of Baer rings, from Kaplansky [246].

Definition 4.4.6 A Baer ring is said to be of type I if it has a faithful Abelian idem-
potent. A Baer ring is said to be of type II if it has a faithful directly finite idempo-
tent, but no nonzero Abelian idempotents. A Baer ring is said to be of type III if it
has no nonzero directly finite idempotents. A Baer ring is called purely infinite if it
has no nonzero central directly finite idempotents.

A Baer ring of type If means a Baer ring of type I which is directly finite, while
a Baer ring of type I∞ means a Baer ring of type I which is purely infinite. A Baer
ring of type II which is directly finite is called a Baer ring of type IIf . Also a Baer
ring of type II which is purely infinite is called a Baer ring of type II∞.

In [246], Kaplansky proved that a Baer ring decomposes uniquely into a ring
direct sum of these five components, as described in the following result.

Theorem 4.4.7 A Baer ring decomposes uniquely into a ring direct sum of Baer
rings of types If ; I∞; IIf ; II∞; and III.

We now define the five types of K-nonsingular extending modules in terms of
the types of their endomorphism rings.

Definition 4.4.8 We call a K-nonsingular extending module M of type T if the
endomorphism ring, S = End(M) is of type T, where T ∈ {If , I∞, IIf , II∞, III}.

Note that this definition is meaningful, since the endomorphism ring of a K-
nonsingular extending module is Baer by Theorems 4.1.15 and 4.2.8. At the same
time, this type theory applies, respectively, to the class of K-nonsingular quasi-
continuous modules and to that of K-nonsingular continuous modules. The types
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given in Definition 4.4.8 coincide with those given in [184] for the case when M is
nonsingular and injective. Now we come to the main theorem of the section, which
provides a unique decomposition of a K-nonsingular extending module into the five
types listed.

Theorem 4.4.9 Any K-nonsingular extending module decomposes uniquely into a
direct sum of fully invariant direct summands of types If ; I∞; IIf ; II∞; and III.

Proof Let M be a K-nonsingular extending module. Then S = End(M) is a Baer
ring by Theorems 4.1.15 and 4.2.8. So S decomposes uniquely, as a ring direct sum,
into S = eIf S ⊕ eI∞S ⊕ eIIf S ⊕ eII∞S ⊕ eIIIS, where eT is a central idempotent
in S and eTS is of type T with T in {If , I∞, IIf , II∞, III}. Since this is a ring direct
sum decomposition,

M = eIf M ⊕ eI∞M ⊕ eIIf M ⊕ eII∞M ⊕ eIIIM

has the property that each of five direct summands is a fully invariant direct sum-
mand of M (each idempotent occurring is central). Because (C1) condition is inher-
ited by direct summands, each of five direct summands is K-nonsingular extending
(see Exercise 4.1.28.1). The endomorphism ring of eIf M is eIf SeIf = eIf S, so eIf M

is of type If ; the endomorphism ring of eI∞M is eI∞SeI∞ = eI∞S, hence eI∞M is
of type I∞. The proof follows similarly for the remaining direct summands.

To prove uniqueness, say M = gIf M ⊕ gI∞M ⊕ gIIf M ⊕ gII∞M ⊕ gIIIM

is another decomposition with each direct summand fully invariant, and each di-
rect summand of, respectively, type If ; I∞; IIf ; II∞; and III. Then we see that
S = gIf S ⊕ gI∞S ⊕ gIIf S ⊕ gII∞S ⊕ gIIIS is a ring direct sum decomposition.
Because the type decomposition for Baer rings is unique, eIf S = gIf S and there-
fore eIf M = gIf M . Similar equalities hold for the remaining four types. �

For a K-nonsingular extending module M , we put MI = eIf M ⊕ eI∞M ,
MII = eIIf M ⊕ eII∞M , and MIII = eIIIM . Then MI is of type I, MII is of type II, and
MIII is of type III. Further, M =MI ⊕MII ⊕MIII is the unique decomposition into
direct summands of types I, II, and III. These direct summands are fully invariant.
Recall that modules U and V are said to be orthogonal if U and V have no nonzero
isomorphic submodules.

Corollary 4.4.10 Every K-nonsingular (quasi-)continuous module decomposes
uniquely into a direct sum of orthogonal direct summands of types If ; I∞; IIf ;
II∞; and III.

Proof Let M be a K-nonsingular (quasi-)continuous module. Then from The-
orem 4.4.9 and Lemma 2.2.4, M = MIf ⊕ MI∞ ⊕ MIIf ⊕ MII∞ ⊕ MIII, such
that MT a K-nonsingular (quasi-)continuous module of type T, where T is in
{If , I∞, IIf , II∞, III}. Further, each MT is fully invariant in M . Since M is (quasi-)
continuous, MT and MT′ are relatively injective for T �= T′ by Lemma 2.2.4. Thus
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if there exist 0 �= N ≤ MT and a monomorphism ϕ : N → MT′ , we extend ϕ to
0 �= ϕ :MT →MT′ . Thus, 0 �= ϕ(MT )⊆MT ′ . This is absurd because MT �M and
MT ∩MT′ = 0. Thus MT and MT′ are orthogonal for T �= T′, where T and T′ are in
{If , I∞, IIf , II∞, III}. �

The next example shows that the type decomposition in Theorem 4.4.9 is a
proper generalization of Goodearl-Boyle type decomposition for nonsingular injec-
tive modules. Also, it demonstrates that we cannot always use the Goodearl-Boyle
type decomposition to obtain our general type decomposition.

Example 4.4.11 Let p be a prime integer. Then the Z-module M = Zp is a K-
nonsingular continuous module of type I (since it is indecomposable). But, we note
that E(M) = Zp∞ is a singular injective module, for which the type theory devel-
oped by Goodearl and Boyle does not apply.

Furthermore, Example 4.4.11 illustrates that the type decomposition for a K-
nonsingular (quasi-)continuous module M cannot, in general, be obtained simply
by going up to the injective hull E(M), decomposing it into the type decomposition
E(M) = EI ⊕ EII ⊕ EIII, where ET is of type T with T ∈ {I, II, III} and using
(quasi-)continuity of M and Theorem 2.1.25 to express

M = (M ∩E I)⊕ (M ∩E II)⊕ (M ∩EIII).

Goodearl and Boyle [184] provide a number of characterizations for nonsingular
injective modules of various types. These characterizations are extended as follows.
Some of our proofs are based on the ideas behind the proofs of Goodearl and Boyle.

Lemma 4.4.12 Assume that R is a semiprime, right extending, and right nonsingu-
lar ring. Then e2 = e ∈ R is a faithful idempotent of R if and only if fRe �= 0 for
any 0 �= f 2 = f ∈R.

Proof Note that R is a Baer ring by Theorem 3.3.1. Assume that e is faithful. As R is
semiprime and right extending, R is right strongly FI-extending by Theorem 3.2.37.
So there is h ∈ S�(R) with ReRR ≤ess hRR . By Proposition 1.2.6(ii), h is central as
R is semiprime. Since h is central, he = e, and e is faithful, it follows that h = 1
and so ReRR ≤ess RR . If 0 �= f 2 = f ∈ R, then fReR �= 0 because R is right
nonsingular. So fRe �= 0.

Conversely, let g ∈ B(R) with ge = e. Then (1 − g)Re =R(1 − g)e = 0. So we
obtain 1 − g = 0, so g = 1 and hence e is faithful. �

Theorem 4.4.13 Let M be a K-nonsingular continuous module. Then the following
are equivalent.

(i) M is of type I.
(ii) Every nonzero direct summand of M contains a nonzero Abelian direct sum-

mand.
(iii) The sum of all Abelian direct summands of M forms an essential submodule

of M .
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Proof (i)⇒(ii) Since M is of type I, there is a faithful Abelian idempotent
e ∈ S = End(M). Let 0 �=N ≤⊕ M . Then N = fM with 0 �= f 2 = f ∈ S.

We see that Δ = {g ∈ S | Ker(g) ≤ess M} = 0 by K-nonsingularity of M . From
Theorem 2.1.29, S is right continuous and regular. In particular, S is right extending,
right nonsingular, and semiprime. By Lemma 4.4.12, f Se �= 0. Let s ∈ S such that
f se �= 0. So 0 �= f seM ⊆ fM . As M is Baer from Theorem 4.1.15, Ker(f s)≤⊕ M

by Theorem 4.1.21. Also we have that Ker(f s|eM) = eM ∩ Ker(f s) ≤⊕ M by the
SSIP from Theorem 4.1.21.

By the modular law, Ker(f s|eM)≤⊕ eM . Say eM = Ker(f s|eM)⊕ V for some
V ≤ eM . Then f seM ∼= V ≤⊕ eM . Hence, f seM ≤⊕ M from (C2) condition
of M . Again by the modular law, N = fM = f seM ⊕ U for some U ≤ M . By
Proposition 4.4.2, f seM is Abelian since f seM ∼= V ≤⊕ eM and eM is Abelian.
Thus N has a nonzero Abelian direct summand f seM .

(ii)⇒(iii) Assume on the contrary that the sum of all Abelian direct summands
of M is not essential in M . Then, by (C1) condition, the sum of all Abelian direct
summands is essential in a direct summand, say N of M . Put M = N ⊕ U for
some U ≤ M . But, if U �= 0, then U contains a nonzero Abelian direct summand,
so N ∩ U �= 0, a contradiction. Thus the sum of Abelian direct summands of M is
essential in M .

(iii)⇒(i) By Theorem 4.4.9, M =MI ⊕ MII ⊕ MIII. Let N be an Abelian direct
summand of M . Because MI, MII, and MIII are fully invariant submodules of M ,
N = (N ∩ MI) ⊕ (N ∩MII) ⊕ (N ∩MIII) from Proposition 2.3.3(v). Since direct
summands of an Abelian module are Abelian by Proposition 4.4.2, and since MII
and MIII do not contain nonzero Abelian direct summands, N = N ∩ MI and so
N ⊆ MI. Thus, the sum of all Abelian direct summands is a submodule of MI. By
(iii), MI is essential in M . Therefore, M =MI because MI ≤⊕ M . �

Theorem 4.4.14 Assume that M is a K-nonsingular continuous module. Then the
following are equivalent.

(i) M is of type II.
(ii) Every nonzero direct summand of M contains a nonzero directly finite direct

summand, but M has no nonzero Abelian direct summands.
(iii) The sum of all directly finite direct summands of M is an essential submodule

of M , but M has no nonzero Abelian direct summands.

Proof (i)⇒(ii) Since M is of type II, there exists e2 = e ∈ S := End(M) which
is a faithful directly finite idempotent, but S has no nonzero Abelian idempo-
tents. So M has no nonzero Abelian direct summands. Say N = fM for some
0 �= f 2 = f ∈ S. We note that S is right continuous and regular from Theo-
rem 2.1.29 because Δ= {g ∈ S | Ker(g)R ≤ess MR} = 0 from K-nonsingularity of
M . By Lemma 4.4.12, f Se �= 0.

Take s ∈ S such that f se �= 0. Then 0 �= f seM ⊆ fM . Using the arguments
in the proof of Theorem 4.4.13, (i)⇒(ii), f seM ≤⊕ fM and f seM is isomorphic
to a direct summand of eM . As eM is directly finite, f seM is also directly finite
from Lemma 4.4.4(ii). Thus, we see that f seM is a nonzero directly finite direct
summand of fM =N .
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(ii)⇒(iii) By (C1) condition of M , the sum of all directly finite direct summands
is essential in a direct summand N of M . Let M = N ⊕ V for some V ≤ M . But,
if V �= 0, then by hypothesis, V contains a nonzero directly finite direct summand,
a contradiction. Thus V = 0, so N =M . Hence, the sum of all directly finite direct
summands of M is essential in M .

(iii)⇒(i) By Theorem 4.4.9, M = MI ⊕ MII ⊕ MIII. Let N be a directly fi-
nite direct summand of M . Then N = (N ∩ MI) ⊕ (N ∩ MII) ⊕ (N ∩ MIII) by
Proposition 2.3.3(v) because MI, MII, and MIII are fully invariant. Recall from
Lemma 4.4.4(ii) that direct summands of a directly finite module are directly fi-
nite. Hence N ∩ MI, N ∩ MII, and N ∩ MIII are directly finite. Because S has
no nonzero Abelian idempotents, MI = 0. Thus N = (N ∩ MII) ⊕ (N ∩ MIII) and
hence M = (N ∩ MII) ⊕ (N ∩ MIII) ⊕ K for some K ≤ M . By the modular law,
MIII = (N ∩MIII)⊕ V for some V ≤M . So N ∩MIII = 0 as MIII does not contain
nonzero directly finite direct summands. Thus N = N ∩ MII, so N ⊆ MII. Hence,
all directly finite direct summands of M are contained in MII. By hypothesis, MII is
essential in M . So M =MII as MII ≤⊕ M . �

Theorem 4.4.15 Let M be a K-nonsingular continuous module, and assume that
M has no nonzero Abelian direct summands. Then for each positive integer n, there
exists Mn ≤⊕ M such that M(n)

n
∼=M .

Proof We begin the proof by showing that for any 0 �=N ≤⊕ M and for each posi-
tive integer n, there is 0 �=N ′ ≤⊕ N with N ′ ∼= P (n) for some P ≤M . For this, say
0 �=N ≤⊕ M . Since N is not Abelian, there is e2 = e ∈ B := End(N), which is not
central. Hence, either (1 − e)Be �= 0 or eB(1 − e) �= 0. Without loss of generality,
let (1 − e)Be �= 0.

Put K1 = eN and K2 = (1 − e)N . Then Hom(K1,K2) = (1 − e)Be �= 0. Take
0 �= ϕ ∈ Hom(K1,K2). Say M = K1 ⊕ Y with Y ≤ M . Define φ ∈ EndR(M) such
that φ|K1 = ϕ and φ|Y = 0. Then Ker(φ)= Ker(ϕ)⊕ Y .

Since M is K-nonsingular and continuous, M is Baer from Theorem 4.1.15. So
Ker(φ) ≤⊕ M by Theorem 4.1.21. Thus, M = Ker(ϕ) ⊕ Y ⊕ U with U ≤ M . By
the modular law, K1 = Ker(ϕ)⊕ (K1 ∩ (Y ⊕U)).

Put V = K1 ∩ (Y ⊕ U). As K1 = Ker(ϕ)⊕ V , V ∼= ϕ(K1). We note that, since
K1 = eN ≤⊕ N ≤⊕ M , V ≤⊕ K1 ≤⊕ M and hence ϕ(K1)≤⊕ M by (C2) condition
of M . So by the modular law, ϕ(K1)≤⊕ K2 as ϕ(K1)≤K2.

Let N1 = V ⊕ ϕ(K1) and P1 = ϕ(K1). As V ≤⊕ eN and P1 ≤⊕ (1 − e)N ,
N1 ≤⊕ N . Note that N1 = V ⊕ ϕ(K1) ∼= ϕ(K1) ⊕ ϕ(K1) = P1 ⊕ P1. By the
same argument, there exist N2 ≤⊕ P1 and P2 ≤⊕ M such that N2 ∼= P2 ⊕ P2. So
P2 ⊕ P2 ∼=N2 ≤⊕ P1, and hence

P
(4)
2

∼=N
(2)
2 ≤⊕ P

(2)
1

∼=N1.

Again by the same argument, there exist N3 ≤⊕ P2 and P3 ≤⊕ M such that
N3 ∼= P3 ⊕ P3. Thus

P
(8)
3

∼=N
(4)
3 ≤⊕ P

(4)
2

∼=N
(2)
2 ≤⊕ P

(2)
1

∼=N1.
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Iterating this process, for each positive integer k, there exists 0 �= Pk ≤⊕ M such

that P (2k)
k is isomorphic to a direct summand of N1. We fix a positive integer n

and choose a positive integer k so that 2k ≥ n. Then P
(n)
k is isomorphic to a direct

summand, say N ′ of N1. So 0 �=N ′ ≤⊕ N1 ≤⊕ N and N ′ ∼= P
(n)
k .

Let V be the family of all nonempty sets of independent direct summands V of
M such that V ∼= P

(n)
V for some PV ≤⊕ M . Then by Zorn’s lemma, there exists a

maximal element, say Cn, in V . By (C1) condition, there exists W1 ≤⊕ M such that
⊕V ∈CnV ≤ess W1. Say M = W1 ⊕W2. If W2 �= 0, then there exists 0 �= L ≤⊕ W2
so that L∼=X(n) for some X ≤M . This contradicts the maximality of the chain Cn.
Thus, W2 = 0, so ⊕V ∈CnV ≤ess M . Hence,

E(M) = E
(⊕V ∈CnV

)∼=E
(

⊕
V ∈Cn,V∼=P

(n)
V

P
(n)
V

)

=
(

E
(

⊕
V ∈Cn,V∼=P

(n)
V

PV

))(n) =E(n),

where E = E
(

⊕
V ∈Cn,V∼=P

(n)
V

PV

)

. We obtain that E(M) = ⊕n
i=1Ei , Ei

∼= E for i

with 1 ≤ i ≤ n. Hence by Theorem 2.1.25, M = ⊕n
i=1(M ∩Ei). Moreover, M ∩Ei

and M ∩Ej are relatively injective for i �= j from Lemma 2.2.4. Also E(M ∩Ei)=
Ei

∼= Ej = E(M ∩ Ej). Therefore by Proposition 2.1.3, M ∩ Ei
∼= M ∩ Ej for

i �= j, 1 ≤ i, j ≤ n. Let Mn =M ∩E1. Then Mn ≤⊕ M and M ∼=M
(n)
n . �

Corollary 4.4.16 Let M be a K-nonsingular continuous module of type II or type
III. Then M ∼=M

(2)
2 for some M2 ≤M . Hence, M is quasi-injective.

Proof Because type II or type III K-nonsingular continuous modules do not contain
nonzero Abelian direct summands, M ∼= M

(2)
2 with M2 ≤ M by Theorem 4.4.15.

Since M is continuous, M2 is M2-injective by Lemma 2.2.4, and hence M2 is quasi-
injective. Therefore, M ∼=M

(2)
2 is quasi-injective by Corollary 2.2.3. �

We remark that, in view of Corollary 4.4.16, any K-nonsingular continuous mod-
ule is quasi-injective if and only if its type I component is quasi-injective.

Theorem 4.4.17 Let M be a K-nonsingular quasi-continuous module. Then M is
of type III if and only if N ∼= N ⊕ N for any N ≤⊕ M . In this case, M is quasi-
injective.

Proof Assume that M is of type III. It is enough to prove the statements for M since
a direct summand of a K-nonsingular quasi-continuous module is K-nonsingular
quasi-continuous, and a nonzero direct summand of a type III module is of type
III, by definition. Since no nonzero direct summands of M are directly finite, no
nonzero direct summands of E(M) are directly finite by Lemma 2.2.10(ii) and The-
orem 2.1.25.

Let V be the family of all nonempty sets of independent direct summands V of M
satisfying V ∼= V ⊕ V . By Zorn’s lemma, there exists a maximal element, say C in
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V . As E(M) is injective, there exists E1 such that ⊕V∈CV ≤ess E1 ≤⊕ E(M). Let
E(M)= E1 ⊕E2 for some E2 ≤ E(M). If E2 contains a nonzero direct summand
which is not directly finite, then by Proposition 2.2.6 there exists a nonzero direct
summand W of E2 satisfying W ∼=W ⊕W . But this contradicts the maximality of
C. So all direct summands of E2 are directly finite. But since E(M) does not have
nonzero directly finite direct summand, E2 = 0. Thus

E(M) = E (⊕V∈CV )∼=E (⊕V∈C(V ⊕ V ))

= E (⊕V∈CV ) ⊕ E (⊕V∈CV ) .

So E(M) ∼= E(M) ⊕ E(M). From this fact, we have that E(M) = A ⊕ B , where
A, B ≤E(M), A∼=E(M), and B ∼=E(M). By Theorem 2.1.25,

M = (M ∩A)⊕ (M ∩B)

since M is quasi-continuous. Note that E(M ∩ A) = A and E(M ∩ B) = B. Thus
it follows that E(M ∩ A) = A ∼= E(M) and E(M ∩ B) = B ∼= E(M). By Theo-
rem 2.2.13, M ∩A∼=M and M ∩B ∼=M . So M = (M ∩A)⊕ (M ∩B)∼=M ⊕M .

Conversely, assume that N ∼= N ⊕ N for any 0 �= N ≤⊕ M . Then N is not di-
rectly finite by Proposition 2.2.6. Thus, M is of type III by definition. Further, M is
quasi-injective because M ∼=M ⊕M by assumption. �

By Theorem 4.4.9, any K-nonsingular continuous module decomposes into a
direct sum of K-nonsingular continuous modules, of type I, II, and III, respectively.
In this case, however, the type II and type III continuous direct summands are in
fact quasi-injective by Corollary 4.4.16.

Exercise 4.4.18

1. ([359, Rizvi and Roman]) Let M = M1 ⊕ M2 be a K-nonsingular continuous
module, with M1 and M2 indecomposable modules. Then either M1 ∼= M2 (in
which case M1 and M2 are quasi-injective), or both M1 and M2 are orthogonal.

2. ([359, Rizvi and Roman]) Let M be a K-nonsingular extending module such that
S = End(M) is right and left extending, and semiprime. Prove that the following
conditions are equivalent.

(i) M is of type I.
(ii) Every nonzero direct summand of M contains a nonzero Abelian submod-

ule which is isomorphic to a direct summand of M .
(iii) The sum of all Abelian submodules which are isomorphic to direct sum-

mands of M is an essential submodule of M .
3. ([359, Rizvi and Roman]) Let M be a K-nonsingular extending module, for

which S = End(M) is right and left extending, and semiprime. Show that the
following are equivalent.

(i) M is of type II.
(ii) Every nonzero direct summand of M contains a nonzero directly finite sub-

module which is isomorphic to a direct summand of M , and S does not have
nonzero Abelian idempotents.
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(iii) The sum of all directly finite submodules which are isomorphic to direct
summands of M forms an essential submodule of M , and S does not have
nonzero Abelian idempotents.

4.5 Rickart Modules

In this section, we briefly discuss Rickart modules as a generalization of right
Rickart rings studied in Chap. 3. This can be considered as an application of the
results of Sect. 4.2. Basic definitions and properties related to Rickart modules will
be presented here. For further information, we refer the reader to [268–271], and
[273].

Definition 4.5.1 Let M be a right R-module and S = End(M). Then M is called a
Rickart module if for each φ ∈ S, rM(φ)= Ker(φ)= eM for some e2 = e ∈ S.

From Definition 4.2.13, we see that a module M is Rickart if and only if M is M-
Rickart. The concept of Rickart modules also appears in Theorem 4.1.21. Indeed,
Theorem 4.1.21 says that a module M is a Baer module if and only if M is a Rickart
module with the SSIP. In particular, an indecomposable Rickart module is always a
Baer module. Some examples of Rickart modules include the following.

Example 4.5.2 (i) Let R be a ring. Then RR is a Rickart module if R is a right
Rickart ring.

(ii) Every semisimple module is a Rickart module.
(iii) Every Baer module is a Rickart module. Hence, every nonsingular injective

(or extending) module is Rickart (see Theorem 4.1.15).
(iv) Every projective right R-module over a right hereditary ring R is a Rickart

module (see Theorem 4.5.8).
(v) The free Z-module Z

(Λ), for any nonempty index set Λ, is Rickart, while
Z
(Λ) is not a Baer Z-module if Λ is uncountable (see Remark 4.5.10). In particular,

Z(N) (∼= Z[x]) is a Rickart (and Baer) Z-module, while Z(R) is a Rickart but not a
Baer Z-module. In general, if R is a right hereditary ring which is not Baer, then
every free R-module is Rickart but not Baer (Proposition 4.5.11).

(vi) Zp∞ is injective, while Z4 is quasi-injective as Z-modules. However, neither
of these is a Rickart Z-module.

The Rickart property does not always transfer from a module to its submodules
or conversely as the next example illustrates.

Example 4.5.3 Every submodule of a Rickart module is not Rickart, in general. Let
M = Q⊕Z2, which is a Z-module (see Example 4.1.10(ii)). Then Hom(Q,Z2)= 0
and Hom(Z2,Q)= 0. Further, Q and Z2 are Baer Z-modules. Hence we see that M
is Baer (see Theorem 4.2.17), so it is Rickart. However, the submodule N := Z⊕Z2
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is not a Rickart Z-module, even though Z and Z2 are both Rickart Z-modules. In
fact, the map (m,n)→ (0,m) has the kernel 2Z⊕Z2, which is not a direct summand
of N .

Recall that a module is said to have the SIP if the intersection of any two direct
summands is a direct summand (see Definition 4.1.20). A module M is said to
satisfy (D2) condition if, for any N ≤M with M/N ∼=K ≤⊕ M , we have N ≤⊕ M .
For (D2) condition in detail, see [301].

Proposition 4.5.4 Let MR be a Rickart right R-module with S = End(M). Then:

(i) Every direct summand of M is a Rickart module.
(ii) M is K-nonsingular.

(iii) M satisfies (D2) condition.
(iv) M has the SIP.
(v) S is a right Rickart ring.

Proof (i) Let N = eM for some e2 = e ∈ S and ψ ∈ End(eM). Then we have
that Ker(ψe) = Ker(ψ) ⊕ (1 − e)M . Since ψe ∈ S, Ker(ψe) ≤⊕ M and hence
Ker(ψ)≤⊕ M . Thus, Ker(ψ)≤⊕ N by the modular law, so N is Rickart.

(ii) Assume that Ker(φ) ≤ess M , where φ ∈ S. Then Ker(φ) = M because
Ker(φ)≤⊕ M . So φ = 0.

(iii) Suppose that N ≤ M such that M/N ∼= K ≤⊕ M and M = K ⊕ U . We
let ϕ : M → M/N be the natural homomorphism and f : M/N → K be the given
isomorphism. Then f ϕ ∈ End(M) and Ker(f ϕ)=N . SinceM is Rickart, N ≤⊕ M .

(iv) Let L= eM and N = fM for some nonzero idempotents e, f ∈ S. We claim
that Ker((1 − f )e)= [eM ∩ Ker(1 − f )] ⊕ (1 − e)M . For this claim, we first take
x ∈ Ker((1 − f )e). Then (1 − f )(ex)= 0 so ex ∈ eM ∩ Ker(1 − f ). Thus

x = ex + (1 − e)x ∈ [eM ∩ Ker(1 − f )] ⊕ (1 − e)M.

The other inclusion is obvious. Since M is Rickart, Ker((1−f )e)≤⊕ M . Therefore,
we get L∩N = eM ∩ Ker(1 − f ) is a direct summand of M .

(v) Let 0 �= φ ∈ S. Then rM(φ)= eM for some e2 = e ∈ S. As φeM = 0, φe = 0.
So e ∈ rS(φ). Thus, eS ⊆ rS(φ). For ψ ∈ rS(φ), φψ = 0. As a consequence, we
obtain ψM ⊆ rM(φ)= eM , so ψ = eψ ∈ eS and hence rS(φ)⊆ eS.

Thus, eS = rS(φ). Therefore, S is a right Rickart ring. �

In reference to the endomorphism ring of a module, it is easy to see that the con-
verse of Proposition 4.5.4(v) does not hold true. In Example 4.2.9, the Z-module
Zp∞ (p is a prime integer) is not Rickart, while End(Zp∞) is a domain (hence a
Baer ring). By Proposition 4.5.4(iv), a ring R is right Rickart if and only if for any
nonempty finite subset F of R, rR(F )= eR for some e2 = e ∈R. The following ex-
ample illustrates that this cannot be improved to the case of countable subsets of R.

Example 4.5.5 Let R = {(an)∞n=1 ∈∏∞
n=1 Fn | an is constant eventually}, which is a

subring of
∏∞

n=1 Fn, where Fn = Z2 for n= 1,2, . . . . Then R is Rickart. If for any
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countable subset X of R, rR(X) = eR for some e2 = e ∈ R, then R is a Baer ring
because R itself is a countable infinite set. This is absurd since R is not Baer as seen
in Example 3.1.14(ii).

A module MR is called k-local-retractable (i.e., kernel-local-retractable) if
rM(φ)= rS(φ)(M) for any φ ∈ S.

Theorem 4.5.6 Let M be a right R-module and S = End(M). Then the following
are equivalent.

(i) M is a Rickart module.
(ii) M satisfies (D2) condition, and φ(M) is isomorphic to a direct summand of M

for any φ ∈ S.
(iii) S is a right Rickart ring and M is k-local-retractable.

Proof (i)⇒(ii) From Proposition 4.5.4(iii), M satisfies (D2) condition. For φ ∈ S,
Ker(φ) ≤⊕ M and so M = Ker(φ) ⊕ V for some V ≤ M . Thus, we have that
φ(M)∼= V ≤⊕ M .

(ii)⇒(i) Assume that ϕ ∈ S. Then ϕ(M) ∼= M/Ker(ϕ) and by assumption
ϕ(M)∼=N ≤⊕ M for some N . By (D2) condition, Ker(ϕ)≤⊕ M .

(i)⇒(iii) From Proposition 4.5.4(v), S is a right Rickart ring. For φ ∈ S,

rM(φ)= eM with e2 = e ∈ S,

and so rS(φ) = eS. Therefore rS(φ)(M) = eM = rM(φ). Hence M is k-local-
retractable.

(iii)⇒(i) Let 0 �= φ ∈ S. Then rS(φ) = eS for some e2 = e ∈ S. Because M is
k-local-retractable, rM(φ)= rS(φ)(M)= eM ≤⊕ M . �

In the following two results, we characterize the class of semisimple Artinian
rings and that of right hereditary rings via Rickart modules.

Theorem 4.5.7 The following are equivalent for a ring R.

(i) Every right R-module is a Rickart module.
(ii) Every extending right R-module is a Rickart module.

(iii) Every injective right R-module is a Baer module.
(iv) R is semisimple Artinian.

Proof (i)⇒(ii) It is evident.
(ii)⇒(iii) Let M be an injective right R-module. Then M is a Rickart module

by assumption, so M is K-nonsingular by Proposition 4.5.4(ii). Thus, M is a Baer
module from Theorem 4.1.15.

(iii)⇒(iv) The proof follows immediately from Theorem 4.2.20.
(iv)⇒(i) The proof is obvious. �

Theorem 4.5.8 The following are equivalent for a ring R.

(i) Every projective right R-module is a Rickart module.
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(ii) Every free right R-module is a Rickart module.
(iii) R is right hereditary.

Proof (i)⇒(ii) It is obvious.
(ii)⇒(iii) Let I be a right ideal of R. Then there is a set Λ and an epimorphism

ϕ : R(Λ)
R → IR . We can view ϕ as an endomorphism of R(Λ)

R . By assumption, as

R
(Λ)
R is Rickart, Ker(ϕ)R ≤⊕ R

(Λ)
R , so IR is isomorphic to a direct summand of

R
(Λ)
R . Thus IR is projective, so R is right hereditary.
(iii)⇒(i) Let M be any projective right R-module and 0 �= φ ∈ End(M). As R

is right hereditary, φ(M) is projective. Hence Ker(φ) ≤⊕ M , so M is a Rickart
module. �

As a consequence of Theorem 4.5.8, we obtain the following example.

Example 4.5.9 Let R be any right hereditary ring. Then R(N)(∼=R[x]) and R(R) are
Rickart R-modules.

Remark 4.5.10 Note that every free module F of countable rank over a commutative
PID R has the SSIP (see [247, Exercise 51(c), p. 49]). Also, by Theorem 4.5.8, F is
a Rickart R-module. Theorem 4.1.21 yields that F is Baer. In particular, Z(N) is a
Baer Z-module. On the other hand, Z(R) is a Rickart Z-module which is not a Baer
Z-module because it does not satisfy the SSIP (see [411, Remark, p. 32]).

To distinguish between Rickart and Baer modules, our next result provides a rich
source of examples where the two notions differ. Recall that the ring R in Exam-
ple 3.1.20 is left hereditary, which is not a Baer ring. A right hereditary ring which
is not Baer can be similarly constructed.

Proposition 4.5.11 Let R be a right hereditary ring which is not a Baer ring. Then
every free right R-module is Rickart but not Baer.

Proof For a right hereditary ring R, every free right R-module is a Rickart mod-
ule by Theorem 4.5.8. Also, any free right R-module can not be Baer from Theo-
rem 4.1.22 since RR is a direct summand which is not Baer. �

Lemma 4.5.12 Let M be a Rickart right R-module and S = EndR(M). If
�S(X) �= 0, where ∅ �=X ⊆M , then �S(X) contains a nonzero idempotent.

Proof Say I = �S(X) with ∅ �= X ⊆ M . Let I �= 0. Take 0 �= ϕ ∈ I , and let
N = rM(I). As M is a Rickart module, rM(ϕ) = eM with e2 = e ∈ S. Now
N = rM(I) ⊆ rM(ϕ) = eM , and so (1 − e)N = 0. Therefore we have that
1 − e ∈ �S(N)= �S(rM(I))= �S(rM(�S(X)))= �S(X), and 1 − e �= 0 because
ϕ �= 0. �

As mentioned earlier, every indecomposable Rickart module is a Baer module.
The next result extends this fact and it is a module theoretic analogue of Theo-
rem 3.1.25.
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Theorem 4.5.13 Let M be a Rickart right R-module. If S = End(M) is orthogo-
nally finite, then M is a Baer module.

Proof Let N ≤ M and let I = �S(N). To show that M is a Baer module, we may
assume that I is a nonzero proper left ideal of S. From Lemma 4.5.12, I contains a
nontrivial idempotent of S. From Proposition 1.2.13, S has DCC on direct summand
left ideals, and so among all nonzero idempotents in I , we can choose 0 �= e ∈ I such
that S(1 − e) is minimal.

We claim that I ∩ �S(eM)= 0. On the contrary, let I ∩ �S(eM) �= 0. Then

0 �= I ∩ �S(eM)= �S(N)∩ �S(eM)= �S(N + eM).

By Lemma 4.5.12, there exists 0 �= f 2 = f ∈ I ∩ �S(eM). Because f e = 0, we can
check that g := e+ f − ef is an idempotent in I .

Also ge = e as f e = 0. Thus g �= 0 and eM ⊆ gM . So �S(gM)⊆ �S(eM). Thus
S(1 − g) ⊆ S(1 − e). As 0 �= g ∈ I, S(1 − g) = S(1 − e). So �S(gM) = �S(eM).
But �S(gM) � �S(eM) because f e = 0 and fg = f �= 0. This is a contradiction.
So I ∩ �S(eM)= 0.

Finally, we show that I = Se. Because e ∈ I , Se ⊆ I . Take ϕ ∈ I . Then, we get
that ϕ(1−e)= ϕ−ϕe ∈ I . Thus ϕ(1−e) ∈ I ∩�S(eM)= 0, so ϕ = ϕe ∈ Se. Thus,
I ⊆ Se. Hence I = Se, therefore M is a Baer module. �

Theorem 4.5.14 The following are equivalent for a module MR .

(i) M is a Rickart module with (C2) condition.
(ii) S = End(M) is a regular ring.

(iii) For each φ ∈ S = End(M), Ker(φ)≤⊕ M and Image(φ)≤⊕ M .

Proof (i)⇒(ii) Suppose that M is a Rickart module with (C2) condition. We take
0 �= φ ∈ S. Because M is Rickart, M = Ker(φ) ⊕ N for some N ≤ M . Since
φN ∼= N ≤⊕ M , φN ≤⊕ M by (C2) condition. Also, there exists 0 �= ψ ∈ S

such that (ψφ)|N is the identity map of N . Then we have that (φ − φψφ)(M) =
(φ − φψφ)(Ker(φ) ⊕ N) = (φ − φψφ)(N) = 0. Hence φ − φψφ = 0, so S is a
regular ring.

(ii)⇒(iii) Say φ ∈ S. Since S is regular, Sφ = Se and φS = f S for some idem-
potents e and f in S. Thus, Ker(φ) = rM(Se) = (1 − e)M ≤⊕ M consequently
φ(M)= φS(M)= f S(M)= fM ≤⊕ M .

(iii)⇒(i) By hypothesis, it suffices to show that M satisfies (C2) condition. Let N
be a submodule of M with an isomorphism f : N → eM , where e2 = e ∈ S. Con-
sider ϕ ∈ End(M) such that ϕ(em+ (1− e)m)= f−1(em). Then N = ϕ(M)≤⊕ M

by hypothesis. So M satisfies (C2) condition. �

Theorem 4.5.15 Let {Mi}1≤i≤n be a finite set of modules such that Mi is Mj -
injective for all i < j . Then M =⊕n

i=1 Mi is a Rickart module if and only if Mi is
Mj -Rickart for all i and j .
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Proof The necessity follows from Proposition 4.2.14. Conversely, assume that Mi

is Mj -Rickart for all i, j . We show that each Mk is M-Rickart. As Mk is Mk-
Rickart, Mk is a Rickart module and so Mk has the SIP by Proposition 4.5.4(iv).
Let ϕ ∈ Hom(Mk,M) and πi be the canonical projection from M onto Mi . So
Ker(ϕ) = ∩n

i=1Ker(πiϕ) ≤⊕ Mk because Ker(πiϕ) ≤⊕ Mk for each i and Mk has
the SIP. So each Mk is M-Rickart. As Mi is Mj -injective by for all i < j by hypoth-
esis, M = ⊕n

i=1Mi is M-Rickart by Lemma 4.2.16. Thus, M is a Rickart module. �

Exercise 4.5.16

1. ([269, Lee, Rizvi, and Roman]) Show that a module M is k-local retractable if
and only if for any ϕ ∈ End(M) and any 0 �= m ∈ rM(ϕ), there exists ψm in
Hom(M, rM(ϕ)) such that m ∈ψm(M).

2. ([269, Lee, Rizvi, and Roman]) Prove that every free module is k-local-
retractable.

3. ([269, Lee, Rizvi, and Roman]) Show that the following are equivalent for a
module M .

(i) M is a Rickart module.
(ii) For any N ≤M , every direct summand L of M is N -Rickart.

(iii) For every pair of direct summands L and N of M and for every φ in
Hom(M,N), we have that Ker(φ|L)≤⊕ L.

4. ([271, Lee, Rizvi, and Roman]) Let M be a Rickart module with (C2) condition.
Prove that any finite direct sum of copies of M is a Rickart module.

5. ([271, Lee, Rizvi, and Roman]) Let M be an indecomposable Rickart module
with a nonzero maximal submodule N . Prove that M and M/N are Baer mod-
ules, but M ⊕ (M/N) is not a Rickart module.

6. ([269, Lee, Rizvi, and Roman]) Let M be an arbitrary direct sum of cyclic mod-
ules over a Dedekind domain (i.e., commutative hereditary domain). Show that
M is a Rickart module if and only if M is either semisimple or torsion-free.

4.6 Quasi-Baer Modules

The concept of a quasi-Baer module is introduced and studied. It is shown that the
endomorphism ring of a quasi-Baer module is a quasi-Baer ring. Connections be-
tween quasi-Baer modules and FI-extending modules are established, as both of
these concepts depend on the behavior of fully invariant submodules. The concepts
of FI-K-nonsingularity and FI-K-cononsingularity are introduced. These are used
to provide a complete characterization for a quasi-Baer module which is FI-K-
cononsingular. It is shown that an arbitrary direct sum of mutually subisomorphic
quasi-Baer modules is quasi-Baer and that a direct summand of a quasi-Baer mod-
ule is quasi-Baer. Consequently, every projective module over a quasi-Baer ring is
quasi-Baer.

Definition 4.6.1 A right R-module M is called a quasi-Baer module if for each
N �M , �S(N)= Se with e2 = e ∈ S where S = End(M).
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Example 4.6.2 (i) All semisimple modules are quasi-Baer.
(ii) All Baer and quasi-Baer rings are quasi-Baer modules, viewed as modules

over themselves.
(iii) Every Baer module is a quasi-Baer module.
(iv) Any free R-module over a quasi-Baer ring R which is not a Baer ring

(e.g., R = T2(Z)), is a quasi-Baer module, but it is not a Baer module (see The-
orems 4.6.19 and 4.1.22).

We remark that in [274, Definition 2.1] Lee and Zhou defined a module M to
be quasi-Baer if, for any submodule N of M , rR(N) = eR for some e2 = e ∈ R.
But our Definition 4.6.1 is distinct from their definition. In particular, semisimple
modules are not quasi-Baer in the sense of their definition in general unlike Exam-
ple 4.6.2(i).

Proposition 4.6.3 The following are equivalent for a module M .

(i) M is a quasi-Baer module.
(ii) For any I � S, rM(I)= fM with f 2 = f ∈ S, where S = End(M).

Proof For (i)⇒(ii), say I � S. Then rM(I) �M . Thus �S(rM(I)) = Se for some
e2 = e ∈ S. So rM(I)= rM(�S(rM(I)))= (1−e)M . Take f = 1−e. Then rM(I)=
fM . Next, for (ii)⇒(i), let N �M . Then �S(N)� S. Thus rM(�S(N))= fM with
f 2 = f ∈ S. So �S(N)= �S(rM(�S(N)))= S(1 − f ). Therefore M is a quasi-Baer
module. �

Similar to the case of Baer modules, quasi-Baer modules also satisfy a weak
nonsingularity condition. This condition will allow us to exhibit close links between
quasi-Baer modules and FI-extending modules analogous to Theorem 4.1.15.

Definition 4.6.4 A right R-module M is called FI-K-nonsingular if for any I � S,
rM(I)≤ess eM with e2 = e ∈ S implies Ie = 0.

Definition 4.6.5 A right R-module M is said to be FI-K-cononsingular if for any
N �M , rM(�S(N))≤⊕ M implies N ≤ess rM(�S(N)).

By Propositions 4.1.12 and 4.1.14, if a module M is K-nonsingular (resp., K-
cononsingular), then M is FI-K-nonsingular (resp., FI-K-cononsingular).

Proposition 4.6.6 Let M be a right R-module and S = End(M). Then:

(i) M is FI-K-nonsingular if and only if for any I � S with rM(I)≤ess eM , where
e2 = e ∈ S, implies rM(I)= eM .

(ii) M is FI-K-cononsingular if and only if for every N �M with N ≤⊕ M , and
V �N such that ϕ(V ) �= 0 whenever 0 �= ϕ ∈ End(N), we get that V ≤ess N .

Proof (i) Let M be FI-K-nonsingular. Take I � S with rM(I) ≤ess eM for some
e2 = e ∈ S. Then Ie = 0 by assumption, and so IeM = 0. Therefore eM ⊆ rM(I),
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thus rM(I)= eM . Conversely, let J � S with rM(J )≤ess fM for some f 2 = f in
S. Then rM(J ) = fM by assumption, hence JfM = 0 and so Jf = 0. Therefore
M is FI-K-nonsingular.

(ii) Let M be FI-K-cononsingular. Say N � M with N ≤⊕ M , and V � N

with ϕ(V ) �= 0 whenever 0 �= ϕ ∈ EndR(N). Put N = fM with f 2 = f ∈ S. Then
f ∈ S�(S) as N �M . By Proposition 2.3.3(ii), V �M . Note that �S(N) ⊆ �S(V )

and �S(N) = S(1 − f ). From S = S(1 − f )⊕ Sf = �S(N)⊕ Sf and the modular
law, �S(V )= S(1 − f )⊕ (�S(V )∩ Sf ). Thus it follows that

rM(�S(V ))= fM ∩ rM(�S(V )∩ Sf )=N ∩ rM(�S(V )∩ Sf ).

Next, we claim that N ⊆ rM(�S(V ) ∩ Sf ). For this, take ν ∈ �S(V ) ∩ Sf . Then
ν(V ) = 0 and ν ∈ Sf = f Sf as f ∈ S�(S). So, ν|N ∈ EndR(fM) = EndR(N).
By assumption, ν(N) = 0 as ν(V ) = 0. Hence, N ⊆ rM(�S(V ) ∩ Sf ). Now
rM(�S(V )) = N ∩ rM(�S(V ) ∩ Sf ) = N ≤⊕ M . Since M is FI-K-cononsingular
and V �M , V ≤ess rM(�S(V ))=N .

Conversely, to show that M is FI-K-cononsingular, let V � M such that
rM(�S(V )) ≤⊕ M . Say rM(�S(V )) = eM for some e2 = e ∈ S. Then we see that
�S(V )= �S(rM(�S(V )))= �S(eM)= S(1− e). Now S(1− e)� S as V �M . Thus
1 − e ∈ Sr (S), hence e ∈ S�(S) by Proposition 1.2.2, so rM(�S(V ))= eM �M . As
V �M and V ≤ eM �M , V � eM .

Say ϕ ∈ End(rM(�S(V ))) such that ϕ(V ) = 0. We may observe that
End(rM(�S(V ))) = End(eM) = eSe, so ϕ = ege for some g ∈ S. Because
ϕ(V )= (ege)(V )= 0, ege ∈ �S(V ) = S(1 − e), hence ege = 0. So ϕ = 0. By as-
sumption, V ≤ess rM(�S(V )). Whence M is FI-K-cononsingular. �

Example 4.6.7 (i) If a ring R is semiprime, then RR is FI-K-nonsingular. In fact,
say I � R such that rR(I ) ≤ess eRR with e2 = e ∈ R. Assume on the contrary
that Ie �= 0. Since R is semiprime and I � R, eI �= 0 and so there is x ∈ I

with 0 �= ex ∈ eI ⊆ eR. Hence, there exists r ∈ R with 0 �= exr ∈ rR(I ) because
rR(I )≤ess eRR . Thus 0 �= exr ∈ rR(I ) ∩ I = 0, a contradiction. Hence, Ie = 0.
Therefore, RR is FI-K-nonsingular.

(ii) There exists a ring R such that RR is FI-K-nonsingular, but RR is not K-
nonsingular. In fact, by Example 3.2.7(i), there is a prime ring R with Z(RR) �= 0.
Then RR is not K-nonsingular by Proposition 4.1.11. But note that, RR is FI-K-
nonsingular from part (i).

(iii) There exists a ring R such that RR is FI-K-cononsingular, but RR is not
K-cononsingular. For example, take

R =
[

C C

0 R

]

.

Then R is a Baer ring since T2(C) is a Baer ring and R contains all idem-
potents of T2(C) (see Proposition 3.1.5(ii) and Theorem 5.6.2). Furthermore, R
right FI-extending ring (see Corollary 5.6.11). Let α ∈ R be the matrix with i in
the (1,2)-position and 0 elsewhere, where i is the imaginary unit. There is no
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idempotent e ∈ R with αRR ≤ess eRR . Thus, R is not right extending. Then RR

is not K-cononsingular by Theorem 4.1.15. But RR is FI-K-cononsingular (see
Lemma 4.6.8). In general, any module which is Baer and FI-extending, but not ex-
tending has the property that it is FI-K-cononsingular but not K-cononsingular.

We need the following series of lemmas to show the analogue of Theorem 4.1.15
for the quasi-Baer case in the module theoretic setting.

Lemma 4.6.8 Every FI-extending module is FI-K-cononsingular.

Proof Let M be an FI-extending right R-module. We take N � M such that
N ≤⊕ M . Then from Proposition 2.3.4, N is FI-extending. Take V � N and sup-
pose that ϕ(V ) �= 0 whenever 0 �= ϕ ∈ End(N). By the FI-extending property of N ,
V ≤ess W ≤⊕ N for some W . Let N =W ⊕ Y with Y ≤N , and π :N → Y be the
canonical projection. Then π ∈ End(N) and π(V )= 0. Thus, π(N)= 0 by assump-
tion. So Y = 0 and N =W . Hence, V ≤ess N . Therefore, M is FI-K-cononsingular
by Proposition 4.6.6(ii). �

Lemma 4.6.9 Any FI-extending and FI-K-nonsingular module is a quasi-Baer
module.

Proof Assume that M is a right R-module which is FI-extending and FI-K-
nonsingular. Let I � S. Then rM(I)�M . By the FI-extending property of M , there
is e2 = e ∈ S such that rM(I) ≤ess eM . As M is FI-K-nonsingular, rM(I) = eM

from Proposition 4.6.6(i). Thus, rM(I) ≤⊕ M . So M is a quasi-Baer module by
Proposition 4.6.3. �

Lemma 4.6.10 If M is a quasi-Baer module, then M is FI-K-nonsingular.

Proof Let I � S with rM(I) ≤ess eM for some e2 = e ∈ S. As M is quasi-
Baer, rM(I) = fM , where f 2 = f ∈ S. So fM ≤ess eM . By the modular law,
eM = fM ⊕ ((1 − f )M ∩ eM). Thus eM = fM , hence rM(I)= eM . By Proposi-
tion 4.6.6(i), M is FI-K-nonsingular. �

Lemma 4.6.11 If a right R-module M is FI-K-cononsingular and quasi-Baer, then
M is FI-extending.

Proof Let N �M . As M is quasi-Baer, �S(N) = Se for some e2 = e ∈ S. There-
fore N ⊆ rM(�S(N))= rM(Se)= (1− e)M . Because M is FI-K-cononsingular, we
obtain N ≤ess (1 − e)M . Thus, M is FI-extending. �

In the proof of Lemma 4.6.11, because N � M , �S(N) = Se � S. Thus
e ∈ Sr (S), and therefore 1 − e ∈ S�(S) by Proposition 1.2.2. Hence we have that
rM(�S(N)) = (1 − e)M �M . So M is, in fact, strongly FI-extending. As a conse-
quence of the preceding lemmas, we obtain a full characterization of an FI-extending
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FI-K-nonsingular module in the following result. Similar to Theorem 4.1.15, the FI-
extending property of modules is characterized in terms of the quasi-Baer property
of modules as follows.

Theorem 4.6.12 A module M is FI-extending and FI-K-nonsingular if and only if
M is quasi-Baer and FI-K-cononsingular.

Lemma 4.6.13 Let M be a module with M = M1 ⊕ M2, and let V � M1. Then
there exists W �M2 such that V ⊕W �M .

Proof Take W =∑{ϕ(V ) | ϕ ∈ Hom(M1,M2)}. Then we can check that W �M2
and V ⊕W �M1 ⊕M2. �

Theorem 4.6.14 Any direct summand of a quasi-Baer module is a quasi-Baer mod-
ule.

Proof Let M be a quasi-Baer right R-module. Say N ≤⊕ M . Then N = eM for
some e2 = e ∈ S = End(M). To show that N is quasi-Baer, let V � N . Using
Lemma 4.6.13, there is W � (1 − e)M with V ⊕ W � M . As M is quasi-Baer,
I := �S(V ⊕ W) = Sf with f 2 = f ∈ S. By Proposition 1.2.2, f ∈ Sr (S) since
I � S. We notice that End(N)= eSe and eIe ⊆ I = Sf. Thus

eIe = eSf e = eSf ef = eSf ef e = (eSf e)(ef e)⊆ (eSe)(ef e).

Also, (eSe)(ef e)⊆ eSf e = eIe. So eIe = (eSe)(ef e) and (ef e)2 = ef e.
We show that eIe = �eSe(V ). For this, first note that (eIe)V = 0, because

(eIe)V ⊆ IV = 0. Therefore eIe ⊆ �eSe(V ). Next, take ese ∈ �eSe(V ). Then
eseV = 0. Also eseW ⊆ ese(1 − e)M = 0, so ese ∈ �S(V ⊕ W) = I . As a con-
sequence, �eSe(V )= eIe = (eSe)(ef e). So N is a quasi-Baer module. �

Theorem 4.6.15 Let {Mi}i∈Λ be a set of quasi-Baer modules. If Mi is subisomor-
phic to (i.e., isomorphic to a submodule of) Mj for all i, j ∈ Λ with i �= j . Then
M =⊕

i∈ΛMi is quasi-Baer.

Proof Let S = End(M). Write ϕ ∈ S in matrix form [ϕhk](h,k)∈Λ×Λ with
ϕhk ∈ Hom(Mk,Mh). We need to show that, for I � S, rM(I)≤⊕ M . Since I � S,
rM(I) �M . Hence rM(I) = ⊕i∈Λ(rM(I) ∩ Mi) (Exercise 2.1.37.2). For i, j ∈ Λ,
let

Iij = {α ∈ Hom(Mj ,Mi) | there is ϕ = [ϕhk] ∈ I with α = ϕij }.
We claim that rM(I) ∩ Mi = rMi

(Iii) for each i ∈ Λ. For this, we first eas-
ily see that rM(I) ∩ Mi ⊆ rMi

(Iii). Next, let x ∈ rMi
(Iii). Take ϕ = [ϕhk] ∈ I .

Then ϕii(x) = 0. For j �= i, let μij : Mj → Mi be a monomorphism, and let
μ ∈ S with μij in the (i, j)-position and 0 elsewhere. Then the (i, i)-position of
μϕ ∈ I is μijϕji . So μijϕji ∈ Iii and μijϕji(x) = 0 since Iiix = 0. As μij is a
monomorphism, ϕji(x) = 0 for each j �= i. So ϕ(x) = [ϕhk](x) = 0. Thus Ix = 0
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and so x ∈ rM(I). Hence, rM(I) ∩Mi = rMi
(Iii). Now we see that rM(I) ∩Mi =

rMi
(Iii)≤⊕ Mi because each Mi is quasi-Baer and Iii � EndR(Mi). Hence,

rM(I)= ⊕i∈Λ(rM(I)∩Mi)≤⊕ ⊕i∈ΛMi.

Therefore, by Proposition 4.6.3 ⊕i∈ΛMi is a quasi-Baer module. �

Theorem 4.6.16 Let M be a quasi-Baer module. Then S = End(M) is a quasi-Baer
ring.

Proof Let I � S. Since M is a quasi-Baer module, rM(I) = eM for some
e2 = e ∈ S from Proposition 4.6.3. As in the proof of Theorem 4.2.8, we can show
that rS(I )= eS. Thus, S is a quasi-Baer ring. �

Corollary 4.6.17 Let M be an FI-extending FI-K-nonsingular module. Then S =
End(M) is a quasi-Baer ring.

Proof By Theorem 4.6.12, M is a quasi-Baer module. Hence, S is a quasi-Baer ring
from Theorem 4.6.16. �

Example 4.6.18 The converse of Theorem 4.6.16 is not true. Let M = Zp∞ , a Z-
module. Then S is a quasi-Baer ring, but M is not a quasi-Baer module.

Theorem 4.6.19 Every projective module over a quasi-Baer ring is a quasi-Baer
module and its endomorphism ring is a quasi-Baer ring.

Proof Any free module over a quasi-Baer ring is a quasi-Baer module by Theo-
rem 4.6.15. So Theorems 4.6.14 and 4.6.16 yield the result. �

For a ring R and a nonempty ordered set Γ , we use RFMΓ (R) to denote the
ring of Γ × Γ row finite matrices over R. Thus RFMΓ (R) ∼= End(RR(Γ )), while
CFMΓ (R)∼= End(R(Γ )

R ).

Corollary 4.6.20 The following are equivalent for a ring R.

(i) R is quasi-Baer.
(ii) CFMΓ (R) is a quasi-Baer ring for any nonempty ordered set Γ .

(iii) RFMΓ (R) is a quasi-Baer ring for any nonempty ordered set Γ .

Proof It is a consequence of Theorems 4.6.19 and 3.2.10. �

Exercise 4.6.21

1. ([357, Rizvi and Roman]) Assume that M is a retractable module. Show that M
is a quasi-Baer module if and only if End(M) is a quasi-Baer ring.
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2. ([357, Rizvi and Roman]) Let M1 and M2 be quasi-Baer modules. Assume that
ϕ(x) = 0, for any ϕ ∈ Hom(Mi,Mj ), implies x = 0, where i �= j , 1 ≤ i, j ≤ 2.
Prove that M1 ⊕M2 is quasi-Baer.

3. Let M = ⊕n
i=1Mi , where Mi �M for each i. Show that M is a quasi-Baer mod-

ule if and only if each Mi is a quasi-Baer module.

Historical Notes The notions of Baer and quasi-Baer modules were introduced
using the endomorphism ring of a module, by Rizvi and Roman [357]. Defini-
tion 4.1.1, Proposition 4.1.2, Definition 4.1.3, Proposition 4.1.12, Definition 4.1.13,
and Proposition 4.1.14 are taken from [357], while Proposition 4.1.5, Theo-
rem 4.1.7, Definition 4.1.8, Theorem 4.1.9, and Example 4.1.10 are from [359].
Theorem 4.1.15 is due to Rizvi and Roman [357]. The SIP and the SSIP for modules
have been considered and studied in [247, Exercise 51, p. 49], [277, Satz 11], [411],
and [201]. Theorems 4.1.21, 4.1.22, and 4.1.26 are due to Rizvi and Roman [357].
Theorem 4.1.24 is from [269].

Definition 4.2.2 was introduced in [360] and Proposition 4.2.3, Proposition 4.2.5,
Theorem 4.2.8 are taken from that same paper. Example 4.2.4 is based on exam-
ples introduced in [250]. Proposition 4.2.14 is due to Lee, Rizvi, and Roman and
is from [271]. Lemma 4.2.16 appears in [271]. Theorem 4.2.17 is due to Rizvi and
Roman [360] modified by their work with Lee [271]. The proof of Theorem 4.2.18
using Baer module theory was provided by G. Lee and C. Roman. Theorem 4.2.20
is obtained by Rizvi and Roman [359].

Theorem 4.3.3, Corollary 4.3.4, Theorem 4.3.5, and Corollary 4.3.7 are due to
Rizvi and Roman [360]. Corollary 4.3.8 appears in [121]. Theorem 4.3.5 is related
to Satz 11 in [277]. By Lenzing [277], a ring R is called a B-ring if Matn(R) is
a Baer ring for every positive integer n. In Mao [289], the Baer property of the
endomorphism ring of a module is described by using envelopes of modules. It was
shown by Stephenson and Tsukerman [383] that the endomorphism ring of every
free right R-module is a Baer ring if and only if R is a semiprimary hereditary ring.

Theorem 4.3.5 generalizes Theorem 2.2 in [159], which states that, for a regular
ring R, every finitely generated torsionless right R-module embeds in a free right
R-module (FGTF property) if and only if Matn(R) is a Baer ring for every positive
integer n. Theorem 4.3.5 in fact establishes that even in the absence of regularity
of R, every finitely generated torsionless right R-module is projective if and only if
Matn(R) is Baer for every positive integer n. Lemma 4.3.10 can be found in [130].
Theorem 4.3.11 appears in [360]. Example 4.3.13 is taken from [239] and [360].

Most of the results and examples in Sect. 4.4 are due to Rizvi and Roman and
taken from [359]. By Rizvi [355], commutative rings for which every continuous
module is quasi-injective were studied and several classes of rings for which this
holds true were identified. The problem remains open for arbitrary rings. Thus, in the
presence of K-nonsingularity, Corollary 4.4.16 reduces this problem to determining,
when is a continuous module of type I, quasi-injective.

The module theoretic analogue of Rickart rings which we have discussed in
Sect. 4.5 is due to recent works by Lee, Rizvi, and Roman in [271] and [269] (see
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also [270, 273], and [268]). The results of Sect. 4.5 are taken from [271] and [269].
We remark that (ii)⇔(iii) in Theorem 4.5.14 was known and also proved by Ware
([409, Corollary 3.2]). See [272] for a survey article on direct sums of Rickart mod-
ules. Most of the results on quasi-Baer modules in Sect. 4.6 are due to Rizvi and
Roman and taken from [357]. For further results on FI-extending modules and quasi-
Baer modules, see [357] and [361]. Work on topics related to this chapter can also
be found in [175, 204, 252, 275, 276, 290], and [358].



Chapter 5
Triangular Matrix Representations
and Triangular Matrix Extensions

A ring R is said to have a generalized triangular matrix representation if R is ring
isomorphic to a generalized triangular matrix ring

⎡

⎢

⎢

⎢

⎣

R1 R12 · · · R1n
0 R2 · · · R2n
...

...
. . .

...

0 0 · · · Rn

⎤

⎥

⎥

⎥

⎦

,

where each Ri is a ring and Rij is an (Ri,Rj )-bimodule for i < j , and the matrices
obey the usual rules for matrix addition and multiplication. Generalized triangular
matrix representations provide an effective tool in the investigation of the structures
of a wide range of rings. In this chapter, these representations, in an abstract setting,
are discussed by introducing the concept of a set of left triangulating idempotents.

The importance and applicability of the concept of a generalized triangular ma-
trix representation can be seen from: (1) for any right R-module M , the generalized
triangular matrix ring

[

S M

0 R

]

,

where S = End(M), completely encodes the algebraic information of M into a sin-
gle ring; (2) a ring R is ring isomorphic to

[

R1 R12
0 R2

]

,

where R1 �= 0 and R2 �= 0 if and only if there exists e ∈ S�(R) with e �= 0 and e �= 1.
From (2), we see that there is a natural connection between quasi-Baer rings and
modules and generalized triangular matrix representation, since the “e” in Proposi-
tion 3.2.4(ii) is in S�(R) and the “f ” in Proposition 4.6.3(ii) is in S�(End(M)).

In a manner somewhat analogous to determining a matrix ring by a set of ma-
trix units (see 1.1.16), a generalized triangular matrix ring is determined by a set
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of left (or right) triangulating idempotents. The existence of a set of left triangulat-
ing idempotents does not depend on any specific conditions on a ring (e.g., {1} is a
set of left triangulating idempotents); however, if the ring satisfies a mild finiteness
condition, then such a set can be refined to a certain set of left triangulating idempo-
tents in which each diagonal ring Ri has no nontrivial generalized triangular matrix
representation. When this occurs, the generalized triangular matrix representation is
said to be complete.

Complete triangular matrix representations and left triangulating idempotents
are applied to get a structure theorem for a certain class of quasi-Baer rings (see
Theorem 5.4.12). A number of well known results follow as consequences of this
structure theorem. These include Levy’s decomposition theorem of semiprime right
Goldie rings, Faith’s characterization of semiprime right FPF rings with no infi-
nite set of central orthogonal idempotents, Gordon and Small’s characterization of
piecewise domains, and Chatters’ decomposition theorem of hereditary Noetherian
rings.

Further, a sheaf representation of quasi-Baer rings is studied as another applica-
tion of our results of this chapter. Also the Baer, the quasi-Baer, the FI-extending,
and the strongly FI-extending properties of (generalized) triangular matrix rings are
discussed. Most results of Sects. 5.1, 5.2, and 5.3 are applicable to an algebra over
a commutative ring.

5.1 Triangulating Idempotents

In this section, some basic properties of triangulating idempotents are discussed.
Then a result showing the connection between triangulating idempotents and gener-
alized triangular matrix rings is presented.

Definition 5.1.1 Let R be a ring. An ordered set {b1, . . . , bn} of nonzero distinct
idempotents in R is called a set of left triangulating idempotents of R if the follow-
ing conditions hold:

(i) 1 = b1 + · · · + bn;
(ii) b1 ∈ S�(R);

(iii) bk+1 ∈ S�(ckRck), where ck = 1 − (b1 + · · · + bk), for 1 ≤ k ≤ n− 1.

Similarly, we define a set of right triangulating idempotents of R by using part
(i) in the preceding, b1 ∈ Sr (R), and bk+1 ∈ Sr (ckRck). By condition (iii) of Def-
inition 5.1.1, a set of left (right) triangulating idempotents is a set of orthogonal
idempotents.

Definition 5.1.2 A set {b1, . . . , bn} of left (right) triangulating idempotents of R is
said to be complete if each bi is semicentral reduced.

Theorem 5.1.3 Let {b1, . . . , bn} be an ordered set of nonzero idempotents of R.
Then the following are equivalent.
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(i) {b1, . . . , bn} is a set of left triangulating idempotents.
(ii) b1 + · · · + bn = 1 and bjRbi = 0, for all i < j ≤ n.

Proof (i)⇒(ii) By definition, b1 + · · · + bn = 1. As b2 ∈ (1 − b1)R(1 − b1) and
b1 ∈ S�(R), b2b1 = 0 and b2Rb1 = b2b1Rb1 = 0. Similarly we obtain bjRb1 = 0,
for all j > 1. By assumption b2 ∈ S�((1 − b1)R(1 − b1)) and {b1, . . . , bn} is orthog-
onal, thus for j > 2,

bjRb2 = bjR(1 − b1)b2 = bj (b1R + (1 − b1)R)(1 − b1)b2

= bj (1 − b1)R(1 − b1)b2 = bjb2(1 − b1)R(1 − b1)b2

= 0.

Continue the process, using (1 − b1 − b2)R(1 − b1 − b2) in the next step, and so on,
to get bjRbi = 0 for all i < j ≤ n.

(ii)⇒(i) Note that (1 − b1)Rb1 = (b2 + · · · + bn)Rb1 = 0. So b1 ∈ S�(R) by
Proposition 1.2.2. Now b2 ∈ (1 − b1)R(1 − b1) as b2(1 − b1) = b2 − b2b1 = b2

and (1 − b1)b2 = b2. Also (1 − b1 − b2)(1 − b1) = b3 + b4 + · · · + bn. Therefore
(1 − b1 − b2)[(1 − b1)R(1 − b1)]b2 =∑n

i=3 biR(1 − b1)b2 =∑n
i=3 biRb2 = 0. So

b2 ∈ S�((1 − b1)R(1 − b1)) by Proposition 1.2.2. Continuing this process yields the
desired result. �

Theorem 5.1.4 R has a (resp., complete) set of left triangulating idempotents if and
only if R has a (resp., complete) generalized triangular matrix representation.

Proof Let {b1, . . . , bn} be a set of left triangulating idempotents of R. Using Theo-
rem 5.1.3 and a routine argument shows that the map

θ :R →

⎡

⎢

⎢

⎢

⎣

b1Rb1 b1Rb2 · · · b1Rbn
0 b2Rb2 · · · b2Rbn
...

...
. . .

...

0 0 · · · bnRbn

⎤

⎥

⎥

⎥

⎦

defined by θ(r)= [birbj ] is a ring isomorphism, where [birbj ] is the matrix whose
(i, j)-position is birbj . Conversely, assume that

φ :R →

⎡

⎢

⎢

⎢

⎣

R1 R12 · · · R1n
0 R2 · · · R2n
...

...
. . .

...

0 0 · · · Rn

⎤

⎥

⎥

⎥

⎦

is a ring isomorphism. Then {φ−1(e11), . . . , φ
−1(enn)} is a set of left triangulating

idempotents of R by a routine calculation, where eii is the matrix with 1Ri
in the

(i, i)-position and 0 elsewhere. �



142 5 Triangular Matrix Representations and Triangular Matrix Extensions

Lemma 5.1.5 (i) S�(eRe)⊆ S�(R) for e ∈ S�(R).
(ii) f S�(R)f ⊆ S�(fRf ) for f 2 = f ∈R.
(iii) Let e ∈ S�(R). If f is a primitive idempotent of R such that ef e �= 0, then

ef e is a primitive idempotent in eRe and f ef = f .

Proof (i) For g ∈ S�(eRe), gRg = geReg = eReg =Rg. So g ∈ S�(R).
(ii) Let g ∈ S�(R) and r ∈ R. Then (fgf )(f rf )(fgf ) = (ff )(f rf )(fgf ).

Thus (fgf )(f rf )(fgf )= (f rf )(fgf ). So fgf ∈ S�(fRf ).
(iii) Note that 0 �= ef e = f e = f ef e, so f ef �= 0 and (f ef )2 = f ef . As f

is primitive, f ef = f . To show that ef e is a primitive idempotent of eRe, we
note that (ef e)(ef e) = e(f ef )e = ef e. Let 0 �= h2 = h ∈ (ef e)(eRe)(ef e). Since
e ∈ S�(R), he = h,f h= h, so hf = f hf , and thus (hf )(hf )= hf . As hf = 0 im-
plies that h= hef e = hf e = 0, hf is a nonzero idempotent in fRf . Thus, hf = f

since f is a primitive idempotent. Note that (f e)2 = f e and h ∈ (ef e)(eRe)(ef e),
so h= hef e = hf e = f e = ef e. Thus, ef e is a primitive idempotent eRe. �

Lemma 5.1.6 (i) If h is a ring homomorphism from a ring R to a ring A, then
h(S�(R))⊆ S�(h(R)).

(ii) Assume that e ∈ S�(R) ∪ Sr (R) and f ∈ S�(eRe) ∪ Sr (eRe). Then the map
h :R → fRf , defined by h(r)= f rf for r ∈R, is a ring epimorphism.

Proof (i) The proof is routine.
(ii) Say x, y ∈R. Since e ∈ S�(R)∪ Sr (R) and f ∈ S�(eRe)∪ Sr (eRe),

f xyf = f exyef = f exeyef = f exef eyef = f xfyf.

Therefore, h(xy)= h(x)h(y). �

Proposition 5.1.7 Let {b1, . . . , bn} be a set of left triangulating idempotents of R.
Then:

(i) ck ∈ Sr (R), k = 1, . . . , n− 1, where ck = 1 − (b1 + · · · + bk).
(ii) b1 + · · · + bk ∈ S�(R), k = 1, . . . , n.

(iii) The map hj : R → bjRbj , defined by hj (r) = bj rbj for all r ∈ R, is a ring
epimorphism.

Proof (i) Recall that b1 ∈ S�(R) implies c1 = 1 − b1 ∈ Sr (R) by Proposition 1.2.2.
As b2 ∈ S�(c1Rc1), c2 = 1 − b1 − b2 ∈ Sr (c1Rc1) by Proposition 1.2.2. Therefore
c2 ∈ Sr (R) by the right-sided version of Lemma 5.1.5(i). Using this procedure, an
induction proof completes the argument.

(ii) It is a direct consequence of part (i) and Proposition 1.2.2.
(iii) Put e = ck and f = bk+1. By part (i), e ∈ Sr (R), so f ∈ S�(eRe). From

Lemma 5.1.6(ii), the map r → f rf is a ring epimorphism. �

Corollary 5.1.8 The ordered set {b1, . . . , bn} is a (complete) set of left triangulating
idempotents of R if and only if the ordered set {bn, . . . , b1} is a (complete) set of
right triangulating idempotents.
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Proof Let {b1, . . . , bn} be a set of left triangulating idempotents of R. Then by
Proposition 5.1.7(i), 1 − (b1 + · · · + bn−1) = bn ∈ Sr (R). We next show that
bn−1 ∈ Sr ((1 − bn)R(1 − bn)). For this, first it can be checked that {b1, . . . , bn−1} is
a set of left triangulating idempotents of (1−bn)R(1−bn) and 1−bn is the identity
of (1 − bn)R(1 − bn). By Proposition 5.1.7(ii), b1 + · · · + bn−2 ∈ S�(R), and hence
b1 + · · · + bn−2 ∈ S�((1 − bn)R(1 − bn)). Therefore by Proposition 1.2.2,

(1 − bn)− (b1 + b2 + · · · + bn−2)= bn−1 ∈ Sr ((1 − bn)R(1 − bn))

and so on. By this argument, the ordered set {bn, . . . , b1} is a set of right triangulat-
ing idempotents. Also, if {b1, . . . , bn} is complete, then so is {bn, . . . , b1}.

The converse is proved similarly. Further, completeness is left-right symmet-
ric since S�(biRbi) = {0, bi} if and only if Sr (biRbi) = {0, bi} (see Proposi-
tion 1.2.11). �

Exercise 5.1.9

1. Let R be a subdirectly irreducible ring (i.e., the intersection of all nonzero ideals
of R is nonzero) and {b1, . . . , bn} a set of left triangulating idempotents. Prove
the following.

(i) For each i �= 1 there exists j < i such that bjRbi �= 0.
(ii) For each i �= n there exists j > i such that biRbj �= 0.

(iii) The heart of R (i.e., the intersection of all nonzero ideals of R) is contained
in b1Rbn.

2. Let {b1, . . . , bn} be a set of left triangulating idempotents of a ring R. Prove the
following.
(i) bi ∈ S�(R) if and only if bjRbi = 0 for all j < i.

(ii) bi ∈ Sr (R) if and only if biRbj = 0 for all j > i.

5.2 Generalized Triangular Matrix Representations

Rings with a complete generalized triangular matrix representation will be charac-
terized. Then the uniqueness of a complete set of triangulating idempotents will be
discussed. We shall see that if a ring R satisfies some mild finiteness conditions, then
R has a generalized triangular matrix representation with semicentral reduced rings
on the diagonal which satisfy the same finiteness condition as R. Thereby reducing
the study of such rings to those which are semicentral reduced. Further, it will be
shown that the condition of having a complete set of left triangulating idempotents
is strictly between that of having a complete set of primitive idempotents and that
of having a complete set of centrally primitive idempotents.

Lemma 5.2.1 Let 0 �= f 2 = f ∈ R. If fR = eR for every 0 �= e ∈ S�(fRf ), then
f is semicentral reduced.

Proof Let 0 �= e ∈ S�(fRf ). Then since fR = eR, f = ex for some x ∈ R, and so
e = ef = eex = ex = f . Thus, f is semicentral reduced. �
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Lemma 5.2.2 (i) A ring R has DCC on {bR | b ∈ S�(R)} if and only if R has ACC
on {Rc | c ∈ Sr (R)}.

(ii) A ring R has ACC on {bR | b ∈ S�(R)} if and only if R has DCC on
{Rc | c ∈ Sr (R)}.

(iii) If a ring R has DCC on {Rc | c ∈ Sr (R)}, then R has DCC on
{cR | c ∈ Sr (R)}.
Proof (i) Assume that R has DCC on {bR | b ∈ S�(R)}. Consider a chain
Rc1 ⊆Rc2 ⊆ . . . , where ci ∈ Sr (R). Then (1 − c1)R ⊇ (1 − c2)R ⊇ . . . with
1 − ci ∈ S�(R) (see Proposition 1.2.2). This descending chain becomes station-
ary, say with (1 − cn)R = (1 − cn+j )R for each j ≥ 1. Then we have that
�R((1 − cn)R) = �R((1 − cn+j )R) for each j > 1. Thus, Rcn = Rcn+j for each
j > 1. The converse is proved similarly.

(ii) The proof is similar to that of part (i).
(iii) Assume that R has DCC on {Rc | c ∈ Sr (R)}. Let c1R ⊇ c2R ⊇ . . .

be a descending chain with ci ∈ Sr (R). Then ci+1 = cici+1. So it follows that
ci+1ci = cici+1ci = cici+1 = ci+1 because ci ∈ Sr (R). Therefore Rci ⊇ Rci+1 for
each i. Thus we have a descending chain Rc1 ⊇ Rc2 ⊇ . . . , so there is n with
Rcn = Rcn+1 = . . . . Therefore, (1 − cn)R = (1 − cn+1)R. Hence, we obtain that
(1 − cn)Rcn = (1 − cn+1)Rcn = (1 − cn+1)Rcn+1.

We observe that Rcn = cnRcn + (1 − cn)Rcn = cnR + (1 − cn)Rcn and

Rcn+1 = cn+1Rcn+1 + (1 − cn+1)Rcn+1 = cn+1R + (1 − cn)Rcn

because cn, cn+1 ∈ Sr (R) and (1 − cn)Rcn = (1 − cn+1)Rcn+1. Therefore, we have
that cnR + (1 − cn)Rcn = cn+1R + (1 − cn)Rcn as Rcn =Rcn+1.

To show that cnR = cn+1R, it suffices to check that cnR ⊆ cn+1R because
cn+1R ⊆ cnR. Now cn = cn+1y + α, where y ∈ R and α ∈ (1 − cn)Rcn, as
cnR + (1 − cn)Rcn = cn+1R + (1 − cn)Rcn. Since cnα = 0 and cn+1 = cncn+1
from cn+1R ⊆ cnR, cn = c2

n = cncn+1y + cnα = cn+1y ∈ cn+1R. Therefore
cnR ⊆ cn+1R, and hence cnR = cn+1R = . . . . We conclude that R satisfies DCC
on {cR | c ∈ Sr (R)}. �

Lemma 5.2.3 Let e ∈ Sr (R). If R has DCC on {bR | b ∈ S�(R)}, then eRe has
DCC on {d(eRe) | d ∈ S�(eRe)}.
Proof First, we show that {(eRe)c | c ∈ Sr (eRe)} has ACC. For this, assume
that (eRe)c1 ⊆ (eRe)c2 ⊆ . . . is an ascending chain, where ci ∈ Sr (eRe) for
i = 1,2, . . . . By the right-sided version of Lemma 5.1.5(i), each ci ∈ Sr (R). Note
that ecie ∈ (eRe)ecie ⊆ (eRe)eci+1e.

So there exists x ∈ eRe such that ecie = xeci+1e. Thus,

(1 − e)Rci = (1 − e)Recie = (1 − e)Rxeci+1e

⊆ (1 − e)Reci+1e = (1 − e)Rci+1.

Therefore, for each i,

Rci = eRci + (1 − e)Rci = (eRe)ecie+ (1 − e)Rci
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⊆ (eRe)eci+1e+ (1 − e)Rci+1 = eRci+1 + (1 − e)Rci+1

= Rci+1.

By assumption and Lemma 5.2.2(i), Rcn = Rcn+1 = . . . for some n as each ci is
in Sr (R). Therefore, eRcn = eRcn+1 = . . . , so (eRe)cn = (eRe)cn+1 = . . . . From
Lemma 5.2.2(i), eRe has DCC on {d(eRe) | d ∈ S�(eRe)}. �

Lemma 5.2.4 Let {b1, . . . , bn} be a complete set of left triangulating idempotents of
R. If e ∈ S�(R), then eR =⊕

i biR, where the sum runs over a subset of {1, . . . , n}.
Thus, |{eR | e ∈ S�(R)}| ≤ 2n.

Proof Assume that 0 �= e ∈ S�(R). Consider i such that bie �= 0. We show
that bieR = biR. For this, note that biebie = bie �= 0, so biebi �= 0. From
Lemma 5.1.5(ii), biS�(R)bi ⊆ S�(biRbi). Hence biebi ∈ S�(biRbi), but by hypoth-
esis S�(biRbi) = {0, bi}. So biebi = bi . Also biR = biebiR ⊆ bieR ⊆ biR, and
thus bieR = biR. Recall that bi are orthogonal. Hence, biebj e = bibj e = 0 yields
that b1e, . . . , bne are orthogonal idempotents. Let I = {i | 1 ≤ i ≤ n and bie �= 0}.
Then eR = ⊕i∈I bieR = ⊕i∈I biR. �

The next result characterizes rings with a complete generalized triangular matrix
representation.

Theorem 5.2.5 The following are equivalent for a ring R.

(i) R has a complete set of left triangulating idempotents.
(ii) {bR | b ∈ S�(R)} is a finite set.

(iii) {bR | b ∈ S�(R)} satisfies ACC and DCC.
(iv) {bR | b ∈ S�(R)} and {Rc | c ∈ Sr (R)} satisfy ACC.
(v) {bR | b ∈ S�(R)} and {Rc | c ∈ Sr (R)} satisfy DCC.

(vi) {bR | b ∈ S�(R)} and {cR | c ∈ Sr (R)} satisfy DCC.
(vii) R has a complete set of right triangulating idempotents.
(viii) R has a complete generalized triangular matrix representation.

Proof Lemma 5.2.4 yields (i)⇒(ii), and (ii)⇒(iii) is trivial. From Lemma 5.2.2,
(iii)⇒(iv)⇒(v)⇒(vi) follows immediately.

We show that (vi)⇒(i). If S�(R) = {0,1}, then we are finished. Otherwise take
e1 to be a nontrivial element of S�(R).

If e1 is not semicentral reduced, then there exists 0 �= e2 ∈ S�(e1Re1) such that
e1R �= e2R by Lemma 5.2.1, and so e1R � e2R. From Lemma 5.1.5(i), e2 ∈ S�(R).
If e2 is not semicentral reduced, then by Lemmas 5.2.1 and 5.1.5(i) again there exists
0 �= e3 ∈ S�(e2Re2)⊆ S�(R) such that e2R �= e3R. So we have that e2R � e3R. This
process should be stopped within a finite steps. Thus, we obtain a semicentral re-
duced idempotent en ∈ S�(R) for some positive integer n because {eR | e ∈ S�(R)}
has DCC.
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Starting a new process, let b1 = en. Then S�(b1Rb1) = {0, b1}. From Propo-
sition 1.2.2, 1 − b1 ∈ Sr (R). If 1 − b1 is semicentral reduced, then we see that
{b1,1 − b1} is a complete set of left triangulating idempotents.

Otherwise, we consider R1 = (1 − b1)R(1 − b1). Note that by Lemma 5.2.3, R1
has DCC on {dR1 | d ∈ S�(R1)}. By a similar argument to that used to get b1, we
obtain b2 ∈ S�(R1) such that S�(b2R1b2)= {0, b2}.

As 1 − b1 is the identity of R1 and b2 ∈ R1, it follows that b2R1b2 = b2Rb2,
so S�(b2Rb2) = {0, b2}. Also, (1 − b1) − b2 ∈ Sr (R1). The right-sided version of
Lemma 5.1.5(i) yields that Sr (R1) ⊆ Sr (R). Therefore, 1 − b1 − b2 ∈ Sr (R). If
1 − b1 − b2 is semicentral reduced in R, then {b1, b2,1 − b1 − b2} is a complete set
of left triangulating idempotents.

We continue the process to obtain a descending chain in {cR | c ∈ Sr (R)}, which
is (1−b1)R ⊇ (1−b1 −b2)R ⊇ (1−b1 −b2 −b3)R ⊇ . . . . By the DCC hypothesis
of {cR | c ∈ Sr (R)}, this chain becomes stationary after a finite steps, yielding a
complete set of left triangulating idempotents.

The equivalence (vii)⇔(i) follows from Corollary 5.1.8, while the equivalence
(i)⇔(viii) follows from Theorem 5.1.4. �

Corollary 5.2.6 Let R be a ring with a complete set of left triangulating idempo-
tents. Then for any 0 �= e ∈ S�(R) (resp., 0 �= e ∈ Sr (R)), the ring eRe also has a
complete set of left (resp., right) triangulating idempotents.

Proof Say 0 �= e ∈ S�(R). Define

λ : {bR | b ∈ S�(R)} → {d(eRe) | d ∈ S�(eRe)}
by λ(bR) = (ebe)(eRe). From Lemma 5.1.5(ii), ebe ∈ S�(eRe) for b ∈ S�(R). If
bR = b1R with b, b1 ∈ S�(R), then bRe = b1Re, and so ebeRe = eb1eRe since
e ∈ S�(R). Thus λ is well-defined. As S�(eRe) ⊆ S�(R) by Lemma 5.1.5(i), λ is
onto. From Theorem 5.2.5, it follows that {bR | b ∈ S�(R)} is finite. Furthermore,
we get that {d(eRe) | d ∈ S�(eRe)} is also finite. Again by Theorem 5.2.5, eRe has
a complete set of left triangulating idempotents. Similarly, if 0 �= e ∈ Sr (R), then
eRe has also a complete set of right triangulating idempotents. �

In Theorem 5.2.8, the uniqueness of a complete generalized triangular matrix
representation will be established. For the proof of this theorem, we need the fol-
lowing result due to Azumaya [32, Theorem 3].

Lemma 5.2.7 Let I be a quasi-regular ideal of a ring R. If {e1, . . . , en} and
{f1, . . . , fn} are two sets of orthogonal idempotents of R such that ei = f i for each
i with images ei and f i in R/I , then there is an invertible element α ∈ R with
fi = α−1eiα for each i.

Proof Let e =∑n
i=1 ei and f =∑n

i=1 fi . Put β = e + f − ef −∑n
i=1 eifi . Then

α = 1 − β is invertible and fi = α−1eiα for each i. �
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A nonzero central idempotent e of R is said to be centrally primitive if 0 and e

are the only central idempotents in eRe. Let g be a nonzero central idempotent in
R such that g = g1 + · · · + gt , where {gi | 1 ≤ i ≤ t} is a set of centrally primitive
orthogonal idempotents of R. Then t is uniquely determined (see Exercise 5.2.21.1).
A ring R is said to have a complete set of centrally primitive idempotents if there
exists a finite set of centrally primitive orthogonal idempotents whose sum is 1. It is
routine to check that R has a complete set of centrally primitive idempotents if and
only if R is a ring direct sum of indecomposable rings.

Theorem 5.2.8 (Uniqueness) Let {b1, . . . , bn} and {c1, . . . , ck} each be a complete
set of left triangulating idempotents of R. Then n = k and there exist an invertible
element α ∈ R and a permutation σ on {1, . . . , n} such that bσ(i) = α−1ciα for
each i. Thus for each i, ciR ∼= bσ(i)R, as R-modules, and ciRci ∼= bσ(i)Rbσ(i), as
rings.

Proof Let U = ∑

i<j biRbj . Then U � R and Un = 0. Let R = R/U and de-
note by x the image of x ∈ R in R/U . Since biRbi ∩ U = 0, for i = 1, . . . , n,
biRbi ∼= bi R bi as rings. So R is a direct sum of the bi R bi , and consequently
{b1, . . . , bn} is a complete set of centrally primitive idempotents of R.

Clearly, c1 ∈ S�(R). Further, c1 �= 0. Indeed, if c1 = 0, then c1 ∈ U , and so
c1 = cn1 ∈Un = 0, a contradiction. Because bi is semicentral reduced,
c1bi ∈ {0, bi}. Therefore c1 = ∑n

i=1 c1bi = ∑

bk for which c1bk �= 0. So
c1 ∈ B(R). Now we note that c2 ∈ S�((1 − c1)R (1 − c1)). As 1 − c1 ∈ B(R),
c2 ∈ S�(R) by Lemma 5.1.5(i). Using the preceding argument, with c2 in place of
c1, we obtain c2 ∈ B(R).

Continuing this procedure, we obtain that {c1, . . . , ck} is a set of orthogonal
nonzero central idempotents in R. Hence ci R cj = 0 for i < j . Thus ciRcj ⊆ U

for all 1 ≤ i < j ≤ k.
Let V = ∑

i<j ciRcj . Then V k = 0. By the preceding argument, biRbj ⊆ V

for all 1 ≤ i < j ≤ n. Hence, U = V and so {b1, . . . , bn} and {c1, . . . , ck} are both
complete sets of centrally primitive idempotents for R. It is well known that for
such sets of centrally primitive idempotents, n= k and there is a permutation σ on
{1, . . . , n} such that ci = bσ(i) (Exercises 5.2.21.1 and 5.2.21.2). As Un = 0, U is a
quasi-regular ideal of R.

From Lemma 5.2.7, there exists an invertible element α ∈ R such that
bσ(i) = α−1ciα for every i. Thus, ciR ∼= bσ(i)R as R-modules. We observe that
End(ciRR)∼= ciRci and End(bjRR)∼= bjRbj . So ciRci ∼= bσ(i)Rbσ(i). �

The following example shows that the isomorphism ciR ∼= bσ(i)R, given in The-
orem 5.2.8, cannot be sharpened to equality. This is in contrast to the result for a
complete set of centrally primitive idempotents.

Example 5.2.9 Let R = T2(R). Consider

b1 =
[

1 0
0 0

]

, b2 =
[

0 0
0 1

]
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and let

c1 =
[

1 a

0 0

]

, c2 =
[

0 −a

0 1

]

, 0 �= a ∈R.

Then {b1, b2} and {c1, c2} are complete sets of left triangulating idempotents for R.
In this case, b1R = c1R and b2R ∼= c2R, but b2R �= c2R.

Kaplansky raised the following question: Let A and B be two rings. If
Matn(A)∼= Matn(B) as rings, does it follow that A∼= B as rings? (See [261, p. 35].)
It is known that there are nonisomorphic semicentral reduced rings (e.g., simple
Noetherian domains) which have isomorphic matrix rings (see [260] and [378]).
The next result shows that this cannot happen for n × n (n > 1) upper triangular
matrix rings over semicentral reduced rings.

Corollary 5.2.10 Let A and B be semicentral reduced rings. If Tm(A)∼= Tn(B) as
rings, then m= n and A∼= B as rings.

Proof Let eii be the matrix in Tm(A) with 1A in the (i, i)-position and 0 elsewhere.
As A is semicentral reduced, {e11, . . . , emm} is a complete set of left triangulating
idempotents for Tm(A). A similar fact holds for Tn(B). Because Tm(A) ∼= Tn(B),
m= n by Theorem 5.2.8.

Next, say λ : Tn(A) → Tn(B) is an isomorphism. Then {λ(e11), . . . , λ(enn)} is
a complete set of left triangulating idempotents of Tn(B). Let fii be the matrix in
Tn(B) with 1B in the (i, i)-position and 0 elsewhere. Then because B is semicentral
reduced, {f11, . . . , fnn} is also a complete set of left triangulating idempotents of
Tn(B).

By Theorem 5.2.8, f11Tn(B)f11 ∼= λ(ejj )Tn(B)λ(ejj ) for some j . Therefore,
B ∼= f11Tn(B)f11 ∼= λ(ejj )Tn(B)λ(ejj )∼= ejjTn(A)ejj ∼=A. �

From Theorem 5.2.8, the number of elements in a complete set of left triangulat-
ing idempotents is unique for a given ring R (which has such a set). This is also the
number of elements in any complete set of right triangulating idempotents of R by
Corollary 5.1.8. So we are motivated to give the following definition.

Definition 5.2.11 A ring R is said to have triangulating dimension n, written
Tdim(R) = n, if R has a complete set of left triangulating idempotents with n el-
ements. Note that R is semicentral reduced if and only if Tdim(R) = 1. If R has
no complete set of left triangulating idempotents, then we say that R has infinite
triangulating dimension, denoted Tdim (R)= ∞.

Lemma 5.2.12 Let {e1, . . . , en} be a complete set of primitive idempotents of R. If
0 �= b ∈ S�(R) ∪ Sr (R), then there exists a nonempty subset P of {e1, . . . , en} such
that {bejb | ej ∈ P } forms a complete set of primitive idempotents of bRb.
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Proof Assume that b ∈ S�(R). From b = b(e1 + · · · + en)b = be1b + · · · + benb,
some bekb �= 0. Let P be the set of all ej such that the elements bejb are nonzero.
Without loss of generality, let P = {e1, . . . , em}.

By Lemma 5.1.5(iii), the bejb, j = 1, . . . ,m, are primitive idempotents in bRb.
From b = be1b + · · · + benb = be1b + · · · + bemb, {bejb | 1 ≤ j ≤ m} is a com-
plete set of primitive idempotents for bRb. The proof for b ∈ Sr (R) is a right-sided
version of the preceding proof. �

The next two results may be useful for studying many well known classes of rings
via complete generalized triangular matrix representations and semicentral reduced
rings from the same respective class.

Proposition 5.2.13 Let a ring R satisfy any one of the following conditions.

(i) R has a complete set of primitive idempotents.
(ii) R is orthogonally finite.

(iii) R has DCC on idempotent generated (resp., principal, or finitely generated)
ideals.

(iv) R has ACC on idempotent generated (resp., principal, or finitely generated)
ideals.

(v) R has DCC on idempotent generated (resp., principal, or finitely generated)
right ideals.

(vi) R has ACC on idempotent generated (resp., principal, or finitely generated)
right ideals.

(vii) R is a semilocal ring.
(viii) R is a semiperfect ring.

(ix) R is a right perfect ring.
(x) R is a semiprimary ring.

Then Tdim(R) <∞ and

R ∼=

⎡

⎢

⎢

⎣

R1 R12 · · · R1n
0 R2 · · · R2n
...

...
. . .

...
0 0 · · · Rn

⎤

⎥

⎥

⎦

,

where n = Tdim(R), each Ri is semicentral reduced, and satisfies the same condi-
tion as R. Further, each Rij is an (Ri,Rj )-bimodule, and the rings R1, . . . ,Rn are
uniquely determined by R up to isomorphism and permutation.

Proof (i) Let {f1, . . . , fk} be a complete set of primitive idempotents of R. Then for
any 0 �= b ∈ S�(R), b = f1b + · · · + fkb. Each fib is an idempotent, as b ∈ S�(R).
Assume that j = 1, . . . ,m is the set of all indices for which fjb �= 0.

Now we have that bR ⊆ f1bR + · · · + fmbR = bf1bR + · · · + bfmbR ⊆ bR,
hence bR = f1bR+· · ·+fmbR. Primitivity of fj implies that fjbR = fjR, when-
ever fjb �= 0. Hence, the total number of right ideals of the form bR, b ∈ S�(R)
cannot exceed 2k . Thus, by Theorem 5.2.5, R has a complete set of left triangulat-
ing idempotents. So Tdim(R) <∞.
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Let {e1, . . . , en} be a complete set of left triangulating idempotents of R. Take
Ri = eiRei and Rij = eiRej for i < j . Then Rij is an (Ri,Rj )-bimodule for
i < j . Since e1 ∈ S�(R), R1 = e1Re1 has a complete set of primitive idempotents
from Lemma 5.2.12. Also 1 − e1 ∈ Sr (R) by Proposition 1.2.2, (1 − e1)R(1 − e1)

has a complete set of primitive idempotents by Lemma 5.2.12. Next we see that
e2 ∈ S�((1 − e1)R(1 − e1)), again Lemma 5.2.12 yields that

R2 = e2Re2 = e2((1 − e1)R(1 − e1))e2

has a complete set of primitive idempotents, and so on. The uniqueness of the Ri

follows from Theorem 5.2.8.
(ii) By part (i) and Proposition 1.2.15, we have a unique generalized triangular

matrix representation. Further, each Ri is orthogonally finite.
(iii) Assume that R has DCC on idempotent generated (resp., principal, or finitely

generated) ideals. Then {eR | e ∈ S�(R)} has DCC since eR = ReR for each e in
S�(R). Consider {Rf | f ∈ Sr (R)}. Then Rf = RfR for each f ∈ Sr (R). Thus
{Rf | f ∈ Sr (R)} also has DCC. By Theorem 5.2.5, R has a complete set of left
triangulating idempotents. So Tdim(R) <∞.

Now say h2 = h ∈ R. Then hRh has DCC on idempotent generated (resp., prin-
cipal, or finitely generated) ideals by using [259, Theorem 21.11].

(iv) By assumption, {eR | e ∈ S�(R)} has ACC as eR = ReR. Also since
Rf =RfR for any f ∈ Sr (R), {Rf | f ∈ Sr (R)} has ACC. From Theorem 5.2.5, R
has a complete set of left triangulating idempotents, so Tdim <∞. Say h2 = h ∈R.
By using [259, Theorem 21.11], hRh has ACC on idempotent generated (resp.,
principal, or finitely generated) ideals.

(v) By Proposition 1.2.13, R is orthogonally finite. By part (ii), R has a complete
set of left triangulating idempotents, so Tdim(R) <∞. Next, let h2 = h ∈ R. Then
hRh has DCC on idempotent generated (resp., principal or finitely generated) right
ideals by using [259, Theorem 21.11].

(vi) The proof is similar to that of part (v) by Proposition 1.2.13 and using [259,
Theorem 21.11].

(vii) and (viii) We note that, for each of these conditions, R is orthogonally fi-
nite. By part (ii), Tdim(R) < ∞. Homomorphic images of a semilocal ring and
a semiperfect ring are semilocal and semiperfect, respectively (see [259, Proposi-
tion 20.7] and [8, Corollary 27.9]). By Proposition 5.1.7(iii), if R is semilocal (resp.,
semiperfect), then each Ri is semilocal (resp., semiperfect).

(ix) If R is right perfect, then R is orthogonally finite. Thus part (ii) yields that
Tdim(R) < ∞. By 1.1.14, R has DCC on principal left ideals. Say h2 = h ∈ R.
Then by the left-sided version of the proof for part (v), hRh also has DCC on prin-
cipal left ideals. So hRh is right perfect, and hence each Ri is right perfect.

(x) If R is semiprimary, then also R is orthogonally finite. Hence by part (ii),
Tdim(R) < ∞. Say h2 = h ∈ R. It is well known that J (hRh) = hJ (R)h (see
[259, Theorem 21.10]). Hence if R is semiprimary, then so is hRh. Thus each Ri is
semiprimary. �

Proposition 5.2.14 Let P be a property of rings such that whenever a ring A sat-
isfies P, then A/I (I � A) or eAe (e2 = e ∈A) also satisfies P. Assume that R is a
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ring with Tdim(R)= n <∞ and satisfies P. Then

R ∼=

⎡

⎢

⎢

⎢

⎣

R1 R12 · · · R1n
0 R2 · · · R2n
...

...
. . .

...

0 0 · · · Rn

⎤

⎥

⎥

⎥

⎦

,

where each Ri is semicentral reduced and satisfies the property P. Further, each Rij

is an (Ri,Rj )-bimodule, and the rings R1, . . . ,Rn are uniquely determined by R up
to isomorphism and permutation.

Proof Since Tdim(R) = n < ∞, R has the indicated unique generalized triangu-
lar matrix representation by Theorems 5.1.4 and 5.2.8. Rings Ri have the form
eRe, where e2 = e ∈ R, also Ri are ring homomorphic images of R by Proposi-
tion 5.1.7(iii). By assumption each Ri has the property P. �

We remark that the following classes of rings determined by property P indicated
in Proposition 5.2.14: Baer rings, right Rickart rings, quasi-Baer rings, right p.q.-
Baer rings, right hereditary rings, right semihereditary rings, π -regular rings, PI-
rings, and rings with bounded index (of nilpotency), etc.

By the next result, if Tdim(R) <∞, central idempotents can be written as sums
of elements in a complete set of left triangulating idempotents.

Proposition 5.2.15 Assume that {b1, . . . , bn} is a complete set of left triangulating
idempotents for a ring R. If c ∈ B(R) \ {0,1}, then there exists ∅ �=Λ� {1, . . . , n}
such that c =∑

i∈Λ bi .

Proof Let c ∈ B(R) \ {0,1}. Then c = c(b1 + · · · + bn) = cb1 + · · · + cbn. We
note that cbi ∈ S�(biRbi) and S�(biRbi)= {0, bi} for each i. Therefore, there exists
∅ �=Λ� {1, . . . , n} such that c =∑

i∈Λ bi . �

Theorem 5.2.16 Let R be a ring. Consider the following conditions.

(i) R has a complete set of primitive idempotents.
(ii) R has a complete set of left triangulating idempotents.

(iii) R has a complete set of centrally primitive idempotents.

Then (i)⇒(ii)⇒(iii).

Proof Proposition 5.2.13(i) yields the implication (i)⇒(ii). For (ii)⇒(iii), assume
that R has a complete set of left triangulating idempotents for R. By Proposi-
tion 5.2.15, B(R) is a finite set. Now a standard argument yields that R has a com-
plete set of centrally primitive idempotents. �

We remark that when R is commutative, conditions (i), (ii), and (iii) of Theo-
rem 5.2.16 are equivalent. The next example shows that the converse of each of the
implications in Theorem 5.2.16 does not hold.
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Example 5.2.17 (i) There is a ring R with a complete set of left triangulating idem-
potents (i.e., Tdim (R) <∞), but R does not have a complete set of primitive idem-
potents. Indeed, let V be an infinite dimensional right vector space over a field F

and let R = EndF (V ). Then R is a prime ring, so Tdim(R)= 1. Since R is a regular
ring which is not semisimple Artinian, R cannot have a complete set of primitive
idempotents.

(ii) There is a ring R with a complete set of centrally primitive idempotents, but
R does not have a complete set of left triangulating idempotents. For this, let R
be the ℵ0 × ℵ0 upper triangular row finite matrix ring over a field. Then {1} is a
complete set of centrally primitive idempotents of R, where 1 is the identity of R.
Let eii be the matrix in R with 1 in the (i, i)-position and 0 elsewhere. Then for any
positive integer n, e11 + · · · + enn ∈ S�(R). As

(e11 + · · · + enn)R � (e11 + · · · + enn + en+1n+1)R

for each n, Theorem 5.2.5 yields that R cannot have a complete set of left triangu-
lating idempotents.

We need the next lemma for investigating Tdim(R) of a ring R.

Lemma 5.2.18 Let {b1, . . . , bn} be a set of left triangulating idempotents of a ring
R and {b(i,1), . . . , b(i,ki )} a set of left triangulating idempotents of biRbi . Then
{b(1,1), . . . , b(1,k1), b(2,1), . . . , b(2,k2), . . . , b(n,1), . . . , b(n,kn)} is a set of left triangu-
lating idempotents of R.

Proof Clearly 1 = ∑k1
i=1 b(1,i) + · · · + ∑kn

i=1 b(n,i). Also b(1,1) ∈ S�(R) by Lem-

ma 5.1.5(i). Let c(i,j) = 1 − ∑i−1
α=1 bα − ∑j

γ=1 b(i,γ ), where 1 ≤ j < ki . Then

b(i,j+1)(
∑i−1

α=1 bα + ∑j

γ=1 b(i,γ )) = 0, and so b(i,j+1)c(i,j) = b(i,j+1). Similarly,

c(i,j)b(i,j+1) = b(i,j+1). So b(i,j+1) ∈ c(i,j)Rc(i,j). Note that c2
(i, j) = c(i, j).

We claim that b(i,j+1) ∈ S�(c(i,j)Rc(i,j)). Put cj = bi − ∑j

γ=1 b(i,γ ). Then

b(i,j+1) ∈ S�(cj (biRbi)cj ) = S�(cjRcj ) and c(i,j) = 1 −∑i
α=1 bα + cj . Note that

b(i,j+1) ∈ biRbi , (
∑i−1

α=1 bα)b(i,j+1) = 0, and {b1, . . . , bn} is a set of orthogonal
idempotents. Hence,

b(i,j+1) = c(i,j)b(i,j+1) = (1 −
i
∑

α=1

bα + cj )b(i,j+1)

= b(i,j+1) − bib(i,j+1) + cj b(i,j+1) = cjb(i,j+1)

as bib(i,j+1) = b(i,j+1). Similarly, b(i,j+1) = b(i,j+1)c(i,j) = b(i,j+1)cj . For r ∈R,

(c(i,j)rc(i,j))b(i,j+1) = (1 −
i
∑

α=1

bα + cj )rcj b(i,j+1)

= (1 −
i
∑

α=1

bα)rcj b(i,j+1) + cj rcj b(i,j+1).
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From Proposition 5.1.7(i), 1 − ∑i
α=1 bα ∈ Sr (R). Therefore, we now obtain that

(1 −∑i
α=1 bα)rcj b(i,j+1) = (1 −∑i

α=1 bα)r(1 −∑i
α=1 bα)cj b(i,j+1) = 0 since

(1 −
i
∑

α=1

bα)cj b(i,j+1) = (1 −
i
∑

α=1

bα)b(i,j+1) = (1 −
i−1
∑

α=1

bα − bi)b(i,j+1)

= b(i,j+1) − bib(i,j+1) = 0.

Thus,

(c(i,j)rc(i,j))b(i,j+1) = (cj rcj )b(i,j+1) = b(i,j+1)(cj rcj )b(i,j+1)

= b(i,j+1)(c(i,j)rc(i,j))b(i,j+1).

So b(i,j+1) ∈ S�(c(i,j)Rc(i,j)). Now routinely we obtain the desired result. �

Theorem 5.2.19 Let {b1, . . . , bn} be a set of left triangulating idempotents of a ring
R. Then Tdim(R)=∑n

i=1 Tdim(biRbi).

Proof If Tdim(R) = ∞, then Tdim(bjRbj ) = ∞ for some 1 ≤ j ≤ n, otherwise
Lemma 5.2.18 yields a contradiction.

Let Tdim(R) < ∞. By Corollary 5.2.6, Tdim(b1Rb1) < ∞. From Proposi-
tion 1.2.2, 1 − b1 ∈ Sr (R). By Corollary 5.2.6, Tdim((1 − b1)R(1 − b1)) < ∞.
We see that b2 ∈ S�((1 − b1)R(1 − b1)). Hence, Corollary 5.2.6 yields that
Tdim(b2Rb2) < ∞. This procedure, by using Corollary 5.2.6, can be continued
to show that Tdim(biRbi) < ∞ for all 1 ≤ i ≤ n. Lemma 5.2.18 yields that
Tdim(R)=∑n

i=1 Tdim(biRbi). �

Corollary 5.2.20 Let R be a ring with a generalized triangular matrix representa-
tion

⎡

⎢

⎢

⎣

R1 R12 · · · R1n
0 R2 · · · R2n
...

...
. . .

...
0 0 · · · Rn

⎤

⎥

⎥

⎦

.

Then Tdim(R) = ∑n
i=1 Tdim(Ri). So, Tdim(Tn(A)) = nTdim(A), where A is a

ring and n is a positive integer.

Exercise 5.2.21

1. Assume that R is a ring and 0 �= g ∈ B(R) such that g = g1 + · · · + gt , where
{gi | 1 ≤ i ≤ t} is a set of orthogonal centrally primitive idempotents in R. Show
that t is uniquely determined.

2. Let R be a ring, and let {e1, . . . , em} and {f1, . . . , fn} be two complete sets of
centrally primitive idempotents of R. Show that m= n and there exists a permu-
tation σ on {1, . . . , n} such that ei = fσ(i).
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3. Assume that MR is a right R-module and S = End(MR). Show that the following
are equivalent.
(i) S has a complete set of left triangulating idempotents.

(ii) There exists a positive integer n such that:
(1) M =M1 ⊕ · · · ⊕Mn.
(2) Hom(Mi,Mj )= 0 for i < j .
(3) Each Mi has no nontrivial fully invariant direct summands.

4. ([93, Birkenmeier, Park and Rizvi]) Assume that S is an overring of a ring R

such that RR ≤ess SR . (The ring S is called a right essential overing of R. See
Chap. 7 for right essential overrings for more details.) Show that if R is right
FI-extending, then Tdim(S)≤ Tdim(R).

5. ([93, Birkenmeier, Park and Rizvi]) Let S be an overring of a ring R such that
RR ≤ess SR . Prove that if R is right extending and {e1, . . . , en} is a complete set
of primitive idempotents for R, then {e1, . . . , en} is a complete set of primitive
idempotents for S.

6. ([79, Birkenmeier, Kim, and Park]) Show that a ring R is left perfect if and only
if R has a complete generalized triangular matrix representation, where each
diagonal ring Ri is simple Artinian or left perfect with (Soc(RiRi

))2 = 0.

5.3 Canonical Representations

We show that if a ring R has a set of left triangulating idempotents, then it has a
canonical generalized triangular matrix representation, where the diagonal subrings
are organized into blocks of square diagonal matrix rings. This canonical represen-
tation is then used to obtain a result on the right global dimension of rings with a set
of left triangulating idempotents.

Let {b1, . . . , bn} be a set of left triangulating idempotents of R. If J is a subset
of {1, . . . , n}, we denote σJ = ∑

i∈J bi . Our first result shows that under certain
conditions the ordering in a set of left triangulating idempotents can be changed to
obtain a new set of left triangulating idempotents.

Proposition 5.3.1 Let j and m be in {1, . . . , n} with j < m ≤ n. If {b1, . . . , bn} is
a set of left triangulating idempotents of a ring R such that biRbm = 0 for each i

with j ≤ i < m, then

{b1, . . . , bj−1, bm, bj , bj+1, . . . , bm−1, bm+1, . . . , bn}
is a set of left triangulating idempotents of R.

Proof The proof follows routinely from Theorem 5.1.3. �

Proposition 5.3.1 is applied to obtain a canonical form for a generalized triangu-
lar matrix representation of R. Let {b1, . . . , bn} be a set of left triangulating idem-
potents. Recursively define the sets Ik and J (k) as follows:

I1 = {i | bi ∈ S�(R)} and J (1)= I1;
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and let

Ik+1 = {i | bi ∈ S�((1 − σJ(k))R(1 − σJ(k)))} and J (k + 1)= J (k) ∪ Ik+1,

whenever Ik and J (k) are defined. This process terminates within n steps.
Let Sj = {bi | i ∈ Ij }. Then S1, . . . , Sq is a partition for {b1, . . . , bn} (we will

show in the proof of Theorem 5.3.2 that this always occurs). Then reorder {1, . . . , n}
so that each Ij has any (fixed) ordering and so that elements of Ij always precede
elements in Ij+1. This can be thought of in terms of a permutation ψ on {1, . . . , n}.
Then the ordered set {bψ(1), . . . , bψ(n)} is called a canonical form for {b1, . . . , bn}.

Theorem 5.3.2 Let {b1, . . . , bn} be a set of left triangulating idempotents. Then a
canonical form for {b1, . . . , bn} exists, and any such canonical form is a set of left
triangulating idempotents of R.

Proof The proof involves repeated use of Propositions 5.3.1, as in the follow-
ing discussion. We note that b1 ∈ S1 = S�(R). If bm ∈ S1 and m �= 1, then
biRbm = bibmRbm = 0 for all i �= m. We use Proposition 5.3.1 to get that
{bm,b1, . . . , bm−1, bm+1, . . . , bn} is a set of left triangulating idempotents of R.
Continue this process using elements of S1 until they are exhausted.

Following the procedure given in Proposition 5.3.1, there exists a permuta-
tion α on {1, . . . , n} such that S1 = {bα(1), . . . , bα(n1)}. Also, the ordered set
{bα(1), bα(2), . . . , bα(n)} is a set of left triangulating idempotents of R.

If n1 = n, then we are finished. So consider n1 < n and let q = α(n1 + 1), where
α(n1 + 1) is the smallest positive integer i such that bi �∈ S1. Observe that bq is the
first element in this new ordering which is not in S1.

We show that bq ∈ S2. For this, let y be the sum of all elements in S1. Thus,
y = bα(1) +· · ·+bα(n1). Let g be the sum of all elements in {bα(1), . . . , bα(n)} which
are not in {bq, bα(1), . . . , bα(n1)}. Then 1 = y + bq + g. Thus 1 − y = bq + g, and
therefore bq ∈ (1 − y)R(1 − y). Now for every a ∈R, we can see that

(1 − y)a(1 − y)bq = (1 − y)abq = (bq + g)abq

= bqabq = bq(1 − y)a(1 − y)bq

as bq(1 − y)= bq , (1 − y)bq = bq , and gabq = 0. So bq ∈ S�((1 − y)R(1 − y)).
Consequently, q ∈ I2 and hence bq ∈ S2. Either this exhausts the elements in

S2 or (in the ordering given by α) there is an element bp ∈ S2 beyond bq . Use
Proposition 5.3.1 as before to obtain a set of left triangulating idempotents of R of
the form {bα(1), . . . , bα(n1), bp, bq, bα(n1+2), . . . , bα(n)}.

Repeat this process using elements of S2 until they are exhausted. Then there
exists a permutation γ on {1, . . . , n} such that

{bγ (1), . . . , bγ (n1), bγ (n1+1), . . . , bγ (n2), . . . , bγ (n)}
forms a set of left triangulating idempotents, where γ (i) = α(i) for 1 ≤ i ≤ n1,

bγ (n2) = bq , and {bγ (n1+1), . . . , bγ (n2)} = S2.
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Now either S1 ∪ S2 = {b1, . . . , bn} or we can continue the process on S3, and so
on. After k steps, k ≤ n, the process terminates in a set of left triangulating idempo-
tents of R in a canonical form. So we obtain a permutation ψ so that S1, . . . , Sk is
our desired partition of {b1 . . . , bn}. �

Theorems 5.1.4 and 5.3.2 provide a tool for a generalized triangular matrix rep-
resentation of R in a special canonical form, which we give next.

Corollary 5.3.3 (Canonical Representation) Let {b1, . . . , bn}, S1, . . . , Sk , and
ψ be as before. Then using 0 = n0 < n1 < · · · < nk , we have that Sj+1 =
{bψ(nj+1), . . . , bψ(nj+1)}, j = 0,1, . . . , k − 1, and R is isomorphic to the n × n

matrix [A(i, j)], where the A(i, j) are ni × nj block matrices

A(i + 1, i + 1)=

⎡

⎢

⎢

⎢

⎢

⎣

bψ(ni+1)Rbψ(ni+1) 0 · · · 0

0
. . . 0

...
. . .

...

0 0 · · · bψ(ni+1)Rbψ(ni+1)

⎤

⎥

⎥

⎥

⎥

⎦

;

A(i + 1, j + 1)=
⎡

⎢

⎣

bψ(ni+1)Rbψ(nj+1) · · · bψ(ni+1)Rbψ(nj+1)

...
. . .

...

bψ(ni+1)Rbψ(nj+1) · · · bψ(ni+1)Rbψ(nj+1)

⎤

⎥

⎦
,

for i < j ; and A(i, j)= 0 for i > j , where i, j = 0,1, . . . , k − 1.

For the proof of Theorem 5.3.5, we need the following lemma.

Lemma 5.3.4 Let A and B be rings, and let M be an (A,B)-bimodule. Set

R =
[

AM

0 B

]

, a generalized triangular matrix ring. Then

max{r.gl.dim(A), r.gl.dim(B)} ≤ r.gl.dim(R)

≤ max{r.gl.dim(A)+ pd(MB)+ 1, r.gl.dim(B)},
where pd(MB) is the projective dimension of MB .

Proof See [295, Proposition 7.5.1] for the proof. �

In Lemma 5.3.4, if M = 0, then R =A⊕B (ring direct sum). Also

r.gl.dim(R)≤ max{r.gl.dim(A)+ pd(AR), r.gl.dim(B)+ pd(BR)}
from the proof of [295, Proposition 7.5.1]. As AR and BR are projective, it follows
that pd(AR)= 0 and pd(BR)= 0, so

r.gl.dim(R)≤ max{r.gl.dim(A), r.gl.dim(B)}.
Thus, r.gl.dim(A⊕B)= max{r.gl.dim(A), r.gl.dim(B)} by Lemma 5.3.4.
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As an application of canonical representation, we discuss the following result
which exhibits a connection between the right global dimension of R and that of the
sum of diagonal subrings.

