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Preface

Molecules, galaxies, art galleries, sculpture, viruses, crystals, architecture, and more: Shaping Space:
exploring polyhedra in nature, art, and the geometrical imagination is an exuberant survey of
polyhedra in nature and art. It is at the same time hands-on, mind-turned-on introduction to one of
the oldest and most fascinating branches of mathematics. In these pages you will meet some of the
world’s leading geometers, and learn what they do and why they do it. In short, Shaping Space is as
many-faceted as polyhedra themselves.

Shaping Space is a treasury of ideas, history, and culture. For students and teachers, from
elementary school to graduate school, it is a text with context. For the multitude of polyhedra
hobbyists, an indispensable handbook. Shaping Space is a resource for professionals—architects and
designers, painters and sculptors, biologists and chemists, crystallographers and physicists and earth
scientists, engineers and model builders, mathematicians and computer scientists. If you are intrigued
by the exquisite shapes of crystals and want to know how nature builds them, if you marvel at domes
and wonder why most stay up but some fall down, if you wonder why Plato thought earth, air, fire
and water were made of polyhedral particles, if you wonder what geometry is and are willing to try
it yourself, this book is for you. In Shaping Space you will see that polyhedra are as new as they are
old, and that they continue to shape our spaces in new and exciting ways, from computer games to
medical imaging.

The computer revolution has catalyzed new research on polyhedra. A quarter century ago, discrete
and computational geometry (the branch of mathematics to which polyhedra belong) was less a
field in its own right than—in the eyes of many people, even many mathematicians—a grab-box
of mathematical games. Today an international journal, Discrete and Computational Geometry,
publishes six issues a year with the latest research on configurations and arrangements, spatial
subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric
probability, geometric range searching, combinatorial and computational topology, probabilistic
techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning,
and papers with a distinct geometric flavor in such areas as graph theory, mathematical programming,
real algebraic geometry, matroids, solid modeling, computer graphics, combinatorial optimization,
image processing, pattern recognition, crystallography, VLSI design, and robotics.

vii



viii Preface

Figure 1. An icosahedron built and decorated by elementary school children. Photograph by Stan Sherer.

Figure 2. Sculptures by Morton Bradley. Photograph by Stan Sherer.

Yet, it is also true, as the saying goes, plus ça change, plus c’est la même chose. The more things
change, the more they stay the same, especially in school mathematics curricula. Despite its central
importance in the sciences, the arts, in mathematics and in engineering, solid geometry has all but
vanished from the schools, plane geometry is being squeezed to a minimum, and model-building is
relegated to kindergarten. Reasons for this unfortunate (and, unfortunately, long-term) trend include
a lack of teacher training and pressures to teach testable skills. But educators will realize, sooner
rather than later, that “technology in the classroom” is more than clicking the latest gadgets, it
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means understanding our technological world. Geometry will reappear as a blend of model-building,
engineering and fundamental math and science.

Meanwhile, the internet is helping to bring geometry back to life and with it a community of
geometers. You can explore polyhedra in nature, art, and the geometrical imagination on the world
wide web by yourself, with Shaping Space as your guide, and share your findings and frustrations with
the like-minded through chat groups. Keep pencils, paper, a ruler, scissors, and tape handy: Confucius
got it right 2500 years ago:

I hear and I forget,
I read and I remember,
I do and I understand.

Shaping Space will evolve as the subject grows. The notes and references at the end of this book are
also on my website, http://www.marjoriesenechal.com. Authors will post updates there; you will also
find links to instructional and recreational materials, and to websites of polyhedra-minded scientists,
artists and hobbyists. Visit often!

Indeed, Shaping Space has grown already. Its ancestor, Shaping Space: a polyhedral approach
was inspired by a three-day festival of workshops, exhibitions and lectures on polyhedra held at
Smith College in 1984. Shaping Space: Exploring Polyhedra in Nature, Art, and the Geometrical
Imagination includes the best of the past and new chapters by Robert Connelly, Erik Demaine (with
Martin Demaine and Vi Hart), George Hart, Joseph O’Rourke, Ileana Streinu, and Günter Ziegler
(with Moritz Schmidt).

Figure 3. H. S. M. Coxeter (1907–2003). Photograph by Stan Sherer.

http://www.marjoriesenechal.com
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Figure 4. Arthur L. Loeb (1923–2002). Photograph by Stan Sherer.

Shaping Space: exploring polyhedra in nature, art, and the geometrical imagination is dedicated
to the memory of two friends and colleagues, the legendary geometer H. S. M. Coxeter and the
many-faceted design scientist Arthur L. Loeb. Without their enthusiasm, encouragement, support and
participation, the Shaping Space Conference could not have been held and the first edition of this book
might never have appeared. They continue to inspire us.

Northampton, MA, USA Marjorie Senechal
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Introduction to the Polyhedron Kingdom

Marjorie Senechal

What is a polyhedron? The question is short, the
answer is long. Although you may never have
heard of the Polyhedron Kingdom before, it is
nearly as vast and as varied as the animal, min-
eral, and vegetable kingdoms (and it overlaps all
three of them). There are aristocrats and workers,
families and individuals, old polyhedra with long
and interesting histories and young polyhedra
born yesterday or the day before. In this king-
dom you can take a walking tour of polyhedral
architecture, visit a nature preserve and an art
gallery and an artisans’ polyhedra fair. As you
stroll along you may even glimpse polyhedral
ghosts from four-dimensional space.

The boundaries of the Polyhedron Kingdom
are in dispute (as are those of most kingdoms)
but it is safe to visit the border areas. You need
not worry about the nature of the disputes until
the last part of this book.

The language of the Polyhedron Kingdom is
mathematics but, for this brief first visit, you can
get by if you learn three important words: face,
edge, and vertex. The word polyhedron comes
from the Greek word for “many” and an Indo-
European word for “seat.” To geometers, it means
an object with many faces. In Figures 1.1 and
1.2 we see polyhedra with faces. But this is
not what we mean when we speak of the faces

M. Senechal
Department of Mathematics and Statistics,
Smith College,
Northampton, MA 01063, USA
e-mail: senechal@smith.edu; http://math.smith.edu/�
senechal; http://www.marjoriesenechal.com

Figure 1.1. Cube with face, by a fifth-grade student at
the Smith College Campus School.

of a polyhedron. For our purposes the faces of
a polyhedron are the polygons from which its
surface is constructed. The edges of a polyhedron
are the lines bounding its faces; its vertices are
the corners where three or more faces (and thus
three or more edges) meet (Figure 1.3). You will
see as we go along that these terms can have
more general meanings, but these definitions will
do for the moment. As you tour the Polyhedron
Kingdom you will become more comfortable
with an increasing vocabulary and a wider range
of common usages.

We begin our tour, of course, with a visit to the
rulers of the Kingdom.

M. Senechal (ed.), Shaping Space, DOI 10.1007/978-0-387-92714-5 1,
© Marjorie Senechal 2013
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4 M. Senechal

Figure 1.2. A polyhedral monster, also by Campus
School student.

EDGE

VERTEX

FACE

Figure 1.3. The cube has six faces, twelve edges, and
eight vertices.

The Regular “Solids”

At the gates of the Kingdom live its rulers, the
famous and venerable regular “solids” pictured
in Figure 1.4. Each of these polyhedra is called

a

b

c

d

e

Figure 1.4. Left: the five regular polyhedra. Right: the
same, “unfolded” into planar nets (For more about nets for
polyhedra and some unsolved problems concerning them,
see Chapters 6 and 22).

regular because of certain very special properties:
its faces are identical regular polygons, and the
same number of polygons meet at each vertex.
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(Remember that regular polygons are polygons
whose edges have equal lengths and whose angles
have equal measure: a regular polygon of three
edges is an equilateral triangle, of four edges a
square, and so on.) So the faces of each regular
polyhedron are all alike and their vertices (or,
more precisely, the arrangements of polygons at
their vertices) are all alike too.

If we try to build polyhedra with the regular-
ity property just described, we will quickly find
that there are only five possibilities. We start by
constructing polyhedra whose faces are equilat-
eral triangles. First, we can put three triangles
together to form one vertex of a polyhedron. If we
continue this pattern at all the other corners, we
obtain a pyramid that has four triangular faces,
four vertices, and six edges; this is the regular
tetrahedron (Figure 1.4a). If we put four trian-
gles at each vertex, we can build an octahedron
(Figure 1.4b); if we put five together then we
get the icosahedron (Figure 1.4c). Six equilaterial
triangles fit together around a point to form a
flat surface, so that arrangement is out. And if
we try to fit seven or more together—well, try it
and see what happens! So these three polyhedra
are the only regular ones that can be built out of
equilateral triangles.

Now let us try to build a regular polyhedron
out of squares. We see that there is just one
possibility, the cube (Figure 1.4d), in which three
faces meet at each vertex, because four squares in
a plane lie flat around a point. (What happens if
we try to fit five?) If we use regular pentagons, we
can again build just one solid, the dodecahedron
(Figure 1.4e). We cannot continue this procedure
with regular polygons with a greater number of
sides because three regular hexagons lie flat, three
or more heptagons or octagons buckle, and so
forth. We conclude that there are no other regular
polyhedra.

The regular polyhedra are also known as the
“Platonic solids” because the Greek philosopher
Plato (427–347 B.C.E.) immortalized them in
his dialogue Timaeus. In this dialogue Plato dis-
cussed his ideas about the “elements” of which
he believed the universe to be composed: earth,
air, fire, and water. Today when we think of “ele-
ment,” we usually think of the chemical elements

in the Periodic Table. (We recognize the solid,
gas, plasma, and liquid states of matter.) But
notice that we still speak of needing protec-
tion from the “elements,” and when we say this
we mean snow, wind, lightning, and rain. In
Timaeus, Plato argued that the geometric forms
of the smallest particles of these elements are
the cube, the octahedron, the tetrahedron, and
the icosahedron, respectively. (The fifth regular
solid, the dodecahedon, was assigned to the Great
All, the cosmos.) This association of the regular
solids with the elements captured the imagina-
tion of many people from Plato’s time to our
own. The twentieth century artist M.C. Escher
presented them in various ways; Figure 1.5 might
be subtitled “Platonic Puzzle,” because all of the
five Platonic solids appear in it in one form or
another! Figure 1.6 shows an icosahedral candy
box decorated by Escher.

Plato aside, do the regular polyhedra have
any special significance outside the Polyhedra
Kingdom? Maybe not. The astronomer Johannes
Kepler (1571–1630) believed that he had at last
discovered their true meaning: the spheres in
which they can be inscribed, nested one inside
another, are the divine model for the orbits of the
six planets! This explained why there could be
only six! (Kepler’s ideas are discussed in detail
by H.S.M. Coxeter in Chapter 3.) The beauty of
the regular polyhedra has led scientists astray in
our own time as well. In 1936 Dorothy Wrinch

Figure 1.5. Reptiles. Woodcut by M.C. Escher.
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Figure 1.6. Icosahedron with Starfish and Shells, a
candy box by M.C. Escher.

Figure 1.7. Soap films, made by dipping a tetrahedral
wire frame into a soapy solution. Notice that the tetrahe-
dral bubble has curved faces.

proposed a patterned octahedron as the first
model for the molecular structure of proteins
(Figure 1.8); unfortunately the structures of
proteins have turned out to be much less elegant.

The regular polyhedra may not solve the riddle
of the universe or reveal the secret of life, but
they do crop up in the most unexpected places:
for example, in the soap films shown in Fig-
ure 1.7 (if we agree that a polyhedron can have
curved faces and edges), in decorative ornament
(Figure 1.9), and as the shapes of many viruses.

The shapes of many molecules are thought
to be closely related to the regular polyhedra
(Figure 1.10). Many crystals have cubic,

Figure 1.8. The model for protein structure proposed by
Dorothy Wrinch in 1936.

Figure 1.9. The icosahedron and other polyhedra often
appear as decorative elements in Baroque architecture;
here, the church of Santissimi Apostoli by Borromini.

octahedral, or dodecahedral forms; others are
tetrahedral or icosahedral. But most dodecahedral
(and icosahedral) crystals, like the pyrite crystals
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in Figure 1.11, are not regular. (Indeed, until
November 1984, it was believed that regular
dodecahedral and icosahedral crystals could not

Figure 1.10. An artist’s conception of a methane
molecule.

Figure 1.11. Pyrite crystals.

exist, because their symmetry is theoretically
impossible for a crystal. Then some crystals with
this symmetry were discovered, posing some
challenging problems for symmetry theory!)
Perhaps to make up for its limited role in the
mineral kingdom, the regular dodecahedron with
its twelve faces has been used by people in
imaginative ways, such as street corner recycling
bins in France (Figure 1.12).

Today we believe that it is not the classical
form of the regular polyhedra that is significant:
instead it is the high degree of order which they
represent. Indeed, as Figure 1.4 suggests, the reg-
ular “solids” are not always found in solid form.
In some contexts, they have hollow interiors;
in others, they have perforated surfaces; in yet
others they have no faces, but appear as skeletons
made of edges and vertices. Still, they are usually
recognizable because of their high degree of
symmetry. For example, all of the regular poly-
hedra have mirror symmetry: they can be divided
into mirror-image halves in many different ways.
They also have rotational symmetry: there are
many ways in which they can be rotated without
changing their apparent position. Both mirror
symmetry and rotational symmetry are due to the
fact that, for each of these polyhedra, every face,
every vertex, and every edge is like every other.
In other words, they are repetitively organized;
this is one of the reasons that they are found
so often in nature. This organization is also

Figure 1.12. Dodecahedral recycling bin for glass, on
a street corner in Paris, France. Photograph by Marjorie
Senechal.
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aesthetically pleasing, and it is largely because
of their symmetry that they are considered to
be beautiful. The regular solids have the highest
possible symmetry among polyhedra that are
finite in extent. This is one reason why we can
justly say that the regular solids are the rulers of
the Polyhedron Kingdom. As you read through
this book you will learn a great deal about
symmetry.

Direct Descendants

There are many variations on the theme of the
regular polyhedra. First let us meet the eleven
(in Figure 1.13) which can be made by cutting
off (truncating) the corners, and in some cases
the edges, of the regular polyhedra so that all
the faces of the faceted polyhedra obtained in
this way are regular polygons. These polyhedra
were first discovered by Archimedes (287–212
B.C.E.) and so they are often called Archimedean
solids. Notice that vertices of the Archimedean
polyhedra are all alike, but their faces, which
are regular polygons, are of two or more differ-

Figure 1.13. The Archimedean or semiregular polyhe-
dra; The first eleven can be obtained from the regular
polyhedra by truncation.

ent kinds. For this reason they are often called
semiregular. (Archimedes also showed that in ad-
dition to the eleven obtained by truncation, there
are two more semiregular polyhedra: the snub
cube and the snub dodecahedron. (Also shown in
Figure 1.13.)

By this definition, prisms (see Figure 1.14)
with regular polygonal bases and square sides
are semiregular solids too. Prisms are quite
common in nature and in architecture, as we
will see later (Chapter 7). Antiprisms also
have two identical polygonal faces, but the
“top” face is rotated relative to the “bottom”
one, so that the two polygons are joined by
triangles (see Figure 1.15); when its faces are
regular polygons, an antiprism is a semiregular
polyhedron.

Perhaps the most elaborate variations on the
theme of the regular polyhedra are those of the
sixteenth-century Nuremberg goldsmith Wenzel
Jamnitzer, who engraved a fascinating and exten-
sive series of polyhedra in honor of Plato’s theory
of matter. In his book Perspectiva Corporum
Regularium, published in 1568, each of the five
regular solids is presented in exquisite variation.
Can you tell which solid is being varied in Fig-
ure 1.16? Jamnitzer’s figures show us that poly-
hedra need not be convex; that is, they can have
indentations. Regular polygons that are not con-
vex, such as the famous pentagram (Figure 1.17),
are familiar to most of us. Such “star polygons”

Figure 1.14. The three semiregular prisms.

Figure 1.15. Three semiregular antiprisms.
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Figure 1.16. Plate D.II. from Wenzel Jamnitzer, Per-
spectiva Corporum Regularium, 1568.

Figure 1.17. The pentagram has equal sides and equal
angles.

can be used to build regular “star polyhedra.”
There are exactly four regular star polyhedra (see
Figure 1.18). Notice that all their faces are regular
polygons and the same number of faces meet
at each vertex. In this case, however, either the
faces or the vertex arrangements are pentagrams.
The lineage of these polyhedra can be traced to
fifteenth-century Venice (see Figure 1.19), but
no general theory seems to have been developed
at that time. Later Kepler investigated regular
star polyhedra and found two of them; after that

Figure 1.18. The four regular star polyhedra.

Figure 1.19. Marble tarsia (1425–1427) in the Basilica
of San Marco, Venice, attributed to Paolo Uccello.

star-shaped polyhedra (not necessarily regular)
became ubiquitous (see for instance Figure 1.20).
But it was not until the early nineteenth century
that two more regular star polyhedra were found
and the French mathematician Augustin-Louis
Cauchy (1789–1857) showed that there are no
others (see Chapter 4).

The uniform polyhedra are polyhedra, star or
otherwise, whose vertices are all symmetrically
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Figure 1.20. Courtyard of Borromini church.

equivalent. (They are generalizations of the
Archimedean polyhedra.) Perhaps the most
spectacular uniform polyhedron is the Yog-
Sothoth, shown in Figure 1.21. Although its
existence had been predicted (on theoretical
grounds) for many years, no one had ever
seen it before Bruce Chilton’s was presented
to society for the first time at the Shaping
Space Conference. The debut was a spectacular
success. The Yog-Sothoth has 112 faces: 12 are
pentagrams, 40 are triangles of one type, and 60
are triangles of another. Yet despite its complexity
its symmetry is that of the icosahedron and
dodecahedron, no more no less!

There are many other interesting lines of de-
scent from the regular solids. For example, there
are polyhedra whose faces are all alike but whose

vertices are not. Closely related to the semiregu-
lar solids, these polyhedra are especially impor-
tant in the study of crystal forms.

Impossible Polyhedra

Despite its diversity, the Polyhedra Kingdom is
exclusive. You will not find polyhedra with any
number of faces, edges, and vertices you might
think up; only certain combinations are permit-
ted. In the eighteenth century a Swiss Mathemati-
cian named Leonhard Euler discovered why. He
found a curious relation among the numbers of
faces, edges, and vertices of any convex poly-
hedron. (Convex means that the surface has no
bumps or dents.) For example, a cube has six
faces, twelve edges, and eight vertices; a tetrahe-
dron has four faces, six edges, and four vertices.
In both cases, the sum of the numbers of faces and
vertices is two more than the number of edges. If
we write F for the number of faces of a given
polyhedron, V for the number of its vertices, and
E for the number of its edges, we have a simple
formula: E D F C V C 2.

This means, for example, that there is no
polyhedron with four faces, six vertices, and nine
edges. Nor—though this is harder to prove—can
you build a “soccer ball” out of hexagons.

Next Steps

But before losing yourself in contemplation of
the impossible, you should build some possible
polyhedra with your own hands.
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Figure 1.21. Three plan views of the Yog-Sothoth, along five-, three-, and twofold axes, drawn by Bruce L. Chilton.
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Six Recipes for Making Polyhedra

Marion Walter, Jean Pedersen, Magnus Wenninger,
Doris Schattschneider, Arthur L. Loeb, Erik Demaine,
Martin Demaine, and Vi Hart

This chapter includes six “recipes” for making
polyhedra, devised by famous polyhedrachefs.
Some recipes are for beginners, others are inter-
mediate or advanced. You can use these recipes,
or devise your own. Building models is fun,
and will give you a deeper understanding of the
chapters that follow.
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Constructing Polyhedra Without
Being Told How To!

Marion Walter

Getting Started: How to Attach
Polygons

Put some cut-out regular polygons on a table. Put
a little glue on a flat tile, a plastic lid, or a piece of
plastic, and spread out the glue a little so that you
can dip a whole edge of a polygon into the glue.

Choose two polygons that you want to glue
together along an edge, and dip one of these edges
in the glue. Dip lightly; if polygons don’t stick
well it is usually because there is too much glue
(Figure 2.1).

Hold the two edges together firmly. The joint
will remain flexible but the polygons will stick
together (Figure 2.2).

If you find later that you need extra glue on an
edge of a polygon that you have already attached,
you can (lightly) dip a toothpick or applicator
stick in the glue to smear some along an edge.

What Shape Are You Going to Make?

It is most fun and most rewarding to make a
shape you yourself create rather than following
someone else’s plans. How can you do this?

M. Senechal (ed.), Shaping Space, DOI 10.1007/978-0-387-92714-5 2,
© Marjorie Senechal 2013
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Figure 2.1.

Figure 2.2.

Figure 2.3.

There are many ways to start. One way is to
limit yourself to using only one or two different
shapes — say triangles, or triangles and pen-

Figure 2.4.

Figure 2.5.

tagons, or triangles and squares. What shapes can
you make using triangles and only one pentagon?
(See Figure 2.3).

The first shape the boy shown in Figure 2.4
made has a pentagon for its base and triangles
for sides. It is called a pentagonal pyramid. Now
make up another question of your own. What will
your first shape look like? When you experiment
freely, you may get a few surprises and you will
learn a lot. For example, six triangles lie flat.

What a surprise: the shape in Figure 2.5 lies
flat too! Notice that the twelve triangles that
surround the hexagon help to make a bigger
hexagon. The student shown in the photograph
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Figure 2.6.

Figure 2.7.

also had a surprise after she attached only six
triangles to the hexagon. Do you think it will
make a pyramid with a hexagonal base?

What shapes can you make with hexagons and
squares? (See Figures 2.6 and 2.7).

Making shapes requires thinking ahead. Try
to make a shape using only pentagons. What a
relief: the two edges in Figure 2.8 really do seem
to meet! How will the boy shown go on? Do the
girls in Figures 2.9 and 2.10 seem to be making
the same shape?

The shape in Figure 2.11 is made entirely of
pentagons: how many of them were used? Turn
it around and look at it. How many edges does it
have? How many corners? How many edges meet
at one corner? How many faces meet at a corner?
This shape is a dodecahedron.

Figure 2.8.

Figure 2.9.

When you are experimenting, don’t expect
that your shape will always close! (Figure 2.12).
Some shapes may have holes that you cannot fill
with the shapes that we have; remember that we
are using only regular polygons.

Shapes You Can Make with Triangles

The shape in Figure 2.13 is only one of the many
you can make using just triangles. It is an icosa-
hedron. Look at it from many sides. How many
faces, edges, and corners does it have? Compare
these numbers to the corresponding numbers you
found for the dodecahedron.

In Figure 2.14 the girl is placing one five-sided
pyramid over the base of another one. How many
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Figure 2.10.

faces will this polyhedron have? What other
shapes can you make with triangles?

A Note to the Teacher

Every problem leads to new observations and
questions. For example, even the simple problem
“Make all possible convex shapes using only
equilateral triangles” is very rich in possibilities.
These shapes are called deltahedra, after the
triangular Greek letter �. Usually after some
experimentation, students will discover the tetra-
hedron, the octahedron, the triangular and pen-
tagonal bipyramids, and the icosahedron. Later
the search also yields the 12-, 14-, and 16-sided
deltahedra. Figure 2.15 shows a 14-sided deltahe-
dron made of applicator sticks. Use sticks all of
the same length. Some drugstores sell applicator
sticks which are ideal; be sure to get the kind
without cotton at each end. Hobby and craft

Figure 2.11.

Figure 2.12.

stores often sell small-diameter wooden dowel
rods which work well. Put a small amount of
contact glue on the ends of the sticks and let it
dry for about 15 minutes, until the glue is tacky.
Then the sticks will join well and yet stay flexible.
Don’t be surprised if a cube or dodecahedron
made of applicator sticks won’t stand up, how-
ever. Unlike structures built entirely of triangles,
these structures are nonrigid.
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Figure 2.13.

Figure 2.14.

The observation that each deltahedron has an
even number of faces leads to the question of why
this should be so. The reason is straightforward
once one sees it! Each triangle has three edges. If
the shape has F faces, then there are 3F edges
altogether. These 3F edges are glued in pairs, so
there must be an even number of edges. Hence
3F and therefore F must be be even. Noticing
that there exist 4-, 6-, 8-, 10-, 12-, 14-, 16-, and
20-sided deltahedra immediately sets off a search
for an 18-sided one. Can an 18-sided deltahedron

Figure 2.15.

be made? It was not until 1947 that the answer
was proved to be no.

Looking at deltahedra is one thing; visualizing
them without models is quite another. I found it
difficult to close my eyes and visualize the 12-,
14-, 16-sided deltahedra. One day while I was
looking at a cube made from applicator sticks
and glue, I decided to pose problems by using
the What-If-Not Strategy. The idea is that one
starts with a situation, a theorem, a diagram,
or in our case an object, lists as many of its
attributes as one can, and then asks, “What if
not?” For example, among the many attributes
(not necessarily independent) of a cube that I had
listed were the following:

1. All edges are equal.
2. All faces are squares.
3. The object is not rigid.
4. The top vertices are directly above the bottom

ones.
5. Opposite faces are parallel.
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Figure 2.16.

a b

Figure 2.17.

While working on attribute 4, I asked myself:
“What if the top vertices were not directly above
the bottom ones?” And because the contact glue
gives movable joints, it was easy to give the top
square a twist. As my twist approached 45 ı,
I began to see an antiprism emerge. I attached
sticks to complete the antiprism, but the shape
wasn’t rigid. The obvious thing to do to make it
rigid was to add diagonals to the top and bottom
squares. Since all the applicator sticks are of
the same length, I had to squeeze the squares
into “diamonds.” The resulting shape was rigid-
and was built of 12 equilateral triangles! (See
Figure 2.16).

How else could I have made the antiprism
rigid? I hastily removed the top diagonal, and
added four sticks that meet above the square to
form a square pyramid (Figure 2.17a.) Lo and
behold, I had made a 14-sided deltahedron! From

Figure 2.18. Alice Shearer beginning construction of a
model.

there it was a quick step to remove the bot-
tom diagonal also, build another four-sided pyra-
mid, and thus obtain the 16-sided deltahedron
(Figure 2.17b).

Not only have these deltahedral “villains” now
become friends, I see now that they are closely
related to one another. One can also place the
icosahedron in this family, since it is a pentagonal
antiprism capped with two pentagonal pyramids.
(Indeed the octahedron itself is an antiprism, and
the tetrahedron can be viewed as an antiprism in
which the two bases have shrunk to an edge. Two
opposite edges may be considered degenerate
polygons, which are here in antiprism orienta-
tion.) That leaves us only with the 6- and 10-sided
deltahedra as “odd ones out,” but they are both
bipyramids and are easy to visualize.
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Figure 2.19. Jane B. Phipps contemplating a polyhedron constructed from MATs.

A Word About Materials

Cardboard always works well; you should
experiment with different weights. I prefer
MATs, described in the next paragraph. All the
polygons shown in these photographs are MATs.
A glue used for carpets, such as Flexible Mold
Compound – Mold It R� is excellent, as is the
English Copydex.

Adrien Pinel found that hexagonal cardboard
beer mats (used in English pubs) were excel-
lent for making polyhedra with holes and, when
augmented by triangles and squares cut from the

hexagons, became even more useful. It was not
long before the Association of Teachers of Math-
ematics of Great Britain had regular polygons
of three, four, five, six and eight sides produced
from the same easy-to-glue material as the beer
mats. They call them Mathematics Activity Tiles
(MATs for short). They also produce rectangles
and isosceles triangles. The polygons may be
ordered separately or in two different kits: Kit
A has 100 each of equilateral triangles, squares,
pentagons, and hexagons, and Kit B has 200
each of triangles and squares and 50 each of
pentagons, hexagons and octagons.
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Constructing Pop-Up Polyhedra

Jean Pedersen

Required Materials

• One 22 � 28 inch piece of brightly colored
heavyweight posterboard

• Six rubber bands
• One yard stick or meter stick
• One ballpoint pen
• One pair of scissors

General Instructions for Preparing the
Pattern Pieces

Begin by drawing the pattern pieces on the
posterboard as shown in Figure 2.20. Press hard
with the ballpoint pen so that the posterboard will
fold easily and accurately in the final assembly.
Label the points indicated. Be certain to put
the labels on what will become the cube (or
octahedron) when the model is finished — not
on the paper that surrounds it. Cut out the pattern
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Figure 2.20.

pieces and snip the notches at A and B (but not
the notches at C and D).

Constructing the Cube

1. Crease the pattern piece with square faces on
all of the indicated fold lines, remembering
that the unmarked side of the paper should be
on the outside of the finished cube. Thus each
individual fold along a marked line should
hide that marked line from view.

2. Position the pattern piece so that it forms a
cube with flaps opening from the top and the
bottom, as shown in Figure 2.21.

3. Temporarily attach the two rectangles together
inside the cube with paper clips. Then, with
the cube still in its “up” position, cut through
both thicknesses of paper at once to produce
the notches at the positions which you already
labeled C and D.

4. Connect three rubber bands together, as shown
in Figure 2.22.

5. Slide one end-loop of this chain of rubber
bands through the slot which you labeled A,
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Figure 2.21.

Figure 2.22.

and the other end-loop through the slot la-
beled B, leaving the knots on the outside of
the cube.

6. Stretch the end loops of the rubber bands so
that they hook into slots C and D, as shown
in Figure 2.23. The bands must produce
the right amount of tension for the model
to work. If they are too tight the model
will not go flat and if they are too loose
the model won’t pop up. You may need to
do some experimenting to obtain the best
arrangement.

7. Remove the paper clips when you are satisfied
that the rubber bands are performing their
function.

8. To flatten the model push the edges labeled
E and F toward each other as shown in Fig-
ure 2.23b and wrap the flaps over the flattened
portion as in Figure 2.23c.

9. Holding the flaps flat, toss the model into the
air and watch it pop up. If you want it to make
a louder noise when it snaps into position, glue
an additional square onto each visible face of

Edge F

Edge E
a

b

c

Figure 2.23.

the cube in its “up” position. This also allows
you to make the finished model very colorful.

Constructing the Octahedron

1. Crease on all the indicated fold lines so that
the marked lines will be on the inside of the
finished model.

2. Position the pattern piece so that it forms
an octahedron with triangular flaps opening
on the top and bottom, as shown in Fig-
ure 2.24a. Don’t be discouraged by the com-
plicated look of the illustration; the construc-
tion is so similar to the cube that once you
have the pattern piece in hand, it becomes
clear how to proceed.

3. Secure the quadrilaterals inside the octahe-
dron with paper clips and cut through both
thicknesses of paper to make the notches at C
and D. Angle these cuts toward the center of
the octahedron (so that the rubber bands will
hook more securely). Gluing the quadrilaterals
inside the model to each other in their proper
position produces a sturdier model.
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Figure 2.24.

4. Connect three rubber bands together, as shown
in Figure 2.22.

5. Slide one loop-end of the rubber band arrange-
ment through the slot A and the other loop-end
through the slot B, leaving both knots on the
outside of the octahedron.

6. Stretch the end loops of the rubber bands so
that they hook into the slots at C and D. Some
adjustment in the size of the rubber bands may

be necessary, so experiment to find the best
arrangement.

7. Remove the paper clips when you have a
satisfactory arrangement of rubber bands.

8. To flatten the model put your fingers inside
and pull at the vertices nearest A and D so
that you are pulling those opposite faces away
from each other until each is folded along an
altitude of that triangular face. Then wrap the
triangular flaps over the flattened portion so
that it looks like Figure 2.24b.

9. Holding the triangular flaps flat, toss the
model and watch it pop up. Just as with the
cube, this model will make more noise if you
glue an extra triangle on the exposed faces. Of
course, if you use colored pieces the resulting
model is more interesting.

A helpful hint:

If you store either the cube or the octahedron in
its flattened position for several hours, or days, it
may fail to pop up when tossed in the air. This
is because the rubber bands lose their elasticity
when stretched continuously for long periods of
time. If the rubber bands have not begun to
deteriorate, the model will behave normally as
soon as you let the rubber bands contract for a
short while.
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The Great Stellated Dodecahedron

Magnus Wenninger

The great stellated dodecahedron (Figure 2.25)
makes a lovely decoration or an interesting orna-
ment for any time or place. It is very attractive,
and when made as suggested here it is also very
sturdy and rigid even though it is entirely hollow
inside. The pattern to use for making this model
is simply an isosceles triangle with base angles
of 72 ı and a vertex angle of 36 ı. The length
of the base should be between 1 and 2 inches
(between 2.5 and 5.0 cm). The angular measures
just given will automatically make the equal
sides of the triangle � times longer than the base,
where � is 1.618034 (the golden section number).
You will need 60 such triangles to complete one
model. Very attractive results can be obtained
by using different colors of index card, namely
ten triangles of each of six different colors.
Astonishingly beautiful results can be obtained
by using glitter film with pressure sensitive
adhesive backing to cover the index card.

Getting Started

Begin the work by first cutting all the glitter
film triangles to exactly the same size. You can
lay out a tessellated network of such triangles
by marking the back or waxy side of a sheet of
glitter film with a scoring instrument and then
cutting out the triangles with scissors. Next peel
off one corner of the waxy backing from the film
and attach this to a piece of index card. Finally,
remove the entire backing while you smooth out
the film on the card. Now trim the card with
scissors, leaving a border of card all around the
film. A quarter inch or so is suitable (about 7
or 8 mm). Next trim the vertices of the triangle
as suggested in Figure 2.26. You will now find
it easy to bend or fold the card down along
the edges of the film even without scoring the
card. This edging of card serves as a tab for
joining the triangles together. Use ordinary white
paper glue (such as Elmer’s Glue-All R� for this
purpose.

Figure 2.25. Katherine Kirkpatrick studying models
made in Magnus Wenninger’s workshop.

Glitter
film

Cut

CutCut

Card

Figure 2.26.
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Figure 2.27.

Figure 2.28.

Assembling the Model

Glue three triangles together as shown in Fig-
ure 2.27. Shape this part into a triangular pyra-
mid without a base. This will then form one
trihedral vertex of the great stellated dodecahe-
dron. The color arrangement for ten vertices is as
follows:

(1) B Y G (6) B W G Y = yellow or gold
(2) O B Y (7) O W Y B = blue
(3) R O B (8) R W B O = orange
(4) G R O (9) G W O R = red
(5) Y G R (10) Y W R G = green

W = white or silver

The first five vertices or triangular pyramids
are joined in a ring with the bottom edges of the
middle Y, B, O, R, G of (1), (2), (3), (4), (5),
forming an open pentagon. Then the next five
parts are added to each edge of this pentagon, so
that the W of (6) is glued to the Y of (1) and so
on around. This completes half the model. You
may find it a bit tricky to get the colors right at
first, but the arrangement suggested here makes
each star plane the same color. The triangles are
star arms, so once you get started right it is not
hard to continue.

The remaining ten vertices or parts have their
colors in reverse order. They are the mirror image
arrangement of the first ten. To make them, just
read the color table in reverse order and from
right to left. For example, vertex (11) will be R
W Y, the reverse of (10) which is Y W R. And
this is glued in place diametrically opposite to its
counterpart on the model. Watching the colors of
the star arms will help you get all the remaining
parts in their proper places. As the model closes
up it is helpful to use tweezers to get the tabs
to adhere. The secret is to do only one pair of
tabs at a time. On the last part glue one pair of
tabs first. Then, when this has set firmly, put glue
on the remaining two sets of tabs and close the
triangular opening. The model now has sufficient
rigidity so that the tabs will adhere by applying
gentle pressure from the outside with your hands.
An extra drop of glue at the base of each pyramid
corner will provide extra strength where you may
perceive a small opening remaining.

You should now see, if you have not already
noticed this, that parallel star planes are the same
color. Hence twelve star planes complete this
model, two of each of the six colors. The twelve
stars give this model its name: stellated dodeca-
hedron (Figure 2.28). It is called “great” because
it is the final stellation of the dodecahedron, truly
a beautiful thing to behold!

“A thing of beauty is a joy forever.”
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Figure 2.29. Magnus Wenninger leading a workshop.
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Creating Kaleidocycles and More

Doris Schattschneider

The transition from a flat pattern to a three-
dimensional form can be fascinating to explore.
Even the youngest child can shape a simple
basket by cutting squares from the corners of
a rectangular piece of construction paper and
folding it up. But except for this well-known
pattern learned as a preschool exercise, the
two-dimensional pattern of an unfamiliar three-
dimensional object often seems to yield little
information about the object. Perhaps part of
the reason for this is that we are rarely asked to
imagine what shape will result from folding up
a flat pattern. The following exercises provide
hands-on exploration of some of the relations
between flat nets and three-dimensional forms
and provide an extra surprise in the creation of
kinetic forms.

Folding Strips of Triangles

Begin by constructing strips of four connected
congruent triangles like the one sketched in Fig-
ure 2.30. You should construct several different
kinds of strips — those whose triangles are (1)
equilateral triangles, (2) isosceles acute triangles,
(3) isosceles right triangles, (4) isosceles obtuse
triangles, (5) scalene triangles (a strip of acute
triangles, or of right, or obtuse). Note: If you are
in a hurry, use graph paper for rapid layout of
the strips of congruent triangles. If more time is
available, carry out rule-and-compass construc-
tion of the strips (brush up on the congruence
theorems!).

Question: For each of the constructed nets,
what three-dimensional shape will be formed

Figure 2.30.

when the net is folded along the common edges
of its triangles?

First, guess answers to this question. Then
score the connecting edges of the triangles (use
a medium ballpoint pen held against a straight
edge), cut out the strips of triangles, and fold each
of them to see what happens. (All folds should
be of the same type, folding the pattern back-to-
back.)

After this, other strips of four triangles can
be explored: for instance, a strip of four tri-
angles, all acute, but not all congruent; a strip
of triangles with some triangles right, others
acute, and so forth. Exploring what happens when
these nets are folded up leads to some natural
questions:

1. When will four congruent triangles form a
tetrahedron?

2. What must be true of four triangles if they are
to form a tetrahedron?

3. Are there different flat nets (other than the
strips of four triangles) that will fold up to
make the same shapes as those formed by the
strips of four triangles?

Kaleidocycles

Next, we will create and explore nets of
connected strips of triangles. For ease and
accuracy of construction, large paper and long
(18 inch) rulers should be used. Graph paper can
be purchased in size 17 � 22 inch, just right for
two constructions. Drawing paper can easily be
purchased in large sizes. Lay out each of the
two grids shown in Figures 2.31a and 2.32. The
grid in Figure 2.31a is made up of six connected
vertical strips of congruent isosceles triangles
that are characterized by the property that base
equals altitude. The grid is easily laid out using
graph paper; it is also easily constructed with
ruler and compass because of the simple defining
property of the triangles. (There is a grid of
squares which underlies the triangular grid; this
is shown in Figure 2.31b).

The grid in Figure 2.32 is made up of twelve
connected vertical strips of isosceles right trian-
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gles, where the top and bottom triangles have
been cut in half. This grid is obviously based on
a grid of squares, and is easily laid out on graph
paper or constructed with ruler and compass.

Before the grids are turned into three-
dimensional objects, ask yourself the question
that was asked earlier for the single strips.
Question: From each of the constructed nets
(as in Figures 2.31a and 2.32), what three-
dimensional shape will be formed when they are
folded along the common edges of the triangles?

Of course, you will need to use the earlier
answers to the question in attempting to answer
the question for the more complex nets. An aux-
iliary question that is worth asking is: Will all of
the lines in the grid (which are common edges
of pairs and triangles) play the same role in the
three-dimensional form?

Now score all the lines in each grid (use
a medium ballpoint pen), and cut out the nets
around the outline (be sure to cut around the tabs).
Fold the nets as follows:

1. Fold the net face-to-face (valley fold) on all
vertical lines, including those to which the tabs
are attached.

2. And fold the net back-to-back (mountain fold)
on all diagonal lines.

Then cup the folded net in both hands, and
gently squeeze it to encourage the top and the
bottom to come together.

The net in Figure 2.31a should come together
easily, with the half-triangles labeled as tabs com-
pletely covered. A chain of linked tetrahedra is
formed. (Glue or tape the edges of the tetrahedra
fitted over the tabs.) Holding the ends of the
chain, bring the ends of the chain together, fitting
the tabs at one end of the chain into the open edge
at the other end of the chain. (If the chain does not
come together easily, turn it until it does.) Glue or
tape these last two edges to the tabs, completing
the model.

The ring of six linked tetrahedra is a
(carefully) crinkled torus (doughnut), and has
the property that it can be endlessly turned
through its center hole. Simply grasp the
model in both hands and turn the tetrahedra
inward, pushing the points through the center
hole!

The Isoaxis

The net in Figure 2.32 will not come together to
form a closed three-dimensional form, but rather
it will form a (carefully) crinkled cylinder that
will also turn through its center hold, changing its
shape and appearing to “bloom” as it is turned.
This form was discovered by graphic designer
Wallace Walker, and is called Isoaxis R�. Assemble
Isoaxis as follows. Gently squeeze the scored and
folded net so that it begins to curl and collapse
along the fold lines. When fully collapsed, it
will look like an accordion-folded paper with
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Figure 2.33. Corraine Alves and Diana Weimer making kaleidocycles.

square cross section. (One method of achieving
this state of the model is to begin at one end of
the net, collapsing the net along the folds to form
a square cross section, and holding the collapsed
part between thumbs and forefingers, “gathering”
the rest of the net into the collapsed state with the
middle fingers.) The accordion-folded net should
be pressed firmly; it is best if it can be pressed
under a heavy object for 12 hours or more to set
the folds fully. The two ends of the folded net
are then joined (use tape or glue), matching tabs
to the inside of opposite triangles. Join one tab
at a time; the model will be tight, and so turn it
through its center to join the second tab. To rotate
this model, hold it in both hands and bring points
to the center; push on the points. The crinkled
cylinder will turn continuously through its
center hole!

Further Exploration

There are many avenues for follow-up. A few are
suggested below.

1. Explore the symmetry properties of the three-
dimensional models. This can be enhanced by
decorating the faces of the models to display
various symmetries. One question that will

need to be answered is: What faces in the flat
net are adjacent (or become adjacent during
rotation) in the three-dimensional forms?

2. Create other similar nets, varying the kinds of
triangles chosen, and the number of triangles
in the net. Fold in the same manner to see
what three-dimensional forms result. A good
challenge that can be met using only a knowl-
edge of elementary geometry is: create other
rings of tetrahedra having more tetrahedra, but
such that the center hole in the ring is (in
theory) a point, as is the case for the model
in Figure 2.31. The model in Figure 2.31
has been called a “hexagonal kaleidocycle”
by Walker and Schattschneider, because the
center cross section of the assembled form is a
regular hexagon.

Information on Construction Materials

The basic necessities for the above constructions
are

• Paper
• 18-inch ruler
• Medium ballpoint pen
• Scissors
• White glue or tape
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If the models are to be decorated, then color-
ing materials that will not weaken or warp the
paper should be used. Since the models rotate,
the paper chosen must not easily tear or break
when bent repeatedly. Ordinary construction pa-
per is not suitable. In addition, the paper should
be heavy enough so that the three-dimensional
models have suitable firmness. Medium-weight
drawing paper, 100% rag, is excellent, and takes
decoration well. Ordinary graph paper is too thin,
but there are excellent heavier drafting and design
papers that come in large sizes. The nets should
not be made too small, or they become very
difficult to put together and manipulate. A good
size for the nets is 2.5 to 3 inches width for each
“panel” of linked triangles for Figure 2.31, and
1.25 to 1.75 inches for each “panel” of linked

triangles for Figure 2.32. The overall width of the
nets should be in the range of 15 to 22 inches.

White glue seems to be best for assembling
the models; in any case, the glue chosen should
not warp the paper, nor should it be the “instant
hold” variety since tabs need to be manipulated
into place before the glue sets. If tape is used,
then it must be the type used for hinging; ordinary
clear plastic tape will break after a few turns of
the model.

Giftwrap paper which has a pattern based on a
square grid can be laminated to drawing paper to
create a nicely decorated Isoaxis with an all-over
pattern. Use a spray glue that will not be brittle
when dry to affix the gift paper. The square grid
of the pattern must be carefully followed for the
lines of the net of Isoaxis.
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The Rhombic Dodecahedron

Arthur L. Loeb

This is a recipe for constructing modules that
generate the rhombic dodecahedron in two fun-
damentally different ways. The first construction
stellates a cube with six square pyramids; the
second stellates a regular octahedron with eight
triangular pyramids.

The Pyramids

The first step is the construction of the sides of the
pyramids. The square pyramids have an apex an-
gle whose cosine equals 1=3, while the triangular
pyramids have an apex angle whose cosine equals
�1=3. In order to produce mutually congruent
dodecahedra by both methods, we construct the
template shown in Figure 2.34 by the following
steps:

1. Draw two mutually perpendicular lines. Call
their intersection O.

2. Choose a point A, different from O, on one of
the mutually perpendicular lines.

3. Draw a circle having radius equal to three
times the distance OA, whose center is located
on A.

4. Call the intersections of this circle with the
extension of the line OA C and B, as shown.
Call an intersection of the circle with the line
perpendicular to OA D, as shown.

5. Connect C and D, as well as B and D.

D

A B0C

Figure 2.34.

The resulting template furnishes the following
linear and angular dimensions:

• The length of the line segment CD is the edge
length of the octahedron to be built.

• The length of the line segment BD is the edge
length of the cube to be built.

• The triangle CAD is the shape of the sides of
the triangular pyramids to be built.

• The triangle BAD is the shape of the sides of
the square pyramids to be built.

Construction of the Polyhedra

1. Construct a regular octahedron whose edge
length equals the length of line segment CD.

2. Construct a cube whose edge length equals the
length of line segment BD.

3. Construct eight triangular pyramids whose
bases are equilateral triangles having edge
length equal to the length of line segment CD,
and whose sides have the shape of triangle
CAD.

4. Construct six square pyramids whose bases
are square having edge length equal to the
length of line segment BD, and whose sides
have the shape of triangle BAD.

Juxtaposition of Polyhedra

Arrange the six square pyramids so that their
square bases are in the configuration shown in
Figure 2.35. Hinge them together so that they
can rotate with respect to each other around
their shared edges. When the pyramids are
folded inward until their six apexes touch, they
will form a cube congruent with the cube also
constructed.

Arrange four of the triangular pyramids with
their triangular bases in the configuration shown
in Figure 2.36, and hinge them together as above.
When folded in until their apices touch, they
will form a regular tetrahedron. Repeat for the
remaining four tetrahedra.

Place the six square pyramids around the cube,
square faces joined to square faces. Place the
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Figure 2.35.

Figure 2.36.

eight triangular pyramids around the octahedron,
with the equilateral triangles joined. The result
should be two mutually congruent rhombic do-
decahedra. Note that the cube edges constitute the
shorter, the octahedron edges the longer, diago-
nals of the rhombic faces.

Place two square pyramids with their square
bases joined. The result is an octahedron that is
not regular, because its faces are not equilateral.
Six of these irregular octahedra can be put to-
gether to form a rhombic dodecahedron. (Note:
this would require twelve square pyramids rather
than the six already constructed).

Space-Fillers

Of the polyhedra constructed, the following will
fill space without interstitial spaces.

• Cube
• Rhombic dodecahedron
• Square pyramid
• Irregular octahedron
• Regular octahedron combined with eight tri-

angular pyramids

Combinations of these (say cube in combina-
tion with square pyramids) are, of course, also
possible.

A Note on Materials

Contributed by Jack Gray
Any useful polyhedral model is formed on the
spectrum between “a rough sketch” and “a long-
lasting work of art.” The position on the spectrum
is determined by the choices of materials, tools,
and techniques as well as by the time and care
used in the construction process. A rough sketch
is always a valid precursor to a work of art.
Expect to make a few mistakes on the sketch, and
then try to conquer those in a second model.

Transparent tape is a good hinging material,
while paper tape is thicker and more cumber-
some. Use permanent tape, taking care to position
it as follows. Place a strip of tape, sticky side up,
on a flat surface. The strip should be longer by a
good amount than the edge to be hinged. Weight
down the ends of the tape so that it cannot move
while you are connecting the polyedron to it.

Carefully lower the edge of the first poly-
hedron to the tape. Before letting it make contact,
make sure that it is in the center of the width and
the length of the tape. Make contact along the
whole length of the edge.

Orient the second polyhedron to the first. Slide
the second polyhedron down the face of the first
until its edge touches the tape; then rotate it about
that edge, so that contact with the tape is made
along the entire edge. Trim off the excess tape
with an X-Acto R� knife or a single-edge razor
blade.

Flip over the pair of joined polyhedra and
inspect the tape hinge. Burnish it with your finger
to complete contact along the full surface of the
tape.
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Figure 2.37. Arthur L. Loeb demonstrating his models.

Place another piece of tape of the same length
on the flat surface. This will be used to tape
the other side of the joined edges, creating a
hinge that is equally strong on both sides. The
tape should be weighted down as before, and
care should be taken in centering the already-
joined edges on the strip of tape before making
contact. Let the joined faces lie flat against the
tape to make contact along the full width of tape
surface. Remove the excess tape and burnish as
before.

If your sketch looks like a work of art, plan a
finished model. Visit a local art store or hobby
shop to examine the sheet materials that are
available.

Various colored art papers, colored and trans-
parent acetate, mirrored Mylar R�, oak tag, and
construction paper can be found. Fine rice papers

are good for finishes, though they are too flexible
for the body of such models. (In adding a surface
finish of thin sheet material to your model, cut out
each polygonal face so that it will not go across
the hinge. Otherwise, the finish material will
buckle when flexed.) Your experience making a
sketch model will prepare you to pick materials
“by feel.”

Thicker sheet material like mat board and
Plexiglas R� need to have their edges mitered to
half the dihedral angle between faces to prevent
the thickness of the material from creating
inaccuracies. Great care should be used in gluing
such joints, so that glue does not spill onto the
surfaces.

On a finished model, the hinging should be
done with transparent polyester hinging tape.
Cloth tape can be used on larger models.
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Balloon Polyhedra

Erik Demaine, Martin Demaine, and Vi Hart

You have probably seen a long balloon twisted
into a dog as in Figure 2.38. But did you know
that the same balloon can be twisted into a regular
octahedron like Figure 2.39? Here are two one-
balloon constructions and their associated net-
works of edges and vertices (the technical term
for such a network is a graph).

Balloon twisting offers a great platform for
making, exploring, and learning about both poly-
hedra and graphs. Even the classic balloon dog
can be thought of as a graph, with edges corre-
sponding to balloon segments between the twists.
Children of all ages can thus enjoy the physical-
ity of the balloon medium while learning about
mathematics.

Here we give a practical guide to making
polyhedra and related geometric constructions
with balloons, while briefly describing the math-
ematics and computer science related to balloon
construction.

Figure 2.38. Classic dog (one balloon).

Figure 2.39. Octahedron (one balloon).

If Euler Were a Clown

What polyhedra can be made by twisting a single
balloon, like the octahedron in Figure 2.39? The
balloon must traverse every edge of the polyhe-
dron in sequence, and can traverse each edge only
once, though it can (and will) visit each vertex
multiple times. Mathematicians will recognize
this structure as an Eulerian path. We review
the classic mathematics of this structure in the
context of balloons by wondering: what is the
simplest polyhedron that can be made from a
single balloon?

The simplest (nonflat) polyhedron is a tetra-
hedron, but a tetrahedron cannot be made from
a single balloon. Such a balloon would start at
some vertex and end at some other vertex, but
for every remaining vertex, each time the balloon
enters the vertex it also exits the vertex. Thus, for
a balloon twisting of a graph to possibly exist,
every vertex except possibly two (the starting and
ending vertices) must have an even number of
edges incident to it, or even degree. But in the
tetrahedron, all four vertices have odd degree.
Thus the tetrahedron cannot be made from one
balloon.

The four-dimensional analog of a tetrahedron
(called the 4-simplex) consists of four tetrahedra
glued together face-to-face. One 3D projection
of a 4-simplex is a regular tetrahedron with all
four vertices joined to a fifth vertex added in
the center. Every vertex is thus joined to all four
other vertices, giving it even degree. So the 4-
simplex does not have the “too many odd-degree
vertices” obstruction that the tetrahedron had. In-
deed, Figure 2.40 shows a 4-simplex made from
one balloon. Building one is somewhat difficult
for practical reasons; we suggest you try it.

In fact, a single balloon can be twisted into
any connected graph in which all vertices have
even degree. The starting point is to traverse the
graph naı̈vely: start the balloon at any vertex,
route it along any incident edge, and keep go-
ing, at each step following any edge not already
visited. Because the vertex degrees are all even,
whenever the balloon enters a vertex, there is
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Figure 2.40. The 4-simplex, made from one balloon, is
a puzzle to twist.

always another unvisited edge along which it can
exit. The only exception is the starting vertex,
where the balloon’s initial exit left an odd num-
ber of unvisited edges. This vertex is the only
place where the balloon might have to stop, and
eventually this must happen because the balloon
will run out of edges to visit. When this happens,
the balloon forms a loop that visits some edges
once, but possibly does not visit some edges
at all.

Now consider just the graph of unvisited
edges. It too has even degree at every vertex,
because the balloon exited every vertex it entered,
including the start vertex. Hence we can follow
the algorithm again with a second balloon, and
a third balloon, and so on, until the balloons
cover all the polyhedron’s edges (and no two
balloons cover the same edge). Now we take
any two balloons that visit the same vertex and
merge them into one balloon by the simple switch
shown in Figure 2.41. This also forms a loop, and
visits all the same edges. Repeating this process,
we end up with one balloon forming a loop that
visits every edge exactly once.

Now we have a construction for twisting many
graphs from a single balloon. We have seen one
4D polyhedron to which this construction applies,
but what about 3D polyhedra? One example is the
octahedron from Figure 2.39. The octahedron has

six vertices, each of even degree 4. Therefore the
general construction applies; Figure 2.42 shows a
practical construction. The octahedron is actually
the only Platonic solid twistable from a single
balloon: for all the others, every vertex has odd
degree (3 or 5).

Are there simpler 3D polyhedra than the octa-
hedron that are twistable from one balloon? If we
glue two tetrahedra together, we get a triangular
dipyramid. The two apexes have odd degree 3, but
the remaining vertices all have even degree 4. We
know that a single balloon cannot tolerate more
than two odd-degree vertices, but this polyhedron
has just two, putting it right at the borderline of
feasibility. Figure 2.43 shows that it indeed can
be made from one balloon,

More generally, a single balloon can be
twisted into any connected graph with exactly
two vertices of odd degree. Just imagine adding
an extra edge to the graph, connecting the two
odd-degree vertices. This addition changes the
degrees of the two odd-degree vertices by 1,
making them even, and does not change the
degree of any other vertices. Hence this modified
graph has all vertices of even degree, so it can
be twisted from a single balloon forming a loop.
We can shift the loop of the balloon so that it
starts and ends at one of the odd-degree vertices.
Then we remove the added edge from both the
graph and the balloon. We are left with a single
balloon visiting every edge of the original graph
exactly once. Naturally, the balloon starts at one
odd-degree vertex and ends at the other.

Summarizing what we know, a one-balloon
graph has at most two odd-degree vertices, and
every connected graph with zero or two odd-
degree vertices can indeed be twisted from one
balloon. What about graphs with one odd-degree
vertex? Don’t worry about them; they don’t exist.
Euler showed that every graph has an even num-
ber of odd-degree vertices. To see why, imagine
summing up the degrees of all the vertices. We
can think of this sum as counting the edges of the
graph, except that each edge gets counted twice,
once from the vertex on either end. Therefore the
sum is exactly twice the number of edges, which
is an even number. The number of odd terms in
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Figure 2.41. Joining two balloon loops (top left) into one balloon loop (bottom right) when the two loops visit a
common vertex (shaded, and abstracted on the right).

Figure 2.42. The octahedron is like the balloon dog of balloon polyhedra. With practice, it can be twisted quickly
from one balloon.

the sum (the number of odd-degree vertices) must
thus be even.

We conclude that we know all one-balloon
graphs. In fact, we have just rediscovered the
classic characterization of Eulerian paths, com-
mon in graph-theory textbooks, but in the con-
text of balloons. If you are looking for a good
challenge for making a polyhedron from one
balloon, we recommend the cuboctahedron. Ev-
ery vertex has degree 4, but there are twenty-
four edges and sharper dihedral angles, making

it difficult to twist except from especially narrow
balloons.

Cheating with One Balloon

One trick for transforming graphs into one-
balloon graphs is to double every edge: whenever
two vertices are connected by an edge, add a
second edge alongside it. This change doubles the
degree of every vertex, so all resulting vertices
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Figure 2.43. The triangular dipyramid is perhaps the simplest polyhedron twistable from one balloon, and it is easier
than the octahedron.

Figure 2.44. Pop-twisting a tetrahedron from one balloon.

have even degree. Therefore we can make the
doubled graph from one balloon. In other words,
one balloon visits every edge in the original graph
exactly twice instead of once.

In fact, we do not need to double every edge:
we just need to double edges along paths con-
necting the odd-degree vertices in pairs, except
for one pair of odd-degree vertices that we can
leave alone. Minimizing the number of edges we
double is the Chinese postman problem, a well-
studied problem in computer science. Balloons
offer a fun context for studying efficient algo-
rithms for this problem.

After we have made a balloon with some of
the edges doubled, we could pop the extra edges
using a sharp object. The result is a more uniform

aesthetic. For example, Figure 2.44 shows how a
tetrahedron, which would normally require two
balloons, can be made from one balloon with
one popped segment. (We leave the construction
of the tetrahedron with a doubled segment as
an exercise for you. Remember to start and end
at the two odd-degree vertices.) In practice, be
careful to twist the ends of a segment extensively
before popping it to prevent affecting the incident
segments.

On the topic of balloon popping, a challenging
type of puzzle is this: given an already-twisted
balloon polyhedron, can you pop some of the
balloon segments to make another desired graph?

This problem is known as subgraph isomor-
phism, and is among the family of computa-
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Figure 2.45. The tetrahedron is easy to twist from two
balloons.

tionally intractable “NP-complete” problems, so
there is likely no good algorithm to solve it.

Polyballoon Constructions

If we cannot make a graph with just one balloon,
how many do we need? The minimum number of
balloons that can make a particular graph, with
each edge covered by exactly one segment, is the
graph’s bloon number.

There turns out to be a very simple formula
for the bloon number: it is half the number of odd
vertices (unless, of course, the graph has no odd
vertices; then the bloon number is 1, not 0).

On the one hand, we cannot hope for fewer
balloons: each odd-degree vertex must be the start
or end of some balloon, so each balloon can
“satisfy” only two odd-degree vertices. On the
other hand, there is a construction with just this
many balloons, using a simple construction sim-
ilar to the arguments above. First, we add edges
to the graph, connecting odd-degree vertices in
disjoint pairs. The number of added edges is half
the number of odd-degree vertices. The resulting
graph has all vertices of even degree, because we
added one edge incident to each vertex formerly
of odd degree. Therefore it can be made from one
balloon forming a loop. Now we remove all the
edges we added. The number of removed edges,
and hence the number of resulting balloons, is
half the number of odd-degree vertices.

It now becomes an easy exercise to figure
out how many balloons we need for our favorite
polyhedron. For example, a tetrahedron requires

only two balloons, as shown in Figure 2.45. An
icosahedron requires six balloons, which can be
made into identical two-triangle units as shown in
Figure 2.46. The same unit can make a snub cube
from twelve balloons, as shown in Figure 2.47, as
well as a snub dodecahedron from thirty balloons
(another exercise).

Note that, in both cases, there are two
fundamentally different ways as to how the
balloons can be assembled, right-handed and
left-handed. This is a nice lesson on chirality
(handedness).

For all Platonic and Archimedean solids, there
is a construction out of balloons that

1. Uses the fewest possible balloons,
2. Uses balloons all of the same length, and
3. Preserves all or most of the symmetry of the

polyhedron.

Achieving all of these properties together
can be a fun puzzle. In fact, achieving just the
first two properties is a computationally difficult
problem: decomposing a graph into a desired
number of equal-length balloons is a special case
of “Holyer’s problem” in graph theory, and it
turns out to be among the family of difficult
“NP-complete” problems, even for making
polyhedra.

Tangles

Balloons can make many more graphs than just
polyhedra. A simple extension is to look at dis-
connected graphs, made from multiple shapes. In
Orderly Tangles, Alan Holden introduced regular
polylinks, symmetric arrangements of identical
regular polygons, which make a good subject
for balloon twisting. Tangles have recently been
explored with the aid of (freely available) com-
puter software to find the right thicknesses of
the pieces, which may be especially useful for
determining the best-size balloons for twisting.

Perhaps the simplest example of a tangle is a
model of the Borromean rings assembled from
three rectangles, each lying in a coordinate plane.
This model is fairly easy to construct from three
balloons, as shown in Figure 2.48. Figure 2.49
shows a more challenging construction made
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Figure 2.46. The icosahedron is a good example of joining several (six) identical balloon units. The tied balloon ends
make it easy to attach vertices together.

Figure 2.47. The snub cube is a bigger example of joining several (twelve) identical balloon units, recommended for
groups of polyhedral balloon twisters. We leave the final form as a surprise.
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Figure 2.48. The Borromean rings are easy to make
from three balloons.

from six squares; the difficulty is not twisting the
squares, of course, but interlinking them in the
correct over-under pattern. Harder still are the
six-pentagon tangle and the four-triangle tangle.

A further generalization of regular polylinks
are polypolyhedra, which allow the symmetri-
cally arranged shapes to be Platonic solids in
addition to regular polygons. Some examples
such as the famous “five intersecting tetrahe-
dra” have been around for many years, and re-
cently even the subject of balloon twisting. But
a thorough enumeration of all polypolyhedra is
relatively recent. For a longer project, ideally
with a group of mathematical balloon twisters,
we recommend looking through this catalog of
polypolyhedra.

Practical Guide for Twisting Balloon
Polyhedra

Twisting balloons into polyhedra and related
structures has been explored by several others.

Several websites listed in the Notes for this
chapter include video instructions. In the rest
of this section, we give some practical tips for
twisting your own balloons into polyhedra.

Long skinny balloons come in two main sizes:
160s (1-inch diameter, 60-inch length) and 260s
(2 inches by 60 inches). For making one-balloon
polyhedra, or complicated tangles, 160s are bet-
ter. For most multiple-balloon polyhedra, the ex-
tra thickness of the 260s is better for stability.
Of course, by not inflating all the way, or by
attaching multiple balloons together, the balloon
can reach any width-to-length ratio you like.

One of the biggest challenges is to get the
balloon segments to be of equal length. Twisting
a single balloon into the correct number of
equal-length segments is something that just
takes practice. If your lengths are off, you can
always untwist and start again. When working
with multiple balloons, it can be helpful to
inflate them all to the same length before
twisting them.

You may want to shorten the lengths of all the
edges on a finished balloon structure, for example
to get a tangle to fit together snugly. One way to
do this is to grab all the edges at a vertex, and
twist them all together. Performing such a twist
at every vertex results in an aesthetically pleasing
effect that accents the vertices.

Another problem you may run into is wanting
to pass the end of a balloon through a hole that is
narrower than the inflated balloon. If you can fit
the deflated end of the balloon through, you can
then squeeze the air through the deflated portion
and inflate the other side. It is better, though, to
figure out a twisting order that avoids this, and
this is a puzzle in itself.

Enjoy your mathematical twists!
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Figure 2.49. The six-square tangle is a good puzzle in assembling balloon tangles.
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Regular and Semiregular Polyhedra

H.S.M. Coxeter

The cube, the octahedron, and the tetrahedron
obviously have been admired for thousands of
years. It is impossible to say who first described
them. Certainly the Pythagoreans knew all about
them. I understand that a dodecahedron was
found in Italy which was apparently made in 500
B.C. or perhaps even earlier, and that icosahedral
dice were used by the ancient Egyptians. They
can be seen in the British Museum, although
there is some doubt about their exact date. All
the five so-called Platonic solids are described
in the later books of Euclid. Subsequent writers
have made it much easier to see that the number
of Platonic solids is just five.

First of all, perhaps one should define what
one means by a regular solid. It is rather strange
that not many people realize how very simple the
definition can be. If one starts in the plane defin-
ing a regular polygon, one cay say that a polygon
is regular if it has a circumcircle and an incircle
which are concentric. All the vertices lie on a
circle and all the sides touch a circle and those
two circles have the same center. That is a very
obvious way of defining a regular polygon. The
same thing works in the analogous situation for a
polyhedron in three dimensions. A polyhedron is
regular if it has three spheres, all with the same
center: one through all the vertices, one touching
all the edges and one touching all the faces. And
that is all one needs. It is very easy to show from
this that the faces are regular polygons and that
they are all alike.

H.S.M. Coxeter (1907–2003)

Of course, if you are dealing with a honey-
comb (that is, a tessellation of the plane with reg-
ular polygons), you have to make the definition
a little bit different and say that the polygons are
regular and all alike. And then you know that the
ways of filling the plane with regular polygons
are just three: triangles, six at a vertex, which I
call f3; 6g; squares, four at vertex, which I call
f4; 4g; and hexagons, three at a vertex, which
I call f6; 3g. Those are what we call Schläfli
symbols. The first entry is the number of sides
of a face and the second is the number of faces at
a corner. So a cube, for instance is called f4; 3g.
Figure 3.1 gives such symbols for all five Platonic
solids.

Tetrahedron

Icosahedron

Dodecahedron

Octahedron Hexahedron

{3, 3}

{3, 5} {5, 3}

{3, 4} {4, 3}

Figure 3.1. Schläfli symbols for the Platonic solids.
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There is a very nice book on the history of
these things by van der Waerden called Scientific
Awakening. He has a fine chapter about Pythago-
ras, and he says that an Etruscan dodecahedron
made of soapstone was found near Padua, dated
from before 500 B.C. The faces of a dodec-
ahedron are pentagons. You know that if you
draw the diagonals of a pentagon you get a
star pentagon inside. The star pentagon is the
ancient symbol of the Pythagoreans. The story
is told in van der Waerden’s book that one of
the Pythagoreans was lying on his deathbed in
a foreign country, unable to pay the man who
had taken care of him. And he advised this
man to paint a star pentagon on the door of the
house so that any Pythagorean who might enter
would make inquiries. And many years later, a
Pythagorean did come, and the man was richly
rewarded. A rather nice little story.

Coming to much more recent times, René
Descartes (1596–1650) wrote a book called De
Solidorum Elementis. Although the manuscript
was soaked for three days after a shipwreck on
the river Seine, it was copied in 1676 by Leibniz
before it was lost forever. His copy was lost too,
but that loss was only temporary; two hundred
years later Leibniz’s copy was found in Hanover,
Germany. Federico gives the details of this story.

Shortly before Descartes came Leonardo da
Vinci and Luca Pacioli. Pacioli wrote a book
called Divina Proportione in which he had pic-
tures of regular and Archimedean solids based on
models made by da Vinci.

Johannes Kepler was very interested in these
things, and his Harmonices Mundi of 1619 con-
tains one of his famous illustrations. In Figure 3.2
you see at the top (Mm) his attempt to fill the
plane with polygons of various kinds such as
a dodecagon with hexagons and squares around
it. Next you see a tetrahedron, and then two
halves of an octahedron (Oo) showing that the
octahedron is just two square pyramids put base
to base. Rr is the dodecahedron and here he has
divided it into two parts by cutting along a set
of ten edges which form a Petrie polygon. See
how they fit together. And in Qq the cube is
divided by a skew hexagon, which is its Petrie
polygon. Those two halves fit together to make

the cube. Pp is the icosahedron with little caps
taken off the top and bottom, leaving a pentagonal
antiprism between the two pentagonal pyramids.
Alternatively, just take the antiprism and stick the
two pyramids on top and bottom and there is the
icosahedron.

One of the ideas that Kepler got from the an-
cient Greeks was making four of the five Platonic
solids correspond to the four elements: earth,
air, fire, and water. In Figure 3.2 you see the
tetrahedron with a bonfire drawn on it because
the tetrahedron represents fire; the octahedron,
representing air, has birds; the icosahedron has
a lobster and fish because the icosahedron repre-
sents water; and you see a hoe and spade on one
face of the cube, a carrot on another, and a tree on
a third because the cube represents earth. Well of
course there was a fifth solid and no fifth element,
so the ancients just said that the dodecahedron
should correspond to the whole universe. That
was curiously echoed by the Japanese; I have a
model in which if you look closely, you find that
on the twelve faces are drawn the twelve Japanese
signs of the Zodiac. It’s a little bit different from
the Greek Zodiac: one sign is a dragon, one is a
doe, one is a dog, one is a chick, and so on.

In Figure 3.2 you see also two stellated do-
decahedra, each derived from the convex dodec-
ahedron by extending the planes of the faces.
Kepler’s drawings Tt of the great stellated dodec-
ahedron are a little bit inaccurate, but they give us
the right idea. In Ss we see two views of the sim-
pler small stellated dodecahedron. Somewhere in
Italy there is an elaborate floor on which a picture
of this polyhedron appears, nicely drawn in 1420
as a mosaic. So the small stellated dodecahedron
may have been discovered by Paolo Uccello,
two centuries before Kepler. Figure 3.3 shows a
different view of the same polyhedron.

Kepler seems to have understood the nature
of reciprocation: the idea that the cube and the
octahedron are reciprocal, and the dodecahedron
and the icosahedron are reciprocal. Figure 3.4
shows a shaded cube and white octahedron with
corresponding edges crossing each other at right
angles. You see that each corner of the cube
emerges through a face of the octahedron and
vice versa. Curiously enough, although Kepler
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Figure 3.2. Kepler’s drawing of the regular solids (and others).

had that idea, he did not pursue it in the matter
of the star polyhedra. If you think of a Schläfli
symbol, whereby the cube is called f4; 3g and
the reciprocal octahedron f3; 4g, then it would be
natural to call the small stellated dodecahedron
f5=2; 5g because the faces are star pentagons cor-
responding to the fraction 5/2, and there are five
at each corner. Similarly, the great stellated do-
decahedron is f5=2; 3g. The faces are pentagrams
again and there are three of these at every corner.

Turn these symbols around and you have f5; 5=2g
and f3; 5=2g. f3; 5=2g, the great iscosahedron, is
shown in Figure 3.5. These were not discovered
until two hundred years later, by the Frenchman
Louis Poinsot, but when they finally were there,
it became clear they were reciprocal to Kepler’s
f5=2; 5g and f5=2; 3g.

I have a little more to say about Kepler because
of his interest in mystical connections between
the Platonic solids and astronomy. Of course,
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Figure 3.3. The small stellated dodecahedron.

Figure 3.4. The cube and the octahedron.

Figure 3.5. The great icosahedron.

he was very interested in astronomy. He had a
curious idea about the orbits of the planets which
is very nicely described in The Sleepwalkers by
Arthur Koestler, the man who also wrote Dark-
ness at Noon. Koestler said: “Into the orbit or
sphere of Saturn he inscribed a cube.”

Now let’s say exactly what that means. You
think of the orbit of Saturn as the equator of a
big sphere and similarly the orbit of Jupiter as
the equator of a smaller sphere inside. Kepler
was a sufficiently good astronomer to know that
the orbits were not really circles, but more like
ellipses, so that there is a minimum distance and
a maximum distance from the sun in each case.
What he did was to imagine a sphere in space
that was made as a shell, not a mathematical
sphere but a solid shell with an outer radius corre-
sponding to the maximum distance of the planet
and an inner radius to the minimum distance.
So it is a hollow sphere. And he would take the
minimum distance of Saturn and divide it by the
maximum distance of Jupiter to get the ratio of
the circumradius and in radius of a cube. For the
six planets known to Kepler, Table 3.1 gives
the distances from the sun in millions of miles
for comparison with the circumradius 0R and
inradius 2R of each Platonic solid. For instance,
in the case of Saturn and Jupiter the astronomical
result is 1.69 as an approximation to the square
root of 3. So let me go on quoting from Koestler:

Into the orbit or sphere of Saturn he inscribed a
cube, and into the cube another sphere which was
that of Jupiter. Inscribed in that was the tetrahe-
dron, and inscribed in that, the sphere of Mars.
Between the spheres of Mars and Earth came
the dodecahedron, between the Earth and Venus,
the icosahedron, between Venus and Mercury, the
octahedron. Eureka!: : : This is the ultimate fasci-
nation of Kepler, both as an individual and as a
case history. For Kepler’s misguided belief in the
five perfect bodies was not a passing fancy, but
remained with him in a modified version to the end
of his life, showing all the symptoms of a paranoid
delusion; and yet it functioned as the vigor matrix,
the spur, of his immortal achievements.

Kepler’s system is shown in Figure 3.6. I think
it is rather nice to see how Koestler acknowl-
edged that, although all this is nonsense, if Kepler
hadn’t had these curious fantasies he might never
have gone on to do all the great things that he did.

Symmetry

One of the most remarkable things about the reg-
ular and Archimedean solids is their symmetrical
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Table 3.1. Maximum and minimum distances of the planets from the sun in millions of miles, together with ratios
needed for examining Kepler’s theory of the solar system

Planet Max. Dist. Min. Dist. Ratio Polyhedron 0R=2R

Saturn 935 837 837
507

D 1:69 Cube
p
3 D 1:73

Jupiter 507 459 459
155

D 2:98 Tetrahedron 3

Mars 155 128 128

94 1
2

D 1:35 Dodecahedron
q
.15� 6p

5/D 1:26

Earth 941
2

911
2

91 1
2

68
D 1:35 Icosahedron

q
.15� 6p

5/D 1:26

Venus 68 67 67
43

D 1:54 Octahedron
p
3 D 1:73

Mercury 43 28

Figure 3.6. The planetary system of Johannes Kepler,
detail. From Kepler’s Mysterium Cosmographicum
(1595).

nature. In his little book Symmetry, Hermann
Weyl mentions that the old problem of enumer-
ating the five kinds of Platonic solids was super-
seded in the 1870s by the problem of enumerating
the five kinds of rotation groups. I would like just
to run through the details because this is a beau-
tiful piece of pure mathematics that Felix Klein
did a hundred years ago, in his book Lectures on
the Icosahedron.

Klein considered rotations of the sphere into
itself, the way an eyeball rotates in its socket,
but continued through a whole turn. There are
rotations of various periods. A half turn is a

rotation of period 2; a quarter turn is a rotation
of period 4, and so on. Suppose that you have a
rotation of period p, greater than or equal to 2.
The axis of rotation penetrates the sphere at two
opposite poles of that same period p. Working on
a sphere, you may have poles of various periods,
and a given group of rotations will transform
various poles into one another; you get a certain
class of equivalent poles. If the total order of the
group (the total number of rotations altogether,
including the identity) is N, then in each class of
equivalent poles, if they are p-gonal poles, there
will be N=p poles. That is because if you take
a point close to a pole and just move it by that
rotation, you get a little p-gon around that point.
It is rotated by a rotation of period p. And so all
the rotations in the group, when applied to this
point near one of the poles, will give you a lot of
p-gons all over the place. As there are N of these
points altogether, there are N=p equivalent poles
in each class.

The next thing to observe is (thinking of all the
rotations in the group), for each axis of period p
there are p�1 rotations not including the identity.
Turn through one pth of a turn and then two pths,
and so on. There are p� 1 rotations on each axis.
And as there are two poles at opposite ends of
every axis, there are .p�1/=2 for each pole. Now
as there areN=p poles in each class of equivalent
poles, the number of rotations for each class is

N

p

.p � 1/
2

D N

2

�
1 � 1

p

�
:

Not counting the identity, the whole rotation
group consists of N � 1 rotations, so you simply
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put them together. Summing over the various
classes of equivalent poles, you have

N

2

X�
1 � 1

p

�
D N � 1;

where N is the total number of rotations in the
group. Just twist that over by a little more algebra
and you get

2 � 2

N
D
X�

1 � 1

p

�
:

This is summed over the class of equivalent poles.
How many will there be? Well if N D 1 that

is a trival case, of course, where there is no pole.
So from now on we can suppose the number of
rotations in the whole group is greater than or
equal to 2. And if that is so, then you can get the
inequality:

1 � .2 � 2=N/ � 2:

Now we have this sum,

X
.1 � 1=p/:

Could there be only one term? No, there couldn’t
be only one, because .1 � 1=p/ < 1, while the
summation has to be greater than or equal to 1,
and also less than 2. Could there be as many as
four terms in this summation? No, because four
terms, each 1=2 or more, would add up to two
or more. So we know that this sum has two or
three terms.

Take two terms and you have

2 � 2=N D .1 � 1=p/C .1 � 1=q/:

Cancel the 2 D 1C 1, multiply all through by N
and you get this curious little equation:

N=p CN=q D 2:

But as we saw right at the beginning, N=p is the
number of poles in a class of equivlent poles. So
N=p is a whole number. SimilarlyN=q is a whole
number. And those two whole numbers add up
to 2. So there is no conclusion except that they

are both 1: N D p D q. And that means that if
there are only two terms in this sum, you have a
group of orderp with only one axis but two poles,
one at each end of that axis. That is Cp, a cyclic
group, the group that you get by having a p-gonal
rotation and all its powers, and that is all.

Now suppose there are three terms in this
summation, say

.1 � 1=p/C .1� 1=q/C .1 � 1=r/ D 2� 2=N;

so that

1=p C 1=q C 1=r D 1C 2=N:

Since 1=3C1=3C1=3D 1, the three periods,
p; q; r cannot all be 3 or more. So at least one of
them is 2, say r D 2, and you have

1=pC 1=q D 1=2C 2=N:

Multiplying through by 2pq, you get

2q C 2p D pq C 4pq=N;

whence

.p � 2/.q � 2/ D 4 � 4pq=N:

So .p � 2/ and .q � 2/ are two nonnegative inte-
gers whose product, being less than 4, can only be
0 or 1 or 2 or 3. Assuming, for convenience, that
p � q, you may have .q � 2/ D 0, but otherwise
the “two nonnegative integers” can only be 1 and
1, or 2 and 1, or 3 and 1. It follows that, apart
from the cyclic group Cp, the only finite rotation
groups .p; q; r/ are the

• Dihedral group .p; 2; 2/ with N D 2p

• Tetrahedral group .3; 3; 2/ with N D 12

• Octahedral group .4; 3; 2/ with N D 24

• Icosahedral group .5; 3; 2/ with N D 60

If you think of figures possessing this kind of
symmetry, you soon see that each .p; q; 2/ is
the group of rotatory symmetry operations of the
polyhedron fp; qg and of its reciprocal fq; pg.
The inequality

.p � 2/.q � 2/ < 4
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gives you at the same time a proof that there
are only five Platonic solids: f3; 3g, f4; 3g, f3; 4g,
f5; 3g, and f3; 5g.

The planes of symmetry of such a solid fp; qg
decompose its circumsphere into a pattern of 2N
spherical triangles (with angles �=p; �=q; �=2)
which may be vividly distinguished by blacken-
ing N of them. The rotation group permutes the
N triangles of either color. For instance, .4; 3; 2/
yields Figure 3.7, which is really simpler than it
looks at first sight. Simply draw a circle to in-
dicate the sphere, put in one elipse, then another;
then draw their major axes and two diagonal lines
bisecting the angles between them. And now you
see that the sphere has been divided into little tri-
angles with angles �=4; �=3; �=2: 24 white and
24 black, half of them visible and the rest hidden
behind. The angle at P is 45ı because it belongs
to four triangles of each color. Six such points
(including the antipodes of P ) are the vertices
of the octahedron f3; 4g. The angle at Q, which
belongs to three triangles of each color, is 60ı:
Eight such points are the vertices of the reciprocal
cube f4; 3g. The twelve points where right angles
occur are the vertices of the cuboctahedron, an
Archimedean solid whose faces consist of six
squares and eight triangles.

The Archimedean solids are polyhedra which
have regular faces of two or three kinds, while
all the vertices are transformed into one another
by one of the rotation groups described above.
(Prisms and antiprisms satisfy this definition, but
are not usually considered Archimedean.) Thus
the cycle of faces around a vertex is the same for
all the vertices of each solid, and the numbers
of sides of the polygons in this cycle provide a
concise symbol. For instance, the symbol for the

P

Q

Figure 3.7. The nine circles of symmetry of the cube.

cuboctahedron is 3 �4 �3 �4 or .3 �4/2, because each
vertex belongs to two triangles and two squares
arranged alternately. The p-gonal prism is 42 � p
and the p-gonal antiprism is 33 � p: The books of
Archimedes on this subject were lost. So it was
left to Kepler to give names for them. The name
“cuboctahedron” is rather natural: it is a combina-
tion of the words cube and octahedron. Similarly,
he called the common part of the dodecahedron
and the icosahedron an icosidodecahedron. It
has twenty triangles and twelve pentagons. Four
others are show in Figures 3.8–3.11. The whole
list of thirteen is as follows:

• The truncated tetrahedron 3 � 62
• The truncated cube 3 � 82
• Truncated octahedron 4 � 62
• The truncated dodecahedron 3 � 102
• The truncated icosahedron 5 � 62
• The cuboctahedron .3 � 4/2
• The icosidodecahedron .3 � 5/2
• The rhombicuboctahedron 3 � 43
• The rhombicosidodecahedron 3 � 4 � 5 � 4
• The truncated cuboctahedron 4 � 6 � 8
• The truncated icosidodecahedron 4 � 6 � 10
• The snub cube (cubus simus) 34 � 4
• The snub dodecahedron (dodecahedron

simum) 34 � 5
Before Klein there was another German, A. F.