Theorem 5.3.5 Let {b1, . . . , bn} be a set of left triangulating idempotents of R, and
S1, . . . , Sk be as in Corollary 5.3.3. Then

r.gl.dim(D)≤ r.gl.dim(R)≤ k (r.gl.dim(D))+ k − 1,

where D = b1Rb1 + · · · + bnRbn. Thereby, r.gl.dim(R) < ∞ if and only if
r.gl.dim(D) <∞.

Proof The proof is given by induction on k. If k = 1, then R = D by Theo-
rem 5.3.2 and we are finished. Assume that k ≥ 2. We take A = ∑

bi∈S1
biRbi ,

M =∑

bi∈S1,bj∈S2∪···∪Sk biRbj , and B = (1 −∑

bi∈S1
bi)R (1 −∑

bi∈S1
bi). Then

obviously B = (
∑

bj∈S2∪···∪Sk bj )R (
∑

bj∈S2∪···∪Sk bj ).
We note that S2 ∪ · · · ∪ Sk is a set of left triangulating idempotents of B

and {S2, . . . , Sk} is a partition which establishes a canonical generalized triangu-
lar matrix representation for B . Let D1 =∑

bj∈S2∪···∪Sk bjRbj . Then by induction
r.gl.dim(D1)≤ r.gl.dim(B)≤ (k − 1)(r.gl.dim(D1)) + k − 2.

Because D = A ⊕ D1 from Theorem 5.3.2 or Corollary 5.3.3, it follows that

r.gl.dim(D)= max {r.gl.dim(A), r.gl.dim(D1)}. Observe that R =
[

AM

0 B

]

and M is

an (A,B)-bimodule. Hence,

max {r.gl.dim(A), r.gl.dim(B)} ≤ r.gl.dim(R)

≤ max{r.gl.dim(A)+ pd(MB)+ 1, r.gl.dim(B)}
from Lemma 5.3.4. Because r.gl.dim(D1)≤ r.gl.dim(B),

r.gl.dim(D) = max {r.gl.dim(A), r.gl.dim(D1)}
≤ max {r.gl.dim(A), r.gl.dim(B)}
≤ r.gl.dim(R).

We observe that pd(MB)≤ r.gl.dim(B). Therefore,

r.gl.dim(R) ≤ max {r.gl.dim(A)+ pd(MB)+ 1, r.gl.dim(B)}
≤ max{r.gl.dim(A)+ r.gl.dim(B)+ 1, r.gl.dim(B)}
= r.gl.dim(A)+ r.gl.dim(B)+ 1

≤ r.gl.dim(D)+ [(k − 1) (r.gl.dim(D1))+ (k − 2)] + 1

≤ r.gl.dim(D)+ (k − 1) (r.gl.dim(D))+ k − 1

= k (r.gl.dim(D))+ k − 1.

Therefore, r.gl.dim(D) ≤ r.gl.dim(R) ≤ k (r.gl.dim(D)) + k − 1. Thereby,
r.gl.dim(R) <∞ if and only if r.gl.dim(D) <∞. �
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5.4 Piecewise Prime Rings and Piecewise Domains

In this section, a criterion for a ring with a complete set of triangulating idem-
potents to be quasi-Baer is provided. Also a structure theorem for a quasi-Baer
ring with a complete set of triangulating idempotents is shown. Among the applica-
tions of this structure theorem, several well-known results are obtained as its con-
sequences. These include Levy’s decomposition theorem of semiprime right Goldie
rings, Faith’s characterization of semiprime right FPF rings with no infinite set of
central orthogonal idempotents, Gordon and Small’s characterization of piecewise
domains, and Chatters’ decomposition theorem of hereditary Noetherian rings. A
result related to Michler’s splitting theorem for right hereditary right Noetherian
rings is also obtained as an application.

The next result provides a criterion for a ring with a complete set of left triangu-
lating idempotents to be quasi-Baer.

Theorem 5.4.1 Assume that a ring R has a complete set of left triangulating idem-
potents with Tdim(R)= n. Then the following are equivalent.

(i) R is quasi-Baer.
(ii) For any complete set of left triangulating idempotents {b1, . . . , bn} of R, if

bixbjRbjybk = 0 for some x, y ∈ R and some 1 ≤ i, j, k ≤ n, then either
bixbj = 0 or bjybk = 0.

(iii) There is a complete set of left triangulating idempotents {c1, . . . , cn} of R such
that if cixcjRcjyck = 0 for some x, y ∈R and some 1 ≤ i, j, k ≤ n, then either
cixcj = 0 or cj yck = 0.

(iv) For any complete set of left triangulating idempotents {b1, . . . , bn}, assume that
KbjV = 0 for some ideals K and V of R and some bj , 1 ≤ j ≤ n. Then either
Kbj = 0 or bjV = 0.

Proof (i)⇒(ii) Assume that bixbjRbjybk = 0 for some x, y ∈ R and some
1 ≤ i, j, k ≤ n. Since R is quasi-Baer, rR(bixbjR) = fR for some f ∈ S�(R).
By Lemma 5.1.5(ii), bjf bj ∈ S�(bjRbj ). As {b1, . . . , bn} is a complete set of
left triangulating idempotents, S�(bjRbj ) = {0, bj }. So either bjf bj = 0 or
bjf bj = bj . If bjf bj = 0, then since bjybk ∈ rR(bixbjR) = fR, we have that
bjybk = f bjybk . So bjybk = bjf bjybk = 0. On the other hand, if bjf bj = bj ,
then bixbj = bixbjf bj = 0 as bixbjf = 0.

(ii)⇒(iii) It follows immediately because R has a complete set of left triangulat-
ing idempotents.

(iii)⇒(i) Say L is a left ideal of R. First, assume that Rci ∩�R(L) �= 0 for some i.
Then we may assume that

Rc1 ∩ �R(L) �= 0, . . . ,Rcm ∩ �R(L) �= 0,

and

Rcm+1 ∩ �R(L)= 0, . . . ,Rcn ∩ �R(L)= 0.

Thus �R(L)Rcm+1 = 0, . . . , and �R(L)Rcn = 0. Put T =Rc1 + · · · +Rcm.
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Say v ∈ �R(L). Then v = v(c1 + · · · + cn) = vc1 + · · · + vcm ∈ T . There-
fore, �R(L) ⊆ T . To show that c1 ∈ �R(L), take y ∈ L. Since Rc1 ∩ �R(L) �= 0,
there exists x ∈ R such that 0 �= xc1 ∈ Rc1 ∩ �R(L). So xc1Rc1y = 0. Now there
is ckxc1 �= 0 for some ck because 1 = c1 + · · · + cn. Thus, ckxc1Rc1ycj = 0
for all j . Therefore c1ycj = 0 for all j , and so c1y = 0. Hence, c1 ∈ �R(L).
Thus, Rc1 ⊆ �R(L). Similarly, Rc2, . . . ,Rcm ⊆ �R(L). So T ⊆ �R(L). Therefore,
�R(L) = T = Rc1 + · · · + Rcm = R(c1 + · · · + cm). Put e = c1 + · · · + cm. Then
e2 = e ∈R and so �R(L)=Re.

Next, assume that Rci ∩ �R(L) = 0 for all i. Then �R(L)Rci = 0 for all i. So
�R(L)= �R(L)(Rc1 + · · · +Rcn)= 0. Therefore, R is quasi-Baer.

(ii)⇒(iv) Let KbjV = 0 and bjV �= 0 for some bj . Say y ∈ V with bjy �= 0. So
0 �= bjy =∑n

t=1 bjybt , hence bjybk �= 0 for some bk .
Let x ∈ K . Then xbjRbjy = 0. Hence bixbjRbjybk = 0 for each bi . As

bjybk �= 0, bixbj = 0 for all bi . Thus xbj = ∑n
i=1 bixbj = 0, so Kbj = 0. If

Kbj �= 0, similarly bjV = 0.
(iv)⇒(ii) If bixbjRbjybk = 0, then (RbixbjR)bj (RbjybkR) = 0. By assump-

tion RbixbjR = 0 or RbjybkR = 0, so bixbj = 0 or bjybk = 0. �

Corollary 5.4.2 If R has a complete set of primitive idempotents, then the following
are equivalent.

(i) R is quasi-Baer.
(ii) For any given complete set of primitive idempotents {e1, . . . , en}, if eixejRejyek

= 0 for some x, y ∈ R and some 1 ≤ i, j, k ≤ n, then either eixej = 0 or
ejyek = 0.

(iii) There is a complete set of primitive idempotents {f1 . . . , fm} of R such that
if fixfjRfjyfk = 0 for some x, y ∈ R and some 1 ≤ i, j, k ≤ m, then either
fixfj = 0 or fjyfk = 0.

(iv) For any complete set of primitive idempotents {g1, . . . , g�}, assume that
KgjV = 0 for some ideals K and V of R and for some gj , 1 ≤ j ≤ �. Then
either Kgj = 0 or gjV = 0.

Proof Let f ∈ S�(R) and 0 �= e2 = e ∈R. Then ef e ∈ S�(eRe) by Lemma 5.1.5(ii).
In particular, if e is primitive, then S�(eRe)= {0, e}. So either ef e = 0 or ef e = e.
The proof can then be completed by using a similar argument as in the proof of
Theorem 5.4.1. �

Definition 5.4.3 A ring R is called a piecewise domain (or simply, PWD) if there is
a complete set of primitive idempotents {e1, . . . , en} such that xy = 0 implies x = 0
or y = 0 whenever x ∈ eiRej and y ∈ ejRek , for 1 ≤ i, j, k ≤ n.

To avoid ambiguity, we sometimes say that R is a PWD with respect to a com-
plete set {ei}ni=1 of primitive idempotents. In light of Theorem 5.4.1 and Corol-
lary 5.4.2, it is interesting to compare quasi-Baer rings having a complete set of left
triangulating (or primitive) idempotents with PWDs. In fact, Definition 5.4.3 and
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the equivalence of (i) and (iii) in Theorem 5.4.1 and Corollary 5.4.2 suggest the
following definition.

Definition 5.4.4 A quasi-Baer ring with a complete set of triangulating idempotents
is called a piecewise prime ring (or simply, PWP ring).

The following result is somewhat of a right p.q.-Baer analogue of Theo-
rem 3.1.25.

Proposition 5.4.5 Let R be a right p.q.-Baer ring with Tdim(R) <∞. Then R is a
PWP ring.

Proof Let I be a right ideal of R, and say I = ∑

i∈Λ xiR with xi ∈ R. Then
rR(I )= ∩i∈ΛrR(xiR)= ∩i∈ΛeiR with ei ∈ S�(R) for each i ∈Λ because R is right
p.q.-Baer. By Theorem 5.2.5 and Proposition 1.2.4(i), there exists e ∈ S�(R) such
that

∑

i∈Λ eiR = eR. Therefore R is a PWP ring. �

The next question was posed by Gordon and Small (see [187, p. 554]): Can
a PWD R possess a complete set {fi}mi=1 of primitive idempotents for which it is
not true that xy = 0 implies x = 0 or y = 0 for some x ∈ fiRfk and y ∈ fkRfj?
Theorem 5.4.1 and Corollary 5.4.2 show that if R is a PWP ring, then it is a PWP
ring with respect to any complete set of left triangulating idempotents. Thereby for
the case of PWP rings it provides an answer to the above question.

Proposition 5.4.6 Any PWD is a PWP ring.

Proof The result follows from Proposition 5.2.13 and Corollary 5.4.2. �

The following example illustrates that the converse of Proposition 5.4.6 does not
hold true.

Example 5.4.7 (i) Let R be the ring in Example 3.2.7(ii). Then R is a PWP ring, but
it is not a PWD.

(ii) Let R be the ring of Example 5.2.17(i). Then R is a prime ring, so it is a PWP
ring. But R does not have a complete set of primitive idempotents. Thus, R is not a
PWD.

Example 5.4.8 There is a PWD which is not Baer. Let R be a commutative domain
which is not semihereditary (e.g., Z[x]). Then Matn(R) is a PWD for any positive
integer n > 1, but it is not a Baer ring (see Theorem 6.1.4).

Proposition 5.4.9 Let R be a ring and {e1, . . . , en} be a complete set of primitive
idempotents of R. Then the following are equivalent.

(i) R is a PWD with respect to {e1, . . . , en}.
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(ii) Every nonzero element of Hom(eiRR, ejRR) is a monomorphism for all i, j ,
1 ≤ i, j ≤ n.

(iii) Every nonzero element of Hom(eiRR,RR) is a monomorphism for all i,
1 ≤ i ≤ n.

Proof Exercise. �

Example 5.4.10 (i) It is routine to check that the ring of n×n matrices over a PWD
is a PWD.

(ii) The polynomial ring over a PWD is a PWD. Indeed, say R is a PWD with
respect to a complete set of primitive idempotent {e1, . . . , en}. Then {e1, . . . , en} is
a complete set of primitive idempotents of R[x], and R[x] is a PWD with respect to
{e1, . . . , en}.

(iii) A right Rickart ring with a complete set of primitive idempotents is a PWD.
In fact, say R is a right Rickart ring with a complete set {e1, . . . , en} of primitive
idempotents.

Suppose that eixej ej yek = 0, where x, y ∈ R and 1 ≤ i, j, k ≤ n. Since R is
right Rickart, rR(eixej )= fR for some f 2 = f ∈ R. So 1 − ej = f (1 − ej ) since
1 − ej ∈ rR(eixej ). Note that 1 − ej =∑n

k �=j ek , thus

∑

k �=j

ek = 1 − ej = f (1 − ej )=
∑

k �=j

f ek.

Hence ek = f ek for k �= j and 1 ≤ k ≤ n. Therefore,

f =
n
∑

k=1

f ek =
n
∑

k �=j

f ek + f ej =
n
∑

k �=j

ek + f ej .

Thus 1 − f = 1 −∑n
k �=j ek − f ej = ej − f ej = (1 − f )ej , so R(1 − f ) ⊆ Rej .

Hence, it follows that R(1 − f ) = Rej or R(1 − f ) = 0 as ej is a primitive idem-
potent.

If R(1 − f )= Rej , then ejf = 0. Because eixej ej yek = eixej yek = 0, we get
that yek ∈ rR(eixej )= fR, and yek = fyek . Hence, ej yek = ejfyek = 0. Finally,
assume that R(1 − f )= 0. Then f = 1, and thus eixej = 0. So R is a PWD.

If R(1 − f )= Rej , then ejf = 0. Because eixej ej yek = eixej yek = 0, we get
yek ∈ rR(eixej )= fR, and therefore yek = fyek . Hence ej yek = ejfyek = 0.

Further, if R(1 − f )= 0, then f = 1, and thus eixej = 0. So R is a PWD.
(iv) There exists a PWD which is not right Rickart. Let R = Mat2(Z[x]). Then

R is a PWD by part (i), but R is not (right) Rickart (see Example 3.1.28).
(v) A right nonsingular ring which is a direct sum of uniform right ideals is

a PWD. Indeed, let R be a right nonsingular ring such that R = ⊕n
i=1Ii , where

each Ii is a uniform right ideal of R. Then there is a complete set of primi-
tive idempotents {e1, . . . , en} with Ii = eiR for each i. As Z(RR) = 0, by Corol-
lary 1.3.15 E(RR) = Q(R). Now Q(R) is a regular ring from Theorem 2.1.31 and
Q(R)= e1Q(R)⊕· · ·⊕enQ(R). Also each eiQ(R)Q(R) is uniform, so {e1, . . . , en}
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is a complete set of primitive idempotents in Q(R). Thus, Q(R) is semisimple Ar-
tinian. Say eixej ej yek = 0, where x, y ∈R and 1 ≤ i, j, k ≤ n. Then since Q(R) is
a PWD with respect to {e1, . . . , en} by part (iii), either eixej = 0 or ejyek = 0. So
R is a PWD.

Proposition 5.4.11 Let {b1, . . . , bn} be a set of left triangulating idempotents of a
ring R. Then the following are equivalent.

(i) P is a (minimal) prime ideal of R.
(ii) There exist m, 1 ≤ m ≤ n, and a (minimal) prime ideal Pm of the ring bmRbm

such that P = Pm +∑

k �=m bkRbk +∑

i �=j biRbj .

Proof The proof is routine. �

Theorem 5.4.12 Let R be a PWP ring with Tdim(R) = n. Then R =A
⊕

B (ring
direct sum) such that:

(i) A=⊕k
i=1 Ai is a direct sum of prime rings Ai .

(ii) There exists a ring isomorphism

B ∼=

⎡

⎢

⎢

⎢

⎣

B1 B12 · · · B1m
0 B2 · · · B2m
...

...
. . .

...

0 0 · · · Bm

⎤

⎥

⎥

⎥

⎦

,

where each Bi is a prime ring, and Bij is a (Bi,Bj )-bimodule.
(iii) n= k +m.
(iv) For each i ∈ {1, . . . ,m} there is j ∈ {1, . . . ,m} such that Bij �= 0 or Bji �= 0.
(v) The rings B1, . . . ,Bm are uniquely determined by B up to isomorphism and

permutation.
(vi) B has exactly m minimal prime ideals P1, . . . ,Pm, R has exactly n minimal

prime ideals of the form A ⊕ Pi or Ci ⊕ B where Ci = ⊕

j �=i Aj . Further,
P1, . . . ,Pm are comaximal, P(R)= P(B), and P(R)m = 0.

Proof Say E = {b1, b2, . . . , bn} is a complete set of left triangulating idempotents
of R.

(i) Let {e1, . . . , ek} = E ∩ B(R). Take Ai = eiR. By Proposition 3.2.5 and The-
orem 3.2.10, each Ai is a prime ring.

(ii) Let {f1, . . . , fm} =E \ {e1, . . . , ek}, where the fi are maintained in the same
relative order as they were in E. Let Bi = fiBfi and Bij = fiBfj . Then each Bi is
a prime ring by Proposition 3.2.5 and Theorem 3.2.10. Define φ by φ(b)= [fibfj ]
for b ∈ B , as in the proof of Theorem 5.1.4. Then φ is a ring isomorphism.

(iii) The proof follows immediately from the proof of part (ii).
(iv) It is evident since {f1, . . . , fm} =E \ {e1, , . . . , ek}.
(v) This is a consequence of Theorem 5.2.8.
(vi) The proof follows from a routine argument using Lemma 5.4.11. �
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Corollary 5.4.13 (i) Any semiprime PWP ring is a finite direct sum of prime rings.
(ii) Any biregular ring R with Tdim(R) <∞ is a finite direct sum of simple rings.

Proof The proof follows from Theorems 5.4.12 and 3.2.22(ii). �

The next corollary is related to Michler’s splitting theorem [299, Theorem 2.2]
for right hereditary right Noetherian rings.

Corollary 5.4.14 Let R be a right hereditary right Noetherian ring. Then

R ∼=

⎡

⎢

⎢

⎢

⎣

R1 R12 · · · R1n
0 R2 · · · R2n
...

...
. . .

...

0 0 · · · Rn

⎤

⎥

⎥

⎥

⎦

,

where each Ri is a prime right hereditary, right Noetherian ring, and each Rij is an
(Ri,Rj )-bimodule.

Proof As R is right hereditary right Noetherian, R is Baer by Theorem 3.1.25. Thus
the proof follows from Theorem 5.4.12 and Proposition 5.2.14. �

We will now see that Levy’s decomposition theorem [279] for semiprime right
Goldie right hereditary rings, follows as a consequence of Theorem 5.4.12.

Corollary 5.4.15 Any semiprime right Goldie, right hereditary ring is a finite direct
sum of prime right Goldie, right hereditary rings.

Proof Let R be a semiprime right Goldie, right hereditary ring. Then R is orthog-
onally finite, so R is Baer by Theorem 3.1.25 and Tdim(R) < ∞ from Proposi-
tion 5.2.13(ii). Corollary 5.4.13(i) and a routine verification yield that R is a finite
direct sum prime right Goldie, right hereditary rings. �

A ring R is called right FPF if every faithful finitely generated right R-module
generates the category Mod-R of right R-modules (see [156]). We may note that
a semiprime right FPF ring is quasi-Baer (see [78, Corollary 1.19]). By Theo-
rem 5.4.12, Faith’s characterization of semiprime right FPF rings with no infinite
set of central orthogonal idempotents (see [156, Theorem I.4]) is provided as fol-
lows.

Corollary 5.4.16 Let R be a ring with no infinite set of central orthogonal idempo-
tents. Then R is semiprime right FPF if and only if R is a finite direct sum of prime
right FPF rings.

Proof Let R be a semiprime right FPF ring with no infinite set of central orthogonal
idempotents. Because R is semiprime, B(R)= S�(R) by Proposition 1.2.6(ii). Since
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R has no infinite set of central orthogonal idempotents, we see that

{eR | e ∈ S�(R)} = {eR | e ∈ B(R)}
has ACC and DCC. By Theorem 5.2.5, Tdim(R) < ∞, so R is a PWP ring. By
Corollary 5.4.13(i), R is a finite direct sum of prime rings. Since ring direct sum-
mands of right FPF rings are right FPF, these prime rings are right FPF. The converse
is immediate. �

A ring R for which the diagonal rings Ri in a complete generalized triangular
matrix representation are simple Artinian, is called a TSA ring. Recall from 1.1.14
that if R is a right (or left) perfect ring, then J (R) = P(R). Thus any prime right
(or left) perfect ring is simple Artinian.

By Theorem 5.4.12, every quasi-Baer right (or left) perfect ring is a TSA ring. So
Teply’s result [391] given next follows from Theorem 5.4.12 since an orthogonally
finite right Rickart ring is Baer by Theorem 3.1.25.

Corollary 5.4.17 A right (or left) perfect right Rickart ring is a semiprimary TSA
ring.

For a π -regular Baer ring with only countably many idempotents, we obtain the
following.

Corollary 5.4.18 A π -regular Baer ring with only countably many idempotents is
a semiprimary TSA ring.

Proof Theorems 3.1.11, 3.1.26, and 5.4.12 yield the result. �

Corollary 5.4.19 Assume that R is a PWP ring with Tdim(R) = n. Then the fol-
lowing are equivalent.

(i) r.gl.dim(R) <∞.
(ii) r.gl.dim(R/P (R)) <∞.

(iii) r.gl.dim(R1 + · · · +Rn) <∞, where the Ri are the diagonal rings in the com-
plete generalized triangular matrix representation of R.

Proof (i)⇔(iii) is a direct consequence of Theorem 5.3.5. From Theorem 5.4.12,
R/P (R)∼=R1 ⊕ · · · ⊕Rn. Hence, (ii)⇔(iii) follows immediately. �

Theorem 5.4.20 Let R be a right p.q.-Baer ring. Then Tdim(R) = n if and only if
R has exactly n minimal prime ideals.

Proof Assume that Tdim (R) = n. By Proposition 5.4.5, R is a PWP ring. Thus
from Theorem 5.4.12, R has exactly n minimal prime ideals.

Conversely, let R have exactly n minimal prime ideals. We proceed by induction
on n. First, say n= 1. If Tdim(R) �= 1, then R is not semicentral reduced. So there



5.4 Piecewise Prime Rings and Piecewise Domains 165

is 0 �= b ∈ S�(R) with b �= 1. Then bRb and (1 − b)R(1 − b) each have at least
one minimal prime ideal. Note that {b,1 − b} is a set of left triangulating idempo-
tents of R. Thus, by Proposition 5.4.11, R has at least two minimal prime ideals, a
contradiction. Hence, Tdim(R)= 1.

Suppose that n > 1. If R is semicentral reduced, then R is prime by Propo-
sition 3.2.25. So n = 1, a contradiction. Thus R is not semicentral reduced,
hence there is 0 �= d ∈ S�(R) and d �= 1. By Theorem 3.2.34(i), both dRd and
(1 − d)R(1 − d) are right p.q.-Baer rings. We note that {d,1 − d} is a set of left
triangulating idempotents. From Proposition 5.4.11, there are some positive inte-
gers k1 and k2 such that dRd and (1 − d)R(1 − d) have exactly k1 and k2 number
of minimal prime ideals, respectively, where k1 + k2 = n.

By induction, Tdim(dRd)+ Tdim((1 − d)R(1 − d))= k1 + k2 = n. From The-
orem 5.2.19, Tdim(R)= n. �

Corollary 5.4.21 The PWP property is Morita invariant.

Proof Assume that R and S are Morita equivalent rings. Suppose that R is a PWP
ring and let Tdim(R) = n. By Theorem 5.4.20, R has exactly n minimal prime
ideals. Since R is quasi-Baer, S is also quasi-Baer from Theorem 3.2.11. Now S

has also exactly n minimal prime ideals because R and S are Morita equivalent
(see [262, Proposition 18.44 and Corollary 18.45]). Thus Tdim(S) = n by Theo-
rem 5.4.20, so S is also a PWP ring. �

The next example illustrates that the right p.q.-Baer condition is not superfluous
in Theorem 5.4.20.

Example 5.4.22 There exists a ring R such that:

(i) R has only two minimal prime ideals.
(ii) Tdim(R)= 1.

Indeed, we let F {X,Y } be the free algebra over a field F , and we put
R = F {X,Y }/I , where I is the ideal of F {X,Y } generated by YX. Say x =X + I

and y = Y + I in R. Then R/RxR ∼= F [y] and R/RyR ∼= F [x], so RxR and RyR

are prime ideals of R. As yx = 0, we see that (RyR)(RxR) = 0. So, if P is a
prime ideal, then either RyR ⊆ P or RxR ⊆ P . Thus RxR and RyR are the only
two minimal prime ideals of R. We can verify that all idempotents of R are only 0
and 1. In particular, R is semicentral reduced, so Tdim(R)= 1.

Let R be a quasi-Baer (resp., Baer) ring with Tdim (R) < ∞. Then P(R) is
nilpotent and R/P (R) is a finite direct sum of prime (resp., Baer) rings from The-
orem 5.4.12, so R/P (R) is a quasi-Baer (resp., Baer) ring (cf. Example 3.2.42).
There is a quasi-Baer ring R with P(R) nilpotent, but Tdim(R) is infinite. Let
R = T2(

∏∞
n=1 Fn), where F is a field, and Fn = F,n = 1,2, . . . . In this case,

P(R)2 = 0, but Tdim(R)= ∞.
An R-module M is said to satisfy the restricted minimum condition if, for every

essential submodule N of M , the module M/N is Artinian.
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Lemma 5.4.23 Let R be a hereditary Noetherian ring. Then both RR and RR sat-
isfy the restricted minimum condition.

Proof Assume that JR ≤ess RR . Then JR is finitely generated projective because
R is right hereditary and right Noetherian. From Dual Basis lemma (see [262,
Lemma 2.9]), there are a1, . . . , an ∈ J and f1, . . . , fn ∈ Hom(JR,RR) such that
x = a1f1(x) + · · · + anfn(x) for each x ∈ J . Because Z(RR) = 0 from Proposi-
tion 3.1.18, JR ≤den RR by Proposition 1.3.14. Thus, it follows that fi ∈ Q(R) for
i = 1, . . . , n, so a1f1 + · · · + anfn ∈ Q(R). We note that a1f1 + · · · + anfn = 1 in
Q(R) as a1f1 + · · · + anfn is the identity map of J .

Put D(J ) = Hom (JR,RR). Then Rf1 + · · · + Rfn ⊆ D(J ) because D(J ) is a
left R-module. Let q ∈D(J ). Then qJ ⊆R and so

q = q(a1f1 + · · · + anfn)= qa1f1 + · · · + qanfn ∈Rf1 + · · · +Rfn

since each ai ∈ J . So D(J )=Rf1 + · · · +Rfn.
Furthermore, J = {r ∈ R | D(J )r ⊆ R}. Indeed, first obviously we have that

J ⊆ {r ∈R |D(J )r ⊆R}. Next, we take r ∈R such that D(J )r ⊆R. Then

r = a1f1r + · · · + anfnr ∈ a1D(J )r + · · · + anD(J )r ⊆ JR ⊆ J

since 1 = a1f1 + · · · + anfn in Q(R). So J = {r ∈R |D(J )r ⊆R}.
We show that RR satisfies the restricted minimum condition. For this, we now

let I1 ⊇ I2 ⊇ . . . be a descending chain of right ideals of R all containing a fixed
essential right ideal I of R. Then D(I1)⊆D(I2)⊆ . . . and all D(Ii) are contained
in the left R-module D(I). By the preceding argument, D(I) is finitely generated
as a left R-module.

Since R is left Noetherian, D(I) is Noetherian as a left R-module. So there
exists a positive integer n such that D(In)=D(In+1)= . . . . Therefore, we have that
{r ∈ R | D(In)r ⊆ R} = {r ∈ R | D(In+1)r ⊆ R} = . . . . Hence In = In+1 = . . . ,
so RR satisfies the restricted minimum condition. Similarly, RR has the restricted
minimum condition. �

As another application of Theorem 5.4.12, Chatters’ decomposition theorem
[117] for hereditary Noetherian rings is shown as follows.

Theorem 5.4.24 If R is a hereditary Noetherian ring, then R =A⊕B (ring direct
sum), where A is a finite direct sum of prime rings and B is an Artinian TSA ring.

Proof Note that a hereditary Noetherian ring is Baer by Theorem 3.1.25. Thus R is
a PWP ring. Therefore, R =A⊕B as in Theorem 5.4.12.

We claim that B is an Artinian TSA ring. For this, say {f1, . . . , fm} is a complete
set of left triangulating idempotents of B as in the proof of Theorem 5.4.12. We need
to show that each Bi is simple Artinian. By Theorem 5.4.12, for given i, 1 ≤ i ≤m

there exists j , 1 ≤ j ≤ m such that either Bij �= 0 or Bji �= 0. We may assume that
Bij �= 0 and i < j . Now Bi = fiBfi , Bij = fiBfj , and Bj = fjBfj . Consider

S = (fi + fj )B(fi + fj )∼=
[

Bi Bij

0 Bj

]

.
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Then S is a hereditary Noetherian ring. Also {fi, fj } is a complete set of left trian-
gulating idempotents of S. Since B is Baer, so is S by Theorem 3.1.8. Therefore, S
is a PWP ring.

We show that Bij is a faithful left Bi -module. For this, let fibfi ∈ Bi with
b ∈ B such that fibfiBij = 0. Since fiBfj = Bij �= 0, there exists y ∈ B such
that fiyfj �= 0. Now (fibfi)(fiBfiyfj ) ⊆ (fibfi)(fiBfj ) = 0, and so we have
that fibfiBfiyfj = (fibfi)(fiBfiyfj ) = 0. Since fiyfj �= 0, fibfi = 0 from The-
orem 5.4.1. Therefore, Bij is a faithful left Bi -module. Similarly, Bij is a faithful
right Bj -module. Let

V1 =
[

0 Bij

0 Bj

]

and V2 =
[

Bi Bij

0 0

]

.

The ideal V1 of S is right essential in S since Bij is a faithful left Bi -module. Also
the ideal V2 of S is left essential in S. Since both SS and SS satisfy the restricted
minimum condition by Lemma 5.4.23, S/V1 is a right Artinian S-module, while
S/V2 is a left Artinian S-module. Now to show that Bi is a right Artinian ring, we
let I1 ⊇ I2 ⊇ . . . be a descending chain of right ideals of Bi . Put

K� =
{[

α 0
0 0

]

+ V1 ∈ S/V1 | α ∈ I�

}

for �= 1,2, . . . . Then we see that each K� is a right S-submodule of (S/V1)S and
K1 ⊇ K2 ⊇ . . . . Since (S/V1)S is Artinian, Kt = Kt+1 = . . . for some positive
integer t . So It = It+1 = . . . . Therefore, Bi is a right Artinian ring. Similarly, Bj is
a left Artinian ring. Since Bi and Bj are prime rings by Theorem 5.4.12, Bi and Bj

are simple Artinian rings.
The preceding argument is applied to show that all Bi are simple Artinian rings.

Now J (B) = ∑

i �=j Bij is nilpotent and B/J (B) = B1 ⊕ · · · ⊕ Bm. Hence, B is
semiprimary Noetherian. So B is an Artinian TSA ring. �

To obtain a structure theorem for PWDs, we need the next lemma.

Lemma 5.4.25 If R is a PWD and 0 �= e ∈ S�(R)∪Sr (R), then the ring eRe is also
a PWD.

Proof Say e ∈ S�(R). Let R be a PWD with respect to a complete set of primitive
idempotents {e1, . . . , en}. Since e ∈ S�(R), eie = eeie is an idempotent for each
i. As ei is primitive and eieR ⊆ eiR, either eie = 0 or eieR = eiR. If necessary,
rearrange {e1, . . . , en} so that J = {1, . . . , r} is the set of all indices such that eie �= 0
for all i ∈ J . Then e = (e1 + · · · + en)e = e1e+ · · · + ere and

eR = e1eR + · · · + ereR = e1R + · · · + erR.

Further, by Lemma 5.2.12, {ee1e, . . . , eere} is a complete set of primitive idempo-
tents in eRe.
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Assume that x ∈ (eeie)(eRe)(eej e) and y ∈ (eej e)(eRe)(eeke) with xy = 0
for 1 ≤ i, j, k ≤ r . Put x = (eeie)(eae)(eej e) and y = (eej e)(ebe)(eeke) with
a, b ∈ R. Then x = eiaej e since e ∈ S�(R). Similarly, y = ejbeke. Thus
xy = eiaej eej beke = eiaej beke = 0. So eiaej ej bekeR = eiaej ej bekR = 0 since
ekeR = ekR. Hence (eiaej )(ej bek)= 0, so eiaej = 0 or ej bek = 0 as R is a PWD.
Thus x = 0 or y = 0. Therefore, eRe is a PWD with respect to the complete set of
primitive idempotents {ee1e, . . . , eere}. Similarly, when e ∈ Sr (R), we see that eRe
is a PWD. �

As yet another application of Theorem 5.4.12, we obtain the next theorem, due
to Gordon and Small [187], which describes the structure of a PWD.

Theorem 5.4.26 Assume that R is a PWD. Then

R ∼=

⎡

⎢

⎢

⎢

⎣

R1 R12 · · · R1n
0 R2 · · · R2n
...

...
. . .

...

0 0 · · · Rn

⎤

⎥

⎥

⎥

⎦

,

where each Ri is a prime PWD and each Rij is an (Ri,Rj )-bimodule. The integer
n is unique and the ring Ri is unique up to isomorphism. Furthermore,

Ri
∼=

⎡

⎢

⎣

D1 · · · D1ni
...

. . .
...

Dni1 · · · Dni

⎤

⎥

⎦
,

where each Di is a domain and each Djk is isomorphic as a right Dk-module to a
nonzero right ideal in Dk , and as a left Dj -module to a nonzero left ideal in Dj .

Proof Let R be a PWD. By Proposition 5.4.6, R is a PWP ring. The uniqueness of
n and that of the ring Ri up to isomorphism follow from Theorem 5.2.8 or Theo-
rem 5.4.12.

Say {b1, . . . , bn} is a complete set of left triangulating idempotents of R. By
Theorem 5.4.12, each Ri = biRbi is a prime ring. From Lemma 5.4.25, R1 = b1Rb1
and (1 − b1)R(1 − b1) are PWDs.

We observe that 0 �= b2 ∈ S�((1 − b1)R(1 − b1)). Thus, Lemma 5.4.25 yields
that R2 = b2Rb2 = b2(1 − b1)R(1 − b1)b2 is a PWD. By the same method, we see
that each Ri = biRbi is a PWD. Hence, there exists a complete set of primitive
idempotents {c1, . . . , cni } for Ri such that cjxckycq = 0 implies that cj xck = 0
or ckycq = 0, for x, y ∈ Ri . Put Djk = cjRick and Di = Dii . Then each Di is a
domain.

As Ri is a prime ring and 0 �= ck,0 �= cj ∈ Ri , it follows that ckRicj �= 0. We
let 0 �= x ∈ ckRicj . Then cjRick is isomorphic to a nonzero right ideal xcjRick of
ckRick as a right ckRick-module since Ri is a PWD with respect to the complete set
of primitive idempotents {c1, . . . , cni }. Similarly cjRick is isomorphic to a nonzero
left ideal of cjRicj as a left cjRicj -module. �
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Exercise 5.4.27

1. Prove Propositions 5.4.9 and 5.4.11.
2. Show that if R is a PWD, then Matn(R) is a PWD for every positive integer n

(see Example 5.4.10(i)).
3. ([66, Birkenmeier and Park]) Assume that R is a ring and X is a nonempty set

of not necessarily commuting indeterminates. Show that R is quasi-Baer with
Tdim(R)= n if and only if Γ is quasi-Baer with Tdim(Γ )= n, where Γ is any
of the following ring extensions of R.
(i) R[X]. (ii) R[x, x−1]. (iii) R[[x, x−1]]. (iv) Matk(R) for every positive inte-

ger k.
4. ([82, Birkenmeier, Kim, and Park]) Prove that the following conditions are equiv-

alent for a ring R.
(i) R is a TSA ring.

(ii) R is a left perfect ring such that there exists a numbering of all the distinct
prime ideals P1,P2, . . . ,Pn of R such that P1P2 · · ·Pn = 0.

(iii) R is a left perfect ring such that some product of distinct prime ideals, with-
out repetition, is zero.

5. Let R be a quasi-Baer ring such that S�(R) is a countable set. Show that R is a
PWP ring. Additionally, if R is also biregular, then R is a direct sum of simple
rings (cf. Corollary 5.4.13(ii)).

5.5 A Sheaf Representation of Piecewise Prime Rings

After a brief discussion on certain ideals in a quasi-Baer ring, PWP rings with a
sheaf representation will be studied in this section. Quasi-Baer rings with a nontriv-
ial subdirect product representation will also be discussed.

The set of all prime ideals and the set of all minimal prime ideals of a ring R

is denoted by Spec (R) and MinSpec(R), respectively. For a subset X of R, let
supp(X) = {P ∈ Spec(R) | X �⊆ P }, which is called the support of X. In case,
X = {s}, we write supp(s).

For any P ∈ Spec(R), there is s ∈ R \ P and so P ∈ supp(s). Thus the family
{supp(s) | s ∈ R} covers Spec(R). Also for P ∈ supp(x) ∩ supp(y), d = xcy �∈ P

for some c ∈R. So P ∈ supp(d)⊆ supp(x)∩ supp(y). Therefore, {supp(s) | s ∈R}
forms a base (for open sets) on Spec(R). This induced topology on Spec(R) is called
the hull-kernel topology on Spec(R).

For P ∈ Spec(R), let O(P )= {a ∈R | aRs = 0 for some s ∈R\P }. Then O(P )

is an ideal of R, O(P )=∑

s∈R\P �R(Rs), and O(P )⊆ P . We let

K(R)=
⋃

P∈Spec(R)

R/O(P )

be the disjoint union of the rings R/O(P ), where P ranges through Spec(R).
For a ∈ R, define â : Spec(R) → K(R) by â(P ) = a + O(P ). Then it can be

verified that K(R) is a sheaf of rings over Spec(R) with the topology on K(R)

generated by {̂a(supp(s)) | a, s ∈ R}. By a sheaf representation of a ring R, we
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mean a sheaf representation whose base space is Spec(R) and whose stalks are
the R/O(P ), where P ∈ Spec(R). Let Γ (Spec(R), K(R)) be the set of all global
sections. We remark that Γ (Spec(R), K(R)) becomes a ring (see [345, 3.1], [209],
and [369] for more details).

It is well-known that â is a global section for a ∈ R. Next, for a, b ∈ R and
P ∈ Spec(R), (̂a +̂b)(P ) = a + b +O(P ) and (̂âb)(P ) = ab +O(P ). Therefore
we see that the map

θ :R → Γ (Spec(R), K(R))

defined by θ(a) = â is a ring homomorphism, which is called the Gelfand ho-
momorphism. Furthermore, Ker(θ) = ⋂

P∈Spec(R) O(P ), which is 0 (see Proposi-
tion 5.5.7). Thus θ is a monomorphism.

We discuss some relevant properties of O(P ) and R/O(P ) for the previously
mentioned sheaf representation of PWP rings.

Proposition 5.5.1 Let R be a quasi-Baer ring and P a prime ideal of R. Then
O(P )=∑

Rf , where the sum is taken for all f ∈ Sr (R)∩ P .

Proof Note that O(P ) =∑

s∈R\P �R(Rs). As R is quasi-Baer, �R(Rs) = Rf with
f ∈ Sr (R). Then f ∈ P because fRs = 0 and s �∈ P . Next let f ∈ Sr (R)∩P . Then
f ∈ O(P ) since fR(1 − f ) = 0 (Proposition 1.2.2) and 1 − f ∈ R \ P . Thus, we
get the desired result. �

Corollary 5.5.2 Let R be a quasi-Baer ring. If P and Q are prime ideals such that
P ⊆Q, then O(P )=O(Q).

Proof From the definition, we see that O(Q)⊆O(P ). Proposition 5.5.1 yields that
O(P )⊆O(Q), so O(P )=O(Q). �

We remark that Proposition 5.5.1 and Corollary 5.5.2 hold true when R is a left
p.q.-Baer ring.

Proposition 5.5.3 Assume that R is a PWP ring and P is a prime ideal. Then
O(P )=Re for some e ∈ Sr (R).

Proof As R has a complete set of triangulating idempotents, {Rb | b ∈ Sr (R)} is
a finite set by the left-sided version of Theorem 5.2.5. From Proposition 5.5.1,
O(P ) = ∑

Rf , where the sum is taken for all f ∈ Sr (R) ∩ P . Therefore,
O(P )=Rf1 + · · · +Rfk with fi ∈ Sr (R). By Proposition 1.2.4(ii), O(P ) = Re

for some e ∈ Sr (R). �

Let R be a ring and S be a multiplicatively closed subset of R (i.e., 1 ∈ S and
s, t ∈ S implies st ∈ S). A ring RS−1 is called a right ring of fractions of R with
respect to S together with a ring homomorphism φ :R →RS−1 if the following are
satisfied:

(i) φ(s) is invertible for every s ∈ S.
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(ii) Each element in RS−1 has the form φ(a)φ(s)−1 with a ∈R and s ∈ S.
(iii) φ(a)= 0 with a ∈R if and only if as = 0 for some s ∈ S.

Proposition 5.5.4 Let R be a ring and S a multiplicatively closed subset of R. Then
RS−1 exists if and only if S satisfies:

S1. If s ∈ S and a ∈R, then there exist t ∈ S and b ∈R with sb = at .
S2. If sa = 0 with a ∈R and s ∈ S, then at = 0 for some t ∈ S.

Proof See [382, Proposition 1.4, p. 51] for the proof. �

When RS−1 exists, it has the form RS−1 = (R × S)/∼, where ∼ is the equiva-
lence relation defined as (a, s)∼ (b, t) if there exist c, d ∈ R such that sc = td ∈ S

and ac = bd . A multiplicatively closed subset with S1 and S2 is called a right de-
nominator set. In particular, if R is a right Ore ring and S is the set of all nonzero-
divisors in R, then S is a right denominator set. Thus RS−1 exists by Proposi-
tion 5.5.4 and Qr

c�(R)=RS−1 (see 1.1.17).

Proposition 5.5.5 Assume that P is a prime ideal of a ring R and let
SP = {e ∈ S�(R) | e �∈ P }. Then RS−1

P exists.

Proof Obviously 1 ∈ SP . To see that SP is a multiplicatively closed subset, let
e, f ∈ SP . Then ef ∈ S�(R) by Proposition 1.2.4(i). If ef ∈ P , then efRf ⊆ P .
Therefore eRf = efRf ⊆ P , a contradiction. Thus, ef �∈ P . So ef ∈ SP and hence
SP is a multiplicatively closed subset of R.

For e ∈ SP and a ∈ R, we have that e(ae)= ae. So the condition S1 is satisfied.
Next for S2, take e ∈ SP and a ∈R such that ea = 0. Then

ae = (1 − e)ae = (1 − e)eae = 0,

so the condition S2 is satisfied. Hence SP is a denominator set. Thus, RS−1
P exists

from Proposition 5.5.4. �

When R is a quasi-Baer ring, we obtain the next result for stalks R/O(P ).

Theorem 5.5.6 Assume that R is a quasi-Baer ring and P is a prime ideal of R.
Then RS−1

P
∼=R/O(P ).

Proof First we show that O(P ) = {a ∈ R | ae = 0 for some e ∈ SP }. Indeed, if
a ∈ R such that ae = 0 with e ∈ SP , then aRe = aeRe = 0 and so a ∈ O(P ).
Thus I := {a ∈ R | ae = 0 for some e ∈ SP } ⊆ O(P ). To see that O(P ) ⊆ I , first
we prove that I � R. For this, say a1, a2 ∈ I with a1e1 = 0 and a2e2 = 0 for some
e1, e2 ∈ SP . Then (a1 + a2)e1e2 = a2e1e2 = a2e2e1e2 = 0. By Proposition 5.5.5,
SP is a multiplicatively closed set, hence e1e2 ∈ SP . So a1 + a2 ∈ I . Let a ∈ I

and r ∈ R. Clearly ra ∈ I . Say e ∈ SP such that ae = 0. Then are = aere = 0, so
ar ∈ I . Therefore I �R.

Now say f ∈ Sr (R)∩P . Then 1−f �∈ P and 1−f ∈ S�(R). Hence 1−f ∈ SP ,
so f ∈ I . By Proposition 5.5.1, O(P )⊆ I . Thus O(P )= I .
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From Proposition 5.5.5, RS−1
P exists and there is a ring homomorphism φ from

R to RS−1
P , where RS−1

P = {φ(a)φ(e)−1 | a ∈R and e ∈ SP }. Now we observe that
O(P )= I , so Ker(φ)=O(P ).

Further, for each e ∈ SP , note that φ(e)2 = φ(e) ∈ RS−1
P , which is invertible.

Thus φ(e)= 1 for every e ∈ SP . So RS−1
P = φ(R) and Ker(φ)=O(P ). Hence we

get that RS−1
P

∼=R/O(P ). �

Recall that a ring R is a subdirect product of rings Si, i ∈Λ, if Si ∼=R/Ki , where
Ki � R and ∩i∈ΛKi = 0. A subdirect product is nontrivial if Ki �= 0 for all i ∈ Λ.
Otherwise, it is trivial.

Proposition 5.5.7 Let R be a ring. Then
⋂

P∈Spec(R) O(P )= 0. Thus R has a sub-
direct product representation of {R/O(P ) | P ∈ Spec(R)}.
Proof Assume that ∩P∈Spec(R)O(P ) �= 0. Let 0 �= a ∈ ∩P∈Spec(R)O(P ). Then
rR(aR) is a proper ideal of R. Let P0 be a prime ideal such that rR(aR) ⊆ P0.
Because a ∈ ∩P∈Spec(R)O(P ) ⊆ O(P0), aRs = 0 with s ∈ R \ P0. Therefore
s ∈ rR(aR)⊆ P0, a contradiction. So ∩P∈Spec(R)O(P )= 0. �

The following example shows that the subdirect product representation in Propo-
sition 5.5.7 may be trivial.

Example 5.5.8 For a field F , let R = T2(F ). Then R is quasi-Baer. Let eij ∈ T2(F )

be the matrix with 1 in the (i, j)-position and 0 elsewhere. Put P = Fe11 + Fe12
and Q= Fe12 + Fe22. Then we see that R has only two prime ideals which are P
and Q (see Proposition 5.4.11). Hence, O(P )= 0 and O(Q)=Q by using Propo-
sition 5.5.1.

Next, we consider the subdirect product representation of Proposition 5.5.7 for
quasi-Baer rings. Corollary 5.5.2 suggests that we may be able to improve the sub-
direct product representation by reducing the number of components through using
only the minimal prime ideals. So it is natural to consider suitable conditions under
which ∩P∈MinSpec(R)O(P ) = 0. The next example illustrates that there is a ring R

such that ∩P∈MinSpec(R)O(P ) �= 0.

Example 5.5.9 Assume that R is the Dorroh extension of S =
[

Z2 Z2
0 0

]

by Z (i.e.,

the ring formed from S ×Z with componentwise addition and multiplication given
by (x, k)(y,m) = (xy + mx + ky, km)). Let eij be the matrix in S with 1 in the
(i, j)-position and 0 elsewhere.

Put e = (e11,0) ∈ R. Then e ∈ S�(R), so (1 − e)Re = 0 by Proposition 1.2.2.
Also eRe = (Z2e11,0), (1R − e)R(1R − e) = {(me11,m) | m ∈ Z}, and
P(R)= eR(1 − e)= (Z2e12,0) (note that 1 := 1R = (0,1) ∈R). Since

R ∼=
[

eRe eR(1 − e)

0 (1 − e)R(1 − e)

]

,
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all the minimal prime ideals of R are P1 :=Q1 + eR(1 − e)+ (1 − e)R(1 − e) and
P2 := eRe + eR(1 − e)+Q2, where Q1 and Q2 are minimal prime ideals of eRe
and (1 − e)R(1 − e), respectively by Proposition 5.4.11.

As eRe ∼= Z2 and (1 − e)R(1 − e)∼= Z, Q1 = 0 and Q2 = 0. So

P1 = {(me11 + ne12,m) |m,n ∈ Z} and P2 = (Z2e11 +Z2e12,0).

Take α = (e12,0) ∈ R. Then αR = (Z2e12,0). Now say s1 = e = (e11,0) and
s2 = (0,2). Then αRs1 = 0 with s1 ∈R \P1, and αRs2 = 0 with s2 ∈R \P2. Hence,
0 �= α ∈O(P1)∩O(P2)= ∩P∈MinSpec(R)O(P ).

In spite of Example 5.5.9, we have the following.

Lemma 5.5.10 If R is a quasi-Baer ring, then
⋂

P∈MinSpec(R) O(P )= 0.

Proof For a minimal prime ideal P of R, O(P ) = O(Q) for every prime ideal Q
of R containing P by Corollary 5.5.2. Thus, ∩P∈MinSpec(R)O(P ) = 0 by Proposi-
tion 5.5.7. �

Theorem 5.5.11 Let R be a semiprime ring, which is not prime. If R is quasi-Baer,
then R has a nontrivial representation as a subdirect product of R/O(P ), where P
ranges through all minimal prime ideals.

Proof As R is a nonprime quasi-Baer ring, R is not semicentral reduced by Propo-
sition 3.2.5. So there is e ∈ S�(R) with e �= 0 and e �= 1. By Proposition 1.2.6(ii),
e ∈ B(R) since R is semiprime. Suppose that there exists a minimal prime ideal P
with O(P )= 0. Since R is not prime, P �= 0. As (1− e)Re = 0, e ∈ P or 1− e ∈ P .
If e ∈ P , then 1− e �∈ P and eR(1− e)= 0, so e ∈O(P ), a contradiction. Similarly,
if 1 − e ∈ P , then we get a contradiction. Thus O(P ) �= 0 for every minimal prime
ideal P of R. Lemma 5.5.10 yields the desired result. �

Corollary 5.5.12 Let R be a semiprime ring, which is not prime. If R is quasi-
Baer, then R has a nontrivial representation as a subdirect product of RS−1

P , where
P ranges through all minimal prime ideals.

Proof It is a direct consequence of Theorems 5.5.6 and 5.5.11. �

Definition 5.5.13 For a ring R, a left (resp., right) semicentral idempotent e (�= 1)
is called maximal if eR ⊆ fR (resp., Re ⊆Rf ) with f ∈ S�(R) (resp., f ∈ Sr (R)),
then fR = eR or fR =R (resp., Rf =Re or Rf =R).

Hofmann showed in [209, Theorem 1.17] that θ : R ∼= Γ (Spec(R),K(R)) when
R is a semiprime ring. This result motivates the following question: If a quasi-Baer
ring R has such the sheaf representation, then is R semiprime? Theorem 5.5.14
provides an affirmative partial answer to the question by giving a characterization
of a certain class of quasi-Baer rings having such the sheaf representation.
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Theorem 5.5.14 The following are equivalent for a ring R.

(i) R is a PWP ring and θ :R ∼= Γ (Spec(R),K(R)).
(ii) R is a finite direct sum of prime rings.

(iii) R is a semiprime PWP ring.

Proof (i)⇒(ii) Let Tdim(R) = n. If n = 1, then R is semicentral reduced, so R

is prime by Proposition 3.2.5, and hence we are done. So suppose that n ≥ 2. By
Theorem 5.4.20, there are exactly n minimal prime ideals of R, say P1,P2, . . . ,Pn
and from Theorem 5.4.12 these are comaximal (i.e., Pi + Pj =R for i �= j ).

For each i = 1,2, . . . , n, we let Ai = {P ∈ Spec(R) | Pi ⊆ P }. Then it follows
that Spec(R) = A1 ∪A2 ∪ · · · ∪An since {P1,P2, . . . ,Pn} is the set of all minimal
prime ideals. Also because Pi + Pj = R for i �= j , Ai ∩ Aj = ∅ for i �= j . By the
hull-kernel topology on Spec(R), each Ai is a closed subset of Spec(R). Hence for
i = 1,2, . . . , n, A1 ∪ · · · ∪Ai−1 ∪Ai+1 ∪ · · · ∪An is closed, and so each Ai is open.

Define f : Spec(R) → K(R) such that f (P ) = 1 + O(P ) for P ∈ A1, and
f (P ) = 0 + O(P ) for P ∈ Ak with k �= 1. We claim that f is a continuous func-
tion. For this, first take P ∈ A1. Then f (P ) = 1 +O(P ) ∈ K(R). Consider a basic
neighborhood r̂(supp(s)) (with r, s ∈ R) containing f (P ) = 1 + O(P ) in K(R).
Then supp(s) ∩ A1 is an open subset of Spec(R) with P ∈ supp(s) ∩ A1.

For M ∈ supp(s) ∩ A1, f (M) = 1 + O(M) ∈ R/O(M). Hence we obtain that
1 + O(P ) = r + O(P ) and so r − 1 ∈ O(P ) as 1 + O(P ) ∈ r̂(supp(s)). Now we
note that O(P1)=O(P )=O(M) from Corollary 5.5.2, hence r−1 ∈O(M). Thus,

f (M)= 1 +O(M)= r +O(M) ∈ r̂(supp(s)).

So f (supp(s)∩A1)⊆ r̂(supp(s)).
For P ∈ Ak with k �= 1, assume that f (P ) = 0 + O(P ) ∈ r̂(supp(s)) for some

r, s ∈ R. Then we also see that f (supp(s) ∩ Ak) ⊆ r̂(supp(s)). Therefore, f is a
continuous function.

Next, consider π : K(R)→ Spec(R) defined by π(r +O(P ))= P for r ∈R and
P ∈ Spec(R). Then we see that π(f (P ))= P for all P ∈ Spec(R). Thus, it follows
that f ∈ Γ (Spec(R), K(R)) as f is a continuous function.

Since R ∼= Γ (Spec(R), K(R)), there exists a ∈R with f = â. Therefore

a +O(P1)= 1 +O(P1) and a +O(Pk)= 0 +O(Pk) for each k �= 1.

So 1−a ∈O(P1) and a ∈O(Pk) for each k �= 1. Thus O(P1)+O(Pk)=R for each
k �= 1. Similarly, O(Pi) + O(Pj ) = R for i �= j, 1 ≤ i, j ≤ n. By Lemma 5.5.10,
we obtain that O(P1)∩ · · · ∩O(Pn)= 0, hence

R ∼=R/O(P1)⊕ · · · ⊕R/O(Pn)

by Chinese Remainder Theorem. From Proposition 5.5.3, O(P1) = Re with
e ∈ Sr (R), so eR(1 − e)= 0. Hence R/O(P1)∼= (1 − e)R(1 − e).
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Our claim is that (1 − e)R(1 − e) is semicentral reduced. For this, assume on
the contrary that (1 − e)R(1 − e) is not semicentral reduced. By Theorem 3.2.10,
(1 − e)R(1 − e) is a quasi-Baer ring. Hence, (1 − e)R(1 − e) is a PWP ring by
Theorem 5.2.19.

From Theorem 5.2.5, there is a maximal right semicentral idempotent in the ring
(1 − e)R(1 − e), say (1 − e)b(1 − e). Because (1 − e)R(1 − e) is not semicentral
reduced,

[(1 − e)R(1 − e)](1 − e)b(1 − e)

is a nonzero proper ideal of (1 − e)R(1 − e). Since e ∈ Sr (R),

e+ (1 − e)b(1 − e) ∈ Sr (R).

Put g = e + (1 − e)b(1 − e). We show that g is a maximal right semicentral idem-
potent of R. Take α ∈ Sr (R) such that Rg ⊆Rα and α �= 1. Because

R =
[

eRe 0
(1 − e)Re (1 − e)R(1 − e)

]

and g = e + (1 − e)b(1 − e), we have that α = e + k + h with k ∈ (1 − e)Re and
h ∈ Sr ((1 − e)R(1 − e)).

Since Rg ⊆ Rα, (1 − e)R(1 − e)(1 − e)b(1 − e) ⊆ (1 − e)R(1 − e)h. From
the maximality of (1 − e)b(1 − e) and h �= 1 − e (because α �= 1), we have that
(1 − e)R(1 − e)(1 − e)b(1 − e)= (1 − e)R(1 − e)h, and thus h(1 − e)b(1 − e)= h.
Further, ke = k since k ∈ (1 − e)Re. Hence,

αg =
[

e 0
k h

][

e 0
0 (1 − e)b(1 − e)

]

=
[

e 0
k h

]

= α.

Thus, Rα ⊆Rg. Therefore, g is a maximal right semicentral idempotent of R.
Next, note that {1,1 − g} forms a multiplicatively closed subset of R. By

Zorn’s lemma, there is an ideal Q of R maximal with respect to being dis-
joint with {1,1 − g}. Then Q is a prime ideal of R. Since gR(1 − g) = 0 and
1 − g �∈ Q, it follows g ∈ O(Q). Also, since g is a maximal right semicentral
idempotent of R and g ∈ O(Q), O(Q) = Rg from Proposition 5.5.3. We ob-
serve that O(P1) = Re �= Rg as (1 − e)b(1 − e) �= 0. Hence, Q �∈ A1 by Corol-
lary 5.5.2. So Q ∈ Ak for some k �= 1. So O(Q) = O(Pk) from Corollary 5.5.2.
Now R =O(P1)+O(Pk)=Re+Rg, a contradiction since (1−e)b(1−e) �= 1−e.
Thus, the ring (1 − e)R(1 − e) is a semicentral reduced quasi-Baer ring. So
(1 − e)R(1 − e) is a prime ring by Proposition 3.2.5, thus R/O(P1) is a prime
ring because R/O(P1) ∼= (1 − e)R(1 − e). Similarly, R/O(Pi) is a prime ring for
each i = 2, . . . , n. Therefore R ∼= R/O(P1)⊕ · · · ⊕R/O(Pn), which is a finite di-
rect sum of prime rings. Further, note that O(Pi) = Pi for each i = 1, . . . , n, so
R ∼=R/P1 ⊕ · · · ⊕R/Pn.

(ii)⇒(iii) It is evident.
(iii)⇒(i) The proof follows from [209, Theorem 1.17]. �
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We obtain the next corollary from Proposition 5.4.6, Lemma 5.4.25, and Theo-
rem 5.5.14.

Corollary 5.5.15 The following are equivalent.

(i) R is a PWD with θ :R ∼= Γ (Spec(R), K(R)).
(ii) R is a finite direct sum of prime PWDs.

(iii) R is a semiprime PWD.

Exercise 5.5.16

1. ([74, Birkenmeier, Kim, and Park]) Assume that R is a (quasi-)Baer ring with
Tdim(R) <∞ and P is a prime ideal of R. Prove that R/O(P ) is a (quasi-)Baer
ring.

2. ([74, Birkenmeier, Kim, and Park]) Let R be a Baer ring and P be a prime ideal
of R. Show that R/O(P ) is a right Rickart ring.

3. ([74, Birkenmeier, Kim, and Park]) Assume that R is a quasi-Baer ring and P is
a prime ideal of R. Prove that r.gl.dim(R/O(P ))≤ r.gl.dim(R).

5.6 Triangular Matrix Ring Extensions

Our focus in this section is the study of the Baer, the quasi-Baer, and the (strongly)
FI-extending properties of upper triangular and generalized triangular matrix ring
extensions. The study of full matrix ring extensions will be considered in Chap. 6.

Theorem 5.6.1 Let R be a ring. Then the following are equivalent.

(i) R is regular and right self-injective.
(ii) Tn(R) is right nonsingular right extending for every positive integer n.

(iii) Tk(R) is right nonsingular right extending for some integer k > 1.
(iv) T2(R) is right nonsingular right extending.

Proof (i)⇒(ii) The proof follows from [3, Corollary 2.8(3)] and [1, Proposi-
tion 1.8(ii)].

(ii)⇒(iii) It is evident.
(iii)⇒(i) [3, Corollary 2.8(2) and Proposition 1.6(2)] yield this implication.
(i)⇔(iv) This equivalence follows from [393, Theorem 3.4] (see also Theo-

rem 5.6.9). �

Theorem 5.6.2 Let R be an orthogonally finite Abelian ring. Then the following
are equivalent.

(i) R is a direct sum of division rings.
(ii) Tn(R) is a Baer (resp., right Rickart) ring for every positive integer n.

(iii) Tk(R) is a Baer (resp., right Rickart) ring for some integer k > 1.
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(iv) T2(R) is a Baer (resp., right Rickart) ring.

Proof (i)⇒(ii) The proof follows from Theorems 5.6.1, 3.3.1, and 3.1.25.
(ii)⇒(iii) It is evident.
(iii)⇒(iv) The proof follows from Theorems 3.1.8 and 3.1.22(i).
(iv)⇒(i) Let T2(R) be Baer (resp., right Rickart). By Proposition 1.2.15, R has

a complete set of primitive idempotents. As R is Abelian, R = ⊕m
i=1Ri (ring direct

sum), for some positive integer m, where each Ri is indecomposable as a ring.
Then each T2(Ri) is a Baer (resp., right Rickart) ring by Proposition 3.1.5(i) (resp.,
Proposition 3.1.21). From Theorem 3.1.8 (resp., Theorem 3.1.22(i)), each Ri is a
Baer (resp., right Rickart) ring. If Ri is Baer or right Rickart, Ri is a domain (see
Example 3.1.4(ii)). From [246, Exercise 2, p. 16] or [262, Exercise 25, p. 271], each
Ri is a division ring. �

Notation 5.6.3 Let S and R be rings, and let SMR be an (S,R)-bimodule. For the
remainder of this section, we let

T =
[

S M

0 R

]

denote a generalized triangular matrix ring.

Lemma 5.6.4 Let T be the ring as in Notation 5.6.3. Say

e =
[

e1 k

0 e2

]

∈ S�(T ) and f =
[

e1 0
0 e2

]

.

Then we have the following.

(i) e1 ∈ S�(S), e2 ∈ S�(R), and f ∈ S�(T )
(ii) eT = f T .

Proof (i) It can be easily checked that e1 ∈ S�(S) and e2 ∈ S�(R). Also we see that
e1me2 =me2 for all m ∈M . Thus, f ∈ S�(T ).

(ii) Since e1me2 = me2 for all m ∈ M , in particular e1ke2 = ke2 and so

f = e

[

e1 −ke2
0 e2

]

. Hence f T ⊆ eT . As e ∈ S�(T ),
[

1 0
0 0

]

e = e

[

1 0
0 0

]

e, so k = e1k.

Thus, e = f

[

1 k

0 1

]

∈ f T . Therefore eT ⊆ f T , and so eT = f T . �

Next, we characterize the quasi-Baer property for the ring T .

Theorem 5.6.5 Let T be the ring as in Notation 5.6.3. Then the following are equiv-
alent.

(i) T is a quasi-Baer ring.
(ii) (1) R and S are quasi-Baer rings.
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(2) rM(I)= rS(I )M for all I � S.
(3) For any SNR ≤ SMR , rR(N)= gR for some g2 = g ∈R.

Proof (i)⇒(ii) By Theorem 3.2.10, R and S are quasi-Baer. Let I � S. Then A :=
[

I M

0 0

]

� T . Hence, rT (A) = eT for some e2 = e ∈ T . Because A� T , e ∈ S�(T )

by Proposition 1.2.2. Put e =
[

e1 k

0 e2

]

and f =
[

e1 0
0 e2

]

. From Lemma 5.6.4,

e1 ∈ S�(S), e2 ∈ S�(R), f ∈ S�(T ), and eT = f T . Thus it is routine to check that
rS(I )= e1S and rM(I)= e1M = e1SM = rS(I )M .

Next, let SNR ≤ SMR . Then K :=
[

0 N
0 0

]

� T . So rT (K) = hT for some

h ∈ S�(T ). Say h =
[

g1 m

0 g2

]

. Then rR(N) = g2R, where g2 ∈ S�(R). Take g = g2.

Then rR(N)= gR and g2 = g ∈R.

(ii)⇒(i) Let K � T . Then we see that K =
[

I N

0 J

]

, where I � S, J � R,

SNR ≤ SMR , and IM + MJ ⊆ N . Because S and R are quasi-Baer, there are
e1 ∈ S�(S), f ∈ S�(R) satisfying rS(I ) = e1S and rR(J ) = fR. By assumption,
rM(I) = rS(I )M = e1M and rR(N) = gR for some g2 = g ∈ R. As rR(N) =
gR � R, g ∈ S�(R) by Proposition 1.2.2. From Proposition 1.2.4(i), gf ∈ S�(R).

Put e =
[

e1 0
0 gf

]

∈ T . Then e2 = e and rT (K)= eT . Thus, T is quasi-Baer. �

Corollary 5.6.6 Let S = End(MR) and let T be the ring as in Notation 5.6.3. Then
the following are equivalent.

(i) T is a quasi-Baer ring.
(ii) (1) R is a quasi-Baer ring.

(2) MR is a quasi-Baer module.
(3) If NR �MR , then rR(N)= gR for some g2 = g ∈R.

Proof (i)⇒(ii) Assume that T is a quasi-Baer ring. Then MR is a quasi-Baer module
by Proposition 4.6.3 and Theorem 5.6.5. So we get (ii).

(ii)⇒(i) As MR is a quasi-Baer module, S is a quasi-Baer ring by Theo-
rem 4.6.16. Let I � S. Then rS(I ) = f S for some f 2 = f ∈ S. Also rM(I) = hM

for some h2 = h ∈ S by Proposition 4.6.3. Since If = 0, IfM = 0, and so
fM ⊆ rM(I) = hM . As IhM = 0, Ih = 0, and hence h ∈ rS(I ) = f S. Thus,
hM ⊆ f SM = fM . Therefore hM = fM = f SM = rS(I )M . So T is a quasi-
Baer ring by Theorem 5.6.5. �

We observe that in contrast to Theorem 5.6.2, the next two results hold true with-
out any additional assumption on R.

Theorem 5.6.7 The following are equivalent for a ring R.
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(i) R is a quasi-Baer ring.
(ii) Tn(R) is a quasi-Baer ring for every positive integer n.

(iii) Tk(R) is a quasi-Baer ring for some integer k > 1.
(iv) T2(R) is a quasi-Baer ring.

Proof (i)⇒(ii) We use induction on n. As R is quasi-Baer, T2(R) is quasi-Baer by
applying Corollary 5.6.6.

Let Tn(R) be quasi-Baer. We show that Tn+1(R) is quasi-Baer. Write

Tn+1(R)=
[

R M

0 Tn(R)

]

,

where M = [R, . . . ,R] (n-tuple). To apply Theorem 5.6.5, let I � R. Then
rR(I )= eR for some e2 = e ∈R. Also rM(I)= eM = rR(I )M .

Next, say RNTn(R) ≤ RMTn(R). Note that

[

0 N

0 0

]

� Tn+1(R). Therefore, we have

that N = [N1, . . . ,Nn], where Ni �R for each i and N1 ⊆ · · · ⊆Nn. As R is quasi-
Baer, rR(Ni)= fiR with f 2

i = fi ∈R for each i.
Let eij ∈ Tn(R) be the matrix with 1 in the (i, j)-position and 0 elsewhere. Put

g = f1e11 + · · · + fnenn ∈ Tn(R). Then g2 = g and rTn(R)(N)= gTn(R). By Theo-
rem 5.6.5, Tn+1(R) is a quasi-Baer.

(ii)⇒(iii) is obvious. For (iii)⇒(iv), let eij ∈ Tk(R) be the matrix with 1 in
the (i, j)-position and 0 elsewhere. Set f = e11 + e22. Then f 2 = f ∈ Tk(R) and
T2(R) ∼= f Tk(R)f . By Theorem 3.2.10, T2(R) is quasi-Baer. Similarly, (iv)⇒(i)
follows from Theorem 3.2.10. �

Proposition 5.6.8 The following are equivalent for a ring R.

(i) R is a right p.q.-Baer ring.
(ii) Tn(R) is a right p.q.-Baer ring for every positive integer n.

(iii) Tk(R) is a right p.q.-Baer ring for some integer k > 1.
(iv) T2(R) is a right p.q.-Baer ring.

Proof (i)⇒(ii) Put T = Tn(R). Let eij be the matrix in T with 1 in the (i, j)-
position and 0 elsewhere. Say [aij ] ∈ T and consider the right ideal [aij ]T . Take
α = [αij ] ∈ rT ([aij ]T ). Since R is right p.q.-Baer, for i ≤ j , rR(aijR)= fijR with
f 2
ij = fij ∈R. Then fij ∈ S�(R) from Proposition 1.2.2 because fijR �R.

Now observe that α1� ∈ rR(a11R) = f11R for � = 1, . . . , n. Also we see that
α2� ∈ rR(a11R) ∩ rR(a12R) ∩ rR(a22R) = f11R ∩ f12R ∩ f22R = f11f12f22R for
� = 2, . . . , n, and f11f12f22 ∈ S�(R) (see Proposition 1.2.4(i)). In general, αk� ∈
(f11 · · ·f1k)(f22 · · ·f2k) · · · (fk−1k−1fk−1k)fkkR for �= k, . . . , n.

Put gk = (f11 · · ·f1k)(f22 · · ·f2k) · · · (fk−1k−1fk−1k)fkk for k = 1, . . . , n. Then
gk ∈ S�(R) by Proposition 1.2.4(i). Note that gkαk� = αk� for �= k, . . . , n.

Let e = g1e11 + · · · + gnenn ∈ T . Then e2 = e and rR([aij ]T ) = eT . Therefore,
T = Tn(R) is right p.q.-Baer.

(ii)⇒(iii) It is evident.
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(iii)⇒(iv) Let f = e11 + e22 ∈ Tk(R). Then we see that f 2 = f ∈ Tk(R) and
T2(R)∼= f Tk(R)f , so T2(R) is right p.q.-Baer by Theorem 3.2.34(i).

(iv)⇒(i) It follows also from Theorem 3.2.34(i). �

The following result, due to Tercan in [393], characterizes the generalized trian-
gular matrix ring T (see Notation 5.6.3) to be a right nonsingular right extending
ring (hence T is Baer and right cononsingular by Theorem 3.3.1) when SM is faith-
ful.

Theorem 5.6.9 Let T be the ring as in Notation 5.6.3 and SM be faithful. Then the
following are equivalent.

(i) T is right nonsingular and right extending.
(ii) (1) For each complement KR in MR there is e2 = e ∈ S with K = eM .

(2) R is right nonsingular and right extending.
(3) MR is nonsingular and injective.

In the next result, a characterization for T to be right FI-extending is presented.
This will be used to consider the FI-extending triangular matrix ring extensions.

Theorem 5.6.10 Let T be the ring as in Notation 5.6.3. Then the following are
equivalent.

(i) TT is FI-extending.
(ii) (1) For SNR ≤ SMR and I � S with IM ⊆ N , there is f 2 = f ∈ S such that

I ⊆ f S,NR ≤ess fMR , and (I ∩ �S(M))S ≤ess (f S ∩ �S(M))S .
(2) RR is FI-extending.

Proof Throughout the proof, we let e11 =
[

1 0
0 0

]

∈ T .

(i)⇒(ii) First, we claim that �S(M) = eS for some e2 = e ∈ S. Observe
that TT = e11TT ⊕ (1 − e11)TT and e11 ∈ S�(T ). From Proposition 2.3.11(i),

e11TT =
[

S M

0 0

]

T

is FI-extending. First, to see that �S(M) = eS for some

e2 = e ∈ S, put U =
[

�S(M) 0
0 0

]

. Then UT � e11TT because �S(M) � S and

End(e11TT ) ∼= e11T e11 =
[

S 0
0 0

]

. Because e11TT is FI-extending, we have that

UT ≤ess
[

e 0
0 0

]

e11TT for some e2 = e ∈ S. So

[

�S(M) 0
0 0

]

T

≤ess
[

eS eM

0 0

]

T

. Thus,

�S(M) ⊆ eS. For any m ∈ M , em= 0 because U ∩
[

0 em
0 0

]

T = 0. Hence eM = 0,

so e ∈ �S(M). Thus eS ⊆ �S(M), and hence �S(M)= eS.
For condition (1), let SNR ≤ SMR and I � S such that IM ⊆ N . Then

V :=
[

I N

0 0

]

T

� e11TT =
[

S M

0 0

]

T

. Since e11TT is FI-extending, we have that
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[

I N

0 0

]

T

≤ess
[

f S fM

0 0

]

T

for some f 2 = f ∈ S, therefore I ⊆ f S and

NR ≤ess fMR . Next, for 0 �= f s ∈ f S ∩ eS = f S ∩ �S(M) with s ∈ S, we see

that V ∩
[

f s 0
0 0

]

T = V ∩
[

f sS 0
0 0

]

�= 0. Hence, f sS ∩ (I ∩ eS) = f sS ∩ I �= 0

because f sS ⊆ eS. Therefore, we have that (I ∩ eS)S ≤ess (f S ∩ eS)S .
Since e11 ∈ S�(T ), Proposition 2.3.11(ii) yields condition (2) immediately.
(ii)⇒(i) By condition (2), (1 − e11)TT is FI-extending. To show that e11TT

is FI-extending, let VT � e11TT . Since e11 ∈ S�(T ), e11TT � TT from Propo-

sition 1.2.2, and so VT � TT by Proposition 2.3.3(ii). Thus V =
[

I N

0 0

]

with

I � S, SNR ≤ SMR , and IM ⊆N . By condition (1), there is f 2 = f ∈ S such that
I ⊆ f S,NR ≤ess fMR , and (I ∩ �S(M))S ≤ess (f S ∩ �S(M))S . Thus, it follows

that V ⊆
[

f 0
0 0

][

S M

0 0

]

=
[

f S fM

0 0

]

. Let W =
[

f S fM

0 0

]

. Then WT is a direct

summand of e11TT because f 2 = f ∈ S ∼= End(e11TT ).

We prove that VT ≤ess WT . For this, take 0 �= w =
[

f s fm

0 0

]

∈ W , where s ∈ S

and m ∈ M . If fm �= 0, then V ∩wT �= 0 since NR ≤ess fMR . Next, assume that

fm= 0. Then f s �= 0. Hence wT =
[

f sS f sM

0 0

]

.

If f sM �= 0, clearly V ∩wT �= 0 since NR ≤ess fMR . If f sM = 0, then

f s ∈ �S(M), so 0 �= f s ∈ f S ∩ �S(M).

Since (I ∩ �S(M))S ≤ess (f S ∩ �S(M))S , f sS ∩ (I ∩ �S(M)) �= 0, so V ∩wT �= 0.
Therefore VT ≤ess WT , thus e11TT is FI-extending. Hence TT is FI-extending by
Theorem 2.3.5. �

Corollary 5.6.11 Let T be the ring as in Notation 5.6.3. Assume that SM is faithful.
Then the following are equivalent.

(i) TT is FI-extending.
(ii) (1) For SNR ≤ SMR , there is f 2 = f ∈ S with NR ≤ess fMR .

(2) RR is FI-extending.

Proof (i)⇒(ii) Assume that TT is FI-extending. As SM is faithful, �S(M) = 0. By
taking I = 0 in Theorem 5.6.10, we obtain part (ii).

(ii)⇒(i) Let SNR ≤ SMR and I � S such that IM ⊆ N . By (1), there exists
f 2 = f ∈ S such that NR ≤ess fMR . Since IM ⊆N ⊆ fM , f n= n for all n ∈N ,
in particular f sm = sm for any s ∈ I and m ∈ M . Therefore, (s − f s)M = 0, so
s − f s = 0 for any s ∈ I because SM is faithful. Hence, I = f I ⊆ f S. Thus, TT is
FI-extending by Theorem 5.6.10. �
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Corollary 5.6.12 Let MR be a right R-module. Then the ring

T =
[

EndR(M) M

0 R

]

is right FI-extending if and only if MR and RR are FI-extending.

Proof It follows immediately from Corollary 5.6.11. �

We remark that if R is a right FI-extending ring, then T2(R) is right FI-extending
by taking M = RR in Corollary 5.6.12. When n ≥ 2, we obtain the FI-extending
property of Tn(R) in Theorem 5.6.19 precisely when R is right FI-extending. By
our previous results, we establish a class of rings which are right FI-extending, but
not left FI-extending as the next example illustrates.

Example 5.6.13 Let R be a right self-injective ring with J (R) �= 0. Put

T =
[

R/J (R) R/J (R)

0 R

]

.

Then the ring R/J (R) is right self-injective by Corollary 2.1.30. Further,
EndR(R/J (R))∼=R/J (R). Also R/J (R) is an FI-extending right R-module. Thus
the ring T is right FI-extending by Corollary 5.6.12. If T is left FI-extending, then
rR((R/J (R))R) = J (R) = Rf for some f ∈ Sr (R) from the left-sided version of
the proof for (i)⇒(ii) of Theorem 5.6.10. Thus f = 0 and hence J (R) = 0, a con-
tradiction. Thus, T cannot be left FI-extending.

Definition 5.6.14 Let NR ≤ MR . We say that NR has a direct summand cover
D(NR) if there is e2 = e ∈ EndR(M) with NR ≤ess eMR = D(NR).

If MR is a strongly FI-extending module, then every fully invariant submod-
ule has a unique direct summand cover from Lemma 2.3.22. For NR ≤ MR , let
(NR :MR)= {a ∈R |Ma ⊆N}. Then (NR :MR)�R.

We use D[(NR : MR)R] to denote a direct summand cover of the right ideal
(NR : MR) in RR . Let M be an (S,R)-bimodule and SNR ≤ SMR . If there exists
e2 = e ∈ S�(S) such that NR ≤ess eMR , then we write DS(NR)= eM .

In the next result, we obtain a necessary and sufficient condition for a 2 × 2 gen-
eralized triangular matrix ring to be right strongly FI-extending. Some applications
of this characterization will also be presented.

Theorem 5.6.15 Let T be as in Notation 5.6.3. Then the following are equivalent.

(i) TT is strongly FI-extending.
(ii) (1) For SNR ≤ SMR and I � S with IM ⊆ N , there is e ∈ S�(S) such that

I ⊆ eS, NR ≤ess eMR and (I ∩ �S(M))S ≤ess (eS ∩ �S(M))S .
(2) RR is strongly FI-extending.
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(3) DS(NR)D[(NR :MR)R] =MD[(NR :MR)R] for SNR ≤ SMR .

Proof (i)⇒(ii) We let e11 =
[

1 0
0 0

]

∈ T . Assume that TT is strongly FI-extending.

By Theorem 2.3.19, (1 − e11)TT is strongly FI-extending, so RR is strongly FI-
extending, which is condition (2).

For condition (1), let SNR ≤ SMR and I � S with IM ⊆ N . Then

V :=
[

I N

0 0

]

T

� e11TT =
[

S M

0 0

]

T

. Since e11TT is strongly FI-extending, there ex-

ists e2 = e ∈ S�(S) such that VT ≤ess
[

eS eM

0 0

]

T

. So I ⊆ eS and NR ≤ess eMR .

Next, say 0 �= es ∈ eS ∩ �S(M) with s ∈ S. There is

[

s1 m1
0 r1

]

∈ T such that

0 �=
[

es 0
0 0

][

s1 m1
0 r1

]

=
[

ess1 0
0 0

]

∈ V.

Thus 0 �= ess1 ∈ I ∩ �S(M). Therefore (I ∩ �S(M))S ≤ess (eS ∩ �S(M))S .
For condition (3), let SNR ≤ SMR and put A= (NR :MR). Take I = 0 in condi-

tion (1). There exists e ∈ S�(S) with DS(NR)= eM . By condition (2), D(AR)= fR

for some f ∈ S�(R). Since MA ⊆ N , W :=
[

0 N

0 A

]

� T , and WT ≤ess wTT for

some w ∈ S�(T ). By Lemma 5.6.4, there exist e0 ∈ S�(S) and f0 ∈ S�(R) such

that wT =
[

e0 0
0 f0

]

T . We put w0 =
[

e0 0
0 f0

]

∈ S�(T ). Hence NR ≤ess e0MR and

AR ≤ess f0RR . So DS(NR) = eM = e0M by Lemma 2.3.22 as e0 ∈ S�(S). Also
D(AR)= fR = f0R.

Note that Mf0 = e0Mf0 since w0 ∈ S�(T ). Thus, e0Mf0R = Mf0R. Therefore,
DS(NR)D[(NR :MR)R] =MD[(NR :MR)R].

(ii)⇒(i) Assume that K � T . Then

K =
[

I N

0 B

]

� T ,

where SNR ≤ SMR, I � S, IM +MB ⊆N , and B �R.
From condition (1), there exists e ∈ S�(S) with

I ⊆ eS, DS(NR)= eM, and (I ∩ �S(M))S ≤ess (eS ∩ �S(M))S.

Since B � R, by condition (2), there exists f ∈ S�(R) with D(BR) = fR. Also,
from condition (2), D[(NR :MR)R] = f0R for some f0 ∈ S�(R).

As MB ⊆N , B ⊆ (NR :MR). Thus,

BR ≤ess (fR ∩ f0R)R = f0fR

with f0f ∈ S�(R) (see Proposition 1.2.4(i)). So D(BR)= f0fR. By Lemma 2.3.22,
we get that fR = f0fR.



184 5 Triangular Matrix Representations and Triangular Matrix Extensions

By condition (3), eMf0R = Mf0R. Because f ∈ S�(R) and f0fR = fR,
eMf0Rf = eMf0fRf = eMfRf = eMRf = eMf . Similarly, we have that
Mf0Rf =Mf . As eMf0R =Mf0R, eMf0Rf =Mf0Rf and so eMf =Mf .

Since (I ∩ �S(M))S ≤ess (eS ∩ �S(M))S and NR ≤ess eMR , we see that
[

I N

0 0

]

T

≤ess
[

e 0
0 0

]

TT . So

[

0 0
0 B

]

T

≤ess
[

0 0
0 f

]

TT because BR ≤ess fRR .

Thus KT ≤ess
[

e 0
0 f

]

TT . As Mf = eMf , mf = emf for each m ∈ M . Hence
[

e 0
0 f

]

∈ S�(T ). Therefore, TT is strongly FI-extending. �

Corollary 5.6.16 Let T be the ring as in Notation 5.6.3 with SM faithful. Then the
following are equivalent.

(i) TT is strongly FI-extending.
(ii) (1) For SNR ≤ SMR , there is e ∈ S�(S) with NR ≤ess eMR .

(2) RR is strongly FI-extending.
(3) DS(NR)D[(NR :MR)R] =MD[(NR :MR)R] for SNR ≤ SMR .

Proof (i)⇒(ii) The proof follows from Theorem 5.6.15 by taking I = 0. For
(ii)⇒(i), let SNR ≤ SMR and I � S such that IM ⊆ N . By condition (1), there
is e ∈ S�(S) with NR ≤ess eMR . As IM ⊆ N ⊆ eM , n = en for all n ∈ N , in par-
ticular sm= esm for any s ∈ I and m ∈M . Thus (s − es)M = 0, so s − es = 0 for
any s ∈ I , as SM is faithful. So I = eI ⊆ eS. Thus TT is strongly FI-extending by
Theorem 5.6.15. �

Corollary 5.6.17 Let MR be a right R-module and T =
[

EndR(M) M

0 R

]

. Then the

following are equivalent.

(i) TT is strongly FI-extending.
(ii) (1) MR is strongly FI-extending.

(2) RR is strongly FI-extending.
(3) For any NR �MR , D(NR)D[(NR :MR)R] =MD[(NR :MR)R].

Proof It follows immediately from Corollary 5.6.16. �

Theorem 5.6.18 Let R be a ring. Then the following are equivalent.

(i) R is right strongly FI-extending.
(ii) Tn(R) is right strongly FI-extending for every positive integer n.

(iii) Tk(R) is right strongly FI-extending for some integer k > 1.
(iv) T2(R) is right strongly FI-extending.

Proof (i)⇒(ii) Assume that R is right strongly FI-extending. We proceed by induc-
tion on n. Let n = 2. Take M = R in Corollary 5.6.17. Let NR �MR . Since RR
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is strongly FI-extending, there exists e2 = e ∈ S�(R) such that NR ≤ess eMR . We
observe that (NR :MR)=NR ≤ess eRR . Therefore we have that

DR(NR)D[(NR :MR)R] = eReR =ReR =MD[(NR :MR)R].
Hence, T2(R) is a right strongly FI-extending ring by Corollary 5.6.17.

Assume that Tn(R) is right strongly FI-extending. Then we show that Tn+1(R)

is right strongly FI-extending. Now

Tn+1(R)=
[

R M

0 Tn(R)

]

,

where M = [R, . . . ,R] (n-tuple). Let RNTn(R) ≤ RMTn(R). As in the proof of The-
orem 5.6.7, N = [N1, . . . ,Nn], where Ni � R for each i and N1 ⊆ · · · ⊆ Nn.
As RR is strongly FI-extending, there is e ∈ S�(R) with NnR ≤ess eRR , so
N = [N1, . . . ,Nn]Tn(R) ≤ess e[R, . . . ,R]Tn(R) = eM . Thus,

(NTn(R) :MTn(R))=

⎡

⎢

⎢

⎢

⎣

N1 N2 · · · Nn

0 N2 · · · Nn

...
...
. . .

...

0 0 · · · Nn

⎤

⎥

⎥

⎥

⎦

Tn(R)

≤ess (e1)Tn(R)Tn(R),

where 1 is the identity matrix in Tn(R). Hence, we have that

DR(NTn(R))D[(NTn(R) :MTn(R))Tn(R)] = eM(e1)Tn(R)=M(e1)Tn(R),

since e ∈ S�(R). Note that MD[(NTn(R) : MTn(R))Tn(R)] = M(e1)Tn(R). So
MD[(NTn(R) : MTn(R))Tn(R)] = DR(NTn(R))D[(NTn(R) : MTn(R))Tn(R)]. Thus by
Corollary 5.6.16, Tn+1(R) is a right strongly FI-extending ring.

(ii)⇒(iii) is obvious, and (iii)⇒(i) is a consequence of Theorem 5.6.15.
(i)⇒(iv) follows from the proof of (i)⇒(ii) for the case when n= 2, and (iv)⇒(i)

follows from Theorem 5.6.15. �

Theorem 5.6.19 Let R be a ring. Then the following are equivalent.

(i) R is right FI-extending.
(ii) Tn(R) is right FI-extending for every positive integer n.

(iii) Tk(R) is right FI-extending for some integer k > 1.
(iv) T2(R) is right FI-extending.

Proof The proof follows by using Corollary 5.6.11 and an argument similar to that
used in the proof of Theorem 5.6.18. �

Theorem 5.6.19 provides a full characterization of Tn(R) to be right FI-extending
for any positive integer n. Let R be a commutative domain which is not a field.
Say n is an integer such that n > 1. Then Tn(R) is right strongly FI-extending
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(hence right FI-extending) by Theorem 5.6.18. Observe that Tn(R) is not Baer from
Theorem 5.6.2. Thus by Corollary 3.3.3, Tn(R) is neither right nor left extending.
Corollary 5.6.16 and Theorem 5.6.18 are now applied to show that the strongly FI-
extending property for rings is not left-right symmetric.

Example 5.6.20 Let R be a commutative domain and let M =
[

0 R

0 0

]

. Then natu-

rally M can be considered as an (R,T2(R))-bimodule. We show that the general-

ized triangular matrix ring T =
[

R M

0 T2(R)

]

is right strongly FI-extending, but it is

not left strongly FI-extending. For this, note that RM is faithful. Because R is right
strongly FI-extending, T2(R) is right strongly FI-extending from Theorem 5.6.18.
Say RNT2(R) ≤ RMT2(R). If N = 0, then DR(NT2(R))D[(NT2(R) : MT2(R))T2(R)] =
0 = MD[(NT2(R) : MT2(R))T2(R)]. So assume that N �= 0. Then there is 0 �= I � R

with N =
[

0 I

0 0

]

. Then IR ≤ess RR , hence DR(NT2(R))=
[

0 R

0 0

]

=M . Therefore,

DR(NT2(R))D[(NT2(R) :MT2(R))T2(R)] =MD[(NT2(R) :MT2(R))T2(R)].
Thus, TT is strongly FI-extending by Corollary 5.6.16.

We may note that rT2(R)(M) is not generated, as a left ideal, by an idempotent
in T2(R). Thus, T T is not FI-extending by the left-sided version of the proof for
(i)⇒(ii) of Theorem 5.6.10. So T T is not strongly FI-extending.

Exercise 5.6.21

1. Assume that R is a PWP ring. Show that Tn(R) is a PWP ring for each positive
integer n.

2. ([85, Birkenmeier, Park, and Rizvi]) Let R be a prime ring with P a nonzero

prime ideal. Prove that the ring

[

R/P R/P

0 R

]

is right FI-extending, but not left

FI-extending.
3. ([85, Birkenmeier, Park, and Rizvi]) Let R be a commutative PID and let I be a

nonzero proper ideal of R. Show that the ring

[

R/I R/I

0 R

]

is right FI-extending,

but not left FI-extending.
4. ([64, Birkenmeier and Lennon]) Let T be the ring as in Notation 5.6.3. Prove

that TT is FI-extending if and only if the following conditions hold.
(1) �S(M)= eS, where e ∈ S�(S), and eSS is FI-extending.
(2) For SNR ≤ SMR , there is f 2 = f ∈ S with NR ≤ess fMR .
(3) RR is FI-extending.

5. Let T be the ring as in Notation 5.6.3. Characterize T being right p.q.-Baer
in terms of conditions on S, M , and R. (Hint: see [78, Birkenmeier, Kim, and
Park].)

Historical Notes Some of the diverse applications associated with generalized
triangular matrix representations appear in the study of operator theory [212], qua-
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sitriangular Hopf algebras [113], and various Lie algebras [303]. Also many authors
have studied a variety of conditions on generalized triangular matrix rings (e.g.,
[37, 189–191, 196, 228, 280], and [416]). Most results from Sects. 5.1, 5.2, and 5.3
are due to Birkenmeier, Heatherly, Kim, and Park [70]. Results 5.2.18–5.2.20 ap-
pear in [66]. Some of the motivating ideas for defining triangulating idempotents
originated with [55]. Lemma 5.3.4 is due to Fields [164].

Theorem 5.4.1, Corollary 5.4.2, and Definition 5.4.4 appear in [70]. Piecewise
domains (PWDs) were defined and investigated by Gordon and Small [187]. Propo-
sition 5.4.6 is in [70]. Proposition 5.4.9 and Example 5.4.10(i)–(iii) and (v) are taken
from [187]. Theorem 5.4.12 from [70] is a structure theorem for a PWP ring. Re-
sults 5.4.13–5.4.16 and Corollary 5.4.19 appear in [70]. Theorem 5.4.20 and Corol-
lary 5.4.21 are taken from [66]. Examples 5.4.22 appears in [103] and [68]. In [118],
Theorem 5.4.24 has been improved to the case when R is a Noetherian Rickart ring.
Lemma 5.4.25 is in [70].

Results 5.5.1–5.5.3, Proposition 5.5.5, and Theorem 5.5.6 appear in [74]. Propo-
sition 5.5.7 is in [369]. Examples 5.5.8, 5.5.9, Results 5.5.10–5.5.12 are taken from
[74]. Theorem 5.5.14 is due to Birkenmeier, Kim, and Park [74]. Koh ([255] and
[256]), Lambek [265], Shin [369], and Sun [388] showed that the Gelfand homo-
morphism θ is an isomorphism for various classes of rings.

Theorem 5.6.1 is due to Akalan, Birkenmeier, and Tercan (see [1, 3], and
[393]). Theorem 5.6.2 appears to be a new result which is due to the authors. Re-
sults 5.6.4–5.6.6 appear in [85]. Theorem 5.6.7 was obtained by Pollingher and
Zaks in [347], but we give the proof in a different way by applying Theorem 5.6.5.
Proposition 5.6.8 is from [78]. Theorem 5.6.9 is completely generalized in [3]. Re-
sults 5.6.10–5.6.13 and Definition 5.6.14 appear in [85]. A characterization of gen-
eralized triangular right FI-extending rings are also considered in [64] (see Exer-
cise 5.6.21.4). Results 5.6.15–5.6.18 appear in [85]. Theorem 5.6.19 was shown
in [83], while Example 5.6.20 was given in [85]. Further related references in-
clude [51, 81, 91, 116, 122, 125, 135, 160], and [387].



Chapter 6
Matrix, Polynomial, and Group Ring Extensions

It was shown in Chap. 3 that the quasi-Baer property transfers to matrix ring exten-
sions readily and without any additional requirements (Theorem 3.2.12). We con-
tinue in this chapter our discussions on the transference of various properties not
only to matrix ring extensions, but also to the other extensions listed in the title of
this chapter. To do so, we shall use the results which have been developed in the
previous chapters. For earlier results on matrix extensions, see Sects. 3.1, 3.2, 4.3,
and 4.6.

The transference of the Baer property to the ring extensions of the title is some-
what restricted (see Example 3.1.28). In this chapter, we show that this happens
only under special conditions (e.g., see Theorems 6.1.3, 6.1.4, 6.1.12, and Corol-
lary 6.2.6). However, for the case of the quasi-Baer property, we shall see that the
property transfers to various matrix and polynomial ring extensions without any
additional assumptions (e.g., see Theorems 3.2.12, 6.1.16, 6.2.3, and 6.2.4). Fur-
thermore, we explore in detail the transference of the aforementioned properties,
as well as, the Rickart, extending, p.q.-Baer, and FI-extending properties to various
matrix (both finite and infinite), polynomial, Ore, and group ring extensions. In par-
ticular, a characterization of semiprime quasi-Baer group algebras is included (see
Theorem 6.3.2).

6.1 Matrix Ring Extensions

Results shown in previous chapters are applied in this section to study the Baer, the
quasi-Baer, and the FI-extending properties of a ring R to various matrix extensions
of R.

For a nonempty ordered set Γ and a ring R, recall that CFMΓ (R) and RFMΓ (R)

denote the Γ × Γ column finite matrix ring and the Γ × Γ row finite matrix
ring over R, respectively. Note that CFMΓ (R) ∼= End(R(Γ )

R ) and RFMΓ (R) ∼=
End(RR(Γ )).

The next result is obtained as an application of Baer module theory presented in
Chap. 4.
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DOI 10.1007/978-0-387-92716-9_6,
© Springer Science+Business Media New York 2013

189

http://dx.doi.org/10.1007/978-0-387-92716-9_6


190 6 Matrix, Polynomial, and Group Ring Extensions

Theorem 6.1.1 The following are equivalent for a ring R.

(i) R is a semiprimary hereditary (hence Baer) ring.
(ii) CFMΓ (R) is a Baer ring for any nonempty ordered set Γ .

(iii) RFMΓ (R) is a Baer ring for any nonempty ordered set Γ .

Proof (i)⇔(ii) The equivalence follows from Theorems 4.2.8 and 4.3.3 because any
free right R-module is retractable.

(i)⇔(iii) By Proposition 4.3.2 and Theorem 4.3.3, a ring R is semiprimary hered-
itary if and only if every free left R-module is Baer. So the proof follows from the
left-sided version of (i)⇔(ii). �

For a characterization of a ring R for which Matn(R) is a Baer ring for every
positive integer n, we need the following result.

Theorem 6.1.2 (i) Any finitely presented flat module is projective.
(ii) A ring R is left semihereditary if and only if all torsionless right R-modules

are flat.

Proof See [262, Theorem 4.30] and [262, Theorem 4.67]. �

Recall that a ring R is called right Π -coherent if every finitely generated torsion-
less right R-module is finitely presented. A left Π -coherent ring is defined similarly.

Theorem 6.1.3 The following are equivalent for a ring R.

(i) Matn(R) is a Baer ring for every positive integer n.
(ii) R is left semihereditary and right Π -coherent.
(iii) R is right semihereditary and left Π -coherent.

Proof (i)⇒(ii) Assume that (i) holds. Let n be a positive integer. From Theo-
rem 4.2.8, R(n)

R is a Baer module since R(n)
R is retractable. Let I be a finitely gener-

ated left ideal of R. Then RI is torsionless. Thus RI is projective by Theorem 4.3.5.
Therefore R is left semihereditary. Moreover, since all finitely generated torsion-
less right R-modules are projective from Theorem 4.3.5, they are finitely presented.
Thus, R is right Π -coherent.

(ii)⇒(i) Assume that R is a left semihereditary and right Π -coherent ring. Let V
be a finitely generated torsionless right R-module. From Theorem 6.1.2, V is flat.
Note that V is finitely presented because R is right Π -coherent. Now Theorem 6.1.2
yields that V is projective. Therefore, Matn(R) is a Baer ring for every positive
integer n by Theorem 4.3.5.

(i)⇔(iii) From Theorem 4.3.5, Matn(R) is a Baer ring for every positive integer n
if and only if every finitely generated torsionless left R-module is projective. Thus,
(i)⇔(iii) follows from the left-sided version of (i)⇔(ii). �

Assume that R is a commutative domain with the field K of fractions. For
IR ≤ KR , let I−1 = {k ∈ K | kI ⊆ R}, which is called the inverse of I (see [248,
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Definitions, p. 37]). The R-submodule I is called invertible if II−1 =R. It is well-
known that IR is an invertible submodule of KR if and only if IR is projective (see
[382, Proposition 4.3, p. 59]). For an ideal J of a commutative local domain R, if J
is invertible, then J is principal ([248, Theorem 59]).

A Prüfer domain is a commutative domain in which every nonzero finitely gen-
erated ideal is invertible. Equivalently, a Prüfer domain R is a commutative domain
which is semihereditary. A commutative domain is called Bezout if every finitely
generated ideal is principal. It is well known that a commutative domain R is a
Prüfer domain if and only if the localization RP (of R at P ) is a Bezout domain for
every prime ideal P of R ([248, Theorems 63 and 64]).

Assume that R is a Prüfer domain and M is a finitely generated torsionless R-
module. Then M is torsion-free. By [363, Theorem 4.32], M is projective, and hence
M is finitely presented. So R is Π -coherent. Thereby, a commutative domain R is
Prüfer if and only if R is semihereditary if and only if R is semihereditary and
Π -coherent. By Theorem 6.1.3, a commutative domain R is Prüfer if and only if
Matn(R) is a Baer ring for every positive integer n.

In the next theorem, we can say more for a commutative domain. Indeed, it is
shown that R is Prüfer if and only if Matn(R) is a Baer ring for every positive
integer n if and only if Mat2(R) is a Baer ring (cf. Example 6.1.6).

Theorem 6.1.4 LetR be a commutative domain. Then the following are equivalent.

(i) R is a Prüfer domain.
(ii) Matn(R) is a Baer (Rickart) ring for every positive integer n.

(iii) Matk(R) is a Baer (Rickart) ring for some integer k > 1.
(iv) Mat2(R) is a Baer (Rickart) ring.

Further, in (ii), (iii), and (iv), “Baer (Rickart) ring” can be replaced by “(right)
extending ring”.

Proof As Matn(R) is orthogonally finite, Theorem 3.1.25 yields that Matn(R) is
Baer if and only if Matn(R) is Rickart for each positive integer n.

(i)⇒(ii) As R is semihereditary Π -coherent, Matn(R) is Baer for every positive
integer n by Theorem 3.1.29 or Theorem 6.1.3.

(ii)⇒(iii) is evident. For (iii)⇒(iv), let eii be the matrix in Matk(R) with 1 in
the (i, i)-position and 0 elsewhere. Take f = e11 + e22. Then by Theorem 3.1.8,
fMatk(R)f ∼= Mat2(R) is a Baer ring.

(iv)⇒(i) Let P be a prime ideal of R and RP be the localization of R at P .
Take a1s

−1
1 , a2s

−1
2 ∈ RP (note that ai, si ∈ R and si �∈ P ). We show that the ideal

a1s
−1
1 RP + a2s

−1
2 RP = a1RP + a2RP is principal.

As Mat2(R) is right Rickart, a1R + a2R is a projective right R-module by the
proof of Theorem 3.1.29. So a1R + a2R is R-isomorphic to a direct summand of
R(2). Hence, a1RP + a2RP is RP -isomorphic to a direct summand of R(2)

P . Thus,
a1RP + a2RP is projective as a right RP -module, so it is an invertible ideal of the
local domain RP . Hence, a1RP + a2RP is a principal ideal of RP because RP is
local (see [248, Theorem 59]). Inductively, every finitely generated ideal of RP is
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principal. So RP is a Bezout domain for each prime ideal P of R. Therefore R is a
Prüfer domain.

From Corollary 3.3.3, in (ii), (iii), and (iv), “Baer (Rickart) ring” can be replaced
with “(right) extending ring”. �

We obtain the next corollary which is an extension of Theorem 6.1.4 to an or-
thogonally finite commutative ring case.

Corollary 6.1.5 Let R be a commutative orthogonally finite ring. Then the follow-
ing are equivalent.

(i) R is a finite direct sum of Prüfer domains.
(ii) Matn(R) is a Baer (Rickart) ring for every positive integer n.

(iii) Matk(R) is a Baer (Rickart) ring for some integer k > 1.
(iv) Mat2(R) is a Baer (Rickart) ring.

Further, in (ii), (iii), and (iv), “Baer (Rickart) ring” can be replaced by “(right)
extending ring”.

Proof (i)⇒(ii) Let R = R1 ⊕ · · · ⊕ Rm, where each Ri is a Prüfer domain. By
Theorem 6.1.4, Matn(Ri) is Baer for each i. So Matn(R) = ⊕m

i=1Matn(Ri) is Baer
by Proposition 3.1.5(i).

(ii)⇒(iii) is evident, and (iii)⇒(iv) is a consequence of Theorem 3.1.8.
(iv)⇒(i) Let Mat2(R) be a Baer ring. Say f ∈ Mat2(R) with 1 in the (1,1)-

position and 0 elsewhere. Then R ∼= fMat2(R)f is a Baer ring by Theorem 3.1.8.
Thus, R is nonsingular by Proposition 3.1.18, so R is semiprime because R is com-
mutative. Next, as R is orthogonally finite, R is a finite direct sum of commutative
domains by Corollary 5.4.13(i). Say R =R1 ⊕ · · · ⊕Rm, with each Ri a commuta-
tive domain. As Mat2(R1)⊕ · · · ⊕ Mat2(Rm) is Baer, each Mat2(Ri) is Baer from
Proposition 3.1.5(i). So each Ri is a Prüfer domain by Theorem 6.1.4. Thus, R is a
finite direct sum of Prüfer domains.

By Corollary 3.3.3, in (ii), (iii), and (iv), “Baer (Rickart) ring” can be replaced
by “(right) extending ring”. �

We remark that when R is a commutative domain, any one of the conditions
of Theorem 6.1.4 is equivalent to the condition that every finitely generated free
(projective) R-module is a Baer (Rickart) module if and only if (R ⊕ R)R is a
Baer (Rickart) module. The following example illustrates that there is a domain R

such that Mat2(R) is Baer, but not so Mat3(R). Hence, R being commutative is not
superfluous in Theorem 6.1.4.

Example 6.1.6 Let R be the K-algebra (K is a field) on the generators xi, yi,

i = 1,2,3, with the defining relation x1y1 + x2y2 + x3y3 = 0 as in Example 4.3.13.
Then R

(2)
R is a Baer module from Theorem 4.3.12, so Mat2(R) is a Baer ring by

Theorem 4.2.8.
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But from Example 4.3.13, R(3)
R is not Baer. So by Theorem 4.2.8, Mat3(R) is not

a Baer ring. Note that R is a domain as R is a 2-fir. By Theorem 3.1.8, whenever
n≥ 3, Matn(R) is not a Baer ring. Finally, we recall from Theorem 6.1.4 that, when
R is a commutative domain, Mat2(R) is a Baer ring if and only if Matn(R) is a Baer
ring for every positive integer n.

For a ring R and a nonempty ordered set Γ , we use CRFMΓ (R) to denote the
ring of Γ ×Γ column and row finite matrices over R. We consider another applica-
tion of generalized triangular matrix representations developed in Chap. 5 to show
that if CRFMN(R) is Baer, then R is semisimple Artinian (Theorem 6.1.10), where
N is the set of positive integers.

For convenience, we put M(R)= CRFMN(R) and N(R)= RFMN(R). First, we
need the next lemma (see [371, Proposition 2.2] for its proof).

Lemma 6.1.7 Let R be a ring and g2 = g ∈M(R). Then N(R)N(R)g ∼= N(R)N(R)

if and only if M(R)M(R)g ∼= M(R)M(R).

We use a left module argument in the next lemma for convenience.

Lemma 6.1.8 Assume that R is a domain such that CRFMN(R) is a Baer ring.
Take 0 �= d ∈R and put

a =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

d 0 · · · · · ·
1 1 0 · · ·
0 d 0 · · ·
0 1 1 0 · · ·

. . .
. . .

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ CRFMN(R).

Let {ai} be the set of rows of a viewed as elements of RR(N). Then there exist j0 ∈N

and a direct summand K of RR(N), such that R(N)a = Ra1 ⊕K and aj0+k ∈K for
all positive integers k.

Proof Set M(R)= CRFMN(R). Let eij (or ei,j ) be the matrix in M(R) with 1 in the
(i, j)-position and 0 elsewhere. Since M(R) is a Baer ring, M(R) is a left Rickart
ring. So M(R)a is projective as a left M(R)-module by Proposition 3.1.17, hence
M(R)M(R)a ∼= M(R)M(R)g for some g2 = g ∈M(R).

Let x =∑∞
n=1 en,4n−2 and y =∑∞

n=1 e2n−1, n. Then we see that xay = 1. De-
fine μ : M(R)a → M(R) by μ(va) = vay for v ∈ M(R). Furthermore, we define
ν : M(R) →M(R)a by ν(w) =wxa for w ∈ M(R). Then μ and ν are left M(R)-
homomorphisms, and μ ◦ ν is the identity map of M(R) as xay = 1.

Note that Image(ν) ∩ Ker(μ) = 0. Next, for wa ∈ M(R)a with w ∈ M(R),
wayxa ∈ Image(ν) and wa −wayxa ∈ Ker(μ). Thus,

M(R)a = Image(ν)⊕ Ker(μ).



194 6 Matrix, Polynomial, and Group Ring Extensions

Therefore M(R)g ∼= M(R)a = Image(ν) ⊕ Ker(μ) ∼= M(R) ⊕ Ker(μ), and thus
R(N) ⊗M(R) M(R)g ∼= [R(N) ⊗M(R) M(R)] ⊕ [R(N) ⊗M(R) Ker(μ)]. Consequently,
we get R(N)g ∼=R(N) ⊕M0 as left R-modules, where M0 =R(N) ⊗M(R) Ker(μ).

Further, RR
(N) = RR

(N)g ⊕ RR
(N)(1 − g) ∼= RR

(N) ⊕ RM0 ⊕ RR
(N)(1 − g).

Put U =R(N) ⊕R(N)(1 − g). Then R(N) ∼=M0 ⊕U . Now

R(N) ∼= (R(N))(N) ∼= (M0 ⊕U)⊕ (M0 ⊕U)⊕ (M0 ⊕U)⊕ · · ·
= M0 ⊕ (U ⊕M0)⊕ (U ⊕M0)⊕ · · ·
= M0 ⊕ (R(N))(N) ∼=M0 ⊕R(N) ∼=R(N)g.

So Hom(RR
(N), RR

(N)g) ∼= Hom(RR
(N), RR

(N)) because RR
(N) ∼= RR

(N)g, and
thus N(R)N(R)g ∼= N(R)N(R), where N(R) = RFMN(R). By Lemma 6.1.7,
M(R)M(R)g ∼= M(R)M(R). Hence, M(R)M(R)a ∼= M(R)M(R).

Let θ : M(R)a → M(R) be an M(R)-isomorphism. Set b = θ−1(1) in M(R)a,
where 1 is the identity of M(R). Say b = sa, where s ∈M(R). Thus, we obtain that
R(N)b =R(N)sa ⊆R(N)a.

Next, M(R)b = M(R)θ−1(1) = θ−1(M(R)) = M(R)a, thus a ∈ M(R)b.
Hence, there exists c ∈M(R) such that a = cb. So R(N)a =R(N)cb ⊆R(N)b. There-
fore, R(N)b =R(N)a.

The rows of b, say {bi}, are R-independent. For, if r1b1 + · · · + rkbk = 0, where
r1, . . . , rk ∈ R. Then 0 = r1e11b + · · · + rkekkb = (r1e11 + · · · + rkekk)b because
eiib = bi for i, 1 ≤ i ≤ k. Thus

0 = θ((r1e11 + · · · + rkekk)b)= (r1e11 + · · · + rkekk)θ(b)

= r1e11 + · · · + rkekk.

So r1 = 0, . . . , rk = 0, and hence {bi} are R-independent. Therefore, {bi} is an R-
basis for R(N)a because R(N)a =R(N)b.

We note that a1 ∈ R(N)a = R(N)b. Say a1 ∈ ∑n
i=1 Rbi . As c ∈ M(R) (re-

call that a = cb, where c ∈ M(R)), there is a positive integer j0 such that
ej0+k,j0+k c(

∑n
i=1 eii)= 0 for all positive integers k. Note that

aj0+k = ej0+k,j0+ka = ej0+k,j0+kcb.

So aj0+k ∈∑i>n Rbi for all positive integers k.
Let V = ∑n

i=1 Rbi and W = ∑

i>n Rbi . Then R(N)a = V ⊕ W with a1 ∈ V

and aj0+k ∈W for all positive integers k. Now {a1, a2, a4, a6, . . . } is an R-basis for
R(N)a, so Ra1 is a direct summand of R(N)a. By the modular law, V = Ra1 ⊕ V ′,
for some V ′ ≤ V , as a1 ∈ V and Ra1 is a direct summand of R(N)a. Therefore,
R(N)a = V ⊕W = Ra1 ⊕ V ′ ⊕W . Put K = V ′ ⊕W . Then R(N)a = Ra1 ⊕K and
aj0+k ∈K for all positive integers k. �

Lemma 6.1.9 Let R be a domain such that CRFMN(R) is a Baer ring. Then R is a
division ring.
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Proof We use the notation of the preceding lemma. Recall that the first row a1 of
the matrix in Lemma 6.1.8 is a1 = (d,0,0, . . . ).

By Lemma 6.1.8, we see that R(N)a =Ra1 ⊕K such that aj0+k ∈K for all pos-
itive integers k. Let ϕ :R(N)a →Ra1 be the canonical projection. For each positive
integer i, let xi ∈R such that ϕ(ai)= xia1.

We observe that aj0+k ∈ K for all positive integers k, so it follows that
0 = ϕ(aj0+k) = xj0+ka1 = (xj0+kd,0,0, . . . ). Thus, xj0+k = 0 for all positive inte-
gers k. Note that da2n = a2n−1 + a2n+1, so ϕ(da2n)= ϕ(a2n−1)+ ϕ(a2n+1). Thus,
we get that dx2nd = x2n−1d + x2n+1d . Since R is a domain and d �= 0,

dx2n = x2n−1 + x2n+1.

We see that x1 = 1 because ϕ(a1) = a1. If x3 = 0, then dx2 = x1 = 1 from dx2 =
x1 + x3. Now (x2d)(x2d) = x2d and x2d �= 0, so x2d = 1 as R is a domain. Thus,
d is invertible, so we are done. If x3 �= 0, then we have that x3 = −1 + dx2. So
dx4 = x3 + x5 = −1 + dx2 + x5, and x5 = 1 + d(x4 − x2). In this case, if x5 = 0,
then d is invertible.

Otherwise, we continue the procedure. In general, suppose that x2r+1 �= 0 with
x2r+1 = 1 + dmr or x2r+1 = −1 + dmr for some mr ∈ R. From the equality
dx2(r+1) = x2r+1 + x2(r+1)+1, we see that x2(r+1)+1 = 0 implies that d is invertible,
and x2(r+1)+1 �= 0 implies that x2(r+1)+1 = 1 + dmr+1 or x2(r+1)+1 = −1 + dmr+1.
Since xj0+k = 0 for all positive integers k, there exists some r with x2(r+1)+1 = 0,
and so d is invertible. Therefore, R is a division ring. �

Given a matrix α, we use α(i, j) to denote its (i, j)-position element.

Theorem 6.1.10 Let R be a ring such that CRFMN(R) is a Baer ring. Then R is
semisimple Artinian.

Proof Put M(R) = CRFMN(R), N(R) = RFMN(R), and W(R) = CFMN(R). Let
eij be the matrix in M(R) with 1 in the (i, j)-position and 0 elsewhere. Set ei = eii .

Step 1. R is orthogonally finite. Assume on the contrary that there exists an infi-
nite set of nonzero orthogonal idempotents, say {αi}∞i=1 ⊆ R. Consider an idempo-
tent matrix in N(R)= RFMN(R), which is

a =

⎡

⎢

⎢

⎢

⎣

α1 0 · · ·
α2 α2 0 · · ·
α3 α3 α3 0 · · ·

. . .

⎤

⎥

⎥

⎥

⎦

∈N(R).

Let

b =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 − α1 0 · · ·
−1 1 − α2 0 · · ·
0 −1 1 − α3 0 · · ·
... 0

. . .

...

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈M(R).
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Then ab = 0, so rM(R)(a) �= 0. We can check that

rM(R)(a)= ∩∞
i=1rM(R)(eia)= rM(R)({eia}∞i=1)

and {eia}∞i=1 ⊆ M(R). Now rM(R)(a) = fM(R) for some 0 �= f 2 = f ∈ M(R) as
M(R) is Baer and rM(R)(a) �= 0. Thus, f b = b since b ∈ rM(R)(a)= fM(R).

We consider the matrix

c =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 1 − α2 (1 − α2)(1 − α3) · · ·
0 0 1 1 − α3 · · ·
...

... 0 1
. . .

... 0
. . .

...

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈W(R)= CFMN(R).

As f,b ∈ M(R) and c ∈ W(R), f (bc) = (f b)c by direct computation, and so
f (bc)= bc. We see that

bc =

⎡

⎢

⎢

⎢

⎣

0 1 − α1 (1 − α1)(1 − α2) · · ·
0 −1 0 · · ·
0 0 −1 0 · · ·
...

...
...

. . .

⎤

⎥

⎥

⎥

⎦

.

Since f ∈M(R), there is a positive integer n such that en+kf e1 = 0 for all positive
integers k. Hence, en+kf = en+kf (1 − e1). Now we observe that (1 − e1)bc =
e1 − 1. Thus, en+kf bc = en+kf (1 − e1)bc = en+kf (e1 − 1) = −en+kf . Also
en+kf bc = en+kbc = −en+k for all positive integers k, because f bc = bc. Thus,
en+kf = en+k for all positive integers k.

Because f ∈M(R), there exists a positive integer m such that m> n and

(e1 + · · · + en)f em+k = 0

for all positive integers k. Thus, e1f em+k = 0, . . . , enf em+k = 0. So

f (1,m+ k)= 0, . . . , f (n,m+ k)= 0

(recall that f (i, j) denotes the (i, j)-position of the matrix f ).
On the other hand, for i > n, eif em+k = eiem+k because en+kf = en+k for all

positive integers k. Therefore,

f (i,m+ k)= 0 if i �=m+ k and i > n, and f (m+ k,m+ k)= 1.

Thus, f (i,m+ k) = 0 if i �= m+ k since f (1,m+ k) = 0, . . . , f (n,m+ k) = 0.
So the (m+ k)-column of f is equal to that of em+k . Hence, f em+k = em+k .

Now af �= 0 because af em+k = aem+k �= 0 from definition of a. This contradicts
the fact that af = 0. Therefore, R is orthogonally finite.
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Step 2. Sr (R)= S�(R)= B(R). Let e ∈ Sr (R). By Proposition 1.2.2,

R ∼=
[

eRe 0
(1 − e)Re (1 − e)R(1 − e)

]

.

Thus

M(R)∼=
[

M(eRe) 0
M((1 − e)Re) M((1 − e)R(1 − e))

]

.

To prove that e ∈ B(R), we show that (1 − e)Re = 0. For this, assume on the con-
trary that (1 − e)Re �= 0. Take 0 �= s ∈ (1 − e)Re.

• Let σ be the matrix such that σ(i, j) = s if i ≥ j and σ(i, j) = 0 otherwise
(i.e., σ is the lower triangular matrix with constant term s). Then it follows that
σ ∈N((1 − e)Re) \M((1 − e)Re).

• Let τ be the constant diagonal matrix with s on the diagonal. Then we note that
τ ∈M((1 − e)Re).

• Let δ be the constant diagonal matrix with 1 − e on the diagonal. Then we get
that δ ∈M((1 − e)R(1 − e)).

• Let γ be the matrix such that γ (i, j)= e if i = j , γ (i, j)= −e if i = j + 1, and
γ (i, j)= 0 otherwise. Then γ ∈M(eRe).

We note that, for any w ∈M(eRe), wγ = 0 implies that w = 0. Put β =
[

0 0
σ δ

]

and x =
[

γ 0
−τ 0

]

. Then βx = 0 as σγ = τ and δτ = τ . Since M(R) is a Baer ring,

�M(R)(x) = M(R)g for some g2 = g ∈ M(R). Note that β �∈ M(R). But, for any
ei , eiβ ∈ M(R) and so eiβ ∈ �M(R)(x) = M(R)g. Hence, eiβ = eiβg. Therefore,
β = βg. Now we let

g =
[

v 0
t y

]

with v ∈ M(eRe), t ∈ M((1 − e)Re), and y ∈ M((1 − e)R(1 − e)). Then vγ = 0
since gx = 0. We see that v = 0 because v ∈M(eRe) and vγ = 0.

From βg = β , it follows that δt = σ . Because t ∈ M((1 − e)Re), δt = t by
definition of δ. Hence,

σ = t ∈M((1 − e)Re),

a contradiction because σ �∈ M((1 − e)Re). Therefore (1 − e)Re = 0. So we ob-
tain that e ∈ S�(R) from Proposition 1.2.2. Consequently, e ∈ B(R) by Proposi-
tion 1.2.6(i), and hence Sr (R)= B(R).

If h ∈ S�(R), then 1 − h ∈ Sr (R) by Proposition 1.2.2. Hence, 1 − h ∈ B(R) by
the preceding argument, thus h ∈ B(R). So Sr (R)= S�(R)= B(R).

Step 3. R is a finite direct sum of prime Baer rings. Since M(R) is a Baer ring
and R ∼= e1M(R)e1, R is a Baer ring from Theorem 3.1.8. As R is orthogonally
finite by Step 1, Tdim (R) = n < ∞ by Proposition 5.2.13(ii). Say {b1, . . . , bn}
is a complete set of left triangulating idempotents of R. Then b1 ∈ S�(R), so
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b1 ∈ B(R) from Step 2. By Proposition 5.1.7(ii), b1 + b2 ∈ S�(R). So by
Step 2, b1 + b2 ∈ B(R), and hence b2 ∈ B(R). Also by Proposition 5.1.7(ii),
b1 + b2 + b3 ∈ S�(R), so b1 + b2 + b3 ∈ B(R) from Step 2. Thus b3 ∈ B(R) since
b1 + b2 ∈ B(R). By continuing this procedure, bi ∈ B(R) for all i. From Theo-
rems 3.1.8 and 5.4.12, R is a finite direct sum of prime Baer rings.

Step 4. R is semisimple Artinian. By Step 3, we may assume that R is a
prime Baer ring. As R is orthogonally finite, R has a complete set of primi-
tive idempotents (see Proposition 1.2.15), say {h1, h2 . . . , hn}. Then it follows that
R = h1R ⊕ · · · ⊕ hnR as right R-modules. By Theorem 3.1.8, each hiRhi is a
Baer ring. Thus from Example 3.1.4(ii), each hiRhi is a domain. In matrix notation,
R ∼= [hiRhj ], so M(R) ∼= [M(hiRhj )]. Since M(R) is Baer, so is M(hiRhi) for
each i from Theorem 3.1.8. Hence by Lemma 6.1.9, each hiRhi is a division ring.

We claim that hiRR is simple. Indeed, let 0 �=w ∈ hiR. Then w = hiw. Since R
is a prime ring, hiwRhi �= 0. Take hiwuhi �= 0, where u ∈ R. There exists v ∈ R

with hi = (hiwuhi)(hivhi)=wuhivhi because hiRhi is a division ring with iden-
tity hi and w = hiw. Hence, hiR ⊆ wR, so hiR = wR. Therefore hiRR is simple,
and hence R is semisimple Artinian. Since R is prime, R is simple Artinian. �

For a division ring R, CRFMΓ (R) has been investigated by Mackey [286]
and Ornstein [321] under the topological notion of continuous endomorphisms of
End(R(Γ )

R ). As is mentioned in [246, p. 5], the following lemma has been shown by
Mackey [286] and Ornstein [321].

Lemma 6.1.11 If R is a division ring, then CRFMΓ (R) is Baer for any infinite
ordered set Γ .

Theorem 6.1.12 The following are equivalent for a ring R.

(i) CRFMΓ (R) is Baer for any nonempty ordered set Γ .
(ii) CRFMN(R) is Baer.

(iii) R is semisimple Artinian.

Proof (i)⇒(ii) It is clear. Theorem 6.1.10 yields that (ii)⇒(iii). The implication
(iii)⇒(i) follows from Lemma 6.1.11. �

When R is a commutative ring, Theorems 6.1.1 and 6.1.12 yield the next corol-
lary. It is interesting to compare Corollary 6.1.13 with Corollary 6.1.5.

Corollary 6.1.13 Let R be a commutative ring. Then the following are equivalent.

(i) CFMΓ (R) is a Baer ring for any nonempty ordered set Γ .
(ii) RFMΓ (R) is a Baer ring for any nonempty ordered set Γ .

(iii) CRFMΓ (R) is a Baer ring for any nonempty ordered set Γ .
(iv) CRFMN(R) is a Baer ring.
(v) R is a finite direct sum of fields.
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Proof (i)⇔(ii) follows from Theorem 6.1.1. To see that (i)⇒(v), assume that (i)
holds. By Theorem 6.1.1, R is semiprimary hereditary. Thus, R is orthogonally
finite. Also R is Baer. By Corollary 5.4.13(i), R is a finite direct sum of fields
since R is semiprime and semiprimary. (v)⇒(i) follows from Theorem 6.1.1. The-
orem 6.1.12 yields that (iii)⇔(iv)⇔(v). �

For the Rickart ring property, we obtain the following.

Theorem 6.1.14 Let R be a ring. Then the following are equivalent.

(i) R is right hereditary.
(ii) CFMΓ (R) is right Rickart for any nonempty ordered set Γ .

Proof Since any free right R-module is k-local retractable (see Exercise 4.5.16.2),
Theorems 4.5.6 and 4.5.9 yield the result. �

In the next theorem, we obtain a characterization of rings for which every finitely
generated free module is Rickart.

Proposition 6.1.15 Let R be a ring. Then the following are equivalent.

(i) Every finitely generated free (projective) right R-module is a Rickart module.
(ii) Every finite direct sum of copies of R(k)

R is a Rickart R-module for some positive
integer k.

(iii) Matn(R) a right Rickart ring for any positive integer n.
(iv) R is a right semihereditary ring.

Proof (i)⇒(ii) is clear. For (ii)⇒(i), say R(m)
R is a finitely generated free R-module.

Then R
(m)
R ≤⊕ R

(km)
R = ⊕mR

(k)
R . By hypothesis, ⊕mR

(k)
R is a Rickart module. By

Proposition 4.5.4(i), R(m)
R is a Rickart module.

(i)⇔(iii) follows from Theorem 4.5.6 because every free module is k-local re-
tractable (see Exercise 4.5.16.2). (iii)⇔(iv) is Theorem 3.1.29. �

Some special conditions are required on a Baer ring R for the transference of
the Baer property to Matn(R), CFMΓ (R), RFMΓ (R), and CRFMΓ (R) in Theo-
rems 6.1.1, 6.1.3, 6.1.4, and 6.1.12. However, the next result once again shows that
the quasi-Baer property always transfers to these types of infinite matrix ring exten-
sions without any additional assumptions.

Theorem 6.1.16 The following are equivalent for a ring R.

(i) R is quasi-Baer.
(ii) Matn(R) is quasi-Baer for every positive integer n.

(iii) CFMΓ (R) is quasi-Baer for any nonempty ordered set Γ .
(iv) RFMΓ (R) is quasi-Baer for any nonempty ordered set Γ .
(v) CRFMΓ (R) is quasi-Baer for any nonempty ordered set Γ .
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Proof The equivalence (i)⇔(ii) follows from Theorem 3.2.12. Also the equivalence
(i)⇔(iii)⇔(iv) is Corollary 4.6.20.

(i)⇔(v) Assume that R is quasi-Baer. Put M(R) = CRFMΓ (R). We let eij
denote the matrix in M(R) with 1 in the (i, j)-position and 0 elsewhere. For
ω ∈M(R), ωij denotes the (i, j)-position element of ω.

Say I � M(R). Let A be the set of entries of matrices in I . Then I � R. In
fact, let x, y ∈A. Then there exist α,β ∈ I such that x = αki and y = β�j for some
k, i, �, j ∈ Γ . Then ξ := α+ ek�βeji ∈ I and ξki = x+ y, so x+ y ∈A. Further, for
r ∈R, as ekkα(reii) ∈ I and (rekk)αeii ∈ I , xr ∈A and rx ∈A. Therefore, A�R.

Because R is quasi-Baer, there exists e2 = e ∈ R with rR(A) = eR. So
(e1M(R))M(R) ⊆ rM(R)(I ), where 1M(R) is the identity matrix in M(R). Next to
see that rM(R)(I ) ⊆ (e1M(R))M(R), let [bmn] ∈ rM(R)(I ). We claim that Abij = 0
for all i, j ∈ Γ . Let a ∈A and choose i, j ∈ Γ . There exists α ∈ I such that a = αk�,
where k, � ∈ Γ . Then ekkαe��e�i ∈ I , therefore we have that (ekkαe��e�i)[bmn]ejj =
0 since [bmn] ∈ rM(R)(I ). We observe that abij is the (k, j)-position element of
(ekkαe��e�i)[bmn]ejj , and hence abij = 0. Since i and j are chosen arbitrarily,
Abij = 0 for all i, j ∈ Γ .

Hence all bij ∈ rR(A) = eR, and thus bij = ebij for all i, j ∈ Γ . Therefore,
we have that [bmn] = [ebmn] = (e1M(R))[bmn] ∈ (e1M(R))M(R). Consequently, it
follows that rM(R)(I )= (e1M(R))M(R), so M(R) is quasi-Baer.

Conversely, if CRFMΓ (R) is quasi-Baer, then R is a quasi-Baer ring by Theo-
rem 3.2.10. �

The transference of the FI-extending property of a ring R to infinite matrix rings
over R, is shown in the next result.

Theorem 6.1.17 Let R be a right FI-extending ring. Then CFMΓ (R) and
CRFMΓ (R) are right FI-extending rings for any nonempty ordered set Γ .

Proof Let S denote either CFMΓ (R) or CRFMΓ (R). We let eij denote the matrix
in S with 1 in the (i, j)-position and 0 elsewhere. For ω ∈ S, ωij denotes the (i, j)-
position element of ω.

Say I � S. Let A be the set of all entries of matrices in I . Then A � R as in
the proof of Theorem 6.1.16, so AR ≤ess eRR for some e2 = e ∈ R since R is right
FI-extending.

Let f = e1S ∈ S, where 1S is the identity matrix of S. To show that IS ≤ess f SS ,
take 0 �= β ∈ f S. Then there is j0 such that the j0-th column of β is nonzero. Let
{er1, . . . , ern} be the set of all nonzero entries in the j0-th column, where ri ∈R for
i = 1, . . . , n. Then there exists s ∈ R such that {er1s, . . . , erns} ⊆ A and erks �= 0
for some k ∈ {1, . . . , n} because AR ≤ess eRR . Let ξ = sej0j0 ∈ S, which is the
matrix with s in the (j0, j0)-position and 0 elsewhere. Then the j0-th column of βξ
is nonzero with the entries {er1s, . . . , erns}. All other columns of βξ are zero.

Say erms is the (km, j0)-position element of the matrix βξ for 1 ≤ m ≤ n. As
er1s ∈ A, there is [aij ] ∈ I with ai1 j1 = er1s. Let [bij ] = ei1 i1[aij ]ej1 j1 . Then we
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see that [bij ] = (er1s)ei1 j1 ∈ I . Now put

α1 = ek1 i1(er1s)ei1 j1ej1 j0 ∈ I.

Then α1 = (er1s)ek1 j0 . Similarly, α2 := (er2s)ek2 j0 ∈ I , and so on. Therefore, we
obtain that 0 �= βξ = α1 + α2 + · · · + αn ∈ I , hence IS ≤ess f SS . Thus S is right
FI-extending. �

We remark that if R is right strongly FI-extending, then CFMΓ (R) is right
strongly FI-extending for any nonempty ordered set Γ (see Exercise 6.1.18.3).

Exercise 6.1.18

1. ([392, Tercan] and [121, Chatters and Khuri]) Let R be a ring and n a positive
integer. Show that Matn(R) is a right extending ring if and only if R(n)

R is an
extending module.

2. ([271, Lee, Rizvi, and Roman]) Let R be a commutative domain. Show that the
following are equivalent.

(i) Every finitely generated free (projective) R-module has the SIP.
(ii) The free R-module R(k)

R has the SIP for some integer k ≥ 3.

(iii) The free R-module R(3)
R has the SIP.

(iv) R is a Prüfer domain.
3. ([84, Birkenmeier, Park, and Rizvi]) Show that if R right strongly FI-extending,

then so is CFMΓ (R) for any nonempty ordered set Γ .

6.2 Polynomial Ring Extensions and Ore Extensions

We saw in Example 3.1.28 that in general the Baer and Rickart properties do not
transfer from R to R[x]. Motivated by that example, we now prove that this is not
so for the quasi-Baer property. In particular, Theorem 6.2.4 shows that a polynomial
ring over a quasi-Baer ring inherits the property. In Theorem 6.2.7, we show that an
analogous result holds for right p.q.-Baer rings. It will be shown that Ore extensions
of a quasi-Baer ring are also quasi-Baer under certain conditions. As an application,
we will see that the quantum n-space over a quasi-Baer ring is always quasi-Baer.

Definition 6.2.1 A monoid G is called a u.p.-monoid (unique product monoid) if for
any two nonempty finite subsets A,B ⊆ G there exists an element x ∈ G uniquely
presented in the form ab where a ∈A and b ∈ B .

Every u.p.-monoid has no non-identity element of finite order. In [341], group
algebras of a u.p.-group are studied in detail (see also [320]).

Lemma 6.2.2 Assume that G is a u.p.-monoid. Then G is cancellative (i.e., for
g,h, x ∈G, if gx = hx or xg = xh, then g = h).
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Proof Let gx = hx with g,h, x ∈ G. Consider A = {g,h} and B = {x}. If gx is
uniquely presented, then g = h. If hx is uniquely presented, then g = h. Similarly,
if xg = xh, then g = h. �

The following result shows that the quasi-Baer and the right p.q.-Baer properties
transfer between a ring R and the monoid ring R[G] of a u.p.-monoid G over R.

Theorem 6.2.3 Let R[G] be the monoid ring of a u.p.-monoid G over a ring R.
Then:

(i) R is right p.q.-Baer if and only if R[G] is right p.q.-Baer.
(ii) R is quasi-Baer if and only if R[G] is quasi-Baer.

Proof (i) Let R be right p.q.-Baer. Say α = a1g1 + · · · + angn ∈ R[G] with as ∈ R

and gs ∈G, s = 1, . . . , n. There is es ∈ S�(R) with rR(asR)= esR for each s. Then
e = e1 · · · en ∈ S�(R) from Proposition 1.2.4(i). We see that eR = ∩n

s=1rR(asR).
Hence eR[G] ⊆ rR[G](αR[G]).

Note that rR[G](αR[G])⊆ rR[G](αR). We claim that

rR[G](αR)⊆ eR[G]
so that rR[G](αR[G]) = eR[G]. For this, let γ = c1h1 + · · · + cmhm ∈ rR[G](αR)
with cs ∈ R and hs ∈ G, s = 1,2, . . . ,m. Then αRγ = 0, and hence we have that
(a1g1 + · · · + angn)R(c1h1 + · · · + cmhm)= 0.

We proceed by induction on n to show that γ ∈ eR[G]. If n= 1, then α = a1g1,
so (a1g1)b(c1h1 + · · · + cmhm) = a1bc1g1h1 + · · · + a1bcmg1hm = 0 for every
b ∈ R. By Lemma 6.2.2, g1hs �= g1ht for s �= t . Thus a1bcs = 0 for all s. Hence,
a1Rcs = 0 for all s and so cs ∈ rR(a1R)= e1R for all s.

As G is a u.p.-monoid, there exist fixed i, j with 1 ≤ i ≤ n and 1 ≤ j ≤ m such
that gihj is uniquely presented by considering two subsets

A= {g1, g2, . . . , gn} and B = {h1, h2, . . . , hm} of G.

From (a1g1 + · · · + angn)R(c1h1 + · · · + cmhm) = 0, aiRcjgihj = 0 and so
aiRcj = 0. Therefore cj ∈ rR(aiR)= eiR. Now, for every b ∈R,

0 = (a1g1 + · · · + angn)bei(c1h1 + · · · + cmhm)

= (a1g1 + · · · + ai−1gi−1 + ai+1gi+1 + · · · + angn)bei(c1h1 + · · · + cmhm)

= (a1g1 + · · · + ai−1gi−1 + ai+1gi+1 + · · · + angn)b(eic1h1 + · · · + eicmhm).

By induction, eick ∈ ∩n
s �=i rR(asR) = ∩n

s �=iesR for k, 1 ≤ k ≤ m. In particular,
cj = eicj ∈ ∩n

s �=iesR. So cj ∈ ∩n
s=1esR = ∩n

s=1rR(asR) = eR. Thus, we have that
(
∑n

s=1 asgs)Rcjhj =∑n
s=1 asRcjgshj = 0.

From (a1g1 + · · · + angn)R(c1h1 + · · · + cmhm)= 0, it follows that

(

n
∑

s=1

asgs)R (

m
∑

k=1,k �=j

ckhk)= 0.
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By iteration again, there is � ∈ {1,2, . . . , j − 1, j + 1, . . . ,m} such that c� ∈ eR to
get (

∑n
s=1 asgs)R (

∑m
k=1,k �=�,k �=j ckhk)= 0.

Continuing this procedure yields that all c1, . . . , cm are in eR, so we have that
γ = c1h1 + · · · + cmhm ∈ eR[G]. Thus rR[G](αR)⊆ eR[G], hence

eR[G] ⊆ rR[G](αR[G])⊆ rR[G](αR)⊆ eR[G].
Therefore, rR[G](αR[G])= eR[G]. So R[G] is a right p.q.-Baer ring.

Conversely, let R[G] be right p.q.-Baer. Take a ∈R. Then

rR[G](aR[G])= eR[G]
for some e2 = e ∈R[G]. Write e = e0μ+ e2g2 +· · ·+ engn, where μ is the identity
of G. Let b ∈ rR(aR). Since rR(aR)⊆ rR[G](aR[G])= eR[G], eb = b, so e0b = b.
Thus b ∈ e0R, and hence rR(aR)⊆ e0R. As rR[G](aR[G])= eR[G], aRe = 0 and
thus aRe0 = 0. Hence, e0 ∈ rR(aR) and e0R ⊆ rR(aR). So rR(aR) = e0R. From
e0R = rR(aR) ⊆ rR[G](aR[G]) = eR[G], ee0 = e0 and hence e2

0 = e0. Therefore,
R is a right p.q.-Baer ring.

(ii) Assume that R is a quasi-Baer ring. Let I � R[G] and let I0 be the set of
all coefficients in R of elements of I . Then I0 � R. In fact, say a, b ∈ I0. Then
there exist α = a1g1 + · · · + amgm,β = b1h1 + · · · + bnhn ∈ I such that a = a1 and
b = b1, where ai, bj ∈ R and gi, hj ∈ G for i = 1, . . . ,m and j = 1, . . . , n. The
h1α + βg1 ∈ I and

h1α + βg1 = (a + b)h1g1 + a2h1g2 + · · · + amh1gm + b2h2g1 + · · · + bnhng1.

Note that h1g1 �= h1gk for k = 2, . . . ,m and h1g1 �= h�g1 for � = 2, . . . ,m by
Lemma 6.2.2. Thus, a + b is the coefficient of h1α + βg1. So a + b ∈ I0. Obvi-
ously, ar, ra ∈ I0 for all r ∈ R. Thus, I0 is an ideal of R. Because R is quasi-Baer,
rR(I0)= eR for some e2 = e ∈R.

We claim that rR[G](I ) = eR[G]. Indeed, since I0e = 0, Ie = 0 and so
e ∈ rR[G](I ). Thus, eR[G] ⊆ rR[G](I ). Take c1h1 + · · · + cmhm ∈ rR[G](I ). To
show that each cs ∈ rR(I0) = eR, let a ∈ I0. Then there is a1g1 + · · · + angn ∈ I

with a = a1. Since c1h1 + · · · + cmhm ∈ rR[G](I ), it follows that

(a1g1 + · · · + angn)R(c1h1 + · · · + cmhm)= 0.

As in the proof of the necessity in part (i), for each s, 1 ≤ s ≤m, we can see that all
cs ∈ rR(a1R) ∩ · · · ∩ rR(anR). Thus, acs = a1cs = 0, and hence cs ∈ rR(I0) = eR

for s, 1 ≤ s ≤ m. Therefore, c1h1 + · · · + cmhm ∈ eR[G]. So rR[G](I ) ⊆ eR[G].
Since eR[G] ⊆ rR[G](I ), rR[G](I )= eR[G]. Thus R[G] is a quasi-Baer ring.

Conversely, assume that R[G] is a quasi-Baer ring. Let I � R. Then as in the
proof of the sufficiency of part (i), rR(I ) is generated by an idempotent of R. So R

is a quasi-Baer ring. �

We remark that the converse of Theorem 6.2.3(i) and (ii) are true for an arbitrary
(not necessarily u.p.-) monoid G. By Theorem 6.2.3, we obtain the following results
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for transference of the quasi-Baer and p.q.-Baer properties of rings between R and
its polynomial ring extensions.

Theorem 6.2.4 Let R be a ring and X a nonempty set of not necessarily commuting
indeterminates. Then the following are equivalent.

(i) R is a quasi-Baer ring.
(ii) R[X] is a quasi-Baer ring.

(iii) R[[X]] is a quasi-Baer ring.
(iv) R[x, x−1] is a quasi-Baer ring.
(v) R[[x, x−1]] is a quasi-Baer ring.

Proof We note that R[X] is a monoid ring over the u.p.-monoid generated by
X. Also the Laurent polynomial ring R[x, x−1] is a u.p.-monoid ring. Indeed,
R[x, x−1] ∼= R[C∞], where R[C∞] is the group ring of the infinite cyclic group
C∞ over R. Thus the equivalence of (i), (ii), and (iv) follows immediately from
Theorem 6.2.3(ii).

(i)⇒(v) Let T = R[[x, x−1]] and I � T . We claim that �T (I ) = T e for some
e2 = e ∈ T . If I = 0, then we are done. So suppose that I �= 0. Let I0 be the set of
nonzero coefficients of the lowest degree terms of nonzero elements in I together
with 0. Then I0 �R, so �R(I0)=Re for some e2 = e ∈R as R is quasi-Baer.

First, to see that T e ⊆ �T (I ), take h(x) ∈ I . If h(x) = 0, then eh(x) = 0. So
assume that h(x) �= 0. Then h(x)xm = a0 + a1x + · · · + anx

n + · · · ∈ I , for some
integer m≥ 0, with each ai ∈R. If a0 �= 0, then a0 ∈ I0 and ea0 = 0, so eh(x)xm =
ea1x + · · · + eanx

n + · · · ∈ I . If ea1 �= 0, then ea1 ∈ I0. But ea1 = e(ea1) = 0, a
contradiction. Similarly, eak = 0 for all k ≥ 2. Hence eh(x)xm = 0, so eh(x) = 0.
Therefore e ∈ �T (I ), thus T e ⊆ �T (I ).

Next, we show that �T (I ) ⊆ T e. Let g(x) ∈ �T (I ). Then we see that g(x)xk =
b0 +b1x+· · ·+bsx

s +· · · , for some integer k ≥ 0, with each bi ∈R. We prove that
g(x)xk = g(x)xke. Let 0 �= c ∈ I0. Then there exists 0 �= f (x) ∈ I and an integer
t ≥ 0 so that f (x)xt = c0x

�+c1x
�+1 +· · · ∈ I for some integer �≥ 0, where c0 = c.

So g(x)xkf (x)xt = g(x)f (x)xk+t = 0, hence b0c0 = 0. Therefore, we obtain that
b0 ∈ �R(I0)=Re ⊆ �T (I ), thus b0 = b0e.

As b0 ∈ �T (I ) and g(x)xk ∈ �T (I ), g(x)xk − b0 = b1x + b2x
2 + · · · ∈ �T (I ).

By the preceding argument, b1 ∈ �R(I0) ⊆ �T (I ), so b1 = b1e. As b1 ∈ �T (I ),
b1x ∈ �T (I ) and g(x)xk − b0 − b1x = b2x

2 + b3x
3 + · · · ∈ �T (I ). Similarly,

we see that b2 ∈ �(I0) = Re ⊆ �T (I ), hence b2 = b2e, and so on. Whence we
have that g(x)xk = g(x)xke, so g(x) = g(x)e ∈ T e. Thus �T (I ) ⊆ T e. Therefore
�T (I )= T e, hence T is quasi-Baer.

(v)⇒(i) Let T =R[[x, x−1]] and I a right ideal of R. Then rT (IT )= e(x)T for
some e(x) ∈ S�(T ). Let e0 be the constant term of e(x). Since Ie(x)= 0, it follows
that Ie0 = 0 and hence e0R ⊆ rR(I ). Next, let b ∈ rR(I ). Then Ib = 0 and so
IT b = 0. Thus b ∈ rT (IT ). Then b ∈ e(x)T and so b = e(x)b. Hence b =
e0b ∈ e0R, and thus rR(I )= e0R. As e0R = rR(I )⊆ rT (IT )= e(x)T , e(x)e0 = e0
and so e2

0 = e0. Hence, rR(I ) = e0R and e2
0 = e0. So R is quasi-Baer. Similarly,

(i)⇔(iii). �



6.2 Polynomial Ring Extensions and Ore Extensions 205

Corollary 6.2.5 Let R be a semiprime ring and X a nonempty set of not necessarily
commuting indeterminates. Then the following are equivalent.

(i) R is (strongly) FI-extending.
(ii) R[X] is (strongly) FI-extending.

(iii) R[[X]] is (strongly) FI-extending.
(iv) R[x, x−1] is (strongly) FI-extending.
(v) R[[x, x−1]] is (strongly) FI-extending.

Proof It is a consequence of Theorems 6.2.4 and 3.2.37. �

Corollary 6.2.6 Let R be a reduced ring and X a nonempty set of not necessarily
commuting indeterminates. Then the following are equivalent.

(i) R is a Baer ring.
(ii) R[X] is a Baer ring.

(iii) R[[X]] is a Baer ring.
(iv) R[x, x−1] is a Baer ring.
(v) R[[x, x−1]] is a Baer ring.

Proof The proof follows from Theorem 6.2.4 because a reduced quasi-Baer ring is
a Baer ring. �

Theorem 6.2.7 Let R be a ring and X a nonempty set of not necessarily commuting
indeterminates. Then the following are equivalent.

(i) R is a right p.q.-Baer ring.
(ii) R[X] is a right p.q.-Baer ring.

(iii) R[x, x−1] is a right p.q.-Baer ring.

Proof Theorem 6.2.3(i) yields the result as R[x, x−1] ∼=R[C∞]. �

Corollary 6.2.8 Let R be a reduced ring and X a nonempty set of not necessarily
commuting indeterminates. Then the following are equivalent.

(i) R is a (right) Rickart ring.
(ii) R[X] is a (right) Rickart ring.

(iii) R[x, x−1] is a (right) Rickart ring.

Proof The result follows from Theorem 6.2.7 since a reduced right p.q.-Baer ring
is a Rickart ring. �

In Theorem 6.2.7 or in Corollary 6.2.8, R[X] cannot be replaced by R[[X]].
Indeed, Theorem 6.2.7(ii) and Corollary 6.2.8(ii) do not hold true for R[[X]], when
R is a right p.q.-Baer ring or R is a (right) Rickart ring. In the following, there is
a commutative regular ring R (hence reduced Rickart and p.q.-Baer) for which the
ring R[[x]] is not Rickart and not p.q.-Baer.
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Example 6.2.9 Let R be the ring in Example 3.1.14(ii). Then R is a commutative
regular ring. Let f (x)= α0 + α1x + α2x

2 + · · · ∈R[[x]], where

α0 = (0,1,0,0, . . . ), α1 = (0,1,0,1,0,0, . . . ), α2 = (0,1,0,1,0,1,0,0, . . . ),

and so on. If R[[x]] is Rickart, then there is e(x)2 = e(x) ∈ R[[x]] such that
rR[[x]](f (x)) = e(x)R[[x]]. Let e0 be the constant term of e(x). Then by compu-
tation, e(x) = e0. So f (x)e0 = 0, hence αie0 = 0 for i = 0,1,2, . . . . Therefore
e0 = (b1,0, b3,0, . . . , b2n+1,0,0,0,0 . . . ) for some positive integer n and some bi ,
i = 1,3, . . . ,2n+ 1. Let g(x)= β0 + β1x + β2x

2 + · · · ∈R[[x]] with

β0 = (1,0,0, . . . ), β1 = (1,0,1,0,0,0, . . . ), β2 = (1,0,1,0,1,0,0,0,0, . . . ),

and so on. Then f (x)g(x) = 0, but g(x) �∈ e0R[[x]] = e(x)R[[x]], a contradiction.
Hence R[[x]] is not Rickart, and also R[[x]] is not p.q.-Baer.

Let E = {e1, e2, . . . } be a countable subset of Sr (R). Then e ∈ Sr (R) is called a
generalized countable join of E if the following conditions hold.

(1) eie = ei for all i = 1,2, . . . .
(2) If a ∈R and eia = ei for all i = 1,2, . . . , then ea = e.

Theorem 6.2.10 The ring R[[x]] is right p.q.-Baer if and only if R is right p.q.-Baer
and each countable subset of Sr (R) has a generalized countable join.

Proof See [124, Theorem 5]. �

For idempotents e and f in a reduced ring R, e ≤ f means that ef = e. When R

is a reduced Rickart ring and E = {e1, e2, . . . } is a countable set of idempotents of
R, it is proved in [124] that an idempotent e ∈R is a generalized countable join of E
if and only if e = sup(E). The next result follows from this fact and Theorem 6.2.10.

Corollary 6.2.11 The ring R[[x]] is reduced Rickart if and only if R is a reduced
Rickart ring and for any countable set E of idempotents in R, there exists e2 = e ∈R

such that e = sup(E).

Let R be a ring with α a ring endomorphism of R. Then a map δ : R → R is
called an α-derivation of R if

δ(a + b)= δ(a)+ δ(b) and δ(ab)= δ(a)b+ α(a)δ(b)

for all a, b ∈ R. We denote by R[x;α, δ] the Ore extension of R whose elements
are polynomials over R, the addition is defined as usual and the multiplication is
subject to the relation

xa = α(a)x + δ(a)
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for each a ∈ R. When δ = 0, we use R[x;α] (the skew polynomial ring) for
R[x;α, δ]. If α is the identity map, we write R[x; δ] for R[x;α, δ]. The next re-
sult is on the transference of the quasi-Baer property from R to its Ore extensions.

Theorem 6.2.12 Let R be a ring, α a ring automorphism of R, and let δ be an
α-derivation of R. If R is quasi-Baer, then R[x;α, δ] is quasi-Baer.

Proof Let I � S := R[x;α, δ], and let I0 be the set of all leading coefficients of
elements of I together with 0. Then I0 �R because α is a ring automorphism of R.
Thus, �R(I0)=Re with e2 = e ∈R.

We claim that �S(I )= Se. For Se ⊆ �S(I ), let f (x)= a0 +· · ·+ anx
n ∈ I . Then

ean = 0 since an ∈ I0. But ef (x)= ea0 + · · · + ean−1x
n−1 ∈ I .

Hence ean−1 = eean−1 = 0 because ean−1 ∈ I0. Continuing this procedure, we
obtain eai = 0 for all i. Thus ef (x)= 0, so Se ⊆ �S(I ).

Next, we prove that each g(x) ∈ �S(I ) satisfies g(x)= g(x)e so that �S(I )⊆ Se.
We may assume that g(x) �= 0. The proof proceeds by induction on n= deg(g(x)),
the degree of g(x). Suppose that deg(g(x)) = 0. Take d ∈ I0. Then there exists
p(x) = d0 + · · · + dkx

k ∈ I with d = dk . Since g(x)p(x) = 0, g(x)d = 0 and so
g(x) ∈ �R(I0)=Re. Hence, g(x)= g(x)e. Assume inductively that the assertion is
true for all k(x) ∈ �S(I ) with deg(k(x)) < n.

Say g(x) = b0 + · · · + bnx
n ∈ �S(I ). Since α is an automorphism, bn = αn(c)

for some c ∈ R. Take v ∈ I0. There is h(x) = v0 + · · · + vm−1x
m−1 + vxm ∈ I

and g(x)h(x) = 0. Thus, bnαn(v) = αn(c)αn(v) = 0 and cv = 0. So it follows that
c ∈ �R(I0)=Re, so c = ce.

We observe that bn = αn(c) = αn(ce) = αn(c)αn(e) = bnα
n(e). Therefore,

g(x) = b0 + · · · + bn−1x
n−1 + bnα

n(e)xn = b0 + · · · + bn−1x
n−1 + bnx

ne + t (x)

for some t (x) ∈ S such that deg(t (x))≤ n− 1 or t (x)= 0. Thus,

0 = g(x)I = (b0 + · · · + bn−1x
n−1 + bnx

ne+ t (x))I

= (b0 + · · · + bn−1x
n−1 + t (x))I

because eI = 0. Put k(x)= b0 + · · · + bn−1x
n−1 + t (x).

Note that g(x)= k(x)+ bnx
ne. If k(x)= 0, then g(x)= bnx

ne and thus g(x)=
g(x)e. Next, assume that k(x) �= 0. By induction hypothesis, k(x) = k(x)e as
k(x) ∈ �S(I ). So g(x)= k(x)+bnx

ne = k(x)e+bnx
ne = g(x)e, hence �S(I )⊆ Se.

Therefore, �S(I )= Se. �

Theorem 6.2.12 yields the following corollary immediately.

Corollary 6.2.13 Let R be a ring and α a ring automorphism of R. If R is a quasi-
Baer ring, then R[x;α] is a quasi-Baer ring.

The next example provides a domain R which shows that the condition “α is
a ring automorphism” cannot be relaxed to “α is a ring endomorphism” in Corol-
lary 6.2.13.
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Example 6.2.14 Let F be a field and R = F [t] the polynomial ring with the endo-
morphism σ given by σ(f (t))= f (0) for f (t) ∈R.

We see that R[x; σ ] is not a domain because xt = σ(t)x = 0. Consider a
right ideal xR[x; σ ]. We note that R[x; σ ] has 0 and 1 as the only idem-
potents by simple computation. Also note that rR[x;σ ](xR[x; σ ]) �= R[x; σ ]
since 1 �∈ rR[x;σ ](xR[x; σ ]). Further, g(x)t = 0 for all g(x) ∈ xR[x; σ ]. Hence
rR[x;σ ](xR[x; σ ]) �= 0. Thus, rR[x;σ ](xR[x; σ ]) is not generated by an idempotent
and so R[x; σ ] is not a quasi-Baer ring.

Theorem 6.2.12 can be applied to an iterated Ore extension, that is, a ring of the
form R[x1; α1, δ1][x2;α2, δ2] · · · [xn;αn, δn], where α1 is an automorphism of R
and δ1 is an α1-derivation of R; while α2 is an automorphism of R[x1;α1, δ1], δ2 is
an α2-derivation of R[x1;α1, δ1], and so on.

Let δ1, . . . , δn be a commuting derivations on a ring R. Define a map D2

on R[x1; δ1] by D2(
∑

aix
i
1) = ∑

δ2(ai)x
i
1. Since δ2 commutes with δ1, D2 is a

derivation on R[x1; δ1], and we can form the ring R[x1; δ1][x2;D2]. Similarly,
δ3 can be extended to a derivation D3 on R[x1; δ1][x2;D2], then we can form
R[x1; δ1][x2;D2][x3;D3], and so on. Finally, we obtain the differential operator
ring R[x1; δ1][x2;D2] · · · [xn;Dn], which is denoted by R[x1, . . . , xn; δ1, . . . , δn].
See [185, pp. 12–20] for more details on iterated Ore extensions. The next corollary
follows immediately from Theorem 6.2.12.

Corollary 6.2.15 Let R be a quasi-Baer ring. If δ1, . . . , δn are commuting deriva-
tions of R, then R[x1, . . . , xn; δ1, . . . , δn] is a quasi-Baer ring.

There is a ring R with a derivation δ such that R[x; δ] is a quasi-Baer ring, but
R is not a quasi-Baer ring as the next example shows.

Example 6.2.16 Let R = Z2[x]/A with a derivation δ such that δ(x) = 1, where
A= x2

Z2[x] and x = x +A. Consider the Ore extension R[y; δ].
If we set e11 = x y, e12 = x, e21 = x y2 + y, and e22 = 1 + x y, then they

form a set of matrix units in R[y; δ] (see 1.1.16). By direct computation, we see
that Z2[y2] = {v ∈ R[y; δ] | veij = eij v for i, j = 1,2}. By 1.1.16, we have that
R[y; δ] ∼= Mat2(Z2[y2]). Hence, R[y; δ] is Baer from Theorem 6.1.4 as Z2[y2] is
a Prüfer domain. But R is not quasi-Baer.

Let k be a ring and let q ∈ k be a central invertible element. Then the quan-
tum n-space is the ring Oq(k

n), generated by k together with n additional ele-
ments x1, . . . , xn which commute with all elements of k, and xjxi = qxixj for
all i < j . Clearly Oq(k

2) = k[x1][x2;α2], where k[x1] is an ordinary polynomial
ring and α2 is the ring automorphism of k[x1] such that α2(a) = a for a ∈ k and
α2(x1) = qx1. Also Oq(k

3) = k[x1][x2;α2][x3;α3], where α3 is the ring automor-
phism of k[x1][x2;α2] such that α3(a) = a for a ∈ k, α3(x1) = qx1 and α3(x2) =
qx2, and so on.
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Corollary 6.2.17 Let k be a quasi-Baer ring. Then the quantum n-space Oq(k
n) is

a quasi-Baer ring.

Exercise 6.2.18

1. ([66, Birkenmeier and Park]) Let R be a ring and G be a u.p.-monoid. Show
that R is quasi-Baer with Tdim(R) = n if and only if R[G] is quasi-Baer with
Tdim(R[G])= n.

2. ([193, Han, Hirano, and Kim]) Let S = ∏

i∈Z Ti with Ti = Q, for i ∈ Z. We
consider the ring automorphism σ of S defined by σ((ai)i∈Z) = (ai+1)i∈Z. Let
R = ⊕i∈ZTi + Q1S , where 1S is the identity of S. Then R is a reduced Rickart
ring and so is a p.q.-Baer ring. Clearly, the restriction α of σ to R is a ring
automorphism of R. Show that the ring R[x;α] is not right p.q.-Baer.

3. ([193, Han, Hirano, and Kim]) Let R be a reduced Rickart ring with a ring auto-
morphism σ of finite order. Prove that the ring R[x;σ ] is p.q.-Baer.

4. ([312, Nasr-Isfahani and Moussavi]) Let R be a ring with a derivation δ. Show
that if R is right p.q.-Baer, then R[x; δ] is right p.q.-Baer.

6.3 Group Ring Extensions

A semiprime quasi-Baer group algebra over a field is the focus of our discussion
in this section. As a byproduct, it is shown that every semiprime right Noetherian
group algebra over a field is quasi-Baer (hence FI-extending). In particular, any
group algebra of a polycyclic-by-finite group over a field with characteristic zero is
quasi-Baer. Examples of several classes of Baer or quasi-Baer group rings are also
shown.

In a semiprime ring R, an ideal A of R is called an annihilator ideal if A= rR(V )

for some V � R (also A = �R(V ) in this case). We start with the following result
(which is due to M. Smith [373]).

Theorem 6.3.1 Let F [G] be a semiprime group algebra of a group G over a field F
and A an annihilator ideal of F [G]. If α ∈A, then there exists a central idempotent
e of F [G] such that e ∈A and α = eα.

Proof See [341, Theorem 3.18, pp. 143–144]. �

The next result describes semiprime quasi-Baer group algebras over a field.

Theorem 6.3.2 Let R = F [G] be a semiprime group algebra of a group G over a
field F . Then R is quasi-Baer if and only if each annihilator ideal of R is finitely
generated.

Proof Let R be quasi-Baer and let A be an annihilator ideal of R. Then there exists
V � R such that A= rR(V ). As R is quasi-Baer, rR(V )= eR for some e ∈ S�(R).
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As R is semiprime, e ∈ B(R) by Proposition 1.2.6(ii). Thus A = eR = ReR, so A

is finitely generated.
Conversely, assume that each annihilator ideal of R is finitely generated. Let A

be an annihilator ideal of R. Then A =∑n
i=1 RαiR for some α1, . . . , αn in R. By

Theorem 6.3.1, there is a central idempotent ei ∈ A with αi ∈ eiR for each i. So
A =∑n

i=1 RαiR ⊆∑n
i=1 eiR ⊆ A. Hence, A =∑n

i=1 eiR. Thus, there is a central
idempotent e ∈R with A= eR. So R is quasi-Baer. �

Corollary 6.3.3 Any semiprime right Noetherian group algebra F [G] of a group
G over a field F is quasi-Baer.

Proof Say R = F [G]. Let A be an annihilator ideal of R. Then as R is right
Noetherian, A = a1R + · · · + anR for some a1, . . . , an ∈ R. Since A � R,
A=Ra1R + · · · +RanR. Thus R is quasi-Baer from Theorem 6.3.2. �

The group algebra of a polycyclic-by finite group over a field is a Noetherian ring
(see [341, Corollary 2.8, p. 425]).

Corollary 6.3.4 The group algebra F [G] of a polycyclic-by-finite group G over a
field F with characteristic zero is quasi-Baer.

In the following example, there exist a polycyclic-by-finite group G and a field
F with characteristic zero such that the group algebra F [G] is not Baer.

Example 6.3.5 Let F be a field with characteristic zero and G be the group
D∞ × C∞, where D∞ is the infinite dihedral group and C∞ is the infinite cyclic
group. Then G is polycyclic-by-finite, so F [G] is quasi-Baer by Corollary 6.3.4.
But F [G] is not Baer (see [39, Theorem 3.3.10]).

We get the next two corollaries from Theorems 3.2.37 and 6.3.2.

Corollary 6.3.6 Let R = F [G] be a semiprime group algebra of a group G over a
field F . Then R is (strongly) FI-extending if and only if each annihilator ideal of R
is finitely generated.

Corollary 6.3.7 Any semiprime right Noetherian group algebra is (strongly) FI-
extending. In particular, the group algebra F [G] of a polycyclic-by-finite group G

over a field F with characteristic zero is (strongly) FI-extending.

We note that if F [G] is (right) FI-extending, where G is Abelian, then F [G] is
(right) extending. Thus, the group algebra of a polycyclic-by-finite Abelian group
over a field with characteristic zero is extending (see [227] for other examples of
extending group rings).

The support of an element
∑

g∈G agg ∈R[G] is the set {h ∈G | ah �= 0}.
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Theorem 6.3.8 Let R[G] be the group ring of a group G over a ring R. If R[G] is
Baer, then R[H ] is Baer for any subgroup H of G. In particular, R is Baer.

Proof Let H be a subgroup of G and let ∅ �= X ⊆ R[H ]. Because R[G] is Baer,
�R[G](X) = R[G]e for some e2 = e ∈ R[G]. Write e = ∑

h∈H ahh + ∑

g �∈H bgg

with ah, bg ∈R. Then for β ∈X, eβ = (
∑

h∈H ahh)β + (
∑

g �∈H bgg)β = 0.
We observe that if g �∈ H and h ∈ H , then gh �∈ H . So the support of

(
∑

g �∈H bgg)β is contained in G \ H because β ∈ R[H ]. Thus, it follows that
(
∑

h∈H ahh)β = 0, so
∑

h∈H ahh ∈ �R[H ](X) ⊆ �R[G](X) = R[G]e. Hence,
∑

h∈H ahh = (
∑

h∈H ahh)e = (
∑

h∈H ahh)
2 + (

∑

h∈H ahh)(
∑

g �∈H bgg). Say

α =∑

h∈H ahh. Then α2 = α and R[H ]α ⊆ �R[H ](X).
Assume that γ ∈ �R[H ](X)⊆ �R[G](X)=R[G]e. Then we obtain

γ = γ e = γ

(

∑

h∈H
ahh

)

+ γ

(

∑

g/∈H
bgg

)

, so γ = γ

(

∑

h∈H
ahh

)

= γ α ∈R[H ]α.

Therefore �R[H ](X)=R[H ]α. As a consequence, R[H ] is Baer. �

Proposition 6.3.9 Let R be a subring of a ring S such that both share the same
identity 1. Suppose that S is a free left R-module with a basis G such that 1 ∈ G

and ag = ga for all a ∈R and all g ∈G. If S is quasi-Baer (resp., Baer), then R is
quasi-Baer (resp., Baer).

Proof Let I � R. Since S is quasi-Baer, �S(SI) = Se for some e2 = e ∈ S. Let
e = a1g1 + · · · + angn, where ai ∈R, gi ∈G, i = 1, . . . , n, and g1 = 1. Then for all
a ∈ I , 0 = ea = (a1g1 + · · · + angn)a = a1ag1 + · · · + anagn. Thus, aia = 0 for
i = 1, . . . , n, so aiI = 0 for i = 1, . . . , n. Therefore, aiSI ⊆ ∑

g∈G aiIg = 0,

and hence ai ∈ �S(SI) = Se, which implies that ai = aie. Thus, a2
1 = a1 ∈ R.

Since a1I = 0, Ra1 ⊆ �R(I). Next, if r ∈ �R(I), then rSI ⊆ ∑

g∈G rIg = 0. So
r ∈ �S(SI)= Se, thus r = re = r(a1g1 +· · ·+angn)= ra1g1 +· · ·+rangn. Hence,
r = ra1 ∈ Ra1. Therefore, �R(I) = Ra1. Thus, R is quasi-Baer. The case when R

is Baer follows by similar arguments. �

Let R[G] be the group ring of a group G over a ring R. Consider the
ideal ω(R[G]) = {∑g∈G agg | ag ∈ R and

∑

g∈G ag = 0}. If G finite, then

�R[G](ω(R[G])) = R[G]̂G, where ̂G = ∑

g∈G g (see [264, Lemma 2, p. 154] or
[341, Lemma 1.2, p. 68]).

In Theorem 6.2.3, we have seen that for the case of a u.p.-monoid G, the ring R

is quasi-Baer if and only if the monoid ring R[G] is quasi-Baer. On the contrary,
if G is a group, then we only obtain a one-sided implication as shown in the next
result. Example 6.3.11 indicates that the converse of the other implication does not
hold true, in general (see also Example 6.3.16).

Theorem 6.3.10 Let R[G] be the group ring of a group G over a ring R.
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(i) If R[G] is quasi-Baer, then so is R.
(ii) If R[G] is quasi-Baer and G is finite, then |G|−1 ∈R.

Proof (i) It follows immediately from Proposition 6.3.9.
(ii) Since R[G] is quasi-Baer, �R[G](ω(R[G])) = R[G]̂G = R[G]e for some

e2 = e ∈ R[G]. So there is
∑

rgg ∈ R[G] such that e = (
∑

rgg)̂G = (
∑

rg)̂G.
Put r = ∑

rg and n = |G|. Then e = r̂G and e = e2 = r̂Gr̂G = nr2
̂G. Hence it

follows that r = nr2. As ̂G ∈ R[G]̂G = R[G]e, there is
∑

sgg ∈ R[G] such that
̂G= (

∑

sgg)e. Thus, ̂G= (
∑

sgg)e = (
∑

sgg)r̂G= (
∑

sgr)̂G. Thus, 1 =∑

sgr .
Therefore, 1 = (

∑

sg)r = (
∑

sg)nr
2 = n(

∑

sgr)r = nr because r = nr2. So
|G|−1 ∈R. �

The next example follows immediately from Theorem 6.3.10(ii).

Example 6.3.11 The group ring Z[G] is not quasi-Baer for any nontrivial finite
group G.

Assume that R is a ring and G is a finite group. If the group ring R[G] is (quasi-)
Baer, then Theorems 6.3.8 and 6.3.10 yield that R is (quasi-)Baer and |G|−1 ∈ R.
Thus, it is natural to ask whether the converse of this observation also holds true.
This question for the quasi-Baer case, was raised by Hirano (see [205]). The answer
to the question for both the Baer and the quasi-Baer ring cases, is in the negative.
Counterexamples to this question are provided.

In the next example, there exist a commutative domain R and a finite group G

such that |G|−1 ∈R, but the group ring R[G] is neither Baer nor right extending.

Example 6.3.12 Let R = F [x, y], where F is an algebraically closed field with
characteristic zero, and let G be a finite non-Abelian group. Then we have that
F [G] ∼= Matk1(D1)⊕ · · · ⊕ Matkn(Dn), for some division rings Di and some posi-
tive integers ki , 1 ≤ i ≤ n by Maschke’s Theorem [203, Theorem 1.4.1]. Since each
Di is finite dimensional over F and F is algebraically closed, Di = F for each i.
As G is not Abelian, there is ki , say k1, such that k1 ≥ 2.

We note that R[G] ∼= Matk1(F [x, y]) ⊕ · · · ⊕ Matkn(F [x, y]). If R[G] is Baer,
then Matk1(F [x, y]) is Baer from Theorem 3.1.8, which is a contradiction by The-
orem 6.1.4, as the commutative domain F [x, y] is not Prüfer. Also from Theo-
rem 6.1.4, Matk1(F [x, y]) cannot be right extending. So R[G] is not right extending.

Lemma 6.3.13 Assume that R is a ring such that 2−1 ∈ R and C2 is the group of
order 2. Then R[C2] ∼=R ⊕R as a ring direct sum.

Proof Write C2 = {1, g}. Since 2−1 ∈ R, the map f : R[C2] → R ⊕ R defined by
f (a + bg)= (a + b, a − b) (ring direct sum) is a ring isomorphism. �

Proposition 6.3.14 Let R be a ring. Then R[C2] is quasi-Baer (resp., Baer) if and
only if R is quasi-Baer (resp., Baer) and 2−1 ∈R.
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Proof Theorem 6.3.8, Theorem 6.3.10, Lemma 6.3.13, Proposition 3.1.5, and
Proposition 3.2.8 yield the result immediately. �

Proposition 6.3.15 Let R be a ring with 2−1 ∈ R and let C4 be the cyclic group of
order 4. Then R[C4] ∼=R ⊕R ⊕R[x]/(x2 + 1)R[x] (ring direct sum).

Proof Put C4 = {1, g, g2, g3}, and let e = (1 + g2)/2. Then it follows that R[C4] =
R[C4]e ⊕R[C4](1 − e) (ring direct sum) since e is a central idempotent of R[C4].
Next, it can be checked that R[C4]e = {ae + bge | a, b ∈ R} and R[C4](1 − e) =
{a(1 − e)+ bg(1 − e) | a, b ∈R}. Now the map

α :R[C4]e →R[x]/(x2 − 1)R[x]
defined by α(ae + bge)= a + bx + (x2 − 1)R[x] is a ring isomorphism. Also, the
map

β :R[C4](1 − e)→R[x]/(x2 + 1)R[x]
given by β(a(1 − e)+ bg(1 − e))= a + bx + (x2 + 1)R[x] is a ring isomorphism.
Further, R[x]/(x2 − 1)R[x] ∼= R[C2]. By Lemma 6.3.13, R[C2] ∼= R ⊕ R. Hence,
R[x]/(x2 − 1)R[x] ∼=R ⊕R. So R[C4] ∼=R ⊕R ⊕R[x]/(x2 + 1)R[x]. �

The next example shows the existence of a quasi-Baer ring R and a finite group
G such that |G|−1 ∈ R, but the group ring R[G] is not quasi-Baer. Thereby, Hi-
rano’s question is answered in the negative. The example shows that R is right
(FI-)extending but R[G] is not right FI-extending.

Example 6.3.16 Let A= {n/2k | n and k are integers}, which is a subring of Q. Set
R = {a + 3b i | a, b ∈ A}, where i is the imaginary unit. Then R is a subring of C.
Since R is a commutative domain, R is Baer (hence quasi-Baer). Also |C4|−1 ∈ R.
We claim that R[C4] is not quasi-Baer. Let F be the field of fractions of R. Define

σ :R[x]/(x2 + 1)R[x] → F ⊕ F

by σ(h(x)+ (x2 + 1)R[x])= (h(i), h(−i)). Then σ is a ring monomorphism.
Note that (3i + 3x + (x2 + 1)R[x])(−3i + 3x + (x2 + 1)R[x]) = 0. Therefore,

R[x]/(x2 + 1)R[x] is not a domain. So if R[x]/(x2 + 1)R[x] is quasi-Baer (equiv-
alently, Baer), then it has a nontrivial idempotent (see Proposition 3.2.5).

Since {(0,0), (1,0), (0,1), (1,1)} is the set of all idempotents of F ⊕ F ,
σ(R[x]/(x2 +1)R[x]) contains (1,0) or (0,1) (hence all of (1,0) and (0,1)). Thus,
there exist r, s ∈ R such that r + s i = 1 and r − s i = 0. So r = 1/2 and s = −i/2.
But this is a contradiction because s = −i/2 �∈ R. Therefore R[x]/(x2 + 1)R[x] is
not quasi-Baer. From Propositions 6.3.15 and 3.2.8, the ring R[C4] is not quasi-
Baer.

Further, R[x]/(x2 + 1)R[x] is semiprime since σ is a ring monomorphism. By
Proposition 6.3.15, R[C4] is a semiprime ring. Clearly, R is right FI-extending. But
R[C4] is not right FI-extending by Theorem 3.2.37.



214 6 Matrix, Polynomial, and Group Ring Extensions

The next result provides an interesting class of quasi-Baer group rings.

Proposition 6.3.17 The group ring R[D∞] is quasi-Baer if and only if R is a quasi-
Baer ring, where D∞ is the infinite dihedral group.

Proof If R[D∞] is quasi-Baer, then R is quasi-Baer from Theorem 6.3.10(i). Con-
versely, let R be quasi-Baer. We note that the infinite dihedral group D∞ is gener-
ated by t and y such that |t | = 2, |y| = ∞, and t−1yt = y−1.

Let S = R[y, y−1] and let σ be the ring automorphism of S satisfying that
σ(y) = t−1yt = y−1 and σ(r) = r for all r ∈ R. Then x2 − 1 is a central poly-
nomial of the skew polynomial ring S[x; σ ]. Further, we see that

R[D∞] ∼= S[x; σ ]/(x2 − 1)S[x; σ ].
Put T = S[x; σ ]/(x2 − 1)S[x; σ ]. We prove that T is a quasi-Baer ring. Let V be a
nonzero ideal of T and put

I = {a ∈ S | a + bx ∈ V for some b ∈ S}
and

J = {b ∈ S | a + bx ∈ V for some a ∈ S},
where x = x + (x2 − 1)S[x; σ ]. Then I = J is an ideal of S. From Theorem 6.2.4,
S = R[y, y−1] is quasi-Baer since R is quasi-Baer. Thus, �S(I ) = Se for some
e2 = e ∈ S.

We show that �T (V )= T e. As eI = 0 and I = J , we have that eV = 0 and hence
T e ⊆ �T (V ). Next, let c+ d x ∈ �T (V ), where c, d ∈ S. To prove that c+ d x ∈ T e,
first take a0 ∈ I . Then there exists b0 ∈ I such that a0 + b0x ∈ V because I = J .
Therefore, for all a ∈ S, we have that

0 = (c+ d x)a (a0 + b0x)= (c+ d x) (aa0 + ab0x)

= (caa0 + dσ(a)σ (b0))+ (cab0 + dσ(a)σ (a0))x.

Thus, for all a ∈ S, caa0 + dσ(a)σ (b0)= 0 and cab0 + dσ(a)σ (a0)= 0. We take
a = yn (n ∈ Z). Then

cyna0 + dy−nσ (b0)= 0 and cynb0 + dy−nσ (a0)= 0.

Since yn is in the center of S, y2nca0 = −dσ(b0) and y2ncb0 = −dσ(a0). This
holds for all n ∈ Z and c, d, a0, b0 are fixed elements of S. Thus, ca0 = 0 and
dσ(a0) = 0. So 0 = σ−1(dσ (a0)) = σ−1(d)a0. Since a0 is an arbitrary element of
I , it follows that c, σ−1(d) ∈ �S(I ) = Se. Write c = s1e and σ−1(d) = s2e, where
s1, s2 ∈ S. Then d = σ(s2)σ (e).

Now c+dx = s1e+σ(s2)σ (e)x = (s1 +σ(s2)x)e ∈ T e. So �T (V )⊆ T e. Hence,
�T (V )= T e. Therefore, T is a quasi-Baer ring. �

Remark 6.3.18 (i) The group ring Z[D∞] is not Baer. For, if Z[D∞] is Baer,
then Z[C2] is Baer from Theorem 6.3.8. However, this is impossible by Theo-
rem 6.3.10(ii).
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(ii) From Proposition 6.3.17, Z[D∞] is quasi-Baer. But Z[C2] is not quasi-Baer
by Theorem 6.3.10(ii). Thus, the quasi-Baer analogue of Theorem 6.3.8 does not
hold.

Exercise 6.3.19

1. ([418, Yi and Zhou]) Assume that A is the ring of numbers n/3k , where n is an
integer and k is a nonnegative integer. Let R = {a + b

√
3 i | a, b ∈A}. Then R is

Baer and |C3|−1 ∈R. Prove that the group ring R[C3] is not quasi-Baer.
2. ([123, Chen, Li, and Zhou]) Assume that R is a ring for which 6−1 ∈ R. Show

that R[S3] ∼= R ⊕ R ⊕ Mat2(R). Thus, R[S3] is quasi-Baer if and only if R is
quasi-Baer. Moreover, if R is a Prüfer domain, then R[S3] is Baer.

3. ([418, Yi and Zhou]) Let G be a finite group and n be an integer such that n > 1.
Show that the following are equivalent.

(i) Zn[G] is Baer.
(ii) Zn[G] is quasi-Baer.

(iii) |G| and n are relatively prime, and n is square free.
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Chapter 7
Essential Overring Extensions-Beyond
the Maximal Ring of Quotients

This chapter is mainly concerned with the study of right essential overrings of a ring
and their properties. We provide various stimulating results and examples of right
essential overrings which are not right rings of quotients of a ring R. We describe
all possible right essential overrings of the ring

R =
[

Z4 2Z4
0 Z4

]

.

The importance of this ring R is that it was used by Osofsky in [327] to show that
there are rings whose injective hulls have no compatible ring structures.

The right essential overrings of R possess many interesting properties as we shall
see. Furthermore, Osofsky compatibility, more specifically a class of rings R for
which E(RR) has distinct compatible ring structures will be discussed. Results and
examples in this chapter also provide a motivation for the definition of ring hulls
(see Definition 8.2.1).

7.1 Compatibility of Ring Structures

In this section, we discuss the right essential overrings of a ring. Also we consider
the following class of rings R. Let A be a commutative local QF-ring with nonzero
Jacobson radical and let

R =
[

A Soc(A)
0 A

]

,

where Soc(A) is the socle of A. We note that R = Q(R) as R is right Kasch by
Proposition 1.3.18. We explicitly describe an injective hull of RR and discuss ring
structures on this injective hull. Then we consider an intermediate R-module SR be-
tween RR and E(RR) with two nonisomorphic compatible structures (S,+,◦) and
(S,+, �), where ◦ and � are ring multiplications, each of which is compatible with
the R-module scalar multiplication of SR . Further, (S,+,◦) is right self-injective
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(in fact, QF), while (S,+, �) is not right self-injective. Actually, (S,+, �) is not
even right FI-extending.

Definition 7.1.1 An overring S of a ring R is called a right essential overring of R
if RR ≤ess SR .

We notice from Definition 1.3.10 that an overring T of ring R is a right ring
of quotients of R if and only if RR ≤den TR . Since every dense overmodule is an
essential overmodule, any right ring of quotients of R is a right essential overring
of R. The next example presents a right essential overring of a ring R which is
not a right ring of quotients of R. Indeed, R has a right essential overring which is
incomparable with its maximal right ring of quotients.

Example 7.1.2 Assume that R1 is a right Kasch ring with a right essential overring
S1 such that R1 is a proper subring of S1. Also assume that R2 is a ring with a
right ring of quotients S2 that is properly intermediate between R2 and Q(R2). Let
R = R1 ⊕R2. Then S = S1 ⊕ S2 is a proper right essential overring of R such that
Q(R) is not contained in S and S is not contained in Q(R). For a concrete example,

take R1 =
[

Z4 2Z4
0 Z4

]

(see Example 7.1.8) and R2 = Z.

The following result provides information on a right ring of quotients which is
right self-injective.

Theorem 7.1.3 Let T be a right ring of quotients of a ring R. Then T is right
self-injective if and only if T =E(RR).

Proof Assume that T is right self-injective. Note that RR ≤den TR . We claim that
TR is injective. For this, let IR ≤ RR and f ∈ Hom(IR,TR). Define g : IT → T by
g(
∑n

i=1 aiti)=∑n
i=1 f (ai)ti , where ai ∈ I and ti ∈ T for i = 1, . . . , n.

To see that g is well-defined, say
∑n

i=1 aiti = 0. If
∑n

i=1 f (ai)ti �= 0, then there
is r1 ∈ R such that t1r1 ∈ R and

∑n
i=1 f (ai)tir1 �= 0 since RR ≤den TR . Again

there is r2 ∈ R with t2r1r2 ∈ R and
∑n

i=1 f (ai)tir1r2 �= 0. Note that t1r1r2 ∈ R and
t2r1r2 ∈R. Continuing this procedure, there is r ∈R with tir ∈R for i = 1,2, . . . , n
and

∑n
i=1 f (ai)tir �= 0.

But
∑n

i=1 f (ai)tir = ∑n
i=1 f (aitir) = f (

∑n
i=1 aitir) = f (0) = 0, which is a

contradiction. Hence
∑n

i=1 f (ai)ti = 0, so g is well-defined. Obviously,
g ∈ Hom(ITT , TT ). As TT is injective, there is t0 ∈ T such that g(x) = t0x for
every x ∈ IT by Baer’s Criterion. Thus f (a) = g(a) = t0a for each a ∈ I . Hence
TR is injective, so T =E(RR).

The converse follows from Proposition 2.1.32 and Baer’s Criterion. �

Remark 7.1.4 Theorem 7.1.3 does not hold true in general for the case when T is a
right essential overring of R. Theorems 7.1.21 and 7.1.22 will show that there is a
ring R such that R has a right essential overring S which is right self-injective, but
S �=E(RR).
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Definition 7.1.5 Let R be a ring and SR be a right R-module such that RR ≤ SR .
Then we say that a ring structure (S,+,◦) on S is compatible if the ring multiplica-
tion ◦ extends the R-module scalar multiplication of S over R.

Proposition 7.1.6 Let R be a ring and RR ≤den TR . If T has a compatible ring
structure, then all of the compatible ring structures on T coincide with each other.

Proof Let (T ,+,◦1) and (T ,+,◦2) be two compatible ring structures on T . As-
sume on the contrary that there are x, y ∈ T with x ◦1 y − x ◦2 y �= 0. Then there
exists r ∈R such that yr ∈R and (x ◦1 y − x ◦2 y)r �= 0 because RR ≤den TR . Thus
(x ◦1 y − x ◦2 y)r = x ◦1 (yr) − x ◦2 (yr) = x(yr) − x(yr) = 0, a contradiction.
Thus, ◦1 = ◦2. �

In the remainder of this section, we are concerned with right essential overrings.
For this, we start with a lemma as follows.

Lemma 7.1.7 Let R be a ring and S a right essential overring of R. Then 1R = 1S ,
where 1R and 1S are identities of R and S, respectively.

Proof Assume on the contrary that 1S − 1R �= 0. Then there is r ∈ R such that
0 �= (1S − 1R)r ∈R. Thus 0 �= 1Sr − 1Rr = r − r , a contradiction. �

The next example illustrates that Proposition 7.1.6 does not hold true if T is a
right essential overring of R that is not a right ring of quotients of R.

Example 7.1.8 Let R =
[

Z4 2Z4
0 Z4

]

and T =
[

Z4 Z4
0 Z4

]

. Then RR ≤ess TR . The addi-

tion on T is the usual addition. For t1 =
[

a1 b1
0 c1

]

, t2 =
[

a2 b2
0 c2

]

∈ T , let

t1 �1 t2 =
[

a1a2 a1b2 + b1c2
0 c1c2

]

,

the usual multiplication. Next, define another multiplication �2 on T by

t1 �2 t2 =
[

a1a2 a1b2 + 2b1b2 + b1c2
0 c1c2 + 2a1b2 + 2c1b2

]

.

We show that (T ,+,�1) and (T ,+,�2) are all possible compatible ring structures
on T . Furthermore, �1 �= �2, but (T ,+,�1)∼= (T ,+,�2).

Assume that T has a compatible ring structure. Let e1 =
[

1 0
0 0

]

and e2 =
[

0 0
0 1

]

.

By Lemma 7.1.7, 1T = 1R = e1 + e2. Then e2
1 = e1, e

2
2 = e2, and e1e2 = e2e1 = 0.

Also, T = e1T e1 + e1T e2 + e2T e1 + e2T e2. Put A= Z4. By direct computation,

(1) e1T e1 =
[

A 0
0 0

]

and (2) e2T e1 = 0.
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Claim 1 e2T e2 =
[

0 0
0 A

]

.

Proof of Claim 1 Say w := e2

[

0 1
0 0

]

=
[

x y

0 z

]

∈ e2T e2. As w = we2, we

have that w =
[

0 y

0 z

]

. Note that 2w = e2

[

0 2
0 0

]

= 0, 2

[

0 y

0 z

]

= 0 and therefore

2y = 2z = 0. Thus y = 2y0 and z = 2z0 for some y0, z0 ∈ A. We observe that

e1w = e1

[

0 2y0
0 2z0

]

=
[

0 2y0
0 0

]

, so y = 2y0 = 0 and hence w =
[

0 0
0 z

]

∈
[

0 0
0 A

]

.

Since e2e1e2 = 0 and e2e2e2 = e2, e2T e2 =
[

0 0
0 A

]

.

Claim 2 e1T e2 =
[

0 A

0 0

]

or e1T e2 =
{

0,

[

0 1
0 2

]

,

[

0 2
0 0

]

,

[

0 3
0 2

]}

.

Proof of Claim 2 If

[

u v

0 w

]

∈ e1T e2, then

[

u v

0 w

]

=
[

u v

0 w

]

e2 =
[

0 v

0 w

]

. Because

T = e1T e1 + e1T e2 + e2T e1 + e2T e2 and e2T e1 = 0, by (1), (2), and Claim 1, we
see that

[

0 1
0 0

]

=
[

a 0
0 0

]

+
[

0 b

0 c

]

+
[

0 0
0 d

]

,

where

[

0 b

0 c

]

∈ e1T e2. Thus a = 0, b = 1 and d = −c. Hence, it follows that
[

0 1
0 0

]

=
[

0 1
0 c

]

+
[

0 0
0 −c

]

with

[

0 1
0 c

]

∈ e1T e2. Therefore, we have the following

four cases.

(α) c = 0. In this case,

[

0 1
0 0

]

∈ e1T e2. Thus

[

0 A

0 0

]

⊆ e1T e2, and hence we get

that e1T e2 =
[

0 A

0 0

]

because |e1T e2| = 4.

(β) c = 1. There is

[

x 2y
0 z

]

∈ R with 0 �=
[

0 1
0 1

][

x 2y
0 z

]

=
[

0 z

0 z

]

∈ R since

RR ≤ess TR . As

[

0 1
0 1

]

∈ e1T e2 ⊆ e1T , 0 �=
[

0 z

0 z

]

∈ e1R, a contradiction. So this

case cannot happen.

(γ ) c = 2. We note that |e1T e2| = 4. Since

[

0 1
0 2

]

∈ e1T e2, it follows that

e1T e2 =
{

0,

[

0 1
0 2

]

,

[

0 2
0 0

]

,

[

0 3
0 2

]}

.

(δ) c = 3. As in Case (β), this case cannot happen.

By (1), (2), Claim 1, and Claim 2, we get the following Cases 1 and 2.

Case 1. e1T e1 =
[

A 0
0 0

]

, e1T e2 =
[

0 A

0 0

]

, e2T e1 = 0, and e2T e2 =
[

0 0
0 A

]

.
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In this case,

[

1 0
0 0

][

0 1
0 0

]

=
[

0 1
0 0

]

since e1 ∈ e1T e1 and

[

0 1
0 0

]

∈ e1T e2. Also
[

0 1
0 0

][

0 1
0 0

]

∈ e1T e2 e1T e2 = 0 and

[

0 0
0 1

][

0 1
0 0

]

∈ e2 e1T e2 = 0. So there exists a

multiplication on T such that T has a compatible ring structure under this multipli-
cation �1 given by

[

a1 b1
0 c1

]

�1

[

a2 b2
0 c2

]

=
[

a1a2 a1b2 + b1c2
0 c1c2

]

.

Case 2. e1T e1 =
[

A 0
0 0

]

, e1T e2 =
{

0,

[

0 1
0 2

]

,

[

0 2
0 0

]

,

[

0 3
0 2

]}

, e2T e1 = 0,

and e2T e2 =
[

0 0
0 A

]

.

In this case, there is another compatible ring structure on T as shown in the follow-
ing steps.

Step 1.

[

1 0
0 0

][

0 1
0 0

]

=
[

0 1
0 2

]

.

We note that

[

1 0
0 0

][

0 1
0 2

]

=
[

0 1
0 2

]

since

[

0 1
0 2

]

∈ e1T e2 and e1 =
[

1 0
0 0

]

. Therefore

we obtain

[

0 1
0 2

]

=
[

1 0
0 0

][

0 1
0 2

]

=
[

1 0
0 0

][

0 1
0 0

]

+
[

1 0
0 0

][

0 0
0 2

]

=
[

1 0
0 0

][

0 1
0 0

]

.

Step 2.

[

0 0
0 1

][

0 1
0 0

]

=
[

0 0
0 2

]

.

Step 2 can be checked similarly from

[

0 0
0 1

][

0 1
0 2

]

∈ e2e1T e2 = 0. Indeed,

0 =
[

0 0
0 1

][

0 1
0 2

]

=
[

0 0
0 1

][

0 1
0 0

]

+
[

0 0
0 1

][

0 0
0 2

]

=
[

0 0
0 1

][

0 1
0 0

]

+
[

0 0
0 2

]

.

Thus

[

0 0
0 1

][

0 1
0 0

]

=
[

0 0
0 2

]

.

Step 3.

[

0 1
0 0

][

0 1
0 0

]

=
[

0 2
0 0

]

.

Note that

[

0 1
0 2

][

0 1
0 2

]

∈ e1T e2 e1T e2 = 0 and

[

0 1
0 2

][

0 0
0 2

]

=
[

0 2
0 0

]

. Thus

0 =
[

0 1
0 2

][

0 1
0 2

]

=
[

0 1
0 2

][

0 1
0 0

]

+
[

0 1
0 2

][

0 0
0 2

]

=
[

0 1
0 2

][

0 1
0 0

]

+
[

0 2
0 0

]

=
[

0 1
0 0

][

0 1
0 0

]

+
[

0 0
0 2

][

0 1
0 0

]

+
[

0 2
0 0

]

=
[

0 1
0 0

][

0 1
0 0

]

+
[

0 2
0 0

]
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because

[

0 0
0 2

][

0 1
0 0

]

= 2

[

0 0
0 1

][

0 1
0 0

]

= 2

[

0 0
0 2

]

= 0 by Step 2. Therefore, we have

that

[

0 1
0 0

][

0 1
0 0

]

=
[

0 2
0 0

]

.

By Steps 1, 2, and 3 of Case 2, there is also a multiplication �2 on T such that T
has a compatible ring structure under this multiplication:

[

a1 b1
0 c1

]

�2

[

a2 b2
0 c2

]

=
[

a1a2 a1b2 + 2b1b2 + b1c2
0 c1c2 + 2a1b2 + 2c1b2

]

.

Finally, define f : (T ,+,�1) → (T ,+,�2) by f

[

a b

0 c

]

=
[

a b

0 2b+ c

]

. Then f

is a ring isomorphism.

In honor of Osofsky’s contributions and pioneering work on the study of injective
hulls of rings and their ring structures, we give the next definition.

Definition 7.1.9 We say that a ring R is right Osofsky compatible if some injective
hull E(RR) of RR has a ring structure, where the ring multiplication extends the
R-module scalar multiplication of E(RR) over R. A left Osofsky compatible ring is
defined similarly.

Every ring R satisfying Q(R)=E(RR) is right Osofsky compatible (e.g., when
R is right nonsingular). The next result shows that if one injective hull of RR has
a compatible ring structure, then every injective hull of RR has a compatible ring
structure.

Proposition 7.1.10 The following are equivalent for a ring R.

(i) R is right Osofsky compatible.
(ii) Every injective hull of RR has a compatible ring structure.

Proof For (i)⇒(ii), assume that there is an injective hull E(RR) of RR such that
(E(RR),+, �) is a compatible ring structure. Let ER be an arbitrary injective hull
of RR . Then there exists an isomorphism φ : ER → E(RR) such that φ(r) = r for
each r ∈R.

Define x ◦ y = φ−1(φ(x) � φ(y)) for x, y ∈ ER . Then (ER,+,◦) is a ring. Fur-
ther,

x ◦ r = φ−1(φ(x) � φ(r))= φ−1(φ(x) � r)

= φ−1(φ(x)r)= φ−1(φ(xr))

= xr,

for x ∈ ER and r ∈ R. Thus (ER,+,◦) is a compatible ring structure (also,
(ER,+,◦)∼= (E(RR),+, �) via φ). (ii)⇒(i) is evident. �
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The next result exhibits a relationship between Q(R) and an injective hull
of RR when R is right Osofsky compatible. Recall from Sect. 1.3, that the in-
jective hull E = E(RR) is a (H,Q(R))-bimodule, where H = End(ER). Then
End(ER)= End(EQ(R)) (see the proof of Theorem 2.1.31).

Proposition 7.1.11 Let S be a right essential overring of R. Then Q(R) ∩ S is a
subring of both Q(R) and S. Thus, if R is right Osofsky compatible, then Q(R) is
a subring of E(RR).

Proof Let · and ◦ denote the ring multiplications of Q(R) and S, respectively.
Put E = E(RR). Take s ∈ S and define fs : S → E by fs(x) = s ◦ x for x ∈ S.
We see that fs is an R-homomorphism and extends to f s ∈ End(ER). Because
End(ER) = End(EQ(R)), f s is a Q(R)-homomorphism. Let juxtaposition denote
scalar multiplication (by R or Q(R)). For q1, q2 ∈ Q(R) ∩ S, q1 ◦ q2 = fq1(q2) =
f q1

(1)q2 = (q1 ◦ 1)q2 = q1q2 = q1 · q2. �

Let A be a commutative ring. For f ∈ Hom(Soc(A)A,AA) and x ∈ A, let f ·
x ∈ Hom(Soc(A)A,AA) be defined by (f · x)(v) = f (xv) for every v ∈ Soc(A).
Similarly, x · f ∈ Hom(Soc(A)A,AA) where (x · f )(v) = xf (v) for v ∈ Soc(A).
Note that f · x = x · f .

Proposition 7.1.12 Assume that A is a commutative self-injective ring, and
let f0 ∈ Hom(Soc(A)A,AA) such that f0(a) = a for every a ∈ Soc(A). Then
Hom(Soc(A)A,AA)= f0 ·A.

Proof Let f ∈ Hom(Soc(A)A,AA). As AA is injective, there is f ∈ End(AA) with
f |Soc(A) = f . For a ∈ Soc(A), f (a) = f (a) = ra, where r = f (1) ∈ A. Then
f = f0 · r . Hence, Hom(Soc(A)A,AA)= f0 ·A. �

Osofsky [327] showed that the ring R in the next example is not right Osofsky
compatible without explicitly constructing an injective hull. We will discuss Exam-
ple 7.1.13 in detail in Sect. 7.2.

Example 7.1.13 The ring R =
[

Z4 2Z4
0 Z4

]

is not right Osofsky compatible.

Motivated by Example 7.1.13, we now look at a more general class of rings. For
this, let A be a commutative local QF-ring with J (A) �= 0 and let

R =
[

A Soc(A)
0 A

]

.

We see that the ring in Example 7.1.13 is a particular case of the ring R. Next, we
construct an injective hull of RR explicitly as follows.
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Theorem 7.1.14 Let E =
[

A⊕ Hom(Soc(A)A,AA) A

Hom(Soc(A)A,AA) A

]

, where the addition is

componentwise and the R-module scalar multiplication is given by
[

a + f b

g c

][

x y

0 z

]

=
[

ax + f · x ay + f (y)+ bz

g · x g(y)+ cz

]

for

[

a + f b

g c

]

∈E and

[

x y

0 z

]

∈R. Then ER is an injective hull of RR .

Proof We see that E is a right R-module by computation. Clearly, RR ≤ ER . As
AA is uniform and Soc(A)2 ⊆ Soc(A)J (A) = 0, for each 0 �= v ∈ E there is r ∈ R

with 0 �= vr ∈ R by a routine argument. So RR ≤ess ER . Thus, to show that ER is
an injective hull of RR , we need to prove that ER is an injective R-module.

As R is Artinian, Soc(RR)= �R(J (R)), thus Soc(RR)=
[

Soc(A) Soc(A)
0 Soc(A)

]

. Let

IR ≤ess RR . Then Soc(R) ⊆ I . Because Soc(A) is the smallest nonzero ideal of A,

I =
[

B Soc(A)
0 D

]

with B and D nonzero ideals of A (Exercise 7.1.27.2). Put

V =
[

A⊕ Hom(Soc(A)A,AA) A

0 0

]

and W =
[

0 0
Hom(Soc(A)A,AA) A

]

.

Then V and W are right R-modules such that E = V ⊕W .
We claim that V is an injective R-module. For this, let ϕ ∈ Hom(IR,VR). We

show that ϕ can be extended to a homomorphism from RR to VR . First, recall that
Hom(Soc(A)A,AA) = f0 ·A from Proposition 7.1.12. Consider the following two
possibilities for I .

Case 1. B = A. Let ϕ

[

1 0
0 0

]

=
[

a0 + f0 · r0 b0
0 0

]

, where a0, r0, b0 ∈ A. Then

ϕ

[

1 0
0 0

]

=
[

a0 + f0 · r0 0
0 0

]

. We fix 0 �= s ∈ Soc(A). So Soc(A) = sA because

Soc(A) is the smallest nonzero ideal of A.

Now ϕ

[

0 s

0 0

]

=
(

ϕ

[

1 0
0 0

])[

0 s

0 0

]

=
[

0 a0s + r0s

0 0

]

. For d ∈D, let

ϕ

[

0 0
0 d

]

=
[

xd + f0 · yd zd
0 0

]

for some xd, yd, zd ∈A. Then we obtain

0 = ϕ

([

0 0
0 d

][

1 0
0 0

])

=
(

ϕ

[

0 0
0 d

])[

1 0
0 0

]

,

so xd + f0 · yd = 0. Therefore ϕ

[

0 0
0 d

]

=
[

0 zd
0 0

]

. Now, λ : D → A defined by

λ(d) = zd is an A-homomorphism. Since A is self-injective, there is z0 ∈ A such
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that λ(d)= zd = z0d for all d ∈D. So ϕ

[

0 0
0 d

]

=
[

0 zd
0 0

]

=
[

0 z0d

0 0

]

. Take

v1 =
[

a0 + f0 · r0 z0
0 0

]

∈ V.

Then ϕ has an extension ϕ ∈ Hom(RR,VR) such that ϕ(1)= v1.

Case 2. B �=A. Then B is a nonzero proper ideal of A. For b ∈ B , let

ϕ

[

b 0
0 0

]

=
[

xb + f0 · rb yb
0 0

]

,

where xb, rb, yb ∈ A. As in Case 1, ϕ

[

b 0
0 0

]

=
[

xb + f0 · rb 0
0 0

]

. Recall that

Soc(A)= sA and B ⊆ J (A). Thus bs = 0, so

0 = ϕ

([

b 0
0 0

][

s 0
0 0

])

=
(

ϕ

[

b 0
0 0

])[

s 0
0 0

]

=
[

xbs 0
0 0

]

.

Hence xbs = 0.

On the other hand, since bs = 0,

0 = ϕ

([

b 0
0 0

][

0 s

0 0

])

=
(

ϕ

[

b 0
0 0

])[

0 s

0 0

]

=
[

0 xbs + rbs

0 0

]

.

So xbs + rbs = 0, and hence rbs = 0 because xbs = 0. Therefore f0 · rb = 0 since

Soc(A)= sA. Thus, ϕ

[

b 0
0 0

]

=
[

xb 0
0 0

]

. As in Case 1, define μ : B →A by μ(b)=
xb. Then μ is an A-homomorphism. As A is self-injective, there is x0 ∈ A with

xb = x0b for all b ∈ B . So ϕ

[

b 0
0 0

]

=
[

x0b 0
0 0

]

for every b ∈ B . Next, say

ϕ

[

0 s

0 0

]

=
[

z+ f0 · t y
0 0

]

, where z, t, y ∈A.

Then 0 = ϕ

([

0 s

0 0

][

1 0
0 0

])

=
(

ϕ

[

0 s

0 0

])[

1 0
0 0

]

, so z+ f0 · t = 0.

For a ∈ J (A), 0 = ϕ

([

0 s

0 0

][

0 0
0 a

])

=
(

ϕ

[

0 s

0 0

])[

0 0
0 a

]

, thus we obtain that

ya = 0 and y ∈ Soc(A)= sA. Hence y = su with u ∈A.

So ϕ

[

0 s

0 0

]

=
[

0 su

0 0

]

. Finally, as in Case 1, there exists α0 ∈ A with

ϕ

[

0 0
0 d

]

=
[

0 α0d

0 0

]

for every d ∈ D. Let v2 =
[

x0 + f0 · (u− x0) α0
0 0

]

∈ V . Then

ϕ can be extended to ϕ ∈ Hom(RR,VR) with ϕ(1)= v2.
By Cases 1 and 2, VR is an injective R-module by Baer’s Criterion. Similarly,

WR is an injective R-module, and thus ER = VR ⊕ WR is an injective R-module.
So ER = VR ⊕WR is an injective hull of RR . �
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Henceforth, in the remainder of this section, let A be a commutative local QF-
ring with J (A) �= 0 and

R =
[

A Soc(A)
0 A

]

as in Theorem 7.1.14. Set

S =
[

A Soc(A)
Hom(Soc(A)A,AA) A

]

,

where the addition is componentwise and the R-module scalar multiplication of S
over R is given by

[

a d

f c

][

x t

0 z

]

=
[

ax at + dz

f · x f (t)+ cz

]

for

[

a d

f c

]

∈ S and

[

x t

0 z

]

∈R. Then obviously RR ≤ess SR ≤ess ER .

For inducing a compatible ring structure on S, two (A,A)-bimodule homomor-
phisms called pairings are considered:

(−,−) : Soc(A)⊗A Hom(Soc(A)A,AA)→A

and

[−,−] : Hom(Soc(A)A,AA)⊗A Soc(A)→A,

with (x, f ) = f (x), [f,x] = f (x) for x ∈ Soc(A), and f ∈ Hom(Soc(A)A,AA).
Then (−,−) and [−,−] are (A,A)-bimodule homomorphisms. Moreover, for
x, y ∈ Soc(A) and f, g ∈ Hom(Soc(A)A,AA), we see that (x, f )y = x[f, y] and
[f, x] · g = f · (x, g). Hence, there is a Morita context

(A, Soc(A), Hom(Soc(A)A,AA), A)

with the pairings (−,−) and [−,−].
Consider (S,+,◦), where the addition + is componentwise and the multiplica-

tion ◦ is defined by
[

a1 s1
f1 c1

]

◦
[

a2 s2
f2 c2

]

=
[

a1a2 + (s1, f2) a1s2 + s1c2
f1 · a2 + c1 · f2 [f1, s2] + c1c2

]

.

We see that ◦ extends the R-module scalar multiplication of S over R. Therefore
(S,+,◦) is a compatible ring structure.

We fix an element 0 �= s ∈ Soc(A). Then Soc(A)= sA since Soc(A) is the small-
est nonzero ideal of A. So any element of S can be written as

[

a sb

f0 · r c

]
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with a, b, r, c ∈ A, because Hom(Soc(A)A,AA) = f0 · A by Proposition 7.1.12.
As (s1, f2) = f2(s1) and [f1, s2] = f1(s2) for f1, f2 ∈ Hom(Soc(A)A,AA) and
s1, s2 ∈ Soc(A), it follows that

[

a1 sb1
f0 · r1 c1

]

◦
[

a2 sb2
f0 · r2 c2

]

=
[

a1a2 + sb1r2 sa1b2 + sb1c2
f0 · r1a2 + f0 · c1r2 sr1b2 + c1c2

]

.

For our results, other ring multiplications on S are provided. Let k ∈ A and

t ∈ Soc(A). Say

[

a1 sb1
f0 · r1 c1

]

,

[

a2 sb2
f0 · r2 c2

]

∈ S. Define

[

a1 sb1
f0 · r1 c1

]

◦(k,t)
[

a2 sb2
f0 · r2 c2

]

=
[

a1a2 − ta1r2 + ksb1r2 + tc1r2 sa1b2 + sb1c2
f0 · r1a2 + f0 · c1r2 sr1b2 + c1c2

]

.

Then ◦(k,t) is associative because Soc(A)2 = 0 and f0 · y = 0 for any y ∈ J (A).
Also it is left and right distributive over the addition. Other ring axioms are checked
routinely. Further, the ring structure (S,+,◦(k,t)) is a compatible ring structure, and
◦(1,0) = ◦. Let �= ◦(0,0). Then for any k ∈ J (A), �= ◦(k,0), and

[

a1 sb1
f0 · r1 c1

]

�

[

a2 sb2
f0 · r2 c2

]

=
[

a1a2 sa1b2 + sb1c2
f0 · r1a2 + f0 · c1r2 sr1b2 + c1c2

]

.

Remark 7.1.15 The motivation for defining multiplications ◦(k,t) on S, where k ∈A

and t ∈ Soc(A), comes naturally from the case when A = Zpn with p a prime
integer and n≥ 2 in Corollary 7.1.23.

Let u be a fixed invertible element of A, and we put

S = (S,+,◦(u,0)).
We prove that S is a QF-ring (Theorem 7.1.21). For this, we need the following
series of lemmas. Let

US =
[

A Soc(A)
0 0

]

and WS =
[

0 0
Hom(Soc(A)A,AA) A

]

.

We observe that SS =US ⊕ WS .

Lemma 7.1.16 Let Δ be an intermediate ring between R and S, and assume that
JΔ ≤ SΔ, γ ∈ Hom(JΔ,UΔ), and δ ∈ Hom(JΔ,WΔ).

(i) For x, y ∈A, if

[

x 0
f0 · y 0

]

∈ J , then there exist a, b ∈A such that

γ

[

x 0
f0 · y 0

]

=
[

a 0
0 0

]

and δ

[

x 0
f0 · y 0

]

=
[

0 0
f0 · b 0

]

.
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(ii) For x, y ∈A, if

[

0 sx
0 y

]

∈ J , then there exist c, d ∈A such that

γ

[

0 sx

0 y

]

=
[

0 sc

0 0

]

and δ

[

0 sx

0 y

]

=
[

0 0
0 d

]

.

Proof The proof is routine. �

Lemma 7.1.17 Let Ω be an overring of a ring Φ and MΩ an Ω-module. If MΦ is
injective and Hom(ΩΦ,MΦ)= Hom(ΩΩ,MΩ), then MΩ is injective.

Proof Exercise. �

Lemma 7.1.18 WS =
[

0 0
Hom(Soc(A)A,AA) A

]

S

is injective.

Proof Since ER =
[

A⊕ Hom(Soc(A)A,AA) A

0 0

]

R

⊕ WR is injective by Theo-

rem 7.1.14, WR is injective. By direct computation and using Lemma 7.1.16,
Hom(SR,WR) ⊆ Hom(SS,WS). So Hom(SR,WR) = Hom(SS,WS). Since WR is
injective, WS is injective by Lemma 7.1.17. �

Let

Γ =
[

A 0
Hom(Soc(A)A,AA) A

]

.

Then Γ is a subring of S. To prove that US =
[

A Soc(A)
0 0

]

S

is injective in

Lemma 7.1.20, first we show that UΓ is injective. For this, we need the following
lemma.

Lemma 7.1.19 All essential right ideals of Γ are precisely given by

[

B 0
Hom(Soc(A)A,AA) C

]

,

where Soc(A)⊆ B �A and Soc(A)⊆ C �A.

Proof We see that J (Γ )=
[

J (A) 0
Hom(Soc(A)A,AA) J (A)

]

. Since Γ is right Artinian,

Soc(ΓΓ )= �Γ (J (Γ )), so Soc(ΓΓ )=
[

Soc(A) 0
Hom(Soc(A)A,AA) Soc(A)

]

, which is the

smallest essential right ideal of Γ . Let K be an essential right ideal of Γ . Then

Soc(ΓΓ ) ⊆ K . Say B is the set of elements b ∈ A so that there exists

[

b 0
f y

]

∈ K
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with f ∈ Hom(Soc(A)A,AA) and y ∈A. Then B �A. We note that

[

b 0
0 y

]

=
[

b 0
f y

]

−
[

0 0
f 0

]

∈K as

[

0 0
f 0

]

∈ Soc(ΓΓ )⊆K.

So

[

b 0
0 0

]

=
[

b 0
0 y

][

1 0
0 0

]

∈K . Therefore,

[

B 0
0 0

]

⊆K .

Let C be the set of elements c ∈ A such that

[

a 0
g c

]

∈ K for some a ∈ A and

g ∈ Hom(Soc(A)A,AA). Then as in the preceding argument, we see that C � A

and

[

0 0
0 C

]

⊆K . Thus

[

B 0
Hom(Soc(A)A,AA) C

]

⊆K . Obviously

K ⊆
[

B 0
Hom(Soc(A)A,AA) C

]

. Hence K =
[

B 0
Hom(Soc(A)A,AA) C

]

. �

With these preparations, we prove the following.

Lemma 7.1.20 US is injective.

Proof First, we show that UΓ is injective. For this, let K be an essential right ideal

of Γ . By Lemma 7.1.19, K =
[

B 0
Hom(Soc(A)A,AA) C

]

with Soc(A) ⊆ B � A

and Soc(A)⊆ C �A.

Take ϕ ∈ Hom(KΓ ,UΓ ). For b ∈ B , then ϕ

[

b 0
0 0

]

=
[

xb 0
0 0

]

for some xb ∈ A

(see Lemma 7.1.16(i)). Consider g ∈ Hom(BA,AA) defined by g(b) = xb . As A

is self-injective, there exists x0 ∈ A with g(b) = xb = x0b for b ∈ B . Therefore,

ϕ

[

b 0
0 0

]

=
[

x0b 0
0 0

]

for all b ∈ B .

From Lemma 7.1.16(i), ϕ

[

0 0
f0 0

]

=
[

a0 0
0 0

]

for some a0. Take y ∈ J (A). Then

0 = ϕ(0)= ϕ

([

0 0
f0 0

][

y 0
0 0

])

=
[

a0 0
0 0

][

y 0
0 0

]

=
[

a0y 0
0 0

]

. Therefore a0y = 0 for

each y ∈ J (A), hence a0 ∈ Soc(A) = suA, where s is a nonzero fixed element of
Soc(A) (recall that S = (S,+,◦(u,0)) and u is the fixed invertible element in A). So
a0 = sua1 for some a1 ∈A. Thus,

ϕ

[

0 0
f0 0

]

=
[

sua1 0
0 0

]

.
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For c ∈ C, there is yc ∈ A with ϕ

[

0 0
0 c

]

=
[

0 syc
0 0

]

by Lemma 7.1.16(ii). Now

ϕ

([

0 0
0 c

][

0 0
f0 0

])

=
(

ϕ

[

0 0
0 c

])[

0 0
f0 0

]

=
[

0 syc
0 0

][

0 0
f0 0

]

=
[

usyc 0
0 0

]

. On the

other hand, we see that

ϕ

([

0 0
0 c

][

0 0
f0 0

])

= ϕ

[

0 0
f0 · c 0

]

= ϕ

([

0 0
f0 0

][

c 0
0 0

])

=
(

ϕ

[

0 0
f0 0

])[

c 0
0 0

]

=
[

sua1 0
0 0

][

c 0
0 0

]

=
[

sua1c 0
0 0

]

.

Hence, usyc = sua1c, so syc = sa1c for each c ∈ C. Thus, ϕ

[

0 0
0 c

]

=
[

0 sa1c

0 0

]

for all c ∈ C. Take v =
[

x0 sa1
0 0

]

∈ U . Then we see that there exists an extension

ϕ ∈ Hom(ΓΓ ,UΓ ) of ϕ such that ϕ(1) = v. Therefore, UΓ is injective by Baer’s
Criterion. Next, we see that Hom(SΓ ,UΓ ) = Hom(SS,US) by direct computation.
By Lemma 7.1.17, US is injective. �

In contrast to Theorem 7.1.3, the following result provides a right self-injective
right essential overring S of the ring R, but SR �=E(RR). Recall that ◦ = ◦(1,0).

Theorem 7.1.21 Let u ∈A be invertible. Then the ring (S,+,◦(u,0)) is QF. In par-
ticular, (S,+,◦) is QF.

Proof Let S = (S,+,◦(u,0)). Then SS = US ⊕ WS is injective by Lemmas 7.1.18
and 7.1.20. Since R is right Artinian, SR is Artinian and so SS is Artinian. Therefore,
S is QF. As ◦ = ◦(1,0), (S,+,◦) is QF. �

The next result shows that there exist a number of distinct right essential over-
rings of R beyond Q(R).

Theorem 7.1.22 Let R be the ring as specified immediately preceding Theo-
rem 7.1.14. Then:

(i) R =Q(R) �=E(RR).
(ii) There exist |Soc(A)|2 distinct compatible right essential overrings (S,+,◦(k,t)),

where k ∈A and t ∈ Soc(A), on SR satisfying the following properties.
(1) (S,+,◦(k,t))∼= (S,+,◦(k,0)) for all t ∈ Soc(A).
(2) (S,+,◦(k,t)) is QF if and only if k is invertible.
(3) If k is not invertible, then (S,+,◦(k,t)) = (S,+,◦(0,t)) are all isomorphic

to (S,+, �), hence they are not even right FI-extending.
(4) If |Soc(A)| is finite, then there are |Soc(A)|2 − |Soc(A)| distinct right es-

sential overring structures on SR which are QF, and the other |Soc(A)|
distinct right essential overring structures are not even right FI-extending.
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Proof (i) We easily see that the left annihilator of each maximal right ideal of R
is nonzero. Thus from Proposition 1.3.18, the ring R is right Kasch, so R =Q(R).
Further, R �=E(RR) by Theorem 7.1.14.

(ii) Note that |{◦(k,t) | k ∈ A, t ∈ Soc(A)}| = |A/J(A)| |Soc(A)|. Recall that
Soc(A) = sA, where 0 �= s ∈ Soc(A). Define f : A → Soc(A) by f (a) = sa for
a ∈ A. Then f is an R-epimorphism with Ker(f ) = J (A). Thus we have that
A/J(A) ∼= Soc(A) as A-modules. So |A/J(A)| = |Soc(A)|. Hence it follows that
|{◦(k,t) | k ∈ A, t ∈ Soc(A)}| = |Soc(A)|2. So there exist |Soc(A)|2 distinct right
essential overrings (S,+,◦(k,t)) on SR .

(1) Take k ∈A and t ∈ Soc(A). Let μ(k,t) : (S,+,◦(k,t))→ (S,+,◦(k,0)) defined
by

μ(k,t)

[

a sb

f0 · r c

]

=
[

a − tr sb

f0 · r c

]

.

Then μ(k,t) is a ring isomorphism by routine computation as Soc(A)2 = 0.
(2) and (3) If k ∈A is invertible, then (S,+,◦(k,0)) is QF by Theorem 7.1.21.

Hence, if k is invertible, then (S,+,◦(k,t)) is QF for all t ∈ Soc(A) by part (1). If k
is not invertible, then k ∈ J (A), and so k Soc(A)= 0. Therefore,

(S,+,◦(k,t))= (S,+,◦(0,t))∼= (S,+, �)

by part (1) (recall that �= ◦(0,0)) and the definition of ◦(k,t).
We show that (S,+, �) is not right FI-extending. For this, let T = (S,+, �). Take

J =
[

Soc(A) 0
0 0

]

. Then J � T . But there is no KT ≤⊕ TT such that JT ≤ess KT .

Thus T is not even right FI-extending.
(4) Assume that |Soc(A)| < ∞. Let S be the set of all (S,+,◦(k,t)), where

k ∈ A is not invertible, and t ∈ Soc(A). Since (S,+,◦(k,t)) = (S,+,◦(0,t)) by
part (3), |S| = |{(S,+,◦(0,t)) | t ∈ Soc(A)}| = |Soc(A)|. From part (3) there are
|Soc(A)| distinct right essential overring structures on SR which are not right FI-
extending. The other |Soc(A)|2 − |Soc(A)| distinct right essential overring struc-
tures (S,+,◦(k,t)), with k invertible, are QF. �

In the next corollary, for a certain ring A, all possible compatible ring structures
on SR in Theorem 7.1.22 are described. From the construction of those compatible
ring structures, we obtain a motivation for defining ◦(k,t) on SR with k ∈ A and
t ∈ Soc(A) (see Remark 7.1.15).

Corollary 7.1.23 Let A= Zpn , where p is a prime integer and n is an integer such
that n≥ 2. Then SR has exactly p2 = |Soc(A)|2 distinct compatible ring structures
such that:

(1) p2 − p compatible ring structures are QF.
(2) the other p compatible ring structures are not even right FI-extending.

Proof Let s = pn−1 ∈ A. Then Soc(A) = sA. Suppose that S has a compatible

ring structure. From Lemma 7.1.7, 1R = 1S . Let e1 =
[

1 0
0 0

]

and e2 =
[

0 0
0 1

]

. Then
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S = e1Se1 + e1Se2 + e2Se1 + e2Se2, e2
1 = e1, e

2
2 = e2, and e1e2 = e2e1 = 0. We

see routinely that

e1Se1 =
[

A 0
0 0

]

, e1Se2 =
[

0 Soc(A)
0 0

]

, and e2Se2 =
[

0 0
0 A

]

.

Moreover, we show that e2Se1 =
{[

t0r 0
f0 · r 0

]

| r ∈A

}

with t0 ∈ Soc(A). Indeed, let
[

a sb

f0 · r c

]

∈ e2Se1. Then we see that

[

a sb

f0 · r c

]

= e2

[

a sb

f0 · r c

]

e1 = e2

[

a 0
f0 · r 0

]

= e2

[

a 0
0 0

]

+ e2

[

0 0
f0 · r 0

]

= e2

[

0 0
f0 · r 0

]

.

Therefore, e2Se1 =
{

e2

[

0 0
f0 · r 0

]

| r ∈A

}

=
{

e2

[

0 0
f0 0

][

r 0
0 0

]

| r ∈A

}

.

First, consider w := e2

[

0 0
f0 0

]

∈ e2Se1. As w = we1, w =
[

a0 0
f0 · y0 0

]

for

some a0, y0 ∈ A. For y ∈ J (A), w

[

y 0
0 0

]

= e2

[

0 0
f0 0

][

y 0
0 0

]

= 0. On the other

hand, w

[

y 0
0 0

]

=
[

a0 0
f0 · y0 0

][

y 0
0 0

]

=
[

a0y 0
0 0

]

. Thus a0y = 0 for y ∈ J (A), hence

a0 ∈ Soc(A). So w = e2

[

0 0
f0 0

]

=
[

a0 0
f0 · y0 0

]

with a0 ∈ Soc(A). If f0 · y0 = 0,

then w =
[

a0 0
0 0

]

∈ e1Se1 ∩ e2Se1 = 0. Hence, e2Se1 = 0. Therefore

|S| = |e1Se1| |e1Se2| |e2Se1| |e2Se2| = p2n+1 <p2n+2 = |S|,
a contradiction. Thus, f0 · y0 �= 0, and so y0 is invertible.

Note that w

[

r 0
0 0

]

=
[

a0 0
f0 · y0 0

][

r 0
0 0

]

=
[

a0r 0
f0 · y0r 0

]

and a0 ∈ Soc(A), so

e2Se1 =
{

w

[

r 0
0 0

]

| r ∈A

}

=
{[

a0r 0
f0 · y0r 0

]

| r ∈A

}

.

Hence, we have that e2Se1 =
{[

a0y
−1
0 r 0

f0 · r 0

]

| r ∈A

}

=
{[

t0r 0
f0 · r 0

]

| r ∈A

}

, where

t0 = a0y
−1
0 ∈ Soc(A). By routine computation,

[

1 0
0 0

][

0 0
f0 0

]

=
[−t0 0

0 0

]

,

[

0 0
f0 0

][

0 0
f0 0

]

= 0, and

[

0 0
0 1

][

0 0
f0 0

]

=
[

t0 0
f0 0

]

.
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For example,

[

1 0
0 0

][

t0 0
f0 0

]

∈ e1e2Se1 = 0, so

0 =
[

1 0
0 0

][

t0 0
f0 0

]

=
[

1 0
0 0

][

0 0
f0 0

]

+
[

1 0
0 0

][

t0 0
0 0

]

=
[

1 0
0 0

][

0 0
f0 0

]

+
[

t0 0
0 0

]

.

Therefore,

[

1 0
0 0

][

0 0
f0 0

]

=
[−t0 0

0 0

]

.

We claim that

[

0 s

0 0

][

0 0
f0 0

]

=
[

sk0 0
0 0

]

for some k0 ∈ A. For this, note that
[

0 s

0 0

][

t0 0
f0 0

]

∈ e1Se2e2Se1 ⊆ e1Se1. Hence, there is q ∈A such that

[

0 s

0 0

][

t0 0
f0 0

]

=
[

q 0
0 0

]

.

Say y ∈ J (A). Then
[

qy 0
0 0

]

=
[

q 0
0 0

][

y 0
0 0

]

=
([

0 s

0 0

][

t0 0
f0 0

])[

y 0
0 0

]

=
[

0 s

0 0

]([

t0 0
f0 0

][

y 0
0 0

])

= 0

because y ∈ J (A), t0 ∈ Soc(A), and f0 · y = 0. Hence, qy = 0 for all y ∈ J (A).
Thus q ∈ Soc(A)= sA, so q = sk0 for some k0 ∈A. Therefore,

[

sk0 0
0 0

]

=
[

0 s

0 0

][

t0 0
f0 0

]

=
[

0 s

0 0

][

t0 0
0 0

]

+
[

0 s

0 0

][

0 0
f0 0

]

=
[

0 s

0 0

][

0 0
f0 0

]

,

since

[

0 s

0 0

][

t0 0
0 0

]

∈ e1Se2e1Se1 = 0. Thus, if there exists a ring multiplication on

S which extends the R-module scalar multiplication, then
[

a1 sb1
f0 · r1 c1

][

a2 sb2
f0 · r2 c2

]

=
[

a1a2 − t0a1r2 + k0sb1r2 + t0c1r2 sa1b2 + sb1c2
f0 · r1a2 + f0 · c1r2 sr1b2 + c1c2

]

.

So there exist exactly |Soc(A)|2 compatible ring structures (S,+,◦(k,t)) with k ∈A

and t ∈ Soc(A). Theorem 7.1.22 yields the remaining statements. �

In the following example, we show that there exist two compatible QF-ring struc-
tures on SR which are not isomorphic.

Example 7.1.24 Let A = Zpn , where p is a prime integer and n is an integer
such that n ≥ 2. Then Soc(A) = sA, where s = pn−1 ∈ A. Assume that u ∈ A is
an invertible element such that u − 1 is also invertible. Then both (S,+,◦(u,0))
and (S,+,◦(1,0)) are QF compatible ring structures by Theorem 7.1.21. But
(S,+,◦(u,0)) �∼= (S,+,◦(1,0))= (S,+,◦).
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Assume on the contrary that there exists a ring isomorphism

θ : (S,+,◦(u,0))→ (S,+,◦).

Now we let θ

[

1 0
0 0

]

=
[

a1 sb1
f0 · r1 c1

]

and θ

[

0 0
0 1

]

=
[

a sb

f0 · r c

]

, for some

a1, b1, r1, c1, a, b, r, c ∈ A. Then θ

[

s 0
0 0

]

= s

(

θ

[

1 0
0 0

])

=
[

sa1 0
0 sc1

]

. Similarly

θ

[

0 0
0 s

]

=
[

sa 0
0 sc

]

. Also p

(

θ

[

0 s

0 0

])

= 0 and p

(

θ

[

0 0
f0 0

])

= 0. Thus,

θ

[

0 s

0 0

]

=
[

sa2 sb2
f0 · r2 sc2

]

and θ

[

0 0
f0 0

]

=
[

sa3 sb3
f0 · r3 sc3

]

for some a2, b2, r2, c2, a3, b3, r3, c3 ∈A. Now

θ

[

us 0
0 0

]

= θ

([

0 s

0 0

]

◦(u,0)
[

0 0
f0 0

])

= θ

[

0 s

0 0

]

◦ θ
[

0 0
f0 0

]

=
[

sa2 sb2
f0 · r2 sc2

]

◦
[

sa3 sb3
f0 · r3 sc3

]

=
[

sb2r3 0
0 sr2b3

]

.

On the other hand, θ

[

0 0
0 us

]

= u

(

θ

[

0 0
0 s

])

=
[

usa 0
0 usc

]

. Thus,

[

us 0
0 us

]

= us

(

θ

[

1 0
0 1

])

= θ

[

us 0
0 us

]

=
[

sb2r3 + usa 0
0 sr2b3 + usc

]

.

So us = sb2r3 + usa and us = sr2b3 + usc. Note that
[

sa 0
0 sc

]

= θ

[

0 0
0 s

]

= θ

([

0 0
f0 0

]

◦(u,0)
[

0 s

0 0

])

= θ

[

0 0
f0 0

]

◦ θ
[

0 s

0 0

]

=
[

sa3 sb3
f0 · r3 sc3

]

◦
[

sa2 sb2
f0 · r2 sc2

]

=
[

sb3r2 0
0 sr3b2

]

.

Hence we have that sa = sb3r2 and sc = sr3b2. Since us = sb2r3 + usa and
us = sr2b3 + usc, us = sc+ usa and us = sa+ usc. So sc+ usa = sa+ usc, and
thus (u− 1)sa = (u− 1)sc. Now u− 1 is invertible by assumption, thus sa = sc,
and so (c − a)s = 0. Hence, c − a ∈ J (A) = pA. Thus, c = a + py0 for some

y0 ∈ A. Therefore, θ

[

0 0
0 1

]

=
[

a sb

f0 · r c

]

=
[

a sb

f0 · r a + py0

]

. Let e = θ

[

0 0
0 1

]

.

Since e = e ◦ e, we have the following relations:

a = a2 +sbr, sb = 2sab, f0 ·r = 2f0 ·ar, and a+py0 = srb+a2 +2apy0 +p2y2
0 .

Case 1. sb = 0. Then a = a2. Hence, either a = 0 or a = 1. If a = 0, then
py0 = (py0)

2 ∈ J (A). So py0 = 0 and hence e is the zero matrix, a contradiction. If
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a = 1, then f0 · r = 0, so 1 + py0 = (1 + py0)
2. Thus, 1 + py0 = 0 or 1 + py0 = 1.

If 1 + py0 = 0, then 1 = −py0 ∈ J (A), a contradiction. Hence 1 + py0 = 1, so e is

the identity matrix. Thus θ

[

0 0
0 1

]

=
[

1 0
0 1

]

, also a contradiction.

Case 2. sb �= 0. Then b �∈ J (A), hence b is invertible. From sb = 2sab, we see
that s(1 − 2a)= 0. Hence, 1 − 2a ∈ J (A)= pA. Therefore, there exists y ∈A such
that 1 = 2a + py.

Now we have the following two subcases.
Subcase 2.1. f0 · r �= 0. From a = a2 + sbr , a(1 − a) = sbr ∈ J (A). Since A is

local, either a ∈ J (A) or 1 − a ∈ J (A). Suppose that a ∈ J (A). Because f0 · r =
2f0 · ar , f0 · r = 0, a contradiction. If 1 − a ∈ J (A), then 1 − a = py1 for some
y1 ∈ A. Thus, 1 = a + py1. As 1 = 2a + py in above, a = p(y1 − y) ∈ J (A), and
so 1 = a + (1 − a) ∈ J (A), also a contradiction.

Subcase 2.2. f0 · r = 0. Then r ∈ J (A), so sbr = 0. Hence a = a2. Thus, a = 0
or a = 1. If a = 0, then sb = 2sab = 0, a contradiction. Suppose that a = 1. Since
1 = 2a + py in above, py = −1, a contradiction.

Consequently, by Cases 1 and 2, (S,+,◦(u,0)) �∼= (S,+,◦). For example, when
p ≥ 3 and n≥ 2, it follows that for any integer k with 1 < k < p, (S,+,◦(k,0)) and
(S,+,◦) are QF, but (S,+,◦(k,0)) �∼= (S,+,◦).

When A= Z3n with n≥ 2, we can explicitly describe and classify all compatible
ring structures on SR as follows.