Möbius, who observed that the use of Figure 3.7
(as above) to construct the vertices of the cube,
octahedron, and cuboctahedron can be extended
to yield all the Platonic and Archimedean solids.
One of the black triangles in Figure 3.7 is marked
PQR in Figure 3.12. Its angles have been bisected
so as to yield points S (equidistant from the great

Figure 3.8. The truncated cube 3 � 82.
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Figure 3.9. The rhombicuboctahedron 3 � 43.

Figure 3.10. The truncated cuboctahedron 4 � 6 � 8.

Figure 3.11. The snub cube 34 � 4.

circles RP, PQ), T (equidistant from PQ, QR), U
(equidistant from QR, RP), and V (equidistant
from all three sides of the triangle PQR, so that
V is the center of the inscribed small circle).
When the planes of the great circles RP and
PQ are taken to be mirrors, the images of S in
this two-mirror kaleidoscope are the vertices of a
regular octagon. Introducing a third mirror QR,
we get Möbius’s three-mirror kaleidoscope in
which the image of S are the vertices of the trun-
cated cube, as in Figure 3.13. Other Archimedean
solids can be derived similarly from the points
T, U, V, as in Figures 3.14–3.16. Figure 3.17

O

S

RV
TP

Wo
U

Figure 3.12. Typical vertices of the seven polyhedra.

Figure 3.13. Vertices S of the truncated cube.

Figure 3.14. Vertices T of the truncated octahedron.

Figure 3.15. Vertices U of the rhombicuboctahedron.

shows points derived from a point W, different
from V, by applying the octahedral rotation group
.4; 3; 2/ of order 24, which is a subgroup of index
2 in the kaleidoscopic group of order 48. In other
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Figure 3.16. Vertices V of the truncated cuboctahedron.

Figure 3.17. Vertices W of the snub cube.

Figure 3.18. Six of the great circles of Figure 3.7,
related to the group .3; 3; 2/:

words, the 24 vertices of the snub cube 34 � 4 are
points situated like W in all the black triangles.

Figure 3.18 shows six of the nine great circles
in Figures 3.7 or 3.19; they yield the tetrahe-
dral rotation group .3; 3; 2/ and the truncated
tetrahedron. Figure 3.20 shows the analogous set
of great circles related to the icosahedral group
.5; 3; 2/. This “icosahedral kaleidoscope” yields
the complicated polyhedra; for instance, points
suitably placed in all the black triangles now yield
the snub dodecahedron.

It is interesting to see how one could work out
coordinates for the vertices of a snub cube. Let
us begin with a large cube in its natural position

Figure 3.19. Great circles related to the group .4; 3; 2/.

Figure 3.20. Great circles related to the group .5; 3; 2/.

for Cartesian coordinates, so that the vertices
of the cube, are, shall we say, .1; 1; 1/, and the
same with various changes of sign: one vertex
is .1; 1; 1/ and another one is .�1; 1; 1/ and so
on. In a concise notation, the eight vertices are
.˙1;˙1;˙1/: A smaller square inside the face
.1;˙1;˙1/ of the cube may be supposed to
have vertices .1; y; x/; .1; x;�y/; .1;�y;�x/;
.1;�x; y/, where x > y, this being in the face
where the first coordinate is 1. (In Figure 3.21,
.1;�x; y/ appears as 1 Nxy.) These four points are
the vertices of a square that is inside one square
face of the cube, but twisted around through a
certain angle. And you ask that these points and
others analogously situated in other faces of the
cube should be at the same distance from their
neighbors, so that the distance from one point to
another is the same in those various pairs. One
pair gives you xy C y C x D 1, whence

x D .1 � y/=.1C y/:

Another yields

x D y.1C y/=.1 � y/:
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Multiplying them together, you get

x2 D y:

Substituting x2 for y in xyCyCx D 1, you are
left with the nice cubic equation

x3 C x2 C x D 1:

You can work this out in various ways and find
x to be about 0.543689. Then you have to take
the point with coordinates .1; x2; x/, apply all
the cyclic permutations, put in an even number
of minus signs, and put them in a different order
with an odd number of minus signs; this gives you
all the 24 vertices of the snub cube (Figure 3.21).

The late R. Buckminster Fuller, a great en-
gineer and architect, was very interested in the
structures he called geodesic domes, which were
often modifications of the icosahedron and do-
decahedron. In Figure 3.22 you see one of those,
in which you simply take a dodecahedron and put
a small pentagonal pyramid onto each of its faces,
so that you have altogether 5 � 12 D 60 triangles.
Although they are not equilateral, they are all
congruent and so you get an attempt toward

yx1

1yx
1xy

1yx 1xy

x1y

y1x

y1x

−

−−

−

−−

Figure 3.21. The snub cube 34 � 4.

Figure 3.22. Pentakisdodecahedron, f3; 5Cg1;1.

finding a sixth regular solid. Of course it is not
regular, because there are five triangles around
some points, and six triangles at other points. But
at least this is the sphere covered with a large
number of triangles that are all nearly equilateral
and nearly alike.

Fuller went on doing this in more and more
elaborate ways. Figure 3.23 is a slightly different
one of the same sort, with nearly equilaterial
triangles, nearly the same number around each
corner. If you look closely you see that at some
corners there are six triangles coming together
and at others there are five. And so you can
classify these polyhedra by seeing how you can
go from one place where there are five trian-
gles to another place where there are also five
triangles. To go from one to the other is a sort
of modified chess knight’s move: two steps this
way and then one step that way, and you get
another pentagonal point. Everywhere in between
there are six triangles at a vertex. It is a rather
nice consequence of the theory of polyhedra that
just as the icosahedron has twelve vertices, each
one of which belongs to five triangles, even after
you have put in all these extra triangles it is
still true: there are just twelve points on the

Figure 3.23. f3; 5Cg2;1 .

Figure 3.24. f3; 5Cg3;0 .
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Figure 3.25. H.S.M. Coxeter.

Figure 3.26. A truncated octahedron, by a Campus
School student.

Figure 3.27. Professor Coxeter showing Figure 3.20
during a lecture.

sphere where the number of triangles is only five
instead of six. Essentially, this is a consequence
of Euler’s formula. The number of vertices minus
the number of edges plus the number of faces
of a polyhedron is two. If you fiddle with that
formula a little, you can see it always must be
true: that if you have a polyhedron whose faces
consist entirely of triangles, six coming together
at some vertices and five at others, then the
number of vertices where there are five triangles
coming together is exactly twelve. You might
ask the question, how many of the other kind
will there be? That was answered by a very able
geometer, Branko Grünbaum, who showed that if
a convex polyhedron has only triangles for faces,
five or six round each vertex, then the number
of vertices where you’ve got six triangles coming
together may be any number except one. It can
be two or anything greater. Such a polyhedron is a
remarkable generalization of the Platonic solids.
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Figure 3.28. Professor Coxeter talking with members of the audience after a lecture.
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Milestones in the History of Polyhedra

Joseph Malkevitch

Considering the fact that polyhedra have been
studied for so long, it is rather surprising
that there has been no exhaustive study of
their history. But we are very lucky that the
authors of four modern classics on the theory
of polyhedra—Brückner, Coxeter, Fejes-Tóth
and Grünbaum—were interested in historical
information and provided detailed historical
notes in their books. I propose to present an
outline of the milestones in the history of the
subject, putting together the thread of what
happened as the theory developed. I will pay
special attention to regularity concepts.

I would like you to imagine what might hap-
pen if, a thousand years from now, someone
digging at an archaeological site should find a
Rubik’s cube. What would archaeologists, his-
torians, and mathematicians of that future time
deduce about our knowledge of geometry from
this one object? We can get some idea from an
Ed Fisher cartoon in The New Yorker showing
a museum statue labeled “man”; it has three
legs, two heads, and misplaced feet and hands.
There are two “Martian” creatures looking at
it; one is saying: “It certainly is amazing what
our scientists can reconstruct from just a few
bones and fragments.” I think that is the state of
our knowledge in studying polyhedra in ancient
times.

J. Malkevitch
Professor Emeritus, Department of Mathematics, York
College (CUNY), Jamaica, NY 11451, USA
e-mail: jmalkevitch@york.cuny.edu; http://www.york.
cuny.edu/�malk

Let me begin with what perhaps are the most
famous of polyhedral objects, the pyramids of
Egypt (Chapter 7). They are awesome, and the
engineering accomplishment of making them
raises the question as to exactly what kinds of
information the geometers of Egypt had about
polyhedra. Our knowledge of Egyptian geometry
comes down to us from two sources: two papyri.
One is called the Rhind mathematical papyrus,
the other the Moscow mathematical papyrus.
There are some problems on the Rhind papyrus
showing computations about the relationship
between what we would call today the slant
height of the pyramid and the height. The
Moscow papyrus has a calculation that illustrates
the kind of detective work one has to do when
one looks at these papyri. The authors did not
spell out: “We will now do this calculation.”
Instead there are some symbols and sometimes an
accompanying diagram, and the modern historian
has to try to determine what it was that they were
trying to do. In this particular instance, it seems
that they may have been calculating the volume of
the truncated pyramid. This is the first milestone
in the history of polyhedra.

Milestone 1 Þ Volume of Truncated Pyramid
• (c.1890 B.C.E.) Problem 14 of the Moscow

Papyrus suggests Egyptians may have known
how to compute the volume of a truncated
square pyramid, using

V D h

3
.a2 C ab C b2/
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(where a and b are sides of the square bases
and h is the height of the pyramid).

The calculation seems to follow the modern
formula for the volume of the frustrum of a
pyramid. There is quite a bit of scholarly debate
as to whether this formula was actually known
to the Egyptians, but I will not get involved in
that particular thicket. Part of the reason for the
controversy is that we have no real basis for
trying to determine how the Egyptian geometers
might have arrived at that result. Furthermore,
the papyri do not contain any problem which
calculates the volume of an untruncated pyramid!
They did not seem to be in possession of anything
like calculus. How else might they have found
the formula? We know from modern work that
you cannot find the volume of a tetrahedron by
the method of cutting it up into a finite number
of pieces and reassembling them into something
whose volume can be computed easily. (This
follows from Max Dehn’s solution to Hilbert’s
problem on equidecomposability, discussed be-
low.) Various proposals have been made for what
the Egyptians did do; all are very speculative.

Let me briefly describe what actually seems to
be the history of the development of the theory of
the volume of a pyramid, because it is certainly
not an intuitive result. It was quite an accomplish-
ment for ancient peoples; we can consider it to be
the second milestone. Archimedes referred to the
fact that Democritus, who flourished at the end
of the fifth century B.C.E., knew that the volume
of the pyramid was one-third the area of the base
times the height, and that the proof was devised
by Eudoxus. Eudoxus’s method is known as the
method of “exhaustion” and his approach is the
one Euclid followed in the Elements.

Milestone 2 Þ Volume of a Pyramid
• Democritus (fl.end 5th century B.C.E.) discov-

ers that volume of a pyramid is equal to 1
3

(area
of base)(height).

• Eudoxus (c.409–c.356 B.C.E.) proves the re-
sult above using the method of “exhaustion.”
(Achimedes confirms Eudoxus’ role).

Let us turn now to the origin of regularity
concepts. More specifically, we might ask the

extent to which ancient peoples had knowledge
of regular solids and theories of regular solids.
Before attempting to answer this question, let
me clarify what I mean by “regular.” As the
theory of polyhedra has developed, the meaning
of the word “regular” has broadened. There are
two major uses of the word. One approach to
regularity is “local”: it requires congruence of
faces and/or vertex-figures (that is, the pattern of
faces at a vertex) and/or edge-figures. The other
approach considers the polyhedron as a whole: a
polyhedron is regular if its symmetry operations
act transitively on its vertices, edges, or faces.
For example, vertex transitivity would mean that
any vertex of the polyhedron could be moved to
any other vertex by a symmetry operation of the
polyhedron. In either approach we are primarily
interested in the case where the faces are regular
polygons. The second approach is very modern
(nineteenth century) and almost certainly was not
the approach used by the Egyptians or Greeks.
Henceforth, when the word regular is used, it
will refer to the first approach to regularity. As
near as I am able to determine, there was no
knowledge of individual regular solids, and no
theory of them in ancient Egypt; I will have some
more comments about that later.

As you will see in Chapter 10, many very
beautiful polyhedral forms occur in nature as
crystals. Fluorite crystals often grow as octahedra
and there are pyrite (combinatorial) dodecahe-
dra. Examples of such crystals must have been
known in ancient times. The oldest man-made
dodecahedral object is generally attributed to pre-
Pythagorean times. It is a dodecahedral shape
with incised markings on it, discovered in an
excavation on Mt. Loffa in Italy near Padua.
Nobody knows what the symbols actually mean.
There is some linguistic evidence that the dodec-
ahedron was not known by the name dodecahe-
dron in early days, but instead was referred to
as “the sphere of 12 pentagons.” That may have
had something to do with how the theory actually
developed.

There is a tradition, which goes back into
Greek history, that assigns knowledge of the
five “Platonic solids” to the Pythagoreans. Eu-
demus of Rhodes referred to Pythagoras himself
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as having discovered the five regular polyhedra.
But modern scholars seem to discount this. In a
scholarly thesis in 1917, Eva Sachs gave some
cogent arguments suggesting that, in fact, the
Pythagoreans did not know all of the five Pla-
tonic solids. Many modern scholars argue that the
proper history is based on a scholium or com-
ment in an extended edition of Euclid’s Elements
which reads as follows: “In this book, the 13th
[the thirteenth book of Euclid], are constructed
five figures called Platonic, which do not how-
ever belong to Plato. Three of these figures, the
cube, pyramid and dodecahedron, belong to the
Pythagoreans, while the octahedron and icosa-
hedron belong to Theatetus.” But the history is
complicated by an understanding of what “belong
to” means. The Greeks were very interested,
as we know, in ruler-and-compass constructions.
The question arises as to whether this quotation
means that Theatetus had found ruler and com-
pass constructions for these polyhedra. Perhaps
all five solids were known, as objects, earlier.

William Waterhouse gives some very interest-
ing linguistic and other arguments in favor of a
later date than the Pythagoreans for the origins
of actually thinking of the regular solids as a
family and singling them out for study. Theatetus
(415–369 B.C.E.) seems to have looked at this
collection of solids not merely as isolated objects;
he considered the question of discussing them
as part of a theory (Milestone 3). On the other
hand, as we have seen, these polyhedra are often
referred to as the Platonic solids. Plato, who was a
friend of Theatetus, built them into his cosmology
in the dialogue Timaeus (Milestone 4). This is im-
portant for the history of polyhedra because one
of the threads that kept polyhedra alive during the
Renaissance was the renewed interest in classical
studies. (See, for example, Raphael’s painting
The School of Athens, in which he showed the
geometers at work.) The association of Plato with
these solids probably helped keep this knowledge
alive for a long period of time.

Milestone 3 Þ Theatetus (c.415–369 B.C.E.)
• Develops a general theory of regular solids,

specifically adding the octahedron and icosa-
hedron to solids known earlier.

Milestone 4 Þ Plato (427–347 B.C.E.)
• In the dialogue Timaeus Plato incorporates his

knowledge of the five regular polyhedra into
his philosophical system.

(His popularity and influence result in their be-
coming known as “Platonic solids.”)

By the time we get to Euclid, we already have
a fairly full-blown theory of solid geometry. In
Book XI of Elements, Euclid gave a full treatment
of metric properties of polyhedra, in Book XII
he discussed the volume of prisms and pyra-
mids including Eudoxus’ proof, and in Book XIII
he showed how to construct the regular convex
polyhedra and “proved” that there are only five
of them (Milestone 5). I use quotation marks
because Euclid never told us what a polyhedron
was. This raises the question of what people at
various times have had in mind when they used
the word “polyhedron.” It is my contention that
throughout the history of the development of
regularity concepts, the notions of polygon and
polyhedron have diversified. This diversification
has been the driving force behind creating a lot of
the theory we know today.

Milestone 5 Þ Euclid (fl.323–285 B.C.E.)
• Book XI of the Elements treats metric proper-

ties of polyhedra.
• Book XII of the Elements discusses the volume

of prisms and pyramids.
• Book XIII of the Elements treats the five regu-

lar polyhedra, concluding with a “proof” that
there are exactly five.

The sixth milestone is the description by
Archimedes, in a manuscript that now is lost,
of what we today call the semiregular or
Archimedean solids (Milestone 6). By some
miracle or another, Pappus (whose works
unfortunately don’t appear to exist in English)
gave an account (Milestone 7) of the lost
book of Archimedes which dealt with the
semiregular solids. It is significant that he
explicitly mentioned that there are thirteen of
them, and described them in terms of how many
polygons each has with various numbers of sides
at a vertex. We will see that this turns out to be
rather significant at a later time.
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Figure 4.1. Steatite icosahedron with Greek letters in-
cised on the faces.

Milestone 6 Þ Archimedes (c.287–212 B.C.E.)
• Describes 13 “semi-regular” solids in a now

lost treatise.

Milestone 7 Þ Pappus (fl.4th century)
• (320 A.D.) Pappus’ Collection (Book V) gives

an account of the 13 “semiregular” solids
discovered by Archimedes.

In the centuries between Archimedes’ time
and the time of Pappus, polyhedral objects of
various kinds and types were made. Fortunately
some of these objects can still be seen today.
I had the big thrill of examining some of them
personally at the Metropolitan Museum of Art in
New York. There I saw regular icosahedral ob-
jects incised with the first 20 letters of the Greek
alphabet (Figures 4.1 and 4.2). Four similar icosa-
hedra used to be on display in the Egyptian rooms
of the British Museum in London. The exact
origins and provenance of these objects is not
known. It is, however, fairly certain that they are
not indigenous to Egypt, that they are probably
not even of Greek origin. They may date from
the Roman period. Claims in the literature about
Egyptian knowledge of regular solids appear to
be false extrapolation from the assumption that
these icosahedra were made in Egypt.

Figure 4.2. Faı̈ence icosahedron with Greek letters in-
cised on the faces.

There are also other objects, from perhaps
a somewhat later period, that have been cited
by scholars. Most of these were found in Eng-
land, France, and Italy and have dodecahedral
shapes. Figure 4.3 shows a bronze dodecahedron
dug up in 1768 in Carmarthen, typical of about
fifty which have been found in the northwestern
provinces of the Roman empire. It has been
suggested that they were used as surveying instru-
ments. There is considerable controversy about
their origins and uses; the best guess is that they
were candle holders. I have never actually seen
an original of one of these, but from photographs
some of them appear to be quite handsome ob-
jects. A large collection of such polyhedral ob-
jects has been described, including a rhombic
triacontahedron, opening to question claims that
nobody had seen such a thing until Kepler’s time.
The best estimate for when these objects were
made is about 500 A.D.

There does not seem to have been any system-
atic account of polyhedra from the time of Pappus
until the Renaissance. As we know, a lot of math-
ematical traditions died during that period. As I
mentioned earlier, what ultimately resuscitated
these ideas was the renewed interest in Plato. So
I will jump to the Renaissance period. I would
like to single out the work of Albrecht Dürer
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Figure 4.3. Bronze dodecahedron found in Carmarthen
1768, and now in the possession of the Society of Anti-
quaries of London. Overall height 41

8
inches.

for Milestone 8. This is the concept of studying
polyhedra by drawing what are today called nets.
By folding a planar piece of cardboard along
prescribed lines and joining the edges of the
figure, the net becomes a polyhedron. Dürer made
nets for the dodecahedron and for other regular
and semiregular solids (see Chapter 6).

Milestone 8 Þ Albrecht Dürer (1471–1528)
• Invents the concept of the “net” of a polyhe-

dron.

The situation during the Renaissance is
extremely complicated. A great many scholars,
artists, and artisans discovered and rediscovered
various classical solids (Milestone 9). Some of
them drew what appear to be star-shaped solids;
others drew compounds; others drew convex
polyhedral solids. In discussing this period it
is very difficult to reach any firm conclusions
about who discovered what and when. For
example there is a picture of a solid in the
famous Jamnitzer pictures (published in 1568)
that some say was discovered by Kepler about
1619. Professor Coxeter (Chapter 3) alluded
to the book of Luca Pacioli’s work on the
regular and semiregular polyhedra which was
illustrated by Leonardo da Vinci. There are

indications that Pacioli actually made polyhedron
models of glass; there is a painting which
shows Pacioli with a picture of a glass model
of the rhombicuboctahedron (see Chapter 7).
The important thing to realize in discussing this
period is that these ideas were very much in
the air. The real issue is not who discovered
a particular star polytope first. I am not sure
that approach is particularly profitable. I think it
is more interesting to try to understand why it
was that all of this activity was going on at this
particular time. Why was there so much interest
in polyhedra, and why did the subject flourish
during that period? The answer seems related
to the emergent study of perspective and the
renewed interest in the Greek classics.

Milestone 9 Þ Renaissance artists, architects,
artisans, and scholars “discover” and “redis-
cover” various Platonic and Archimedean solids,
star-poly-hedra, compounds, and other polyhe-
dral objects.

Some of the best known are Paolo Uccello,
Wentzel Jamnitzer, Lorenz Stoer, Daniel Barbaro,
Piero della Francesca, Luca Pacioli, Leonard da
Vinci, Albrecht Dürer, Simon Stevin, François de
Foix, and R. Bombelli.

The tenth milestone in our history is the work
of Johannes Kepler, which Professor Coxeter
discusses in Chapter 3. Kepler drew tilings of the
plane in which he used nonconvex and nonsimple
polygons. He also gave a very elaborate, case-
by-case, proof that there are thirteen semiregular
polyhedra. It is interesting that Pappus didn’t
describe the prisms and the antiprisms which, as
we know, are two infinite families that are also
semiregular polyhedra. But Kepler explicitly both
drew and dicussed them. It is also interesting that
in modern times we refer to thirteen Archimedean
solids because we adopt the regularity definition
based on symmetry, although almost certainly
this was not the definition used by Archimedes
and Pappus or Kepler. With the congruent vertex
figure definition, Archimedes and Pappus missed
one: the pseudo-rhombicuboctahedron. Kepler’s
detailed work on the semiregular polyhedra ap-
pears in Book II of Harmonices Mundi. Here
he found only thirteen semiregular solids (plus
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the prisms and antiprisms). However, in an off-
hand remark in the “Six-Cornered Snowflake” he
refers to fourteen semiregular solids! No support-
ing detail is given, however.

Milestone 10 Þ Johannes Kepler (1571–
1630)
• Studies tilings of the plane using convex, non-

convex, non-simple polygons.
• “Proves” there are 13 “semiregular” poly-

hedra (plus two infinite families, prisms, and
anti-prisms).

• Constructs:
– Stella octangula
– Two (regular) stellated polyhedra
– Rhombic dodecahedron
– Rhombic triacontahedron.

Kepler also constructed the rhombic dodec-
ahedron and the rhombic triacontahedron and
two “new” “regular” (star) polyhedra. At least,
today we call them regular; it is hard to tell
whether Kepler really thought of them as being
regular. My impression is that perhaps he did
not. I also have some questions as to whether he
really understood fully reciprocation and duality
notions, as has been claimed. Since he was so
careful, one might guess that if he understood
these matters, he would have also constructed
the two remaining regular star polyhedra and the
duals of the Archimedean polyhedra. But that is
my purely subjective view.

Unfortunately, there appears to be a pattern for
many of the great discoveries about polyhedra,
even for geometry in general: all too often people
do very great things and then the work “goes
to sleep” for long periods. Euclid’s work went
to sleep, the work of Archimedes went to sleep;
Kepler’s work, as modern in spirit as it seems
to be, in fact, wasn’t looked at seriously until
relatively recently. Although Kepler’s work is
constantly cited, it does not really seem to have
affected the history of polyhedra in any direct
way.

Another person who made major contributions
to the theory of polyhedra was René Descartes.
The famous story of the lost manuscript is told
in Chapter 3. In that manuscript (Milestone 11)
there appears a tantalizing theorem about poly-

hedra: the sum of the defects of the vertices is
4� , where the defect of a vertex is defined to
be 180ı minus the sum of the face angles at
the vertex. (Of course no one knows what kind
of polyhedra Descartes was really taking about,
but presumably he had convex three-dimensional
polyhedra in mind.)

Milestone 11 Þ René Descartes (1596–1650)
• (1619–1620) (Manuscript lost, but copy by

Leibniz published in 1820).
Main Theorem:
If P is a (convex) 3-dimensional polyhedron, then
the sum of the defects at the vertices is 360ı.

It turns out that one can very quickly get from
that theorem of Descartes to the very famous
polyhedral formula of Euler, V � E C F D 2,
and vice versa. The fact that Descartes’ theorem
is logically equivalent to Euler’s formula has
created the widespread impression that Descartes
actually knew the formula, although scholars over
and over again have said that this is not so. You
can find in the papers of Lebesgue from the
1920s that he does not believe Descartes knew
Euler’s formula. You can find the same statement
in Pólya, and in a very nice paper by Peter Hilton
and Jean Pedersen. More recently, Federico has
written a whole book on the contribution of
Descartes to the theory of polyhedra, including
an English translation of the manuscript and an
extensive summary of this debate. In this con-
nection it is helpful to remember remarks of
Jacques Hadamard. He wrote, concerning some
of his own work, that “two theorems, important
to the subject, were such obvious and immediate
consequences of the ideas contained therein that,
years later, other authors imputed them to me, and
I am obliged to confess that, as evident as they
were, I had not perceived them.”

Evidently there is a strong tendency on the part
of many people who know of Descartes’ theorem
to assume that if Descartes had only gone one
tiny step further, he would have discovered this
or that. But if you look carefully at the work of
Descartes, it is very clear that he did not think
of polyhedra as combinatorial objects. It was not
a tiny step that was needed, but a big one. That
great leap forward was made in part by Euler.
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I might mention that Descartes is another ex-
ample of a person whose work went to sleep. (His
work was literally lost.)

Aside from the material that fuels the Euler–
Descartes controversy, Descartes talked about the
semiregular polyhedra. He didn’t enumerate all
thirteen of them, only the eleven that can be ob-
tained from the Platonic solids by truncation. Nor
did any of those artists and artisans, who were
obviously bright and talented people, discover all
thirteen of the semiregular solids. On the other
hand, Kepler explicitly referred to the fact that
these objects were Archimedean solids. So we
know that he had seen Pappus’s work describing
what Archimedes had done. This provided Kepler
had a very big assist. One wonders what would
have happened during this period if people had
had wide access to Pappus’s work. Of course, one
can only speculate.

There is a long tradition of referring to 13
Archimedean polyhedra. However, how should
an Archimedean polyhedron be defined? Until
“modern times” the idea that Archimedes, Pap-
pus, Kepler and others who considered the issue
was to find how many different convex polyhedra
there are, all of whose faces are convex regu-
lar polygons having the same pattern of faces
around every vertex, but excluding the 5 Pla-
tonic Solids (convex regular polyhedra) and the
two infinite families of prisms and anti-prisms
having regular polygons as faces. With this def-
inition there are 14 such convex polyhedra, not
13. The convex polyhedron that usually was not
included is today sometimes called the“pseudo-
rhombi-cuboctahedron.” This solid may perhaps
have been the one Kepler had in mind when
he referred to 14 Archimedean polyhedra. It is
also associated with the names of J.C.P. Miller,
V.G. Ashkinuse, and the elongated square gyro-
bicupola (Johnson solid J37). Since Archimedes
presumably did not have a “global view” of
symmetry (group theory), if we continue to honor
him by using the “local symmetry” definition,
in the future reference should be made to 14
Archimedean polyhedra. The number of convex
polyhedra with regular polygons as faces (ex-
cluding the Platonic solids and the prisms and
anti-prisms) for which the symmetry group of

the polyhedron is transitive on the vertices is
13. There are 13 such solids, the ones that have
been “historically” known as the Archimedean
polyhedra (solids). This definition via group the-
ory rules out the pseudo-rhombi-cuboctahedron.
Unfortunately, at this point there is no easy way
to fix the “mess” that Archimedes created when
he did not find all 14 of the polyhedra for which
we can continue to honor his memory.

I was originally going to refer to landmarks
rather than milestones, and I think that
Milestone 12 really deserves the title landmark:
Euler’s letter to Christian Goldbach in 1750 in
which he referred to his discovery of the fact that
the number of vertices of a polyhedron minus
the number of edges plus the number of faces
equals two. Like Euclid and Descartes, however,
he did not say what kinds of polyhedral objects
he had in mind, and that omission has created
a long list of further controversies about the
history of this subject. Suffice it to say that Euler,
although he found his formula, was not successful
in proving it.

Milestone 12 Þ Leonard Euler (1707–1783)
• Euler discovers that polyhedra obey:

Vertices + Faces – Edges = 2

The long list of very distinguished and very
interesting work that was done on Euler’s poly-
hedral formula is Milestone 13. The first proof
was provided by Legendre (or, some say, I believe
erroneously, Meyer Hirsh). Many people con-
tributed to the theory of the formula by figuring
out what happens for different types of polyhedra
and providing different proofs. This provided
the roots of modern topology; interest in Euler’s
polyhedral formula, and the more general idea of
the Euler characteristic, brought about important
developments. Second, much of the impetus for
studying higher dimensional polyhedra grew out
of the work on the Euler polyhedral formula.

Milestone 13 Þ Development of the Theory of
Euler’s Polyhedral Formula by:
• Adrian-Marie Legendre (1752–1833)

First proof
• Augustin-Louis Cauchy (1789–1857)
• J. D. Gergonne (1771–1859)
• S. Lhuilier (1750–1840)
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• J. Steiner (1796–1863)
• Von Staudt (1798–1867)
• Many others!

The next milestone, Milestone 14, is Poinsot’s
1810 discovery of the four regular stellated poly-
hedra. It is clear that Poinsot understood that
there was a sense in which these were regular
polyhedra. Poinsot’s work on the star polyhedra
grew out of his work on star polygons. He seems
neither to have looked at Kepler’s original work
nor to have been aware of Kepler’s discovery of
two star polyhedra. (There have been allegations,
however, that Poinsot plagiarized Kepler.) Other
contributors to the theory of star polyhedra were
A. Cauchy (1811), J. Bertrand (1858), and A.
Cayley (1859).

Milestone 14 Þ Louis Poinsot (1777–1859)
• In his 1810 Mémoire, Poinsot discovers four

“regular” stellated polyhedra, using both
star-shaped vertices

�f5; 5
2
g and f3; 5

2
g� and

star-shaped faces
�f 5
2
; 5g and f 5

2
; 3g—already

known to Kepler).

Milestone 15 followed about a year later, when
Cauchy made major contributions to the theory
of polyhedra. He gave what is the most common
proof of Euler’s formula using graph-theoretic
ideas, and proved his famous result that polyhe-
dra with triangular faces are rigid. He also gave
a “proof” that there are no regular star polyhedra
other than those found by Kepler and Poinsot.

Milestone 15 Þ Augustin-Louis Cauchy (1789–
1857)
• Cauchy “proves” that polyhedra with (only)

triangular faces are rigid.
• Gives a graph-theoretic approach to proving

Euler’s formula.
• Shows that there are 9 “regular” polyhedra.

The first systematic account of duality of poly-
hedra that I have found is in the work of Cata-
lan in 1865 (Milestone 16). In a long article
he described, very explicitly, the duals of the
Archimedean polyhedra. It is curious that re-
searchers never cited this paper. In other words,
this was a paper that also went to sleep. One finds
Catalan’s work mentioned only in historical foot-
notes of books written in the twentieth century.

Nobody earlier seems to have paid any attention
to it.

Milestone 16 Þ Eugene Charles Catalan
(1814–1894)
• Catalan gives a systematic account of the

duals of the Archimedean solids.

In the middle to later 1800s there was a
tremendous flourishing of geometric activity.
Max Brückner published a book (Milestone 17)
in which he summarized all of what was known
at the time and also gave some extensive
historical notes on the subject. It has very
beautiful pictures of uniform polyhedra, which
served as an inspiration to people later. (The
uniform polyhedra are those—not necessarily
convex—that have regular polygons as faces and
symmetries that are transitive on the vertices.)

Milestone 17 Þ Max Brückner (1860–1934)
• Brückner publishes an extensive summary of

the known results on polygons and polyhedra,
with historical notes.

I will breeze through more recent work. I have
indicated that perhaps Kepler had known the
pseudo rhombicuboctahedron. This is certainly
possible. This polyhedron is often referred to as
Miller’s solid; sometimes the Russian mathemati-
cian Ashkinuse is given credit for discovering it.
But George Martin was kind enough to call my at-
tention to a paper in 1905 of D.M.Y. Sommerville
(you may know his work on n-dimensional space)
in which there are Schlegel diagrams for both the
rhombicuboctahedron and the pseudo one (Mile-
stone 18). The significance of this milestone is
that many proofs in this area of geometry require
a delicate interplay of both theory and case-by-
case analysis. Here is one of many situations
where earlier work was not fully correct. It is
unclear who deserves “credit” for proving there
are 14 Archimedean solids.

Milestone 18 Þ D.M.Y. Sommerville (1879–
1934)
• Sommerville describes the pseudo rhom-

bicuboctahedron.

David Hilbert (1862–1943), in his famous
speech in Paris in 1900 at the International
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Congress of Mathematicians, outlined problems
which he felt represented important challenges to
mathematics in the future. One of these problems
involved cutting a polyhedron into pieces and
assembling them into another polyhedron, which
leads to Milestone 19.

To properly understand the problem Hilbert
wanted to look at, first consider the analogous
issues in the (Euclidean) plane. If one has two
plane simple (non-self-intersecting) polygons S
and T and one can cut one of these, say S,
up into polygonal pieces (perhaps with straight
line cuts) which can be assembled into T, then
clearly S and T have the same area. However,
what about the converse? It is not at all clear,
given two simple polygons S and T with the same
area, that it is possible to cut, say S, into finitely
many polygonal pieces so that these pieces can
be assembled into T. It is remarkable that this can
always be done, and several individuals appear to
have found the result independently. This result
is now often known as the Wallace, Bolyai, Ger-
wien Theorem (for William Wallace, Wolfgang
Farkar Bolyai (Janos’ father) and P. Gerwien
(probably Karl Gerwien, about whom little bi-
ographical information is available)). There are
many variants of this result which involve such
questions as whether the polygonal pieces from
the first polygon S can be moved to the pieces
that make up the second polygon T using partic-
ular geometric transformations. J. Sydler (1921–
1988), Hugo Hadwiger (1908–1991), and P. Glur
extended Dehn’s work.

Hilbert was concerned with what happens
when one moves from two to three dimensions
with problems of this sort. He asked the question
(“Hilbert’s 3rd Problem”) of whether it was
possible to take a regular tetrahedron of volume
1 and decompose it into polyhedral parts and
reassemble the pieces to form a (regular)
cube of volume 1? The perhaps surprising
answer is no! This remarkable fact and tools
to show that it was the case were developed
by the geometer Max Dehn (1878–1952).
Dehn’s insights and work have flowered into
a theory of “equidecomposability” in three and
higher dimensions. Briefly, this concerns when
something can be cut up into a finite number

of parts and have these parts reassembled to
form another object. One perspective on Dehn’s
work is that “Calculus” is necessary in 3-
dimensions (and higher) because one cannot
base a theory of volume on ideas involving finite
decomposition of the kinds that arise in the theory
of equidecomposability. A somewhat related
issue is that while it is possible to cut up any plane
polygon into triangles using the existing vertices
of the polygon as vertices of these triangles, there
exist non-convex polyhedra in 3-dimensional
space, which can not be decomposed, using
existing vertices, into tetrahedra. An extreme
version of this is that any two vertices of the
polyhedron that are not joined by an edge
have the property that a segment joining them
includes points in the exterior of the polyhedron.
Polyhedra with this property were discovered
by N.J. Lennes and are now known as Lennes
polyhedra.

Milestone 19 Þ David Hilbert (1879–1934) and
Max Dehn (1878–1952)
• Hilbert raises the issue of equidecomposabil-

ity of polyhedra.
• Dehn resolves Hilbert’s 3rd Problem.

By far the most important early twentieth-
century contributor to the theory of polyhedra
was Ernst Steinitz. Steinitz, about 1916, devel-
oped a combinatorial characterization of con-
vex three-dimensional polyhedra (Milestone 20).
This work appeared in an encyclopedia of math-
ematics that was published in German and in
French translation. Steinitz also wrote a book on
polyhedra, which was almost finished at the time
of his death; it was completed by Rademacher
and published in 1934. As is typical of our sub-
ject, although Steinitz’s main result is extremely
important, there were almost no references to
it before 1963. Why does it happen so often
that important work in geometry attracts so little
attention?

Milestone 20 Þ Ernst Steinitz (1871–1928)
• Characterizes polyhedra combinatorially.
• Rademacher’s completion of Stenitz’s almost

completed book on polyhedra is published.
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Another especially exciting avenue of work
concerns Alexandrov’s Theorem (Milestone 21),
named for the Russian mathematician Aleksandr
D. Alexandrov (1912–1999), which greatly ex-
tends the earlier work on nets that goes back to
Dürer. Intuitively, what Alexandrov showed was
that if one starts with a plane simple polygon and
pastes its boundary together in such a manner
that all of the boundary is glued or zipped up
as with a zipper, that the “curvature” assembled
at a point is never more than 360 degrees, and
so one gets a topological sphere, then the result
is a convex 3-dimensional polyhedron or a flat
“double covered” polygon. For example, if one
starts with a 1 � 1 square then one gluing could
give a double covered right isosceles triangle or
a 1=2 � 1 rectangle. Typically, one will get a
3-dimensional convex polyhedron but the whole
“configuration space” that results when a square
is glued as required in Alexandrov’s Theorem
includes a continuum of non-isometric (inequiv-
alent) tetrahedra as well as other combinatorial
types.

Milestone 21 Þ Aleksandr D. Alexandrov
(1912–1999)
• Alexandrov proves (1941) an important

theorem which leads to new work on when
simple polygons will fold to 3-dimensional
polyhedra and when 3-dimensional polyhedra
can be “cut and unfolded” to simple (non-
overlapping) polygons.

• Alexandrov’s book on Convex Polyhedra ap-
pears in Russian (1950), German (1958) and
English (2005).

Next we come to Coxeter’s very important
work on regularity (Milestone 22). He and var-
ious others worked on the stellated icosahedra,
and he developed some very important regularity
concepts which allowed skew, nonplanar, and
infinite polygons. His famous work on uniform
polyhedra has been referred to several times.
He also combined algebraic with geometrical
techniques in polyhedral group theory, which led
to many important results in several branches
of mathematics in addition to polyhedra theory.
Much of this work is summarized in his Regular
Polytopes.

Milestone 22 Þ H.S.M. Coxeter (1907–2003)
• Coxeter (et al.) develops “regularity” con-

cepts for polyhedra allowing skew and infinite
polygons as faces.

• Coxeter (et al.) conjectures that there are 75
“uniform polyhedra” (+ classical examples).

• Coxeter pioneers work in “polyhedral” group
theory.

• Regular Polytopes summarizes all known
work, explores new material (emphasizes
higher dimensions).

A somewhat overlooked contribution to the
theory of polyhedra is George Dantzig’s dis-
covery of the simplex method (Milestone 23).
Dantzig’s work resulted in a big explosion of
attempts to study the path structure on polyhedra
which was very important in the development of
the combinatorial theory.

Milestone 23 Þ George Dantzig (1914–2005)
• Develops the “simplex method” for solving

linear programming problem, which stimu-
lates interest in path problems for polyhedra.

Then there is a surprisingly neglected subject.
What convex polyhedra exist all of whose faces
are regular convex polygons? For example, there
are eight convex polyhedra with equilateral trian-
gles for faces. This work by several mathemati-
cians, taken together, is Milestone 24.

Milestone 24 Þ Regular Faced Polyhedra
• Classical work.
• O. Rausenberger shows there are eight poly-

hedra with equilateral triangles for faces.
• N. W. Johnson conjectures there are 92 regular

faced polyhedra (+ prism + antiprisms + pla-
tonic and Archimedean solids (using a count
of 13)).

• Johnson, Grünbaum, V. A. Zalgaller et al.
prove Johnson’s conjecture.

Finally, let me mention some of Grünbaum’s
major contributions to our subject (Milestone 25).
The extremely important work of Steinitz was
resurrected by Grünbaum in about 1962 when he
realized that he could rephrase Steinitz’s work in
graph-theory terminology, making it possible to
do all the combinatorial theory of polyhedra in
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the plane. This means that those of you who can’t
see things in 3-space and are interested only in
the combinatorial theory can study anything you
want in the plane. Grünbaum summarized what
he knew on the subject of convex polytopes in
1967 in his beautiful book. Then, building on the
work of Professor Coxeter, he published an article
in 1977 in which he described a very general
notion of regular polyhedra which allowed very
general kinds of “regular” polygons as faces,
not necessarily ones that can be spanned by
membranes of any sort. Subsequently, Andreas
Dress proved that, aside from a small omission,
the list of regular polyhedra that Grünbaum gave
is complete.

Milestone 25 ÞBranko Grünbaum (1929–)
• Restates Steinitz’s characterization of convex

polyhedra: a graphG is polyhedral if and only
if G is planar and 3-connected.

• Publishes Convex Polytopes, an exhaustive
account of the combinatorial theory of
polytopes.

• Publishes a very general framework to study
“regular” polyhedra, building of ideas by
Coxeter.

I think the subject will not go to sleep again as
it all too often has in the past.
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Polyhedra: Surfaces or Solids?

Arthur L. Loeb

What is a polyhedron? Since I am especially
interested in the relationship between concepts
and images, I decided to approach the subject
from that point of view and try to relate mathe-
matical concepts and images. A polyhedron is an
image of many, many different concepts, some of
them inconsistent with each other.

In Figure 5.1 you see our friend M.C. Escher
contemplating the question of the apparent solid
on the left and, on the right, the surface. When we
talked about this print, he often said that it is very
curious, it is really the reflectivity of a surface
that matters. Even when material is transparent
some of the light is bounced off; some of it is
transmitted, but it is modified when it is transmit-
ted. So we really cannot tell unequivocally what
goes on inside. The one on the right is totally
impenetrable. Everything bounces off the white
surface. We cannot tell anything about the inside.
Figures 5.2 and 5.3 show that Escher, who as
we know was very much concerned with plane
tessellations, was very much aware of the differ-
ence between tessellating a plane and tessellating
a sphere; we shall return to this later.

Escher was enormously skilled as a graphic
artist and his fame rose considerably in the time
of conceptual art. He was truly a conceptual artist,
but unlike a good many conceptual artists who
had essentially become minimalists and had no
more physical substance to their art, Escher had
the skill to express his ideas and his concepts

A.L. Loeb (1923–2002)
2038 Sycamore St., Bethlehem, PA 18017, USA

visually. What Escher never did (and he said
he could not) was to relate the visual concepts
to equations. Nevertheless, we have here a pro-
jection of a concept in a language that is not
mathematical in the sense of verbal formulas of
sequences of symbols, but nevertheless is very
important as a visual language.

The surface is most important. The two
ways I am going to try to approach polyhedra
have a certain duality in the very broadest
sense (though not in the strict mathematical
sense). On the one hand there is the point of
view of a set of connected items of different
dimensionalities, and on the other that of a set
of very rigorously defined points. The first gives
us the connectivity point of view, the second the
symmetry point of view. We can inscribe vertices
of zero dimension, edges of single dimension,
faces of two dimensions, on a surface. The edges
then do not have to be straight and the faces do
not have to be flat; that of course means we leave
the domain of defining incircles and outcircles.
We simply talk about networks on a surface.

Then it matters very much how this surface
is connected, whether we have a sphere or the
analog to a sphere, or whether we have a toroid
such as the hat that was worn in Florence many
centuries ago (see Chapter 7). We call a sphere
singly connected because it has no hole, a dough-
nut doubly connected because it has a hole. If
one travels inside a doughnut, and wants to travel
past its hole, one must choose one or the other
of two distinct kinds of paths in order to avoid
the hole. Inside a sphere one can travel between

M. Senechal (ed.), Shaping Space, DOI 10.1007/978-0-387-92714-5 5,
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Figure 5.1. M.C Escher contemplating the apparent solid on the left and the surface on the right. Three Spheres II.
Lithograph. M.C. Escher, April 1946. c� M.C Escher Heirs c/o Cordon Art – Baarn – Holland.

Figure 5.2. Sphere with Angels and Devils. Stained
maple. M.C. Escher, 1941.

two points along an infinity of different routes,
and these routes may in principle differ one from
the next one by an infinitesimal amount. Inside
a doughnut there is also an infinite number of
routes between two points, but they divide into
two distinct groups, those going around the hole

Figure 5.3. Angels and Devils. Pencil, India ink, crayon,
and guache. M.C. Escher, 1941.

on one side or on the other. It is like driving from
Northampton to Cambridge, Massachusetts: there
are many ways, but one must go either north or
south of the Quabbin Reservoir. Similarly, a pret-
zel, having three holes, is quadruply connected.

One of my students, Beth Saidel, observing
that connectivity relationships are the same
for all singly connected surfaces regardless of
their exact shapes, decided to use the Ukrainian
technique of Easter-egg painting to apply some
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Figure 5.4. Tessellations in the style of Ukrainian
Easter-egg painting.

tessellations which we had discussed (see
Figure 5.4).

Consider a finite number of vertices V on
a surface. Connect them by a number of lines
called edges. To be exact, an edge is a curve
(not necessarily a straight line) which joins two
vertices, but does not contain any vertex except
at either end. No edges cross each other: their
crossing would imply a vertex at the intersection.
The number of edges is called E . A region of the
surface surrounded by a closed circuit of alter-
nating edges and vertices, which does not contain
either edges or vertices except on its bounday, is
called a face. The number of faces on the surface
is called F . For a surface of connectivity g,

V � E C F D 2 � 2g: (5.1)

It is amazing how much practical information
can be derived from this equation. For our pur-
poses it will be convenient to translate it into
an expression relating valencies. If we call r the

number of edges coming into any one vertex and
n the number of edges (hence also the number of
vertices) surrounding any one face, then we can
add up the total number of edges in two different
ways. One way is to find the number of vertices,
Vr , having valency r . The total number of edges
coming into a vertex having valency r equals rVr .
If we then sum over all the possible values of r
we would get, not the total number of edges, but
twice that amount, because every edge terminates
at two vertices, hence would have been counted
twice. Therefore

2E D
X
r

rVr ; (5.2)

and analogously

2E D
X
n

nFn: (5.3)

We can define weighted averages for both r
and n:

rav D
X
r

rVr

V
I (5.4)

nav D
X
n

nFn

F
: (5.5)

Dividing Equation 5.1 by 2E and then sub-
stituting Equations 5.2–5.5 into Equation 5.1
produces

1

rav
C 1

nav
D 1

2
C 1

E
� 2g

E
: (5.6)

Both Equations 5.1 and 5.6 will prove useful.
To begin with, consider the tiling of a singly
connected surface .g D 0/ with nothing but
pentagons and hexagons, three tiles meeting at
each vertex; in that case r D 3. Therefore 2E D
3V . Moreover,F D F5CF6. Hence Equation 5.1
becomes

F5 C F6 D 2C E

3
: (5.7)

Counting edges by summing over all hexagons
and pentagons, and remembering that every edge
is shared by two faces:

5F5 C 6F6 D 2E: (5.8)
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Solving Equations 5.7 and 5.8 by eliminating
F6, we find that we automatically eliminate E as
well and obtainF5 D 12. This is a startling result:
it tells us, for example, that a soccer ball must
have exactly twelve pentagonal (usually black)
faces. We also find that there are berries having
exactly twelve pentagonal faces in the company
of hexagonal faces. It has been shown that the
number of hexagons can be any positive integer
except 1. These results are noncommittal about
the number of hexagons, but emphatically limit
the number of pentagons to twelve.

Two structures are called duals to each other
if to each vertex of one there corresponds a face
of the other, and vice versa. The dual of the
pentagon-hexagon tessellation is dealt with by
interchanging V and F , and n and r . The duals
therefore must have n D 3, hence triangular
faces. If a Fuller dome were built extending
all the way around a sphere instead of being
anchored in the soil, it would have exactly twelve
5-valent vertices, together with a large number of
hexagons that determines the size of the dome.
Accordingly, the occurrence of the number 12 in
connection with berries, domes, and soccer balls
is not a coincidence, but is in fact a fundamental
property of the space in which we live, and a
constraint with which we need to be familiar if
we desire to shape that space.

Structures having all vertices equivalent to
each other, as well as all faces equivalent to each
other, are called regular (see Chapter 3). For such
structures rav and nav are integers, as of course
is E . For regular structures Equation 5.6 has the
solutions given in Table 5.1. No other solutions
are possible; this table exhaustively enumerates
all regular structures. Neither r nor n can exceed
6 except when n, respectively r , equals 2. The
cases n D 2 (digonal faces) are very real once we
accept the possibility of curved edges. There are
many objects in nature that are digonal polyhedra
(for instance pumpkins, which have r digonal
faces meeting at the stem and at the bottom),
and there are many pods which are digonal tri-
hedra. Five of the solutions correspond to the
Platonic solids. Interesting are the three solutions
having infinitely many edges. If the faces are
to be finite in area, these solutions can only be

Table 5.1. Solutions of Equation 5.6 for regular struc-
tures
r n E Comments
2 n n A polygon having n sides
r 2 r A pumpkin-like structure having r

diagonal faces join at each of two
points

3 3 6 Tetrahedron
3 4 12 Cube
4 3 12 Octahedron
3 5 30 Pentagonal dodecahedron
5 3 30 Icosahedron
3 6 1 Hexagonal tiling of the plane
6 3 1 Triangular tiling of the plane
4 4 1 Square tiling of the plane

realized on a sphere having infinite radius. Such
a sphere would be experienced as a plane, much
as we experience the surface of our globe in our
immediate environment as flat. Note that there
is no solution having n equal to five and E

infinite; the implication is that there can be no
regular pentagonal tessellation of the Euclidean
plane.

Note in Table 5.1 that the interchange of n
and r transforms a regular structure into its dual;
the symmetry of Equation 5.6 in r and n implies
that if a structure represents a solution of Equa-
tion 5.6, then so will its dual.

For doubly connected surfaces .g D 1/, we
derive from Equation 5.1:

1

rav
C 1

nav
D 1

2
: (5.9)

When Equations 5.6 and 5.9 are compared, it is
observed that the solutions to Equation 5.9 are
just those of Equation 5.6 withE equal to infinity.
This means that the toroid (the Florentine hat), for
example, may be tessellated just like the plane,
which is not true of a sphere having a finite radius.

Besides the regular structures there are the
semiregular structures and their duals which have
either all faces mutually equivalent or all vertices
mutually equivalent, but not both. Equation 5.6
still yields an enumerable set of solutions
when either rav or nav is an integer, which is
characteristic of these structures. Once more
we find a number of solutions corresponding
to infinitely many edges, which again may be
interpreted as plane tessellations. It is remarkable
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Figure 5.5. Schlegel diagram of a square antiprism (left) and of its dual (right).

that so many of the structures shown in this book
correspond to the solutions of the remarkably
simple equation Equation 5.6, and can be so
listed and classified.

These structures may all be represented on
a planar surface by their Schlegel diagrams.
A polyhedron Schlegel diagram is its networks of
edges and vertices drawn in a special way: if you
hold the polyhedron so close to your face that one
of its faces frames the entire polyhedron and you
see all the other edges receding inside that frame,
then you have a Schlegel diagram. Another way
of looking at a Schlegel diagram is this. You
can think of a truncated octahedron beautifully
inscribed on a spherical blackboard and then you
suddenly realize that it didn’t matter where you
put the vertices and edges; it was just how they
were connected. You could then think of this
as a peculiar kind of string bag — you could
slide everything to one side of your spherical
blackboard, contracting all edges into a very
tiny figure. If you realize that our whole earth is
really a gigantic sphere of very large radius, you
could draw a gigantic truncated octahedron on the
surface of the earth, and shrink it into a portion of
that gigantic sphere which would just happen to
be a blackboard. Then you would have a Schlegel
diagram on your blackboard. Since n and r are
only the valencies of the vertices and faces, it
doesn’t matter where these elements are located;
we can say from our point of view of connectivity
that a Schlegel diagram is entirely equivalent to
the polyhedron itself. There is no difference

because we don’t care where the vertices are.
And so I will show you a number of solutions of
Equation 5.6 in the form of Schlegel diagrams.

In Figure 5.5 on the left is the Schlegel di-
agram of a square antiprism: a square face has
become extremely extended and frames the rest.
All the other connections are there and you could
almost solve these equations graphically just by
taking a point, taking the proper valency, putting
the lines in and then extending those lines until a
face is created; interestingly enough, by follow-
ing that procedure and not even thinking about
what the polyhedron looks like, you can get your
solutions directly as Schlegel diagrams. Now the
question is: What about the dual? The polygon
that frames the whole Schlegel diagram really
represents a face corresponding to everything else
in the plane — the entire universe in the plane.
The reason? Remember we slid the polyhedron
over to one side. But all the rest of the huge
sphere is still a face, and if we now take a dual
graphically, we have to put a vertex in each face
(Figure 5.5). Emanating from that vertex must
be the same number of edges as surround the
original face, and each edge has to cross one of
its companions. Then what happens when we get
to the outer polygon? We have a whole cycle of
faces just inside it, each of them in dualizing be-
coming a vertex which then has to be connected
to a vertex corresponding to that outer face.

Notice that what I have done is to put arrows
across the outer framing. Those arrows indicate
that somewhere in the universe there is a vertex
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way out at the other pole of our infinitely large
sphere and that is where the arrows will connect.
I could have put it off center within this figure
and connected everything, but it makes for a very
unattractive, very ugly unsymmetrical kind of
dual Schlegel diagram. I call these diagrams dual
Schlegel diagrams because they are not Schlegel
diagrams; they do not have everything framed by
an outside face. We have in the dual Schlegel
diagram a representation in which we have a
vertex, which represents a real vertex, outside
that frame. But it is perfectly easy to deal with
those; you often can visualize much better what
the dual polyhedron looks like by imagining the
polyhedron flattened out, and the faces which
meet at the “backside” vertex folded out.

Figure 5.6 shows a Schlegel diagram of a snub
figure. It is the same one that Coxeter showed in
(Chapter 3); he calculated the coordinates when
the square was rotated. In this case, I happened
to orient it so that the outer square is the ro-
tated one and you see the whole tier of triangles
surrounding each of those squares. So this one
is the snub cube, one of the solutions of that
Diophantine equation. In Figure 5.7 you see it
again in the upper right, but here I put it in the
company of its family having increasing numbers
of edges, so corresponding to the snub cube there
is a snub dodecahedron with still a finite but much
larger number of edges, and finally the plane
tessellation. All of these figures have in common
their chirality, a very important property. This
means they exist in forms that are distinct from
their mirror images. So I could have drawn either
one or I could have flipped the figure and then we
would have had the other form of it. In Figure 5.8
you see that I have taken the duals of the snub
cube and snub dodecahedron in the form of the
dual Schlegel diagrams.

Figure 5.9 is a stellated icosahedron and again
that does very well in its dual Schlegel repre-
sentation; in the center you can see the structure
very well, but like a polar projection it is distorted
toward the outside. But if you want to build these
figures, these dual Schlegel diagrams help a lot.
You get your actual polyhedron from the Schlegel
representation by lifting up the arrows radiating
out to infinity and bringing them together.

Figure 5.6. Schlegel diagram of a snub cube.

Figure 5.10 shows a pentagonal tessellation of
the sphere. This is a model made by Brett Tom-
linson. Next in the family is the limiting pentag-
onal tessellation (Figure 5.11) in which E equals
infinity. Incidentally, as we saw previously, there
can be no regular pentagonal tessellation of the
plane. But here we have a semiregular pentagonal
tessellation and we have valencies in this case
of 6 and 3. You can tell fairly easily that this is
also a figure that has chirality. What you have
to do is make a distinction, not only between
the vertices having different valencies, but also
between different 3-valent vertices. You find that
some of these 3-valent vertices are connected to
a 6-valent as well as to two 3-valent vertices,
whereas others are connected to 3-valent vertices
only. Those vertices are definitely distinct. Their
contexts are different even though their valencies
are the same.

As we go around the pentagon, you will notice
that we have five vertices and we have to make
a choice, whether we are going to put one of
each type of 3-valent vertices on the right-hand
side or on the left-hand side. That means that
we are forced to create a tessellation that has
chirality, because we have these different types
to distribute. That choice has to be made and
depending on how we make it, we get this tes-
sellation or its mirror image. Figure 5.12 shows
two of the pentagonal tessellations about which
Doris Schattschneider is an expert. You see again
that we are dealing with a family of E increasing
toward infinity. Polyhedra and tessellations are
very closely related.
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a

c

b

Figure 5.7. (a) Snub tessellation of triangles and hexagons, having a 5-valent vertices. (b) Snub cube. (c) Snub
dodecahedron.

Figure 5.8. Schlegel diagrams of (left) a pentagonal icositetrahedron (dual of snub cube) and (right) a pentagonal
hexacontahedron (dual of the snub dodecahedron).
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Figure 5.9. Schlegel diagram of a stellated icosahedron.

Figure 5.10. A model of a pentagonal tessellation of a
sphere.

Now I am going to take the symmetry point of
view. On the board in Figure 5.13 you see a num-
ber of polyhedra, all of which have exactly the
same symmetry: they all have the symmetry of a
cube. The cube is placed in a rather interesting
orientation, having its threefold axis vertical; that
is done on purpose. Each polyhedron has been
put there with a threefold axis vertical. We now
want to think about the question: If they all have
the same symmetry, then how are we going to
distinguish among them?

Figure 5.11. Pentagonal tessellation of the plane with
n1 D 4; n2 D 1; r1 D 3; r2 D 6.

One way of distinguishing is by the process
of truncation. When we talk about this we can
think of ordinary knives slicing pieces of cheese.
But I am going to look at the coordinates of
the vertices. It is these configurations made by the
atoms and ions in the crystals, that give us the so
called coordination polyhedra.

Suppose that we have a point whose coordi-
nates are x; y; and ´. If this point is part of a
structure having threefold rotational symmetry,
then there must be two other points whose coor-
dinates are cyclic permutations of x,y, and ´; and
which are related to the point .xy´/ by threefold
rotational symmetry. The three points form the
vertices of an equilateral triangle whose coordi-
nates are, respectively: xy´, y´x, and ´xy.

Cubic symmetry moreover implies mirrors di-
agonally through the cartesian axes, hence an ad-
ditional triplet whose coordinates are ´yx, x´y,
and yx´. Reflection of these six points in each of
the coordinate planes produces 48 points whose
coordinates are those of the above six combined
with the eight possible combinations of plus and
minus. These 48 points constitute the vertices of
a greater rhombicuboctahedron (Figure 5.14).

There are special circumstances under which
the symmetry elements of the cube do not
generate a full complement of 48 distinct vertices.
This happens when x, y, or ´ have special
values which cause these vertices to lie precisely
on a symmetry element. For instance, a point
lying on one of the threefold axes would have
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Figure 5.12. Two pentagonal tessellations of the plane, each with n1 D 3; n2 D 1; r1 D 3; r2 D 4.

Figure 5.13. A collection of wooden polyhedra, each
with the symmetry of a cube. Each polyhedron has been
oriented with a threefold axis vertical.

x D y D ´, with the result that the six points
whose coordinates were all the permutations
of x, y, and ´ have fused into a single point,
which when reflected into the cartesian planes,
produces merely the eight vertices of a cube.
All special cases are listed in Table 5.2 together
with the names of the polyhedra whose vertices
are defined by the resulting special combinations
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Figure 5.14. The greater rhombicuboctahedron.

of coordinates. These polyhedra are shown in
Figures 5.14–5.20. Here we call the initial point
on which the cubic symmetry elements act to
generate the entire point complex the “generating
point.”

The computer can very quickly perform all
the permutations inherent in the cubic symmetry,
regardless of the specific values of x, y, and ´,

Table 5.2. Special cases in which the symmetry elements of a cube do not produce 48 distinct vertices

Coordinates of generating point Special condition Number of vertices Polyhedron generated Figure
xy´ None 48 Greater rhombicuboctahedron 5.14
xy´; y > x x D y 24 Lesser rhombicuboctahedron 5.15
xy0 ´ D 0 24 Truncated octahedron 5.16
xxy; y < x y D ´ 24 Truncated cube 5.17
xx0 x D y; ´ D 0 12 Cuboctahedron 5.18
xxx x D y D ´ 8 Cube 5.19
x00 y D ´ D 0 6 Octahedron 5.19
000 x D y D ´ D 0 1 A single point
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Figure 5.15. Lesser rhombicuboctahedron.
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Figure 5.16. Truncated octahedron.
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Figure 5.17. Truncated cube.
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Figure 5.18. Cuboctahedron.
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Figure 5.19. Cube.
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Figure 5.20. Octahedron.
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and then determine how many distinct points
are generated. Table 5.1 translates that number
into the name of the appropriate polyhedron; the
computer recognizes the polyhedron on the basis
of the number of distinct vertices, a task at which
it is much more adept than that of slicing cheese.

Table 5.2 shows three different polyhedra hav-
ing 24 vertices. It is easy enough for the computer
to distinguish them: if one of the coordinates
is zero, then the polyhedron is a truncated oc-
tahedron, otherwise it is either a lesser rhom-
bicuboctahedron or a truncated cube, depending
on the relative magnitudes of u and w. This
latter distinction appeared to me rather subtle
for two apparently so different polyhedra and
hence prompted me to compare the two. As a
result, I came upon a previously unrecognized
relationship between the two forms. This rela-
tionship is based on the circuits traced by the
edges of either polyhedron on a (spherical) sur-
face on which it may be projected. The lesser
rhombicuboctahedron has triangular, rectangular,
and square faces, and truncated cube triangular
and octagonal faces. If, however, we look at a
square face on the former, we note that its four
vertices are also vertices of four triangles whose
bases combine with four additional edges to form
an octahedron. If we take the eight triangular
faces on either form and flip them upside down,
changing the relationship between u and w, then
we interchange the squares and octagons, and
transform one form into each other. A model
of this transformation has been built, confirming
the close relationship between the two forms
(Figures 5.21 and 5.22).

Figure 5.21. Model of truncated cube.

Figure 5.22. Model of lesser rhombicuboctahedron.
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Dürer’s Problem

Joseph O’Rourke

In 1525 the German painter and thinker Albrect
Dürer published his masterwork on geometry,
whose title translates as “On Teaching Measure-
ment with a Compass and Straightedge.”

The fourth part of this work concentrates on
polyhedra: the Platonic solids, the Archimedean
solids, and several polyhedra “discovered” by
Dürer himself. (This work was hailed in Chap-
ter 4 as Milestone 8.) His interest in polyhedra
was evident at least a decade earlier, when he
used an apparently original polyhedron in his
famous engraving Melencolia I. In his book he
presented each polyhedron by drawing a net for
it: an unfolding of the surface to a planar layout.
The net makes the geometry of the faces and the
number of each type of face immediately clear
to the eye in a way that a 3D drawing, which
necessarily hides half the polyhedron, does not.
Moreover, a net almost demands to be cut out and
folded to form the 3D polyhedron.

Examples of Dürer’s nets are shown in
Figures 6.1 and 6.2. The first is a net of the
snub cube, which consists of six squares and 32
equilateral triangles. The second is a net of the
truncated icosahedron, consisting of 12 regular
pentagons and 20 regular hexagons, the spherical
version of which we know as a soccer ball.

In the half-millennium since Dürer, nets have
become a standard presentation method for

J.O’Rourke
Deptartment of Computer Science, Smith College,
Northampton, MA 01063, USA
e-mail: orourke@cs.smith.edu; http://cs.smith.edu/�
orourke/

describing polyhedra. For example, Figure 6.3
shows a modern display of nets for the so-called
Archimedean solids.

But no one has proved that a net exists for
every convex polyhedron. It is this long-unsolved
problem that is the focus of this chapter.

Convex Polyhedra and Nets

We will be concerned only with polyhedra with-
out holes, so we exclude polyhedral tori and
other such objects that could be hung on a thread
through a hole. Edges will be straight line seg-
ments. Edges meet at vertices, the sharp corners
on the surface.

The most famous polyhedra are the five “reg-
ular” or “Platonic” solids shown in Chapter 1,
known for at least 2,500 years. Despite the name
“solid,” we will view a polyhedron as the thin
surface enclosing the volume, rather than the
solid itself.

The Platonic solids are all convex polyhedra,
which means essentially that they have no dents.
The notion of convexity applies both to 2D and to
3D, and we will need both.

A convex polygon is a closed figure in 2D
composed of straight edges, with the property
that if you walked around the boundary, counter-
clockwise from above, you would make only left
turns at each vertex. A right turn would constitute
a dent. Another way to view this is that the
internal angle at every vertex of a convex polygon
is less than 180ı. A vertex at which the internal
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40

Figure 6.1. Dürer’s net for a snub cube.

angle exceeds 180ı is called a “reflex vertex”
(a term more memorable than “concave vertex”).

Just as a convex polygon has no reflex vertices,
a convex polyhedron has no reflex edges: the
internal dihedral angle between the two faces
meeting at each edge of a convex polyhedron is
less than 180ı. For the cube, this dihedral angle
is 90ı at each convex edge.

Now we finally define what constitutes a net.
A net is an unfolding of the surface of a poly-
hedron produced by cutting the polyhedron along
some of its edges and flattening it to a single, non-
overlapping piece in the plane. The key aspects of
this definition are:
1. The net is planar.
2. It is a single piece.
3. It is the result of cutting polyhedron edges: it

is an edge unfolding.
4. It is non-self-overlapping: non-cut points do

not unfold on top of one another.
These four properties mean that one can cut

out a net drawn on paper with scissors, crease
along edges, and fold to the 3D polyhedron.
Dürer’s unfoldings are nets of course; our

definition is intended to capture the standards
he set down by his example. Note that his net
for the truncated icosahedron (Figure 6.2) is just
barely non-overlapping, with some pentagons
almost touching some hexagons. It makes sense
to permit touching of boundaries, which could
still permit the net to be cut out with scissors.
What is forbidden is more substantive overlap,
when points not on the boundary of the figure
overlap in the plane.

The Open Problem

Now we can phrase the unsolved question, which
we take the liberty of calling “Dürer’s Problem”
even though there is no evidence that he recog-
nized it as a claim that needed proof:

Dürer’s Problem: Does every convex
polyhedron have a net?

Despite almost 500 years of many people
drawing nets for convex polyhedra, no one has
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Figure 6.2. Dürer’s net for a truncated icosahedron.

come up against an example that has no net.
On the other hand, there is no proof that every
convex polyhedron does have a net, despite years
of effort since the problem was first formalized
as a sharp mathematical question by Shephard in
1975.

You might think it is obvious that a convex
polyhedron has a net, because when the surface
is cut and flattened, it “spreads out,” and so there
should be plenty of room in the plane. This is
certainly true for the regular and semi-regular
polyhedra that have been the focus of attention
for hundreds of years. But that intuition weakens
when considering more complicated and irregular
convex polyhedra, such as the egg-shaped object
in Figure 6.4.

Or maybe you don’t see how overlap can occur
at all. Then look at Figure 6.5, in which (a)
shows a cube with one vertex truncated, and (b)

an unfolding with overlap. On the other hand,
(c) shows that it is easy to avoid this overlap by
repositioning one face.

You might think that surely every tetrahe-
dron—that is, every convex polyhedron with ex-
actly four vertices—has a net. This is true (and
has been proved), but even here some care must
be exercised. Consider the thin, nearly flat tetra-
hedron shown in Figure 6.6a. One choice of
cutting leads to overlap (b), although again it
is easy to find other cutting choices (c) that do
produce nets for this tetrahedron.

Nonconvex Polyhedra

In the late 1990s several groups of researchers
independently discovered nonconvex polyhedra
that have no net. Figure 6.7 shows an especially
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Figure 6.3. Unfoldings of the 13 Archimedean solids. The snub cube (Figure 6.1) is at the 5 o’clock position, and the
truncated icosahedron (Figure 6.2) is in the center.
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elegant example, a “spiked tetrahedron.” The
proof that this polyhedron has no net must
show that every possible edge unfolding leads
to overlap. (And there are many possible edge
unfoldings.)

Because any proof that a polyhedron has no
net must grapple with “every possible edge un-

Figure 6.4. A convex polyhedron whose 100 vertices are
randomly sprinkled on the surface of an ellipsoid.

folding,” we turn next to a useful proposition
that captures some necessary properties of edge
unfoldings.

Spanning Cut Tree

If we cut along a given edge of a polyhedron
as part of an unfolding, we call that edge a cut
edge. The following proposition states necessary
conditions on the collection of cut edges using
technical jargon; the terms are explained below.

Proposition 6.1. The cut edges of an unfolding
that results in a net for a polyhedron form a
spanning tree of the skeleton of the polyhedron.

The skeleton of a polyhedron is the network
of edges and vertices on the surface—effectively
a wireframe view of the polyhedron without the
faces. A tree is a collection of edges that never
loops back to form a closed loop, or cycle. It
is called a tree because, drawn in the right way,
it resembles a tree (or a bush; see Figure 6.8a):

x
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xy

z

a

b c

Figure 6.5. (a) Cube with corner truncated. (b) Overlapping unfolding. (c) A net: non-overlapping.
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Figure 6.6. The four faces are colored blue on the outside and red on the inside. (a) A nearly flat tetrahedron. Edge
ad is in back. (b) Overlapping unfolding from cutting (a; b; c; d ). (c) A net obtained by cutting (a; c; d; b).

Figure 6.7. A nonconvex polyhedron of 36 triangle
faces that has no net.

the branches cannot dovetail and connect, for that
would form a cycle of edges. Finally, a spanning
tree is a tree that touches every vertex. Fig-
ure 6.8b shows that the cut edges that Dürer used
to obtain his net of the snub cube (Figure 6.1)
indeed form a spanning tree of its 24 vertices.

Now we can prove the proposition. If the cut
edges do not form a tree, then they contain a
cycle. A cycle of cuts on the surface separates

the surface inside the cycle from the rest of the
surface. Thus we would be left with at least two
separate pieces, the surface inside the cycle and
the surface outside. This violates condition (2) of
the definition of a net. So the cut edges must form
a tree.

Suppose the tree is not spanning. That means
that there is some vertex v of the polyhedron
not touched by any cut edge. But this means
that v retains its 3D structure, and so cannot
be flattened. This violates condition (1) of the
definition of a net: for the net to be planar, the
cuts must span the vertices.

Thus we have established the proposition: the
cut edges must form a spanning tree to have
any hope of reaching a net. So the spanning tree
condition is necessary. But notice that we did not
employ the crucial 4th condition: the net should
be non-overlapping. And indeed the spanning
tree condition is far from sufficient to guarantee
a net. The cuts used to produce our overlapping
examples (Figures 6.5 and 6.6) form spanning
trees.

To this day no one has discovered neces-
sary and sufficient conditions for a collection of
cut edges to unfold to a net. Consequently, any
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Figure 6.8. (a) A tree. (b) Dürer’s spanning cut tree on the snub cube. The tree in (a) is structurally the same as the
tree in (b). The base face B and several vertices are labeled in both.

potential counterexample to the conjecture that
every convex polyhedron has a net must thwart
every possible spanning tree. And there are a lot
of spanning trees! The number is exponential in
the square root of the number of faces. For the
egg-shaped polyhedron in Figure 6.4, which has
F D 196 faces, there are more than 500,000
distinct spanning trees.

Some Polyhedra with Nets

There is no grand theorem as yet in the investiga-
tion of Dürer’s Problem, just scattered results of a
few classes of convex polyhedra that are known to
have nets. We will describe these classes without
proving the results, and end with a challenge to
settle another natural class.

We need the notion of the convex hull, which
is easiest to understand in 2D. Suppose we mark
a set of points in the plane by pounding in nails
at each point, leaving much of the nail above the
plane. The convex hull of the points is the convex
polygon determined by the shape of a stretched
rubber band that encompasses all the points. In
3D, we have to imagine a set of points fixed in
space. The convex hull of the points is the the
convex polyhedron determined by wrapping a set

of points in 3D as tightly as possible with plastic
wrap. I constructed the polyhedron in Figure 6.4
by computing the convex hull of random points
on an ellipsoid.

Now with this notion, we can define the
classes of polyhedra for which nets are known to
exist. LetB be a convex polygon in a plane (B for
base). Make a second copy of B vertically above
B; call that copy A (A for above). The convex
hull of the vertices of A and B is a right prism,
“right” because all the lateral faces are rectangles
with right angles. A prism (or oblique prism)
does not insist that A be directly above B; rather
it can be shifted (translated) with respect to B .
The lateral faces of a prism are parallelograms.
See Figure 6.9a, b. Both of these classes are
subclasses of a more general shape, a prismoid,
whose lateral faces are trapezoids. There is a
proof that every prismoid has a net, as illustrated
in Figure 6.9c: All lateral edges are cut, and all
but one edge of A is cut. The only delicate part of
the proof is deciding which edge of A not to cut;
not all choices lead to non-overlap.

A pyramid is the convex hull of a base convex
polygon B and a single point a (the apex) above
B . The natural petal unfolding determined by
cutting every edge incident to a leads to a net;
see Figure 6.10a.
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Figure 6.9. (a) A right prism. (b) An oblique prism. (c) Unfolding of a prismoid to a net. The red edge ofA is not cut.

BB

a b

a

Figure 6.10. (a) A net for a pyramid. (b) A net for a dome.

A dome is a generalization of a pyramid with
the property that every face shares an edge with
the base convex polygon B . Again the petal
unfolding leads to a net, a theorem for which
there are now three different proofs.

One more class, “higher-order deltahedra,”
was proved to always have a net by Daniel
Bezdek as part of his award-winning 9th
grade Canadian Science Fair project. These are
polyhedra whose surface is composed entirely
of equilateral triangles, including faces (e.g.,

hexagons) partitioned into several coplanar
triangles (see Chapter 2). These few classes are
essentially the only infinite classes of convex
polyhedra for which it is established that there is
always a net.

One natural class of polyhedra for which there
is as yet no proof that nets always exist is the
prismatoids. A prismatoid is the convex hull of
two arbitrary convex polygons A and B lying
in parallel planes. Thus it is very similar to a
prism or a prismoid (and its name is similarly
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Figure 6.11. (a) 2�1�1 box. Box faces are labeled: Bt, F, T, R, L, Bk for Bottom, Front, Top, Left, Right, and Back
respectively. (b) Star unfolding with respect to x.

confusing!), but A and B may be very different.
This means that, in general, the lateral faces are
not quadrilaterals, but rather triangles. I invite the
enterprising reader to tackle this class.

General Unfoldings

Although there are no broad theorems on nets,
if the restriction to cutting along edges of the
polyhedron (Condition (3) in our definition of a
net) is relaxed, there are some nice theorems, one
of which we describe here. In contrast to edge un-
foldings, which demand the cuts be along edges,
a general unfolding permits arbitrary cuts to pro-
duce the unfolding—the cuts can run through
the interior of polyhedron faces. The goal is
otherwise the same: find a collection of cuts
that unfold the surface to a single, planar, non-
overlapping piece. Let us call this, for lack of a
better term, a general net. There are now several
different proofs that every convex polyhedron has
a general net. All of them depend on the notion of
a shortest path on the surface between two points
a and b. As its name suggests, a shortest path is
the minimum-length route to travel from a to b
on the surface, i.e., the optimal path for an ant to
walk between the two points.

Shortest paths have many mathematical prop-
erties, two of which we need here. First, a shortest

path never passes through a polyhedron vertex:
it is always shorter to go around a vertex than
through it. Second, when a shortest path crosses
a polyhedron edge, it does so in such a way that
the planar unfolding of the two faces sharing the
edge straightens the path: a shortest path unfolds
straight across every edge.

The star unfolding always produces a
general net. This concept was introduced by
Alexandrov in 1948 (and so sometimes called an
“Alexandrov unfolding”) but only proved to be
non-overlapping in the 1990s.

Pick any “generic” point x on the surface of
the polyhedron not at a vertex, generic in a sense
soon to be clarified. Now draw the shortest path
from x to each vertex of the polyhedron in turn.
There are usually many choices of x for which the
shortest path to each vertex is unique. This is the
sense in which x must be generic. Figure 6.11a
illustrates these paths for a rectangular box, with
x in the middle of the bottom face. Notice that the
collection of these paths satisfies the Proposition:
they form a tree that spans the vertices. The star
unfolding is produced by cutting all the shortest
paths and unfolding, as shown in (b) of the figure.
Note that each shortest path unfolds to a straight
line segment, as it must by the second property of
shortest paths mentioned above.

Although non-overlap is almost obvious in
this symmetric example, it is less obvious, al-
though now proved, for more generic convex
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Figure 6.12. The star unfolding of a polyhedron of
nD18 vertices.

polyhedra. Figure 6.12 shows a more typical star
unfolding.

If this unfolding is cut out, and the cuts taped
back together, it forms a convex polyhedron of
18 vertices. (Moreover, it uniquely folds to this
polyhedron, by a theorem of Alexandrov.)

The star unfolding has now been generalized
to cutting shortest paths to a closed curve Q on

the surface rather than to a point x, yielding the
same result when Q shrinks down to x.

Nonconvex General Unfoldings

We have seen that it remains unresolved
whether every convex polyhedron has an edge
unfolding—a net (Dürer’s Problem), but all these
polyhedra do have general nets (via, e.g., the star
unfolding). We have also seen (in Figure 6.7) that
not every nonconvex polyhedron has a net. So
it is natural to ask whether every nonconvex
polyhedron has a general net. This enticing
problem remains unsolved today. The widest
class for which this is established is orthogonal
polyhedra, polyhedra all of whose edges are
parallel to orthogonal Cartesian axes. There
is an algorithm that unfolds any orthogonal
polyhedron (of genus zero—i.e., without holes)
to a single, non-overlapping piece.

Finally, although it would seem that the re-
verse of unfolding—folding polygons to form
convex polyhedra—could hold no new mysteries,
that is far from the case. Unsolved problems
abound in this topic.
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Polyhedra in Nature and Art
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Exploring the Polyhedron Kingdom

Marjorie Senechal

Having paid our respects to the rulers of the Poly-
hedron Kingdom and their extended families,
we’re ready for a walking tour.

An Architectural Walking Tour

The first polyhedral buildings we see on our tour
are perhaps the most famous of all: the pyramids
of Egypt, built about 2500 B.C.E. (Figure 7.1).
Yes, a pyramid is a polyhedron; one of its faces is
a polygonal base (of 3; 4; 5; : : : ; n sides) and the
others are congruent isosceles triangles joined to
the base along its edges, meeting above it in a
single point. The bases of the Egyptian pyramids
are squares.

As we walk along, we see buildings based on
prisms. In fact, most buildings are prisms, since
the rectangular “boxes” that constitute much fa-
miliar architecture are prisms with rectangular
bases. Even boxes can become interesting poly-
hedral structures when juxtaposed in imaginative
ways. A-frames are triangular prisms resting on
a rectangular side. A notorious pentagonal prism
is located near Washington, D. C. (Figure 7.2)
It is rare to see a prismatic building with more
than eight flat sides, but if we allow the meaning
of “prism” to include polyhedra with curved
sides, then we find that they are quite common.

M. Senechal
Department of Mathematics and Statistics,
Smith College, Northampton, MA 01063, USA
e-mail: senechal@smith.edu, http://math.smith.edu/�
senechal, http://www.marjoriesenechal.com

The Coca-Cola Building (Figure 7.3), designed
by Erwin Hauer for the 1964 New York World
Fair, is a prism with many curved sides. The
detail of the outer grill show in Figure 7.4 shows
that the design can be considered a slice through
a packing of truncated octahedra. (Interesting
polyhedral structures are often designed for world
fairs and moved later to their permanent sites in
the Kingdom).

Other interesting polyhedral buildings
are almost spherical in form. In Figure 7.5 we see
one of Buckminster Fuller’s geodesic domes, the
United States Pavilion at Expo ’67 in Montreal.
Its faces are triangles, grouped into hexagons and
pentagons (see Chapters 3 and 9). The geodesic
dome has been the inspiration for countless
buildings, large and small. The house shown in
Figure 7.6 was constructed by a family in Hadley,
Massachussetts. Many other interesting domes
are described in do-it-yourself publications (see,
for instance, Figure 7.7). The faces of some
dome structures are deliberately arranged in
asymmetric ways. For example, the dome grid

Figure 7.1. The pyramids of Mycerinus, Chefren, and
Cheops at Giza.
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Figure 7.2. The Pentagon is an enormous pentagonal prism.

Figure 7.3. Coca-Cola Building at the 1964 World Fair.

(shown in Figure 7.8) of the Five-College Radio
Astronomy Observatory at Quabbin Reservoir,
Massachusetts, is deliberately random to prevent
interference patterns with the incoming signal.

Once your eyes are opened, you will find many
interesting examples of polyhedral architecture in
your own neighborhood. Figure 7.9, shows are
some “geometric” student residences at Hamp-
shire College in Amherst, Massachusetts.

Figure 7.4. Detail of the Coca-Cola Building at the 1964
World Fair, showing a slice through a tight packing of
opaque acrylic truncated octahedra.

The rulers of the Polyhedron Kingdom have
instituted a Polyhedral Hall of Fame to honor
human beings who use polyhedra in especially
unexpected and delightful ways. The first person
to be elected to the Hall was the Israeli architect
Zvi Hecker, cited for his multipolyhedral
synagogue in Negev desert (Figure 7.10) and
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Figure 7.5. The U.S. Pavilion at the Expo ’67 World Fair
Montreal.

his dodecahedral housing complex in Ramot,
Israel (Figure 7.11).