Example 7.1.25 In particular, assume that A= Z3n with n≥ 2. By Theorem 7.1.22
and Corollary 7.1.23, SR has exactly 32 compatible ring structures (S,+,◦(k,t)),
with k ∈ A and t ∈ Soc(A), satisfying the following property, for s =
3n−1 ∈ Soc(A).

(1) (S,+,◦(1,t)) ∼= (S,+, ◦(1,0)) = (S,+,◦) which are three QF-ring structures,
for t = 0, s,2s.

(2) (S,+,◦(2,t)) ∼= (S,+,◦(2,0)) which are three QF-ring structures, for
t = 0, s,2s.

(3) (S,+,◦(0,t))∼= (S,+,◦(0,0))= (S,+, �) are three ring structures which are not
right FI-extending, for t = 0, s,2s.

(4) (S,+,◦(1,0)), (S,+,◦(2,0)), and (S,+,◦(0,0)) are mutually nonisomorphic.

As an application of Theorems 7.1.14 and 7.1.22, the next result characterizes a
certain class of rings R such that RR has an essential extension with nonisomorphic
compatible ring structures.

Theorem 7.1.26 Let Λ be a commutative QF-ring and

R =
[

Λ Soc(Λ)
0 Λ

]

.

Then the following are equivalent.
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(i) J (Λ) �= 0.
(ii) There exists an essential extension SR of RR which has two nonisomorphic

compatible ring structures (S,+,◦) and (S,+, �).

Furthermore, in this case, (S,+,◦) is right self-injective (in fact, QF), while
(S,+, �) is not even right FI-extending.

Proof (i)⇒(ii) Assume that J (Λ) �= 0. Then Λ = A ⊕ B , where A = ⊕m
i=1Ai

with Ai local, J (Ai) �= 0 for each i, and J (B) = 0. Let Ri =
[

Ai Soc(Ai)

0 Ai

]

for

i = 1, . . . ,m. Then R = (⊕m
i=1Ri) ⊕ T2(B). Also let

Si =
[

Ai Soc(Ai)

Hom(Soc(Ai)Ai
, AiAi

) Ai

]

and

Ei =
[

Ai ⊕ Hom(Soc(Ai)Ai
, AiAi

) Soc(Ai)

Hom(Soc(Ai)Ai
, AiAi

) Ai

]

for each i, 1 ≤ i ≤m.
Let S = (⊕m

i=1Si) ⊕ Mat2(B). Then RR ≤ SR ≤ [(⊕m
i=1Ei) ⊕ Mat2(B)]R . Fur-

ther, ⊕m
i=1Ei is an injective right ⊕m

i=1Ri -module by Theorem 7.1.14, while
Mat2(B) is an injective right T2(B)-module. Hence, [(⊕m

i=1Ei)⊕ Mat2(B)]R is an
injective hull of RR , so RR ≤ess SR .

Each Si has two compatible ring multiplications ◦i and �i such that (Si,+,◦i ) is
QF, while (Si,+, �i) is not right FI-extending by Theorem 7.1.22. Let
(x1, . . . , xm, b), (y1, . . . , ym, c) ∈ S with xi, yi ∈ Si and b, c ∈ Mat2(B).

Define

(x1, . . . , xm, b) ◦ (y1, . . . , ym, c)= (x1 ◦1 y1, . . . , xm ◦m ym, bc)

and

(x1, . . . , xm, b) � (y1, . . . , ym, c)= (x1 �1 y1, . . . , xm �m ym, bc).

Then (S,+,◦) and (S,+, �) are compatible ring structures on S from Theo-
rem 7.1.22. Moreover, (S,+,◦) is right self-injective since each (Si,+,◦i ) is
right self-injective by Theorem 7.1.22 and Mat2(B) is also right self-injective. But
(S,+, �) is not right FI-extending because each (Si,+, �i) is not right FI-extending
by Theorem 7.1.22. Thus, (S,+,◦) is not isomorphic to (S,+, �).

(ii)⇒(i) Assume on the contrary that J (Λ)= 0. Then Λ is semisimple Artinian,
so R is right nonsingular. Thus, every essential extension of RR is a rational exten-
sion by Proposition 1.3.14. So every essential extension of RR has a unique com-
patible ring structure if it exists by Proposition 7.1.6. �

Exercise 7.1.27

1. In Example 7.1.8, show explicitly that e1T e1 =
[

A 0
0 0

]

and e2T e1 = 0.
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2. Assume that R is the ring in Theorem 7.1.14 and IR ≤ess RR . Show that

I =
[

B Soc(A)
0 D

]

, for some nonzero ideals B and D of A.

3. Assume that W =
[

0 0
Hom(Soc(A)A,AA) A

]

is the R-module in the proof of

Theorem 7.1.14. Show that WR is injective.
4. Prove Lemma 7.1.17.
5. Let S be as in Corollary 7.1.23. Also let e1 and e2 be as in the proof

of Corollary 7.1.23. Show that e1Se1 =
[

A 0
0 0

]

, e1Se2 =
[

0 Soc(A)
0 0

]

, and

e2Se2 =
[

0 0
0 A

]

(observe that Example 7.1.13 is of this form).

7.2 An Example of Osofsky and Essential Overrings

As we mentioned in Example 7.1.13, Osofsky constructed a ring R which is not
right Osofsky compatible. Let us now revisit that example. Say A= Z4 and let

R =
[

A 2A
0 A

]

,

which is a subring of T2(A). We note that Q(R) = R since R is right Kasch by
Proposition 1.3.18. In this section, we determine all possible right essential over-
rings of R and study their interrelationships and various properties. Results from
Sect. 7.1 will be used to determine these essential overrings.

For f ∈ Hom(2AA,AA) and x ∈A, let (f · x)(s)= f (xs) for all s ∈ 2A. We put

E =
[

A ⊕ Hom(2AA, AA) A

Hom(2AA, AA) A

]

,

where the addition on E is componentwise and the R-module scalar multiplication
of E over R is given by

[

a + f b

g c

][

x y

0 z

]

=
[

ax + f · x ay + f (y)+ bz

g · x g(y)+ cz

]

for

[

a + f b

g c

]

∈ E and

[

x y

0 z

]

∈ R, where a, b, c, x, y, z are in A and f,g are in

Hom (2AA,AA). Then E is an injective hull of RR by Theorem 7.1.14. We now put
f0 ∈ Hom(2AA,AA) such that f0(2a)= 2a for a ∈A. Then

Hom(2AA,AA)= f0 ·A
from Proposition 7.1.12. Thus if f ∈ Hom(2AA,AA), then f = f0 · r for some
r ∈ A. Note that Hom(2AA,AA) = {0, f0}. Therefore, we see that all possible in-
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termediate R-modules between RR and ER are:

E, V =
[

A⊕ Hom (2AA,AA) 2A
Hom (2AA,AA) A

]

,

Y =
[

A⊕ Hom (2AA,AA) A

0 A

]

, W =
[

A A

Hom (2AA,AA) A

]

,

S =
[

A 2A
Hom (2AA,AA) A

]

, U =
[

A⊕ Hom (2AA,AA) 2A
0 A

]

,

T =
[

A A

0 A

]

, and R.

For the convenience of the reader, we list the following multiplications on the
aforementioned overmodules of RR which will be used in Theorems 7.2.1 and 7.2.2
to describe all of the right essential overrings of R.

Multiplications on V . For

v1 =
[

a1 + f0 · r1 2b1
f0 · s1 c1

]

, v2 =
[

a2 + f0 · r2 2b2
f0 · s2 c2

]

in V,

define multiplications •1,•2,•3, and •4:

v1 •1 v2 =
[

x y

z w

]

,

where

x = a1a2 + f0 · r1a2 + f0 · a1r2 + f0 · r1r2,

y = 2a1b2 + 2r1b2 + 2b1c2,

z = f0 · s1a2 + f0 · s1r2 + f0 · c1s2, and w = 2s1b2 + c1c2.

v1 •2 v2 =
[

x y

z w

]

,

where

x = a1a2 + 2r1r2 + f0 · r1a2 + f0 · a1r2 + f0 · r1r2,

y = 2a1b2 + 2r1b2 + 2b1c2,

z = f0 · s1a2 + f0 · s1r2 + f0 · c1s2, and w = 2s1b2 + c1c2.

v1 •3 v2 =
[

x y

z w

]

,
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where

x = a1a2 + 2s1r2 + 2a1s2 + 2c1s2 + f0 · r1a2 + f0 · a1r2 + f0 · r1r2,

y = 2a1b2 + 2r1b2 + 2b1c2,

z = f0 · s1a2 + f0 · s1r2 + f0 · c1s2, and w = 2s1b2 + c1c2.

v1 •4 v2 =
[

x y

z w

]

,

where

x = a1a2 + 2r1r2 + 2s1r2 + 2a1s2 + 2c1s2 + f0 · r1a2 + f0 · a1r2 + f0 · r1r2,

y = 2a1b2 + 2r1b2 + 2b1c2,

z = f0 · s1a2 + f0 · s1r2 + f0 · c1s2, and w = 2s1b2 + c1c2.

Multiplications on S. For s1 =
[

a1 2b1
f0 · r1 c1

]

, s2 =
[

a2 2b2
f0 · r2 c2

]

in S, define mul-

tiplications ◦(k,t), where k ∈A and t ∈ 2A:

s1 ◦(k,t) s2 =
[

a1a2 − ta1r2 + 2kb1r2 + tc1r2 2a1b2 + 2b1c2
f0 · r1a2 + f0 · c1r2 2r1b2 + c1c2

]

.

Multiplications on U . For

u1 =
[

a1 + f0 · r1 2b1
0 c1

]

, u2 =
[

a2 + f0 · r2 2b2
0 c2

]

in U,

define multiplications �1 and �2:

u1 �1 u2 =
[

x y

0 w

]

,

where

x = a1a2 + f0 · a1r2 + f0 · r1a2 + f0 · r1r2,

y = 2a1b2 + 2r1b2 + 2b1c2, and w = c1c2.

u1 �2 u2 =
[

x y

0 w

]

,

where

x = a1a2 + 2r1r2 + f0 · a1r2 + f0 · r1a2 + f0 · r1r2,

y = 2a1b2 + 2r1b2 + 2b1c2, and w = c1c2.
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Multiplications on T . For t1 =
[

a1 b1
0 c1

]

, t2 =
[

a2 b2
0 c2

]

in T , define multiplica-

tions �1 and �2:

t1 �1 t2 =
[

a1a2 a1b2 + b1c2
0 c1c2

]

and

t1 �2 t2 =
[

a1a2 a1b2 + 2b1b2 + b1c2
0 c1c2 + 2a1b2 + 2c1b2

]

.

Theorem 7.2.1 (i) There are exactly thirteen right essential overrings of R, namely:

(V ,+,•1), (V ,+,•2), (V ,+,•3), (V ,+,•4),

(S,+,◦(0,0)), (S,+,◦(0,2)), (S,+,◦(1,0)), (S,+,◦(1,2)),

(U,+,�1), (U,+,�2), (T ,+,�1), (T ,+,�2), and R itself

such that

(V ,+,•1)∼= (V ,+,•2)∼= (V ,+,•3)∼= (V ,+,•4),

(S,+,◦(0,0))∼= (S,+,◦(0,2)), (S,+,◦(1,0))∼= (S,+,◦(1,2)),

(S,+,◦(0,0)) �∼= (S,+,◦(1,0)),

(U,+,�1)∼= (U,+,�2), and (T ,+,�1)∼= (T ,+,�2).

(ii) (S,+,◦(0,0)) is a subring of both (V ,+,•1) and (V ,+,•2), while
(S,+,◦(0,2)) is a subring of both (V ,+,•3) and (V ,+,•4).

(iii) (U,+,�1) is a subring of both (V ,+,•1) and (V ,+,•3), while (U,+,�2)

is a subring of both (V ,+,•2) and (V ,+,•4).

Proof (i) The proof proceeds by the following steps.
1. R is not right Osofsky compatible.
Proof. Assume that E has a compatible ring structure. Then

[

0 2
0 0

]

=
[

f0 0
0 0

][

0 2
0 0

]

= 2

[

f0 0
0 0

][

0 1
0 0

]

=
[

f0 · 2 0
0 0

][

0 1
0 0

]

= 0,

a contradiction. Thus E cannot have a compatible ring structure.
2. Neither Y nor W has a compatible ring structure.
Proof. It follows from a similar argument as in the proof of 1.
3. Compatible ring structures on V : There are exactly four compatible ring struc-

tures and they are isomorphic.
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Proof. Assume that V has a compatible ring structure. First, we observe that

RR ≤ess VR . By Lemma 7.1.7, 1V = 1R . Let e1 =
[

1 0
0 0

]

and e2 =
[

0 0
0 1

]

. Then it

follows that V = e1V e1 + e1V e2 + e2V e1 + e2V e2.
By direct (but technical) argument, we have the following two cases:

Case 1. e1V e1 =
[

A⊕ Hom(2AA,AA) 0
0 0

]

, e1V e2 =
[

0 2A
0 0

]

,

e2V e1 =
[

0 0
Hom(2AA,AA) 0

]

, e2V e2 =
[

0 0
0 A

]

.

Case 2. e1V e1 =
[

A⊕ Hom(2AA,AA) 0
0 0

]

, e1V e2 =
[

0 2A
0 0

]

,

e2V e1 =
{

0,

[

2 0
f0 0

]}

, e2V e2 =
[

0 0
0 A

]

.

We can check that Case 1 is subdivided into the following:

Subcase 1.1.

[

f0 0
0 0

][

f0 0
0 0

]

=
[

f0 0
0 0

]

.

In this case, we have the following by direct computation.

1.

[

1 0
0 0

][

f0 0
0 0

]

=
[

f0 0
0 0

]

, 2.

[

0 2
0 0

][

f0 0
0 0

]

= 0, 3.

[

0 0
f0 0

][

f0 0
0 0

]

=
[

0 0
f0 0

]

,

4.

[

0 0
0 1

][

f0 0
0 0

]

= 0, 5.

[

1 0
0 0

][

0 0
f0 0

]

= 0, 6.

[

f0 0
0 0

][

0 0
f0 0

]

= 0,

7.

[

0 2
0 0

][

0 0
f0 0

]

= 0, 8.

[

0 0
f0 0

][

0 0
f0 0

]

= 0, 9.

[

0 0
0 1

][

0 0
f0 0

]

=
[

0 0
f0 0

]

.

Let v1 =
[

a1 + f0 · r1 2b1
f0 · s1 c1

]

, v2 =
[

a2 + f0 · r2 2b2
f0 · s2 c2

]

∈ V . Then by 1–9, there is

a multiplication on V which extends the R-module scalar multiplication of V over
R such that

v1v2 =
[

a1a2 + f0 · r1a2 + f0 · a1r2 + f0 · r1r2 2a1b2 + 2r1b2 + 2b1c2
f0 · s1a2 + f0 · s1r2 + f0 · c1s2 2s1b2 + c1c2

]

.

Let •1 denote this multiplication on V .

Subcase 1.2.

[

f0 0
0 0

][

f0 0
0 0

]

=
[

2 + f0 0
0 0

]

.

In this case, we have the following.

1.

[

1 0
0 0

][

f0 0
0 0

]

=
[

f0 0
0 0

]

, 2.

[

0 2
0 0

][

f0 0
0 0

]

= 0, 3.

[

0 0
f0 0

][

f0 0
0 0

]

=
[

0 0
f0 0

]

,

4.

[

0 0
0 1

][

f0 0
0 0

]

= 0, 5.

[

1 0
0 0

][

0 0
f0 0

]

= 0, 6.

[

f0 0
0 0

][

0 0
f0 0

]

= 0,

7.

[

0 2
0 0

][

0 0
f0 0

]

= 0, 8.

[

0 0
f0 0

][

0 0
f0 0

]

= 0, 9.

[

0 0
0 1

][

0 0
f0 0

]

=
[

0 0
f0 0

]

.
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Therefore, in this case, there exists a multiplication •2 on V which extends the R-
module scalar multiplication of V over R:

[

a1 + f0 · r1 2b1
f0 · s1 c1

]

•2

[

a2 + f0 · r2 2b2
f0 · s2 c2

]

=

[

a1a2 + 2r1r2 + f0 · r1a2 + f0 · a1r2 + f0 · r1r2 2a1b2 + 2r1b2 + 2b1c2
f0 · s1a2 + f0 · s1r2 + f0 · c1s2 2s1b2 + c1c2

]

.

Case 2. As in Case 1,
[

f0 0
0 0

][

f0 0
0 0

]

=
[

f0 0
0 0

]

or

[

f0 0
0 0

][

f0 0
0 0

]

=
[

2 + f0 0
0 0

]

.

Thus we have two subcases, Subcase 2.1 and Subcase 2.2, which are:

Subcase 2.1.

[

f0 0
0 0

][

f0 0
0 0

]

=
[

f0 0
0 0

]

.

As in Subcase 1.1, we have the following.

1.

[

1 0
0 0

][

f0 0
0 0

]

=
[

f0 0
0 0

]

, 2.

[

0 2
0 0

][

f0 0
0 0

]

= 0, 3.

[

0 0
f0 0

][

f0 0
0 0

]

=
[

2 0
f0 0

]

,

4.

[

0 0
0 1

][

f0 0
0 0

]

= 0, 5.

[

1 0
0 0

][

0 0
f0 0

]

=
[

2 0
0 0

]

, 6.

[

f0 0
0 0

][

0 0
f0 0

]

= 0,

7.

[

0 2
0 0

][

0 0
f0 0

]

= 0, 8.

[

0 0
f0 0

][

0 0
f0 0

]

= 0, 9.

[

0 0
0 1

][

0 0
f0 0

]

=
[

2 0
f0 0

]

.

Hence there is a multiplication •3 on V which extends the R-module scalar multi-
plication of V over R:

[

a1 + f0 · r1 2b1
f0 · s1 c1

]

•3

[

a2 + f0 · r2 2b2
f0 · s2 c2

]

=
[

x y

z w

]

,

where

x = a1a2 + 2s1r2 + 2a1s2 + 2c1s2 + f0 · r1a2 + f0 · a1r2 + f0 · r1r2,

y = 2a1b2 + 2r1b2 + 2b1c2,

z = f0 · s1a2 + f0 · s1r2 + f0 · c1s2, and w = 2s1b2 + c1c2.

Subcase 2.2.

[

f0 0
0 0

][

f0 0
0 0

]

=
[

2 + f0 0
0 0

]

.

As in 1–9 of Subcase 1.1, we have the following.

1.

[

1 0
0 0

][

f0 0
0 0

]

=
[

f0 0
0 0

]

, 2.

[

0 2
0 0

][

f0 0
0 0

]

= 0, 3.

[

0 0
f0 0

][

f0 0
0 0

]

=
[

2 0
f0 0

]

,

4.

[

0 0
0 1

][

f0 0
0 0

]

= 0, 5.

[

1 0
0 0

][

0 0
f0 0

]

=
[

2 0
0 0

]

, 6.

[

f0 0
0 0

][

0 0
f0 0

]

= 0,
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7.

[

0 2
0 0

][

0 0
f0 0

]

= 0, 8.

[

0 0
f0 0

][

0 0
f0 0

]

= 0, 9.

[

0 0
0 1

][

0 0
f0 0

]

=
[

2 0
f0 0

]

.

Thus there is a multiplication •4 on V which extends the R-module scalar multipli-
cation of V over R:

[

a1 + f0 · r1 2b1
f0 · s1 c1

]

•4

[

a2 + f0 · r2 2b2
f0 · s2 c2

]

=
[

x y

z w

]

,

where

x = a1a2 + 2r1r2 + 2s1r2 + 2a1s2 + 2c1s2 + f0 · r1a2 + f0 · a1r2 + f0 · r1r2,

y = 2a1b2 + 2r1b2 + 2b1c2,

z = f0 · s1a2 + f0 · s1r2 + f0 · c1s2, and w = 2s1b2 + c1c2.

The multiplications •1, •2, •3, and •4 are well-defined and each extends
the R-module scalar multiplication of V over R. Therefore it follows that
(V ,+,•1), (V ,+,•2), (V ,+,•3), and (V ,+,•4) are precisely all of the possible
compatible ring structures on V . Define θ2 : (V ,+,•2)→ (V ,+,•1) by

θ2

[

a + f0 · r 2b
f0 · s c

]

=
[

a + 2r + f0 · r 2b
f0 · s c

]

.

Then θ2 is a ring isomorphism.
Also define θ3 : (V ,+,•3)→ (V ,+,•1) and θ4 : (V ,+,•4)→ (V ,+,•1) by

θ3

[

a + f0 · r 2b
f0 · s c

]

=
[

a + 2s + f0 · r 2b
f0 · s c

]

,

and

θ4

[

a + f0 · r 2b
f0 · s c

]

=
[

a + 2r + 2s + f0 · r 2b
f0 · s c

]

.

Then θ3 and θ4 are also ring isomorphisms. Therefore

(V ,+,•1)∼= (V ,+,•2)∼= (V ,+,•3)∼= (V ,+,•4).

4. Compatible ring structures on S: There are exactly four compatible ring struc-
tures on S such that

(1) two compatible ring structures are QF and they are isomorphic.
(2) the other two compatible ring structures are not even right FI-extending but

they are isomorphic.

Proof. By Theorem 7.1.22 and Corollary 7.1.23, there are exactly four ring mul-

tiplications: For s1 =
[

a1 2b1
f0 · r1 c1

]

, s2 =
[

a2 2b2
f0 · r2 c2

]

in S,

s1 ◦(k,t) s2 =
[

a1a2 − ta1r2 + 2kb1r2 + tc1r2 2a1b2 + 2b1c2
f0 · r1a2 + f0 · c1r2 2r1b2 + c1c2

]

,
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where k ∈A and t ∈ Soc(A). Thus ◦(0,0) = ◦(2,0), ◦(1,0) = ◦(3,0),◦(0,2) = ◦(2,2), and
◦(1,2) = ◦(3,2). Therefore all possible ring multiplications are precisely ◦(0,0), ◦(1,0),
◦(0,2), and ◦(1,2). By Theorem 7.1.22,

(S,+,◦(0,2))∼= (S,+,◦(0,0)) and (S,+,◦(1,0))∼= (S,+,◦(1,2)).
Again by Theorem 7.1.22, (S,+,◦(1,0)) (hence (S,+,◦(1,2))) is QF, while
(S,+,◦(0,0)) (hence (S,+,◦(0,2))) is not even right FI-extending. So it follows
that (S,+,◦(1,0)) �∼= (S,+,◦(0,0)).

5. Compatible ring structures on U : There are exactly two compatible ring struc-
tures (U,+,�1) and (U,+,�2) on U . Further, they are isomorphic.

Proof. The proof follows from a similar argument as in the proof for the case
of V . Now define ψ : (U,+,�2)→ (U,+,�1) by

ψ

[

a + f0 · r 2b
0 c

]

=
[

a + 2r + f0 · r 2b
0 c

]

.

Then ψ is a ring isomorphism. Thus, (U,+,�1)∼= (U,+,�2).
6. Compatible ring structures on T : By Example 7.1.8, there are exactly two

compatible ring structures (T ,+,�1) and (T ,+,�2) on T and they are isomorphic.

Consequently, part (i) can be proved. Parts (ii) and (iii) can be routinely
checked. �

Theorem 7.2.2 Let R, V, S, U , and T be as in Theorem 7.2.1. Then:

(i) R is not right FI-extending.
(ii) (V ,+,•1) (hence (V ,+,•2), (V ,+,•3), and (V ,+,•4)) are right extending,

but not right quasi-continuous.
(iii) (S,+,◦(1,0)) (so (S,+,◦(1,2))) are right self-injective, but (S,+,◦(0,0)) (so

(S,+,◦(0,2))) is not even right FI-extending.
(iv) (U,+,�1) (hence (U,+,�2)) are right FI-extending, but not right extending.
(v) (T ,+,�1) (hence (T ,+,�2)) are right FI-extending, but not right extending.

Proof (i) Let I =
[

0 2A
0 0

]

. Then I � R. There is no idempotent e ∈ R such that

IR ≤ess eRR . Thus R is not right FI-extending.

(ii) Let Δ := (V ,+,•1). Recall that e1 =
[

1 0
0 0

]

and e2 =
[

0 0
0 1

]

∈ Δ. Let

g1 =
[

f0 0
0 0

]

and g2 =
[

1 + f0 0
0 0

]

. Then e1ΔΔ = g1ΔΔ ⊕ g2ΔΔ. We can see that

each giΔΔ is uniform, hence it is extending. Also giΔΔ and gjΔΔ are relatively
injective for i �= j . Thus e1ΔΔ is extending by Theorem 2.2.18. Since e2ΔΔ is uni-
form, e2ΔΔ is extending.

By computation, all the possible right ideals I of Δ such that I ∩ e1Δ= 0 are:

0,

[

0 0
0 2

]

Δ,

[

0 0
Hom(2AA,AA) 2A

]

,

[

0 0
0 1

]

Δ,

[

0 2
0 2

]

Δ,
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[

f0 0
f0 0

]

Δ,

[

0 2
0 1

]

Δ, and

[

0 2
f0 1

]

Δ.

Among these, all of the closed right ideals are:

0,

[

0 0
0 1

]

Δ,

[

f0 0
f0 0

]

Δ,

[

0 2
0 1

]

Δ, and

[

0 2
f0 1

]

Δ,

which are direct summands of ΔΔ. Thus, every closed right ideal I of Δ such that
I ∩ e1Δ= 0 is a direct summand of ΔΔ.

Moreover, all the right ideals K of Δ such that K ∩ e2Δ= 0 are:

0,

[

0 2A
0 0

]

,

[

2A 0
0 0

]

,

[

1 + f0 0
0 0

]

Δ,

[

f0 0
0 0

]

Δ,

[

2A 2A
0 0

]

,

[

1 + f0 2
0 0

]

Δ,

[

2 + f0 0
0 0

]

Δ,

[

1 0
0 0

]

Δ,

[

0 2
0 2

]

Δ,

[

0 2A
0 2A

]

,

[

2 2
0 2

]

Δ,

[

1 + f0 2
0 2

]

Δ,

[

f0 0
f0 0

]

Δ,

[

2 + f0 0
f0 0

]

Δ, and

[

1 0
f0 0

]

Δ.

In these right ideals K , closed right ideals are:

0,

[

1 + f0 0
0 0

]

Δ,

[

f0 0
0 0

]

Δ,

[

1 0
0 0

]

Δ,

[

f0 0
f0 0

]

Δ, and

[

1 0
f0 0

]

Δ.

Also these are direct summands of ΔΔ. Thus every closed right ideal K of Δ such
that K ∩ e2Δ= 0 is a direct summand of ΔΔ.

Hence, by Proposition 2.2.17, Δ is right extending. From Theorem 7.2.1,
(V ,+,•2), (V ,+,•3), and (V ,+,•4) are also right extending.

Next, we show that Δ is not right quasi-continuous. For this, take

v :=
[

f0 0
f0 0

]

∈Δ.

Then v2 = v, so vΔΔ ≤⊕ ΔΔ. Note that e2ΔΔ ≤⊕ ΔΔ and vΔ ∩ e2Δ = 0.
But vΔ ⊕ e2Δ is not a direct summand of ΔΔ. Hence ΔΔ does not sat-
isfy (C3) condition. So Δ is not right quasi-continuous. From Theorem 7.2.1,
(V ,+,•2), (V ,+,•3), and (V ,+,•4) are not right quasi-continuous.

(iii) By Theorems 7.1.22 and 7.2.1, (S,+,◦(1,0)) (∼= (S,+,◦(1,2))) is right self-
injective, but (S,+,◦(0,0)) (∼= (S,+,◦(0,2))) is not right FI-extending.

(iv) Let Φ = (U,+,�1). Then we see that

ΦΦ =
[

f0 0
0 0

]

ΦΦ ⊕
[

1 + f0 0
0 0

]

ΦΦ ⊕
[

0 0
0 1

]

ΦΦ.

Also

[

f0 0
0 0

]

ΦΦ,

[

1 + f0 0
0 0

]

ΦΦ , and

[

0 0
0 1

]

ΦΦ are uniform, hence they are extend-

ing. Thus, Φ is right FI-extending by Theorem 2.3.6.
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Next, take K =
[

2 2
0 2

]

Φ . Then the only possible e2 = e ∈ Φ with KΦ ≤ eΦΦ is

e = 1. Thus, if Φ is right extending, then KΦ ≤ess ΦΦ . But this is absurd because
[

f0 0
0 0

]

Φ ∩ K = 0. Thus, Φ is not right extending, and hence from Theorem 7.2.1,

(U,+,�2) also is right FI-extending, but not right extending.
(v) Let Γ = (T ,+,�1). As A is self-injective, Γ is right FI-extending by Theo-

rem 5.6.19. Let eij ∈ Γ be the matrix with 1 in the (i, j)-position and 0 elsewhere.
Take I = (e12 + 2e22)Γ . Then there is no direct summand KΓ of ΓΓ such that
IΓ ≤ess KΓ . So Γ is not right extending. By Theorem 7.2.1, also (T ,+,�2) is right
FI-extending, but not right extending. �

Exercise 7.2.3

1. Let E be as in introduction of this section. By a similar argument as in the proof
of Theorem 7.2.1 showing that E does not have a compatible ring structure,
verify that both Y and W have no compatible ring structures.

2. Let V be as in Theorem 7.2.1. Prove explicitly the following facts in Cases 1 and
2 in the proof of 3 of Theorem 7.2.1(i).

(i) e1V e1 =
[

A⊕ Hom(2AA,AA) 0
0 0

]

.

(ii) e1V e2 =
[

0 2A
0 0

]

and e2V e2 =
[

0 0
0 A

]

.

(iii) e2V e1 =
[

0 0
Hom(2AA,AA) 0

]

or e2V e1 =
{

0,

[

2 0
f0 0

]}

.

(iv) Show that Case 1 can be subdivided into Subcases 1.1 and 1.2.
3. Let U be as in Theorem 7.2.1. Show explicitly that (U,+,�1) and (U,+,�2)

are all possible compatible ring structures on U .
4. ([88, Birkenmeier, Park, and Rizvi]) Let A be an algebra over a commutative

ring C such that c1A �= 0 but c21A = 0 for some c ∈ C. Set R =
[

A cA

0 A

]

. Show

that E(RR) does not have a compatible C-algebra structure. Note that Exam-
ple 7.1.13 is a particular case of this result.

7.3 Osofsky Compatibility

Osofsky compatibility of rings is the focus of this section. We note that if R is
a ring such that E(RR) is a rational extension of RR (i.e., E(RR) = Q(R), for
example when R is right nonsingular), then E(RR) has a unique compatible ring
structure (see also Proposition 7.1.6) and this ring structure is right self-injective.
When E(RR) is not a rational extension of RR , we shall see in Examples 7.3.3 and
7.3.5 that it is still possible for E(RR) to have a right self-injective compatible ring
structure. In [327], Osofsky had asked: If E(RR) has a compatible ring structure,
must this ring structure necessarily be right self-injective? This question has been
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answered in the negative by Camillo, Herzog, and Nielsen and their example will
be presented in this section.

For the case when R is a commutative Artinian ring, it is shown that R is right
Osofsky compatible if and only if R is self-injective. This result shows some con-
straints in finding classes of right Osofsky compatible commutative Artinian rings.
We shall see that this result does not hold true for noncommutative rings.

Theorem 7.3.14 will provide a class of Artinian right Kasch rings R which are
both right and left Osofsky compatible. It will be shown that E(RR) may have dis-
tinct compatible ring structures. Indeed, let A be a commutative local QF-ring with
J (A) �= 0 and

R =
[

A A/J(A)

0 A/J(A)

]

.

Then it will be shown that E(RR) has at least |Soc(A)|2 distinct compatible ring
structures. We shall also identify all possible right essential overrings of R and their
properties when A = Zpm with p a prime integer and m ≥ 2. This also provides,
together with results in Sect. 7.2, a motivation for the study of ring hulls which we
shall discuss in Chap. 8.

Theorem 7.3.1 Let R be a ring. If E(RR) is a rational extension of RR , then R is
right Osofsky compatible and Q(R) = E(RR). Further, E(RR) has a unique com-
patible ring structure, which is right self-injective.

Proof As E(RR) is a rational extension of RR , E(RR)=Q(R) by Corollary 1.3.15.
Thus by Proposition 7.1.6, Q(R) has a unique compatible ring structure. From The-
orem 7.1.3, Q(R) is right self-injective. �

We remark that in Theorem 7.3.1, if R is right nonsingular, then E(RR) is a
rational extension of RR and the compatible ring structure on E(RR) is unique and
regular right self-injective (see Theorem 2.1.31).

Theorem 7.3.2 Let R be a ring. Then R is right nonsingular with finite right uni-
form dimension if and only if Q(R) is semisimple Artinian.

Proof Let R be right nonsingular with udim(RR)= n <∞ (recall that udim(−) de-
notes uniform dimension of a module). By Theorem 2.1.31, Q(R) is regular. Now
udim(Q(R)Q(R)) ≤ udim(Q(R)R) = udim(RR) < ∞, so Q(R) is orthogonally fi-
nite. By Proposition 1.2.15, Q(R) has a complete set of primitive idempotents, say
{e1, . . . , en}. So eQ(R) = e1Q(R) ⊕ · · · ⊕ enQ(R) and each eiQ(R)Q(R) is inde-
composable. As Q(R) is regular, each eiQ(R)Q(R) is a simple module, so Q(R) is
semisimple Artinian. The converse is clear. �

In the following example, Osofsky constructs a ring R for which an injective
hull E(RR) of RR is not a rational extension of RR , but E(RR) has a right self-
injective compatible ring structure (see [327]). This example and Theorem 7.2.1
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provide motivation to investigate right essential overrings which are not right rings
of quotients.

Example 7.3.3 Let R = Z2{X,Y }/I , where Z2{X,Y } is the free algebra over Z2
with indeterminates X,Y , and I is the ideal of Z2{X,Y } generated by X2, Y 2, and
YX. Let x and y be the images of X and Y in R, respectively. Then it follows that
R = {a + bx + cy + dxy | a, b, c, d ∈ Z2} and x2 = y2 = yx = 0.

Now |R| = 24, J (R) = {bx + cy + dxy | b, c, d ∈ Z2}, and R/J (R) ∼= Z2.
So R is local Artinian, thus J (R) is the only maximal right ideal of R and
0 �= y ∈ �R(J (R)). Hence R is right Kasch, so R = Q(R) by Proposition 1.3.18.
Also, Soc(RR) = yRR ⊕ xyRR and yRR

∼= xyRR . Further, yRR and xyRR are
simple R-modules. Osofsky shows that R is right Osofsky compatible for which
E(RR) has a right self-injective compatible ring structure, but E(RR) is not a ratio-
nal extension of RR .

Let R and S be two rings. Say RWS is an (R,S)-bimodule and VS is a right S-
module. For f ∈ HomS(RWS,VS) and r ∈ R, let f r ∈ HomS(RWS,VS) defined by
(f r)(w) = f (rw), where w ∈ W . Then HomS(RWS,VS) is a right R-module. We
use [HomS(RWS,VS)]R to denote this right R-module.

Lemma 7.3.4 Let RWS and VS be as above. Assume that RW is a flat R-module
and VS is an injective S-module. Then [HomS(RWS,VS)]R is an injective R-module.

Proof See [262, Lemma 3.5]. �

Similar to Example 7.3.3, there are other right Osofsky compatible rings R such
that E(RR) is not a rational extension of RR as shown next.

Example 7.3.5 Let A be a ring and let A satisfy the following properties.

(1) A is local with J (A) �= 0.
(2) A is a finite dimensional algebra over a field K .
(3) A=K · 1A ⊕ J (A) as vector spaces over K .
(4) Soc(A) is a simple A-module.

For example, let A = Z2[C2], the group algebra of the group C2 = {1, g} of
order two over Z2. Then A is local with J (A) = {0,1 + g}. Further, we see that
Soc(A) = J (A), which is a simple A-module. Also A = Z2 · 1A ⊕ J (A) as vector
spaces over Z2.

Let m be an integer such that m > 1 and let R be the set of all matrices of the
form

⎡

⎢

⎢

⎢

⎢

⎣

k · 1A 0 . . . 0 a1
0 k · 1A . . . 0 a2
...

...
. . .

...
...

0 0 . . . k · 1A am−1
0 0 . . . 0 k · 1A +w

⎤

⎥

⎥

⎥

⎥

⎦

,

where a1, . . . , am−1 ∈A, k ∈K, w ∈ J (A), which is a subring of Matm(A).
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We observe that R is local Artinian. Let MR be the K-dual of RR, that is, MR =
[HomK(RRK,KK)]R . Then MR is injective by Lemma 7.3.4. The K-dual MR of
RR is indecomposable because RR is indecomposable (see [262, p. 92]). Since RK

is finite dimensional over K , M is finite dimensional over K and dimKM = dimKR.
Say dimKA= n. As vector spaces over K , dimKM = dimKR =mn. Thus, MR

is Artinian, so Soc(MR) ≤ess MR . Therefore, MR = E(Soc(MR)). Because MR is
indecomposable, Soc(MR) is simple.

Again since R is local, Soc(MR)∼= (R/J (R))R . So MR
∼=E((R/J (R)R).

As R is local Artinian, Soc(RR) ∼= (R/J (R))
(�)
R for some � ≥ 1. Also note that

dimKSoc(RR)=m and dimK(R/J (R))= 1. Therefore,

m= dimKSoc(RR)= dimK(R/J (R))
(�) = �.

Thus, Soc(RR)∼= (R/J (R))
(m)
R , so

E(RR)=E((R/J (R))R)
(m) ∼=M

(m)
R .

Thus, dimKE(RR) = m2n = dimKMatm(A) as vector spaces over K . Since
RR ≤ess Matm(A)R , E(RR) = Matm(A). The matrix multiplication on Matm(A)
extends the right R-module scalar multiplication of Matm(A) over R. Thus, R is
right Osofsky compatible. By Proposition 1.3.18 R is right Kasch, so R = Q(R).
Hence E(RR) is not a rational extension of RR .

Let R be a right Osofsky compatible ring and E be an injective hull of RR with a
compatible ring structure (E,+,◦). Osofsky asked in [327]: Must (E,+,◦) be nec-
essarily right self-injective? The next example, due to Camillo, Herzog, and Nielsen,
gives a negative answer to the question (see [111]).

Example 7.3.6 Let R{X1,X2, . . . } be the free algebra over the field R with indeter-
minates X1,X2, . . . . Let

A= R{X1,X2, . . . }/〈XiXj − δij X
2
1 | i, j = 1,2, . . . 〉,

where 〈XiXj − δij X
2
1 | i, j = 1,2, . . . 〉 is the ideal of R{X1,X2, . . . } which is gen-

erated by {XiXj − δij X
2
1 | i, j = 1,2, . . . }, and δij is the Kronecker delta. We de-

note by xi the image of Xi in A. Set V = Rx1 ⊕ Rx2 ⊕ · · · , P = Rx2
1 , and let the

bilinear form on V be given by B(xi, xj )= δij . Now we see that A∼=R, where

R =
⎧

⎨

⎩

⎡

⎣

k v p

0 k v

0 0 k

⎤

⎦

∣

∣ k ∈R, v ∈ V, and p ∈ P

⎫

⎬

⎭

,

where the addition is componentwise and the multiplication is defined by
⎡

⎣

k1 v1 p1
0 k1 v1
0 0 k1

⎤

⎦

⎡

⎣

k2 v2 p2
0 k2 v2
0 0 k2

⎤

⎦=
⎡

⎣

k1k2 k1v2 + k2v1 k1p2 + k2p1 +B(v1, v2)x
2
1

0 k1k2 k1v2 + k2v1
0 0 k1k2

⎤

⎦ ,
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is a commutative local ring. Let ER = [HomR(RR,RR)]R . Then ER is an injective
hull of RR . Further, ER has a compatible ring structure, but it is not right self-
injective. Also

⎡

⎣

0 0 P

0 0 0
0 0 0

⎤

⎦

is the smallest nonzero ideal of R. Thus RR is uniform, so it is extending. Hence the
compatible ring structure on ER is right FI-extending (see Theorem 8.1.8(i)).

Following Osofsky’s initial work on the right Osofsky compatibility of rings,
Lang investigated this notion for commutative Artinian rings. The next three results
are due to Lang (see [266]).

Lemma 7.3.7 Let R be a ring, ER = E(RR), and H = End(ER). Assume that
E := (ER,+,◦) is a compatible ring structure on ER . Then:

(i) J (E)= Z(ER).
(ii) H/J(H)∼=E/J (E).

(iii) E/J (E) is a regular ring.

Proof (i) and (ii) First, we show that Z(ER) is an ideal of the ring E. Take
z ∈ Z(ER). Then zI = 0 for some IR ≤ess RR . Take t ∈ E. Then we have that
(t ◦ z)I = t ◦ (zI ) = 0, so t ◦ z ∈ Z(ER). Let J = {r ∈ R | tr ∈ I }. Then J is an
essential right ideal of R and (z ◦ t)J = z(tJ ) ⊆ zI = 0. Thus, Z(ER) is an ideal
of E.

Let Δ= {h ∈H | hI = 0 for some IR ≤ess RR}. Then

Δ= {h ∈H | Ker(h)R ≤ess ER}
as RR ≤ess ER (see also Lemma 2.1.28(i)).

We define θ :H →E/Z(ER) by θ(h)= h(1)+Z(ER). To see that θ is onto, say
x ∈E and let I = {r ∈ R | xr ∈ R}. Then IR ≤ess RR . Let f : I →E be defined by
f (r)= xr . As ER is injective, there is an extension h ∈H of f . Thus xr = f (r)=
h(r) = h(1)r for all r ∈ I . So (x − h(1))I = 0, and hence x − h(1) ∈ Z(E). Thus
x +Z(ER)= h(1)+Z(ER). Therefore, θ is onto. Clearly, θ is additive.

Note that Ker(θ) = {h ∈ H | hI = h(1)I = 0 for some IR ≤ess RR} = Δ. So the
induced map θ : H/Δ → E/Z(ER), defined by θ(h + Δ) = h(1) + Z(ER), is an
additive isomorphism.

To see that θ is a ring isomorphism, let h1 +Δ, h2 +Δ ∈H/Δ with h1, h2 ∈H .
Put K = {r ∈ R | h2(r) ∈ R}. Then KR ≤ess RR as RR ≤ess ER . For a ∈ K , we
have that

((h1h2)(1)− h1(1) ◦ h2(1))a = h1(h2(a))− h1(1) ◦ h2(1)a

= h1(h2(a))− h1(1) ◦ h2(a)= h1(h2(a))− h1(1)h2(a)

= h1(h2(a))− h1(h2(a))= 0.
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So ((h1h2)(1)−h1(1)◦h2(1))K = 0, and (h1h2)(1)−h1(1)◦h2(1) ∈Z(ER). Thus
(h1h2)(1)+Z(ER)= h1(1) ◦ h2(1)+Z(ER). Therefore, θ is a ring isomorphism.

Since H/Δ is regular by Theorem 2.1.29, E/Z(ER) is also a regular ring. Hence,
J (E)⊆ Z(ER). Next, take z ∈Z(ER). Then rR(z)R ≤ess RR . Now we observe that
rR(z)∩ rR(1 − z)= 0, so rR(1 − z)= 0. As RR ≤ess ER , rE(1 − z)= 0.

Define f :E → (1 − z) ◦E by f (t)= (1 − z) ◦ t . Then f is an R-isomorphism,
hence (1 − z) ◦E is an injective R-module. Thus, (1 − z) ◦E is an R-direct sum-
mand of ER . If a ∈ rR(z), then za = 0 and so a = (1 − z)a ∈ (1 − z) ◦ E. Thus
rR(z)⊆ (1 − z) ◦E, so (1 − z) ◦ER ≤ess ER since rR(z)R ≤ess RR ≤ess ER . There-
fore (1 − z) ◦ E = E. Hence there is s ∈ E such that (1 − z) ◦ s = 1, so z is
right quasi-regular. Thus Z(ER) is a right quasi-regular ideal of E, hence it is a
quasi-regular ideal (see 1.1.9). So Z(ER)⊆ J (E), thus J (E)= Z(ER). From The-
orem 2.1.29, J (H)=Δ, and so H/J(H)=H/Δ∼=E/J (E).

(iii) As H/Δ is a regular ring by Theorem 2.1.29 and H/Δ ∼= E/J (E) by
part (ii), E/J (E) is also a regular ring. �

Proposition 7.3.8 Let R be a commutative ring with Soc(R)R ≤ess RR , and let E
be an injective hull of RR . Assume that (E,+,◦) is a compatible ring structure.
Then:

(i) Soc(R) is a left ideal of the ring E.
(ii) Soc(R)⊆ Soc(EE).

(iii) Soc(R)⊆ Soc(EE).
(iv) If vR ⊆ Soc(R) with vR a minimal ideal of R, then vR = v ◦E.
(v) If t Soc(R)= 0 with t ∈E, then Soc(R) ◦ t = 0.

Proof (i) Let x ∈E and put x−1Soc(R)= {r ∈R | xr ∈ Soc(R)}. Then x−1Soc(R)R
≤ess RR since Soc(R)R ≤ess RR . Thus, Soc(R)⊆ x−1Soc(R) because Soc(R) is the
intersection of all essential ideals of R. Hence, we have that x Soc(R) ⊆ Soc(R).
Therefore, Soc(R) is a left ideal of E.

(ii) Say V is a homogeneous component of Soc(R). We prove that V is a left ideal
of E. For this, take t ∈ E. If tV = 0, then tV ⊆ V . So assume that tV �= 0. Then
there exists a ∈ V such that ta �= 0. Write a = a1 + · · · + an, where aiRR is simple
and ai ∈ V for each i. We may assume that there exists m such that 1 ≤m≤ n and
each bi = tai �= 0 for 1 ≤ i ≤m. By part (i), each bi ∈ Soc(R). Then aiRR

∼= biRR

via left multiplication by t . Hence each bi ∈ V , so ta = b1 + · · ·+ bm ∈ V . Thus, V
is a left ideal of E.

To see that V is a minimal left ideal of E, take 0 �= h ∈ V . Then Eh ⊆ V since
V is a left ideal of E. Next, say 0 �= k ∈ V . Define ϕ : hR → kR by ϕ(hr) = kr

for r ∈ R. Then ϕ is well-defined. Indeed, say h = c1 + · · · + c�, where each ciRR

is simple and
∑�

i=1 ciR = ⊕�
i=1ciR. Also k = d1 + · · · + dm, where each diRR is

simple and
∑m

i=1 diR = ⊕m
i=1diR. Then

c1RR
∼= · · · ∼= c�RR

∼= d1RR
∼= · · · ∼= dmRR.

Thus rR(c1R) = · · · = rR(c�R) = rR(d1R) = · · · = rR(dmR), so it follows that
rR(c1)= · · · = rR(c�)= rR(d1)= · · · = rR(dm) since R is commutative.
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Now if hr = 0 with r ∈ R, then c1r + · · · + c�r = 0, so c1r = · · · = c�r = 0,
so r ∈ rR(c1) = rR(di) for each i,1 ≤ i ≤ m. Hence kr = (d1 + · · · + dm)r = 0, so
ϕ is well-defined. Let φ ∈ End(ER) which is an extension of ϕ. Then k = ϕ(h) =
φ(h) = φ(1)h ∈ Eh. So V = Eh. Therefore V is a minimal left ideal of E. Hence
V ⊆ Soc(EE). Thus Soc(R)⊆ Soc(EE).

(iii) Take v ∈ Soc(R) such that vR is a minimal ideal of R. First, we claim that
(v ◦E) ∩ Soc(R)= vR. Obviously, vR ⊆ (v ◦E)∩ Soc(R). For the converse con-
tainment, we note that there exists an ideal A of R such that Soc(R)= vR⊕A. Let
π : Soc(R)→ vR be the canonical projection. There is λ ∈ End(ER) which extends
π . Now let v ◦ t ∈ (v ◦E)∩ Soc(R), where t ∈E. Then

v ◦ t = λ(v) ◦ t = λ(1) ◦ (v ◦ t)= λ(1)(v ◦ t)= λ(v ◦ t)= π(v ◦ t)
since v ◦ t ∈ Soc(R). Thus v ◦ t ∈ vR. So (v ◦ E) ∩ Soc(R) ⊆ vR. Therefore, we
obtain vR = (v ◦E)∩ Soc(R).

We show that v ◦ E is a minimal right ideal of E. For this, let 0 �= k ∈ v ◦ E.
Since Soc(R)R ≤ess RR , (k ◦E)∩ Soc(R) �= 0. Now

0 �= (k ◦E)∩ Soc(R)⊆ (v ◦E)∩ Soc(R)= vR.

Thus (k ◦E)∩ Soc(R)= vR since vR is a minimal ideal of R. So v ∈ k ◦E, hence
v ◦E ⊆ k ◦E. Therefore k ◦E = v ◦E. Thus, v ◦E is a minimal right ideal of E.
In particular, Soc(R)⊆ Soc(EE).

(iv) Let v ∈ Soc(R) such that vR is a minimal ideal of R. Then by the proof of
part (iii), vR = (v ◦E)∩ Soc(R).

Say V is a homogeneous component of Soc(R) such that v ∈ V . Then Soc(R)=
V ⊕ C with CR ≤ Soc(R)R . By the proof of part (ii), both V and C are left ideals
of E. Thus, Soc(EE)= B ⊕ V ⊕C for some EB ≤ Soc(EE).

Take t ∈E. Then v ◦ t ∈ Soc(R) ◦ t ⊆ Soc(EE) ◦ t ⊆ Soc(EE). Write

v ◦ t = b+ h+ c

with b ∈ B, h ∈ V , and c ∈ C. We show that b = 0. For this, assume on the contrary
that b = v ◦ t − (h + c) �= 0. Then there exists r in R such that 0 �= br ∈ Soc(R)
since Soc(R)R ≤ess RR ≤ess ER .

We now show that (r ◦ t − tr)Soc(R)= 0. For this, take p ∈ Soc(R). Then from
part (i), tp ∈ t Soc(R)⊆E Soc(R)⊆ Soc(R). Therefore,

(r ◦ t − tr)p = r ◦ (tp)− trp = r ◦ (tp)− (tp)r = 0.

Hence, z := r ◦ t − tr ∈Z(ER). So it follows that

r ◦ b = r ◦ (v ◦ t − (h+ c))= (rv) ◦ t − r(h+ c)

= (vr) ◦ t − (h+ c)r = v ◦ (r ◦ t)− (h+ c)r

= v ◦ (tr + z)− (h+ c)r = v ◦ (tr)− (h+ c)r

= (v ◦ t − (h+ c))r = br

since v ◦ z ∈ v ◦ Z(ER) = v ◦ J (E) ⊆ Soc(R) ◦ J (E) ⊆ Soc(EE) ◦ J (E) = 0 by
part (iii) and Lemma 7.3.7. Thus 0 �= br ∈ R ◦ b ∩ Soc(R) ⊆ B ∩ Soc(R) = 0, a
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contradiction. Hence, b = 0. So v ◦ t = h + c ∈ Soc(R). Thus v ◦ E ⊆ Soc(R).
Therefore, vR = (v ◦E) ∩ Soc(R)= v ◦ E.

(v) We observe that t Soc(R) = 0 implies that t ∈ Z(ER). So t ∈ J (E) by
Lemma 7.3.7. Therefore, Soc(R) ◦ t ⊆ Soc(EE) ◦ J (E)= 0. �

Theorem 7.3.9 Let R be a commutative ring which satisfies the following condi-
tions.

(i) Soc(R) is the sum of a finite number of minimal ideals.
(ii) Soc(R)R ≤ess RR .

(iii) No homogeneous component of Soc(R) is simple.

Then R is not right Osofsky compatible.

Proof Assume on the contrary that R is right Osofsky compatible. We let E =
E(RR) and (E,+,◦) be a compatible ring structure on E. Write Soc(R)= ⊕n

k=1Vk ,
where the Vk are the homogeneous components and Vk = ⊕vkiR, a finite direct sum
of at least two minimal ideals of R.

If vkj a = 0 with a ∈ R, then vkjRa = 0. Hence, vkiRa = 0 because
vkiRR

∼= vkjRR . So vkia = 0. Consider the maps f k
ij : Soc(R)R → Soc(R)R defined

by f k
ij (vkj )= vki and f k

ij (vt�)= 0, for (t, �) �= (k, j). Let λ ∈ End(ER) be an exten-

sion of f k
ij . Put ukij = λ(1) ∈E. Then ukij vkj = vki and ukij vt� = 0 for (t, �) �= (k, j).

Let j �= t . Then (ukjj − ukjt ◦ uktj )Soc(R) = 0 and (ukjt ◦ ukjt )Soc(R) = 0.

Thus ukjj − ukjt ◦ uktj ∈ Z(ER) and ukjt ◦ ukjt ∈ Z(ER). Take v ∈ Soc(R) such

that vR is a minimal ideal of R. Consider v ◦ ukjt for any k, j, t with j �= t .

Then v ◦ ukjt ∈ v ◦ E = vR by Proposition 7.3.8(iv). Thus, v ◦ ukjt = vr for some

r ∈ R. We note that from Proposition 7.3.8(v), Soc(R) ◦ (ukjt ◦ ukjt ) = 0 since

(ukjt ◦ ukjt )Soc(R)= 0. Therefore

0 = v ◦ (ukjt ◦ ukjt )= (v ◦ ukjt ) ◦ ukjt = (vr) ◦ ukjt = (rv) ◦ ukjt
= r ◦ (v ◦ ukjt )= r(vr)= vr2.

Since vR is a minimal ideal of R, �R(vR) is a prime ideal of R. It follows that
r ∈ �R(vR) as r2 ∈ �R(vR). So v ◦ ukjt = vr = 0 for k, j, t with j �= t .

Since Z(ER)= J (E) by Lemma 7.3.7(i), ukjj −ukjt ◦uktj ∈ J (E) for j �= t . Thus,

Soc(EE) ◦ (ukjj − ukjt ◦ uktj ) = 0. Hence, Soc(R) ◦ (ukjj − ukjt ◦ uktj ) = 0 because
Soc(R) ⊆ Soc(EE) by Proposition 7.3.8(iii). For j , we can take t such that t �= j .
Then

0 = v ◦ (ukjj − ukjt ◦ uktj )= v ◦ ukjj − v ◦ ukjt ◦ uktj = v ◦ ukjj
for all j and k because v ◦ ukjt = vr = 0. Thus, v ◦ ukjj = 0 for all j and k.

But (
∑

j,k u
k
jj − 1)Soc(R) = 0. Hence, Soc(R) ◦ (∑j,k u

k
jj − 1) = 0 by Proposi-

tion 7.3.8(v). Thus v ◦∑j,k u
k
jj = v. So v = 0 as v ◦ ukjj = 0 for all j and k. This is

a contradiction. Therefore, R is not right Osofsky compatible. �
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Proposition 7.3.10 Let R =A⊕B (ring direct sum). Then R is right Osofsky com-
patible if and only if A and B are right Osofsky compatible.

Proof Let E = ER be an injective hull of RR and (E,+,◦) be a compatible ring
structure. Note that ER = E(AR) ⊕ E(BR). Also, E1 := E(AR) = E(AA) and
E2 :=E(BR)=E(BB).

For x, y ∈E1, say (x,0) ◦ (y,0)= (f (x, y), g(x, y)) for some f (x, y) ∈E1 and
g(x, y) ∈E2. Consider any (r1, r2) ∈R =A⊕B . Then

[(x,0) ◦ (y,0)] ◦ (r1, r2)= (f (x, y), g(x, y)) ◦ (r1, r2)= (f (x, y)r1, g(x, y)r2).

Also, (x,0) ◦ [(y,0) ◦ (r1, r2)] = (x,0) ◦ (yr1,0) = (f (x, yr1), g(x, yr1)). Hence
g(x, yr1)= g(x, y)r2. By taking r1 = 1A and r2 = 0, we get that g(x, y)= 0.

From the preceding argument, (x,0) ◦ (y,0) = (f (x, y),0) for x, y ∈ E1. Let
x ◦1 y = f (x, y) for x, y ∈E1. For x ∈E1 and a ∈A, (x,0) ◦ (a,0)= (xa,0), and
so x ◦1 a = xa. Thus, (E1,+,◦1) is a compatible ring structure on E1 for which
the multiplication ◦1 extends the A-module scalar multiplication. Thus, A is right
Osofsky compatible. Similarly, B is right Osofsky compatible. The converse can be
checked routinely. �

The next result for commutative QF-rings is well known.

Theorem 7.3.11 For a commutative ring R, the following are equivalent.

(i) R is QF.
(ii) R is Artinian and every homogeneous component of Soc(R) is simple.

(iii) R ∼=R1 ⊕· · ·⊕Rk for some positive integer k, where each Ri is a local Artinian
ring with a simple socle.

Proof See [262, Theorem 15.27] for the proof. �

Now we shall see that a commutative Artinian ring R is right Osofsky compatible
precisely when R is self-injective (see [266]).

Theorem 7.3.12 Let R be a commutative Artinian ring. Then the following are
equivalent.

(i) R is right Osofsky compatible.
(ii) Every homogeneous component of Soc(R) is simple.

(iii) R =E(RR).

Proof (i)⇒(ii) Let {e1, . . . , en} be a complete set of primitive idempotents of R.
Then R = A1 ⊕ · · · ⊕ An (ring direct sum), where each Ai = eiR and local. So
every simple Ai -module is isomorphic to Ai/J (Ai), thus each Soc(Ai) has only
one homogeneous component, say Vi . From Proposition 7.3.10, each Ai is right
Osofsky compatible. Hence by Theorem 7.3.9, each Vi is simple.
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(ii)⇒(iii) We see that R is QF from Theorem 7.3.11. Thus R =E(RR). (iii)⇒(i)
is evident. �

There exists a commutative ring which is not right Osofsky compatible as shown
in the next example.

Example 7.3.13 (i) For a field K , let T = K[x]/x4K[x]. Say x is the image of x
in T . Then T =K +Kx +Kx2 +Kx3.

Let R = K +Kx2 +Kx3, a subring of T . Then R is not self-injective. In fact,
note that Kx2 is an ideal of R. Let f :Kx2 → R defined by f (ax2)= ax3, where
a ∈K . Then f is an R-homomorphism. But there is no α ∈R such that α ax2 = ax3

for all a ∈K . Hence R is not self-injective by Baer’s Criterion. So R cannot be right
Osofsky compatible by Theorem 7.3.12. Note that R is Artinian.

(ii) Let Λ= End(Zp∞), where Zp∞ is the Prüfer p-group and p is a prime inte-
ger. Let R =Λ⊕Zp∞ ⊕Zp∞ , where the addition is componentwise and the multi-
plication is defined by:

(λ, m1, n1)(μ, m2, n2)= (λμ, λ(m2)+μ(m1), λ(n2)+μ(n1)),

for (λ, m1, n1), (μ, m2, n2) ∈R. Then we see that

R ∼= S :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎣

λ m 0 0
0 λ 0 0
0 0 λ n

0 0 0 λ

⎤

⎥

⎥

⎦

| λ ∈Λ and m,n ∈ Zp∞

⎫

⎪

⎪

⎬

⎪

⎪

⎭

with the addition componentwise and the multiplication is defined by
⎡

⎢

⎢

⎣

λ m1 0 0
0 λ 0 0
0 0 λ n1
0 0 0 λ

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

μ m2 0 0
0 μ 0 0
0 0 μ n2
0 0 0 μ

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

λμ λ(m2)+μ(m1) 0 0
0 λμ 0 0
0 0 λμ λ(n2)+μ(n1)

0 0 0 λμ

⎤

⎥

⎥

⎦

.

The ring S is commutative since Λ is commutative (in fact, Λ is the ring of p-adic
integers). Set

V =

⎡

⎢

⎢

⎣

0 Zp 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎦

and W =

⎡

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 0 Zp

0 0 0 0

⎤

⎥

⎥

⎦

.

Then V and W are the only minimal ideals of S. Further,

Soc(S)= V ⊕W and VS ∼=WS,

thus V ⊕W is the only homogeneous component of Soc(S). Moreover, we observe
that Soc(S)S ≤ess SS . By Theorem 7.3.9, S is not right Osofsky compatible. Hence,
R is not right Osofsky compatible.
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We now consider another interesting class of right Osofsky compatible rings. For
this, the following preparation is needed.

Let A be a ring and J = J (A) �= 0. Put

R =
[

A A/J

0 A/J

]

.

Consider a subset A = {(a,−a) | a ∈ A} ⊆ A × (A/J ), where a is the image of
a in A/J . The addition on A is componentwise. Define (a,−a)b = (ab,−ab) for
(a,−a) ∈ A and b ∈A. Then A is a rightA-module and AA

∼=AA via corresponding
(a,−a)→ a. Let

A =
[

A 0
0 0

]

=
{[

(a,−a) 0
0 0

]

| a ∈A

}

.

Then A is a right R-module under the componentwise addition and the R-module
scalar multiplication is defined by

[

(a,−a) 0
0 0

][

x y

0 z

]

=
[

(ax, −ax) 0
0 0

]

for

[

(a,−a) 0
0 0

]

∈ A and

[

x y

0 z

]

∈ R, where y and z are the images of y and z in

A/J , respectively.
The next theorem provides a class of Artinian right Kasch rings R which are

both right and left Osofsky compatible using the preceding preparation. Further, it
shows that E(RR) may have distinct compatible ring structures when E(RR) is not
a rational extension of RR (cf. Theorem 7.3.1).

Theorem 7.3.14 Let A be a local commutative QF-ring with J �= 0. Put

R =
[

A A/J

0 A/J

]

.

Then we have the following.

(i) R =Q(R).

(ii) AR is an injective hull of SR =
{[

(a,−a) 0
0 0

]

| a ∈ Soc(A)

}

.

(iii) ER = AR ⊕
[

A/J A/J

A/J A/J

]

R

is an injective hull of RR . Also,

[

a b

0 d

]

∈ R can

be identified with

[

(a,−a) 0
0 0

]

+
[

a b

0 d

]

∈ER .

(iv) ER has a ring structure as a QF-ring that is compatible with its R-module
structure.

(v) There exist |Soc(A)|2 distinct compatible ring structures on ER such that they
are QF-rings and each is isomorphic to the ring structure in (iv).



7.3 Osofsky Compatibility 257

(vi) R is right and left Osofsky compatible.

Proof (i) We see that R is right Kasch, so R =Q(R) by Proposition 1.3.18.
(ii) From Lemma 7.3.4, [HomA(RRA, AA)]R is injective. Let

V =
[

A 0
0 0

]

and W =
[

0 A/J

0 A/J

]

.

Then both V and W are (R,A)-bimodules. Note that RRA = RVA ⊕ RWA, so V

and W are projective left R-modules. By Lemma 7.3.4, [HomA(RVA,AA)]R and
[HomA(RWA,AA)]R are injective right R-modules.

We claim that AR = E(SR). For this, first we see that SR ≤ess
AR be-

cause Soc(A)A ≤ess AA. Note that [HomA(RVA,AA)]R is an injective R-module,
[HomA(RVA,AA)]R is an injective R-module because AA

∼= AA (recall that
A= {(a,−a) | a ∈A}).

The map θ : [HomA(RVA, AA)]R →AR defined by

θ(φ)=
[

(a,−a) 0
0 0

]

,

for φ ∈ [HomA(RVA,AA)]R with φ

[

1 0
0 0

]

= (a,−a) ∈A, is an R-isomorphism. So

AR is an injective R-module. Therefore, AR =E(SR).
(iii) We first show that [HomA(RWA,AA)]R ∼=

[

0 0
A/J A/J

]

R

. In fact, take

0 �= s ∈ Soc(A). Then Soc(A) = sA as Soc(A) is the smallest nonzero ideal of A.

Let ϕ ∈ Hom(WA,AA) with ϕ

[

0 1
0 0

]

= a ∈A and ϕ

[

0 0
0 1

]

= b ∈A. Then for x ∈A,

ϕ

[

0 x
0 0

]

= ax and ϕ

[

0 0
0 x

]

= bx. If x ∈ J , then ax = 0 and bx = 0. Therefore, we

obtain a, b ∈ Soc(A), so a = sa0 and b = sb0 for some a0 ∈A and b0 ∈A.

Let f : HomA(RWA,AA)→
[

0 0
A/J A/J

]

defined by

f (ϕ)=
[

0 0
a0 b0

]

.

Then it is routine to check that f is an R-isomorphism. So

[

0 0
A/J A/J

]

R

is injective

since [HomA(RWA,AA)]R is injective. We observe that

U :=
[

A/J A/J

A/J A/J

]

R

=
[

A/J A/J

0 0

]

R

⊕
[

0 0
A/J A/J

]

R

and
[

A/J A/J

0 0

]

R

∼=
[

0 0
A/J A/J

]

R

.
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So UR is injective. Also, WR ≤ess UR , hence E(WR) = UR . Therefore,
E(RR)=E(SR)⊕E(WR)= AR ⊕UR since SR ⊕WR ≤ess RR .

(iv) The map from A to A corresponding (a,−a) to a is one-to-one and onto.
Define a multiplication on A by (a,−a) · (b,−b)= (ab,−ab) so that (A,+, ·)∼=A

as rings via the correspondence

[

(a,−a) 0
0 0

]

→ a.

Now ER has an obvious ring multiplication making it isomorphic to a ring direct
sum of the QF-ring A and a simple Artinian ring Mat2(A/J ). Thus the ring structure
on ER is QF. One can easily check that R is a subring of this ring and it is clear that
the ring multiplication of ER extends the R-module scalar multiplication of ER

over R.
(v) Let (E,+, ·) be the ring structure given in part (iv). Assume

f ∈ End(ER) such that f (r)= r

for each r ∈R (such f can be constructed by an extension to ER of the identity map
of RR). Then f is an R-isomorphism, and

f

[

1 0
0 0

]

=
[

(μ,0) 0
0 0

]

+
[

1 0
0 0

]

and f

[

0 0
1 0

]

=
[

(ν,0) 0
0 0

]

+
[

0 0
1 0

]

for some μ, ν ∈ Soc(A). We use f(μ,ν) to denote this f .
Next, for (μ, ν) ∈ Soc(A)× Soc(A), let g :ER →ER defined by

g

([

(s,−s) 0
0 0

]

+
[

a b

c d

])

=
[

(s +μ(a − s)+ νc,−s) 0
0 0

]

+
[

a b

c d

]

for

[

(s,−s) 0
0 0

]

+
[

a b

c d

]

∈ ER . Then g is an R-isomorphism. Furthermore, we ob-

tain that g = f(μ,ν).
For x, y ∈E, define

x ◦(μ,ν) y = f−1
(μ,ν)[f(μ,ν)(x) · f(μ,ν)(y)].

Then · = ◦(0,0). For x ∈ E and r ∈ R, x ◦(μ,ν) r = xr as f(μ,ν)(r) = r for all r ∈ R

and (E,+, ·) is a compatible ring structure on E. Also f(μ,ν) is a ring isomorphism
from (E,+,◦(μ,ν)) to (E,+, ·).

For (μ, ν), (γ, δ) ∈ Soc(A) × Soc(A), we see that ◦(μ,ν) = ◦(γ,δ) if and only if
(μ, ν)= (γ, δ) if and only if μ= γ and ν = δ. Thus, E has |Soc(A)|2 distinct com-
patible ring structures such that they are QF-rings and are isomorphic to (E,+, ·).

(vi) By part (iv), R is right Osofsky compatible. Consider ET , the transpose of
(E,+, ·). Then RR embeds in RE

T by
[

a b

0 d

]

→
[

(a,−a) 0
0 0

]

+
[

a 0
b d

]

.

Then RE
T is an injective hull of RR. Note that right multiplication on the ring

(E,+, ·) is the same as left multiplication by ET . �
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Corollary 7.3.15 Let A be a commutative QF-ring such that J (A) �= 0. Then the
ring

R =
[

A A/J(A)

0 A/J(A)

]

has a right injective hull which has a ring structure, compatible with the right R-
module structure, as a ring direct sum of QF-rings and that ring structure is not
unique. Its left injective hull can be given a ring structure compatible with the left
R-module structure.

Proof A commutative QF-ring is a ring direct sum of local rings. Apply Proposi-
tion 7.3.10 and Theorem 7.3.14. �

Proposition 7.3.16 Let A,R, and ER be as in Theorem 7.3.14. Put

ER =
[

A⊕A/J(A) A/J (A)

A/J (A) A/J (A)

]

,

where the addition is componentwise and the R-module scalar multiplication over
R is given by

[

s + a b

c d

][

x y

0 z

]

=
[

sx + ax sy + ay + bz

cx cy + dz

]

,

where a, y ∈ A/J(A), etc. denote the images of a, y ∈ A, etc., respectively. Then
RR ≤ess

ER and ER
∼=ER . So ER is an injective hull of RR .

Proof Obviously, ER is a right R-module. Further, we see that RR ≤ess
ER . Define

f : ER →ER by

f

[

s + a b

c d

]

=
[

(s,−s) 0
0 0

]

+
[

s + a b

c d

]

for

[

s + a b

c d

]

∈ ER . Then f is an additive group isomorphism. Put

ι(R)=
{[

(x,−x) 0
0 0

]

+
[

x y

0 z

]

| x, y, z ∈A

}

.

Now Eι(R) is an injective hull of ι(R)ι(R) by Theorem 7.3.14, and the scalar mul-
tiplication of ER over R corresponds to that of Eι(R) over ι(R) via f . So ER is an
injective hull of RR . �

For a ring R as in Theorem 7.3.14, we exhibit a QF-ring A for which every
injective hull of RR has exactly |Soc(A)|2 distinct compatible ring structures as
follows.
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Theorem 7.3.17 Assume that n= p
m1
1 · · ·pmk

k , where pi is a distinct prime integer
and mi is an integer such that mi ≥ 2 for each i. Let A= Zn and let

R =
[

A A/J(A)

0 A/J(A)

]

as in Theorem 7.3.14. Then R is right Osofsky compatible and every injective hull
of RR has exactly |Soc(A)|2 = p2

1 · · ·p2
k distinct compatible ring structures. These

ring structures are isomorphic and QF.

Proof The ring R is right Osofsky compatible by Corollary 7.3.15. We suppose
that n = pm, where p is a prime integer and m is an integer such that m ≥ 2.
We show that every injective hull of RR has exactly p2 distinct compatible ring
structures and these ring structures are isomorphic and QF. By Proposition 7.3.16,

ER =
[

A⊕A/J(A) A/J (A)

A/J (A) A/J (A)

]

is an injective hull of RR .

Claim E := ER has exactly p2 distinct compatible ring structures.

Proof of Claim Take α, β ∈ Soc(A). Define |Soc(A)|2 distinct multiplications •(α,β)
on E: For

[

s1 + a1 b1

c1 d1

]

,

[

s2 + a2 b2

c2 d2

]

∈ E, let

[

s1 + a1 b1

c1 d1

]

•(α,β)
[

s2 + a2 b2

c2 d2

]

=
[

x y

z w

]

,

where

x = s1s2 + βa1a2 + αc1a2 + (−α)s1c2 + βb1c2 + αd1c2

+a1a2 + a1s2 + s1a2 + b1c2,

y = a1b2 + s1b2 + b1d2,

z = c1s2 + c1a2 + d1c2, and w = c1b2 + d1d2.

Then (E,+,•(α,β)) is a compatible ring structure.

Conversely, assume that E has a compatible ring structure. By Lemma 7.1.7,

1E = 1R =
[

1 0
0 1

]

because RR ≤ess ER . Put e1 =
[

1 0
0 0

]

and e2 =
[

0 0
0 1

]

. Then we

have that e1 + e2 = 1E, e2
1 = e1, e2

2 = e2, and e1e2 = e2e1 = 0. Thus, it follows that
E = e1Ee1 + e1Ee2 + e2Ee1 + e2Ee2.

We observe that RR ≤ess
ER and e1Re2 =

[

0 A/J(A)
0 0

]

⊆ e1Ee2. Also we get

that e2Re2 =
[

0 0
0 A/J(A)

]

⊆ e2Ee2. So we have the following:
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Subclaim 1 e1Ee2 =
[

0 A/J(A)

0 0

]

and e2Ee2 =
[

0 0
0 A/J(A)

]

.

Proof The proof is routine.

Subclaim 2 e1Ee1 =
[

A⊕A/J(A) 0
0 0

]

.

Proof Subclaim 1, the fact that RR ≤ess
ER , and standard argument yield that

e1Ee1 =
[

A⊕A/J(A) 0
0 0

]

.

Also by using Subclaims 1 and 2, we can check the following.

Subclaim 3 e2Ee1 =
{[

αc 0
c 0

]

| c ∈A

}

for some α ∈ Soc(A).

Proof Exercise.

Subclaim 4
[

1 0
0 0

][

1 0
0 0

]

=
[

β + 1 0
0 0

]

for some β ∈ Soc(A).

Proof Exercise.

We proceed to determine all possible ring multiplications on E which extend the
R-module scalar multiplication of E over R. By using Subclaim 1 through Sub-
claim 4 together with the associativity of the multiplication and its distributive laws,
we get the following:

1.

[

1 0
0 0

][

1 0
0 0

]

=
[

1 0
0 0

]

, 2.

[

0 1
0 0

][

1 0
0 0

]

= 0, 3.

[

0 0
1 0

][

1 0
0 0

]

=
[

α 0
1 0

]

,

4.

[

0 0
0 1

][

1 0
0 0

]

= 0, 5.

[

1 0
0 0

][

0 0
1 0

]

= 0, 6.

[

1 0
0 0

][

0 0
1 0

]

=
[−α 0

0 0

]

,

7.

[

0 1
0 0

][

0 0
1 0

]

=
[

β + 1 0
0 0

]

, 8.

[

0 0
1 0

][

0 0
1 0

]

= 0, 9.

[

0 0
0 1

][

0 0
1 0

]

=
[

α 0
1 0

]

.

Using 1 through 9 together with Subclaims 1–4, a ring multiplication on E which
extends the R-module scalar multiplication of E can be defined by

[

s1 + a1 b1

c1 d1

][

s2 + a2 b2

c2 d2

]

=
[

x y

z w

]

,

where

x = s1s2 + βa1a2 + αc1a2 + (−α)s1c2 + βb1c2 + αd1c2

+a1a2 + a1s2 + s1a2 + b1c2,

y = a1b2 + s1b2 + b1d2,
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z = c1s2 + c1a2 + d1c2, and w = c1b2 + d1d2.

Thus the ring multiplication is exactly •(α,β), where α,β ∈ Soc(A). Therefore, there
are exactly p2 distinct compatible ring structures (E,+,•(α,β)) with α, β ∈ Soc(A).
This completes the proof of Claim at the beginning of the proof of this theorem.

Define f(α,β) : (E,+,•(α,β))→ (E,+,•(0,0)) by

f(α,β)

[

s + a b

c d

]

=
[

s + (−β)a + (−α)c+ a b

c d

]

.

Then f(α,β) is a ring isomorphism. Therefore, these |Soc(A)|2 distinct rings

(E,+,•(α,β)) are all isomorphic. Let V = (E,+,•(0,0)). Note that 1V =
[

1 0
0 1

]

.

Let e =
[

1 0
0 1

]

. Then e is a central idempotent of V and eV = Mat2(A/J (A)).

Also (1V − e)V ∼=A as rings. Thus, V = eV ⊕ (1V − e)V is a QF-ring. Hence, all
(E,+,•(α,β)) are QF. Also V ∼=Eλ, where Eλ is the compatible ring structure given
in Theorem 7.3.14(iv).

Suppose that n = p
m1
1 · · ·pmk

k , where pi is a distinct prime integer and mi is
an integer such that mi ≥ 2 for each i. Then A = ⊕k

i=1Ai with Ai = Z
p
mi
i

. By

Proposition 7.3.16,

Ei =
[

Ai ⊕Ai/J (Ai) Ai/J (Ai)

Ai/J (Ai) Ai/J (Ai)

]

is an injective hull of RiRi
, where Ri =

[

Ai Ai/J (Ai)

0 Ai/J (Ai)

]

, so

E =
[

A⊕A/J(A) A/J (A)

A/J (A) A/J (A)

]

= ⊕k
i=1Ei

is an injective hull of RR since R = ⊕k
i=1Ri .

Assume that (E,+,•) is a compatible ring structure on E. By Proposition 7.3.10,
each (Ei ,+,•i ) is a compatible ring structure induced from the compatible ring
structure (E,+,•).

From the proof of Claim, •i = •(αi , βi ) for some αi, βi ∈ Soc(Ai). Thus, we have
that (E,+,•)= (E1,+,•(α1,β1))⊕ · · · ⊕ (Ek,+,•(αk,βk)). Hence,

(xi)
k
i=1 • (yi)ki=1 = (xi •(αi ,βi ) yi)ki=1 ∈ E

for (xi)ki=1, (yi)
k
i=1 ∈ E = ⊕k

i=1Ei . We put • = ⊕k
i=1•(αi ,βi ).

Thus {⊕k
i=1•(αi ,βi ) | (αi, βi) ∈ Soc(Ai) × Soc(Ai) for 1 ≤ i ≤ k} is the set of

all compatible ring multiplications on E. Thus, all compatible ring structures of
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E are precisely the ring structures induced from the compatible ring structures of
E1, . . . ,Ek . Therefore, E has exactly p2

1 · · ·p2
k distinct compatible ring structures

which are isomorphic and QF.

Finally, let E(RR) be an arbitrary injective hull of RR . Then by the proof of
Proposition 7.1.10, E(RR) also has exactly |Soc(A)|2 = p2

1 · · ·p2
k distinct compati-

ble ring structures which are isomorphic and QF. �

Let R be the ring as in Theorem 7.3.17. We present all proper right essential
overrings of R and their properties as follows.

Example 7.3.18 Let n = pm, where p is a prime integer and m is an integer such
that m≥ 2. Put A= Zn. Let

R =
[

A A/J(A)

0 A/J(A)

]

and E =
[

A⊕A/J(A) A/J (A)

A/J (A) A/J (A)

]

.

By Proposition 7.3.16, ER is an injective hull of RR . Let

T =
[

A⊕A/J(A) A/J (A)

0 A/J(A)

]

.

Then we have the following.

(i) RR ≤ TR ≤ ER .
(ii) There are exactly p distinct compatible ring structures (T ,+,�(0,β)) with

β ∈ Soc(A), where �(0,β) is the restriction of •(0,β) of E (in Theorem 7.3.17)
to T . Further, all these compatible ring structures on T are isomorphic.

(iii) All right essential overrings of R are: (E,+,•(α,γ )), (T ,+,�(0,β)) and R it-
self, where α,β, γ ∈ Soc(A).

(iv) (T ,+,�(0,β)) with β ∈ Soc(A) are precisely all of the right extending (also,
right FI-extending) minimal right essential overrings of R.

(v) (E,+,•(α,β)), with α,β ∈ Soc(A), are all of the right self-injective (also, right
quasi-continuous and right continuous, respectively) minimal right essential
overrings of R.

Proof (i) It is obvious.

(ii) Let t1 =
[

s1 + a1 b1

0 d1

]

, t2 =
[

s2 + a2 b2

0 d2

]

∈ T , and β ∈ Soc(A). Define

t1 �(0,β) t2 =
[

s1s2 + βa1a2 + s1a2 + a1s2 + a1a2 s1b2 + a1b2 + b1d2

0 d1d2

]

.

Then (T ,+,�(0,β)) is a compatible ring structure, and �(0,β) is the restriction of
•(0,β) to T .
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Conversely, assume that T has a compatible ring structure. By Lemma 7.1.7,

1T = 1R (= 1E) since RR ≤ess TR . Let e1 =
[

1 0
0 0

]

and e2 =
[

0 0
0 1

]

. Then it fol-

lows that e2
1 = e1, e

2
2 = e2, e1e2 = e2e1 = 0, and 1T = e1 +e2. Therefore, we obtain

that T = e1T e1 + e1T e2 + e2T e1 + e2T e2. By direct calculation as in the proof of
Theorem 7.3.17,

e1T e2 =
[

0 A/J(A)

0 0

]

, e2T e2 =
[

0 0
0 A/J(A)

]

, e2T e1 = 0,

and

e1T e1 =
[

A⊕A/J(A) 0
0 0

]

.

Moreover,

[

1 0
0 0

][

1 0
0 0

]

=
[

β + 1 0
0 0

]

for some β ∈ Soc(A).

We see that there is a ring multiplication, say �(0,β):

t1 �(0,β) t2 =
[

s1s2 + βa1a2 + s1a2 + a1s2 + a1a2 s1b2 + a1b2 + b1d2

0 d1d2

]

,

for t1 =
[

s1 + a1 b1

0 d1

]

, t2 =
[

s2 + a2 b2

0 d2

]

∈ T . So there exist exactly p distinct

compatible ring structures (T ,+,�(0,β)), with β ∈ Soc(A), on T .
Define g(0,β) : (T ,+,�(0,β))→ (T ,+,�(0,0)) by

g(0,β)

[

s + a b

0 d

]

=
[

s + (−β)a + a b

0 d

]

.

Then g(0,β) is a ring isomorphism.
(iii) All intermediate R-modules between RR and ER are:

ER, S =
[

A A/J(A)

A/J (A) A/J (A)

]

, T =
[

A⊕A/J(A) A/J (A)

0 A/J(A)

]

, and R.

Routinely, we see that S cannot have a compatible ring structure. Thus, part (ii)
yields part (iii).

(iv) Put W = (T ,+,�(0,0)) and let e =
[

1 0
0 1

]

∈W . Then e is a central idempotent

of W . The ring eW = T2(A/J (A)) is Baer by Theorem 5.6.2 because A/J(A) is
a field. Thus, eW is right extending by Corollary 3.3.3. Also (1W − e)W ∼= A as
rings. Thus, (1W − e)T is right extending. So the ring W = eW ⊕ (1W − e)W (ring
direct sum) is right extending.

From the preceding argument, (T ,+,�(0,β)) is right extending for each
β ∈ Soc(A) since (T ,+,�(0,β)) ∼= W by part (ii). So (T ,+,�(0,β)) is right FI-
extending for each β ∈ Soc(A).
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On the other hand, by Theorem 5.6.10, R cannot be right FI-extending. Thus,
(T ,+,�(0,β)) with β ∈ Soc(A) are precisely all of the right extending (also, right
FI-extending) minimal right essential overrings of R.

(v) We show that W = (T , +, �(0,0)) is not right quasi-continuous. For this,

let e =
[

0 0
0 1

]

and f =
[

0 1
0 1

]

in W . Then we see that e2 = e, f 2 = f , and

eW ∩ fW = 0. But we note that

eW ⊕ fW =
[

0 A/J(A)

0 A/J(A)

]

is not a direct summand of WW . So WW does not satisfy (C3) condition. Thus, W
is not right quasi-continuous. By Theorem 7.3.17 and part (iv), (E,+,•(α,β)), with
α,β ∈ Soc(A), are all of the right self-injective (also, right quasi-continuous and
right continuous, respectively) minimal right essential overrings of R. �

Exercise 7.3.19

1. Assume that R is the ring in Example 7.3.3. Show that

E(RR)∼= [HomK(RRK,KK)](2)R ,

where K = Z2 by an argument similar to that used in Example 7.3.5. Thus, it
follows that |E(RR)| = 28.

2. For a field K , let T =K[x]/x4K[x]. Then T =K +Kx+Kx2 +Kx3, where x
is the image of x in T . As in Example 7.3.13(i), let R =K +Kx2 +Kx3 which
is a subring of T . Prove that E(RR)∼= [HomK(RRK,KK)](2)R .

3. We can construct a ring R for which every injective hull of RR has infinitely
many distinct compatible ring structures and these are isomorphic and QF-rings.
Indeed, let F be an infinite field and

R =
[

Λ Λ/J(Λ)

0 Λ/J(Λ)

]

,

where Λ is the ring in (i) and (ii) below. Show that R is right Osofsky compatible
and every injective hull E(RR) of RR has |F | distinct compatible ring structures.
These compatible ring structures on E(RR) are isomorphic and QF.
(i) Λ = F [x]/f (x)F [x], where f (x) �= 0 is not square free by an irreducible

polynomial.
(ii) Λ = F [G] is the group algebra, where the characteristic of F is p > 0, p a

prime integer, and G is a finite Abelian group such that p | |G|.
4. Give proofs of Subclaims 1, 2, 3, and 4 in the proof of Theorem 7.3.17.
5. In the proof of Example 7.3.18(iii), show that S cannot have a compatible ring

structure.
6. ([95, Birkenmeier, Osofsky, Park, and Rizvi]) Let R be a ring and E = ER be

an injective hull of RR with ι : RR → ER an essential embedding. An additive
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group monomorphism λ : ER → H := End(ER) with λ(u) = uλ is called a left
multiplication by E if the following are satisfied:
(1) {uλ | u ∈E} is closed under composition ◦.
(2) ι(1R)λ = 1H .
(3) uλ(ι(1R))= u.
Define multiplication · :E ×E →E by u · v = uλ(v). Prove the following.

(i) For u,v ∈E, (u · v)λ = uλ ◦ vλ.
(ii) The multiplication · is associative and distributive over addition on both

sides.
(iii) u · ι(r)= ur for u ∈E and r ∈R.
(iv) (E,+, ·) is a compatible ring structure on ER .

Historical Notes Lemma 7.1.7 is due to Osofsky [327]. Example 7.1.8 was ob-
tained by Birkenmeier, Park, and Rizvi in [99]. The idea for the proof of Exam-
ple 7.1.8 is used to find compatible ring structures on essential extensions of a ring
R in Sects. 7.2 and 7.3. Theorem 7.1.14 is from [88]. We apply an idea of Sakano
in [367] for ER in Theorem 7.1.14. Lemma 7.1.19 and the fact that UΓ is injective
in Lemma 7.1.20 are corrected versions of Lemma 6, Lemma 7, and the fact that
VΓ is injective in Lemma 8 in [92]. Result 7.1.18, and Results 7.1.21–7.1.25 are
from [92], while Theorem 7.1.26 is in [88]. Theorem 7.2.1 and Theorem 7.2.2 are
taken from [99]. In Theorem 7.2.1, by using an explicit description of an injective
hull E of RR , where R is the ring of Example 7.1.13, we provide another method
which is different from that of Lam [262] and that of Osofsky [327] for showing
that R is not right Osofsky compatible.

Theorem 7.3.1 is from [234, 235, 415], and [327]. Theorem 7.3.2 is known as
Gabriel’s Theorem. Example 7.3.5, from [266], was obtained by Dlab and Ringel.
Results 7.3.7–7.3.10 appear in [266]. Proposition 7.3.10 is also in [99] with a dif-
ferent proof from that of [266]. The proof of Proposition 7.3.10 is taken from [99].
For Theorem 7.3.11, see also [294]. Theorem 7.3.12 was obtained by Lang [266],
which exhibits some constraints in finding classes of right Osofsky compatible com-
mutative Artinian rings. Example 7.3.13(i) is initially due to Utumi [395] and Exam-
ple 7.3.13(ii) appears in [266]. Theorem 7.3.14 is due to Birkenmeier, Osofsky, Park,
and Rizvi [95]. We provide an alternate proof Theorem 7.3.14(v). Corollary 7.3.15
is from [95]. Theorem 7.3.17 and Example 7.3.18 were obtained by Birkenmeier,
Park, and Rizvi, which are unpublished new results.

See [95, 297, 332], and [334] for further materials on right Osofsky compatibility
and compatible ring structures. Osofsky has obtained some new results on this no-
tion in a very recent work that is not published yet [332]. Her earlier related works
include [325] and [328].



Chapter 8
Ring and Module Hulls

A motivation for the need to study ring and module hulls that are intermediate be-
tween a ring R and Q(R) or E(R), and between a module M and E(M), respec-
tively, can be seen from the following examples. Consider

R =
[

Z Q

0 Z

]

.

The ring R is neither right nor left Noetherian and its prime radical is nonzero.
However, Q(R)= Mat2(Q) is simple Artinian. Next, take R to be a domain which
is not right Ore. Then Q(R) is a simple regular right self-injective ring (see Theo-
rem 2.1.31 and [262, Corollary 13.38′]) which is neither orthogonally finite nor with
bounded index (of nilpotency). The disparity between R and Q(R) in the preceding
examples limits the transfer of information between R and Q(R).

Although every module has an injective hull, it is generally hard to construct
or explicitly describe it. However, certain known subsets of the injective hull or
of the endomorphism ring of the injective hull of a given ring (or module) can be
used to generate an overring (or an overmodule) in conjunction with the base ring
(or module) to serve as a hull of the ring (module) with some desirable properties.
For example, since Q(R) can be constructed for a ring R by Utumi’s method (see
Theorem 1.3.13), B(Q(R)) can also be determined. Hence, the set of all f (1), where
f is a central idempotent in End(E(RR)) is explicitly described via B(Q(R)) (see
Lemma 8.3.10). Therefore, rings or modules generated by such a known subset of
the injective hull in conjunction with the base ring or module may provide hulls.
Additionally, these hulls may possess properties of interest to us.

These examples and constructions illustrate a need to find overrings of a given
ring that have some weaker versions of the properties traditionally associated with
right rings of quotients (e.g., semisimple Artinian, or (regular) right self-injective,
or right continuous, etc.). These overrings are close enough to the base ring to facil-
itate an effective exchange of information between the base ring and the overrings.
Furthermore, this need is reinforced when one studies the classes of rings for which
R = Q(R) (e.g., right Kasch rings). For these classes, the theory of right rings of
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© Springer Science+Business Media New York 2013

267

http://dx.doi.org/10.1007/978-0-387-92716-9_8


268 8 Ring and Module Hulls

quotients does not apply as was seen in Chap. 7 (and now in Chap. 8). However, the
results presented in Chap. 7 which deal with right essential overrings will still be
applicable (as will also be seen for such results from this chapter).

Our goal is to find methods that enable us to describe all right essential overrings
of a ring R in a selected class K (or essential overmodules of a module M in a
selected class M). For this, our focus is on the study of the following problems:

Problem I. Given a ring R and a class K of rings, determine what information
transfers between R and its right essential overrings in K.

Problem II. Assume that a ring R and a class of rings K are given.
(i) Determine conditions to ensure the existence of right rings of quotients and

that of right essential overrings of R, which are, in some sense, “minimal” with
respect to belonging to the class K.

(ii) Characterize the right rings of quotients and the right essential overrings
of R which are in the class K possibly by using the “minimal” ones obtained in (i).

Problem III. Given classes of rings A and B, determine those rings R ∈ B such
that Q(R) ∈A.

Problem IV. Given a ring R and a class K of rings, let X(R) denote some standard
type of extension of R (e.g., X(R)=R[x] or X(R)= Matn(R), etc.) and let H(R)

denote a right essential overring of R which is “minimal” with respect to belonging
to the class K. Determine when H(X(R)) is comparable to X(H(R)).

Problems I and II will be discussed in Sects. 8.1–8.3, while Problems III and IV
will be studied in Sects. 9.1 and 9.3, respectively. We shall see that the right es-
sential overrings which are minimal with respect to belonging to a specific class of
rings are important tools in these investigations. To accommodate various notions
of minimality, three basic notions of hulls are included in our discussion (see Defi-
nition 8.2.1). Using these notions, we establish the existence and uniqueness of the
FI-extending ring hull for a semiprime ring (which, in this case, coincides with the
quasi-Baer ring hull). In another basic type of a ring hull, we shall use R and certain
subsets of E(RR) to generate a right essential overring S, so that S is in K in some
minimal fashion (see Definition 8.2.8). This construction leads to the concept of a
pseudo ring hull. Moreover, we show that there is an effective transfer of informa-
tion between the aforementioned hulls and the base ring. The results we present in
this chapter will be applied to the study of boundedly centrally closed C∗-algebras
later in Chap. 10.

We will conclude the chapter with a discussion on module hulls in Sect. 8.4. In
particular, we will discuss quasi-injective, continuous and quasi-continuous hulls
of a module. Conditions for a continuous hull to exist will be shown. We will
see that every finitely generated projective module over a semiprime ring has an
FI-extending hull. Moreover, it will be shown that the extending and FI-extending
properties transfer from a module M to its rational hull.

For the convenience of the reader, Con, qCon, E, and FI are used respectively
to denote the class of right continuous rings (modules), the class of right quasi-
continuous rings (modules), the class of right extending rings (modules), and the
class of right FI-extending rings (modules) according to the context. Further, we let
B and qB denote the class of Baer rings and the class of quasi-Baer rings, respec-
tively.
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In this chapter, in general, all rings are assumed to have an identity element.
However, in Definition 8.1.5, Definition 8.2.1, and Sect. 8.3, we do not require that
rings must have an identity element.

8.1 Background and Preliminaries

This section is devoted to background information and preliminary results. Various
properties are presented which transfer from a ring to its right rings of quotients or
to its right essential overrings.

Definition 8.1.1 A ring R is said to be right essentially Baer (resp., right essentially
quasi-Baer) if the right annihilator of any nonempty subset (resp., ideal) of R is
essential in a right ideal generated by an idempotent. Let eB (resp., eqB) denote the
class of right essentially Baer (resp., right essentially quasi-Baer) rings.

It can be seen that eB properly contains E and B, while eqB properly contains FI
and qB. If S =A⊕Z4, where A is a domain which is not right Ore, then S is neither
right extending nor Baer. But S is right essentially Baer. Next let R be the ring as
in Example 7.1.13. Then the ring R is neither right FI-extending nor quasi-Baer.
But R is right essentially quasi-Baer (see Exercise 8.1.10.1). In Theorem 3.2.37,
we have seen that when a ring R is semiprime, R is quasi-Baer if and only if R is
right essentially quasi-Baer. The next result shows that replacing semiprime with
nonsingularity also yields this equivalence.

Proposition 8.1.2 Assume that R is a right nonsingular ring.
(i) If R ∈ eB, then R ∈ B.
(ii) If R ∈ eqB, then R ∈ qB.

Proof (i) Assume that R is right essentially Baer. Say ∅ �= X ⊆ R. Then rR(X)R
is essential in eRR with e2 = e ∈ R. As in the proof of Theorem 3.2.38, we obtain
that �R(rR(X)) = �R(eR) = R(1 − e), so rR(X) = rR(�R(rR(X))) = eR. Thus R
is Baer.

(ii) Say R is right essentially quasi-Baer. Take X to be an ideal of R and follow
the proof of part (i). �

Lemma 8.1.3 Let T be a right ring of quotients of R. Then:

(i) For right ideals I and J of T , if IT ≤ess JT , then IR ≤ess JR .
(ii) If AR � TR , then AR ≤ess TATR .

Proof (i) Let 0 �= y ∈ J . Then there is t ∈ T with 0 �= yt ∈ I . As RR ≤den TR , there
is r ∈R satisfying tr ∈R and ytr �= 0. Now ytr ∈ I . So IR ≤ess JR .

(ii) By Proposition 2.1.32, End(TR)= End(TT )∼= T . Thus TA⊆A as AR � TR .
Let 0 �= y ∈ TAT =AT . Then y = a1t1 + · · · + antn where ai ∈A, ti ∈ T for each
i, 1 ≤ i ≤ n. Since RR ≤den TR , there is r1 ∈ R with t1r1 ∈ R and yr1 �= 0. Again
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there is r2 ∈ R with t2r1r2 ∈ R and yr1r2 �= 0. Continuing this process, there is
r ∈R with 0 �= yr ∈A. So AR ≤ess TATR . �

Proposition 8.1.4 Let T be a right ring of quotients of R. Then:

(i) TT is FI-extending if and only if TR is FI-extending.
(ii) TT is extending if and only if TR is extending.

Proof (i) Let TT be FI-extending. Say AR � TR . Then AR ≤ess TATR by
Lemma 8.1.3(ii). There exists e2 = e ∈ T satisfying TATT ≤ess eTT . Thus
TATR ≤ess eTR by Lemma 8.1.3(i), so AR ≤ess eTR . Hence, TR is FI-extending.

Conversely, let TR be FI-extending. Then End(TR) = End(TT ) by Proposi-
tion 2.1.32. Take B � T . Then BR � TR because End(TR)= End(TT )∼= T . So there
exists e2 = e ∈ End(TR)= End(TT ) such that BR ≤ess eTR . Hence, BT ≤ess e(1)TT
and e(1)2 = e(1) ∈ T . Therefore, TT is FI-extending.

(ii) The proof is similar to that of part (i). �

The condition that T is a right ring of quotients of R in Proposition 8.1.4 cannot
be replaced by the condition that T is a right essential overring of R (see Exer-
cise 8.1.10.2). The concept of a D-E class is introduced in the next definition. Such
a class has the advantage that its members have an abundance of idempotents for
their “designated” right ideals.

Definition 8.1.5 Let K be a class of rings not necessarily with identity and P be a
property of right ideals. We say that K is a class determined by P if:

(i) there exists an assignment DK on the class of all rings such that DK(R) is a
set of right ideals of a ring R.

(ii) each element of DK(R) has the property P if and only if R ∈ K.
If K is such a class where P is the property that a right ideal is essential in a right

ideal generated by an idempotent, then we say that K is a D-E class and use C to
denote a D-E class. Thus, a D-E class exhibits the extending property with respect
to a designated set of right ideals of a ring in C. We note that any D-E class always
contains the class of right extending rings.

Some examples illustrating Definition 8.1.5 are as follows.

(1) K is the class of semisimple Artinian rings, DK(R)= {I | IR ≤ RR}, and P is
the property that every right ideal is a direct summand.

(2) K is the class of right Noetherian rings, DK(R) = {I | IR ≤ RR}, and P is the
property that every right ideal is finitely generated.

(3) K is the class of regular rings, DK(R) = {aR | a ∈ R}, and P is the property
that every right ideal is generated by an idempotent.

(4) K is the class of biregular rings, DK(R)= {RaR | a ∈R}, and P is the property
that every ideal is generated by a central idempotent.

(5) K is the class of right Rickart rings, DK(R)= {aR | a ∈R}, and P is the prop-
erty that every right ideal is projective.
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(6) K = B, DB(R) = {rR(X) | ∅ �= X ⊆ R}, and P is the property that every right
ideal is generated by an idempotent.

(7) K = qB, DqB(R)= {rR(I ) | I �R}, and P is the property that every right ideal
is generated by an idempotent.

(8) C = E and DE(R)= {I | IR ≤RR}.
(9) C = eB and DeB(R)= {rR(X) | ∅ �=X ⊆R}.

(10) C = eqB and DeqB(R)= {rR(I ) | I �R}.
(11) C = FI and DFI(R)= {I | I �R}.
(12) C = pFI (pFI is the class of right principally FI-extending rings), and

DpFI(R)= {RaR | a ∈R}.
We observe that the same class K of rings can be determined by more than one

DK and P. For example, with the class E we can also use the set of closed right
ideals of R for DE(R) and take P to be the property that every right ideal is either
essential in a right ideal generated by an idempotent, or P to be the property that
every right ideal generated by an idempotent. Also we note that the class of right
Rickart rings can also be characterized by DK(R) = {rR(a) | a ∈ R}, and P is the
property that every right ideal is generated by an idempotent.

Lemma 8.1.6 (i) Assume that T is a right ring of quotients of R. If JR ≤ TR , then
�R(J )= �R(J ∩R).

(ii) Assume that T is a left ring of quotients of R. If RJ ≤ RT , then
rR(J )= rR(J ∩R).

Proof (i) Clearly, �R(J )⊆ �R(J ∩R). Let a ∈ �R(J ∩R) and suppose that there is
y ∈ J such that ay �= 0. Since RR ≤den TR , there is r ∈ R such that yr ∈ J ∩R and
ayr �= 0, a contradiction. Thus, �R(J )= �R(J ∩R).

(ii) The proof is similar to that of part (i). �

We say that an overring T of a ring R is a right intrinsic (ideal intrinsic) extension
of R if every nonzero right ideal (ideal) of T has a nonzero intersection with R. Note
that if T is a right essential overring of R, then T is a right intrinsic extension of R.
See [162] and [64] for more details on right intrinsic extensions.

Proposition 8.1.7 (i) Let C be a D-E class of rings, and let T be a right intrinsic
extension of a ring R. Assume that for each J ∈DC(T ) there exists e2 = e ∈R such
that eJ ⊆ J and (J ∩R)R ≤ess eRR . Then T ∈ C.

(ii) Let C be a D-E class of rings, and T be a right ring of quotients of R. Assume
that R ∈ C. If J ∈DC(T ) implies J ∩R ∈DC(R), then T ∈ C.

Proof (i) We first note that J = eJ ⊕ (1 − e)J . Suppose that (1 − e)J �= 0. Then
0 �= (1 − e)J ∩ R ⊆ J ∩ R ⊆ eR, a contradiction. Hence, J = eJ ⊆ eT . To show
that JT ≤ess eTT , we take 0 �= ev ∈ eT with v ∈ T . Then evT ∩ R �= 0, hence
0 �= evu ∈R for some u ∈ T , and so 0 �= evu ∈ eR. Thus, there is r ∈ R such that
0 �= euvr ∈ J ∩R ⊆ J . So JT ≤ess eTT , therefore T ∈ C.
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(ii) Let J ∈ DC(T ). Since J ∩R ∈DC(R) by assumption, there exists e2 = e ∈R

with (J ∩R)R ≤ess eRR . Because 1−e ∈ �R(J ∩R), (1−e)J = 0 by Lemma 8.1.6.
Hence, JR ≤ eTR and eRR ≤ess eTR , so JR ≤ess eTR . Thus, JT ≤ess eTT and there-
fore T ∈ C. �

A ring R is called right finitely Σ -extending if R(n)
R is extending for each positive

integer n (cf. Exercise 6.1.18.1). A ring R is said to be right uniform-extending if
every uniform right ideal of R is essential in a direct summand of RR . The following
result demonstrates that the right extending property transfers to right rings of quo-
tients, while the right FI-extending property transfers to right intrinsic extensions.

Theorem 8.1.8 (i) Assume that T is a right intrinsic extension of a ring R. If RR is
FI-extending, then so is TT .

(ii) Let T be an ideal intrinsic extension of a ring R such that B(R) ⊆ B(T ).
If R is semiprime and R is (right) FI-extending, then T is semiprime and (right)
FI-extending.

(iii) Assume that T is a right ring of quotients of a ring R. If RR is extending,
then so is TT .

(iv) Assume that T is a right ring of quotients of a ring R. If RR is finitely Σ -
extending, then so is TT .

(v) Assume that T is a right ring of quotients of a ring R. If RR is uniform-
extending, then so is TT .

Proof (i) Let J � T . Then J ∈ DFI(T ) and J ∩ R ∈ DFI(R). Because RR is FI-
extending, (J ∩ R)R ≤ess eRR with e2 = e ∈ R. From Proposition 8.1.7(i), TT is
FI-extending.

(ii) Clearly, T is semiprime. Let 0 �= I � T . Then (I ∩ R)R ≤ess eRR for some
e ∈ B(R) ⊆ B(T ) by Theorem 3.2.37 and assumption. Similar to the proof of
Proposition 8.1.7(i), (1 − e)I = 0, so I = eI ⊆ eT . We show that IT ≤ess eTT .
For this, we prove that IeT e ≤ess eT eeT e. Say V is a nonzero ideal of eT e. Then
V is an ideal of T , so V ∩ R �= 0. Hence 0 �= V ∩ R ⊆ eT ∩ R = eR, and
thus 0 �= (V ∩ R) ∩ (I ∩ R) ⊆ V ∩ I because (I ∩ R)R ≤ess eRR . Therefore,
IeT e ≤ess eT eeT e. As e ∈ B(T ), IT ≤ess eTT . So T is (right) FI-extending.

(iii) The proof follows from Proposition 8.1.7(ii) since the class E of right ex-
tending rings is a D-E class and DE(R) is the set of all right ideals of R.

(iv) Let T be a right ring of quotients of a ring R and assume that RR is finitely
Σ -extending. Note that Matn(R) is a right extending ring for every positive integer
n (Exercise 6.1.18.1). So Matn(T ) is a right extending ring by part (iii) as Matn(T )
is a right ring of quotients of Matn(R). Thus, TT is a finitely Σ -extending.

(v) Let T be a right ring of quotients of R and assume that RR is a uniform-
extending. Say J is a uniform right ideal of T . Let I = J ∩ R, and take nonzero
elements x and y in I . Then xT ∩ yT �= 0. Say xs = yt �= 0 with s, t ∈ T . As
RR ≤den TR , there is r ∈ R such that sr ∈ R and xsr = ytr �= 0. Again since
RR ≤den TR , there exists a ∈ R with tra ∈ R and ytra �= 0. So sra ∈ R, tra ∈ R,
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and 0 �= xsra = ytra ∈ xR ∩ yR. Thus, I is a uniform right ideal of R. Hence the
proof follows directly from Proposition 8.1.7(ii). �

Theorem 8.1.9 (i) Assume that T is a right and left essential overring of a ring R.
If R ∈ qB, then T ∈ qB.

(ii) Assume that T is a right essential overring of a ring R which is also a left
ring of quotients of R. If R ∈ eqB, then T ∈ eqB.

(iii) Assume that T is a right essential overring of a ring R which is also a left
ring of quotients of R. If R ∈ B, then T ∈ B.

(iv) Assume that T is a right and left ring of quotients of a ring R. If R ∈ eB,
then T ∈ eB.

Proof (i) Let R be quasi-Baer. Say J � T and let I = J ∩R. There exists e2 = e ∈R

with rR(I )= eR. Let t ∈ rT (J ).
If (1− e)t �= 0, then there is r ∈R with 0 �= (1− e)tr ∈R as RR ≤ess TR . We see

that I (1 − e)tr ⊆ I tr ⊆ J tr = 0. Hence (1 − e)tr ∈ rR(I ) = eR, a contradiction.
Therefore, (1 − e) rT (J )= 0. Thus rT (J )⊆ eT . To show that eT ⊆ rT (J ), assume
on the contrary that there is y ∈ J such that ye �= 0. As T is a left essential overring
of R, there is s ∈R with 0 �= sye ∈R. Hence, sye ∈ J ∩R = I .

But sye ∈ Ie = 0, a contradiction. Thus, Je = 0 and so rR(J ) = eT . Therefore,
T is quasi-Baer.

(ii) Assume that R is right essentially quasi-Baer. Say J � T and I = J ∩ R.
There exists e2 = e ∈ R such that rR(I )R ≤ess eRR . As in the proof of part (i),
we obtain rT (J ) ⊆ eT . By Lemma 8.1.6(ii), rR(J ) = rR(I ). Thus we have that
rR(J )R ≤ess eRR . Since rT (J ) ⊆ eT , rT (J )R ≤ess eTR . Thus rT (J )T ≤ess eTT , so
T is right essentially quasi-Baer.

(iii) Let R be Baer. Take ∅ �=X ⊆ T and J = TX. Then rT (X)= rT (J ). We now
set I = J ∩R. Then there exists e2 = e ∈R such that rR(I )= eR. First to show that
rT (J )⊆ eT , suppose that there is t ∈ rT (J ) with (1 − e)t �= 0.

Since RR ≤ess TR , there is r ∈R with 0 �= (1 − e)tr ∈R. So

I (1 − e)tr = I tr = 0,

hence 0 �= (1 − e)tr ∈ rR(I )= eR, a contradiction. Thus rT (J )⊆ eT .
If ye �= 0 for some y ∈ J , then there is s ∈ R with sy ∈ R and sye �= 0 as RR is

dense in RT , So sy ∈ I . Hence 0 �= sye ∈ Ie = 0, a contradiction. Thus ye = 0 for
all y ∈ J , hence e ∈ rT (J ). Therefore, eT ⊆ rT (J ) and thus rT (X) = rT (J ) = eT .
So T is Baer.

(iv) Assume that R is right essentially Baer. Let ∅ �= X ⊆ T and J = TX. Then
rT (X)= rT (J ). Take I = J ∩R. There exists e2 = e ∈R such that rR(I )R is essen-
tial in eRR .

We show that rT (J )T ≤ess eTT . For this, say t ∈ rT (J ). If (1 − e)t �= 0, then
since RR ≤den TR , there exists r ∈ R with tr ∈ R and (1 − e)tr �= 0. But because
I tr ⊆ J tr = 0, tr ∈ rR(I ). Hence

(1 − e)tr ∈ (1 − e)rR(I )⊆ (1 − e)eR = 0,

a contradiction. So rT (J )⊆ eT . To see that rT (J )T ≤ess eTT , use the corresponding
part of the proof in part (ii). Therefore T is right essentially Baer. �
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As an application of Theorems 8.1.8 and 8.1.9, note that (by direct computation)
Tn(R)Tn(R) ≤den Matn(R)Tn(R) (see Exercise 8.1.10.5). Hence for various condi-
tions in Theorems 8.1.8 and 8.1.9, if the condition holds for Tn(R), then it holds
for Matn(R). Proposition 8.1.7, Theorems 8.1.8, and 8.1.9 show that if R is a ring
which belongs to a certain class (of rings) and S is a right essential overring of R in
that class, then every other right essential overring of R which contains S as a sub-
ring, also belongs to that certain class, under some conditions. These results provide
information related to Problem I.

Exercise 8.1.10

1. ([89, Birkenmeier, Park, and Rizvi]) Show that the ring R as in Example 7.1.13
is neither quasi-Baer nor right FI-extending, but R is right essentially quasi-Baer.

2. ([89, Birkenmeier, Park, and Rizvi]) For a field K , as in Example 7.3.13(i), let
T =K[x]/x4K[x] and x be the image of x in T . Put T =K+Kx+Kx2 +Kx3

and R =K +Kx2 +Kx3 which is a subring of T . Then TT is injective. Also T

is a right essential overring of R. Prove that TR is not FI-extending. (Hint: check
with x3RR � TR .)

3. ([89, Birkenmeier, Park, and Rizvi]) Show that if a ring R is Abelian and right
extending, then so is Q(R).

4. ([89, Birkenmeier, Park, and Rizvi]) Let T be a right and left ring of quotients of
R. Show that if R is right semihereditary and Matn(R) is orthogonally finite for
every positive integer n, then T is right and left semihereditary.

5. Let R be a ring and n a positive integer. Show that Matn(R) is a right ring of quo-
tients of Tn(R). Hence if P is a property that transfers from a ring to its right rings
of quotients, then P transfers from Tn(R) to Matn(R) (see Theorems 8.1.8, 8.1.9,
[4, Theorem 1 and Corollary 2], and [67, Theorem 3.5 and Corollary 3.6]).

8.2 Ring Hulls and Pseudo Ring Hulls

Motivated by the results of Sect. 8.1 and Chap. 7, we shall introduce and develop
ring hull concepts in this section. These enable us to study Problem II mentioned in
introduction of this chapter. After illustrating the ring hull notions via examples, we
shall discuss some technical machinery which enables us to verify the existence of
hulls for various D-E classes.

As a standing assumption in our considerations on hulls, for a given ring R, all
right essential overrings of R are assumed to be contained as right R-modules in a
fixed injective hull E(RR) of RR and all right rings of quotients of R are assumed
to be subrings of a fixed maximal right ring of quotients Q(R) of R.

We begin with the following definition on various ring hulls.

Definition 8.2.1 Let R be a ring with �R(R)= 0, but not necessarily with an iden-
tity element. Let K denote a class of rings.
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(i) The smallest right ring of quotients T of a ring R which belongs to K is called
the K absolute to Q(R) right ring hull of R (when it exists). We denote T = ̂QK(R).

(ii) The smallest right essential overring S of a ring R which belongs to K is
called the K absolute right ring hull of R (when it exists). We denote S =QK(R).

(iii) A minimal right essential overring of a ring R which belongs to K is called
a K right ring hull of R (when it exists).

We remark that if R is a ring (not necessarily with identity), then any right R-
module MR has an injective hull E(MR) (see [153, Theorem 9, p. 19]). Further, if
Z(RR) = 0 for such a ring, then Q(R) = E(RR) (see [153, p. 69]). Next, we note
that when Q(R) = E(RR), ̂QK(R) = QK(R). In particular, from Theorem 2.1.25,
QqCon(R) exists whenever Q(R)=E(RR) (e.g., Z(RR)= 0).

Since we are mostly dealing with the right-sided notions, we will drop the word
“right” (from the preceding definition) in the future to make it easier on the reader.
Thus, when the context is clear, we will use “K absolute to Q(R) ring hull” of R
instead of “K absolute to Q(R) right ring hull” of R, etc.

The next example, taken from Theorems 7.2.1, 7.2.2, and their proofs, illustrates
some examples of ring hulls defined in Definition 8.2.1.

Example 8.2.2 Let R,V,S,U , and T be as in Theorem 7.2.1. Then:

(i) All right FI-extending ring hulls of R are precisely: (S,+,◦(1,0)),
(S,+,◦(1,2)), (U,+,�1), (U,+,�2), (T ,+,�1), and (T ,+,�2).

(ii) All right extending ring hulls of R are precisely: (V ,+,•1), (V ,+,•2),

(V ,+,•3), (V ,+,•4), (S,+,◦(1,0)), and (S,+,◦(1,2)).
(iii) All right quasi-continuous ring hulls of R are precisely: (S,+,◦(1,0)) and

(S,+,◦(1,2)).
(iv) All right continuous ring hulls of R are precisely: (S,+,◦(1,0)) and

(S,+,◦(1,2)).
(v) All right self-injective ring hulls of R are precisely: (S,+,◦(1,0)) and

(S,+,◦(1,2)).

The following example also illustrates Definition 8.2.1. In fact, it exhibits a ring
R which has several isomorphic right FI-extending ring hulls, but R does not have
a quasi-Baer ring hull.

Example 8.2.3 Let A, R, E = ER , and T be as in Example 7.3.18. Then from
Theorem 7.3.17, E has exactly p2 compatible ring structures (E,+,•(α,β)), where
α,β ∈ Soc(A). These ring structures on ER are isomorphic and they are QF. Also
by Example 7.3.18, on T there are exactly p distinct compatible ring structures
(T ,+,�(0,β)) where β ∈ Soc(A) and �(0,β) is the restriction of •(α,β) to T . Further,
all compatible ring structures (T ,+,�(0,β)), β ∈ Soc(A), on T are isomorphic. The
rings (T ,+,�(0,β)) are right FI-extending ring hulls of R by Example 7.3.18. Say

I =
[

J (A) 0
0 0

]

. Then I is a right ideal of each of R, (T ,+,�(0,0)), and (E,+,•(0,0)),
respectively. We see that rR(I ) is not generated by an idempotent of R, so R is not
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quasi-Baer. Also the right annihilator of I in (T ,+,�(0,0)) (resp., (E,+,•(0,0))) is
not generated by an idempotent in (T ,+,�(0,0)) (resp., (E,+,•(0,0))). Thus, neither
(T ,+,�(0,0)) nor (E,+,•(0,0)) is quasi-Baer. So R does not have a quasi-Baer ring
hull.

Recall that I(R) and B(R) denote the set of all idempotents and the set of all
central idempotents of a ring R, respectively. Let R be a ring. Then RB(Q(R)),
the subring of Q(R) generated by R and B(Q(R)), has been called the idempo-
tent closure of R by Beidar and Wisbauer [42, p. 65]. In the following result, the
Baer ring hull QB(R) is RB(Q(R)) for a commutative semiprime ring R, is due to
Mewborn [298].

Theorem 8.2.4 Assume that R is a commutative semiprime ring. Then
QB(R)=QE(R)=QqCon(R)=RB(Q(R)).

Proof Say A is a commutative semiprime ring. Then A is reduced, so it is non-
singular by Theorem 1.2.20(ii). From Corollary 3.3.3, A is Baer if and only if
A is extending. As A is commutative, A satisfies (C3) condition. Thus, A is ex-
tending if and only if A is quasi-continuous. For the proof it is enough to show
that QqCon(R)=RB(Q(R)). From Corollary 1.3.15, Theorem 2.1.25, and Proposi-
tion 2.1.32, RB(Q(R)) is a quasi-continuous ring. Next, say S is a quasi-continuous
(right) ring of quotients of R. Then again by Corollary 1.3.15, Theorem 2.1.25,
and Proposition 2.1.32, B(Q(R)) ⊆ S as Q(S) = Q(R). Thus RB(Q(R)) ⊆ S. So
QqCon(R)=RB(Q(R)). �

Theorem 8.2.5 Assume that R is a regular right self-injective ring. Then R =A⊕B

(ring direct sum), where A is a strongly regular ring and B is a ring generated by
idempotents.

Proof See [397, Theorems 2 and 4]. �

Theorem 8.2.6 Let R be a right nonsingular ring and S the intersection of all right
continuous right rings of quotients of R. Then QCon(R)= S and S is regular.

Proof By Theorem 2.1.31 and Theorem 8.2.5, Q(R) = A ⊕ B (ring direct sum),
where A is strongly regular and B is a ring generated by idempotents. Let T be
a right continuous right ring of quotients of R. Since Z(TT ) = 0, T is regular by
Corollary 2.1.30. Put A = eQ(R) with e ∈ B(Q(R)). From Theorem 2.1.25, e ∈ T

and B ⊆ T . So T = (eQ(R)∩ T )⊕B = eT ⊕B (ring direct sum).
Let {Tα | α ∈ Λ} be the set of all right continuous right rings of quotients of

R. Then ∩Tα = [∩(eTα)] ⊕ B . In fact, note that [∩(eTα)] ⊕ B ⊆ Tα for each
α as Tα = eTα ⊕ B . So [∩(eTα)] ⊕ B ⊆ ∩Tα . Next, say x ∈ ∩Tα and β ∈ Λ.
Then x ∈ Tβ = eTβ ⊕ B , hence x = y + b with y ∈ eTβ and b ∈ B . So y =
ey and y = x − b ∈ (∩Tα) + B = ∩Tα as B ⊆ Tα for every α. Hence, y ∈ Tα
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for every α, so y = ey ∈ eTα for every α. Thus, y ∈ ∩(eTα), and therefore
x = y + b ∈ [∩(eTα)] ⊕B . Hence, ∩Tα = [∩(eTα)] ⊕B .

Say a ∈ ∩(eTα). There is a unique element b ∈ eQ(R) with a = aba and b = bab

as eQ(R) is a strongly regular ring (see [264, Exercise 3, p. 36]). Also since each
eTα is strongly regular, there exists bα ∈ eTα ⊆ eQ(R) such that a = abαa and
bα = bαabα , for each α. By the uniqueness of b, b = bα ∈ eTα for each α. Hence,
b ∈ ∩(eTα), so ∩(eTα) is a strongly regular ring.

As B is regular, ∩Tα = [∩(eTα)] ⊕ B is regular. From I(∩Tα) = I(Q(R)), ∩Tα
is right quasi-continuous by Theorem 2.1.25. So, ∩Tα is right continuous. �

A ring is called right duo if every right ideal is an ideal. The next result shows
the existence of the right duo absolute ring hull for a right Ore domain.

Proposition 8.2.7 If R is a right Ore domain, then R has a right duo absolute ring
hull.

Proof Clearly, Q(R) is right duo. Let S be the intersection of all right duo right
rings of quotients of R. Let T and U be right duo right rings of quotients of R. Say
s, x ∈ S with x �= 0. Then there are t ∈ T and u ∈ U with sx = xt = xu. Hence
x(t − u) = 0, so t = u and t (or u) ∈ T ∩ U . As T and U are arbitrary right duo
right rings of quotients of R, t ∈ S and so sx = xt ∈ xS. Hence, S is the right duo
absolute ring hull of R. �

Theorem 8.2.4 and the construction of QqCon(R) by Theorem 2.1.25 suggest
how to design a “hull” of R by adjoining a certain subset of E(RR) to R. This leads
to the notion of a pseudo ring hull which we define next. To define pseudo ring hulls
in Definition 8.2.8, for a D-E class C, we fix DC(R) for the class C (e.g., for E, we
fix DE = {I | IR ≤RR} rather than {J | JR is closed in RR}). Define

δC(R)= {e ∈ I(End(E(RR)) | IR ≤ess eE(RR) for some I ∈ DC(R)}
and δC(R)(1)= {e(1) | e ∈ δC(R)}. For example,

δFI(R)= {e ∈ I(End(E(RR)) | IR ≤ess eE(RR) for some I �R}
because DFI(R) is the set of all ideals of R.

We next generate a right essential overring in a class C from a base ring R and
δC(R). By using an equivalence relation, say ρ on δC(R), we reduce the size of the
subset of idempotents needed to generate a right essential overring of R in C. For
this, we consider δρ

C
(R), which is a set of representatives of all equivalence classes

of ρ, and let δρ
C
(R)(1)= {h(1) ∈E(RR) | h ∈ δ

ρ

C
(R)}.

Recall that 〈X〉A denotes the subring of a ring A generated by a subset X of A
(see 1.1.2).

Definition 8.2.8 Let S be a right essential overring of R.
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(i) If δC(R)(1)⊆ S and 〈R ∪ δC(R)(1)〉S ∈ C, then we put

〈R ∪ δC(R)(1)〉S =R(C , S).

If S =R(C, S), then S is called a C pseudo right ring hull of R.
(ii) If δρ

C
(R)(1)⊆ S and 〈R ∪ δ

ρ

C
(R)(1)〉S ∈ C, then we put

〈R ∪ δ
ρ

C
(R)(1)〉S =R(C , ρ, S).

If S =R(C, ρ, S), then S is called a C ρ pseudo right ring hull of R.

If δC(R)(1) ⊆ Q(R) and S is a right essential overring of R such that R(C, S)
exists, then R(C, S)=R(C, Q(R)) from Proposition 7.1.11.

For example, assume that Q(R) = E(RR). Then QqCon(R) exists, and we see
that QqCon(R)=R(qCon,Q(R)).

As we are usually using the right-sided notions, we will drop the word “right” in
the preceding definition. Thus we will call “C pseudo right ring hull of R” just “C
pseudo ring hull of R”, etc.

The next examples illustrate Definitions 8.2.1 and 8.2.8. They show that neither
C ring hulls nor C ρ pseudo ring hulls are unique.

Example 8.2.9 In this example, we see that the intersection of all right FI-extending
ring hulls is not necessarily a right FI-extending absolute ring hull. Further, it is
shown that a right FI-extending ring hull may not be unique even up to isomorphism
(cf. Example 8.2.3). Let F be a field and as in Example 3.2.39, we put

R =
⎧

⎨

⎩

⎡

⎣

a 0 x

0 a y

0 0 c

⎤

⎦ | a, c, x, y ∈ F

⎫

⎬

⎭

∼=
[

F F ⊕ F

0 F

]

.

Then by [262, Example 13.26(5)], R is right nonsingular and Q(R)= Mat3(F ).

(i) Let H1 =
⎧

⎨

⎩

⎡

⎣

a 0 x

0 b y

0 0 c

⎤

⎦ | a, b, c, x, y ∈ F

⎫

⎬

⎭

∼=
[

F ⊕ F F ⊕ F

0 F

]

, and let

H2 =
⎧

⎨

⎩

⎡

⎣

a + b a x

0 b y

0 0 c

⎤

⎦ | a, b, c, x, y ∈ F

⎫

⎬

⎭

.

Note that H1 and H2 are subrings of Mat3(F ). Define φ :H1 →H2 by

φ

⎡

⎣

a 0 x

0 b y

0 0 c

⎤

⎦=
⎡

⎣

a a − b x − y

0 b y

0 0 c

⎤

⎦ .

Then φ is a ring isomorphism. The ring R is not right FI-extending (see Exam-
ple 3.2.39), but H1 is right FI-extending by Corollary 5.6.11. Thus H2 is right FI-
extending because H1 ∼=H2.
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Let F = Z2. Then there is no proper intermediate ring between R and H1, also
between R and H2. Thus, H1 and H2 are right FI-extending ring hulls of R. Since
H1 ∩ H2 = R, the intersection of right FI-extending ring hulls is not a right FI-
extending absolute ring hull.

(ii) Assume that F = Z2. Consider

H3 =
⎧

⎨

⎩

⎡

⎣

a + b b x

b a y

0 0 c

⎤

⎦ | a, b, c, x, y ∈ F

⎫

⎬

⎭

.

The ring H3 is right FI-extending from Corollary 5.6.11. Also H3 is a right FI-
extending ring hull of R because there is no proper intermediate ring between R

and H3. Further, Tdim(H1)= 3, but Tdim(H3)= 2. Thus H3 �∼=H1.
(iii) From Theorem 5.6.5 (see also Example 3.2.39), R = QqB(R). Also we see

that R(FI,Q(R))=
⎡

⎣

F F F

F F F

0 0 F

⎤

⎦ �= Mat3(F )=QqCon(R)=QCon(R).

Example 8.2.10 There is a right nonsingular ring which has an infinite number
of right FI-extending ρ pseudo ring hulls. Furthermore, none of these pseudo
ring hulls is a right FI-extending ring hull, for some equivalence relation ρ on
δFI(R). Take R = T2(Z). Then R is right FI-extending from Theorem 5.6.19. Say
eij is the matrix in R with 1 in (i, j)-position and 0 elsewhere. We note that
{0,1R}∪{e11 + qe12 | q ∈ Q} ⊆ δFI(R). Define an equivalence relation ρ on δFI(R)

such that: e ρ f if and only if e = f e and f = ef . Then each δ
ρ

FI(R) contains
{0,1R, e11 + qe12}, where q ∈Q is fixed.

Suppose that q �∈ Z. Then 〈R ∪ δ
ρ

FI(R)(1)〉Q(R), the subring of Q(R) generated
by R ∪ δ

ρ

FI(R)(1), is a right FI-extending ρ pseudo ring hull of R because by The-
orem 8.1.8(i) 〈R ∪ δ

ρ

FI(R)(1)〉Q(R) is right FI-extending. Therefore, we obtain that
R(FI, ρ,Q(R))= 〈R ∪ δ

ρ

FI(R)(1)〉Q(R). But 〈R ∪ δ
ρ

FI(R)(1)〉Q(R) is not a right FI-
extending ring hull of R as 〈R ∪ δ

ρ

FI(R)(1)〉Q(R) �=R =QFI(R).

We introduce two new equivalence relations which will be helpful.

Definition 8.2.11 (i) We define an equivalence relation α on δC(R) by e α f if
e = f e and f = ef .

(ii) We define an equivalence relation β on δC(R) by e β f if there exists IR ≤RR

such that IR ≤ess eE(RR) and IR ≤ess fE(RR).

The equivalence relation α was used as ρ in Example 8.2.10. Note that for e, f
in δC(R), e α f implies e β f . If Z(RR)= 0, then α = β .

Lemma 8.2.12 Let R be a ring and H = End (E(RR)).
(i) If T is a right essential overring of R, then for e ∈ I(T ), there exists c ∈ I(H)

such that c|T ∈ End(TT ) and c(1)= e.
(ii) For b ∈ I(H), if b(1) ∈Q(R), then b(1) ∈ I(Q(R)).
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Proof (i) Note that E(TR) = E(eTR)⊕E((1 − e)TR). Let c be the canonical pro-
jection from E(TR) onto E(eTR). Then c(t) = c(et)+ c((1 − e)t) = et for t ∈ T .
Hence c(1)= e. If s ∈ T , then c(ts)= ets = c(t)s. So c|T ∈ End(TT ).

(ii) As E(RR) is an (H,Q(R))-bimodule, each element of H is a Q(R)-
homomorphism. So if b(1) ∈ Q(R), then b(1) = b(b(1)) = b(1b(1)) = b(1)b(1),
thus b(1) ∈ I(Q(R)). �

Proposition 8.2.13 Let C be a D-E class of rings, and let T be a right ring of
quotients of R, δ be some δα

C
(R) such that δ(1)⊆ T . Take S = 〈R∪δ(1)〉T . Suppose

that for each J ∈DC(S) there is I ∈ DC(R) with IR ≤ess JR . Then S =R(C, α, T ),
which is a C α pseudo ring hull of R.

Proof Since δ(1) ⊆ Q(R), δ(1) ⊆ I(S) by Lemma 8.2.12(ii). To show that
S =R(C, α,T ), we only need to see that S ∈ C. For this, let J ∈ DC(S). By as-
sumption, there exists I ∈ DC(R) satisfying IR ≤ess JR . Therefore we have that
IR ≤ess JR ≤ess E(JR) = eE(RR) for some e ∈ I(H), where H = End(E(RR)).
Hence, e ∈ δC(R), so there exists f ∈ δ satisfying eE(RR)= fE(RR). Thus we get
JR ≤ess fE(RR) and so JR ≤ess f SR .

Note that f ∈ End(ER) = End(EQ(R)) by the proof of Theorem 2.1.31, where
E = E(RR). So JR ≤ess f SR = f (1)SR because S is a subring of Q(R). Hence,
JS ≤ess f (1)SS and f (1)2 = f (1) ∈ S, so S ∈ C. �

Proposition 8.2.14 Let C be a D-E class of rings, and let T be a right essential
overring of R. Assume that for each I ∈ DC(R) there exists e ∈ I(T ) satisfying
IR ≤ess eTR . Then there exists δβ

C
(R) such that, for each c ∈ δ

β

C
(R), c|T ∈ End(TT )

and c(1) ∈ I(T ).

Proof Let b ∈ δC(R). Then there is I ∈ DC(R) with IR ≤ess bE(RR). By assump-
tion, IR ≤ess eTR for some e ∈ I(T ). From Lemma 8.2.12(i), there is c2 = c in
End(E(RR)) such that c|T ∈ End(TT ) and c(1)= e.

We note that IR ≤ess eTR = c(1)TR = cTR , so IR ≤ess cE(RR). Thus, bβ c. �

The next result will be used to find right extending right rings of quotients of
certain rings in Sect. 9.1.

Theorem 8.2.15 Let R be a ring such that α = β (e.g., Z(RR)= 0), and let T be a
right ring of quotients of R. Then the following are equivalent.

(i) T is right extending.
(ii) There exists a right extending α pseudo ring hull R(E, α,Q(R)) and it is a

subring of T .

Proof (i)⇒(ii) Assume that T is right extending. To apply Proposition 8.2.14, let
I ∈ DE(R), that is, IR ≤ RR . By the proof of Lemma 8.1.3(ii), IR ≤ess ITR . Take
J = IT . Since T is right extending, there is e ∈ I(T ) with JT ≤ess eTT . Thus
JR ≤ess eTR by Lemma 8.1.3(i), so IR ≤ess JR ≤ess eTR .
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By Proposition 8.2.14, there is δβE(R) with c|T ∈ End(TT ) and c(1) ∈ I(T ) for

each c ∈ δ
β

E(R). Take S = 〈R ∪ δ
β

E(R)(1)〉T = 〈R ∪ δ
β

E(R)(1)〉Q(R). Now for each
KS ≤ SS , (K ∩ R)R ≤ RR and (K ∩ R)R ≤ess KR . Since Z(RR) = 0, α = β (Ex-
ercise 8.2.16.3), and hence S = 〈R ∪ δαE(R)(1)〉Q(R) = R(E, α,Q(R)) by Proposi-
tion 8.2.13. Clearly S is a subring of T .

(ii)⇒(i) The proof follows from Theorem 8.1.8(iii). �

Exercise 8.2.16

1. ([89, Birkenmeier, Park, and Rizvi]) Assume that A is a commutative lo-

cal QF-ring such that J (A) �= 0. In this case, we take S0 =
[

A J(A)

0 A

]

,

S1 = T2(A), S2 =
[

A A

J(A) A

]

, and S3 = Mat2(A). Prove that the following

hold true.
(i) S0 ⊆ S1 ⊆ S2 ⊆ S3 is a chain of subrings of S3 where Si,1 ≤ i ≤ 3 is a

right essential overring of its predecessor.
(ii) S0S0 ≤ess S1S0 , S1S1 ≤den S3S1 , but S0S0 is not essential in S2S0 .

(iii) S1 is a right FI-extending ring hull of S0, S2 = QE(S1), and also
S3 =QSI(S1)=QSI(S2), where SI is the class of right self-injective rings.

2. ([89, Birkenmeier, Park, and Rizvi]) Assume that U denotes the class of rings,
{R | R ∩ U(Q(R)) = U(R)}, where U(−) is the set of invertible elements of a
ring. We let R1 = 〈R ∪ {q ∈ U(Q(R)) | q−1 ∈ R}〉Q(R). Let i and j be ordinal
numbers. When j = i + 1, put

Rj = 〈Ri ∪ {q ∈ U(Q(R)) | q−1 ∈Ri}〉Q(R).

If j is a limit ordinal, let Rj = ∪i<jRi . Prove the following.
(i) ̂QU(R) exists and ̂QU(R)=Rj for any j with |j |> |Q(R)|.

(ii) If R is a right Ore ring, then ̂QU(R)=Qr
c�(R). Thus ̂QU(R) is a ring hull

that coincides with Qr
c�(R) when R is right Ore.

3. Let α and β be as in Definition 8.2.11. Show that α = β if Z(RR)= 0.
4. ([89, Birkenmeier, Park, and Rizvi]) Let R be the ring in Example 8.2.9. Show

that ∩αR(FI, α,Q(R))= T3(F ).
5. ([89, Birkenmeier, Park, and Rizvi]) Let T be a right ring of quotients of a ring

R and assume that IT � T for any I �R. Prove that T ∈ FI if and only if there
exists an R(FI, β,Q(R)) which is a subring of T .

6. ([89, Birkenmeier, Park, and Rizvi]) Assume that W is a local ring and V is

a subring of W with J (W) ⊆ V . Let R =
[

V W

0 W

]

, S =
[

V W

J(W) W

]

, and T =
Mat2(W). Prove the following.

(i) For each e ∈ I(T ), there exists f ∈ I(S) such that e α f .
(ii) S ∈ E if and only if T ∈ E if and only if S =R(E, ρ, T ) for some ρ.

(iii) If W is right self-injective, then S =R(E, α,T ).
(iv) If W is right self-injective, then QqCon(R)=R(E, T )= T .
(v) R ∈ FI if and only if W ∈ FI.
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7. ([89, Birkenmeier, Park, and Rizvi]) Let W be a local ring and V be a subring

of W . Take R =
[

V W

0 W

]

. Show that the following are equivalent.

(i) R is right extending.
(ii) T2(W) is right extending.

(iii) W is a division ring.
8. ([89, Birkenmeier, Park, and Rizvi]) Assume that A is a right FI-extending

ring and W = ⊕n
i=1Ai , where Ai = A for each i. Let D be the set of all

(a1, . . . , an) ∈W such that ai = a ∈A for all i = 1, . . . , n. Say S is a subring of

W containing D. Prove that the ring H =
[

W W

0 A

]

is a right FI-extending ring

hull of the ring R =
[

S W

0 A

]

.

9. ([89, Birkenmeier, Park, and Rizvi]) Assume that R is a ring such that Q(R) is
Abelian. Prove the following.
(i) ̂QE(R)= ̂QqCon(R)=RB(Q(R)) if and only if Q(R) is right extending.

(ii) Let R be a right Ore ring such that rR(x)= 0 implies �R(x)= 0 for x ∈ R

and Z(RR) has finite right uniform dimension. Then Q(R) is right extend-
ing if and only if ̂QCon(R) exists and ̂QCon(R) = H1 ⊕ H2 (ring direct
sum), where H1 is a right continuous strongly regular ring and H2 is a
direct sum of right continuous local rings.

10. ([89, Birkenmeier, Park, and Rizvi]) Let R be a commutative ring. Prove the
following.
(i) If R or Qr

c�(R) is extending, then ̂QCon(R)=Qr
c�(R).

(ii) If Z(RR)= 0, then ̂QCon(R) is the intersection of all regular right rings of
quotients T of R such that B(Q(R))⊆ T .

8.3 Idempotent Closure Classes and Ring Hulls

This section is mainly devoted to discussions and study of Problems I and II men-
tioned in the introduction of this chapter. As E(RR) is extending, for each right ideal
I of R there exists e2 = e ∈ End(E(RR)) such that IR ≤ess eE(RR). Furthermore,
in many cases Q(R) = E(RR) (e.g., when Z(RR) = 0). So one may expect that
Q(R) would satisfy the extending property for a certain subset of the set of right
ideals of R.

We let DIC(R) = {I � R | I ∩ �R(I) = 0 and �R(I) ∩ �R(�R(I )) = 0}. In The-
orem 8.3.8, we show that I ∈ DIC(R) if and only if there exists e in B(Q(R))

such that IR ≤den eQ(R)R . This result motivates the definition of the idempo-
tent closure class of rings, we shall consider in this section, denoted by IC. This
class of rings is a D-E class for which ̂QIC(R) = 〈R ∪ B(Q(R))〉Q(R) (see Theo-
rem 8.3.11). Thus this hull exists for every ring (not necessarily with identity) for
which Q(R) exists (i.e., when �R(R)= 0). The set DIC(R) forms a sublattice of the
lattice of ideals of R and is quite large, in general. In fact, if R is semiprime, then
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DIC(R) is the full lattice of ideals of R. From this if R is a semiprime ring, then
̂QFI(R)= ̂QqB(R)= ̂QeqB(R)= 〈R ∪B(Q(R))〉Q(R). Further, if R is a semiprime
ring with identity, then ̂QFI(R)=R(FI,Q(R)) and ̂QeqB(R)=R(eqB,Q(R)) (see
Theorem 8.3.17).

This result demonstrates that the semiprime condition of a ring R overcomes
the somewhat chaotic situation we encountered in Examples 8.2.2, 8.2.3, 8.2.9,
and 8.2.10 by providing a unique ring hull which agrees with its pseudo ring
hulls. Next we consider the transfer of algebraic information between R and
〈R∪B(Q(R))〉Q(R) in terms of prime ideals, various radicals, regularity conditions,
and so on (see Problem I). We shall see that for a semiprime ring R with identity,
̂QpqB(R), ̂QpFI(R), and ̂QfgFI(R) all exist and are equal to each other. Also the
transfer of algebraic information between R and these various hulls will also be
discussed. Finally, we shall apply these results to obtain a proper generalization of
Rowen’s well-known result: Let R be a semiprime PI-ring. Then Cen(R) ∩ I �= 0
for any 0 �= I �R (Theorem 3.2.16).

Throughout this section, R does not necessarily have an identity unless men-
tioned otherwise. However, we assume that �R(R)= 0 to guarantee the existence of
Q(R) which has an identity (see [395]).

Definition 8.3.1 (i) Let R be a ring. We recall that DIC(R) is the set of all ideals of
R such that I ∩ �R(I)= 0 and �R(I)∩ �R(�R(I ))= 0.

(ii) A ring R is called an IC-ring if for each I ∈ DIC(R) there exists e2 = e ∈ R

such that IR ≤ess eRR . The class of IC-rings is denoted by IC and is called the
idempotent closure class. Thus, IC is a D-E class.

If a ring R with identity is right FI-extending, then R ∈ IC. The set DIC(R) was
studied by Johnson [236] and denoted by F

′
(R). While Propositions 8.3.2 and 8.3.3

provide examples of DIC(R) when R is right nonsingular or semiprime, we shall
see from Theorem 8.3.8 that R ∩ eQ(R) ∈ DIC(R) for any e ∈ B(Q(R)). Also
Theorem 8.3.11(ii) characterizes the IC class of rings.

Proposition 8.3.2 If Z(RR)= 0, then DIC(R)= {I �R | I ∩ �R(I)= 0}.
Proof Assume that I � R such that I ∩ �R(I) = 0. Say JR is a complement of IR
in RR . Then (I ⊕ J )R ≤ess RR . Now JI ⊆ J ∩ I = 0, thus J ⊆ �R(I). Therefore
(I ⊕ �R(I))R ≤ess RR . If x(I ⊕ �R(I))= 0, then x = 0 because Z(RR)= 0. Hence
�R(I ⊕ �R(I))= �R(I)∩ �R(�R(I ))= 0. �

Proposition 8.3.3 (i) A ring R is semiprime if and only if DIC(R) is precisely the
set of all ideals of R.

(ii) If e ∈ S�(R), then eR ∈ DIC(R) if and only if e ∈ B(R).
(iii) Let P be a prime ideal of R. Then P ∈ DIC(R) if and only if P ∩�R(P )= 0.
(iv) Let P be a prime ideal of R and P ∈ DIC(R). If I �R such that P ⊆ I , then

I ∈ DIC(R).
(v) If I �R such that �R(I)∩ P(R)= 0, then I ∈ DIC(R).
(vi) If Z(RR)= 0 and I �R such that I ∩ P(R)= 0, then I ∈ DIC(R).
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Proof (i) Assume that R is a semiprime ring. Let I �R. Since R is semiprime and
(I ∩ �R(I))

2 = 0, I ∩ �R(I)= 0. Now �R(I)∩ �R(�R(I ))= 0 because �R(I)�R.
So DIC(R) is the set of all ideals of R. Conversely, assume that DIC(R) is the
set of all ideals of R. Let I � R with I 2 = 0. Then I ⊆ �R(I). As I ∈ DIC(R),
I ∩ �R(I)= 0 and so I = 0. Hence, R is semiprime.

(ii)–(vi) Exercise. �

Let R be a ring and I � R with I ∩ �R(I) = 0. As I�R(I ) ⊆ I ∩ �R(I) = 0, so
I ⊆ �R(�R(I )). The next lemma will be used in the sequel. We note that every ideal
in a semiprime ring satisfies all of these conditions.

Lemma 8.3.4 Assume that I �R with I ∩�R(I)= 0. Then the following are equiv-
alent.

(i) �R(I)∩ �R(�R(I ))= 0.
(ii) �R(I ⊕ �R(I))= 0.

(iii) (I ⊕ �R(I))R ≤den RR .
(iv) IR ≤den �R(�R(I ))R .
(v) IR ≤ess �R(�R(I ))R .

Proof Exercise. �

Proposition 8.3.5 Let R be a ring. Then DIC(R) is the set of all ideals I of R such
that there exists an ideal J of R with I ∩ J = 0 and (I ⊕ J )R ≤den RR .

Proof Let D1 be the set of all ideals I of R such that there is an ideal J of R
satisfying I ∩J = 0 and (I ⊕J )R ≤den RR . Then we show that DIC(R)= D1. Take
I ∈ DIC(R) and J = �R(I). Then I ∩ J = 0. Also, �R(I ⊕ J ) = �R(I) ∩ �R(J ) =
�R ∩ �R(�R(I )) = 0 as I ∈ DIC(R). By Lemma 8.3.4 or Proposition 1.3.11(iv),
(I ⊕ J )R ≤den RR . Thus I ∈ D1, and so DIC(R)⊆ D1.

Next, we take I ∈ D1. Then there exists J � R satisfying that I ∩ J = 0
and (I ⊕ J )R ≤den RR . We note that J ⊆ �R(I), I ⊆ �R(J ), and by Proposi-
tion 1.3.11(iv) �R(I ⊕ J ) = �R(I) ∩ �R(J ) = 0. Thus I ∩ �R(I) = 0. Since
J ⊆ �R(I), �R(�R(I )) ⊆ �R(J ). Hence �R(I) ∩ �R(�R(I )) ⊆ �R(I) ∩ �R(J ) = 0,
and thus I ∈ DIC(R). Therefore D1 ⊆ DIC(R). Whence DIC(R)= D1. �

We note that DIC(R) contains all ideals of R which are dense in RR as right
R-modules from Proposition 1.3.11(iv). Also if a ring R is semiprime, then by
Proposition 8.3.3(i), DIC(R) is precisely the set of all ideals. We provide an ex-
ample of a nonsemiprime ring R where the cardinality of DIC(R) is greater than or
equal to the cardinality of its complement in the set of all ideals of R. Indeed, take
R = T2(S), where S is a right nonsingular prime ring with identity. The set of all

ideals of R is

{[

A B

0 C

]

|A,B,C � S with A,C ⊆ B

}

. Since R is right nonsingular,
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by Proposition 8.3.2

DIC(R)=
{[

A B

0 C

]

|A,B,C � S with A,C ⊆ B and C �= 0

}

∪
{[

0 0
0 0

]}

.

Hence, we see that the cardinality of DIC(R) is greater than or equal to the cardi-
nality of its complement.

Lemma 8.3.6 Assume that T is a right ring of quotients of R and let I ∈ DIC(T ).
Then I ∩R ∈ DIC(R).

Proof Let I ∈ DIC(T ) and put K = I ∩ R. Then �R(K) = �R(I) from Lem-
ma 8.1.6(i). Hence K ∩ �R(K)=K ∩ �R(I)⊆ I ∩ �R(I)⊆ I ∩ �T (I )= 0.

Say a ∈ �R(K ⊕ �R(K)). Then a ∈ �R(K) = �R(I), so aI = 0. We show that
a �T (I )= 0. For this, assume on the contrary that at �= 0 for some t ∈ �T (I ). Then
there exists r ∈R satisfying tr ∈R and atr �= 0 since RR ≤den TR . Therefore

tr ∈R ∩ �T (I )= �R(I)= �R(K).

Because a ∈ �R(K ⊕ �R(K)), a �R(K) = 0. So atr = 0, a contradiction. Hence
we get a �T (I ) = 0 and a ∈ �T (I ) ∩ �T (�T (I )) = 0. So �R(K ⊕ �R(K)) = 0, as a
consequence K ∈ DIC(R). �

Lemma 8.3.7 Let I and J be ideals of R.
(i) If I ∈ DIC(R) and IR ≤ess JR , then IR ≤den JR and J ∈DIC(R).
(ii) If IR ≤den JR and J ∈ DIC(R), then I ∈DIC(R).
(iii) If I ∩ J = 0 and I ⊕ J ∈DIC(R), then I ∈DIC(R) and J ∈ DIC(R).
(iv) I ∈DIC(R) if and only if �R(I) ∈DIC(R) and I ∩ �R(I)= 0.

Proof (i) Assume that I ∈ DIC(R) and IR ≤ess JR . From Proposition 8.3.5, there
exists K �R such that (I ⊕K)R ≤den RR . By the modular law,

(J ∩ (I ⊕K))R = (I ⊕ (J ∩K))R ≤den JR.

As IR ≤ess JR and I ∩ (J ∩ K) = 0, J ∩ K = 0, so IR ≤den JR . We show that
�R(I) = �R(J ). For this, it suffices to see that �R(I) ⊆ �R(J ). Assume on the
contrary that there is x ∈ �R(I) but xJ �= 0. There is y ∈ J with xy �= 0. Since
IR ≤den JR , there is r ∈ R such that yr ∈ I and xyr �= 0, which is a contradiction
since xI = 0. Thus �R(I)= �R(J ).

So I ∩ �R(J )= I ∩ �R(I)= 0 and J ∩ �R(J )= 0. Now I ⊕ �R(I)⊆ J ⊕ �R(J ).
Thus, (J ⊕ �R(J ))R ≤den RR as (I ⊕ �R(I))R ≤den RR . Hence, J ∈DIC(R).

(ii) Let J ∈DIC(R) and IR ≤den JR . Then �R(I)= �R(J ) by the proof of part (i).
From Lemma 8.3.4, JR ≤ess �R(�R(J ))R = �R(�R(I ))R . Therefore, it follows that
IR ≤ess �R(�R(I ))R . Hence, we obtain �R(I) ∩ �R(�R(I )) = 0 from Lemma 8.3.4
because I ∩ �R(I)⊆ J ∩ �R(J )= 0. Therefore, I ∈DIC(R).
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(iii) Suppose that I ⊕ J ∈ DIC(R). From Proposition 8.3.5, there is V � R with
((I ⊕ J )⊕V )R ≤den RR . Therefore, I ∈ DIC(R) and J ∈DIC(R) again by Propo-
sition 8.3.5.

(iv) Say I ∈ DIC(R). Then I ∩ �R(I) = 0 and �R(I) ∩ �R(�R(I )) = 0. Since
I ⊆ �R(�R(I )), we have that I ⊕ �R(I) ⊆ �R(�R(I )) ⊕ �R(I). As a consequence
�R[�R(I)⊕ �R(�R(I ))] ⊆ �R(I ⊕ �R(I))= 0. So �R(I) ∈DIC(R).

Conversely, �R(I) ∈ DIC(R) implies �R(I) ∩ �R(�R(I )) = 0. Therefore,
I ∈ DIC(R) because I ∩ �R(I)= 0 by assumption. �

Let R be a ring (not necessarily with identity) with �R(R) = 0. Say U is a sub-
ring of R such that UU ≤den RU (i.e., for x, y ∈ R with y �= 0, there exists u ∈ U

satisfying xu ∈ U and yu �= 0). Then �U (U) = 0. Indeed, let x ∈ �U (U). If xr �= 0
for some r ∈ R, then there exists u ∈ U such that ru ∈ U and xru �= 0, a contra-
diction. So x ∈ �R(R) = 0, and hence �U (U) = 0. Thus, Q(U) exists. Therefore,
Q(U)=Q(R) as R is a right ring of quotients of U .

The following result characterizes the ideals of R which are dense as right
R-modules in some ring direct summands of Q(R) as precisely the elements of
DIC(R).

Theorem 8.3.8 Assume that R is a ring and I �R. Then the following are equiva-
lent.

(i) I ∈DIC(R).
(ii) There exists e ∈ B(Q(R)) such that Q(I)= eQ(R).

(iii) IR ≤den eQ(R)R for some (unique) e ∈ B(Q(R)).

Proof (i)⇒(ii) Put J = �R(I). Since I ∈ DIC(R), �R(I ⊕ J ) = 0 and hence
�I⊕J (I ⊕ J )= 0. Therefore �I (I )= 0 and �J (J )= 0, hence Q(I) and Q(J) exist.
Put U = I ⊕ J . For UU ≤den RU , take x, y ∈ R with y �= 0. As UR ≤den RR , there
exists r ∈ R such that xr ∈ U and yr �= 0. Again since UR ≤den RR , there exists
a ∈ R satisfying that ra ∈ U and yra �= 0. Because ra ∈ U and xra ∈ U , we see
that UU ≤den RU . So, Q(R)=Q(U)=Q(I ⊕ J )=Q(I)⊕Q(J) by [395, (2.1)].
Consequently, Q(I)= eQ(R) for some e ∈ B(Q(R)).

(ii)⇒(iii) Say Q(I) = eQ(R) for some e ∈ B(Q(R)). Take eq1, eq2 ∈ eQ(R)

with q1, q2 ∈ Q(R) and eq2 �= 0. As II ≤den Q(I)I , there exists a ∈ I such that
eq1a ∈ I and eq2a �= 0. Since a ∈ R, IR ≤den eQ(R)R . If f ∈ B(Q(R)) satisfying
IR ≤den fQ(R)R , then e = f as e ∈ B(Q(R)).

(iii)⇒(i) Let IR ≤den eQ(R)R for some e ∈ B(Q(R)). Then we have that
IR ≤den (eQ(R) ∩ R)R . Now Lemma 8.3.6 yields that eQ(R) ∩ R ∈ DIC(R) be-
cause eQ(R) ∈ DIC(Q(R)). From Lemma 8.3.7(ii), I ∈DIC(R). �

We note that if I ∈ DIC(R), then from Lemma 8.3.4, Lemma 8.3.7(i), and The-
orem 8.3.8, there exists e ∈ B(Q(R)) such that �R(�R(I ))R ≤den eQ(R)R . Further,
�R(�R(I )) = eQ(R) ∩ R and �R(�R(I )) is the unique closure of IR in RR (see
Exercise 8.3.58.5).
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Corollary 8.3.9 Assume that I ∈ DIC(R) and T is a right ring of quotients of R.
Then (I ) ∈DIC(T ) and IR ≤den (I )R , where (I ) is the ideal of T generated by I .

Proof There exists e ∈ B(Q(R)) with IR ≤den eQ(R) from Theorem 8.3.8. Hence,
IR ≤ (I )R ≤ eQ(R) as I = eI . Therefore (I )R ≤den eQ(R)R , and thus we see that
(I )T ≤den eQ(R)T . Because Q(R) = Q(T ), (I )T ≤den eQ(T )T . Thus from Theo-
rem 8.3.8, (I ) ∈ DIC(T ). �

Say A ∈ DIC(Q(R)). Then AQ(R) ≤den eQ(R)Q(R) for some e ∈ B(Q(R)) by
Theorem 8.3.8. Thereby Q(R) is an IC-ring and this suggests that there may be a
smallest right ring of quotients of R which is an IC-ring. So one may naturally ask:
Does ̂QIC(R) exist for every ring R when �R(R) = 0? For this question, we need
the following lemma.

Lemma 8.3.10 Assume that R is a ring with identity and b ∈ B(Q(R)). Then there
exists λ ∈ B(End(E(RR))) such that b = λ(1).

Proof Note that E(RR) is an (End(E(RR)),Q(R))-bimodule. Define a map

λ :E(RR)→E(RR) by λ(x)= xb

for x ∈E(RR). Then λ ∈ End(E(RR)) and λ2 = λ because b ∈ B(Q(R)). Next, say
ϕ ∈ End(E(RR)). For x ∈E(RR),

(λϕ)(x)= ϕ(x)b = ϕ(xb),

since End(E(RR))= End(E(RR)Q(R)) (see the proof of Theorem 2.1.31). Further,
(ϕλ)(x) = ϕ(xb). So λϕ(x) = ϕλ(x) for all x ∈ E(RR), thus λϕ = ϕλ. Hence
λ ∈ B(End(E(RR))) and b = λ(1). �

Our next result shows that ̂QIC(R) exists for all rings R with �R(R) = 0 and it
can be used to characterize IC right rings of quotients of R. When R is a ring with
�R(R) = 0, we recall from 1.1.2 that 〈R ∪ B(Q(R))〉Q(R) denotes the subring of
Q(R) generated by R ∪ B(Q(R)). Observe that if R has identity, then we see that
〈R ∪B(Q(R))〉Q(R) =RB(Q(R)).

Theorem 8.3.11 Assume that R is a ring.
(i) Let T be a right ring of quotients of R. Then T ∈ IC if and only if

B(Q(R))⊆ T .
(ii) R ∈ IC if and only if B(Q(R))⊆R. Hence, IC-rings have identity.
(iii) ̂QIC(R)= 〈R ∪B(Q(R))〉Q(R).
(iv) If R has identity, then ̂QIC(R)=R(IC,Q(R)).

Proof (i) Say T ∈ IC. Take c ∈ B(Q(R)) and we let I = R ∩ cQ(R). Then
IR ≤ess cQ(R)R . We note that cQ(R) ∈ DIC(Q(R)). From Lemma 8.3.6, Y :=
cQ(R)∩ T ∈ DIC(T ) and IR ≤ess YR . Since Y ∈DIC(T ) and T ∈ IC, YT ≤ess eTT
for some e ∈ I(T ). Thus, YR ≤ess eTR by Lemma 8.1.3(i). Now c = e ∈ T , as
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IR ≤ess YR ≤ess eTR ≤ess eQ(R)R and IR ≤ess YR ≤ess cQ(R)R . So B(Q(R))⊆ T .
Conversely, let B(Q(R))⊆ T . Take I ∈ DIC(T ). As Q(R)=Q(T ), Theorem 8.3.8
yields that there is e ∈ B(Q(T ))⊆ T such that IT ≤den eQ(T )T . Hence, we get that
IT ≤den eTT . Therefore, T ∈ IC.

(ii) and (iii) These parts follows from part (i) immediately.
(iv) By part (iii) ̂QIC(R)= 〈R ∪B(Q(R))〉Q(R). Recall that

δIC(R)= {e2 = e ∈ End(E(RR)) | IR ≤ess eE(RR) for some I ∈ DIC(R)}
and δIC(R)(1)= {e(1) | e ∈ δIC(R)}.

We prove that B(Q(R))= δIC(R)(1). For this, say c ∈ B(Q(R)). Then it follows
that R ∩ cQ(R) � R and (R ∩ cQ(R))R ≤ess cQ(R)R . From Lemma 8.3.6, we
get R ∩ cQ(R) ∈ DIC(R). Also, there exists λ2 = λ ∈ B(End(E(RR))) such that
c = λ(1) by Lemma 8.3.10.

We note that (R ∩ cQ(R))R ≤ess λ(1)Q(R)R = λQ(R)R ≤ess λE(RR) because
λ ∈ End(E(RR)Q(R)). Thus λ ∈ δIC(R), so c = λ(1) ∈ δIC(R)(1). As a conse-
quence, B(Q(R))⊆ δIC(R)(1).

Next, say h ∈ δIC(R). Then there is I ∈ DIC(R) with IR ≤ess hE(RR). By The-
orem 8.3.8, IR ≤ess bQ(R)R for some b ∈ B(Q(R)). From Lemma 8.3.10, there ex-
ists γ ∈ B(End(E(RR))) such that b = γ (1). Sometimes we will use ER for E(RR).

Observe that IR ≤ess bQ(R)R = γ (1)Q(R)R = γQ(R)R ≤ess γE(RR). So
hE(RR) = γE(RR) because γ ∈ B(End(ER)). Therefore h(1) = γ (x) for some
x ∈E(RR), and hence γ h(1)= h(1). Also γ (1)= h(y) with y ∈E(RR). As a con-
sequence, hγ (1) = γ (1), so h(1) = γ h(1) = hγ (1) = γ (1) = b. Hence, it follows
that δIC(R)(1)⊆ B(Q(R)). Therefore, B(Q(R))= δIC(R)(1).

Now 〈R ∪ δIC(R)(1)〉Q(R) = 〈R ∪ B(Q(R))〉Q(R). By the definition of pseudo
ring hulls, R(IC,Q(R))= 〈R ∪B(Q(R))〉Q(R) since 〈R ∪B(Q(R))〉Q(R) is an IC-
ring by part (iii). �

From Theorems 8.3.8 and 8.3.11, we see that any intermediate ring T between
〈R ∪ B(Q(R))〉Q(R) and Q(R) satisfies that for every I ∈ DIC(R), there exists
e2 = e ∈ T such that IR ≤ess eTR . Furthermore, we see that for every J ∈ DIC(T ),
JT ≤ess f TT for some f 2 = f ∈ T .

Corollary 8.3.12 Let R be an IC-ring with Z(RR) = 0. Then R = R1 ⊕ R2 (ring
direct sum), where R1 is a semiprime FI-extending ring and P(R) is ideal essential
in R2.

Proof Exercise. �

The following result is on the lattice properties of DIC(R) as suggested by earlier
results.

Theorem 8.3.13 (i) DIC(R) is a sublattice of the lattice of ideals of R.
(ii) If DIC(R) is a complete sublattice of the lattice of ideals of R, then B(Q(R))

is a complete Boolean algebra.
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(iii) Let R ∈ IC such that DIC(R)= {I � R | I ∩ �R(I)= 0}. Then DIC(R) is a
complete sublattice of the lattice of ideals of R.

(iv) If R is right and left FI-extending, then DIC(R) is a complete sublattice of
the lattice of ideals of R.

Proof (i) Assume that I, J ∈ DIC(R). By Theorem 8.3.8 there are unique c1, c2 in
B(Q(R)) such that IR ≤den c1Q(R)R and JR ≤den c2Q(R)R . Therefore

(I ∩ J )R ≤den c1Q(R)R ∩ c2Q(R)R = c1c2Q(R)R and c1c2 ∈ B(Q(R)).

By Theorem 8.3.8, I ∩ J ∈ DIC(R).
Let c = c1 + c2 − c1c2. Then (I + J )R ≤ (c1Q(R) + c2Q(R))R = cQ(R)R

and c ∈ B(Q(R)). Take K = R ∩ �cQ(R)(I + J ). Then K ⊆ �R(I) ∩ �R(J ). As
IR ≤den (R ∩ c1Q(R))R and JR ≤den (R ∩ c2Q(R))R , it follows that �R(I) =
�R(R ∩ c1Q(R)) = �R(c1Q(R)) = R ∩ (1 − c1)Q(R) by Lemma 8.1.6(i) and the
proof of Lemma 8.3.7(i). Also �R(J )=R ∩ (1 − c2)Q(R) similarly.

Since K ⊆ �R(I) ∩ �R(J ) = R ∩ (1 − c1)Q(R) ∩ (1 − c2)Q(R), it follows that
Kc1 = 0 and Kc2 = 0. So Kc = 0. But we see that Kc =K because

K =R ∩ �cQ(R)(I + J )⊆ cQ(R),

so �cQ(R)∩R(I + J )=K = 0.
Now since I +J � cQ(R)∩R, (I +J )cQ(R)∩R ≤den (cQ(R)∩R)cQ(R)∩R from

Proposition 1.3.11(iv), and hence (I +J )R ≤den (R∩cQ(R))R . Thus it follows that
(I + J )R ≤den cQ(R)R . By Theorem 8.3.8, I + J ∈ DIC(R). Hence DIC(R) is a
sublattice of the lattice of ideals of R.

(ii) Let {ei | i ∈Λ} ⊆ B(Q(R)). Then Ii := eiQ(R) ∩R ∈ DIC(R) for all i ∈Λ

from Lemma 8.3.6. Put I =∑

i∈Λ Ii . Then I ∈ DIC(R) by assumption. From The-
orem 8.3.8, there is e ∈ B(Q(R)) with IR ≤den eQ(R)R .

For each i ∈Λ, IiR ≤ess eiQ(R)R . Because IiR ≤ IR ≤ess eQ(R)R , we have that
IiR ≤ess eeiQ(R)R . Thus, ei = eei , so ei ≤ e for all i ∈Λ.

We claim that e = sup {ei | i ∈Λ}. For this, say f ∈ B(Q(R)) such that ei = f ei
(i.e., ei ≤ f ) for all i ∈ Λ. By Lemma 8.3.6, fQ(R) ∩ R ∈ DIC(R). Since Ii =
eiQ(R)∩R ⊆ fQ(R)∩R for all i, I ⊆ fQ(R)∩R ⊆ fQ(R). As IR ≤ess eQ(R)R ,
IR ≤ess (eQ(R) ∩ fQ(R))R = efQ(R)R ≤ess eQ(R)R , so efQ(R) = eQ(R).
Hence e = ef = f e (i.e., e ≤ f ), so e = sup {ei | i ∈ Λ}. Therefore, B(Q(R)) is
a complete Boolean algebra.

(iii) Assume that {Ii | i ∈ Λ} ⊆ DIC(R). Then from Theorem 8.3.8, there exists
{ei | i ∈Λ} ⊆ B(Q(R)) with IiR ≤den eiQ(R)R for each i ∈Λ.

Assume that F is a finite nonempty subset of Λ. First, say F = {1,2}.
Then I1R ≤den e1Q(R)R and I2R ≤den e2Q(R)R . From the proof of part (i),
(I1 + I2)R ≤den eQ(R)R , where e = e1 + e2 − e1e2. Inductively, we can see that
∑

i∈F IiR ≤den ∑
i∈F eiQ(R)R . Next, we show that

∑

i∈Λ
IiR ≤den

∑

i∈Λ
eiQ(R)R.
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For this, let x, y ∈∑i∈Λ eiQ(R) with y �= 0. Then there is a nonempty finite sub-
set F of Λ with x, y ∈ ∑i∈F eiQ(R). As

∑

i∈F IiR ≤den ∑
i∈F eiQ(R)R by the

preceding argument, there is r ∈ R with xr ∈ ∑i∈F IiR ≤ ∑

i∈Λ IiR and yr �= 0.
Therefore,

∑

i∈Λ IiR ≤den ∑
i∈Λ eiQ(R)R .

From Theorem 8.3.11(ii), B(Q(R)) ⊆ R, hence ei ∈ B(R) for each i ∈ Λ. To
see that (

∑

i∈Λ eiR) ∩ �R(
∑

i∈Λ eiR) = (
∑

i∈Λ eiR) ∩ (∩i∈Λ(1 − ei)R) = 0, it is
enough to prove that

(
∑

i∈F
eiR)∩ (∩i∈F (1 − ei)R)= 0

for any nonempty finite subset F of Λ. If F = {1}, then we are done. Say F = {1,2}.
Then

(e1R + e2R)∩ ((1 − e1)R ∩ (1 − e2)R)= (e1R + e2R)∩ (1 − e1)(1 − e2)R = 0.

So (
∑

i∈F eiR)∩ �R(
∑

i∈F eiR)= (
∑

i∈F eiR)∩ (∩i∈F (1 − ei)R)= 0 inductively.
Thus, with the hypothesis DIC(R) = {I � R | I ∩ �R(I) = 0}, it follows that
∑

i∈Λ eiR ∈DIC(R). By Lemma 8.3.7(ii),
∑

i∈Λ Ii ∈ DIC(R).
(iv) Let R be right and left FI-extending. Then R is an IC-ring, so B(Q(R))⊆R

by Theorem 8.3.11(ii). Let {Ii | i ∈Λ} ⊆ DIC(R). From Theorem 8.3.8, there exists
a set {ei | i ∈Λ} ⊆ B(Q(R)) with IiR ≤den eiQ(R)R for each i ∈Λ.

Now (
∑

i∈Λ eiR) ∩ �R(
∑

i∈Λ eiR) = (
∑

i∈Λ eiR) ∩ rR(
∑

i∈Λ eiR) = 0 by
the preceding argument. From Theorem 2.3.15, there exists c ∈ B(R) such that
�R(

∑

i∈Λ eiR) = (1 − c)R. We recall that
∑

i∈Λ IiR ≤den ∑
i∈Λ eiRR from the

proof of part (iii). Therefore, the proof of Lemma 8.3.7(i) yields that

�R(
∑

i∈Λ
Ii)= �R(

∑

i∈Λ
eiR)= (1 − c)R

from the proof of Lemma 8.3.7(i). So �R(
∑

i∈Λ Ii) ∈ DIC(R). Also

(
∑

i∈Λ
Ii)∩ �R(

∑

i∈Λ
Ii) = (

∑

i∈Λ
Ii)∩ (1 − c)R ⊆ rR(�R(

∑

i∈Λ
Ii))∩ (1 − c)R

= cR ∩ (1 − c)R = 0.

From Lemma 8.3.7(iv),
∑

i∈Λ Ii ∈ DIC(R). Hence, DIC(R) is a complete sublattice
of the lattice of ideals of R. �

Corollary 8.3.14 If Q(R) is semiprime, then B(Q(R)) is a complete Boolean al-
gebra.

Proof By Theorem 8.3.11(ii), Q(R) is an IC-ring. As Q(R) is semiprime, Q(R) is
right FI-extending from Proposition 8.3.3(i). Thus by Theorem 3.2.37, Q(R) is also
left FI-extending. So Theorem 8.3.13(ii) and (iv) yield that B(Q(R)) is a complete
Boolean algebra. �

Corollary 8.3.15 If R is a right nonsingular IC-ring, then DIC(R) is a complete
sublattice of the lattice of ideals of R.
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Proof The proof follows from Proposition 8.3.2 and Theorem 8.3.13(iii). �

Proposition 8.3.16 Assume that R is a semiprime ring. Then, for any ideal I of R,
rQ(R)(Q(R)IQ(R))= rQ(R)(I ).

Proof Let I � R. Clearly, rQ(R)(IQ(R)) ⊆ rQ(R)(I ). Let α ∈ rQ(R)(I ) and
∑

xiqi ∈ IQ(R) with xi ∈ I and qi ∈ Q(R). Assume that (
∑

xiqi)α �= 0. Since
RR ≤den Q(R)R , there exists r1 ∈ R with αr1 ∈ R and (

∑

xiqi)αr1 �= 0. Thus,
αr1 ∈ R ∩ rQ(R)(I )= rR(I )= �R(I) because R is semiprime. Also there is r2 ∈ R

with 0 �= (
∑

xiqi)αr1r2 ∈R since RR ≤ess Q(R)R .
Let y = (

∑

xiqi)αr1r2. As αr1 ∈ �R(I), αr1r2 ∈ �R(I) and so αr1r2I = 0.
Hence yRI = (

∑

xiqi)αr1r2RI ⊆ (
∑

xiqi)αr1r2I = 0. Further, note that yR =
(
∑

xiqiαr1r2)R ⊆ IQ(R). So (yR)2 = (yR)(yR) ⊆ yRIQ(R) = 0, which is a
contradiction because R is semiprime. Therefore α ∈ rQ(R)(IQ(R)), and thus
rQ(R)(I )= rQ(R)(IQ(R))= rQ(R)(Q(R)IQ(R)). �

The next result demonstrates the existence and uniqueness of the quasi-Baer and
the right FI-extending ring hulls of a semiprime ring. It extends Mewborn’s result
(Theorem 8.2.4) as a commutative quasi-Baer ring is Baer.

Theorem 8.3.17 Let R be a semiprime ring. Then:

(i) ̂QqB(R)= ̂QFI(R)= ̂QeqB(R)= 〈R ∪B(Q(R))〉Q(R).
(ii) If R has identity, then ̂QFI(R)=R(FI,Q(R)).

(iii) If R has identity, then ̂QeqB(R)=R(eqB,Q(R)).

Proof (i) Note that ̂QFI(R)= 〈R ∪B(Q(R))〉Q(R) by Proposition 8.3.3(i) and The-
orem 8.3.11(iii). From Theorem 3.2.37, ̂QqB(R)= ̂QeqB(R)= ̂QFI(R).

(ii) This part follows from Proposition 8.3.3(i) and Theorem 8.3.11(iv).
(iii) To prove that R(eqB,Q(R)) = 〈R ∪ B(Q(R))〉Q(R), we claim that

B(Q(R)) = δeqB(R)(1). For this, let a ∈ B(Q(R)) and I = R ∩ (1 − a)Q(R).
Then IR ≤ess (1 − a)Q(R)R , and so Q(R)IQ(R)R ≤ess (1 − a)Q(R)R . Thus
Q(R)IQ(R)Q(R) ≤ess (1 − a)Q(R)Q(R).

By Theorem 8.3.11(ii), Q(R) is an IC-ring. As Q(R) is semiprime, Q(R) is
a right FI-extending ring from Proposition 8.3.3(i). By Theorem 3.2.37, Q(R) is
quasi-Baer. So there is k ∈ B(Q(R)) with rQ(R)(Q(R)IQ(R))= kQ(R) by Propo-
sition 1.2.6(ii). Now Q(R)IQ(R)Q(R) ≤ess (1 − k)Q(R)Q(R) by Lemma 2.1.13.
Thus 1 − a = 1 − k, so a = k.

From Lemma 8.3.10, there is μ2 = μ ∈ End(E(RR)) such that a = μ(1). By
Proposition 8.3.16, rQ(R)(I )= rQ(R)(Q(R)IQ(R))= kQ(R). Hence

rR(I )R = (rQ(R)(I )∩R)R = (kQ(R)∩R)R

≤ess kQ(R)R = aQ(R)R = μ(1)Q(R)R = μQ(R)R

≤ess μE(RR)
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because μ ∈ End(E(RR)) = End(E(RR)Q(R)). Thus μ ∈ δeqB(R), and therefore
a = μ(1) ∈ δeqB(R)(1). Hence B(Q(R))⊆ δeqB(R)(1).

To show that δeqB(R)(1)⊆ B(Q(R)), let ν ∈ δeqB(R). Then there is J � R with
rR(J )R ≤ess νE(RR). By Proposition 8.3.3(i) and Theorem 8.3.8,
rR(J )R ≤ess dQ(R)R for some d ∈ B(Q(R)). From Lemma 8.3.10, there exists φ
in B(End(E(RR))) such that d = φ(1). Thus ν(1) = φ(1) = d ∈ B(Q(R)) as
in the proof of Theorem 8.3.11(iv). Hence, δeqB(R)(1) ⊆ B(Q(R)). Therefore,
B(Q(R))= δeqB(R)(1). So 〈R ∪B(Q(R))〉Q(R) = 〈R ∪ δeqB(R)(1)〉Q(R).

Consequently, 〈R ∪ δeqB(R)(1)〉Q(R) = R(eqB,Q(R)) from the definition of
pseudo ring hulls, since 〈R ∪ B(Q(R))〉Q(R) is right essentially quasi-Baer by
part (i). Hence, ̂QeqB(R)= 〈R ∪B(Q(R))〉Q(R) =R(eqB,Q(R)). �

We note that from Theorems 3.2.37 and 8.3.17 when R is a semiprime ring,
〈R ∪B(Q(R))〉Q(R) is also the strongly FI-extending absolute to Q(R) ring hull of
R. The following example shows that the semiprimeness of R in Theorem 8.3.17 is
not a superfluous condition.

Example 8.3.18 There is a right nonsingular ring R which is not semiprime and
〈R ∪B(Q(R))〉Q(R) �= ̂QqB(R). Let F be a field, and put

R =
⎡

⎣

F F F

0 F 0
0 0 F

⎤

⎦ .

Observe that 〈R∪B(Q(R))〉Q(R) =RB(Q(R)) since R has an identity. Also we see
that R is quasi-Baer by Corollary 5.4.2 or Theorem 5.6.5. Therefore ̂QqB(R) = R.
As R is right Artinian, Soc(RR) ≤ess RR . Since Soc(RR) is the intersection of all
essential right ideals of R, Soc(RR) is the smallest essential right ideal of R. Also as
R is right nonsingular, Soc(RR) is the smallest dense right ideal of R from Proposi-
tion 1.3.14. If q ∈ Q(R), then qSoc(RR) ⊆ R, and so qSoc(RR) ⊆ Soc(RR). By
Proposition 1.3.11(ii), �Q(R)(Soc(RR)) = 0. Hence, Q(R) ∼= End(Soc(RR)). As
Soc(RR)= �R(J (R)), Soc(RR)=MR ⊕NR , where

M =
⎡

⎣

0 F 0
0 F 0
0 0 0

⎤

⎦ and N =
⎡

⎣

0 0 F

0 0 0
0 0 F

⎤

⎦ .

So Q(R)∼= End(MR ⊕NR). In this case, by straightforward computation,

Q(R)∼= End(MR)⊕ End(NR)= End(MF )⊕ End(NF )∼= Mat2(F )⊕ Mat2(F ).

Now |B(R)| = 2. But |B(Q(R))| = 4. Thus, R = ̂QqB(R) �=RB(Q(R)).

Since idempotents as well as various properties lift modulo the prime radical,
Theorem 8.3.17 provides an effective mechanism for transferring information be-
tween an arbitrary ring R and ̂QqB(R/P (R)) (or ̂QFI(R/P (R))) via

R
μ→ R/P (R)

ι→ ̂QqB(R/P (R)),

where μ is the natural homomorphism and ι is the inclusion.
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Corollary 8.3.19 Let T be a semiprime right ring of quotients of a ring R. Then T

is quasi-Baer (and right FI-extending) if and only if B(Q(R))⊆ T .

Proof Proposition 8.3.3(i), Theorems 3.2.37 and 8.3.17 yield the result. �

It is worth noting that if we modify the ring R in Example 8.2.9 and instead of
a field take F to be a commutative domain which is not a field, then R is neither
semiprime nor right FI-extending. Now, T = Mat3(F ) is a semiprime quasi-Baer
(and right FI-extending) right ring of quotients of R such that B(Q(R)) ⊆ T . But
observe that T �= Q(R) = Mat3(K), where K is the field of fractions of F . If R
is a semiprime ring, Qs(R), Qm(R), and Q(R) are all semiprime rings. Also, they
contain B(Q(R)). If R is a semiprime ring with identity, then the central closure
of R and the normal closure of R are semiprime and contain B(Q(R)). So Theo-
rem 8.3.17 or Corollary 8.3.19 yields the following consequence.

Corollary 8.3.20 (i) If R is a semiprime ring, then Qs(R), Qm(R), and Q(R) are
quasi-Baer and right FI-extending.

(ii) If R is a semiprime ring with identity, then the central closure and the normal
closure are quasi-Baer and right FI-extending.

There is a semiprime ring R for which neither Qm(R) nor Qs(R) is Baer. In
fact, there is a simple ring R which is not a domain and 0, 1 are its only idempotents
(see Example 3.2.7(ii)). Then Qm(R) = R and Qs(R) = R. So neither Qm(R) nor
Qs(R) is Baer.

Corollary 8.3.21 Let R be a right Osofsky compatible ring with identity. If R has
a right FI-extending right essential overring which is a subring of E(RR), then
E(RR) is right FI-extending. In particular, if Q(R) is semiprime, then E(RR) is
right FI-extending.

Proof Let S be a right FI-extending right essential overring of R which is a subring
of the ring E(RR). Then E(RR) is a right essential overring of S. Thus E(RR) is a
right FI-extending ring by Theorem 8.1.8(i). If Q(R) is semiprime, then from Corol-
lary 8.3.20(i), Q(R) is right FI-extending. By Proposition 7.1.11, Q(R) is a subring
of E(RR), so E(RR) is a right essential overring of Q(R). Hence, Theorem 8.1.8(i)
yields that E(RR) is a right FI-extending ring. �

We remark that the ring R in Example 7.3.6 is right FI-extending and right Os-
ofsky compatible, so E(RR) is right FI-extending by Corollary 8.3.21.

A ring R is said to have no nonzero n-torsion (n is a positive integer) if na = 0
with a ∈R implies a = 0.

Theorem 8.3.22 Let R[G] be the group ring of a group G over a ring R with
identity. Then R[G] is semiprime if and only if R is semiprime and R has no |N |-
torsion for any finite normal subgroup N of G.



294 8 Ring and Module Hulls

Proof See [264, Proposition 8, p. 162] or [341, Theorem 2.13, p. 131]. �

The next corollary is obtained from Theorems 8.3.22 and 8.3.17. It is of interest
to compare this result with Theorem 6.3.10(ii).

Corollary 8.3.23 Assume that R[G] is the semiprime group ring of a group G over
a ring R with identity. If R[G] is quasi-Baer, then |N |−1 ∈ R for any finite normal
subgroup N of G.

Proof Let N be a finite normal subgroup of G. Because R[G] is semiprime, R has
no |N |-torsion by Theorem 8.3.22. Let e = |N |−1∑

g∈N g. Then

e ∈Qm(R)[G] ⊆Qm(R[G])⊆Q(R[G])
(see the proof of Theorem 9.3.1(i)). Further, we see that e ∈ B(Q(R[G])). From
Theorem 8.3.17, e ∈R[G] since R[G] is quasi-Baer. So |N |−1 ∈R. �

The next example illustrates the existence of a right nonsingular ring R which is
not semiprime such that B(Q(R))⊆R, but R is not quasi-Baer.

Example 8.3.24 For a field F , as in Example 3.2.9, let

R =
⎡

⎣

F1 Mat2(F ) Mat2(F )
0 F1 Mat2(F )
0 0 F1

⎤

⎦

be a subring of T3(Mat2(F )), where 1 is the identity matrix in Mat2(F ). Then we
see that R is right nonsingular. However, 〈R ∪ B(Q(R))〉Q(R)(= R) is not quasi-
Baer (see Example 3.2.9).

In contrast to Examples 8.3.18 and 8.3.24, there exists a nonsemiprime ring R

for which Theorem 8.3.17(ii) holds true as in the next example.

Example 8.3.25 Let A be a QF-ring with J (A) �= 0. Assume that A is right strongly
FI-extending, and A has nontrivial central idempotents, while the subring of A gen-
erated by 1A contains no nontrivial idempotents (e.g., A = Q ⊕ Mat2(Z4)). Let
1 denote the identity of

∏∞
i=1 Ai , where Ai = A. Take R to be the subring of

∏∞
i=1 Ai generated by 1 and ⊕∞

i=1Ai . We note that Q(R)=∏∞
i=1 Ai =E(RR) and

〈R ∪B(Q(R))〉Q(R) =RB(Q(R)).
In this case, we have the following:

(i) R is not right FI-extending and RB(Q(R)) is not quasi-Baer.
(ii) QFI(R)=R(FI,Q(R))=RB(Q(R)).

(iii) R has no right and left essential overring which is quasi-Baer.

Let k be a nontrivial central idempotent of A. Let ιi denote the i-th canonical
injection, respectively of the direct product. Let K be the ideal of R generated by
{ιi(k) | 1 ≤ i <∞}. Then there exists no b2 = b ∈ R such that KR ≤ess bRR . So R

is not right FI-extending.
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We claim that RB(Q(R)) is not quasi-Baer. For this, first we observe that
S�(Q(R)) = B(Q(R)) as S�(Ai)= B(Ai) for each i by [262, Exercise 16, p. 421].
Suppose that Q(R) is quasi-Baer. Take q ∈ Q(R) such that qQ(R)q = 0. Now
we note that rQ(R)(qQ(R)) = αQ(R) such that α ∈ S�(Q(R)) = B(Q(R)). Since
q ∈ rQ(R)(qQ(R)), q = αq = qα = 0. Therefore Q(R) is semiprime, a contradic-
tion. So Q(R) is not quasi-Baer.

Because A is QF, Q(R) = Q�(R) = E(RR) = E(RR). Therefore the ring
RB(Q(R)) is not quasi-Baer by Theorem 8.1.9(i). Further, R has no right and left
essential overring which is quasi-Baer from Theorem 8.1.9(i).

We prove that δFI(R)(1)= B(Q(R)). For this, let f ∈ δFI(R). Then there exists
I � R such that IR ≤ess fE(RR) = fQ(R)R = f (1)QR , because End(E(RR)) =
End(Q(R)R)= End(Q(R)Q(R)).

Furthermore, we note that f (1)2 = f (1)f (1)= f (1f (1))= f (f (1))= f (1).
Let πi be the canonical projection of the direct product. Then πi(I ) � Ai . By

[262, Exercise 16, p. 421], there is ei ∈ B(Ai) such that πi(I )Ai
≤ess eiAiAi

, be-
cause Ai is right strongly FI-extending by assumption. Let e ∈ Q(R) such that
πi(e) = ei for all i. Then we see that IR ≤ess eQ(R)R and e ∈ B(Q(R)). So
f (1)= e. Thus, δFI(R)(1)⊆ B(Q(R)).

Next, say b ∈ B(Q(R)). Then (bR ∩ R)R ≤ess bRR ≤ess bQ(R)R . There ex-
ists λ ∈ B(End(E(RR))) such that b = λ(1) from Lemma 8.3.10, and hence
bQ(R)R = λ(1)Q(R)R = λQ(R)R . So λ ∈ δFI(R) and b = λ(1) ∈ δFI(R)(1),
thus B(Q(R)) ⊆ δFI(R)(1). Hence B(Q(R)) = δFI(R)(1). Therefore we have that
S := 〈R ∪ δFI(R)(1)〉Q(R) =RB(Q(R)).

To show that S = R(FI,Q(R)), let J � RB(Q(R)). First, we note that
End(E(RR)) = End(Q(R)R) = End(Q(R)Q(R)) ∼= Q(R). Thus, it follows that
(J ∩ R)R ≤ess JR ≤ess E(JR) = hQ(R)R with h2 = h ∈ Q(R). Since J ∩ R � R,
there is g ∈ B(Q(R)) with (J ∩ R)R ≤ess gQ(R)R from the preceding argument.
Hence h= g, and thus JR ≤ess gQ(R)R . Therefore, J = Jg ⊆ RB(Q(R)). Hence,
we have that JR ≤ess gRB(Q(R))R , and thus JQ(R) ≤ess gRB(Q(R))Q(R). Whence
RB(Q(R)) is right FI-extending, so S =R(FI,Q(R)).

Next, we show that S = QFI(R). Let T be a right FI-extending right ring of
quotients of R. Take c ∈ B(Q(R)). Then cQ(R) ∩ T � T . Since T is right FI-
extending, there is s2 = s ∈ T such that (cQ(R)∩ T )T ≤ess sTT .

Therefore (cQ(R) ∩ T )R ≤ess sTR from Lemma 8.1.3(i), and hence it follows
that (cQ(R) ∩ T )R ≤ess sQ(R)R , thus (cQ(R) ∩ R)R ≤ess sQ(R)R . Also we see
that (cQ(R) ∩ R)R ≤ess cQ(R)R . So c = s ∈ T . Thus B(Q(R)) ⊆ T , and hence S
is a subring of T . Therefore, S =QFI(R).

Now from Theorems 8.3.11 and 8.3.17, we see that 〈R ∪B(Q(R))〉Q(R) is a ring
hull for the IC class, as well as a ring hull for a semiprime ring R in the qB and FI
classes. This motivates our interest in the transfer of information between R and the
ring 〈R ∪B(Q(R))〉Q(R).

Let S be an overring of a ring R. We consider the following properties between
prime ideals of R and S (see [248, p. 28]).

(1) Lying over (LO). For any prime ideal P of R, there exists a prime ideal Q of
S such that P =Q∩R.
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(2) Going up (GU). Given prime ideals P1 ⊆ P2 of R and Q1 of S with
P1 =Q1 ∩R, there exists a prime ideal Q2 of S with Q1 ⊆Q2 and P2 =Q2 ∩R.

(3) Incomparable (INC). Two different prime ideals of S with the same contrac-
tion in R are not comparable.

Lemma 8.3.26 Let R be a subring of a ring T and ∅ �= E ⊆ S�(T )∪Sr (T ). Assume
that S is the subring of T generated by R and E.

(i) If K is a prime ideal of S, then R/(K ∩R)∼= S/K .
(ii) LO, GU, and INC hold between R and S. In particular, LO, GU, and INC

hold between R and 〈R ∪B(Q(R))〉Q(R).

Proof (i) Let S = S/K . Assume that e ∈ E such that e �∈ K . Then e ∈ S�(T ) or
e ∈ Sr (T ). First, we show that e = e + K ∈ S/K is an identity of S/K . Without
loss of generality, assume that e ∈ S�(T ). Then 0 �= e ∈ S�(S), so S = eS ⊕ rS(e).
As e ∈ S�(S), (rS(e))(eS) = 0. Thus, rS(e) = 0 because S is a prime ring. So e is
a left identity for S. Also, S = Se ⊕ �S(e). As e ∈ S�(S), (�S(e))(Se) = 0. Thus,
�S(e)= 0 since S is a prime ring. So S = Se. Therefore, e is an identity element for
S. A similar argument works if e ∈ Sr (T ).

From the preceding argument, for f ∈ E, either f +K = 0 or f +K is an identity
of S/K . We define ϕ : R → S/K by ϕ(r) = r + K . Because S is generated by R

and E, ϕ is a ring epimorphism. Also Ker(ϕ)=K ∩R. Thus, R/(K ∩R)∼= S/K .
(ii) (LO) Assume that P is a prime ideal of R. By Zorn’s lemma, there exists an

ideal K of S maximal with respect to K ∩R ⊆ P . Then K is a prime ideal of S. By
(i), R/(K ∩R)∼= S/K . Since P/(K ∩R) is a prime ideal of R/(K ∩R) (∼= S/K),
there is a prime ideal K0 of S with K ⊆ K0, so K0/K is a prime ideal of S/K ,
and K0/K = ϕ(P/(K ∩R)), where ϕ is the isomorphism from R/(K ∩R) to S/K

induced from ϕ in the proof of part (i). Therefore K0 = P + K , hence we obtain
that K0 ∩R = P + (K ∩R)= P . Therefore, LO holds.

(GU) Suppose that P1 ⊆ P2 are prime ideals of R and K1 is a prime ideal of S
such that K1 ∩R = P1. Then by part (i), R/P1 ∼= S/K1. By the same argument for
LO, there is a prime ideal K2 of S such that K1 ⊆ K2 and K2 ∩R = P2. Thus GU
holds.

(INC) Suppose that K1,K2 are prime ideals of S and P is a prime ideal of R
such that K1 ∩R =K2 ∩R = P . Assume that K1 ⊆K2.

First, we show that K2/K1 = {r + K1 | r ∈ K2 ∩ R}. For this, we observe that
S/K1 = {a +K1 | a ∈ R} by the argument in the proof of part (i). Let r ∈ K2 ∩R.
Then r +K1 ∈K2/K1, so {r +K1 | r ∈K2 ∩R} ⊆K2/K1.

Let k2 +K1 ∈K2/K1. Then k2 +K1 ∈ S/K1, so k2 +K1 = a +K1 for some a
in R. Thus, k2 = a + k1 for some k1 ∈K1, hence

a = k2 − k1 ∈K2 +K1 =K2.

Therefore a ∈K2 ∩R. Thus k2 +K1 ∈ {r +K1 | r ∈K2 ∩R}, so we have that

K2/K1 = {r +K1 | r ∈K2 ∩R}.
As P =K1 ∩R =K2 ∩R, we see that K2/K1 = 0. Hence K2 =K1. �
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The next theorem, due to Fisher and Snider [170], is a characterization of regular
rings.

Theorem 8.3.27 A ring R is regular if and only if the following hold:

(i) R is semiprime.
(ii) The union of any chain of semiprime ideals of R is semiprime.

(iii) Every prime factor ring of R is regular.

Proof See [170, Theorem 1.1] or [183, Theorem 1.17]. �

A class  of rings (not necessarily satisfying �R(R)= 0) is called a special class
if  is a class of prime rings that is hereditary (i.e., closed with respect to ideals)
and closed with respect to ideal essential extensions. That is, if I is in  and I � R

that is ideal essential in R, then R is in  (see [176, p. 80]). Let  be a special class
of rings. The special radical  (R) for a ring R is the intersection of all ideals I

of R such that R/I is a ring in the special class  . Note that the class of special
radicals includes most well-known radicals (e.g., the prime radical, the Jacobson
radical, the Brown-McCoy radical, the nil radical, and the generalized nil radical,
etc.). See [139] and [176] for more details.

For a ring R with identity, the classical Krull dimension kdim(R) is the supre-
mum of all lengths of chains of prime ideals of R. We show that various types of
information transfer between a ring R and 〈R ∪ B(Q(R))〉Q(R). The transference
of information in Lemma 8.3.26 and Theorem 8.3.28 is used to study ̂QqB(R) (or
̂QFI(R)) when R is a semiprime ring.

Theorem 8.3.28 Let R be a subring of a ring T and ∅ �= E ⊆ S�(T ) ∪ Sr (T ).
Assume that S is the subring of T generated by R and E. Then:

(i)  (R) =  (S) ∩ R, where  is a special radical. In particular, we have that
 (R)=  (〈R ∪B(Q(R))〉Q(R))∩R.

(ii) R is strongly π -regular if and only if S is strongly π -regular. Hence, R is
strongly π -regular if and only if 〈R ∪B(Q(R))〉Q(R) is strongly π -regular.

(iii) If S is regular, then so is R.
(iv) If the ring R has identity, then kdim(R) = kdim(S). Thus, we have that

kdim(R)= kdim(RB(Q(R))).

Proof (i) Let K be a prime ideal of S such that S/K is in the special class of ρ. From
Lemma 8.3.26, R/(K ∩R) is in the special class of  . Therefore  (R)⊆  (S)∩R.
As in the proof of LO in Lemma 8.3.26,  (S)∩R ⊆  (R).

(ii) This part is a consequence of Lemma 8.3.26 and Theorem 1.2.18 (note that
Theorem 1.2.18 holds for rings not necessarily with an identity).

(iii) Since S is regular, R is semiprime by part (i). Let I1 ⊆ I2 ⊆ . . . be a chain
of semiprime ideals of R. Let Uk be the set of all prime ideals of R containing
Ik , for k = 1,2, . . . . Then Ik is the intersection of all prime ideals in Uk . By LO
in Lemma 8.3.26, for each P ∈ U1, there exists a prime ideal K of S such that
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P =K ∩R. Let V1 be the set of all prime ideals K of S such that K ∩R ∈ U1, and
let J1 be the intersection of all prime ideals K in V1. Then J1 ∩ R = I1 by using
Lemma 8.3.26.

Next, consider U2. Then U2 ⊆ U1 since I1 ⊆ I2. Let V2 be the set of prime
ideals K such that K ∩R ∈ U2. Let J2 be the intersection of all prime ideals in V2.
Because U2 ⊆ U1, V2 ⊆ V1 and so J1 ⊆ J2. Again by Lemma 8.3.26, J2 ∩R = I2.
Continuing this process, there exists a chain of semiprime ideals J1 ⊆ J2 ⊆ . . . , of
S with Jn ∩R = In for each n. So (∪Jn)∩R = ∪In.

Note that S/(∪Jn) is semiprime by Theorem 8.3.27. Since ∪Jn is a semiprime
ideal of S, ∪Jn = ∩Kα for some prime ideals Kα of S. Then each Kα ∩R is a prime
ideal of R by Lemma 8.3.26(i). So ∪In = (∪Jn)∩R = (∩Kα)∩R = ∩(Kα ∩R) is
a semiprime ideal of R.

Finally, say P is a prime ideal of R. By LO in Lemma 8.3.26, there is a prime
ideal K of S with P = K ∩ S and R/P ∼= S/K . Since S/K is regular, so is R/P .
By Theorem 8.3.27, the ring R is regular.

(iv) The proof follows immediately from Lemma 8.3.26. �

Lemma 8.3.29 Assume that T is an overring with identity, of a ring R and
{f1, . . . , fn} ⊆ B(T ). Then there exists a set of orthogonal idempotents {e1, . . . , em}
⊆ B(T ) such that

∑n
i=1 fiR ⊆∑m

i=1 eiR.

Proof We use induction on n. If n= 1, then we are done by taking e1 = f1. Assume
that n≥ 2 and the lemma is true for n= k − 1, and let n= k.

By induction, there exists a set of orthogonal idempotents {e1, . . . , e�} ⊆ B(T )
such that

∑k−1
i=1 fiR ⊆∑�

i=1 eiR. Hence,

k
∑

i=1

fiR =
k−1
∑

i=1

fiR + fkR ⊆
�
∑

i=1

eiR + fkR

⊆ fk(1 −
�
∑

i=1

ei)R ⊕ (⊕�
i=1(1 − fk)eiR)⊕ (⊕�

i=1fkeiR).

This yields the result. �

Corollary 8.3.30 For a ring R with identity, the following are equivalent.

(i) R is regular.
(ii) RB(Q(R)) is regular.

(iii) R is semiprime and ̂QqB(R) is regular.

Proof Assume that R is regular. Take q ∈ RB(Q(R)). From Lemma 8.3.29,
q = a1e1 + · · · + amem ∈RB(Q(R)), where ai ∈ R, ei ∈ B(Q(R)), and ei are or-
thogonal. Since R is regular, there is bi ∈ R with ai = aibiai for each i. Let
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p = b1e1 + · · · + bmem ∈RB(Q(R)). Then q = qpq , so RB(Q(R)) is regular. The
rest of the proof follows by an easy application of Theorem 8.3.28(iii) and the fact
that ̂QqB(R)=RB(Q(R)) from Theorem 8.3.17 when R is semiprime. �

Lemma 8.3.26, Theorem 8.3.28, and Corollary 8.3.30 show the transference of
some properties between R and ̂QqB(R). Our next example indicates that in general
these properties do not transfer between R and its right rings of quotients which
properly contain ̂QqB(R), in general.

Example 8.3.31 Let R = Z[C2] be the group ring of the group C2 = {1, g} over the
ring Z. Then Z[C2] is semiprime and Q(Z[C2])= Q[C2].

Note that B(Q[C2]) = {0, 1, (1/2)(1 + g), (1/2)(1 − g)}. Thus, using Theo-
rem 8.3.17, ̂QqB(Z[C2]) = {(a + c/2 + d/2)+ (b + c/2 − d/2)g | a, b, c, d ∈ Z}.
Therefore

Z[C2] � ̂QqB(Z[C2])�Z[1/2][C2] �Q[C2],
where Z[1/2] is the subring of Q generated by Z and 1/2.

Note that Z[C2]/2Z[C2] ∼= Z2[C2], and Z2[C2] is a local ring. Thus there exists
a prime ideal P (in fact, a maximal ideal) of Z[C2] containing 2Z[C2]. Also we
note that P ∩ Z = 2Z. Assume on the contrary that LO holds between Z[C2] and
Z[1/2][C2]. Then there exists a prime ideal K of Z[1/2][C2] with K ∩Z[C2] = P .
Now put K0 =K ∩Z[1/2].

We see that K0 ∩Z =K ∩Z[1/2]∩Z =K ∩Z =K ∩Z[C2]∩Z = P ∩Z = 2Z.
Thus 2 ∈ K0. But because K0 is an ideal of Z[1/2], 1 = 2 · (1/2) ∈ K0, hence
K = Z[1/2][C2], a contradiction. Thus, LO does not hold between Z[C2] and
Z[1/2][C2].
Theorem 8.3.32 Let R be a semiprime ring with identity. Then R has index of
nilpotency at most n if and only if QqB(R) has index of nilpotency at most n. In
particular, if R is reduced, then QqB(R)=QB(R) and it is reduced.

Proof Let R have index of nilpotency at most n. By Theorem 1.2.20(ii), R is right
nonsingular. Hence E(RR) = Q(R) from Corollary 1.3.15. Therefore, we see that
̂QqB(R)=QqB(R). Now say q ∈QqB(R). Then Lemma 8.3.29 yields that

q = a1e1 + · · · + atet ,

where ai ∈R, ei ∈ B(Q(R)), and ei are orthogonal.
Suppose that qk = 0. We show that qn = 0. If k ≤ n, then we are done. So as-

sume that k > n. In this case, qk = ak1e1 + · · · + akt et = 0. Thus aki ei = 0 for all i.
Note that B(Q(R)) = B(Qm(R)) (recall that Qm(R) denotes the Martindale right
ring of quotients of R). Hence, there is Ii �R with �R(Ii)= 0 and eiIi ⊆R. There-
fore, aki eiIi = 0 and eiIi ⊆ rR(a

k
i ). Since R has index of nilpotency at most n, by

Theorem 1.2.20(i) rR(aki )= rR(a
n
i ), so eiIi ⊆ rR(a

n
i ). Thus ani eiIi = 0.

As �R(Ii)= 0, �Q(R)(Ii)= 0. Hence ani ei = 0 for each i. So

qn = (a1e1 + · · · + atet )
n = an1e1 + · · · + ant et = 0.

Thus QqB(R) has index of nilpotency at most n. The converse is clear.
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If R is reduced (so Z(RR)= 0), then QqB(R) is a reduced quasi-Baer ring by the
preceding argument, so it is a Baer ring (see Exercise 3.2.44.10(i)). Say T is a right
ring of quotients of R and T is Baer. Then T is quasi-Baer. Hence, QqB(R)⊆ T by
Theorem 8.3.17. Therefore, QqB(R)=QB(R). �

Recall that a ring R is called strongly regular if R is regular and reduced
(see 1.1.12). Corollary 8.3.30 and Theorem 8.3.32 yield the next result.

Corollary 8.3.33 A ring R with identity is strongly regular if and only if RB(Q(R))

is strongly regular.

If R is a domain with identity which is not right Ore, then R =QqB(R) has index
of nilpotency 1, but Q(R) does not have bounded index of nilpotency. So we cannot
replace QqB(R) with Q(R) in Theorem 8.3.32.

By Theorem 8.3.32, a reduced ring with identity always has a Baer absolute ring
hull. However a Baer absolute ring hull does not exist even for prime PI-rings with
index of nilpotency 2, as shown in the next example.

Example 8.3.34 Let R = Matk(F [x, y]), where F is a field and k is an integer such
that k ≥ 2. Then R is a prime PI-ring with index of nilpotency k. (In particular, if
k = 2, then R has index of nilpotency 2.) The ring R has the following properties.
We note that Q(R)=E(RR), hence ̂QK(R)=QK(R) for any class K of rings.

(i) The Baer absolute ring hull QB(R) does not exist.
(ii) The right extending absolute ring hull QE(R) does not exist.

As R is a prime ring, R = QqB(R) = QFI(R). We claim that QB(R) does not
exist (the same argument shows that QE(R) does not exist). Assume on the con-
trary that QB(R) exists. Note that F(x)[y] and F(y)[x] are Prüfer domains. So
Matk(F (x)[y]) and Matk(F (y)[x]) are Baer rings by Theorem 6.1.4 (and right ex-
tending rings by Theorem 6.1.4). Since Q(R)= Matk(F (x, y)),

QB(R)⊆ Matk(F (x)[y])∩ Matk(F (y)[x])= Matk(F (x)[y] ∩ F(y)[x]).
To see that F(x)[y] ∩ F(y)[x] = F [x, y], let

γ (x, y) = f0(x)/g0(x)+ (f1(x)/g1(x))y + · · · + (fm(x)/gm(x))y
m

= h0(y)/k0(y)+ (h1(y)/k1(y))x + · · · + (hn(y)/kn(y))x
n

be in F(x)[y] ∩ F(y)[x], where fi(x), gi(x) ∈ F [x], hj (y), kj (y) ∈ F [y], and
gi(x) �= 0, kj (y) �= 0 for i = 0,1, . . . ,m, j = 0,1, . . . , n. Let F be the algebraic
closure of F . If deg(g0(x))≥ 1, then there exists α ∈ F such that g0(α)= 0. There-
fore γ (α, y) cannot be defined. On the other hand, we observe that

γ (α, y)= h0(y)/k0(y)+ (h1(y)/k1(y))α + · · · + (hn(y)/kn(y))α
n,

a contradiction. Thus g0(x) ∈ F . Similarly, g1(x), . . . , gm(x) ∈ F .
Hence γ (x, y) ∈ F [x, y]. Therefore F(x)[y] ∩ F(y)[x] = F [x, y], and so

QB(R)= Matk(F (x)[y] ∩ F(y)[x])= Matk(F [x, y]).
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Thus Matk(F [x, y]) is a Baer ring, a contradiction because the commutative domain
F [x, y] is not Prüfer (see Theorem 6.1.4).

A ring R with identity is called right Utumi [382, p. 252] if it is both right nonsin-
gular and right cononsingular. In the proof of Theorem 3.3.1 or by Lemma 4.1.16,
every right extending ring is right cononsingular.

Proposition 8.3.35 Let R be a reduced ring with identity. Then R is right Utumi if
and only if Q(R) is strongly regular.

Proof See [382, Proposition 5.2, p. 254]. �

Proposition 8.3.36 A reduced ring R with identity is right Utumi if and only if
QqCon(R)=QE(R)=RB(Q(R)).

Proof Assume that R is right Utumi. Because R is reduced, Z(RR) = 0 and
from Theorem 8.3.32 RB(Q(R)) = QqB(R) = QB(R). Also, we observe that
Q(R)=Q(RB(Q(R))) is strongly regular from Proposition 8.3.35. So RB(Q(R))

is right Utumi, since RB(Q(R)) is reduced by Theorem 8.3.32. Hence, RB(Q(R))

is right cononsingular. As RB(Q(R)) is Baer, RB(Q(R)) is right extending by The-
orem 3.3.1.

From Theorem 8.3.17, RB(Q(R))=QFI(R). If S is a right extending right ring
of quotients of R, then S is right FI-extending, and hence RB(Q(R)) ⊆ S. Thus,
RB(Q(R))=QE(R). As Q(R) is strongly regular, I(Q(R))= B(Q(R)).

By Corollary 1.3.15, Theorem 2.1.25, and Proposition 2.1.32, RB(Q(R)) is a
right quasi-continuous ring. Let T be a right quasi-continuous right ring of quotients
of R. Then again from Corollary 1.3.15, Theorem 2.1.25, and Proposition 2.1.32,
B(Q(R)) = B(Q(T )) ⊆ T as Q(R) = Q(T ). Thus RB(Q(R)) ⊆ T , and hence
QqCon(R)=RB(Q(R)). So RB(Q(R))=QE(R)=QqCon(R).

Conversely, if RB(Q(R)) = QE(R), then RB(Q(R)) is right cononsingular by
Theorem 3.3.1. Hence, RB(Q(R)) is right Utumi. Further, RB(Q(R)) is reduced
by Theorem 8.3.32, so Q(R) = Q(RB(Q(R))) is strongly regular and thus R is
right Utumi from Proposition 8.3.35. �

There exists a nonreduced right Utumi ring R for which the equalities

QqCon(R)=QE(R) and QqCon(R)=RB(Q(R))

in Proposition 8.3.36 do not hold true, as the next example shows.

Example 8.3.37 Let R = Matk(F [x]), where F is a field and k is an integer such
that k > 1. Then R is right Utumi by Proposition 3.3.2. Note that

E(RR)=Q(R)= Matk(F (x)),

where F(x) is the field of fractions of F [x].
There is e2 = e ∈Q(R) such that e �∈R. By Theorem 2.1.25, R is not right quasi-

continuous. Now RB(Q(R)) = R �= QqCon(R). From Theorem 6.1.4, R is right
extending, so R =QE(R). Thus QE(R) �=QqCon(R).
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For a semiprime ring R with identity, the notions of (right) FI-extending and
quasi-Baer coincide by Theorem 3.2.37. Theorem 8.3.17 shows that the quasi-Baer
ring hull of a semiprime ring exists and is precisely the same as its right FI-extending
ring hull.

In view of this result, it is natural to ask: Whether the right principally quasi-
Baer ring hull and the right principally FI-extending ring hull exist for a semiprime
ring and if so, are they equal? In Theorem 8.3.39, an affirmative answer to these
questions will be provided.

Burgess and Raphael [108] study ring extensions of regular rings with bounded
index (of nilpotency). In particular, for a regular ring R with bounded index (of
nilpotency), they obtain a unique closely related smallest overring, R#, which is
“almost biregular” (see [108, p. 76 and Theorem 1.7]). Theorem 8.3.39 shows that
their ring R# is exactly the right principally FI-extending pseudo ring hull of a regu-
lar ring R with bounded index (of nilpotency). When R is commutative semiprime,
the “weak Baer envelope” defined by Dobbs and Picavet in [141] is exactly the right
p.q.-Baer ring hull ̂QpqB(R) obtained in Theorem 8.3.39.

We use pFI and fgFI to denote the class of right principally FI-extending rings
and the class of right finitely generated FI-extending rings, respectively (see Propo-
sition 3.2.41 for pFI and fgFI). The following definition is useful for studying p.q.-
Baer ring hulls.

Definition 8.3.38 For a ring R with identity, define

Bp(Q(R))= {c ∈ B(Q(R)) | there is x ∈R with RxRR ≤ess cQ(R)R}.

The next Theorem 8.3.39 unifies the result by Burgess and Raphael [108] and
that of Dobbs and Picavet [141].

Theorem 8.3.39 Let R be a semiprime ring with identity. Then:

(i) ̂QpFI(R)= 〈R ∪Bp(Q(R))〉Q(R) =R(pFI, Q(R)).
(ii) ̂QpqB(R)= 〈R ∪Bp(Q(R))〉Q(R).

(iii) ̂QfgFI(R)= 〈R ∪Bp(Q(R))〉Q(R).

Proof (i) Using a proof similar to that of Theorem 8.3.11(iv), we obtain that
δpFI(R)(1) = Bp(Q(R)). Let S = 〈R ∪ δpFI(R)(1)〉Q(R). Then we have that S =
〈R ∪ Bp(Q(R))〉Q(R). We show that S is right principally FI-extending. For this,
take 0 �= s ∈ S. From Lemma 8.3.29, s =∑n

i=1 ribi , where each ri ∈ R and the bi
are orthogonal idempotents in B(S). From Proposition 8.3.3(i) and Theorem 8.3.8,
we see that there is ci ∈ B(Q(R)) with RriRR ≤ess ciQ(R)R for each i. So each
ci ∈ Bp(Q(R)). Hence, s =∑n

i=1 ribi =∑n
i=1 ricibi . Put ei = cibi for each i. Then

s =∑n
i=1 riei . We note that the ei are orthogonal idempotents in B(S).

Put D = ⊕n
i=1eiS. To see that SsSS ≤ess DS , say 0 �= y ∈ D. Then there exist

yi ∈ S for 1 ≤ i ≤ n so that y =∑n
i=1 eiyi . In this case, there exists ej yj �= 0 for
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some j , 1 ≤ j ≤ n, and v ∈R such that 0 �= ejyj v ∈R. Because

yejv = ej yj v = cj bj yj v ∈ cjR and RrjRR ≤ess cjRR,

there is w ∈R with 0 �= yejvw ∈RrjR.
So 0 �= y(ej vw) = ejyj vw ∈ Rrj ejR = RsejR ⊆ SsS as sej = rj ej . Hence

SsSS ≤ess DS . Let f = ∑n
i=1 ei ∈ B(S). Then S is right principally FI-extending

since SsSS ≤ess DS = ⊕n
i=1eiSS = f SS . Therefore, S =R(pFI,Q(R)).

Assume that T is a right ring of quotients of R and T is right principally FI-
extending. Say e ∈ Bp(Q(R)). Then there is x ∈ R with RxRR ≤ess eQ(R)R . Note
that T xT = T (RxR)T ⊆ T (eQ(R))T = eQ(R), so T xTR ≤ess eQ(R)R . Hence
T xTT ≤ess eQ(R)T . Since T is right principally FI-extending, there exists c2 =
c ∈ T such that T xTT ≤ess cTT ≤ess cQ(R)T . Thus e = c because e ∈ B(Q(R)).
Hence, e ∈ T for each e ∈ Bp(Q(R)). So S is a subring of T . Thus, S = ̂QpFI(R)

and ̂QpFI(R)= 〈R ∪Bp(Q(R))〉Q(R) =R(pFI, Q(R)).
Parts (ii) and (iii) follow from part (i) and Proposition 3.2.41. �

Corollary 8.3.40 Let R be a semiprime ring with identity. Then R is right p.q.-Baer
if and only if Bp(Q(R))⊆R.

Corollary 8.3.41 Let R be a semiprime ring with identity.

(i) If K is a prime ideal of ̂QpqB(R), then ̂QpqB(R)/K ∼=R/(K ∩R).
(ii) LO, GU, and INC hold between R and ̂QpqB(R).

Proof Theorem 8.3.39 and Lemma 8.3.26 yield the result. �

Corollary 8.3.42 Let R be a semiprime ring with identity. Then:

(i)  (R)=  (̂QpqB(R))∩ R, where  (−) is a special radical of a ring.
(ii) R is strongly π -regular if and only if ̂QpqB(R) is strongly π -regular.

(iii) kdim (R)= kdim (̂QpqB(R)).

Proof The proof follows from Theorems 8.3.28 and 8.3.39. �

Corollary 8.3.43 Let R be a semiprime ring with identity. Then:

(i) R is regular if and only if ̂QpqB(R) is regular.
(ii) R has index of nilpotency at most n if and only if ̂QpqB(R) has index of nilpo-

tency at most n.
(iii) R is strongly regular if and only if ̂QpqB(R) is strongly regular.

Proof Put S = ̂QpqB(R). Then S is semiprime and ̂QqB(S) = ̂QqB(R) by Theo-
rem 8.3.17.

(i) If R is regular, then ̂QqB(S) is regular by Corollary 8.3.30. Since S is
semiprime, again by Corollary 8.3.30 S is regular. Conversely, if S is regular, then
from Corollary 8.3.30 ̂QqB(S)= ̂QqB(R) is regular, so R is regular.
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(ii) and (iii) The proof follows immediately from Theorem 8.3.32, Corol-
lary 8.3.33, and the argument used for the proof of part (i). �

Theorem 8.3.44 Let R be a reduced ring with identity. Then the p.q.-Baer absolute
ring hull QpqB(R) is the Rickart absolute ring hull of R.

Proof Because R is reduced, Z(RR) = 0. Hence, Corollary 1.3.15 yields that
Q(R)=E(RR). By Theorem 8.3.39, S :=QpqB(R) exists. From Corollary 8.3.43,
S is reduced and so S is Rickart (see Exercise 3.2.44.10(ii)).

Let T be a (right) Rickart right ring of quotients of R. Take e ∈ Bp(Q(R)). Then
e ∈ S and there exists x ∈ R such that RxRR ≤ess eQ(R)R . Hence SxSS ≤ess eSS .
As S is right nonsingular, SxSS ≤den eSS by Proposition 1.3.14, as a consequence
�S(SxS) = �S(eS) = S(1 − e) from the proof of Lemma 8.3.7(i). Since S is
semiprime, rS(SxS) = �S(SxS). So rS(SxS) = S(1 − e) = (1 − e)S. Further, as
S is reduced, rS(x)= rS(SxS)= (1 − e)S.

Because T is right Rickart, rT (x) = f T for some f 2 = f ∈ T . Observe that
rR(x)= (1 − e)S ∩R and rR(x)= rT (x)∩R. Therefore, we have that

rR(x)R ≤ess (1 − e)SR ≤ess (1 − e)Q(R)R and rR(x)R ≤ess f TR ≤ess fQ(R)R.

Thus 1−e = f as 1−e is central in Q(R). Hence e = 1−f ∈ T , so Bp(Q(R))⊆ T .
From Theorem 8.3.39, S ⊆ T . Whence QpqB(R) is the Rickart absolute ring hull
of R. �

When R is a semiprime ring with identity, ̂QpqB(R)⊆ ̂QqB(R). However, in the
following example, we see that there exists a semiprime ring R with identity such
that ̂QpqB(R)� ̂QqB(R).

Example 8.3.45 Let R be the ring as in Example 4.5.5. Then R is (right) p.q.-Baer,
so R = ̂QpqB(R). But R is not quasi-Baer. By Theorem 8.3.17,

̂QqB(R)=RB(Q(R)), therefore ̂QqB(R)=Q(R)=
∞
∏

n=1

Fn,

where Fn = Z2 for n = 1,2, . . . . Thus, ̂QpqB(R) � ̂QqB(R) (further, we observe
that ̂QqB(R)=QqB(R) and ̂QpqB(R)=QpqB(R) as R is right nonsingular).

In Theorem 8.3.47, we will see that there is a connection between the right
FI-extending ring hulls of semiprime homomorphic images of R and the right FI-
extending right rings of quotients of R. For this, we need the next lemma.

Lemma 8.3.46 Assume that I is a proper ideal of a ring R with identity such that
I is a complement of a right ideal of R. If P(R)⊆ I , then R/I is a semiprime ring.

Proof Let J be a right ideal of R such that I is a complement of J . First we show
that (I ⊕ J )/I is essential in R/I as a right R/I -module. To see this, assume on
the contrary that there exists a nonzero right R/I -submodule K/I of R/I such that
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[(I ⊕ J )/I ] ∩ (K/I) = 0. There is y ∈ K with y �∈ I . Then (I + yR) ∩ J �= 0. So
there exist c ∈ I, r ∈R, and 0 �= x ∈ J such that c+ yr = x. Then

yr = −c+ x ∈ (I ⊕ J )∩K ⊆ I.

Hence x ∈ I ∩ J = 0, a contradiction. So (I ⊕ J )/I is essential in R/I as a right
R/I -module.

Next, let 0 �= B/I �R/I such that (B/I)2 = 0. Then B2 ⊆ I . Note that

(B/I)∩ [(I ⊕ J )/I ] �= 0

because (I ⊕ J )/I is essential in R/I as a right R/I -module.
From the modular law, B ∩ (I ⊕ J ) = I ⊕ (B ∩ J ). As B ∩ (I ⊕ J ) �⊆ I ,

I ⊕ (B ∩ J ) �⊆ I , and thus B ∩ J �= 0. But (B ∩ J )2 ⊆ I ∩ J = 0 as B2 ⊆ I . Hence
B ∩ J ⊆ J ∩ P(R) ⊆ J ∩ I = 0, which is a contradiction. Therefore, R/I is a
semiprime ring. �

Theorem 8.3.47 Assume that R is a ring with identity which is either semiprime or
Q(R)=E(RR). Let I be a proper ideal of R such that IR is closed in RR . Then:

(i) There exists e ∈ I(Q(R)) such that I = (1 − e)Q(R)∩R.
(ii) eR = eRe and R(1 − e)= (1 − e)R(1 − e).

(iii) R/I is ring isomorphic to eRe.
(iv) If R is semiprime, then eQ(R)e ⊆Q(eRe).
(v) If E(RR)=Q(R), then E(eReeRe)= eQ(R)e and eQ(R)e =Q(eRe).

(vi) If P(R)⊆ I , then R/I is semiprime and ̂QFI(R/I)∼= ̂QFI(eRe).
(vii) Suppose that R is semiprime (resp., right nonsingular and semiprime). Then

̂QFI(R/I)∼= êQFI(R)e (resp., QFI(R/I)∼= eQFI(R)e).

Proof (i) If R is semiprime, use Proposition 8.3.3(i) and Theorem 8.3.8. In this case,
we observe that e ∈ B(Q(R)). If Q(R)=E(RR), then the proof is routine.

(ii) If R is semiprime, the proof of this part is clear since e ∈ B(Q(R)). For
Q(R) = E(RR), let r ∈ R with er(1 − e) �= 0. Since RR is dense in Q(R)R , there
exists s ∈R such that (1 − e)s ∈R and er(1 − e)s �= 0. Then

(1 − e)s ∈R ∩ (1 − e)Q(R)= I.

Hence 0 �= er(1 − e)s ∈ eI = 0, a contradiction. So eR(1 − e) = 0. Consequently,
eR = eRe and R(1 − e)= (1 − e)R(1 − e).

(iii) Define f : R/I → eRe by f (r + I ) = er . As eI = 0, f is well defined.
Clearly, f is a ring epimorphism. If x + I ∈ Ker(f ), then x ∈ (1 − e)Q(R)∩R. By
part (i), x ∈ I . Hence Ker(f )= 0. Thus, f is a ring isomorphism.

(iv) As e ∈ B(Q(R)), eReeRe ≤den eQ(R)eeRe . So eQ(R)e ⊆Q(eRe).
(v) Let K be a right ideal of eRe and let g : K → eQ(R)e be an eRe-

homomorphism. From part (ii) K , eRe, and eQ(R)e are right R-modules, and g

is an R-homomorphism. As eQ(R)e ⊆ eQ(R) and eQ(R) is the injective hull of
eRR , g can be extended to an R-homomorphism g : eR → eQ(R). Now g can be
extended to an R-homomorphism g̃ : eQ(R) → eQ(R). Therefore, g̃ is a Q(R)-
homomorphism as in the proof of Proposition 2.1.32.
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As eR = eRe, g(eR) = g̃(eRe) = g̃(eRe)e = g̃(eR)e ⊆ eQ(R)e. By Baer’s
Criterion, eQ(R)e is an injective right eRe-module. Further, we observe that
eReeRe ≤den eQ(R)eeRe . Hence, eQ(R)e is the injective hull of eRe as a right
eRe-module and eQ(R)e =Q(eRe).

(vi) Note that a closed right ideal of R is a complement of some right ideal of R
(see Exercise 2.1.37.3). Hence this part is a consequence of part (iii), Lemma 8.3.46,
and Theorem 8.3.17.

(vii) Let R be semiprime. Then 1−e ∈ B(Q(R)) by Proposition 8.3.3(i) and The-
orem 8.3.8, so e ∈ B(Q(R)). Hence B(eQ(R)e) = eB(Q(R))e. Thus we have that
̂QFI(R/I) ∼= 〈eRe ∪ B(eQ(R)e)〉eQ(R)e = eRB(Q(R))e = êQFI(R)e from Theo-
rem 8.3.17. If additionally Z(RR)= 0, then eRR is nonsingular, so (R/I)R is right
nonsingular since (R/I)R ∼= eRR by modifying the proof of part (iii). Thus, R/I
is a right nonsingular ring by [180, Proposition 1.28] and so eRe is a right nonsin-
gular ring. The result follows from the fact that for any right nonsingular ring T ,
̂QFI(T )=QFI(T ) since Q(T )=E(TT ). �

Corollary 8.3.48 Let R be a semiprime ring with identity, S a ring with identity,
and θ : R → S a ring epimorphism such that Ker(θ) is a nonessential ideal of R.
Then there exists a nonzero ring homomorphism h : S → ̂QFI(R).

Proof Let K = Ker(θ) and I = �R(�R(K)). Then K ∈ DIC(R) by Proposi-
tion 8.3.3(i) since R is semiprime. So I is the unique closure of KR in RR (see
Exercise 8.3.58.5(i)). From Theorem 8.3.47(i), there exists e ∈ B(Q(R)) such that
I = (1 − e)Q(R) ∩ R. As K is not essential and R is semiprime, �R(K) �= 0 by
Proposition 1.3.16, so I �= R. We have the following sequence of ring homomor-

phisms S
α→ R/K

β→ R/I
λ→ ̂QFI(R/I)

δ→ êQFI(R)e
ι→ ̂QFI(R), using Theo-

rem 8.3.47, where α and δ are ring isomorphisms, β is a ring epimorphism, and
λ and ι are inclusions. Take h= ι δ λβ α. �

Proposition 8.3.49 Let I ∈ DIC(R). Then Cen(I )= I ∩ Cen(R).

Proof Let I ∈ DIC(R). Then Q(I)= eQ(R) with e ∈ B(Q(R)) by Theorem 8.3.8.
So Cen(I ) ⊆ Cen(Q(I)) = Cen(eQ(R)) ⊆ Cen(Q(R)). Therefore we have that
Cen(I )= I ∩ Cen(R). �

A nonempty subset M of a ring R is called an m-system if 0 �∈ M and for any
a, b ∈M there exists x ∈R such that axb ∈M (see [296]). We note that an ideal P
of a ring R maximal with respect to P ∩M = ∅, where M is an m-system, is always
a prime ideal.

Theorem 8.3.50 Let R be a semiprime ring with a descending chain of essential
ideals K1 ⊇K2 ⊇ . . . such that

⋂

i≥1 Ki = 0. Then R has a prime ideal P such that
Ki �⊆ P for all i ≥ 1.

Proof We use the condition on {Ki}∞i=1 to find a properly descending subsequence
{Li}∞i=1 and nonzero elements {ai}, {xi} such that ai+1 = aixiai , ai+1 ∈ Li and
ai+1 �∈ Li+1 for i ≥ 1.
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Let L1 = K1 and choose 0 �= a1 ∈ L1. Then we show that a1K2a1 �= 0. For
this, assume on the contrary that a1K2a1 = 0. Then (K2a1K2)(K2a1K2) = 0, so
K2a1K2 = 0 because R is semiprime. Now �R(K2) = rR(K2) = 0 since K2 is es-
sential in R, and hence K2a1 = 0. Again since rR(K2)= 0, a1 = 0, a contradiction.
Thus, a1K2a1 �= 0. From ∩i≥1Ki = 0, there exists Kj with j minimal, such that
a1K2a1 �⊆Kj , and hence there is x1 ∈K2 such that a1x1a1 �∈Kj . Let L2 =Kj and
a2 = a1x1a1; then a2 ∈ L1 and a2 �∈ L2.

Next, a2L2a2 �= 0 by the preceding argument. Choose L3 such that a2L2a2 �⊆ L3.
So there is x2 ∈ L2 with a3 := a2x2a2 �∈ L3. Note that a3 ∈ L2. Continue this
procedure to get Li+1 and ai+1 = aixiai ∈ Li but ai+1 �∈ Li+1 as needed. The
sequence {ai} constitutes an m-system. In fact, let a�, an ∈ {ai}. If � = n, then
a�xnan = an+1. So without of loss of generality, we may assume that n > �. Then
an+1 = a�[(x�a�)(x�+1a�+1) · · · (xn−1an−1)xn]an. Hence, an ideal P maximal with
respect to {ai} ∩ P = ∅ is a prime ideal. By construction, Ki �⊆ P for all i ≥ 1. �

Lemma 8.3.51 Let R be a semiprime ring and I �R. Then:

(i) �R(I) is a semiprime ideal of R.
(ii) (I ⊕ �R(I))/�R(I ) is an essential ideal of R/�R(I).

Proof (i) To show that �R(I) is a semiprime ideal, let a ∈R such that aRa ⊆ �R(I).
Then aRaI = 0, so (aI)R(aI) = 0. Thus, aI = 0 because R is semiprime. Hence,
a ∈ �R(I), so �R(I) is a semiprime ideal.

(ii) Let S = R/�R(I). By part (i), S is a semiprime ring. To show that V :=
(I ⊕ �R(I))/�R(I ) is essential in S, it suffices to see that �S(V ) = 0 by Proposi-
tion 1.3.16. Say a + �R(I) ∈ �S(V ), where a ∈ R. Then aI ⊆ �R(I), so aI 2 = 0.
Hence, (aI)2 = 0. Thus, aI = 0 because R is semiprime. Therefore, a ∈ �R(I),
hence a + �R(I)= 0. �

The following theorem is well known (see [366, Remark 1.2.14, Theorems 1.4.1
and 1.6.27]).

Theorem 8.3.52 Let R be a semiprime PI-ring. Then R satisfies a standard identity
fn(x1, . . . , xn) =∑

σ∈Sn sgn(σ )xσ(1) · · ·xσ(n), where Sn is the symmetric group of
degree n and sgn(σ ) is the signature of σ ∈ Sn. Further, R satisfies fm(x1, . . . , xm)

for m≥ n.

An ideal I of a ring is called a PI-ideal if I is a PI-ring as a ring by itself.

Theorem 8.3.53 Let R be a semiprime ring such that R/P is a PI-ring for each
prime ideal P of R. Then R contains a nonzero PI-ideal, and the sum of all PI-
ideals of R is an essential ideal of R.

Proof Put Fn = {P | P is a prime ideal andR/P satisfies fn(x1, . . . , xn)} for
n≥ 2, and let Kn = ∩P∈Fn

P . Since F2 ⊆ F3 ⊆ . . . from Theorem 8.3.52, the
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sequence of ideals {Kj } is a descending sequence of semiprime ideals with
∩i≥2Ki = 0 since R is semiprime and ∪i≥2 Fi is the set of all prime ideals. We
note that R/Kn embeds in

∏

P∈Fn
R/P , hence it satisfies a PI. If each Ki is es-

sential, Theorem 8.3.50 yields a prime ideal P which contains none of the Ki .
However P ∈ Fm for some m ≥ 2 and so Km ⊆ P , a contradiction. Thus there
exists some Kn which is not essential. Hence, �R(Kn) �= 0 by Proposition 1.3.16.
As R is semiprime, �R(Kn) ∩Kn = 0 and so �R(Kn) embeds in R/Kn. Therefore,
�R(Kn) is an PI-ideal.

Let S be the sum of all PI-ideals of R and let A = �R(S). Then B := �R(A) is
a semiprime ideal by Lemma 8.3.51(i) and A ∩ B = 0. Since all prime factor rings
of R are PI-rings, all prime factor rings of the semiprime ring R/B are PI-rings. If
B =R, then R = �R(A), so A= 0 because R is semiprime. Thus �R(S)= 0, hence
by Proposition 1.3.16, S is essential in R.

Next, we assume that B �= R. Then R/B contains a nonzero PI-ideal by the
previous argument. To see that S is an essential ideal of R, we need to show that
A = 0 from Proposition 1.3.16. If A �= 0, then (A + B)/B is essential in R/B by
Lemma 8.3.51(ii). So (A + B)/B contains a nonzero PI-ideal, say V/B of R/B .
Put

K = {a ∈A | a +B ∈ V/B}.
Then K �R and K ∼= V/B as rings since A∩B = 0. So K is a nonzero PI-ideal of
R and K ⊆ A. Hence S ∩ A �= 0, which is a contradiction because A = �R(S). So
A= 0. Therefore, S is essential in R. �

The next lemma, known as Andrunakievic’s lemma, is useful for studying the
relationship between the ideal structure of a given ideal of a ring R and that of R
(see [9, Lemma 4]).

Lemma 8.3.54 Let R be a ring and V � R. Assume that I � V and W is the ideal
of R generated by I . Then W 3 ⊆ I .

Proof Since V � R and I � V , we get W = I + IR + RI + RIR. Therefore it
follows that W 3 ⊆ VWV = V (I + IR +RI +RIR)V ⊆ I . �

Proposition 8.3.55 Let R be a ring and V �R.
(i) If R is a semiprime ring, then V is a semiprime ring.
(ii) If R is a prime ring, then V is a prime ring.