Architecture reminds us that the most impor-
tant part of some polyhedral structures is the
network of edges and vertices. If we agree that
such networks themselves constitute polyhedra,
then many bridges are polyhedra, and so are
common (and uncommon) jungle gyms (such as
those shown in Figures 7.12 and 7.13). In fact
there is no end to the polyhedral structures around
us.

The Nature Preserve

The nature preserve is a vast region of the
Polyhedron Kingdom, whose known extent keeps
growing larger as it becomes possible to study
structures on increasingly smaller scales. On
this brief visit we will only have time to glance
casually at some natural polyhedra which can
be seen with the naked eye or with a simple
microscope.

Our first stop is at a mine, where polyhedral
crystals of many different kinds can be found.
Look carefully in Figure 7.14 at crystals of the
familiar mineral quartz. Quartz crystals are essen-
tially prisms with terminating facets, which are
arranged in interesting ways. In Figure 7.15 we
see a leucite crystal in the shape of an icositet-
rahedron; it has 24 trapezoidal faces. In other

Figure 7.6. Geodesic dome house under construction in
Hadley, Massachusetts.

Figure 7.7. Baer’s fused triple rhombicosidodecahedra
at Drop City, Colorado.
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Figure 7.8. The Five-College Radio Astronomy Obser-
vatory in Massachusetts.

Figure 7.9. Modular residences, Hampshire College,
Amherst, Mass.

crystals, the faces are truncated, as in the crystal
of benitoite shown in Figure 7.16. Some kinds of
crystals come in many forms. Sixteen drawings
of gold from the famous twenty-volume Atlas der
Krystallformen are shown in Figure 7.17.

a

b

Figure 7.10. Synagogue in the Negev Desert, Israel,
1969–1970. (a) Exterior view. (b) Interior view.

Figure 7.11. Housing complex in Ramot, Israel, 1972–
1980.
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Figure 7.12. Jungle gym in Cambridge, U.K.

Figure 7.13. Jungle gym at the Nonotuck Community
Child-Care Center adjacent to the Smith College campus.

The polyhedra that occur as plants and animals
are usually less standard in form than polyhedral
crystals, but are no less intriguing. The purple
sea urchin of Peru combines features reminiscent
of both star polyhedra and geodesic domes. The
pufferfish is a polyhedron of uncommon charm
(see Figure 7.18). Radiolaria are single-celled sea
creatures whose skeletons have very interesting
polyhedral forms. The sketches in Figure 7.19
were made by Ernst Haeckel on his trip abroad
H.M.S. Challenger with Charles Darwin. Some
insects—for example, the bees—build polyhe-
dra for their own purposes. Among the culinary
delights of the Nature Preserve are its many
honeycombs. As we see in Figure 7.20, a comb
is an aggregate of half-open polyhedra.

Figure 7.14. Quartz crystals.

Figure 7.15. Icositetrahedral leucite crystal.

Aggregated polyhedra are also found in plants.
How would you describe the examples shown
in Figure 7.21? Aggregates of polyhedra will be
discussed in more detail later on this tour and in
Chapters 10 and 22.

This concludes our tour of the Nature Pre-
serve. A much deeper discussion of polyhedra in
nature is found in Chapters 9 and 12.

At the edge of the Nature Preserve we come to
the Gallery of Polyhedral Art.
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Figure 7.16. Benitoite crystal.

Figure 7.18. Inflated spiny pufferfish.

Figure 7.17. Drawings of crystals of gold.
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Figure 7.19. Radiolaria.

Figure 7.20. A honeybee comb.
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Figure 7.21. (a) Carex grayi. (b) Adonis pernalis. (c) Cornus kousa.

The Gallery of Polyhedral Art

Polyhedral art can be found throughout the world.
In honor of your visit to the Kingdom, a small but
exquisite collection of sculpture, paintings, and
graphics in which polyhedra are an important
theme has been assembled. The Renaissance
and Modern exhibits are especially strong.
Renaissance artists seem to have been very fond
of the regular polyhedra, both because of their
association with Plato and because they offered
opportunities for the study of perspective (see
Chapter 4). We saw one of Jamnitzer’s engravings
in Figure 1.16; Leonardo da Vinci (1452–1519)
also drew many polyhedra. Polyhedra often
appear in Renaissance paintings; the gallery is
proud to display Jacopo de Barbari’s portrait of
Fra Luca Pacioli (author of Divina Proportione),
we see in Figure 7.22. The mazzocchio, a
doughnut-shaped polyhedral hat popular in
fourteenth-century Florence, appears in many
paintings by Paolo Uccello; details of two of
his paintings are reproduced in Figure 7.23. The
mazzocchio was revived for the Shaping Space
(Figure 7.24).

Modern polyhedral art includes three striking
paintings by Salvador Dali: The Sacrament of the
Last Supper (Figure 7.25), Cosmic Contempla-
tion (Figure 7.26), and Corpus Hypercubicus at
the Metropolitan Museum of Art (where you can
also study works by such renowned polyhedrists

Figure 7.22. Jacopo de Barbari, Portrait of Fra Luca
Pacioli and His Student Guidobaldo, Duke of Urbino.

as Picasso, Bracque, and de la Fresnaye.). At first
glance the polyhedron in Cosmic Contempla-
tion appears to be a pentagonal dodecahedron
(cf. Plato), but then we notice that it has one
hexagonal face. Such a structure is impossible
(this can be deduced from Euler’s formula)! How
do you think Dali envisioned its other side?
A well-known impossible structure appears in
the painting by Mary Bauermeister reproduced
in Figure 7.27. The gallery’s exhibit of cubist
painting is very good; it includes important works
by Josef Albers (Figure 7.28) and M.C. Escher
(Figures 7.29 and 7.30).
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Figure 7.23. Top: Paolo Uccello, The Rout of San
Romano (1456–60, tempera on panel. Louvre, Paris.),
detail. Museé de Louvre, Paris. Bottom: Paolo Uccello,
After the Flood (Frescoed lunette in terraverde. Green
Cloister of Santa Maria Novella, Florence), detail.

The crowded sculpture court contains a
wide variety of noted works. The largest
sculptures in the court are Isamu Noguchi’s
Red Rhombohedron (Figure 7.31) and Charles
Perry’s Eclipse (Figure 7.32). There is also
Polyhedral Fancy by Arthur L. Loeb (Fig-
ure 7.33) and Tetrahedron by Lee Burns

(Figure 7.34). The gallery is also proud to display
Hugo Verheyen’s sculpture with movable parts
(Figure 7.35) and Max Bill’s Construction with
30 Equal Elements (Figure 7.36).

It is perhaps here in the structure court that
we first become acquainted with the boundaries
of the Polyhedron Kingdom. As we move away
from the center of the Kingdom, the population
variation becomes greater and greater, until we
cannot really say what is a polyhedron and what
is not. Is Eclipse a polyhedron? If not, why
not? Figures 7.37 and 7.38 are two sculptures
by Erwin Hauer. Is either of them a polyhedron?
What about Alan Holden’s Ten Tangled Triangles
(Figure 7.39)?

Before leaving the gallery, take a close look (in
Figure 7.40) at the Truncated 600-Cell by Harriet
Brisson. The 600-cell is a name of the four-
dimensional polyhedron whose 600 “faces” are
three-dimensional regular tetrahedra! The viewer
entering the large tetrahedron is surrounded by
mirror images approximating the experience of
the fourth dimension extending to infinity. It is
fascinating to think about the ways in which
four-dimensional polyhedra can be represented
in our three-dimensional world (see Chapters 18
and 20).

A Note on Polyhedral Society

Polyhedra communicate with one another in a va-
riety of subtle ways (see Figure 7.41). Indeed, the
sociology of polyhedra is extremely complicated,
as polyhedra tend to be related to one another
through many different kinship structures. Some
of them are related by geometry; for example,
some can be inscribed inside one another, as in
Figure 7.33. Others can be grouped into families
whose members are related by truncation, that
is, by successively slicing off larger and larger
corners and edges (see Figure 7.42). (As we have
seen, this is the way that Archimedean polyhedra
are related to their regular forebears.)

Crystals of the same kind are often related
by truncation, and the discovery of this fact by
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Figure 7.24. Busts of scientists Florence Sabin, Smith College Class of 1893 (left), and Dorothy Mott Reed, Smith
College Class of 1895 (right), wearing the Shaping Space version of a fourteenth-century mazzocchio (see Figure 7.54).
The busts, by Joy Buba, are in the Young Science Library of Smith College.

Figure 7.25. 1963.10.115 The Sacrament of the Last
Supper. Salvador Dali.

Figure 7.26. Salvador Dali, Cosmic Contemplation. Wa-
tercolor and ink, 1951.
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Figure 7.27. Fall-Out from the series Unsculptable by
Mary Bauermeister.

Figure 7.28. Josef Albers, Structural Constellation.

Figure 7.29. M.C. Escher, Waterfall.

Figure 7.30. M.C. Escher, Order and Chaos.

J.B.L. Romé de Lisle in 1783 was a milestone in
our understanding of crystal structure. Some such
relationships are recorded in Figure 7.43.

A major eighteenth-century discovery—see
Chapter 4—was that of Leonhard Euler (1707–
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Figure 7.31. Isamu Noguchi, Red Rhombohedron, in the
plaza of the Marine Midland Bank Building, New York.

Figure 7.32. Charles O. Perry, Eclipse. The helical ex-
plosion of every face rotating from a dodecahedron
through the icosidodecahedron to the small rhombicosi-
dodecahedron. Hyatt Regency Hotel, San Francisco.

1783), who found a simple equation that has
great theoretical importance: for every convex
polyhedron, the number of faces .F /, edges .E/,

Figure 7.33. Top: Arthur L. Loeb standing next to his
sculpture Polyhedral Fancy in Burton Hall, Smith Col-
lege. Bottom: Polyhedral Fancy, a part of the permanent
collection of Smith College, is a copper tetrahedron with
a Plexiglas r cube within an octahedral framework within
a brass cross-section of a sphere.

and vertices .V / are related by the equation
V � E C F D 2. This suggests another way of
classifying polyhedra into families: classification
according to the triple of numbers .V;E; F / (see
Figure 7.44). Yet another important relationship
among polyhedra is duality, which is rather
intimate, and about which there is still a great
deal to be learned (see Chapter 15).

In addition to belonging to such families,
polyhedra often form voluntary associations
to provide important services to nature and to
society. Like human and animal associations,
these associations require a great deal of
conformity but can be very effective in achieving
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Figure 7.34. A. Lee Burns, Tetrahedron. A polished
brass tetrahedral “soap bubble,” inspired by a soap bubble
in a tetrahedral frame.

Figure 7.35. IRODO, an expandable polyhedral sculp-
ture based on the impandable rhombic dodecahedron; by
Hugo Verheyan.

Figure 7.36. Max Bill, Construction with 30 Equal Ele-
ments.

Figure 7.37. Erwin Hauer, Rhombidodeca. An excerpt
from an infinite, continuous and periodic surface, WPI.
The inner labyrinth is expressed as a solid volume. Pro-
duced of organic composite materials, 28 � 26 � 26
inches.

their goals. Bubbles in a froth have polyhedral
forms which, although appearing to be quite
varied, have a very restrictive property: in each
bubble, exactly three faces must meet at every
vertex. You can see some explorations into the
nature of soap films in Figures 1.7, 7.45 and 7.46.
Froths are important models for many biological
structures (see Chapter 12).
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Figure 7.38. Erwin Hauer, Obelisk, also an excerpt from
WPI, but along the diagonal bisectors of the constituent
cubes. The outer labyrinth is maximized in volume and
appears as the largest perforations through the sculpture.
The shallow exterior spaces are what remains of the
inner labyrinth. Produced in cast stone, 1 inch thick, the
sculpture measures 9� 2� 2 feet.

Crystal architecture is another cooperative
polyhedra endeavor (see Chapter 10). The atoms
in a crystal come together in more or less regular
arrays, like building blocks, to form the crystals
that we see with our eyes. With an electron
microscope, we can “see” the arrays themselves

Figure 7.39. Alan Holden, Ten Tangled Triangles, Smith
College, sent by the artist as his surrogate representative to
the Shaping Space Conference.

Figure 7.40. Harriet E. Brisson sitting in the Truncated
600-Cell, a four dimensional form made by Harriet E.
Brisson and Curtis LaFollete, 1984.

(Figure 7.47). The Russian crystallographer E.
S. Federov showed 100 years ago that there are
exactly five polyhedral building blocks. That
is, there are five combinatorial types of convex
polyhedra whose copies fill space completely
when they are stacked face to face in parallel
position; they are shown in Figure 7.48. Many
other examples of polyhedral cooperation are
found in human-constructed architecture. We
have already seen some examples on our walking
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Figure 7.41. Ginger and Fred by Robinson Fredenthal.

Cube: 64 Truncated cube: 68 + 83

Cubocta: 64 + 83

Truncated octa: 64  + 86 

Octa (1): 83

Figure 7.42. From cube to octahedron.

tour. And of course the bees’ cells stack together
to make the honeycomb in Figure 7.20.

New relations among polyhedra are being
found all the time (for example, how are the

Figure 7.43. Drawings of pyrite.

polyhedra of the family in Figure 7.49 related to
one another?) This will continue as the theory
of polyhedra expands to include the study of
function as well as form (see Chapters 12
and 14).

A Polyhedral Artisan Fair

Polyhedral artisan fairs are held from time to time
in the Kingdom. Here you can browse among
the many delightful items that the more artistic
natives of the Polyhedron Kingdom have created
for your enjoyment. As you wander among the
many displays, you will find such things as:

Wooden puzzles: See Figure 7.50.
Polyhedra kits: Kits for building star polyhedra

(and other polyhedra, too) are sold in many
stores. In Figure 7.51 we see M.C. Escher
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Figure 7.44. There are seven polyhedra which have six
faces. Classified according to number of vertices, edges,
and faces—the triple of integers (V;E D V C F �
2; 6/—they belong to four families.

contemplating a polyhedron constructed from
parts provided in such a kit. Uttara Coorlawala
and Matthew Solit are shown (in Figure 7.52)
building a Rhombics structure.

Dome kits: Figure 7.53 shows a dome built
from instructions in Domebook 2.

Minerals:
Polyhedral jewelry:
The mazzocchio: The Shaping Space adapta-

tion is shown in Figures 7.24 and 7.54
An unusual lamp shade: Figure 7.55 was

inspired by the rhythm and repetition of a
Persian mystical poem.

Vases and other pottery: See Figure 7.56.
“Total photos”: A total photo is reproduced in

Figure 7.57.
Unusual toys: Deltahedra are polyhedra whose

faces are equilateral triangles but which are
not regular because the numbers of triangles
at the vertices can vary. One of them seems to
have been the inspiration for the crawl-through
toys shown in Figure 7.58. You can build this
deltahedron and all the other convex ones by
following instructions in Chapter 2.

Figure 7.45. Top: A. Lee Burns leading the Gala Soap
Bubble Workshop at the Shaping Space Conference. Bot-
tom: Godfried Toussaint creating a polyhedral bubble.

Figure 7.46. Soap bubbles in a froth.

But if you do not have time to linger at the fair,
do not be disappointed; you will find many de-
lightful polyhedra for sale in shops everywhere.



7 Exploring the Polyhedron Kingdom 105

Figure 7.47. Electron micrographs of crystals, showing arrays of individual molecules. Protein from southern bean
mosaic virus (magnification 30,000) (left). Protein from tobacco necrosis virus (magnification 73,000) (right).

Figure 7.48. The five kinds of polyhedra which fill
space in parallel position.

Figure 7.49. Twelve deltahedra-regular polyhedra.
Figure 7.50. Wooden Puzzles.
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Figure 7.51. M.C. Escher contemplating a homemade
polyhedron.

Figure 7.52. Uttara Coorlawala and Matthew Solit
building a tetrahedron with Rhombics parts.

Figure 7.53. A plywood dome.

Figure 7.54. The fourteenth-century mazzocchio was
adapted for the Shaping Space Conference by Helen
Connolly, who prepared a do-it-yourself kit.

Figure 7.55. Lamp shade inspired by the hexagonal
structure of a poem by Rumi (1207–1273), teacher of
Islamic Sufiism.
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Figure 7.56. Corner-posed cubical vase by unknown
Kyoto potter, 1964: collection of A. Taeko Brooks.

Figure 7.57. Total photo. Unfolded dodecahedron total
photo of the Chicago Art Center.

Figure 7.58. Polywood crawl-through toys, with construction plans.
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Spatial Perception and Creativity

Janos Baracs

I come from Montreal, where I belong to a group
called the Structural Topology Research Group.
“Structural topology” is an often criticized term,
but we are stuck with it.

In Chapter 15, Branko Grünbaum and
Geoffrey Shephard talk about misconceptions
that may arise when amateurs get mixed
up in mathematics; they named the result
“mathematical folklore.” I like this label and I
admit that I am a folklorist.

Now I will prove this point for you: I will
discuss spatial perception and creativity. This
term suggests some competence in the fields of
psychology, philosophy, logic, and so forth, and
I have none. But my experience has led to some
success in understanding the creative process in
morphology. We study this through a sequence of
actions that are translated in geometric terms.

Let me start by defining the field with which
we are dealing. When we talk about spatial per-
ception we can talk about the physical, social,
and other types of spaces. We narrow our interest
to the geometrical space, in the structural and
formal sense. By structural perception, I mean
the combinatorial study of the topological, pro-
jective, affine, and metrical properties of config-
urations, of spatial models. In formal perception,
we are interested in quantitative properties, such
as ratios, proportions, measures, and coordinates.
This part of the field is very interesting and

J. Baracs
21 Springfield, Westmount, QC H3Y 2K9, Canada
e-mail: baracs@sympatico.ca

involves working with sculptors and architects; in
this chapter, however, we consider only structural
perception.

Figure 8.1 is a diagram describing the three
major, distinct phases that should occur when we
start with the exposure to a spatial model and end
with the perception of the spatial model. These
phrases are the creation of an image, the imagery,
and the imagination. Studying the first phase
required very little. I asked an ophthalmologist to
help me find out whether there are people who
have some deficiencies in stereoscopic vision. He
gave me a very simple tool, a little booklet with
polarizing glasses. With this instrument, I was
able to code everybody’s stereoscopic vision. I
gave the test to students, colleagues, everybody
I could find. I found that an extremely small
percentage of people have deficiencies in stero-
scopic vision (R. Buckminster Fuller and A.L.
Loeb were in this extremely small group). So the
problem is not that some of us have difficulties in
creating images.

The next two phases are imagery and imagina-
tion. Imagery is a phase of comprehension, of un-
derstanding space. The last phase, imagination, is
the process of intervention, which is the creative
process or, in our profession, the design.

For many years I have been teaching courses
like descriptive geometry and structural topology,
and I have also worked with architects and sculp-
tors. Eventually—I think it is a sign of age—one
starts to analyze the mental process. The diagram
in Figure 8.1 is a result of such an analysis.
I divided the second phase, imagery, into three

M. Senechal (ed.), Shaping Space, DOI 10.1007/978-0-387-92714-5 8,
© Marjorie Senechal 2013
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Figure 8.1. Three phases: the creation of an image, the imagery, and the imagination.

actions, and the last phase, imagination, also into
three actions. I will go through a simple form in
space and show at each step what I am proposing.
We have six clearly defined geometrical actions.
They are visualization, structuration, transfigu-
ration, determination, classification, and appli-
cation. Next to the actions I have written those
terms we call skills or aptitudes. The actions to
be performed are linked to these aptitudes. What
we have been trying to do in the last two or three
years is to devise exercises in order to introduce
people, young and old, to these skills.

The model shown in Figure 8.2 may not be as
attractive as others at this conference, but it does
something that other models do not do. I don’t
want to present the shape in a frozen, rigid form
with particular metric properties; I want you to
view it as I slide the vertices as a movable object

Figure 8.2. Janos Baracs demonstrating a model of a
polyhedron with movable vertices.
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Figure 8.3. Matrix of representations of a spatial model.

which I can continuously transform. I can change
lengths and angles at will, I can change symme-
tries, and I can study many different properties.

If you can create an imagery that is movable,
transformable, and which you can manipulate,
that is the best start for imagination and creation.
This is the beginning of the voyage, an excursion
in space. The model is a particular combina-
torial structure composed of six vertices, nine
edges, and five faces. I will subject it to different
motions.

Before describing the six actions, I should
clarify the meaning of “spatial model.” Figure 8.3
is a matrix of representations of a spatial model.
We may use a topological model, a projective
model, an affine model, or a metric model. Each
model exhibits only those properties that are
conserved during the proper transformations
in a particular phase. These are the models

of representation. The media of representation
may be physical (like the model in Figure 8.2),
linguistic (a verbal or written description), geo-
metric (mapping or different types of projections)
and finally algebraic (matrices or lattices). It is
worth mentioning my suprise when I noticed
in my experiments the link between linguistic
abilities and the aptitude of spatial perception;
students with limited verbal skills also proved to
be handicapped in creating geometric imagery!
We shall return to this representation matrix when
we discuss Action 3: transfiguration.

And now let us go on with the description of
the six actions listed in Figure 8.1.

Action 1. The first action is visualization (Fig-
ure 8.4). There are two distinct steps because in
architecture you are either “outside” or “inside.”
If you are outside you have to walk around the
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Figure 8.4. Action 1: Visualization.

object to receive a complete image, while if you
are inside you have to turn around, unless you
have 360ı vision. In both cases, you have to
integrate partial images. There are various simple
tests and exercises to show that this integration is
not a simple process. In a cubic space the process
is well exercised, but we may not be living in
cubes for the rest of our lives.

The next step is to memorize images. If we
cannot store a mental image of a seen object, then
I think we are stuck. This can be tested easily.
(People with excellent memories sometimes fail,
while others who have very poor memories can be
excellent here.) In the third step we are looking
for composite images. For instance in Kepler’s
drawing, the icosahedron was shown as a pen-
tagonal antiprism with two pentagonal pyramids;
this is a composed image to help you memorize
the structure. This completes the first action.

Action 2. The second action is structuration (Fig-
ure 8.5). Here we want to study the topological,
projective, and affine structures of the object.
Remember that we do not measure in this phase,
we do not care about angles or distances, we do
not study symmetries.

As a first step, we recognize and classify
incidences. In the second step, we integrate these
incidences in a combinatorial structure, in the
topological, projective, and affine modes. The
third step is a synthesis of the two completed ac-
tions: visualization and structuration. We should
now possess a geometric imagery of the spatial
model in the topological, projective, and affine
modes.

Action 3. Our next action is transfiguration (Fig-
ure 8.6), an apprenticeship to communication.
In the first step we are using the representa-
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Figure 8.5. Action 2: Structuration.

tion matrix of Figure 8.3. A spatial model in a
given mode and medium will be transferred into
another (or the same) mode and medium. For
instance we may ask to prepare the perspective
drawing (projective mode, geometric medium)
of a triangular prism (affine mode, linguistic
medium). Or we may start with an incidence
matrix (topological mode, algebraic medium) and
decide to produce the graph of the polyhedron
(topological mode, geometric medium). Essen-
tially, we decide on a method or representation of
a given model, taking into account the purpose of
the representation and the type of properties we
wish to exhibit.

The second step is codification (standard or
created for a particular task) with a legend that
allows our representation to be read by others.
The third and final step is the prepared represen-
tation. This passage from our mode and medium

to another mode and medium is more than mere
communication; it is an essential process in order
to perceive the model itself.

Action 4. Action 4 is determination (Figure 8.7).
The problem is rooted in combinatorial geometry
and linear algebra. The example presented here
is for metric determination; the same action,
however, can be equally applied for projective or
affine properties.

The first step is to enumerate the (metric) in-
variants of the spatial model. As you can see, the
seven types of invariants (distances and angles)
result in 148 pieces of information in the case of
the truncated tetrahedron.

Now we need to know the least number of
invariants that uniquely determine the polyhedron
in space. If we exclude the Euclidean motions
(six degress of freedom), we need exactly nine
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Figure 8.6. Action 3: Transfiguration.

invariants (this number, Cd , is equal to the num-
ber of edges in the case of a spherical poly-
hedron). The number of necessary invariants is
reduced if we impose a symmetry group on the
polyhedron. For instance, we have the choice of
one invariant only if we wish the truncated tetra-
hedron to be realized as a semiregular triangular
prism.

Going back to our general position, the choice
of nine invariants out of 148 elements is a terrific
number (7:32 � 1013). It is our duty in the third
step to select a combination whose elements are
linearly independent. This selection was done in-
tuitively (Figure 8.7, section 4c) in our example.
Thus determination is an integral part of the per-
ception process and also an important practical
tool to design and to realize (to construct).

Action 5. Classification is the fifth action. We
now have reached a point in our actions where

we are able to classify the available options of
our model into multiple groupings (Figure 8.8).
In the first step we gave as examples topologi-
cal, projective, affine, and metric groupings. The
derivation of the combinatorial types (affine in
this example) is shown in the second step, where
the option of parallelism is explored.

The third step is symmetrization or regular-
ization. Shown in the figure is the semiregular
triangular prism and all its symmetry subgroups.
Faces, which have to be regular polygons for each
group, are also incidicated.

Action 6. The last action—application—is the
least understood and the most mysterious of all.
It is the action of conception, creation, or (in my
profession) design. The three steps shown in
Figure 8.9 represent three levels of application in
an increasing order of complexity.
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Figure 8.7. Action 4: Determination.

The first level is the resolution of a given
problem, which requires a certain degree of imag-
ination. At the second level, the creative process
is more advanced. Teachers will concur with me
that finding a good problem is usually harder and
more rewarding than solving one.

We named the last step “creative manipulation.”
To demonstrate it, we use again the triangular
prism, which in this example was “manipulated”
into a creative toy, the serpent, by Ernö Rubik.

We propose these six actions as a logical,
sequential mental process to shape space. The
first three actions represent the analytic percep-
tion of a spatial model, resulting in an imagery.
The last three actions, the synthetic perception of
the model, provokes the imagination, ending in
a creative application. During the six actions, we
applied topological, projective, affine, and metric

transformations in a gradual fashion to a given
spatial model.

The actual process of design in my profes-
sion is somewhat different: it does not begin
usually with a given spatial model. It starts with
a program that describes functions, criteria, and
so forth. So the first step is to generate the
spatial model itself, which fulfills the functions
and satisfies the criteria. This model should be
quite general, free of details, possessing only
some essential, intrinsic geometric properties. It
follows that I am proposing a topological model,
to be found by enumerating the available options.
We refine this model through projective, affine,
and metric transformations, ending up with the
desired product.

The process is illustrated in Figure 8.10.
To make this presentation brief, the example
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Figure 8.8. Action 5: Classification.

is simplified. The selected topological model is a
closed curve with six labeled vertices (a, b, c, d, e,
and f): no lengths, no angles, no parallelism, not
even straight lines are specified in this original
choice. As a result, we have a large family of
figures (all the plane and spatial hexagons) by
selecting a few properties, which are, however,
the most instrinsic ones of this family. Let us
now imagine that our model is a rubber band
marked with the six vertices. While stretching
this rubber band, adjacent vertices will remain
adjacent and the band will stay as a closed curve.
This type of transformation is called a continuous
mapping, while the invariant properties are
adjacency and continuity; we are in the realm
of topology. With so few properties to scrutinize,
it is suprising how rich the content of topology
remains.

We now enter the second phase in shaping our
hexagon. While the properties established in the
topological phase are kept unchanged, we decide
that the curved edges shall be straight lines, all
in one plane, and we choose some particular
incidences among them. Let the lines af, be, and
cd meet in the point s, arranged in such a way
that the common point p of the lines ab and
ef, the common point q of the lines bc and de,
and the common point r of the lines ac and df
are on one line. Many other choices and their
combinations are possible, each set of choices
representing a distinct hexagon with a visual
impact on its shape. If we now project this figure
from a point onto another plane, the projected
figure will preserve all the chosen properties.
We may state that in projective geometry, we
study properties of a figure which are invariant
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Figure 8.9. Action 6: Application.

under central projections. These new projective
properties are incidences and flatness (straight
lines and plane surfaces).

We continue to refine the shape of the hexagon
by choosing new properties in the third phase, but
again all previous choices—at this time topologi-
cal and projective properties—are kept invariant.
The option in this phase is the selection of certain
lines to be parallel. Another way to phrase it is
to say that certain chosen points are moved to
infinity along their incident lines. For instance,
we choose the points r and s to be moved to
infinity. The point r is common to three lines
(ac, pq, and df), which are now parallel, and
similarly the lines be, af, and cd become parallel
because their common point s is at infinity. If
we now project this figure with parallel rays
onto any other plane, the projected figure will

preserve all the properties chosen so far. In affine
geometry, we study properties of a figure that
are invariant under parallel projection. The new
affine properties are parallelism and convexity.

We have gone through three new geometries
by now, but the most familiar geometric prop-
erties, such as distances and angles, have not
yet been mentioned. These choices are left for
the fourth and last phase of our program. Let
us choose the line be to be perpendicular to the
line pq. This decision will force the lines cd
and af to be also perpendicular to the line pq,
since these lines were parallel in the affine phase.
Just as before, we do not alter choices made
in a previous phase. The last choice we make
now concerns distances; we want the line pq to
bisect the segments be, cd, and af. An important
new property has emerged in this final shape
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Figure 8.10. An illustration of the actual process of design.

of the hexagon: if you consider the line pq as
a “mirror-line,” the vertices f, e, and d are the
mirror-views of the vertices a, b, and c, respec-
tively or, simply, the hexagon possesses bilaterial
symmetry. The reflection of a figure in a line
preserves distances and angles. Such an operation
is called an isometric transformation. If all the
distances of a figure are preserved, so are all the
other geometric properties. In metric geometry,
we study properties of figures, which are invariant
under isometric transformations. The new metric
properties are distances and angles.

We have completed a sequential approach to
shape a simple plane figure. Within each of the
four geometries sketched above, certain proper-
ties of a figure may be determined quite simply
by counting, for instance, the number of vertices,
edges, incident lines in a point, the number of
lines parallel to each other, the number of equal

distances and angles. These properties are the
subject matter of the combinatorial theory, which
has been introduced on the mathematical scene in
the last fifty years.

You might say now, yes it is a nice procedure,
but why not start simply at the other end and just
draw a hexagon that has a mirror symmetry? This
could be done for a simple example like a plane
polygon. But if I had chosen a polyhedron, even
one with not more than six or seven faces, you
would not recognize immediately, for instance,
how to manipulate the planes of the faces in order
to arrange them according to certain symmetry
groups; it would be an extremely difficult task.
However if you go through this process, you will
become aware of the available options, you will
be able to control your form, you will be in charge
of it. Usually, the forms are in charge of us. We
have to reverse the process. We should not have to
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use catalogs and say, “I want this form, I want that
form” as if we were shopping in a supermarket!
We should be in full, complete control; we should
be able to shape space, as the title of this book
says.

As we progressed from the topological figure
to the metric figure of the hexagon, the invariant
properties have been increasing while includ-
ing all the previous properties. We have been
progressing from the most general towards the
most specific. This concept is also supported by
illustrating the necessary and sufficient drafting
tools to produce the drawings in Figure 8.10.
Only a pencil is needed to draw a topological
figure of the hexagon; a straight edge is required
in projective geometry. To draw parallel lines in
an affine figure, a new instrument is necsesary,
a straightedge gadget that slides on the first one.
The symbol of a right triangle is used in the
illustration, being the standard tool in the drafting
practice (but remember that perpendicularity is
irrelevant in affine geometry). Finally we have
to add a compass to our repertoire of instru-
ments to draw a metrically equivalent (isometric)
figure.

The methods (practical applications in
our profession) listed in Figure 8.10—graph
theory, perspective, axonometry, and symmetry
operations—presently are used mostly to analyze
and communicate preconceived forms. We are
convinced that geometries can do much more for
us; we propose to apply them in the synthetic
process of conceiving forms.

I have presented the six actions to perceive a
spatial model and the gradual transformations to
design a product. At first glance this methodology
may seem to you as one of those fashionable
intellectual exercies based on personal beliefs and
prejudices. That is not so! As I mentioned earlier,
these methods evolved during these decades of
professional practice and teaching, which gave
me ample opportunity to test their didactic and
practical use. I hope the following illustrations
will convey the message: I do try to practice what
I preach!

Figure 8.11 is a picture of my office. Each year
I keep some souvenirs and make room for the new
projects. These models are important because

Figure 8.11. “: : : I do and I understand”.

I believe in the old Chinese saying: “I hear, I
forget; I see, I remember; I do and I understand.”
But, there is a drawback. Meaningful models are
painstakingly slow to build, to take apart and to
transform. To solve this problem, I designed five
kits that allow fast assembly, easy transformation,
and high precision.

Figure 8.12 shows a kit named Poly-Form. It
is a topological and projective kit; its purpose
is to demonstrate through simple manipulations
the links between the concepts of polyhedral
graph, adjacency matrix, embeddings, projective
conditions, and projective realizations. I tried
Poly-Form with 8- to 12-year-old children with
a result suprising to me. At first I was wary of
explaining it to them; I found it hard to avoid
the fancy terms. Then I was chagrined when I
realized how fast they grasped the concepts and
how happily they went on to explore. College
students (ages 18 to 20) sometimes are slower
than those kids and certainly are more inhibited
about exploration! These and other experiments
with younger children and college students led to
the following proposals for teaching geometry:

1. Spatial geometry should be introduced at an
early age (10 to 12 years).

2. The subject matter should be polyhedra.
3. The starting notions should be topological and

projective, to be followed later with affine and
metric properties.

Figure 8.13 shows Poly-Kit No. 1. The diecut
cardboard polygons are to be attached with rub-
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Figure 8.12. Poly-Form: From graphs to projective
polyhedra.

Figure 8.13. Poly-Kit No. 1: Metric polyhedra.

ber bands to form the five regular polyhedra, the
thirteen semiregular polyhedra, six of the family
of prisms and antiprisms, four of the semiregular
duals, the five parallelohedra, and all other poly-
hedra with regular faces.

Poly-Kit No. 2 (Figure 8.14) is a space-filling
kit. Here the special connection between the
die-cut cardboard polygons makes it possible to
attach three or more faces along an edge. The
circular holes in the polygons allow the user to
inspect the incidence structure of the juxtaposi-
tion. Poly-Kit No. 2 allows a fast assembly of the
space-filling by the 5 parallelohedra and others
where the component polyhedron is composed of
regular faces.

Figure 8.15 shows the die-cut cardboard bands
of Poly-Kit No. 3. This kit was conceived for
building a fascinating infinite family of polyhedra

Figure 8.14. Poly-Kit No. 2: Space-filling polyhedra.

Figure 8.15. Poly-Kit No. 3: Affine polyhedra (zonohe-
dra).

called zonohedra. (A zonohedron is a convex
polyhedron; all of its faces are parallelograms).
The repetitive use of one type of band is suf-
ficient to build any zonohedron. This is a truly
affine kit, because the models that can be built
allow the affine motions of the zonohedron to
be demonstrated; the model retains its central
symmetry during the deformations. Another type
of band in the same kit may be used to build all
polyhedra that can be realized with equal edge
lengths (equilateral polyhedra).

Poly-Kit No. 4 (Figure 8.16) also serves two
purposes. It can be used to demonstrate the geo-
metric rigidity of regular grids composed of bars
or bars and tension members. The same kit can
also be used to build polyhedra projected onto a
sphere.
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Figure 8.16. Poly-Kit No. 4: Geometric rigidity of
braced grids.

Figure 8.17. “Octet” spaceframe (student project).

My students completed their apprenticeship
using the different kits, then moved on to build
large-scale models. In this phase they were
confronted with structural and technological
considerations. Figures 8.17 and 8.18 show
an “octet” spaceframe and its detail built with
wooden bars and plastic joints, injected for this
particular project.

In Figure 8.19 we see a dome built with
tubular aluminum rings. The geometry is based
on the inscribed circles of the faces of a dualized
semiregular polyhedron. The joints are all of
one type and despite their articulations (they are
“hinged” to each other), the dome when attached
to the ground becomes rigid.

The last few figures are examples from my
professional practice. I selected five projects
where the geometric content is evident, and I

Figure 8.18. Joint detail of “octet” spaceframe.

Figure 8.19. Articulated ring-dome (student project).

had the good fortune to work with truly talented
and adventurous architects and sculptors. My
duties included proposing a geometric concept,
calculating the stresses, and devising modes of
fabrication and erection while respecting the
ever-present budgetary constraints.

In Figure 8.20 we see the main theme building
Man the Explorer of Expo ’67 in Montreal. It is
a giant, integrated steel spaceframe, based on the
juxtaposition of truncated tetrahedra and tetrahe-
dra. Figure 8.21 is also a theme building of Expo
’67 (Man in the Community.) Here concentric
hexagonal plywood-box rings are superposed;
the reduction in size results in a logarithmic
silhouette. Figure 8.22 is a prefabricated concrete
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Figure 8.20. Man the Explorer. Theme building, Expo
’67, Montreal. Architects: Affleck, Desbarats, Di-
makopolous, Lebensold, and Size. Structural engineers:
Eskenazi, Baracs, de Stein, and associates.

Figure 8.21. Man in the Community. Theme building,
Expo ’67, Montreal. Architects: Erickson and Massey.
Structural engineer: J.J. Baracs.

spaceframe with the tetrahedron-octahedron ge-
ometry, built for a shopping center in Montreal.

The last two projects are large-scale sculp-
tures. The first one (Figure 8.23) is a set of
juxtaposed general zonohedra built with identical
hexagonal aluminum frames, articulated at their
joints. The integrated lighting system adds to the
visual impact for this Montreal subway station.
The last figure shows a sculpture in the en-
closed mall of a large public building in Québec
City (Figure 8.24). It is interesting to note that
each of these last two sculptures, despite their

Figure 8.22. Plaza Côtes des Neiges. Shopping center,
Montreal. Architects: Mayers and Girvan. Structural engi-
neers: Baracs and Gunther.

Figure 8.23. Sculpture, station Namur, Montreal. Sculp-
tor: Pierre Granche. Structural engineer: J.J. Baracs.

Figure 8.24. Sculpture, Palais de Justice, Québec.
Sculptor: Louis Archambault. Structural engineer: J.J.
Baracs.
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different appearances, is based on one of the 230
space groups: three mutually perpendicular screw
motions with half-turns. In the first case, the
hexagonal frames, in the second case the extruded
H beams are subjected to the same symmetry
operations. Even the orientations of the bolts and
nuts are consistent with the motions.

The German mathematician Felix Klein gave
an overall view of geometries in his famous
address at the University of Erlangen in 1872.
He was the first to propose transformations as
criteria to distinguish geometries. This concept
was applied by the Swiss psychologist Piaget.
He demonstrated that growing children perceive
space in a sequential fashion. They go through a
topological stage until the age of 6, then progress
through a projective stage (at ages 6–10); the
perception of affine and metric properties begins
around the age of 10.

The results of my own experience and re-
search in the field of the synthetic process of
creating form led me to a similar approach: in
order to exploit fully the stunning richness of
three-dimensional space, the initial method for
conceiving form is a sequential series of com-
binatorial choices taken at the different levels of
geometries in the order of topology, projective,
affine, and metric geometry. But, despite the
clearly established hierarchy of the geometries,
creating form cannot be simplified to a linear

thinking process. Certain early choices in the
topological and projective level are dependent
on affine or metric criteria, imposing simulta-
neous considerations. This linking of seemingly
unconnected concepts (bisociation) is the theme
of Arthur Koestler’s famous book, The Act of
Creation.

This approach, where the structure of forms is
studied rather than the forms themselves, stim-
ulates the imagination and appears to be more
conducive to creative design. I used the term
“creative design”; it may seem that the adjective
“creative” is redundant, but I do not think so. Take
a look at our cities, buildings, and objects: they
are the results of “design,” but in most cases, with
little sign of creativity. Many interesting books
and essays have been written on the theme of
creativity, and any definition is obviously sub-
ject to debate. I like what the mathematician-
philosopher D.R. Hofstadter wrote in a recent
article, “Making variations on a theme is really
the crux of creativity.” This statement confirms
our geometric view of morphology: creating form
is not an invention, it is a process of transforma-
tions. The same article began with a quotation of
G.B. Shaw: “You see things, and you say ‘why?’
But I dream things that never were; and I say
‘why not’?” It certainly takes a poet to express so
well the contrast of minds: the analytical versus
the synthetic, the critic versus the design.
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Goldberg Polyhedra

George Hart

The regular polyhedra—see Chapter 1—are fa-
mous for their history, applications, beauty, and
mathematical properties. Though not yet famous,
the Goldberg Polyhedra too are notable in all
these ways.

A Goldberg polyhedron is a polyhedron with
three properties:

• all its faces are pentagons or hexagons,
• all its vertices are trivalent vertices, i.e., three

faces meet at each vertex, and
• the polyhedron has the rotational symmetry of

the icosahedron.

The regular dodecahedron (Figure 9.1) is the
only regular polyhedron that meets these con-
ditions. A more typical example of a Goldberg
polyhedron is shown in Figure 9.2.

The two simplest Goldberg polyhedra can
be traced back at least 2000 years to classical
Greek mathematics, but as a group these shapes
have been identified and studied only since the
twentieth century. The credit for the geometric
insight and formal definition of this family goes
to the mathematician Michael Goldberg, who
published the definitive paper in the 1930s. As
with many mathematical ideas, these started
out as the imaginings of a pure mathematician
exploring an abstract puzzle that interested
him, never guessing that these polyhedra

G. Hart
Chief of Content, Museum of Mathematics,
New York, NY, USA
e-mail: george@georgehart.com, http://georgehart.com

would be found in subatomic particle detectors,
loudspeaker design, virus macromolecules, and
carbon chemistry. Other applications include
architecture, spherical game boards, golf ball

Figure 9.1. Leonardo’s drawing of the regular dodeca-
hedron The dodecahedron is the limiting GP case with
zero hexagons.
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dimple patterns, pave jewelry, cartography, and
abstract artwork.

Goldberg polyhedra are similar to spherical
patterns of packed living cells, though more reg-
ular. Their organic quality resonates with our
sensibility for natural structure. They remind us
of various microscopic organisms, plants’ seed
pods, and skin pattern textures. In my sculpture, I
seek to make forms that are simultaneously math-
ematical and organic. So I find these polyhedra to
be a natural foundation for design.

Goldberg Polyhedra

I will refer to Goldberg polyhedra generically as
GP, and identify specific examples with a pair
of whole numbers, GP(a,b). The numbers a and
b indicate a type of pentagon-to-pentagon “60-
degree knights move.” For example, the regular
dodecahedron is GP(1,0) and the Goldberg poly-
hedron in Figure 9.2 is GP(3,2).

Like all simple polyhedra, Goldberg polyhe-
dra are subject to the constraints of Euler’s for-
mula, F �ECV D 2. Let’s see what the formula
tells us. Since the faces of a Goldberg polyhedron

Figure 9.2. A typical Goldberg polyhedron. Its name,
“GP(3,2),” describes the pentagon-to-pentagon walk,
shown highlighted to indicate the meaning of the 3 and
the 2.

can only be pentagons and hexagons, we can
write the number F as a sum, F D F5 C F6,
where F5 is the number of pentagons and F6 is
the number of hexagons. Then (figure out why)
E D .5F5 C 6F6/=2. And since all vertices are
trivalent, V D .5F5 C 6F6/=3. Putting these
expressions for F, E, and V into Euler’s formula,
we discover that the whole thing simplifies to
F5 D 12. That is, Euler’s formula says every
Goldberg polyhedron has exactly 12 pentagonal
faces. On the other hand, it says nothing about
the number of hexagonal faces.

In fact, one can construct polyhedra with 12
pentagonal faces and any number of hexagonal
faces other than one. But they will not, in general,
be Goldberg polyhedra because of the third con-
dition, icosahedral symmetry. This condition tells
us something about how the hexagons surround
the pentagons. In particular, it means every pen-
tagon must be surrounded in exactly the same
way.

The best way to understand Goldberg polyhe-
dra is to study the simplest possible examples.
These have 12, 32, 42, 72, 92, 122, : : : faces.
What is the pattern in the sequence of numbers?
Why does the number of faces always end in a
“2” and why are there none with 22, 52, 62, or
82 faces? But before considering such questions,
you should make some GPs.

32 Faces, GP(1,1), The Truncated
Icosahedron

Our name for the second in the series, the well-
known 32-faced form shown in Figure 9.3, is
GP(1,1). To mathematicians, the shape is the
“truncated icosahedron,” as Johannes Kepler
named it in the 1600s. But the form was well
known to earlier artists and mathematicians in
the Renaissance, and Archimedes had already
written about it before 200 BC. It is the familiar
soccer ball (football in Europe). The GP soccer
ball was invented in the 1950s in Denmark; the
familiar black and white version became official
starting with the 1970 world cup. The shape
has also received considerable attention since
the Nobel prize winning discovery in 1985 that
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carbon atoms naturally join into structures which
chemists refer to as “C60.” The 60 refers to the
number of 3-way joints, which are the positions
where carbon atoms sit.

Twelve of the faces are pentagons and the
remaining twenty are hexagons. GP(1,1) is not
one polyhedron; it is a family of them. Consider
the icosahedron, shown at the left in Figure 9.4.

Figure 9.3. Leonardo’s drawing of the truncated icosa-
hedron. Our name for it is GP(1,1).

To truncate means to cut off the vertices. Since
five triangles meet at each vertex, truncation re-
veals a pentagon under each cut. It also leaves a
hexagon from each original triangle. Each vertex
must be truncated in exactly the same way to
preserve icosahedral symmetry. We can, however,
vary the depth of truncation. This gives a family
of GP(1,1) forms with different shapes for the
hexagons. The particular truncation depth which
results in regular hexagons is very attractive, so I
use it as a representative form.

42 Faces, GP(2,0), The Truncated
Rhombic Triacontahedron

When most people first see GP(2,0), they as-
sume that it is the familiar soccer ball shape,
but GP(2,0) has 42 faces, not 32. As far as I
know, this shape has not been used in athletics.
Notice also that GP(2,0) has some vertices where
three hexagons (and no pentagons) meet, but in
GP(1,1) every vertex has exactly one pentagon.
So a GP(2,0) sports ball would have some all
white vertices, while the familiar soccer ball has
black touching every vertex. A third difference
is that the twenty hexagons in GP(1,1) are reg-
ular, while GP(2,2)’s thirty hexagons are not.
Figure 9.5 shows a model of GP(2,0) constructed
from paper polygons and tape.

GP(2,0) is a truncation of the rhombic tria-
contahedron, a polyhedron with thirty rhombic
faces. By truncating all the 5-fold vertices, each
rhombus is reduced to a hexagon. Again, we
have a choice of how deep to cut. A natural
choice is the depth which results in equilateral

Figure 9.4. Icosahedron, and truncation process to generate various forms of GP(1,1).
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hexagons, but they will not be equiangular. We do
not truncate the vertices where the obtuse angles
meet (in groups of three). These obtuse angles are
about 116.5 degrees. Thus the GP(2,0) hexagon
differs from a regular hexagon, which has all 120-
degree angles.

72 Faces, GP(2,1), The Truncated
Pentagonal Hexecontahedron

GP(2,1) is the simplest GP which is chiral, mean-
ing it has distinct left-hand and right-hand forms,

Figure 9.5. Five inch paper model of GP(2,0) colored
dark and light like a super-soccer ball.

shown in Figure 9.6. The lack of mirror symmetry
makes this form more interesting visually.

To derive GP(2,1), we can start with the pen-
tagonal hexecontahedron (Figure 9.7). This is the
well-known Catalan polyhedron (to those who
well-know it). It is the dual of the Archimedean
snub dodecahedron and has sixty congruent 5-
sided faces. Truncating its twelve 5-fold vertices
as shown, we create twelve pentagons and sixty
hexagons.

At this step, we leave the realm of shapes that
have good classical descriptions and move into
territory best described as “GP(a,b).” Knowledge
of this family provides a storehouse of useful
forms that should be in the mental inventory of
any geometric designer. For example, physicists
designing the Spin Spectrometer at the Oak Ridge
Heavy Ion Research Facility needed a way to
arrange a sensor array spherically around a target
to capture a 3D distribution of particles emitted
in all directions. They could afford about six
dozen sensors, each covering a roughly equal,
roughly circular area. The solution they chose
is the geometry of pentagonal and hexagonal
particle detectors spherically arranged with the
structure of GP(2,1). In another application, one
manufacturer has recently produced a wiffle ball
of this shape, claiming its aerodynamic properties
make it take a curved path when thrown.

GP(2,1) is the foundation for a computer im-
age “Puzzle” which I made in 1995, shown in
Figure 9.8. As I wrote at the time, the first part

Figure 9.6. GP(2,1) consists of twelve pentagons and sixty congruent hexagons. It comes in two enantiomorphic forms.
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Figure 9.7. GP(2,1), on the right, can be derived by truncating the 5-fold vertices of the Pentagonal Hexecontahedron
on the left.

Figure 9.8. “Puzzle” digital image, 1995.

of the puzzle is to figure out the underlying
polyhedron. Later I made GP(2,1) as the hollow
wood sculpture, carefully bevelling 72 laser-cut
wood polygons, giving them the appropriate di-
hedral angles, then epoxying them edge-to-edge.

92 Faces, GP(3,0), Dual
to a Three-Frequency Icosahedron

The next example, GP(3,0) in Figure 9.9, is dual
to a 3-frequency icosahedral sphere. Figure 9.10
shows the derivation of a 3-frequency icosahedral
sphere. (Duality is explained in Chapter 15.)

This is a good place to mention differences
between GPs and “Fullerenes,” the spherical
allotropes of carbon also called “Buckminster-
fullerenes” or “Bucky balls.” Fullerenes can
contain rings of five and six carbon atoms

Figure 9.9. GP(3,0) consists of twelve pentagons and
eighty hexagons. It is reflexible.

assembled like GPs, but also allow a much wider
range of structures, including rings of size seven
or more. Fullerenes typically contain non-planar
rings, because the carbon atoms minimize energy
functions based on angles and distances, and
usually have no incentive to fall into planes.
Furthermore, Fullerenes are not necessarily
icosahedral and most have much less symmetry.

The discoverers of C60 chose a name honoring
Buckminster Fuller because they did not realize
the truncated icosahedron was already a well-
known mathematical structure. They alluded to
geodesic domes for their lightness, strength, and
the internal cavity, but I think Fuller would dis-
avow the name. He was specifically interested
only in triangulated structures. “If we want to
have a structure, we have to have triangles.”
He understood that triangulated structures remain
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a b c

Figure 9.10. Derivation of the 3-frequency icosahedron: (a) underlying icosahedron, (b) edges divided into thirds,
(c) projection to sphere.

rigid due to the lengths of the struts even if the
angles at the joints are not fixed. So C60, like all
GP having open hexagons and pentagons, is not
even a “structure” by Fuller’s definition.

122 Faces, GP(2,2)

The next simplest member of the family is
GP(2,2), shown in Figure 9.11. This is a good
example to introduce the notion of “paths.” In
Figure 9.2, we saw a kind of “knight’s move”
with a steps forward and b to the side, hence
the GP(a,b) notation. Now imagine walking on
a giant GP globe, taking one step per face, but
always trying to go straight. When you step into a
hexagon from a neighboring face, there is an edge
on the opposite side of the hexagon, shared with
another face. If you step into a pentagon, there is
no opposite edge to cross, so the path ends.

Figure 9.11 shows that there are two types
of paths in GP(2,2). If you step off a pentagon
and start walking straight, you end up at another
pentagon after six steps. A second type of path
goes once around the world, like an equator, with
18 steps in its cycle. Each hexagon is the cross-
roads for three paths. When holding a physical
GP model, it is fascinating to follow the various
types of gently meandering paths as you spin the
ball in your hands, trying to make sense of where
you end up from a given starting pentagon. Look
back to GP(2,1) for an example where every path

Figure 9.11. GP(2,2) consists of twelve pentagons and
110 hexagons. A pentagon-to-pentagon path and an all-
hexagon round-the-world path are highlighted.

takes the traveler halfway around the world, from
a pentagon to its antipodal pentagon. In GP(2,2),
every face can be reached starting from at least
one pentagon, but look at GP(3,0) for the simplest
example where some of the hexagons can not be
reached in a straight path if one always starts
at a pentagon. GP(3,0) also illustrates parallel
equatorial paths—you and a friend can walk
together around the world side-by-side holding
hands, each on your own 15 step cycle.

132 Faces, GP(3,1)

GP(3,1) is borderline between simple and
intricate. Its chirality makes it an interesting
subject for a sculpture. Figure 9.12 shows two
versions I made of wood, using a laser-cutter to
fabricate the 132 planar parts. To fit precisely,
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the parts must be made with high accuracy.
Cutting the 120 irregular hexagons might drive
one insane if using traditional tools such as a
band saw. But a computer-controlled laser-cutter
is ideal for producing irregular parts from flat
material. My primary goal was the open-faced
one, because Leonardo’s solid-edge style lucidly
presents an unfamiliar form with front and back
simultaneously visible. The parts of the smaller,
solid-faced one are the holes removed from the
larger, open-faced one. For this to work out, one

Figure 9.12. Wood sculptures, 8 inch and 6 inch diame-
ters, of GP(3,1).

must be careful to design the openings to be
proportional to the face shapes.

492 Faces, GP(5,3) and GP(7,0)

Consider a GP(a,b) with 492 faces. As explained
below, Euler’s formula tells us that the polyhe-
dron has 1470 edges and 980 vertices. However,
this data does not determine the polyhedron.
There are two, topologically different, forms of
GP with 492 faces, GP(7,0) and GP(5,3). Each
has only one type of pentagon-to-pentagon path,
shown in Figure 9.13. In GP(7,0) these paths
are of length seven, but in GP(5,3) the paths are
of length 49 and go more than once around the
world.

2562 Faces, GP(16,0)

Figure 9.14 shows GP(16,0), which has 2562
faces. It can be found as one of the layers in
Buckminster Fuller’s two-layer Expo67 dome in
Montreal.

A General Approach

Goldberg’s key insight is indicated in Figure 9.15.
Using the vertices of triangular graph paper, one
can generate a large equilateral triangle, ABC,
by moving a steps to the right and then b steps
to the upper right. Any integer pair (a,b) takes

Figure 9.13. GP(7,0) and GP(5,3) each have 492 faces but their pentagon-to-pentagon paths have very different
structures.
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Figure 9.14. GP(16,0) has 12 pentagons and 2,550
hexagons. It underlies the Expo67 dome in Montreal. Find
the pentagons in this chicken wire!.

A

B

b

a

C

Figure 9.15. An equilateral triangle, ABC, drawn on tri-
angular graph paper. The oblique (a,b) coordinate system
indicates how to move from A to B. Here (a,b) D (3,1).

us from vertex A to some vertex B. Then that
same motion, but rotated counterclockwise 120
degrees, takes us from B to C, and rotated once
again takes us from C back to A. The three
movements are congruent, so the large triangle,
ABC, is equilateral yet has all three vertices on
the triangular lattice (the edges of ABC need not
be parallel to the graph paper axes). If we take
twenty copies of ABC and assemble them as an
icosahedron, we get a continuous pattern of the
small triangles. The result is like the k-frequency
icosahedron of Figure 9.10, but allowing for a ro-
tation between the triangular tessellation and the
icosahedron faces. Small triangles at the edges
of ABC can “fold” along an icosahedron edge
and be part of two icosahedron faces. Extending
the terminology “k-frequency” icosahedron, this
can be called an “(a,b)-frequency icosahedron.”

The special case of b D 0 gives the simplest,
parallel type subdivision. Another special case,
where a D b, makes the edges of ABC perpen-
dicular to the edges of the small triangles and the
result is again reflexible. The in-between values,
where 0 < b < a, give the chiral patterns.

Generating (x,y,z) coordinates for these ver-
tices is a straightforward exercise in coordinate
geometry. A linear transformation mapping ABC
to an icosahedron face will map the small triangle
grid points to our desired points in the icosahedral
face planes. Each vertex is then projected to a unit
sphere to give a triangulated geodesic sphere as in
Figure 9.16. Many references on geodesic domes
give the basic geometric ideas. For architectural
purposes, the points may be redistributed slightly
to reduce the number of different edge lengths, as
that simplifies the physical construction if cutting
metal struts.

Geometric Realizations

There are many ways to choose particular coordi-
nates for the pentagon and hexagon vertices. Here
are four:

1. Vertex Elimination. In a triangulated geodesic
sphere, delete one third of the vertices (and
their incident edges) to create a hexagon pat-
tern in the triangular grid. Starting at a 5-fold
vertex, take i steps to the right and j steps to
the upper right. Then omit the vertices where
i–j is a multiple of 3. This leaves an open
pentagon surrounded by open hexagons. If the
neighboring 5-fold vertex is also omitted, i.e.,
if a–b is a multiple of 3, then this pattern
matches with itself all over the sphere to give a
grid of hexagons and pentagons. However, in
general they are not planar, so this method is
suitable for making a structure of edges, but it
is not suitable for architectural purposes where
one wants to cut flat sheets, e.g., plywood, to
use as faces.

2. 3D Reciprocal Construction. Given the tri-
angulated geodesic sphere, construct a plane
tangent to the sphere at each vertex. Each
plane defines two half-spaces, one of which
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Figure 9.16. Vertices of (3,1)-icosahedron in twenty icosahedral face planes and after projecting to unit sphere.

includes the sphere. Consider the intersection
of all the sphere-containing half-spaces. Its
boundary faces will be planar hexagons and
pentagons. Each vertex is easily located at the
intersection of three planes by solving three
simultaneous linear equations. (This method is
known as taking the reciprocal in the sphere of
the convex hull of the original vertices.)

3. Centroid Tangency. Goldberg was interested
in polyhedra that maximize the volume-to-
surface-area ratio. In the optimal solution each
face will be tangent to the unit sphere at its
centroid. We would like to solve for the set of
tangency points which have this property, but
it gives a complex set of nonlinear equations
to solve simultaneously, so we do not hope to
solve it exactly in general. But one can find a
numerical solution by a simple iterative algo-
rithm. Start with an approximate solution for
the tangency points, e.g., use Method 1. Find
the face planes, calculate the centroid of each
face, and project each centroid to the sphere to
get a new set of points that can again be used to
generate tangent planes. The optimal solution
is a fixed point of this iteration. A simple
computer program shows that iterating this
process many times leads numerically to an
approximation of the fixed point.

4. Canonical Form. The canonical form is one
in which in which all the edges are tangent
to the unit sphere and the center of gravity
of these tangency points is the origin. It is of
mathematical interest in part because the dual

can also be made so its edges are tangent to
the same sphere at the same points. There are
various algorithms to calculate this canonical
form, one of which is a simple fixed-point
iteration analogous to that in Method 2.

Note that Methods 2 and 3 give polyhedra
circumscribed around a sphere. Method 4 gives
one which is “midscribed,” meaning the edges are
tangent to a sphere. Method 1 attempts to give an
inscribed result, with vertices on the sphere, but
that is not generally attainable with planar faces.
The dodecahedron and truncated icosahedron are
inscribable, but whether or how the more com-
plex GPs are inscribable while preserving sym-
metry is an open problem. The simple Method
2 is suitable for most sculptural design purposes
that motivate me.

Counting Components

How many faces, edges, and vertices does
GP(a,b) have? To answer this question, consider
its dual, the triangulated sphere (a,b). Moving
one unit in the a direction is equivalent to moving
(1,0) in XY coordinates and moving one unit in
the b direction is (1/2,

p
.3/=2) in XY coordi-

nates. So the Pythagorean theorem and a bit of
algebra show that the total movement from A to
B has length squared d WD a2CabCb2. An area
argument shows there will be d small triangles
for each icosahedron face. As an icosahedron
has 20 faces, there are 20d small triangles in a
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complete sphere. Imagine cutting those 20d small
triangles out of paper to assemble them. There
are three edges each, so we would have 60d small
triangle edges in a pile of loose paper triangles.
After taping the edges together in pairs to make a
geodesic sphere, there would be 30d edges in the
polyhedron. Knowing F and E , we can solve for
V in Euler’s theorem. There are 10d C 2 vertices
in the triangulated geodesic sphere.

Since GP(a,b) is the dual to the triangulated
sphere, the values of V and F are swapped, and
the number of edges is unchanged. So the parts
counts for GP(a,b) are:

Number of Faces: 10d C 2

Number of Vertices: 20d
Number of Edges: 30d

As a and b are integers, so is d, and the
formula 10d C 2 explains why the number of
faces is always 2 more than a multiple of 10. As
to the mysterious sequence 12, 32, 42, 72, 92,
122. . . these are all the values obtainable when
using a positive value for a and a non-negative
value for b. The smallest case where there are
two sets of (a,b) values that give the same d
are (5,3) and (7,0) which both give 492 faces.
Goldberg gives a construction showing that there
are larger examples with not just two, but any
desired number of different forms resulting in the
same number of faces.

Paths

Straight paths of hexagons correspond to the
edges of the small triangles in the underlying
lattice. Because they are highly structured, yet
we can only see a small part of them at once as
they disappear over the horizon, they provide a
pleasant sense of mystery.

Analysis of Figure 9.15 shows that the length
of a pentagon-to-pentagon path in GP(a,0) is a
and in GP(a,a) is 3a. In the chiral cases, the
length is d in GP(a,b) if a and b are relatively
prime. More generally, one must divide out the
greatest common divisor, so the path length is
d/GCD(a,b) in the chiral cases. The length of
the equatorial paths is 5a in GP(a,0) and 9a in
GP(a,a). In the chiral cases where a and b are

relatively prime, there are no equatorial paths.
But the chiral cases with GCD(a,b) > 1 are
mysterious; “equatorial” paths can wrap around
several times, crossing over themselves repeat-
edly. I can write a program to build the structure
and count the answer, but not a simple analysis or
a simple formula for the length(s).

The question of where a finite path ends up
does not seem to have an easy answer. Starting
at a pentagon, there are three possibilities: the
five paths may end at the five near neighboring
pentagons, they may end at the five medium
distance pentagons, or they may all end at the
one opposite pentagon. No path can end at the
pentagon is starts from. (Exercise: why not?)
When b D 0, paths end at a near neighbor and
if a D b, paths end at a further neighbor. But the
chiral cases can be subtle. Paths across hexagons
correspond to lines of the small triangle lattice. It
is easy to follow them and see where they meet
a vertex of the large triangle lattice. For example,
if a D 2b or if 2a D 7b, the path can be traced
to end at the opposite pentagon. The difficulty is
in understanding how long paths wrap multiple
times around the icosahedron when it is unfolded.
I leave it as an open problem to give a simple
method of determining for which GP(a,b) the
paths end at the opposite vertex.

A related open question is to give a formula
for determining how many hexagons cannot be
reached on any path that starts at a pentagon. Here
again, the reflexible cases are straightforward.
In the chiral case, the answer is easy when a and
b are relatively prime, as then every hexagon can
be reached. But the remaining cases are another
open problem.

Models and Artwork

Paper models are a very cost-effective means for
gaining 3D understanding in a hands-on manner.
The model in Figure 9.5 was expediently assem-
bled using tape on the inside. For a more elegant,
tape-free model, one can cut out the faces with
tabs around the edges and then fold back the
tabs and glue them internally. In the “one-tab”
method, at each edge just one of the two faces
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has a tab, which is glued to the inside of the other
face. In the “two-tab” method, all edges of all
faces have a tab and they are glued together in
pairs to make a rib that lies under each edge. I
find this two-tab method to be faster, easier, and
more attractive.

Scissors are adequate, but the work of cutting
paper parts is greatly simplified if one has a
robotic paper cutter. The example in Figure 9.5
was made with the aid of an inexpensive
computer-controlled paper cutter. These are
now marketed for home use and are sufficiently
affordable (under $200) that any serious model
maker should consider owning one. They allow
one to easily make models which would be far too
tedious to cut with scissors. I expect such cutters
will protect many future paper model aficionados
from Carpel Tunnel Scissors Syndrome.

Paper also has the advantage that one can
easily print on it. For example, patterns can be
found online for globes of the earth projected
onto various polyhedra. The most complex GP
that I have seen used as a globe of the earth is the
truncated icosahedron, which was first used by
John Snyder in 1992 as the basis of an equal-area
projection. It is mathematically straightforward to
project geographic data to the face planes of any
polyhedron. More complex GPs would naturally
lead to better representations of the sphere.

Wooden models are more difficult to make
than it may appear. Similar models can also be
made with acrylic or other plastics. The parts
must be carefully cut if they are to fit without
gaps. The edges must be beveled accurately to the
correct dihedral angles. While laser-cutters and
other computer controlled technologies can cut
out the shapes, current machinery does not easily
bevel the edges. So this operation must be done
manually and care must be taken not to flip chiral
parts or mix up the many different angles in one
model.

A second approach to wood models, especially
for large ones, is to build up pentagons and
hexagons from individual mitered pieces, one for
each polygon edge.

Exact models of only the simplest GPs can
be made with familiar mathematical kits such as
Zometool or Polydron because they have only

certain inventories of lengths and angles, and
GPs require many different lengths and angles. A
flexible-edge construction set, of the type used by
chemistry students for making molecular models,
is excellent for making GP models. In these
kits, there are rigid trivalent connectors to use
at each vertex and slightly flexible tubing to use
for edges. The tubing can be cut to make any
desired edge lengths. Figure 9.17 shows a 50-inch
model of GP(5,1) which I made with the Stony
Brook University Chemistry Club. The model is
an approximation (the trivalent connectors have
all 120 degree angles, the edges are slightly
curved, and the polygons in the model are not
necessarily planar). In addition, for ease of con-
struction, I chose just two lengths for the edges.
It was an educational group project to assemble it
and hang it for display in the Chemistry library.
Instructions are available online at http://www.
georgehart.com/chemistry/C420Fullerene.html/.

Additive fabrication technology removes
many geometric constraints. These technologies,
sometimes called rapid prototyping, solid
freeform fabrication, or 3D printing, can
robotically build any describable form. They
are ideal for making GP models, with their many
slightly different lengths and angles.

There is a long tradition of turning nested
ivory spheres on a lathe, where each inner sphere
is carved with a tool that is passed through the
holes of the outer layers. The tradition started in
Europe in the sixteenth century, but in recent cen-
turies has been associated more with Japan and
China. In homage to that tradition, I designed a
set of nested GP forms which can be produced on
additive fabrication machines. Figure 9.18 shows
a set of ten different concentric forms: GPs (5,0),
(3,3), (4,2), (5,1), (6,0), (4,3), (5,2), (6,1), (4,4),
and (5,3), which steadily increase from 252 to
492 faces. In the traditional nested ivory spheres,
the pattern of holes in each sphere is identical,
because tools must pass through holes in the outer
layers to cut into the inner layers. In this modern
variation, there is no similar constraint and each
layer can be designed independently.

If one applies an affine transformation to a
GP, the result is an ellipsoid-like form which
still has planar faces. For architectural purposes,

http://www.georgehart.com/chemistry/C420Fullerene.html/
http://www.georgehart.com/chemistry/C420Fullerene.html/
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Figure 9.17. 50 inch model of GP(5,1) assembled by the Stony Brook University Chemistry Club.

Figure 9.18. Ten different nested GP forms, from
GP(5,0) to GP(5,3) shown in cut-away rendering. The
outer one is 3 inches in diameter.

an oblate form might be used to cover a wide
area with a dome that need not be as high as a
spherical dome of the same footprint. Figure 9.19
shows an oblate design of this type, but not with
architectural intent. It is designed as a decorative
bowl. The form began as GP(5,3), one of the
two GPs with 492 faces. I compressed it along a

Figure 9.19. Candy dish, 5 inches, nylon, based on
oblate GP(5,3).

5-fold axis, and removed struts around one pole
to create a large pentagonal opening for the top. I
considered flattening the bottom slightly so it sits
steadily on a table, but then decided to leave the
curve so it can rock dynamically. If I get a chance
to make a matching dish, I plan to perform the
same transformations, but start with the other
version, GP(7,0).

Figure 9.20 shows an idea which grew as a
development of the puzzle in Figure 9.8. It is a
spherical jigsaw puzzle which assembles to make
GP(5,3). It is divided into twelve identical parts
along edges in such a manner that each piece is
centered on a pentagon and has 5-fold symmetry.
This is possible for all GP in which the number
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Figure 9.20. Twelve-part assembly Puzzle, 5 inches, nylon, based on GP(5,3).

of faces is a multiple of 12. Because these parts
are identical, it is an easy puzzle to solve, but still
quite fun to play with. This initial example was
intended in part to test the design idea and verify
that the parts will hold together by friction alone.
Future variations on the concept will incorporate
different shapes for the pieces or an egg-shaped
solution, to provide more a more challenging
puzzle.

The GP(16,0) Expo67 dome mentioned above
and all other two-layer domes that I have seen
are based on reflexible structures. The same prin-
ciples apply to chiral forms, but they are more
costly to build because a larger inventory of
parts lengths is required. As I find the chiral
forms to be visually engaging, I designed soft-
ware to create two-layer domes based on any
GP form. Figure 9.21 shows what I believe is
the only chiral two-layer dome in existence. The
inner layer is GP(3,1) and the outer layer is its
dual. Educational, physical models of two-layer
spheres can be made with flexible angle kits.
While the flexible angles would not make a rigid
model of a GP alone, when triangulated with its
dual, it becomes rigid.

Finally, the sculpture shown in Figure 9.22
is a kind of chain mail sphere. Starting with
GP(7,4), the faces were replaced with small cir-
cular rings. Each edge of the dual triangulated
structure was replaced with a link that connects
adjacent rings. The dimensions of the rings and
links were chosen so they do not overlap each
other. The resulting chain mail fabric is flexible.

Figure 9.21. Two-layer geodesic sphere based on
GP(3,1), 4 inches, nylon. As far as I know, it is the world’s
only chiral two-layer geodesic structure.

If every link were free to move, the whole form
would collapse like an empty sack, so to give
the overall sculpture a shape, a subset of the
links were modified to lock with their rings,
making a rigid skeletal form corresponding to the
edges of a dodecahedron. Twelve circular regions
of the mesh are free to move within this rigid
framework. The total effect is quite remarkable
and indicates how many fascinating possibilities
might be encountered when one explores such a
rich subject as Goldberg polyhedra.
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Figure 9.22. Sculpture with chain links based on GP(7,4), 6 inches, nylon.
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Polyhedra and Crystal Structures

Chung Chieh

I have long been interested in searching for inter-
esting relationships between polyhedra and crys-
tal structures, especially with the application of
polyhedra as units for crystal structures. Crys-
tallography uses geometry as a foundation. As a
crystal scientist, I am interested in understanding
how and why certain crystal structures are built
the way they are, particularly from a geometric
viewpoint. I am also constantly searching for re-
lationships among the various crystal structures.

Shapes, colors, and geometry have historically
been subjects of great interest to philosophers,
mathematicians, and scientists. We are here to
understand, to construct, to design, to create, to
appreciate, and to love the shapes and forms of
various kinds. Among various shapes, perhaps
polyhedra are especially interesting to us all, and
we may also develop an affection for the aesthetic
shapes of some very nice crystals such as those
shown in Figures 10.1–10.4. My interest is in
the arrangements of atoms, molecules, and ions
in those crystals, and how the arrangements are
related to geometry and polyhedra.

The crystalline state is the most common form
of all matter at sufficiently low temperatures.
In modern terms, crystals consist of atoms,
molecules, or ions arranged in a periodic,
repeated manner. For a crystal visible to the
naked eye, there may be more than a million

C. Chieh
Professor Emeritus, Chemistry Department, University
of Waterloo, Waterloo, ON N2L 3G1, Canada
e-mail: cchieh@uwaterloo.ca

repeating units to each of the three directions.
Those periodic arrangements may be described
by symmetry operations such as one-, two-,
three-, four-, and sixfold rotations, mirror and
glide planes, screw axes and centers of inversion.
(Periodic arrangements cannot have fivefold
rotational symmetry, but the discovery of
aluminim-mangnese alloys whose diffraction
patterns have fivefold symmetry shows that
nonperiodic arrangements exist in the solid state.)

Figure 10.1. A wulfenite crystal: an orange flattened
octahedron.

M. Senechal (ed.), Shaping Space, DOI 10.1007/978-0-387-92714-5 10,
© Marjorie Senechal 2013
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Figure 10.2. Crystals of vanadinite: red hexagonal
prisms.

Figure 10.3. Hematite-stained quartzoids: polyhedra
with threefold symmetry.

Crystal structures are fascinating from both the
architectural and geometric viewpoints.

Figures 10.1–10.4 show some representative
crystals. Their shapes are certainly related to

Figure 10.4. Chrome alum: perfect octahedron, weigh-
ing 867 grams.

some familiar polyhedra. The almost-perfect oc-
tahedral alum crystal was grown by a high school
student, and it weights 867 grams. After the pub-
lication of a picture of this crystal by the Chem 13
News (a monthly publication of the University of
Waterloo Chemistry Department), the editor re-
ceived pictures of even larger alum crystals from
which coffee tables, seats, and other interesting
things had been made. (These crystals stand up to
normal use when their surfaces are protected by
varnish.)

The interesting external shapes of crystals
must certainly be related to their internal
structures. What are the basic units from which
these wonderful and geometrically interesting
crystals are built? Perhaps inspired by the beauty
of crystals, the philosopher Plato (427–348 B.C.)
associated the regular polyhedra with the primal
substances from which everything is derived.
Aristotle agreed that earth, air, fire, and water
are the primal substances; however, he disagreed
with Plato’s associating these substances with
four of the regular solids. During the seventeenth
century there was lively discussion about the
basic units of crystals. Johannes Kepler (1571–
1630), Erasmus Bartholin (1625–98), René
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Figure 10.5. Transformation of a packing of circles in
a plane to a packing of triangles. The equivalent three-
dimensional transformation is between spheres and poly-
hedra.

Descartes (1596–1650), and Robert Hooke
(1635–1703) suggested that spheres are the
ultimate particles. Today, packings of spheres are
used as models for the discussion of crystals made
up of atoms, but no one knows the real shape of
atoms. Certainly the electronic configuration of
each constituent atom has the symmetry of the
electrostatic environment of the atom. In a crystal
that environment is never spherical.

Figure 10.5 shows the packing of circular
disks in a two-dimensional space, and the gradual
transformation from packing of circles to that of
triangles. In three-dimensional space, the trans-
formation can be made from spheres to polyhe-
dra. In Figure 10.6, we see the packing of spheres
as a model of the crystal structure of common
table salt. This is also a model of the structures
of many binary compounds. Yet, we still like to
think of the unit as a little cube. We tend to find
interesting the relationship between the packing
of spheres and the packing of polyhedra. Are
crystal structures really packings of spheres, or

Figure 10.6. The packing of spheres as a model of
crystalline sodium chloride, common table salt. The small
spheres represent sodium cations, and the large spheres
represent chloride anions. The unit cell, a cube, is sketched
with straight lines.

are they packings of polyhedra? The choice for
crystal science is very much a matter of conve-
nience and a matter of aesthetics. The partition
of space into shapes, even within a crystal, is a
subject of interdisciplinary interest, involving art,
mathematics, and science.

Some highly symmetrical polyhedra such as
the Archimedean truncated octahedra have been
used by crystallographers and mineralogists to
represent complicated crystal structures. Zeolites
are natural architectures sometimes employed as
chemical ion exchangers and molecular sieves.
These natural three-dimensional structures are
beautiful in their own right. They are silicates
with some silicon atoms replaced by aluminum
atoms with a general formula .Al;Si/nO2n. We
can easily identify a cagelike unit formed by
connecting .SiO4=2/ groups of atoms. The sili-
con atoms in the crystal structure are located at
the vertices of Archimedean truncated octahedra.
These large cages are interconnected in many
ways; Figure 10.7 shows one of the open pack-
ings or connections of them. The square faces
are separated at distances equal to the length of
the edges of these polyhedra, thus making the
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Figure 10.7. A portion of the open-framework packing
of Archimedean truncated octahedra, a model that repre-
sents the structures of many zeolites.

square faces the faces of the cubes. Of course, the
structure may also be considered to be an open
packing of cubes. Figure 10.7 shows only part of
the framework, and there are millions of these
truncated octahedra in any direction in a real
crystal. The possible ways that these polyhedra
may interconnect is an interesting topological
problem.

Mathematicians have contributed greatly to
the study of crystallography, and their methods
are used for the description of crystal structures.
In a periodic crystal, description of the large
structure is simplified by considering the crystal
to be built up by repetition, in all directions, of
the structure enclosed within a parallelepiped (the
unit cell). Although there are standard conven-
tions for selecting the unit cell, the choice is not
unique. As a crystallographer, I am interested in
finding out how a particular structure is formed,
what are the basic units (not necessarily the unit
cells) that build a specific structure, and why a
structure type is of common occurrence. I would
like to find a general geometric scheme by which
crystal structures are formed. Because crystal
structures are three-dimensional patterns, they
are too complicated to illustrate my approach
to the problem of finding the basic units. Thus
I shall use some two-dimensional artworks to

Figure 10.8. Fish and Birds by M.C. Escher.

demonstrate my search. Let us start by looking
at one of Escher’s drawings, Fish and Birds,
reproduced as Figure 10.8.

There are many ways to choose a basic unit
that can be used to build these beautiful patterns
of fish and birds. Let me show how crystallog-
raphers would choose unit cells from a pattern
like this. There are various choices as indicated
in Figure 10.9. Choices 10.9a–10.9b are arbitrary,
and 10.9c is somewhat obscure, yet each is legit-
imate because each is a parallelogram. None of
these choices is unique.

But there is a unique way of defining a
different kind of basic unit, first suggested by
the German mathematician G. Lejeune Dirichlet
(1805–59). In his method, a particular point in the
pattern is chosen, for example the eye of a bird,
and then it is connected to all other similar points
(eyes of birds). We then draw the perpendicular
bisectors of these vectors. The smallest area en-
closed by these lines is a convex body called a
Dirichlet domain (or sometimes a Voronoi cell,
after the mathematician George Voronoi who
studied them in great detail and in arbitrary di-
mensions). In two-dimensional space these do-
mains are polygons (Figure 10.9d), whereas in
three-dimensional space they are polyhedra. Note
that the Dirichlet domain for a two-dimensional
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Figure 10.9. A variety of ways (a–c) to choose the basic repeating “crystallographic unit cell” in an array of fishes
and birds. The Dirichlet domain (d) of that array.

pattern usually is not a parallelogram, and that of
a three-dimesional crystal structure is usually not
a parallelopiped.

The eyes of the birds (or any other set
of translationally equivalent points) constitute
a two-dimensional lattice. Similarly a three-
dimensional lattice is a set of points generated
by three noncoplanar vectors. Classified by
symmetry, there are seven types of coordinate
systems. They are often depicted by unit cells
(see Figure 10.10). In the nineteenth century,
Bravais studied the symmetries of polyhedra and
of lattice points, and he came to the remarkable
conclusion that there are only fourteen symmetry
types of point lattices. Nowadays, we take
the fourteen lattices for granted, and in many
books, the fourteen Bravais lattices and their
relation to the unit cells are displayed together.

(There are fourteen Bravais lattices and only
seven symmetry types of unit cells; seven of
the unit cells contain more than one lattice
point.) Therefore, we ask the question: What
are the units if we divide the crystal structures
according to the fourteen lattices, instead of
by unit cell shape? The Dirichlet method gives
unique shapes, but the difficulty is that there are
more than fourteen different polyhedra because
different axis ratios of the same lattice type give
rise to Dirichlet domains with various shapes. I
shall return to this problem later.

Let us return to two dimensions. Applying the
Dirichlet technique, I shall illustrate the geomet-
ric plan for Escher’s Black and White Knights,
shown in Figure 10.11. If we choose a point
along a certain line (equivalent to a glide line)
on this artwork, we can see that the drawing is
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(1) (2)

(5) (6) (7)

(3) (4)

Figure 10.10. The seven polyhedra used as crystallographic unit cells for the seven crystal systems. unique
parameters: (1) Triclinic—a, b, c, ˛; ˇ; � ; (2) Monoclinic—a, b, c, ˇ or � depending on choice; (3) Orthohombic—a,
b, c; (4) Tetragonal—a, c (5) Cubic—a; (6) Hexagonal—a, c (� D 120ı); (7) Rhombohedral—a, ˛.

Figure 10.11. Black and White Knights by M.C. Escher.

made up of two types of units, a black knight and
a white knight. There is just one catch, which
was pointed out to me by a little boy looking
over my shoulder when I placed the Dirichlet
domains over the Black and White Knights: if
the center of the polygon is an arbitrarily chosen

point, then the patterns within the polygon (ar-
rangement of atoms in the polyhedron in case of
crystal structures) may no longer be related (by
crystallographic and color symmetry).

Let us return to the very beautiful Archimedean
truncated octahedron, one of my favorite
polyhedra, as the unit for the cubic crystal system.
This is a system in which the unit cell is a cube.
There are three Bravais lattices in this system.
In one case, the “primitive” lattice, the cell does
not contain any lattice point in the cube, but the
vertices are marked by the lattice points. In the
“body-centered” lattice there is a lattice point at
each cube center as well as the vertices. In the
“face-centered” cubic lattice, there is a lattice
point in the center of each cube face, but none in
the center of the cube.