Proof (i) To show that V is a semiprime ring, let I � V with I 2 = 0. Say W is the
ideal of R generated by I . By Lemma 8.3.54, W 3 ⊆ I . So W 6 ⊆ I 2 = 0. As R is
semiprime, W = 0 and so I = 0. Hence, V is a semiprime ring.

(ii) Similarly, we see that V is a prime ring if R is a prime ring. �

Every semiprime PI-ring satisfies the hypothesis of our next result. Exam-
ple 8.3.57 illustrates that Theorem 8.3.56 is a proper generalization of Theo-
rem 3.2.16.
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Theorem 8.3.56 Let R be a semiprime ring with R/P a PI-ring for each prime
ideal P of R. If 0 �= I �R, then I ∩ Cen(R) �= 0.

Proof From Theorem 8.3.53, there exists V �R such that

VR ≤ess RR and V =
∑

λ∈Λ
Vλ,

where each Vλ is a nonzero PI-ideal. If I ∩ Vλ = 0 for all λ ∈Λ, then IV = 0, and
hence I ∩ V = 0, contrary to VR ≤ess RR .

So there is β ∈ Λ with 0 �= I ∩ Vβ � Vβ . By Theorem 3.2.16 and Proposi-
tion 8.3.55, I ∩ Cen(Vβ)= I ∩ Vβ ∩ Cen(Vβ) �= 0 since Vβ is a semiprime PI-ring.
Propositions 8.3.3(i) and 8.3.49 yield that Cen(Vβ) = Vβ ∩ Cen(R). As a conse-
quence, I ∩ Cen(Vβ)= I ∩ Vβ ∩ Cen(R) �= 0. Therefore, I ∩ Cen(R) �= 0. �

Example 8.3.57 There is a semiprime ring R which does not satisfy a PI, but R/P
is a PI-ring for every prime ideal P of R. For a field F , let

R = {(An)
∞
n=1 ∈

∞
∏

n=1

Matn(F ) |An is a scalar matrix eventually},

which is a subring of
∏∞

n=1 Matn(F ). Then R is a semiprime ring which does not
satisfy a PI. Let P be a prime ideal of R.

Case 1. Assume that the k-th component of all elements of P is zero for some
k. Let ek = (0,0, . . . ,0,1,0, . . . ), where 1 is in the k-th component. Take x ∈ R

such that x has zero in its k-th component. Then ekRx = 0 and so x ∈ P . Therefore
P = {(An)

∞
n=1 ∈R | Ak = 0}. Hence R/P ∼= Matk(F ).

Case 2. Assume that for any k, there is an element of P with a nonzero entry
in its k-th component. Then for any k, there is 0 �= α ∈ Matk(F ) such that μk :=
(0,0, . . . ,0, α,0, . . . ) ∈ P , where α is in the k-th component. Thus RμkR ⊆ P ,
so ⊕∞

k=1Matk(F ) ⊆ P . As R/ ⊕∞
k=1 Matk(F ) is commutative, and R/P is a ring

homomorphic image of R/⊕∞
k=1 Matk(F ), R/P is commutative.

By Cases 1 and 2, R/P is a PI-ring for every prime ideal P of R.

Exercise 8.3.58

1. Finish the proof of Proposition 8.3.3 and prove Lemma 8.3.4.
2. Let I ∈DIC(R). Prove the following.

(i) �R(I)⊆ rR(I ).
(ii) �R(I)= rR(I ) if and only if rR(I )∩ I = 0.

3. Assume that R is a ring.
(i) Show that DIC(R) contains no nonzero nilpotent ideals of R.

(ii) Find an example of a right nonsingular quasi-Baer ring R such that
0 �= P(R) ∈DIC(R) (see [232]).

4. Let R be a ring. Show that the following are equivalent.
(i) R ∈ IC.
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(ii) For each K ∈ DIC(R) with KR closed in RR , there exists e2 = e ∈ R such
that K = eR.

(iii) For each K ∈ DIC(R) with KR closed in RR , there is c ∈ B(R) satisfying
K = cR.

5. Let R be a ring with identity and I ∈ DIC(R). Prove the following.
(i) There exists e ∈ B(Q(R)) such that �R(�R(I ))= eQ(R)∩R and �R(�R(I ))

is the unique closure of IR in RR .
(ii) Let K = �R(�R(I )). Then R/K ∼= (1 − e)R(1 − e) as rings.

6. Prove Corollary 8.3.12.
7. Show that in Lemma 8.3.26 and in Theorem 8.3.28, the set E can be a set of

idempotents each taken from some set of left or right triangulating idempotents
(see [97, Example 2.3]).

8. ([42, Beidar and Wisbauer]) Show that a ring R with identity is biregular if and
only if R is semiprime and RB(Q(R)) is biregular.

9. Let R be a ring (not necessarily with identity) and S = 〈R ∪ 1Q(R)〉Q(R). Show
that Q(R)=Q(S)⊆E(SS)⊆E(SR)=E(RR).

8.4 Module Hulls

It is well known that for every module M , there always exists a unique (up to iso-
morphism) minimal injective extension (overmodule) which is called its injective
hull and is denoted by E(M). While the injective hull has been studied and used ex-
tensively, in some instances it is difficult for a fruitful transfer of information to take
place between M and E(M). For example, take M to be the Z-module Zp ⊕ Zp3 ,
where p is a prime integer. Then H = Zp2 ⊕ Zp3 is an extending hull of M . We
observe that both M and H are finite, but E(M) is infinite.

The studies on module hulls have been rather limited. In this section, we discuss
module hulls satisfying some generalizations of injectivity. One may expect that
such minimal overmodules will allow for a rich transfer of information similar to
the case of rings. This is because each of these hulls, with more general properties
than injectivity, sits in between M and a fixed injective hull E(M) of M ; and hence
it generally lies closer to the module M than E(M).

Definition 8.4.1 Let M be a module. We fix an injective hull E(M) of M . Let M
be a class of modules. We call, when it exists, a module HM(M) the M hull of M if
HM(M) is the smallest extension of M in E(M) that belongs to M (i.e., HM(M)

is the M absolute hull of M).

We begin this section with a description of a quasi-injective hull of a module M
(i.e., HqI(M), where qI is the class of quasi-injective modules). We recall that an
R-module M is quasi-injective if and only if f (M) ⊆ M , for all f ∈ End(E(M))

(see Theorem 2.1.9). The next result about the existence of quasi-injective hulls is
due to Johnson and Wong [238].
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Theorem 8.4.2 Let M be a right R-module and let S = End(E(M)). Then SM is
the quasi-injective hull of M .

Proof We put U = SM . Then M ≤ U ≤ E(M) and E(U) = E(M). Now take
φ ∈ End(E(U)) = End(E(M)). Then φ(U) ⊆ U . By Theorem 2.1.9, U is quasi-
injective. Next we assume that M ≤ N ≤ E(M) and N is quasi-injective. Then
ϕ(N) ⊆ N for any ϕ ∈ End(E(N)) = End(E(M)) by Theorem 2.1.9. Thus,
SN ⊆N and so SM ⊆ SN ⊆ N . Therefore SM is the quasi-injective hull of M
(i.e., SM =HqI(M)). �

The following result for the existence of the quasi-continuous hull of a module
is obtained by Goel and Jain [177].

Theorem 8.4.3 Let M be a right R-module and S = End(E(M)). Let Ω be the
subring of S generated by the set of all idempotents of S. Then ΩM is the quasi-
continuous hull of M .

Proof As E(ΩM) = E(M), Ω is also the subring of End(E(ΩM)) generated by
the set of all idempotents. As Ω(ΩM) = ΩM , ΩM is quasi-continuous by Theo-
rem 2.1.25. Say M ≤N ≤E(M) and N is quasi-continuous. Then E(N)=E(M),
so Ω is the subring of End(E(N)) generated by the set of all idempotents. From
Theorem 2.1.25, ΩN ⊆N . Thus, ΩM ⊆ΩN ⊆N . So ΩM is the quasi-continuous
hull of M (i.e., ΩM =HqCon(M)). �

In contrast to Theorems 8.4.2 and 8.4.3, for the case of continuous hulls, there
exists a nonsingular uniform cyclic module over a noncommutative ring which does
not have an absolute continuous hull as follows.

Example 8.4.4 Let V be a vector space over a field F with basis elements
vm, wk (m, k = 0,1,2, . . . ). We denote by Vn the subspace generated by the
vm (m ≥ n) and all the wk . Also we denote by Wn the subspace generated by the
wk (k ≥ n). We write S for the shift operator such that S(wk)=wk+1 and S(vi)= 0
for all k, i. Let R be the set of all ρ ∈ EndF (V ) with ρ(vm) ∈ Vm, ρ(w0) ∈W0 and
ρ(wk)= Skρ(w0), for m,k = 0,1,2, . . . .

Note that τρ(wk)= Skτρ(w0), for ρ, τ ∈R, and so τρ ∈R. Thus, it is routine to
check that R is a subring of EndF (V ). Further, we see that Vn = Rvn, Wn = Rwn,
and Vn+1 ⊆ Vn for all n. (When f ∈ R and v ∈ V , we also use f v for the image
f (v) of v under f .)

Consider the left R-module M =W0. First, we show that M = Rw0 is uniform.
For this, take fw0 �= 0, gw0 �= 0 in M , where f,g ∈ R. We need to find h1, h2 ∈ R

such that h1fw0 = h2gw0 �= 0. Let

fw0 = b0w0 + b1w1 + · · · + bmwm ∈Rw0

and

gw0 = c0w0 + c1w1 + · · · + cmwm ∈Rw0,

where bi, cj ∈ F , i, j = 0,1, . . . ,m, and some terms of bi and cj may be zero.
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Put h1w0 = x0w0 + x1w1 + · · · + x�w� and h2w0 = y0w0 + y1w1 + · · · + y�w�,
where xi, yi ∈ F , i = 0,1, . . . , � (also some terms of xi and yj may be zero). Since
h1(wk) = Skh1(w0) and h2(wk) = Skh2(w0) for k = 0,1,2 . . . , we need to find
such xi, yi ∈ F , 0 ≤ i ≤ � so that h1fw0 = h2gw0 �= 0 from the following equa-
tions:

b0x0 = c0y0, b0x1 + b1x0 = c0y1 + c1y0,

b0x2 + b1x1 + b2x0 = c0y2 + c1y1 + c2y0,

b0x3 + b1x2 + b2x1 + b3x0 = c0y3 + c2y1 + c2y1 + c3y0,

and so on. Now say α(t) = b0 + · · · + bmt
m �= 0 and β(t) = c0 + · · · + cmt

m �= 0
in the polynomial ring F [t]. Then α(t)F [t] ∩ β(t)F [t] �= 0. We may note that
finding such x0, x1 . . . , x�, y0, y1 . . . , y� in F above is the same job for finding
x0, x1 . . . , x�, y0, y1 . . . , y� such that

α(t)(x0 + x1t + · · · + x�t
�)= β(t)(y0 + y1t + · · · + y�t

�) �= 0

in the polynomial ring F [t]. Observing that 0 �= α(t)β(t) ∈ α(t)F [t] ∩ β(t)F [t],
take h1w0 = c0w0 + c1w1 + · · · + cmwm by putting � = m,xi = ci for 0 ≤ i ≤ m,
and h2w0 = b0w0 + b1w1 + · · · + bmwm by putting � = m,yi = bi for 0 ≤ i ≤ m.
As α(t)β(t) �= 0, 0 �= h1fw0 = h2gw0 ∈Rfw0 ∩Rgw0. So M is uniform.

Next, we show that each Vn is an essential extension of M (hence each Vn is
uniform). Indeed, let 0 �= μvn ∈Rvn = Vn, where μ ∈R. Say

μvn = an+kvn+k + · · · + an+k+�vn+k+� + bsws + · · · + bs+mwk+m.

If an+k = · · · = an+k+� = 0, then μvn ∈ W0. Otherwise, we assume that an+k �= 0.
Let ω ∈ R such that ω(vn+k)=w0 and ω(vi)= 0 for i �= n+ k and ω(wj )= 0 for
all j . Then 0 �= ωμvn = an+kw0 ∈W0. Thus M =W0 is essential in Vn. Since M is
uniform, Vn is also uniform for all n.

We prove that RM is nonsingular. For this, assume that u ∈ Z(RM) and let
K = {α ∈R | αu= 0}. Then K is an essential left ideal of R. So K ∩ RS2 �= 0.
Thus there exists ρ ∈R such that ρS2 �= 0 and ρS2(u)= 0. Say

u= akwk + ak+1wk+1 + · · · + anwn with ak, ak+1, . . . , an ∈ F.

Assume on the contrary that u �= 0. Then we may suppose that ak �= 0. Because
ρ(wn)= Snρ(w0) for n= 0,1,2, . . . ,

0 = ρS2(u)= akρS2(wk)+ ak+1ρS2(wk+1)+ · · · + anρS2(wn)

= akSk+2ρ(w0)+ ak+1Sk+3ρ(w0)+ · · · + anSn+2ρ(w0).

Here we put ρ(w0)= b�w�+b�+1w�+1 +· · ·+btwt . If ρ(w0)= 0, then we see that
ρS2(w0) = ρ(w2) = S2ρ(w0) = 0. Also, ρS2(wm) = 0 for all m = 1,2, . . . , and
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ρS2(vi)= 0 for all i = 0,1, . . . . Thus ρS2 = 0, a contradiction. Hence ρ(w0) �= 0,
and so we may assume that b� �= 0. Note that

Sk+2ρ(w0)= b�w�+k+2 + b�+1w�+k+3 + · · · + btwt+k+2,

Sk+3ρ(w0)= b�w�+k+3 + b�+1w�+k+4 + · · · + btwt+k+3,

and so on. Thus 0 = ρS2(u)= akb�w�+k+2 + (akb�+1 + ak+1b�)w�+k+3 + · · · , and
hence akb� = 0, which is a contradiction because ak �= 0 and b� �= 0. Therefore
u= 0, and so M is nonsingular.

We show now that Vn is continuous. Note that Vn is uniform. So clearly, Vn has
(C1) condition. Thus, to show that Vn is continuous, it suffices to prove that every
R-monomorphism of Vn is onto for Vn to satisfy (C2) condition.

Let ϕ : Vn → Vn be an R-monomorphism. We put

ϕ(vn)= ρvn ∈Rvn = Vn, where ρ ∈R.

We claim that ρvn �∈ Vn+1. For this, assume on the contrary that ρvn ∈ Vn+1. Now
we let λ ∈ R such that λvn = vn, λvk = 0 for k �= n, and λwm = 0 for all m. Then
ϕ(λvn)= λ(ρvn)= 0 since ρ(vn) ∈ Vn+1. But λvn = vn �= 0. Thus ϕ is not one-to-
one, a contradiction. Therefore ρvn �∈ Vn+1.

As ρvn ∈ Vn, write

ρvn = anvn + an+1vn+1 + · · · + an+�vn+� + b0w0 + · · · + bhwh,

where an, an+1, . . . , an+�, b0, b1, . . . , bh ∈ F , and an �= 0.
Take ν ∈ R such that νvn = a−1

n vn, νvk = 0 for k �= n and νwm = 0 for all m.
Then we see that vn = νρvn ∈ Rρvn. So Rvn ⊆ Rρvn, hence Vn = Rvn = Rρvn.
Thus ϕ(Rvn) = Rϕ(vn) = Rρvn = Vn, so ϕ is onto. Therefore each Vn is continu-
ous.

Finally, note that the uniform nonsingular module M = Rw0 is not continu-
ous, since the shifting operator S provides an R-monomorphism which is not onto.
Hence, M does not have a continuous hull (in E(M)=E(V )), because such a hull
would have to be contained in each Vn, and hence in M = ∩nVn.

Despite Example 8.4.4, we will show that continuous hulls do exist for certain
classes of modules over a commutative ring as shown in the next several results. We
start with a lemma.

Lemma 8.4.5 Assume that R is a commutative ring and M is a nonsingular cyclic
R-module. Let E =E(MR) and T be a subring of End(ER). Then:

(i) E rR(M)= 0.
(ii) There exists a smallest continuous module V such that M ≤ V ≤ E and

T V ⊆ V .

Proof Let I = rR(M)�R. Put R =R/I . Then M ∼=RR .
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(i) Note that ER is nonsingular because MR is nonsingular. Let x ∈E(RR). Then
there is an essential ideal L of R with xL ⊆ R/I . Hence (xI)L = xLI = 0, so
xI ⊆ Z(ER)= 0. Thus, xI = 0. Therefore, EI = 0.

(ii) Step 1. By part (i), E has an R-module structure induced from the R-
module ER . To see that E is the injective hull of the R-module M , note that E
is an essential extension of M as an R-module. Let K/I be an ideal of R/I and
α ∈ Hom((K/I)R, ER). Then α ∈ Hom((K/I)R,ER) and so there exists an exten-
sion β ∈ Hom((R/I)R,ER) of α. We see that β ∈ Hom((R/I)R,ER). Hence E

is an injective R-module. Therefore, E is an injective hull of M as an R-module.
Further, M is nonsingular as an R-module by routine arguments.

By Theorem 2.1.31, E =Q(R), which is a commutative regular ring. Also from
Proposition 2.1.32, E = End(EE)= End(ER) (= End(ER)). Thus T is a subring of
E. Also R is a subring of E.

Let P be the subring of E generated by all idempotents of E. We claim that
any regular subring A of E satisfying RP ⊆ A is continuous as an R-module (or
equivalently, as an R-module).

First, by Theorem 2.1.25 or Theorem 8.4.3, A is a quasi-continuous R-module
because PA=A. We show that AR has (C2) condition. For this, let A=A1 ⊕A2,
which is an R-module decomposition, and let ϕ : A1 → N be an R-isomorphism,
where NR ≤AR . Note that HomR(A,A1)= HomR(A,A1). Further, from the proof
of Proposition 2.1.32, HomR(A,A1) = HomA(A,A1), because A is a ring of quo-
tients of R. Thus HomR(A,A1)= HomA(A,A1).

We let π1 : A → A1 be the canonical projection of R-modules. Then we see
that π1 is an A-homomorphism. Therefore A1 = π1(A) = π1(1)A. Similarly, we
observe that ϕ ∈ HomR(A1,N)⊆ HomR(A1,A)= HomA(A1,A).

So we have that N = ϕ(A1)= ϕ(π1(1)A)= ϕπ1(1)A is a principal (right) ideal
of A. Hence NA ≤⊕ AA because A is a regular ring, and so NR ≤⊕ AR . Thus AR

satisfies (C2) condition. Therefore, AR is a continuous module.
Let V be the intersection of all regular subrings Vi of E with RPT ⊆ Vi . Then

as in the proof of Theorem 8.2.6, V is a regular ring. Also RPT ⊆ V . Thus by
the preceding consideration, VR is continuous. Clearly, R ⊆ V ⊆ E. Moreover, we
obtain T V ⊆ V since T ⊆RPT ⊆ V .

Step 2. Let Y be a continuous R-module such that RR ≤ YR ≤ER and T Y ⊆ Y .
Put B = {b ∈ E | bY ⊆ Y }. Then B is a subring of E. Further, R ⊆ B and T ⊆ B .
Since Y is a continuous R-module and E(YR)=E, PY = Y by Theorem 2.1.25 or
Theorem 8.4.3 (recall that P is the subring of E generated by the set of all idempo-
tents of E). So P ⊆ B . Thus RPT ⊆ B ⊆E.

We claim that B is regular. For this, take b ∈ B . Since E is commutative regular,
there exists c ∈E such that b = bcb and c = cbc (see [264, Exercise 3, p. 36]). Note
that (cb)2 = cb ∈E and so cb ∈ P . Hence, cbY ⊆ Y and cbYR ≤⊕ YR . Define

φ : bY → cbY by φ(by)= cby,

where y ∈ Y . Then φ is an R-isomorphism because b = bcb. Hence by (C2)
condition of Y , there is g2 = g ∈ End(YR) such that bY = gY . Also there ex-
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ists f ∈ E, which is an extension of g. Then we have that bY = gY = f Y and
(f − f 2)(Y )= (g − g2)(Y )= 0.

We show that (f − f 2)(E)= 0. Assume on the contrary that there exists x ∈ E

such that (f −f 2)(x) �= 0. Since YR ≤ess ER and ER is nonsingular, YR ≤den ER by
Proposition 1.3.14. Thus there exists r ∈R such that xr ∈ Y and (f − f 2)(x)r �= 0.
Therefore, 0 �= (f − f 2)(x)r = (f − f 2)(xr), which is a contradiction because
xr ∈ Y and (f − f 2)(Y )= 0. Hence (f − f 2)(E)= 0, so

f 2 = f ∈ P and bY = gY = f Y ⊆ Y

as b ∈ B . Thus (1 − f )Y ⊆ Y and Y = f Y ⊕ (1 − f )Y . Therefore

cY = cf Y ⊕ c(1 − f )Y = cbY ⊕ cbc(1 − f )Y = cbY ⊕ c2(1 − f )bY.

As bY = f Y , c2(1 − f )bY = c2(1 − f )f Y = 0, and hence cY = cbY ⊆ PY = Y .
Thus c ∈ B , and so B is a regular ring. As RPT ⊆ B and B is a regular ring, V ⊆ B

by the definition of V . So V = VR ⊆ B R ⊆ BY ⊆ Y . �

We remark that, if R is a commutative semiprime ring, then by Lemma 8.4.5
and Theorem 8.4.6 the continuous hull of RR is the intersection of all intermediate
continuous regular rings between R and Q(R). Thus, the continuous hull of RR is
exactly the continuous absolute ring hull QCon(R) of R (see Theorem 8.2.6).

Theorem 8.4.6 Every nonsingular cyclic module over a commutative ring has a
continuous hull (which is a regular ring).

Proof Assume that M be a nonsingular cyclic module over a commutative ring R

and I = rR(M). Put R =R/I . Then M ∼=RR . Let E =E(MR).
From Lemma 8.4.5(i), EI = 0. Thus, T := R/I can be considered as a subring

of EndR(E). By Lemma 8.4.5(ii), there exists a smallest continuous module V such
that M ≤ V ≤E and T V ⊆ V . So V is a continuous hull of M . �

The next example shows that quasi-continuous hulls (even for commutative
semiprime rings) are distinct from continuous hulls which are, in turn, distinct from
(quasi-)injective hulls.

Example 8.4.7 Let Fn = R for n = 1,2, . . . and R the subring of
∏∞

n=1 Fn gener-
ated by ⊕∞

n=1Fn and 1∏∞
n=1 Fn

. Then E(RR) = Q(R) =∏∞
n=1 Fn. In this case, we

see that

U = {(an)∞n=1 ∈
∞
∏

n=1

Fn | an ∈ Z eventually}

is the quasi-continuous hull of RR (see Theorem 8.4.3). By Lemma 8.4.5,

V = {(an)∞n=1 ∈
∞
∏

n=1

Fn | an ∈ Q eventually}
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is the continuous hull of RR because V is the smallest continuous regular ring be-
tween R and Q(R) (therefore V is the intersection of all intermediate continuous
regular rings between R and Q(R)).

Consider an arbitrary cyclic R-module M = R = R/rR(M) over a commuta-
tive ring R. We fix the following notations: E = E(RR), E = E1 ⊕ E2, where
E1 = Z2(E) (note that since ER is injective, Z2(E) ≤⊕ E by Proposition 2.3.10).
Write 1R = e1 + e2 (where e1 ∈E1, and e2 ∈E2) be the corresponding decomposi-
tion. Then E1 =E(e1R) and E2 =E(e2R).

Proposition 8.4.8 Let M be a cyclic module over a commutative ring R and let
I = rR(e2R). Then the following conditions are equivalent.

(i) e1R + �E1(I ) has a continuous hull.
(ii) M has a continuous hull.

Proof Note that e2RR is a nonsingular cyclic R-module. Say π2 : E → E2 is the
canonical projection onto E2. Let T be the subring of EndR(E2) generated by the
set {π2π |E2}, where π2 = π ∈ EndR(E). By Lemma 8.4.5(i), E2I = 0. Also from
Lemma 8.4.5(ii), there exists a smallest continuous module V2 with e2R ≤ V2 ≤E2

and T V2 ⊆ V2.
(i)⇒(ii) Assume that there exists a continuous hull V1 of e1R + �E1(I ).

We claim that V = V1 ⊕ V2 is continuous. For this, first we prove that V

is quasi-continuous. Let π2 = π ∈ EndR(E). Then π |E1 ∈ EndR(E1) because
E1 = Z2(E) � E. Therefore, π(V1) = π |E1(V1) ⊆ V1 by Theorem 2.1.25 since
V1 is continuous. Let π1 : E → E1 be the canonical projection onto E1 and put
φ = π1π |E2 . Then φ ∈ HomR(E2,E1). Also, φ(V2)I = φ(V2I ) ⊆ φ(E2I ) = 0, so
φ(V2)⊆ �E1(I )⊆ V1. Hence, π1π(V2)⊆ V1.

Next π2π |E2 ∈ T , and hence π2π(V2) ⊆ T V2 ⊆ V2. Therefore, we have that
π(V )= π(V1)+ π(V2)= π(V1)+ π1π(V2)+ π2π(V2)⊆ V1 + V2 = V . Thus V is
quasi-continuous by Theorem 2.1.25.

By Lemma 2.2.4, V1 and V2 are relatively injective. Since V1 and V2 are continu-
ous, V = V1 ⊕V2 is continuous by Theorem 2.2.16. Next, we show that V = V1 ⊕V2

is a continuous hull of M = RR . For this, say Y is a continuous module such that
R ≤ Y ≤E =E1 ⊕E2. Then since E(Y)=E, Y = Y1 ⊕ Y2 from Theorem 2.1.25,
where Y1 = Y ∩E1 and Y2 = Y ∩E2. Observe that e1 = π1(1R) ∈ π1(Y )= Y1 and
e2 = π2(1R) ∈ π2(Y ) = Y2. So e1R ⊆ Y1 and e2R ⊆ Y2. Since Y is continuous,
π(Y ) ⊆ Y by Theorem 2.1.25 and so π2π(Y2) ⊆ π2π(Y ) ⊆ π2(Y ) = Y2. Hence,
T Y2 ⊆ Y2. Note that Y2 is continuous by Theorem 2.2.16. Thus V2 ⊆ Y2 since V2 is
the smallest continuous module such that e2R ≤ V2 ≤E2 and T V2 ⊆ V2.

To show that �E1(I )⊆ Y1 so that e1R + �E1(I )⊆ Y1, take a ∈ �E1(I ). Then the
map f : e2R → aR defined by f (e2r) = ar for r ∈ R is an R-homomorphism.
Thus, there is ϕ ∈ HomR(E2,E1) with ϕ|e2R = f . Note that E1 = E(Y1) and
E2 = E(Y2). Since Y = Y1 ⊕ Y2 is continuous, Y1 is Y2-injective by Lemma 2.2.4.
Thus, ϕ(Y2) ⊆ Y1 from Theorem 2.1.2. Whence a = f (e2) = ϕ(e2) ∈ ϕ(Y2) ⊆ Y1.
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Therefore, �E1(I ) ⊆ Y1, so e1R + �E1(I ) ⊆ Y1. Hence V1 ⊆ Y1 because Y1 is con-
tinuous by Theorem 2.2.16. This yields that V = V1 ⊕V2 ⊆ Y1 ⊕Y2 = Y . Therefore
V is a continuous hull of RR .

(ii)⇒(i) Assume that there exists a continuous hull W of RR . Then as in the
argument used in the proof of (i)⇒(ii), we have that

W =W1 ⊕W2, e1R + �E1(I )⊆W1 ⊆E1, e2R ⊆W2 ⊆E2,

and TW2 ⊆W2.
Let e1R + �E1(I ) ≤ U ≤ E1 with U a continuous module. We see that U ⊕W2

is quasi-continuous exactly as in the proof of (i)⇒(ii) for showing that V = V1 ⊕V2
is quasi-continuous. Thus U and W2 are relatively injective by Lemma 2.2.4. So
U ⊕W2 is continuous by Theorem 2.2.16 as both U and W2 are continuous. Hence,
W = W1 ⊕ W2 ≤ U ⊕ W2. Therefore, W1 ≤ U . Thus W1 is a continuous hull of
e1R + �E1(I ). �

An element a ∈R is said to act regularly on an R-module M , if ma = 0 implies
m = 0 for m ∈ M . Motivated by the condition in Proposition 8.4.8, we now obtain
the following result.

Lemma 8.4.9 Let E be an indecomposable injective module over a commutative
ring R. Assume that f ∈E and I �R. Then fR + �E(I) has a continuous hull.

Proof Let C be the multiplicatively closed set of those elements of R which act
regularly on E, and let RC−1 be the corresponding right ring of fractions of R (see
Proposition 5.5.4). For c ∈ C, we see that E ∼=Ec ≤E. Since E is indecomposable
and injective, E =Ec. Take y ∈E and rc−1 ∈RC−1, where r ∈R and c ∈ C. From
E =Ec, there exists uniquely y1 ∈E such that y = y1c. Define yrc−1 = y1r . Then
E becomes an RC−1-module.

Say V is a continuous R-submodule of E. Then each c ∈ C defines an R-
monomorphism V → V . Thus V ∼= V c ≤ V . Since V is continuous and uniform,
V c = V . As in the previous argument, V becomes an RC−1-module.

Let A= �E(I). To see that A is an RC−1-module, we first prove that A is quasi-
injective. For this, take h ∈ End(E) and let x ∈ A. Then xI = 0 and thus h(x)I =
h(xI) = 0. Therefore, h(x) ∈ A. Thus, A� E. If A = 0, then A is quasi-injective.
Suppose that A �= 0. As E is indecomposable injective, E = E(A) and so A is
quasi-injective by Theorem 2.1.9. Thus A is an RC−1-module by the preceding
argument.

We show that fRC−1 +A is a continuous R-module. If f ∈ A, then we obtain
fRC−1 +A = A, and therefore fRC−1 +A is a continuous R-module. Next, as-
sume that f �∈A. We let ϕ : fRC−1 +A→ fRC−1 +A be an R-monomorphism.
Then ϕ can be extended to an isomorphism ϕ of E because fRC−1 +A is essential
in E, and E is indecomposable and injective.

Write ϕ(f )= f t +a, where t ∈RC−1 and a ∈A. We note that ϕ(f ) �∈A. For, if
ϕ(f )= ϕ(f ) ∈A, then f ∈ ϕ−1(A)⊆A as A�E, which is a contradiction. Hence
f t �= 0, so t �= 0.
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Put t = rc−1 with r ∈ R and c ∈ C. We show that t is invertible in RC−1. Let
μ ∈ End(E) such that μ(y) = yt , where y ∈ E. If μ is one-to-one, then r acts
regularly on E, thus r ∈ C. Therefore, t = rc−1 is invertible in RC−1.

Assume that μ is not one-to-one. Then μ ∈ J (End(E)) as End(E) is a local ring.
Thus, ϕ − μ is an isomorphism because ϕ is an isomorphism. Put ψ = ϕ − μ. By
Theorem 2.1.9, ψ(A)⊆A because A is quasi-injective.

Next, for w ∈A, there exists v ∈E such that ψ(v)=w as ψ is an isomorphism.
Whence ψ(vI)=ψ(v)I =wI = 0. Hence vI = 0, so v ∈A. Thus w ∈ψ(A). As a
consequence, A=ψ(A)= (ϕ −μ)(A).

In particular, a = (ϕ − μ)(b) with b ∈ A. So ϕ(b) − bt = a. Let f ′ = f − b.
Then fR+A= f ′R+A. As f �∈A, f ′ �= 0. Recall that ϕ(f )= f t +a. Therefore,
ϕ(f ′) = ϕ(f − b) = ϕ(f ) − ϕ(b) = (f t + a) − (a + bt) = f t − bt = f ′t . Take
0 �= x ∈ E. Since E is indecomposable injective and f ′ �= 0, f ′R is essential in E.
So there exist r, r ′ ∈R with xr = f ′r ′ �= 0.

If xt = 0, then ϕ(f ′r ′) = ϕ(f ′)r ′ = f ′tr ′ = xtr = 0. Hence f ′r ′ = 0 as ϕ is
a monomorphism, a contradiction. Thus xt �= 0, so t acts regularly on E. Hence
t ∈ C, and thus t is invertible in RC−1.

From ϕ(f )= f t + a, ϕ(f )− a = f t . Therefore

f = (ϕ(f )− a)t−1 = ϕ(f )t−1 − at−1 ∈ ϕ(f )RC−1 +A

because A is an RC−1-module. Hence fRC−1 +A⊆ ϕ(f )RC−1 +A. As ϕ is an
isomorphism, A= ϕ(A) by the preceding argument. Hence A= ϕ(A).

Note that ϕ ∈ EndRC−1(fRC−1 + A). Indeed, for α ∈ fRC−1 + A and c ∈ C,
ϕ(αc−1)c = ϕ(αc−1c) = ϕ(α) and so ϕ(αc−1) = ϕ(α)c−1. Thus we have that
fRC−1 +A⊆ ϕ(f )RC−1 +A⊆ ϕ(f )RC−1 + ϕ(A)= ϕ(fRC−1 +A). Hence ϕ
is onto. From this fact, every R-monomorphism from fRC−1 +A to fRC−1 +A

is onto. Therefore, fRC−1 +A is a continuous R-module because fRC−1 +A is
uniform.

Finally, assume that N is a continuous R-module with fR+A⊆N ⊆E. By the
preceding argument, N is an RC−1-module (also note that A is an RC−1-module).
Thus, fRC−1 +A⊆N . So fRC−1 +A is a continuous hull of fR +A. �

The following result is an extension of Theorem 8.4.6.

Theorem 8.4.10 Let R be a commutative ring. Then every cyclic module M with
Z(M) uniform, has a continuous hull.

Proof Let E = E(M). Then E = E1 ⊕ E2, where E1 = Z2(E). We observe
that E1 = E(Z2(M)) = E(Z(M)) as Z(M) is essential in Z2(M). Since Z(M)

is uniform, E1 is indecomposable injective. Let I = rR(e2R). By Lemma 8.4.9,
e1R + �E1(I ) has a continuous hull. Hence, Proposition 8.4.8 yields that M has a
continuous hull. �

When M is a uniform cyclic module over a commutative ring, M has a continu-
ous hull by Theorem 8.4.10. This continuous hull is described explicitly in the next
theorem.
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Theorem 8.4.11 Let R be a commutative ring, and M = fR a uniform cyclic R-
module. Then MC−1 = fRC−1 is a continuous hull of M , where C is the multi-
plicatively closed set of those elements of R which act regularly on M .

Proof Take I =R in Lemma 8.4.9. Then �E(I)= 0. By the proof of Lemma 8.4.9,
MC−1 = fRC−1 is a continuous hull of M . �

The following is an example of a continuous hull of a uniform cyclic module
over a commutative ring, which is distinct from its quasi-continuous and injective
hulls.

Example 8.4.12 Consider the ring

A= {
∑

i∈[0,∞)

αix
i | αi ∈ Z and αi = 0 for all but finitely many i}.

Let R = A/I , where I is the ideal of A generated by x. Then RR is uniform and
nonsingular. Thus Q(R)=E(RR) by Corollary 1.3.15, and Q(R) is regular by The-
orem 2.1.31. Since RR is uniform, Q(R) has only 0 and 1 as its idempotents (hence
Q(R) is a field). So the quasi-continuous hull of RR is RR itself by Theorem 8.4.3
or Theorem 2.1.25. Next, consider

B = {
∑

i∈[0,∞)

αix
i | αi ∈Q and αi = 0 for all but finitely many i}.

Take Q = B/K , where K is the ideal of B generated by x. Let C be the set of
all non zero-divisors of R. Then Q = RC−1, which becomes the classical ring of
quotients of R. By Theorem 8.4.11, QR is the continuous hull of RR .

We claim that QR is not injective. For this, consider the ideal ∪∞
n=1x

1/nR of R
and the map φ : ∪∞

n=1x
1/nR → Q, where φ|x1/nR = φn is given by the multipli-

cation by 1 + x1/2 + · · · + x(n−2)/(n−1) + x(n−1)/n. Then φ is well-defined since
φn+1|x1/nR = φn. Also, φ is an R-homomorphism. However, there is no element
q ∈ Q, for which φ(x) = qx for all x in ∪∞

n=1x
1/nR. Since, in that case, q would

have to be an infinite sum, and such q does not lie in Q. Consequently, φ cannot be
extended to R. Thus, QR is not injective.

In the next example, we exhibit a free module of finite rank over a commutative
domain, which does not have an extending hull.

Example 8.4.13 Let R = Z[x, y], the polynomial ring. Put M = R ⊕ R. Then the
R-module M is not extending by Theorem 6.1.4 and Exercise 6.1.18.1 because the
commutative domain R is not Prüfer. Let F = Q(x, y), the field of fractions of R.
Note that E(M)= F ⊕ F .

Let U = F ⊕R and S = End(UR). As Hom(FR,RR)= 0,

S =
[

End(FR) Hom(RR,FR)

0 End(RR)

]

.
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By Theorem 4.2.18, UR is a Baer module. We claim that UR is a K-cononsingular.
For this, say NR ≤ UR such that �S(N) = 0. If N ⊆ F ⊕ 0, then �S(N) �= 0. Also,
if N ⊆ 0 ⊕R, then �S(N) �= 0. Thus, there are 0 �= q0 ∈ F and 0 �= r0 ∈R such that

α :=
[

q0
r0

]

∈N . Let f ∈ Hom(RR,FR) defined by f (r)= (−q0/r0)r for r ∈R. Put

ϕ =
[

1 f

0 0

]

∈ S.

Then ϕ(α) = 0, and so �S(α) �= 0. If N = αR, then �S(N) = �S(αR) �= 0, a con-
tradiction. Therefore, αR � N . Assume that αR ∩ βR �= 0 for each β ∈ N \ αR.
Then there are a, b ∈ R with αa = βb �= 0. For s ∈ S, note that sα = 0 if and only
if sαa = 0 if and only if sβb = 0 if and only if sβ = 0. Thus �S(α) = �S(β) for all
β ∈ N \ αR. Take 0 �= s0 ∈ �S(α). Then s0 ∈ �S(N), which contradicts �S(N) = 0.
Thus, there exists β ∈N \ αR such that αR ∩ βR = 0.

So αF ∩ βF = 0, hence α and β are linearly independent vectors in the vec-
tor space F ⊕ F over F . Thus, αF ⊕ βF = F ⊕ F . Therefore, we have that
(αR ⊕ βR)R ≤ess (αF ⊕ βF)R = (F ⊕ F)R . So NR ≤ess (F ⊕ R)R because
(αR ⊕ βR)R ≤NR ≤ (F ⊕R)R ≤ (F ⊕ F)R . Hence, UR is K-cononsingular.

By Theorem 4.1.15, UR is extending. Similarly, WR = (R ⊕ F)R is extending.
Because U ∩ W =M and M is not extending, M cannot have an extending hull.

We use SFI to denote the class of strongly FI-extending right modules (or the
class of right strongly FI-extending rings according to the context). In contrast
to Example 8.4.13, we show that over a semiprime ring R, every finitely gener-
ated projective module PR has the FI-extending module hull HFI(PR) (see Defini-
tion 8.4.1). This module hull HFI(PR) is explicitly described in Theorem 8.4.15. As
a consequence, it will be seen that a finitely generated projective module PR over a
semiprime ring R is FI-extending if and only if it is a quasi-Baer module if and only
if End(PR) is a quasi-Baer ring. This result will also be applied to C∗-algebras in
Chap. 10.

Lemma 8.4.14 Assume that MR is an FI-extending module. Then fM ⊆M for any
f ∈ B(End(E(MR))).

Proof Say f ∈ B(End(E(MR))). Then fE(MR) ∩ M � M . Because M is FI-
extending, there exists g2 = g ∈ End(MR) satisfying

fE(MR)∩M ≤ess gM ≤ess gE(MR),

where g is the canonical projection from E(MR) = E(gMR) ⊕ E((1 − g)MR) to
E(gMR). Now we note that fE(MR) ∩ MR ≤ess fE(MR). Thus f = g as f is
central in End(E(MR)). So fM = gM = gM ⊆M . �

We observe that Lemma 8.4.14 shows connections to Theorem 2.1.25 (and also
Lemma 9.3.12). The next result shows and explicitly describes the unique (up to
isomorphism) FI-extending hull for every finitely generated projective module over
a semiprime ring.
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Theorem 8.4.15 Every finitely generated projective module PR over a semiprime
ring R has the FI-extending hull HFI(PR). Indeed,

HFI(PR)∼= e(⊕n
̂QFI(R)R),

where P ∼= e(⊕nRR) for some positive integer n and e2 = e ∈ End(⊕nRR).

Proof Step 1. ̂QFI(R)R is strongly FI-extending. From Theorems 3.2.37 and 8.3.17,
̂QFI(R) = ̂QqB(R) = RB(Q(R)) is quasi-Baer, right strongly FI-extending, and
semiprime. To show that ̂QFI(R)R is strongly FI-extending, take UR � ̂QFI(R)R .
Then by Lemma 8.1.3(ii), UR ≤ess

̂QFI(R)U ̂QFI(R)R . Theorem 3.2.37 yields
that ̂QFI(R)U ̂QFI(R)̂QFI(R)

≤ess ĥQFI(R)̂QFI(R)
for some h ∈ B(̂QFI(R)). By

Lemma 8.1.3(i), ̂QFI(R)U ̂QFI(R)R ≤ess ĥQFI(R)R .
Now End(̂QFI(R)R) = End(̂QFI(R)̂QFI(R)

) ∼= ̂QFI(R) from Proposition 2.1.32.

Therefore, λ(ĥQFI(R))= h(λ̂QFI(R)) for any λ ∈ End(̂QFI(R)R). Thus ĥQFI(R)R
� ̂QFI(R)R , so ̂QFI(R)R is strongly FI-extending because UR ≤ess ĥQFI(R)R .

Step 2. HFI(⊕nRR) = ⊕n
̂QFI(R)R . Note that ̂QFI(R)R is FI-extending by

Step 1, so ⊕n
̂QFI(R)R is FI-extending by Theorem 2.3.5. Suppose that NR is FI-

extending such that ⊕nRR ≤NR ≤E(⊕nRR)= ⊕nE(RR).
Take f ∈ B(Q(R)). Then f = λ(1) for some λ ∈ B(End(E(RR))) from

Lemma 8.3.10. Let λ1, which is the n × n diagonal matrix with λ on the diago-
nal, where 1 is the identity matrix in End(⊕nE(RR)) = Matn(End(E(RR))). Then
because λ1 ∈ B(End(⊕nE(RR))), λ1N ⊆N by Lemma 8.4.14, and so

λ1

⎡

⎢

⎣

R
...

R

⎤

⎥

⎦
=
⎡

⎢

⎣

fR
...

fR

⎤

⎥

⎦
⊆N, where

⎡

⎢

⎣

R
...

R

⎤

⎥

⎦
= ⊕nRR.

As ̂QFI(R) = RB(Q(R)) by Theorem 8.3.17, we have that ⊕n
̂QFI(R)R ≤ NR ,

hence HFI(⊕nRR)= ⊕n
̂QFI(R)R .

Step 3. HFI(e(⊕nRR)) = e(⊕n
̂QFI(R)R). For this, we first observe that

⊕n
̂QFI(R)R = e(⊕n

̂QFI(R)R) ⊕ (1 − e)(⊕n
̂QFI(R)R). As ̂QFI(R)R is strongly

FI-extending by Step 1, ⊕n
̂QFI(R)R is strongly FI-extending by Theorem 2.3.23.

So e(⊕n
̂QFI(R)R) is strongly FI-extending from Theorem 2.3.19.

Let VR be FI-extending such that e(⊕nRR)≤ VR ≤E(e(⊕nRR)). Then

⊕nRR = e(⊕nRR)⊕ (1 − e)(⊕nRR)≤ VR ⊕ (1 − e)(⊕nRR)

≤ VR ⊕E[(1 − e)(⊕nRR)].
Since VR is FI-extending and E[(1 − e)(⊕nRR)] is injective, Theorem 2.3.5 yields
that VR ⊕E[(1 − e)(⊕nRR)] is FI-extending. Therefore by Step 2,

HFI(⊕nRR)= ⊕n
̂QFI(R)R ≤ VR ⊕E[(1 − e)(⊕nRR)].

To prove that e(⊕n
̂QFI(R)R)≤ VR , we take

eα ∈ e(⊕n
̂QFI(R)R), where α ∈ ⊕n

̂QFI(R)R.
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Since e(⊕n
̂QFI(R)R)≤ VR ⊕E[(1 − e)(⊕nRR)], eα = v + y for some v ∈ V and

y ∈E[(1 − e)(⊕nRR)]. Thus,

eα − v = y ∈ [e(⊕n
̂QFI(R)R)+ V ] ∩E[(1 − e)(⊕nRR)].

Since e(⊕nRR) ≤ess e(⊕n
̂QFI(R)R), E[e(⊕n

̂QFI(R)R)] = E[e(⊕nRR)]. So
[e(⊕n

̂QFI(R)R) + V ] ∩ E((1 − e)(⊕nRR)] ≤ E[e(⊕nRR)] ∩ E[(1 − e)(⊕nRR)].
Hence, eα − v = y = 0, so eα = v ∈ V . Therefore, e(⊕n

̂QFI(R)R) ≤ VR . Conse-
quently, HFI(e(⊕nRR))= e(⊕n

̂QFI(R)R).
Step 4. HFI(PR)∼= e(⊕n

̂QFI(R)R). Let σ : PR → e(⊕nRR) be an isomorphism.
Then σ can be extended to an isomorphism σ :E(PR)→E(e(⊕nRR)). We see that
HFI(PR)= σ−1(e(⊕n

̂QFI(R)R))∼= e(⊕n
̂QFI(R)R). �

Remark 8.4.16 By the proof of Theorem 8.4.15, the strongly FI-extending hull and
the FI-extending hull of a finitely generated projective module PR coincide when R
is semiprime.

If R is not semiprime, the above remark does not hold. For example, let
R = Z3[S3], the group algebra of S3 over the field Z3, where S3 is the symmet-
ric group on {1,2,3}. By Example 2.3.18, RR is not strongly FI-extending. Thus
HSFI(RR) does not exist because RR is injective.

The existence of an FI-extending hull of a module is not always guaranteed, even
in the presence of nonsingularity, as the next example shows.

Example 8.4.17 Let R be the ring of Example 8.2.9. Then HFI(RR) does not exist.
Indeed, let H1 and H2 be rings as in Example 8.2.9, which are right FI-extending
rings. Since H1 and H2 are right rings of quotients of R, H1 and H2 are FI-extending
right R-modules by Proposition 8.1.4(i). Suppose HFI(RR) exists. Then it follows
that HFI(RR) ⊆ H1 ∩ H2 = R, so HFI(RR) = RR . But, RR is not FI-extending, a
contradiction.

Corollary 8.4.18 Assume that R is a semiprime ring and PR is a finitely generated
projective module. Then ̂QFI(End(PR))∼= End(HFI(PR)).

Proof Since PR ∼= e(⊕nRR) with e2 = e ∈ Matn(R), End(PR)∼= eMatn(R)e. Also
by Theorem 8.4.15, HFI(PR)∼= e(⊕n

̂QFI(R)). Thus it follows that

End(HFI(PR))∼= eMatn(End(̂QFI(R)R)e.

Now End(̂QFI(R)R)∼= ̂QFI(R) by Proposition 2.1.32.
Hence End(HFI(PR)) ∼= eMatn(EndR(̂QFI(R)R))e ∼= eMatn(̂QFI(R))e. Next,

we observe that ̂QFI(eMatn(R)e) = êQFI(Matn(R))e since Matn(R) is semiprime
and 0 �= e2 = e ∈ Matn(R) (see Theorem 3.2.37 and Lemma 9.3.9).

So End(HFI(PR))∼= êQFI(Matn(R))e = ̂QFI(eMatn(R)e)∼= ̂QFI(End(PR)). �

When PR is a progenerator, we have the following.
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Corollary 8.4.19 Let R be a semiprime ring. If PR is a progenerator of the category
Mod-R of right R-modules, then HFI(PR)̂QFI(R)

is a progenerator of the category

Mod-̂QFI(R) of right ̂QFI(R)-modules.

Proof Assume that PR is a progenerator for Mod-R. Let PR ∼= e(⊕nRR) with
e2 = e ∈ Matn(R) and let S = End(PR). Then R is Morita equivalent to S and

S ∼= eMatn(R)e with Matn(R)eMatn(R)= Matn(R).

Now Matn(̂QFI(R))eMatn(̂QFI(R)) = Matn(RB(Q(R))) = Matn(̂QFI(R)) by ob-
serving that ̂QFI(R)=RB(Q(R)) from Theorem 8.3.17.

SinceHFI(PR)∼= e(⊕n
̂QFI(R)), End(HFI(PR)̂QFI(R)

)∼= eMatn(̂QFI(R))e. Thus,
we get that HFI(PR)̂QFI(R)

is a progenerator of the category Mod-̂QFI(R) of right
̂QFI(R)-modules. �

A connection between FI-extending modules and quasi-Baer modules can be
seen in the next result.

Theorem 8.4.20 Assume that PR is a finitely generated projective module over a
semiprime ring R. Then the following are equivalent.

(i) PR is (strongly) FI-extending.
(ii) PR is a quasi-Baer module.

(iii) End(PR) is a quasi-Baer ring.
(iv) End(PR) is a right FI-extending ring.

Proof Let PR ∼= e(⊕nRR), where e2 = e ∈ End(⊕nRR)∼= Matn(R) and n is a pos-
itive integer.

(i)⇒(ii) If PR is FI-extending, then PR =HFI(PR)∼= e(⊕n
̂QqB(R)R) by Theo-

rems 3.2.37, 8.3.17, and 8.4.15. Note that End(̂QqB(R)R) ∼= ̂QqB(R) from Propo-
sition 2.1.32. By Theorems 3.2.37, 8.3.17, and Proposition 8.1.4(i), ̂QqB(R)R
is FI-extending. Next, we show that ̂QqB(R)R is quasi-Baer. For this, take
NR � ̂QqB(R)R . As End(̂QqB(R)R)∼= ̂QqB(R), N is a left ideal of ̂QqB(R). Thus
�
̂QqB(R)

(N) = ̂QqB(R)g for some g2 = g ∈ ̂QqB(R). So ̂QqB(R)R is a quasi-

Baer module. By Theorem 4.6.15 ⊕n
̂QqB(R)R is a quasi-Baer module. Hence

e(⊕n
̂QqB(R)R) is a quasi-Baer module by Theorem 4.6.14. So PR is quasi-Baer.

(ii)⇒(iii) It follows from Theorem 4.6.16.
(iii)⇒(i) Let End(PR) be quasi-Baer. Because End(PR) ∼= eMatn(R)e,

eMatn(R)e = ̂QqB(eMatn(R)e)= êQqB(Matn(R))e = eMatn(̂QqB(R))e (see Prop-
osition 9.3.7 and Lemma 9.3.9). Next, let f ∈ B(Q(R)). Then we have that
f 1 ∈ B(Matn(Q(R))), where 1 is the identity matrix of Matn(R). Thus

e(f 1)e ∈ eMatn(̂QqB(R))e = eMatn(R)e.
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Take e(f 1)e = [αij ] ∈ eMatn(R)e. Then

e

⎡

⎢

⎣

fR
...

f R

⎤

⎥

⎦
= e(f 1)e

⎡

⎢

⎣

R
...

R

⎤

⎥

⎦
= e[αij ]e

⎡

⎢

⎣

R
...

R

⎤

⎥

⎦
⊆ e

⎡

⎢

⎣

R
...

R

⎤

⎥

⎦
.

So e(⊕n
̂QqB(R)R)= e(⊕nRR) because ̂QqB(R)=RB(Q(R)) by Theorem 8.3.17.

From Theorems 8.4.15 and 8.3.17, HFI(e(⊕nRR)) = e(⊕nRR) since ̂QqB(R) =
̂QFI(R), and so e(⊕nRR) is (strongly) FI-extending. Therefore, PR is (strongly)
FI-extending.

(iii)⇔(iv) Since End(PR) is semiprime, Theorem 3.2.37 yields the equiva-
lence. �

We observe that the rational hull ˜E(M) of a module M is an M hull of M ,
where M is the class of rationally complete modules (see Definition 8.4.1 and [262,
p. 277]). Consider M = Zp ⊕Zp3 and N = Zp ⊕pZp3 , where p is a prime integer.
Then NZ ≤ess MZ and NZ is extending (by direct calculation or [301, p. 19]). But
recall from Example 2.2.1(ii) that MZ is not extending. So the extending property
does not, in general, transfer to essential extensions of modules. However, Theo-
rem 8.1.8 motivates one to ask: Does the (FI-)extending property transfer to rational
extensions in modules? Our next result shows this to be the case for rational hulls.

Theorem 8.4.21 Let M be an (FI-)extending module. Then ˜E(M) is an (FI-)
extending module.

Proof First, we assume that M is extending. Let K ≤ ˜E(M) and N = K ∩ M .
Then N ≤ess eM for some e2 = e ∈ End(M). By Proposition 1.3.6 and [262, The-
orem 8.24], there exists f ∈ End(˜E(M)) such that f |M = e. As E(M) is injective,
there is g ∈ End(E(M)) satisfying g|

˜E(M) = f .

Let m ∈M . Then (g2 − g)(m)= (e2 − e)(m)= 0. From the definition of ˜E(M)

(see the definition of ˜E(M) after Proposition 1.3.6), (g2 − g)(y) = 0 for all y in
˜E(M). Hence f 2 = f . Assume that there exists k ∈ K such that f (k)− k �= 0. As
M ≤den

˜E(M), there exists r ∈ R satisfying kr ∈ M and (f (k) − k)r �= 0. Then
kr ∈ N , so (f (k) − k)r = f (kr) − kr = e(kr) − kr = 0, a contradiction. Hence,
K ≤ f ˜E(M). Let 0 �= f (v) ∈ f ˜E(M) with v ∈ ˜E(M). Then there is s ∈ R such
that vs ∈ M and f (v)s �= 0. Now we see that 0 �= f (v)s = f (vs) = e(vs) ∈ M .
So 0 �= f (v)st ∈ N ≤ K for some t ∈ R. Therefore, K ≤ess f ˜E(M), so ˜E(M) is
extending.

Next, assume that M is FI-extending and that K � ˜E(M). Put N =K ∩M . We
claim that N � M . For this, take h ∈ End(M). From Proposition 1.3.6 and [262,
Theorem 8.24], there exists f ∈ End(˜E(M)) such that f |M = h.

So h(N) = f (N) ⊆ K ∩ M = N . Thus, N �M . From the proof similar to the
case when M is extending, we obtain that ˜E(M) is FI-extending. �
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For an example illustrating Theorem 8.4.21, consider M = Z ⊕ Zp , where p is
a prime integer (see [262, Example 8.21]). By Theorem 2.3.5, MZ is FI-extending,
but not extending (see [301, p. 19]). Now ˜E(MZ)= ZP ⊕Zp is FI-extending from
Theorem 8.4.21 or Theorem 2.3.5, but not extending (see [301, p. 19]), where ZP is
the localization of Z at P = pZ.

Exercise 8.4.22

1. Let R be the ring in Example 8.4.12. Prove that RR is uniform and nonsingular.
2. ([98, Birkenmeier, Park, and Rizvi]) Assume that R is a semiprime ring and PR

is a finitely generated projective module. Show that
(i) Rad(HFI(PR)̂QFI(R)

)∩ P = Rad(PR).
(ii) HFI(PR)∼= P ⊗R

̂QFI(R) as ̂QFI(R)-modules.
(iii) HFI(PR) is also a finitely generated projective ̂QFI(R)-module.

3. Let M be a bounded Abelian group. Prove that MZ has an extending hull. (Hint:
see [172, p. 88] and [301, p. 19].)

4. Let M be a continuous module. Show that ˜E(M) is quasi-continuous.

Historical Notes Results of Sect. 8.1 are obtained by Birkenmeier, Park, and Rizvi
in [89]. The concept of a K absolute ring hull in Definition 8.2.1 was already implicit
in the paper [307] by Müller and Rizvi from their definition of a type III continuous
module hull (see also Definition 8.4.1). Theorem 8.2.6 from [89], is an adaptation
of [354, Theorem 4.25]. Other results of Sect. 8.2 appear in [89].

Many results in Sect. 8.3, which were originally stated and proved for a ring with
identity, have been extended to rings R with �R(R) = 0. Definition 8.3.1 was pro-
vided in [96]. Proposition 8.3.2 is due to Johnson [236]. Results 8.3.3–8.3.8 are due
to Birkenmeier, Park, and Rizvi in [96]. Theorem 8.3.8(ii) is an unpublished new
characterization. Theorem 8.3.11(i), (ii), and (iii) appear in [96]. Corollary 8.3.12 is
an unpublished new result. Also Theorem 8.3.13(i), (ii), and (iv) were shown in [96].
Proposition 8.3.16 and Theorem 8.3.17 are due to Birkenmeier, Park, and Rizvi [97].
In [163], Ferrero has shown that Qs(R) is quasi-Baer for any semiprime ring
R. Example 8.3.18 is taken from [262, Example 13.26(4)]. Results 8.3.20, 8.3.21
and 8.3.23 appear in [97].

Theorem 8.3.22 is due to Passman [340] and Connell [131]. Example 8.3.25
appears in [102]. Lemma 8.3.26 and Theorem 8.3.28 are obtained in [97]. In [42], it
is shown that LO does hold between R and RB(Q(R)). Lemma 8.3.29 is from [322].
Beidar and Wisbauer [42] show that R is biregular if and only if R is semiprime and
RB(Q(R)) is biregular (see Exercise 8.3.58.8). Also, they show that R is regular and
biregular if and only if RB(Q(R)) is regular and biregular [42]. Corollary 8.3.30
from [97], complements their results.

Results 8.3.31–8.3.37 appear in [97]. Let R be a semiprime PI-ring. Then so is
Q(R) by a result of Martindale [292]. Also by a result of Fisher [168], a semiprime
PI-ring R is right nonsingular. Thus Q(R) is a regular right self-injective PI-ring
from Theorem 2.1.31. So Q(R) has bounded index (of nilpotency) (see [221, Corol-
lary, p. 226]). Therefore, any semiprime PI-ring R has bounded index (of nilpo-
tency). Also any semiprime right Goldie ring has bounded index (of nilpotency).



326 8 Ring and Module Hulls

Results in [160] show that a semiprime right FPF ring has bounded index (of nilpo-
tency).

For a commutative semiprime ring R, Storrer [386] called the intersection of all
regular rings of Q(R) containing R the epimorphic hull of R. By showing this inter-
section was regular, he showed that every commutative semiprime ring has a small-
est regular ring of quotients. The existence of Baer ring hulls shown in [298] for the
case of commutative semiprime rings (see also Theorem 8.2.4) and in [208] for the
case of reduced Utumi rings, now follow directly from Proposition 8.3.36 (see [323]
for the existence of Baer ring hulls of commutative regular rings by a sheaf theoretic
method). Results 8.3.39–8.3.44 appear in [101]. Theorem 8.3.44 shows that when R
is a commutative semiprime ring, QpqB(R) is related to the Baer extension consid-
ered in [254]. Lemma 8.3.46 and Theorem 8.3.47 appear in [94]. Theorem 8.3.50,
Theorem 8.3.53, and Example 8.3.57 were obtained by Armendariz, Birkenmeier,
and Park [29], while Proposition 8.3.49 and Theorem 8.3.56 appear in [96].

Results 8.4.4–8.4.12 are taken from [307], while Results 8.4.14–8.4.20 appear
in [98]. Theorem 8.4.20 is a module theoretic version of Theorem 3.2.37 for a
finitely generated projective module over a semiprime ring. The proof of Theo-
rem 8.4.21 when M is extending corrects the proof of [1, Theorem 5.3]. We include
some more related references such as [43, 86, 87, 90, 133, 143, 146, 197, 225, 257,
258, 337, 351], and [370].



Chapter 9
Hulls of Ring Extensions

Application of results developed in Chap. 8 will be considered in this chapter. Prob-
lems II and III (see Introduction of Chap. 8) are studied in Sect. 9.1. Another topic
for consideration will be skew group ring extensions of semiprime quasi-Baer rings
in Sect. 9.2. The result on skew group ring extensions will be used in the study of
boundedly centrally closed C∗-algebras later in Chap. 10. Related to Problem IV
(see Introduction of Chap. 8), results on ring hulls of monoid and matrix ring exten-
sions will be included in Sect. 9.3.

9.1 Applications to Certain Matrix Rings

In this section, we apply results on ring hulls and pseudo ring hulls to certain matrix
rings. Our focus will be on when certain 2 × 2 matrix rings are right extending,
Baer or are right (semi)hereditary. We include results on the existence (or the lack
of existence) of various ring hulls. The first result of this section characterizes a right
extending ring whose maximal right ring of quotients is the 2 × 2 matrix ring over a
division ring. Hence this result provides an answer to Problem III (see Introduction
of Chap. 8) when A is the class of 2 × 2 matrix rings over division rings and B is
the class of right extending rings.

Theorem 9.1.1 Let D be a division ring and assume that T is a ring such that
Q(T ) = Mat2(D) (resp., Q(T ) = Q�(T ) = Mat2(D)). Then T is right extending
(resp., T is Baer) if and only if the following are satisfied.

(i) There exist v, w ∈D such that

[

1 v

0 0

]

∈ T and

[

0 0
w 1

]

∈ T .

(ii) For each 0 �= d ∈D at least one of the following holds.

(1)

[

0 d

0 1

]

∈ T .

(2)

[

1 0
d−1 0

]

∈ T .
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(3) there is a ∈D with a − a2 �= 0 and

[

a (1 − a)d

d−1a d−1(1 − a)d

]

∈ T .

Proof Routine calculations show that any nontrivial idempotent of Q(T ) has one of
the following forms where a, b, f ∈D with a − a2 �= 0 and b �= 0:

[

1 f

0 0

]

,

[

0 0
f 1

]

,

[

0 f

0 1

]

,

[

1 0
f 0

]

,

[

a b

b−1(1 − a)a b−1(1 − a)b

]

.

From Definition 8.2.11, we obtain:

• for f ∈D,

[

1 f

0 0

]

α

[

1 0
0 0

]

and

[

0 0
f 1

]

α

[

0 0
0 1

]

.

• for 0 �= f , 0 �= g ∈D,

[

0 f

0 1

]

α

[

1 0
g 0

]

if and only if g = f−1.

• for 0 �= f ∈D,

[

0 f

0 1

]

α

[

a b

b−1(1 − a)a b−1(1 − a)b

]

if and only if b = (1−a)f .

Let U be the set of matrices K ∈ Mat2(D) such that for each 0 �= d ∈ D, K has
exactly one of the following forms:

[

0 d

0 1

]

,

[

1 0
d−1 0

]

, or

[

a (1 − a)d

d−1a d−1(1 − a)d

]

for some a ∈D with a − a2 �= 0. Now for some v,w ∈D, let

Y = U ∪
{[

0 0
0 0

]

,

[

1 0
0 1

]}

∪
{[

1 v

0 0

]

,

[

0 0
w 1

]}

.

Then Y = δαE(T )(1). Since Z(TT ) = 0, the result is now a direct consequence
of Proposition 8.2.13, Theorem 8.2.15, and Corollary 3.3.3, where R in Theo-
rem 8.2.15 coincides with T in the present result. �

Using Theorem 9.1.1, next we provide an elementwise characterization of a
Prüfer domain. The fact that any right ring of quotients of a Prüfer domain, is also a
Prüfer domain, follows from Corollary 9.1.2.

Corollary 9.1.2 Let A be a commutative domain with F as its field of fractions.
Then the following are equivalent.

(i) A is a Prüfer domain.
(ii) For each 0 �= d ∈ F with d /∈ A and d−1 /∈ A, there exists a ∈ A such that

d−1a ∈A and (1 − a)d ∈A.

Proof The proof follows from Theorems 6.1.4 and 9.1.1, where Mat2(A) = T in
Theorem 9.1.1. �
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Corollary 9.1.3 Let A be a right Ore domain with D =Qr
c�(A). Then T =

[

A D

0 A

]

is a right extending ring hull of T2(A).

Proof By Theorem 9.1.1, T is right extending. Let eij ∈ Q(T2(A)) = Mat2(D) be
the matrix with 1 in the (i, j)-position and 0 elsewhere. Assume that S is a right
extending intermediate ring between T2(A) and T . For each 0 �= d ∈ D, it follows
that de12 + e22 ∈ S by Theorem 9.1.1, so de12 ∈ S. So T = S. Hence, T is a right
extending ring hull of T2(A). �

By Theorem 5.6.2, if A is a commutative domain with F as its field of fractions
and A �= F , then Tn(A) (n > 1) is not Baer. However, by Theorem 8.1.8(iii) and
Corollary 3.3.3, any right ring of quotients of Tn(A) which contains Tn(F ) is Baer.
This result motivates the question: Assume that A is a commutative domain. For
a class of rings C, can we find C ring hulls or C ρ pseudo ring hulls for Tn(A)?
Further, can these hulls be used to describe all C right rings of quotients of Tn(A)
when C is related to the class of Baer rings? In the next results, we study this
question when A is a commutative ring.

For a commutative PID A, we use gcd(a, b) to denote the greatest common divi-
sor of a, b ∈A.

Lemma 9.1.4 Let A be a commutative PID and T a right ring of quotients of T2(A)

such that

[

A A

aA A

]

⊆ T for some 0 �= a ∈A.

(i) If

[

0 a−1

0 0

]

∈ T , then T is right extending.

(ii) If a = p
k1
1 · · ·pkmm where each pi is a distinct prime, each ki is a positive

integer, and
[

0 (p
k1−1
1 · · ·pkm−1

m )−1

0 0

]

∈ T ,

then T is right extending.

Proof Let c, d ∈A such that c �= 0 and d �= 0. Assume that

[

0 cd−1

0 0

]

/∈ T and

[

0 0
dc−1 0

]

/∈ T .

Say gcd(c, d) = z ∈ A. Then c = c1z, d = d1z, and gcd(c1, d1) = 1 for some
c1, d1 ∈ A. By noting that cd−1 = c1d

−1
1 and dc−1 = d1c

−1
1 , we may assume that

gcd(c, d)= 1.
Put g = gcd(a, d). Then a = sg, d = tg, and gcd(s, t)= 1 with s, t ∈A.
(i) We note that gcd(c, d) = 1 and d = tg, and so gcd (c, t) = 1. Because

gcd(s, t) = 1 = gcd(c, t), then gcd(t, cs) = 1. Hence, there are x, y ∈ A with
1 = csx + ty. Take b = csx.



330 9 Hulls of Ring Extensions

If b = 0, then 1 = ty, thus t−1 = y ∈ A. So cd−1 = c(tg)−1 = cyg−1. Hence,

cd−1 ∈ g−1A= a−1sA⊆ a−1A, and so

[

0 cd−1

0 0

]

∈
[

0 a−1

0 0

]

T2(A)⊆ T , which is

a contradiction. So b �= 0.
If b = 1, then c−1 = sx and dc−1 = dsx = tgsx = tax ∈ aA, so we have that

[

0 0
dc−1 0

]

∈
[

0 0
aA 0

]

⊆ T , also a contradiction. Thus, b− b2 �= 0.

We observe that dc−1b = dc−1csx = dsx = tgsx = tax ∈ aA, and therefore
(1 − b)cd−1 = (ty)c(tg)−1 = g−1cy ∈ g−1A= a−1sA⊆ a−1A. Therefore, we see

that

[

b (1 − b)cd−1

dc−1b 1 − b

]

∈ T . From Theorem 9.1.1, T is right extending.

(ii) We put d = p
h1
1 · · ·phmm q , where each hi is a nonnegative integer and

gcd(pi, q)= 1 for each i.
Case 1. Assume that whenever hi �= 0, then hi ≥ ki . We claim that gcd(d, s)= 1.

First, if h1 = · · · = hm = 0, then g = gcd(d, a) = 1 because a = p
k1
1 · · ·pkmm . So

s = sg = a. Thus, gcd (d, s)= gcd (d, a)= 1.
Next, suppose that not all hi are zero. If gcd(d, s) �= 1, then there is j in

{1, . . . ,m} with pj |d and pj | s because a = p
k1
1 · · ·pkmm , s |a, and s �= 1. So hj ≥ 1

and s = s1pj with s1 ∈ A. Since a = sg and d = tg, we have that at = ds. As
hj ≥ kj by assumption and at = ds,

p
k1
1 · · ·pkj−1

j−1 p
kj+1
j+1 · · ·pkmm t = p

h1
1 · · ·phj−1

j−1 p
hj−kj
j p

hj+1
j+1 · · ·phmm qpj s1.

So pj | t , a contradiction to gcd(s, t)= 1. Thus gcd(d, s)= 1.
As gcd(c, d) = 1 and gcd(s, d) = 1, gcd(cs, d) = 1. Thus, there exist x, y in

A with csx + dy = 1. Let b = csx. If b = 0, then dy = 1, hence d−1 = y ∈ A.
So cd−1 = cy ∈ A, a contradiction. Thus, b �= 0. If b = 1, then 1 = csx, so
c−1 = sx. Thus dc−1 = dsx = tgsx = tax ∈ aA, a contradiction. So b �= 1, and
hence b− b2 �= 0. Note that dc−1b = dc−1csx = dsx = tgsx = tax ∈ aA therefore
(1 − b)cd−1 = dycd−1 = yc ∈A. Thus,

[

b (1 − b)cd−1

dc−1b 1 − b

]

∈
[

A A

aA A

]

⊆ T .

Case 2. Assume that there exists � ∈ {1, . . . ,m} with 0 �= h� < k�. Let
I = {i ∈ {1, . . . ,m} | 0 ≤ hi < ki}. We may note that I �= ∅ because h� ∈ I . Take
J = {1, . . . ,m} \ I .

Subcase 2.1. J �= ∅. Put v = |I | and w = |J |. Denote I = {i1, . . . , iv} and
J = {j1, . . . , jw}. Note that J = {j ∈ {1,2, . . . ,m} | hj ≥ kj }.

Put tj1 = hj1 − kj1 + 1, . . . , tjw = hjw − kjw + 1, and μ = p
ki1
i1

· · ·pkiviv .
Then gcd (μ,q) = 1. As gcd (c, d) = 1, gcd (c, q) = 1. So gcd (cμ,q) = 1. Let

ξ = p
tj1
j1

· · ·ptjwjw . If gcd (c, ξ) �= 1, then some pj� | c, where 1 ≤ � ≤ w. Now be-
cause hj� ≥ kj� > 0, pj� |d which contradicts gcd (c, d) = 1. So gcd (c, ξ) = 1.
Obviously, gcd (μ, ξ) = 1. Thus gcd (cμ, ξ) = 1. Therefore, gcd (cμ, ξq) = 1. So
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there exist α, β ∈A such that αcμ+ βξq = 1, that is,

αcp
ki1
i1

· · ·pkiviv + βp
tj1
j1

· · ·ptjwjw q = 1.

Take b = αcp
ki1
i1

· · ·pkiviv . Then bc−1d = αp
ki1
i1

· · ·pkiviv d ∈ aA and

(1 − b)cd−1 = βp
tj1
j1

· · ·ptjwjw qc(p
h1
1 · · ·phmm q)−1

= βcp
−kj1+1
j1

· · ·p−kjw+1
jw

p
−hi1
i1

· · ·p−hiv
iv

∈ (p
k1−1
1 · · ·pkm−1

m )−1A

because −hi ≥ −ki + 1 for each i ∈ I . Thus,

[

b (1 − b)cd−1

dc−1b 1 − b

]

∈ T . Also,

observe that b− b2 �= 0 since b = αcp
ki1
i1

· · ·pkiviv .
Subcase 2.2. J = ∅. Then ki > hi for all i. Note that gcd (c, q) = 1 (since

gcd (c, d)= 1) and gcd (pi, q)= 1 for each i, gcd (cpk1
1 · · ·pkmm ,q)= 1. Thus there

exist α,β ∈A such that αcpk1
1 · · ·pkmm + βq = 1.

Now we put b = αcp
k1
1 · · ·pkmm . Then b ∈A and b �= 1. We also see that

bc−1d = αp
k1
1 · · ·pkmm d = αad ∈ aA.

On the other hand, since 1 − b = βq , we obtain that

(1 − b)cd−1 = βqcd−1 = βcp
−h1
1 · · ·p−hm

m ∈ (p
k1−1
1 · · ·pkm−1

m )−1A.

If b = 0, then cd−1 = (1 − b)cd−1 ∈ (p
k1−1
1 · · ·pkm−1

m )−1A. So

[

0 cd−1

0 0

]

∈ T , a

contradiction. Thus, b− b2 �= 0 and

[

b (1 − b)cd−1

dc−1b 1 − b

]

∈ T .

From Cases 1 and 2, T is right extending by Theorem 9.1.1. �

Proposition 9.1.5 Let A be a commutative PID with F as its field of fractions,
A �= F , and T be a right ring of quotients of T2(A). If any one of the following
conditions holds, then T is right extending and Baer.

(i)

[

A F

0 A

]

is a subring of T .

(ii)

[

A a−1A

aA A

]

is a subring of T for some 0 �= a ∈A.

(iii)

[

A (p
k1−1
1 · · ·pkm−1

m )−1A

aA A

]

is a subring of T for some 0 �= a ∈ A, where

a = p
k1
1 · · ·pkmm , each pi is a distinct prime, and each ki is a positive integer.

Proof It follows from Theorem 9.1.1, Lemma 9.1.4, and Corollary 3.3.3. �

Proposition 9.1.6 Let R be an overring of a commutative Noetherian ring A such
that A⊆ Cen(R). Assume that R is a finitely generated as an A-module. Then R is
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a right hereditary ring if and only if RP = R ⊗A AP is a right hereditary ring for
every maximal ideal P of A, where AP is the localization of A at P .

Proof See [352, Corollary 3.24]. �

A commutative domain A is said to be Dedekind if it is a hereditary ring. The
following proposition is [295, Example 5.5.11(i)].

Proposition 9.1.7 Let A be a Dedekind domain (which is not a field), with a maxi-

mal ideal M . Then the ring R =
[

A A

M A

]

is a hereditary Noetherian prime ring.

Lemma 9.1.8 Let A be a commutative PID with F as its field of fractions, A �= F ,
and

V =
[

A (p
k1−1
1 · · ·pkm−1

m )−1A

p
k1
1 · · ·pkmm A A

]

,

where each pi is a distinct prime of A and each ki is a positive integer. Then V is a
right hereditary ring.

Proof Let W =
[

A A

p1 · · ·pmA A

]

. Define σ : V →W by

σ

[

a (p
k1−1
1 · · ·pkm−1

m )−1b

p
k1
1 · · ·pkmm c d

]

=
[

a b

p1 · · ·pmc d

]

,

where a, b, c, d ∈ A. Then σ is a ring isomorphism. Thus to show that V is right
hereditary, we need to prove that W is right hereditary. For this, first note that W is
a finitely generated as a right A-module, so W is a Noetherian ring. Let P = pA be
a maximal ideal of A, where p is a prime. If p /∈ {p1,p2, . . . , pm}, then

WP =
[

AP AP

p1p2 · · ·pmAP AP

]

=
[

AP AP

AP AP

]

is right hereditary. Next, suppose that p ∈ {p1,p2, . . . , pm}. Say p = p1, so
P = p1A. Thus,

WP =
[

AP AP

pAP AP

]

is right hereditary by Proposition 9.1.7 since AP is a Dedekind domain and pAP is
a maximal ideal of AP . So WP is right hereditary for any maximal ideal P of A.
Thus, W is right hereditary by Proposition 9.1.6. �

Lemma 9.1.9 Let A be a commutative PID and T a right ring of quotients of T2(A)

such that T ∩ Mat2(A) =
[

A A

aA A

]

, where 0 �= a = p
k1
1 · · ·pkmm , each pi is a dis-
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tinct prime in A, and each ki is a positive integer. If T is right extending, then
[

A (p
k1−1
1 · · ·pkm−1

m )−1A

aA A

]

is a subring of T .

Proof Let T be right extending and F be the field of fractions of A. Put

d = p
k1−1
1 · · ·pkm−1

m ∈ A. If

[

0 0
d 0

]

∈ T , then d ∈ aA, so p1 · · ·pmc = 1 for some

c ∈ A, a contradiction. Hence,

[

0 0
d 0

]

/∈ T . By Theorem 9.1.1, either

[

0 d−1

0 0

]

∈ T

or there is b ∈ F such that b− b2 �= 0 and

[

b (1 − b)d−1

db 1 − b

]

∈ T .

Suppose that there is b ∈ F with b − b2 �= 0 and

[

b (1 − b)d−1

db 1 − b

]

∈ T . There

are x, y ∈A with b = xy−1 and gcd(x, y)= 1. Hence

[

x (y − x)d−1

dx y − x

]

∈ T . Since

gcd (x, y)= 1, there are v,w ∈A such that xv + yw = 1.
We observe that
[

wx (wy −wx)d−1

wdx wy −wx

]

∈ T and

[

x (y − x)d−1

dx y − x

][

v 0
0 0

]

=
[

vx 0
vdx 0

]

∈ T .

Since wy = 1 − vx, it follows that
[

wx (wy −wx)d−1

wdx wy −wx

]

+
[

vx 0
vdx 0

]

=
[

(v +w)x (1 − (v +w)x)d−1

(v +w)xd 1 − (v +w)x

]

∈ T .

As

[

0 0
xd 0

]

=
[

x (y − x)d−1

xd y − x

][

1 0
0 0

]

−
[

x 0
0 0

]

∈ T , so

[

0 0
xd 0

]

∈ T ∩ Mat2(A)

and hence xd ∈ aA.
If x is a unit of A, then d ∈ aA, which is impossible as we did see. Thus x is not

a unit of A. Hence 1 − (v +w)x �= 0. If (v +w)x = 0, then

[

0 d−1

0 0

]

∈ T . Assume

that (v +w)x �= 0 and put g = (v +w)x. Then

[

g (1 − g)d−1

gd 1 − g

]

∈ T . Now g ∈ A

and g − g2 �= 0. Also gd = (v +w)xd ∈ aA as xd ∈ aA. Thus pi |g for each i =
1, . . . ,m, so gcd(1−g, d)= 1. Hence, there exist π, σ ∈A with (1−g)σ+dπ = 1,
thus (1 − g)σd−1 + π = d−1. Since gd ∈ aA and g ∈A,

[

0 (1 − g)d−1

0 0

]

=
[

g (1 − g)d−1

gd g

]

−
[

g 0
gd g

]

∈ T .

Thus

[

0 d−1

0 0

]

=
[

0 (1 − g)σd−1 + π

0 0

]

∈ T . So in all cases,

[

0 d−1

0 0

]

∈ T . As a

consequence,

[

A d−1A

aA A

]

=
[

A (p
k1−1
1 · · ·pkm−1

m )−1A

aA A

]

is a subring of T . �



334 9 Hulls of Ring Extensions

Remark 9.1.10 Recall that a commutative domain A is called Bezout if every
finitely generated ideal is principal. Thus for any a, b ∈ A, gcd(a, b) exists. So
Lemma 9.1.4, Proposition 9.1.5, and Lemma 9.1.9 can be extended to the case when
A is a commutative Bezout domain. For more details, see [89]. Note that from [248,
p. 72] the class of Bezout domains includes the ring of entire functions and the ring
of algebraic integers.

The next result shows how both Definitions 8.2.1 and 8.2.8 can be used to char-
acterize certain right rings of quotients of a ring in a D-E class (see Problem II in
Introduction of Chap. 8).

Theorem 9.1.11 Let A be a commutative PID with F as its field of fractions and
A �= F .

(i) Let T be a right ring of quotients of T2(A). Then T is right extending if and

only if either the ring U :=
[

A F

0 A

]

is a subring of T , or Mat2(A) is a subring of T ,

or the ring V :=
[

A (p
k1−1
1 · · ·pkm−1

m )−1A

aA A

]

is a subring of T for some 0 �= a =
p
k1
1 · · ·pkmm , where each pi is a distinct prime of A and each ki is a positive integer.

(ii) U is the only right extending ring hull of T2(A).
(iii) T2(A) has no right extending absolute ring hull.
(iv) In (i)–(iii) we can replace “right extending” with “Baer”, “right Rickart”,

or “right semihereditary”.

Proof (i) Let T be right extending. We see that T ∩ Mat2(A) =
[

A A

I A

]

, where

I � A. First, assume that I = 0. Let 0 �= d ∈ F . By using Theorem 9.1.1, we show

that

[

0 d

0 1

]

∈ T . If

[

1 0
d−1 0

]

∈ T , then

[

0 0
d−1 0

]

∈ T . Put d−1 = xy−1 for some

x, y ∈ A. Then

[

0 0
x 0

]

=
[

0 0
d−1 0

][

y 0
0 0

]

∈ T ∩ Mat2(A), so 0 �= x ∈ I , a contra-

diction. If there exists a ∈ F with a − a2 �= 0 and

[

a (1 − a)d

d−1a 1 − a

]

∈ T , then
[

0 0
0 1

][

a (1 − a)d

d−1a 1 − a

][

1 0
0 0

]

=
[

0 0
d−1a 0

]

∈ T .

Write a = st−1 with s, t ∈A. Then we see that sx �= 0. Furthermore,
[

0 0
sx 0

]

=
[

0 0
d−1a 0

][

ty 0
0 0

]

∈ T ∩ Mat2(A),

which is a contradiction because I = 0. As T is right extending,

[

0 d

0 1

]

∈ T by

Theorem 9.1.1, so

[

0 d

0 0

]

∈ T . Therefore

[

0 F

0 0

]

⊆ T , and hence U is a subring

of T .



9.1 Applications to Certain Matrix Rings 335

Next, if I =A, then Mat2(A) is a subring of T . Finally, if I is a nonzero proper
ideal of A, then I = aA, where a ∈ A is not invertible. By Lemma 9.1.9, V is a
subring of T . The converse follows from Proposition 9.1.5.

(ii) We see that U is a right extending ring hull of T2(A) by Corollary 9.1.3.

Let p be a prime in A. Then H :=
[

A A

pA A

]

is right extending by part (i), and

T2(A)⊆H ⊆ Mat2(A). Thus, Mat2(A) is not a right extending hull of T2(A).
Now assume that there is another distinct right extending ring hull H of T2(A)

other than U or Mat2(A). By part (i) there is 0 �= a = p
k1
1 · · ·pkmm ∈A such that each

pi is a distinct prime of A, each ki is a positive integer, and H = V . Since A is a
commutative PID and A �= F , A has infinitely many primes. Let p be a prime in A

such that gcd(p, p1 · · ·pm)= 1. Take

H1 =
[

A (p
k1−1
1 · · ·pkm−1

m )−1A

paA A

]

.

Then, by part (i), H1 is a right extending right ring of quotients of T2(A) such that
H1 is a proper subring of H , a contradiction.

(iii) If T2(A) has a right extending absolute ring hull S, then by part (ii) we
obtain S ⊆U ∩ Mat2(A)= T2(A). So S = T2(A), thus T2(A) is right extending. By
Corollary 3.3.3, T2(A) is Baer, which contradicts Theorem 5.6.2.

(iv) We show that in part (i), “right extending” can be replaced by “Baer”, “right
Rickart” or “right semihereditary”. Indeed, Corollary 3.3.3 and Theorem 3.1.25
yield that right extending can be replaced by Baer or right Rickart.

To see that “right extending” can be replaced by “right semihereditary”, we first
note that a right semihereditary ring is right Rickart. Let T be right ring of quotients
of T2(A). If T is right semihereditary, then it has either U , or Mat2(A), or V as a
subring.

Conversely, assume that either U , or Mat2(A), or V is a subring of T . We first
claim that the ring U is right semihereditary. For this, note that U is Baer by Propo-
sition 9.1.5. Thus U is right Rickart. Suppose that I is a finitely generated right ideal

of U generated by

[

ai qi
0 bi

]

, where i = 1,2, . . . , k.

Case 1. If there exists i with ai �= 0, then there are a, b ∈ A such that a �= 0,
aA= a1A+ · · · + akA, and bA= b1A+ · · · + bkA. Moreover,

I =
[

a1 q1
0 b1

]

U + · · · +
[

ak qk
0 bk

]

U =
[

aA F

0 bA

]

=
[

a 0
0 b

]

U.

Now since U is right Rickart, I is projective as a right U -module.
Case 2. ai = 0 for all i. Then

I =
{[

0 q1r1
0 b1r1

]

+ · · · +
[

0 qkrk
0 bkrk

]

| r1, . . . , rk ∈A

}

.
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Since A is a commutative PID and IA is a finitely generated torsion-free A-module,

there exist

[

0 sj
0 tj

]

∈ I with j = 1, . . . , � such that

I =
[

0 s1
0 t1

]

A⊕ · · · ⊕
[

0 s�
0 t�

]

A,

where the scalar multiplication is

[

0 sj
0 tj

]

r =
[

0 sj r
0 tj r

]

for r ∈A.

So I =
[

0 s1
0 t1

]

U ⊕ · · · ⊕
[

0 s�
0 t�

]

U . As U is right Rickart, each

[

0 sj
0 tj

]

U is pro-

jective, so I is a projective right ideal. Hence U is right semihereditary.
By Theorem 3.1.29, Matn(U) is right Rickart for any positive integer n. As

Matn(U) is orthogonally finite, Matn(U) is Baer by Theorem 3.1.25.
If U is a subring of T , then Matn(T ) is Baer for each n by Theorem 8.1.9(iii)

(Matn(T ) is also a left ring of quotients of Matn(U) as T is a left ring of quotients
of U ). Thus, T is right semihereditary by Theorem 3.1.29.

Next, assume that Mat2(A) is a subring of T . By Theorem 6.1.4, Mat2n(A) is
Baer for each positive integer n. We note that Matn(T ) is a right ring of quotients
of Mat2n(A) as T is a right ring of quotients of Mat2(A). So Matn(T ) is Baer by
Theorem 8.1.9(iii) as Matn(T ) is also a left ring of quotients of Mat2n(A). Thus,
Theorem 3.1.29 yields that T is right semihereditary.

Finally, by Lemma 9.1.8, V is right hereditary. If V is a subring of T , then we
see that T is right semihereditary as in the preceding argument for the case when U

is a subring of T .
Similarly, parts (ii) and (iii) also hold when “right extending” is replaced by

“Baer”,“right Rickart”, or “right semihereditary”. �

We remark that U in Theorem 9.1.11, is a right extending α pseudo ring hull
of T2(A), whereas Q(T2(A)) = R(E,Q(T2(A))). Moreover, if {p1,p2, . . . } is an

infinite set of distinct primes of A and Vi =
[

A A

p1 · · ·piA A

]

, then we see that

V1 ⊇ V2 ⊇ . . . is an infinite descending chain of right extending rings. Thus no Vi
is a right extending ring hull of T2(A).

Exercise 9.1.12

1. ([89, Birkenmeier, Park, and Rizvi]) Let A be a commutative PID with F as its
field of fractions, A �= F , and let T be a right ring of quotients of R = T2(A).
Take

S =
[

A F

0 F

]

and V =
[

A (p
k1−1
1 · · ·pkm−1

m )−1A

p
k1
1 · · ·pkmm A A

]

,

where each pi is a distinct prime of A and each ki is a positive integer. Prove the
following.
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(i) If T is right hereditary, then either S or V is a subring of T .
(ii) S is the unique right hereditary ring hull of R, but R has no right hereditary

absolute ring hull.

9.2 Skew Group Ring Extensions

We discuss the quasi-Baer property for certain skew group rings and fixed rings un-
der a finite group action as an application of results developed in previous sections.
Results of this section will be applied to C∗-algebras in Chap. 10.

For a ring R, we let Aut(R) denote the group of ring automorphisms of R. Let
G be a subgroup of Aut(R). For r ∈ R and g ∈ G, we let rg denote the image
of r under g. We use RG to denote the fixed ring of R under G, that is, RG =
{r ∈ R | rg = r for every g ∈ G}. The skew group ring, R ∗ G, is defined to be
R ∗G =⊕

g∈GRg with addition given componentwise and multiplication defined

as follows: if a, b ∈R and g,h ∈G, then (ag)(bh)= abg
−1
gh ∈Rgh.

Example 9.2.1 There exist a ring R and a finite group G of ring automorphisms of R
such that R is quasi-Baer but neither R ∗G nor RG is quasi-Baer. Let R = T2(F ),
where F is a field of characteristic 2. Then R is (quasi-)Baer by Theorem 5.6.2. Say
eij ∈R is the matrix with 1 in the (i, j)-position and 0 elsewhere.

Let g ∈ Aut(R) be the conjugation by the element e11 + e12 + e22. Then g2 = 1.
Let G= {1, g}. Then rR∗G((1 + g)(R ∗G)) cannot be generated by an idempotent.
Thus, R ∗G is not quasi-Baer. Next, we see that

RG =
{[

a b

0 a

]

∈R | a, b ∈ F

}

.

So the only idempotents of RG are 0 and 1, thus RG is semicentral reduced. If RG

is quasi-Baer, then RG is a prime ring by Proposition 3.2.5, a contradiction. Thus,
RG is not quasi-Baer.

Definition 9.2.2 Let R be a semiprime ring. For g ∈ Aut(R), let

φg = {x ∈Qm(R) | xrg = rx for each r ∈R}.
We say that g is X-outer if φg = 0. A subgroup G of Aut(R) is called X-outer on R
if every 1 �= g ∈G is X-outer.

Assume that R is a semiprime ring. For g ∈ Aut(R), let

Φg = {x ∈Q(R) | xrg = rx for each r ∈R}.
Let g ∈ Aut(R). We claim that Φg = φg . Obviously φg ⊆Φg . Conversely, if x ∈Φg ,
then x ∈ Q(R) and xR = Rx. There exists IR ≤den RR such that xI ⊆ R. Hence,
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xRI = R(xI)⊆ R, RI � R, and (RI)R ≤den RR . Therefore, x ∈Qm(R), and thus
x ∈ φg . So Φg = φg .

If g ∈ Aut(R), then g can be extended to a ring automorphism of Q(R). If g is
X-outer on R, then g is X-outer on Q(R) by the preceding argument. A group G of
ring automorphisms can be considered as that of Q(R). If G is X-outer on R, then
G is X-outer on Q(R).

Lemma 9.2.3 Let R be a semiprime ring and G a group of ring automorphisms
of R.

(i) If G is X-outer, then every nonzero ideal of R ∗ G intersects R nontrivially.
Hence, R ∗G is semiprime. Additionally, if G is finite, then RG is semiprime.

(ii) If G is finite and R has no nonzero |G|-torsion, then R ∗ G and RG are
semiprime.

Proof The proof follows from [50], [169, Corollary 3, Theorem 7, and Corollary 8],
and [302, Theorems 2.1 and 3.1]. �

We observe that if R is a semiprime ring and G is a group of X-outer ring auto-
morphisms of R, then R ∗G is an ideal intrinsic extension of R by Lemma 9.2.3(i).

Lemma 9.2.4 Let R be a semiprime ring and G a group of X-outer ring automor-
phisms of R. Then Cen(R ∗G)= Cen(R)G.

Proof The proof is straightforward. �

Let R be a ring and G be a group of ring automorphisms of R. We say that a
right ideal I of R is G-invariant if Ig ⊆ I for every g ∈G, where Ig = {ag | a ∈ I }.
Also, we say that R is G-quasi-Baer if the right annihilator of every G-invariant
ideal is generated by an idempotent as a right ideal.

The condition for rings being G-quasi-Baer is left-right symmetric. In fact, sup-
pose that R is G-quasi-Baer. Say I is a G-invariant ideal of R. Then �R(I) is also a
G-invariant ideal, thus rR(�R(I ))= eR for some e2 = e ∈R.

So �R(I)= �R[rR(�R(I ))] = �R(eR)= R(1 − e). Obviously if R is quasi-Baer,
then R is G-quasi-Baer. But there exist a ring R and a finite group G of X-outer
automorphisms of R such that R is G-quasi-Baer, but not quasi-Baer (see Exer-
cise 9.2.15.3).

Theorem 9.2.5 Let R be a semiprime ring and G be a group of X-outer ring auto-
morphisms of R. Then R is G-quasi-Baer if and only if R ∗G is quasi-Baer.

Proof Assume that R is G-quasi-Baer. Say I � R ∗ G. Take a ∈ I ∩ R. Then
ag = g−1ag ∈ I for any g ∈ G. So I ∩ R is G-invariant. Thus �R(I ∩ R) is
G-invariant, hence rR(�R(I ∩ R)) is also G-invariant. As R is semiprime G-
quasi-Baer, there is e ∈ B(R) with rR(�R(I ∩ R)) = eR by Propositions 1.2.2
and 1.2.6(ii). As rR(�R(I ∩ R)) is G-invariant, eR = egR, and so e = eg for all



9.2 Skew Group Ring Extensions 339

g ∈ G. Hence e ∈ B(R)G, therefore e ∈ Cen(R ∗ G). Further, by Lemma 2.1.13,
(I ∩R)R ≤ess eRR .

Assume that (1 − e)I �= 0. Then (1 − e)I ∩R �= 0 by Lemma 9.2.3(i). Thus we
get that 0 �= (1 − e)I ∩R ⊆ I ∩R ⊆ eR, a contradiction. So I = eI ⊆ e(R ∗G).

As (I ∩ R)R ≤ess eRR , IR ≤ess e(R ∗G)R . Hence IR∗G ≤ess e(R ∗G)R∗G, and
therefore R ∗ G is right FI-extending. As R ∗ G is semiprime by Lemma 9.2.3(i),
Theorem 3.2.37 yields that R ∗G is quasi-Baer.

Conversely, assume that R ∗G is quasi-Baer and J is a G-invariant ideal of R.
Then J ∗ G � R ∗ G. Note that R ∗ G is semiprime by Lemma 9.2.3(i). So there
exists e ∈ B(R ∗ G) such that rR∗G(J ∗ G) = e(R ∗ G) by Propositions 1.2.2 and
1.2.6(ii). By Lemma 9.2.4, e ∈ Cen(R). Thus eR ⊆ rR(J ). Let a ∈ rR(J ). Then
Ja = 0, so 0 = J gag = Jag for all g ∈ G. Hence (J ∗ G)a = 0, and therefore
a ∈ rR∗G(J ∗ G) = e(R ∗ G). Thus, a = ea ∈ eR. Thus rR(J ) = eR, and so R is
G-quasi-Baer. �

In Theorem 9.2.5, the group G need not be finite. When G is a finite group
of X-outer ring automorphisms of R, equivalent conditions for the skew group ring
R∗G to be quasi-Baer are investigated further in Theorem 9.2.10. The next example
illustrates Theorem 9.2.5.

Example 9.2.6 Let A be a semiprime quasi-Baer ring, R =A[x1, x2, . . . ], the poly-
nomial ring with commuting indeterminates x1, x2, . . . , and G be the group of all
permutations on {x1, x2, . . . } acting on R. Then R is semiprime. By Theorem 6.2.4,
R is quasi-Baer. We show that G is X-outer. Let 1 �= g ∈G. Then there exist xi and
xj with i �= j such that xgi = xj . Without loss of generality, we assume that xi = x1
and xj = x2.

Take q ∈Φg . Then qx
g

1 = x1q , so qx2 = x1q . Because x1 and x2 are in Cen(R),
x1 and x2 are in Cen(Q(R)). Therefore q(x1 − x2)= 0. We show that

�R({x1 − x2})= 0.

Say 0 �= f ∈ �R({x1 − x2}). Then f x1 = f x2. We put f = hxm1 x
n
2 with h ∈ R and

m,n positive integers such that neither x1 nor x2 divides h.
From f x1 = f x2, hxm1 x

n
2x1 = hxm1 x

n
2x2, so hx1 = hx2. Whence both x1 and x2

divide h, a contradiction. Thus �R({x1 − x2})= 0, so rR({x1 − x2})= 0. Hence we
get that rQ(R)({x1 − x2})= 0. Thus q = 0, so Φg = 0. Hence G is X-outer. So, the
skew group ring R ∗G is semiprime and quasi-Baer by Theorem 9.2.5.

Lemma 9.2.7 Let R be a ring and G a finite group of ring automorphisms of R.
Then Q(R) ∗G is a maximal right ring of quotients of R ∗G.

Proof See [285] and [335]. �

Assume that G is a finite group of ring automorphisms of a ring R. Then for
a ∈ R, let tr(a) = ∑

g∈G ag , which is called the trace of a. Also for a right ideal
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I of R, the right ideal tr(I ) = {tr(a) | a ∈ I } of RG is called the trace of I . Say
G= {g1, . . . , gn}. We put t = g1 + · · · + gn ∈R ∗G.

When a ∈ R and g,h ∈ G, we denote (ag)h = agh. Suppose that r ∈ R and
α = a1g1 + · · · + angn ∈R ∗G with ai ∈R. Define

r · α = rg1a
g1
1 + · · · + rgna

gn
n .

Then R is a right R ∗G-module. Moreover, RGRR∗G is an (RG, R ∗G)-bimodule.
Consider the following pairings

( , ) :R ⊗R∗G Rt →RG and [ , ] :Rt ⊗RG R →R ∗G
defined by (a, bt)= tr(ab) and [at, b] = atb for a, b ∈R. Then

(a, bt)c = a · [bt, c] and [at, b]ct = at (b, ct)

for all a, b, c ∈ R. Also ( , ) is an (RG,RG)-bimodule homomorphism and [ , ]
is an (R ∗ G,R ∗ G)-bimodule homomorphism. In this case, we can verify that
(R ∗ G, RGRR∗G, R∗GRtRG, RG) is a Morita context with the given pairings (see
[129] for more details). The next result is of interest in its own right.

Proposition 9.2.8 Let R be a semiprime ring and G a finite group of X-outer ring
automorphisms of R. Then Cen(Q(R)G)= Cen(Q(R))G.

Proof Note that Q(R) is semiprime, and G is also X-outer on Q(R). So we may
assume that R =Q(R) and claim that Cen(RG)= Cen(R)G. Define

θ :R ∗G→ End(RtRG)

by θ(x)(rt) = xrt for x ∈ R ∗ G and r ∈ R. Now we claim that θ is a ring
isomorphism. First, θ is a ring homomorphism because Rt is a left ideal of
R ∗ G. Now Ker (θ) = �R∗G(RtR). Since �R∗G(RtR) ∩ R = 0, �R∗G(RtR) = 0
by Lemma 9.2.3(i). Thus, θ is one-to-one.

To show that θ is onto, let f ∈ End (RtRG). Define

λ :Rt ×R →R ∗G
by λ(at, b) = f (at)b with a, b ∈ R. Then λ is biadditive. Moreover, for r ∈ RG,
λ(atr, b) = λ(art, b) = f (art)b = f (atr)b = f (at)rb = λ(at, rb). Therefore,
there exists an additive group homomorphism α : Rt ⊗RG R → R ∗ G satisfying
α(a1t ⊗ b1 + · · · + akt ⊗ bk) = f (a1t)b1 + · · · + f (akt)bk . We can check that
α ∈ Hom(Rt ⊗RG RR∗G,R ∗GR∗G).

Now we define f : RtR → R ∗ G by f (
∑k

i=1 aitbi) = ∑k
i=1 f (ai t)bi for

ai, bi ∈R, i = 1, . . . , k. To show that f is well-defined, suppose that
∑m

i=1 ci tdi =
∑n

j=1 uj tvj with ci, di, uj , vj ∈ R for i = 1, . . . ,m, j = 1, . . . , n. We can show
that [α(∑m

i=1 ci t ⊗di +∑n
j=1(−uj )t ⊗ vj )](RtR)= 0 by using the Morita context

(R ∗G, RGRR∗G, R∗GRtRG, RG) (Exercise 9.2.15.2).
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Since �R∗G(RtR)= 0, we have that

0 = α

(

m
∑

i=1

ci t ⊗ di +
n
∑

j=1

(−uj )t ⊗ vj

)

=
m
∑

i=1

f (ci t)di +
n
∑

j=1

f (−uj t)vj .

Hence
∑m

i=1 f (ci t)di = ∑n
j=1 f (uj t)vj . So f is well-defined. Further, we can

show that f ∈ Hom (RtRR∗G,R ∗GR∗G).
As R =Q(R), R ∗G is rationally complete by Lemma 9.2.7 (recall that a ring A

is said to be rationally complete if A=Q(A)). Also RtR is a dense right ideal of R∗
G by Proposition 1.3.11(iv) because RtR is an ideal of R ∗G with �R∗G(RtR)= 0.
Therefore, from Proposition 1.3.12, there exists

q ∈Q(R ∗G)=R ∗G such that f = q�|RtR,
where q� is the left multiplication by q .

Now θ(q)(rt) = qrt = q�(rt) = f (rt) = f (rt) for r ∈ R. Thus θ(q) = f , so θ

is onto. Therefore, θ is a ring isomorphism.
Now we show that Cen(R)G = Cen(RG). Clearly, Cen(R)G ⊆ Cen(RG). Next,

let a ∈ Cen(RG). Define fa : Rt → Rt by fa(rt) = rat for r ∈ R. If rt = 0, then
rat = rta = 0, so fa is well-defined. Take b ∈RG. Then

fa(rtb)= fa(rbt)= rbat = rabt = ratb = fa(rt)b.

So fa ∈ End (RtRG) because fa is additive. To see that fa ∈ Cen(End (RtRG)),
take g ∈ End (RtRG). For rt ∈ Rt with r ∈ R, we put g(rt) = sr t with sr ∈ R.
Then (gfa)(rt)= g(fa(rt))= g(rat)= g(rta)= g(rt)a = srat . Also (fag)(rt)=
fa(g(rt))= fa(sr t)= srat . So gfa = fag. Hence fa ∈ Cen(End (RtRG)).

Since Cen(R ∗ G) ∼= Cen(End (RtRG)) via θ , there is q0 ∈ Cen(R ∗ G) with
θ(q0) = fa . So θ(q0)(rt) = fa(rt), thus q0rt = rat for r ∈ R. By Lemma 9.2.4,
Cen(R ∗ G) = Cen(R)G. So q0 ∈ Cen(R)G. Take r = 1 in q0rt = rat . Then
q0t = at . Hence, a = q0 because q0 ∈ Cen(R)G ⊆ R. Thus a ∈ Cen(R)G. Con-
sequently, Cen(RG)= Cen(R)G. �

Lemma 9.2.9 Let R be a semiprime ring and G a finite group of X-outer ring
automorphisms of R.

(i) For q ∈ Q(RG), assume that JRG ≤den RG
RG such that qJ ⊆ RG. Then

JRR ≤den RR and the map q̃ : JR → R defined by q̃ (
∑

airi) =∑

q(ai)ri , with
ai ∈ J and ri ∈R, is an R-homomorphism. Moreover, q̃ ∈Q(R)G.

(ii) The map σ :Q(RG)→Q(R)G by σ(q)= q̃ is a ring isomorphism.
(iii) Assume that I is a right ideal of R. Then IR ≤den RR if and only if

tr(I )RG ≤den RG
RG .

Proof See [335] for the proof. �

Despite Example 9.2.1, we obtain the next result for the quasi-Baer property of
R ∗G and RG when R is semiprime, and G is finite and X-outer.

Theorem 9.2.10 Assume that R is a semiprime ring and G is a finite group of X-
outer ring automorphisms of R. Then the following are equivalent.
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(i) R ∗G is quasi-Baer.
(ii) R is G-quasi-Baer.

(iii) RG is quasi-Baer.

Proof By Lemma 9.2.3(i), R ∗G is semiprime. We note that Q(R)∗G is a maximal
right ring of quotients of R ∗G by Lemma 9.2.7.

(i)⇔(ii) This equivalence is Theorem 9.2.5 for the case when G is finite.
(ii)⇒(iii) Let R be G-quasi-Baer. By Theorem 9.2.5, R ∗G is quasi-Baer. From

Lemma 9.2.3(i), R ∗G and RG are semiprime. Thus to show that RG is quasi-Baer,
by Theorem 8.3.17 it suffices to see that B(Q(RG)) ⊆ RG. Note that G is also
X-outer on Q(R), so by Lemma 9.2.4 and Proposition 9.2.8,

B(Q(R)G)⊆ Cen(Q(R)G)= Cen(Q(R))G = Cen(Q(R) ∗G).
So B(Q(R)G)⊆ B(Q(R) ∗G)⊆R ∗G by Theorem 8.3.17 as R ∗G is quasi-Baer.
Hence B(Q(R)G)⊆R, and thus B(Q(R)G)⊆RG.

Say e ∈ B(Q(RG)). From Lemma 9.2.9(ii), ẽ ∈ B(Q(R)G) ⊆ RG. Let J be a
dense right ideal of RG with eJ ⊆ RG. By Lemma 9.2.9(i), (e − ẽ)J = 0. We note
that ẽ ∈ RG ⊆ Q(RG), so e − ẽ = 0 from Proposition 1.3.11(ii). Consequently, we
obtain e = ẽ ∈ RG. Hence B(Q(RG)) ⊆ RG. Therefore, RG is quasi-Baer by The-
orem 8.3.17.

(iii)⇒(i) Assume that RG is quasi-Baer. Let e ∈ B(Q(R) ∗ G). Then by
Lemma 9.2.4, e ∈ B(Q(R))G since G is X-outer on Q(R). Thus R ∩ eR is a
G-invariant ideal of R. Therefore, rR(R ∩ eR) is also a G-invariant ideal of R.
So tr(R ∩ eR) ⊆ R ∩ eR and tr(rR(R ∩ eR)) ⊆ rR(R ∩ eR). As R is semiprime,
(R ∩ eR)⊕ rR(R ∩ eR) is a dense right ideal of R.

We prove that e(rR(R ∩ eR)) = 0. Indeed, let x ∈ rR(R ∩ eR) (since R is
semiprime, rR(R ∩ eR) = �R(R ∩ eR)). If ex �= 0, then there exists b ∈ R such
that 0 �= exb ∈R ∩ eR because (R ∩ eR)R ≤ess eRR . So

exb(R ∩ eR)⊆ ex(R ∩ eR)= 0,

hence 0 �= exb ∈ (R ∩ eR)∩ rR(R ∩ eR)= 0, a contradiction. Therefore, we obtain
that e(rR(R ∩ eR))= 0. Thus,

e[(R ∩ eR)⊕ rR(R ∩ eR)] = e(R ∩ eR)=R ∩ eR ⊆R.

By Lemma 9.2.9(iii), tr[(R ∩ eR) ⊕ rR(R ∩ eR)] = tr(R ∩ eR) ⊕ tr(rR(R ∩ eR))

is a dense right ideal of RG. We put I = (R ∩ eR) ⊕ rR(R ∩ eR). Because I is
G-invariant, tr(I )R ⊆ I . By the preceding argument e(rR(R ∩ eR)) = 0, so we
have that e[tr(rR(R ∩ eR))] ⊆ e(rR(R ∩ eR)) = 0. Thus, it follows that e tr(I ) =
e(tr(R ∩ eR))⊆ e(R ∩ eR)⊆R. So e tr(I )⊆R ∩Q(R)G =RG.

Let e0 be the restriction of e to tr(I ). Then e0tr(I ) ⊆ RG. We note that
tr(I )RR ≤den RR by Lemma 9.2.9(i) because tr(I ) is a dense right ideal of RG.
Further, (e − ẽ0)tr(I )R = 0, and so e = ẽ0 from Proposition 1.3.11(ii). Now
Lemma 9.2.9(ii) yields that e0 ∈ B(Q(RG)). Therefore, we can see that

tr(R ∩ eR)= e tr(R ∩ eR)= e0tr(R ∩ eR)⊆ e0R
G.
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We claim that tr(R ∩ eR)RG ≤ess e0R
G
RG . For this, take 0 �= e0a ∈ e0R

G with

a ∈ RG. As RG
RG ≤ess Q(RG)RG and e0 ∈ B(Q(RG)), there is c ∈ RG with 0 �=

e0ac ∈RG. Since [tr(R ∩ eR)⊕ tr(rR(R ∩ eR))]RG ≤ess RG
RG , there is r ∈RG such

that 0 �= e0acr ∈ tr(R ∩ eR)⊕ tr(rR(R ∩ eR)). Recall that e rR(R ∩ eR)= 0, so

e0 tr(rR(R ∩ eR))= e tr(rR(R ∩ eR))⊆ e rR(R ∩ eR)= 0.

Thus, 0 �= e0acr ∈ e0 tr(R ∩ eR)= etr(R ∩ eR)= tr(R ∩ eR) and cr ∈ RG. Hence,
tr(R ∩ eR)RG ≤ess e0R

G
RG . We note that RG is semiprime from Lemma 9.2.3(i),

tr(R ∩ eR)�RG, and e0 ∈ B(Q(RG)).
As RG is quasi-Baer, there is f ∈ S�(RG) with rRG(tr(R ∩ eR)) = fRG.

By Proposition 1.2.6(ii) f ∈ B(RG) since RG is semiprime. By Lemma 2.1.13,
tr(R ∩ eR)RG ≤ess (1 − f )RG

RG . Thus, tr(R ∩ eR)RG ≤ess (1 − f )Q(RG)RG . Also

since tr(R ∩ eR)RG ≤ess e0R
G
RG , tr(R ∩ eR)RG ≤ess e0Q(RG)RG . Now we note that

e0,1 − f ∈ B(Q(RG)), so e0 = 1 − f . Therefore, e0 ∈RG and so e0R
G ⊆RG.

Because e = ẽ0, eR = ẽ0(R
GR) = (e0R

G)R ⊆ RGR = R. Hence e ∈ R, so
B(Q(R) ∗G)⊆R ⊆R ∗G. Since R ∗G is semiprime by Lemma 9.2.3(i), R ∗G is
quasi-Baer from Theorem 8.3.17. �

Let R be a semiprime ring and G be a group of X-outer ring automorphisms
of R. Then G is also a group of X-outer ring automorphisms on the semiprime ring
̂QqB(R).

Corollary 9.2.11 Let R be a semiprime ring and G a group of X-outer ring auto-
morphisms of R. Then ̂QqB(R) ∗ G is quasi-Baer. Additionally, if G is finite, then
̂QqB(R)

G is quasi-Baer.

Proof The proof follows from Theorems 9.2.5 and 9.2.10. �

Corollary 9.2.12 Let R be a semiprime ring and G a group of X-outer ring au-
tomorphisms of R. If R is right FI-extending, then R ∗ G is right FI-extending.
Additionally, if G is finite, then RG is right FI-extending.

Proof The proof follows from Lemma 9.2.3(i), Theorem 3.2.37, Theorem 9.2.5, and
Theorem 9.2.10. �

Theorem 9.2.10 does not hold true if quasi-Baer is replaced by Baer. Also Corol-
lary 9.2.12 does not hold true if right FI-extending is replaced by right extending
(see Exercise 9.2.15.4). The next corollary also follows from Theorem 9.2.10 be-
cause every reduced quasi-Baer ring is Baer.

Corollary 9.2.13 Let R be a reduced ring with a finite group G of X-outer ring
automorphisms of R. Then R is G-quasi-Baer if and only if RG is Baer.
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From Lemma 9.2.3 and Theorem 9.2.10, one may raise the following question:
Assume that R is a semiprime quasi-Baer ring and G is a finite group of ring auto-
morphisms of R such that R has no nonzero |G|-torsion. Then is R ∗G quasi-Baer?
The next example answers this question in the negative.

Example 9.2.14 For a commutative domain A with no nonzero 2-torsion, let

R =A⊕A⊕Z

and g ∈ Aut(R) defined by g[(a, b,n)] = (b, a,n) for a, b ∈A and n ∈ Z. We now
put G= {1, g}, S =A⊕A, and h= g|S . Then h ∈ Aut(S).

Let H = {1, h}. In this case, R ∗G∼= (S ∗H)⊕Z[G], where Z[G] is the group
ring of G over Z. If R ∗G is quasi-Baer, then by Proposition 3.2.8 Z[G] is quasi-
Baer, which is a contradiction by Example 6.3.11 (see also Example 3.1.6). So R is
a semiprime quasi-Baer ring with no nonzero |G|-torsion, but the ring R ∗G is not
quasi-Baer.

Exercise 9.2.15

1. Prove Lemma 9.2.4.
2. Assume that α :Rt ⊗RG R →R ∗G is the map such that

α(a1t ⊗ b1 + · · · + akt ⊗ bk)= f (a1t)b1 + · · · + f (akt)bk,

which is in the proof of Proposition 9.2.8.
(i) Prove that α ∈ Hom (Rt ⊗RG RR∗G,R ∗GR∗G).

(ii) Show that if
∑m

i=1 ci tdi = ∑n
j=1 uj tvj where ci, di, uj , vj ∈ R, then

[α(∑m
i=1 ci t ⊗ di +∑n

j=1(−uj )t ⊗ vj )](RtR)= 0.
3. ([233, Jin, Doh, and Park]) Assume that A is a commutative domain which is

not a field and A has no 2-torsion (e.g., A = Z). Take a nonzero proper ideal I
of A. Let R = {(a, b) ∈A⊕A | a − b ∈ I }, which is a subring of A⊕A. Define
g ∈ Aut(R) by g(a, b) = (b, a) for (a, b) ∈ R. Then g2 = 1. Let G = {1, g}.
Show that the following hold:

(i) G is X-outer.
(ii) R ∗G is quasi-Baer and R is G-quasi-Baer.

(iii) R is not quasi-Baer.
(iv) ̂QqB(R ∗G) �= ̂QqB(R) ∗G.

4. ([233, Jin, Doh, and Park]) Let R = Z[x, y]. Define g ∈ Aut(R) by g(a(x, y))=
a(y, x) for a(x, y) ∈R. Let G= {1, g}. Show that the following hold true.
(i) R is Baer and extending, and G is X-outer.

(ii) R ∗G is neither Baer nor right extending.

9.3 Hulls of Monoid and Matrix Ring Extensions

Let HK(R) denote a ring hull of R with respect to a class K of rings and X(−)

denote a ring extension. Then it is natural to ask if HK(X(R)) has any relation
with X(HK(R)). This question for K right ring hulls is considered in this section
when K is one of the classes of rings such as K = qB, FI, pqB, pFI, and fgFI
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(see Problem IV in Introduction of Chap. 8). In particular, our primary focus is on
the quasi-Baer and the right FI-extending ring hulls of various ring extensions of a
ring R.

The extensions considered here, include monoid ring extensions, full and trian-
gular matrix ring extensions, and infinite matrix ring extensions. As an application,
we see that for semiprime rings R and S, if R and S are Morita equivalent, then so
are ̂QqB(R) and ̂QqB(S).

Theorem 9.3.1 Let R[G] be a semiprime monoid ring of a monoid G over a ring R.
Then:

(i) ̂QqB(R)[G] ⊆ ̂QqB(R[G]) and ̂QpqB(R)[G] ⊆ ̂QpqB(R[G]).
(ii) If G is a u.p.-monoid, then we have that ̂QqB(R[G]) = ̂QqB(R)[G] and

̂QpqB(R[G])= ̂QpqB(R)[G].

Proof (i) Note that R is semiprime. Say q ∈ Qm(R). Then there exists I � R such
that �R(I)= 0 and qI ⊆R. Then we see that

I [G] �R[G] and �R[G](I [G])⊆ �R[G](I )= 0.

Further, qI [G] ⊆R[G]. Because R[G] is semiprime by assumption, we obtain that
q ∈Qm(R[G]). Hence Qm(R)⊆Qm(R[G]). Therefore, Qm(R)[G] ⊆Qm(R[G]).

Let c ∈ B(Qm(R)). Then c ∈ Qm(R)[G] ⊆ Qm(R[G]) and cr = rc for any
r ∈ R, therefore cβ = βc for any β ∈ R[G]. So c ∈ B(Qm(R[G])). We note that
Cen(Q(R))= Cen(Qm(R)), and so B(Q(R))= B(Qm(R)). Thus

B(Q(R))= B(Qm(R))⊆ B(Qm(R[G]))= B(Q(R[G])).
From Theorem 8.3.17, ̂QqB(R)[G] ⊆ ̂QqB(R[G]).

We show that Bp(Q(R)) ⊆ Bp(Q(R[G])). For this, let e ∈ Bp(Q(R)). Then
there exists a ∈ R such that RaRR ≤ess eQ(R)R , and so RaRR ≤ess eRR . Hence,
(RaR)[G]R ≤ess eR[G]R . Therefore (RaR)[G]R[G] ≤ess eR[G]R[G].

On the other hand, e ∈ Bp(Q(R)) ⊆ B(Q(R)) ⊆ B(Q(R[G])) by the preced-
ing argument. So e ∈ Bp(Q(R[G])) because (RaR)[G] = R[G]aR[G]. Thus,
Bp(Q(R)) ⊆ Bp(Q(R[G])). Therefore, ̂QpqB(R)[G] ⊆ ̂QpqB(R[G]) from Theo-
rem 8.3.39.

(ii) This is a consequence of part (i) and Theorem 6.2.3. �

Goel and Jain [177] have posed the question: If G is an infinite cyclic group
and R is a prime right quasi-continuous ring, is R[G] right quasi-continuous?
While the general question remains open (as of the writing of this book), Corol-
lary 9.3.2 provides an affirmative answer to the question for the case when R is a
commutative semiprime quasi-continuous ring.

Corollary 9.3.2 Let R[G] be the group ring of a torsion-free Abelian group G over
a commutative semiprime quasi-continuous ring R. Then R[G] is quasi-continuous.
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Proof From Theorem 8.3.22, R[G] is semiprime. Since G is a commutative u.p.-
monoid, by Theorems 9.3.1 and 3.2.37, R[G] is extending. As R[G] is commuta-
tive, it satisfies the (C3) condition. So R[G] is quasi-continuous. �

Corollary 9.3.3 Let R be a semiprime ring and let X be a nonempty set of not
necessarily commuting indeterminates. Then:

(i) ̂QqB(R[x, x−1])= ̂QqB(R)[x, x−1].
(ii) ̂QpqB(R[x, x−1])= ̂QpqB(R)[x, x−1].

(iii) ̂QqB(R[X])= ̂QqB(R)[X].
(iv) ̂QpqB(R[X])= ̂QpqB(R)[X].

Proof (i) and (ii) Note that R[x, x−1] ∼= R[C∞], which is semiprime (C∞ de-
notes the infinite cyclic group). Therefore, ̂QqB(R[x, x−1])= ̂QqB(R)[x, x−1] and
̂QpqB(R[x, x−1])= ̂QpqB(R)[x, x−1] from Theorem 9.3.1.

(iii) Since R is semiprime, so is R[X]. Now ̂QqB(R[X]) = ̂QqB(R)[X] follows
from Theorem 9.3.1.

(iv) The proof follows from Theorem 9.3.1. �

Example 9.3.4 (i) Let Z[C2] be the group ring of the group C2 = {1, g} over Z.
Then Z[C2] is semiprime. Moreover, ̂QqB(Z)[C2] = Z[C2] � ̂QqB(Z[C2]) (see
Example 8.3.31). Hence, the u.p.-monoid condition is not superfluous in Theo-
rem 9.3.1(ii).

(ii) Let F be a field. Then F [x] =Q(F)[x] �=Q(F [x])= F(x), so Q(−) cannot
replace ̂QqB(−) in Theorem 9.3.1(ii).

(iii) There is a semiprime ring R with ̂QpqB(R[[x]]) �= ̂QpqB(R)[[x]]. In Exam-
ple 6.2.9, there is a commutative regular ring R (hence right p.q.-Baer), but the ring
R[[x]] is not right p.q.-Baer. Whence ̂QpqB(R)=R and so ̂QpqB(R)[[x]] =R[[x]].
Because R[[x]] is not right p.q.-Baer, it follows that ̂QpqB(R[[x]]) �= ̂QpqB(R)[[x]].

Proposition 9.3.5 Let K be a class of rings such that Ω ∈ K if and only if
Matn(Ω) ∈ K for any positive integer n, and let HK(−) denote any of the ring
hulls given in Definition 8.2.1 for the class K. Then for a ring R, HK(R) ex-
ists if and only if HK(Matn(R)) exists for any positive integer n. In this case,
HK(Matn(R))= Matn(HK(R)).

Proof We prove the case when HK(R) = QK(R). The other cases can be shown
similarly. Assume that QK(R) exists. By hypothesis, Matn(QK(R)) is in K. Let T
be a right essential overring of Matn(R). Then T has a set of n × n matrix units
(see 1.1.16). So T = Matn(V ) for some ring V . Now V is a right essential over-
ring of R. By assumption if T ∈ K, then V ∈ K. Hence QK(R) is a subring of V ,
so Matn(QK(R)) is a subring of T . Thus Matn(QK(R)) = QK(Matn(R)). So if
QK(R) exists, then QK(Matn(R)) exists.

If QK(Matn(R)) exists, then the preceding argument yields that there is a right
essential overring S of R with QK(Matn(R)) = Matn(S). By hypothesis, S ∈ K. If
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W is a right essential overring of R and W ∈ K, then QK(Matn(R)) is a subring of
Matn(W). Thus, S is a subring of W , so S =QK(R). �

Lemma 9.3.6 Let δ ⊆ B(Q(R)) and Δ= {c1 | c ∈ δ}, where 1 is the identity matrix
of Matn(R). Then:

(i) Matn(〈R ∪ δ〉Q(R))= 〈Matn(R)∪Δ〉Q(Matn(R)).
(ii) Matn(Q(R))=Q(Matn(R))=Q(Tn(R)).

(iii) Tn(〈R ∪ δ〉Q(R))= 〈Tn(R)∪Δ〉Q(Matn(R)).

Proof The proof is routine. For (ii), see also Exercise 8.1.10.5. �

Proposition 9.3.7 Let R be a ring and n a positive integer. Then:

(i) ̂QIC(Matn(R))= Matn(̂QIC(R))= Matn(RB(Q(R))).
(ii) If R is a semiprime ring, then:

(1) ̂QK(Matn(R)) = Matn(̂QK(R)) = Matn(RB(Q(R))), where K = qB or
FI.

(2) ̂QK(Matn(R)) = Matn(̂QK(R)) = Matn(〈R ∪ Bp(Q(R))〉Q(R)), where
K = pqB, pFI, or fgFI.

Proof (i) This part follows from Theorem 8.3.11 and Lemma 9.3.6.
(ii)(1) Theorems 3.2.12, 3.2.37, 8.3.17, and Lemma 9.3.6 yield the result.
(ii)(2) Note that Matn(̂QpFI(R)) is right p.q.-Baer from Theorem 3.2.36 and

Proposition 3.2.41. Let e ∈ Bp(Q(R)). Then there exists x ∈ R such that RxRR

is essential in eQ(R)R . Let α ∈ Matn(R) with x in (1,1)-position and 0 elsewhere.
Then Matn(R)αMatn(R)Matn(R) ≤ess (e1)Matn(Q(R))Matn(R), where 1 is the iden-
tity matrix of Matn(R). Hence e1 ∈ Bp(Q(Matn(R))) from Lemma 9.3.6(ii). From
Theorem 8.3.39, Matn(̂QpFI(R))⊆ ̂QpFI(Matn(R)).

Since ̂QpFI(R) is right p.q.-Baer by Proposition 3.2.41, Matn(̂QpFI(R)) is right
p.q.-Baer from Theorem 3.2.36. Thus, Matn(̂QpFI(R)) is right principally FI-
extending by Proposition 3.2.41. Hence, ̂QpFI(Matn(R))⊆ Matn(̂QpFI(R)), and so
̂QpFI(Matn(R)) = Matn(̂QpFI(R)). From Theorem 8.3.39 and Proposition 3.2.41,
̂QK(Matn(R))= Matn(̂QK(R))= Matn(〈R ∪Bp(Q(R))〉Q(R)), for K = pqB, pFI,
or fgFI. �

The next example shows that Theorem 9.3.1(ii) and Proposition 9.3.7 do not hold
true if K = qCon.

Example 9.3.8 In general, we have that ̂QqCon(R[x]) �= ̂QqCon(R)[x] and
̂QqCon(Matn(R)) �= Matn(̂QqCon(R)), where n is an integer such that n > 1. In
Example 8.3.37, Matn(F [x]) = Matn(F )[x], where F is a field, is not right quasi-
continuous. We take R = Matn(F ). Then ̂QqCon(R[x]) �= ̂QqCon(R)[x]. Next, let
S = F [x]. Then ̂QqCon(Matn(S)) �= Matn(̂QqCon(S)).

Lemma 9.3.9 Let R be a semiprime ring. Then ̂QqB(eRe) = êQqB(R)e for any
nonzero idempotent e ∈R.
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Proof Take f ∈ B(Qm(R)). Note that B(Qm(R))= B(Q(R)). There is I �R such
that �R(I) = 0 and f I ⊆ R. Let 0 �= ete ∈ eRe with t ∈ R. Then eteI �= 0 be-
cause �R(I) = 0. As R is semiprime, (eteI )2 �= 0. So 0 �= eteIe ⊆ eIe, hence
eIeeRe ≤ess eReeRe. Since f I ⊆ R, ef eeIe ⊆ eRe and eIe � eRe. Further, eRe
is semiprime. So �eRe(eIe)= 0 by Proposition 1.3.16. Hence, ef e ∈Qm(eRe) and
(ef e)2 = ef e. For eae ∈ eRe, ef eeae = eaeef e, therefore ef e ∈ B(Qm(eRe)) and
eB(Qm(R))e ⊆ B(Qm(eRe)). From Theorem 8.3.17,

êQqB(R)e = eRB(Qm(R))e = eReeB(Qm(R))e

⊆ eReB(Qm(eRe))= ̂QqB(eRe).

Hence, eRe ⊆ êQqB(R)e ⊆ ̂QqB(eRe) ⊆ Q(eRe). As ̂QqB(R) is quasi-Baer,
êQqB(R)e is quasi-Baer from Theorem 3.2.10. So ̂QqB(eRe) ⊆ êQqB(R)e and
therefore ̂QqB(eRe)= êQqB(R)e. �

The following natural result establishes a Morita equivalence of quasi-Baer ring
hulls between two semiprime rings which are Morita equivalent.

Theorem 9.3.10 Let R be a semiprime ring. If R and a ring S are Morita equiva-
lent, then ̂QqB(R) and ̂QqB(S) are Morita equivalent.

Proof Since R and S are Morita equivalent, S is semiprime. Also there ex-
ist a positive integer n and e2 = e ∈ Matn(R) such that S = eMatn(R)e and
Matn(R)eMatn(R) = Matn(R). Thus, by Lemma 9.3.9 and Proposition 9.3.7,
̂QqB(S)= ̂QqB(eMatn(R)e)= êQqB(Matn(R))e = eMatn(̂QqB(R))e. Also,

Matn(̂QqB(R))eMatn(̂QqB(R))= Matn(R)eMatn(R)B(Matn(Q(R)))

= Matn(R)B(Q(R))1 = Matn(RB(Q(R)))= Matn(̂QqB(R)),

where 1 is the identity matrix of Matn(R). Note that e ∈ Matn(̂QqB(R)). Therefore,
̂QqB(R) is Morita equivalent to ̂QqB(S). �

Remark 9.3.11 The conclusion of Theorem 9.3.10 does not hold true for the case of
Baer ring hulls of two Morita equivalent semiprime rings. In other words, ̂QB(R)

and ̂QB(S) cannot replace ̂QqB(R) and ̂QqB(S), respectively in Theorem 9.3.10.
For example, we take R = F [x, y] with F a field, and take S = Matn(R) with
n > 1. Since R is a Baer ring, ̂QB(R) = R, however ̂QB(S) does not even exist
(see Example 8.3.34).

Lemma 9.3.12 Let R be a right FI-extending ring. Then B(T ) ⊆ R for any right
essential overring T of R.

Proof Assume that e ∈ B(T ). Then eT ∩ R � R, hence there is f 2 = f ∈ R such
that (eT ∩ R)R ≤ess fRR . So (eT ∩ R)R ≤ess f TR . Also, (eT ∩ R)R ≤ess eTR .
Since e ∈ B(T ), e = f ∈R. Therefore, B(T )⊆R. �
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When R is a semiprime ring, ̂QqB(R) = ̂QFI(R) = RB(Q(R)) by Theo-
rem 8.3.17. The following result provides a class of nonsemiprime rings for which
such equality also holds true.

Theorem 9.3.13 Let R be a ring and n a positive integer. Then:

(i) ̂QIC(Tn(R))= Tn(R)B(Q(Tn(R)))= Tn(RB(Q(R)))= Tn(̂QIC(R)).
(ii) If R is semiprime, then:

(1) ̂QqB(Tn(R))= Tn(̂QqB(R))= Tn(R)B(Q(Tn(R))).
(2) ̂QFI(Tn(R))= Tn(̂QFI(R))= Tn(R)B(Q(Tn(R))).
(3) ̂QpqB(Tn(R))= Tn(̂QpqB(R)).

Proof (i) This part follows from Theorem 8.3.11 and Lemma 9.3.6.
(ii)(1) Put T = Tn(R). From Theorems 5.6.7 and 8.3.17, Tn(̂QqB(R)) is quasi-

Baer and Tn(̂QqB(R))= Tn(RB(Q(R))).
Let S be a quasi-Baer right ring of quotients of T . We show that S con-

tains all n × n constant diagonal matrices whose diagonal entries are from
B(Q(R)). For this, take e ∈ B(Q(R)) and put I = R ∩ (1 − e)Q(R). Then
Q(R)IQ(R)R ≤ess (1 − e)Q(R)R , so Q(R)IQ(R)Q(R) ≤ess (1 − e)Q(R)Q(R).
By Proposition 8.3.16, rQ(R)(I ) = rQ(R)(Q(R)IQ(R)). From Corollary 8.3.19,
Q(R) is quasi-Baer. Hence from Propositions 1.2.2 and 1.2.6(ii), there exists
f 2 = f ∈ B(Q(R)) such that rQ(R)(Q(R)IQ(R))= fQ(R). From Lemma 2.1.13,
Q(R)IQ(R)Q(R) ≤ess (1 − f )Q(R)Q(R). Therefore, 1 − e = 1 − f and so e = f .
Hence rQ(R)(I )= rQ(R)(Q(R)IQ(R))= fQ(R)= eQ(R).

Let K be the n × n matrix with I in the (1,1)-position and 0 elsewhere.
Thus TKT is the n × n matrix with I throughout the top row and 0 else-
where. Also Q(T )KQ(T ) = Matn(Q(R)IQ(R)) because Q(T ) = Matn(Q(R))

from Lemma 9.3.6.
Now we have that TKT ⊆ SKS ⊆ Q(T )KQ(T ), rQ(R)(I ) = eQ(R), and

rQ(R)(Q(R)IQ(R)) = eQ(R). We let g = e1, where 1 is the identity matrix of
Matn(R). So g is the diagonal matrix in Q(T )= Matn(Q(R)) with e on the diago-
nal. Then

gQ(T )= rQ(T )(Q(T )KQ(T ))⊆ rQ(T )(SKS)⊆ rQ(T )(T KT )= gQ(T ).

Because S is quasi-Baer, there exists c2 = c ∈ S with rS(SKS) = cS. Also
rS(SKS)= S ∩ gQ(T ) since rQ(T )(SKS)= gQ(T ). Hence cQ(T )⊆ gQ(T ).

Further, cST ≤ess gQ(T )T . Thus cQ(T )Q(T ) ≤ess gQ(T )Q(T ), and hence from
the modular law, cQ(T )= gQ(T ).

Now g = c ∈ S because g is central in Q(T ). So S contains all n × n constant
diagonal matrices whose diagonal entries are from B(Q(R)). By Theorem 8.3.17,
Tn(̂QqB(R))⊆ S. Thus

̂QqB(T )= Tn(̂QqB(R))= Tn(RB(Q(R)))= Tn(R)B(Q(Tn(R))).

(ii)(2) As R is semiprime, ̂QFI(R)=RB(Q(R)) by Theorem 8.3.17. From The-
orem 5.6.19, Tn(RB(Q(R))) is right FI-extending. Let S be a right FI-extending
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right ring of quotients of Tn(R). Lemmas 9.3.6 and 9.3.12 yield that

B(Q(Tn(R)))= B(Matn(Q(R)))= B(Q(R))1 ⊆ S,

where 1 is the identity matrix of Matn(R). So

Tn(RB(Q(R)))⊆ S and ̂QFI(Tn(R))= Tn(RB(Q(R))).

Therefore ̂QFI(Tn(R))= Tn(̂QFI(R))= Tn(R)B(Q(Tn(R))).
(ii)(3) Put T = Tn(R). First, we note that Tn(̂QpqB(R)) is a right p.q.-

Baer ring by Proposition 5.6.8. Let S be a right p.q.-Baer right ring of quo-
tients of T . Say e ∈ Bp(Q(R)). There exists x ∈ R with RxRR ≤ess eQ(R)R .
Hence Q(R)xQ(R)Q(R) ≤ess eQ(R)Q(R). Because e ∈ B(Q(R)), we see that
eQ(R)xQ(R)eeQ(R)e ≤ess eQ(R)eeQ(R)e . As eQ(R)e is semiprime, by Proposi-
tion 1.3.16, reQ(R)e(eQ(R)xQ(R)e)= 0.

Because e is central, it follows that rQ(R)(Q(R)xQ(R))e = 0. Therefore we have
that rQ(R)(Q(R)xQ(R))⊆ (1 − e)Q(R). Since Q(R)xQ(R)⊆ eQ(R),

(1 − e)Q(R)⊆ rQ(R)(Q(R)xQ(R)).

Therefore, rQ(R)(Q(R)xQ(R)) = (1 − e)Q(R). Now from Proposition 8.3.16, we
obtain rQ(R)(RxR)= rQ(R)(Q(R)xQ(R))= (1 − e)Q(R).

Let σ ∈ T = Tn(R) be the n × n matrix with x in the (1,1)-position and 0
elsewhere. Thus T σT is the n × n matrix with RxR throughout the top row
and zero elsewhere. Further, we see that Q(T )σQ(T ) = Matn(Q(R)xQ(R))

because Q(T ) = Matn(Q(R)). Observe that T σT ⊆ SσS ⊆ Q(T )σQ(T ) and
rQ(R)(RxR)= (1 − e)Q(R).

We take h= (1 − e)1, where 1 is the identity matrix of Matn(R). Then

hQ(T )= rQ(T )(Q(T )σQ(T ))⊆ rQ(T )(SσS)⊆ rQ(T )(T σT )= hQ(T ).

There is c2 = c ∈ S with cS = rS(SσS)= S ∩ rQ(T )(SσS)= S ∩ hQ(T ), since S is
right p.q.-Baer. Thus, cQ(T )⊆ hQ(T ).

Further, we see that, as in the proof of part (i), cQ(T )Q(T ) ≤ess hQ(T )Q(T ). Be-
cause h is central in Q(T ), h= c ∈ S. Therefore, S contains all n×n constant diag-
onal matrices whose diagonal entries are from Bp(Q(R)). Thus, Tn(̂QpqB(R))⊆ S

by Theorem 8.3.39(ii). So ̂QpqB(T )= Tn(̂QpqB(R)). �
For a nonsemiprime version of Theorem 9.3.13(ii)(2), see Exercise 9.3.17.2.

Theorem 9.3.14 Let R be a semiprime ring. Then:

(i) ̂QqB(CFMΓ (R))⊆ CFMΓ (̂QqB(R)).
(ii) ̂QqB(RFMΓ (R))⊆ RFMΓ (̂QqB(R)).

(iii) ̂QqB(CRFMΓ (R))⊆ CRFMΓ (̂QqB(R)).

Proof Since R is semiprime, so are CFMΓ (R), RFMΓ (R) and CRFMΓ (R).
Let e ∈ B(Q(R)). Then e ∈ B(Qm(R)), so there exists J � R with �R(J ) = 0
and eJ ⊆ R. Hence CFMΓ (J ) � CFMΓ (R), �CFMΓ (R)(CFMΓ (J )) = 0, and also
(e1)CFMΓ (J ) ⊆ CFMΓ (R), where 1 is the identity matrix in CFMΓ (R). Hence
e1 ∈Qm(CFMΓ (R)), so e1 ∈ B(Qm(CFMΓ (R))). Thus
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CFMΓ (̂QqB(R)) = CFMΓ (RB(Q(R)))⊆ CFMΓ (R)B(Q(R))1

⊆ Qm(CFMΓ (R))⊆Q(CFMΓ (R)).

From Theorem 6.1.16, CFMΓ (̂QqB(R)) is quasi-Baer. Therefore, we have that
̂QqB(CFMΓ (R))⊆ CFMΓ (̂QqB(R)).

Similarly, ̂QqB(RFMΓ (R)) ⊆ RFMΓ (̂QqB(R)) by the preceding argument and
Theorem 6.1.16. Also, we see that CRFMΓ (̂QqB(R)) is also quasi-Baer by The-
orem 6.1.16. Moreover, CRFMΓ (̂QqB(R)) ⊆ Q(CRFMΓ (R)) from the preceding
argument. So ̂QqB(CRFMΓ (R))⊆ CRFMΓ (̂QqB(R)). �

In view of Proposition 9.3.7 and Theorem 9.3.14, one may expect that some of
the following may hold true:

̂QqB(CFMΓ (R))= CFMΓ (̂QqB(R)), ̂QqB(RFMΓ (R))= RFMΓ (̂QqB(R)),

or

̂QqB(CRFMΓ (R))= CRFMΓ (̂QqB(R)).

However, the next example shows that there exists a commutative regular ring R

and a nonempty ordered set Γ such that none of these equalities holds.

Example 9.3.15 There exist a commutative regular ring R and a nonempty ordered
set Γ such that:

(i) ̂QqB(CFMΓ (R))� CFMΓ (̂QqB(R)).
(ii) ̂QqB(RFMΓ (R))� RFMΓ (̂QqB(R)).

(iii) ̂QqB(CRFMΓ (R))� CRFMΓ (̂QqB(R)).

Let F be a field. Take a set Λ with |Λ| = |F | ℵ0, and let Fi = F for all i ∈ Λ.
Put

R = {(γi)i∈Λ ∈
∏

i∈Λ
Fi | γi is constant for all but finitely many i},

a subring of
∏

i∈Λ Fi . Then Q(R)=∏

i∈Λ Fi and R is a commutative regular ring.
Take Γ = ̂QqB(R)=RB(Q(R)) as a set.

We observe that ̂QqB(CFMΓ (R))⊆ CFMΓ (̂QqB(R))⊆Q(CFMΓ (R)) by The-
orem 9.3.14 and its proof. Because CFMΓ (R) is semiprime, Theorem 8.3.17 yields
that ̂QqB(CFMΓ (R))= CFMΓ (R)B(Q(CFMΓ (R))). Therefore, B(Q(CFMΓ (R)))

⊆ ̂QqB(CFMΓ (R)). Hence,

B(Q(CFMΓ (R)))⊆ B(̂QqB(CFMΓ (R))).

Thus B(Q(CFMΓ (R)))= B(̂QqB(CFMΓ (R))).
Assume on the contrary that ̂QqB(CFMΓ (R)) = CFMΓ (̂QqB(R)). Then

B(Q(CFMΓ (R)))= B(̂QqB(CFMΓ (R)))= B(CFMΓ (̂QqB(R))).
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We let μ ∈ CFMΓ (̂QqB(R)) be a diagonal matrix whose diagonal entries
are all distinct elements of ̂QqB(R). Then μ ∈ ̂QqB(CFMΓ (R)) by assump-
tion. By Theorem 8.3.17, ̂QqB(CFMΓ (R)) = CFMΓ (R)B(CFMΓ (̂QqB(R))),
since B(Q(CFMΓ (R))) = B(CFMΓ (̂QqB(R))). Let 1 be the identity matrix in
CFMΓ (R). Then there are θ1, . . . , θn ∈ CFMΓ (R) and f1, . . . , fn ∈ ̂QqB(R), where
f11, . . . , fn1 ∈ B(CFMΓ (̂QqB(R))) are orthogonal by Lemma 8.3.29 (note that
fi ∈ B(̂QqB(R)) for all i) and μ= θ1f11 + · · · + θnfn1.

Hence for each entry of the diagonal of μ, or equivalently, each element of
RB(Q(R)), say a, there exist diagonal entries θi(a) of θi for i = 1, . . . , n such
that a = θ1(a)f1 + · · · + θn(a)fn. Thus RB(Q(R)) ⊆∑n

i=1 Rfi ⊆ RB(Q(R)), so
RB(Q(R))=Rf1 + · · · +Rfn. Hence |RB(Q(R))| = |R|.

Assume that |F | is finite or countably infinite. Then we see that |R| = ℵ0, but
|R| = |RB(Q(R))| ≥ |B(Q(R))| = 2ℵ0 as |Λ| = ℵ0 and Q(R) =∏

i∈Λ Fi , a con-
tradiction.

If |F | is uncountably infinite, then |R| = |Λ|. But in this case, we note
that |R| = |RB(Q(R))| ≥ |B(Q(R))| = 2|Λ|, also a contradiction. Therefore,
̂QqB(CFMΓ (R))� CFMΓ (̂QqB(R)).

Similarly, we can verify that ̂QqB(RFMΓ (R)) � RFMΓ (̂QqB(R)) and
̂QqB(CRFMΓ (R))� CRFMΓ (̂QqB(R)).

Proposition 9.3.7 and Theorem 9.3.14 motivate the following questions: (1) Is the
right p.q.-Baer property preserved under the various infinite matrix ring extensions?
(2) Does ̂QpqB(R) of a ring R have a behavior similar to that of ̂QqB(R) for the
various infinite matrix ring extensions? The next example provides negative answers
to both of these questions.

Example 9.3.16 Let F be a field and Fn = F for n= 1,2 . . . . Put

R =
{

(qn)
∞
n=1 ∈

∞
∏

n=1

Fn | qn is constant eventually

}

,

which is a subring of
∏∞

n=1 Fn. Then R is a commutative p.q.-Baer ring.
Put S = CFMΓ (R), where Γ = {1,2, . . . }. We now take

a1 = (0,1,0,0, . . . ), a2 = (0,1,0,1,0,0, . . . ), a3 = (0,1,0,1,0,1,0,0, . . . ),

and so on, in R. Let x be the element in S with an in the (n,n)-position for n =
1,2, . . . and 0 elsewhere.

Take e = (qn)
∞
n=1 ∈Q(R)=∏∞

n=1 Fn such that

q2n = 1 and q2n−1 = 0 for n= 1,2, . . . .

Then e2 = e ∈ B(Q(R)), hence e1 ∈ CFMΓ (̂QqB(R)) as ̂QqB(R) = RB(Q(R))

from Theorem 8.3.17, where 1 is the identity matrix in S. From the proof of The-
orem 9.3.14, CFMΓ (̂QqB(R)) ⊆ Q(S). Therefore, we obtain that e1 ∈ B(Q(S))

because e1 ∈ B(CFMΓ (̂QqB(R))).
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By direct computation SxSS ≤ess (e1)SS (Exercise 9.3.17.3). Hence,
e1 ∈ Bp(Q(S)). But e1 /∈ S since e /∈ R. Note that S is a semiprime ring as R

is semiprime. Therefore, the ring S is not right p.q.-Baer by Theorem 8.3.39(ii).
Furthermore, because R is p.q.-Baer, ̂QpqB(R)=R. Thus

̂QpqB(CFMΓ (R)) �⊆ CFMΓ (̂QpqB(R)),

and hence S = CFMΓ (̂QpqB(R)) is not right p.q.-Baer by Theorem 8.3.39(ii).
To show that ̂QpqB(CRFMΓ (R)) �⊆ CRFMΓ (̂QpqB(R)), let x and e be as in

the case of the column finite matrix ring. Then, by the same method, we can
show that e1 ∈ Bp(Q(CRFMΓ (R))), but e1 /∈ CRFMΓ (R). Therefore by Theo-
rem 8.3.39(ii), CRFMΓ (R) (= CRFMΓ (̂QpqB(R))) is not right p.q.-Baer. Also
̂QpqB(CRFMΓ (R)) �⊆ CRFMΓ (̂QpqB(R)).

Finally for ̂QpqB(RFMΓ (R)) �⊆ RFMΓ (̂QpqB(R)), let U = RFMΓ (R) and
x, e be as before. Then UUxU ≤ess

U(e1)U , where 1 is the identity matrix in
U (Exercise 9.3.17.4). Note that e1 is a central idempotent. So we have that
(e1)U(e1)UxU ≤ess

(e1)U(e1)(e1)U(e1). As UxU is an ideal of the semiprime ring
(e1)U(e1), r(e1)U(e1)(UxU)= �(e1)U(e1)(UxU)= 0, so

UxU(e1)U(e1) ≤ess (e1)U(e1)(e1)U(e1)

from Proposition 1.3.16. Therefore UxUU ≤ess (e1)UU .
As e ∈ B(Q(R)) = B(Qm(R)), there is J � R such that �R(J ) = 0 and eJ ⊆

R. Hence RFMΓ (J )�U, �U(RFMΓ (J ))= 0, and (e1)RFMΓ (J )⊆U . Therefore
e1 ∈ Qm(U). Hence e1 ∈ B(Qm(U)) and e1 ∈ B(Q(U)), so e1 ∈ Bp(Q(U)). But
we note that e1 /∈ U because e /∈ R. Thus U = RFMΓ (R) (= RFMΓ (̂QpqB(R)) is
not right p.q.-Baer by Theorem 8.3.39(ii). Also,

̂QpqB(RFMΓ (R)) �⊆ RFMΓ (̂QpqB(R)).

Exercise 9.3.17

1. ([100, Birkenmeier, Park, and Rizvi]) Let K denote a class of rings and S be a
right essential overring of R. The smallest intermediate ring V between R and S

which belongs to K is called the K absolute to S ring hull of R (when it exists).
We denote V = QS

K
(R). Show that QS

qB(R) exists if and only if QTn(S)
qB (Tn(R))

exists for all positive integers n. In this case, QTn(S)
qB (Tn(R)) = Tn(Q

S
qB(R)) for

all positive integers n.
2. ([100, Birkenmeier, Park, and Rizvi]) Assume that S is a right ring of quotients

of R. Prove that the following are equivalent.
(i) QS

FI(R) exists.

(ii) Q
Tn(S)
FI (Tn(R)) exists for all positive integers n.

(iii) Q
Tn(S)
FI (Tn(R)) exists for some positive integer k.

In this case, QTn(S)
FI (Tn(R))= Tn(Q

S
FI(R)) for all positive integers n.

3. Let S = CFMΓ (R), x ∈ S, and e ∈ Q(R) as in Example 9.3.16. Show that
SxSS ≤ess (e1)SS , where 1 is the identity matrix of S.
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4. Let U = RFMΓ (R), x ∈ U , and e ∈ Q(R) as in Example 9.3.16. Prove that
UUxU ≤ess

U(e1)U , where 1 is the identity matrix of U .

Historical Notes Most results of Sect. 9.1 are in [89]. The proof of Theo-
rem 9.1.11(i) corrects the proof of [89, Corollary 3.9(i)]. X-outer automorphisms
initially were considered by Kharchenko [249] in the study of group actions on
rings. For more details on X-outer ring automorphisms of a ring, see [249] and [169].
Theorem 9.2.5 is also an unpublished new result. Major results of Sect. 9.2 including
Theorem 9.2.10 are in [233]. See also [339] for skew group rings.

There is a flaw in the proof of ̂QqB(R[[X]])= ̂QqB(R)[[X]] in [100]. Lemma 9.3.12
is from [58], while Example 9.3.16 appears in [101]. All major results of Sect. 9.3
appear in [100]. Related references include [305] and [413].



Chapter 10
Applications to Rings of Quotients
and C∗-Algebras

We shall now present necessary and sufficient conditions on a ring R for which
Q(R) can be decomposed into a direct product of indecomposable rings or into a
direct product of prime rings. This will be done by using the idempotent closure
class we discussed in Chap. 8 and a dimension on bimodules which will be intro-
duced in Sect. 10.1. An application of these results helps provide a structure theorem
for the quasi-Baer ring hull of a semiprime ring having only finitely many minimal
prime ideals.

An important focus in this chapter is to showcase some of the applications of al-
gebraic techniques developed in earlier chapters (as well as new results of this chap-
ter) to Functional Analysis. These applications will include obtaining results on C∗-
algebras, AW ∗-algebras and skew group C∗-algebras. More specifically, we shall
see applications to boundedly centrally closed C∗-algebras, local multipliers of C∗-
algebras, extended centroids of C∗-algebras, A ∗G where A is a unital C∗-algebra
and G is a finite group of X-outer ∗-automorphisms of A, and on C∗-algebras with
a polynomial identity.

10.1 The Structure of Rings of Quotients

The structure of rings and of their rings of quotients, especially the structure of the
maximal right ring of quotients Q(R) of a ring R, has been of interest for a long
time. The main topic of this section is the characterization theorem of Q(R) as a
direct product of prime rings (or indecomposable rings).

We first recall Theorem 7.3.2 which characterizes a ring R such that Q(R) is
semisimple Artinian. Further, Goodearl showed that a regular right self-injective
ring R is isomorphic to a direct product of prime rings if and only if every nonzero
ideal of R contains a minimal nonzero ideal (see [183, Corollary 12.24] and [179]).
Let R and S be rings and SMR be an (S,R)-bimodule. The two-sided uniform di-
mension udim(SMR) is the supremum of the set of positive integers n for which
M contains a direct sum of n nonzero (S,R)-subbimodules. A closely related in-
variant, d(M) = d(SMR), is defined by taking the supremum of the set of positive
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DOI 10.1007/978-0-387-92716-9_10,
© Springer Science+Business Media New York 2013

355

http://dx.doi.org/10.1007/978-0-387-92716-9_10


356 10 Applications to Rings of Quotients and C∗-Algebras

integers n for which there exists a direct sum of nonzero (S,R)-subbimodules N :=
M1 ⊕· · ·⊕Mn such that NR ≤ess MR (see [226]). For I �R, d(RIR) is denoted by
d(I). Related to Goodearl’s result, the following result was obtained by Jain, Lam,
and Leroy in [226] as follows:

Theorem 10.1.1 Let R be a right nonsingular ring. Then Q(R) is a direct product
of prime rings if and only if there exist ideals Ii (i ∈Λ) of R such that d(Ii)= 1 for
all i and (

⊕

i∈Λ Ii)R ≤ess RR .

In Theorems 10.1.10, 10.1.12, and 10.1.13, we discuss the structure of Q(R) as
a direct product of prime rings (or indecomposable rings). These results generalize
Theorem 10.1.1 by removing the right nonsingularity condition of R. We see that
this leads to a structure theorem for the quasi-Baer ring hull ̂QqB(R) when R is
semiprime. If R is a semiprime ring, then R has exactly n minimal prime ideals
P1, . . . ,Pn if and only if ̂QqB(R)∼=R/P1 ⊕· · ·⊕R/Pn (Theorem 10.1.20). Further,
the results of this section have useful applications to the study of C∗-algebras in
Sect. 10.3.

Definition 10.1.2 Let R and S be rings and M an (S,R)-bimodule.
(i) We let DIC(M) be the set of all subbimodules SNR of SMR such that there

exists SLR ≤ SMR with N ∩L= 0 and (N ⊕L)R ≤den MR .
(ii) We call jdim(M) the Johnson dimension of M , where jdim(M) denotes the

supremum of the set of positive integers n for which there is a direct sum of n
nonzero (S,R)-subbimodules, with (M1 ⊕ · · · ⊕Mn)R ≤den MR .

For I � R, DIC(I ) and jdim(I ) are defined by considering I as an (R,R)-
bimodule. In particular, we consider M =R as an (R,R)-bimodule. Then by Propo-
sition 8.3.5, DIC(M) is exactly DIC(R) of Definition 8.3.1(i). The following rela-
tion compares jdim(M) with other dimensions:

jdim(M)≤ d(M)≤ udim(SMR)≤ udim(MR).

Proposition 10.1.3 Let I, J �R with I ⊆ J . Then:

(i) If I ∈ DIC(R), then I ∈DIC(J ).
(ii) If I ∈ DIC(J ) and J ∈DIC(R), then I ∈ DIC(R).

Proof (i) As I ∈ DIC(R), there is Y � R such that (I ⊕ Y)R ≤den RR by Proposi-
tion 8.3.5. So (J ∩ (I ⊕ Y))R = (I ⊕ (J ∩ Y))R ≤den JR from the modular law. By
Definition 10.1.2, I ∈ DIC(J ).

(ii) There exists K �R such that I ∩K = 0 and (I⊕K)R ≤den JR . So we get that
�R(I ⊕K)= �R(J ) from the proof of Lemma 8.3.7(i). By Proposition 8.3.5, there
is V � R with J ∩ V = 0 and (J ⊕ V )R ≤den RR because J ∈ DIC(R). Therefore
�R(J ⊕ V )= 0 by Proposition 1.3.11(iv), and so

�R((I ⊕K)⊕ V )= �R(I ⊕K)∩ �R(V )= �R(J )∩ �R(V )= �R(J ⊕ V )= 0.
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Thus ((I ⊕K)⊕ V )R ≤den RR from Proposition 1.3.11(iv). Hence I ∈ DIC(R) by
Proposition 8.3.5. �

Proposition 10.1.4 Assume that R is a semiprime ring and I � R. Then
jdim(I )= d(I)= udim(RIR). In particular, jdim(R)= d(R)= udim(RRR).

Proof Let U � R such that U ⊆ I . We claim that RUR ≤ess
RIR if and only if

UR ≤ess IR . Clearly, UR ≤ess IR implies that RUR ≤ess
RIR . Next suppose that

RUR ≤ess
RIR . Take 0 �= K � I and let W be the ideal of R generated by K .

Then by Lemma 8.3.54, W 3 ⊆ K . As K �= 0 and R is semiprime, W 3 �= 0 and
further RW

3
R ≤ RIR . So W 3 ∩ U �= 0 because RUR ≤ess

RIR . Thus K ∩ U �= 0,
and hence IUI ≤ess

I II . Since I is a semiprime ring from Proposition 8.3.55,
UI ≤ess II by modification of Proposition 1.3.16, and thus UR ≤ess IR . Therefore
d(I)= udim(RIR).

Next, we show that UR ≤ess IR if and only if UR ≤den IR . For this, we observe
that UR ≤den IR implies UR ≤ess IR . For the converse, suppose that UR ≤ess IR .
As R is semiprime, �R(U) ∩U = 0 and so �I (U) = �R(U) ∩ I = 0. Take x, y ∈ I

with y �= 0. Then yU �= 0, hence there exists u ∈ U ⊆ R such that yu �= 0. In this
case, xu ∈ U ⊆ I . Hence UR ≤den IR . Therefore jdim(I ) = d(I). Consequently,
jdim(I )= d(I)= udim(RIR). �

If SMR is an (S,R)-bimodule and Z(MR)= 0, then jdim(M)= d(M) by Propo-
sition 1.3.14.

Proposition 10.1.5 (i) A ring R is prime if and only if R is semiprime and
jdim(R)= 1.

(ii) Let R be a right Kasch ring. Then R is an indecomposable ring if and only if
jdim(R)= 1.

Proof (i) Let R be a prime ring. If 0 �= I � R, then �R(I) = 0. So IR ≤den RR by
Proposition 1.3.11(iv). Thus jdim(R)= 1. Conversely, assume that R is semiprime
and jdim(R) = 1. If R is not prime, then there is 0 �= J � R such that �R(J ) �= 0.
Since R is semiprime, J ∈ DIC(R) by Proposition 8.3.3(i), and hence we obtain
that (J ⊕ �R(J ))R ≤den RR . Hence jdim(R)≥ 2, a contradiction.

(ii) If R is right Kasch, then R itself is the only dense right ideal of R by Proposi-
tion 1.3.18. Therefore, the result is a direct consequence of Definition 10.1.2(ii). �

The next example shows that jdim(−) and d(−) are distinct.

Example 10.1.6 (i) Let T = K[x]/x4K[x], where K is a field. Let x be the image
of x in T and R = K + Kx2 + Kx3, which is a subring of T . Then jdim(R) = 1
from Proposition 10.1.5(ii) as R is an indecomposable right Kasch ring. However,
d(R)= udim(RR)= 2.
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(ii) Assume that R =
[

Z4 2Z4
0 Z4

]

. Then jdim(R) = 1 from Proposition 10.1.5(ii)

because R is an indecomposable right Kasch ring. However, we see that d(R) =
udim(RRR)= udim(RR)= 3.

Proposition 10.1.7 Let R be a ring and let I ∈ DIC(R) with jdim(I ) < ∞. Then
jdim(I ) is the supremum of the set of positive integers k for which there exist nonzero
Ii ∈ DIC(I ), i = 1, . . . , k such that (I1 ⊕ · · · ⊕ Ik)R ≤ IR .

Proof Let jdim(I ) = n < ∞. Then there exist 0 �= Vj � R, j = 1, . . . , n, with
(⊕n

j=1Vj )R ≤den IR . By Definition 10.1.2(i), each Vj ∈ DIC(I ). Suppose that there
exist 0 �= Ii ∈ DIC(I ), 1 ≤ i ≤ k such that (I1 ⊕ · · · ⊕ Ik)R ≤ IR . We claim that
k ≤ n. For this, put K = ⊕k

i=1Ii . From Proposition 10.1.3(ii), each Ii ∈ DIC(R)

because Ii ∈DIC(I ) and I ∈ DIC(R).
We see that �R(K ⊕ �R(K)) = �R(K) ∩ �R(�R(K)) = 0 as K ∈ DIC(R) by

Theorem 8.3.13(i). From Proposition 1.3.11(iv), (K ⊕ �R(K))R ≤den RR . By the
modular law, ((K ⊕ �R(K)) ∩ I )R = (K ⊕ (�R(K) ∩ I ))R ≤den IR . Whence
(I1 ⊕ · · · ⊕ Ik ⊕ (�R(K) ∩ I ))R ≤den IR , so k ≤ jdim(I ) = n. Thus jdim(I ) is the
supremum as desired. �

Let 0 �= g ∈ B(R) such that g = g1 + · · · + gt , where {gi | 1 ≤ i ≤ t} is a set
of orthogonal centrally primitive idempotents of R. Recall from Exercise 5.2.21.1
that t is uniquely determined. We let t = n(gR). The following result is related to
Theorem 8.3.8.

Theorem 10.1.8 Let I ∈ DIC(R). Then jdim(I ) = n < ∞ if and only if there is
e ∈ B(Q(R)) such that IR ≤den eQ(R)R and n(eQ(R))= n.

Proof Assume that jdim(I ) = n < ∞. Then by Definition 10.1.2, there are
0 �= Ik � R,1 ≤ k ≤ n such that (⊕n

k=1Ik)R ≤den IR . By Lemma 8.3.7(ii) and (iii),
each Ik ∈ DIC(R), so each Ik ∈ DIC(I ) by Proposition 10.1.3(i).

Let jdim(I1)≥ 2. Then there exist nonzero A,B ∈ DIC(I1) satisfying

(A⊕B)R ≤den I1R.

As I1 ∈ DIC(R), A⊕ B ∈ DIC(R) and so A,B ∈ DIC(R) by Lemma 8.3.7(ii) and
(iii). Hence A,B ∈DIC(I ) by Proposition 10.1.3(i). Therefore

(A⊕B ⊕ I2 ⊕ · · · ⊕ In)R ≤ IR and A, B, I2, . . . , In ∈ DIC(I ),

a contradiction by Proposition 10.1.7 because jdim(I ) = n. So jdim(I1) = 1. Simi-
larly, jdim(Ik)= 1 for each k.

By Theorem 8.3.8, there exists fk ∈ B(Q(R)) with IkR ≤den fkQ(R)R for each
k = 1, . . . , n. In this case, each fk is centrally primitive. Indeed, suppose that fk is
not centrally primitive for some k. Then there are nonzero h1, h2 ∈ B(Q(R)) such
that fkQ(R)= h1Q(R)⊕ h2Q(R).
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Let Ji = Ik ∩ hiQ(R) for i = 1,2. Then JiR ≤den hiQ(R)R for i = 1,2 as
IkR ≤den fkQ(R)R . By Theorem 8.3.8, Ji ∈ DIC(R). So 0 �= Ji ∈ DIC(Ik) by
Proposition 10.1.3(i). Now (J1 ⊕ J2)R ≤ IkR . From Proposition 10.1.7, we have
a contradiction because jdim(Ik)= 1. Thus, each fk is centrally primitive.

Note that (⊕n
k=1Ik)R ≤ess ⊕n

k=1fkQ(R)R = (f1 + · · · + fn)Q(R)R . Put

f = f1 + · · · + fn.

Then n(fQ(R)) = n since f1, . . . , fn are orthogonal centrally primitive idempo-
tents. By Theorem 8.3.8, there exists e ∈ B(Q(R)) with IR ≤den eQ(R)R . Thus,

(⊕n
k=1Ik)R ≤ess IR ≤ess eQ(R)R and (⊕n

k=1Ik)R ≤ess fQ(R)R.

Hence f = e, so n(eQ(R))= n(fQ(R))= n.
Conversely, assume that there is e ∈ B(Q(R)) such that IR ≤den eQ(R)R and

n(eQ(R)) = n. Then e = e1 + · · · + en, where e1, . . . , en are orthogonal centrally
primitive idempotents in Q(R). Because (I ∩ ekQ(R))R ≤den ekQ(R)R for each k,
from Theorem 8.3.8 each I ∩ ekQ(R) ∈DIC(R).

Hence, each I ∩ ekQ(R) ∈ DIC(I ) by Proposition 10.1.3(i). So jdim(I ) ≥ n by
Proposition 10.1.7 as [⊕n

k=1(I ∩ ekQ(R))]R ≤ IR and I ∩ ekQ(R) �= 0 for each k.
Assume on the contrary that jdim(I ) > n. By Proposition 10.1.7, there are

0 �= Vk ∈ DIC(I ), k = 1, . . . ,m such that m > n and (⊕m
k=1Vk)R ≤ IR . Note that

from Proposition 10.1.3(ii), each Vk ∈ DIC(R) as Vk ∈ DIC(I ) and I ∈ DIC(R).
Thus from Theorem 8.3.8, there are gk ∈ B(Q(R)) such that VkR ≤den gkQ(R)R ,
k = 1, . . . ,m. Put g = g1 + · · · + gm. Then

(⊕m
k=1Vk)R ≤ess gQ(R)R and (⊕m

k=1Vk)R ≤ IR ≤ eQ(R)R.

Therefore, (⊕m
k=1Vk)R ≤ess gQ(R)R ∩ eQ(R)R = geQ(R)R ≤ess gQ(R)R . Thus

ge = g, and hence gQ(R) ⊆ eQ(R). So m = n(gQ(R)) ≤ n(eQ(R)) = n, a con-
tradiction. Therefore, jdim(I )= n. �

The next formula is obtained from Theorem 10.1.8 as follows.

Theorem 10.1.9 Assume that R is a ring and let I, J ∈ DIC(R). Then
jdim(I )+ jdim(J )= jdim(I + J )+ jdim(I ∩ J ).

Proof By Theorem 8.3.8, there are e, f ∈ B(Q(R)) with IR ≤den eQ(R)R and
JR ≤den fQ(R)R . So (I + J )R ≤den gQ(R)R , where g = e + f − ef , from the
proof of Theorem 8.3.13(i). Also (I ∩ J )R ≤den efQ(R)R .

Let jdim(I )=m<∞ and jdim(J )= n <∞. From Theorem 10.1.8,

jdim(I )= n(eQ(R)) and jdim(J )= n(fQ(R)).

By the modular law, now we see that

eQ(R)= efQ(R)⊕ h1Q(R) and fQ(R)= efQ(R)⊕ h2Q(R)
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for some h1, h2 ∈ B(Q(R)). As n(eQ(R)) and n(fQ(R)) are finite,

n(efQ(R)), n(h1Q(R)), and n(h2Q(R))

are also finite. Hence jdim(I ∩ J )= n(efQ(R)) by Theorem 10.1.8.
Further, h1Q(R) ∩ h2Q(R) ⊆ eQ(R) ∩ fQ(R) = efQ(R), thus we have that

h1Q(R) ∩ h2Q(R) ⊆ efQ(R) ∩ h1Q(R) = 0. Also note that ef h1 = 0 and
ef h2 = 0, thus ef (h1 + h2 − h1h2)= 0. So

efQ(R)∩ (h1Q(R)⊕ h2Q(R))= efQ(R)∩ (h1 + h2 − h1h2)Q(R)= 0.

Hence, gQ(R) = eQ(R) + fQ(R) = efQ(R) ⊕ h1Q(R) ⊕ h2Q(R). Note that
n(efQ(R)), n(h1Q(R)), and n(h2Q(R)) are finite. Hence, n(gQ(R)) is finite
and n(gQ(R)) = n(efQ(R))+ n(h1Q(R))+ n(h2Q(R)). So by Theorem 10.1.8,
jdim(I + J )= n(gQ(R)). Thus jdim(I )+ jdim(J )= jdim(I + J )+ jdim(I ∩ J ).

Next, assume that either jdim(I ) or jdim(J ) is infinite. Say jdim(I ) is infinite.
Suppose that jdim(I + J ) = � < ∞. As in the preceding argument, there exist
e, f ∈ B(Q(R)) such that

IR ≤den eQ(R)R, JR ≤den fQ(R)R, and (I + J )R ≤den gQ(R)R,

where g = e+f − ef . From Theorem 10.1.8, there exist orthogonal centrally prim-
itive idempotents b1, . . . , b� in Q(R) such that

gQ(R)R = b1Q(R)R ⊕ · · · ⊕ b�Q(R)R = (b1 + · · · + b�)Q(R)R.

Therefore eQ(R)R ≤ (b1 + · · · + b�)Q(R)R .
As each bi is centrally primitive, e = e(b1 + · · · + b�) = bi1 + · · · + bik , where

{bi1, . . . , bik } = {ebj | ebj �= 0,1 ≤ j ≤ �}. Therefore, n(eQ(R)) ≤ �. By Theo-
rem 10.1.8 jdim(I )≤ �, a contradiction. So jdim(I + J ) is infinite. �

Theorem 10.1.10 Assume that T is a right ring of quotients of a ring R such that
B(Q(R))⊆ T . Let 0 �= I ∈DIC(R) and Λ be an index set. Then:

(i) There exists e ∈ B(Q(R)) such that IR ≤den eTR .
(ii) If eT = ∏

i∈ΛQi , then Ii := Qi ∩ I (i ∈ Λ) are ideals of R such that
(
⊕

i∈Λ Ii)R ≤den IR .
(iii) Assume that Ai (i ∈Λ) is a set of nonzero right ideals of R such that AiAj = 0

whenever i �= j , for i, j ∈Λ, and (
∑

i∈ΛAi)R ≤den IR . Then:
(1)

∑

i∈ΛAi =⊕

i∈ΛAi (the internal direct sum of the Ai ).
(2) Q(Ai)=Q(RAiR)= eiQ(R) for some ei ∈ B(Q(R)), for each i ∈Λ.
(3) if Λ is finite or T =Q(R), then eT ∼=∏

i∈Λ T ∩Q(Ai).
(iv) Assume that Λ is finite or T =Q(R). Then eT is a direct product of |Λ| inde-

composable rings if and only if there exist nonzero ideals Ii of R (i ∈Λ) such
that Ii ⊆ I, jdim(Ii)= 1,

∑

i∈Λ Ii =⊕

i∈Λ Ii , and (
⊕

i∈Λ Ii)R ≤den IR .
(v) Assume that Λ is finite or T =Q(R). Then eT is a direct product of |Λ| prime

rings if and only if there exist nonzero ideals Ii of R (i ∈ Λ) such that Ii ⊆ I ,
jdim(Ii)= 1,

∑

i∈Λ Ii =⊕

i∈Λ Ii , (
⊕

i∈Λ Ii)R ≤den IR , and eT is semiprime.
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Proof (i) The proof follows as a consequence of Theorem 8.3.8.
(ii) Obviously, Ii � R. Also we note that (⊕i∈ΛQi)T ≤den eTT because

(⊕i∈ΛQi)eT ≤den eTeT . We claim that (⊕i∈ΛQi)R ≤den eTR . For this, take ex,
ey ∈ eT with x, y ∈ T and ey �= 0. Then, since (⊕i∈ΛQi)T ≤den eTT , there is t ∈ T

with ext ∈ ⊕i∈ΛQi and eyt �= 0. As RR ≤den TR and 0 �= eyt ∈ T , there is r ∈ R

such that tr ∈R and eytr �= 0. Here extr ∈ ⊕i∈ΛQi because ext ∈ ⊕i∈ΛQi . Hence,
(⊕i∈ΛQi)R ≤den eTR .

Next to show that (⊕i∈ΛIi)R ≤den IR , let u,v ∈ I with v �= 0. Then there is
r ∈R with ur ∈ ⊕i∈ΛQi and vr �= 0 since (⊕i∈ΛQi)R ≤den eTR . So

ur = uk1 + uk2 + · · · + ukn,

where uk1 ∈Qk1 , uk2 ∈Qk2 , . . . , and ukn ∈Qkn . Because IR ≤den eTR , there exists
r1 ∈ R with uk1r1 ∈ Qk1 ∩ I = Ik1 and vrr1 �= 0. Then there is r2 ∈ R with
uk2r1r2 ∈ Ik2 and vrr1r2 �= 0. By this process, we obtain a = r1r2 · · · rn such that
ura ∈ ⊕i∈ΛIi and vra �= 0. Therefore (⊕i∈ΛIi)R ≤den IR .

(iii)(1) Because (
∑

i∈ΛAi)R ≤den IR , (
∑

∈ΛRAiR)R ≤den IR . Hence,
∑

i∈ΛRAiR ∈ DIC(R) by Lemma 8.3.7(ii) as I ∈ DIC(R). Let k ∈ Λ and take
x ∈ RAkR ∩ (

∑

i �=k RAiR). Then x(
∑

i �=k RAiR) = 0 and x(RAkR) = 0. So
x(
∑

i∈ΛRAiR) = 0, and thus x ∈ �R(
∑

i∈ΛRAiR) ∩ ∑

i∈ΛRAiR = 0. Hence,
∑

i∈ΛRAiR = ⊕i∈ΛRAiR. So
∑

i∈ΛAi = ⊕i∈ΛAi .
(2) We show that AkR ≤den RAkRR for each k ∈Λ. Let x, y ∈RAkR with y �= 0.

Since (
∑

i∈ΛAi)R ≤den IR , there exists r ∈R such that

xr ∈
∑

i∈Λ
Ai = ⊕i∈ΛAi and yr �= 0.

We note that xr ∈RAkR. As
∑

i∈ΛRAiR = ⊕∈ΛRAiR, (⊕i∈ΛAi)∩RAkR =Ak

and so xr ∈Ak . Hence, AkR ≤den RAkRR .
Next, we claim that �R(Ak)= �R(RAkR) for each k ∈Λ. Obviously, we first see

that �R(RAkR) ⊆ �R(Ak). Assume on the contrary that there exists a ∈ �R(Ak),
but a �∈ �(RAkR). Then ab �= 0 for some b ∈ RAkR. Since 0 �= ab ∈ RAkR and
AkR ≤den RAkRR , there exists r ∈R such that br ∈Ak and abr �= 0.

But because a ∈ �R(Ak) and br ∈ Ak , abr = 0, a contradiction. As a conse-
quence, �R(Ak)= �R(RAkR) for each k ∈Λ.

Further, we claim that
AkAk

≤den RAkRAk

for every k ∈ Λ. We take x, y ∈ RAkR and y �= 0. Since AkR ≤den RAkRR ,
there exists r ∈ R such that xr ∈ Ak and yr �= 0. Now if yrAk = 0, then
0 �= yr ∈ �R(Ak) = �R(RAkR). Because ⊕i∈ΛRAkR = ∑

i∈ΛRAiR ∈ DIC(R)

by the preceding argument, RAkR ∈ DIC(R) from Lemma 8.3.7(iii) and so
�R(RAkR)∩RAkR = 0. But 0 �= yr ∈ �R(RAkR)∩RAkR, a contradiction. There-
fore, yrAk �= 0. Hence, yra �= 0 for some a ∈ Ak . Moreover, xra ∈ Ak since
xr ∈Ak .

So we have that ra, yra ∈ RAkR and yra �= 0. As AkR ≤den RAkRR , there
exists b ∈ R such that rab ∈ Ak and yrab �= 0. Thus, x(rab) ∈ Ak (because
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xr ∈Ak) and y(rab) �= 0 with rab ∈ Ak . Therefore, AkAk
≤den RAkRAk

for each
k ∈Λ. So Q(Ak)=Q(RAkR). By Theorem 8.3.8, there exists ek ∈ B(Q(R)) with
Q(RAkR) = ekQ(R) since RAkR ∈ DIC(R). So Q(Ak) = Q(RAkR) = ekQ(R)

for each k ∈Λ.
(3) Say j �= k. Then RAjR ∩RAkR = 0, so Q(RAjR) ∩Q(RAkR) = 0. Thus

ejQ(R) ∩ ekQ(R) = 0, and hence ej ek = 0 for j �= k. As B(Q(R)) ⊆ T , Hi :=
T ∩ Q(Ai) = T ∩ Q(RAiR) = T ∩ eiQ(R) = eiT is a ring with identity ei , for
each i ∈ Λ. Note that Q(RAiR) ∩ (1 − e)T = 0 as RAiR ∩ (1 − e)T = 0. Thus
eiT ∩ (1 − e)T = 0 since eiT ⊆Q(RAiR). So ei(1 − e)= 0, hence ei = eie for all
i ∈Λ. Thus eiQ(R)⊆ eQ(R) for all i ∈Λ.

Define h : eQ(R) → ∏

i∈Λ eiQ(R) by h(eq) = (eiq)i∈Λ. Then h is a ring
homomorphism. We can check that �eQ(R)(⊕i∈ΛeiQ(R)) = 0 from Proposi-
tion 1.3.11(iv), because

⊕i∈ΛAi ⊆ ⊕i∈ΛeiQ(R) and (⊕i∈ΛAi)R ≤den IR ≤den eQ(R)R

imply that (⊕i∈ΛeiQ(R))eQ(R) ≤den eQ(R)eQ(R). Take eq ∈ Ker(h). Then we see
that

eq ∈ ∩i∈ΛreQ(R)(ei)= ∩i∈Λ�eQ(R)(ei)= ∩i∈Λ�eQ(R)(eiQ(R))

= �eQ(R)(⊕i∈ΛeiQ(R))= 0,

thus Ker(h) = 0. Therefore h is a ring monomorphism, and hence the restriction,
h|eT : eT →∏

i∈Λ eiT is a ring monomorphism.
If Λ is finite and (ei ti)i∈Λ ∈ ∏i∈Λ eiT , let t = ∑

i∈Λ eiti . Then we see that
h(et) = (ei ti)i∈Λ. So h|eT is a ring isomorphism. Therefore, we obtain that
eT ∼=∏

i∈Λ eiT =∏

i∈ΛHi . Let T =Q(R). We claim that

h(eQ(R))h(eQ(R)) ≤den (
∏

i∈Λ
eiQ(R))h(eQ(R)).

Say (xi)∈Λ, (yi)i∈Λ ∈ ∏

i∈Λ eiQ(R) with (yi)i∈Λ �= 0. Then there is j ∈ Λ

with yj �= 0, so (xi)i∈Λh(eej ) = (xi)i∈Λ(eiej )i∈Λ = h(exj ) ∈ h(eQ(R)) and
(yi)i∈Λh(eej ) = (yi)i∈Λ(eiej )i∈Λ �= 0. Hence Q(h(eQ(R))) = Q(

∏

i∈Λ eiQ(R)).
Because h(eQ(R))∼= eQ(R) and Q(eQ(R))= eQ(R), we have that

h(eQ(R))=Q(h(eQ(R)))=Q(
∏

i∈Λ
eiQ(R))=

∏

i∈Λ
Q(eiQ(R))=

∏

i∈Λ
eiQ(R).

So h is onto, hence h is a ring isomorphism.
(iv) Let Λ be finite or T =Q(R). Assume that eT is a direct product of |Λ| inde-

composable rings. Let eT =∏

i∈Λ eiT with eiT indecomposable and ei ∈ B(eiT )
for each i. Then

ei ∈ Cen(eT )= eCen(T )⊆ eCen(Q(R)).

Hence, ei ∈ B(Q(R)) for each i. Put Ii = eiT ∩ I . As eiTR ≤den eiQ(R)R and
IR ≤den eQ(R)R , we have that IiR ≤den eiQ(R)R for each i. Because each eiT
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is indecomposable and B(Q(R)) ⊆ T , each ei is centrally primitive. By Theo-
rem 10.1.8, jdim(Ii)= 1 for each i. Also by part (ii), (⊕i∈ΛIi)R ≤den IR .

Conversely by the proof of part (iii), Q(Ii)= eiQ(R) with

ei ∈ B(Q(R)), eT ∼=
∏

i∈Λ
eiT , and eiT = eiQ(R)∩ T .

Because IiR ≤den eiQ(R)R and jdim(Ii) = 1, ei is centrally primitive by Theo-
rem 10.1.8. Therefore, each eiT is indecomposable.

(v) The necessity follows similarly as in the proof of part (iv). Conversely, by part
(iv), eT ∼=∏

i∈Λ eiT , where eiT is indecomposable. Because eT is semiprime, so
is each eiT . We may observe that eiTeiT ≤den eiQ(R)eiT since eiTT ≤den eiQ(R)T .
Also we note that eiQ(R) = Q(eiT ), so jdim(eiT ) = 1 by Theorem 10.1.8. From
Proposition 10.1.5(i), each eiT is a prime ring. �

Let A is a ring. For e, f ∈ B(A), e ≤ f means that ef = e. Then we see that
e ≤ f if and only if eR ⊆ fR if and only if Re ⊆Rf .

Corollary 10.1.11 Let I ∈ DIC(R) with IR ≤den eQ(R)R , where e ∈ B(Q(R)),
such that jdim(I ) = ∞ and eQ(R) is a semiprime ring. Then eQ(R) is an infinite
direct product of nonzero rings.

Proof As e ∈ B(Q(R)) and Q(eQ(R))= eQ(R) is semiprime, B(eQ(R)) is a com-
plete Boolean algebra by Corollary 8.3.14. There are infinitely many orthogonal
idempotents in B(eQ(R)) since otherwise there will be a set of primitive idem-
potents, say g1, . . . , gn in B(eQ(R)) such that e = g1 + · · · + gn from Proposi-
tion 1.2.15. As IR ≤den eQ(R)R , Theorem 10.1.8 yields that jdim (I ) = n, a con-
tradiction. So we get an infinite set of nonzero orthogonal idempotents e1, e2, . . . in
B(eQ(R)). Since B(eQ(R)) is a complete Boolean algebra, there exists an idempo-
tent f ∈ B(eQ(R)) such that f = sup {ei}∞i=1.

Let e0 = e − f ∈ B(eQ(R)). Then e0, e1, e2, . . . are orthogonal. We show
that e = sup {e0, e1, e2, . . . }. For this, note that ei ≤ e as ei ∈ B(eQ(R)) for
i = 0,1,2, . . . . Therefore k := sup {e0, e1, e2, . . . } ≤ e. Furthermore, f ≤ e because
f = sup {e1, e2, . . . }. Then e0 ≤ k and f ≤ k, so e0R + fR ⊆ kR. Now

e0R + fR = (e− f )R + fR = (e− f + f − (e− f )f )R = eR,

and therefore eR ⊆ kR. Whence e = k and thus e = sup {e0, e1, e2, . . . }.
Define h : eQ(R)→∏∞

i=0 eiQ(R) by h(eq)= (eiq)
∞
i=0. Then h is a ring homo-

morphism. We note that

Ker(h)= ∩∞
i=0reQ(R)(eieQ(R))= reQ(R)(

∞
∑

i=0

eieQ(R))= g(eQ(R))

for some g ∈ B(eQ(R)) ⊆ B(Q(R)) because Q(eQ(R)) = eQ(R) is semiprime
quasi-Baer (see Theorem 8.3.17 and Proposition 1.2.6(ii)). First, we show that
g = inf{e − ei}∞i=0. For this, note that 0 = h(ge) = (eige)

∞
i=0 = (gei)

∞
i=0, so

g(e − ei) = ge − gei = ge = g. Therefore, g ≤ e − ei for all i. Let u ∈ B(eQ(R))
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such that u ≤ e − ei for all i. Then u = (e − ei)u = eu − eiu = u − eiu, hence
eiu = 0 for all i. So u ∈ ∩∞

i=0reQ(R)(eieQ(R)) = g(eQ(R)). Thus u ≤ g, so
g = inf{e − ei}∞i=0, and hence g = inf{e − ei}∞i=0 = e − sup{ei}∞i=0 = e − e = 0.
Therefore Ker(h) = g(eQ(R)) = gQ(R) = 0, and thus h is one-to-one. Next as in
the proof of Theorem 10.1.10, we see that h is onto. Hence, eQ(R) is an infinite
direct product of nonzero rings. �

For the important case when I = R in Theorem 10.1.10(iv) and (v), the next re-
sult describes the structure of Q(R). The following theorem generalizes and extends
Theorem 10.1.1 by removing the right nonsingularity condition.

Theorem 10.1.12 (i) Q(R) is a direct product of indecomposable rings if and only
if there are ideals {Ii | i ∈Λ} of R such that jdim(Ii)= 1 for all i ∈Λ,

∑

i∈Λ
Ii =

⊕

i∈Λ
Ii, and (

⊕

i∈Λ
Ii)R ≤den RR.

(ii) Q(R) is a direct product of prime rings if and only if there exist ideals of the
ring R, {Ii | i ∈Λ} such that jdim(Ii)= 1 for all i ∈Λ,

∑

i∈Λ
Ii =

⊕

i∈Λ
Ii, (

⊕

i∈Λ
Ii)R ≤den RR, and Q(R) is semiprime.

Proof Put e = 1 and I =R in Theorem 10.1.10(iv) and (v). Then the proof follows
immediately. �

Theorem 10.1.13 (i) Let T be a right ring of quotients of a ring R such that
B(Q(R)) ⊆ T , and n be a positive integer. Then T is a direct product of n inde-
composable rings if and only if jdim(R)= n.

(ii) Let T be a right ring of quotients of a ring R with B(Q(R)) ⊆ T , and n

be a positive integer. Then T is a direct product of n prime rings if and only if
jdim(R)= n and T is a semiprime ring.

Proof Take e = 1, I =R, and Λ= {1, . . . , n} in Theorem 10.1.10(iv) and (v). Then
the proof is obvious. �

The following example illustrates that Theorem 10.1.12 properly generalizes
Theorem 10.1.1 for the case of rings R with Z(RR) �= 0.

Example 10.1.14 Let Δ be a prime ring such that Z(ΔΔ) �= 0 (see Example 3.2.7(i))
and R = Tn(Δ), where n≥ 1. Then Q(R) is a prime ring, but R is not right nonsin-
gular.

The center Cen(Q(R)) of Q(R) is called the extended centroid of R. If R is
semiprime (not necessarily with identity), then �R(R)= 0. In this case, Qm(R) and
Qs(R) of R also can be defined as in Definition 1.3.17. We note that Cen(Q(R))=
Cen(Qm(R)) = Cen(Qs(R)). The next well known result, due to Amitsur [7, The-
orem 5], is necessary for the proof of Theorem 10.1.17.



10.1 The Structure of Rings of Quotients 365

Theorem 10.1.15 Assume that R is a semiprime ring (not necessarily with identity).
Then:

(i) Cen(Q(R)) is a regular ring.
(ii) If R is a prime ring, then Cen(Q(R)) is a field.

Proof See [262, Proposition 14.20 and Corollary 14.22]. �

The converse of Theorem 10.1.15(ii) also holds true by Amitsur [7, Theorem 5].
See also the next remark.

Remark 10.1.16 Let R be a semiprime ring (not necessarily with identity), and let
S = {r + n1Q(R) | r ∈ R and n ∈ Z}. We observe that S is semiprime and Q(R) =
Q(S) because RR ≤den SR . If Cen(Q(R)) is a field, then B(Q(R)) is {0,1}, and
so ̂QqB(S) = S from Theorem 8.3.17. Thus S is quasi-Baer. As S is semiprime,
S�(S) = B(S) by Proposition 1.2.6(ii). Hence S�(S) = {0,1}, so S is semicentral
reduced. Thus, S is a prime ring by Proposition 3.2.5. Proposition 8.3.55(ii) yields
that R is a prime ring because R � S.

Let A be an algebra (not necessarily with identity) over a commutative ring C

with identity satisfying �A(A)= 0. Define

A1 = {a + c1Q(A) | a ∈A and c ∈ C},

which is a subring of Q(A). Then A1 is an algebra over C. Note that A� A1 and
Q(A) = Q(A1) as was noted before. A characterization for Q(A) to be a direct
product of prime rings is given as follows.

Theorem 10.1.17 Let A be a ring (not necessarily with identity) which is an algebra
over a commutative ring C with identity and �A(A) = 0. Assume that Q(A) is a
semiprime ring and Λ is an index set. Then the following are equivalent.

(i) Q(A)=∏

i∈ΛQi , where each Qi is a prime ring.
(ii) Cen(Q(A))=∏

i∈Λ Fi , where each Fi is a field.
(iii) There exist nonzero ideals Ii (i ∈ Λ) of A1 such that jdim(Ii) = 1 for each

i ∈Λ,
∑

i∈Λ Ii =⊕

i∈Λ Ii , and �A1(
⊕

i∈Λ Ii)= 0.
(iv) There exist nonzero ideals Vi (i ∈ Λ) of A such that for each i ∈ Λ,

jdim(Vi)= 1, where for jdim(Vi), Vi is considered as an (A1,A1)-bimodule,
CVi ⊆ Vi ,

∑

i∈Λ Vi =⊕

i∈Λ Vi , and �A(
⊕

i∈Λ Vi)= 0.
(v) There is a set of orthogonal primitive idempotents {ei | i ∈Λ} in B(Q(A)) with

supremum 1.

If A is semiprime, then the above conditions are equivalent to the following.

(vi) For each i ∈ Λ, there is a prime ring Ti such that A is a subring of
∏

i∈Λ Ti
and AA ≤den (

∏

i∈Λ Ti)A.



366 10 Applications to Rings of Quotients and C∗-Algebras

Proof (i)⇒(ii) Since Cen(Q(A))=∏

i∈Λ Cen(Qi), Cen(Q(A)) is regular by The-
orem 10.1.15. So each commutative domain Cen(Qi) is a field.

(ii)⇒(i) Assume that ei is the identity of Fi . Then because ei ∈ B(Q(A)),
Cen(eiQ(A)) = eiCen(Q(A)) = Fi . So eiQ(A) is prime by Remark 10.1.16 as
eiQ(A) is semiprime.

(i)⇔(iii) Theorem 10.1.12(ii) yields the equivalence.
(iii)⇒(iv) Put Vi = Ii ∩A for i ∈Λ. Then Vi �A and CVi ⊆ Vi . Also note that

Vi �A1 because Ii �A1 and A�A1. Let a, b ∈ Ii with b �= 0. Since AA ≤den A1
A,

there exists r ∈ A such that ar ∈ A and br �= 0. Therefore, ar ∈ A ∩ Ii = Vi , so
ViA1 ≤den IiA1 .

As in the proof of Lemma 8.3.7(i), �A1(Vi) = �A1(Ii) for each i. So we have
that �A1(⊕i∈ΛVi) = ∩i∈Λ�A1(Vi) = ∩i∈Λ�A1(Ii) = �A1(⊕i∈ΛIi) = 0. Therefore,
�A(⊕i∈ΛVi)= 0.

Assume on the contrary that jdim(Vi) �= 1. For each 0 �= K ∈ DIC(Vi), if
KA1 ≤den ViA1 , then jdim(Vi)= 1. So there is 0 �=U ∈ DIC(Vi) such that UA1 is not
dense in ViA1 . By Definition 10.1.2, there exists a nonzero (A1,A1)-subbimodule
W of Vi with U ∩ W = 0 and (U ⊕ W)A1 ≤den ViA1 . Thus W ∈ DIC(Vi) again
by Definition 10.1.2. On the other hand, we note that �A1(Vi ⊕ (⊕j �=iVj )) = 0, so
(Vi ⊕ (⊕j �=iVj ))A1 ≤den A1

A1 from Proposition 1.3.11(iv). Hence Vi ∈ DIC(A
1),

therefore U ∈ DIC(A
1) and W ∈ DIC(A

1) from Lemma 8.3.7(ii) and (iii). Because
U ⊆ Ii and W ⊆ Ii , U ∈ DIC(Ii) and W ∈DIC(Ii) by Proposition 10.1.3(i). This is
a contradiction by Proposition 10.1.7 because jdim (Ii)= 1. Thus, jdim(Vi)= 1 for
each i.

(iv)⇒(iii) As CVi ⊆ Vi for all i, each Vi is an ideal of A1 and so the implication
follows immediately.

(ii)⇒(v) It is straightforward.
(v)⇒(iii) By Corollary 8.3.19, Q(A) is quasi-Baer since Q(A) is semiprime.

Hence each eiQ(A) is semiprime and quasi-Baer by Theorem 3.2.10. Note that
eiQ(A) is indecomposable (as a ring), eiQ(A) is semicentral reduced by Proposi-
tion 1.2.6(ii). From Proposition 3.2.5, eiQ(A) is prime.

Let Ii = eiQ(A) ∩ A1 � A1. Then
∑

i∈Λ Ii = ⊕i∈ΛIi . From Theorem 8.3.8,
Ii ∈ DIC(A

1) as IiA1 ≤den eiQ(A1)A1 . Also by Theorem 10.1.8, jdim(Ii)= 1. From
Lemma 8.1.6(i), �A1(Ii)= �A1(eiQ(A)) for each i. Hence,

�A1(⊕i∈ΛIi) = ∩i∈Λ�A1(Ii)= ∩i∈Λ�A1(eiQ(A))

⊆ ∩i∈Λ�Q(A)(eiQ(A))= ∩i∈Λ(1 − ei)Q(A)

= rQ(A)(
∑

i∈Λ
eiQ(A))= hQ(A)

for some h ∈ B(Q(A)) by Corollary 8.3.19 and Proposition 1.2.6(ii) as Q(A) is
semiprime quasi-Baer. So h = inf{1 − ei}i∈Λ. Indeed, say k = inf{1 − ei}i∈Λ. As
hQ(A)⊆ (1 − ei)Q(A) for each i, h≤ k. Since k ≤ 1 − ei for each i,

kQ(A)⊆ ∩i∈Λ(1 − ei)Q(A)= hQ(A),
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k ≤ h. Therefore, h = k. Now because 1 = sup{ei | i ∈ Λ}, it follows that
�A1(⊕i∈ΛIi)⊆ hQ(A)= (inf{1 − ei}i∈Λ)Q(A)= (1 − sup{ei}i∈Λ)Q(A)= 0.

Finally, we assume additionally that A is a semiprime ring.
(i)⇒(vi) There is a set of orthogonal idempotents {ei | i ∈ Λ} ⊆ B(Q(A)) such

that Q(A) = ∏

i∈Λ eiQ(A), where each eiQ(A) is a prime ring. Thus for a ∈ A,
a = (eia)i∈Λ ∈∏i∈Λ eiQ(A). Hence, A is a subring of

∏

i∈Λ eiA. Now we get that
AA ≤den (

∏

i∈Λ eiA)A since AA ≤den Q(A)A = (
∏

i∈Λ eiQ(A))A.
To show that each eiA is a prime ring, first we claim that each eiA is a semiprime

ring. Let 0 �=K � eiA and take 0 �= x ∈K . Say x = eia with a ∈A.
Since AA ≤den Q(A)A, there is b ∈A with eib ∈A and xb �= 0. Thus

xb = eiab = (eia)(eib)= x(eib) ∈K

and xb = eiab = a(eib) ∈A as eib ∈A. Hence 0 �= xb ∈K ∩A, so K ∩A �= 0.
Further, take y ∈ K ∩ A and r ∈ A. Then yr ∈ A. Say y = eiα with α ∈ A.

Then yr = eiαr = (eiα)(eir) = y(eir) ∈ K . Thus yr ∈ K ∩A, so K ∩A is a right
ideal of A. Because A is semiprime, (K ∩ A)2 �= 0, and so K2 �= 0. Thus, eiA is
semiprime.

Next, we prove that eiA is prime. We see that eiAeiA ≤den eiQ(A)eiA as
AA ≤den Q(A)A. So Q(eiA) = Q(eiQ(A)) = eiQ(A). Because eiQ(A) is prime,
Cen(Q(eiQ(A))) = Cen(Q(eiA)) is a field by Theorem 10.1.15. Therefore, each
eiA is prime from Remark 10.1.16 (because eiA is semiprime). Take Ti = eiA for
each i ∈Λ.

(vi)⇒(i) We note that
∏

i∈Λ Ti is a right ring of quotients of A. Therefore,
Q(A)=Q(

∏

i∈Λ Ti)=∏

i∈ΛQ(Ti). Since Ti is prime, so is Q(Ti). �

In view of Theorem 10.1.17, one might conjecture that if A is semiprime with
B(Q(A)) ⊆ A (i.e., A is a semiprime quasi-Baer ring by Theorem 8.3.17), and A

satisfies any one of the conditions (i)–(vi) of Theorem 10.1.17, then A itself must
be a direct product of prime rings. However this conjecture is not true, in general,
as the next example shows.

Example 10.1.18 Let F be a field with a proper subfield K , set Fn = F for
n = 1,2, . . . , and let A = {(xn)∞n=1 ∈ ∏∞

n=1 Fn | xn ∈ K eventually}, a subring of
∏∞

n=1 Fn. Then A is commutative regular, Q(A)=∏∞
n=1 Fn, and B(Q(A))⊆A. If

A is a direct product of prime rings, then A is a direct product of fields because A
is commutative regular. So A is self-injective, a contradiction.

An ideal I of a ring R is called a uniform ideal if udim(RIR)= 1. Thus a nonzero
ideal I of R is uniform if J ∩K �= 0 for any nonzero ideals J and K of R with J ⊆ I

and K ⊆ I . Recall that an ideal V of a semiprime ring is said to be an annihilator
ideal if V = rR(W) for some W � R. Thus, V is an annihilator ideal if and only if
V = rR(�R(V )).

The next result shows that some of the well known finiteness conditions on a ring
yield that it has only finitely many minimal prime ideals.

Theorem 10.1.19 Assume that A is a semiprime ring (not necessarily with iden-
tity) which is an algebra over a commutative ring C with identity. Say n is a positive
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integer and let A1 = {a+ c1Q(A) | a ∈A and c ∈ C}. Then the following are equiv-
alent.

(i) udim(A1A1
A1)= n.

(ii) udim(A1AA1)= n.
(iii) A1 has exactly n minimal prime ideals.
(iv) A has exactly n minimal prime ideals.
(v) Cen(Q(A)) has a complete set of primitive idempotents with n elements.

Proof Put R = A1. As A is semiprime, R is semiprime. For an ideal K of R

(resp., A), we note that rR(K) = �R(K) (resp., rA(K) = �A(K)) since R and A

are semiprime. So without any ambiguity, in this proof, we use AnnR(K) for rR(K)

or �R(K) (resp., AnnA(K) for rA(K) or �A(K)).
(i)⇔(v) By Proposition 10.1.4, jdim(I ) = udim(RIR) for I � R. Therefore

(i)⇔(v) follows from Proposition 1.3.16 and (iii)⇔(v) in Theorem 10.1.17.
(i)⇒(iii) Let udim(RRR) = n. There exist uniform ideals Ui,1 ≤ i ≤ n of R

with R(U1 ⊕ · · · ⊕ Un)R ≤ess
RRR . Put Pi = AnnR(Ui). We claim that each Pi is

a maximal annihilator ideal. For this, assume that Pi ⊆ V and V is an annihilator
ideal. If V ∩ Ui = 0, then VUi = 0 and so V ⊆ AnnR(Ui) = Pi . Thus, V = Pi .
Next, if V ∩Ui �= 0, then R(V ∩Ui)R ≤ess

RUiR since RUiR is uniform. Therefore
R((V ∩Ui)⊕ AnnR(Ui))R ≤ess

R(Ui ⊕ AnnR(Ui))R ≤ess
RRR .

Note that R((V ∩ Ui) ⊕ AnnR(Ui))R ≤ RVR as AnnR(Ui) = Pi ⊆ V . Hence
RVR ≤ess

RRR , so AnnR(V ) = 0 by Proposition 1.3.16. As V is an annihilator
ideal, V = AnnR(AnnR(V )) = R. Therefore, each Pi = AnnR(Ui) is a maximal
annihilator ideal.

To see that each Pi is a minimal prime ideal, note that Pi = AnnR(Ui) �= R.
Now say I, J � R such that IJ ⊆ Pi . Assume that J �⊆ Pi . Then we see that 0 �=
JUi ⊆ Ui , hence AnnR(Ui) ⊆ AnnR(JUi) �= R. As Pi = AnnR(Ui) is a maximal
annihilator ideal, AnnR(JUi) = AnnR(Ui). Now IJUi = 0, and hence IUi = 0.
Therefore I ⊆ AnnR(Ui) = Pi , so Pi is a prime ideal. Next, assume that P is a
prime ideal of R such that P � Pi . From the fact that 0 =UiPi ⊆ P , Ui ⊆ P ⊆ Pi .
Thus, U2

i ⊆ UiPi = 0. As R is semiprime, Ui = 0, a contradiction. Hence, each Pi
is a minimal prime ideal of R.

Further, all Pi are distinct. Indeed, assume that Pi = Pj , where i �= j . Then as
Ui ∩Uj = 0, UiUj = 0, so Ui ⊆ AnnR(Uj ) = Pj = Pi and hence U2

i ⊆ UiPi = 0.
So Ui = 0, a contradiction.

Finally, P1 ∩ · · · ∩ Pn = AnnR(U1 ⊕ · · · ⊕ Un) = 0 from Proposition 1.3.16. If
P is a minimal prime ideal of R, then P = Pk for some k, 1 ≤ k ≤ n because
0 = P1 ∩ · · · ∩Pn ⊆ P . Therefore, R has exactly n minimal prime ideals, which are
precisely P1, . . . ,Pn.

(iii)⇒(i) To show that udim(RRR) = n, let {P1, . . . ,Pn} be the set of all mini-
mal prime ideals of R. If n = 1, then P1 = 0 and hence R is a prime ring. Thus,
udim(RRR)= 1. So we assume that n≥ 2.

Put Ui = AnnR(Pi) for i = 1, . . . , n. We show that each Ui is a uniform ideal.
Since P1 ∩P2 ∩ · · · ∩Pn = 0, P1P2 · · ·Pn = 0, and so P2 · · ·Pn ⊆ AnnR(P1)=U1.
If U1 = 0, then P2 · · ·Pn = 0 and hence P2 · · ·Pn ⊆ P1.
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Thus Pk = P1 for some k �= 1. Therefore U1 �= 0. Say A and B are nonzero
ideals of R such that A,B ⊆ U1. If A ∩ B = 0, then AB = 0. Hence A ⊆ P1 or
B ⊆ P1. If A ⊆ P1, then A ⊆ P1 ∩ U1 = 0, so A = 0. If B ⊆ P1, then B = 0 as
B ⊆ P1 ∩U1 = 0. Thus U1 is a uniform ideal. Similarly, all Ui are uniform ideals.

Next, we claim that AnnR(AnnR(Pi)) = Pi . Since Ui = AnnR(Pi) is a uni-
form ideal, AnnR(Ui) = AnnR(AnnR(Pi)) is a minimal prime ideal by the argu-
ment used in the proof of (i)⇒(iii). But since Pi ⊆ AnnR(AnnR(Pi)), we have that
Pi = AnnR(AnnR(Pi)).

We show that Ui ∩Uj = 0 for i �= j . For this, suppose that Ui ∩Uj �= 0 for some
i �= j . Then Ui ∩Uj is also a uniform ideal because Ui is a uniform ideal. So as in
the proof of (i)⇒(iii), AnnR(Ui ∩Uj ) is a minimal prime ideal. But because

Pi = AnnR(AnnR(Pi))= AnnR(Ui)⊆ AnnR(Ui ∩Uj ),

Pi = AnnR(Ui ∩Uj ). Similarly, Pj = AnnR(Ui ∩Uj ). Hence Pi = Pj , a contradic-
tion. Thus Ui ∩Uj = 0 for i �= j . So UiUj = 0 for i �= j . Therefore

n
∑

i=1

Ui = ⊕n
i=1Ui.

Now AnnR(⊕n
i=1Ui) = ∩n

i=1AnnR(Ui) = ∩n
i=1Pi = 0, so R(U1 ⊕ · · · ⊕ Un)R is

essential in RRR by Proposition 1.3.16. Thus udim(RRR)= n.
(i)⇔(ii) From Proposition 1.3.16, RAR ≤ess

RRR . Therefore, we have that
udim(RRR)= udim(RAR).

(ii)⇔(iv) We first show that udim(AAA) = udim(RAR). Then it follows that
udim(AAA)= udim(RRR) as udim(RRR)= udim(RAR) from (i)⇔(ii).

Let {Wi}i∈Λ be nonzero ideals of R with R(⊕i∈ΛWi)R ≤ RRR . We now take
Ui = Wi ∩ A. Then Ui �= 0 since AR ≤ess RR . As A(⊕i∈ΛUi)A ≤ AAA, we have
that udim(RAR)= udim(RRR)≤ udim(AAA).

Next, let {Vi}i∈Ω be nonzero ideals of A such that A(⊕i∈ΩVi)A ≤ AAA. We
show that ViRVj = 0 for i �= j . For this, say r = a + c1Q(A) ∈ R with a ∈ A and
c ∈ C. Then it follows that

VirVj = Vi(a + c1Q(A))Vj ⊆ ViaVj + Vic1Q(A)Vj ⊆ ViVj + cViVj = 0

as ViVj = 0. So ViRVj = 0. Put Wi = RViR for each i. Then we see that each Wi

is an ideal of R and WiWj = 0 for i �= j since ViRVj = 0. Therefore,

∑

i∈Ω
Wi = ⊕i∈ΩWi and R(⊕i∈ΩWi)R ≤ RRR.

So udim(AAA)≤ udim(RRR)= udim(RAR). Thus udim(RAR)= udim(AAA).
As udim(RRR) = udim(AAA), the proof of (ii)⇔(iv) is similar to that of

(i)⇔(iii). �



370 10 Applications to Rings of Quotients and C∗-Algebras

The structure theorem for ̂QqB(R) when R is a semiprime ring with only finitely
many minimal prime ideals is obtained as follows. It will be used in Sects. 10.2
and 10.3 (see Theorems 10.2.21 and 10.3.41).

We recall that MinSpec (−) denotes the set of all minimal prime ideals of a ring.

Theorem 10.1.20 Let R be a ring. Then the following are equivalent.

(i) R is semiprime and has exactly n minimal prime ideals.
(ii) ̂QqB(R)=RB(Q(R)) is a direct sum of n prime rings.

(iii) ̂QqB(R) = RB(Q(R)) ∼= R/P1 ⊕ · · · ⊕ R/Pn, where each Pi is a minimal
prime ideal of R.

Proof (i)⇒(ii) Let R be semiprime with exactly n minimal prime ideals P1, . . . ,Pn.
From Theorem 8.3.17, ̂QqB(R) = RB(Q(R)). Proposition 10.1.4 and Theo-
rem 10.1.19 yield that jdim(R) = d(R) = udim(RRR) = n since R is a semiprime
ring. Because RB(Q(R)) is semiprime, we see from Theorem 10.1.13(ii) that
RB(Q(R))= ⊕n

i=1Si with each Si a prime ring.
(ii)⇒(i) Say RB(Q(R)) = ⊕n

i=1Si , where each Si is a prime ring. Then
RB(Q(R)) is semiprime and has exactly n minimal prime ideals Ki , where
Ki = ⊕j �=iSj . From Theorem 10.1.19, Cen(Q(R)) = Cen(Q(RB(Q(R)))) has a
complete set of primitive idempotents with n elements. Since R is semiprime, The-
orem 10.1.19 yields that R has also exactly n minimal prime ideals.

(ii)⇒(iii) Assume that RB(Q(R)) = ⊕n
i=1Si , where each Si is a prime ring.

So RB(Q(R)) has exactly n minimal prime ideals Ki , where Ki = ⊕j �=iSj .
Note that |MinSpec(R)| = n = |MinSpec(RB(Q(R)))| from (i)⇔(ii). For each
Pi ∈ MinSpec(R),1 ≤ i ≤ n, we can choose K ∈ MinSpec(RB(Q(R))) such that
Pi =K ∩ R from Lemma 8.3.26(ii). Define

λ : MinSpec(R)→ MinSpec(RB(Q(R)))

by λ(Pi) = K . As |MinSpec(R)| = n = |MinSpec(RB(Q(R)))|, λ is a one-to-
one correspondence. So, without loss of generality, we may put K = Ki . Ob-
serve that RB(Q(R))/Ki

∼= R/(Ki ∩ R) = R/Pi by Lemma 8.3.26(i). Therefore,
RB(Q(R))= ⊕n

i=1Si
∼= ⊕n

i=1(RB(Q(R))/Ki)∼= ⊕n
i=1(R/Pi).

(iii)⇒(i) Assume that RB(Q(R)) ∼= ⊕n
i=1(R/Pi), where each Pi is a minimal

prime ideal of R. From the proof of (ii)⇒(i), R is semiprime and has exactly n

minimal prime ideals which are consequently {P1, . . . ,Pn}. �

Corollary 10.1.21 Let R be a ring with only finitely many minimal prime ideals
P1, . . . ,Pn. Then ̂QqB(R/P (R))∼=R/P1 ⊕ · · · ⊕R/Pn.

We have the next result in which ̂QpqB(R) does coincide with ̂QqB(R).

Theorem 10.1.22 Assume that R is a semiprime ring with only finitely many min-
imal prime ideals, say P1, . . . ,Pn. Then ̂QpqB(R) = ̂QqB(R) and thus, it follows
that ̂QpqB(R)∼=R/P1 ⊕ · · · ⊕R/Pn.
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Proof As R has exactly n minimal prime ideals, Cen(Q(R)) has a complete set of
primitive idempotents with n elements by Theorem 10.1.19. The extended centroid
of R is equal to that of ̂QpqB(R). As ̂QpqB(R) is semiprime, ̂QpqB(R) also has
exactly n minimal prime ideals from Theorem 10.1.19. By Proposition 5.4.5 and
Theorem 5.4.20, ̂QpqB(R) is quasi-Baer, hence ̂QpqB(R) = ̂QqB(R). So the proof
follows from Theorem 10.1.20. �

Exercise 10.1.23

1. Let R and S be two rings, and SMR be an (S,R)-bimodule. Show that
jdim(M)≤ d(M)≤ udim(SMR)≤ udim(MR).

2. ([96, Birkenmeier, Park, and Rizvi]) Let T be a right ring of quotients of R such
that B(Q(R))⊆ T . Prove that the following are equivalent.

(i) T is semiprime.
(ii) R ∩ TKT ∈ DIC(R) for all K �R.

(iii) For each K �R, there is c ∈ B(T ) such that TKTR ≤den cTR .
3. ([96, Birkenmeier, Park, and Rizvi]) Assume that R is a ring. Show that Q(R) is a

direct product of prime rings if and only if there exist ideals {Ii | i ∈Λ} of R such
that (⊕i∈ΛIi)R ≤den RR , jdim(Ii) = 1 for all i ∈ Λ, and R ∩ Q(R)KQ(R) ∈
DIC(R) for all K �R.

4. ([96, Birkenmeier, Park, and Rizvi]) Let T be a right ring of quotients of a ring
R such that B(Q(R))⊆ T and let n be a positive integer. Prove that T is a direct
product of n prime rings if and only if jdim(R)= n and R ∩TKT ∈DIC(R) for
all K �R.

5. ([40, Beidar]) Let R be a semiprime ring. Prove that Cen(Q(R)) is self-injective
(hence Cen(Q(R)) is regular self-injective by Theorem 10.1.15).

6. Let R be a semiprime ring and T a right ring of quotients of R such that
̂QqB(R)⊆ T . Show that the following are equivalent.
(i) R has exactly n minimal prime ideals.

(ii) Tdim (T )= n.
(iii) T is a direct sum of n prime rings.

7. Let Q(R) be semiprime. Show that jdim(R)= Tdim(Q(R)).
8. Prove that jdim(R)= jdim(T ) for any right ring of quotients of R.

10.2 Rings with Involution

We study conditions for a ∗-ring to be a Baer ∗-ring or a quasi-Baer ∗-ring. The
concept of Baer ∗-rings is naturally motivated in the study of Functional Analysis.
For example, every von Neumann algebra is a Baer ∗-algebra. Characterizations of
Baer ∗-rings and quasi-Baer ∗-rings in terms of ∗-ideal structures and semiproper
involutions are provided.

Using these results, it is shown that the quasi-Baer ∗-ring property can be trans-
ferred to polynomial ring and formal power series ring extensions without any addi-
tional requirements. Further, the existence of quasi-Baer ∗-ring hulls for rings with
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a semiproper involution is presented. A nonempty subset X of a ∗-ring R is called
self-adjoint if X∗ = X. Self-adjoint ideals of quasi-Baer ∗-rings are studied. A cri-
terion for ̂QqB(R) of a semiprime ∗-ring R with only finitely many minimal prime
ideals to be a quasi-Baer ∗-ring is discussed.

Definition 10.2.1 Assume that R is a ring. Then a map ∗ : R → R defined by
x �→ x∗ is called an involution if it satisfies the following conditions for all x, y ∈R:
(i) (x + y)∗ = x∗ + y∗. (ii) (xy)∗ = y∗x∗. (iii) (x∗)∗ = x.

A ring R with an involution ∗ is called a ∗-ring. An idempotent e of a ∗-ring R

is called a projection if e∗ = e.

We remark that an involution map is one-to-one and onto.

Definition 10.2.2 (i) A ∗-ring R is called a Baer ∗-ring if the right annihilator of
every nonempty subset of R is generated by a projection.

(ii) A ∗-ring R is called a quasi-Baer ∗-ring if the right annihilator of every ideal
of R is generated by a projection.

The next result indicates that the Baer ∗-ring property is left-right symmetric
similar to the case of Baer rings.

Proposition 10.2.3 The following are equivalent for a ∗-ring R.

(i) R is a Baer ∗-ring
(ii) The left annihilator of every nonempty subset of R is generated by a projection.

Proof For (i)⇒(ii), let ∅ �= X ⊆ R. Then rR(X
∗) = (�R(X))

∗. There exists a pro-
jection e of R with rR(X

∗)= eR. So �R(X)=Re. (ii)⇒(i) follows similarly. �

In the next result for a characterization of a quasi-Baer ∗-ring, we see that the
definition of a quasi-Baer ∗-ring is also left-right symmetric.

Proposition 10.2.4 The following are equivalent for a ∗-ring R.

(i) R is a quasi-Baer ∗-ring.
(ii) R is a quasi-Baer ring in which every left semicentral idempotent is a projec-

tion.
(iii) R is a semiprime quasi-Baer ring in which every central idempotent is a pro-

jection.
(iv) The left annihilator of every ideal is generated by a projection.

Proof (i)⇒(ii) Let R be a quasi-Baer ∗-ring. Clearly R is a quasi-Baer ring. Take
e ∈ S�(R). Then by Proposition 1.2.2, 1 − e ∈ Sr (R) and R(1 − e) � R. Further
rR(R(1 − e)) = eR. Also rR(R(1 − e)) = fR for some projection f ∈ R. Since
fR �R, f ∈ S�(R) from Proposition 1.2.2. As f is a projection, (fR)∗ =Rf �R.
Again by Proposition 1.2.2, f ∈ Sr (R). So f ∈ B(R) from Proposition 1.2.6(i).
Since rR(R(1 − e))= eR = fR and f ∈ B(R), e = f and thus e is a projection.
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(ii)⇒(iii) As every central idempotent is left semicentral, it suffices to show that
R is semiprime. Say x ∈ R with xRx = 0. Then x ∈ rR(xR)= eR with e ∈ S�(R).
So e∗ = e by assumption, and hence (eR)∗ = Re∗ = Re � R. Thus e ∈ Sr (R). By
Proposition 1.2.6(i), e ∈ B(R). So x = ex = xe = 0, hence R is semiprime.

(iii)⇒(iv) Let I � R. Since R is quasi-Baer, there exists e ∈ Sr (R) with
�R(I)=Re. So e is central by Proposition 1.2.6(ii) because R is semiprime. Hence,
e is a projection by assumption.

(iv)⇒(i) Let J � R. Note that (rR(J ))∗ = �R(J
∗). There is a projection e with

�R(J
∗)=Re. Hence, rR(J )= eR, so R is a quasi-Baer ∗-ring. �

Corollary 10.2.5 If R is a prime ring with an involution ∗, then R is a quasi-Baer
∗-ring.

Proof Proposition 10.2.4 yields the result as a prime ring is quasi-Baer. �

Example 10.2.6 There exists a semiprime quasi-Baer ring R with an involution ∗
which is not a quasi-Baer ∗-ring. Take R = F ⊕ F , where F is a field and ∗ is
defined by (a, b)∗ = (b, a) for all a, b ∈ F . Then (1,0) is a central idempotent, but
it is not a projection, so R is not a quasi-Baer ∗-ring by Proposition 10.2.4.

The next result provides a certain class of quasi-Baer ∗-group algebras.

Proposition 10.2.7 Let F [G] be the group algebra of a group G over a field F .
Consider an involution ∗ on F [G] defined by (

∑

agg)
∗ =∑

agg
−1, where ag ∈ F

and g ∈ G. If the following conditions are satisfied, then F [G] is a quasi-Baer
∗-ring.

(1) F [G] is semiprime.
(2) each annihilator ideal of F [G] is finitely generated.
(3) for each finite normal subgroup N of G, x2 = 1 for all x ∈N .

Proof From Theorem 6.3.2, F [G] is semiprime quasi-Baer. Say e = ∑

ass be
a nonzero central idempotent of F [G], where as ∈ F and s ∈ G. Let N be the
subgroup of G generated by the support of e. Then [341, Theorem 3.8, p. 136]
yields that N is a finite normal subgroup of G. Since s = s−1, e = e∗. By Proposi-
tion 10.2.4, F [G] is a quasi-Baer ∗-group algebra. �

Definition 10.2.8 (i) An involution ∗ of a ring R is called a proper involution if, for
any a ∈R, aa∗ = 0 implies a = 0.

(ii) We say that an involution ∗ of a ring R is a semiproper involution if, for any
a ∈R, aRa∗ = 0 implies a = 0.

We see that a semiproper involution on a reduced ring is a proper involution. Ob-
viously, if ∗ is a proper involution, then ∗ is a semiproper involution. The converse
is not true as shown in the following example.
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Example 10.2.9 Let n be an integer such that n > 1 and p a prime integer with
p ≤ n. Consider the prime ring R = Matn(Zp) with transpose involution ∗. Let
eij ∈R be the matrix with 1 in the (i, j)-position and 0 elsewhere. Say α = [aij ] ∈R

with αRα∗ = 0. Then (eiiαejj )(ejjα
∗eii)= 0 for all i, j , so a2

ij = 0. Hence aij = 0
for all i, j , thus α = 0. So ∗ is a semiproper involution. Next take

β = e11 + e12 + · · · + e1p.

Then ββ∗ = 0, but β �= 0. Therefore ∗ is not a proper involution on R.

Lemma 10.2.10 (i) If R is a Baer ∗-ring, then ∗ is proper.
(ii) If R is a quasi-Baer ∗-ring, then ∗ is semiproper.

Proof (i) Let R be a Baer ∗-ring. Say aa∗ = 0 with a ∈R. Since R is a Baer ∗-ring,
rR(a)= eR for some projection e in R, so ea∗ = a∗ because a∗ ∈ rR(a)= eR. Thus
a = ae = 0, so ∗ is proper.

(ii) Let R be a quasi-Baer ∗-ring. Say aRa∗ = 0. Then (RaR)(RaR)∗ = 0
and hence (RaR)∗ ⊆ rR(RaR). As R is a quasi-Baer ∗-ring, R is semiprime and
so there exists a central projection e such that rR(RaR) = eR by Propositions
10.2.4 and 1.2.6(ii). Thus, eR = (eR)∗ = (rR(RaR))

∗ = �R(Ra
∗R). Hence, we ob-

tain (RaR)∗ ⊆ rR(RaR) = eR = �R(Ra
∗R), so Ra∗R ⊆ �R(Ra

∗R). Since R is
semiprime, Ra∗R = 0. Hence, a∗ = 0, so a = 0. Thus, ∗ is semiproper. �

The next example exhibits a Baer ring with a proper involution ∗ which is not a
Baer ∗-ring.

Example 10.2.11 Let R = Mat2(Z) with the transpose involution ∗. By Theo-
rem 6.1.4, R is a Baer ring. We note that ∗ is a proper involution. Let eij ∈R be the
matrix with 1 in the (i, j)-position and 0 elsewhere. Then we see that rR(e11 +2e12)

cannot be generated by a projection of R. So R is not a Baer ∗-ring.

Baer ∗-rings are characterized in terms of proper involutions as follows.

Proposition 10.2.12 The following are equivalent for a ∗-ring R.

(i) R is a Baer ∗-ring.
(ii) ∗ is a proper involution and the right annihilator of every nonempty self-adjoint

subset is generated by a projection.
(iii) ∗ is a proper involution and the left annihilator of every nonempty self-adjoint

subset is generated by a projection.

Proof (i)⇒(ii) By Lemma 10.2.10, ∗ is proper. The remainder of the proof follows
from the definition of a Baer ∗-ring.

(ii)⇒(i) Let ∅ �=X ⊆R. Let Y = {x∗x | x ∈X}. Then there is a projection e with
rR(Y )= eR. Let x ∈X. Then x∗xe = 0, thus (xe)∗(xe)= ex∗xe = 0. Because ∗ is
a proper involution, xe = 0. So rR(Y )= eR ⊆ rR(X).
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Also we see that rR(X) ⊆ rR(Y ) = eR. Thus rR(X) = eR, and so R is a Baer
∗-ring.

(i)⇔(iii) The proof is analogous to the proof of (i)⇔(ii). �

Lemma 10.2.13 (i) If a ring R has a semiproper involution ∗, then R is semiprime
and every central idempotent is a projection.

(ii) If a ring R has a proper involution ∗, then R is right (and left) nonsingular.

Proof (i) Let xRx = 0 with x ∈ R. Then xrx∗Rxr∗x∗ = (xrx∗)R(xrx∗)∗ = 0 for
all r ∈ R. Hence xRx∗ = 0, so x = 0. Thus R is semiprime. Let e ∈ B(R). Then
(e∗e− e)R(e∗e− e)∗ =R(e∗e− e)(e∗e− e)∗ = 0. Hence we have that e = e∗e, so
e∗ = e∗e = e.

(ii) Assume on the contrary that Z(RR) �= 0. Take 0 �= x ∈ Z(RR). Then
rR(x)R ≤ess RR . So there exists s ∈ R with 0 �= x∗s ∈ rR(x). Hence (s∗x)(s∗x)∗ =
s∗xx∗s = 0. But as ∗ is proper, s∗x = 0 and so x∗s = 0, a contradiction. Thus,
Z(RR)= 0. Similarly, R is left nonsingular. �

Using previous results, in the following, another characterization of quasi-Baer
∗-rings is given in terms of semiproper involution.

Proposition 10.2.14 The following are equivalent for a ∗-ring R.

(i) R is a quasi-Baer ∗-ring.
(ii) ∗ is a semiproper involution and the right annihilator of every self-adjoint ideal

is generated by a projection.
(iii) ∗ is a semiproper involution and the left annihilator of every self-adjoint ideal

is generated by a projection.
(iv) R is a quasi-Baer ring and ∗ is a semiproper involution.

Thereby the center of a quasi-Baer ∗-ring is a Baer ∗-ring.

Proof (i)⇒(iii) Lemma 10.2.10(ii) yields that ∗ is semiproper. The remainder of the
proof follows from the definition of a quasi-Baer ∗-ring.

(iii)⇒(i) From Lemma 10.2.13(i), R is semiprime. Take 0 �= I � R. It is
clear that �R(I) ⊆ �R(II

∗). Say x ∈ �R(II
∗) and a ∈ I . Then we have that

(xa)R(xa)∗ = xaRa∗x∗ ⊆ xII ∗ = 0, hence xa = 0. Therefore, x ∈ �R(I). Thus,
�R(II

∗)= �R(I). Since II ∗ is self-adjoint, �R(I) is generated by a projection.
(i)⇔(ii) The proof is analogous to the proof of (i)⇔(iii).
(i)⇒(iv) It follows from Lemma 10.2.10(ii).
(iv)⇒(i) By Lemma 10.2.13(i), R is semiprime and every central idempotent is

a projection. Thus from Proposition 10.2.4, R is a quasi-Baer ∗-ring.
Let C := Cen(R). From Theorem 3.2.13, C is a Baer ring. Also ∗ is a proper

involution on C. Let ∅ �= Y ⊆ C. Then rC(Y ) = fC for some f 2 = f ∈ C. By
Lemma 10.2.13(i), f is a projection. So C is a Baer ∗-ring. �

A ∗-ring R is called a Rickart ∗-ring if the right annihilator of every element of R
is generated by a projection. From the proof of Lemma 10.2.10(i), if R is a Rickart
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∗-ring, then the involution ∗ is a proper involution. As in the case of Baer ∗-rings
and quasi-Baer ∗-rings (see Propositions 10.2.3 and 10.2.4), the left-right symmetry
property also holds for Rickart ∗-rings.

Proposition 10.2.15 The following are equivalent for a ∗-ring R.

(i) R is a Rickart ∗-ring.
(ii) The left annihilator of each element of R is generated by a projection.

Proof (i)⇒(ii) Take x ∈R. Then rR(x
∗)= eR for some projection e ∈R. Then we

see that �R(x)=Re.
(ii)⇒(i) It follows similarly as in the proof of (i)⇒(ii). �

For projections e and f in a ∗-ring R, we write e ≤ f if e = ef (therefore
ef = f e = e). The relation e ≤ f is a partial ordering of projections.

We see that e ≤ f if and only if eR ⊆ fR if and only if Re ⊆Rf . Also note that
e = f if and only if eR = fR if and only if Re =Rf .

Baer ∗-rings and Rickart ∗-rings are connected to each other as follows.

Proposition 10.2.16 The following are equivalent.

(i) R is a Baer ∗-ring.
(ii) R is a Rickart ∗-ring whose projections form a complete lattice.

(iii) R is a Rickart ∗-ring in which every orthogonal set of projections has a supre-
mum.

Proof See [45, Proposition 4.1]. �

A ∗-ring R is called p.q.-Baer ∗-ring if the right annihilator of every principal
ideal of R is generated by a projection. For some examples of p.q.-Baer ∗-rings, see
Exercises 10.2.24.4 and 10.2.24.5.

When R is a ∗-ring, the involution ∗ can be naturally extended to an involu-
tion on R[x, x−1], R[[x, x−1]], R[X], and R[[X]], where X is a nonempty set of
commuting indeterminates. One might expect that R[x, x−1], R[[x, x−1]], R[X],
and R[[X]] are Baer ∗-rings when R is a Baer ∗-ring. However, the next example
eliminates some of these expectations.

Example 10.2.17 Let R = Mat2(C) and S = R[x]. Then S is a Baer ring by Theo-
rem 6.1.4. We see that R is a Baer ∗-ring, where ∗ denotes the conjugate transpose
involution. It can be checked that the right annihilator

rS

([

0 2
0 0

]

+
[

1 0
0 0

]

x

)

is not generated by a projection of S. Thus S is not a Baer ∗-ring.
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In contrast to Example 10.2.17, Mat2(C)[[x]] is a Baer ∗-ring (see Exer-
cise 10.2.24.2). But Mat2(C)[[x]][[y]] is not a Baer ∗-ring (see [77, Example 2.3]).
Thereby, the Baer ∗-ring property may not transfer to polynomial rings or formal
power series rings in general. However, the quasi-Baer ∗-ring property transfers to
polynomial or formal power series ring extensions without additional requirements.
The following result shows this and also provides examples of quasi-Baer ∗-rings
which are not Baer ∗-rings.

Theorem 10.2.18 Let R be a ∗-ring and X a nonempty set of commuting indeter-
minates. Then the following are equivalent.

(i) R is a quasi-Baer ∗-ring.
(ii) R[X] is a quasi-Baer ∗-ring.

(iii) R[[X]] is a quasi-Baer ∗-ring.
(iv) R[x, x−1] is a quasi-Baer ∗-ring.
(v) R[[x, x−1]] is a quasi-Baer ∗-ring.

Proof We prove the equivalence (i)⇔(v). The other equivalences follows similarly.
Let R be a quasi-Baer ∗-ring. Say T = R[[x, x−1]]. Since R is semiprime from
Proposition 10.2.4, so is T . Let K � T . As T is quasi-Baer by Theorem 6.2.4,
rT (K) = e(x)T for some e(x) ∈ S�(T ). But since T is semiprime, e(x) is central
from Proposition 1.2.6(ii). So e(x) = e0, where e0 is the constant term of e(x). By
Lemma 10.2.13(i), e0 is a projection in R, so it is a projection on T . Thus, T is a
quasi-Baer ∗-ring.

Conversely, assume that T =R[[x, x−1]] is a quasi-Baer ∗-ring. Let I be a right
ideal of R. Then rT (IT ) = e(x)T with e(x) ∈ S�(T ). By Propositions 10.2.4 and
1.2.6(ii), e(x) is central, so e(x) = e0 ∈ R, where e0 is the constant term of e(x).
So rR(I )= rT (IT )∩R = e0T ∩R = e0R. By Lemma 10.2.13(i), e0 is a projection
in R. Hence, R is a quasi-Baer ∗-ring. �

In the Baer ∗-ring Matn(C[[x]]), where ∗ is conjugate transpose, we see that
every ideal is self-adjoint. However, the next example shows that, in general, not
every ideal of a Baer ∗-ring is self-adjoint.

Example 10.2.19 There exists a commutative Baer ∗-ring R which has an ideal
I such that I is not self-adjoint. Let ∗ be the involution on C[x] induced by the
conjugate involution on C. Take α ∈ C which is not a real. Then we see that the
ideal I = (x − α)C[x] is not self-adjoint.

In Theorem 10.2.20 next, we show that every ideal in a quasi-Baer ∗-ring is an
essential extension of a self-adjoint ideal and is also essential in a self-adjoint ideal.

Theorem 10.2.20 Let R be a quasi-Baer ∗-ring.
(i) If I is an ideal of R, then �R(I + I ∗)= �R(I)= �R(II

∗)= eR, where e is a
central projection.
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(ii) If I is an ideal of R, then there is a central projection f ∈R such that

II ∗
R ≤ess IR ≤ess (I + I ∗)R ≤ess fRR,

and

RII
∗ ≤ess

RI ≤ess
R(I + I ∗)≤ess

RfR.