For the body-centered cubic lattice, the Dirich-
let domain is the Archimedean truncated octahe-
dron. When we used it to represent the structures
of zeolites, we did not emphasize the fact that
they pack together to fill the entire space, leaving
no gaps. But they do. Figure 10.12 illustrates the
packing of these semiregular polyhedra. Suppose
we make transparent polyhedra of the same size
and shape, and put a structural feature in each.
Then we may use these polyhedra to build three-
dimensional structures, as Escher put fish and
birds together to make patterns. For the dis-
cussion of crystal structures, the polyhedra are
only conceptual units; they represent clusters of
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Figure 10.12. The geometric plan for Escher’s Black
and White Knights as depicted by Dirichlet domains.

packed atoms, ions, or molecules. A packing of
one type of Archimedean truncated octahedron
gives rise to a cubic body-centered lattice, a
packing of two types according to a specific order
gives a primitive lattice, and a packing of four
types as shown in Figure 10.13 gives a face-
centered cubic lattice. If we put some configura-
tions of certain symmetries into these transparent
polyhedra, we can build structures having various
kinds of symmetry compatible with the symmetry
of the cubic lattice.

By assuming that we have one, two, or four
types (due to enclosed configuration of atoms)
of units all having the shape of Archimedean
truncated octahedra, we are able to classify all
cubic space groups, and eventually all cubic
crystal structures.

We shall now see some examples of atomic
arrangements of the cubic crystals. Let us look
at the atomic arrangement within one of these
polyhedra, within the structure of one geometric
unit. This unit comes from the crystal structure of
a � brass, an alloy. Starting from the center of the
unit, there are four atoms arranged tetrahedrally
as outlined in Figure 10.14a. Given the symmetry,
or point group, there should be a limited number
of ways to build a geometric unit from the center,
keeping in mind that atoms in most metallic
crystals maintain definite equilibrium distances
among each other. A beautiful way to add atoms
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Figure 10.13. Close packing of four “different” types
(different, perhaps, because of color) of Archimedean
truncated octahedra in the formation of a face-centered
lattice.

to the unit is to place them at each face of the
existing small tetrahedron, resulting in a larger
one. This is followed by arranging six atoms in an
octahedron outside the two tetrahedra, and finally
arranging twelve atoms in a cuboctahedron to
complete the unit. The model (using spheres as
atoms) in Figure 10.15 shows how these units are
fitted together. In one, the two units are slightly
separated for clarity. It should be pointed out that
these units stack in a three-dimensional fashion,
rather than linearly.

All cubic � brasses belong to one of only three
space groups, and they have one, two, and four
types of units, respectively. The atomic arrange-
ments in these units are very similar from a purely
geometric viewpoint; the differences arise be-
cause of the elements which occupy the vertices
of the tetrahedra, octahedra, or cuboctahedra.

Metallic crystals are not the only structures
which can be described or represented by the
idea that the units actually have the shape of
an Archimedean truncated octahedron. Organic
molecules such as hexamethylenetetramine,
C6H12N4 (see Figure 10.16), are natural units.
These units pack in a cubic space group, and the
Dirichlet domain for the molecule as a whole is
an Archimedean truncated octahedron. This does
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a b

c d

e

Figure 10.14. A geometric unit of the �-brass crystal structures, consisting of inner and outer tetrahedra (a and b), an
octahedron (c), and a cuboctahedron (d). The composite of all these is shown in (e).

not mean that the shape of this molecule is that of
an Archimedean truncated octahedron; molecules
do have bumps and craters on the surface. The
birds and fish, or black and white knights in
Escher’s drawings, are not polygons either, but
they do fit together forming a two-dimensional
“crystal” in the way polygons do.

Let us turn to other crystal systems, and at
this point look at some Dirichlet domains of
tetragonal, rhombohedral, and hexagonal lattices.
Polyhedra for Dirichlet domains of tetragonal
lattices depend on the shape of the unit cell. A
tetragonal lattice may be described by the lengths
of two vectors a and c. Three of the four possible

shapes of the Dirichlet domains are shown in
Figure 10.17a (c >

p
2a), 10.17b (c D p

2a)
and 10.17c (c <

p
2a). Actually, Figure 10.17b

shows a cubic face-centered lattice, a special case
of both rhombohedral and tetragonal lattices. The
fourth shape is the Archimedean truncated oc-
tahedron described earlier, where the tetragonal
system may be metrically the same as that of
a body-centered cubic lattice. Depending on the
rhombohedral angle, there are two types of poly-
hedra. The Dirichlet domain for a rhombohedral
lattice in which the angle is less than 60ı is shown
in Figure 10.17d, whereas Figure 10.17e is the
Dirichlet domain for one whose rhombohedral
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Figure 10.15. Packing of the geometric units in � brasses, isolated (left) and close-packed (right).

H
C
N

Figure 10.16. The shape of an organic molecule,
hexamethylenetetramine. The volume occupied
by this molecule in its crystal approximates that of
an Archimedean truncated octahedron.

angle is greater than 60ı. Of course, the special
cases when the angle is 60ı or 90ı are included
in the cubic system. The Dirichlet domain for
a hexagonal lattice is the hexagonal prism in
Figure 10.17f, but the conventional unit cells are
of course parallelopiped.

Something becomes apparent when the
Dirichlet domains of various types of lattice
are depicted. A three-dimensional point lattice
is a set of points generated by translations
defined by three noncoplanar vectors. It has six
parameters, three each of angles and magnitudes

of the vectors. The variations of these parameters
generate an infinite number of lattices, but
they fall into the 14 Bravais symmetry types.
Thus, each of these six parameters may vary
independently, but the six-dimensional space
may be divided into 14 regions, within each of
which the symmetry of the Dirichlet domains
is the same. However, there is still a variation
of the shapes of the polyhedra representing the
Dirichlet domains in each region.

The partition of a crystal structure into units
according to Dirichlet domains is an interesting
strategy for their study. However, there are many
ways to choose the points from which the Dirich-
let domains are derived. For example, the lattice
points (which are not unique) could be chosen as
the centers of atoms, or the gravitational centers
of molecules. A reasonable method should keep
all the units for a structure the same shape and
size; the packing patterns of these units should
apply to perhaps many structures for easy mem-
ory. Furthermore, the arrangement of atoms or
molecules in this unit takes advantage of the
symmetry properties, and all units for a structure
have the same symmetry. Keeping these criteria
in mind, we may derive the Dirichlet domains
from points of the highest symmetry in a struc-
ture and call them geometric units. I have been
concerned about the ways these geometric units



148 C. Chieh

a b c

d e f

Figure 10.17. Dirichlet domains of tetragonal (a–c), rhombohedral (d and e), and hexagonal (f) lattices.

pack, and the possibility of classifying crystal
structures using geometric units and their packing
patterns. This concern led me to study the space
groups. I tried to classify them according to the
packing of geometric units, since they represent
hypothetical crystal structures. I termed the study
of this scheme “geometric properties or geomet-
ric plans of space groups.” Space groups theo-
retically classify all crystal structures according
to their symmetry, and the study of space groups
for their geometric plans is therefore a study of
crystal structures for the same.

Using Dirichlet polyhedra derived from sites
of highest symmetry of the tetragonal crystal
system, we may proceed in a similar way to
those of the cubic space groups to work out the
geometric plan of the tetragonal space groups.
The polyhedra used as units may vary in shape
due to the axial ratio of the tetragonal system.
The arrangements of units are shown using a
plane perpendicular to the xCy, and x directions
respectively (represented by (110) and (100)) as
given in Figure 10.18. There are nine types of
arrangement for 68 space groups, and the nine
packing patterns are also given in Figure 10.18.

As an illustration, I will choose a series of
organometallic compounds, tetraphenyl deriva-
tives of the group IV elements C, Si, Ge, and
Pb. The molecules of these compounds belong

to the same point group, and they occupy sites
of the same symmetry in the space group. The
molecules are natural geometric units. The pack-
ing of these molecules in solid state is shown in
Figure 10.20.

After working on the analysis of spatial ar-
rangements in the tetragonal system, we have
been able to apply the knowledge gained for the
solution of an interesting tetragonal crystal struc-
ture, that of anhydrous zinc bromide. The geo-
metric units can be seen as cubes or large tetra-
hedra, Zn4Br6Br4=2 (see Figure 10.19a). The real
structure belongs to a space group that is too com-
plicated for theoretical calculation in the analysis
of itsinfrared spectrum. At this point, I realized
that these units may be packed together in more
than one way, as exemplified by illustration in
Figure 10.19b, and c, which shows two types
of stacking related to two very common crystal
structures, ice and diamond. In ice, the tetrahe-
dron is made up of an oxygen atom in the center,
and four shared hydrogen atoms at the vertices
OH4=2, whereas in diamond, each tetrahedron
represents a carbon atom, which is connected
to four others in a tetrahedral fashion. The ice
structure belongs to a hexagonal lattice, but the
diamond structure belongs to a cubic one. Let us
return to the ZnBr2 structure. By a simple change
in the orientation of these large tetrahedral units,
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Figure 10.18. Nine packing types of geometric units in the tetragonal crystal system.

a

b c

Figure 10.19. The crystal structure of ZnBr2. The geometric unit of this compound consists of a large unit with a
formula Zn4Br6Br4=2 that can be viewed as a large tetrahedron made up of four small ones (a). There are many ways
to connect tetrahedra, and crystal structures may be represented by these connections: (b) ice, (snow), (c) diamond.

Zn4Br6Br4=2, we manage to reduce the com-
plexity of the calculation by using another space
group, to which the structure approximates.

Further variations of packing of tetrahedra are
indicated of Figure 10.21. The interconnected
tetrahedra at three of their vertices form a
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Figure 10.20. Molecular packing of tetraphenyl derivatives of the group IV elements (C, Si, Ge, and Pb). The molecule
at the center of the diagram is moved up by a half period in the direction perpendicular to the paper, and because of the
orientation difference of this molecule with respect to one at the origin, the structure belongs to a primitive lattice.

a b c

Figure 10.21. Layer packing of interconnected tetrahedra: (a) a layer of interconnected tetrahedra, (b) a double layer,
and (c) a triple layer.

layer 10.21a; the fourth vertex and every three-
connected point are for interlayer connections.
If another layer of the same type is used but
turned upside-down, then we have a double layer
10.21b. The ice structure is simply a back-to-
back stacking of these double layers on top
of each other. However, a third layer may be
added to the double layer in a fashion shown
in Figure 10.21c. By varying the positions of
interlayer connections, we can stack a sequence
of any length. This aspect of geometry is richly
demonstrated in the natural crystal structures.

The foregoing discussion about crystal struc-
tures indicates that I agree with Plato’s argument
that all matter is the result of combinations and

permutations of a few basic (polyhedral) units.
Nowadays, we know a lot more about crystal
structures than Plato did. My association of these
structures with polyhedra is partly for the ease
of recognition and partly for providing a min-
imum inventory to get the maximum diversity
in application. The intricate shapes of crystals
stimulate us to study geometry, but geometry is
the most important tool for the understanding and
systematic classification of crystal structures.

My heartbeat increases whenever I see art
by M.C. Escher. I have tried to find out how
some of his exciting works were created. Es-
cher has fantasized geometry and symmetry into
visually stimulating forms. It can also be said
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that crystal structures are the artwork of God
or nature. I am as curious about the forma-
tion of crystal structures, and about the geomet-
ric design of those structures, as I am about
Escher’s art.

In conclusion, I am excited to see so many
people enthusiastically making contributions

in terms of models, in terms of educational
materials, and in terms of teaching me how
to understand and appreciate geometric units.
Your effort has made it a little easier for me to
understand the crystal structures or natural three-
dimensional patterns in terms of their geometric
plan, something that I wanted to comprehend.
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Polyhedral Molecular Geometries

Magdolna Hargittai and Istvan Hargittai

H.S.M. Coxeter has said that “the chief reason
for studying regular polyhedra is still the same
as in the times of the Pythagoreans, namely, that
their symmetrical shapes appeal to one’s artistic
sense.” The success of modern molecular chem-
istry affirms the validity of this statement; there is
no doubt that aesthetic appeal has contributed to
the rapid development of what could be termed
polyhedral chemistry. The chemist Earl Muetter-
ties movingly described his attraction to boron
hydride chemistry, comparing it to Escher’s de-
votion to periodic drawings:

When I retrace my early attraction to boron hydride
chemistry, Escher’s poetic introspections strike a
familiar note. As a student intrigued by early de-
scriptions of the extraordinary hydrides, I had not
the prescience to see the future synthesis develop-
ments nor did I have then a scientific appreciation
of symmetry, symmetry operations, and group the-
ory. Nevertheless, some inner force also seemed
to drive me but in the direction of boron hydride
chemistry. In my initial synthesis efforts, I was
not the master of these molecules; they seemed to
have destinies unperturbed by my then amateurish
tactics. Later as the developments in polyhedral bo-
rane chemistry were evident on the horizon, I found
my general outlook changed in a characteristic
fashion. For example, my doodling, an inevitable
activity of mine during meetings, changed from
characters of nondescript form to polyhedra, fused
polyhedra, and graphs.

M. Hargittai • I. Hargittai
Department of Inorganic and Analytical Chemistry,
Budapest University of Technology and Economics,
POBox 91, 1521 Budapest, Hungary
e-mail: hargittaim@mail.bme.hu;
istvan.hargittai@gmail.com

I (and others, my own discoveries were not unique
nor were they the first) was profoundly impressed
by the ubiquitous character of the three-center
relationship in bonding (e.g., the boranes) and non-
bonding situations. I found a singular uniformity in
geometric relationships throughout organic, inor-
ganic, and organometallic chemistry: The favored
geometry in coordination compounds, boron hy-
drides, and metal clusters is the polyhedron that has
all faces equilateral or near equilateral triangles.

Molecular geometry describes the relative
positions of atomic nuclei. Although positions
may be given by position vectors or coordinates
of all nuclei in the molecule, chemists usually
give the positions by bond lengths, bond angles,
and angles of internal rotation. This second
way greatly facilitates the understanding and
comparison of various structures. The most
qualitative but nonetheless a very important
feature of molecular geometry is the shape of
the molecule. Polyhedra are especially useful in
expressing molecular shapes for molecules with
a certain amount of symmetry.

The molecules As4 and CH4 both have tetra-
hedral shapes (Figure 11.1) and Td symmetry, but
there is an important difference in their structures.
In As4 all nuclei are at vertices of a regular
tetrahedron and each edge of this tetrahedron is
a chemical bond. Methane has a central carbon
atom, with four chemical bonds directed from it
to vertices of a tetrahedron where the protons are
located; no edge is a chemical bond. The As4

and CH4 molecules are clear-cut examples of
the two distinctly different arrangements. Such
distinctions are not always so unambiguous.

M. Senechal (ed.), Shaping Space, DOI 10.1007/978-0-387-92714-5 11,
© Marjorie Senechal 2013
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AS

AS

AS

AS
H

H

H

H

C

Figure 11.1. The molecular shapes of As4 and CH4.

An interesting example is zirconium boro-
hydride, Zr.BH4/4. Two independent studies
describe its structure by the same polyhedral
configuration, but give different interpretations
(Figure 11.2) of the bonding between the central
zirconium atom and the four boron atoms
at the vertices of a regular tetrahedron. In
one interpretation, there are four Zr–B bonds;
according to the other, each boron atom is linked
to zirconium by three hydrogen bridges, and there
is no direct Zr–B bond.

Real molecules ceaselessly perform in-
tramolecular vibrations. In even small-amplitude
vibrations, nuclear displacements amount to
several percent of the internuclear separations;
large-amplitude vibrations may permute atomic
nuclei in a molecule. In describing a molecule
by a highly symmetric polyhedron, we refer
to the hypothetical motionless molecule. The
importance and consequences of intramolecular
motion in the polyhedral description of molecules
are discussed in the final section.

Boron Hydride Cages

All faces of boron hydride polyhedra are
equilateral or nearly equilateral triangles. Boron
hydrides with a complete polyhedral shape are
called closo boranes (Greek closo: ‘closed’).
One of the most symmetrical and most stable
of the polyhedral boranes is the B12H2�

12 ion;
its regular icosahedral configuration is shown
in Figure 11.3. Table 11.1 presents structural
systematics of BnH2�

n closo boranes and the

Zr

B

H

Zr

B

H

Figure 11.2. The molecular configuration of zirconium
borohydride, Zr.BH4/4, in two interpretations but de-
scribed by the same polyhedral shapes.

related C2Bn�2Hn carboranes in which some
boron sites are taken by carbon atoms. The so-
called quasi-closo boranes are derived from the
closo boranes by replacing a framework atom
with a pair of electrons.

Figure 11.4 shows the systematics of borane
polyhedral fragments obtained by removing
one or more polyhedral sites from closo
boranes. Since all faces of the polyhedral
skeletons are triangular, they are deltahedra.
The derived deltahedral fragments are the
tetrahedron, trigonal bipyramid, octahedron,
pentagonal bipyramid, bisdisphenoid, symmet-
rically tricapped trigonal prism, bicapped square
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Figure 11.3. The regular icosahedral configuration of
the B12H2�

12 ion. Only the boron skeleton is shown.

Table 11.1. Structural systematics of BnH2�

n closo Bo-
ranes and C2Bn�2Hn closo Carboranes after Muetterties

Polyhedron and point group Boranes Dicarboranes

Tetrahedron, Td .B4Cl4/
� –

Trigonal bipyramid, D3h – C2B3H5

Octahedron, Oh B6H2�

6 C2B4H6

Pentagonal bipyramid,
D5h B7H2�

7 C2B5H7

Dodecahedron
(triangulated), D2d B8H2�

8 C2B6H8

Tricapped trigonal prism,
D3h B9H2�

9 C2B7H9

Bicapped square antiprism,
D4d B10H2�

10 C2B8H10

Octadecahedron, C2v B11H2�

11 C2B9H11

Icosahedron, Ih B12H2�

12 C2B10H12

�No boron hydride

antiprism, octadecahedron, and icosahedron.
Only the octadecahedron is not a convex
polyhedron.

A nido (nestlike) boron hydride is derived
from a closo borane by removal of one skeleton
atom. An arachno (weblike) boron hydride is
derived from a closo borane by removal of two
adjacent skeletal atoms. In either case, if the
starting closo borane is not a regular polyhedron,
then the atom removed is the one at a vertex
with the highest connectivity. Complete nido and
arachno structures are shown together with start-
ing boranes in Figure 11.5.

Polycyclic Hydrocarbons

Fundamental polyhedral shapes are realized
among polycyclic hydrocarbons where the edges
are C—C bonds and there is no central atom.
Such bond arrangements may be far from the
energetically most advantageous, and particular
arrangements may be too unstable to exist. Yet
the fundamental character of these shapes, their
high symmetry, and their aesthetic appeal make
them an attractive and challenging playground
for organic chemists. These substances also have
practical importance as building blocks for such
natural products as steroids, alkaloids, vitamins,
carbohydrates, and antibiotics.

Tetrahedrane (Figure 11.6a) is the simplest
regular polycyclic hydrocarbon. The synthesis of
this highly strained molecule may not be pos-
sible. Its derivative, tetra-tert-butyltetrahedrane
(Figure 11.6b), is amazingly stable, perhaps be-
cause the substituents help “clasp” the molecule
together. Cubane (Figure 11.6c) has been known
for some time. Dodecahedrane (Figure 11.6d),
prepared more recently, was predicted to have
“almost ideal geometry : : : practically a miniature
ball bearing!” Its carbanion was predicted to be
stabilized by a “rolling charge” effect, delocal-
izing the extra electron over twenty equivalent
carbon atoms.

In the .CH/n convex polyhedral hydrocarbons,
each carbon atom is bonded to three other carbon
atoms; the fourth bond is directed externally to
a hydrogen atom. Around the all-carbon poly-
hedron is thus a similar polyhedron whose ver-
tices are protons. The edges of the inner poly-
hedron are C—C bonds. Because four bonds
would meet a carbon atom at the vertices of
an octahedron, and five in an icosahedron, the
enveloping-polyhedra structure is not possible for
these Platonic solids. For similar reasons, only
seven of the 14 Archimedean polyhedra can be
considered in the .CH/n polyhedral series.

Cubane may also be described as tetrapris-
mane, composed of eight identical methine units
arranged at the corners of a regular tetragonal
prism with Oh symmetry, bound into two parallel
four-membered rings cojoined by four four-
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Figure 11.4. Closo, nido, and arachno boranes. The genetic relationships are indicated by diagonal lines.
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Figure 11.5. Examples of closo/nido and closo/arachno structural relationships. (a) Closo-B6H2�

6 and nido-B5H9. (b)
Closo-B7H2�

7 and arachno-B5H11.

membered rings. Triprismane, .CH/6, has D3h

symmetry and pentaprismane, .CH/10, has D5h

symmetry. The quest for pentaprismane is a long
story. Hexaprismane, .CH/12, the face-to-face
dimer of benzene, has yet to be prepared. The
molecular models are shown in Figure 11.7.

Structural varieties become virtually endless if
one reaches beyond the most symmetrical convex
polyhedra. There are 5,291 isomeric tetracyclic
structures of C12H18 hydrocarbons; only a few
are stable. One is iceane (Figure 11.8), which
may be visualized as two chair cyclohexanes
connected by three axial bonds; it can also be
described as three fused boat cyclohexanes. The

name iceane was proposed by Fieser almost a
decade before its preparation. Considering water
molecules in an ice crystal, he noticed three
vertical hexagons with boat conformations. The
emerging horizontal .H2O/6 units possess three
equatorial hydrogen atoms and three equatorial
hydrogen bonds available for horizontal building.
He noted that this structure

suggests the possible existence of a hydrocarbon
of analogous conformation of the formula C12H18,
which might be named “iceane.” The model in-
dicates a stable strain-free structure analogous to
adamantane and twistane. “Iceane” thus presents a
challenging target for synthesis.
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Figure 11.6. (a) Tetrahedrane, .CH/4. It has very high strain energy and has not (yet?) been prepared. (b) Tetra-tert-
butyltetrahedrane, fCŒC.CH3/3�g4. (c) Cubane, .CH/8. (d) Dodecahedrane, .CH/20.

a b c

Figure 11.7. (a) Triprismane, .CH/6. (b) Pentapris-
mane, .CH/10. (c) Hexaprismane, .CH/12, not yet pre-
pared.

The challenge was met.
The adamantane molecule, C10H16, and the

diamond crystal are closely related. Diamond has
even been called the “infinite adamantylogue of
adamantane.” The high symmetry of adamantane

is emphasized when its structure is described by
four imaginary cubes packed one inside the other;
two are shown in Figure 11.9.

Structures with a Central Atom

Tetrahedral AX4 molecules belong to the point
group Td . Successive substitution of the X lig-
ands by B ligands leads to other tetrahedral con-
figurations of the following symmetries:

AX4 AX3B AX2B2 AXB3 AB4

Td C3v C2v C3v Td



11 Polyhedral Molecular Geometries 159

O

H

C

H

Figure 11.8. Ice crystal structure (top) and the iceane
hyrdocarbon, C12H18 (bottom).

If each substitution introduces a new kind of
ligand, then the resulting tetrahedral configura-
tions will have the following symmetries:

C

H

Figure 11.9. Adamantane, C10H16 or .CH/4.CH2/6.

AX4 AX3B AX2BC AXBCD

Td C3v Cs C1

Important structures may be derived by
joining two tetrahedra or two octahedra at a
common vertex, edge, or face (Figure 11.10).
Ethane .H3C � CH3/, ethene (H2C D CH2) and
acetylene .HC � CH/ may be derived formally
in such a way. Joined tetrahedra are even more
obvious in some metal halide structures with
halogen bridges.

Complex formation has similar consequences
in molecular shape and symmetry. The
H3N � AlCl3 donor–acceptor complex has
a triangular antiprismatic shape with C3v
symmetry (Figure 11.11). Complex formation
can be viewed as completion of the tetrahedral

Figure 11.10. Joining two tetrahedra (and two octahedra) at a common vertex, edge, or face.
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Figure 11.11. The triangular antiprismatic shape of the
H3N � AlCl3 donor–acceptor complex.

bond configuration around the central atoms
of the donor .NH3;C3v/ and the acceptor
.AlCl3;D3h/.

The structure of the mixed metal–halogen
complex potassium tetrafluoroaluminate, KAlF4,
can be viewed as formed from KF and AlF3, with
completion of the aluminum tetrahedron. The
tetrahedral tetrafluoroaluminate structural unit
is relatively rigid, whereas the position of the
potassium atom around the AlF4 tetrahedron
is rather loose. The most plausible models
are shown in Figure 11.12; the model with
two halogen bridges best approximates the
experimental data. The KAlF4 molecule is
representative of a class of compounds of
growing practical importance: the mixed halides
have much higher volatility than the individual
metal halides.

The prismatic cyclopentadienyl and benzene
complexes of transition metals are reminiscent of
the prismanes. Figure 11.13a shows ferrocene,
.C5H5/2Fe, for which both the barrier to
rotation and free-energy difference between the
prismatic (eclipsed) and antiprismatic (staggered)
conformations are very small. Figure 11.13b
presents a prismatic model with D6h symmetry
for dibenzene chromium, .C6H6/2Cr. Molecules
with multiple bonds between metal atoms
often have structures with beautiful and highly
symmetric polyhedral shapes. One example is the

square prismatic ŒRe2Cl8�2� ion which played
an important role in the discovery of metal-
metal multiple bonds (Figure 11.14). Another is
the paddlelike structure of dimolybdenum tetra-
acetate, Mo2.O2CCH3/4 (Figure 11.15).

There are hydrocarbons called paddlanes
for their similarity to the shape of riverboat
paddles. The most symmetrical, highly strained
[2.2.2.2.]-paddlane (Figure 11.16a) has not
yet been prepared. The most unusual parent
hydrocarbon known is the related [1.1.1]-
propellane (Figure 11.16b) in which interac-
tions between bridgehead carbons have been
interpreted by three-center, two-electron orbitals.
The hydrocarbon skeleton seems to be electron
deficient, while extra electron density is on the
outside of the skeleton.

Regularities in Nonbonded
Distances

There is no chemical bond between bridgehead
carbons of [1.1.1]-propellane, even though the
atoms are in a pseudobonding situation with
proper bonding geometry. A reverse situation is
seen in the ONF3 molecule (Figure 11.17), an
essentially regular tetrahedron formed by three
fluorines and one oxygen, each bonded to the
central nitrogen atom. The nonbonded F � � � F and
F � � � O distances are equal within experimental
error.

Certain intramolecular 1,3 separations (the 1,3
label referring to two atoms each bonded to a
third) are constant throughout a series of related
molecules. The 1,3 distance may remain constant
even though bond distances and bond angles in
the rest of the molecule change considerably.
A controversy between two structure determina-
tions of tetrafluoro-1,3-dithietane

S

S

CF2F2C

was settled by considering the F � � � F nonbonded
distances. The mean of the F � � � F 1,3 distances
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Figure 11.12. Alternative models of the KAlF4 molecule.
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Figure 11.13. (a) Prismatic .D5h/ and antiprismatic
.D5d / models of ferrocene. (b) Prismatic model .D6h/
of dibenzene chromium.

Cl

Re

Figure 11.14. The square prismatic model of the
ŒRe2Cl8�

2� ion.

in 40 molecules containing a CF3 group was
found to be 2.162 Å, with a standard deviation of
0.008 Å!

MO

O

C
H

Figure 11.15. The paddlelike structure of the anhydrous
dimolybdenum tetra-acetate, Mo2.O2CCH3/4.

The O � � � O nonbonded distances in XSO2Y
sulfones are remarkably constant at 2.48 Å in
a series of compounds in which the S=O bond
lengths vary by 0.05 Å and the O=S=O bond
angles by 5ı. Geometric variations in the sulfone
series can be visualized (Figure 11.18a) as if the
oxygen ligands were firmly attached to two ver-
tices of the ligand tetrahedron around the sulfur
atom, and this central atom were moving along
the bisector of the O=S=O angle, depending on
the X and Y ligands.

The oxygen atoms in a sulfuric acid molecule,
.HO/SO2.OH/, form a nearly regular tetrahedron
around the sulfur (Figure 11.18b). The largest dif-
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Figure 11.16. (a) [2.2.2.2]-paddlane, C10H16, not yet
prepared. (b) [1.1.1]-propellane, C5H6.

ference between the O � � � O distances is 0.07 Å,
even though the SO bond distances differ by
0.15 Å, and the OSO bond angles by 20ı. Struc-
tures of alkali sulfate molecules ere written in old
textbooks as

ONa

Na O O

S

O

In fact, the SO4 groups in such molecules are
nearly regular tetrahedral, and the metal atoms
are located on axes perpendicular to the edges
of the tetrahedral; this structure is bicyclic
(Figure 11.18c). Sulfate and tetrafluoroaluminate
structures are markedly similar; each has a well-
defined tetrahedral nucleus around which atoms
occupy relatively loose positions.

The VSEPR Model

Why is a methane molecule tetrahedral, whereas
xenon tetrafluoride is planar? Why is ammonia
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117.1(9)°

100.8(11)°
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2.206(16)Å

0

0

Figure 11.17. The molecular geometry of ONF3. (a)
Bond lengths and bond angles. (b) Nonbonded distances.

pyramidal rather than planar? Why is water bent,
rather than linear?

A simple and successful model, designed to
answer just such questions about molecules with
a central atom, is based on the following postu-
late: The geometry of the molecule is determined
by the repulsions among the electron pairs in the
valence shell of its central atom. We shall illus-
trate the utility of this valence shell electron pair
repulsion (VSEPR) model, showing the impor-
tance of the polyhedral description of molecular
structure.

If the electron distribution around a central
atom has spherical symmetry, then all the electron
pairs in its valence shell will be equidistant from
the nucleus. Distances among the electron pairs
will be maximized in the following arrangements:

The arrangements are shown in Figure 11.19
where electron pairs are represented by points
on a sphere. For four or more electron pairs,
the arrangements are polyhedral. Of the three
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Figure 11.18. The molecular geometry of (a) sulfones,
XSO2Y, (b) sulfuric acid, H2SO4, and (c) metal sulfates,
M2SO4.

Figure 11.19. Points-on-a-sphere configurations.

polyhedra in Figure 11.19, two are regular. The
trigonal bipyramid is not a strongly unique solu-
tion; the square pyramidal configuration for five
electron pairs is only slightly less advantageous.
The space requirement and mutual repulsion of
electron pairs are nicely simulated by balloons; a
natural simulation is provided by nut clusters on
walnut trees (see Figures 11.20 and 11.21).

To predict the bond configurations around a
central atom, the number of valence shell electron
pairs must be known. The formula of a binary
compound AXn may be given as AXnEm, E de-
noting a lone pair of electrons. For methane .CH4

Figure 11.20. Shapes of groups of balloons.

Figure 11.21. Walnut clusters drawn by the artist Ferenc
Lantos.

or CH4E0), ammonia (NH3 or NH3E1), water
(OH2 or OH2E2) and hydrogen fluoride (FH or
FH1E3), n C m D 4; accordingly, each has a
tetrahedral electron-pair configuration. The cor-
responding nuclear configurations are tetrahedral,
pyramidal, bent, and linear. The ideal tetrahedral
bond angles of 109ı280 occur only when all elec-
tron pairs are equivalent. A double bond or a lone
electron pair requires more space than a single
bond, repelling neighboring electron pairs more
strongly. A bond to a strongly electronegative
ligand such as fluorine has less electron density
and repels electron pairs more weakly than a bond
to a less electronegative ligand such as hydrogen.

Do differences in electron-pair repulsions in-
fluence the symmetry of a molecule? The AX4,
AX3E, and AX2E2 molecules have Td ; C3v and
C2v symmetries, regardless of the ligands. For
trigonal bipyramidal systems where n C m D 5,
however, the nature of the ligands may be deci-
sive in determining the symmetry. The axial and
equatorial positions in the D3h trigonal bipyra-
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Figure 11.22. Molecules with trigonal bipyramidal and related configurations.

midal configuration are not equivalent. While
the PF5 molecule as an AX5E0 system has D3h
symmetry, it is not trivial to predict the symmetry
of the SF4 molecule as an AX4E1 system. The
question is: In which of the two possible positions
will the lone electron pair occur? The lone pair
has the larger space requirement, and the equato-
rial position is more spacious than the axial; thus
the lone-pair position is equatorial, and the SF4

structure has C2v symmetry. For the same reason,
lone pairs are equatorial in ClF3.AX3E2/ and
XeF2.AX2E3/. Double bonds require more space
than single bonds, and behave in the VSEPR
model similarly to lone pairs (Figure 11.22).

Consider octahedral arrangements in which a
central atom has six electron pairs in its valence
shell. The symmetry is unambiguously Oh for
AX6; an example is SF6. The IF5 molecule
.AX5E1/ is a tetragonal pyramid; the electron
pair may be at any of the six equivalent sites.
When there are two lone pairs, they occupy
positions maximally distant; thus XeF4.AX4E2/

is square planar, D4h (Figure 11.23). Difficulties
encountered with five-electron-pair valence
shells are intensified for the case of seven electron
pairs. Seven vertices cannot describe a regular

AX6
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F S

AX5E AX4E2

Figure 11.23. Molecules with octahedral and related
configurations.

polyhedron; the number of nonisomorphic
polyhedra with seven vertices is large, but no
one is relatively very stable. One of the early
successes of the VSEPR model was that it
correctly predicted the nonoctahedral structure
of XeF6, as it is indeed a seven-electron-pair case
.AX6E1/.

Complete geometrical characterization of the
valence shell configuration for a molecule with
more than one lone pair requires more than
specification of the bond angles. Sometimes,
though by far not always, the angles made by
lone pairs may be attainable from experimental
bond angles. For example, the E—P—F angle of
PF3 can be calculated from the F—P—F angle by
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Table 11.2. Arrangement of electron pairs

Number of Electron Pairs Arrangement
2 Linear
3 Equilateral triangle
4 Regular tetrahedron
5 Trigonal bipyramid
6 Octahedron

Table 11.3. Calculated angles in a series of tetrahedral
molecules

AF4E0 AF3E1 AF2E2 AFE3 AF0E4

SiF4 PF3 SF2 ClF Ar
FAF 109.5ı� 96.9ı 98.1ı – –
FAE – 120.2ı 104.3ı 101.6ı –
EAE – – 135.8ı 116.1ı 109.5ı

�By virtue of Td symmetry

virtue of the C3v symmetry. On the other hand,
the E—S—E and E—S—F angles of the C2v
symmetry SF2 molecule cannot be calculated
from the F—S—F bond angle.

Even when angles between lone pairs can be
calculated from experimental data or deduced
from quantum mechanical calculations, they are
often ignored. Proper application of the VSEPR
model should direct at least as much attention
to angles of lone pairs and their variations as to
bond angles. As an example of the consistency of
variations in all angles of a series of tetrahedral
molecules, Table 11.3 presents a set of results
from quantum chemical calculations.

Consequences of Intramolecular
Motion

Imagine watching the dynamic dance shown
in Matisse’s famous painting Dance. As
choreographed, one dancer jumps out of the
plane of the other four. As soon as this dancer
returns into the plane of the others, it is the role
of the next to jump, and so on. The exchange of
roles from one dancer to another throughout
the five-membered troupe is so quick that a
photograph with slow shutter speed would give
a blurred picture; only a short exposure can

identify a well-defined configuration of dancers.
Matisse’s Dance simulates the pseudorotation of
the cyclopentane molecule, .CH2/5, which has a
special degree of freedom in which the out-of-
plane carbon atom exchanges roles with one of
the four in-plane atoms. The process is equivalent
to a permutation of two carbon atoms (and their
hydrogen ligands), and is also equivalent to a
rotation by 2�=5 about the axis perpendicular to
the plane of the four coplanar carbons.

It is an extreme approach to disregard in-
tramolecular motion. The motionless state, al-
though hypothetical, is well defined: it is the
equilibrium structure, the structure with mini-
mum potential energy, a structure that emerges
from quantum chemical calculations. Yet real
molecules are never motionless, and experimen-
talists study real molecules. As with Matisse’s
Dance, the relationship between the lifetime of
a configuration and the time scale of the investi-
gating technique has crucial importance.

Large-amplitude, low-frequency intramolecu-
lar vibrations may lower the molecular symme-
try of the average structure versus the higher
symmetry equilibrium structure. Some examples
from metal halide molecules are shown in Fig-
ure 11.24. Today, it is already possible to compute
the equilibrium structures with high precision.
For these molecules the lower-symmetry exper-
imentally determined structures occur because
of averaging over all molecular vibrations. No
permutations of the nuclei are involved in these
intramolecular vibrations on the time scale con-
sidered.

Rapid interconversion of nuclei takes place
in a molecule of bullvalene, .CH/10, under very
mild conditions (Figure 11.25). Bonds are made
and broken, but nuclei shift only slightly. Four
different kinds of carbon positions interconvert
simultaneously. Hypostrophene (Greek hypostro-
phe: ‘turning about’, ‘recurrence’) is a .CH/10

hydrocarbon whose trivial name was chosen to
reflect its behavior. The molecule ceaselessly un-
dergoes intramolecular rearrangements indicated
in Figure 11.26. The atoms have a complete time-
average equivalence, yet hypostrophene could not
be turned into pentaprismane.
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Figure 11.24. Equilibrium versus average structures of metal halide molecules with low-frequency, large-amplitude
deformation vibrations.
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Figure 11.25. Interconversion of nuclear positions in
bullvalene.

Permutational isomerism among inorganic
trigonal bipyramidal structures was discovered by
Berry. Although the D3h trigonal bipyramid and
the C4v tetragonal pyramid have very different
symmetries, they are easily interconverted by
bending vibrations (Figure 11.27). Permutations
in an AX5 molecule (e.g., PF5) are easy to
visualize as the two axial ligands replacing
two equatorial ones, while the third equatorial
ligand becomes axial in the transitional tetragonal
pyramidal structure. Rearrangements quickly
follow one another, with no position being
unique. The C4v form originates from a D3h
structure and yields anotherD3h form.

Figure 11.26. Interconversion of nuclear positions in hypostrophene.
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Figure 11.28. (a) The Lipscomb model of the rearrangements in polyhedral boranes, and (b) an example of
icosahedron/cuboctahedron/icosahedron rearrangement.

A similar pathway was established for the
.CH3/2NPF4 molecule in which the dimethyl
group is permanently locked into an equatorial
position whereas the fluorines exchange in pairs
all the time. The PF5 rearrangement also well
describes the permutation of nuclei in five-atom
polyhedral boranes. In one mechanism for re-

arrangements of polyhedral boranes, two com-
mon triangular faces are stretched to a square
face. This intermediate may revert to the orig-
inal polyhedron with no net change, or may
turn into a structure isomeric with the original
(Figure 11.28). This mechanism is illustrated by
interconversion of the ortho and meta isomers of
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H

Figure 11.29. Ortho-, meta-, and para-dicarba-closo-dodecaboranes. Whereas the ortho isomer easily transforms into
the meta, the para isomer is obtained only under more drastic conditions and only in small amounts.

dicarba-closo-dodecaborane (Figure 11.29); the
para isomer is obtained under more drastic condi-
tions and only in small amounts. A similar model
has been proposed for carbonyl-scrambling in
Co4.CO/12;Rh4.CO/12, and Ir4.CO/12.

Rapid interconversion among different modes
of carbonyl coordination is possible, even in the
solid state, in transition-metal carbonyl molecules
of the form Mm.CO/n. The usually small m-
atom metal cluster polyhedron is enveloped by
another polyhedron whose vertices are occupied
by carbonyl oxygens. An attractive example is
ŒCo6.CO/14�

4� in which the octahedral metal
cluster has six terminal and eight triply bridging
carbonyl groups (Figure 11.30a). This structure
may also be represented by an omnicapped cube
enveloping an octahedron (Figure 11.30b). These

models are a reminder of another model in which
polyhedra envelop other polyhedra; that model is
Kepler’s planetary system (Figure 3.6).

Post Script 20 Years Later

Shortly after the Shaping Space Conference at
Smith College in 1984, the beautiful molecule
of truncated icosahedral shape, buckminster-
fullerene, C60, was discovered. First it was
merely observed in mass spectra in 1984; the
structure was assigned to it in 1985, and in 1990
the substance itself was produced for the first
time—enabling chemists to carry out all kinds
of experiments on it. All fullerenes are Goldberg
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Figure 11.30. The structure of ŒCo6.CO/14�
4� in two representations. (a) The octahedron of the cobalt cluster

possesses six terminal and eight triply bridging carbonyl groups. (b) An omnicapped cube of the carbonyl oxygens
envelopes the cobalt octahedron.

polyhedra; see Chapter 9 for illustrations and de-
tails. Lending Buckminster Fuller’s name to this
new family of molecules invoked a connection
between molecular structure and design science.
In fact, the assignment of the truncated icosahe-
dral structure to C60 was facilitated by a visit of
some of the discoverers to the U.S. Pavilion at the
Montreal Expo in 1967—that geodesic dome was
built following R. Buckminster Fuller’s original

ideas. Figure 11.31 shows a close up of the
Montreal Geodesic Dome, a decoration at the
Topkapi Sarayi in Istanbul, and the sphere under
the paw of a dragon sculpture in Beijing—all are
characterized by containing pentagons among
the more numerous hexagons. The discovery
of buckminsterfullerene gave birth to fullerene
science, which in turn enriched the emerging
nano-science and nano-technology.
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a b

c

Figure 11.31. (a) Close up of the Montreal Geodesic Dome—the arrow points to one of the pentagons among the
hexagons; (b) decoration above the entrance in the Topkapi Sarayi, Istanbul; (c) decorated sphere under the paw of
the gold-plated dragon sculpture in front of the Gate of Heavenly Purity in the Forbidden City, Beijing (Photographs by
the authors).
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Form, Function, and Functioning

George Fleck

Polyhedra are objects worthy of study and
admiration in their own right. They have been
inspirations for mathematicians, artists, and
architects, and have also served as models for
abstract notions about the biological and physical
world. The sophistication of such modeling has
evolved over the centuries, influencing both
physical and mathematical theories. In studying
polyhedra we see over and over again ways in
which theory is inspired by nature, and ways in
which science is inspired by theory.

The Polyhedron Kingdom lies within the
realm of mathematics, and polyhedron theory
deals with precise ways of talking about
polyhedra, ways which seem comfortable
to mathematicians (see Part III). Some of
polyhedron theory treats properties of space.
Much of polyhedron theory has developed within
the minds of mathematicians as old problems
have suggested new ones. This theory sometimes
appears connected only tenuously with the
natural world.

Science and engineering are also fields
of investigation in which abstract theory is
formulated within people’s minds, but the
connections with the real world seem—to many
non-mathematicians at any rate—both more
necessary and more various than in mathematics.

G. Fleck
Department of Chemistry, Smith College,
Northampton, MA 01063, USA
e-mail: gfleck@smith.edu

We shall look at some contemporary investi-
gations in botany, microbiology, robotics, and
chemistry in which polyhedra play central
roles, investigations which illustrate ways that
the geometry formulated by mathematicians is
related to the geometry used by scientists and
engineers. This symbiotic relationship is dynamic
and mutually enriching.

Does Form Explain Function?
Science Looks to Geometry
for Models

Geometry has been considered a fundamental
source of insight into the nature of the universe
since the time of Pythagoras. We shall note how
geometric ideas, and polyhedra especially, have
been employed by some of the most creative
and influential contributors to the development of
natural philosophy (as natural science used to be
called) and the contemporary sciences, providing
models for atoms, viruses, robots : : : even the
solar system.

As many contributors to this book have noted,
Plato modeled a richly featured, diverse, and
constantly changing world in terms of a small
number of geometric solids whose features
derived only from numbers, lines, and triangles.
He made use of the polyhedron theory of his
day, and it is likely that his use inspired the
variations later introduced into the theory by such
persons as Archimedes (287–212 B.C.E.). And,
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though manifestly incorrect, Kepler’s model of
the solar system is detailed, quantitative, and
provocative. Most importantly, the model is
visually stimulating, giving a pictorial vocabulary
for discussing ideas that might otherwise be
too abstract for easy communication. The
model captured the imaginations of many
persons beyond those with special expertise in
quantitative astronomy.

It is appealing to think of the material world as
composed of very small building units. With little
information about the nature of those building
blocks, early theorists speculated quite freely
about them. We noted that Plato thought of them
as the regular solids. Since earliest days, some
theorists of the nature of matter have explicitly
described the shapes of such building units as
spheres, and others have described them as poly-
hedra. Sometimes particular units were chosen
for convenience, without regard for a perfect cor-
respondence between theory and reality, though
surely some investigators intended their models
to be faithful to the natural world.

Another issue which has been of concern for
two millennia in various guises is whether matter
must fill all space, or whether there can be in-
terstitial voids between the building units. Plato
seems vague about whether he thought there can
be empty space, but Aristotle (384–322 B.C.E.)
rejected empty space as inconsistent with his
theory of motion. However, Epicurus (342–270
B.C.E.) and Lucretius (99–50 B.C.E.) argued
that motion is impossible unless there is empty
space between particles of matter.

If there is no void, spheres alone cannot be the
building units of condensed matter; two spheres
can come no closer together than to touch at one
point, and consequently some space in any pack-
ing of spheres is empty. Some combinations of
polyhedra fill space completely; certain of those
combinations have been known since antiquity.
But a satisfactory theory of matter must be able to
account for change. Thus if the units do fully fill
space without void, they must somehow be able
to deform and transform to permit both motion
and chemical change. We shall see that detailed
modeling of such transformations is an important
part of current scientific research.

Methane Methyl Chloride Methyl alcohol Methylamine Ethane

Figure 12.1. Models of molecules, made from croquet
balls, used to illustrate a lecture in 1865.

Spheres and Whirlpools as Models for
Atoms and Molecules

Modern chemistry dates from the late eighteenth
century. One of the first modern chemists was
John Dalton (1766–1844) who, as early as 1810,
constructed physical models which he could hold
in his hands, modeling atoms and compounds of
atoms with spheres joined with connecting rods.
Dalton used these models as teaching tools, but
we do not know how faithful to reality he believed
these spheres to be. There is no evidence that
he believed there to be any relationship between
the shapes of his models and the shapes of what
we now call molecules.

Ball-and-stick models became popular with
many chemists during the last half of the nine-
teenth century. Chemists were rapidly acquir-
ing structural information about molecules from
the laboratory, and as the century closed their
models were increasingly intended to portray
the three-dimensional geometry of molecules.
August Wilhelm Hofmann (1818–1892) used a
collection of elaborate croquet-ball models to
illustrate his 1865 lectures at the Royal Institu-
tion in London (see Figure 12.1). In his models,
the centers of the croquet balls were coplanar;
Hofmann seems to have used his models to rep-
resent only connectivity of atoms, not their three-
dimensional geometry. Benjamin Collins Brodie
(1817–1880), the controversial Oxford chemist,
strongly urged his colleagues during the 1860s
and 1870s to avoid use of ball-and-stick models,
warning that the models depicted much more
detail about molecules than was warranted by
experimental data. His warnings drew a mixed
response. The majority of physical chemists in
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the late nineteenth century explicitly rejected ge-
ometric ideas about molecules, but most organic
chemists of the same period found ball-and-stick
models to be increasingly useful. The balls de-
picted atoms, the sticks were bonds, and the
shapes of the models were usually thought to
represent the shapes of real molecules. By the
turn of the century it was an almost universal ar-
ticle of faith in organic chemistry that all possible
molecules can be modeled faithfully with balls
and sticks.

Many late nineteenth century scientists
modeled the molecules of gases by billiard-
ball spheres, but most of these theoreticians
considered the billiard balls to be models
of only certain properties of the gases. For
example, the balls were good models of idealized
temperature-pressure-volume behavior, but not
of the chemical reactivity of the components of
the gases.

The arguments of Epicurus and Lucretius
about the void became in the nineteenth
century arguments about the existence (and the
properties) of various types of aether, and this
controversy extended into the twentieth century.
The billiard-ball model of a gas seems to require
the notion of empty space between particles of
a gas. Yet from the beginning of the nineteenth
century proponents of the wave theory of light
argued persuasively for a plenum (the subtle fluid
which they called the aether) to transmit those
waves, and by 1880 the luminiferous aether had
become dogma.

The nature of the space within ordinary mat-
ter was widely and enthusiastically debated. As
the nineteenth century closed, the luminiferous
aether was joined by a whole collection of elec-
tromagnetic and dielectric aethers invented to ex-
plain phenomena such as radio waves, magnetic
waves, and even gravitational waves. Specula-
tions about the properties of aether produced a
theory of vortex atoms which attempted to com-
bine features of the continuous and discontinu-
ous theories of matter and space. William Rank-
ine (1820–1872) proposed a theory of molecular
vortices in 1849, and Hermann von Helmholtz
(1821–1894) derived mathematical expressions
which show that in a frictionless, isotropic fluid

+
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Figure 12.2. Maxwell’s mechanical model for the
aether, using small idle wheels to permit all vortices to
revolve in the same direction. The idle wheels represent
electrical particles.

of uniform density, vortices once formed would
retain their identity forever. Both Lord Kelvin
(1824–1907) and Peter Tait (1831–1901) devel-
oped these ideas about whirlpools in the aether
further. In his investigations of vortices, Tait com-
bined mathematical theory with physical models.
It has been said that a lecture demonstration
of smoke rings by Tait (to illustrate Helmholtz
vortex motion) early in 1867 gave Kelvin the idea
of a vortex atom. Tait described an apparatus to
produce smoke rings, telling about various ways
those rings could model properties of atoms.
Kelvin’s theory, in turn, led Tait to extend his
investigations on the analytic geometry of knots,
Tait believing that a mathematical theory of in-
tertwining and knotting of vortices was necessary
for understanding vortex atoms.

James Clerk Maxwell (1831–1879) proposed
a gear-and-idle-wheel mechanical model of vor-
tices in aether (Figure 12.2), remarking that his
model “serves to bring out the actual mechanical
connections between the known electromagnetic
phenomena; so that I venture to say that any one
who understands the provisional and temporary
character of this hypothesis, will find himself
rather helped than hindered by it in his search
after the true interpretation of the phenomena.”
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The quantitative models developed for the
aether yielded predictions for its properties, and
some scientists set out to test the models by
experimental measurements. A series of exper-
iments designed to measure predicted drift of
the aether, conducted between 1880 and 1930 by
Albert Michelson, Edward Morley, and Dayton
Miller, were widely interpreted as demonstrating
that there is no aether. Without a detectable aether
to swirl around, the vortex-atom theory died, but
the questions that it attempted to answer remain
with us.

Polyhedra as Models for Atoms,
Molecules, and Viruses

One of the most productive ideas of modern
chemistry has been the model of an atom as
a polyhedron. This model has been central to
structural chemistry since the last decades of
the nineteenth century when it was introduced
into the mainstream of European chemistry in-
dependently by Joseph Le Bel (1847–1930) and
Jacobus Henricus van ’t Hoff (1852–1911). Plato
had considered the ultimate units of matter to be
polyhedra, but Le Bel and van ’t Hoff extended
this idea by showing how organic substances
could be modeled by joining polyhedra in sys-
tematic ways to form molecules of great variety
and complexity. The notion of three-dimensional
molecular geometry was popularized by van ’t
Hoff, who considered carbon atoms to be sit-
uated at the centers of tetrahedra. He encour-
aged chemists to construct cardboard tetrahedra
to examine the various geometrically possible
arrangements of atoms. The balls of the Dal-
tonian models become the vertices of tetrahe-
dra. But the polyhedral model did more than
simulate the environment around single carbon
atoms. A carbon-carbon single bond was mod-
eled by two tetrahedra interpenetrating at ver-
tices (Figure 12.3), a carbon-carbon double bond
was modeled by two tetrahedra interpenetrating
along edges (Figure 2), and a carbon-carbon triple
bond was modeled by two tetrahedra sharing a
common face (Figure 12.5). These ideas were
extended to include a wide range of molecules

R3

R2

C

C

R4 R5

R6

R1

Figure 12.3. Two interpenetrating tetrahedra presented
by J.H. van ’t Hoff as a model for a molecule with
a carbon-carbon single bond and six different groups,
R1 : : :R6, bonded to the carbons. Each carbon atom is
at the center of one tetrahedron and at the vertex of the
other. Van ’t Hoff suggested that such models could be
constructed from hard rubber tubes as edges, hollow hard
rubber balls as vertex connectors, and sealing wax to bond
the parts together

R4

R3

R2

R1

Figure 12.4. A tetrahedral model of a compound with a
carbon-carbon double bond.

(see Chapter 10), and “the tetrahedral atom” be-
came a central unifying concept of organic chem-
istry. Joined tetrahedra are still used by chemists
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R1
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C
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Figure 12.5. A tetrahedral model of the compound
R1—C � C—R2 with three equivalent bonds joining the
carbon atoms.

for visualizing molecular form; see the represen-
tations by Hargittai and Hargittai in Chapter 11
and by Pauling and Hayward (Figure 12.6). In-
deed, a major contemporary journal of organic
chemistry is titled Tetrahedron (see Figure 12.7).

Polyhedral models are widely used also
in inorganic chemistry. The spatial theory of
molecular structure, based on polyhedra, was
readily adaptable to the compounds of many
elements. Nitrogen, depending on its oxidation
state, could be modeled with tetrahedra or cubes.
Alfred Werner (1866–1919) used octahedra to
model metal complexes. In 1902 Gilbert Newton
Lewis (1875–1946) found it useful in teaching
general chemistry to model atoms with cubes,
and later developed the cubic model in a more
formal manner. This polyhedral model of the
atom placed an electron at each vertex of the cube
and provided a context for discussing the role of
electrons in chemical bonding. The Lewis model
became known as the octet theory for chemical
bonding, and the eight dots at the vertices became
known as Lewis dots.

More recently, in the 1930s and later, Linus
Pauling developed, utilized, and popularized a

ethylene

acetylene

Figure 12.6. Artistic conception of the forms of ethy-
lene and acetylene molecules.

theory of coordinated polyhedra to predict struc-
tures for crystals. To visualize the consequences
of this theory, he often built elaborate models. An
example is Pauling’s model for the structure of
the mineral sodalite shown in Figure 12.8.

Polyhedra play a significant role in contem-
porary research. Very recently, a simple and
successful polyhedral model for molecules—the
valence shell electron pair repulsion (VSEPR)
model—has been developed. As well as a
guide for chemical researchers, the VSEPR
model has become an important pedagogical
tool for teaching about molecular structure. The
geometric problem posed by the VSEPR model
is well-known to geometers as “The Problem
of Tammes.” VSEPR theory is described by
Hargittai and Hargittai. An indication of the
perceived importance of polyhedral chemical
models is that a major journal of inorganic
chemistry is titled Polyhedron (see Figure 12.7).
The structures of certain molecules reinforce
that perception; especially interesting is the
structure (see Figure 12.9) of the 60-carbon
cluster molecule named Buckminsterfullerene!
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Figure 12.7. International journals of chemistry have
the titles Tetrahedron and Polyhedron.

Polyhedral models, which have proved so
valuable in discussing atoms and molecules,
have also been useful in investigating structures
larger than single molecules. In 1956 Francis
Crick and James Watson suggested that the
design of “spherical” viruses, built from large
numbers of identical protein subunits, would
be based on the symmetry of the Platonic
polyhedra. That same year Donald Caspar
obtained experimental evidence in Cambridge
for an icosahedral structure of one of the small
isometric plant viruses. Icosahedral symmetry
requires sixty identical parts, and at that time
the symmetry of icosahedral viruses was thought
to be a consequence of specific bonding among
identical units. Such a structure is illustrated in
Figure 12.10.

Caspar and his collegue Aaron Klug argued
that the essential idea in the design of viral
structures is that they “build themselves,” that

Figure 12.8. A model of the mineral sodalite, utilizing
coordinated polyhedra.

Figure 12.9. A computer-generated depiction of the
truncated icosahedral structure suggested for the C60L a
molecule.

the design is embodied in the specific bonding
properties of the parts. Given the bonding rules,
the units combine to form the structure automat-
ically. The problem faced by the investigators
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Figure 12.10. A drawing by D.L.D. Caspar illustrating
strict equivalence in a shell with icosahedral symmetry
constructed from sixty identical left-handed units. The
three classes of connections in this surface lattice are
represented by the specific bonding relations: thumb-
to-pinkie = pentamer bond; ring finger-to-middle fin-
ger = trimer bond; and index finger-to-index finger = dimer
bond. Any two of these classes of bonds would hold the
structure together. The triangles drawn under the hands
define equivalent subdivisions defined by the three- and
fivefold axes at their intersections.

Figure 12.11. A geodesic dome built on a plan of aT D
12 icosahedral surface lattice.

was that most of the icosahedral viruses are not
built of sixty identical subunits; indeed, by 1962
electron microscopy had revealed regular surface
arrays of morphologic units that were neither
multiples nor submultiples of 60. Their question
was then twofold: Why icosahedral symmetry?

What are the design possibilities for such icosa-
hedrally symmetric structures?

The clue to the answer formulated by Caspar
and Klug in 1962 was based on an icosageodesic
dome (see Figure 12.11) which, were it a com-
plete sphere, would be divided into 720 truncated
triangular facets grouped to form 12 pentamers
and 110 hexamers. If a hand (such as one of those
in Figure 12.10) were placed in each of these tri-
angles, one could imagine (with a certain amount
of flexibility either in bonding or in the struc-
ture units themselves) that identical units could
be connected according to the requirements of
bond specificity, but allowing for some departure
from strict equivalency. The term that Caspar and
Klug proposed for this was “quasi-equivalence.”
The units would be deformed in slightly dif-
ferent ways in symmetrically distinct but quasi-
equivalent positions.

The design for such structures can be de-
scribed by the ways that the plane hexagonal net
can be folded into polyhedra. These designs can
be enumerated completely and nonredundantly
by the triangulation numbers

T D .h2 C hk C k2/;

which designate the number of symmetrically
distinct but quasi-equivalent situations for the
60T units in a design. The indices h and k can
be any positive integers; one may be zero. These
designs for indices 0; 1; and 2 (that is for T D
1; T D 3, and T D 7) have been recognized for
a number of icosahedral viruses. Some are built
on the T D 1 plan. The T D 3 plan is also very
common.

These surface lattices can be represented as
icosadeltahedra, polyhedra consisting of 20T

equilateral triangular facets. Capsid models can
be built of 60T identical subunits grouped to
form 12 pentamers and 10.T � 1/ hexamers with
quasi-equivalent bonding in the T symmetrically
distinct environments. It is informative to build
both rigid and flexible models of these structures.

A number of small tumor viruses are built
on the T D 7 plan. But, to everyone’s great
surprise, a radical departure from the idea of
quasi-equivalence was revealed with the discov-
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ery that the T D 7 icosahedral polyoma virus
capsid is built of 72 pentamers instead of the
predicted 12 pentamers and 60 hexamers. Bond-
ing specificity apparently is not conserved in this
structure. Caspar described a polyhedral model
of the polyoma capsid constructed from 72 pen-
tagons connected using three more equivalent
types of contacts which correspond to switching
of bonding specificity. He said that this idea
was so incompatible with the expectations of his
theory that the referees who reviewed the paper
said the model was not suitable for publication.
“The theory was so good. Why throw away a
good theory with experiments that haven’t been
thoroughly tested?”

However, further experiments have confirmed
the structure, a design which appears inscrutable
in geometric terms but which obviously has bio-
logical logic. Caspar commented: “The theories
we have formulted in the past have given a very
good explanation of why icosahedral viruses are
icosahedral. Now we don’t know!”

Modeling Condensed Matter

Polyhedra have been used not only in modeling
molecules but also in modeling the space-
filling qualities of whatever it is that forms the
condensed states of matter. In crystals, polyhedra
have been considered to be the units that repeat
in three dimensions to fill space. As we have
seen, a continuum model (a model in which
there is no empty space) for crystals of a pure
substance (an element or a compound) cannot
be achieved with spheres. But there are only
a few polyhedra that fill space by periodic
repetitions of themselves. There are even greater
difficulties in modeling arbitrary mixtures of
different substances with polyhedra, since most
collections of different polyhedra do not fill
space.

Theories about structure of the solid state have
long been involved with the question of how
polyhedra can be packed to fill three-dimensional
space. Bricklayers have known about the pack-
ing of parallelopipeds since antiquity, but they
have generally not been concerned about theo-

ries of the structure of matter. Aristotle (refuting
Plato) asserted that, of the regular solids, both
the cube and the tetrahedron fill space; he was
wrong, however. Kepler considered the shapes of
space-filling polyhedra which would be obtained
if closely packed spheres were uniformly com-
pressed; we shall see that this strategy for inves-
tigating the shaping has been fruitful in recent
years. The quite complicated general question of
how space can be filled by repetition of identical
polyhedra has not yet been solved.

One experimental way to prepare space-filling
collections of different polyhedra is to use the
method of Kepler and compress a collection of
plasticene balls. Another way is to start with a
packing of spherical objects, and increase the size
of the spheres without increasing the volume of
the collection; Stephen Hales (1677–1761) used
this strategy in studying the shapes of peas which
were swollen in a closed container. It appears that
the unfinished task of describing general collec-
tions belongs largely to the mathematicians, but
their intuitions have benefited from these physical
experiments.

Clearly the solid state cannot be described
by a single geometric model. Some solids are
almost perfectly ordered in a simple manner at the
atomic scale, and others are almost completely
random. Most solids have structures between
these two extremes. Only the perfect crystalline
structures—which do not really exist—are well
understood. The structure of the solid state has
been a subject of inquiry in which the interaction
between geometry and the physical sciences has
been particularly fruitful. Lord Kelvin took a very
empirical approach in investigating “the division
of space with minimum partitional area.” Extend-
ing experimental methods used by Plateau, he
observed and manipulated intersecting soap films
in imaginative ways, and his paper is an instruc-
tive example of how a physical model can guide
a geometric investigtion, and how mathematics
can permit generalizations from a few simple
physical observations. Lord Kelvin concluded
that space could reasonably be divided into mod-
ified truncated octahedra with 14 faces (eight
hexagons and six squares); he called these poly-
hedra tetrakaidecahedra, and argued that they
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would pack to fill space with minimum partition
area. Kelvin’s shapes are not classical polyhedra;
the edges are not straight lines and the faces are
not plane surfaces.

Static space-filling units probably cannot
model simultaneously both the space-filling
qualities (such as the quasi-crystalline regions
sometimes found near apparently chaotic regions
in liquids, or the orientation of polar solvent
molecules near solute ions) and the dynamic
aspects (such as fluid flow, or diffusion of solvent
and solutes) of liquid solutions. It would be
interesting to try to model such systems with dy-
namically transforming polyhedra. Meanwhile,
sphere-packing models continue to be useful.

Packing of Spheres of Various Sorts

Twentieth century models of atoms, with a
very small nucleus surrounded by wavelike
electrons, have spherical symmetry (probably
instantaneous spherical symmetry, but certainly
at least time-averaged spherical symmetry) in
isolation. The sphere is an excellent model for
isolated atoms and has been developed by many
investigators as a model for atoms in molecules,
and for molecules in liquids and solids.

When pressed, few chemists insist that a col-
lection of spheres with interstices is a realis-
tic model for combinations of atoms, whether
crystalline arrays or discrete molecules. They
say that their ball-and-stick models are merely
conveniences, that their ball-and-stick drawings
are artistic conventions, and that their tables of
covalent and ionic radii are just conventional
ways of presenting data concisely. Yet it would
be naive to believe that the ubiquitous presence
of spherical models for two centuries has had no
influence on the concepts held by chemists.

Much effort has been spent examining the
consequences of spherical models for atoms, cal-
culating atomic-radii for these spheres, and dis-
cussing how spheres of various sizes can pack
together. William Barlow (1845–1934) observed
that there are two “closest-packed” ways of ar-
ranging identical spheres in space, one with cubic
symmetry and the other with hexagonal symme-

try. He was convinced that a thorough under-
standing of crystalline solids would necessarily
involve both a geometrical theory of space groups
(to which he contributed) and a complemen-
tary mechanical theory of crystal structures (to-
ward which he worked for several decades). Lord
Kelvin examined the problem of close-packing
spheres with oriented binding sites. Pauling de-
veloped in detail the model of atoms-as-spheres,
using what he called “covalent radii” to cor-
relate distances within molecules and crystals
among quite diverse compounds of particular
elements.

Spherical models for atoms have been useful,
even though atoms within an environment of
“touching” nearest-neighbor atoms are not spher-
ical, and even though the electrons in such en-
vironments fill space without interstices. All this
has stimulated mathematical studies of sphere
packings in spaces of three and higher dimen-
sions. These studies, in turn, have suprising and
important applications in coding theory.

Polyhedra as Models for Plant Structures

Ralph Erickson has used polyhera as models
for plant cells. These models suggested novel
experiments, involving such unlikely materials as
lead spheres and soap bubbles. The experiments
in turn have stimulated mathematical speculation.

Parenchymal tissues such as are found in a
plant stem have cells that pack closely together.
The cells are not classical polyhedra; there prob-
ably are no plane faces or any straight edges
in these cells. Erickson described experiments
in which James Marvin obtained single-cell ge-
ometric data about pith cells from the Joe-pye
weed. Marvin then constructed paper polyhedral
scale models of those cells. Previous investigators
had taken Kelvin’s tetrakaidecahedra as a model
for such space-filling cells, but the data of Matzke
and co-workers showed that the real botanical
world was more complex. A fundamental ques-
tion is the extent to which the shapes of such
cells are determined by geometry alone, and the
extent to which the shapes are the results of other
factors.
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1. 3-6-2

8.  3-6-4

16.  3-6-5

23.  2-8-5 (24) (6) (2) (10) (3)33.  2-9-4-127.  4-4-7 30. 0-12-424. 2-9-3-1

(36)

(17) (8) (12) (21) (35)21. 1-10-420. 0-12-318. 4-4-617. 3-7-3-1

(1) (39) (73) (64)14.  2-8-413.  1-10-312.  0-12-29.  3-7-2-1

(2) (50) (1) (118) (19)7.  2-8-32.  0-12-0 5.  4-4-4 6.  1-10-2

Figure 12.12. Camera lucida drawings of representative soap bubbles from the center of a foam. Each drawing is
specified by listing the numbers of rectangular, pentagonal, hexagonal (and heptagonal) faces. In parentheses is the
frequency of occurence of the polyhedron class in a group of 600 bubbles studied.

Erickson described studies in which Matzke
and Marvin used lead shot and soap bubbles
to model plant cells. In a series of Kepler-type
experiments, Matzke and Marvin compressed
collections of spherical lead shot with enough
pressure to force the initially spherical pieces of
lead into shapes that together fill spaces without
interstices. As Kepler had shown centuries
earlier, spheres transform into polyhedra when
forced to be space filling. If uniform spheres
were packed as a face-centered cubic array
and compressed, rhombic 12-hedra resulted. If
the lead shot were poured into the container
“randomly,” a distribution of irregular polyhedra
(averaging about 14 faces) resulted. Matzke and

Marvin undertook their studies in attempts to
model cell shapes in plant tissue in terms of
the polyhedra observed in the shot-deformation
studies.

Matzke also used another model, reminiscent
of the 1880s’ work of Lord Kelvin. Several
thousand soap bubbles were assembled in a
transparent container, and the interior bubbles
were examined microscopically (Figure 12.12).
These soap films partition space. We can
distinguish between the filling of space by a
collection of geometric shapes and the partition
of space by surfaces that can be considered
to be the faces of polyhedra. Matzke made
detailed comparisons of these polyhedra, the
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9.  3-1-2-1  (1)

16.  3-6-5  (17) 17.  3-7-3-1  (8) 18.  4-4-6  (12) 19.  4-5-4-1  (1) 20.  0-12-3  (21) 21.  1-10-4  (35) 22.  1-11-2-1  (2)

29.  5-3-6-1  (2)28.  4-5-5-1  (2)27.  4-4-7  (2)26.  3-7-4-1  (5)25.  3-6-6  (7)24.  2-9-3-1  (6)23.  2-5-5  (24)

30.  0-12-4  (10) 31.  1-10-5  (4) 32.  2-8-6  (1) 33.  2-9-4-1  (3) 34.  3-6-7  (1) 35.  3-7-5-1   (1) 36.  2-5-7  (2)

10.  4-4-5  (4) 11.  5-2-6  (1) 12.  0-12-2  (39) 13.  1-10-3  (73) 14.  2-8-4  (64) 15.  2-9-2-1  (4)

2.  0-12-0  (50) 3.  2-8-2  (15) 4.  3-6-3  (7) 5.  4-4-4  (1) 6.  1-10-2  (118) 7.  2-5-3  (19) 8.  3-6-4  (36)

Figure 12.13. Schlegel diagrams of central bubbles (some from Figure 12.12) tabulated by Matzke. The numbering
corresponds to the numbering in Figure 12.12. Pentagons are shaded. Viewpoints are chosen to demonstrate symmetries
when possible.

polyhedra from the lead-shot experiements, and
the polyhedra observed in plant cells.

Erickson noted that accurate visualization of
models is difficult, even when the models (such
as polyhedra) are apparently tangible. A difficulty
in using two-dimensional representations of
stick models or solid models of polyhedra
on the printed page is that all faces cannot
be shown simultaneously. To understand a
three-dimensional model, a person must pick up
the physical object and turn it around. Erickson
constructed paper models of Matzke’s soap
bubbles to aid visualization and he drew Schlegel
diagrams (Figure 12.13) to aid classification.
Schlegel diagrams distort shape, but they allow
simultaneous viewing of all faces and of their
connectivity. Many of these Schlegel diagrams
have obvious symmetry. Consider number
0 � 12 � 2. It is highly symmetrical, with two

hexagonal faces opposite each other, more or less
as in an antiprism. But it is not an antiprism.
The sides are pentagons. Symmetries are very
prominent in these polyhedra; only 44 of the 600
bubbles are in the symmetry group that contains
just the identity element.

Visualization becomes less of a problem when
the investigators use several different schemes
which appear to model the same geometry. Er-
ickson constructed paper models so that he could
look at them from all directions. He also used
stick structures (representing the same polyhe-
dra) built from semiflexible plastic tubing and
four-arm connectors, the arms at the 109:5ı tetra-
hedral angle.

All edge intersections of soap films are nec-
essarily tetrahedral intersections. So by building
models with these rigid connectors and semiflex-
ible tubes, the model approximates the minimum-
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surface models. Lord Kelvin went to some pains
to point out that in the packing of soap bub-
bles the edges of the cells which he visualized
were plane and curved, alternate edges curving
in alternating ways. This very delicate structure
of the Kelvin 14-hedron is only approximated by
these skeletal models.

Kelvin’s tetrakaidecahedron alone is not a suf-
ficient model for either plant cells or soap bub-
bles. The tetrakaidecahedron has no pentagonal
faces, whereas the majority of natural cells do
have pentagonal faces. Matzke’s data on 600

bubbles, probably the largest sample of such
cells that exists in literature, reveal 36 polyhedral
forms; some contain one heptagonal face. Erick-
son built them all both as stick models and also
as cardboard models.

Figure 12.14 displays the fantastic differences
in the frequency of the polyhedra. Some of
them occurred only once in Matzke’s 600 cells.
Amazingly, a 13-sided polyhedron .1 � 10 � 2/

occurred 118 times.

Does Form Explain Dynamic
Functioning? Science Looks to
Geometry for Mechanistic Models

Growth of a rigid plant stem, self-assembly
of a virus, functioning of a robot arm: such
dynamic processes are being simulated with
dynamic polyhedral models which focus on
transformations. Ralph Erickson, Donald Caspar,
and Godfried Toussaint spoke at the Shaping
Space Conference on aspects of their research
in this frontier area in which the symbiotic
relationships among theory, mechanical models,
and the natural world are strikingly evident. We
shall examine some of their work.

Plant Growth and Polyhedral
Transformation

A rigid arrangement of parenchymal plant cells
is a dynamic system with very interesting spatial

100

50

0.12,x

*

*

*

1.10,x

2.8,x

12

12

11
12

13 13

14

15
17

15 16

15

15

14

15[21], 16[10]

15[35.2], 16[4]

14

13

14

12

13

133.6,x

4.4,x

5.2,x

Fr
eq

ue
nc

y

Figure 12.14. Frequencies of polyhedral forms among 600 central bubbles. Each bar is labeled with the number of
faces of the polyhedron. Unshaded portions of bars indicate frequencies of polyhedra having one heptagonal face.
Asterisks indicate forms [(0-12-1), (1-10-0); (1-10-1)] which cannot be built. Five bars are hidden: (0-12-3); (0-12-4);
(1-10-4); (1-11-2-1); and (1-10-5).



12 Form, Function, and Functioning 183

properties. The plant cells divide as the tissue
grows. If those cells are space-filling polyhedra,
the polyhedra must be capable of local trans-
formations which result in changing the num-
ber of packed polyhedra without weakening the
plant structure. We would expect that division
of a single cell would occur with minimal dis-
ruption of intersections and edges in adjacent
cells.

An advantage of the skeletal, stick models
discussed by Erickson for modeling transforma-
tion of plant cells is that these models can be
manipulated and transformed rather easily. A face
can be added by breaking a couple of connections
and inserting three edges and two connectors. An-
other operation which is very helpful in exploring
the possible transformational forms consists of
disconnecting and then reconnecting an edge and
its four neighboring edges. The result is promo-
tion of square faces to pentagons and demotion
of two hexagons to pentagons. Other 14-hedra
can be found by carrying out similar manipula-
tions on the edges. R.E. Williams has proposed
a model for a cell packing based on repetition of
this neighbor-switching operation, creating cells
with two square faces, eight pentagons, and four
hexagons.

Erickson noted that a puckered surface can
be traced through the packing of the truncated
octahedra. It consists of hexagons and squares,
going up and down like valleys and ridges. The
squares, most interestingly, are oriented at 90ı
to each other along a path. Neighbor-switching
operations within this packing can be used to
discuss dislocations in cellular structures as well
as creation and annihilation of cells. He proposed
that it should be possible to orient two puckered
surfaces properly, connect them appropriately,
and create a uniform packing of polyhedra which
will fill space. With a different orientation and
edge-connections, another space-filling packing
of 14-hedra would be created. This can be done
extensively, if not exhaustively. The convincing
way to do that is with stick models; there are
too many possibilities and transformations for
cardboard models to be feasible for this task.
Erickson said that his models covered half of the
kitchen floor!

Figure 12.15. Constituent parts of Caspar’s self-
assembly model. (a) On the left: a pentamer and hexamer;
center, part of a hexamer or pentamer; right, a trimer and
two trimers bonded together. (b) The same units with
more bonds formed. (c) Misassembly of eight pentamers
attempting to form a T D 1 shell.

Polyhedral Models for Self-Assembly
of Viruses

Caspar used a variety of model-building strate-
gies to explore both the geometry and the en-
ergetics of protein assemblies. Caspar and Klug
first illustrated their idea of self-assembly with
a dynamic model with wooden-peg subunits de-
signed to assemble in the T D 3 icosahedral
surface lattice. The structural unit, and various
stages in assembly, are shown in Figure 12.15.
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This model shows that it is possible to design
a single unit with bonds that can be switched by
interaction with identical copies of itself to bond
in three different environments of the T D 3

lattice. Such a model is too simple to explain all
features of the control mechanisms that were pos-
tulated for icosahedral virus self-assembly, but
it does display some of the essential interaction
properties of a structural unit designed to form an
icosahedral capsid.

The model shown in Figures 12.15 and 12.16
illustrates some of Caspar’s further ideas about
designing mechanical models to represent the
dynamics of macromolecules. Such models
should illustrate how the energy of interaction
is distributed throughout the structure. One
strategy has been to underdesign, so that the
structure is not unintentionally overdetermined.
The construction of a mechanical model is
often a trial-and-error process. This is, in fact,
Nature’s way for adaptation and evolutionary
development. Analogies with human technology

and behavior have indeed provided essential keys
for understanding the operation of biological
systems, and, conversely, analogizing Nature’s
methods is a natural way to make analogs of
Nature’s machines. In nature where there is
regularity, with structures built of identical parts,
there are likely to be regular plans, says Caspar.
Geometric considerations are always important
in these plans, and sometimes they predominate.
However, satisfactory a priori predictions about
what in fact happens in nature cannot be made.
The only way to find out is to look.

Robotics and Motions of Polyhedra

Dynamic computational geometry is an area in
computer science that has evolved from work in
graphics and visual design, inspired by robotics
and problems of movement. A fundamental prob-
lem in robotics theory involves the ways in which
a set of objects can be moved without collisions.

c

a b

Figure 12.16. Completed T D 3 self-assembly model viewed down: (a) twofold axis. (b) Fivefold axis. (c) Threefold
axis.
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This section is a snapshot, taken at the Shaping
Space Conference in 1984, of work by Godfried
Toussaint and others on how sets of polygons in
the plane can be translated without collisions and
generalizing such studies to three-dimensional
movement of polyhedra.

Toussaint began with a problem: Can all
members of a set of nonintersecting rectangles
in the plane with their edges parallel to the x
and y axes (such rectangles are called isothetic)
be translated in the same direction by some
common vector to a final destination, subject
to the constraints that the rectangles are moved
only one at a time, and that no collisions occur?
(A collision occurs whenever the interiors of two
rectangles intersect.)

The answer is yes. There always exists (for any
direction) at least one order in which the polygons
can be moved to permit such a translation. This
property holds for every finite set of convex
polygons, and the ordering can be determined by
computation. We say that convex polygons in the
plane exhibit the translation-ordering property.

Efficient computation of translation ordering
is important for a robot who is given the task
of separating such polygons. A simple, intuitive
algorithm which sometimes works is the line-
sweep heuristic illustrated in Figure 12.17. The
vector l is the desired direction of translation.
Lines perpendicular to l are constructed to in-
tersect the rectangles at support vertices a, b, c,
and d. According to the line-sweep heuristic, the
translation ordering is the order of the projections
of the support vertices on l . The algorithm fails in
this particular case since the method requires D to
move second, even though it is blocked by C.

But is there a class of objects for which the
line-sweep heuristic always works? It works
if the objects are all circles of the same size,
and with a slight modification (use of centers
instead of support points) for any set of circles
of arbitrary sizes (see Figure 12.18). In three
dimensions, this method is called the plane-
sweep heuristic; it works for sets of spheres and
for some sets of isothetic polyhedra.

This problem can be generalized for other
types of polygons, and for motions other
than simple translations. When the convexity

a

A

C

B

b

D
d

c

Figure 12.17. An illustration of a failure of the line-
sweep heuristic for a set of isothetic rectangles. Note
that rectangle D cannot be translated before rectan-
gle C in direction l , even though d occurs before c
on line l .
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Figure 12.18. When the objects are circles of the same
size, their centers yield the same ordering as their support
points. The line-sweep heuristic gives a valid ordering for
this set.

constraint is relaxed, there results a class of
problems concerning interlocking polygons. It
becomes interesting to ask whether a collection
of polygons is “movably separable” in a specified
sense.
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Figure 12.19. A set of isothetic convex polyhedra that
does not allow a translation ordering in the direction x C
y. This example was discussed by Guibas and Yao.
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Figure 12.20. The basic interleaving triplet.

In three-dimensional space, four isothetic rect-
angular polyhedra can be arranged so that no
translation ordering exists for some directions.
Such an arrangement is shown in Figure 12.19.
Some sets of convex polyhedra interlock in all
directions, with no translation ordering in any
direction. Such a configuration can be built from
12 long, flat, very-thin sticks. The first step is
to construct a set of three interlaced sticks A,
B, and C (a triplet) on the xy plane as shown
in Figure 12.20, with their lengths parallel to
˛; ˇ; and � directions. Define a “hole” at the

A

C B

Figure 12.21. Three more triplets added to the basic
one.

center of the configuration, and three “overlap”
regions where the sticks touch each other. Three
more triplets are constructed (see Figure 12.21)
on planes perpendicular to the xy plane, planes
individually parallel to the ˛; ˇ; and � directions.
The key feature of the final configuration is that
each new triplet added embraces an overlap re-
gion of two sticks in the original triplet; each
overlap region of the original triplet lies in the
central hole of an embracing triplet.

Inspection of Figure 12.21 reveals that there
is no direction in which more than two of the
dozen sticks can be translated. Even though each
polyhedral stick can be individually translated
away from the configuration without disturbing
the others, there exists no translation ordering in
any direction.

Are there sets of polyhedra in which no mem-
ber can be moved out without disturbing the oth-
ers? If the constraint that the polyhedra be rectan-
gular solids is relaxed, a configuration of twelve
convex polyhedra can be constructed in which
no polyhedra can be translated in any direction
without disturbing the others. K. A. Post found an
example of six convex polyhedra that interlock in
such a way that no one can be moved without
disturbing the others.

Toussaint discussed problems which arise in
generalizing results from polygons in the plane
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P

Q

Z

XY

Figure 12.22. Two polyhedra (components of an
arikake joint) strongly monotonic with respect to PL(´).
The only way to separate this pair is to translate either P
or Q in the ´ direction.

to polyhedra in 3-space. Star-shaped polygons
generalize in a straightforward way to star-shaped
polyhedra. Any two star-shaped polygons can
be separated with a single translation, and this
property also holds for star-shaped polyhedra in
3-space. The situation is more complicated with
monotonic figures. (A polygon is monotone if
there exist two extreme vertices in some direction
connected by two polygonal chains in which the
vertices of the chain occur in the same order as
their projections onto a line in that direction.)
Any two monotone polygons can be separated
with a single translation in at least one direction.

The property of monotonicity does not gen-
eralize straightforwardly and uniquely to three
dimensions. Toussaint defined a polyhedron as
weakly monotonic in a direction if the intersection
(with the polyhedron) of each plane perpendicu-
lar to that direction is a simple polygon, a line
segment, or a point. These weakly monotonic
polyhedra can be classified in terms of the prop-
erties of the polygons of intersections. It turns
out that two polyhedra weakly monotonic with
respect to a common direction can interlock un-

der all motions. Further, a polyhedron is strongly
monotonic with respect to a direction PL(l) if
the polygons which result from the intersection
of planes parallel to l are all monotonic in a
direction orthogonal to l . Figure 12.22 illustrates
two polyhedra, P and Q, which are strongly
monotonic with respect to PL(´). It is known in
Japanese carpentry as the ari-kake joint, a dove-
tail which can be separated only by a translation
in the ´ direction. Such polyhedra are always
separable if they share a common direction of
monotonicity. It is an open question whether they
are necessarily separable when they do not share
a common direction.