Proof (i) We note that R is semiprime from Proposition 10.2.4. Also ∗ is semiproper
by Lemma 10.2.10(ii). If I = 0, then we are done. So assume that I �= 0. By
Propositions 1.2.6(ii) and 10.2.4, there exists a central projection e ∈ R such that
�R(I + I ∗)= eR. Then by the modular law, we obtain that �R(I)= eR ⊕ J , where
J = (1 − e)R ∩ �R(I). Thus J ⊆ �R(I), so JI = 0 and IJ = 0 as R is semiprime.
Hence (J ∩ J ∗)I = 0 and also (J ∩ J ∗)I ∗ ⊆ J ∗I ∗ = (IJ )∗ = 0. So it follows that
(J ∩ J ∗)(I + I ∗)= 0. Thus J ∩ J ∗ ⊆ eR ∩ J = 0, and so JJ ∗ = 0.

Take y ∈ J . Then yRy∗ ⊆ JJ ∗ = 0. Since ∗ is semiproper by Lemma 10.2.10(ii),
y = 0, so J = 0. Thus �R(I) = eR and hence �R(I + I ∗) = �R(I). Next, from the
proof of (iii)⇒(i) of Proposition 10.2.14, �R(II ∗)= �R(I).

(ii) Say 0 �= a ∈ I . Then there exists x ∈R with axa∗ �= 0 by Lemma 10.2.10(ii).
Note that 0 �= a(xa∗) ∈ II ∗. So II ∗

R ≤ess IR . As R is semiprime quasi-Baer, by The-
orem 3.2.37 there exists f ∈ B(R) such that IR ≤ess fRR . From Proposition 10.2.4,
f is a projection.

Because fR is a self-adjoint ideal of R and IR ≤ess fRR , I ∗ ⊆ fR and
(I + I ∗)R ≤ess fRR . Hence II ∗

R ≤ess IR ≤ess (I + I ∗)R ≤ess fRR . Similarly,
RII

∗ ≤ess
RI ≤ess

R(I + I ∗)≤ess
RfR. �

Let R be a semiprime ring with an involution ∗. It is well known that an involu-
tion ∗ of any semiprime ring R extends to Qs(R) (see Exercise 10.2.24.3). Because
̂QqB(R)= RB(Q(R))⊆Qs(R) and B(Q(R))= B(Qs(R)), ∗ extends to ̂QqB(R).
By Corollary 10.2.5, if R is a prime ring with an involution ∗, then R is a quasi-Baer
∗-ring. However, there exists a semiprime quasi-Baer ring with an involution ∗, but
it is not a quasi-Baer ∗-ring (see Example 10.2.6). In the following theorem, we
discuss a criterion for a semiprime ∗-ring R with only finitely many minimal prime
ideals to ensure that ̂QqB(R) is a quasi-Baer ∗-ring.

Theorem 10.2.21 Let R be a semiprime ∗-ring with only finitely many minimal
prime ideals. Then the following are equivalent.

(i) ̂QqB(R) is a quasi-Baer ∗-ring.
(ii) Every minimal prime ideal of R is self-adjoint.

Proof (i)⇒(ii) Let ̂QqB(R) be a quasi-Baer ∗-ring. Say P1, . . . ,Pn are all the min-
imal prime ideals of R. Then as in the proof of Theorem 10.1.20, there are minimal
prime ideals K1, . . . ,Kn of ̂QqB(R) such that Ki∩R = Pi and Ki = ei ̂QqB(R) with
ei ∈ B(̂QqB(R)). From Lemma 10.2.4, ei is a projection, so each Ki is self-adjoint.
Hence, Pi = ei ̂QqB(R)∩R is self-adjoint for each i.
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(ii)⇒(i) By Theorem 10.1.20, ̂QqB(R)= ⊕n
i=1Si , where each Si is a prime ring.

Let Ki = ⊕j �=iSj and Pi =Ki ∩R for each i. Then P1, . . . ,Pn are all the minimal
prime ideals of R. As all Pi are self-adjoint by assumption, K∗

i ∩R = P ∗
i = Pi for

all i. In this case, Ki,K
∗
i ∈ MinSpec(̂QqB(R)) by Lemma 8.3.26, hence Ki = K∗

i

for each i by the proof of Theorem 10.1.20 because Ki ∩R = Pi and K∗
i ∩R = Pi .

We show that S∗
i = Si for each i. Indeed, since S1 =K2 ∩K3 ∩ · · · ∩Kn, we see

that S∗
1 = S1. Similarly, S∗

i = Si for each i. Hence, each Si is a quasi-Baer ∗-ring by
Corollary 10.2.5. Therefore, ̂QqB(R) is a quasi-Baer ∗-ring. �

Proposition 10.2.22 Let R be a ∗-ring and T a right ring of quotients of R such
that ∗ extends to T .

(i) If ∗ is semiproper on R, then ∗ is semiproper on T .
(ii) ∗ is proper on R if and only if ∗ is proper on T .

Proof (i) If there exists 0 �= t ∈ T such that tT t∗ = 0, then there is x ∈ R with
0 �= tx ∈R, so txR(tx)∗ = t (xRx∗)t∗ = 0. Hence tx = 0, a contradiction, so ∗ is a
semiproper involution on T .

(ii) Let 0 �= t ∈ T such that t t∗ = 0. Put s = t∗. Then s∗s = 0. If s �= 0, then
there is x ∈ R such that 0 �= sx ∈ R. So (sx)∗(sx) = x∗(s∗s)x = 0, and hence
(sx)∗((sx)∗)∗ = 0. Thus (sx)∗ = 0, so sx = 0, a contradiction. Hence s = 0, so
t = 0. Thus, ∗ is proper on T . The converse is obvious. �

Theorem 10.2.23 Assume that R is a ring with a semiproper involution ∗ and T is
a right ring of quotients of R. If ∗ extends to T , then the following are equivalent.

(i) T is a quasi-Baer ∗-ring.
(ii) ̂QqB(R) is a subring of T .

(iii) B(Q(R))⊆ T .

Thus, Qs(R) is a quasi-Baer ∗-ring. Also ̂QqB(R) is the quasi-Baer ∗-ring ab-
solute to Q(R) ring hull of R. If R is reduced, then QqB(R) is the Baer ∗-ring
absolute ring hull of R.

Proof By Lemma 10.2.13(i), R is semiprime, hence (i)⇒(ii)⇒(iii) are conse-
quences of Theorem 8.3.17. For (iii)⇒(i), note that by Proposition 10.2.22, ∗ is
semiproper on T . By Theorem 8.3.17 and Proposition 10.2.14, T is a quasi-Baer
∗-ring. Hence Qs(R) and ̂QqB(R) are quasi-Baer ∗-rings. The rest of the proof
follows from the preceding arguments and Theorem 8.3.32. �

Exercise 10.2.24

1. ([77, Birkenmeier, Kim, and Park]) Assume that R is a ∗-ring and n is a positive
integer. Define an involution � on Matn(R) by [aij ]� = [a∗

ji]. Prove that R is
quasi-Baer ∗-ring if and only if Matn(R) is a quasi-Baer �-ring.

2. ([77, Birkenmeier, Kim, and Park]) Let F be a field with an involution such that
1 + aa∗ is invertible for every a ∈ F . Let ∗ be the induced transpose involution
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on R = Mat2(F [[x]]), that is, [aij ]∗ = [a∗
ji] for [aij ] ∈R. Show that R is a Baer

∗-ring, but the formal power series ring R[[y]] is not a Baer ∗-ring.
3. Prove that an involution ∗ on a semiprime ring R can be uniquely extended to

Qs(R).
4. Let A be a domain, An =A for all n= 1,2, . . . , and B be the ring of (an)∞n=1 ∈
∏∞

n=1 An such that an is eventually constant, which is a subring of
∏∞

n=1 An.
Take R = Matn(B), where n is an integer such that n > 1. Let ∗ be the transpose
involution of R. Show that R is a p.q.-Baer ∗-ring that is not quasi-Baer. Also,
show that if A is commutative which is not Prüfer, then R is not a Rickart ∗-ring.

5. Let R be a ∗-ring. Prove that R is a p.q.-Baer ∗-ring if and only if R is a right
(or left) p.q.-Baer ring and ∗ is semiproper. Hence if R is biregular and ∗ is
semiproper, then R is a p.q.-Baer ∗-ring.

6. Let F be a field with char(F ) �= 2, where char(F ) is the characteristic of F , and
G=D∞ ×C2. Prove that F [G] is a quasi-Baer ∗-ring, where ∗ is defined as in
Proposition 10.2.7.

7. Show that R is a prime ring with involution ∗ if and only if R is an indecompos-
able quasi-Baer ∗-ring.

10.3 Boundedly Centrally Closed C∗-Algebras

We consider C∗-algebras which do not necessarily have identity (i.e., are not uni-
tal C∗-algebras, in general). We note that a boundedly centrally closed C∗-algebra
and the bounded central closure of a C∗-algebra are the C∗-algebra analogues of a
centrally closed subring and the central closure of a semiprime ring, respectively.

In this section, boundedly centrally closed C∗-algebras are discussed by using
results developed in previous chapters and sections. The results on boundedly cen-
trally closed C∗-algebras are applied to study the extended centroid of a C∗-algebra.
It is shown that a unital boundedly centrally closed C∗-algebra is precisely a C∗-
algebra which is quasi-Baer. Also, boundedly centrally closed intermediate C∗-
algebras between A and the local multiplier algebra Mloc(A) are investigated. When
ℵ is a cardinal number, the class of C∗-algebras with the extended centroid C

ℵ
is characterized. Furthermore, C∗-algebras satisfying a polynomial identity which
have only finitely many minimal prime ideals are described.

A Banach algebra is a complex normed algebra A which is complete (as a topo-
logical space) such that ||ab|| ≤ ||a|| ||b|| for all a, b ∈ A. A Banach ∗-algebra is
a complex Banach algebra A with an involution ∗ satisfying that (λa)∗ = λa∗ for
λ ∈C and a ∈A, where λ is the conjugate of λ.

Definition 10.3.1 A C∗-algebra A is a Banach ∗-algebra with the additional norm
condition that ||a∗a|| = ||a||2 for all a ∈A.

We observe that if A is a C∗-algebra, then

||a||2 = ||a∗a|| ≤ ||a∗|| ||a||
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for all a ∈ A. Thus, ||a|| ≤ ||a∗|| ≤ ||a∗∗|| = ||a|| for all a ∈ A. So ||a|| = ||a∗||
for each a ∈A. An involution ∗ on a C∗-algebra is a proper involution. By applying
Lemma 10.2.13 to the case of C∗-algebras (not necessarily unital), we see that every
C∗-algebra is semiprime and right (and left) nonsingular.

An operator (linear transformation) T from a normed vector space V (over C) to
V is called bounded if there is a real number k ≥ 0 such that

||T (x)|| ≤ k||x||

for all x ∈ V . The smallest such k is the norm of T , denoted ||T ||. In this case,
we note that ||T || = sup||x||=1||T (x)||. An operator is continuous if and only if it
is bounded. The set of all bounded operators from V to V is denoted B(V ). Then
B(V ) is closed under addition and scalar multiplication. Indeed,

||S + T || ≤ ||S|| + ||T || and ||αT || = |α| ||T ||

for S,T ∈ B(V ) and α ∈C. Note that ||ST || ≤ ||S|| ||T || for S,T ∈ B(V ).

Let R and S be ∗-algebras. An algebra isomorphism g from R to S is called
a ∗-isomorphism if g(a∗) = g(a)∗ for all a ∈ R. When R = S, such g is called a
∗-automorphism.

Example 10.3.2 (i) An inner product space (over C) which is complete with respect
to the induced norm is called a Hilbert space. Let H be a Hilbert space. Then each
T ∈ B(H) has an adjoint, denoted T ∗, in B(H) satisfying 〈x , T (y)〉 = 〈T ∗(x), y〉
for all x, y ∈H , where 〈 , 〉 is the inner product on H . Adjoints have the following
properties for all S,T ∈ B(H) and α ∈ C:

(1) (S + T )∗ = S∗ + T ∗, (T ∗)∗ = T , and (αT )∗ = α T ∗.
(2) ||T ∗|| = ||T || and ||T ∗T || = ||T ||2.

Thus, B(H) is a C∗-algebra. Any C∗-algebra is isometrically ∗-isomorphic to a
C∗-subalgebra of B(H) for some Hilbert space H .

(ii) Let X be a locally compact Hausdorff space, and C∞(X) be the set of
complex valued continuous functions on X vanishing at infinity. The usual point-
wise operations and supremum norm are given on C∞(X). Define an involution by
f ∗(x)= f (x) for x ∈X, where f (x) is the conjugate of f (x) ∈C. Then C∞(X) is
a commutative C∗-algebra. Also C∞(X) is unital if and only if X is compact.

For a subset X of a C∗-algebra, the norm closure (i.e., the topological closure)
of X is denoted by X. An ideal I of a C∗-algebra is said to be norm closed if
I = I . When I is a norm closed ideal of a C∗-algebra A, it is well known that I is
self-adjoint (see [136, Lemma I.5.1]). If I is a norm closed ideal of C∗-algebra A,
the involution on A/I is defined as (a + I )∗ = a∗ + I for a ∈ A; and the norm on
A/I is defined as ||a + I || = infx∈I ||a − x||. Then A/I is a C∗-algebra (see [136,
Theorem I.5.4] and [140, Proposition 1.8.2] for further details).
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An involution ∗ on a ∗-algebra is called positive-definite if for any finite subset
{xi}ni=1, the relation

∑n
i=1 x

∗
i xi = 0 implies that xi = 0 for all i. The involution on

a C∗-algebra is positive-definite.
Say R is a semiprime ring with an involution ∗. Then ∗ can be extended to an

involution ∗ on Qs(R) (Exercise 10.2.24.3). If ∗ is positive-definite on R, then the
extended involution ∗ on Qs(R) is also positive-definite. Indeed, say

∑n
i=1 x

∗
i xi = 0

for xi ∈ Qs(R) and i = 1, . . . , n. Then there exists an essential ideal I of R such
that xiI + Ixi ⊆R for all i. Therefore, for each y ∈ I ,

∑n
i=1(xiy)

∗(xiy)= 0. Thus,
xiy = 0 for all i. Hence xiI = 0, and so xi = 0 for all i.

Let Q be a unital complex ∗-algebra for which ∗ is positive-definite. An ele-
ment x ∈ Q is said to be bounded if x∗x ≤ n1 for some positive integer n. This is
equivalent to the existence of a finite subset {yi} of Q such that

x∗x +
∑

y∗
i y = n1.

The set of all bounded elements of Q is denoted by Qb . Then Qb is a ∗-subalgebra
of Q.

Let A be a C∗-algebra. We denote by Qb(A) the set of all bounded elements of
Qs(A). The norm ‖x‖ of x ∈ Qb(A) is defined to be

√
λ for the least nonnegative

real number λ such that x∗x ≤ λ1.

Definition 10.3.3 Let A be a C∗-algebra and let I be a norm closed essential ideal
of A. We put M(I)= {q ∈Qs(A) | qI + Iq ⊆ I }.

If I is a norm closed essential ideal of a C∗-algebra A, then I is also a C∗-
algebra. Also in this case M(I) is a C∗-algebra (see [17, Proposition 2.1.3] and
[109]). Further, M(I) is the largest C∗-algebra in which I is contained as a norm
closed essential ideal (see [147]).

Let Ice denote the set of all norm closed essential ideals of a C∗-algebra A. Then
for I, J ∈ Ice , it is clear that I ∩ J ∈ Ice . Further, if I ⊇ J , then M(I) ⊆ M(J).
Indeed, let q ∈M(I). Then q ∈Qs(A) and qI + Iq ⊆ I . So qJ ⊆ I and Jq ⊆ I . It
is well known that J 2 = J as J is a norm closed ideal (see [104, II.5.1.4(ii)]). Thus
qJ = qJ 2 ⊆ IJ ⊆ J . Similarly, Jq ⊆ J . Hence qJ +Jq ⊆ J . Therefore q ∈M(J)

and so M(I)⊆M(J). Hence, {M(I)}I∈Ice is ordered by inverse inclusion.
We let alg.limI∈IceM(I) denote the algebraic direct limit of {M(I)}I∈Ice .

For every C∗-algebra A, there exists a unique isometric ∗-isomorphism from
alg.limI∈ IceM(I) onto Qb(A) (see [17, Proposition 2.2.2]).

Henceforth, alg.limI∈ IceM(I) is identified with Qb(A) and Qb(A) is called the
bounded symmetric algebra of quotients of A.

Definition 10.3.4 The (topological) completion Mloc(A) of Qb(A) is called the
local multiplier algebra of A. Thus, Mloc(A) is the norm closure of Qb(A).

The local multiplier algebra Mloc(A) was first used by Elliott in [147] and Ped-
ersen in [343] to show the innerness of certain ∗-automorphisms and derivations. Its
properties have been extensively studied in [17].
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In this section, when A is a C∗-algebra, we let

A1 = {a + λ1Q(A) | a ∈A and λ ∈C}.
We note that A1 is a C∗-algebra. If A is unital, then A1 = A. Also observe that A
is a norm closed essential ideal of A1. Therefore, Qb(A)=Qb(A

1) and Mloc(A)=
Mloc(A

1).
Say A is a C∗-algebra. Projections e and f in A are said to be (Murray–von

Neumann) equivalent, written e ∼ f if there exists w ∈ A such that e = w∗w and
f =ww∗. The relation ∼ is an equivalence relation in the set of projections of A.

Lemma 10.3.5 (i) Let e and f be projections in a C∗-algebra such that
||e− f ||< 1. Then e ∼ f .

(ii) Let A be a C∗-algebra. Then for any projection e ∈ Mloc(A), there exists a
projection f ∈Qb(A) such that ||e− f ||< 1 (hence e ∼ f ).

Proof (i) See [136, Proposition IV.1.2].
(ii) Note that Mloc(A)=Qb(A), Qb(A)= alg.limI∈ IceM(I), and M(I) is a C∗-

algebra for I ∈ Ice . So [136, Lemma III.3.1] yields part (ii). �
Proposition 10.3.6 Let A be a C∗-algebra. Then:

(i) Every central idempotent of A is a projection.
(ii) Every idempotent in the extended centroid of a C∗-algebra is a projection, and

bounded.
(iii) Cen(Mloc(A)) and Cen(Qb(A)) contain the same projections.

Proof (i) It follows from Lemma 10.2.13(i) since ∗ is a proper involution.
(ii) Let e ∈ B(Q(A)). Then e ∈ B(Qs(A)). Note that the induced involution ∗ on

Qs(A) is positive-definite. As (e− ee∗)∗(e− ee∗)= 0, e− ee∗ = 0 and so e = ee∗.
Also e∗ = ee∗. Hence, e = e∗. Since e∗e + (1 − e)∗(1 − e) = 1, e is a bounded
element in Qs(A), and so e ∈Qb(A).

(iii) Clearly, projections of Cen(Qb(A)) are in Cen(Mloc(A)). Let e be a pro-
jection in Cen(Mloc(A)). Then there exists a projection f ∈ Qb(A) such that
||e − f || < 1 by Lemma 10.3.5(ii). Thus from Lemma 10.3.5(i), e ∼ f . So there
exists w ∈Mloc(A) such that e =w∗w and f =ww∗.

Since e ∈ Cen(Mloc(A)), f e =ww∗e =wew∗ = (ww∗)(ww∗)= f 2 = f . Thus
f = f e = ef , and hence e− f is a projection. Therefore,

||e− f || = ||(e− f )(e− f )∗|| = ||e− f ||2,
so ||e− f || = 0 or ||e− f || = 1.

But since ||e− f ||< 1, ||e− f || = 0 and so e− f = 0. Thus e = f ∈Qb(A). �

When A is a C∗-algebra, ̂QqB(A
1) = QqB(A

1) as A1 is right nonsingular by
Lemma 10.2.13(ii). Recall that QqB(A)= 〈A∪B(Q(A))〉Q(A) by Theorem 8.3.17.
Since A1 = {a + λ1Q(R) | a ∈ A and λ ∈ C}, QqB(A) � QqB(A

1) in general. For
example, let A be a nonunital prime C∗-algebra. We assume that λ ∈ C \ Z. Then
λ1Q(A) ∈A1 ⊆QqB(A

1). If λ1Q(A) ∈QqB(A), then λ1Q(A) = a+n1Q(A) for some
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a ∈A and n ∈ Z because B(Q(A))= {0,1Q(A)}. So (λ−n)1Q(A) = a, thus we have
that 1Q(A) = (λ− n)−1a ∈A, a contradiction.

Theorem 10.3.7 Let A be a C∗-algebra. Then:

(i) QqB(A
1) is a ∗-subalgebra of Qb(A).

(ii) Qb(A) is a quasi-Baer ∗-algebra.

Proof (i) Note that Qb(A) = Qb(A
1). From Theorem 10.2.23, QqB(A

1) is a
∗-algebra. By Proposition 10.3.6(ii), B(Q(A)) ⊆ Cen(Qb(A)). So QqB(A

1) is a
∗-subalgebra of Qb(A) as QqB(A

1)=A1B(Q(A)) by Theorem 8.3.17.
(ii) Theorems 8.3.17 and 10.2.23 yield that Qb(A) is a quasi-Baer ∗-algebra since

Qb(A)⊆Qs(A) and B(Q(A))⊆Qb(A). �

From Theorem 10.3.7, if A is a C∗-algebra, then QqB(A
1) is a ∗-subalgebra of

Mloc(A) because Qb(A) is a ∗-subalgebra of Mloc(A).

Definition 10.3.8 (i) A C∗-algebra is called an AW ∗-algebra if it is a Baer ∗-ring.
For example, the commutative C∗-algebra C(X) of continuous functions on a Sto-
nian space X is an AW ∗-algebra. Also, the C∗-algebra B(H) of all bounded opera-
tors on a Hilbert space H is an AW ∗-algebra.

(ii) In analogy with an AW ∗-algebra, we say that a unital C∗-algebra A is a
quasi-AW ∗-algebra if it is also a quasi-Baer ∗-ring. Thus by Proposition 10.2.14, a
unital C∗-algebra A is a quasi-AW ∗-algebra if A is quasi-Baer.

Lemma 10.3.9 Let A be a C∗-algebra and J a norm closed ideal of Mloc(A). Then
J = J ∩Qb(A).

Proof See [17, Lemma 1.2.32] for the proof. �

The next result shows that the local multiplier algebra of any C∗-algebra is a
quasi-Baer ring.

Theorem 10.3.10 Mloc(A) is a quasi-AW ∗-algebra for any C∗-algebra A.

Proof Let M =Mloc(A) and J �M . We claim that rM(J ) is generated by an idem-
potent of M . For this, note that rM(J ) = rM(J ). Thus, we may assume that J is a
norm closed ideal of M . Put J0 = J ∩Qb(A). We show that

rM(J )∩Qb(A)= rQb(A)(J0).

Obviously, rM(J ) ∩ Qb(A) ⊆ rQb(A)(J0). Next, we take x ∈ rQb(A)(J0). Conse-
quently, (J ∩Qb(A))x = 0, hence Jx = (J ∩Qb(A)) x = 0 by Lemma 10.3.9 as J
is norm closed. Thus, x ∈ rM(J )∩Qb(A). So rM(J )∩Qb(A)= rQb(A)(J0).

On the other hand, from Theorem 10.3.7, Qb(A) is a quasi-Baer ∗-ring. Hence,
there is a projection e ∈ Qb(A) with rQb(A)(J0) = eQb(A). Now we observe that
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e ∈ S�(Qb(A)) from Proposition 1.2.2. Because Qb(A) is semiprime, therefore we
get e ∈ B(Qb(A))⊆ B(Mloc(A)) from Proposition 1.2.6(ii).

Further, rM(J ) is norm closed. Note that e ∈ B(Mloc(A)) is a projection by
Proposition 10.3.6(i). Also from Lemma 10.3.9, rM(J ) = rM(J )∩Qb(A). Thus,
rM(J )= rQb(A)(J0)= eQb(A)= eQb(A)= eMloc(A). Hence, Mloc(A) is a quasi-
Baer ring. Therefore, Mloc(A) is a quasi-AW ∗-algebra. �

Corollary 10.3.11 Cen(Mloc(A)) is an AW ∗-algebra for any C∗-algebra A.

Proof Theorem 10.3.10 and Proposition 10.2.14 yield this result. �

Example 10.3.12 (i) Recall that from Theorem 10.3.10, Mloc(A) is a quasi-AW ∗-
algebra for any C∗-algebra A.

(ii) Unital boundedly centrally closed C∗-algebras are precisely quasi-AW ∗-
algebras (see Definition 10.3.19 and Theorem 10.3.20).

(iii) Any unital prime C∗-algebra is a quasi-AW ∗-algebra since any prime ring is
quasi-Baer by Proposition 3.2.5. There are unital prime C∗-algebras (hence quasi-
AW ∗-algebras) which are not AW ∗-algebras [186, pp. 150–158].

(iv) Recall that a C∗-algebra is said to be projectionless if there is no projection
except zero or identity. From [45, Corollary, p. 43] and [246, p. 10], C is the only
prime projectionless AW ∗-algebra. In [136, pp. 124–129 and pp. 205–214], various
unital prime projectionless C∗-algebras (hence quasi-AW ∗-algebras) are provided.

The following result gives a relationship between A and its projections (see [45,
Exercise 7, p. 142]).

Proposition 10.3.13 Let A be an AW ∗-algebra and I a norm closed ideal of A.
Then I is the norm closure of the linear span of all projections of I .

The next lemma follows from Propositions 10.3.6 and 10.3.13.

Lemma 10.3.14 Let A be a C∗-algebra. Then:

(i) B(Mloc(A))= B(Q(A))= B(Qs(A))= B(Qb(A)).
(ii) Cen(Mloc(A)) is the norm closure of the linear span of B(Q(A)).

Proof (i) By definition of Qs(A), B(Q(A)) = B(Qs(A)). Proposition 10.3.6(ii)
yields that B(Q(A))⊆ Cen(Qb(A))⊆ Cen(Mloc(A)). Thus we have that B(Q(A))

⊆ B(Qb(A))⊆ B(Mloc(A)). Say e ∈ B(Mloc(A)). From Proposition 10.3.6(i), e is a
projection. By Proposition 10.3.6(iii), e ∈ Cen(Qb(A)), thus e ∈ B(Qb(A)). Hence
e ∈ B(Q(A)), and so B(Mloc(A))⊆ B(Q(A)). Consequently,

B(Mloc(A))= B(Q(A))= B(Qs(A))= B(Qb(A)).

(ii) From Proposition 10.3.6(i), each element of B(Q(A)) = B(Mloc(A)) (see
part (i)) is a projection in Cen(Mloc(A)). Since Cen(Mloc(A)) is commutative,
any projection in Cen(Mloc(A)) is in B(Mloc(A)) = B(Q(A)). So the set of
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all projections in Cen(Mloc(A)) is precisely B(Q(A)). From Corollary 10.3.11,
Cen(Mloc(A)) is an AW ∗-algebra. Hence by Proposition 10.3.13, Cen(Mloc(A))

is the norm closure of the linear span of B(Q(A)). �

Proposition 10.3.15 Let A be a unital C∗-algebra and I a proper ideal of A such
that IA is (essentially) closed in AA. Then:

(i) A/I is a C∗-algebra.
(ii) QqB(A/I) is ∗-isomorphic to eQqB(A)e for some e ∈ B(Q(A)).

Proof (i) We show first that I is norm closed. It is straightforward to see that
�A(I) = �A(I). Since A is a semiprime ring, �A(I) ∩ I = �A(I ) ∩ I = 0. Let
0 �= y ∈ I . Then yI �= 0. Hence, IA ≤ess IA. Therefore, I = I as IA is a closed
submodule of AA. So I is norm closed. Thus, A/I is a C∗-algebra.

(ii) From Theorem 8.3.47(i), I = A ∩ (1 − e)Q(A) with e ∈ B(Q(A)). From
Theorem 8.3.47(iii), f : A/I → eAe defined by f (a + I ) = eae for a ∈ A is an
algebra isomorphism. As e ∈ B(Mloc(A)), e is a projection by Proposition 10.3.6(ii).
Therefore, f ((a + I )∗) = f (a∗ + I ) = ea∗e = (eae)∗ = f (a + I )∗. Thus, f is a
∗-isomorphism. By Theorem 8.3.47(vii), we see that f induces a ∗-isomorphism
from QqB(A/I) to eQqB(A)e. �

An element u in a C∗-algebra is said to be unitary if uu∗ = u∗u= 1. The follow-
ing is a well-known fact.

Theorem 10.3.16 Each element of a unital C∗-algebra A is a finite linear combi-
nation of unitary elements of A.

Proof See [142, Proposition 22.6] and [240, Theorem 4.1.7]. �

Assume that A is an AW ∗-algebra. For projections g and h in A, g ≤ h means
that g = hg. We observe that g ≤ h if and only if g = gh if and only if gA ⊆ hA

if and only if Ag ⊆ Ah. Let {ei | i ∈ Λ} and {fi | i ∈ Λ} be two sets of orthogonal
projections in a C∗-algebra A such that ei ∼ fi for all i ∈Λ.

Take e = sup{ei | i ∈Λ} and f = sup{fi | i ∈Λ} in A. Note that the existence of
e and f in A is guaranteed because A is an AW ∗-algebra (see [45, Proposition 4.1]).
By [45, Theorem 20.1], it is shown that e ∼ f as follows.

Theorem 10.3.17 Let A be an AW ∗-algebra. Assume that {ei | i ∈ Λ} and
{fi | i ∈ Λ} are two sets of orthogonal projections in A such that w∗

i wi = ei and
wiw

∗
i = fi with wi ∈A (i.e., ei ∼ fi ) for each i ∈Λ. Take

e = sup{ei | i ∈Λ} and f = sup{fi | i ∈Λ}.
Then there exists w ∈ A such that w∗w = e and ww∗ = f (i.e., e ∼ f ). Further, it
follows that wei =wi = fiw for each i ∈Λ.
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For the next result, we note that if R is a Baer ∗-ring, then eRe is a Baer ∗-ring
for any projection e of R (see [246, p. 30] and [45, Proposition 4.6]).

Theorem 10.3.18 Let A be an AW ∗-algebra and I a norm closed essential ideal
of A. Then M(I)=A. Therefore, Mloc(A)=A.

Proof Let I be a norm closed essential ideal of A, and let X = {ei | i ∈ Λ} be a
maximal set of nonzero orthogonal projections in I . The existence of such X is
guaranteed by Zorn’s lemma and Proposition 10.3.13. As A is an AW ∗-algebra,
rA(X)= gA for some projection g ∈A.

First, we show that g = 0. For this, assume on the contrary that g �= 0. As I is an
essential ideal of A and A is semiprime, IA ≤ess AA by Proposition 1.3.16. Hence,
there exists k ∈A such that 0 �= gk ∈ I . From Proposition 8.3.55(i), I is a semiprime
ring because I �A and A is a semiprime ring. Hence, (gk)I (gk) �= 0, so gIg �= 0.

Since g is a projection, gAg is also an AW ∗-algebra because gAg is a Baer ∗-
ring, and gIg is a nonzero norm closed ideal of gAg. By Proposition 10.3.13, gIg
contains a nonzero projection, say h. Since Xg = 0 and h ∈ gIg ⊆ gA, eih= 0 for
all i ∈ Λ. Thus 0 = (eih)

∗ = h∗e∗
i = hei , so eih = 0 and hei = 0 for all i ∈ Λ. If

h ∈X, then hg = 0, so gh= (hg)∗ = 0. As h ∈ gIg, we have that h= gh= 0, it is
absurd. Therefore h �∈ X, a contradiction to the maximality of X. Hence g = 0, so
rA(X)= 0. Because each ei is a projection, we see that �A(X)= 0.

Let u ∈ M(I) be a unitary element. Then uu∗ = u∗u = 1. Put wi = uei and
fi = ueiu

∗ for each i ∈ Λ. Then wi = uei ∈ uI ⊆ I as u ∈ M(I) and I �M(I).
Also w∗

i wi = ei and fi = ueiu
∗ =wiw

∗
i .

Further, we have that fi = ueiu
∗ ∈M(I)IM(I)⊆ I , and each fi is a projection.

Therefore ei ∼ fi for each i ∈Λ. Also fifj = 0 for i �= j . Thus {fi | i ∈Λ} is a set
of nonzero orthogonal projections in A.

By Theorem 10.3.17, there is w ∈ A such that wei = wi = fiw for each i ∈ Λ.
Thus (u − w)ei = uei − wei = wi − wi = 0 for all i ∈ Λ. As A ⊆ M(I), we see
that w ∈A⊆M(I). So u−w ∈ �M(I)(X). Since �A(X)= 0, �I (X)= 0. Therefore
�M(I)(X)= 0 because I is essential in M(I). Hence u−w = 0, so u=w ∈A.

Consequently, every unitary element of M(I) is in A. From Theorem 10.3.16,
it follows that M(I) ⊆ A. Since A ⊆ M(I), M(I) = A. Therefore Qb(A) = A, so
Mloc(A)=A. �

Definition 10.3.19 Assume that A is a C∗-algebra. Then the C∗-subalgebra
ACen(Qb(A)) of Mloc(A) is called the bounded central closure of A. We say that
A is boundedly centrally closed if A=ACen(Qb(A)).

Boundedly centrally closed algebras are used for studying local multiplier alge-
bras and have been treated extensively in [15, 16], and [17]. The next result shows
that a unital boundedly centrally closed C∗-algebra is precisely a C∗-algebra which
is quasi-Baer.

Theorem 10.3.20 The following are equivalent for a unital C∗-algebra A.



388 10 Applications to Rings of Quotients and C∗-Algebras

(i) A is boundedly centrally closed.
(ii) A is a quasi-AW ∗-algebra.

Proof (i)⇒(ii) Assume that A is boundedly centrally closed. Then we have
that ACen(Qb(A)) = A. Because B(Q(A)) = B(Qb(A)) ⊆ Cen(Qb(A)) from
Lemma 10.3.14(i), A = AB(Q(A)). Thus A = AB(Q(A)) and hence Theo-
rem 8.3.17 yields that A is a quasi-Baer ring. So A is a quasi-AW ∗-algebra.

(ii)⇒(i) Let A be a quasi-AW ∗-algebra. By Lemma 10.3.14(ii), we see
that Cen(Mloc(A)) is the norm closure of the linear span of B(Q(A)). Thus,
Cen(Qb(A)) ⊆ Cen(Mloc(A)) ⊆ AB(Q(A)) = QqB(A) = A as QqB(A) = A from
Theorem 8.3.17. Therefore A=ACen(Qb(A)), and hence A is boundedly centrally
closed. �

Corollary 10.3.21 next is a direct consequence of Theorems 10.3.10 and 10.3.20.
It exhibits some interesting classes of C∗-algebras which are boundedly centrally
closed.

Corollary 10.3.21 (i) The local multiplier algebra Mloc(A) is boundedly centrally
closed for any C∗-algebra A.

(ii) Any AW ∗-algebra is boundedly centrally closed.

Proof (i) The proof follows from Theorems 10.3.10 and 10.3.20.
(ii) Let A be an AW ∗-algebra. Then A is a Baer ring, so it a quasi-Baer ring.

Thus, A is boundedly centrally closed by Theorem 10.3.20. �

From [17, p. 74], every norm closed essential ideal of a boundedly centrally
closed C∗-algebra is also boundedly centrally closed. By Proposition 10.2.14, the
center of a quasi-Baer ∗-ring is a Baer ∗-ring. Hence Theorem 10.3.20 and Corol-
lary 10.3.21 yield the next corollary.

Corollary 10.3.22 The center of a unital boundedly centrally closed C∗-algebra is
an AW ∗-algebra.

The following result provides another class of boundedly centrally closed C∗-
algebras.

Theorem 10.3.23 Every prime C∗-algebra is boundedly centrally closed.

Proof Let A be a prime C∗-algebra. Then A1 is a unital prime C∗-algebra. Hence
A1 is a quasi-Baer ring, so A1 is boundedly centrally closed by Theorem 10.3.20.
Thus Cen(A1) is a AW ∗-algebra from Corollary 10.3.22. By Proposition 10.3.13,
Cen(A1)= C as 1 is the only nonzero projection of Cen(A1).

Note that B(Q(A)) = {0,1} and Cen(Mloc(A)) = C by Lemma 10.3.14(ii). So
Cen(Qb(A)) = C as C = Cen(A1) ⊆ Cen(Qb(A)) ⊆ Cen(Mloc(A)) = C. There-
fore, A=ACen(Qb(A)). So A is boundedly centrally closed. �



10.3 Boundedly Centrally Closed C∗-Algebras 389

The next result illustrates an interesting relationship between the extended cen-
troid of a C∗-algebra A and the center of Qb(A).

Theorem 10.3.24 Cen(Q(A))=Qr
c�(Cen(Qb(A))) for any C∗-algebra A.

Proof As A is semiprime, Cen(Q(A)) = Cen(Qs(A)) is regular from Theo-
rem 10.1.15. Say x ∈ Cen(Qs(A)). We claim that 1 + xx∗ is invertible in
Cen(Qs(A)). Since Cen(Qs(A)) is regular, we need to see that 1+xx∗ is a nonzero-
divisor. For this, say (1+xx∗)y = 0 with y ∈ Cen(Qs(A)). Then (1+xx∗)yy∗ = 0,
so yy∗ + (xy)(xy)∗ = 0.

Recall that the involution ∗ induced on Qs(A) from A is positive-definite. Thus
y = 0, and so 1 + xx∗ is invertible in Cen(Qs(A)). Put

c = x(1 + xx∗)−1 and d = (1 + xx∗)−1.

Then (1 + xx∗)d = 1 and (1 + xx∗)d∗ = 1, so (1 + xx∗)2dd∗ = 1. Thus

dd∗ + (xd)(xd)∗ + (xd)(xd)∗ + (x2d)(x2d)∗ = 1,

equivalently, d∗d + (xd)∗(xd)+ (xd)∗(xd)+ (x2d)∗(x2d) = 1. Hence, d and xd

are bounded elements of Qs(A). Therefore, d ∈Qb(A) and c = xd ∈Qb(A). Thus,
c ∈ Cen(Qb(A)) and d ∈ Cen(Qb(A)). So x = cd−1 ∈ Qr

c�(Cen(Qb(A))). Hence,
Cen(Qs(A))⊆Qr

c�(Cen(Qb(A))).
Next, let ab−1 ∈ Qr

c�(Cen(Qb(A))), where a, b ∈ Cen(Qb(A)) and b is a
nonzero-divisor. Then b ∈ Cen(Qs(A)). We show that b is a nonzero-divisor in
Cen(Qs(A)). Indeed, let bz = 0 with z ∈ Cen(Qs(A)) ⊆ Qr

c�(Cen(Qb(A))). Then
z = vw−1 for some v,w ∈ Cen(Qb(A)). So bvw−1 = bz = 0, hence bv = 0. Thus,
v = 0 as b is a nonzero-divisor in Cen(Qb(A)), so z= 0.

As Cen(Qs(A)) is regular from Theorem 10.1.15, b−1 ∈ Cen(Qs(A)), and
hence ab−1 ∈ Cen(Qs(A)). Therefore, Qr

c�(Cen(Qb(A))) ⊆ Cen(Qs(A)). So,
Cen(Qs(A))=Qr

c�(Cen(Qb(A))). �

As in Theorem 10.3.24, the following result also provides a useful relationship
between Cen(Mloc(A)) and Cen(Qb(A)).

Theorem 10.3.25 Cen(Mloc(A))= Cen(Qb(A)) for any C∗-algebra A.

Proof As Cen(Qb(A)) ⊆ Cen(Mloc(A)), Cen(Qb(A)) ⊆ Cen(Mloc(A)). From
Lemma 10.3.14(ii), Cen(Mloc(A)) is the norm closure of the linear span of
B(Q(A)). Therefore, Cen(Mloc(A)) ⊆ Cen(Qb(A)) as B(Q(A)) ⊆ Cen(Qb(A))

from Lemma 10.3.14(i). �
Lemma 10.3.26 Let A be a C∗-algebra. If αAβ = 0 for α,β ∈ Mloc(A), then
αMloc(A)β = 0.

Proof See [17, Proposition 2.3.3(ii)] for the proof. �
Let B be a C∗-algebra and A a C∗-subalgebra of B . Recall that Ice denotes the

set of norm closed essential ideals of A. Then B is said to be an Ice-enlargement
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of A if B = BIce , where BIce is the norm closure of the union of all BI with I ∈ Ice ,
and BI = {x ∈ B | xI + Ix ⊆ I }. Further, we say that an Ice-enlargement B is said
to be essential if, for I ∈ Ice and x ∈ B , Ix = 0 or xI = 0 implies x = 0. The local
multiplier algebra Mloc(A) is an essential Ice-enlargement of A. For more details,
see [17, p. 66].

The next Theorem 10.3.27 will be used in the further study of boundedly cen-
trally closed C∗-algebras.

Theorem 10.3.27 Let A be a C∗-algebra and B an intermediate C∗-algebra be-
tween A and Mloc(A). Then:

(i) Cen(B)⊆ Cen(Mloc(A)).
(ii) If Cen(Qb(A)) ⊆ B , then B is a quasi-AW ∗-algebra, and furthermore

Cen(B)= Cen(Mloc(A)).

Proof (i) Say x ∈ Cen(B) and q ∈ Qb(A). Let Ice be the set of all norm closed
essential ideals of A. There is I ∈ Ice with qI + Iq ⊆ I . For any a ∈ I ,

(xq − qx)a = x(qa)− q(xa)= x(qa)− (qa)x = x(qa)− x(qa)= 0,

so (xq − qx)I = 0. Thus xq − qx = 0 because Mloc(A) is an essential Ice-
enlargement of A. Hence xq = qx for all q ∈Qb(A).

Thus, x ∈ Cen(Mloc(A)) as Mloc(A)=Qb(A). So Cen(B)⊆ Cen(Mloc(A)).
(ii) Let J be an ideal of B . Put M = Mloc(A). There exists e2 = e ∈ M such

that rM(MJM)= eM by Theorem 10.3.10. Since M is semiprime and e ∈ S�(M),
e ∈ B(M) by Proposition 1.2.6(ii). Thus, e ∈ B(Qb(A))⊆ B by Lemma 10.3.14(i).
Note that Je = 0, thus eB ⊆ rB(J ).

Next, let b ∈ rB(J ) and take a ∈ J . Then aBb ⊆ Jb = 0, hence aAb = 0.
By Lemma 10.3.26 aMb = 0. So MaMb = 0 for each a ∈ J , and therefore
MJMb = 0. Hence b ∈ rM(MJM) = eM , so b = eb ∈ eB . Thus rB(J ) ⊆ eB and
consequently rB(J )= eB with e ∈ B . Therefore B is a quasi-AW ∗-algebra.

From part (i), Cen(B) ⊆ Cen(Mloc(A)). By assumption and Theorem 10.3.25,
Cen(Mloc(A))= Cen(Qb(A)) ⊆ B . So Cen(B)= Cen(Mloc(A)). �

Definition 10.3.28 Let A be a C∗-algebra. We call the smallest boundedly centrally
closed C∗-subalgebra of Mloc(A) containing A the boundedly centrally closed hull
of A.

From the next result, when A is a unital C∗-algebra, QqB(A) is the boundedly
centrally closed hull of A. Also this result is a unital C∗-algebra analogue of Theo-
rem 8.3.17.

Theorem 10.3.29 Let A be a unital C∗-algebra. Then:

(i) QqB(A)=ACen(Qb(A)).
(ii) QqB(A) is the boundedly centrally closed hull of A.
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(iii) Let B be an intermediate C∗-algebra between A and Mloc(A). Then B is a
quasi-AW ∗-algebra if and only if B(Q(A))⊆ B .

Proof (i) We note that Cen(Mloc(A)) ⊆ AB(Q(A)) = QqB(A) from Lem-
ma 10.3.14(ii) and Theorem 8.3.17. Hence

Cen(Qb(A))⊆ Cen(Mloc(A))⊆QqB(A)⊆ACen(Qb(A)),

because B(Q(A))= B(Qb(A))⊆ Cen(Qb(A)) by Lemma 10.3.14(i). Therefore

QqB(A)=ACen(Qb(A)).

(ii) By part (i), Theorem 10.3.27(ii), and Theorem 10.3.20, QqB(A) is boundedly
centrally closed. Let B be a boundedly centrally closed intermediate C∗-algebra
between A and Mloc(A). Then B is quasi-Baer by Theorem 10.3.20.

Say 0 �= e ∈ B(Q(A)). Then (eQqB(A) ∩ A)A ≤ess eQqB(A)A. As B is
semiprime quasi-Baer, there is c ∈ B(B) with B(eQqB(A) ∩ A)BB ≤ess cBB

by Theorem 3.2.37. Note that, by Theorem 10.3.27(i), c ∈ B(Mloc(A)). From
Lemma 10.3.14(i) and Theorem 8.3.17, B(Mloc(A)) = B(Q(A)) ⊆ QqB(A), so
c ∈ B(Q(A)) ⊆ QqB(A). Hence, (eQqB(A) ∩ A)A ≤ ceQqB(A)A ≤ eQqB(A)A.
Since (eQqB(A)∩A)A ≤ess eQqB(A)A, ceQqB(A)= eQqB(A), and so ce = e.

We claim that c(1 − e)Mloc(A) = 0. For this, assume on the contrary that
c(1 − e)Mloc(A) �= 0. Note that c(1 − e)Mloc(A) is a norm closed ideal since
c(1 − e) ∈ B(Mloc(A)) (so c(1 − e) is a projection by Proposition 10.3.6(i)). Hence,
from Lemma 10.3.9

c(1 − e)Mloc(A)= c(1 − e)Mloc(A)∩Qb(A),

so c(1 − e)Mloc(A) ∩Qb(A) �= 0. Therefore c(1 − e)Mloc(A) ∩A �= 0, and hence
0 �= [c(1−e)Mloc(A)∩B]B ≤ cBB . Recall that B(eQqB(A)∩A)BB ≤ess cBB from
the preceding argument. Therefore,

[c(1 − e)Mloc(A)∩B] ∩B(eQqB(A)∩A)B �= 0.

Take y ∈ [c(1−e)Mloc(A)∩B]∩B(eQqB(A)∩A)B . Then y = (1−e)y and y = ey

because e ∈ B(Q(A))⊆ Cen(Mloc(A)) (see Lemma 10.3.14(i)). So y = 0, a contra-
diction. Hence, c(1 − e)Mloc(A) = 0. Thus, c(1 − e) = 0. Thus e = ce = c ∈ B .
Therefore QqB(A) = AB(Q(A)) ⊆ B , so QqB(A) ⊆ B . Thus, QqB(A) is the
boundedly centrally closed hull of A.

(iii) Let B be a quasi-AW ∗-algebra. Then from Theorem 10.3.20, B is boundedly
centrally closed. From part (ii), QqB(A)⊆ B . So B(Q(A))⊆ B by Theorem 8.3.17.
Conversely, if B(Q(A)) ⊆ B , then by Theorem 8.3.17 QqB(A) = AB(Q(A)) ⊆ B .
Therefore part (i) yields that ACen(Qb(A)) ⊆ B . Now from Theorem 10.3.27(ii),
B is a quasi-AW ∗-algebra. �

Motivated by Theorem 8.3.17, it is natural to ask: If T is any semiprime inter-
mediate ring, not necessarily a C∗-algebra, between A and Mloc(A), then is the
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condition, B(Q(A)) ⊆ T , necessary and/or sufficient for T to be quasi-Baer? Our
next two results provide partial affirmative answers to this question.

Theorem 10.3.30 Assume that A is a C∗-algebra. If T is a semiprime quasi-Baer
intermediate ring between A and Mloc(A), then B(Q(A))⊆ T .

Proof For B(T )⊆ B(Mloc(A)), say f ∈ B(T ) and q ∈Qb(A). Then there is a norm
closed essential ideal I of A with qI + Iq ⊆ I . For any a ∈ I ,

(f q − qf )a = f qa − qf a = qaf − qaf = 0, hence (f q − qf )I = 0.

As Mloc(A) is an essential Ice-enlargement of A, f q − qf = 0, so f q = qf . Hence
f commutes with every element of Qb(A), and thus f ∈ Cen(Mloc(A)). Therefore,
B(T )⊆ B(Mloc(A)).

Let e ∈ B(Q(A)) and K = T ∩ eMloc(A). From Theorem 3.2.37, there exists
c ∈ B(T ) such that KT ≤ess cTT . As B(Mloc(A))= B(Q(A)) by Lemma 10.3.14(i)
and B(T ) ⊆ B(Mloc(A)), we have that e, c ∈ B(Mloc(A)). As a consequence, we
get K ⊆ eT ∩ cT ⊆ ecT , so K ⊆ ecMloc(A)⊆ eMloc(A). By the modular law,

eMloc(A)= ecMloc(A)⊕ J,

where J = eMloc(A)∩ (1 − ec)Mloc(A)= e(1 − ec)Mloc(A).
If J �= 0, then A∩ J �= 0 from the proof of Theorem 10.3.29(ii). Therefore,

0 �=A∩ J ⊆ T ∩ eMloc(A)=K ⊆ ecT ⊆ ecMloc(A),

a contradiction. Thus, J = 0, so e = ec. Hence, eMloc(A) ⊆ cMloc(A). Then again
by the modular law,

cMloc(A)= eMloc(A) ⊕ W, where W = cMloc(A)∩ (1 − e)Mloc(A).

Assume that W �= 0. Again by the proof of Theorem 10.3.29(ii), A ∩ W �= 0.
Hence, 0 �= T ∩ W = T ∩ cMloc(A) ∩ (1 − e)Mloc(A) = cT ∩ (1 − e)Mloc(A).
So cT ∩ (1 − e)Mloc(A) ∩ K = cT ∩ (1 − e)Mloc(A) ∩ T ∩ eMloc(A) �= 0, as
KT ≤ess cTT . Thus, we have a contradiction. Hence W = 0, so e = c ∈ T . There-
fore, B(Q(A))⊆ T . �

When A is a C∗-algebra, by Theorem 8.3.17, QqB(A) is the smallest (semiprime)
quasi-Baer intermediate ring between A and Q(A). Further, from Theorem 10.3.30,
QqB(A) is also the smallest semiprime quasi-Baer intermediate ring between A and
Mloc(A).

Corollary 10.3.31 Let A be a C∗-algebra and T be an intermediate ∗-algebra
between A and Mloc(A). Then T is a quasi-Baer ∗-algebra if and only if
B(Q(A))⊆ T .

Proof Let T be a quasi-Baer ∗-algebra. By Proposition 10.2.4, T is semiprime.
From Theorem 10.3.30, B(Q(A)) ⊆ T . Conversely, if B(Q(A)) ⊆ T , then A1

is a subalgebra of T . By Theorem 10.3.29(iii), T is a quasi-AW ∗-algebra. Let
I � T . Then �T (I ) = e T for some e ∈ B(T ) from Proposition 1.2.6(ii). By The-
orem 10.3.27(i), B(T )⊆ B(Mloc(A)).
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Because B(Mloc(A)) = B(Q(A)) from Lemma 10.3.14(i) and B(Q(A)) ⊆ T ,
e ∈ B(Q(A)) ⊆ T . But �T (I ) = �T (I ). So �T (I ) = �T (I ) ∩ T = e T ∩ T = eT .
Hence, T is quasi-Baer. By Proposition 10.3.6(i), e is a projection and so T is a
quasi-Baer ∗-algebra. �

The definitions of C∗-direct product and C∗-direct sum of C∗-algebras are as
follows.

Definition 10.3.32 (i) Let {Ai} be a set of C∗-algebras. By
∏

C∗
i Ai , we denote the

C∗-algebra {(ai) ∈∏i Ai | supi ‖ai‖ < ∞}, which is called the C∗-direct product
of {Ai}.

(ii) We use
⊕

C∗
i Ai to denote the C∗-subalgebra of

∏

C∗
i Ai , consisting of all

elements (ai) ∈∏C∗
i Ai with the set {i | ‖ai‖ > ε} finite for any given ε > 0. The

C∗-algebra
⊕

C∗
i Ai is called the C∗-direct sum of {Ai}.

The following is a well known fact.

Proposition 10.3.33 (i) Assume that {Ai | i ∈ Λ} is a set of C∗-algebras. Then
M(

⊕C∗
i∈ΛAi)=∏C∗

i∈ΛM(Ai).
(ii) Assume that A is a C∗-algebra. We let {ei | i ∈ Λ} be a set of orthogonal

central projections in Mloc(A) such that sup{ei | i ∈ Λ} = 1. Then it follows that
Mloc(A)=∏C∗

i∈Λ ei Mloc(A).

Proof See [17, Lemma 1.2.21 and Lemma 3.3.6]. �

The next example illustrates Theorem 10.3.30.

Example 10.3.34 Let A be the C∗-direct sum of ℵ0 copies of C. Then Mloc(A) is
the C∗-direct product of ℵ0 copies of C. Let T be the set of all bounded sequences
of complex numbers whose imaginary parts approach zero. Then T is a semiprime
quasi-Baer intermediate ring between A and Mloc(A), but T is not a C∗-subalgebra
of Mloc(A) since T does not form an algebra over C.

The next result provides a characterization and shows the existence of the bound-
edly centrally closed hull of A in terms of B(Q(A)).

Theorem 10.3.35 Let A be a C∗-algebra and B an intermediate C∗-algebra be-
tween A and Mloc(A). Then:

(i) B(Q(A))⊆ Cen(Qb(B))⊆ Cen(Mloc(A)).
(ii) B is boundedly centrally closed if and only if B = BB(Q(A)).

(iii) AB(Q(A)) is the boundedly centrally closed hull of A.

Proof (i) Note that the left (resp., right) multiplication by 1Mloc(A) on B is the iden-
tity map as a left (resp., right) B-module homomorphism of B . Thus it follows that
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1Mloc(A) = 1M(B)(= 1Mloc(B) = 1Q(B)). So

B1 = {b+ λ1Mloc(A) | b ∈ B and λ ∈C},
the subalgebra of Mloc(A) generated by B and 1Mloc(A).

We claim that Q(B1B(Q(A))) = Q(B1) = Q(B). For this, first we prove that
B1
B1 ≤ess B1B(Q(A))B1 . Indeed, take 0 �= α ∈ B1B(Q(A)) ⊆ Mloc(A). Then α =

b1e1 + · · · + bnen, where bi ∈ B1 and ei ∈ B(Q(A)) ⊆ Qb(A) for each i. Since
Q(A) = Q(A1) and Qb(A) = Qb(A

1), there exist norm closed essential ideals Ii
of A1 such that eiIi ⊆ A1 for each i. Hence, I := I1 ∩ · · · ∩ In is a norm closed
essential ideal of A1 and αI ⊆ b1A

1 + · · · + bnA
1 ⊆ B1. As Mloc(A

1) = Mloc(A)

is an essential Ice-enlargement of A1, αI �= 0. Hence, B1
A1 ≤ess B1B(Q(A))A1 and

therefore B1
B1 ≤ess B1B(Q(A))B1 .

Because Z(B1
B1) = 0 and B1

B1 ≤ess B1B(Q(A))B1 , Z(B1B(Q(A))B1) = 0

and so B1
B1 ≤den B1B(Q(A))B1 from Proposition 1.3.14. Therefore, we have that

Q(B1B(Q(A)))=Q(B1)=Q(B).
If e ∈ B(Q(A)), then e ∈ B1B(Q(A))⊆Q(B1B(Q(A)))=Q(B1)=Q(B). As

e ∈ B(Mloc(A)) by Lemma 10.3.14(i), e commutes with every element of B . Fur-
ther, e ∈ Q(B), hence e ∈ Cen(Q(B)) = Cen(Qs(B)). By Proposition 10.3.6(ii), e
is bounded, so e ∈Qb(B). Thus, e ∈ Cen(Qb(B)). Therefore,

B(Q(A))⊆ Cen(Qb(B)).

Note that the involutions on B , B1, and B1B(Q(A)), respectively, are restricted
from the involution of Mloc(A). As B ⊆ B1 ⊆ B1B(Q(A)) ⊆ Qb(B

1), the involu-
tion on Mloc(A) and that on Mloc(B) agree on B1B(Q(A)). So the norm defined
on Mloc(A) and that defined on Mloc(B) agree on B1B(Q(A)). Thus, we see that
B1B(Q(A))Mloc(A) = B1B(Q(A))Mloc(B), where (−)Mloc(A) (resp., (−)Mloc(B)) de-
notes the norm closure in Mloc(A) (resp., Mloc(B)).

By Theorem 10.3.29(iii), B1B(Q(A))Mloc(A)
is boundedly centrally closed.

So, from Theorem 10.3.20, B1B(Q(A))Mloc(B) = B1B(Q(A))Mloc(A) is quasi-

Baer. Hence B1B(Q(A))Mloc(B) is boundedly centrally closed in Mloc(B) by

Theorem 10.3.20. Now B1Cen(Qb(B))Mloc(B) ⊆ B1B(Q(A))Mloc(B) by Theo-
rem 10.3.29(i) and (ii). So

Cen(Qb(B))⊆ B1B(Q(A))Mloc(B) = B1B(Q(A))Mloc(A) ⊆Mloc(A).

From the preceding argument, there is no ambiguity to use B1B(Q(A)) for
B1B(Q(A))Mloc(A) or B1B(Q(A))Mloc(B). Note that elements of Cen(Qb(B)) com-
mute with elements of B1B(Q(A)) since B(Q(A))⊆ Cen(Qb(B)). Thus, elements
of Cen(Qb(B)) commute with elements of B1B(Q(A)). Therefore,

Cen(Qb(B))⊆ Cen(B1B(Q(A)))
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because Cen(Qb(B)) ⊆ B1B(Q(A)). Since B1B(Q(A)) is an intermediate C∗-
algebra between A and Mloc(A), Cen(B1B(Q(A)) ) ⊆ Cen(Mloc(A)) from Theo-
rem 10.3.27(i). Thus, Cen(Qb(B)) ⊆ Cen(Mloc(A)). Consequently, we have that
B(Q(A))⊆ Cen(Qb(B))⊆ Cen(Mloc(A)).

(ii) First, we note that part (i) and Lemma 10.3.14(ii) yield that

BB(Q(A))⊆ BCen(Qb(B))⊆ BCen(Mloc(A))⊆ BB(Q(A)).

Thus, BB(Q(A)) = BCen(Qb(B)). Assume that B is boundedly centrally closed.
Then B = BCen(Qb(B)) = BB(Q(A)). Conversely, if B = BB(Q(A)), then we
get that B = BCen(Qb(B)), so B is boundedly centrally closed.

(iii) Clearly, A ⊆ AB(Q(A)). Let U = AB(Q(A)). Then UB(Q(A)) = U , so
U is boundedly centrally closed by part (ii). Next, let B be a boundedly centrally
closed intermediate C∗-algebra between A and Mloc(A). From part (ii), U ⊆ B . So
AB(Q(A)) is the boundedly centrally closed hull of A. �

The next result is of interest in its own right.

Corollary 10.3.36 Let A be a C∗-algebra and B an intermediate C∗-algebra be-
tween A and Mloc(A). Then:

(i) B(Q(B))= B(Q(A)).
(ii) Cen(Mloc(B))= Cen(Mloc(A)).

Proof (i) Say f ∈ B(Q(B)). Then f ∈ Cen(Qb(B)) by Proposition 10.3.6(ii),
so f ∈ B(Mloc(A)) = B(Q(A)) by Theorem 10.3.35(i) and Lemma 10.3.14(i).
Conversely, let e ∈ B(Q(A)). Then e ∈ Cen(Qb(B)) by Theorem 10.3.35(i). So
e ∈ B(Q(B)) from Lemma 10.3.14(i).

(ii) As in the proof of Theorem 10.3.35(i), the norm closure of the linear
span of B(Q(A)) and that of the linear span of B(Q(B)) is the same in both
Mloc(A) and Mloc(B) because B(Q(A)) = B(Q(B)) by part (i). So we have that
CB(Q(A))Mloc(A) = CB(Q(A))Mloc(B) = CB(Q(B))Mloc(B) as in the proof of The-
orem 10.3.35(i). Hence Cen(Mloc(B))= Cen(Mloc(A)) by Lemma 10.3.14(ii). �

Now we study the extended centroid of a C∗-algebra. For this, a prime C∗-
algebra A is characterized via the extended centroid of A as follows.

Lemma 10.3.37 Let A be a C∗-algebra. Then A is prime if and only if the extended
centroid of A is C.

Proof Let A be prime. By the proof of Theorem 10.3.23, Cen(Qb(A)) = C. Since
Cen(Q(A)) = Qr

c�(Cen(Qb(A))) from Theorem 10.3.24, Cen(Q(A)) = C. Con-
versely, if Cen(Q(A)) = C, then A is prime by Remark 10.1.16 because A is
semiprime. �
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In Theorem 10.3.38, a C∗-algebra whose extended centroid is a direct product of
copies of C is characterized. Moreover, Theorem 10.3.38 characterizes a C∗-algebra
A such that Mloc(A) is a C∗-direct product of prime C∗-algebras.

Theorem 10.3.38 Let A be a C∗-algebra and let Λ be an index set. Then the fol-
lowing are equivalent.

(i) There is a set of uniform ideals {Ui | i ∈Λ} of A such that CUi = Ui for each
i,
∑

i∈ΛUi =⊕

i∈ΛUi , and �A(
⊕

i∈ΛUi)= 0.
(ii) The extended centroid of A is C|Λ|.

(iii) Mloc(A) is a C∗-direct product of |Λ| unital prime C∗-algebras.
(iv) Cen(Mloc(A)) is a C∗-direct product of |Λ| copies of C.

Proof (i)⇒(ii) From Theorem 10.1.17 and Proposition 10.1.4, there exists a set of
nonzero orthogonal idempotents {ei | i ∈Λ} ⊆ B(Q(A)) such that

Q(A)=
∏

i∈Λ
eiQ(A)

and each eiQ(A) is prime. As ei ∈ B(Q(A))= B(Mloc(A)) (Lemma 10.3.14(i)) and
ei is a projection (Proposition 10.3.6(ii)), eiA is a C∗-algebra. As in the argument
for the proof of (i)⇒(vi) of Theorem 10.1.17, eiA is prime and Q(eiA)= eiQ(A).
Thus, C = Cen(Q(eiA))= Cen(eiQ(A)) by Lemma 10.3.37. Therefore we get that
Cen(Q(A))=∏

i∈Λ Cen(eiQ(A))=∏

i∈ΛC = C
|Λ|.

(ii)⇒(i) The proof follows from Theorem 10.1.17 and Proposition 10.1.4.
(i)⇒(iii) As in the proof of (i)⇒(ii), there exists a set of nonzero orthogonal

idempotents {ei | i ∈ Λ} ⊆ B(Q(A)) such that Q(A) = ∏

i∈Λ eiQ(A) and each
eiQ(A) is prime. Hence, {ei | i ∈ Λ} ⊆ B(Mloc(A)) = B(Q(A)). Further, each ei
is a projection by Proposition 10.3.6(ii).

By Theorem 10.1.17, sup {ei | i ∈Λ} = 1. Indeed, we note that A is right nonsin-
gular and thus A1 is right nonsingular. Hence, Q(A)=Q(A1) is regular right self-
injective from Theorem 2.1.31. So B(Q(A)) is a complete Boolean algebra from
Corollary 8.3.14. Say f ∈ B(Q(A)) such that f = sup{ei | i ∈ Λ}. As ei = eif

for all i, 1 − f = (ei(1 − f ))i∈Λ = 0 in
∏

i∈Λ eiQ(A), so f = 1. From Proposi-

tion 10.3.33(ii), Mloc(A)=∏C∗
i∈Λ eiMloc(A).

Now Mloc(A) = eiMloc(A) ⊕ (1 − ei)Mloc(A), therefore we have that
B(eiMloc(A)) = eiB(Mloc(A)). By Lemma 10.3.14(i), B(Mloc(A)) = B(Q(A)).
Hence, B(eiMloc(A))= eiB(Q(A))= B(eiQ(A)).

Note that eiQ(A) is prime, so eiMloc(A) is indecomposable as a ring since
B(eiMloc(A)) = B(eiQ(A)) = {0, ei}. Because eiMloc(A) is semiprime, we see
that S�(eiMloc(A)) = B(eiMloc(A)) = {0, ei} by Proposition 1.2.6(ii). From The-
orem 10.3.10, Mloc(A) is quasi-Baer. Thus Theorem 3.2.10 yields that eiMloc(A)

is quasi-Baer. As eiMloc(A) is semicentral reduced, eiMloc(A) is prime by Proposi-
tion 3.2.5. Further, as ei is a projection, eiMloc(A) is a prime C∗-algebra for each i.

(iii)⇒(iv) Let Mloc(A)=∏C∗
i∈ΛMi , where each Mi is a unital prime C∗-algebra.

Then Cen(Mloc(A)) = ∏C∗
i∈Λ Cen(Mi). Each Mi is boundedly centrally closed by
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Theorem 10.3.23. Thus Cen(Mi) is an AW ∗-algebra from Corollary 10.3.22. So
Proposition 10.3.13 yields that Cen(Mi)= C because 1 is the only nonzero projec-
tion in Cen(Mi).

(iv)⇒(i) From the fact that Cen(Mloc(A)) = ∏C∗
i∈ΛC, Lemma 10.3.14(i), and

modification of the proof of (i)⇒(iii), there is a set of nonzero orthogonal idempo-
tents {ei | i ∈ Λ} ⊆ B(Mloc(A)) = B(Q(A)), and 1 = sup{ei | i ∈ Λ}. By the proof
of Corollary 10.1.11, there exists a ring isomorphism

φ :Q(A)→
∏

i∈Λ
eiQ(A),

where φ(q)= (eiq)i∈Λ for q ∈Q(A).
As C = eiCen(Mloc(A)) = Cen(eiMloc(A)), B(eiMloc(A)) = {0, ei}. Now

B(eiQ(A)) = eiB(Q(A)) = eiB(Mloc(A)) = B(eiMloc(A)) since ei ∈ B(Q(A))

and B(Q(A)) = B(Mloc(A)) by Lemma 10.3.14(i). Thus, Cen(eiQ(A)) has 0 and
ei as its only idempotents. So each Cen(eiQ(A)) = Cen(Q(eiQ(A))) is a field as
eiQ(A) is semiprime and Cen(eiQ(A)) is regular from Theorem 10.1.15. By Re-
mark 10.1.16, each eiQ(A) is prime. Let Qi = φ−1(eiQ(A)). Then it follows that
Q(A)=∏

i∈ΛQi and each Qi is prime. So Theorem 10.1.17 and Proposition 10.1.4
yield part (i). �

Theorem 10.3.38 is applied to AW ∗-algebras as follows.

Corollary 10.3.39 Let A be an AW ∗-algebra and ℵ a cardinal number. Then the
following are equivalent.

(i) The extended centroid of A is Cℵ.
(ii) A is a C∗-direct product of ℵ prime AW ∗-algebras.

(iii) Cen(A) is a C∗-direct product of ℵ copies of C.

Proof If A is an AW ∗-algebra, then Mloc(A) = A by Theorem 10.3.18. Thus, the
result follows immediately from Theorem 10.3.38. �

Corollary 10.3.40 Let A be a C∗-algebra, B an intermediate C∗-algebra between
A and Mloc(A), and ℵ a cardinal number. Then the extended centroid of A is Cℵ if
and only if the extended centroid of B is Cℵ.

Proof Corollary 10.3.36(ii) and Theorem 10.3.38 yield the result. �

Next we consider the case when the index set Λ in Theorem 10.3.38 is finite. In
general, QqB(A

1) may not be norm complete. However, the following result pro-
vides a sufficient condition for QqB(A

1) to be a C∗-algebra.

Theorem 10.3.41 Let A be a C∗-algebra and n a positive integer. Then the follow-
ing are equivalent.
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(i) A has exactly n minimal prime ideals.
(ii) QqB(A

1) is a direct sum of n prime C∗-algebras.
(iii) The extended centroid of A is Cn.
(iv) Mloc(A) is a direct sum of n prime C∗-algebras.
(v) Cen(Mloc(A))= C

n.

Proof The equivalence of (iii), (iv), and (v) follows from Theorem 10.3.38.
(i)⇒(ii) By Theorem 10.1.19, A1 has exactly n minimal prime ideals. Let

P1, . . . ,Pn be all the minimal prime ideals of A1. Then by Theorem 10.1.20,
QqB(A

1) = S1 ⊕ · · · ⊕ Sn, where each Si is a prime ring. Let Ki = ⊕j �=iSj for
each i. From the proof of Theorem 10.1.20, {K1, . . . ,Kn} is the set of all minimal
prime ideals of QqB(A

1) and

QqB(A
1)∼=QqB(A

1)/K1 ⊕ · · · ⊕QqB(A
1)/Kn,

where Ki ∩A1 = Pi and Ki = eiQqB(A
1) with ei ∈ B(Q(A))= B(Q(A1)).

We show that each Pi is norm closed in A1. For this, assume that {xn} is a
sequence in Pi with limn→∞ xn = x ∈ A1. Observe from Theorems 8.3.17 and
10.3.7(i), that ei ∈QqB(A

1)⊆Qb(A
1)⊆Mloc(A

1). Therefore,

xei = (limn→∞ xn)ei = limn→∞ (xnei)= limn→∞ xn = x

because Pi ⊆ QqB(A
1)ei ⊆ Mloc(A

1). Hence x = xei ∈ QqB(A
1)ei ∩ A1 = Pi , so

Pi is a norm closed ideal of A1. Thus Pi is self-adjoint and A1/Pi is a C∗-algebra
(since ei ∈ B(Q(A1)) = B(Mloc(A

1)) is a projection from Lemma 10.3.14(i) and
Proposition 10.3.6(ii), we also see that each Pi is self-adjoint).

As QqB(A
1)= ⊕n

i=1Si and Ki = ⊕j �=iSj = eiQqB(A
1), we have that

Si = (1 − ei)QqB(A
1).

Since ei is a projection and central, Si is a ∗-algebra for each i. Also by Theo-
rem 10.3.7(i), QqB(A

1) is a ∗-subalgebra of Mloc(A
1).

Now let φ : A1/Pi → QqB(A
1)/Ki be defined by φ(a + Pi) = a + Ki , where

a ∈A1. Then φ is an isomorphism from Lemma 8.3.26(i). Further, Ki is self-adjoint
as Si is self-adjoint. So φ is a ∗-isomorphism. We define

ϕ :QqB(A
1)/Ki → (1 − ei)QqB(A

1)= Si by ϕ(q +Ki)= (1 − ei)q,

where q ∈ QqB(A
1). Then ϕ is also a ∗-isomorphism. So ϕφ is a ∗-isomorphism

from A1/Pi to Si . Thus Si is a C∗-subalgebra of Mloc(A
1). Hence,

QqB(A
1)= ⊕n

i=1Si

is a C∗-subalgebra of Mloc(A
1), where each Si is a prime C∗-algebra.

(ii)⇒(iii) Assume that QqB(A
1) = ⊕n

i=1Si , where each Si a prime C∗-algebra.
Then Cen(Q(Si))= C from Lemma 10.3.37. Therefore,

Cen(Q(A))= Cen(Q(A1))= Cen(Q(QqB(A
1)))= ⊕n

i=1Cen(Q(Si))= C
n.

(iii)⇒(i) It follows from Theorem 10.1.19. �
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Corollary 10.3.42 Let A be a C∗-algebra and B an intermediate C∗-algebra be-
tween A and Mloc(A). Then for any positive integer n, A has exactly n minimal
prime ideals if and only if B has exactly n minimal prime ideals.

Proof The result follows from Corollary 10.3.36(ii) and Theorem 10.3.41. �

It is well known that A ∗G and AG are C∗-algebras when A is a C∗-algebra and
G is a finite group of X-outer ∗-automorphisms of A (see [17, p. 140]). Since C∗-
algebras are semiprime, we obtain the next result from Theorems 9.2.10 and 10.3.20.

Theorem 10.3.43 Let A be a unital C∗-algebra and G a finite group of X-outer
∗-automorphisms of A. Then the following are equivalent.

(i) A ∗G is a quasi-AW ∗-algebra.
(ii) A is G-quasi-Baer.

(iii) AG is a quasi-AW ∗-algebra.

Let A be a quasi-AW ∗-algebra and G be a finite group of X-outer ∗-auto-
morphisms of A. Then A ∗ G and AG are quasi-AW ∗-algebras from Theo-
rem 10.3.43. We recall that if G is a group of X-outer ∗-automorphisms of a
C∗-algebra A, then G is also a group of X-outer ∗-automorphisms on Qb(A).

Corollary 10.3.44 (i) Let A be a unital C∗-algebra and G a finite group of X-outer
∗-automorphisms of A. Then Qb(A) ∗G and Qb(A)

G are quasi-Baer.
(ii) Let A be a C∗-algebra. If G is a finite group of X-outer ∗-automorphisms of

Mloc(A), then Mloc(A) ∗G and Mloc(A)
G are quasi-AW ∗-algebras.

Proof (i) By Theorem 10.3.7(ii), Qb(A) is a quasi-Baer ∗-algebra. Thus from The-
orem 9.2.10, Qb(A) ∗G and Qb(A)

G are quasi-Baer.
(ii) By Theorem 10.3.20 and Corollary 10.3.21(i), Mloc(A) is a quasi-AW ∗-

algebra. So Theorem 10.3.43 yields that Mloc(A)∗G and Mloc(A)
G are quasi-AW ∗-

algebras. �

Corollary 10.3.45 If A is a unital C∗-algebra with only finitely many minimal
prime ideals and G is a finite group of X-outer ∗-automorphisms of A, then
QqB(A) ∗G and QqB(A)

G are quasi-AW ∗-algebras.

Proof From Theorem 10.3.41, QqB(A) is a C∗-algebra. Because QqB(A) is quasi-
Baer, it is a quasi-AW ∗-algebra. We observe that G is also a group of X-outer ∗-
automorphisms of QqB(A). Therefore Theorem 10.3.43 yields that QqB(A)∗G and
QqB(A)

G are quasi-AW ∗-algebras. �

Theorem 10.3.46 Let A be a C∗-algebra and n a positive integer. Assume that
any one of conditions (i) through (v) of Theorem 10.3.41 is satisfied. Then every
boundedly centrally closed intermediate C∗-algebra between A and Mloc(A) is a
direct sum of n prime C∗-algebras.
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Proof Let B be any boundedly centrally closed intermediate C∗-algebra between A
and Mloc(A). We prove that B is a direct sum of n prime C∗-algebras.

First suppose that B is unital. From Theorem 10.3.20, B is a quasi-Baer ring.
Also Cen(Mloc(B)) = Cen(Mloc(A)) = C

n by Corollary 10.3.36(ii) and Theo-
rem 10.3.41. Thus B = QqB(B) is a direct sum of n prime C∗-algebras by The-
orem 10.3.41.

Next assume that B is nonunital. Now because B is boundedly centrally closed,
B = BB(Q(A)) by Theorem 10.3.35(ii). As in the proof of Theorem 10.3.35(i),
B1 = {b + λ1Mloc(A) | b ∈ B and λ ∈ C} ⊆ Mloc(A). Now BB(Q(A)) is an ideal

of B1B(Q(A)), and so B = BB(Q(A)) � B1B(Q(A)). Note that the C∗-algebra
B1B(Q(A)) is unital and boundedly centrally closed by Theorem 10.3.29(iii), so it
is a direct sum of n prime C∗-algebras from the preceding argument. Say

B1B(Q(A))= e1 B1B(Q(A))⊕ · · · ⊕ en B1B(Q(A)),

where each ei B1B(Q(A)) is a prime C∗-algebra and e1, . . . , en are nonzero orthog-
onal central idempotents in B1B(Q(A)) with e1 + · · · + en = 1.

Hence ei ∈ B((Mloc(A))) as Cen(B1B(Q(A))) ⊆ Cen(Mloc(A)) from Theo-
rem 10.3.27(i) (so ei ∈ B(Q(A)) by Lemma 10.3.14(i)). Thus, we have that

Mloc(A)= e1Mloc(A)⊕ · · · ⊕ enMloc(A).

Also note that each ei is a projection by Proposition 10.3.6(i).
Since each eiMloc(A) is a C∗-algebra, it is a norm closed ideal of Mloc(A).

Therefore, eiMloc(A) ∩ A �= 0 from the proof of Theorem 10.3.29(ii). Hence,
0 �= eiMloc(A) ∩ B = eiMloc(A) ∩ B ∩ B1B(Q(A)) = ei B1B(Q(A)) ∩ B as
eiMloc(A)∩B1B(Q(A))= ei B1B(Q(A)). Since B � B1B(Q(A)),

B = (e1 B1B(Q(A)) ∩B)⊕ · · · ⊕ (en B1B(Q(A)) ∩B).

We claim that ei B1B(Q(A))∩B = eiB . First, we observe that eiB ⊆ B because
B � B1B(Q(A)) and ei ∈ B(Q(A))⊆ B1B(Q(A)). Therefore,

eiB ⊆ ei B1B(Q(A))∩B.

Clearly, ei B1B(Q(A))∩B ⊆ eiB . Thus ei B1B(Q(A))∩B = eiB .
Therefore, B = e1B ⊕ · · · ⊕ enB and eiB �= 0 for each i (by our preceding argu-

ment eiB = eiMloc(A) ∩ B �= 0). From Proposition 8.3.55(ii), each eiB is a prime
ring because eiB � ei B1B(Q(A)) and ei B1B(Q(A)) is a prime ring. Therefore, B
is a direct sum of n prime C∗-algebras eiB . �

For other application of Theorem 10.3.41, we start with the next lemma.

Lemma 10.3.47 Let R be a ring with a finite group G of ring automorphisms of R
such that R ∗G is semiprime.
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(i) If I is a nonzero G-invariant right ideal of R, then tr(I ) �= 0.
(ii) udim(RR) < ∞ if and only if udim(RG

RG) < ∞, and in this case we have
that udim(RG

RG)≤ udim(RR)≤ udim(RG
RG) |G|.

Proof (i) Recall that

tr(a)=
∑

g∈G
ag, tr(I )= {tr(a) | a ∈ I }, and t =

∑

g∈G
g ∈R ∗G.

Then for a ∈ I , tat = tr(a)t . So, if tr(I ) = 0, then tI t = 0. As a consequence,
(tI )(tI )= (tI t)I = 0. Note that tI is a right ideal of R ∗G and R ∗G is semiprime,
and therefore tI = 0. Thus I = 0, a contradiction.

(ii) Let udim(RR) = n < ∞ and ⊕k
i=1aiR

G (with ai ∈ RG) be a direct sum of

nonzero right ideals aiRG of RG. We show that
∑k

i=1 aiR = ⊕k
i=1aiR. For this,

let I = a1R ∩ (a2R + · · · + akR). Then I is a G-invariant right ideal of R. We
see that tr(I )⊆ a1tr(R)∩ (

∑k
i=2 ai tr(R))⊆ a1R

G ∩ (
∑k

i=2 aiR
G)= 0. By part (i),

I = 0. Similarly, a2R ∩ (a1R + a3R + · · · + akR) = 0, and so on. Consequently,
∑k

i=1 aiR = ⊕k
i=1aiR. Therefore k ≤ n, and so udim(RG

RG)≤ n.
Next, assume that udim(RG

RG) = m < ∞. If I ∩ RG �= 0 for all nonzero right
ideal I of R, then udim(RR)≤m and hence udim(RR)≤m|G|.

Say I ∩ RG = 0 for some nonzero right ideal I of R. By Zorn’s lemma, there
exists a nonzero right ideal K of R maximal with respect to K ∩RG = 0. We claim
that udim((R/K)R) ≤ m. For this, we assume that ⊕�

i=1(Ki/K) is a direct sum of
nonzero R-submodules of (R/K)R . As Ki/K �= 0, Ki ∩RG �= 0 for each i, by the
choice of K .

We note that (K1 ∩RG)∩ (
∑�

i=2(Ki ∩RG))⊆K ∩RG = 0, thus we obtain that
(K1 ∩ RG) ∩ (

∑�
i=2(Ki ∩ RG)) = 0. Also, (Kj ∩ RG) ∩ (

∑�
i �=j (Ki ∩ RG)) = 0

for all j . Thus,
∑�

i=1(Ki ∩RG)= ⊕�
i=1(Ki ∩RG), and so �≤ udim(RG

RG)=m.
Thus, we obtain udim((R/K)R)≤m.

Observe that Kg = {xg | x ∈ K} is a nonzero right ideal of R which is also
maximal with respect to the property that Kg ∩ RG = 0. Similarly, we obtain that
udim((R/Kg)R) ≤ m for all g ∈ G. Because ∩g∈GKg is a G-invariant right ideal
of R and (∩g∈GKg) ∩ RG = 0, tr(∩g∈GKg) = 0. Therefore, ∩g∈GKg = 0 by part
(i). Thus, R can be embedded in

∏

g∈G(R/Kg) as a right R-module. Consequently,
udim(RR)≤m|G|. �

Recall that MinSpec(−) denotes the set of all minimal prime ideals of a ring.
For an application of Theorem 10.3.41, we discuss the following result which ex-
hibits an interesting relationship between the numbers of minimal prime ideals of A,
AG, and A ∗ G when G is a finite group of X-outer ∗-automorphisms of a unital
C∗-algebra A.

Theorem 10.3.48 Let A be a unital C∗-algebra and G a finite group of X-outer
∗-automorphisms of A. Then the following are equivalent.
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(i) |MinSpec(A)|<∞.
(ii) |MinSpec(AG)|<∞.

(iii) |MinSpec(A ∗G)|<∞.

In this case, |MinSpec(A ∗G)| = |MinSpec(AG)| and

|MinSpec(AG)| ≤ |MinSpec(A)| ≤ |MinSpec(AG)| |G|.

Proof We use udim(−) to denote the right uniform dimension of a ring. Since G is
X-outer on Q(A), Lemmas 9.2.4, 9.2.7, 9.2.9(ii), and Proposition 9.2.8 yield that

Cen(Q(A ∗G)) = Cen(Q(A) ∗G)= [Cen(Q(A))]G = Cen(Q(A)G)

∼= Cen(Q(AG)).

(i)⇒(ii) and (i)⇒(iii) Let |MinSpec(A)| = n < ∞. Then Cen(Q(A)) = C
n

by Theorem 10.3.41. Hence, udim(Cen(Q(A))) = n. We observe that G in-
duces a group H of ring automorphisms of Cen(Q(A)) and H is a homomor-
phic image of G. Because |H | is invertible in Cen(Q(A)), Cen(Q(A)) ∗ H is
semiprime by Lemma 9.2.3(ii). Now udim([Cen(Q(A))]H ) ≤ udim(Cen(Q(A)))

from Lemma 10.3.47. We let k = udim([Cen(Q(A))]H ). Then k ≤ n.
We observe that [Cen(Q(A))]H = [Cen(Q(A))]G ∼= Cen(Q(AG)). Also note

by Lemma 9.2.3(ii) that AG is semiprime. Hence Cen(Q(AG)) is regular by
Theorem 10.1.15. Therefore, Cen(Q(AG)) is a direct sum of k fields because
udim(Cen(Q(AG)))= udim([Cen(Q(A))]H )= k <∞. So |MinSpec(AG)| = k by
Theorem 10.1.19. As Cen(Q(A ∗ G)) ∼= Cen(Q(AG)), Cen(Q(A ∗ G)) is a direct
sum of k fields. Thus, |MinSpec(A ∗ G)| = |MinSpec(AG)| = k ≤ n from Theo-
rem 10.1.19.

(ii)⇔(iii) This equivalence follows immediately from Theorem 10.1.19 and the
fact that Cen(Q(A ∗G))∼= Cen(Q(AG)).

(ii)⇒(i) Let |MinSpec(AG)| = k < ∞. Since AG is a C∗-algebra, we have
that Cen(Q(AG)) = C

k from Theorem 10.3.41. As before, G induces a group
H of ring automorphisms of Cen(Q(A)) and H is a homomorphic image
of G. We note that [Cen(Q(A))]H = [Cen(Q(A))]G ∼= Cen(Q(AG)) = C

k , thus
udim([Cen(Q(A))]H ) = k. Since |H | is invertible, Cen(Q(A)) ∗ H is semiprime
by Lemma 9.2.3(ii). Therefore, from Lemma 10.3.47,

udim([Cen(Q(A))]H )≤ udim(Cen(Q(A)))≤ udim([Cen(Q(A))]H )|H |.

Hence, udim([Cen(Q(A))]G) ≤ udim(Cen(Q(A))) ≤ udim([Cen(Q(A))]G)|G|
because |H | ≤ |G| and [Cen(Q(A))]G = [Cen(Q(A))]H . Now we observe that
udim([Cen(Q(A))]G)= udim([Cen(Q(A))]H )= k. Therefore,

n := udim(Cen(Q(A)))≤ k|G|.

Since Cen(Q(A)) is regular from Theorem 10.1.15, Cen(Q(A)) is a finite direct
sum of n fields. So |MinSpec(A)| = n by Theorem 10.1.19. In this case,
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|MinSpec(A ∗G)| = udim(Cen(Q(A) ∗G))= udim([Cen(Q(A))]G)
= udim(Cen(Q(AG)))= |MinSpec(AG)|.

Thus, |MinSpec(AG)| ≤ |MinSpec(A)| ≤ |MinSpec(AG)| |G|. �

Recall that Tdim(−) denotes the triangulating dimension of a ring.

Theorem 10.3.49 Let A be a quasi-AW ∗-algebra and G a finite group of X-outer
∗-automorphisms of A. Then:

(i) Tdim(A ∗G)= Tdim(AG).
(ii) Tdim(A ∗G)≤ Tdim(A)≤ Tdim(A ∗G) |G|.

(iii) If Tdim(A) = n < ∞, then there exists a positive integer k ≤ n such that both
A ∗G and AG are direct sums of k prime C∗-algebras.

Proof (i) From Theorem 10.3.43, A ∗ G and AG are quasi-AW ∗-algebras. So
A ∗ G and AG are quasi-Baer rings. If Tdim(A ∗ G) = n < ∞, then we see that
n = |MinSpec(A ∗ G)| = |MinSpec(AG)| = Tdim(AG) by Theorems 5.4.20 and
10.3.48. Next, if Tdim(A ∗ G) = ∞, then |MinSpec(A ∗ G)| = ∞ from Theo-
rem 5.4.20. By Theorem 10.3.48, |MinSpec(AG)| = ∞. Hence, Tdim(AG) = ∞
from Theorem 5.4.20. Therefore, Tdim(A ∗G)= Tdim(AG).

(ii) By Theorems 10.3.48 and 5.4.20, if any one of Tdim(A),Tdim(A ∗G), and
Tdim(AG) is finite, then all are finite. Also

Tdim(A ∗G)≤ Tdim(A)≤ Tdim(A ∗G) |G|.

If one of Tdim(A), Tdim(A ∗G), and Tdim(AG) is infinite, then we are also done
by Theorems 10.3.48 and 5.4.20.

(iii) Assume that Tdim(A) = n < ∞. Then |MinSpec(A)| = n by Theo-
rem 5.4.20. From Theorem 10.3.48, |MinSpec(A ∗G)| = |MinSpec(AG)| = k ≤ n

for some k. Therefore, A ∗ G and AG are direct sums of k prime C∗-algebras by
Theorem 10.3.41. �

There exist a quasi-AW ∗-algebra A and a finite group G of X-outer ∗-
automorphisms of A such that Tdim(A ∗ G) � Tdim(A) as the next example il-
lustrates.

Example 10.3.50 Let A = C
n with n ≥ 2 and ∗ be the componentwise conju-

gate involution. Define g ∈ Aut(A) by g(a1, a2, . . . , an) = (a2, a3, . . . , an, a1) for
(a1, a2, . . . , an) ∈ A. Then g is an X-outer ∗-automorphism and gn = 1. Let G be
the cyclic group generated by g. Then G is X-outer. By Lemma 9.2.3(i), AG is
semiprime. Note that S�(AG) = B(AG) = {0,1}. Therefore AG is semicentral re-
duced, so Tdim(AG) = 1. By Theorem 10.3.49, Tdim(A ∗ G) = Tdim(AG) = 1.
But Tdim(A)= n≥ 2.
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Proposition 10.3.51 Let A be a unital C∗-algebra and let G be a finite group of
∗-automorphisms of A. Then the following are equivalent.

(i) AA∗G is a (strongly) FI-extending module.
(ii) AA∗G is a quasi-Baer module.

(iii) AG is a quasi-AW ∗-algebra.

Further, if G is X-outer, then the conditions (iv) and (v) are equivalent to the
conditions (i)–(iii).

(iv) A ∗G is a quasi-AW ∗-algebra.
(v) A is G-quasi-Baer.

Proof Note that End(AA∗G) ∼= AG. Because |G| is invertible, we see that e =
|G|−1(

∑

g∈G g) ∈ A ∗ G is an idempotent. Define θ : AA∗G → e(A ∗ G)A∗G by
θ(a) = ea for a ∈ A. Then AA∗G ∼= e(A ∗ G)A∗G via θ . Thus AA∗G is a finitely
generated projective module. Hence, the equivalence of (i)–(iii) follows from Theo-
rems 3.2.37, 8.4.20 and Lemma 9.2.3(ii).

Further, assume that G is X-outer. Then (iii), (iv), and (v) are equivalent by The-
orem 10.3.43. �

The following is a well known result which describes finite dimensional C∗-
algebras (see [136, Theorem III.1.1]).

Theorem 10.3.52 Any finite dimensional C∗-algebra is unital and ∗-isomor-
phic to Matm1(C)⊕ · · · ⊕ Matmt (C), where m1, . . . ,mt are positive integers.

In the next result, we characterize C∗-algebras satisfying a PI with only finitely
many minimal prime ideals.

Theorem 10.3.53 Let A be a C∗-algebra. Then the following are equivalent.

(i) A satisfies a PI and has exactly n minimal prime ideals.
(ii) A ∼= Matk1(C) ⊕ · · · ⊕ Matkn(C) (∗-isomorphic) for some positive integers

k1, . . . , kn.

Proof (i)⇒(ii) Assume that A satisfies a polynomial identity. Then since A is
semiprime, by Theorem 8.3.52, A satisfies a standard identity

fm(x1, x2, . . . , xm)=
∑

σ∈Sm
sgn(σ )xσ(1)xσ(2) · · ·xσ(m).

Also for any k ≥m, A satisfies fk(x1, x2, . . . , xk) by Theorem 8.3.52. Thus we may
assume that m≥ 3.

Let g(x1, . . . , xm)= fk(x1x2 −x2x1, . . . , x1xm−xmx1, x2x3 −x3x2, . . . , x2xm−
xmx2, . . . , xm−1xm − xmxm−1), where k = (m− 1)m/2. Then the coefficient of one
of the monomials in g with maximal degree is 1.
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We claim that A = A1. For this, assume on the contrary that A is not unital.
Since A1/A ∼= C, αβ − βα ∈ A for all α,β ∈ A1. Thus A1 satisfies g(x1, . . . , xm).
Hence A1 is also a PI-ring. By Theorem 10.1.19, A1 also has exactly n minimal
prime ideals. Let {P1, . . . ,Pn} be the set of all minimal prime ideals of A1. From
Theorem 10.1.20 and the proof of Theorem 10.3.41,

QqB(A
1)∼=A1/P1 ⊕ · · · ⊕A1/Pn

and each A1/Pi is a prime C∗-algebra.
For each i, Q(A1/Pi) = (A1/Pi)Cen(Q(A1/Pi)) = A1/Pi , and A1/Pi is finite

dimensional over its center C by Theorem 3.2.19 since A1/Pi is prime PI. Also
there exist a positive integer ki and a division ring Di such that A1/Pi ∼= Matki (Di)

for each i by Theorem 3.2.19. Now Di = C because Di is finite dimensional over
its center C, and C is algebraically closed. Therefore, A1/Pi ∼= Matki (C) for all i,
so each Pi is a maximal ideal. As ∩n

i=1Pi = 0,

A1 ∼=A1/P1 ⊕ · · · ⊕A1/Pn ∼= Matk1(C)⊕ · · · ⊕ Matkn(C)

(∗-isomorphic) by the Chinese Remainder Theorem and Theorem 10.3.52. Since A1

is finite dimensional, A is also finite dimensional, so A is unital by Theorem 10.3.52,
a contradiction. Hence A=A1, so

A∼= Matk1(C)⊕ · · · ⊕ Matkn(C).

(ii)⇒(i) Clearly, A is a PI-ring with exactly n minimal prime ideals. �

Exercise 10.3.54

1. Prove that M(A) and A1 are C∗-algebras for any C∗-algebra A.
2. ([17, Ara and Mathieu]) Prove that the bounded central closure of a C∗-algebra

A is boundedly centrally closed.
3. ([97, Birkenmeier, Park, and Rizvi]) Assume that A is a C∗-algebra and B is

an intermediate C∗-algebra between A and Mloc(A). Show the following holds
true.
(i) M(B)Cen(Qb(M(B)))=M(B)B(Q(A)).

(ii) M(B) is boundedly centrally closed if and only if B(Q(A))⊆M(B).
4. ([96, Birkenmeier, Park, and Rizvi]) Let A be a C∗-algebra, and let Λ be an index

set. Show that the following are equivalent.
(i) Any one of conditions (i) through (iv) of Theorem 10.3.38.

(ii) There exists a ∗-monomorphism ϕ from M(A) to a C∗-direct product M of
|Λ| unital prime C∗-algebras such that ϕ(M(A))ϕ(A) ≤ess Mϕ(A).

(iii) There exists a set of nonzero orthogonal idempotents {ei | i ∈ Λ} in
B(Q(A)) such that:
(1) Each eiA is a prime C∗-algebra.
(2) For each a ∈A, a is identified with (eia)i∈Λ ∈∏C∗

i∈Λ eiA.

In this case, prove that (⊕C∗
i∈Λ(eiA ∩A))A ≤ess AA ≤ess (

∏C∗
i∈Λ eiA)A and each

eiA∩A is a prime C∗-algebra.
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5. Let A be a unital C∗-algebra. Show that the bounded central closure of A con-
tains a nonzero homomorphic image of A/K for every nonessential ideal K of A.
(Hint: see Corollary 8.3.48.)

6. ([30, Armendariz, Birkenmeier, and Park]) Let A be a semiprime Banach alge-
bra. Show that if V � A, then VA ≤ess V A. Hence, every (essentially) closed
ideal is norm closed.

Historical Notes When M is an (S,R)-bimodule, d(M) = d(SMR) is defined
by Jain, Lam, and Leroy in [226]. Definition 10.1.2 and Results 10.1.3–10.1.9 are
taken from [96]. Theorems 10.1.10, 10.1.12, and 10.1.13 were shown by Birken-
meier, Park, and Rizvi [96]. We remark that the statement and the proof of part (iii)
of Theorem 10.1.10 correct [96, Theorem 3.9(iii)]. The proof of Corollary 10.1.11
from [96], modifies the proof of a result of Jain, Lam, and Leroy in [226]. Also
Example 10.1.14 appears in [96]. Theorem 10.1.17, Example 10.1.18, and Theo-
rem 10.1.20 are in [96]. Theorem 10.1.19 is a well known result. The equivalence
of (iv) and (v) of Theorem 10.1.19 was shown by Amitsur in [7]. Theorem 10.1.22
appears in [101].

In [10] and [384], it is shown that if R is a reduced ring, then R/P is a domain
for any minimal prime ideal P of R. By Theorem 10.1.20, if R is a reduced ring
with only n minimal prime ideals, then ̂QqB(R) is a direct sum of n domains.

Proposition 10.2.7 is a new unpublished result. Example 10.2.9 is taken
from [246]. Most results of Sect. 10.2 are taken from [65, 77], and [97]. Results of
this section are concerned with Baer ∗-rings and quasi-Baer ∗-rings. Some of them
are applied in Sect. 10.3. Quasi-Baer ∗-rings in Definition 10.2.2 and semiproper
involutions in Definition 10.2.8 were introduced in [65]. Example 10.2.17 and The-
orem 10.2.18 appear in [77], while Theorem 10.2.20 is in [65]. Theorems 10.2.21
and 10.2.23 appear in [97]. Further work on Baer ∗-rings appears in [401] and [402].

Proposition 10.3.6(i) and (ii) are in [17, Remark 2.2.9], while Proposi-
tion 10.3.6(iii) appears in [14] and is [17, Lemma 3.1.2]. Theorem 10.3.7 appears
in [97] which shows an interesting connection between QqB(A

1) and Qb(A) when
A is a C∗-algebra. Theorem 10.3.10 and Corollary 10.3.11 appear in [14] and
[17, Lemma 3.1.3 and Proposition 3.1.5]. We provide a different proof for The-
orem 10.3.10 and Corollary 10.3.11 by using quasi-Baer ∗-rings and semicentral
idempotents. Lemma 10.3.14 appears in [97], while Proposition 10.3.15 is in [94].
Theorem 10.3.18 has been shown in [344] and in [15]. However, we give a proof in
more detail.

Definition 10.3.19 is taken from [17, Definition 3.2.1]. Theorem 10.3.20 was
proved by Birkenmeier, Park, and Rizvi in [97]. Corollary 10.3.21(i) is in [14], while
Corollary 10.3.21(ii) appears in [17, Example 3.3.1]. Theorem 10.3.24 follows
from [17, Theorem 2.2.8 and Remark 2.2.9]. However, we provide a different proof.
Theorem 10.3.25 is due to Ara and Mathieu [14] (also see [17, Theorem 3.1.1]),
however we give a different proof by Lemma 10.3.14. Theorem 10.3.27(i) is [17,
Lemma 3.2.2(i)], while Theorem 10.3.27(ii) is due to Ara and Mathieu [17, Theo-
rem 3.2.8]. Also we provide a different proof for Theorem 10.3.27(ii) by using semi-
central idempotents and the fact that unital boundedly centrally closed C∗-algebras
are exactly quasi-AW ∗-algebras (see Theorem 10.3.20).
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Definition 10.3.28 is indicated in [97]. Theorem 10.3.29, due to Birkenmeier,
Park, and Rizvi [97], provides a characterization for an intermediate C∗-algebra
between a unital C∗-algebra A and Mloc(A) to be boundedly centrally closed.
Theorem 10.3.30, Corollary 10.3.31, Theorem 10.3.35, and Corollary 10.3.36 are
due to Birkenmeier, Park, and Rizvi in [97]. Example 10.3.34 appears in [96].
Lemma 10.3.37 appears in [12] and is [17, Proposition 2.2.10], but we provide a
different proof. Results 10.3.38–10.3.42 and Theorem 10.3.46 have been shown by
Birkenmeier, Park, and Rizvi in [96]. Theorem 10.3.43, and Corollaries 10.3.44,
10.3.45 are in [233]. Lemma 10.3.47 appears in [302].

In [17], the skew group ring A ∗G and the fixed ring AG of a C∗-algebra A with
a group G of ∗-automorphisms of A have been investigated. Jin, Doh, and Park
[233] obtained Theorem 10.3.43, Corollaries 10.3.44, 10.3.45, Theorem 10.3.48,
Theorem 10.3.49, and Example 10.3.50. Proposition 10.3.51 illustrates a quasi-Baer
module over a unital C∗-algebra and it is taken from [98]. In [17] and [336], C∗-
algebras and Banach algebras satisfying a polynomial identity have been studied.
Theorem 10.3.53 was obtained by Birkenmeier, Park, and Rizvi in [96]. Additional
references on related material include [11, 13, 244, 288, 293], and [394].
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Open Problems and Questions

1. Characterize a ring R for which every (cyclic, finitely generated, projective,
etc.) module is FI-extending (see Sect. 2.3, [83, 84], and [85]).

2. Characterize a ring R for which every (cyclic, finitely generated, projective,
etc.) module is strongly FI-extending (see Sect. 2.3, [83, 84], and [85]).

3. Characterize the class of rings such that every (finite) direct sum of strongly
FI-extending modules is strongly FI-extending.

4. Prove or disprove that a direct summand of an FI-extending module is FI-
extending (see Sect. 2.3, [83, 84], and [85]). Also prove or disprove that the right
FI-extending property of a ring is Morita invariant.

5. Find necessary and sufficient conditions under which a (finite) direct sum of
Baer modules is a Baer module (see Sect. 4.2, [357], and [360]).

6. Find necessary and sufficient conditions for a (finite) direct sum of Rickart
modules to be a Rickart module (see Sect. 4.2, [269, 270], and [271]).

7. Obtain a characterization for an arbitrary (finite) direct sum of quasi-Baer
modules to be quasi-Baer (see [357], Exercise 4.6.21.2, and Exercise 4.6.21.3).

8. Provide an internal characterization of each type of a Baer module (see
Sect. 4.4 and [359]).

9. Provide an internal characterization for each type of K-nonsingular extending
module (see Sect. 4.1 and [359]).

10. Let R be a ring with finite triangulating dimension. Find classes of ring ex-
tensions of R with finite triangulating dimensions (see Sects. 5.2, 5.4, and 9.3).

11. Let R be a PWP ring. Find classes of ring extensions of R which are PWP
rings (see Sect. 5.4 and [70]).

12. Is the property of a ring having finite triangulating dimension Morita invari-
ant?

13. Let R be a quasi-Baer ring such that R ∼= Γ (Spec(R),K(R)). Prove or dis-
prove that R is semiprime (see Theorem 5.5.14 for a partial answer).

14. Characterize all Baer, all right Rickart, all quasi-Baer, all right p.q.-Baer, and
all right FI-extending group algebras (cf. Theorem 6.3.2, Corollary 6.3.3, Exam-
ple 6.3.6, [39], and Proposition 10.2.7).

G.F. Birkenmeier et al., Extensions of Rings and Modules,
DOI 10.1007/978-0-387-92716-9_11,
© Springer Science+Business Media New York 2013

409

http://dx.doi.org/10.1007/978-0-387-92716-9_11


410 11 Open Problems and Questions

15. If E(RR), a fixed injective hull of RR , has a ring multiplication which extends
its R-module scalar multiplication, is every right essential overring S of R (SR may
not be a submodule of E(RR)) isomorphic to a subring of E(RR)? (cf. Chap. 7.)

16. If R is a semiprime ring, must R be right (or left) Osofsky compatible?
17. If a ring R is semiprime and right Osofsky compatible, must E(RR) be right

self-injective?
18. If R is a right Osofsky compatible ring, must E(RR) be an IC-ring? (Note

that Q(R) is an IC-ring by Theorem 8.3.11.)
19. If R is a right Osofsky compatible ring, then is Q(E(RR))=E(RR)?
20. Assume that S is a right essential overring of a ring R. Find meaningful

properties P such that whenever R has P (e.g., right extending), then S has P and/or
conversely (see Sect. 8.1 and [89]).

21. Determine necessary and sufficient conditions for R to have a maximal gen-
eralized right essential overring. (For this, see Sect. 8.2 and [89]. According to [89]
an overring S of a ring R is said to be a generalized right essential overring of R
if there exists a finite chain R = S0 ⊆ S1 ⊆ · · · ⊆ Sn = S of subrings such that Si+1

is a right essential overring of Si for each i. We observe that if Sk is right self-
injective, then Sk = S is a maximal generalized right essential overring of R. See
also Exercise 8.2.16.1.)

22. For a given class M of modules, determine necessary and/or sufficient con-
ditions on a ring R such that HM(RR) = ̂QM(R) (it is shown in Theorem 8.4.15
that if M = FI and R is semiprime, then HFI(RR)= ̂QFI(R), see also Sect. 8.4 and
[98]).

23. If R is a semiprime ring, must ̂QqB(R)=QqB(R)?
24. Let K be a class of rings (e.g., (quasi-)Baer, right (FI-)extending, right

Rickart, etc.). Characterize the class of rings H such that each R ∈ H has a K right
ring hull. In particular, does every ring have a right FI-extending ring hull?

25. Characterize the class K of rings such that each ring in K has a right continu-
ous (absolute) ring hull (see Sect. 8.2, Sect. 8.3, and [89]).

26. Let M be a class of modules. Characterize the class of modules H such that
each M ∈ H has an M module hull.

27. If R is a regular ring, when do QB(R) and/or QE(R) exist?
28. Let K be a class of rings and X a type of ring extension (e.g., matrices,

polynomials, essential overrings, etc.). Characterize a class H of rings such that if
R ∈ H and S is an X ring extension of R, then S ∈ K (see Chap. 6, Theorem 8.1.8,
and Sect. 9.3).

29. Let M be an R-module. Find conditions on the module M (or the ring R)
so that M has (i) a Baer module hull, (ii) a Rickart module hull, (iii) a quasi-Baer
module hull, (iv) a continuous hull, (v) an extending module hull, or (vi) an FI-
extending module hull. Characterize these module hulls if possible when they exist.

30. Characterize the semiprime quasi-Baer group algebras that are quasi-Baer
∗-algebras (see Proposition 10.2.7).

31. Characterize the Baer ∗-rings (quasi-Baer ∗-rings) in which every ideal is
self-adjoint (see Theorems 10.2.20 and 10.2.21).
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32. Characterize all unital C∗-algebras A such that QqB(A) is a C∗-algebra (see
Sect. 10.3).

33. Characterize unital C∗-algebras which are p.q.-Baer (cf. A unital C∗-
algebra A is boundedly centrally closed if and only if A is quasi-Baer. See The-
orem 10.3.20).

34. If T is any semiprime intermediate ring, not necessarily a C∗-algebra, be-
tween A and Mloc(A), then is the condition, B(Q(A))⊆ T , necessary and/or suffi-
cient for T to be quasi-Baer? (cf. Theorem 10.3.30 and Corollary 10.3.31).
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∗-automorphism, 381
∗-isomorphism, 381
AW ∗-algebra, 384, 397
C∗-algebra, 380
C∗-direct product, 393
C∗-direct sum, 393
G-quasi-Baer, 338
M-generated, 25
N -Rickart module, 104
N -injective, 20
Qm(R), 17
Qs(R), 17
O(P ), 169
B(R), 1
G-extending module, 58
K-cononsingular, 97
K-nonsingular, 95
K-singular submodule, 100
M hull, 310
π -injective, 33
π -regular ring, 9, 69
σ [M], 25
Cen(R), 1
MinSpec(R), 169
Spec(R), 169
I(R), 1
Sr (R), 5
S�(R), 5
jdim(M), 356
k-local-retractable, 127
m-system, 306
n-fir, 113
(C1) condition, 21
(C2) condition, 21
(C3) condition, 22
(D2) condition, 126

D-E class, 270
IC-ring, 283

A
Abelian module, 116
Abelian ring, 4
Absolute right ring hull, 275
Absolute to Q(R) right ring hull, 275
Annihilator, 2

B
Baer ∗-ring, 372, 376
Baer module, 94, 97, 105, 109
Baer ring, 62, 67, 68, 89, 205, 211
Baer’s Criterion, 11
Banach algebra, 380
Bezout domain, 191
Biregular ring, 78, 163
Bounded central closure, 387
Bounded element, 382
Bounded index (of nilpotency), 10
Bounded symmetric algebra of quotients, 382
Boundedly centrally closed, 387, 388, 393
Boundedly centrally closed hull, 390

C
C11-module, 58
Cancellative module, 46
Canonical form, 155
Canonical projection, 2
Canonical representation, 156
Central closure, 17
Central cover, 118
Centrally primitive, 147
Classical Krull dimension, 297
Classical right ring of quotients, 5
Closed right ideal, 2
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Closed submodule, 2
Closure, 2
Compatible ring structure, 219, 231
Complement submodule, 21
Complete generalized triangular matrix

representation, 140, 141
Complete set of centrally primitive

idempotents, 147
Complete set of left triangulating idempotents,

140, 145, 158
Complete set of right triangulating

idempotents, 140, 142
Compressible ring, 71
Continuous module, 22, 44, 314
Continuous module hull, 311, 315
CS-module, 22, 23

D
Dense right ideal, 14
Dense submodule, 12
Densely nil, 33
Direct summand cover, 182
Directly finite module, 36, 39
Directly finite ring, 36

E
Essential Ice-enlargement, 390
Essential submodule, 2
Extended centroid, 364, 396
Extending module, 22

F
Faithful module, 2
FI-extending module, 46
FI-extending module hull, 321
FI-extending ring, 47
Finitely presented, 108
Fully invariant submodule, 2

G
Gelfand homomorphism, 170
Generalized countable join, 206
Generalized right essential overring, 410
Generalized triangular matrix representation,

139, 143

H
Hilbert module (C∗-module), 112

I
I-ring, 8, 69
IBN (invariant basis number), 113
Ideal essential, 51
Ideal essential extension, 51

Ideal intrinsic extension, 77
Idempotent closure, 276
Idempotent closure class, 283
Index of nilpotency, 10
Injective hull, 11
Injective module, 11
Internal quasi-continuous hull, 40
Involution, 372

J
Jacobson radical, 3
Johnson dimension, 356

K
Kasch ring, 17
Ker-injective, 33

L
Left coherent ring, 109
Left p.q.-Baer ring, 79
Left Rickart ring, 65
Left semicentral idempotent, 5
Left triangulating idempotents, 140
Local multiplier algebra, 382, 384
Locally nilpotent ring, 10

M
Martindale right ring of quotients, 17
Matrix units, 5
Matrix units semigroup, 72
Maximal right ring of quotients, 14
Modular law, 3
Multiplicatively closed subset, 170

N
Non-M-singular module, 95
Nonsingular module, 3
Norm closed, 381
Norm closure, 381
Normal closure, 17

O
Ore extension, 207
Orthogonal, 56
Orthogonal pair, 56
Orthogonally finite, 7

P
p.q.-Baer ∗-ring, 376
p.q.-Baer ring, 79, 81
PI-ideal, 307
PI-ring, 77
Piecewise domain (PWD), 158, 159
Piecewise prime ring (PWP ring), 160
Polyform module, 95
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Prime ideal, 3
Prime PI-ring, 78
Prime radical, 4
Prime ring, 4
Primitive idempotent, 7
Principally quasi-Baer ring, 79
Projection, 372, 383
Projective dimension, 4
Proper involution, 373
Prüfer domain, 191
Purely infinite module, 36, 39

Q
QF-ring, 12
Quantum n-space, 208
Quasi-AW ∗-algebra, 384, 388, 391
Quasi-Baer ∗-ring, 372, 377
Quasi-Baer module, 130, 178, 404
Quasi-Baer ring, 73, 76, 81, 82, 171, 199, 202,

211, 214, 342
Quasi-continuous module, 22, 27, 43
Quasi-continuous module hull, 311
Quasi-injective module, 21, 34
Quasi-injective module hull, 310
Quasi-regular, 3
Quasi-retractable, 101

R
Rational hull, 13
Reduced ring, 4, 10, 205
Regular ideal, 51
Regular ring, 4, 31
Relatively injective, 20
Relatively Rickart, 104
Restricted minimum condition, 165
Retractable, 101
Rickart ∗-ring, 375
Rickart module, 104, 125, 128
Rickart ring, 65, 67
Right Π -coherent ring, 115, 190
Right π -regular ring, 9
Right cononsingular ring, 89
Right continuous ring, 32
Right denominator set, 171
Right duo ring, 277
Right essential overring, 218, 230, 240
Right essentially Baer ring, 269
Right essentially quasi-Baer ring, 269
Right extending ring, 22, 89, 212
Right FI-extending ring, 47, 200
Right finitely Σ -extending ring, 272
Right finitely generated FI-extending ring, 85
Right FPF ring, 74, 163

Right global dimension, 4
Right Goldie ring, 5
Right hereditary ring, 4
Right intrinsic extension, 271
Right Kasch ring, 17, 217, 237
Right n-hereditary ring, 112
Right nonsingular ring, 3, 31
Right Ore condition, 5
Right Ore domain, 5
Right Ore ring, 5
Right Osofsky compatible ring, 222, 223, 256
Right p.q.-Baer ring, 79, 83, 202, 205
Right perfect ring, 4
Right PP ring, 66
Right principally FI-extending ring, 85
Right principally quasi-Baer ring, 79
Right quasi-continuous ring, 22
Right Rickart ring, 65, 68, 70
Right ring hull, 275
Right ring of fractions, 170
Right ring of quotients, 14
Right self-injective ring, 11
Right semicentral idempotent, 5
Right semihereditary ring, 4, 70
Right strongly FI-extending ring, 52
Right triangulating idempotents, 140
Right uniform-extending, 272
Right uniform-extending ring, 272
Right Utumi ring, 301

S
Second singular submodule, 3
Self-adjoint, 372
Semicentral reduced, 7, 140
Semilocal ring, 4
Semiperfect ring, 4
Semiprimary ring, 4, 69
Semiprime PI-ring, 77, 91
Semiprime ring, 4
Semiproper involution, 373
Semiregular ring, 31
Separable algebra, 78
Set of left triangulating idempotents, 139, 140,

153
Sheaf representation, 169
Singular submodule, 3
SIP (summand intersection property), 98
Skew group ring, 337
Skew polynomial ring, 207
Socle, 3, 217
Special radical, 297
SSIP (strong summand intersection property),

98
Stalk, 170
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Strongly π -regular ring, 9, 69
Strongly FI-extending module, 52
Strongly regular ring, 4
Subdirect product, 63, 172
Subisomorphic, 37
Symmetric ring of quotients, 17

T
Tdim, 148, 160, 403
Torsionless module, 110
Trace, 339, 340
Triangulating dimension, 148
TSA ring, 164
Twisted semigroup algebra, 72
Type If , type I∞, 118
Type IIf , type II∞, 118
Type I, type II, type III, 118

U
u.p.-monoid, 201, 202
Uniform dimension, 4
Uniform ideal, 367
Uniform module, 4
Unitary element, 386

V
V-module, 24

W
Weyl algebra, 78

X
X-outer, 337

Z
Zorn ring, 8
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