Polyhedron Theory Accommodates
Changing Expectations

What can we expect when time and change are
included in polyhedron theory? What are the new
questions, and what might be the form of the
answers?

We have seen that static polyhedral units
probably do not suffice as bases for chemical
modeling of the dynamic aspects of solution
structure. More needs to be known about the
transformational properties of three-dimensional
arrays of nonidentical polyhedra. Some important
questions are: What local transformations can
be achieved without disrupting long-range
structure? In an array, can a rotation of one
polyhedron be achieved by interactions only with
its nearest neighbors? Under what conditions
can a polyhedron migrate through a space-filling
array of transformable polyhedra?

We have looked at skeletal models for
transformations of the polyhedra which serve
as models for plant cells in growing tissue.
Their detachable, rigid tetrahedral connectors
and flexible tubing model both the individual
plant cells and the transformations of individual
cells, as well as the packing of cells into large
arrays and transformations within arrays. These
arrays have long-range patterns which can be
seen, for instance, as paths along puckered
surfaces. Their short-range transformational
possibilities are seen in the neighbor-switching
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operations which produce dislocation, creation,
or annihilation of cells. Such tangible models are
suggestive, but general conclusions seem elusive.
In this fundamental research further collaboration
between botanists and geometers will surely be
fruitful.

Nineteenth-century scientists effectively used
billiard-ball models to discuss gases, without nec-
essarily abandoning belief in an aether that per-
vaded the space in which those billiard balls
moved. Since no model of reality is complete, re-
alists should notice that complementary models,
although inconsistent in detail, may yield com-
plementary information about the natural world.
Thus a chemist, or a botanist, or a biophysicist
may see in Toussaint’s dynamic computational
geometry applications beyond robotics to more
general problems about how objects move and
how they become bound to one another. Bio-
chemists are concerned about how complex, sta-
ble structures are assembled by bringing together
(in the proper orientations) individual molecules
which one might have expected to be moving
randomly in solution. Geometers with various
perspectives may see beyond these qualitative
connections.

One central fact of biology is that living sys-
tems build structures in the midst of apparent
molecular chaos. Biochemical explanations of
such structure creation are, at best, incomplete
and inadequate. Figure 12.23, in which a repre-
sentation of Plato is held before us by a mechan-
ical model of a chemical system, may well be an
appropriate image for an appropriate strategy for
future symbiotic progress in natural science, en-
gineering and mathematics. It is clear that many
fields of inquiry are enriched by both the results
and the questions from other disciplines. It is also
clear that the possibilities for learning from the
work of others are vast.

Addendum

This chapter, written more than two decades
ago, reflects my bias toward mechanisms and
physical models, a bias that is shared by most
of the conference participants. This is, in part, a

Figure 12.23. A mechanical model illustrating rigidity
in a T D 3 icosahedral lattice, built of 90 identical
pieces of 1

32
-inch-thick sheet aluminum bent to represent

dimers connected by pentamer/hexamer bonds. The diam-
eter along the threefold axis is 11.5 inches, and the model
weighs 2 pounds. Its shape approximates a truncated
Platonic icosahedron, and it supports without distortion a
32-pound plaster bust of Plato.

generational bias. Today, many younger investi-
gators are actively and enthusiastically engaged
in manipulating virtual models, using powerful
computer-based methods that many persons be-
lieve creatively supplement, and some persons
believe may supplant, reliance on analysis of
physical objects. It is too early to place these
approaches in perspective, but a tentative attempt
seems in order.

Among my own first toys were a Meccano
set (created by Frank Hornby in 1901), an Erec-
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tor set (created by A.C. Gilbert in 1911) and
a Tinkertoy set (created in 1914 by Charles H.
Pajeau and Robert Pettit). Similar toys were part
of the culture in which most of the contributors
to Shaping Space learned about construction.
Meccano and Erector toys are literally hands-
on, nuts-and-bolts mechanical building tools. Not
every idea of a young inventor is realizable, using
only the Meccano and Erector parts; the concept
of unbuildable develops naturally. I remember
my fascination watching a machinist fabricate
mechanisms that I had thought to be unbuildable.
I continue to be fascinated by explorations of the
unbuildable realm by graphic artists.

Tinkertoys employ cylindrical wooden spool
connectors with holes drilled around the perime-
ter at 45ı angles. Tinkertoy parts can be used
to construct a Ferris wheel, but not a molecu-
lar model of methane. I was already teaching
chemistry when sets (with appropriate connec-
tors) became commercially available, so that stu-
dents could construct molecular models of simple
compounds. Those models, and all subsequent
student model sets, are faithful to some (but only
some) aspects of the geometry of the molecules of
nature. Chemists have increasingly used virtual
constructions to explore molecular structures as
models of nature, with the calculated results dis-
played on computer screens and printed as two-
dimensional representations. Virtual structures of
giant molecules can be constructed in this way.
The striking apparent reality of these representa-
tions is seductive.

Computer-generated images, from Photoshop
constructions to the graphics of computer games,
have demonstrated how easy it is to produce
convincing images that bear little relationship to
“the real world.” Total reliance on virtual im-

ages of molecules is dangerous for any chemist.
Comparison of virtual images with physical mod-
els for identical small molecules is a necessary
intellectual calibration step in chemical educa-
tion. My classroom experience, for example, con-
vinced me that few students can internalize the
concept of mirror-image isomers without physi-
cally handling a pair of nonsuperposable molecu-
lar models.

Every model incorporates assumptions, and
these assumptions impose limitations. The con-
stituent parts of Donald Caspar’s self-assembly
model are readily examined, and implications of
his model building can be interpreted in the light
of restrictions imposed by those parts. It is a
formidable challenge for interpreters of virtual
models to verify the full range of assumptions and
limitations inherent in each of those models.

Ralph Erickson has described many sorts
of physical objects that model the partitioning
of space. Lord Kelvin in 1887 proposed body-
centered cubic tetrakaidecahedra with six square
faces and eight slightly curved hexagonal faces as
optimal space-fillers with minimal surface area.
H.M. Princen and P. Levinson examined (by
numerical calculations) the extent to which the
facial curvature reduces the surface area: about
0.2 percent. D. Weaire and R. Phelan proposed
an alternative unit cell composed of six 14-sided
polyhedra and two 12-sided polyhedra, with
the curvature of faces optimized by computer
calculations. Weaire and Phelan assert that
their counterexample has “a remarkably large
margin of superiority.” The Kelvin Problem is an
intriguing case study both in methodology and
in presentation of conclusions about “symbiotic
relationships among theory, mechanical models
and the natural world.”



Part III

Polyhedra in the Geometrical Imagination
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The Polyhedron Kingdom Tomorrow

Marjorie Senechal

Now you’ve reached the kingdom’s wild fron-
tier: polyhedron theory at the research level. The
natives in these parts speak a slightly different
dialect from the artists and scientists you’ve met
already, so listen carefully. (If you only grasp
a phrase here and there, or even nothing at all,
read on anyway: the sights—the chapters that
follow—are not to be missed.)

What Is a Polyhedron (Yet Again)?

You have met enough polyhedra by now to be
able to know that there is not one answer to this
question, there are many.

The problem in choosing a definition was
explained many years ago by Robert Frost in
his poem,“Mending Wall”: “Before I’d build a
wall, I’d want to know what I was walling in,
and what I was walling out.” The delightful book
Proofs and Refutations, written in the form of
a classroom discussion, is required reading for
all polyhedron enthusiasts. In it the author, Imre
Lakatos, shows how a careful examination of the
implications of a definition forces us to construct
our walls very carefully. Consider, for example,
the following excerpt:

M. Senechal
Department of Mathematics and Statistics,
Smith College, Northampton, MA 01063, USA,
e-mail: senechal@smith.edu; http://math.smith.edu/�
senechal; http://www.marjoriesenechal.com

GAMMA: A polyhedron is a solid whose surface
consists of polygonal faces : : :

DELTA: Your definition is incorrect. A polyhedron
must be a surface: it has faces, edges, vertices, it
can be deformed, stretched out on a blackboard,
and has nothing to do with the concept of “solid.”
A polyhedron is a surface consisting of a system of
polygons.

TEACHER: For the moment let us accept Delta’s
definition. Can you refute our conjecture (Euler’s
formula,F �ECV D 2, which the class is trying
to prove) now if by polyhedron we mean a surface?

ALPHA: Certainly. Take two tetrahedra which
have an edge in common. Or, take two tetrahedra
which have a vertex in common. Both these twins
are connected, both constitute one single surface.
And, you may check that for both V �ECF D 3.

DELTA: I admire your perverted imagination, but
of course I did not mean that any system of poly-
gons is a polyhedron. By polyhedron I meant a
system of polygons arranged in such a way that (1)
exactly two polygons meet at every edge and (2) it
is possible to get from the inside of any polygon
to the inside of any other polygon by a route
which never crosses any edge at a vertex. Your
first twins will be excluded by the first criterion
in my definition, your second twins by the second
criterion.

Delta believed that Alpha’s twin tetrahedra
are not polyhedra, but “monsters” which can and
must be barred by a proper definition. Monster-
barring, argued Lakatos, is often the reason that
complicated, abstract definitions like Delta’s sec-
ond one appear in mathematics. (Unfortunately
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they are usually presented to the student in a
take-it-or-leave-it way, with no explanation of
how or why anyone would ever come up with
them.)

So, if you wish to define “polyhedron,” you
should think about the kinds of objects that you
are willing to accept as polyhedra. For example,
you might (or might not) want to include

• Star polyhedra
• Toroidal polyhedra
• Infinite polyhedra
• Polyhedra whose faces are skew polygons
• Either pair of Delta’s tetrahedral twins
• A finite capped cylinder (it has three faces, two

edges, and no vertices!)

Of course, you might want to include some of
these in some cases, and exclude them in others,
depending on what properties you are studying.

Branko Grünbaum’s definition of “polyhe-
dron” is widely accepted. First, he defines a
polygon:

Definition 1 A finite polygon is a figure
formed by a finite sequence of vertices in
E3, V1; V2; : : : ; Vn, together with the edges
ŒVi ; ViC1�, i D 1; 2; : : : ; n � 1, and ŒVn; V1�: (An
infinite polygon is defined in a suitably analogous
way.)

Next, he defines “polyhedron” this way:

Definition 2 A polyhedron P is any family of
polygons (called faces of P ) that has the fol-
lowing properties: (i) Each edge of one of the
faces is an edge of just one other face. (ii) The
family of polygons is connected; that is, for any
two edges E and E 0 of P there exists a chain
E D E0; P1; E1; P2; E2; : : : ; Pn; En D E 0, of
edges and faces ofP , in which eachPi is incident
with Ei�1 and with Ei . (iii) Each compact set
meets only finitely many faces.

(The term compact is defined in the phrase-
book below.)

How does Grünbaum’s definition compare
with Delta’s second one?

Notice that Definition 1 does not require the
vertices of a polygon to be coplanar. Thus the
polyhedra permitted by Definition 2 may have

skew nonplanar “faces”—and there may be in-
finitely many of them! Definition 2 is broad
enough to include most of the polyhedra you have
met in this book, and then some. On the other
hand, it may be too broad for some purposes:
for example, we may want to restrict ourselves to
convex polyhedra. It might not be broad enough
for other purposes, however. Do we really want
to exclude the twin tetrahedra which share only a
vertex, for example? As you saw in Chapter 11,
they are used to interpret molecular structures.
Other important applications call for polyhedra
with movable parts. Will this definition be able
to accommodate the demands of scientists for a
broader theory? (See Chapter 14.)

A Polyhedral Phrasebook

Specialized discussions of problems in polyhe-
dron theory use technical mathematical terminol-
ogy; a nonspecialist needs a phrasebook. Here, in
intuitive language, is a description some of the
less familiar mathematical terms that you will en-
counter. (You should skip the next two paragraphs
if you already understand the italicized words.)

We already defined the word polygon (Defini-
tion 1). Since this word has metric connotations
(e.g., angles and edge-lengths can be defined)
which are not needed in the purely combinatorial
theory of polyhedra, some authors prefer to speak
of a 2-cell, a floppy polygon that can be deformed
into a circle. You can think of a 2-manifold as
a two-dimensional surface in three-dimensional
space, such as a plane, an infinitely long cylinder,
a sphere, or a torus, possibly deformed. Simi-
larly, the 2-sphere is the ordinary sphere in three
dimensions (surface only, of course). The prefix
“2-” emphasizes the fact that the surface is two-
dimensional, as opposed to three-, four-, or n-
dimensional. A 2-cell complex is a 2-manifold
every point of which belongs to the interior or
boundary of a 2-cell.

The terms “closed,” “bounded,” and “bound-
ary” can lead to confusion unless you remember
that each of them has a precise mathematical
meaning. A subset of space is bounded if it is of
finite extent, that is, if it can be entirely enclosed
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in some sphere of finite radius (even if the radius
has to be very large). On the other hand, to
say that a set is bounded does not mean that
it contains or even has a boundary! The word
boundary refers to an intrinsic property of the
set, whereas “bounded” refers to the space in
which the set lies. A set of points is closed if
it contains all its boundary points. For example,
the set of points in the plane interior to a circle
is not closed, although it is bounded, because
it contains points arbitrarily close to the circle
itself, but the points of the circle do not belong to
it. A set is compact if it is closed and bounded; for
example a circle together with its interior points
is a compact set. But the (infinite) plane is not
compact because it is not bounded. Finally, you
can think of an orientable manifold as a two-
sided surface; the plane, the sphere, and the torus
are orientable, but the Möbius band is not. As
mentioned earlier, the genus of a manifold is its
number of holes: “hole” is used here in the sense
that a torus has a hole; it is not the kind of hole
which punctures the manifold.

You can test your understanding of this termi-
nology by trying to decipher and interpret the def-
initions of the word “polyhedron” that are given
below (all taken from papers in this section). We
leave it to you to determine which shapes are
walled in by each of them, and which are walled
out. Study the definitions carefully before decid-
ing! It is easy to be misled. For example, Delta
did not seem to realize that her definition did not
exclude polyhedra like our toroidal hat, which she
despised (she called them “non-Eulerian pests”)!

Definition 3 A (convex) polyhedron is a bounded
subset of E3 which can be expressed as the
intersection of a finite number of closed half-
spaces.

Definition 4 A polyhedron is a cell complex
whose point set is a closed orientable 2-manifold,
each of whose 2-cells is an affine polygon that is
not coplanar with any adjacent 2-cell.

Definition 5 A polyhedron (in three-dimensional
space) is a compact 2-manifold that has no
boundary and can be expressed as a finite union
of plane polygonal regions.

Why a Theory of Polyhedra?

What’s all this then? Why don’t we simply take
polyhedra as we find them, admire them for their
beauty and the wonderful things that they repre-
sent? There are many reasons, besides intellectual
curiosity and aesthetic pleasure, why mathemati-
cians are engaged in polyhedral research.

Many practical problems involve polyhedra
built to specification, either by nature or by man.
To understand these structures, and to be able
to create new ones, we must know what the
specifications are, why they are necessary, and
what sorts of objects are characterized by them.
For example, if we want to design bridges and
buildings that stay up, we must study the form
and dynamics of trusses and braces, and this leads
to questions about polyhedral stability (see Chap-
ters 14, 18, and 21). Other problems motivated by
the needs of science and technology are discussed
in this part of the book.

Moreover, the need for a theory of polyhedra
arises almost spontaneously when we try to make
clear to colleagues and students what we are
talking about. For example, if someone asks what
we mean by the word “polyhedron” we might
begin, like Gamma and Delta, by specifying cer-
tain characteristics we think all polyhedra have in
common; these are usually characteristics of the
polyhedra that we already know. Having listed
them, it is then natural to wonder, like Alpha,
whether all objects which have these character-
istics are necessarily things that we want to call
polyhedra. Or, we might ask whether there are
new, as yet undiscovered, structures which also
have these properties.

This line of questioning often leads us to
generalize familiar concepts. For example, Def-
inition 1 implies that there are many kinds of reg-
ular polygons in addition to the convex and star
plane polygons: it implicitly permits regular pris-
matic and antiprismatic polygons (a prismatic,
or antiprismatic, polygon is a finite nonplanar
zigzag polygon whose vertices are the vertices
of a prism or antiprism, respectively). It also
permits regular infinite polygons whose edges lie
on straight lines, or zigzag, or are helical. By a
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careful analysis of the possible regular polyhedra
with such polygons as faces, Grünbaum found
that, in addition to the regular convex and star
polyhedra, there are six additional families: the
infinite regular plane tessellations, the Petrie–
Coxeter polyhedra, a class of nine regular poly-
hedra with finite skew polygons as faces, infinite
regular polyhedra with finite skew polygons as
faces, regular polyhedra whose faces are infinite
zigzag polygons, and regular polyhedra whose
faces are infinite helical polygons! In this way
our understanding of regular three-dimensional
polyhedra has been greatly enriched.

Polyhedra can be generalized in other ways.
One of these is to investigate their analogues—
“polytopes”—in higher dimensions. The regular
convex polytopes in n dimensions were discov-
ered by Ludwig Schläfli in the early 1850s. In
spaces of five or more dimensions, there are only
three of them: the higher dimensional analogues
of the tetrahedron, the cube, and the octahedron.
But in four-dimensional space, there are six reg-
ular convex polytopes: the three just mentioned,
one with 120 dodecahedral cells (cells are three-
dimensional “faces”), one with 600 tetrahedral
cells, and one with 24 octahedral cells. These six
polytopes are not easy for us to visualize, but
there are various geometric and algebraic tech-
niques which, together with computer graphics,
can help a great deal. One of the most interesting
of these is described in Chapter 20.

Or we may generalize the definition of regu-
larity to apply to a broader class of polyhedra.
Chapter 17 concerns such a generalization of
the regular solids, called Platonohedra. Here the
polyhedra are “equivelar”; that is, their faces are
regular k-gons and q meet at each vertex, but
the polyhedra can be toroidal or indeed of any
genus (the genus of a polyhedron is the number
of its holes. Convex polyhedra have genus zero,
like the sphere; toroidal polyhedra have genus
one, and so forth.). The “symmetries” of these
objects include some transformations which pre-
serve their combinatorial structures but, strictly
speaking, not their metrical properties.

Sometimes problems are generalized because
the original problem is too hard. The ancient
question: “Which polyhedra fill space?” is one of

these. The difficulties are so severe that it makes
good sense to begin with the more tractable
one: “Which combinatorial types of polyhedra fill
space?” You will read more about this problem in
(Chapters 16 and 22).

Another impetus for the development of a
theory of polyhedra is the need to clarify fun-
damental concepts. As we have seen, the history
of polyhedra is long and it has many roots. On
close examination, we sometimes find that well-
entrenched definitions and classifications are not
as clear as we once thought. Or, as new classes of
polyhedra are discovered, we may find old char-
acterizations inadequate. This confusion leads to
new questions about what it is we are talking
about, and these questions generate research. For
example (see Chapter 15), there is no problem
reconciling the several widely held (but distinct)
concepts of duality as long as we are talking
about convex polyhedra, but with more general
types of polyhedra it is no longer even clear what
“dual” is supposed to mean.

Finally, it often happens that in the course
of investigating one problem, suprising and
illuminating links are found with others.
The equivalence of the seemingly unrelated
concepts of convex polyhedra, Dirichlet
tessellations, and “spider webs” discussed in
Chapter 18 is an intriguing example.

Polyhedral Themes

In addition to the variety of motivations for
studying polyhedra theory, several themes run
throughout the following papers and problems.

Symmetry. The aesthetic link between symmetry,
beauty, and perfection was undoubtedly the rea-
son why the regular polyhedra were first noticed
and singled out for attention millennia ago. A
great deal has already been said about symmetry
in this book, so we will not review the basic
concepts here. The following remarks, however,
may be helpful to keep in mind while reading the
following chapters.

Symmetry theory is not a museum piece, but a
valuable tool in the study of polyhedra. We have
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just seen that symmetry often suggests interesting
generalizations. It can also be a guide in search-
ing for new kinds of polyhedra. The semiregular
polyhedra discovered by Archimedes were (at
that time) a new class of highly symmetrical poly-
hedra, and Archimedes probably used symmetry
considerations to ensure that this would be so.
In fact, the eleven that can be obtained from the
Platonic “solids” by truncation are obtained by
truncating symmetrically: first a vertex (or edge)
of a solid is truncated in such a way that its
contribution to the symmetry of the polyhedron is
not destroyed, and then all the other vertices are
truncated in exactly the same way. This ensures
that the truncated polyhedron has all the symme-
tries of the original regular one.

A requirement of symmetry can also help us
to restrict a problem to a reasonable size. Obvi-
ously all sorts of idiosyncratic constructions are
admitted under Definition 2; we cannot hope to
survey them all. By focusing on those that have
some symmetry properties, however, we obtain a
manageable class of objects. And because sym-
metry is a hierarchical concept, we can broaden
our study later by omitting its restrictions one by
one. Symmetry can help to organize and present
complex information. Several contributors (see
Chapters 3, 5, and 19) point out the effective-
ness of symmetry arguments in characterizing
the coordinates of certain polyhedra; in his short
chapter Barry Monson points out an interesting
connection between this problem and the theory
of numbers. (Indeed, the theory of polyhedra has
connections with, and implications for, almost
every branch of mathematics.)

Symmetry theory can also be used to study
properties of polyhedra that are inadequately
characterized by their geometry. For example, we
have seen that a carbon atom is often represented
as a regular tetrahedron because it is 4-valent.
But when an atom joins with other atoms in a
molecule or crystal, its four bonds may no longer
be equivalent. To incorporate this information
into the geometry of the tetrahedron, we can color
its vertices or faces in such a way that equivalence
is properly indicated. This leads us to the concept
of “color symmetry,” which has been extensively
studied both for polyhedra and tessellations of

the plane. The colored tilings of interlocking
creatures designed by M. C. Escher are typical
examples of patterns with color symmetry, but
less orderly colorings are important too. Again
we must decide what we want to wall in and what
we want to wall out. There are many interesting
colored polyhedra which do not satisfy even
the least restrictive definitions that have been
proposed. Clearly the theory is still evolving.

Networks. By now you have memorized Euler’s
deceptively simple formula for the vertices,
edges, and faces of a convex polyedron,
V � E C F D 2. This formula turns out to have
a wealth of implications, even though it says
nothing at all about angles, edge lengths, or other
metric properties of polyhedra, being concerned
only with the networks formed by edges and
vertices. For example, it implies that there are at
most five regular polyhedra (in addition to the
so-called digonal polyhedra and dihedra). It is
very suprising that this ancient and famous result
does not in fact depend on either the symmetry
or metric properties of the polyhedra, but only on
their combinatorial properties.

The numbers of faces, vertices, and (conse-
quently) edges of a polyhedron constitute its
f �vector .V;E; F /. Some of the questions one
might ask about f -vectors are: If V;E; F are
integers which satisfy the Euler relation, are there
any corresponding polyhedral networks of edges
and vertices? For example, there is no polyhe-
dron with f -vector .0; 4; 6/, but there are two
very different polyhedra with f -vector .8; 12; 6/.
(One is the cube; what is the other?) Thus the
relation V �ECF D 2 is a necessary condition
for the existence of a polyhedron with f -vector
.V;E; F / but it is not always sufficient. (The
additional conditions that must be satisfied by
V;E; and F have been found for the three-
dimensional case, but the analogous problem in
higher dimensions remains unsolved.)

Another important question is: If a polyhe-
dron with f -vector .V;E; F / does exist, what
kinds of faces does it have? (How many trian-
gles, how many quadrilaterals, and so forth?)
In other words, what is its face sequence Œfk �,
k D 3; 4; 5; 6; : : : , where fk is the number
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of k�gonal faces of the polyhedron? A famous
equality, which is a direct consequence of Euler’s
formula, states that if the polyhedron is trivalent
(that is, if three edges meet at each vertex), then

3f3 C 2f4 C f5 D 12C
X
k>6

.k � 6/fk: (13.1)

This is a condition that the face sequence
of a polyhedron must satisfy, but it does not
guarantee that a polyhedron with such a face
sequence exists.

Euler’s formula has been generalized to
polyhedra of higher dimension, and of other
genera. For a polyhedron of genus g, the formula
becomes

V � E C F D 2 � 2g: (13.2)

Thus for the torus the right-hand side is zero.
A great deal of effort has been, and is being,
devoted to finding analogues, for polyhedra of
genus greater than one, of Eberhard’s theorem,
which is closely related to Equation 13.1: For
every finite sequence of nonnegative integers
Œfk ; k � 3; k ¤ 6� satisfying Equation 13.1 there
are values of f6 such that a polyhedron with face
sequence Œfk � exists.

Next we might ask: “How many distinct
combinatorial types of polyhedra belong to
each sequence Œfk �?” This is an unsolved
problem. The numbers of combinatorial types
belonging to each f -vector are known only for
polyhedra with eleven or fewer faces. There is
no apparent pattern to these numbers, but there
are surprisingly low bounds for the number of
combinatorially distinct polytopes (of a certain
type) with n vertices in d�dimensional space.

Geometric Realization. Even when a polyhedron
network exists, it may happen that polyhedra with
straight edges and planar faces cannot be con-
structed according to these plans. If the edges of
the digonal networks, for example, are straight-
ened out, they all collapse to a single line. This
raises the question of determining the conditions

under which a polyhedron with certain properties
can be realized geometrically.

In studying the problem of realization, a
fundamental theorem is that of Steinitz, which
characterizes the types of planar graphs that
correspond to convex polyhedra in three-
dimensional space. (A planar graph is a network,
or 1-skeleton of edges and vertices. The 1
indicates the one-dimensionality of the edges,
which can be drawn in the plane without any
unintended crossing of edges. Schlegel diagrams
are planar graphs; star polygons are not.) Among
the unsolved problems in polyhedron theory are
several concerning realizations of combinatorial
polyhedra of higher genera. The long-range goal
of such research is of course to find appropriate
analogues of Steinitz’s theorem.

Rigidity. Realization questions lead to the study
of rigidity and stability. Because of the power
and comparative simplicity of the combinatorial
approach, the metrical theory was relatively ne-
glected for many years. But high-speed com-
putation has changed the picture. We now can
ask, and sometimes answer, which realizations
are rigid, which are flexible, and which will fall
apart. This matters, in fields from architecture to
robotics, in which metric properties of polyhedra
play an indispensable role. (Most polyhedron
models have definite angles and edge lengths;
most buildings are built to precise architectural
plans.) The theory of the rigidity of polyhedra and
polyhedral frameworks has enjoyed a renaissance
in recent decades.

The Polyhedrist’s Bookshelf

This is the end of the guided tour of the Poly-
hedron Kingdom. But before you explore the
frontier, take a few minutes to browse the Poly-
hedrist’s Bookshelf. Mathematicians have been
writing about polyhedra almost as long as they’ve
been making them. Here are some of the high-
lights of the past 4,000 years, assembled with the
help of Joseph Malkevitch and other contributors
to this book. Today’s theorists stand on the shoul-
ders of these giants.
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Antiquities: 1850 BCE–1599 CE

The Moscow Mathematical Papyrus, circa 1850
BCE, is held in the Pushkin State Museum of
Fine Arts, Moscow.

The Rhind Papyrus, circa 1650 BCE, also known
as Papyrus British Museum 10057, is held in
the British Museum, London.

Archimedes, The Sphere and the Cylinder; the
original codex on which this was written is
lost, but see The Works of Archimedes, by
Sir Thomas Heath, 1897; reprinted by Dover
Publications, 2002.

Plato’s The Timaeus is available in many lan-
guages and in many editions. Plato’s contribu-
tions in this dialogue are invoked throughout
this book, as are Euclid’s:

Euclid’s Elements. The original is lost, but Sir
Thomas Heath’s classic translation is not: The
Thirteen Books of Euclid’s Elements, 1909.
Reprinted by Cambridge University Press in
1925 and by Dover Publications in 1956.

For the works of Pappus, see La Collection
Mathématique translated by P. Van Eecke and
published in Paris by De Brouwer/Blanchard
in 1933.

Luca Pacioli’s Divina Proportione was published
in Milan in 1509; reprinted by Fontes Ambro-
sioni, also Milan, in 1956.

Albrecht Dürer’s famous Unterweysung der Mes-
sung mit dem Zyrkel und Rychtscheyd was
published in Nürnberg in 1525, and in English
translation by Abaris Books in 1977.

Classics: 1600 CE–1899 CE

Johannes Kepler’s Harmony of the World—
Harmonices Mundi—was first published in
Linz in 1619.

Descartes’ manuscript was lost at sea, but P. J.
Federico restored it through excellent detec-
tive work: see Descartes on Polyhedra. New
York: Springer-Verlag, 1982.

For Euler’s work, see Novi Commentarii
Academiae Scientiarum Petropolitanae 4,
1752–53. Or see http://www.leonhard-euler.
ch/.

Louis Poinsot described the four star polyhedra in
“Mémoire sur les polygones et les polyèdres”
in Journal de l’École Polytechnique 10 in
1810.

For Cauchy’s two important papers on polyhedra,
see the Journal de l’École Imp. Polytechnique
(1813).

M. E. Catalan’s “Mémoire sur la théorie des
polyèdres” was also published in that journal,
but in 1865.

Modernists: 1900–Present

M. Brückner’s Vielecke und Vielfläche was pub-
lished by Teubner in Leipzig in 1900.

Max Dehn’s solution to Hilbert’s Third Problem
appeared in the Mathematische Annalen in
1901.

Ernst Steinitz’s “Polyeder und Raumeinteilun-
gen” appeared in Volume 3 of the Encyk-
lopädie der mathematischen Wissenschaften
which Teubner in Leipzig published between
1914–1931.

A. D. Alexandrov’s Vupyklue Mnogogranniki
(1950) was republished as Convex Polyhedra
by Springer-Verlag, Berlin, in 2005.

H. S. M. Coxeter’s Regular Polytopes was first
published in 1948; today it is available in sev-
eral editions, including a paperback by Dover
Publications.

Branko Grünbaum’s Lectures on Lost Mathemat-
ics, though available only in a mimeographed
edition (1978), sparked research bringing
tiling theory and rigidity theory back to life
after a long hiatus, synergetically timed for
the computer revolution.

Branko Grünbaum’s Convex Polytopes first ap-
peared in 1967; a second edition was pub-
lished by Springer in 2003.

http://www.leonhard-euler.ch/
http://www.leonhard-euler.ch/
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Paneled and Molecular Polyhedra:
How Stable Are They?

Ileana Streinu

Polyhedral models can be physically constructed
in a variety of ways. The inexpensive methods
described in Chapter 2 include sticks connected
at endpoints, or paper, creased and glued with
tape along edges. But the resulting structures are
not always sufficiently stable: sticks may slip off
their connecting joints, paper bends, and even
when sturdy carton is used, not having enough
tape may lead to loose paper ends or a flexible
polyhedral model.

Popular building kits use rigid parts, and fall
roughly into three categories:

Bar-and-joint frameworks. These models
are made of rigid bars connected via fully
rotatable (so-called universal) joints. In some
popular building kits (Magz, Roger’s Connec-
tion), magnetized rods of various sizes and steel
bearings are used.

Molecular structures. Ball-and-stick kits are
routinely used by chemists to build molecular
models, and polyhedra made with ZomeTool have
a similar flavor. The spherical atoms, made of
sturdy plastic, have holes drilled through them,
in which rigid sticks (“bonds”) are inserted for
connectivity.

Paneled polyhedra. Rigid triangles, squares
and other polygonal shapes made from some
sturdy material are connected along their edges
through hinges. Some popular kits such as Poly-

I. Streinu
Department of Computer Science, Smith College,
Northampton, MA 01063, USA,
e-mail: streinu@cs.smith.edu

dron have rigid plastic shapes hinged with small
attachments along edges.

Before setting off to build a polyhedron with
one of these kits, we may ask: will the model
hold? For instance, is a bar-and-joint buckeyball
(see Chapter 9) stable? What if one of the rods
is dropped: will it still hold? One “feels” that
the molecular models are more stable than the
bar-and-joint ones, but why? Which models are
easier, or harder to build—and why? Will they
hold if bonds or hinges are broken? What about
the paneled models, are they more stable? What
if some of the hinges are broken? If our supply of
good parts diminishes, for instance when some of
the polydron pieces lose their connecting hinges,
is it possible to arrange the parts in such a way
that a certain polyhedron can still be built as
a stable shape? Or, if we just build the old-
fashioned paper-and-tape models, and run out
of tape, we may want to know where we shall
safely leave the pieces unhinged, but still have a
stable (rigid) polyhedral model. These questions
refer to the rigidity, flexibility and minimality of
these structures. Let us briefly introduce these
mathematical concepts, and take the first steps
towards formalizing some of these questions.

Rigidity. If we built a structure from rigid
parts, connected according to the rules of the
model (joints, hinges), can it be continuously de-
formed while preserving the rigidity of the parts
and the connectivity? If not possible, the structure
is said to be rigid, otherwise it is flexible.

Flexibility. If a structure is flexible, how can it
be deformed? For instance, how many and which

M. Senechal (ed.), Shaping Space, DOI 10.1007/978-0-387-92714-5 14,
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bonds can be rotated independently to change the
molecules’ shape? A flexible polyhedron made
from polydron pieces with broken hinges can be
turned into a rigid one if some hinges, perhaps
not all, are fixed: how do we find which ones?

Minimality. If the shape is rigid, could
we have achieved it with fewer constraints?
For instance, could we have used less tape to
glue together a polyhedron model made from
paper folded along creases? How reliable is the
structure: which of the hinges of a polydron
model can be broken, without destabilizing the
structure?

Redundancy. This last question is related to
the independence and redundancy of building
elements. A bar (in a bar-and-joint framework) is
redundant if it can be removed without changing
the rigidity. Otherwise, it is independent. Simi-
larly, some bonds (in a molecular structure), or
faces and hinges (in a paneled polyhedron) can
be removed without changing the rigidity, but
in this context, the concepts of redundancy and
independence turn out to be more subtle. How do
we detect redundant and independent parts?

Building physical models of polyhedra
is complemented nowadays with building
electronic models, using Computer Aided
Design (CAD) systems such as SolidWorks.
The geometric constraints defining them (lengths
of bars, rigidity of faces, incidences between
faces along hinges, etc.) induce systems of
polynomial equations that must be solved by
the software. Insufficient constraints, which
induce flexible structures, are reflected in under-
constrained systems of equations. Redundant
constraints lead to over-constrained algebraic
systems, which are typically rejected by most
CAD system engines. Understanding which sets
of constraints minimally define the structure can
be used to guide the user in the design process,
rather than rejecting the construction without any
explanation. These practical concerns motivate
our study, in this chapter, of the following
problems:

• Minimal rigidity and independence. We will
see that when all the constraints imposed by
the geometry of the polyhedron are present,
the bar-and-joint structures are minimally

rigid, but the other two frameworks are in
general heavily dependent. In the molecular
model, the minimally rigid ones can be
characterized in terms of an underlying graph.

• Eliminating dependencies. When the struc-
ture is dependent, how do we eliminate the
dependencies? For molecular structures, we
give an efficient algorithm based on the pebble
game paradigm.

• Structural properties. In the process of elim-
inating dependencies, the polyhedron may be-
come flexible. We investigate structural prop-
erties related to degrees of freedom and rigid
component distribution.

We won’t be able to answer all the questions
we set up to, so we will conclude with some
open problems and a conjecture for a rigidity
characterization of panel-and-hinge polyhedra.

Bar-and-Joint Frameworks

The rigidity and flexibility of arbitrary bar-and-
joint frameworks in 3D space is notoriously dif-
ficult to assess, but not for polyhedra: several
theorems, some going back to the early 1800s,
lay down the foundations of one of the classical
results in rigidity theory. We will use this very
well understood case to introduce the concepts
and methodology required for evaluating (in the
next sections) the rigidity of polyhedra built as
other types of mechanical structures.

The starting point is Cauchy’s famous theo-
rem (1813), the oldest result in Rigidity Theory:

Theorem 14.1. Let P and P 0 be two convex 3D
polyhedra, with the same combinatorial structure
and congruent corresponding faces. Then P and
P 0 are congruent.

This uniqueness theorem implies rigidity for
triangulated convex polyhedra, viewed as spa-
tial objects made from rigid bars connected by
universal joints via a sequence of theorems and
implications due to Dehn, Weyl and A.D. Alexan-
drov in the early 1900s.

In a different direction, these bar-and-joint
structures are the 1-skeleta of convex polyhedra,
and they are characterized by Steinitz’s theorem
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as 3-connected planar graphs. A realization of
such a graph G D .V;E; F / as a polyhedral
surface is a mapping p W V 7! R3 of the vertices
V to points in space, such that the edges e 2 E

are mapped to line segments, and for all faces
f 2 F , the vertices incident to f are mapped to
coplanar points. A realization need not be convex,
and may even have self-intersections. When the
faces are triangles, the coplanarity condition is
automatically satisfied. A stronger form of rigid-
ity, applicable to an entire class of combinatorial
objects (graphs, in this case) rather than specific
polyhedral realizations (such as the convex ones)
is captured by a later theorem due to Gluck:

Theorem 14.2. 3D realizations of 3-connected
triangulated planar graphs as bar-and-joint
frameworks are generically infinitesimally rigid.
This means that all but a measure zero set of the
realizations are rigid.

Infinitesimal rigidity is a stronger (and more
technical) condition, but for our purpose here we
do not have to define it formally. It suffices to
know that it is easier to check mathematically and
computationally, and that it implies rigidity.

When a combinatorial structure is infinites-
imally rigid in all but a measure zero set of
realizations, we say that it is generically rigid;
in other words, 3-connected triangulated planar
graphs, viewed as bar-and-joint frameworks, are
generically rigid.

From the point of view of modeling polyhedra
as bar-and-joint structures, this property says that
for most of the possible lengths that we may
choose for the bars, a polyhedron will be rigid.
Sometimes, very rarely, it may be infinitesimally
flexible, and—even more rarely—it may even be
flexible. But if it is convex, it is guaranteed to
be rigid. For simplicity, from now on we drop
infinitesimal and simply refer to polyhedra as
being rigid rather than infinitesimally rigid.

Finally, we focus on the minimality property
exhibited by this classical rigidity result. When
all the faces are triangles, Euler’s theorem implies
that such a planar graph on jV j D n vertices
spans exactly jEj D 3n � 6 edges and jF j D
2n�4 faces; this is the maximal number of edges,
respectively faces, that a planar graph may have.

Viewed as bar-and-joint frameworks, the triangu-
lated planar graphs are minimally rigid: if any of
the edges of the skeleton is removed, the structure
becomes flexible. In other words, if we consider
arbitrary 3-connected planar graphs, not just the
triangulated ones, and fix the lengths of the edges
(but do not impose any other constraints, such as
planarity of the faces), then the rigidity results
no longer hold: the polyhedra are flexible. This
is why the buckeyball constructed from magnetic
bars with ball joints will fall apart. One would
have to add extra bars (e.g., in such a way that the
faces get triangulated) to obtain a rigid structure.
But once the minimally rigid threshold has been
attained, additional bars become redundant: not
only do they violate the planarity of the underly-
ing graph, but also they are not needed to keep
the structure rigid. A bar which can be removed
from a framework without affecting its rigidity
properties is called dependent or redundant. A
structure containing no redundant bars is called
independent.

Now let’s look at molecular frameworks and
panel-and-hinge polyhedra, which are much less
understood than bar-and-joint frameworks.

Molecular Frameworks

A (hinged) molecular framework is a collection
of atoms connected by covalent bonds, in such
a way that the angles between pairs of incident
bonds are fixed. We note from the outset that
the fixed angle assumption, while predominant
in most molecular models, does not apply to
all atoms in nature. We work henceforth with
abstract molecular frameworks, with no mention
of the nature of the atoms. We first turn them
into mechanical structures made from rigid parts
interconnected via flexible joints to arrive at an
abstract model of a body-and-hinge structure.

To assess the rigidity of bar-and-joint polyhe-
dral frameworks, generically, we introduced an
abstract, combinatorial structure: a planar graph.
The characterization theorem for the generically
rigid polyhedral frameworks stated that this graph
must be triangulated and 3-connected. Similarly,
to a body-and-hinge framework we associate a
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multi-graph. A theorem, due to Tay and Whiteley,
characterizes minimally rigid generic body-and-
hinge frameworks in terms of a sparsity condition
of this graph.

Molecular Frameworks as
Body-and-Hinge Frameworks

A finite set of rigid bodies, together with a finite
set of rotatable hinges, rigidly attached to pairs
of bodies, forms a body-and-hinge framework.
The simplest example consists of two bodies
connected with one hinge, and has one internal
degree of freedom (dof).

Rigidity of generic body-and-hinge
frameworks.
To a body-and-hinge framework, we associate
a graph G, whose vertices correspond to the
bodies and edges to the hinges. The multi-graph
5G, obtained from G by taking each edge with
multiplicity 5, is called the Tay graph associated
to the framework.

A multi-graph on n vertices is .6; 6/-sparse if
every subset of n0 � n of its vertices spans at
most 6n0�6 edges. It is .6; 6/-tight if, in addition,
it has exactly 6n � 6 edges. We also say that the
graph satisfies the 6n� 6 counts hereditarily. If a
graph contains a spanning .6; 6/-tight subgraph,
we say that it is spanning, or combinatorially-
rigid; otherwise, we say it is combinatorially-
flexible. A graph which is not sparse is called
combinatorially-dependent.

Tay and Whiteley proved:

Theorem 14.3. A body-and-hinge framework is
minimally rigid if and only if its Tay graph is
.6; 6/-tight, and rigid if and only if its Tay graph
contains a .6; 6/-tight spanning subgraph.

Moreover, if the Tay graph is .6; 6/-sparse, the
framework is flexible and contains no redundant
hinges.

A body whose incident hinges are coplanar
can be viewed as a panel spanning the plane of its
hinges. A panel-and-hinge framework is a special
type of body-and-hinge framework, where all

the bodies are panels. Until recently, it was not
known whether Tay and Whiteley’s theorem also
holds for panel-and-hinge structures.

Another specialization arises when the hinges
incident to a body are all concurrent in one
vertex. This situation occurs in the modeling of
molecular frameworks.

A (hinged) molecular framework is a collec-
tion of atoms connected by covalent bonds in
such a way that the angles between pairs of inci-
dent bonds are fixed. To a molecular framework,
we will associate a body-and-hinge structure, as
follows.

An atom incident to more than two other ones
(coordination number at least 2), together with
the set of all the bonds and atoms incident to it, is
mapped to a 3D rigid body. We say that the body
is centered at the atom. This is an accurate model,
because of the assumption that the bonds incident
to each atom are rigidly attached to it. The bond
between two adjacent atoms, when viewed as
connecting the two bodies corresponding to these
two atoms, behaves like a hinge: it allows the
rotation of one body around the other.

A characteristic of molecular frameworks is
that the hinges incident to one atom are concur-
rent. Concurrency and coplanarity of lines are
dual concepts in projective geometry, which turns
statements about coplanar frameworks (panel-
and-hinges) to statements about frameworks with
concurrent hinges (molecular). Tay and Whiteley
conjectured that their theorem correctly char-
acterizes generic panel-and-hinge and molecu-
lar frameworks (respectively). Their guess was
proved true by Katoh and Tanigawa.

Theorem 14.4 (Rigidity of Generic Panel-and-
Hinge and of Molecular Frameworks). A
molecular body-and-hinge framework, or a
panel-and-hinge framework is generically rigid if
and only if its associated Tay multi-graph spans
six edge-disjoint spanning tree (or, equivalently,
a .6; 6/-tight graph). It is independent if and only
if its Tay multigraph is .6; 6/-sparse.

In the rest of this chapter we look at con-
sequences of this breakthrough result for the
generic minimal rigidity of molecular and panel-
and-hinge polyhedral models.
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Independent Frameworks by Edge
Subdivisions

In a molecular framework G with no leaves (ver-
tices of degree-1), all the edges become hinges.
Tay’s conditions for independence, respectively
minimal rigidity, state that 5m � 6.n� 1/, where
m is the number of edges in G. This implies
that the independent frameworks come from very
sparse graphs: the number of edges m is at most
6
5
.n � 1/, hereditarily. Frameworks with vertices

of degree at least 3 have at least 3
2
n edges. Hence,

such graphs lead to over-constrained molecular
frameworks, and the degree-of-dependency (at
least 3

2
n � 6

5
.n � 1/ � 3

10
n) is large (linear in

n).
Independent molecular frameworks must

therefore contain vertices of degree 2. To
eliminate dependencies we need to introduce
such vertices. A subdivision of a bond (an edge)
consists of splitting it in two by the placement of
an atom.

Proposition 14.5. Subdividing a bond either de-
creases by one the degrees-of-dependency, or
increases by one the degrees-of-freedom of a
molecular framework.

Proof 1 Let G be the graph associated to the
molecular framework; 5G is its associated Tay
graph. Notice that each bond of the molecular
framework induces an edge in G, except when
one of its incident atoms has coordination number
1 (it is incident to exactly one other atom, or
is a leaf ). Subdividing a bond incident to a leaf
atom amounts to adding a vertex of degree-1 to
G; this obviously increases the dofs by one. By
the structure theorem for .k; k/-sparse graphs,
applied for k D 6 to 5G, an edge either lies in
a rigid component or is a free edge joining two
vertices lying in two distinct rigid components.
But such an edge comes in groups of 5 parallel
edges in 5G and corresponds to an edge in G,
and to a bond in the original framework. If the
edge (bond) chosen for subdivision lies in a rigid
component (of m0 edges on n0 vertices) of the
molecular framework, then in 5G we have 5m0 �
6n0 � 6, with 5m0 � .6n0 � 6/ being its degree-
of-dependency. The subdivision increases by one

both the number of vertices and edges in G (and
by 5 the number of edges in 5G), thus decreasing
by one the degree-of-dependency (if non-zero),
or increasing by one the dofs (if the dod is zero).
If the edge is not in a rigid component, then the
subdivision creates a new component (consisting
of just one body, centered at the new atom) and
a new bond, i.e., adds 5 new edges to 5G. This
increases by one the dofs.

Given a molecular framework, define a 2-
chain as a maximal sequence of degree 2 vertices
(i.e., the endpoints have degree at least 3). The
length of a 2-chain is the number of vertices of
degree 2 contained in it. The edge subdivision op-
eration creates 2-chains. Proposition 14.6 below
captures a simple relationship between the length
of the 2-chains and a Tay-graph type of model-
ing for the original framework (with minimum
degree at least 3), described next.

Let G be a graph with minimum degree at
least 3 andG0 a subdivision of it, with no 2-chain
longer than 4. Let 5G0 be the Tay graph associ-
ated to G0, andG00 be a multi-graph associated to
G0 as follows: if two vertices of degree at least
3 in G0 are joined by a 2-chain of length d , for
some 0 � d � 5, thenG00 contains 5� d parallel
edges between the corresponding vertices.

Degrees-of-freedom (dof) and degrees-of-
dependency (dod). Let G be a .6; 6/ sparse
graph with n vertices and m � 6n � 6 edges.
The difference 6n� 6 �m counts its degrees-of-
freedom (dof), by analogy with the special case
(defined above) when the counting is applied to
evaluate rigidity, resp. flexibility of mechanical
frameworks. If the graph is rigid, but not sparse,
it has more than 6n � 6 edges; the surplus
m � .6n � 6/ counts its degrees-of-dependency
(dod). An arbitrary graph, however, may be both
flexible and dependent. To understand that, we
must look at induced subgraphs.

A rigid subset of vertices V 0 	 V (spanning
a tight-subgraph), and maximal (as a set of ver-
tices) with this property, is called a (rigid) com-
ponent. Any graph G which is not rigid can be
decomposed into components. If a rigid compo-
nent is replaced by a tight one (spanning the same
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vertex subset), the resulting graph G0 is sparse.
The degrees-of-freedom of G are, by definition,
the degrees of freedom of G0. The degrees-of-
dependency of G are obtained by summing the
dods of all the rigid components. We note that in
this case, the components are vertex-disjoint.

Proposition 14.6. There is a one-to-one corre-
spondence between the rigid component decom-
positions of the two Tay graphs 5G0 and G00, as
follows. The rigid components of 5G0 and G00
contain the same degree � 3 vertices, joined by
either 2-chains (in 5G0), or by the corresponding
multi-edges in G00. The free edges in G00 corre-
spond to 2-chains in G0 that do not fall into rigid
components.

The proof is a direct consequence of Propo-
sition 14.5. This proposition will be the basis
of simple algorithms described below. Another
direct consequence of the dof counts is the fol-
lowing corollary.

Corollary 14.7. Any 2-chain of length � 6 be-
longs to a flexible molecular framework.

To obtain independent subdivided frameworks
with a prescribed number k of degrees-of-
freedom, the splitting operation must be applied
in a specific manner (i.e., not all subdivisions will
work). Moreover, the subdivision is not unique.
Here is a simple algorithm for accomplishing this
task. It relies on the pebble game algorithm
of Lee and Streinu for .6; 6/-sparsity; for
completeness, a brief description of the pebble
game appears below.

Algorithm 14.8. (Eliminating dependencies
by edge subdivisions)
Input a molecular framework G of min degree
� 3, and an integer k
Output a subdivision G0 of G, with no dependent
edges and k dofs
1. Run the .6; 6/-pebble game on 5G.
2. For all edges ij of G: if d edges have been

rejected in 5G between the pair of vertices i
and j , insert, in the output framework, a 2-
chain of length d between the nodes i and j .

3. Arbitrarily subdivide in two k edges of the
graph obtained so far.

The correctness is a direct consequence of
Proposition 14.6.

Algorithm 14.9. (The (6, 6)-pebble game)
Input a multi-graphG
Output a maximal .6; 6/-sparse subgraph, and a
set of rejected edges

The algorithm maintains pebbles on the ver-
tices and a collection of already accepted edges
that are given an orientation and induce a directed
graph.

1. As initialization, 6 pebbles are placed on each
vertex of the graph.

2. The edges are considered one after another,
in an arbitrary order, and each one is either
accepted, if 7 pebbles can be gathered on its
two endpoints, or rejected otherwise.

3. Once an edge is accepted, it is oriented in an
arbitrary way (tail to head), and a pebble is
removed from its tail vertex.

4. The gathering of pebbles is performed by
searching for them, using a standard depth-
first search technique, in the directed graph of
all currently accepted edges.

5. When a pebble is found along a search path,
the orientation of the edges on the path is
reversed, and the pebble is “brought” to the
starting point of the path.

You can play the pebble game (and learn much
more about it) at http://linkage.cs.umass.edu/pg/.

Structural properties. A variation of the peb-
ble game algorithm, further described in Lee and
Streinu, maintains subsets of vertices that span
.6; 6/-tight components and achievesO.n2/ time
complexity. These tight components correspond
directly, via Tay’s Theorem, to rigid components
in molecular frameworks. This leads to further re-
finements in the analysis of edge subdivisions and
points to structural properties of flexible molec-
ular frameworks. Each time an edge belonging
to a rigid component is subdivided, it may either
eliminate a degree of dependency and maintain
rigidity, or create a degree of freedom. In the
latter case, the edge is called critical. Simple ap-
plications of the definitions lead to pebble game
algorithms to detect structural features such as

http://linkage.cs.umass.edu/pg/
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critical edges and rigid components in molecular
frameworks.

Polyhedral Molecular Frameworks

A molecular polyhedron is a molecular frame-
work whose incidence structure is that of a 3D
convex polyhedron or, more generally, a planar
graph that is not necessarily 3-connected. In a
molecular polyhedron there are no leaves and all
vertices have degree at least 3.

Example. Probably the best known (and cer-
tainly the most famous) example of a polyhedral
molecule is the C60 fullerene, or buckyball, see
Chapter 9. A feature of the buckyball is that all
atoms have coordination number 3, i.e., are inci-
dent with exactly 3 others. A simple calculation
of the number of edges shows that all molecular
frameworks with coordination number at least
3 are over-constrained. Below we show how to
compute their degree-of-dependency. Note that
when viewed just as bar-and-joint structures, they
are here highly flexible; the high degree of depen-
dency comes from the angle constraints between
the edges incident to the vertices.

Consider a polyhedral framework G D
.V;E; F /, with no multiple edges but possibly
with degree 2 vertices, and let G� D .V � D
F;E� D E;F � D V / be the dual planar graph,
which will contain no degree 2 vertices but may
have multiple edges. We present now a simple
yet surprising connection between frameworks
associated to such a pair of dual planar graphs.
Let G be treated as a molecular framework,
with edges corresponding to hinges, and let G�
(which may contain multiple edges) be treated as
a body-and-bar graph, with edges interpreted as
bars (not hinges).

Theorem 14.10. Let G be a subdivision of a
planar framework with no multiple edges, and let
G� be the dual planar multi-graph. Then:
1. 5G is .6; 6/-sparse with a dofs if and only if
G� is .6; 6/-rigid, with a dods, and vice-versa.

2. 5G is .6; 6/-tight if and only if G� is .6; 6/-
tight.

Moreover, the result holds for any .k; k/-sparsity
(not just k D 6).

Proof 2 Let v; e and f be the number of vertices,
edges and faces of G, and v�; e� and f � their
counterparts in the dual graph G�. We first prove
(2), the tight case. Since .k�1/G is .k; k/-sparse,
we have .k � 1/e � k.v � 1/, and the inequality
holds hereditarily for subsets of v0 � v vertices.
Then the number of faces is: f D e � v C 2 �
k
k�1 .v�1/�vC2 D v�1

k�1 C1. We have f �1 �
v�1
k�1 , and hence v�1 � .k�1/.f �1/. The dual

multigraph has e� � k
k�1 .v � 1/ D k.f � � 1/.

Equality holds exactly when 5G is .k; k/-tight,
and thusG� is also tight. Extending this argument
to rigid subgraphs with d dofs of 5G, we obtain
part (1).

Paneled Polyhedra

We switch now to our third polyhedral model and
address questions about the rigidity of paneled
polyhedra.

A polydron piece (named so after the popular
model building set Polydron — see http://www.
polydron.co.uk/) is a rigid flat piece of material
(a panel) in the shape of a convex polygon.
Along each edge, there is a hinge. This allows
the panels to snap together and create polyhedral
surfaces, which we call polydron structures or
surfaces. The hinges allow for the rotation of
the incident panels, and in general these surfaces
are flexible. When they close up into a convex
polyhedron, Cauchy’s Theorem applies and leads
to rigid structures. However, not all hinges are
necessary to keep the polyhedron together: for
instance, breaking the hinge along one edge (any
one would do) will not change the rigidity of the
polyhedron. This indicates that the structure is
over-constrained. More generally, we conjecture:

Problem 14.11. Show that if a paneled polyhe-
dron is cut along edges that form a matching in
the graph given by the 1-skeleton of the polytope,
then it remains rigid.

Breaking two of the hinges of a face intro-
duces flexibility, if the face is triangular, but not

http://www.polydron.co.uk/
http://www.polydron.co.uk/
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when it has more than four edges. More generally,
breaking two hinges incident to a vertex leads to
a flexible structure. This follows generically from
a variation on Cauchy’s rigidity theorem, since
the breaking of such a pair of hinges creates, in
the underlying planar graph, an additional (com-
binatorial) face which is a quadrilateral, and none
of the metrical constraints implies the rigidity of
this face.

A polydron structure is a special case of a
panel-and-hinge structure, but it is even more spe-
cialized, because not only are the hinges incident
to a face coplanar, but also the hinges incident to a
vertex are concurrent. The molecular theorem of
Katoh and Tanigawa does not cover this situation.
Indeed, we can see right away that there are
several differences. A ring of panels connected by
hinges has the same rigidity as a body-and-hinge
ring: for n hinges, the ring is minimally rigid iff
n D 6. For n � 5, it has 6 � n dependencies,
and for n � 7, it has n � 6 degrees of freedom.
However, when all the hinges are concurrent, the
situation is different.

Lemma 14.12. The collection of panels and
hinges incident to a vertex of a polyhedron is a
ring of panels with concurrent hinges (called a
vertex-ring) with 3 more dofs, respectively 3 less
dods, than predicted by the molecular theorem
for panel-and-hinges.

Proof 3 The framework described here appears
under the name of a single-vertex origami in
a paper by Streinu and Whiteley, where it is
shown that its generic rigidity properties coincide
with those of a planar bar-and-joint polygon. This
implies that a ring of n � 3 panels with all hinges
concurrent has n � 3 degrees-of-freedom.

However, if we cut the vertex ring to obtain
an open chain of panels incident at a vertex, the
degrees of freedom are n � 1 for n panels, and
coincide with what is predicted for an arbitrary
chain of panels, even though the hinges are all
concurrent.

If we eliminate the hinge between two panels,
we say that we cut the polyhedron along that
edge. Notice that cutting an edge creates two cut
vertex-rings. If we cut edges in such a way that

every vertex is incident to one cut edge, then we
do not anticipate any change in the rigidity of
the polyhedron, but this will allow us to reduce
to a panel-and-hinge framework on which the
Katoh–Tanigawa theorem applies. However, it is
not always possible to apply this cutting to all the
vertices, since this is equivalent to the existence
of a perfect matching in the 1-skeleton of the
polyhedron, which is not always possible (e.g.,
when the number of vertices is odd). Moreover,
even when this is possible, we may still be left
with dependent structures. For instance, cutting
along two non-adjacent edges of a tetrahedron
creates a 4-ring of panels, which is generically
dependent. Cutting any further leads to a flexible
structure. Putting back the two cut hinges leads to
more over-constraints. More generally, we would
like to eliminate dependencies (all of them, if
possible) by cutting edges, while maintaining
the rigidity of the framework. The tetrahedron
shows that this may not always be possible. This
example can be easily generalized.

Lemma 14.13. A rigid paneled polyhedron
(with all hinges present) is dependent. Cutting
the edges, while maintaining rigidity, may not
always lead to an independent framework.

A vertex-cut polyhedron has the property that
each vertex is incident to at least one cut edge.
This allows for the application of the panel-and-
hinge model to count degrees-of-freedom. The
following is a direct consequence of the discus-
sion in the previous section.

Lemma 14.14. A vertex-cut polyhedron is mini-
mally rigid if and only if it is minimally rigid as a
panel-and-hinge framework.

As we have seen, not all polyhedra can be
turned into minimally rigid ones after a series of
cuts. We leave the following as an open problem:

Problem 14.15. Characterize the polyhedra
which become minimally rigid after a series
of vertex-cuts.

Even so, we would like to find a maximal,
resp. maximum set of cuts which leave a pan-
eled polyhedron still rigid (albeit perhaps over-
constrained).
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Problem 14.16. Give a polynomial time algo-
rithm to find a maximal, resp. maximum set of
vertex-cuts that maintains the polyhedron’s rigid-
ity.

Assume now that the cuts are given. Can we
characterize the flexibility, resp. dependency of
the polyhedron? If all the vertices are cut, we
can simply apply Tay’s counts, because this case
is covered by the Katoh–Tanigawa proof of the
molecular conjecture.

Problem 14.17. Characterize the rigidity
parameters (degrees of freedom and degrees
of dependency) of cut polyhedra where not all
vertices are incident to a cut edge.

We do not have yet a precise answer, but we
offer now a simple necessary condition.

In a 3-connected planar graph, any simple
cycle is separating, and induces two disk-like
polyhedral surfaces. Let us focus on one of them.
Assume that it is not a face, hence it contains
inside at least one other vertex. For exactly one
vertex, its rigidity is captured by Lemma 14.12.

In either case, we must account for the adjustment
required by the un-cut vertex rings.

We propose the following necessary condi-
tions for counting rigidity parameters (dofs and
dods) of cut polyhedra.

Sparsity counts for cut polyhedra:
Let G� be the dual graph of the original,

uncut polyhedron with 1-skeleton G. For each
cut hinge, eliminate its edge from the dual graph.
Mark in G� the cut and the uncut vertices. Then
the following are necessary conditions for the
cut polyhedron to be minimally rigid: consider
all simple cycles, and the corresponding disks
which are not faces of the polyhedron. If the disk
contains m panels, h (uncut) hinges, and k uncut
vertices, then the following condition must be
satisfied:

5h � 6.m� 1/C 3k:

For illustrations of all this and more, see http://
linkage.cs.umass.edu/shape/.

http://linkage.cs.umass.edu/shape/
http://linkage.cs.umass.edu/shape/
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Duality of Polyhedra

Branko Grünbaum and G.C. Shephard

The expression “mathematical folklore” refers
to the results that most mathematicians take for
granted, but which may never have been proved to
be true. (Indeed, some of them are not true.) It is
widely believed that the first person to call attention
to this phenomenon was the French mathematician
Jean Dieudonné.

An author who wishes to use material from
mathematical folklore faces two unpleasant alter-
natives: either to quote the result (qualified by a
phrase such as “it is well known that”) or to prove
it. The latter course may lead a referee or reviewer
to ridicule the effort, and possibly identify it
with an ancient result from the Upper Slobbovian
Journal of Recreational Mathematics, or some
other equally obscure source. Usually the situ-
ation is even worse because much folklore is
imprecisely formulated (if, indeed, one can say
that it is formulated at all) and quite frequently it
is definitely wrong. The purpose of this chapter
is to show that many of the “well-known facts”
about duality of polyhedra are of latter kind, and
it is well worth some effort to clarify the situation
and arrive at the truth.

B. Grünbaum
Department of Mathematics, University of Washington,
Box 354350, Seattle, WA 98195, USA,
e-mail: grunbaum@math.washington.edu

G.C. Shephard
School of Mathematics, University of East Anglia,
Norwich, NR4 7TJ, UK,
e-mail: g.c.shephard@uea.ac.uk

So far as we can ascertain, some if not all
of the following “facts” are generally accepted
among working mathematicians:

1. For every polyhedron P there exists a dual
polyhedron P �, and the dual of P � is equal
to P , or at least is similar to it.

2. If a polyhedron P has any convexity, symme-
try, transitivity, or regularity properties, then
the same is true, possibly in an appropriately
modified form, for P �.

3. The dual of a polyhedron can always be ob-
tained by reciprocation with respect to a suit-
able sphere or more general quadric.

4. Duality between polyhedra is consistent with
the combinatorial duality of their boundary
complexes, that is, the cell complexes whose
cells are the proper faces of the polyhedron.
Moreover, in the particular case of polyhedra
in three-dimensional Euclidean space, duality
is consistent with the duality of planar graphs.

5. With appropriate interpretations, projective
duality, duality in algebra and duality
(conjugacy) in functional analysis are
consistent with duality for polyhedra.

Before we examine these statements in detail,
it is necessary to define some of the terms that
we shall use. For simplicity, we restrict atten-
tion to polyhedra in Euclidean space of three
dimensions, that is, to compact 2-manifolds inE3

which have no boundary and can be expressed
as a finite union of plane polygonal regions.

M. Senechal (ed.), Shaping Space, DOI 10.1007/978-0-387-92714-5 15,
© Marjorie Senechal 2013
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If these regions are such that no two adjacent
ones are coplanar, then they are called the faces
of the polyhedron; the edges and vertices of the
polyhedron are the edges and vertices of its faces.
We shall sometimes use words like “convex”
and “star-shaped” to describe a polyhedron P
though, strictly speaking, these terms apply to the
polyhedral solid bounded by P . A vertex or an
edge of P is said to be convex if the intersection
of the polyhedral solid bounded by P with a
sufficiently small spherical ball, centered at the
vertex or at an interior point of the edge, is a
convex set.

By the elements of a polyhedron P we mean
the family consisting of all the faces, edges,
and vertices of P . Two polyhedra P1 and P2
are isomorphic (or combinatorially equivalent,
or of the same type) if there exists a one-to-one
correspondence (bijection) between the elements
of P1 and the elements of P2 which preserves the
relation of inclusion between the elements. In a
similiar manner,P1 and P2 are called combinato-
rial duals of each other if there exists a bijection
that is inclusion-reversing; this is the concept
referred to in statement 4. This extends in a nat-
ural way to topological complexes more general
than polyhedra (in particular, to planar graphs or
maps, and to maps on other 2-manifolds). The
notions have their roots in the eighteenth-century
works of Euler and Meister. Dual polyhedra are
called reciprocals with respect to a sphere S (see
statement 3) if each face of one is the polar with
respect to S of the dually corresponding vertex of
the other.

Now let us examine statements 1–5. The first
is formulated in a misleading way since it seems
that, in general, it is impossible to define in any
useful or canonical way a unique polyhedron P �
as the dual to a given polyhedron P . In other
words, although polyhedra that are combinatorial
duals of P may exist, there appears to be no
reasonable way in which one of them can be
singled out and called the dual polyhedron to P .
At best, we must therefore think of duality as a re-
lation between isomorphism classes of polyhedra
rather than between individual polyhedra. In this
generalized sense, the second part of statement

1 is true, but most parts of statement 2 become
vacuous.

If we consider only convex polyhedra—which
may be thought of as a very simple special case—
reciprocation can always be applied; as the cen-
ter of the reciprocating sphere S we may take
any point in the interior of the polyhedral solid
enclosed by the polyhedron. In this way we can
construct a convex polyhedron P � dual to P ,
but even this does not lead to a unique dual
since there is arbitrariness in the choice of the
center and the radius of the sphere S . In fact,
all the duals obtained in this way are projectively
equivalent to each other, so the same difficulties
as before still arise except that projective equiv-
alence classes, rather than isomorphism classes,
need to be considered.

In this connection we remark that recipro-
cation is the only known method of actually
constructing a polyhedron P � dual to a given
polyhedron P . In some special cases which we
shall now examine, reciprocation can lead to
an essentially unique dual polyhedron, and then
statements 1–4 become true for this restricted
meaning of duality. It seems likely that the exis-
tence of these special cases, and the emphasis on
them by many authors has led to the misconcep-
tion that these statements are true more generally.

The first special case is when P is one of
the five regular polyhedra. Such polyhedra have
a natural center O which is the circumcenter,
incenter, and centroid of P . If we choose S as
any sphere centered at O , then the reciprocal is a
dual polyhedron P � (defined within a similarity,
its size depending upon the radius of S ) which is
also regular. The reciprocal of P � with respect
to the same sphere S is P , and assertion 1 is
true. In particular, if S is chosen so that the
edges of P are tangent to it, then the edges of
P � have the same property and intersect those
of P at right angles. This leads many authors to
describe a certain regular octahedron as the dual
of a given cube, a certain regular icosahedron as
the dual of a given regular dodecahedron, and
a regular tetrahedron as self-dual. Similar is the
situation concerning the Archimedean (uniform)
polyhedra and the polyhedra reciprocal to them.
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There are more general cases in which a nat-
ural center of P exists. Suppose P is isogonal;
that is, the symmetry group of P is transitive on
its vertices. Then all the vertices of P lie on a
sphere S which may be used in the process of
reciprocation. To each vertex of P there corre-
sponds a face of the reciprocalP �, and the planes
of these faces are the tangent planes to S at the
vertices of P ; moreover, P � is isohedral; that
is, its symmetry group is transitive on its faces.
Similar considerations apply if P is isohedral
and then P � is isogonal, or if P is isotoxal (the
symmetry group of P is transitive on the edges of
P , which are therefore tangent to a sphere) and
then P � is isotoxal as well. In a similiar way if P
has an axis of rotational symmetry R, or a plane
of reflective symmetryE , then reciprocation with
respect to a sphere centered at a point of R, or of
E , will lead to a dual polyhedron P � which has
the same symmetry as P . Therefore in all these
cases statements 1–4 are true.

It should be carefully noted that the discussion
in the previous two paragraphs depended essen-
tially on the fact that only convex polyhedra are
under consideration. All the situations in which
statement 5 can be sucessfully applied also deal
with such polyhedra only. If we drop the con-
vexity restriction, then despite some encouraging
signs, things go sadly awry.

These encouraging signs appear when we
consider examples such as the following, which
are culled from the rather meager literature
on nonconvex polyhedra. The icosahedron
in Figure 15.1a and the dodecahedron in
Figure 15.1b are duals of each other and have
the same group of symmetries. The first is
isogonal and the second is isohedral; nonconvex
edges of both correspond to each other. Another
dual pair consists of the well-known Császár
polyhedron and the less well-known but
remarkable Szilassi polyhedron. The Császár
polyhedron is a triangulation of the torus with
7 vertices, 21 edges, and 14 triangular faces
and the Szilassi polyhedron is toroidal with 7
hexagonal faces, 21 edges, and 14 vertices. These
polyhedra are not only duals of each other but
also have analogous symmetry and convexity
properties. Such examples may seem to vindicate

a

b

Figure 15.1. A dual pair of nonconvex polyhedra: (a) an
isogonal icosahedron; (b) an isohedral dodecahedron.

the folklore and imply that it may be possible to
prove the statements listed at the beginning of
this chapter once we have learned how to deal
with nonconvex polyhedra and, in particular, how
to construct their duals.

This last is, in a sense, the nub of the problem:
there is no difficulty finding topological com-
plexes that are duals of any given polyhedron,
but finding a dual polyhedron is a much more
elusive goal. An indication that this goal may
be unattainable is implied by our results con-
cerning isohedral and isogonal polyhedra: isohe-
dral polyhedra are always star-shaped and have
star-shaped faces, whereas isogonal polyhedra
have convex faces but need not even be simply
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a b

c d

e

Figure 15.2. An illustration of the problem of duality for
nonconvex polyhedra. The convex polyhedra illustrated in
(a) and (b) are duals of each other, but the isomorphic
nonconvex polyhedra in (c), (d), and (e) have no duals that
preserve convexity properties.

connected. Hence these kinds cannot be related
by duality.

To illustrate some of the difficulties, we shall
consider a very simple example. In Figure 15.2a
we show a polyhedronP which may be described
as a cube with a four-sided pyramid adjoined to
one of its faces. Reciprocation with respect to a
suitable sphere (for example, the circumsphere
of the cube) leads to the truncated octahedron of
Figure 15.2b, which is therefore a dual P � of
P . In this particular case it happens that P and
P � are isomorphic, so P is self-dual, although
this fact is only incidental to the following dis-
cussion. Now consider the nonconvex polyhedron
P1 of Figure 15.2c. Since this is isomorphic to
P , every dual of P1 will be isomorphic to P �.
However it is not hard to see that no such dual has
corresponding convexity properties: P1 has four
nonconvex edges meeting at a vertex, so a dual
ought to have four nonconvex edges bounding

a quadrangular face. Further, the four congruent
nonconvex vertices of P1 ought to correspond to
four congruent nonconvex quadrangular faces of
its dual. Examination of the various possibilities,
such as those shown in Figure 15.2d, e, shows
that no such dual exists. Hence, even in this
very simple case, convexity properties cannot be
preserved in duality.

It may seem that there is a very simple way out
of this impasse. Let us start with any polyhedron
P and then construct Q in the following way.
After choosing a sphere S centered at an interior
point of P , we define the vertices of V �

j of Q
as the polars with respect to S of the faces Fj
of P . If two faces F1 and F2 of P meet in
an edge, then the join of corresponding vertices
V �
1 and V �

2 is defined to be an edge of Q.
If F1; F2; : : : ; Fr is a circuit of adjacent faces
around a vertex of P , then the corresponding
vertices of V �

1 ; V
�
2 ; : : : ; V

�
r are coplanar and so

may be used to define a face of Q. Proceeding in
this way, all the elements of Q may be defined,
and so Q is completely determined. (Alterna-
tively, and equivalently, the construction may be
reversed: consider the set of planes that are the
polars of the vertices of P , and then the edges
and vertices of Q are defined as intersections
of suitable subsets of these planes.) It is easy to
verify that this procedure can be carried out for all
polyhedra P , and that Q has the same symmetry
and convexity properties as P . So it appears that
Q is an obvious candidate for the dual of P .
Unfortunately this is not the case since in general
(and, in particular, if P is not convex) Q will
not even be a polyhedron as we have defined the
word. The union of the faces ofQ will not form a
manifold either because they are not polygons or
because they are mutually intersecting.

We illustrate these assertions by an example
that is chosen so as to be computationally and
graphically easy to follow. It is not, in any sense,
unique as the reader will discover by using the
same procedure to find “duals” of the polyhedra
in Figure 15.2c–e, or of the toroidal isogonal
polyhedra described in our paper “Polyhedra with
transitivity properties.”

Consider the polyhedron P in Figure 15.3a.
It is obtained from the octagonal prism in
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Figure 15.3. A nonconvex isogonal antiprism (a), with the same vertices as a prism (b). There exists no polyhedron
dual to the antiprism, if “polyhedron” is understood in the usual sense.

Figure 15.3b by replacing its mantle of 8 regular
faces by one of 16 triangles. The polyhedron P
has convex faces and is isogonal, but since some
of its edges and all of its vertices are nonconvex,
so a dual P � (if it exists) should have convex
vertices, nonconvex faces, and be isohedral. Let
us attempt to find such a dual by applying the
construction for Q described in the previous
paragraph. Take S (the reciprocating sphere)
as the sphere that passes through the vertices
of P . The set of planes tangent to S at these
vertices (their polars) is easily visualized; it is
the set of planes determined by the faces of a
regular octagonal bipyramid. These will be the
face planes of Q.

To determine the edges and vertices of Q we
proceed as described above. There is an imme-
diate simplification: the fact that P is isogonal
implies that Q will be isohedral, so it is only
necessary to determine one face of Q. The other
faces will then arise by applying the symmetries
of P to this face. Let the plane T be tangent to
S at the vertex A0 of P . Apart from the tangent
plane to S at the point E , which is parallel to T ,
each of the other 14 face planes will meet T in
a line. In Figure 15.4 we show the arrangment
of 14 lines in T obtained in this way. Each line
is marked with a letter indicating the vertex of
P at which the corresponding plane touches S .
The four faces b; c; d; and e of P contain a
vertexA0, so the corresponding points b�; c�; d�;
and e� (defined as intersections of appropriate
sets of lines in T ) are the vertices of Q that
lie in T . Since b; c; d; e form a circuit of faces
at the vertex A0 of P , the points b�; c�; d�; e�
(in this order) should form a circuit of vertices

F

H

E′

D′ C′ B′H′G′ F′ C D

B

E′

A

D′

DB′C GHFBG′

A 

e*

c*

b* d*F′

C′ H

G

Figure 15.4. The arrangement of 14 lines in a plane,
which can be used to prove the nonexistence of a poly-
hedron dual to the antiprism in Figure 15.3a.

around the corresponding face of Q. This is the
nonconvex quadrangular face that we have been
seeking. Unfortunately, it is not only nonconvex,
but it is also self-intersecting. Hence it is not a
polygon and so it is not acceptable as a face of
any polyhedron. This Q is not a polyhedron, and
our attempt to find a dual of P has failed.

We can summarize the situation by saying
that in trying to establish a dual of each three-
dimensional polyhedron we can either prescribe
the character of the polyhedron as a 2-manifold,
or we can adopt a wider definition of “polyhe-
dron” admitting mutual intersections and self-
intersections of the polygonal faces. In the latter
case, as we have seen, duals can always be
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constructed by polarity. Then, if interpreted in
a suitable manner, statement 2 at the beginning
of this chapter will be true. It is interesting to
note that this generalization of the concept of
a polyhedron was adopted in part some 120
years ago by Möbius, and has often been applied
(without any explicit definitions) in the study of
regular, uniform, or other very special polyhedra.
However it seems that no systematic study of
“polyhedra” in this sense has ever been carried
out, although there seems to be no reason why
a completely satisfactory theory could not be
developed.

So it appears that the various statements con-
cerning duality made at the beginning of this
chapter are mutually incompatible, and that the

folklore is only a superstition! It may well be
that this is the case; the brunt of our thesis is
that, with the approaches to duality followed so
far, this incompatibility is inescapable. It is not
impossible, of course, that with some suitable
generalizations, a theory might be formulated in
which all the different aspects will fall into place
so that folklore will be vindicated. We would
like to suggest that the chief need at present is a
theory of topological 2-manifolds in which faces
may mutually intersect and even self-intersecting
polygons are admissible as faces. We know of
no attempts at such a theory, but it seems that it
would be worth the effort to develop it, especially
as it could have far-reaching applications and
implications for other branches of mathematics.
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Combinatorial Prototiles

Egon Schulte

Tiling problems have been investigated through-
out the history of mathematics, leading to a vast
literature on the subject. Our present knowledge
of tilings of the plane is quite good, although
there are of course many open problems even in
the comparatively elementary and easily accessi-
ble levels.

As soon as we raise the dimension of the
space from two to three or higher, our knowledge
about tilings becomes comparatively poor. This
is probably due to the fact that it is much harder
to visualize the situation. In particular, consid-
erations about the local structure of tilings are
needed.

Before turning to the subject of this chapter,
let us recall some definitions and notations.
Although most of the results I will discuss can
be extended to higher dimensions, I will restrict
my considerations to ordinary three-dimensional
space. Thus the underlying space for our tilings
will be Euclidean 3-space, E3, and we will tile
this space by convex 3-polytopes, that is, with
bounded convex polyhedra. A tiling of Euclidean
3-space is a family of convex 3-polytopes, called
the tiles of the tiling, which cover the space
without gaps or overlaps. This means that every
point in space is contained in a tile, and no two
tiles have common interior points.

E. Schulte
Department of Mathematics, Northeastern University,
Boston, MA 02115, USA
e-mail: schulte@neu.edu; http://www.math.neu.edu/
people/profile/egon-schulte

To avoid pathological situations, we will
always assume that our tiling is locally finite.
By a locally finite tiling, we mean a tiling that has
the following property: every point in space has a
neighborhood that meets only finitely many tiles.
Of natural interest are those tilings which respect
the facial structure of the tiles or, more precisely,
the facial structure of the boundaries of the tiles.
These are exactly the face-to-face tilings. A tiling
is called face-to-face if the intersection of any
two tiles is either empty or a face of each; this
means that two tiles may share a vertex, an edge,
or a facet. Note that this definition of a face is
slightly different from the usual one. Here a face
can be 0-, 1-, or 2-dimensional. I will use the
word “facet” to mean a two-dimensional face
of a 3-polytope. (More generally, a facet of a
(d + 1)-polytope will be a d -dimensional face.)

A tiling of Ed is called normal if its tiles
are uniformly bounded, that is, if there are two
positive real numbers r1 and r2 such that each
tile contains a ball of radius r1 and is contained in
a ball of radius r2. Obviously, normal tilings are
necessarily locally finite. If each tile in a tiling
happens to be congruent to one of the tiles in a
finite family of k polytopes, then we say that the
tiling has k isometric prototiles. Clearly such a
tiling must be normal.

Finally, we recall that two polytopes P and
Q are isomorphic, or combinatorially equivalent,
or of the same combinatorial type, if there is
an inclusion preserving bijection between the
set of faces of P and the set of faces of Q
(for 3-polytopes, that means, between the set of
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Figure 16.1. A combinatorial octahedron. The dotted
line indicates that the four median vertices are not copla-
nar.

vertices, edges, and facets of P , and the set of
vertices and edges and facets ofQ). For example,
the polytope in Figure 16.1 is combinatorially
equivalent to the octahedron. Its faces are 3-gons
and they fit together exactly the same way as
the faces of the octahedron. Thus combinatorially
these polytopes are the same, although they have
totally different shapes. Notice, for instance, that
the base of the polyhedron does not lie in a
plane. If every tile of a tiling is combinatorially
equivalent to a given 3-polytope P , we say that
the tiling is monotypic. The type of the polytope
is the combinatorial prototile of the tilings.

Nontiles

One of the main problems in the history of
tilings of Euclidean 3-space is to characterize
those convex polytopes, congruent copies of
which tile space in a face-to-face manner.
In other words, we are interested in finding
those polytopes which play the role of triangles,
quadrangles, pentagons, and hexagons in the
plane. The answer to this extremely difficult
problem is completely out of reach at the
moment; we don’t even know whether there
are only finitely many combinatorial types
of 3-polytopes that give such a tiling. Now

whenever people cannot solve a problem, they
study related problems and hope that by doing
so they will get additional information about the
original one.

Thus we will discuss the three-dimensional
analogue of the well-known fact, first observed
by Schlegel in 1883, that for each n � 3, the
Euclidean plane can be tiled by convex n-gons.
Now the tiles in a tiling of the plane by n-gons,
although they have the same number of edges,
cannot be congruent if n > 6 (and indeed the
tiling cannot be normal). Thus the tiles in such
a tiling are combinatorially equivalent, but not
congruent.

The combinatorial analogue of the tiling
problem for higher dimensions was posed by
Ludwig Danzer at a symposium on convexity in
1975. He suggested replacing the requirement of
congruence for the tiles of a tiling of Ed by the
much weaker requirement of the combinatorial
equivalence of the tiles. This raises the following
question:

Given a convex 3-polytope P , is there a
locally finite tiling of space by convex polytopes
isomorphic to P ?

In other words, we would like to know whether
every polytope is a combinatorial prototile of a
monotypic tiling of three space. In particular, we
would be interested to find face-to-face tilings
that respect the facial structure.

Just as in the plane, this problem would
be nonsense with combinatorial equivalence
replaced by congruence of the tiles. But as
long as we are only interested in combinatorial
isomorphism, we have a great deal of freedom in
the choice of the particular metrical shape of the
tiles, so this is actually a reasonable problem. The
general belief was that the answer to this problem
should be positive, even in the strongest sense.
That is, every convex three polytope was assumed
to be the combinatorial prototile of a monotypic
face-to-face tiling of three space. However, this
is not true; in fact, the cuboctahedron, which is
a very well known polyhedron (Figure 16.2),
is not the combinatorial prototile of a face-
to-face tiling: There is no (locally finite, face-
to-face) tiling of space by convex polytopes
combinatorially equivalent to the cuboctahedron.
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Figure 16.2. The cuboctahedron.

The proof is as follows. Let us look at the
vertices of the cuboctahedron. They are all 4-
valent and they are all surrounded by triangles
and quadrangles in an alternating way: if we
go around a vertex, then we meet a triangle, a
quadrangle, a triangle, and a quadrangle. Thus it
is natural to associate the vertices of the cubocta-
hedron the type [3,4,3,4]. It is important that it is
of alternating type.

Now let us assume that there is a tiling of
Euclidean space by polytopes that are combinato-
rial cuboctahedra and that fit together in a locally
finite face-to-face manner. We fix one particular
vertex of the tiling, that is, a vertex of one of
the tiles, and call it X . This vertex is contained
in many tiles. We choose a sufficiently small
sphere centered at the vertex and consider the
intersection of the sphere with the tiling. Now
the tiling cuts out a spherical complex on our
sphere. The facets of the spherical complex are
just the intersections of the sphere with the tiles
of the tiling which contain the fixed vertex X .

We will show that this spherical complex has
quadrangular spherical facets and that each ver-
tex is even-valent. This will immedately give
us a contradiction, since Euler’s theorem implies
that a spherical complex without triangular facets
must have a 3-valent vertex. (To see this, write
Euler’s formula in the form 2F �2EC2V D 4 or
.2F �E/C .2V �E/ D 4. If the complex has no
triangular facets, then counting the edges of the
complex by going around each facet, and taking
into account that each edge is shared by two
facets, we have 2E � 4F , so 2F � E � 0. Sim-
ilarly, if the spherical complex has no 4-valent

Figure 16.3. The facet of a spherical complex deter-
mined by a cuboctahedron with vertex X .

vertices, then 2V �E � 0. But these inequalities
are not simultaneously compatible with Euler’s
formula.) This means that our spherical complex
cannot exist and so the tiling cannot exist. So
all we have to do is to show that our spherical
complex has spherical quadrangles and even-
valent vertices.

The first is easy. Why does the spherical
complex have quadrangular facets? Recall
that the facets are just the intersections of
the sphere with the tiles that contain the
fixed vertex X . Since the polytopes in our
tiling are combinatorially cuboctahedra, the
vertex X has valence 4 in each polytope that
contains it. Thus the sphere cuts out a spherical
quadrangle in each polytope, and so the spherical
complex has spherical quadrangles as facets
(Figure 16.3). Next, why are the vertices even-
valent? The vertices of the spherical complex are
just the intersections of the sphere with the edges
of the polytopes that contain the fixed vertex X .
What are the edges of the spherical complex?
They are just the intersections of the sphere with
the facets of the tiles that contain X . The facets
of our tiles are triangles and quadrangles because
the tiles are all combinatorial cuboctahedra and
so, since the tiling is face-to-face, we can assign
to each edge of the spherical complex one of the
labels 3 or 4, according to the number of vertices
of the facet which defines the edge.

And now comes the main point: since the
vertices of the cuboctahedron are surrounded by
triangles and quadrangles in an alternating way,
the vertices of the spherical complex must also
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be surrounded in an alternating way. That means
that the edges which come together in the vertex
X can be labeled 3,4,3,4,. . . in an alternating
way. But this means that the complex has even-
valent vertices and, as we have seen, quadrangu-
lar facets. This spherical complex cannot exist,
and so the tiling cannot exist.

In fact, this is a very strange result, because
one would expect that such a nice symmetric
polytope should give such a tiling. Indeed, the
tetrahedron, octahedron, icosahedron, and dodec-
ahedron, which are not isometric spacefillers,
are combinatorial prototiles of monotypic tilings.
The cube is even an isometric space-filler. Our
counterexample reveals a very strange and very
interesting aspect of the theory of tilings by
convex polytopes: there seems to be no intrinsic
relation between the regularity or symmetry of
properties of the polytope and its tiling prop-
erties. In fact, in higher dimensions (seven or
higher) it turns out that the regular crosspolytope
(the higher dimensional analogue of the octa-
hedron) does not give a face-to-face tiling by
combinatorially equivalent polytopes.

Once we have a counterexample to our
problem, we can ask to what extent we can expect
positive results. The ideal situation would clearly
be to give a characterization of all those polytopes
which give a tiling, but this seems to be rather
hopeless. The next best thing would be to try to
determine certain classes of polytopes which do
or do not give such tilings. For example, with the
techniques used in the proof above we can prove
this generalization:

Theorem 16.1. Let P be a convex 3-polytope
and x1; x2; : : : ; xk the vertices of P , all of
even valence. Assume that it is possible to
assign to each xi .i D 1; 2; : : : ; k/ its type
Œpi;1; pi;2; : : : ; pi;2m� in such a way that

(
k[
iD1

pi;1; pi;3; : : : ; pi;2m�1

)

\ (
k[
iD1

fpi;2; pi;4; : : : ; pi;2mg
)

D ;

Then P is a nontile.

Figure 16.4. The icosidodecahedron.

Figure 16.5. The polytope P5. The dotted lines indicate
a median cross section (they are not hidden edges).

That is, P does not give a locally finite face-
to-face tiling.

With the help of this theorem, it is easy to
construct many nontiles. If we start with a simple
3-polytope without triangular facets and cut off
its vertices up to the midpoints of the edges
incident with them, we obtain a nontile. (This
operation, due to Steinitz, is denoted I.G/ by
Grünbaum.) For example, starting in this way
from the octahedron and icosahedron we ob-
tain the cuboctahedron and icosidodecahedron
(see Figures 16.2 and 16.4). Also, an infinite se-
quence of nontiles Pn can be obtained by appling
the operation I.G/ to prisms over n-gons, where
n � 4; see Figure 16.5.

The resulting polytopes have 3n vertices and
3n C 2 facets. All vertices are 4-valent and of
type [3,4,3,n]. For n D 4 we get a polytope
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combinatorially equivalent to the cuboctahedron.
One might conjecture that the cuboctahedron
(with 12 vertices and 14 facets) is the “smallest”
nontile in three dimensions. It is worth noting
that no simple or cubical nontiles are known
yet. (A 3-polytope is called simple or cubical if
all its vertices are 3-valent or all its facets are
quadrangles, respectively.) I conjecture here that
simple nontiles exist, but I doubt the existence of
cubical nontiles.

As an example of a class of 3-polytopes which
do tile E3, Branko Grünbaum, Peter Mani, and
Geoffrey Shepard have shown that all simplicial
polytopes give locally finite face-to-face tilings.

Construction of Monotypic Tilings

One can also find very nice tilings of E3 by
projections of convex 4-polytopes. Intuitively we
expect certain connections between the properties
of 3-polytopes which are combinatorial prototiles
of monotypic tilings of E3 and 3-polytopes
which are the 3-facet types of equifaceted 4-
polytopes in E4. (A .d C 1/-polytope is said
to be equifaceted of type P if all its facets
are isomorphic to a single d -polytope P . P
is a nonfacet if it is not the facet-type of an
equifaceted .d C 1/-polytope.)

Certainly a combinatorial prototile will not
be a facet type in general, since this does not
even hold in dimension 2; in fact, by Euler’s
theorem, a 3-polytope cannot have all its facets
n-gons with n > 5, while on the other hand there
are no restrictions on n for tilings of the plane
by convex n-gons. However it has been proved
that the reverse is true: every 3-polytope that
is the facet-type of an equifaceted 4-polytope is
also the combinatorial prototile of a locally finite
face-to-face tiling of E3. (It follows that all of
the nontiles described above are also nonfacets!)
The monotypic tiling of E3 is obtained from
the 4-polytope by an infinite sequence of pro-
jections. The construction works equally well in
higher dimensions. Unfortunately this projection
method produces non-normal monotypic tilings.
However, in some instances another projection

Figure 16.6. The fundamental region for the summetry
group of the regular tessellation ofE3 by cubes.

method provides normal face-to-face tilings with
only finitely many isometric prototiles:

Theorem 16.2. Let the convex 3-polytope P be
realized as the facet-type of an equifaceted con-
vex 4-polytope Q with at least one 4-valent ver-
tex. Letm denote the number of facets ofQ. Then
P is the combinatorial prototile of a monotypic
face-to-face tiling ofE3 with onlym�4 isometric
prototiles.

To prove this, let X be a 4-valent vertex of
Q and T the 3-simplex whose vertices are the
four neighboring vertices of X in the boundary
complex of Q. By projecting Q centrally from
X onto the affine hull of T , we get a face-to-face
dissection of T into convex polytopes isomorphic
to P . The 3-polytopes in the dissection are the
images of facets of Q under the projection.

Next, we make use of the well-known fact
that the fundamental region for the symmetry
group of the regular tessellation of E3 by cubes
is a 3-simplex T 0 (see Figure 16.6). Mapping
T affinely onto T 0 we turn the dissection of T
into a dissection of T 0. Then, if we apply all
the symmetries of the tessellation, we obtain a
tiling of the whole space, in which each tile
is congruent to one of the 3-polytopes in the
dissection of T 0. Since the number of 3-polytopes
in this dissection equals the number of facets of
Q not containing X , that is, m � 4, the tiling has
at most m � 4 isometric prototiles. In particular,
the tiling is monotypic of type P , since P is the
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Z
Qx
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Figure 16.7. A face-to-face tiling of E3 by hexagonal
pyramids with three prototiles, derived from the usual
hexagonal tessellation of the plane. To each hexagon F
of the tessellation belong seven pyramids with a common
apex Z. One has base F and is surrounded by six
congruent pyramids, whose bases Fe share an edge e
with F and lie in planes orthogonal to F . To each vertex
X of the tessellation corresponds a nonconvex hexagonal
pyramids with base Qx . By taking suitable layers of this
arrangement a tiling ofE3 by hexagonal pyramids arises.

facet-type of the equifaceted 4-polytope Q. The
tiling is face-to-face because T 0 is a fundamental
region for the symmetry group of the tessellation
of E3 by cubes, and that group is generated by
the reflections in the planes bounding T 0.

Another generalization of the tiling problem
would be to relax the condition that the tiles be
face-to-face. That is, we can ask: Is every poly-
tope the combinatorial prototile of a tiling that
is not necessarily face-to-face? And here we get
the suprising result that the answer is definitely
positive. But the construction of these tilings is
too complicated to discuss it in detail here.

Finally, if we are willing to relax the
conditions that our tiling must be convex, then
we get some nice things. Figure 16.7 is a tiling by
hexagonal pyramids, derived from the hexagonal
tiling of the plane. It has only three types of
pyramids; one of them is not convex.

Related Problems

So far our investigations of monotypic tilings
were restricted to the case where the tiles of
the tilings were topological balls, generally
convex polytopes. But of course, we can as
well consider combinatorial prototiles of other
homeomorphism types, and we can ask if they
admit locally finite tilings of the Euclidean space
or not. Of particular interest is the case where
the polytope P is a “polyhedron” in E3 bounded
by a closed polyhedral 2-manifold, for example
a toroid. There are examples of space-filling
toroids On the other hand, the existence of
toroidal nontiles is almost trivial. In fact, if a
toroid has only vertices of valence > 5, then
isomorphic copies of it will not fit together to
form a vertex-figure of a locally finite face-
to-face tiling: this is an easy consequence of
Euler’s theorem applied to the spherical complex
determined by the vertex-figure. Polyhedra with
this property have recently been studied.

Another direction for research is offered by
replacing the Euclidean space as the underlying
space of the tilings by a topological 3-manifold
M , and investigating monotypic tilings of M by
topological polytopes or tiles of another homeo-
morphism type.
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Polyhedra Analogues of the Platonic Solids

Jörg M. Wills

In this chapter we investigate polyhedra in
Euclidean 3-space,E3, without self-intersections
and with some local and global properties related
to those of the Platonic solids. A polyhedron
is the geometric realization of a compact 2-
manifold in E3 such that its 2-faces are (not
necessarily convex) plane polygons bounded by
finitely many line segments. Adjacent faces and
edges are not coplanar. A flag of a polyhedron P
is any triple consisting of a vertex, an edge, and a
face of P , all mutually incident.

Perhaps the most important property of the
Platonic solids is that the set of their flags is
transitive under the corresponding full Platonic
symmetry group, consisting of all the rotations
and reflections. There are no other compact
(i.e., finite) and self-intersections-free polyhedra
in E3 with this property, so in order to carry
the theory further one has to weaken this strict
condition. A first step in this direction is to
replace the global algebraic property of flag
transitivity by the local property that all flags
are combinatorially equivalent:

Definition 17.1. An equivelar manifold (i.e.,
with equal flags) is a polyhedron with the
property: All faces are p-gons; all vertices are
q-valent .p � 3; q � 3/. Notation fp; qIgg,
where g denotes the genus of the manifold.

J.M. Wills
Eichlingsborn 6, D 57076 Siegen, Germany
e-mail: wills@mathematik.uni-siegen.de

For g D 0 (the sphere) one obtains the
five Platonic solids, and for g D 1 (the torus)
one obtains infinite series of tori, which were
investigated long before. So in the following, all
new polyhedra have genus g > 1.

In the definition it is not required that the
faces are regular or congruent to each other and
indeed all known equivelar manifolds contain at
least one nonregular face. There exist infinitely
many equivelar manifolds (and see the Problems
at the end of this chapter). So equivelarity alone is
too weak to yield close analogues to the Platonic
solids and one has to find appropriate further
conditions. It turns out that global algebraic con-
ditions seem to be the most successful conditions,
namely transitivity properties under certain sym-
metry and automorphism groups. (Symmetries
are isometries of E3 which map the polyhedron
onto itself, and automorphisms are combinatorial
isomorphisms.) Among the various possibilities
we choose one in the following section which
leads to nice polyhedra.

Platonohedra

Definition 17.2. A Platonohedron is an equive-
lar manifold such that a group isomorphic to its
symmetry group acts transitively on its vertices
or faces.

Simple combinatorial arguments show that
there are only finitely many Platonohedra. Seven
have been found so far: f3; 8I 3g; f3; 8I 5g;
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f4; 5I 7g; f5; 4I 7g; f3; 9I 7g; f9; 3I 7g, and
f3; 8I 11g. Figures. 17.1–17.4 show some of
them. We let f D .f0; f1; f2/ denote the number
of vertices, edges, and faces. Because of their
equivelarity the Platonohedra can be represented
in a flag diagram (Figure 17.13), explained later.
The Platonohedra have the same rotation group
as the corresponding Platonic solids, whereas

Figure 17.1. The Platonohedron f4; 5I7g; fD12
.4; 10; 5/.

Figure 17.2. The Platonohedron f5; 4I7g; fD12
.5; 10; 4/.

Figure 17.3. The Platonohedron f3; 9I7g; fD12
.2; 9; 6/.

Figure 17.4. The Platonohedron f9; 3I7g; fD12
.6; 9; 2/.

the usual reflection in a plane is replaced, in
the case of vertex-transitivity, by a reflection
in a plane and a simultaneous inside-outside
inversion. For the face-transitive Platonohedra the
analogous reflection-inversion can be described
for the normal vector.

Let us consider the simplest cases, f4; 5I 7g
and f5; 4I 7g (see Figures 17.1 and 17.2). The 48
vertices of the f4; 5I 7g lie pairwise on 24 rays
which have their common endpoint at the rotation
center. The inside-outside inversion interchanges
the “inner” and “outer” vertices. The situation
for the f5; 4I 7g is analogous: its 48 faces fall
into two classes of 24 “outer” and 24 “inner”
faces and each “outer” face corresponds to one
“inner” face. The inside-outside inversion inter-
changes the corresponding “inner” and “outer”
faces. Clearly the inside-outside inversion is no
isometry. Nevertheless it has a geometric mean-
ing and is not a purely combinatorial automor-
phism. This corresponds to the fact that the usual
reflection is an improper movement.

If we require transitivities only under symme-
tries, then there exist no face-transitive polyhedra
with g > 0, as Grünbaum and Shephard have
shown. But they found three remarkable vertex-
transitive Platonohedra f3; 8Igg, g D 3; 5; 11.

The first vertex-transitive polyhedron with
g > 0 to be discovered was the flat torus .g D 1/,
which Brehm found in 1978; it is vertex-transitive
under the dihedral group. It is three-dimensional;
its name comes from the fact that the Gauss
curvature in its vertices is zero. It was rediscov-
ered by Grünbaum and Shephard, who found

two more polyhedra with vertex-transitivity
under symmetries; those polyhedra have two
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combinatorially distinct types of faces, and so
they are not considered here.

In constrast with the three Platonohedra of
genus 3,5, and 11, the four other (of genus 7)
have two metrically different types of vertices
and faces. This “disadvantage” corresponds to the
“advantage” that they occur in dual pairs and that
both their vertex-figures and their faces have one
additional symmetry.

Construction of the Platonohedra

Figures 17.1–17.4 give an impression of four
Platonohedra but clearly models of cardboard
make it easier to understand them. Here is a brief
description of their construction.

• f4; 5I 7g is the simplest Platonohendron. It
consists of 18 exterior squares of edge-length
a, 18 interior squares of edge-length b, and 24
trapezoids (in the tunnels) of edge-length a; b
and c. Suitable choice: a D 9 cm, b D 6 cm,
c D 4:2 cm.

• f5; 4I 7g consists of 24 outer and 24 inner pen-
tagons. Their shape is shown in Figure 17.5.
One should start with blocks of four outer and
four inner pentagons and then fit the six blocks
together.

• f3; 9I 7g is easy to construct if one regards the
following: the outer 12 vertices are those of
a regular icosahedron; the 12 inner vertices
are of a distorted icosahedron. Both types
of vertices lie on two concentric cubes, where
the exterior has, say, twice the edge-length
of the interior one. From this it is easy to
determine the coordinates of the vertices and
so the five different edge-lengths of f3; 9I 7g.

• f9; 3I 7g This “disdodecahedron” consists of
12 outer and 12 inner nonagons. It is much
harder to construct than the three others, so we
omit the construction.

The remaining Platonohedra belong to the
family f3; 8Igg, g D 3; 5; 11. Grünbaum and
Shephard give a figure of f3; 8I 5g from which
a three-dimensional construction is possible;
Egon Schulte described a precise construction of
f3; 8I 3g.

8,
4

7,7

1,
0

8,4

1,3

9,0

7,35

5,5

3,0

6,7
5

Figure 17.5. (Above) The two kinds of pentagons used
in construction of the Platonohedron f5; 4I7g. (Below)
The nonregular hexagonal face used in the construction
of the regular polyhedron f6; 4I6g.

Regular Polyhedra

In this section we consider equivelar manifolds
with flag transitivities under certain automor-
phism groups; this has been done by many
authors in spaces other than E3 and in abstract
configurations. We use the same notation as
above. The case g D 0 corresponds to the five
Platonic solids and g D 1 to the regular toroidal
polyhedra, which were found by Coxeter and
Moser. Thus we consider g > 1; seven of them
are shown in Figures 17.6–17.12. If one considers
only polyhedra inE3 and requires further that the
polyhedron has, besides its automorphism group,
a nontrivial symmetry group (for example, a
Platonic group or a normal subgroup of it), then
at least six of Coxeter’s finite skew polyhedra
can be realized in E3 as equivelar manifolds,
namely by suitable projections. If A and S

denote the orders of their automorphism group
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Figure 17.6. The regular polyhedron f3; 7I3g;
f D 4.6; 21; 14/.

Figure 17.7. The regular polyhedron f4; 5I5g; f D 8
.4; 10; 5/.

and of their symmetry group, respectively we
find:

• f4; 5I 5g and f5; 4I 5g, A D 320, S D 8.
• f4; 6I 6g and f6; 4I 6g, A D 240, S D 24.
• f4; 8I 73g and f8; 4I 73g,A D 2;304, S D 48.

Coxeter showed that the last four can be realized
in E4 and the first two in E5 with the appropri-
ate symmetry group. The geometric construction
traces back to Alicia Boole-Stott in 1882; it has
since been shown that they are projections of
Coxeter’s regular skew polyhedra.

Figure 17.8. The regular polyhedron f5; 4I5g; f D 8
.5; 10; 4/.

Figure 17.9. The regular polyhedron f4; 6I6g;
f D 10.2; 6; 3/:

Figure 17.10. The regular polyhedron f6; 4I6g;
fD 10.3; 6; 2/.

The seventh and most spectacular example
is the polyhedral realization of Felix Klein’s
famous quartic (a complex algebraic curve)
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Figure 17.11. The regular polyhedron f4; 8I73g;
f D 144.1; 4; 2/.

Figure 17.12. The regular polyhedron f8; 4I73g;
f D 144.2; 4; 1/.

as a polyhedron of genus 3. It is remarkable
that this polyhedron has the same number of
vertices, edges, and faces (and so the same
genus) as our Platonohedron f3; 7I 3g, although
the polyhedra differ combinatorially. This close
coincidence was one motivation for finding the
“Klein polyhedron.” So far we know one infinite
series and five single combinatorially regular
polyhedra of genus g > 1. (See the Problems at
the end of chapter).

We now describe the construction of the
f6; 4I 6g (Figure 17.10). This polyhedron has
four regular hexagonal faces of edge-length
a and four regular hexagonal faces of edge-
length 3a. Further it has 12 nonregular hexagonal
faces which are all congruent to each other.
In Figure 17.5b we show one of these faces
(with a D 3). Three of these hexagons are fitted
together along their edges of length 5.5 to make
four tunnels. The four tunnels are first joined
with the small regular hexagons (along the
edges of length 3), and then the tunnels must
be joined with the four large regular hexagons
(see Figure 17.10).

The Flag Diagram

A survey of equivelar and regular polyhedra is
given by the .p; q/-diagram or flag diagram (Fig-
ure 17.13). On the p-axis of the diagram the
values p of the p-gons (p � 3) are plotted;
on the q-axis are the valences q of the vertices
(q � 3), the number of edges incident with the
vertex. Thus, for example the tetrahedron can
be found at p D q D 3j , the usual 3-cube
can be found in p D 4; q D 3, and so forth.
(Clearly, polyhedra with different types of faces
or vertices—as, for example, the Archimedean
solids—cannot be shown in the flag diagram.)
The labels in the flag diagram denote the genera:
thus g D 0 for the Platonic solids. In particular,
the flag diagram shows in a very suggestive way
the three types of polyhedral geometry, due to
the values of p and q.

The hyperbola 1=p C 1=q D 1=2 dissects the
lattice points .p; q/; p � 3; q � 3 of the diagram
into three subsets:

• The elliptic case: 1=p D 1=q > 1=2. Here
we find the five Platonic solids and the two
Kepler – Poinsot star polyhedra of genus 0
(which are isomorphic to the dodecahedron
and the icosahedron, respectively).

• The parabolic or Euclidean case: 1=p D
1=q D 1=2. Here we find the three regular
tilings of the Euclidean plane, and the regular
tori.
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Figure 17.13. The flag diagram. The numbers denote the genera; large circles denote the five Platonic solids (g D 0),
the pentagrams denote the four Kepler–Poinsot polyhedra, the frames denote the three regular tilings of the plane and
tori (g D 1), small circles denote the seven known Platonohedra with g > 1, and squares denote seven of the known
regular polyhedra with g > 1.

• The hyperbolic case: 1=p D 1=q < 1=2. Here
we find the two Kepler–Poinsot star polyhedra
of genus 4 and the three infinite regular Petrie–
Coxeter polyhedra. Further we find here the
Platonohedra and the regular polyhedra of
genus g > 1 mentioned previously.

Problems

I conclude this chapter with five open prob-
lems on equivelar manifolds and regular poly-
hedra. Although all of these problems are easy

to understand, their solution seems not to be
straightforward.

1. Do equivelar manifolds exist with p � 5 and
q � 5?

2. Do equivelar manifolds exist with all faces
being regular? (It has been shown that for
q D 4 no such manifold exists.)

3. An equivelar manifold with g D 577 and
number of vertices f0 D 576 < g has been
constructed. Are these the smallest possible
numbers? (In E5 there is one with g D 2 and
f0 D 19.)
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4. Are there more than seven Platonohedra of
genus g > 1?

5. Are there other combinatorially regular
polyhedra (in E3 without self-intersection)
for g > 1? In particular: Does the dual of
Klein’s quartic exist as an intersection-free
polyhedron?

UPDATE 2010

• Problems 1 and 2. Coxeter’s apeirohedron of
type (6, 6), built up of regular hexagons is
an infinite example for both problems. Finite
examples are not known yet. And there is no
proof that such finite examples do not exist.

• Problem 3. The infinite series of equivelar
polyhedra give 0(g/log g) for the number of
vertices (or faces), where g denotes the genus

of the polyhedra. So the number of vertices (or
faces) is significantly smaller than the genus.
On the other hand this bound for geometric re-
alizations is still far from Ringel and Young’s
bound for abstract realizations. Several au-
thors have tried to narrow the gap between
both bounds, but without success. The only
progress is a nice and interesting proof by
Joswig and Ziegler on the geometric bound via
boundary complexes of 4-polytopes.

• Problem 4. No new results.
• Problem 5. Several new combinatorially

regular polyhedra were discovered, in
particular the dual of felix Klein’s map of
genus 3, built up of 24 nonconvex heptagons
(and of course without self-intersections) This
polyhedron was found by David McCooey in
2009. It has automorphism group of order
336 and the geometric symmetry group of the
tetrahedron.
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Convex Polyhedra, Dirichlet Tessellations,
and Spider Webs

Walter Whiteley, Peter F. Ash, Ethan Bolker, and Henry Crapo

Plane pictures of three-dimensional convex
polyhedra, plane sections of three-dimensional
Dirichlet tessellations, and flat spider webs
with tension in all the threads are essentially
the same geometric object. At the root of this
remarkable coincidence is a single geometric
diagram that permits us to offer a unified image
of the connections among these and other objects.
Some hints of these connections are more than a
century old, but others are very recent. We begin
with an historical sketch.

In the nineteenth century, mathematicians and
engineers investigated frameworks built from
iron bars and pins to determine when they were
rigid. (The technical term is infinitesimally rigid.)
Their studies led them to consider static stresses:
tensions and compressions in the bars in internal
static equilibrium. In 1864, James Clerk Maxwell
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discovered a geometric tool for studying the static
equilibrium of forces on a plane framework with
a planar graph: the reciprocal figure, a drawing
of the dual planar graph with the dual edges per-
pendicular to the original edges and forces (see
Figure 18.1). Maxwell built this reciprocal by
patching together the polygons of forces express-
ing the vector equilibrium at each joint. He then
observed that this construction yields a polyhe-
dron in space which projects onto the framework.
These results belong to the field of graphical
statics, a branch of graphical and mechanical
science that withered around the turn of the
century, along with much of projective geometry.

Contemporary work on the statics of
frameworks grows from these geometric roots.
In particular, we now know that a convex
polyhedron, projected from a point on one face
onto a plane parallel to this face, corresponds to a
spider web: a framework with no crossing edges
and some edges going to infinity, which has an
internal static equilibrium formed entirely with
tension in the members. In the plane, the spider
webs are frameworks with convex reciprocals:
reciprocals in which the convex polygons have
disjoint (that is, non-overlapping) interiors (Fig-
ure 18.2). Other recent work has extended some
hints in the work of Maxwell and a conjecture
by Janos Baracs, a modern structural engineer
and geometer, to show that three-dimensional
projections of convex 4-polytopes correspond to
some, but not all, spider webs in 3-space.

In the 1970s, computer scientists sought
algorithms to recognize and draw correct

M. Senechal (ed.), Shaping Space, DOI 10.1007/978-0-387-92714-5 18,
© Marjorie Senechal 2013

231



232 W. Whiteley et al.

Q

a

b

D
R

H
S

A

C E G I

K

P X

B W

F

V
J

U T

X* W* V* U*

P*

H*

B* C*

I* C*

F*
E*

J*
T*

D*

K* A*

S* R* Q*

Figure 18.1. A framework (a) in static equilibrium with a set of external forces (the arrows), has a Maxwell reciprocal
figure (b) with dual edge Z� perpendicular to the original edges, and a polygon dual to the edges at each vertex of the
original.

pictures of objects in space. Several workers
independently observed that the existence of
a reciprocal figure was the natural geometric
condition for a correct picture of a polyhedron,
noting that the reciprocal figure records the
normals to the faces (Figure 18.3). At first
some critical topological details were not
properly addressed, but this construction of plane
reciprocals has been refined to give a necessary
and sufficient condition for correct pictures of
any oriented polyhedron.

At about the same time, computer scientists
were studying Dirichlet tessellations (also
known as Voronoi diagrams): subdivisions of
the plane (and of n-space) into the polygonal (or
polyhedral) regions of points closest to given
centers (Figure 18.4). In 1979, Ezra Brown
observed that a Dirichlet tessellation in the plane

corresponds to a convex polyhedron with all faces
tangent to a sphere, projected from the point of
tangency of one face onto a plane parallel to this
face. He used this observation to develop efficient
algorithms to compute the Dirichlet tessellation
for a set of centers.

Peter Ash and Ethan Bolker observed
that the diagram of centers forms a classical
reciprocal figure for its Dirichlet tessellation.
More generally, a sectional Dirichlet tessellation,
a plane section of a Dirichlet tessellation in
3-space, has a plane reciprocal formed by the
orthogonal projection of the spatial centers.
At the 1984 Shaping Space Conference, Walter
Whiteley and Bolker forged the last link in the
proof that sectional Dirichlet tessellations and
plane spider webs coincide. This says implicitly
that convex polyhedra projected from one face
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a b

Figure 18.2. A plane spider web (a) has an internal static equilibirum with tension in all members, and a convex
reciprocal figure derived from this equilibrium (b).

are just sectional Dirichlet tessellations, and
conversely. Independently, Herbert Edelsbrunner
and Raimund Seidel gave an explicit construction
of a polyhedron which will correspond to a given
sectional Dirichlet tessellation.

Thus many of the results we present are not
new. However, the unified picture is, and some
new results follow from this unification. We high-
light the reciprocal figure as the central geo-
metric construction and some direct geometric
arguments replace previous, seemingly accidental
coincidences. We will sketch proofs when they
are simple or illuminating; otherwise we will
refer the reader to the literature.

In the next section, we carefully describe the
equivalence of the following finite geometric ob-
jects in the plane:

• A plane section of a Dirichlet tessellation of
3-space.

• A plane section of a furthest-point Dirichlet
tessellation of 3-space.

• A projection of a convex polyhedron in 3-
space from a point inside one of its faces onto
a plane parallel to this face.

• A plane framework, without self-intersection,
with a static equilibrium using tension in all
members.

• A plane drawing of a planar graph, with a
planar reciprocal figure of disjoint convex
polygons.

We also describe the special correspondence
between Dirichlet tessellations in the plane and
convex polyhedra with all faces tangent to a
sphere (or a paraboloid). Later we survey some
infinite analogues and point out how most but
not all equivalences remain true. Such infinite,
but locally finite, structures occur in the study
of circle packings of the entire plane and in both
periodic and aperiodic tilings of the plane.

All of the questions we raise, and many of the
answers, generalize to n-space, but in this chapter
we limit ourselves to dimensions 1, 2, and 3.

Each of the fields we touch on has its own
favorite questions, results, and unsolved prob-
lems. The connections we establish among these
fields have important implications for those pre-
occupations. For example the question: “Which
graphs can be realized (that is, constructed) as
a Dirichlet tessellation in the plane?” now coin-
cides with the classical problem: “Which spher-
ical polyhedra can be realized with all faces
tangent to an insphere?” The question: “Which
graphs can be realized as a sectional Dirich-
let tessellation in the plane?” is answered by



234 W. Whiteley et al.

C

A

a

b

D

E

B

a

b

c

d

e

f

Figure 18.3. The projection of a polyhedron (a) has a
reciprocal figure (b) which places the vertex dual to the
face C at the point given by the gradient c of this plane.

Steinitz’s theorem: adding the polygon at infinity
must create a triply connected planar graph! We
will draw out some of these implications as we
proceed through the correspondences.

This study represents geometry in what is for
us its best sense: recognizing the kinship among
classes of tangible, visible objects that one can
draw, build, and manipulate. We feel pleasure in
seeing a spider weave a many-faceted diamond,
excitement in discovering the geometric basis
of common algorithms to recognize or create
these patterns, horror in seeing a building shake
because it contains a 4-polytope, and satisfaction

A
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C
D

E

F

Figure 18.4. A set of centers (the circles) defines a
Dirichlet tessellation (heavy lines) and a reciprocal dia-
gram of centers (lighter lines).

in knowing that a circle-packing is locally maxi-
mally dense because the graph of the centers is a
rigid spider web.

Cell Decompositions and Reciprocal
Figures

Imagine cutting the plane into a finite number of
convex polygons and unbounded convex polyg-
onal regions (see Figure 18.5a). A proper cell
decomposition of the plane is a finite set of con-
vex polygons and unbounded convex polygonal
regions called the cells such that

• every point in the plane belongs to at least one
cell;

• the cells have disjoint interiors;
• the decomposition is edge-to-edge; that is,

every edge of a cell is a complete edge of a
second cell.

For example, the Dirichlet tessellations de-
scribed above are proper cell decompositions.
Each proper cell decomposition D of the plane
(henceforth in this section we shall omit “of
the plane”) has an abstract dual graph D*. The
vertices of D* are the cells of D; two vertices
of c and c0 are joined by an edge just when the
corresponding cells C and C0 share an edge. It is
clear that D* is always a planar graph, because
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Figure 18.5. Any proper cell decomposition of the plane
(a) has a dual graph (b).

it can be drawn in the plane simply by choosing
a point inside each of the cells and joining the
points in cells which share an edge (see Fig-
ure 18.5b). For a Dirichlet tessellation, the centers
are the vertices of a planar embedding of D* and
the edge separating two cells C and C0 is the
perpendicular bisector of the segment cc0 in this
drawing of the dual (see Figures 18.4 and 18.8b).

This example suggests a way to try to draw the
dual graph of a cell decomposition. A reciprocal
figure for D is a plane drawing of D* in which the
edges are straight-line segments which are (when
extended) perpendicular to the (extended) edges
of D. Figure 18.6 shows additional examples of
cell decompositions with reciprocal figures. Note
that we do not demand that the vertices of a
reciprocal figure lie in the cells to which they
correspond.

So far our discussion of the reciprocal figure
has concentrated on the graph: the edges and
the vertices. The cell decomposition has vertices,
edges, and cells, and we now restore this symme-
try to the reciprocal. Around each vertex of the
original decomposition we have a cycle of exiting
edges and a corresponding polygon of orthogonal
edges in D*. If all these dual edges have nonzero
length, and the resulting polygons are convex and
have disjoint interiors, we say we have a convex
reciprocal figure. Figure 18.6a shows a convex
reciprocal figure, while the cell decomposition in
Figure 18.6b has no convex reciprocal because
we have turned the edge between cells C and D.
Figures 18.6c, d show a single cell decomposition
with a convex reciprocal (C) and a nonconvex
reciprocal, in which the convex polygons are not
disjoint (D).

A set of parallel lines and the strips between
them is a trivial cell decomposiiton which has no
vertices (Figure 18.7). Such decompositions are
just perpendicular translations of cell decompo-
sitions of the line. They have reciprocal figures
in which all the dual vertices lie on some line
perpendicular to the edges. For the purposes of
our theorems and constructions we call such a
trivial reciprocal figure convex if the order of the
dual vertices along the line matches the order
of the strips along the line. We note that any
nontrivial proper cell decomposition in the plane
has at least one vertex on each edge.

These trivial cell decompositions hint at the
fact that our entire theory can be restated simply
for figures on the line. A cell decomposition of
the line is a set of line segments with disjoint
interiors. A convex reciprocal is just a set of
reciprocal points for these cells, which respect the
order of the cells (see Figures 18.9 and 18.13).
From time to time we shall use figures on the
line to illustrate the concepts we are exploring for
figures in the plane.

Returning to the example of a Dirichlet tes-
sellation, we see that the diagram of centers is
a convex reciprocal figure. If all the vertices are
3-valent, the reciprocal will be a triangulation
known as the Delauney triangulation. This obser-
vation is our first theorem.
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Figure 18.7. A trivial cell decomposition of the plane
(light lines) has a convex reciprocal which lies on a
perpendicular line (heavy line).

Theorem 18.1. A Dirichlet tessellation has a
convex reciprocal figure. The converse of this
statement is false.

Figure 18.8a shows a proper cell decomposi-
tion which has a convex reciprocal figure but is
not a Dirichlet tessellation: there is no way to
position the centers so that the edges of the orig-
inal decomposition bisect the edges of the dual
(as in Figure 18.8b). Experimental evidence is
quite convincing; a proof can be found in Ash and
Bolker’s “Recognizing Dirichlet Tessellations.”

To find a converse, we must broaden our
search.

A sectional Dirichlet tessellation is a plane
section of a Dirichlet tessellation of 3-space.
(We define a Dirichlet tessellation of 3-space by
replacing “the plane” by “space” in our previous
definition.) If we throw away any centers in
the space whose cells do not meet the slicing
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Figure 18.8. Some cell decompositions with a convex reciprocal cannot be a Dirichlet tessellation (a), while others
with a similar structure are Dirichlet tessellations (b).

plane in a nonempty open set, the remaining
centers are in one-to-one correspondence with
the cells of the sectional Dirichlet tessellation.
Their orthogonal projections onto the slicing
plane form a convex reciprocal figure for the
sectional Dirichlet tessellation (see Figure 18.9
for the analogue on the line). Ash and Bolker
proved:

Theorem 18.2. A sectional Dirichlet tessella-
tion has a convex reciprocal figure.

These sectional Dirichlet tessellations, also
called power Voronoi diagrams or Voronoi di-
agrams in Laguerre geometry, model a simple

biological phenomenon. Suppose bacteria start to
grow at center c at time tc , with growth rate at the
boundary inversely proportional to the distance
from the center. If the colonies cannot overlap,
the cells occupied by the colonies form the sec-
tional Dirichlet tessellation on the plane ´ D 0

of the spatial tessellation with centers .c;
p
tc/.

If all the bacteria start at the same time, we have
a Dirichlet tessellation. In this model each cell
contains its center; this need not always be true.

We shall prove the converse of Theorem 18.2
and discuss the furthest-point Dirichlet tessella-
tions after we examine spider webs and projec-
tions of convex polyhedra.
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Figure 18.9. Any section of a plane Dirichlet tessella-
tion creates a sectional Dirichlet tessellation on the line
(the black dots on the heavy line), with a convex reciprocal
(the circles) given by the orthogonal projection of the
plane centers.

Spider Webs and Projections

A proper cell decomposition is a spider web if
it supports a spider web stress: a set of nonzero
tensions in the edges which leads to mechanical
equilibrium at each vertex (Figure 18.10a). More
specifically, a spider web stress is a nonzero force
FVE in each edge E at a vertex V, directed from
V out along the edge, such that

• for a finite edge E joining V and V0, the
forces at the two ends are equal in size:
FVE D �FV 0E ;

• for each vertex V, the vector sum of the forces
on the edges leaving V is zero.

Spider webs are interesting and important.
If they are built with cables and pinned to the
ground on the infinite edges they are rigid in the
plane. In fact they are the basic building blocks of
all rigid cable structures in the plane. At the other
extreme, if a plane bar-and-joint framework has
the minimum number of bars needed to restrain
jV j joints (jEj D 2jV j � 3), then the appearance
of a spider web signals that it is shaky. Finally,
packing nonoverlapping circles of a fixed into
a convex polygon cannot be made denser by a
small jiggle if, and only if, the associated graph
of centers and contact points is an infinitesimally
rigid spider web.

If a cell decomposition has a spider web stress,
then the vanishing of the vector sum of forces at
each vertex says that these forces can be drawn
as a closed convex polygon (Figure 18.10b). If
we rotate each such polygon clockwise by 90ı,
then each edge is perpendicular to the edge of the
original figure to which it corresponds. Since the
forces at the two vertices of a finite edge are equal
in size and opposite in direction, these polygons
can be glued together to make a planar drawing
of the dual graph D* (Figure 18.10c); we have
constructed a convex reciprocal.

Conversely, assume that a cell decomposition
has a convex reciprocal. We turn this diagram
90ı counterclockwise and use the length of each
dual edge to define the size of the tension in
the corresponding edge of the decomposition.
The convex polygons of the reciprocal imply
the vector equilibrium of these tensions at each
vertex. Thus we have proved:

Theorem 18.3. A proper cell decomposition is a
spider web if and only if it has a convex recipro-
cal figure. The convex reciprocal determines the
spider web stress, and the spider web stress de-
termines the convex reciprocal up to translation
and rotation by 180ı.

The trivial cell decompositions satisfy this
theorem in an appropriately trivial way. They all
have convex reciprocals, and require no tensions
for edges with no vertices!

Theorem 18.3 shows that if a proper cell
decomposition has one convex reciprocal figure,
it has many. Any translation of a reciprocal pro-
duces another reciprocal; clearly this translation
has no effect on the tensions. If we turn the
reciprocal by 180ı, we also get a reciprocal.
In the classical literature, this turn corresponds
to a switch from tensions to compressions, but
we have chosen to concentrate on the tensions.
Any dilation converts a convex reciprocal to a
new reciprocal; the stress corresponding to the
new reciprocal is a scalar multiple of the one
corresponding to the original.

For some figures, we can freely choose the
lengths of several different reciprocal edges and
still complete the reciprocal. For the example in
Figure 18.11 the lengths of the reciprocal edges
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Figure 18.10. The arrows in (a) show the tensions of a spider web stress on a cell decomposition. The polygons of
forces for the equilibria at the vertices (b) are pieced together and rotated 90ı to form a convex reciprocal figure (c).

bc and ab are independent choices. The existence
of such dissimilar convex reciprocals reflects the
fact that the set of stresses, which is a vector
space, has dimension greater than 1.

We now turn to study the projections of poly-
hedra. Consider the intersection of the upper half-
spaces of a finite set of nonvertical planes. The
faces, edges and vertices of this intersection form
a convex polyhedral bowl. (Our choice of up-
turned bowls is simply a convenient convention,
as you will see below.) The vertical projection
of a convex polyhedral bowl is a proper cell
decomposition of the plane.

To construct a convex reciprocal figure for
such a projection, suppose that the boundary
planes P and P 0 which meet at an edge E have
equations

Ax CBy � ´ � C D 0;

A0x C B 0y � ´ � C 0 D 0:

Then the line joining the points .A;B/ and
.A0; B 0/ in the plane is perpendicular to the
vertical projection of the edge E, because
those points are the intersections of the plane and
the normals to P and P 0 drawn from the points
(0, 0, 1) (Figure 18.12). The set of points .A;B/,
one for each face of the bowl (and thus one for
each cell of the projected cell decomposition)
form a reciprocal figure for the projection (see
Figure 18.13 for an example on the line).

The convexity of the polygons in the recip-
rocal follows from the convexity of the vertices
in the polyhedral bowl. Finally, observe that this
reciprocal is also the vertical projection of a dual
object in 3-space. This dual polyhedral bowl has
vertices .A;B; C / corresponding to the planes
Ax C By � ´ � C D 0 of the original and
boundary planes Px C Qy � ´ � R D 0, one
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Figure 18.11. A cell decomposition (light lines) can have two dissimilar convex reciprocal figures (heavy lines) given
by free choices for the lengths of some reciprocal edges.

Ax+By−z−C=0
A′x+B′y−z−C′=0

(0,0,1)
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(A′,B′)

Figure 18.12. These normals to the face planes at a
polyhedral edge section to the gradients, and to a recipro-
cal edge perpendicular to the projection of the polyhedral
edge.

for each vertex .P;Q;R/ of the original bowl.
This dual bowl is created by a projective polarity
about the Maxwell paraboloid x2Cy2�2´ D 0.
(Notice that a dual polyhedral bowl is also con-
vex, but it has a cylinder of vertical planes dual
to the points at infinity on the unbounded edges
of the original bowl.)

The converse is also true. If a proper cell
decomposition has a convex reciprocal, then
there is a convex polyhedral bowl projecting
to this decomposition, with the normals to
the faces given by the reciprocal vertices (or
by the reciprocal turned 180ı). Any single
boundary plane of the bowl can be chosen freely
(perpendicular to its known normal). Then the
positions of the remaining planes can be deduced.
Therefore:
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Figure 18.13. A polygonal bowl (heavy lines) projects to a cell decomposition of the line (given by the black dots),
and the normals to the edges produce a convex reciprocal figure (the circles).

Theorem 18.4. A proper cell decomposition has
a convex reciprocal if and only if it is the ver-
tical projection of a convex polyhedral bowl.
The convex reciprocal can be reconstructed from
the bowl by taking the normals to the faces, and
the convex reciprocal determines the bowl, up to
the vertical translation

The trivial cell decompositions are projections of
trivial convex polyhedral bowls formed by planes
parallel to a line. The normals to the faces of such
a bowl yield the trivial convex reciprocals as we
defined them.

A vertical scaling of a convex polyhedral bowl
projecting to our cell decomposition (that is,
changing all the ´-coordinates by a positive con-
stant factor) corresponds to a similarity trans-
formation of the reciprocal by the same factor.
The translations of a reciprocal come from a
more subtle “rolling” of the angles of the planes
(see Figure 18.14a). If we reflect the bowl in
the xy-plane, the reciprocal turns 180ı. We turn
all our bowls up so that the reciprocals created
match those for sectional Dirichlet tessellations,
for which the dual edge cc0 is oriented so that it
crosses from cell C to cell C 0.

While the reciprocal figure is given by
an Euclidean construction, the existence of a
reciprocal is an essentially affine geometric
property: any affine transformation of a cell
decomposition with a convex reciprocal figure
extends to an affine transformation of the
corresponding polyhedral bowl, which then gives
the new reciprocal figure. (Alternatively, if the
affine transformation of the cell decomposition is
AX, then the reciprocal vertices are transformed

by (A>)�1X�.) In fact, the invariance has
projective overtones as well. If we add the
plane at infinity to a nontrivial convex polyhedral
bowl, we get a closed polyhedron in projective
space, with the point of projection on this added
face. We can make this a finite polyhedron by
a projective transformation that brings the plane
at infinity to the plane ´ D 2, and leaves the
xy-plane unchanged (Figure 18.14b). The cell
decomposition is now the projection of this
polyhedron from a point on the face which is
parallel to the xy-plane. This polyhedron is
convex if the vertical direction is enclosed by
the cone of normals to the faces of the bowl, or
equivalently if the origin is in the convex hull
of the vertices in the reciprocal. This can be
arranged by a simple translation of the plane, so
we have the following corollary:

Corollary 18.5. A nontrivial proper cell decom-
position has a convex reciprocal figure if and
only if it is the projection of a convex polyhedron
from a point inside a face that is parallel to the
projection plane.

The Main Result

We are now ready to work toward the converse
of Theorem 18.2. Consider a proper cell decom-
position with a convex reciprocal. This decom-
position is the projection of a convex polyhedral
bowl with faces of the form Ax C By � ´ �
C D 0. Choose the centers to be the points
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S = (0,1)

(0,2)
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Figure 18.14. If a reciprocal figure to a projected polygonal bowl (heavy lines in (a)) is translated (b to b0) then the
bowl is rolled (light lines) in (a). The same cell decomposition is also the projection of a closed polygon from a point
on one edge (b).

.A;B
p
2C �A2 � B2/; if necessary, the bowl

can be lowered by adding a constant d to all the
C to make all these ´-coordinates well defined.
It is a simple exercise to check that a point
.x; y/ is in the projection of a face if and only
if it is closest to the corresponding center (see
Figure 18.15), and therefore is in the cell of the
sectional Dirichlet tessellation.

Theorem 18.6. Each sectional Dirichlet tessel-
lation corresponds to a convex polyhedral bowl,
and each convex polyhedral bowl can be ver-
tically translated to correspond to a sectional
Dirichlet tessellation.

If we translate the bowl by a constant d ,
a center at height h moves to one at height

h0 D p
2d C h2 (provided that 2d C h2 is pos-

itive for all vertices). We are also free to choose
the sign ˙h for each center independently. This
completes the converse to Theorem 18.2:

Corollary 18.7. A cell decomposition has a con-
vex reciprocal if and only if it is a sectional
Dirichlet tessellation. The centers in space can be
chosen over the vertices of the convex reciprocal,
and these centers are unique up to a vertical
scaling of the form h0 D p

2d C h2.

If we reflect the bowl through the xy-plane,
and therefore turn the reciprocal by 180ı, then
the point .x; y/ is in the region corresponding
to .A0; B 0/ D .�A;�B/ if the associated plane
gives the minimum value of ´. After rescaling
all C 0 by a vertical translation, our construction



18 Convex Polyhedra, Dirichlet Tessellations, and Spider Webs 243

a

a

b

A

C

DCA

B

d

d′

c

c′

b′

ba

a′

D

B

dcb

Figure 18.15. A polygonal bowl projects to a cell de-
composition with its reciprocal on the line (a) and the
corresponding plane Dirichlet tessellation sections to the
same cell decomposition with the same reciprocal (b).

shows that .A0; B 0;
p
2C 0 �A02 � B 02/ gives the

maximum distance from .x; y; 0/. Our cell de-
composition is thus the section of the furthest-
point Dirichlet tessellation of centers; that is,
each point belongs to the cell of the center which
is furthest from the point (Figure 18.16). Our en-
tire theory of reciprocal diagrams applies to these
sectional furthest-point Dirichlet tessellations. In
particular, our inversion of the bowl gives the
following result:

Theorem 18.8. Given a proper cell decompo-
sition D, the following are equivalent: (i) D is
a sectional Dirichlet tessellation with projected
centers P . (ii) D is the sectional furthest-point
Dirichlet tessellation with projected centers �P .

This completes our chain of equivalences. We
summarize:

Theorem 18.9. Given a proper cell decomposi-
tion D in the plane, the following are equivalent:

a

b

c

D

d

C

B

A

Figure 18.16. A set of centers (the circles) produces a
furthest-point Dirichlet tessellation (heavy lines) with a
reciprocal diagram of centers (medium lines).

(i) D has a convex reciprocal figure, (ii) D is
a spider web. (iii) D is the vertical projection
of a convex polyhedral bowl in 3-space. (iv) D
is a sectional Dirichlet tessellation. (v) D is a
sectional furthest-point Dirichlet tessellation. If
D is nontrivial, these are also equivalent to (vi) D
is the vertical projection of a convex polyhedron
from a point inside one face into a plane parallel
to this face.

These equivalences have some interesting con-
sequences. For example, if we build a proper
cell decomposition from rubber bands, pin down
the edges that go to infinity, and let the tensions
position the vertices at a mechanical equilibrium,
we will have drawn a picture of a convex poly-
hedral bowl; spiders really draw such pictures.
Moreover, any plane picture of a spider web in
space is also a plane spider web, even if the
spatial web is warped. Conversely, if we wish
to design a rigid cable structure in the plane
with a planar graph, we must build a spider web,
so we can just use the picture of some convex
polyhedron.

The plane Dirichlet tessellations we first stud-
ied have very special reciprocals: ones whose
dual edges are bisected by the edges of the
tessellation. We will see that the polyhedral bowl
which projects to a Dirichlet tessellation is cor-
respondingly special; its faces are tangent to the
Maxwell paraboloid. Consider such a Maxwell
bowl. The point of tangency on each face is
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(0,1)

Figure 18.17. Each Dirichlet tessellation on the line is
the projection of a polygonal bowl (heavy lines) circum-
scribed about the Maxwell parabola. The centers are the
projections of the points of contact of the edges.

the spatial polar of this face (using the polarity
described above for the dual bowl), so the plane
Ax C By � ´ � C D 0 meets the paraboloid
at the point .A;B; ´/ D .A;B; 1=2.A2 C B2//.
Therefore, C D 1=2.A2 CB2/. Thus in the con-
struction used in Theorem 18.6, the height h Dp
2C �A2 C B2 D 0, and we have a Dirichlet

tessellation (Figure 18.17). This argument and its
converse prove:

Theorem 18.10. A proper cell decomposition is
a Dirichlet tessellation if and only if it is the
vertical projection of a Maxwell bowl.

As we noted before, the furthest-point tessel-
lation corresponds to taking the smallest ´ value
among the planes over the point .x; y/, or equiv-
alently, the intersections of the lower halfspaces
of the planes. Thus a furthest-point tessellation
is the projection of an inverse bowl all of whose
faces are tangent to the Maxwell paraboloid: a
Maxwell inverse bowl (Figure 18.18). (It is not
the projection of the inverse of a Maxwell bowl,
and is not a Dirichlet tessellation.)

Theorem 18.11. A proper cell decomposition is
a furthest-point Dirichlet tessellation if and only
if it is the vertical projection of a Maxwell inverse
bowl.

The plane at infinity is also tangent to the
Maxwell paraboloid at the infinite point of
projection. In the construction of the corollary
to Theorem 18.6 the projective transformation

a c dE

(0,1)

Aeb

Figure 18.18. Each furthest-point tessellation on the
line is the projection of an inverse polygonal bowl (the
heavy lines at the bottom) with edges tangent to the
Maxwell parabola. The centers are the projections of the
points of contact.

converts this paraboloid into the sphere x2Cy2C
.´ � 1/2 D 1. After a suitable translation of the
Dirichlet tessellation and its centers, this creates
a convex polyhedron with all faces tangent to the
sphere that projects onto the Dirichlet tessellation
from the point of contact (0, 0, 2) of a horizontal
face (Figure 18.19). This gives

Corollary 18.12. A nontrivial proper cell de-
composition is a Dirichlet tessellation of the
plane if and only if it is the central projection of a
convex polyhedron circumscribed about a sphere,
from the point of contact of one face, onto a plane
parallel to this face.

We note a curious consequence of this
vision of Dirichlet tessellations. Given a convex
polyhedron with all faces tangent to a sphere,
we can turn the sphere so that any one face
is parallel to the xy-plane, and project from
the point of contact. This defines a new and
unusual equivalence relation among Dirichlet
tessellations: a tessellation with n cells is
equivalent to n other tessellations.
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Figure 18.19. Each Dirichlet tessellation on the line is
the projection of a convex polygon with an inscribed
circle, from the point of contact of one edge. The centers
are the projections of the other points of contact.

It is easy to construct examples of proper
cell decompositions of the plane which are not
spider webs, or, equivalently, are not projections
of convex polyhedral bowls. Consider the cell
decomposition of Figure 18.20. If this were the
projection of a convex polyhedral bowl, the three
planes over the cells A, B, and C would meet in
a point. This point would be at the intersection
of the three lines separating these cells; this
intersection does not exist. Equivalently, if this
were a spider web, the three forces in these three
separating edges would be in equilibrium (since
the forces on any cut set in a spider web will be in
equilibrium) but three forces in the plane can
reach equilibrium only if they are on concurrent
lines. Finally, if this were a sectional Dirichlet
tessellation, then the line of points equidistant
from the spatial centers of the three exterior cells
would lie in the three planes separating these cells
and the intersection with the plane would be three
concurrent lines.

Realizations of Abstract Graphs

Given a proper cell decomposition of the plane,
we can consider the vertices, edges, and cells
as a combinatorial structure G (whose precise
definition will be given soon) and ask: “Which
realizations of G as proper cell decompositions
have convex reciprocals?” Work on plane stresses
shows that answering this question is equivalent

A B

C

Figure 18.20. This cell decomposition has no stress and
no reciprocal figure, because the three extended lines are
not concurrent.

to finding the convex cone of entirely positive
solutions to a homogeneous system of linear
equations whose unknowns represent the posi-
tions of the vertices and the directions of the
infinite edges. To be specific, we have a set of
finite vertices, V , and infinite vertices V o, one for
each positive direction of an unbounded edge, as
well as cyclic order for these infinite vertices. The
finite and unbounded edges are given in the ob-
vious way, with two unbounded edges sharing an
infinite vertex if they go in the same direction. We
take all realizations as proper cell decompositions
which respect the order of the cycle of infinite
vertices (or its reverse). From general results
on planar graphs, this graph structure uniquely
determines the possible cells. For such an abstract
structure G there are five possibilities:

(i) No realization of G as a proper cell decom-
position has a convex reciprocal.

(ii) Some realizations of G as proper cell decom-
positions have a convex reciprocal; almost
all small changes in the position of at least
one vertex destroy the spider web stress.
These special realizations must satisfy a ge-
ometric condition expressed by nontrivial
polynomial equations in the coordinates of
the vertices.

(iii) Many realizations of G as proper cell de-
compositions have a convex reciprocal; all
realizations near a given spider web will also
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be a spider web. These correct realizations
meet a qualitative condition expressed by
nontrivial polynomial inequalities in the co-
ordinates of the vertices.

(iv) Almost every realization of G as a proper
cell decomposition is a spider web; certain
special positions are improper. These im-
proper positions, expressed by polynomial
equations in the coordinates of the vertices,
have zero tension in some edges.

(v) Every realization of G as a proper cell de-
composition is a spider web.

Case (i) cannot happen. It is easy to check
that all graphs of nontrivial proper cell decompo-
sitions are also triply connected planar graphs if
we add the polygon at infinity. Theorem 18.9 tells
us that graphs of nontrivial spider webs are all
constructed from convex polyhedra, by projecting
from a point inside one face onto a plane parallel
to this face. A classical theorem of Steinitz shows
that any triply connected planar graph can be
realized as a convex polyhedron.

Figure 18.20 illustrates case (ii). If a graph has
jV j finite vertices, and jEj edges, then the general
theory of plane frameworks guarantees that when
jEj � 2jV j there are geometric conditions that
must be satisfied if there is to be a stress on all
members. If the graph has all vertices 3-valent,
the conditions for a spider web can be expressed
as a set of equations, one for each finite cell in
the graph.

Figure 18.6 illustrates case (iii). All realiza-
tions near Figure 18.6a will be spider webs, since
the convexity of the reciprocal is preserved by
small changes. Similarly, all realizations near
Figure 18.6b will have only nonconvex recipro-
cals and will not be spider webs.

We conjecture that case (iv) cannot occur.
As evidence, we mention a study of White
and Whiteley in which the authors conjecture
that such boundary events, where one tension
must be zero, lead to nearby points where the
sign of the stress in the edge switches. The set
of realizations as proper cell decompositions
forms an open convex cone, so both signs of
stress must appear in proper cell decompositions
near the boundary event, putting us back in
case (iii).

a

b

Figure 18.21. Any arrangement of lines in the plane
gives a cell decomposition (a) with a zonohedral cap as
a convex reciprocal figure (b).

Cell decompositions with no polygons
illustrate case (v). Examples are the trivial
decompositions and trees with all vertices are
least 3-valent. The interested reader can check
directly that such cell decompositions always
have a convex reciprocal and thus are always
the projection of convex polyhedral bowls.
Some other graphs of cell decompositions share
this property, but we have not been able to
characterize them. A line arrangement yields
a cell decomposition that is always a spider
web. A finite set of lines in the plane creates
a cell decomposition (Figure 18.21a). If for each
line we choose a nonzero tension and assign
this tension to all segments of the line, we have
created a spider web stress. (At each vertex on the
line, the two tensions in the line cancel; this local
cancellations gives the equilibrium.) Therefore
this cell decomposition has a convex reciprocal.
The reader can check that this reciprocal will be
a drawing of the zonohedral cap corresponding
to the line arrangement (Figure 18.21b), and
the dual bowl over this reciprocal will be a
zonohedral cap.
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a

b

Figure 18.22. The cell decomposition in (a) cannot be
a Dirichlet tessellation, by its graph, but it is a sectional
Dirichlet tessellation, by the convex reciprocal in (b).

What graphs have realizations that are
nontrivial Dirichlet tessellations? By the theorem
of Brown, such a realization, with the polygon at
infinity added, must be the projection of a convex
polyhedron with an insphere. There are theorems,
also originating with Steinitz, which provide
examples of graphs which can, and cannot, be the
edge graphs of convex polyhedra with inspheres.
From these we can conclude that while the graph
of Figure 18.22 can be realized as a sectional
Dirichlet tessellation, it cannot be realized as a
Dirichlet tessellation, it cannot be realized as a
Dirichlet tessellation since it is the projection of
a polyhedron which cannot have an insphere.

If a nontrivial graph can be realized as a
Dirichlet tessellation, the realization must satisfy
geometric conditions to be a Dirichlet tessella-
tion; it must have a convex reciprocal with the
dual edges bisected by the original edges. Ash
and Bolker provide a geometric characterization
of proper cell decompositions that are Dirichlet
tessellations. We will not attempt here to con-
nect their characterization with that of Theorem
18.13 or its corollary. There may be some nice
geometry waiting for someone who wishes to
explore the connection.

a

b

Figure 18.23. Any split polygon (a) is the dual of a tree
(b) which is the graph of some furthest-point Dirichlet
tessellation.

We can characterize those graphs that can
appear as nontrivial furthest-point Dirichlet tes-
sellations: they are the trees with all vertices
at least 3-valent. To prove this, consider such
a tessellation, its reciprocal figure, and the cor-
responding Maxwell inverse bowl. Look at the
convex hull of points of contact with the Maxwell
paraboloid. The upper surface of this hull projects
to the reciprocal figure. since the points are on the
paraboloid, this figure is a convex polygon with
some interior edges forming a “split polygon”
(Figure 18.23a) or it is a line segment. A split
polygon is the dual of a tree (Figure 18.23b) and
a line segment is the dual of the 2-cell trivial
decomposition. Conversely, every embedded tree
has a split polygon as its dual, and we can
arrange the points on the paraboloid to realize any
combinatorial split polygon as the projection of
an upper convex hull. Of course, the realizations
of a tree which forms furthest-point Dirichlet
tessellations must satisfy additional geometric
conditions, but we have not seen these explicitly
worked out.

We close this section by remarking that all the
results in it are special, convex cases of more gen-
eral theorems. A planar graph that has a (possibly
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a

b

Figure 18.24. The graph of centers of this circle packing gives an infinite cell decomposition of the plane (a) which
has a convex reciprocal figure (b) which is also an infinite cell decomposition of the plane.

nonconvex) reciprocal is the projection of a gen-
eral spherical polyhedron in 3-space (possibly
self-intersecting). The reciprocal corresponds to
a set of nonzero tensions and compressions in
the edges of the graph, in a static equilibrium
at each vertex. This general case was the one
first studied in graphical statics. These closing
observations emphasize the important but often
forgotten fact that statics and the equivalent the-
ory of infinitesimal mechanics both truly belong
to projective geometry. So too does the study
of projected polyhedra and general reciprocal
diagrams.

Infinite Plane Examples

In order to study packings of the plane by iden-
tical circles, a number of mathematicians have
considered the locally finite graph in the plane

which has the centers of the circles for ver-
tices and an edge joining two vertices whenever
the two circles touch (Figure 18.24a). Connelly
discovered that there is an intimate connection
between the problems: “Is this diagram a spider
web?” and “Is this packing locally maximally
dense?” He even uses convex reciprocal diagrams
to study these examples (Figure 18.24b).

Another class of infinite but locally finite ex-
amples comes from the study of Dirichlet tessel-
lations arising from periodic lattices in the plane.
Surprisingly, there are also aperiodic sections of
periodic tessellations of 3-space. (Figure 18.25
shows an example on the line.) To study these
and other similar examples, we change the defi-
nition of a proper cell decomposition by allowing
infinitely many cells, but we require local finite-
ness: no point belongs to infinitely many cells.

We then refer to the cell decompositions of
the previous section as finite decompositions.
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Figure 18.25. A periodic Dirichlet tessellation of the
plane (light lines) can section to a nonperiodic cell decom-
position of the line (the black dots on the heavy line).

Our new infinite proper cell decompositions still
have abstract dual graphs. The local finiteness
implies that the dual polygon for each original
vertex is finite, so the definition of a convex
reciprocal figure is unchanged. However, since an
unbounded cell of the decomposition may have
infinitely many edges, the dual and the reciprocal
may not be locally finite. We still include the
trivial examples formed by an infinite number of
parallel strips and their reciprocals.

An infinite set of centers, with only a finite
number of centers in any bounded set, defines an
infinite Dirichlet tessellation. More generally, an
infinite sectional Dirichlet tessellation is a plane
section of an infinite Dirichlet tessellation of
space. The argument used for finite tessellations
still works to show the following.

Theorem 18.13. An infinite sectional Dirichlet
tessellation has a convex reciprocal figure.

Since the definition of a spider web refers
to tensions in equilibrium at each vertex, local
finiteness guarantees that we have an immediate
extensions of the definition and of Theorem 18.3:

Theorem 18.14. An infinite proper cell decom-
position is a spider web if and only if it has a
convex reciprocal figure.

An infinite convex polyhedral bowl is the in-
tersection of the upper half spaces of an infinite
set of nonvertical planes such that

• no finite region of space intersects an infinite
number of the planes;

• this intersection includes points over all points
.x; y/.

a

b

Figure 18.26. The cell decomposition in (a) has
a local convex reciprocal for arbitrarily large fi-
nite sets of vertices, but all global reciprocals are
nonconvex (b).

With this definition, which ensures that the
projection of such a bowl is a proper infinite cell
decomposition, Theorem 18.4 remains true.

Theorem 18.15. An infinite proper cell decom-
position has a convex reciprocal if and only if
it is the vertical projection of an infinite convex
polyhedral bowl.

However, if we add the plane at infinity to an
infinite Maxwell bowl, we do not create a closed
polyhedron. There are no analogues of Corol-
lary 18.5. Note that each element of an expanding
sequence of finite subpieces of an infinite cell de-
composition may have a convex reciprocal, while
the entire structure has no convex reciprocal. (An
example is shown in Figure 18.26.) Thus these
finite pieces of an infinite cell decomposition may
each be the projection of a convex polyhedral
bowl, while the entire structure is not.

If our cell decomposition has only bounded
polygons, then it must have infinitely many of
them. If a convex reciprocal covers the plane,
it is also an infinite cell decomposition; this
reciprocal and the original decomposition form a
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reciprocal pair (Figure 18.24). Such a reciprocal
pair corresponds to a full bowl for which the
total curvature is 2� , since the normals to the
faces cover a hemisphere. For example Robert
Connelly has observed that any infinite cell
decomposition of the plane using only regular
convex polygons as cells corresponds to such
a bowl. In fact, the centers of the polygons
form a reciprocal: the Dirichlet tessellation
for the vertices of the regular polygons, as
illustrated in Figure 18.24b. How about the
analogue of Theorem 18.6? For the spatial center
corresponding to the planeAxCBy�´�C D 0

we took the point .A;B;
p
2C � A2 � B2/. To

make all these ´-coordinates well defined, we
translated the bowl by adding a sufficiently large
constant d simultaneously to all values ofC . With
an infinite set of planes, this may be impossible,
and there would be no Dirichlet tessellation to
section. Consider the trivial example on the
line formed by the plane polygon with ver-
tices: : : : ; .0; 0/; .1;�2/; .2;�6/; .3;�12/; : : : ;
.n;�n.n C 1//; : : : The face gradients have
A: : : : ; 2; 4; 6; 8; : : : ; 2n; : : :, and intercepts
C : 0;�2;�6; : : : ;�n.n � 1/; : : :. No constant
d can make 2C C d � A2 > 0 for all n. This
example with this reciprocal cannot correspond
to any sectional Dirichlet tessellation. Each finite
segment of the cell decomposition is a sectional
Dirichlet tessellation with centers in the plane
over the reciprocal vertices, but the entire object
is not. (However, it is a Voronoi diagram in the
Laguerre geometry, since this algebraic definition
allows h2 to be negative.)

The transformation from a sectional Dirichlet
tessellation to a convex polyhedral bowl still
applies.

Theorem 18.16. Each infinite sectional Dirich-
let tessellation corresponds to an infinite convex
polyhedral bowl, determined up to vertical trans-
lation.

Since it is not meaningful to talk about
furthest-point Dirichlet tessellations for infinite
sets of centers, we have completed our chain of
analogues. The following summarizes the limited
analogue of Theorem 18.8

Theorem 18.17. Given an infinite proper cell
decomposition D in the plane, the following are
equivalent: (i) D has a convex reciprocal figure;
(ii) D is a spider web; (iii) D is the vertical
projection of an infinite convex polyhedral bowl
in 3-space.

For infinite Dirichlet tessellations, our con-
struction did not require a vertical translation of
the bowl and we have a complete analogue for
Theorem 18.9.

Theorem 18.18. An infinite proper cell decom-
position is a Dirichlet tessellation if and only if
it is the vertical projection of an infinite Maxwell
bowl.

We note that a periodic cell decomposition
may have only nonperiodic reciprocals, and that
even a periodic cell decomposition with a pe-
riodic reciprocal may induce no periodicity in
the spatial polyhedron or in the spatial Dirichlet
tessellaton it sections. Conversely, some of the
interesting aperiodic tessellations of the plane
are sections of periodic Dirichlet tessellations of
some higher space, but neither the tessellation
nor the reciprocal is periodic. For example, it
has been observed that a version of the nonpe-
riodic Penrose tiling of the plane, drawn with
rhombi (Figure 18.27a), is a section of the reg-
ular cubic tessellation in R5. The correspond-
ing reciprocal figure for this tiling consists of
a line arrangement of five families of parallel
lines (Figure 18.27b), called a pentagrid; this
pentagrid and the aperiodic rhombic tiling form a
reciprocal pair.

Finally, we do not know an infinite analogue
of Steinitz’s theorem, so we cannot answer the
question: “What infinite planar graphs can be
realized as the edge skeleton of an infinite convex
polyhedral bowl?” nor the equivalent question:
“What infinite graphs can be represented as spi-
der webs?” We conjecture that any graph that can
be realized as a proper infinite cell decomposition
can also be realized as the edge skeleton of an
infinite convex polyhedral bowl.
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a

b

Figure 18.27. The aperiodic rhombic tiling (a) has a
pentagrid of five families of parallel lines as a convex
reciprocal (b).

UPDATE 2009

In the quarter century since this chapter was writ-
ten, there has been significant interest in a number
of related problems which can be viewed as
extensions of these connections, as well as a num-
ber of relevant publications. For key references,
see http://www.marjoriesenechal.com/. Here we
briefly outline some of the current areas being
explored.

There are a large number of publications on
Voronoi Diagrams (the more common term for
Dirichlet tessellation now, in all dimensions),

as fundamental structures for computational
geometry, both in the plane and in higher
dimensions, including continuing work on
weighted tessellations. Many of these implicitly
include the reciprocal diagrams and projections.

There have also been advances on reciprocal
diagrams in the plane, including exploration of
the vector spaces of self-stresses and the space
of associated reciprocals. The reciprocals remain
a subject of continuing research and application,
including extensions such as reciprocal diagrams
on the sphere—where all of the results here for
finite configurations extend directly. In general,
much of this work does not have restrictions
for convexity, although there are results that
continue to connect with Voronoi diagrams. One
area where convexity continues to be central
is the work on finite, zonohedral tilings (cubic
partial cubes) which are implicitly connected to
reciprocals of line arrangements. This has been
extended to pseudo-line arrangements where the
infinite ends of the lines are parallel and their
direction is used to determine the (perpendicular)
direction of all reciprocal edges of the pseudo-
line. There is also interest in symmetries of the
line-arrangements and the associated zonogonal
rosettes. With growing interest in periodic
structures, with periodic self-stresses, there is
an opening for further exploration of the infinite
examples and their reciprocals.

There is now a significant body of work on
projections of higher dimensional cell complexes,
their associated self-stresses, and higher dimen-
sional reciprocals. This is an area of continu-
ing research. All of the basic theory extends,
though only some spider-webs are created this
way. A sample area still ripe for explorations
would be higher dimensional zonagonal tilings
as reciprocals of higher dimensional hyperplane
arrangements.

http://www.marjoriesenechal.com/
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Uniform Polyhedra from Diophantine Equations

Barry Monson

A simple set of coordinates eases the study of
metrical properties of uniform polyhedra. For in-
stance, the six vertices of the regular octahedron
f3; 4g have Cartesian coordinates (˙1; 0; 0/, etc.
where “etc.” means “permute the coordinates in
all possible ways.” I find it pleasing in such ex-
amples that the coordinates are given by system-
atic choices. Observe further that the coordinates
provide all integral solutions to the Diophantine
equation

x2 C y2 C ´2 D N; (19.1)

when N D 1. If instead N D 3, we ob-
tain the eight vertices (˙1;˙1;˙1) of the cube
f4; 3g. Less obviously, we get vertices for the
cuboctahedron f34g (here I use Coxeter’s notation
fpq g for a quasiregular polyhedron in which p-
gons and q-gons alternate at each vertex) when
N D 2 and the truncated octahedron tf3; 4g when
N D 5. Clearly, Equation 19.1 is unchanged by
the eight possible sign changes or six possible
permutations of x; y; and ´. Thus the 48 D 6� 8
geometric symmetries in the octahedral group are
represented as algebraic symmetries of (19.1).
In fact, for any N , we may thus construct a
polyhedron with octahedral symmetry although it
may be uninteresting; there usually is no uniform
way of defining its edges and faces.

B. Monson
Department of Mathematics and Statistics,
University of New Brunswick, PO Box 4400,
Fredericton, NB E3B 5A3, Canada,
e-mail: bmonson@unb.ca, http://www.math.unb.ca/�
barry/

Interlude

The remaining uniform polyhedra with octahe-
dral symmetry pose another problem. For exam-
ple, the truncated cube tf4; 3g has typical vertex
.1; 1;

p
2 � 1/, but the irrational

p
2 � 1 is not

the kind of integer required in (19.1). We tackled
these cases with some (untidy) success using the
ideas exploited in the next section. Also, (19.1) is
invariant under the central inversion .x; y; ´/ !
.�x;�y;�´/; thus a homogeneous quadratic
must be replaced by some other equation when
describing polyhedra without central symmetry,
such as the tetrahedron or the snub cube.

d3 = (1, 0, τ)

d2 = (0, τ, 1)

d1 = (τ, 1, 0)

y

x

z

Figure 19.1. The icosahedron f3; 5g.
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Uniform Polyhedra with Icosahedral
Symmetry

The icosahedron f3; 5g and its relatives have
fivefold rotational symmetry (see Figure 19.1).
Hence our coordinates must somehow involve the
number

cos.2�=5/ D 1=2� D .
p
5 � 1/=4;

where the Golden Ratio � D .1Cp
5/=2 satisfies

the condition
�2 D � C 1:

To reconcile this irrational with the integral
nature of our equations we replace the rational
fieldQ and its ring of integersZ by the quadratic
number field Q.

p
5/ and its ring of algebraic in-

tegersZŒ��. The ring ZŒ�� consists of all polyno-
mials in � with integral coefficients; any integer
x 2 ZŒ�� is uniquely expressed as x D x1 C
�x2; .x1; x2 2 Z/. ( For the number-theoretic
properties of the Euclidean domain ZŒ��, see
Hardy and Wright’s An Introduction to the The-
ory of Numbers.) Note that the arbitrary magni-
tude of the units ˙�n, .n 2 Z/, complicates the
solution of Diophantine equations overZŒ��.

The icosahedron has 12 vertices with Carte-
sian coordinates .˙�;˙1; 0/ and its cyclic per-
mutations only. Now let us solve (19.1) for

Table 19.1. Solution of Equation 19.2

Polyhedron Symbol Vertices N Number of solutions to 19.2
Icosahedron f3; 5g 12 2C � 12
Icosidodecahedron f3

5g 30 4 30
Dodecahedron f5; 3g 20 3 20
Truncated icosahedron tf3; 5g 60 10C 9� 60
Rhombicosidodecahedron rf3

5g 60 6C � 60
Truncated dodecahedron tf5; 3g 60 7C 4� 60
Truncated icosidodecahedron tf3

5g 120 14C 5� 180
The theory of regular (and other, less symmetric) polytopes has exploded these last 28 years. Do have a look at
Abstract Regular Polytopes, P. McMullen and E. Schulte, Encyclopedia of Mathematics and its Applications 92,
(Cambridge: Cambridge University Press, 2002), particularly chapters 1 and 5. Recently, Egon Schulte and I have
exploited the arithmetic of ZŒ�� in a much more significant way in “Modular Reduction in Abstract Polytopes”,
Canadian Mathematical Bulletin, 52 (2009), pp. 435–450. There, in �5, we give a natural construction for the 11-cell
and 57-cell, two abstract regular 4-polytopes discovered by Grünbaum and Coxeter in the 1970’s.

N D �2 C 12 C 02 D � C 2:

Letting x D x1 C �x2; y D y1 C �y2; ´ D
´1C�´2;we split (19.1) into its rational and irra-
tional parts, then solve two simultaneous ordinary
Diophantine equations in six variables:

x21 C x22 C y21 C y22 C ´21 C ´22 D 2I

2x1x2 C x22 C 2y1‘y2 C y22 C 2´1´2 C ´22 D 1:

Dissappointingly, we find 24 solutions,
namely all permutations of .˙�;˙1; 0/. But
then we recall that our solution must have 48
octahedral symmetries, whereas the icosahedrron
has 120 symmetries. Since 120=48 D 2:5 we
should have expected this incompatibility; the
convex hull of the 24 points is a nonuniform
truncation of f3; 4g with two naturally inscribed
f3; 5g’s.

Thus we must abandon Cartesian coordinates
in favor of some system of oblique coordinates
referred to a basis d1d2d3. Much effort leads to
the obvious choice of three vertices of a trian-
gular face of f3; 5g, say d1 D .�; 1; 0/; d2 D
.0; �; 1/; d3 D .1; 0; �/ in Cartesian coordinates
(Figure 19.1).

A typical point u D xd1Cyd2C´d3 thus has
squared length u � u D N , that is
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.x2Cy2C´2/.2C�/C2�.xyCx´Cy´/ D N:

(19.2)

This equation has built-in icosahedral symmetry,
since each of the 120 symmetries preserves points
with coordinates in the ring ZŒ��. We solve it by
splitting it into rational and irrational parts; some

results are tabulated below. In the last case we
find 60 superfluous solutions.

It is unclear what is merely fortuitous in the
last example. A more insightful account may
appear elsewhere. Perhaps, however, the reader
has enjoyed yet another duet played by geometry
and number theory.
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Torus Decompostions of Regular Polytopes
in 4-space

Thomas F. Banchoff

When a regular polyhedron in ordinary 3-space
is inscribed in a sphere, then a decomposition
of the sphere into bands perpendicular to an
axis of symmetry of the polyhedron determines a
corresponding decomposition of the polyhedron.
For example, a cube with two horizontal faces
can be described as a union of two horizontal
squares and a band of four vertical squares, and
an octahedron with a horizontal face is a union of
two horizontal triangles and a band formed by the
six remaining triangles.

We may approach the study of regular figures
in 4-space in a similar way. The corresponding
statement one dimension higher says that if a
regular polytope in 4-space has its vertices on a
hypersphere such that a symmetry axis coincides
with the axis perpendicular to ordinary 3-space,
then the polytope can be described as a union
of polyhedra arranged in “spherical shells.” For
example, a 4-cube with one cubical face parallel
to 3-space can be described as a union of two
cubes and a shell made from the remaining six
cubes.

Similar shell decompositions have become a
standard means of describing the way various
three-dimensional faces fit together in 4-space
to form regular polytopes. In this chapter we
examine an alternative way of describing regular

T.F. Banchoff
Mathematics Department, Brown University, Royce
Family Professor in Teaching Excellence 2005-8,
Providence, RI 02912, USA
e-mail: thomas banchoff@brown.edu; http://www.math.
brown.edu/�banchoff

figures in 4-space, presenting them as unions
not of spherical shells but of rings of polyhedra
known as solid tori. Such torus decompositions
are especially convenient for studying symme-
tries of these figures and for investigating their
topological properties. A valuable tool in this
project is a remarkable mapping discovered by
Heinz Hopf which relates the geometry of cir-
cles on the hypersphere in 4-space to the ge-
ometry of points on the ordinary sphere in 3-
space. One of the aims of this chapter is to
give additional geometric insight into the Hopf
mapping by describing its relationship to torus
decompositions of regular polytopes.

Decompositions

Decompositions of objects are often easier to
visualize when we project them into lower-
dimensional spaces. For a regular polyhedron
inscribed in a 2-sphere centered at the origin, if
we use central projection from the North Pole
to the horizontal plane which passes through the
origin, the images of the vertices and edges of
the polyhedron form a Schlegel diagram of the
polyhedron. In such a diagram we may identify
the convex cells in a decomposition of the
polyhedron corresponding to the decomposition
of the 2-sphere into horizontal bands (see
Figure 20.1).

If we follow the same procedure one dimen-
sion higher, we project centrally from a point on
the hypersphere to our three-dimensional space

M. Senechal (ed.), Shaping Space, DOI 10.1007/978-0-387-92714-5 20,
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Figure 20.1. Band decompositions of the cube and octahedron.

Figure 20.2. Cube-within-a-cube projection of the
hypercube.

and the images of the vertices and edges of a
regular figure determine its Schlegel diagram.
Just as the central projection of a cube to the
plane leads to a “square-within-a-square,” the
central projection of a hypercube may appear
as a “cube-within-a-cube” with corresponding
vertices connected in each case. The annular band
in the plane formed by four trapezoids separating
two squares corresponds to the region separating
two cubes which is decomposed into six congru-
ent truncated square pyramids (Figure 20.2).

The four vertical truncated pyramids in the
central projection of the hypercube fit together
to form a solid torus which is the image of a
ring of four cubes on the hypercube in 4-space.
The remaining four cubes also form a ring and
the common boundary of these two rings is the
surface of a torus formed by 16 squares in the

hypercube. This is the prototype of a torus de-
composition, and it is this kind of analysis we
wish to carry out with respect to other regular
polytopes in 4-space. In this chapter we pay
special attention to the 24-cell, a polytope formed
from 24 regular octahedra. This polytope is com-
plicated enough to exhibit most of the interesting
phenomena of torus decompositions and it is still
relatively easy to visualize, especially when we
use the techniques of computer graphics.

The Cube and Its Associated
Polyhedra

Associated with the cube are other polyhedra
with vertices at the centers of faces or edges of
the cube. If we take the six centers of square
faces, we obtain the regular octahedron inscribed
in the cube. If, on the other hand, we take the
midpoints of the 12 edges of the cube, we obtain
a cuboctahedron, a semiregular polyhedron with
faces of two types: squares determined by the
midpoints of the edges of the cube’s square faces
and triangles determined by the midpoints of the
three edges coming from each vertex of the cube.

If we project the cube into the plane by central
projection, we can identify the projections of
the octahedron and the cuboctahedron by joining
images of centers of faces and edges of the cube
(Figure 20.1). The cuboctahedron in particular
can be expressed as a union of a large square
surrounding a small square, with the region
between them subdivided into four squares
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Figure 20.3. Band decomposition of the cuboctahedron.

and eight triangles (Figure 20.3). This gives
a “band decomposition” corresponding to the
decomposition of the cube itself into two hori-
zontal squares and a band of four vertical squares.

The Hypercube and Its Associated
Polytopes

In a similar manner we may identify regular
and semiregular polytopes associated with a hy-
percube by taking the midpoints of the faces
of certain dimensions. If we take the midpoints of
the eight cubical faces, we obtain the vertices of
a cube-dual determining the 16 tetrahedral faces
of the 16-cell. If we take the midpoints of all 32
edges, we obtain a semiregular polytope with 24
cells: 16 tetrahedra connecting the midpoints of
quadruples of edges emanating from each of the
vertices of the hypercube, and eight cuboctahedra
determined by the midpoints of edges of each of
the cubical faces of the hypercube.

On the other hand, if we take the centers of
all square faces of the hypercube we obtain a
polytope which is regular. Each vertex of the

Figure 20.4. Projection of the 24-cell.

hypercube is a vertex of six squares, each with a
pair of sides chosen from among the four edges
emanating from the vertex. The midpoints of
these six squares will be vertices of an octahe-
dron. Moreover, the midpoints of the six square
faces of a cube in the hypercube also determine
an octahedron. We thus obtain a polytope with
24 octahedral faces, 16 corresponding to vertices
of the hypercube and eight corresponding to its
dual polytope. This polytope is called the 24-
cell, and it is the main object of our study in this
chapter.

As in the lower-dimensional situation, we
may identify the projections of these semiregular
and regular polytopes by referring to the
central “cube-within-a-cube” projection of the
hypercube (Figure 20.2). In particular, the 24-
cell may be presented as a large octahedron
surrounding a small octahedron, with the region
between them decomposed into six octahedra
meeting vertex-to-vertex and 16 octahedra each
meeting either the large octahedron or the small
one along a triangular face. We may think of this
polytope as consisting of one octahedron on each
face of the larger one. Each octahedron of the
first set shares a triangle with one octahedron
of the other set. The gaps left between these 16
octahedra determine the places for the remaining
six octahedra (Figure 20.4).
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a

c

b

Figure 20.5. Torus decompositions of the hypercube.

The hypercube may be decomposed into two
solid torus rings, each a cycle of four cubes
meeting along square faces. In 4-space the centers
of the cubes in one of these rings will form the
vertices of a square. In the cube-within-a-cube
projection, the centers of four of these cubes
lie on a vertical straight line and the other four
centers are vertices of a horizontal square. The
vertical line meets the horizontal square disc in
exactly one point, and this fact implies that the
line and the square are linked (Figure 20.5).

Analogously we may express the 24-cell as
a union of four solid tori, each a cycle of six
octahedra meeting along triangular faces. The
centers of the six octahedra in a ring will form
a planar hexagon, with four vertices lying in two
parallel edges of the hypercube and two opposite
vertices from the dual 16-cell. Any two of these
hexagons are linked, so that any hexagon meets
the disc bounded by any other hexagon in exactly
one point. We can identify such hexagonal cycles
in the central projection of a hypercube and its
dual polytope. One of the hexagons includes a

vertex at infinity, so it is a straight line. The other
three hexagons are arranged symmetrically about
this line (Figure 20.6).

Fold-Out Decomposition
of the Hypercube and 24-Cell

The decomposition of a hypercube into two solid
tori with a common polyhedral boundary can
be described in a different way by “folding the
figure out into 3-space.” We may express a cube
folded out into the plane by giving two squares
together with a strip of four squares. The ends
of the strip are to be identified to form a cylin-
der with two boundary square polygons, which
will match up with the boundaries of the re-
maining two squares. The analogous decompo-
sition of the hypercube starts with two solid
stacks of four cubes. The ends of the stacks
are to be identified by folding up in 4-space to
obtain the two solid tori. The common boundary
of these solid tori is a polyhedral torus which
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b

c d

a

Figure 20.6. Torus decompositions of the 24-cell.

can be expressed as a square subdivided into
16 squares, with its left and right edges iden-
tified and its top and bottom edges identified
(Figure 20.7).

The corresponding fold-out description of the
24-cell starts with a solid stack formed by six
octahedra. The top and bottom triangles of the
stack can be identified by folding up into 4-space
to obtain a solid torus. The boundary of this solid
torus can be expressed as a union of 36 triangles
arranged in a polygonal region in the plane, to
be folded up in 4-space so that its left and right
edges are identified and its top and bottom edges
are identified (Figure 20.8a, b).

The remaining 18 octahedra in the 24-cell can
be arranged into three other stacks, each with six
octahedra. We can place the four stacks together
in 3-space to indicate the way the four solid tori
will be linked when the stacks are folded together
in 4-space (Figure 20.9).

Figure 20.7. Fold-out decompostion of the hypercube.

Cartesian and Torus Coordinates

To describe polyhedra in 3-space in coordinates,
it is most convenient to parametrize the unit
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a

b

Figure 20.8. A stack of six octahedra, (a) unfolded, (b)
folded.

Figure 20.9. Four stacks of octahedra.

sphere by longitude and co-latitude (measured
down from the North Pole instead up from the
Equator). A point on the unit sphere then has
Cartesian coordinates

P

A

N

6

0

θ

Figure 20.10. Stereographic projection of the 2-sphere.

.cos.�/ sin.'/; sin.�/ sin.'/; cos.'//:

Stereographic projection from the North Pole
to the horizontal plane which passes through
the origin sends a point to the intersection of the
line through the North Pole and the point with
the horizontal plane. The point whose coordinates
are given above is then sent to

.cos.�/ sin.'/=.1� cos.'//; sin.�/ sin.'/=

.1 � cos.'//; 0/ D .cos.�/ cot.'=2/;

sin.�/ cot.'=2/; 0/

(Figure 20.10). Circles of latitude are sent to
circles centered at the origin and semicircles
of longitude are sent to straight lines passing
through the origin. A rotation of reflection of the
sphere about the axis in 3-space corresponds to
a rotation or reflection in the plane. A regular
polyhedron with a vertical axis of symmetry will
have its vertices on certain parallels of latitude
and the symmetries of the polyhedron preserving
the axis will lead to symmetries of its Schlegel
diagram in the plane.

In 4-space the sphere of points at unit dis-
tance from the origin can be parametrized in
different ways. In this exposition, we concentrate
on a coordinate system on the 3-sphere which
has especially interesting geometric properties. In
this torus coordinate system the coordinates of a
point are

.x; y; u; v/ D f.cos.�/ sin.'/; sin.�/ sin.'/;

cos. / cos.'/; sin. / cos.'/g
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where � and  run from 0 to 2� and where 0 �
� � �

2
. The points with ' D 0 give the unit circle

in the .u; v/ plane and if ' D �
2

, the locus is the
unit circle in the .x; y/ plane.

Points on the 3-sphere corresponding to other
values of ' give tori on the 3-sphere. For exam-
ple, if ' D �

4
we get a symmetric torus,

.1=
p
2/.cos.�/; sin.�/; cos. /; sin. //:

This torus is the Cartesian product of two cir-
cles, one lying in the xy-plane and the other in
the uv-plane.

As ' moves from 0 to �
2

, these tori sweep
out the region between the two linked circles. In
particular, the entire 3-sphere is then displayed
as a union of two tori, one corresponding to
negative values of ' and the other corresponding
to positive values.

If we position the vertices of a regular
polytope symmetrically with respect to this
coordinate system, we obtain a torus decomposi-
tion of the regular polytope. The torus coordinate
system on the 3-sphere is particularly well-suited
to the study of the Hopf mapping, the final topic
of this chapter.

Coordinates for Polyhedra
and Polytopes

In three-dimensional space we may describe the
cube by the eight vertices .˙t;˙t;˙t/ for a pos-
itive constant t . These points lie on the sphere of
radius

p
3t . The centers of cubical faces will then

be the points .˙t; 0; 0/, .0;˙t; 0/ and .0; 0;˙t/,
the vertices of a regular octahedron inscribed in
a sphere of radius t . The midpoints of edges
of the cube will have coordinates .˙t;˙t; 0/,
.0;˙t;˙t/ and .˙t; 0;˙t/, forming the ver-
tices of a cuboctahedron inscribed in a sphere of
radius

p
2t .

For the hypercube we may choose 16 vertices
.˙t;˙t;˙t;˙t/ situated on the hypersurface of
a 3-sphere of radius 2t . In torus coordinates, these
16 points

2t.cos.�/ sin.'/; sin.�/ sin.'/;

cos. / cos.'/; sin. / cos.'//

all lie on the torus with ' D �=4. The coor-
dinates are given by letting � and  take on
the values �=4 C k�=2 for k D 0; 1; 2; 3. Just
as the 3-sphere is expressed as a union of two
solid tori with a common boundary torus, the
boundary of the hypercube is expressed as a
union of two solid tori with a common bound-
ary. The boundary polyhedral torus can be ex-
pressed as the Cartesian product of two square
polygons. It includes all 16 vertices and all 32
edges of the hypercube as well as 16 of its
squares.

The centers of the eight three-dimensional
cubical faces of the hypercube have coordinates
.˙t; 0; 0; 0/, .0;˙t; 0; 0/, .0; 0;˙t; 0/ and
.0; 0; 0;˙t/, lying on a hypersphere of radius
t . This gives coordinates for the regular
16-cell in 4-space. The midpoints of edges
of the hypercube will be the 32 points
.0;˙t;˙t;˙t/, .˙t; 0;˙t;˙t/, .˙t;˙t; 0;˙t/
and .˙t;˙t;˙t; 0/, lying on a hypersphere of
radius

p
3t , giving the coordinates of the vertices

of a semiregular polytope.
The vertices of the regular 24-cell in 4-space

can be given by the midpoints of square faces of
the hypercube, with coordinates .˙t;˙t; 0; 0/,
.0;˙t; 0;˙t/, .˙t; 0;˙t; 0/, .˙t; 0; 0;˙t/,
.0; 0;˙t;˙t/ and .0;˙t;˙t; 0/, lying on a
hypersphere of radius

p
2t . Another set of

coordinates for the 24-cell is given by taking
the vertices of a hypercube .˙s;˙s;˙s;˙s/
together with the vertices of a dual 16-cell
.˙2s; 0; 0; 0/, .0;˙2s; 0; 0/, .0; 0;˙2s; 0/ and
.0; 0; 0;˙2s/. These 24 coordinates lie on a
hypersphere of radius 2s.

The Hopf Mapping

Torus coordinates are especially well suited for
describing the Hopf mapping, a mapping from
the 3-sphere to the 2-sphere for which every point
of the 3-sphere lies on a circle that is the preimage
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of a point on the 2-sphere. One of the easiest
ways to describe the Hopf mapping is to think of
the 3-sphere as a collection of pairs of complex
numbers with the squares of their lengths adding
up to 1. We then have

S3Df.x C iy; uC iv/; x2 C y2 C u2 C v2D1g

� fŒ´; w�; ´2 C w2 D 1g:

Hereafter we shall adopt the convention of using
square brackets to indicate the description of a
point of S3 by pairs of complex numbers and
parentheses to indicate the usual description in
terms of quadruples of real numbers.

To describe the Hopf mapping we send a pair
of complex numbers to their quotient; that is,
hŒ´;w� D w=´ if ´ ¤ 0 and hŒ0;w� D 1, the
infinite point in the extended complex plane. If
we write a point in S3 in polar coordinates, then
we have

Œ´; w� D Œsin.'/ei� ; cos.'/ei �

and

hŒ´;w� D cot.'/ei. ��/

if ' ¤ �
2

and hŒ0;w� D 1 as before.
To complete the description of the Hopf map-

ping, we use inverse stereographic projection to
map the extended complex plane to the 2-sphere.
The effect of this is to map the point Œ´; w� D
.x; y; u; v/ to

hŒ´;w� D Œ2 Ńw;w Nw � ´ Ń � D .2xuC 2yv;

2xv � 2yu;�x2 � y2 C u2 C v2; 0/:

Here Nw D u � iv indicates the complex conju-
gate. The coordinate w Nw � ´ Ń is a real number
and the image of each point of S3 lies in three-
dimensional space.

In torus coordinates, the Hopf mapping is
given by

hŒsin.'/ei� ; cos.'/ei �

D Œsin.2'/ei.'��/; cos.2'/�:

It is clear from this form that the image of each
point lies on the 2-sphere of radius 1 in 3-space,
so we write

h W S3 ! S2:

Under this mapping the unit circle in the xy-
plane corresponding to  D �

2
is sent to the

point .0; 0;�1/ and the unit circle in the uv-plane
corresponding to ' D 0 is sent to point .0; 0; 1/.
The middle torus .1=

p
2/Œei� ; ei' � corresponding

to ' D �
4

is sent to the Equator Œei. ��/; 0�. The
preimage of the point .1; 0; 0/ on the Equator is
the set of points with ' D �

4
and � D  . This

curve lies on the sphere and in the plane given
by x D u and y D v, so it must be a circle.
Similarly, any point Œeiˇ ; 0� on the Equator will
be a circle determined by the conditions ˛ D �

4

and ' D � C ˇ.
More generally, for any point Œsin.�/eiˇ ;

cos.�/� with sin.�/ positive on the 2-sphere,
the preimage under the Hopf mapping will be a
circle determined by the conditions ' D �

2
and

 D � C ˇ. All of these circles will be great
circles on the 3-sphere and no two of them will
have a point in common. Since the discs bounded
by these circles will meet only at the origin in
4-space, the circles will be linked.

The Hopf Decomposition
of the Hypercube

We now consider the hypercube from the point
of view of the Hopf mapping. In complex coordi-
nates, the 16 vertices of the hypercube on the unit
hypersphere may be given by 1

2
Œ˙1˙ i;˙1˙ i �.

Under the Hopf mapping the images of these
vertices will be four points on the Equator of S2,
namely Œ˙1; 0� and Œ˙i; 0� (Figure 20.11).

We indicate on the unfolded torus diagram two
of the four quadrilaterals containing the vertices
of the hypercube. These four quadrilaterals are
squares in 4-space which we may call “Hopf
polygons.” The edges of these Hopf polygons are
diagonals in the square faces of the flat torus
which is the preimage of the Equator under the
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Figure 20.11. Hopf polygons on the hypercube.

Hopf mapping. One of the solid tori is the preim-
age of the upper hemisphere and the other is the
preimage of the lower hemisphere.

Torus Decomposition of the 24-Cell

We may now attempt a similar decomposition
of the 24-cell. In the fold-out version we may
identify three hexagonal helices on each stack of
six octahedra corresponding to the four quadri-
lateral helices on the stacks of four cubes in
the hypercube. Unfortunately these hexagons are
not preimages of points of S2 under the Hopf
mapping in either of the two coordinate systems
we have described for the 24-cell. The coordi-
nates which we have given for the hypercube are
sent by the Hopf mapping to four points on the
Equator and the eight vertices of the 16-cell are
sent to the North and South Poles of S2.

Thus the 24 coordinates of one coordinate
system on the 24-cell are sent to six points of S2

situated at the vertices of a regular octahedron.
Similarly if we use the coordinates of the 24-cell
obtained by taking midpoints of the square faces,
again the images under the Hopf mapping are
the same six vertices of an octahedron. In order

to obtain the decomposition of the 24-cell into
four solid tori each with six octahedra, we need
to reposition the 24-cell so that its vertices are
sent to the four vertices of tetrahedron under the
Hopf mapping.

To determine a rotation that will align the
24-cell so that it is situated well with respect
to the Hopf mapping, we carry out a closer
examination of the previously given coordinates
for the 24-cell where we now consider the case
t D 1 so the polytope lies on a sphere of
radius equal to 2. If we project stereographically
from the point .0; 0; 0;

p
2/, then the image of a

point .x; y; u; v/ is fp2=.p2 � v/g.x; y; u/: If
v D 0, then the image of .x; y; u; 0/ is .x; y; u/.
Thus the images of the 12 vertices of the 24-cell
of the forms .˙1;˙1; 0; 0/; .˙1; 0;˙1; 0/ and
.0;˙1;˙1; 0/ will be the vertices of a cubocta-
hedron in 3-space. The six vertices of the form
.˙1; 0; 0; 1/, .0;˙1; 0; 1/, and .0; 0;˙1; 1/ will
be sent to the vertices of large octahedron con-
taining the cuboctahedron, and the six vertices
with the fourth coordinate minus 1 will be sent to
a small octahedron contained within the cubocta-
hedron.

The cuboctahedron has eight triangular faces,
each only lying in one distorted octahedron with
its opposite triangle on the small octahedron and
another with an opposite triangle on the large
octahedron. This accounts for 18 of the octahedra
in the 24-cell. The remaining six each have four
of the vertices on the square faces of the cuboc-
tahedron, and one vertex on the large and one on
the small octahedron.

We may then identify one of the four tori
in the toroidal decomposition by taking the
small octahedron and two adjacent octahedra
with their opposite triangles on the semiregular
polyhedron. The octahedron opposite these
three complete a cycle of six octahedra on
the 24-cell. We could for example take the
large octahedron, with center .0; 0; 0; 1/,
the small one with center .0; 0; 0;�1/; two
others adjacent to the small one with centers
1=2.�1;�1;�1;�1/ and 1=2.1; 1; 1;�1/,
and their opposite octahedra with center
1=2.1; 1; 1; 1/ and 1=2.�1;�1;�1; 1/. These
six vertices may be arranged in a hexagon so that
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(0, 0, 0, 1)

(0, 0, 0, −1)

(1, 1, 1, 1)1
2

(1, 1, 1, −1)1
2

(−1, −1, −1, 1)1
2

(−1, −1, −1, −1)1
2

Figure 20.12. A hexagon of centers of octahedra in a
Hopf cycle.

the angle between any two adjacent vertices is
120ı, as shown in Figure 20.12.

We may label the vertices of the projected 24-
cell so that this cycle of six octahedra appears as
five octahedra in a vertical stack, together with
the large octahedron. The remaining solid tori are
obtained by taking a pair of octahedra meeting
the central polyhedron in opposite square faces
and then connecting them by two other pairs each
with one octahedron inside and one outside the
central polyhedron. Once we have one of these
we obtain the other two by rotating about the
vertical line by angles of 120ı and 240ı.

Fortunately it is possible to find a rotation
of 4-space which realigns the vertices so that
their images are situated at the vertices of a
regular tetrahedron in 3-space! To find one such
rotation, we look for a linear transformation
T which sends the hexagon to a regular
hexagon in the uv-plane in 4-space. We can
let T fix the vector .0; 0; 0; 1/ and let T
send 1=2.1; 1; 1; 1/ to .0; 0; 3=2; 1=2/ and
1=2.�1;�1;�1; 1/ to .0; 0;�p3=2; 1=2/. It fol-
lows that T.1=

p
3; 1=

p
3; 1

p
3; 0/ D .0; 0; 1; 0/.

The vectors sent to .1; 0; 0; 0/ and .0; 1; 0; 0/ by
T must be a pair of mutually orthogonal unit
vectors which are perpendicular to (0; 0; 0; 1) and
.1=

p
3; 1=

p
3; 1=

p
3; 0/ and we may choose

these preimages to be .1=
p
2;�1=p2; 0; 0/

and .1=
p
6; 1=

p
6; 2=

p
6; 0/. This completely

determines the matrix of T, and we may then
check that after this rotation, the vertices of the
24-cell do indeed lie in four (planar) regular
hexagons in 4-space which are mapped to the
vertices of a regular tetrahedron inscribed in
the unit 2-sphere in 3-space under the Hopf
mapping.

The preimages of the four triangular faces
of this spherical tetrahedra correspond to the
four cycles of six octahedra described in the
previous paragraph. To see how these four rings
of octahedra fit together to fill out the 24-cell,
we may shrink each ring toward the hexagon,
with vertices at the centers of the six triangles
between adjacent octahedra. We may interpolate
linearly between the 24-cell and this union of
four hexagons, constantly projecting the vertices
centrally to the hypersurface of the 3-sphere.
Illustrations of several stages of its deformation
are shown in Figures 20.8–20.11.

Note that the 24 centers of four hexagons may
be obtained from the centers of the 24 octahedra
by a rotation in 4-space which moves each Hopf
circle along itself by 60ı. The comparable treat-
ment of the hypercube shrinks the two rings
of four cubes to the quadrilaterals determined
by the centers of the eight squares where adja-
cent cubes meet in the two rings, as shown in
Figures 20.5–20.7. These eight points may also
be obtained from the centers of the cubes in the
two rings by a rotation in the 4-space moving
each Hopf circle along itself by 45ı.

To conclude: we have seen that the famil-
iar central projection of the hypercube suggests
a decomposition of the hypersphere into solid
tori, and this decomposition carries over to other
polytopes as well, in particular the 24-cell. This
investigation gives additional geometric insight
into the properties of these polytopes and at the
same time it elucidates some of the geometry of
the Hopf mapping.
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Tensegrities and Global Rigidity

Robert Connelly

In 1947 a young artist named Kenneth Snelson
invented an intriguing structure: a few sticks sus-
pended rigidly in mid air without touching each
other. It seemed like a magic trick. He showed
this to the entrepreneur, builder, visionary,
and self-styled mathematician, R. Buckminster
Fuller, who called it a tensegrity because of its
“tensional integrity.” Fuller talked about tenseg-
rities and wrote about them extensively. Snelson
went on to build a great variety of fascinating
tensegrity sculptures all over the world, including
the 60-foot work of art at the Hirschhorn Museum
in Washington, DC. shown in Figure 21.1.

Why did these tensegrities hold up? What
were the geometric principles? They were often
under-braced, and they seemed to need a lot
of tension for their stability. So Fuller’s name,
tensegrity, is quite appropriate.

In this chapter I will show how to describe the
stability of most of the tensegrities that Snelson
and others have built, and how to predict their
stability. I begin with a set of principles that can
be used to understand many of the Snelson-like
tensegrities. This relies on the properties of the
stress matrix, a symmetric matrix that defines a
kind of potential energy that we would like to
minimize at a given configuration. This leads to a
lot of interesting examples one can build, assured
that the structure will not fall down.

R. Connelly
Cornell University, 433 Malott Hall,
Ithaca, NY 14853, USA
e-mail: connelly@math.cornell.edu; http://www.math.
cornell.edu/�connelly/

Then I will show how the rank of a stress
matrix can predict how generic configurations of
bar tensegrities (usually called bar frameworks)
predict a strong sort of rigidity that I call global
rigidity, and mention some exciting new results
where the stress matrix plays a central role. There
are several quite interesting applications of the
theory of tensegrities. Of course, there is a nat-
ural application to structural engineering, where
the pin-jointed bar-and-joint model is appropriate
for an endless collection of structures. In com-
putational geometry, there was the carpenter’s
rule conjecture, inspired by a problem in robot
arm manipulation. This proposes that a non-
intersecting polygonal chain in the plane can
be straightened, keeping the edge lengths fixed,
without creating any self-intersections. The key
idea in that problem uses basic tools in the theory
of tensegrity structures and stresses. Granular
materials of hard spherical disks can be reason-
ably modeled as tensegrities, where all the mem-
bers are struts. Again the theory of tensegrities
can be applied to predict behavior and provide
the mathematical basis for computer simulations
as well as to predict the distribution of internal
stresses.

Terminology and Notation

To define a tensegrity we first define a tensegrity
graph G with vertices 1; 2; : : : ; n in d -
dimensional space Ed . Edges are denoted as
unordered pairs of different vertices fi; j g, where
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Figure 21.1. Kenneth Snelson, Needle Tower, 1968, alu-
minum and stainless steel, 60 � 20 � 20 ft. — 18:2�
6� 6m.

i ¤ j . Each edge of G is declared a cable, strut,
bar or not connected. The cables, struts, and bars
are members of the tensegrity, and are denoted by
dashed line segments, bold line segments, or thin
line segments respectively.

The next ingredient is a configuration
p D .p1; : : : ; pn/ of n points or nodes in
the Euclidean plane or space, where each
pi corresponds to a vertex i of G. Nodes
connected by cables are allowed to get closer

together (or stay the same distance apart), the
nodes connected by struts are allowed to get
farther apart (or stay the same distance apart),
but bars must always stay the same distance
apart.

The graph together with the corresponding
configuration is a tensegrity G.p/. This notation
is useful since we sometimes want to consider the
abstract graph G without referring to a particu-
lar configuration, or the configuration p without
referring to any particular graph. The notation
is meant to suggest, for example, that there are
physical cables connecting pairs of nodes that
have cables connecting the corresponding ver-
tices of G.

A continuous motion of the nodes, starting
at the given configuration of a tensegrity, is
called a flex of the tensegrity. A trivial flex is
one that moves the configuration as a whole
without changing any distances between nodes,
for example rotations and translations, in space.
If the tensegrity has only trivial flexes, then it is
said to be rigid in Ed . Otherwise it is flexible.
Note that, theoretically, members can cross
one another (i.e., intersect). For the purposes
of our mathematical model, the tensegrity is
a purely geometric object, but many of the
rigid tensegrities shown here can be built with
rubber (or plastic) bands for cables, and dowel
rods with a slot at their ends for struts or
bars. Figure 21.2 shows some examples of
rigid and flexible tensegrities in the plane and
space.

The rigid tensegrity in space in Figure 21.2 is
one of Snelson’s original objects. It is quite sim-
ple but suspends three sticks, the struts, rigidly
without any pair of them touching. Indeed, Snel-
son does not like to call an object made of
cables and struts a tensegrity unless all the struts
are completely disjoint, even at their nodes. A
tensegrity with all its struts disjoint and with no
bars (i.e., all the other members are cables) will
be called a pure tensegrity.

Now let’s discuss techniques for computing
the rigidity of tensegrities. As a by-product,
the definition and analysis of global rigidity
will emerge naturally. The stress associated to
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Rigid

Flexible

In the plane

In space

Figure 21.2. Nodes are denoted by small round points, cables by dashed line segments, struts by solid line segments,
and bars by thin line segments.

a tensegrity is the vector ! D .: : : ; !ij ; : : : /,
where !ij D !j i is a scalar associated to the
member fi; j g of G. A stress ! D .: : : ; !ij ; : : : /

is proper if !ij � 0 for a cable fi; j g and !ij � 0

for a strut fi; j g. There is no condition when
fi; j g is a bar. We set !ij D 0 if the nodes
fi; j g are not connected. We say a proper stress
! is strict if !ij ¤ 0 when fi; j g is a cable or
strut.

Let ! D .: : : ; !ij ; : : : / be a proper stress for
a tensegrity graph G. For any configuration p of
nodes in Ed , define the stress-energy associated
to ! as

E!.p/ D
X
i<j

!ij .pi � pj /
2; (21.1)

where the product of vectors is the ordinary dot
product, and the square of a vector is the square
of its Euclidean length.

Now think of the configuration p as fixed.
We want to compare other configurations q to
p. Let us say the tensegrity G.p/ dominates the
tensegrity G.q/, and write G.q/ � G.p/ for two
configurations q and p if

jpi � pj j � jqi � qj j for fi,jg a cable;

jpi � pj j � jqi � qj j for fi,jg a strut and

jpi � pj j D jqi � qj j for fi,jg a bar:

(21.2)

These are the tensegrity constraints for the
configuration p with respect to the tensegrity
graph G. So if G.p/ dominates G.q/ and ! is
a proper stress for G, then E!.p/ � E!.q/,
because the terms of (21.2) that correspond to ca-
bles have a positive stress and can only decrease
since the cable lengths can only decrease, while
the terms corresponding to struts have a negative
coefficient and the strut lengths can only increase.

Local and Global Rigidity

A tensegrityG.p/ is locally rigid if the only con-
tinuous flexes of G.p/ that satisfy the tensegrity
constraints of Equation (21.2) are congruences.
There is a good body of work devoted to the
detection and understanding of local rigidity.
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a b c

Figure 21.3. Three examples of planar rigid bar frame-
works; see the text for details.

However, most of the structures made by Snel-
son and other artists are globally rigid. This
means that for any other configuration q of the
same labeled nodes in Ed , G.q/ � G.p/ implies
that q is congruent to p. Even more strongly,
regard Ed 	 ED , for d � D. If, even though
G.p/ is in Ed , it is true that G.p/ is globally
rigid in ED , for all D � d , then we say G.p/
is universally globally rigid. For example, both
rigid tensegrities in Figure 21.2, are universally
globally rigid. The example in Figure 21.3a is
rigid in the plane, but not globally rigid in the
plane, since it can reflect the upper left node
around a diagonal. Figure 21.3b is globally rigid
in the plane but not universally globally rigid,
since it is flexible in three-space. Figure 21.3c
is universally globally rigid. These are all bar
frameworks.

What can we say about more complicated
tensegrities? The energy function E! described
above helps. The idea is to look for situations
in which the configuration p is a minimum for
the functional E! . The first step is to determine
when p is a critical point forE! , i.e., when all di-
rectional derivatives given by p0 D .p0

1; : : : ; p
0
n/

starting at p are 0. This means that the following
equilibrium vector equation must hold for each
node i : X

j

!ij .pj � pi / D 0: (21.3)

In this case, ! is an equilibrium stress for p,
called just a stress when the equilibrium is clear
from the context. To get an understanding of
how this works, consider the example of a square
in the plane as in Figure 21.4. It is easy to see
that the vector equilibrium equation (21.3) holds
for the three vectors at each node.

p2p1

p3p4
1

−1

−1

1

1 1

Figure 21.4. A square tensegrity with its diagonals,
where a proper equilibrium stress is indicated.

If a configuration p were the unique mini-
mum, up to rigid congruences, for E! , we would
have a global rigidity result immediately, but
unfortunately this is almost never the case. We
must deal with affine transformations.

Affine Transformations

An affine transformation or affine map of Ed

is determined by a d x d matrix A and a
vector b 2 Ed . If p D .p1; : : : ; pn/ is any
configuration in Ed , an affine image is given
by q D .q1; : : : ; qn/, where qi D Api C b. If the
configuration p is in equilibrium with respect to
the stress !, then so is any affine transformation
q of p.

This brings us to the question: for a
tensegrity G.p/ in Ed , when is there an
affine transformation that preserves the member
constraints (21.2)? It is clear that the matrix A is
the only relevant part, and it turns out that we also
only need to consider the members that are bars.
A preserves the length of bar fi; j g if and only if
the following holds:

.pi � pj /2 D .qi � qj /2

D .Api �Apj /2

D ŒA.pi � pj /�
TA.pi � pj /

D .pi � pj /TATA.pi � pj /;

or equivalently,

.pi � pj /
T .ATA� I d /.pi � pj / D 0 (21.4)
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where ./T is the transpose operation, I d is the
d x d identity matrix, and vectors are regarded
as column vectors in this calculation. If Equa-
tion (21.4) holds for all bars in G, we say that it
has a bar preserving affine image, which is non-
trivial if A is not orthogonal. Similarly, G has
a non-trivial affine flex if there is a continuous
family of d -by-d matrices At , where A0 D I d ,
for t in some interval containing 0 such that each
At satisfies Equation (21.4) for t in the interval.

This suggests the following definition. If v D
fv1; : : : ; vkg is a collection of vectors in Ed , we
say that they lie on a quadric at infinity if there is
a non-zero symmetric d -by-d matrixQ such that
for all vi 2 v

vTi Qvi D 0: (21.5)

Notice that since the definition of an orthog-
onal matrix A is that ATA � I d D 0, the
affine transformation defines a quadric at infinity
if and only if the affine transformation is not a
congruence.

Call the bar directions of a bar tensegrity
the set fpi � pj g, for fi; j g a bar of G. With
this terminology, Equation (21.5) says that if A
preserves bar length, then the member directions
of a bar tensegrity lie on a quadric at infinity. We
can prove:

Proposition 21.1. IfG.p/ is a bar framework in
Ed , such that the nodes do not lie in a .d � 1/-
dimensional hyperplane, then it has a non-trivial
bar preserving affine image if and only if it has a
non-trivial bar-preserving affine flex if and only if
the bar directions lie on a quadric at infinity.

Proof. The “only if” direction is shown above.
Conversely suppose that the member directions
of a bar tensegrityG.p/ lie on a quadric at infinity
in ed given by a non-zero symmetric matrix Q.
By the spectral theorem for symmetric matrices,
we know that there is an orthogonal d -by-d
matrix X D .XT /�1 such that:

XTQX D

0
BBBBB@

	1 0 0 � � � 0
0 	2 0 � � � 0
0 0 	3 � � � 0
:::
:::
:::
: : :

:::

0 0 0 � � � 	d

1
CCCCCA
:

Let 	� be the smallest 	i , and let 	C be the
largest 	i . Note 1 � 1=	� < 1=	C � 1, 	�
is non-positive, and 	C is non-negative when Q
defines a non-empty quadric and when 1=	� �
t � 1=	C, 1 � t	i � 0 for all i D 1; : : : ; d .
Working Equation (21.4) backwards for 1=	� �
t � 1=	C we define:

At D XT

0
BB@

p
1 � t�1 0 0 � � � 0

0
p

1 � t�2 0 � � � 0

0 0
p

1 � t�3 � � � 0

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

0 0 0 � � �

q
1 � t�d

1
CCAX:

(21.6)

Substituting At from Equation (21.6) into
Equation (21.4), we see that it provides a non-
trivial affine flex of G.p/. If the configuration
is contained in a lower dimensional hyperplane,
we should really restrict to that hyperplane since
there are non-orthogonal affine transformations
that are rigid when restricted to the configuration
itself.

When do bar tensegrities have bar directions
that lie on a quadric at infinity? InE2, the quadric
at infinity consists of two distinct directions. So
a parallelogram or a grid of parallelograms has a
non-trivial affine flex. InE3 it is more interesting.
The quadric at infinity is a conic in the projective
plane, and such a conic is determined by 5 points.
An interesting example is the bar tensegrity in
Figure 21.5. The surface is obtained by taking
the line .x; 1; x/ and rotating it about the ´-axis.
This creates a ruling of the surface by disjoint
lines. Similarly .x; 1;�x/ creates another ruling.
Each line in one ruling intersects each line in the
other ruling or they are parallel. A bar tensegrity
is obtained by placing nodes where a line on one
ruling intersects a line on the other ruling, and
bars such that they join every pair of nodes that
lie on same line on either ruling.

Alexander Barvinok asked when a framework
in a space of D dimensions can also be realized
in a subspace of d dimensions, d < D. He
proved,
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a b

Figure 21.5. Figure (a) is the ruled hyperboloid given by x2 Cy2 �´2 D 1. Figure (b) is the flattened version after
an affine flex.

Theorem 21.2. If G.p/ is a bar framework in
ED with less than d.d C 1/=2 bars, then it has a
realization in Ed with the same bar lengths.

Proof. The space of d -by-d symmetric matrices
is of dimension d C .d 2 � d/=2 D d.d C 1/=2.
So if the vector directions of the members of a
tensegrity are less than d.d C 1/=2, then it is
possible to find a non-zero d -by-d symmetric
matrix that satisfies Equation (21.5), and then flex
it into a lower dimensional subspace by using
Equation (22.4) until one of the diagonal entries
becomes 0.

If every realization G.p/ of a bar graph G,
where the p’s are configurations in ED , can be
realized in Ed with the same bar lengths, then
we say that G is d -realizable. Note that this is a
property of the graph G: in order to qualify for
being d -realizable, one has to be able to push
a realization in ED down to a realization Ed

for ALL realizations in ED . For example, the
1-realizable graphs are forests, graphs with no
cycles. In particular, a triangle is not 1-realizable.

This is inspired by a problem in nuclear mag-
netic resonance (NMR) spectroscopy. The atoms
of a protein are tagged and some of the pairwise
distances are known. The problem is to identify

a configuration in E3 that satisfies those distance
constraints. Finding such a configuration in ED ,
for some large D, is computationally feasible,
and if G is 3-realizable, one can expect to find
another configuration in E3 that satisfies the
distance constraints.

A graph H is a minor of a graph G if it
can be obtained from G by edge contractions
or deletions. If a minor of a graph G is not d -
realizable, then G itself is not d -realizable. It is
easy to show that a graph is 1-realizable if and
only if it does not have a triangle as a minor.
In other words, the triangle is the one and only
forbidden minor for 1-realizability. It is not too
hard to show that the graph K4, the tetrahedron,
is the only forbidden minor for 2-realizability.
Maria Belk and I showed:

Theorem 21.3. A complete list of forbidden mi-
nors for 3-realizability is the set of two graphs,
K5 and edge graph of the regular octahedron.

There is a reasonable algorithm to detect 3-
realizablity for an abstract graph and, when the
edge lengths are given, to find a realization
in E3. Tensegrity techniques are used in a
significant way.
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The Stress Matrix and the
Fundamental Theorem

The stress-energy function E! defined by (21.1)
is a quadratic form, and it is an easy matter to
compute the matrix associated to it


 D
X
i<j

!ij
.i; j /

where the .i; j / entry is �!ij for i ¤ j , and
the diagonal entries are such that the row and
column sums are 0. (Recall that any stress !ij not
designated in the vector form ! D .� � � ; !ij ; � � � /
is assumed to be 0.) With this terminology we can
regard a configuration p D .p1; : : : ; pn/ in Ed

as a column vector. Then

E!.p/ D
X
i<j

!ij .pi � pj /2

D
X
i<j

!ij .xi � xj /
2

C
X
i<j

!ij .yi � yj /
2 C : : :

D �
x1 x2 � � � xn

�



0
BBBB@

x1

x2
:::

xn

1
CCCCA

C �
y1 y2 � � � yn

�



0
BBBB@

y1

y2
:::

yn

1
CCCCA

C : : : ;

where each pi D .xi ; yi ; : : : /, for i D 1; : : : ; n.
So we see that E! is essentially given by the
matrix
 repeated d times. The tensor product of
matrices (or sometimes the Kronecker product)
gives the matrix of E! as 
˝ I d , and

E!.p/ D .p/T
˝ I dp:

To rewrite the equilibrium condition (21.3) in
terms of matrices, define the configuration matrix
P for the configuration p as

P D
�
p1 p2 � � � pn
1 1 � � � 1

�
:

P is a .d C 1/-by-n matrix, and the equilibrium
condition (21.3) is equivalent to

P 
 D 0:

Each coordinate of P as a row vector multiplied
on the right by 
 represents the equilibrium
condition in that coordinate. The last row of ones
of P represent the condition that the column
sums (and therefore the row sums) of 
 are 0.
It is also easy to see that the linear rank of P is
the same as the dimension of the affine span of
p1; : : : ; pn in Ed .

Suppose that we add rows to P until all the
rows span the co-kernel of 
. The corresponding
configuration p will be called a universal config-
uration for ! (or equivalently
).

Proposition 21.4. If p is a universal configura-
tion for !, any other configuration q which is in
equilibrium with respect to ! is an affine image
of p.

Proof. Let Q be the configuration matrix for q.
Since the rows of P are a basis for the co-kernel
of 
, and the rows of Q are, by definition, in the
co-kernel of 
, there is a .d C 1/-by-.d C 1/

matrix A such that AP D Q. Since P and Q
share the last row of ones, we know that A takes
the form

A D
�
A0 b

0 1

�
;

whereA0 is a d -by-d matrix, b is a 1-by-d matrix
(a vector in Ed ), and the last row is all 0’s except
for the 1 in the lower right hand entry. Then we
see that for each i D 1; : : : ; n, qi D A0pi Cb, as
desired. ut
The stress matrix plays a central role in this
theory. Note that when the configuration p D
.p1; : : : ; pn/ in Ed is universal (i.e., its affine
span is all of Ed ), for the stress !, the dimen-
sion of the co-kernel (which is the dimension
of the kernel) of 
 is d , and the rank of 

is n � d � 1. But even when the configuration
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p is not universal for !, it is the projection
of a universal configuration, and so the rank

 � n � d � 1.

Now we come to one of the basic tools for
showing that specific tensegrities are globally
rigid and more. If ! is a proper equilibrium
stress for the tensegrityG.p/, then the difference
pi � pj , where !ij ¤ 0, is called a stressed di-
rection and the member fi; j g is called a stressed
member. Note that ifG.q/ � G.p/, !ij ¤ 0, and
jpi � pj j ¤ jqi � qj j, then E!.q/ < E!.p/. So
if p is a configuration for the minimum of E! ,
the stressed members are effectively bars.

Theorem 21.5. Let G.p/ be a tensegrity, where
the affine span of p D .p1; : : : ; pn/ is all of
Ed , with a proper equilibrium stress ! and stress
matrix 
. Suppose further that
1. 
 is positive semi-definite.
2. The configuration p is universal with respect

to the stress !. (In other words, the rank of 

is n � d � 1.)

3. The stressed directions ofG.p/ do not lie on a
quadric at infinity.

Then G.p/ is universally globally rigid in all
dimensions.

Proof. Suppose that q is a configuration such
that G.q/ � G.p/. Then E!.q/ � E!.p/. By
Condition 1, E!.q/ D E!.p/ D 0, and ! is
an equilibrium stress for the configuration q as
well as p. By Condition 2 and Proposition 21.4,
q is an affine image of p. By Condition 3 and
Proposition 21.1, q is congruent to p.

Notice that in view of Proposition 21.1, Condi-
tion 3 can be replaced by the condition that G.p/
has no affine flexes in Ed . For example, if it is
rigid in Ed , that would be enough.

With this in mind, we say that a tensegrity
is super stable if it has a proper equilibrium
stress ! such that Conditions (1), (2) and (3)
hold. If just Conditions 1 and 3 hold and !

is strict (all members stressed), then we say
G.p/ is unyielding. An unyielding tensegrity,
essentially, has all its members replaced
by bars.

Examples

The Square Tensegrity

The stress matrix for the square of Figure 21.4 is


 D

0
BBB@

C1 �1 C1 �1
�1 C1 �1 C1
C1 �1 C1 �1
�1 C1 �1 C1

1
CCCA : (21.7)

So 
 has rank 1 D 4 � 2 � 1 D n � d � 1,
and since its trace is 4, its single eigenvalue is
4, and it is positive semi-definite. This makes it
unyielding, and since the underlying graph is the
complete graph, it is universally globally rigid.
It is also super stable. There are several ways to
generalize this example.

Polygon Tensegrities

I showed that a tensegrity, obtained from a planar
convex polygon by putting a node at each vertex,
a cable along each edge, and struts connecting
other nodes such that the resulting tensegrity has
some proper equilibrium stress, is always super
stable. Figure 21.6 shows some examples.

Radon Tensegrities

Radon’s Theorem says that ifp D .p1; : : : ; pdC2/
are d C2 points in Ed , no d C1 in a hyperplane,
then they can be separated into two simplices � i

and �d�i of dimension i and d � i such that their
intersection is a common point, which is a relative
interior point of each simplex. They can also be
used to define a super stable tensegrity as well.
Write

PdC2
kD1 	kpk D 0, where

PdC2
kD1 	k D 0,

while 	k > 0 for k D 1; : : : ; i C 1, and 	k < 0

for k D iC2; : : : ; dC2. Then the stress matrix is


 D

0
BBB@

	1
	2
:::

	dC2

1
CCCA
�
	1 	2 � � � 	dC2

�
; (21.8)
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Cauchy polygon Grünbaum polygon Roth polygon The points lie on a circle, but are
not constrained to lie on that circle

Figure 21.6. Some planar superstable polygons.

since for the configuration matrix P ,

P

0
BBB@

	1
	2
:::

	dC2

1
CCCA D 0: (21.9)

So the stress !ij D �	i	j . The edges of � i and
�d�i are struts, while all the other members are
cables. Since the rank is d C 2 � d � 1 D 1, and

 is positive semi-definite, the tensegrity is super
stable. Figure 21.7 shows the two examples in the
plane and in three-space.

Centrally Symmetric Polyhedra

L. Lovasz showed that if one places nodes at the
vertices of a centrally symmetric convex poly-
tope, cables along its edges, and struts between
its antipodal points, the resulting tensegrity has
a strict proper equilibrium stress, and any such
stress will have a stress matrix such that Condi-
tions 1 and 2 hold, while condition 3 is easy to
check. Thus such a tensegrity is super stable and
universally globally rigid. Figure 21.8 shows such
an example for the cube, which is easy to check
independently.

Prismatic Tensegrities

Consider a tensegrity in E3 formed by two reg-
ular polygons .p1; : : : ; pn/ and .pnC1; : : : ; p2n/
in distinct parallel planes, each symmetric about
the same axis. Cables are placed along the edges
of each polygon. Each node of each polygon is
connected by a cable to a corresponding node

Figure 21.7. Some superstable Radon tensegrities.

Figure 21.8. A cube with cables along its edges and
struts connecting antipodal nodes, which is super stable.

in the other polygon, maintaining the rotational
symmetry. Similarly, each node of each polygon
in connected to a corresponding node in the other
polygon by a strut, maintaining the rotational
symmetry. The ends of the cable and strut are k
steps apart where 1 � k � n � 1. This describes
a prismatic tensegrity P.k; n/. Each P.n; k/ is
super stable when the angle of the twist from a
node in the top polygon to the projection of the
node at the other end of the strut is �.1=2C i=n/.
Figure 21.9 shows P.6; 1/.
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Figure 21.9. The prismic tensegrity P.6; 1/.

The Snelson tensegrity in the introduction is
P.3; 1/.

Highly Symmetric Tensegrities

Many of the tensegrities created by artists such as
Snelson have the super stable property discussed
here. They need the stress for their stability. Their
tensional integrity is part of their stability. Sym-
metry seems to a natural part of art, so I thought
it would be interesting to see what symmetric
tensegrities were super stable. It turns out that the
symmetry simplifies the calculation of the rank
and definiteness of the stress matrix. In addition,
the theory of the representations of finite groups
is a natural tool that can be used to decompose the
stress matrix. With Allen Back and later Robert
Terrell, we created a website where one can view
and rotate the pictures of these tensegrities.

The tensegrity graph G is chosen so that there
is an underlying finite group � acting on the
tensegrity such that the action of � takes cables
to cables and struts to struts, and the following
conditions hold:

1. The group � acts transitively and freely on the
nodes. In other words, for each pair pi ; pj of
nodes, there is a unique element g 2 � such
that gpi D pj .

2. There is one transitivity class of struts. In other
words, if fpi ; pj g and fpk; plg are struts,
then there is g 2 � such that fgpi ; gpj g D
fpk; plg as sets.

Figure 21.10. A super stable tensegrity from the catalog
at http://www.math.cornell.edu. In the catalog, the struts
are colored green, one cable transitivity class is colored
red, and the other blue. In this example, the cables lie on
the convex hull of the nodes, and struts are inside.

3. There are exactly two transitivity classes of
cables. In other words, all the cables are par-
titioned into two sets, where � permutes the
elements of each set transitively, but no group
element takes a cable from one partition to the
other.

The user must choose the abstract group, the
group elements that correspond to the cables,
the group element that corresponds to the struts,
and the ratio of the stresses on the two classes
of cables. Then the tensegrity is rendered.
Figure 21.10 shows a typical picture from the
catalog at http://www.math.cornell.edu.

Compound Tensegrities

The sum of positive semi-definite matrices is
positive semi-definite. So we can glue two super
stable tensegrities along some common nodes,
and maintain Condition 1. Condition 3 is no
problem. The rank Condition 2 may be violated,
but each of the individual tensegrities will remain
globally rigid, even if some of the stresses vanish
on overlapping members.

http://www.math.cornell.edu
http://www.math.cornell.edu
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+ =

Figure 21.11. Two superstable tensegrities are added to get a third.

One example of this process is the delta-Y
transformation. If one super stable tensegrity has
a triangle of cables in it, one can add a tensegrity
of the form in the upper right of Figure 21.7 so the
stresses on the overlap of the three struts exactly
cancel with the three cable stresses in the other
tensegrity. So the three triangle cables replace the
three other cables joined to a new node inside
the triangle. In this case the resulting tensegrity
is still super stable since the radon tensegrity is
planar and using Condition 3. Figure 21.11 shows
how this might work for the top triangle of the
Snelson tensegrity of Figure 21.2. Figure 21.12
shows this replacement on both triangles.

If the replacement as in Figure 21.12 is done
for a polygon of with four or more vertices,
the resulting tensegrity may not be super stable
or even rigid, but if the polygons have an odd
number of vertices and the struts are placed as
far away from the vertical cables as possible,
then the resulting tensegrity is super stable. In
other words, if the star construction is done on
P.2k C 1; k/ as in Figure 21.13 the resulting
tensegrity is super stable.

It is also possible to put two (or more)
super stable tensegrities together on a common
polygon to create a tensegrity with a stress
matrix that satisfies Condition 1 while the
universal configuration is 4-dimensional instead
of 3-dimensional. But each of the original
pieces is universally globally rigid. The 4-
dimensional realization has an affine flex
around the 2-dimensional polygon used to
glue the two pieces together. So the tensegrity
has two non-congruent configurations in E3

as one piece rotates about the other in E4.

Figure 21.12. The � � Y transformation applied to a
Snelson Tensegrity.

Figure 21.13. A flexible tensegrity.

Meanwhile struts and cable stresses can be
arranged to cancel, and thus those members
are not needed in the compound tensegrity.
Figure 21.14 shows this with two Snelson
tensegrities combined along a planar hexagonal
tensegrity.



278 R. Connelly

Figure 21.14. A compound rigid but not superstable
tensegrity.

Figure 21.15. A flexible tensegrity in the plane occurs
when the struts don’t intersect.

This is something like the start of the Snelson
tower of Figure 21.1, but the hexagonal polygon
in the middle is planar, which seems a bit sur-
prising. This tensegrity is unyielding and rigid,
but not super stable. But possibly to create more
stability Snelson includes more cables from one
unit to the other, and this destroys the planarity of
the hexagon.

There are many different ways to combine
super stable units, possibly erasing some of the
members in the basic units to get similar rigid
tensegrities.

Pure and Flexible Examples

Recall that a pure tensegrity is one that has only
cables and struts and the struts are all disjoint.
We have seen several examples in E3 of pure
tensegrities, the simplest being Snelson’s original
as in Figure 21.11 on the left. But what about the
plane? One might be tempted to think that the
tensegrity of Figure 21.15 is rigid, but it isn’t.

Indeed, there are no pure rigid tensegrities in
the plane. This follows from the proof of the
carpenter’s rule property. This theorem says that
any chain of non-overlaping edges in the plane
can be continuously expanded (flexed) until it is
straight. This result also allows for disjoint edges
and, at least for a short time, the expansion can
be run backwards to be a contraction, keeping the
struts at a fixed length.

There’s more — much more — to say about
this rapidly-evolving subject; see the notes at the
end of the book.
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Ten Problems in Geometry

Moritz W. Schmitt and Günter M. Ziegler

Geometry is a field of knowledge, but it is at
the same time an active field of research—our
understanding of space, about shapes, about ge-
ometric structures develops in a lively dialogue,
where problems arise, new questions are asked
every day. Some of the problems are settled
nearly immediately, some of them need years of
careful study by many authors, still others remain
as challenges for decades. In this chapter, we
describe ten problems waiting to be solved.

1. Unfolding Polytopes

Albrecht Dürer’s famous geometry masterpiece
“Underweysung der Messung mit dem Zirckel
und Richtscheyt” was published in Nuremberg in
1525. The fourth part of this book contains many
drawings of nets of 3-dimensional polytopes and,
implicitly, the following conjecture:

Every 3-dimensional convex polytope can
be cut open along a spanning tree of its
graph and then unfolded into the plane
without creating overlaps.

M.W. Schmitt
Institute of Mathematics, Freie Universität Berlin,
Arnimallee 2, D-14195 Berlin, Germany
e-mail: mws@math.fu-berlin.de;
http://userpage.fu-berlin.de/mws/

G.M. Ziegler
Institute of Mathematics, Freie Universität Berlin,
Arnimallee 2, D-14195 Berlin, Germany
email: ziegler@math.fu-berlin.de;
http://page.mi.fu-berlin.de/gmziegler/

This conjecture was posed explicitly by the
British mathematician Geoffrey C. Shephard in
1975. It has captured many geometers’ attention
since then—and led to many interesting results
and insights in this area, many of them described
in Chapter 6 in this book.

One important insight is that the spanning tree
must be chosen with care. Given any polytope,
it is easy to find some spanning tree in its graph.
After cutting the boundary along the edges of
this tree, there is a unique way to unfold it into
a planar figure. However, the problem is that
overlaps could occur, and indeed they do occur.
Figure 22.1a shows a prism, once cut open along
a good spanning tree, once cut open along a bad
spanning tree. Moreover, perhaps surprisingly,
Makoto Namiki observed that even an unfolding
of a tetrahedron can result in an overlap: see
Figure 22.1b.

The conjecture has been verified for certain
somewhat narrow classes of polytopes. For ex-
ample, it holds for so-called prismoids. These are
built by taking the convex hull of two polygons
that lie in parallel planes, have the same number
of sides and the same angles and are positioned
in such a way that their corresponding edges are
parallel. Another class of polytopes for which the
conjecture has been established are the domes.
A dome has a base face and all its other faces
share an edge with this base.

One approach to the problem is algorithmic.
For a proof that all polytopes can be unfolded,
we need a good strategy to choose a suitable
spanning tree. One could look, for example, for
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a

b

Figure 22.1. (a) Two unfoldings of a prism. (b) A bad
unfolding of a tetrahedron.

a shortest or a longest spanning tree, which min-
imizes or maximizes the sum of the lengths of
the edges, respectively. Or one can place the
polytope in space such that no edge is horizontal
and the highest vertex is unique, and then from
any other vertex choose the steepest edge or the
“rightmost” edge that points upwards. Such rules
are motivated by and derived from various “pivot
rules” of linear programming, which describe
local strategies to move from any given vertex of
a polyhedron along edges to the highest vertex.
Extensive experiments with such rules were per-
formed by Wolfram Schlickenrieder for his 1997
diploma thesis. None of the strategies tested by
him worked for all examples, but for all examples
some of his strategies worked.

Further interesting studies motivated by the
unfolding conjecture concern relaxations of
the problem. For example, there are unfolding
techniques that do not cut only along edges,
but may cut into faces, such as the source
unfolding and the star unfolding discovered
by Alexandrov. Here we only sketch the latter
technique: For a star unfolding one picks one
point on the boundary of the polytope such that
it has a unique shortest path to every vertex. The
union of these paths form a tree that connects all
the vertices. If one cuts the polytope boundary
open along this tree, then this is an unfolding that
provably has no overlaps.

2. Almost Disjoint Triangles

How complicated can polyhedral structures be
in 3-dimensional space? For example, we are
interested in triangulated surfaces on n vertices
in R3, such as the boundary of a tetrahedron,
which has n D 4 vertices and n D 6 edges, of
an octahedron with n D 6 vertices and e D 12

edges, or of an icosahedron with n D 12 vertices
and e D 30 edges.

But what is the maximal number of edges
for a triangulated surface in R3 on n vertices?
Certainly it cannot have more than

�
n
2

�
edges.

This bound is not tight for all n, since for a
triangulated surface the number of edges is divis-
ible by 3. Indeed, every triangle is bounded by
three edges, while each edge is contained in two
triangles, the number e of edges and the number
f of triangles satisfy the equation 3f D 2e and
thus f is even and e is divisible by three. Another
constraint comes from the fact that the surfaces
we look at are embedded in R3. They have an
“inside” and an “outside”, so they are orientable,
which implies that the Euler characteristic n�eC
f is even (it equals 2 � 2g, where g is known as
the genus of the surface). Nevertheless, this leads
to only slight improvements of the upper bounds.
If n is congruent to 0; 3; 4, or 7 modulo 12, then
it seems entirely possible that a surface with e D�
n
2

�
exists; its face numbers would be given by

.n; e; f / D .n;
�
n
2

�
; 2
3

�
n
2

�
/.

Is there such a “neighborly” triangulated sur-
face for all these parameters? For small values
of n it seems so: For n D 4 we have the
tetrahedron, and for n D 7 there is a triangu-
lated surface, known as the Császár torus, which
consists of 14 triangles and

�
7
2

� D 21 edges.
At the next n where we get integer parameters,
n D 12 and e D 66 and g D 6, it is known that
combinatorial schemes for suitable triangulated
surfaces exist; indeed, this was established for
all n � 0; 3; 4, or 7 .mod 12/ as part of the
so-called Map Color Theorem by Ringel et al.
(1974). However, none of the 59 combinatorial
schemes for such a surface can be realized as a tri-
angulated surface in R3. This was established by
Jürgen Bokowski, Antonio Guedes de Oliveira,
and finally Lars Schewe quite recently.
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But let us get beyond the small parameters.
What can we expect when n gets large? Will
the maximal number of edges in a triangulated
surface with n vertices grow quadratically with
n, or much slower? All we know at the moment
is that the maximal e grows at least as fast
as n logn; this can be seen from surfaces that
were constructed by Peter McMullen, Christoph
Schulz, and Jörg Wills in 1983.

However, Gil Kalai has proposed studying a
closely-related problem that is even easier to
state, and may be similarly fundamental:

Given n points in 3-dimensional space, how
many triangles could they span that are
disjoint, except that they are allowed to
share vertices?

So for Kalai’s problem the triangles are not
allowed to share an edge, and they are not allowed
to intersect in any other way (see Figure 22.2).
Let us call this almost disjoint triangles.

Without loss of generality we may assume that
the n points that we use as vertices lie in a general
position, no three of them on a line and no four
of them in a plane. Clearly the maximal number
T .n/ of vertex disjoint triangles on n points is not
larger than 1

3

�
n
2

�
. But is

T .n/ � 1

3

 
n

2

!

a tight upper bound for infinitely many values
of n? Does T .n/ grow quadratically when n

gets large? All we know is that there is a lower
bound that grows like n3=2: Gyula Károlyi and

Figure 22.2. Almost disjoint triangles spanned by 7
points.

Jozsef Solymosi in 2002 presented a very simple
and elegant method to position n D m2 C�
m
2

�
points in R3 that span m

�
m
2

�
almost-disjoint

triangles.

3. Representing Polytopes with
Small Coordinates

A famous theorem by Steinitz from 1922 charac-
terizes the graphs of 3-dimensional convex poly-
topes. It states:

Theorem 22.1. A finite graph G is the edge
graph of a polytope P if and only if G is planar
and 3-connected.

Obtaining a polytope from a given such graph
is a construction problem. Here one is especially
interested in nice realizations. Of course, the
meaning of “nice” depends on the context. One
possibility is to ask for a polytope that has all
its edges tangent to a sphere. Such a realization
exists and it is essentially unique. This can be
derived from the Koebe–Andreev–Thurston cir-
cle packing theorem. However, the edge tangent
realizations are not combinatorial, and in general
they have irrational vertex coordinates. One can
also ask for rational realizations, such that all ver-
tex coordinates are rational, or equivalently (af-
ter multiplication with a common denominator)
for integral realizations. The existence of such
realizations can be derived from Steinitz’ orig-
inal proofs. Just how large would the integers
have to be?

Figure 22.3 shows a dodecahedron realized
with very small integer coordinates due to Fran-
cisco Santos.

The big open problem is:

Can every 3-dimensional convex polytope
with n vertices be realized with its ver-
tex coordinates in the integer grid
f0; 1; : : : ; f .n/g3, where f is a polyno-
mial?

All we know at the moment are exponential
upper bounds on f .n/. The first such bounds
were derived by Shmuel Onn and Bernd Sturm-
fels in 1994; they were subsequently improved to
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Figure 22.3. Small coordinates for the dodecahedron.

f .n/ < 148n. But indeed we know of no lower
bounds that would exclude that all combinatorial
types can be realized with f .n/ < n2. A recent
result by Erik Demaine and André Schulz from
2010 is that for the very special case of stacked
polytopes (that is, obtained from a tetrahedron by
repeatedly stacking a flat pyramid onto a facet),
realizations with polynomially-bounded integer
coordinates exist. But do these exist for all graphs
of 3-polytopes?

4. Polyhedra that Tile Space

An innocent-sounding question is

Which convex polytopes can be used to tile
3-dimensional space?

Unfortunately, answering this question seems
to be quite difficult. Indeed, not even the 2-
dimensional version of this problem has been
solved completely, although this has been
claimed and believed several times, starting
with a paper by Karl Reinhardt from 1918.
Nevertheless, for tilings of the plane it is not hard
to see that any convex polygon that admits a tiling
of the plane—that is, such that the plane can be
completely covered by congruent copies of this
polygon, without gaps and without overlapping
interiors—can have at most six sides. The reason

for this is topological and can be connected to
Euler’s polyhedron formula. Clearly the regular
hexagon can be used to tile the plane (any bee
knows that), but many other types of convex
hexagons admit such a tiling as well.

One dimension higher, we all know the tiling
of space by congruent cubes, which have 8 faces.
However, it is also not hard to see that translates
of the so-called permutahedron with its 14 faces
and 24 vertices tile space face-to-face. So this
begs the question:

What is the maximal number of faces for a
convex polytope that allows for a tiling of
3-space by congruent copies?

In 1980, the crystallographer Peter Engel pro-
duced four types of polytopes with 38 faces that
tile space, and up to now this record apparently
has not been topped. On the other hand, no
finite upper bound is known, and the answer may
as well be that there is no finite upper bound.
The problem seems to be that the only effective
method to produce such tilings is to look at dot-
patterns (discrete point sets) in R3 that have a
transitive symmetry group, that is, such that for
any two points in the pattern there is a symmetry
of space that moves one point to any other one.
For such a point configuration S 	 R3 all the
Voronoi domains

Vs WD fx 2 R3 W kx � sk � kx � s0k for all s0 2 Sg

for s 2 S are congruent. The Voronoi domain
of s collects all points in space for which no
other point in S is closer. Figure 22.4 shows
an excerpt of a symmetric dot pattern with its
Voronoi cells.

The Voronoi construction applied to symmet-
ric dot patterns is very effective in producing
tilings by congruent polytopes. Indeed, Engel’s
four examples with 38 faces were produced this
way. However, it is also known that for tilings of
this type the number of faces is bounded.

So symmetry helps to construct tilings. We
should, however, not rely on this too much. In
his famous list of 23 problems from the 1900
International Congress of Mathematicians in
Paris, David Hilbert had asked as part of his
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Figure 22.4. A tiling by congruent pentagons generated
by the Voronoi construction applied to a symmetric dot
pattern.

18th problem whether there could be a convex
polytope that tiles 3-dimensional space, but such
that there is no tiling that would have a symmetry
group that moves tiles to tiles. The answer has
long been known to be yes: such tilings exist. For
example, various types of quasicrystals (Nobel
Prize in Chemistry 2011!) demonstrate this. This
shows that even though symmetry helps a lot in
constructing tilings, it should not be used as our
only resource.

5. Fatness

Whereas regular convex polytopes (the Platonic
solids) have been studied since antiquity, general
convex polytopes came into the focus of attention
much later. To Descartes and Euler we owe
the “Euler polyhedron formula.” In modern
notation, where we write fi for the number of
i -dimensional faces of a convex polytope, it
states that every 3-dimensional convex polytope
satisfies

f0 � f1 C f2 D 2:

In 1906 Ernst Steinitz characterized the set F3
of all possible triples .f0; f1; f2/ for convex
polytopes:

F3 D f.f0; f1; f2/ 2 R3 W f0 � f1 C f2 D 2;

f2 � 2f0 � 4; f0 � 2f2 � 4g:

More than one hundred years later, no similarly
complete description is available for the possible
sequences of face numbers, or f -vectors, of d -
dimensional polytopes for any d > 3. Indeed, we
know that the f -vectors of d -dimensional convex
polytopes satisfy essentially only one linear
equation, the so-called Euler–Poincaré equation:

f0�f1Cf2� � � � C.�1/d�1fd�1 D 1�.�1/d :

However, we do not know all the linear
inequalities. In particular, we would be interested
in linear inequalities that hold with equality
for the d -dimensional simplex, which has
fi D �

dC1
iC1

�
, as these special inequalities describe

the “cone of f -vectors.”
To make this concrete, let us concentrate on

the case d D 4. Here everything boils down to the
question whether the parameter called fatness,

˚ WD f1 C f2 � 20
f0 C f3 � 10;

can be arbitrarily large for 4-polytopes. Can it be,
say, larger than 10? Or is it true that

f1 C f2 � 20 � 10.f0 C f3 � 10/

for all convex 4-dimensional polytopes? This
parameter is called “fatness” because it mea-
sures how “fat” an f -vector .f0; f1; f2; f3/ is
in the middle, i.e., how big the sum of the en-
tries f1 and f2 is in comparison to the sum of
f0 and f3.

Indeed, it is not hard to show that the fatness
parameter ˚ ranges between 2:5 and 3 for
simple and simplicial polytopes. However, it
is ˚ D 4:52 for a fascinating 4-dimensional
regular polytope known as the “24-cell,” which
has f0 D 24 vertices and f3 D 24 facets,
which are regular octahedra; its complete f -
vector is .f0; f1; f2; f3/ D .24; 96; 96; 24/. An
even higher value of ˚ D 5:021 is achieved
for the “dipyramidal 720-cell” constructed in
1994 by Gabor Gévay, which has f -vector
.720; 3600; 3600; 720/. Finally, a class of
polytopes named “projected deformed products
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of polygons,” constructed by the second author
in 2004, get arbitrarily close to ˚ D 9. That’s
where we stand at the time of writing. But is there
a finite upper bound at all?

This may read like a problem of 4-dimensional
geometry and thus outside our range of visualiza-
tion, but it isn’t really, since the boundary of a
4-dimensional polytope is of dimension 3. Thus
one can relate the question to problems about
polytopal tilings in 3-space. Here is one such
problem:

Are there normal face-to-face tilings of
3-space by convex polytopes in which
(1) all tiles have many vertices, and
(2) each vertex is in many tiles?

For example, in the usual tiling of space by
unit cubes all tiles have 8 vertices and each vertex
is in 8 tiles. For a normal tiling we require that
there be a lower bound for the inradius and an
upper bound for the circumradius of the tiles.
This is satisfied, for example, if there are only
finitely many types of tiles. It is not too hard to
show that either of the two conditions (1) and (2)
can be satisfied. But can they be satisfied by the
same tiling, at the same time? If no, then fatness
˚ for 4-polytopes is bounded.

6. The Hirsch Conjecture

One of the biggest mysteries in convex geometry
is about the graphs of convex polytopes and
their diameters. The graph of a polytope is a
combinatorial model which captures vertex-edge
incidences. Such a graph has the vertices of the
polytope as nodes and two nodes are adjacent in
the graph if they are connected by an edge as
vertices in the polytope. Figure 22.5 shows the
octahedron and its graph.

The diameter of a graph is the greatest dis-
tance of two vertices in the graph, where the
distance of two vertices is the length of the
shortest path connecting them. In 1957 Warren
Hirsch raised the question:

1
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1
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Figure 22.5. A polytope and its graph.

What is the maximal diameter of the graph
of a d -polytope with n facets?

He conjectured that

�.d; n/ � n � d;

where �.d; n/ denotes the above maximal
diameter. Even though decades of research went
into a solution of this problem, for over 50 years
little progress was made. Finally, in May 2010,
Francisco Santos announced a counterexample.
By an explicit construction he could demonstrate
that �.43; 86/ > 43.

While this certainly was a breakthrough, it
is merely a first step in answering the above
question. Santos’ construction does not even rule
out an upper bound on the diameter that is linear
in n � d . Many researchers in discrete geometry
believe that the real question is whether there is
a polynomial bound in n and d . The best upper
bound for general d -polytopes was derived by Gil
Kalai and Daniel Kleitman in 1992. By using a
strictly combinatorial approach they were able to
prove that

�.d; n/ � n2Clog2 d ;

but of course this is still very far from a polyno-
mial bound. Furthermore, by a result of Larman
it follows that if one fixes the dimension d , then
there is a bound that is linear in n. In general it
is sufficient to prove an upper bound for simple
polytopes: The facets of a non-simple polytope
can be perturbed such that one gets a simple
polytope. This new polytope has a graph whose
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diameter is at least as large as for the original
graph.

Besides its importance for polyhedral geome-
try, the question also relates closely to linear pro-
gramming. The maximal graph diameter �.d; n/
is a lower bound for the number of steps that
the simplex algorithm would need on a problem
with n constraints in d variables for any pivot
rule that would select the edges. Thus researchers
from Operations Research and Mathematical Op-
timization are interested in the Hirsch Conjecture
as well.

7. Unimodality

In 1970 McMullen settled the long-standing
open question, “What is the maximal number
of k-faces of a d -polytope on n vertices?”
He confirmed that neighborly simplicial poly-
topes are extremal with regard to their f -vectors:
A neighborly polytope is a polytope such that
every subset of the vertices of cardinality at most
bd=2c is the vertex set of a face. One well-known
class of such polytopes is the cyclic polytopes.
These can be defined as the convex hull of finitely
many points on the moment curve

˛ W R �! Rd ; t 7�! .t; t2; : : : ; td /:

That is, one chooses n different reals, t1 < � � � <
tn, and calls

Cd .n/ D conv.˛.t1/; : : : ; ˛.tn//

the d -dimensional cyclic polytope on n vertices.
(A simple analysis, using the Vandermonde de-
terminant, shows that cyclic polytopes are sim-
plicial, and that the combinatorial type does not
depend on the particular parameters ti chosen.)
Figure 22.6 shows a realization of C3.6/.

Despite McMullen’s Upper Bound Theorem,
there are other questions about the face num-
bers of polytopes, also closely connected to the
cyclic polytopes, which are not well understood,
yet — the most tantalizing ones connected to
unimodality. A sequence of numbers is called
unimodal if it first increases and then decreases
with no “dips” in-between. It was proved only

α(t1)

α(t2)

α(t3) α(t4)

α(t5)

α(t6)

Figure 22.6. Construction of a cyclic 3-polytope with 6
vertices.

recently, by László Major, that the f -vectors of
all cyclic polytopes are unimodal. (This was a
long-standing open problem despite the fact that
we have explicit formulas for the f -vectors of
cyclic polytopes.) However, in 1981 Björner was
able to construct polytopes with non-unimodal
f -vectors by cleverly modifying a cyclic poly-
tope of dimension at least 20.

This was quite a surprise as already in the late
1950s Theodore Motzkin had conjectured that
all f -vectors of convex polytopes are unimodal.
(Later, in 1972, Dominic Welsh came up with
the same conjecture again.) Unfortunately, it is
not quite that easy. At a conference in Graz,
Austria, in 1964 Ludwig Danzer presented a first
construction for very high-dimensional polytopes
with non-unimodal f -vector. Later Jürgen Eck-
hoff came up with another construction that is in-
geniously easy, and gets us down to dimension 8.
Indeed, here is a sketch for his construction. For
this we again start with a cyclic polytope,C8.25/,
which is a simplicial polytope on 25 vertices and
7125 facets, with f -vector

.25; 300; 2300; 12650; 33750; 44500;

28500; 7125/:

Its dual polytope C8.25/� is a simple polytope
that has 7125 vertices and 25 facets. Now one
can cut off one of the simple vertices of the
dual polytope, which yields a simplex facet.
One can then “glue” these two polytopes along
one of the facets of C8.25/ and the simplex
facet of the modified C8.25/

�. The resulting
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polytope, called a “connected sum” and denoted
by C8.25/#C8.25/�, has the f -vector

.7149; 28800; 46800; 46400; 46400; 46800;

28800; 7149/

with a small but noticable dip in the middle — it
is not unimodal!

So far no one succeeded in constructing a
polytope with non-unimodal f -vector of dimen-
sion less then 8. It is only known that all f -
vectors of polytopes up to dimension 5 are uni-
modal. Furthermore, all known examples of poly-
topes with non-unimodal f -vector have lots of
vertices; the current record is 1320 vertices. All
this begs the questions:

Are there “small” polytopes that have non-
unimodal f -vectors?
That is, are there polytopes of dimension
smaller than 8?
And are there such polytopes with much
fewer than, say, 1000 vertices?

One can also speculate how large the “dips” in f -
vectors polytopes can be. Are they always tiny?
Indeed, Imre Bárány asked the following intrigu-
ing question, which tries to exclude dramatically
deep dips:

Is it true that the smallest face number of
a polytope is always given by the number
of vertices, or the number of vertices (or
both)? That is, do we always have

fi .P / � minff0.P /; fd�1.P /g
for the face numbers of a d -dimensional
polytope P ?

We don’t know. And indeed currently no-one
seems to be able to even prove that

fi .P / � 1

1000
minff0.P /; fd�1.P /g

holds in general, for all d -polytopes P and 0 <
i < d � 1. The unimodality questions, and in
particular Bárány’s problem, demonstrate strik-
ingly how little we know about the face numbers
of polytopes.

8. Decompositions of the Cube

Consider the d -dimensional cube Id D Œ0; 1�d

and define the following parameters:

• Let C.Id / be the minimal number of d -
dimensional simplices needed for a cover of
Id . A cover of Id is a collection of simplices
such that the union of all simplices is Id . The
interiors of simplices are allowed to intersect.

• If all vertices of a cover are also vertices of
Id , we speak of a vertex cover. The minimal
cardinality of a vertex cover will be denoted
by C v.Id /.

• The minimal number of dissections of Id will
be abbreviated by D.Id /. A dissection is a
decomposition of Id into d -dimensional sim-
plices whose interiors are pairwise disjoint but
that do not necessarily intersect in a common
face. So simplices are allowed to touch but the
interiors must not intersect.

• Dv.Id / is the same as D.Id /, except that we
again require the vertices of the simplices to
be vertices of Id—such a dissection is called
a vertex dissection.

• We define T .Id / to be the size of the mini-
mal triangulation of Id , where triangulation
means decomposition of Id into pairwise dis-
joint d -simplices which intersect in a common
face or not at all.

• Finally, T v.Id / is defined analogously to
Dv.Id /.

Three obvious questions are:

1. Given the dimension, what are the values for
the parameters above?

2. Can we give good estimates of the parameters
for large d?

3. And what is their relationship among each
other?

For the rest of this description we will write C
instead of C.Id /, etc. With regard to the last
question, we can easily sum up what is currently
known:

C � C v;D � T;Dv � T v:

The only non-trivial relation is C v � T , but
this follows from a result by Bliss and Su.
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Figure 22.7. Two triangulations of a 3-cube.

The status of the first two questions cannot be
summarized so concisely. Best studied seems
to be the parameter T v. The case d D 2

is straightforward but already d D 3 allows
vertex triangulations of different cardinality, as
demonstrated by Figure 22.7.

To get an upper bound on T v one considers
the so-called standard triangulation. It is of size
dŠ and one constructs it by linking a simplex to
each permutation � 2 Sd by using the following
description

�� D f.x1; : : : ; xd / 2 Rd W
0 � x�.1/ � � � � � x�.d/ � 1g:

This triangulation is maximal among those that
only use vertices of the cube, but minimal only
for d D 2. For lower bounds one directly
looks at the more general case of C v. To get
asymptotic estimates for example, the following
idea is applied: If V.d/ denotes the maximal
determinant of a 0=1-matrix, then V.d/=d Š is an
upper bound of the volume of the largest simplex
in Id and we get

C v � dŠ

V .d/
:

Determining V.d/ is not easy but one can use
the Hadamard inequality to bound it. By using
hyperbolic volume instead of Euclidean volume,
Smith obtained in 2000 the bound

C v;D; T;Dv; T v � 6d=2dŠ

2.d C 1/.dC1/=2 :

Glazyrin recently improved this bound for T v:

T v � dŠ

.
p
d=2/d

:

The following table sums up lower bounds
which are results of several research articles.
Bold entries denote optimal bounds.

Dimension D C v ; T Dv T v

3 5 5 5 5
4 15 16 16 16
5 48 60 61 67
6 174 252 270 308
7 681 1,143 1,175 1,493
8 2,863 5,104 5,522 5,522
9 12,811 22,616 26,593 26,593

10 60,574 98,183 131,269 131,269
11 300,956 520,865 665,272 665,272
12 1,564,340 2.9276 �106

9. The Ball-and-Cube Problem

Consider the d -dimensional ball

Bd D fx 2 Rd W kxk � 1g

and let Pd 
 Rd be a convex polytope of di-
mension d with 2d facets that contains Bd . One
example of such a polytope is the d -dimensional
unit cube

Cd D f.x1; : : : ; xd / 2 Rd W

jxi j � 1 for i D 1; : : : ; d g:

Furthermore, for such a polytope Pd let �.Pd /
be the maximal distance between some point of
Pd and the origin 0 2 Rd . Then a conjecture
of Chuanming Zong (who also suggested that we
include this problem), states that

�.Pd / �
p
d;

where equality is supposed to hold if and only
if Pd is congruent to Cd . It is not difficult to
verify this conjecture for d D 2: Assume that it
is not correct, i.e., there exists a quadrilateral P2
that contains the unit disc but has �.P2/ <

p
2.

Using the center of the disc as a vertex, one can
dissect it into four triangles whose vertices are
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P2
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α

Figure 22.8. Solution of the ball-and-cube problem for dimension 2.

the corners of the quadrilateral and the origin.
Our assumption in particular means that the edge
length of an origin-corner edge is strictly less
than

p
2. (Compare Figure 22.8)

Since the function arccos W Œ�1; 1� ! Œ0; ��

is strictly monotonically decreasing, we have for
the angle ˛ in the drawing

cos˛ >
1p
2

H) ˛ < arccos
1p
2

D �

4
:

In total we have an angle sum of strictly less than
8 � �

4
D 2� for a whole tour around the origin—

clearly a contradiction. Besides this easy case not
much is known. László Fejes Toth was able to
prove an equivalent conjecture for d D 3 and
Dalla et al. verified the statement for d D 4. All
higher-dimensional cases are still open at the time
of writing (2011).

10. The 3d Conjecture

The last century there has been amazing progress
in the understanding of face numbers of convex
polytopes. As discussed in Problem 5 (Fatness),
the case d D 3 was solved by Steinitz in 1906:
The possible f -vectors are

f.f0; f1; f2/ 2 Z3 W f0 � f1 C f2 D 2;

f2 � 2f0 � 4; f0 � 2f2 � 4g:

The first condition is Euler’s equation, the first
inequality is satisfied by equality for polytopes

where all faces are triangles, while the second
inequality characterizes polytopes where all
vertices have degree 3 as the extreme case.
In the case d D 4 one basic problem that
remains is the fatness problem discussed above.
A complete answer for d -dimensional simple
or simplicial polytopes is available via the so-
called g-Theorem proved by Billera–Lee and
Stanley in 1980.

In contrast to this, it is amazing how little
we know about centrally-symmetric convex poly-
topes, that is, polytopes that are left unchanged by
a reflection in the origin in Rd . Let’s first look at
the 3-dimensional case again. Here the possible
f -vectors can be described as

f.f0; f1; f2/ 2 .2Z/3 W f0 � f1 C f2 D 2;

f2 � 2f0 � 4; f0 � 2f2 � 4; f0 C f2 � 14g:

All the face numbers of a centrally-symmetric
polytope are even, thus we have .f0; f1; f2/ 2
.2Z/3. We recognize Euler’s equation and the
two inequalities from above. And then there is an
additional relation, which for d D 3 is easy to
prove: A centrally-symmetric 3-polytope has at
least 6 vertices, and if it has only 6 vertices, then
it must be an octahedron which has 8 facets. If,
however, the centrally-symmetric 3-polytope has
at least 8 vertices, then it also has at least 6 facets
with the only extreme case of an affine cube. In
summary, this yields the third inequality, which
by Euler’s equation we can rewrite as

f0 C f1 C f2 C f3 � 27;
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with equality if and only if the polytope is either
a cube or an octahedron. In 1989 Gil Kalai
asked whether a similar statement was true in all
dimensions:

Does every d -dimensional centrally-
symmetric polytope have at least 3d non-
empty faces?

Kalai’s question fits into a series of three basic
conjectures:

The 3d conjecture (Kalai 1989)
Every centrally-symmetric d -dimensional
polytope satisfies f0 C f1 C � � � C fd � 3d .

The flag conjecture (Kalai 2008)
Every centrally-symmetric d -dimensional
polytope satisfies f0;1;2;:::;d�1 � 2ddŠ.

The Mahler conjecture (Mahler 1939)
Every centrally-symmetric convex body K

satisfies Vol.K/ � Vol.K�/ � 4d=dŠ, where
K� is the polar ofK .

These three conjectures are remarkable since
they seem basic; they have been around for quite

a while, but we know so little about them. The
3d conjecture was proved for d � 4 by Sanyal
et al. in 2009, but is open beyond this. The flag
conjecture is not even known for d D 4. Yet
worse, the Mahler conjecture has been an object
of quite some scrutiny, but it seems open even for
d D 3.

The three conjectures belong together since
we believe we know the answer—the same an-
swer for all of them. Indeed, the class of Hanner
polytopes introduced by Olof Hanner in 1956
is obtained by starting with a single centrally-
symmetric interval such as Œ�1; 1� 	 R and then
taking products and polars—or equivalent, taking
products and direct sums of polytopes. It is easy
to compute that all d -dimensional Hanner poly-
topes have exactly 3d non-empty faces, they have
exactly 2ddŠ complete flags of faces, and they
have exactly Mahler Volume Vol.P / � Vol.P �/ D
4d=dŠ. But are they the only centrally-symmetric
polytopes with these properties? And can’t there
be any other polytopes with even smaller values?
This is not known.
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Revue Archéologique de l’Est et du Centre-Est
16 (1965):143–59. See also Artmann, Benno,
“Antike Darstellungen des Ikosaeders [Antique
representations of the icosahedron],” Mitt. Dtsch.
Math.-Ver. 13 (2005): 46–50.

Page 56 that have been cited by scholars . . .
Conze, Westdeutsche Zeitschrift für Geschichte
und Kunst 11 (1892):204–10; Thevenot, E., “La
mystique des nombres chez les Gallo-Romains,
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la théorie des polyèdres,” Journal de l’École Imp.
Polytechnique 41 (1865):1–71.

Page 60 Max Brückner published . . . see
Brückner, above.

Page 60 a paper in 1905 of D. M. Y.
Sommerville . . . Sommerville, D. M. Y., “Semi-
regular Networks of the Plane in Absolute
Geometry,” Transactions of the Royal Society
[Edinburgh] 41 (1905):725–47 and plates I–XII.

Page 61 challenges to mathematics in
the future . . . Hilbert, David, Mathematical
problems, Lecture delivered at the Intern.
Congress of Mathematicians at Paris in 1900,
Bull. Amer. Math. Soc. (N.S) 37(2000), no. 4,
407–436, reprinted from Bull. Amer. Math. Soc.
8 (1902), 437–479.

Page 61 cutting a polyhedron into pieces
and assembling them into another polyhedron
. . . Boltianskii, V., Hilbert’s Third Problem, New
York: John Wiley and Sons, 1975.

Page 61 these pieces can be assembled . . .
Boltyanskii, V., Equivalent and Equidecompos-
able Figs., Boston: D.C. Heath, 1963.

Page 61 extended Dehn’s work . . . see Had-
wiger, Hugo and Paul Glur, “Zerlegungsgleich-
heit ebener Polygone,” Elemente der Mathematik
6 1951:97106.

Page 61 the theory of equidecomposability
. . . Rajwade, A. R., Convex Polyhedra with Reg-
ularity Conditions and Hilbert’s Third Problem,
New Delhi: Hindustan Book Agency, 2001.

Page 61 can not be decomposed, using ex-
isting vertices, into tetrahedra . . . Schoenhardt,
E., “Uber die Zerlegung von Dreieckspolyed-
ern in Tetraeder,” Mathematische Annalen, 98
1928:309–312; Toussaint, Godfried T. and Clark
Verbrugge, Cao An Wang, Binhai Zhu, “Tetra-
hedralization of Simple and Non-Simple Polyhe-
dra,” Proceedings of the Fifth Canadian Confer-
ence on Computational Geometry, 1993:24–29.

Page 61 Lennes polyhedra . . . Lennes, N.J.,
“On the simple finite polygon and polyhedron,”
Amer. J. Math. 33 (1911): 37–62.

Page 61 the most important early twentieth-
century contributor to the theory of polyhedra . . .
Steinitz, Ernst, “Polyeder und Raumeinteilun-



Notes and References 295

gen,” in W. F. Meyerand and H. Mohrmann,
eds., Encyklopädie der mathematischen Wis-
senschaften, vol. 3. Leipzig: B. G. Teubner,
1914–31.

Page 61 Lennes polyhedra . . . see
Rademacher, above.

Page 62 if one starts with a 1 � 1 square
. . . see Alexander, Dyson, and O’Rourke, “The
convex polyhedra foldable from a square,” Proc.
2002 Japan Conference on Discrete Computa-
tional Geometry. Volume 2866, Lecture Notes in
Computer Science, pp. 38–50, Berlin: Springer,
(2003). Good sources of relatively recent work
on a wide variety of aspects of polyhedra (con-
vex and non-convex) from a combinatorial point
of view (e.g rigidity, Bellow’s conjecture, nets
(folding to polyhedra), and unfolding algorithms,
Steinitz’s Theorem (including the circle packing
approach to proving this seminal theorem, as well
as the dramatic extension due to the late Oded
Schramm)) are Geometric Folding Algorithms:
Linkages, Origami, and Polyhedra by Eric De-
maine and Joseph O’Rourke (Demaine, E. and J.
O’Rourke, Geometric Folding Algorithms, New
York: Cambridge, U. Press. 2007) and Pak, I.
Lectures on Discrete and Polyhedral Geometry
(to appear).

Page 62 the stellated icosahedra . . .
Coxeter, H. S. M., P. du Val, H. T. Flather, and J.
F. Petrie, The Fifty-nine Icosahedra,. New York:
Springer-Verlag, 1982 (reprint of 1938 edition.)

Page 62 famous work on uniform polyhedra
. . . Coxeter, H. S. M., M. S. Longuet-Higgins,
and J. C. P. Miller, Uniform Polyhedra, Philo-
sophical Transactions of the Royal Society [Lon-
don], sec. A, 246 (1953/56):401–50; Skilling,
J., “The Complete Set of Uniform Polyhedra,”
Philosophical Transactions of the Royal Society
[London], ser. A, 278, (1975):111–35.

Page 62 many important results in several
branches of mathematics . . . Coxeter, H. S. M.
Regular Polytopes. 3rd ed. New York: Dover
Publications, 1973; Coxeter, H. S. M., Regular
Complex Polytopes. London: Cambridge Univer-
sity Press, 1974.

Page 62 O. Rausenberger shows . . .
Rausenberger, O., “Konvex pseudoregulare
Polyeder.” Zeitschr. fur math. u. maturwiss. Utr-

erricht 1915:135–142. Probably independently
discovered by Hans Freudenthal and B. L. van
der Waerden, “Over een bewering van Euclides,”
Simon Stevin 25 (1946/47) 115–121.

Page 62 Johnson, Grünbaum, V. A.
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see Grünbaum and Shephard, above.

Page 225 a precise construction of f3; 8I 3g.
. . . E. Schulte and J. M. Wills, “Geometric Real-
izations for Dyck’s Regular Map on a Surface of
Genus 3,” Discrete and Computational Geometry
1 (1986):141–53.

Page 226 the last four can be realized
in E4 . . . H. S. M. Coxeter, “Regular Skew
Polyhedra in Three and Four Dimensions, and
Their Topological Analogues,” Proceedings of
the London Mathematical Society, ser. 2, 43
(1937):33–62.

Page 226 The geometric construction traces
back to Alicia Boole-Stott . . . A. Boole-Stott, Ge-
ometrical Reduction of Semiregular from Regular
Polytopes and Space Fillings, Amsterdam: Ver.
d. K. Atkademie van Wetenschappen, 1910; P.
McMullen, C. Schulz, and J. M. Wills, “Equivelar
Polyhedral Manifolds in E3,” Israel Journal of
Mathematics 41 (1982):331–46. They are projec-
tions of Coxeter’s regular skew polyhedra (see
Schulte and Wills, above).

Page 226 polyhedral realization of Felix
Klein’s famous quartic . . . E. Schulte and J. M.
Wills, “A Polyhedral Realization of Felix Klein’s
Map f3; 7g8 on a Riemann Surface of Genus 3,”
Journal of the London Mathematical Society 32
(1985):539–47.



308

Page 228 Do equivelar manifolds exist with
p � 5 and q � 5? . . . see McMullen, Schultz,
and Wills, 1982, above; see also P. McMullen, C.
Schulz, and J. M. Wills, “Two Remarks on Equiv-
elar Manifolds,” Israel Journal of Mathematics
52 (1985):28–32.

Page 228 for q D 4 no such manifold exists
. . . see McMullen, Schultz, and Wills, 1985,
above.

Page 229 a nice and interesting proof
. . . Günter Ziegler and Michael Joswig “Poly-
hedral surfaces of high genus,” Oberwolfach
seminars, vol. 38 (2009), Discrete Differen-
tial Geometry (Bobenko, Sullivan, Schrder,
Ziegler).

Page 229 This polyhedron was found by
David McCooey in 2009. . . . David McCooey, A
non-selfintersecting polyhedral realization of the
all-heptagon Klein map, Symmetry, vol. 20, no. 1-
(2009), 247–268.

Notes and References for Chapter 18

Page 231 to determine when they were rigid
. . . The technical term is infinitesimally rigid. A
bar-and-joint framework is infinitesimally rigid if
every set of velocity vectors which preserves the
lengths of the bars represents a Euclidean motion
of the whole space.

Page 231 the reciprocal figure . . . J. C.
Maxwell, “On Reciprocal Diagrams and Dia-
grams of Forces,” Philosophical Magazine, 4,
27(1864):250–61, J.C. Maxwell, “On Recipro-
cal Diagrams, Frames and Diagrams of Forces.”
Transactions of the Royal Society of Edinburgh
26 (1869–72):1–40.

Page 231 the field of graphical statics . . .
L. Cremona, Graphical Statics, English trans.,
London: Oxford University Press, 1890.

Page 231 grows from these geometric roots
. . . H. Crapo and W. Whiteley, “Statics of
Frameworks and Motions of Panel Structures:
A projective Geometric Introduction,” Structural
Topology 6, (1982):43–82, H. Crapo and
W. Whiteley, “Plane Stresses and Projected
Polyhedra I, the basic pattern” Structural

Topology 20 (1993), 55–68. http://www-iri.upc.
es/people/ros/StructuralTopology/, W. Whiteley,
“Motions and Stresses of Projected Polyhedra,”
Structural Topology 7 (1982):13–38.

Page 232 Several workers independently ob-
served . . . D. Huffman, “A Duality Concept for
the analysis of Polyhedral Scenes,” in E. W. El-
cock and D. Michie (eds.), Machine Intelligence
8 [Ellis Horwood, England] (1977):475–92.A. K.
Mackworth, “Interpreting Pictures of Polyhedral
Scenes,” Artifical Intelligence 4 (1973):121–37.

Page 232 necessary and sufficient condi-
tion for correct pictures . . . H. Crapo and W.
Whiteley, “Plane Stresses and Projected Polyhe-
dra I, the basic pattern” Structural Topology 20
(1993), 55–68. http://www-iri.upc.es/people/ros/
StructuralTopology/.

Page 232 projected from the point of tan-
gency of one face . . . K. Q. Brown, “Voronoi
Diagrams from Convex Hulls,” Information Pro-
cessing Letters 9 (1979):223–38.

Page 232 the diagram of centers forms
a classical reciprocal figure . . . P. Ash and
E. Bolker, “Recognizing Dirichlet Tessellations,”
Geometriae Dedicata 19 (1985):175–206.

Page 232 last link in the proof . . . P. Ash and
E. Bolker, “Generalized Dirichlet Tessellations,”
Geometriae Dedicata 20 (1986):209–43.

Page 233 an explicit construction of a
polyhedron. . . H. Edelsbrunner and R. Seidel,
“Voronoi Diagrams and Arrangements,” Discrete
and Computational Geometry I (1986):25–44.

Page 235 Delauney triangulation. . . In a
Dirichlet tessellation the centers of the cells
which share a vertex are equidistant from that
vertex. If the centers are chosen at random, then
(with probability 1) no four lie on a circle. So the
resulting Dirichlet tessellation has only 3-valent
vertices.

Page 236 a proof can be found. . . P. Ash and
E. Bolker, “Recognizing Dirichlet Tessellations,”
Geometriae Dedicata 19 (1985):175–206.

Page 237 Ash and Bolker proved. . . P.
Ash and E. Bolker, “Generalized Dirichlet
Tessellations,” Geometriae Dedicata 20 (1986):
209–43.

Page 237 model a simple biological
phenomenon. . . H. Edelsbrunner and R. Seidel,

http://www-iri.upc.es/people/ros/StructuralTopology/
http://www-iri.upc.es/people/ros/StructuralTopology/
http://www-iri.upc.es/people/ros/StructuralTopology/
http://www-iri.upc.es/people/ros/StructuralTopology/


Notes and References 309

“Voronoi Diagrams and Arrangements,” Discrete
and Computational Geometry I (1986):25–44.

Page 237 this need not always be
true. . . Other examples and a more complete
bibliography are given in P. Ash and E.
Bolker, “Recognizing Dirichlet Tessellations,”
Geometriae Dedicata 19 (1985):175–206.

Page 238 they are rigid in the plane. . .
Other examples and a more complete bibliography
are given in P. Ash and E. Bolker, “Recognizing
Dirichlet Tessellations,” Geometriae Dedicata 19
(1985):175–206.

Page 238 the appearance of a spider web
signals that it is shaky. . . R. Connelly, “Rigid-
ity and Energy,” Inventiones Mathematicae 66
(1982):11–33.

Page 238 cannot be made denser. . . H.
Crapo and W. Whiteley, “Statics of Frameworks
and Motions of Panel Strucutres: A projective
Geometric Introduction,” Structural Topology
6, (1982):43–82, W. Whiteley, “Motions and
Stresses of Projected Polyhedra,” Structural
Topology 7 (1982):13–38.

Page 238 we have constructed a convex
reciprocal. . . R. Connelly, “Rigid Circle and
Sphere Packings I. Finite Packings,” Structural
Topology, 14 (1988) 43–60. R. Connelly, “Rigid
Circle and Sphere Packings II. Infinite Packings
with Finite Motion,” Structural Topology, 16
(1990) 57–76.

Page 238 Thus we have proved. . . J.
C. Maxwell, “On Reciprocal Diagrams and
Diagrams of Forces,” Philosophical Magazine, 4,
27(1864):250–61, H. Crapo and W. Whiteley,
“Plane Stresses and Projected Polyhedra I,
the basic pattern” Structural Topology 20
(1993), 55–68. http://www-iri.upc.es/people/ros/
StructuralTopology/.

Page 240 a projective polarity about
the Maxwell paraboloid. . . H. Crapo and
W. Whiteley, “Plane Stresses and Projected
Polyhedra I, the basic pattern” Structural
Topology 20 (1993), 55–68. http://www-iri.upc.
es/people/ros/StructuralTopology/.

Page 240 the positions of the remaining
planes can be deduced. . . J. C. Maxwell, “On
Reciprocal Diagrams and Diagrams of Forces,”
Philosophical Magazine, 4, 27(1864):250–61, H.

Crapo and W. Whiteley, “Plane Stresses and Pro-
jected Polyhedra I, the basic pattern” Structural
Topology 20 (1993), 55–68. http://www-iri.upc.
es/people/ros/StructuralTopology/.

Page 241 Choose the centers to be
the points. . . H. Crapo and W. Whiteley,
“Plane Stresses and Projected Polyhedra I,
the basic pattern” Structural Topology 20
(1993), 55–68. http://www-iri.upc.es/people/ros/
StructuralTopology/, Section 4.

Page 242 in the cell of the sectional Dirich-
let tessellation. . . H. Edelsbrunner and R. Seidel,
“Voronoi Diagrams and Arrangements,” Dis-
crete and Computational Geometry I (1986):
25–44.

Page 242 This completes the converse. . . H.
Crapo and W. Whiteley, “Plane Stresses and Pro-
jected Polyhedra I, the basic pattern” Structural
Topology 20 (1993), 55–68. http://www-iri.upc.
es/people/ros/StructuralTopology/.

Page 243 furthest-point Dirichlet tessella-
tion of centers. . . P. Ash and E. Bolker, “Gener-
alized Dirichlet Tessellations,” Geometriae Ded-
icata 20 (1986):209–43.

Page 243 the picture of some convex polyhe-
dron. . . H. Edelsbrunner and R. Seidel, “Voronoi
Diagrams and Arrangements,” Discrete and Co-
mutational Geometry I (1986):25–44.

Page 244 This argument and its converse
prove. . . see B. Roth and W. Whiteley, “Tenseg-
rity Frameworks,” Transactions of the Ameri-
can Mathematical Society 265 (1981):419–45,
Whiteley, “Motions and Stresses of Projected
Polyhedra,” Structural Topology 7 (1982):13–38,
and R. Connelly, “Rigidity and Energy,” Inven-
tiones Mathematicae 66 (1982):11–33.

Page 244 This gives. . . R. Connelly, “Rigid-
ity and Energy,” Inventiones Mathematicae 66
(1982):11–33.

Page 245 positions of the vertices and the di-
rections of the infinite edges. . . Brown, “Voronoi
Diagrams from Convex Hulls,” above.

Page 246 any triply connected planar
graph can be realized as a convex polyhedron. . .
Roth and Whiteley, “Tensegrity Framworks,”
above.

Page 246 conditions that must be satis-
fied if there is to be a stress on all members. . .

http://www-iri.upc.es/people/ros/StructuralTopology/
http://www-iri.upc.es/people/ros/StructuralTopology/
http://www-iri.upc.es/people/ros/StructuralTopology/
http://www-iri.upc.es/people/ros/StructuralTopology/
http://www-iri.upc.es/people/ros/StructuralTopology/
http://www-iri.upc.es/people/ros/StructuralTopology/
http://www-iri.upc.es/people/ros/StructuralTopology/
http://www-iri.upc.es/people/ros/StructuralTopology/
http://www-iri.upc.es/people/ros/StructuralTopology/
http://www-iri.upc.es/people/ros/StructuralTopology/


310
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Amer. Math. Soc., 285, (1984), no. 2, 431–
465; Walter Whiteley, “Infinitesimally rigid
polyhedra. II. Weaving lines and tensegrity
frameworks.” Geom. Dedicata, 30 (1989), no. 3,
255–279.

Page 270 when all directional derivatives
given by p0 D .p0

1; : : : ; p
0
n/ starting at p are 0

. . . We perform the following calculation starting
from (21.1) for 0 � t � 1:

E!.p C tp0/ D
X
i<j

!ij ..pi � pj /
2

C 2t.pi � pj /.p
0
i � p0

j /C t2.p0
i � p0

j /
2/:

Taking derivatives and evaluating at t D 0, we
get:

d

dt
E!.pCtp0/jtD0 D 2

X
i<j

!ij .pi�pj /.p0
i�p0

j /:

At a critical configuration p, this equation must
hold for all directions p0.

Page 270 so is any affine transformation . . .
This is seen by the following calculation:

X
j

!ij .qj � qi /D
X
j

!ij .Apj C b � Api � b/

D A
X
j

!ij .pj � pi / D 0:

Page 271 quadric at infinity . . . The reason
for this terminology is that real projective space
Rpd�1 can be regarded as the set of lines through
the origin in Ed , and Equation (21.5) is the
definition of a quadric in Rpd�1.

Page 271 We can prove . . . Conversely
suppose that the member directions of a bar
tensegrity G.p/ lie on a quadric at infinity in
Ed given by a non-zero symmetric matrixQ. By
the spectral theorem for symmetric matrices, we
know that there is an orthogonal d -by-d matrix
X D .XT /�1 such that:

XTQX D

0
BBBBB@

	1 0 0 � � � 0
0 	2 0 � � � 0
0 0 	3 � � � 0
:::
:::
:::
: : :

:::

0 0 0 � � � 	d

1
CCCCCA
:

Let 	� be the smallest 	i , and let 	C be the
largest 	i . Note 1 � 1=	� < 1=	C � 1, 	�
is non-positive, and 	C is non-negative when Q
defines a non-empty quadric and when 1=	� �
t � 1=	C, 1 � t	i � 0 for all i D 1; : : : ; d .
Working Equation (21.4) backwards for 1=	� �
t � 1=	C we define:

At D XT

0
BBBBBB@

p
1� t	1 0 0 � � � 0

0
p
1� t	2 0 � � � 0

0 0
p
1� t	3 � � � 0

:
:
:

:
:
:

:
:
:

: : :
:
:
:

0 0 0 � � � p
1� t	d

1
CCCCCCA
X:

(22.4)

Substituting this expression for At into Equation
(21.4), we see that it provides a non-trivial affine
flex of G.p/. If the configuration is contained in
a lower dimensional hyperplane, we should really
restrict to that hyperplane since there are non-
orthogonal affine transformations that are rigid
when restricted to the configuration itself.

Page 271 lie on same line on either ruling
. . . Consider the diagonal matrix Q with diag-
onal entries 	1 D 	2 D 1; 	3 D �1. When
one node of each bar is translated to a single
point, they all lie on a circle at infinity given by
Q. The flex given by Formula (22.4) flexes the
configuration until the nodes lie on a line when
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t D 1=	C D 1 because two of the eigenvalues
for Q vanish for that value of t , and in the other
direction, when t D 1=	� D �1, the nodes lie in
a plane. This structure is easy to build with dowel
rods and rubber bands securing the joints where
the rulings intersect.

The space of d -by-d symmetric matrices is
of dimension d C .d 2 � d/=2 D d.d C 1/=2.
So if the vector directions of a tensegrity are less
than d.d C 1/=2, then it is possible to find a
non-zero d -by-d symmetric matrix that satisfies
Equation (21.5), and then flex it into a lower
dimensional subspace.

Page 271 Barvinok proved . . . Barvi-
nok, A. I., “Problems of distance geometry
and convex properties of quadratic maps.”
Discrete Comput. Geom., 13, (1995), no. 2,
189–202.

Page 272 Maria Belk and I showed . . .
Maria Belk and Robert Connelly, “Realizability
of graphs,” Discrete Comput. Geom., 37, (2007),
no. 2, 125–137; Maria Belk, “Realizability of
graphs in three dimensions,” Discrete Comput.
Geom., 37, (2007), no. 2, 139–162.

Page 272 Tensegrity techniques are used in
a significant way. . . . see Belk, cited above.

Page 273 when the configuration p D
.p1; : : : ; pn/ in Ed is universal . . . It is
not difficult to prove that if p is a universal
configuration for !, any other configuration q
which is in equilibrium with respect to ! is an
affine image of p.

Page 274 I showed that a tensegrity . . .
Robert Connelly, “Rigidity and energy”, Invent.
Math., 66, (1982), no. 1, 11–33. These results
answered some questions Grünbaum posed in
“Lectures on Lost Mathematics” (1975); notes
digitized and reissued at Structural Topology Re-
visited Conference (2006), http://hdl.handle.net/
1773/15700.

Page 275 two examples in the plane and
in three-space . . . this tensegrity is described
in Károly Bezdek and Robert Connelly, Two-
distance preserving functions from Euclidean
space. Discrete geometry and rigidity (Budapest,
1999). Period. Math. Hungar., 39, (1999),
no. 1–3, 185–200.

Page 275 L. Lovasz showed . . . László
Lovász, Steinitz representations of polyhedra and
the Colin de Verdière number. J. Combin. Theory
Ser. B, 82, (2001), no. 2, 223–236.

Page 275 such a tensegrity is super stable
. . . this is explained in Károly Bezdek and Robert
Connelly, Stress Matrices and M Matrices, Ober-
wolfach Reports Vol. 3, No. 1 (2006), 678–680; it
answers a question of K. Bezdek.

Page 275 P(n,k) is super stable . . . R.
Connelly; M. Terrell: Tenségrités symétriques
globalement rigides. [Globally rigid symmetric
tensegrities] Dual French-English text. Structural
Topology, No. 21 (1995), 59–78.

Page 276 a website where one can view . . .
this is available at http://www.math.cornell.edu/�
tens/.

Page 277 resulting tensegrity is super stable
. . . J. Y. Zhang: Simon D. Guest; Makoto Ohsaki;
Robert Connelly, “Dihedral ‘Star’ Tensegrity
Structures,” Int. J. Solids Struct. (2009).

Page 278 This follows from the proof
of the carpenter’s rule property . . . Robert
Connelly, Erik D. Demaine, and Günter Rote,
Straightening polygonal arcs and convexifying
polygonal cycles. U.S.-Hungarian Workshops on
Discrete Geometry and Convexity (Budapest,
1999/Auburn, AL, 2000). Discrete Comput.
Geom., 30 (2003), no. 2, 205–239.

Page 278 There’s more – much more – to
say . . . Let’s begin with Generic global rigidity.
The configurations in previous sections must be
constructed carefully. What about a bar frame-
work where the configuration is more general? It
turns out that the problem of determining when
a bar framework is globally rigid is equivalent to
a long list of problems known to be hard. (See,
for example, James B. Saxe, Embeddability of
weighted graphs in k-space is strongly NP-hard.
Technical report, Computer Science Department,
Carnegie Mellon University, 1979.) The prob-
lem of whether a cyclic chain of edges in the
line has another realization with the same bar
lengths is equivalent to the uniqueness of a so-
lution of the knapsack problem. This is one of
the many problems on the list of NP complete
problems.

http://hdl.handle.net/1773/15700
http://hdl.handle.net/1773/15700
http://www.math.cornell.edu/~tens/
http://www.math.cornell.edu/~tens/
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One way to avoid this difficulty is to assume
that the configuration’s coordinates are generic.
This means that the coordinates of p in Ed

are algebraically independent over the rational
numbers, which means that there is no non-zero
polynomial with rational coordinates satisfied by
the coordinates of p. This implies, among other
things, that no d C 2 nodes lie in a hyperplane,
for example, and a lot more. I proved (“Generic
global rigidity,” Discrete Comp. Geometry 33
(2005), pp 549–563) that:

Theorem. If p D .p1; : : : ; pn/ in Ed is generic
and G.p/ is a rigid bar tensegrity in Ed with a
non-zero stress matrix˝ of rank n� d � 1, then
G.p/ is globally rigid in Ed .

Notice that the hypothesis includes Conditions 2
and 3 of Theorem 23 in the text. The idea of the
proof is to show that since the configuration p
is generic, if G.q/ has the same bar lengths as
G.p/, then they should have the same stresses.
Then Proposition 21.1 applies.

Thurston proved the converse (see Thurston,
cited above):

Theorem. If p D .p1; : : : ; pn/ in Ed is generic
andG.p/ is a globally rigid bar tensegrity in Ed ,
then eitherG.p/ is a bar simplex or there is stress
matrix ˝ for G.p/ with rank n � d � 1.

The idea here, very roughly, is to show that
a map from an appropriate quotient of an appro-
priate portion of the space of all configurations
has even topological degree when mapped into
the space of edge lengths.

As Dylan Thurston pointed out, using these
results it is possible to find a polynomial time
numerical (probablistic) algorithm that calculates
whether a given graph is generically globally
rigid in Ed , and that the property of being glob-
ally rigid is a generic property. In other words, if
G.p/ is globally rigid in Ed at one generic con-
figuration p, it is globally rigid at all generic con-
figurations. Interestingly, he also showned that if
p is generic in Ed , and G.q/ has the same bar
lengths in G.p/ in Ed , then G.p/ can be flexed

to G.q/ in EdC1, similar to the discussion of
compound tensegrities.

A bar graph G is generically redundantly
rigid in Ed if G.p/ is rigid at a generic config-
uration p and remains rigid after the removal of
any bar. A graph is vertex k-connected if it takes
the removal of at least k vertices to disconnect the
rest of the vertices of G. The following theorem
of Hendrickson (B. Hendrickson, Conditions for
unique graph realizations, SIAM J. Comput 21
(1992), pp 65–84) provides two necessary con-
ditions for generic global rigidity.

Theorem. If p is a generic configuration in Ed ,
and the bar tensegrity G.p/ is globally rigid in
Ed , then

1. G is vertex .d C 1/-connected, and
2. G.p/ is redundantly rigid in Ed .

Condition 1 on vertex connectivity is clear
since otherwise it is possible to reflect one
component ofG about the hyperplane determined
by some d or fewer vertices. Condition 2 on
redundant rigidity is natural since if, after a
bar fpi ; pj g is removed, G.p/ is flexible, one
watches as the distance between pi and pj
changes during the flex, and waits until the
distance comes back to its original length. If p is
generic to start with, the new configuration will
be not congruent to the original configuration.

Hendrickson conjectured that Conditions 1
and 2 were also sufficient for generic global
rigidity, but it turns out that the complete bipartite
graph K5;5 in E3 is a counterexample (R. Con-
nelly, On generic global rigidity, in Applied Ge-
ometry and Discrete Mathematics, DIMACS Ser.
Discrete Math, Theoret. Comput. Scie 4, AMS,
1991, pp 147–155). This is easy to see as follows.

Similar to the analysis of Radon tenseg-
rities, for each of the nodes for the two
partitions of K5;5 consider the affine linear
dependency

P5
iD1 	ipi D 0;

P5
iD1 	i D 0

and
P10
iD6 	ipi D 0;

P10
iD6 	i D 0, where

.p1; : : : ; p5/ and .p6; : : : ; p10/ are the two
partitions of K5;5. When the configuration
p D .p1; : : : ; p10/ is generic in E3, then, up to a
scaling factor, the stress matrix for K5;5.p/ is
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˝ D

0
BBBBBBBB@

0

0
B@
	6
:::

	10

1
CA
�
	1 � � � 	5

�

0
B@
	1
:::

	5

1
CA�	6 � � � 	10

�
0

1
CCCCCCCCA
:

See Bolker, E. D. and Roth, B., “When is
a bipartite graph a rigid framework?” Pacific J.
Math. 90 (1980), no. 1, 27–44. But the rank of

 is 2 < 10 � 3 � 1 D 6, while rank 6 is
needed for generic global rigidity in this case by
Theorem 25.

In E3, K5;5 is the only counterexample to
Hendrickson’s conjecture that I know of. On the
other hand, a graphG is generically globally rigid
inEd if and only if the cone overG is generically
globally rigid in EdC1 (see R. Connelly and W.
Whiteley, “Global Rigidity: The effect of con-
ing,” submitted). This gives more examples in di-
mensions greater than 3, and there are some other
bipartite graphs as well in higher dimensions by
an argument similar to the one here.

Meanwhile, the situation in the plane is
better. SupposeG is a graph and fi; j g is an edge
of G, determined by nodes i and j . Remove this
edge, add another node k and join k to i , j , and
d � 1 distinct other nodes not i or j . This is
called a Henneberg operation or sometimes edge
splitting.

It is not hard to show that edge splitting
preserves generic global rigidity in Ed . When
the added node lies in the relative interior of the
line segment of the bar that is being split, there
is a natural stress for the new bar tensegrity, and
the subdivided tensegrity is also universal with
respect to the new stress. If the original config-
uration is generically rigid, a small perturbation
of the new configuration to a generic one will not
change the rank of the stress matrix. Thus generic
global rigidity is preserved under edge splitting.
A. Berg and T. Jordán and later B. Jackson
(A. Berg and T. Jordán, A proof of Connelly’s
conjecture on 3-connected circuits of the rigidity
matroid. J. Combinatorial Theory Ser. B., 88,
2003: pp 77–97) and T. Jordán (B. Jackson, and T.
Jordan, Connected rigidity matroids and unique

realization graphs, J. Combinatorial Theory B 94
2005, pp 1–29) solved a conjecture of mine:

Theorem. If a graph G is vertex 3-connected
(Condition 23) for d D 2 and is generically
redundantly rigid in the plane (Condtion 23) for
d D 2 then G can be obtained from the graph
K4, by a sequence of edge splits and insertions
of additional bars.

Thus Hendrickson’s conjecture, that
Conditions 1 and 2 are sufficient as well as
necessary for generic global rigidity in the
plane, is correct. This also gives an efficient
non-probablistic polynomial-time algorithm for
determining generic global rigidity in the plane.

Notes and References for Chapter 22

Notes on Problem 1

Albrecht Dürer’s Underweysung der Messung mit
dem Zirkel und Richtscheydt, Nürnberg, 1525
(English translation with commentary by W. L.
Strauss: “The Painter’s Manual: Instructions for
Measuring with Compass and Ruler”, New York
1977), is an exciting piece of art and science. The
original source for the unfolding polytopes prob-
lem is Geoffrey C. Shephard, “Convex polytopes
with convex nets,” Math. Proceedings Cambridge
Math. Soc., 1975, 78, 389–403.

The example of an overlapping unfolding
of a tetrahedron is reported by Komei Fukuda
in “Strange Unfoldings of Convex Polytopes,”
http://www.ifor.math.ethz.ch/�fukuda/unfold
home/unfold open.html, March/June 1997.

The first figure in our presentation is taken
from Wolfram Schlickenrieder’s Master’s Thesis,
“Nets of polyhedra,” TU Berlin, 1997, with kind
permission of the author.

For more detailed treatments of nets and
unfolding and for rich sources of related material,
see Joe O’Rourke’s chapter in this volume, and
Erik D. Demaine and Joseph O’Rourke, Geo-
metric Folding Algorithms: Linkages, Origami,
Polyhedra, Cambridge University Press, 2008.

http://www.ifor.math.ethz.ch/~fukuda/unfold_home/unfold_open.html
http://www.ifor.math.ethz.ch/~fukuda/unfold_home/unfold_open.html
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See also Igor Pak, Lectures on Discrete and
Polyhedral Geometry (in preparation), http://
www.math.ucla.edu/�pak/book.htm, where the
source and star unfoldings are presented and
discussed.

Notes on Problem 2

The neighborly triangulation of the torus with 7
vertices (and

�
7
2

� D 21 edges) was described by
Möbius in 1861, but the first polytopal realization
without self-intersections was provided by Ákos
Császár in 1948, in his article “A polyhedron
without diagonals,” Acta Sci. Math. (Szeged),
1949/50, 13, 140–142; see also Frank H.
Lutz, “Császár’s Torus,” April 2002, Electronic
Geometry Model No. 2001.02.069, http://www.
eg-models.de/models/ClassicalModels/2001.02.
069.

Neighborly triangulations of orientable sur-
faces for all possible parameters were provided
by Ringel et al. as part of the Map Color The-
orem: see Gerhard Ringel, Map Color Theorem,
Springer-Verlag, New York, 1974. Beyond n D 4

(the boundary of a tetrahedron) and n D 7 (the
Császár torus) the next possible value is n D
12: But Jürgen Bokowski and Antonio Guedes
de Oliveira, in “On the generation of oriented
matroids,” Discrete Comput. Geom., 2000, 24,
197–208, and Lars Schewe in “Nonrealizable
minimal vertex triangulations of surfaces: Show-
ing nonrealizability using oriented matroids and
satisfiability solvers”, Discrete Comput. Geome-
try, 2010, 43, 289–302, showed that there is no
realization of any of the 59 combinatorial types of
a neighborly surface with 12 vertices and

�
12
2

� D
66 edges (of genus 6) without self-intersections
in R3.

The McMullen–Schulz–Wills surfaces “with
unusually large genus” were constructed by Peter
McMullen, Christoph Schulz and Jörg M. Wills
in “Polyhedral 2-manifolds in E3 with unusually
large genus,” Israel J. Math., 1983, 46, 127–
144; see also Günter M. Ziegler, “Polyhedral sur-
faces of high genus” in Discrete Differential Ge-
ometry, Oberwolfach Seminars, 38, Birkhäuser,
Basel 2008, 191–213. The question about almost

disjoint triangles was posed by Gil Kalai; see
Gyula Károlyi and József Solymosi, “Almost
disjoint triangles in 3-space,” Discrete Comput.
Geometry. 2002, 28, 577–583, for the problem
and for the lower bound of n3=2.

Notes on Problem 3

Steinitz’ theorem is a fundamental result: see
Ernst Steinitz, “Polyeder und Raumeinteilun-
gen” in Encyklopädie der mathematischen
Wissenschaften, Dritter Band: Geometrie,
III.1.2., Heft 9, Kapitel III A B 12,1–139, 1922,
B. G. Teubner, Leipzig, and Ernst Steinitz
and Hans Rademacher, Vorlesungen über die
Theorie der Polyeder, Springer-Verlag, Berlin,
For modern treatments, see Branko Grünbaum,
Convex Polytopes, Springer-Verlag, 2003 and
Günter M. Ziegler, Lectures on Polytopes, Second
edition, Springer, 1995, revised edition, 1998;
seventh updated printing 2007.

Steinitz’ proofs imply that a realization with
integer vertex coordinates exists for every combi-
natorial type. Furthermore, there are only finitely
many different combinatorial types for each n, so
f .n/ exists and is finite. The first explicit upper
bounds on f .n/ were derived by Shmuel Onn and
Bernd Sturmfels in “A quantitative Steinitz’ theo-
rem,” Beiträge zur Algebra und Geometrie, 1994,
35, 125–129, from the rubber band realization
method of Tutte (see William T. Tutte, “Convex
representations of graphs,” Proceedings London
Math. Soc., 1960, 10, 304–320).

Since Jürgen Richter-Gebert’s exposition
in Realization Spaces of Polytopes, Springer-
Verlag, Berlin Heidelberg, 1996, there has
been a great deal of research to improve the
upper bounds; see in particular the Ph.D.
thesis of Ares Ribó Mor, “Realization and
Counting Problems for Planar Structures: Trees
and Linkages, Polytopes and Polyominoes,”
FU Berlin, http://www.diss.fuberlin.de/diss/
receive/FUDISS thesis 000000002075, and Ares
Ribó Mor, Günter Rote and André Schulz,
“Embedding 3-polytopes on a small grid,” Proc.
23rd Annual Symposium on Computational
Geometry (Gyeongju, South Korea, June 6–8,

http://www.math.ucla.edu/~pak/book.htm
http://www.math.ucla.edu/~pak/book.htm
http://www.eg-models.de/models/Classical Models/2001.02.069
http://www.eg-models.de/models/Classical Models/2001.02.069
http://www.eg-models.de/models/Classical Models/2001.02.069
http://www.diss.fuberlin.de/diss/receive/FUDISS_thesis_000000002075
http://www.diss.fuberlin.de/diss/receive/FUDISS_thesis_000000002075
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2007), Association for Computing Machinery,
New York, 112–118.

The upper bound f .n/ < 148n can be found in
Kevin Buchin and André Schulz, “On the number
of spanning trees a planar graph can have,” (2010)
arXiv:0912:0712v2

The result about stacked polytopes was
achieved by Erik Demaine and A. Schulz,
“Embedding stacked polytopes on a polynomial-
size grid,” in: Proc. 22nd ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), San
Francisco, 2011, ACM Press, 1177–1187.

A lower bound of type f .n/ � n3=2 follows
from the fact that grids of such a size are needed
to realize a convex n-gon; compare Torsten
Thiele, “Extremalprobleme für Punktmengen,”
Master’s Thesis, Freie Universität Berlin, 1991;
the minimal n�n-grid on which a convexm-gon

can be embedded has size n D 2�
�
m
12

�3=2 C
O.m logm/.

The theorem about edge-tangent realizations
of polytopes via circle packings is detailed in
Günter M. Ziegler,“Convex Polytopes: Extremal
constructions and f -vector shapes,” in Geomet-
ric Combinatorics, Proc. Park City Mathematical
Institute (PCMI) 2004, American Math. Society,
2007; we refer to that exposition also for further
references.

Notes on Problem 4

A survey of the theory of tilings can be found in
Egon Schulte, “Tilings,” in Handbook of Convex
Geometry, v. B, North-Holland, 1993, 899–932.
For tilings with congruent polytopes, we refer to
the survey by Branko Grünbaum and Geoffrey C.
Shephard, “Tiling with congruent tiles,” Bulletin
Amer. Math. Soc., 3, 951–973. Their book, Tilings
and Patterns, Freeman, New York, 1987, is a rich
source of information on planar tilings.

For the problem about the maximal number of
faces, see also Peter Brass, William O. J. Moser
and János Pach, Research Problems in Discrete
Geometry, Springer, New York, 2005.

Peter Engel presented his tilings by congruent
polytopes with up to 38 faces in “Über
Wirkungsbereichsteilungen von kubischer

Symmetrie,” Zeitschrift f. Kristallographie, 1981,
154, 199–215, and Geometric Crystallography,
D. Reidel, 1986.

Notes on Problem 5

The fascinating history of the original work by
Descartes—lost, reconstructed and rediscovered
several times—is discussed in Chapters 3 and 4
of this volume.

The paper by Ernst Steinitz describing the
f -vectors .f0; f1; f2/ of 3-polytopes completely
is “Über die Eulerschen Polyederrelationen,”
Archiv für Mathematik und Physik, 1906, 11,
86–88.

The fatness parameter first appears (with a
slightly different definition) in Günter M. Ziegler,
“Face Numbers of 4-Polytopes and 3-Spheres,”
in Proceedings of the International Congress of
Mathematicians (ICM 2002, Beijing), 625–634,
Higher Education Press, Beijing; see also Günter
M. Ziegler, “Convex Polytopes: Extremal con-
structions and f -vector shapes,” cited above for
Problem 3.

The 720-cell was apparently first found and
presented by Gabor Gévay, “Kepler hypersolids,”
in Intuitive Geometry (Szeged, 1991), North-
Holland, 1994, 119–129. The “projected
deformed products of polygons” were introduced
in Günter M. Ziegler, “Projected Products of
Polygons,” Electronic Research Announcements
AMS, 2004,10,122. For a complete combinatorial
analysis, see Raman Sanyal and Günter M.
Ziegler, “Construction and analysis of projected
deformed products,” Discrete Comput. Geom.,
2010, 43, 412–435.

Notes on Problem 6

The Hirsch conjecture appears in George
Dantzig’s classic book, Linear Programming and
Extensions, Princeton University Press, 1963. For
surveys see Chapter 16 of Branko Grünbaum,
Convex Polytopes, cited above; Victor Klee and
Peter Kleinschmidt, “The d -step conjecture and
its relatives,” Math. Operations Research, 1987,



318

12, 718–755; Günter M. Ziegler, Lectures on
Polytopes, cited above, and most recently Edward
D. Kim and Francisco Santos, “An update on the
Hirsch conjecture,” Jahresbericht DMV, 2010,
112, 73–98. The Kim–Santos paper in particular
explains very nicely many bad examples for the
Hirsch conjecture. Santos’ long-awaited counter-
example to the Hirsch conjecture appears in “A
counterexample to the Hirsch conjecture,” Annals
of Math., 2012, 176, 383–412.

The Kalai–Kleitman quasipolynomial upper
bound (Gil, Kalai, and Daniel J., Kleitman, “A
quasi-polynomial bound for the diameter of
graphs of polyhedra,” Bulletin Amer. Math. Soc.,
1992, 26, 315–416, can also be found in Lectures
on Polytopes. David Larman published his result
in “Paths on polytopes,” Proc. London Math. Soc,
1970, 20, 161–178.

For the connection to Linear Programming
we refer to Lectures on Polytopes; Jiřı́
Matoušek, Micha Sharir and Emo Welzl, “A
subexponential bound for linear program-
ming,” Proc. Eighth Annual ACM Symp.
Computational Geometry (Berlin 1992), ACM
Press, 1992; Gil Kalai, “Linear program-
ming, the simplex algorithm and simple
polytopes,” Math. Programming, Ser. B,
1997, 79, 217–233; and Volker Kaibel,
Rafael Mechtel, Micha Sharir, and Günter M.
Ziegler, “The simplex algorithm in dimen-
sion three,” SIAM J. Computing, 2005, 34,
475–497.

Notes on Problem 7

The upper-bound theorem was proved by Peter
McMullen in “The maximum numbers of faces
of a convex polytope,” Mathematika, 1970, 17,
179–184. Very high-dimensional simplicial poly-
topes with non-unimodal f -vectors were appar-
ently first constructed by Ludwig Danzer in the
1960s. The results quoted about non-unimodal
d -polytopes, d � 8 and about non-unimodal
simplicial d -polytopes, d � 20, are due to
Anders Björner (“The unimodality conjecture for
convex polytopes,” Bulletin Amer. Math. Soc.,
1981, 4, 187–188 and “Face numbers of com-

plexes and polytopes,” Proceedings of the Inter-
national Congress of Mathematicians (Berkeley
CA, 1986), 1408–1418; Carl W. Lee, “Bound-
ing the numbers of faces of polytope pairs and
simple polyhedra,” Convexity and Graph Theory
(Jerusalem, 1981), North-Holland, 1984, 215–
232; and Jürgen Eckhoff, “Combinatorial prop-
erties of f -vectors of convex polytopes,” 1985,
unpublished, and “Combinatorial properties of
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Huseyin Koçak, David Laidlaw, David Margolis,
and the author.

Chapter 22

Moritz Schmitt thanks the DFG Research
Center MATHEON, Institut für Mathematik,
Freie Universität Berlin, Arnimallee 2, 14195
Berlin, Germany, for support. Günter M.
Ziegler’s work was partially supported by
DFG, Research Training Group “Methods for
Discrete Structures,” also at the Institut für
Mathematik.



Index

A
Acetylene, 159, 175
Adamantane, structure of, 157–159
Adjacency, 116, 119
Adonis pernalis, 96
Aether, 173, 174, 188
Affine

hull, 221
polyhedra, 120
properties, 113, 117

Affleck, 122
After the Flood, 97
Air, 5, 21, 22, 39, 42, 57, 140, 267
Albers, Anni, 323
Albers, Josef, 96, 99, 323

structural constellation, 99
Alexandrov, Aleksandr D., 62, 85, 202, 296, 305
Alum, 140
Aluminum silicates, 141
Alves, Corraine, 28
Ammonia, 162
Angeles, Los, 322
Angles, 58

dihedral, 32, 35, 78, 129, 135
Antiprism

bicapped square, 154, 155
definition of, 9
ferrocene as, 160, 161
hexagonal, 181
H3N�AlCl3 as, 160
non-convex isogonal, 215
octagonal, 215
pentagonal, 18, 42, 112
semiregular, 9, 57–58, 120
square, 69, 154
triangular, 159, 160

Antiprismatic polygon, definition of, 195
Application as geometrical action, 110
Archambault, Louis, 122
Archimedean polyhedra

definition of, 59
hydrocarbons as, 155

Archimedean solids, 8, 37, 42, 44, 47, 55, 57, 59, 60, 62,
77, 80, 227

definition of, 47
flag diagram of, 227

Archimedes, 8, 47, 54–59, 126, 171, 197, 199
Ari-kake joint, 187
Aristotle, 140, 172, 178
Ashkinuse, V.G., 59, 60
Ash, Peter, 231–251
Automorphism of polyhedron, 225, 229
Axis of symmetry, 213, 257, 262, 275

B
Back, Allen, 276
Baer, Steve, 91, 323
Balloons

shapes of groups, 163
twisting, 33, 37, 39–40

Banchoff, Thomas F., 257–266
Baracs, Janos, 109–123, 231
Bar-and-joint framework, 201–203, 238
Barbaro, Daniel, 57
Bar directions of a bar tensegrity, 271
Barlow, William, 179
Bartholin, Erasmus, 140
Bauermeister, Mary, 96, 99

Fall-Out, 99
Bean mosaic virus, 105
Beer mats, 19
Benitoite, 92, 94
Berry, R. Stephen, 166, 167
Bertrand, J., 60
Bezdek, Daniel, 84
Bicapped square antiprism

borane as, 155
carborane as, 155

Billera–Lee, 288
Billiard-ball model, 173, 188
Bill, Max, 97, 101

Construction with 30 Equal Elements, 97, 101
Bipyramid

pentagonal, 16, 154, 155
triangular, 16
trigonal, 154, 155, 163, 164, 166

Black and white knights, 143–146
Blackwell, William, 323
Bloon number, 37
Blossfeldt, Karl, 322
Body-centered lattice, 144, 145

327



328 Index

Bokowski, Jürgen, 280, 316
Bolker, Ethan, 231–251, 315
Bolyai, Wolfgang Farkar, 61
Bombelli, R., 57
Bonding

of molecules, 160
in ONF3, 160
in sulfates, 163
in sulfones, 163
in tetrafluoro-1,3-dithietane, 160
in zirconium borohydride, 154

Boole-Stott, Alicia, 226
Boranes

arachno, 155–157
closo, 154–157, 167–168
nido, 155–157
quasi-closo, 154
relationships among, 154

Boron hydrides, 153–155. See also Boranes
Borromean rings, 37, 39
Borromini, 6, 10
Boundary, definition of, 194, 195
Bounded

definition of, 194, 195
regions, 195

Bowl, 136, 239–251
Braced grids, 121
Bragstad, Jeremiah O., 323
Brass tetrahedron, 101
Bravais, A., 143, 144
Braziller, George, 321
Brehm, U., 224
Brisson, Harriet E., truncated 600-cell, 97, 102
Brodie, Benjamin Collins, 172
Bronze dodecahedron, 56, 57
Brooks, A. Taeko, 107
Brown, Ezra, 232
Brown, K.Q., 247
Brückner, Max, 53, 60, 199
Buba, Joy, 98
Buckminsterfullerene, 129, 168, 169, 175
Bullvalene, nuclear interconversion in, 165,

166
Burns, A. Lee, 97, 101, 104

tetrahedron, 97, 101

C
Calif, Bolinas, 322
Camera lucida drawings, 180
Candy box, (Escher), 5, 6
Capsid, models of, 177
Carbonyl scrambling, 168
Carborane, 154
Carex grayi, 96
Caspar, Donald, 176–178, 182, 184, 189, 324
Catalan, Eugene Charles, 60, 199
Cauchy, Augustin-Louis, 10, 59, 60, 202, 207
Cauchy’s theorem, 202, 207
Cayley, A., 60

Cell decomposition, 234–250
Centroid, 133, 212
Challenger, H.M.S., 93
Cheese-slicing algorithm, 75
Chefren, pyramid of, 89
Cheops, pyramid of, 89
Chieh, Chung, 139–151
Chilton, Bruce L., 10, 11, 321
Chinese postman problem, 36
Chirality, definition of, 70
Chrome alum, 140
Circles

great, 48–49, 264
packing of, 141, 233, 234, 238, 248,

281, 317
Circumcenter, 212
Circumcircle, 41
Classification as geometrical action, 110
Closed set, definition of, 195
Clow, Fred, 324
Coca-Cola Building, 90
Combinatorial dual, definition of, 212
Combinatorial geometry, 113
Combinatorial prototiles, 217–222
Compact set, 195

definition of, 194
Computational geometry, 184, 188, 251, 267
Computer

graphics by, 196, 258
realization by, 133
recognition of polyhedra by, 150

Configuration, 30, 62, 72, 109, 141, 145, 154, 155,
158, 160, 163–165, 167, 186, 187, 225, 251,
267–275, 277, 282

Connelly, Robert, 250, 267–278
Conner, Lawrence, 338
Connolly, Helen, 106
Construction with 30 Equal Elements, 97, 101
Continuity, 116
Continuous mapping, 116
Convex hull, 83, 84, 133, 241, 247, 254, 276,

279, 385
Convexity, 77, 117, 185, 211, 213, 214, 218, 239, 246,

251
Convex polyhedron

definition of, 195
projection of, 232, 233, 241, 247

Convex reciprocal, figure, 233, 235–241, 243, 246,
248–250

Coorlawala, Uttara, 104, 106
Cornus kousa, 96
Corpus Hypercubicus, 96
Cosmic Contemplation, 96, 100
Covalent radii, 179
Coxeter, H.S.M., 5, 41–54, 62, 153, 199

portrait of, ix
Crapo, Henry, 231–251
Crawl-through toy, 104, 107
Crick, Francis, 176
Crosspolytope, 220



Index 329

Crystal
architecture of, 102, 141
benitoite, 92, 94
chrome alum, 140
gold, 91, 94
leucite, 91
pyrite, 6, 7, 54
quartz, 91, 93
relationships, 139
structures, 99, 139–151, 159, 179
systems, 144, 146, 149, 150
vanadinite, 140
virus, 109
wulfenite, 139

Császár polyhedron, 213
Császár torus, 213, 280
Cubane, 155, 158
Cube-dual, 259
Cubes. See also Snub cube

construction of, 21, 30
decomposition of, 258, 286–287
diagonal, 115
with face, 3
within octahedron, 103
open packing of, 142
as platonic element, 42
plexiglas, 103
as reciprocal of octahedron, 42, 43
relation to rhombic dodecahedron, 30–32
rotations of, 45, 46
Schlegel diagram of, 70, 71, 258
snub, 8, 37, 38, 47–50, 70, 71, 77, 78, 80, 82,

83, 253
as space filler, 220
tessellation by, 221
triangulation in, 286
truncated, 47–49, 73–75, 103, 253
vertices of, 4, 11

Cube-within-a-cube projection, 258–260
Cubical nontiles, 221

existence questioned, 221
Cubical vase, 107
Cubist paintings, 96
Cuboctahedron

definition of, 219
not combinatorial prototile, 218–220
truncated, 47–49
as unit of crystal structure, 145, 146
vertices of, 73, 253, 262, 265

Cubus simus, 47
Cundy, Henry Martyn, 321
Cut edge, 81, 82, 208, 209
Cycle, Hopf, 266
Cyclic permutations, 50, 72, 254
Cyclopentane, pseudorotation in, 165

D
Dali, Salvador, 96, 98

Corpus Hypercubicus, 96

Cosmic Contemplation, 96, 98
The Sacrament of the Last Supper, 96, 98

Dalla, Leoni, 335
Dalton, John, 172
Dance, 165
Dantzig, George, 62, 317
Danzer, Ludwig, 218, 285
Darwin, Charles, 93
da Vinci, Leonardo, 42, 57, 96, 323
de Barbari, Jacopo, 96
Decomposition

cell, 234–238, 245–251
of cube, 258, 259
finite, 61, 248
Hopf, 264–265
of hypercube, 258–261, 264–265
of octahedron, 258, 259, 262, 265
of polytopes, 257–266

de Foix, François, 57
Dehn, Max, 54, 61, 199
Dehn-Sommerville equations, 60–61
de Justice, Palais, 122
de la Fresnaye, Roger, 96
della Francesca, Piero, 57
de Louvre, Museé, 97
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structure of, 149
Dibenzene chromium, 160, 161
Dicarba-closo-dodecaboranes, 168
Dice, icosahedral, 41
Diego, San, 321
Dieudonné, Jean, 211
Dihedra, 197
Dihedral angles, 32, 35, 78, 129, 135
Dihedral rotation group, 46, 224
Dimakopolous, 122
Dimolybdenum tetra-acetate, 160, 161
Diophantine equation, 70, 253–255
Dirichlet domain, 142–148
Dirichlet, G. Lejeune, 142
Dirichlet tessellation, 196, 231–251
Disdodecahedron, 225
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Distances, 30, 44, 45, 49, 112, 113, 117, 118, 129, 134,
141, 145, 160–162, 179, 237, 243, 268, 272,
284, 287

Dodecahedral crystal, 5, 6, 54, 56
Dodecahedral housing complex, 91
Dodecahedral recycling bin, 7
Dodecahedrane, 155, 158
Dodecahedron

borane as, 155
bronze, 56, 57
carborane as, 155
construction of, 30
Etruscan, 42
ghost of, 3
golden, 23
icosahedron as reciprocal of, 42
as platonic element, 227

Dome, 50, 68, 84, 89, 91, 93, 104, 106, 121, 129,
131–132, 136, 137, 169, 275

articulated ring, 121
geodesic, 50, 89, 91, 93, 129, 132,

169–170, 177
Doughnut, 27, 65, 66, 96
Dress, Andreas, 63
Dual

combinatorial, 212
existence of, 212

Duality, 58, 60, 65, 100, 129, 196, 211–216
Dürer, Albrecht, 56, 57, 79, 199, 275

Melencolia I, 77
Dürer’s Problem, 77–86
DuVal, Patrick, 337

E
Earth, 5, 42, 44, 45, 69, 135, 140
Easter egg, tessellation of, 67
Eberhard’s theorem, 198
Eclipse, 97, 100
Edelsbrunner, Herbert, 233
Edges

curved, 68, 116
definition of, 3
length of, 30, 120, 132, 141, 194, 197, 198, 225, 227,

267, 272, 288, 314
number of, 10, 17, 33, 34, 36, 50, 59, 67, 69, 70, 114,

134, 203, 205, 218, 227, 280
skeleton, 250

Egyptian pyramids, 89
Electron microscope, 102
Element, 5, 7, 42, 54, 55, 69, 72, 73, 97, 101, 114, 145,

148, 150, 175, 178–181, 199, 202, 212, 214,
249, 276. See also Platonic solids

definition of, 5
Eliminating dependencies by edge subdivisions, 206
Engel, Peter, 282
Epicurus, 172, 173
Equivelar manifold, 223, 225, 228
Erickson, Ralph O., 122, 179–183, 189
Ernst, Bruno, 321, 323

Escher, M.C., 5, 6, 65, 66, 96, 99, 103, 106, 142–146,
150, 151, 153, 197, 321–323

Angels and Devils, 66
Black and White Knights, 143–146
candy box, 5, 6
contemplating polyhedron, 104
contemplating spheres, 66
Fishes and Birds, 143, 144, 146
Order and Chaos, 99
Reptiles, 6
Sphere with Angels and Devils, 66
Three Spheres II, 66
Waterfall, 98

Eskenazi, 122
Ethylene, 159, 175
Euclid, 41, 54, 55, 58, 59
Euclidean geometry, 241
Euclidean 3-space (E3/, 217, 218, 223
Eudemus of Rhodes, 54
Eudoxus, 54, 55
Euler characteristic, 59, 280
Eulerian path, 33, 35
Euler, Leonhard, 11, 33, 34, 58, 59, 99, 212, 283
Euler-Poincaré equation, 283
Euler’s equation, generalization of, 288
Euler’s formula, 51, 58, 126, 130, 193, 198, 219
Exhaustion, method of, 54
Expandable sculpture, 101
Exposed vertex, 23

F
Face-centered lattice, 145, 146
Faces

of cube, 144
curved, 5, 6
definition of, 3
dihedral angles between, 32, 78
infinite helical polygon as, 196
number of, 9, 10, 17, 41, 51, 59, 67, 83, 100, 126,

134, 137, 182, 207, 221, 282
ordering of, 118
pentagonal hole in, 68, 126, 180
of polytope, 282
self-intersecting, 216
skew polygon as, 194, 196
square hole in, 20, 30, 49, 69, 75, 141, 142, 167, 183,

189, 258–260, 264, 265
tetrahedron as, 11, 265

Facet, 217, 219, 221, 282
Face-to-face tiling, 217–222, 283
Faı̈ence icosahedron, 56
Fall-Out, 99
Fatness, 283–284, 288
Fatness parameter, 283
Federico, P.J., 42, 58
Federov, E.S., 102
Fejes Tóth, L., 53
Fejes-Tóth, László, 288
Ferrocene, 160, 161
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Fieser, Louis F., 157
Fire, 5, 42, 140
Fisher, Ed, 53
Fishes and Birds, 143, 144, 146
Flag, 223, 225, 289

definition of, 223
The flag conjecture, 289
Flag diagram, 224, 227, 228
Flatness, 117
Flat torus, 224, 264
Fleck, George, 171–189
Flexible, 13, 16, 19, 32, 135–137, 177, 187, 198,

201–208, 268, 270, 277–278, 315
Flex of the tensegrity, 268
Florence, Sabin, 65, 96, 97
Florentine hat, 68. See also Mazzocchio
Foam, 180
Fold-out decomposition, 260–261
Folklore, 109, 211, 213, 216

4-simplex, 33, 34
Framework octahedron, 100
Frameworks, 63, 100, 137, 142, 154, 198, 201–208,

231–233, 238, 246, 267, 270–271
Francisco, San, 100, 304, 317
Fredenthal, Robinson, 103, 323

Ginger and Fred, 103
Freeman, W.H., 321, 324
Frost, Robert, 193
Froth, 100, 104
Fuller, R. Buckminster, 50, 89, 109, 129, 130, 169, 170,

267, 322. See also Buckminsterfullerene
geodesic dome, 89, 129

Furthest-point Dirichlet tessellation, 233, 237, 243, 244,
247, 250

f-vector, 197, 198, 283, 285, 288

G
��Brass, 145–146
General unfolding, 85–86
Generically rigid, 203, 204, 315
Genus, 86, 196, 198, 223, 225, 227– 229, 316

definition of, 195, 280
Geodesic dome

construction of, 91
house, 91

Geometry
molecular, 153, 162, 163, 174
teaching of, 119

Gergonne, J.D., 59
Gerwien, Karl, 61
Gerwien, P., 61
Gilbert, A.C., 189
Ginger and Fred, 103
Girl with a Mandolin, 15
Girvan, 122
Giza, pyramids at, 89
Glass polyhedra, 57
Globally rigid, 270, 274–277, 314–315
Global rigidity, 267–278

Gluing joints, 32
Glur, Paul, 61
Goldbach, Christian, 59
Goldberg, Michael, 125, 133
Goldberg Polyhedra, 125–139, 168
Gold crystals, 94
Golden dodecahedron, definition of, 23
Golden ratio, 254
Goldschmidt, Viktor, 322
GPs and Fullerenes, 129
Granche, Pierre, 122
Graphical statics, 231, 248, 308
Graph, planar, 198, 203, 207–209, 211–212, 231, 233,

234, 243, 245–247, 250, 305, 309, 317
Gray, Jack, 31
Great stellated dodecahedron, 23–25, 42, 43

construction of, 24
Group

point, 145, 148, 155, 158
theory, 59, 62, 153

Grünbaum, Branko, 51, 53, 62, 63, 109, 194, 199,
211–216, 221, 293, 295, 296, 304, 306, 316,
317

Gvay, Gabor, 283

H
Hadamard, Jacques, 58
Hadwiger, Hugo, 61
Haeckel, Ernst, 93, 322
Hales, Stephen, 178
Hampshire College, 90

modular residences, 92
Hanner, Olof, 289, 319
Hardy, G.H., 254
Hargittai, Istvan, 153–170, 175
Hargittai, Magdolna, 153–170, 175
Hart, George, 125–138
Hart, Vi, 13–40
Hauer, Erwin, 89, 97, 101, 102, 322

Coca-Cola Building, 90
Obelisk, 102
Rhombidodeca, 101

Hayward, Roger, 175, 321, 324
Hecker, Zvi, 90, 322
Hexagon

as a face, 68, 83, 89, 96, 125, 126, 181, 189, 213, 225,
227

polytope analogous to, 49, 224
Hexagonal kaleidocycle, 28
Hexagonal lattice, 147, 148

Dirichlet domain of, 147, 148
Hexagonal prism, 147

vanadinite crystal, 140
Hexagonal pyramid, tiling of E3 by, 222
Hexahedron. See Cubes
Hexamethylenetetramine, 145, 147
Hexaprismane, 157, 158
Higher-order deltahedra, 93
Hilbert, David, 60, 61, 282
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Hilbert’s 18th problem, 282
Hilton, Peter, 58
Hinges, 30–32, 201–205, 207–209
Hirsch conjecture, 284–285, 317, 318
Hirsch, Warren, 284
Hirsh, Meyer, 59
History of polyhedra, 53–63, 196
Hofmann, August Wilhelm, 172, 323
Hofstadter, Douglas R., 123
Holden, Alan, 37, 97, 102

“Ten Tangled Triangles”, 97, 102
Hole, 15, 19, 27, 28, 39, 65, 66, 77, 86, 120, 131, 135,

186, 189, 194, 195, 201
Holyer’s problem, 37
Honeybee comb, 95
Honeycomb, 41, 103
Hooke, Robert, 141
Hopf decomposition, 264–265
Hopf, Heinz, 257
Hopf mapping, 257, 263–266
Hornby, Frank, 188
Hull

affine, 221
convex, 83, 84, 133, 241, 247, 254, 276, 279, 285,

308, 309
Hungarian hut, 324
Hydrocarbons, 157, 160

polycyclic, 155–158
Hydrogen fluoride, 163
Hypercube

decomposition of, 260–261, 264–265
projection of, 258, 266

Hypersphere, 257, 263, 264, 266
Hypostrophene, 165, 166

intramolecular rearrangements in, 165

I
Ice, 157, 159

structure of, 148, 149
Iceane, 157

structure of, 159
Icosahedral candy box, 5
Icosahedral crystal, 6, 7
Icosahedral kaleidoscope, 49
Icosahedral rotation group, 46
Icosahedron

B12H2�

12 as, 154, 155
borane as, 167
carborane as, 154, 155
as a deltahedron, 16
dodecahedron as reciprocal of, 42
incised, 56
isogonal, 213
model of, 167, 253
plane net of, 4
truncated, 47, 77–80, 126, 127, 129, 133, 135, 254
vertices of, 41, 133, 225, 254, 280

Icosidodecahedron, 47, 100, 220, 254
definition of, 47
truncated, 47, 254

Icositetrahedral leucite crystal, 93
Identity operation, 271
Image, 24, 48, 65, 70, 112, 129, 188, 231, 258, 264, 270,

273
creation of, 109, 110

Impossible structure, 96
Incenter, 212
Incidences, 112, 113, 116, 117, 120, 202,

207, 284
Incircle, 41, 65
Independence and redundancy, 202
Infinitesimal rigidity, 203
Ingersoll, Charles, Sr., 324
Intramolecular motion, 154, 165–168
Ion exchangers, 141
IRODO, 101
Isoaxis, 27

construction of, 28–29
Isogonal icosahedron, 213
Isogonalities, 213–215
Isogonal polyhedron, definition of, 213, 214
Isohedral dodecahedron, 213
Isohedral polyhedron, definition of, 213
Isomerism, permutational, 166
Isomorphic polyhedral, 214

definition of, 213, 218
Isomorphism classes, 212
Isothetic, 185, 186
Isotoxal polyhedron, definition of, 213

J
Jamnitzer, Wenzel, 8, 9, 57, 321
Joe-pye weed, 179
Johnson, Norman W., 62
Joswig, Michael, 229
Jupiter, 44, 45

K
Kalai, Gil, 281, 284, 289
Kalai’s question, 289
Kaleidocycle, constructi of, 26–29
Kaleidoscope, 48, 49
Károlyi, Gyula, 281
Katoh, N., 204, 208, 209
Katoh–Tanigawa theorem, 208
Kelvin, Baron of Largs (Lord Kelvin), 173, 178–180,

182, 189
Kepes, Gyorgy, 323
Kepler, Johannes, 5, 9, 42–45, 56–60, 112, 126, 140, 168,

172, 199, 317
planetary system of, 45, 168

Kirkpatrick, Katherine, 23
Klein, Felix, 45, 47, 123, 226, 227, 229
Kleitman, Daniel, 284
Klemyk, Wendy, 322
Klug, A., 176, 177, 183
Knots, 21, 22, 173
Koestler, Arthur, 44, 123
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L
Labyrinth, 101, 102
LaFollete, Curtis, 102
Lakatos, Imre, 193
Lantos, Ferenc, 163, 323
Larman, David, 284
Lattice, 111, 132, 134, 143–148, 150, 177, 183, 184, 188,

227, 248
Lead shot, 180, 181
Le Bel, Joseph, 174
Lebensold, 122
Lebesgue, H., 58
Lee, A., 206
Legendre, Adrian-Marie, 59
Leibniz, Gottfried Wilhelm, 42, 58
Lemma, 208, 209
Lennes, N.J., 61
Lesser rhombicuboctahedron, 73–75
Lesserson, Jonathan, 322
Leucite, 91
Levinson, P., 189
Lewis, Gilbert Newton, 175
Lhuilier, S., 59
Linear arrangement of electron pairs, 162
Line-sweep heuristic, 185
Lipscomb, W.N., 167
Loeb, Arthur L., 13–40, 65–75, 97, 100, 109, 322, 323

Polyhedral Fancy, 97, 100
Lovasz, L., 275
Lucretius, 172, 173

M
The Mahler conjecture, 289, 319
Mahler, K., 289, 319
Malkevitch, Joseph, 53–63, 198
Man in the Community building, 121, 122
Mani, Peter, 221, 319
Man the Explorer building, 121, 122
Map coloring, 280, 316
Mapping

continuous, 116
Hopf, 257, 263–266

Mars, 44, 45
Martin, George, 60
Marvin, James, 179, 180
Massey, 122
Mathematics Activity Tiles (MATs), 19
MATs. See Mathematics Activity Tiles (MATs)
Matzke, Edwin B., 179–182, 324
Maxwell bowl, 244, 249, 250
Maxwell, James Clerk, 173, 231
Maxwell paraboloid, 240, 244
Mayers, 122
Mazzocchio, 96, 98, 104, 106
McCooey, David, 229
McCrossan, Eddie, 322
McMullen, Peter, 254, 281, 285
Meister, A.L.F., 212
Melencolia I, 77

Mercury, 44, 45
Methane, 7, 153, 162, 163, 189
Metric polyhedra, 120
Metric properties, 55, 110, 118, 119, 123, 197, 198
Michelson, Albert, 174
Milestones, 53–63, 77, 99
Miller, Dayton, 174
Miller, J.C.P., 59
Miller’s solid, 60
Minimally rigid, 202–204, 208, 209
Mirror symmetry, 7, 118, 128
Möbius, A.F., 47, 48, 195, 216, 316
Model

affine, 111
aluminum, 141, 188
of As4 molecule, 153, 154
of atom, 179
ball-and-stick, 172, 173, 179, 201
billiard-ball, 173, 188
of borane, 155, 167
of capsid, 177
of carbon-carbon bonds, 174
of carborane, 155
cardboard, 182, 183, 225, 323
of [Co6(CO)14]4�, 168, 169
construction of, 18, 184
of dibenzene chromium, 160, 161
of ethane, 159
of ferrocene, 160, 161
of gas molecule, 173
of �-brass atomic structure, 145–147
hard-rubber, 174
of H3N � AlCl3, 159, 160
of icosahedron, 6, 16, 37, 41, 44, 56, 78, 127, 129,

133, 167, 253
of KAlF4, 160, 161
Lipscomb rearrangement, 167
of macromolecular dynamics, 184
mechanical, 173, 182, 184, 188, 189
of methane, 153, 189
of methane molecule, 7, 162
metric, 111
of Mo2(O2CCH3/4, 160, 161
of [2.2.2.2]-paddlane, 160, 162
paper, 128, 134, 181
of pentagonal bipyramid, 16, 154, 155
of plant growth, 182–183
of plant structure, 179–182
plastic-tubing, 181
projective, 111
of [1.1.1]-propellane, 160, 162
of [Re2Cl8]2�, 160, 161
self-assembly, 182–184, 189, 214
skeletal, 181, 182, 187
of sodalite, 175, 176
of sodium chloride crystal structure, 141
spatial, 111–113, 115
of sulfate ion, 162
of tessellation of sphere, 72
of tetrafluoroaluminate ion, 160, 162
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topological, 111, 115
of trigonal bipyramid, 154, 155, 163–166
of vortices in aether, 173
VSEPR, 162–165, 175
wooden, 135
of zeolite crystal structure, 141
of zirconium borohydride, 154

Modular residences, 92
Modules for generating a rhombic dodecahedron, 30–32,

58, 101
(hinged) Molecular frameworks, 203–207

Molecular geometries, 153–170, 174
Molecular polyhedron, 207
Molecular sieves, 141

of acetylene, 159, 175
of adamantane, 158, 159
of As4, 153
of dibenzene chromium, 160, 161
of dodecahedrane, 155, 158
of ethylene, 159, 175
of ferrocene, 160
of hexaprismane, 157, 158
of H3N�AlCl3, 160
of iceane, 157, 159
of KAlF4, 160, 161
of methane, 7, 162
of Mo2(O2CCH3/4, 160
of ONF3, 160, 162
of [2.2.2.2.]-paddlane, 160, 162
of pentaprismane, 157, 158, 165
of [1.1.1]-propellane, 160, 162
of sulfone, 161, 163
of sulfuric acid, 161, 163
of tetrahedrane, 155
of tetra-tert-butyltet-rahedrane, 155
of triprismane, 157
of zirconium borohydride, 154

Monotonic figure, 187
Monson, Barry, 197, 253–255
Monster barring, 193
Morley, Edward, 174
Moscow papyrus, 53
Moser, William O.J., 225
Mt. Loffa, 57
Muetterties, Earl L., 153–155
Mundi, Harmonices, 42, 57, 199, 321
Mycerinus, pyramid of, 89

N
Namiki, Makoto, 279
Negahban, Bahman, 323
Negahban, Ezat O., 323
Negev Desert, synagogue in, 92
Neighborly complex, 280, 285, 316
Neighborly polyhedra, definition of, 316
Neighbor switching, 183, 187
Net

of crawl-through toy, 104, 107
of cube, 77, 82

definition, 77
of dodecahedron, 23, 57
of icosahedron, 77
of kaleidocycle, 26–27
of octahedron, 33
of polyhedron, 57, 77, 81, 82
of total photo, 104, 107
of triangles, 26, 28

Networks, 23, 33, 65, 69, 81, 91, 197, 198
Noguchi, Isamu, Red Rhombohedron, 97, 100
Nonconvex polyhedron, 82, 86, 214
Nonfacet, 221
Nontile

definition of, 218
toroidal, 222

Normal tiling, 217, 284

O
Obelisk, 102
Oblique prism, 83, 84
Octadecahedron

borane as, 154
carborane as, 154

Octahedral rotation group, 48
Octahedron

borane as, 154
carborane as, 154
[Co6(CO)14]4�as, 168, 169
combinatorial, 218
construction of, 21–22
crosspolytope as analog, 220
cube as reciprocal of, 42, 43
decomposition of, 258
as a deltahedron, 16, 18
electron pairs arranged as, 162–163
as model for proteins, 6
molecules shaped as, 202
plane net of, 4
relation to rhombic dodecahedron, 30, 31
as space filler, 31
within sphere, 100, 265
stellation, 24
truncated, 47, 48, 51, 69, 73–75, 144–147, 214
as unit of crystal structure, 139, 140, 144–147
wulfenite crystal, 139

Octet
spaceframe, 121, 122
theory of chemical bonding, 175

One-balloon constructions, 33
1-skeleton, 198, 207–209
Onn, Shmuel, 281
Order and Chaos, 99
Organometallic compounds, 148, 153
Orientable, definition of, 195
O’Rourke, Joseph, 77–86, 322

P
Pacioli, Luca, 42, 57, 96, 199

portrait of, 96
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Packing
of atoms, 145
of circles, 141, 233, 234, 238, 295, 317
of cubes, 142
of polygons, 144
of polyhedra, 141
of semiregular polyhedra, 144
of spheres, 141, 172, 178–179
of tetrahedra, 149, 150
of triangles, 141

Paddlanes, 160, 162, 300
Pajeau, Charles H., 189
Panel-and-hinge, 202–204, 208
Paneled, 201–209
Paper. See Cardboard
Pappus, 55–57, 59, 199, 292
Papyrus

Moscow, 53, 199
Rhind, 53, 199

Parallelism, 114, 116, 117
Parenchymal tissues, 179
Partition of space, 141, 180
Pauling, Linus, 175, 179, 321, 324
Paving. See Tessellation; Tiling
Peas, 178
(6, 6)-pebble game, 206
Pedagogy, 175
Pedersen, Jean, 13–40, 58, 293
Pemberton, Earl H., 322
Pentagon

building, 89, 90
as a face, 68, 126, 182

Pentagonal bipyramid
borane as, 154
carborane as, 154
as a deltahedron, 16
model of, 154

Pentagonal dodecahedron, 68, 96
Pentagonal hexacositahedron

as dual of snub dodecahedron, 71
Schlegel diagram of, 71

Pentagonal Hexecontahedron, 128, 129
Pentagonal icositetrahedron

as dual of snub cube, 71
Schlegel diagram of, 71

Pentagonal pyramid, construction of, 18
Pentagonal tessellation

of plane, 68, 70, 72, 73
of sphere, 70, 72

Pentagram, definition of, 8, 9
Pentaprismane, 157, 158, 165
Perception

spatial, 109–123
structural, 109

Permutational isomerism, 166
Permutations, equivalent to pseudorotation, 166
Perry, Charles O., Eclipse, 97, 100
Petal unfolding, 83
Petrie, J.F., 42
Petrie polygon, 42

Pettit, Robert, 189
PF5;pseudorotation in, 167
Phelan, R., 189
Phipps, Jane B., 19
Piaget, Jean, 123
Picasso, Pablo, Girl with a Mandolin, 96
Pinel, Adrian, 19
Planar graph, definition of, 198
Plane net (unfolding), 4, 78–85, 107, 279–280
Plane-sweep heuristic, 185
Planets, 5, 44, 45
Plateau, Joseph A.F., 178
Plato, 5, 55, 56, 96, 140, 150, 171, 172, 174, 178, 188
Platonic solids, 5, 34, 39, 41–45, 47, 51, 54, 55, 59, 68,

77, 155, 197, 223–229, 283
analogues of, 223–229

Platonohedron
construction of, 225
definition of, 223

Plato, Vernon, 5, 55, 56, 96, 140, 174, 188
Playground polyhedra, 155
Plexiglas cube, 100
Poinsot, Louis, 43, 60, 199, 227, 228
Point group, 145, 148, 155, 158
Points-on-a-sphere configurations, 163
Pólya, George, 58
Pólya, Poincaré, 58
Polydron, 135, 201, 202, 207, 208
Poly-Form, 119, 120
Polygon of forces, 231, 239
Polygons

antiprismatic, 195
definition of, 194
Hopf, 264
monotone, 187
packing of, 183
Petrie, 42
prismatic, 195
regular, 4, 5, 8, 13, 15, 19, 37, 39, 41, 54, 59, 60, 63,

114, 195, 250
split, 247
star, 9, 60, 198
translation of, 235
zigzag, 195, 196

Polyhedra
animals as, 92
Archimedean, 8, 10, 58–60, 97, 155
classification of, 100
construction of, 30
coordinated, 175, 176
coordinates for, 263
and crystal structures, 91
design of, 29, 184
equivelar, 196
four-dimensional, 3, 97
half-open, 93
history of, 53–63
isomorphic, 212, 214, 227
isothetic, 185, 186
juxtaposition of, 30–31
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kinship structures involving, 97
as models for atoms, 165, 301
movement of, 185
neighborly, 49, 130, 134, 163
networks as, 33, 65
packing of, 141, 183
Petrie-Coxeter, 196, 228
plants as, 92
recipes for making, 13–40
relationships among, 139, 182, 189
with seven vertices, 164
study of, 196
theory of, 50, 53, 54, 58, 60–63, 103, 194–197
transformations of, 187
and viral structures, 176

Polyhedral art, 93–97
Polyhedral bowl, 239–243, 245, 246, 249, 250
Polyhedral Fancy, 97, 100
Polyhedral housing project, 91
Polyhedral 2-manifold, 222, 316
Polyhedral molecular geometries, 153–170
Polyhedral monster, 4
Polyhedral networks, 197
Polyhedral society, 97–103
Polyhedral torus, 260, 263
Polyhedron

affine, 120
Archimedean, 59
capped cylinder as, 194
cardboard, 19, 174
chemical journal, 175
colored, 20, 22, 32, 197
combinatorial dual of, 211, 212
combinatorial structure of, 196
convex, 10, 51, 59, 62, 77–79, 81, 83–86, 100, 154,

195, 207, 212, 231–233, 241, 243, 244, 246,
247

Császár, 213
definition of, 85, 194, 195
deltahedra-regular, 105
digonal, 68
dual of, 211
elements of, 5, 6
flag of, 227
holes in, 19, 77, 201
hollow, 174
infinite, 194
isogonal, 213, 214
isohedral, 213, 215
isotoxal, 213
Klein, 226, 227, 229
metric, 55, 120
model of, 110, 174
molecule described as, 154
nonconvex, 82, 86, 214
perforated, 7
picture of, 42, 60, 231, 232, 243
pop-up, 20–22
regular, 5, 121, 125, 155, 164, 225–227, 257, 258, 262
regular skew, 226

rigidity of, 198, 202–204, 208, 209
self-intersection of, 203, 223
semiregular, 8, 121, 258, 265
simplicial, 221, 283, 285, 288, 318
with six faces, 10, 104, 282
skeletal, 137, 183
with skew faces, 62, 194, 196, 225
as a solid, 4–10, 34, 41–47, 50, 51, 54, 55
space-filling, 120, 178, 180, 183, 187, 222
spherical, 114, 248
star, 8, 9, 43, 58, 60, 93, 103, 194, 196, 199
as a surface, 65–75
Szilassi, 213, 306
tessellation of, 41, 65
tetrahedral twins as, 194
toroidal, 194, 196, 225
toroidal isogonal, 214
triangulated, 129, 132, 202
uniform, 9, 60, 62, 212, 253–255
wooden, 73, 103

Polyhedron Kingdom, 3–11, 89–107, 171, 193–199
Poly-Kit, 119–121
Polypolyhedra, 39
Polytopes

combinatorially equivalent, 217, 218, 220
coordinates for, 263
definition of, 41
equifaceted, 221
isomorphic, 217
regular, 62, 257–266, 283
simplicial, 221, 283, 285, 288

Pop-up polyhedra, 20–22
Post, K.A., 186
Pretzel, 66
Primal substances, 140. See also Platonic solids
Primitive lattice, 144, 145, 150
Princen, H.M., 189
Prism

definition of, 89
dibenzene chromium as, 161
ferrocene as, 161
hexagonal, 140, 147
octagonal, 214
pentagonal, 89, 90
semiregular, 8
square, 161, 163
with terminating facets, 91
triangular, 89, 113, 114
tricapped trigonal, 154, 155

Prismanes, 160, 299
Prismatic building, 89
Prismatic polygon, definition of, 195
Prismatoid, 84
Prismoid, 83–84, 296
Projective equivalence classes, 212
Projective properties, 116
Project Synergy, 199
Propellane, 160, 162
Proper stress, 269
Proteins, 6, 105, 176, 183, 272
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Prototiles, 217, 221, 222
Pseudo-rhombicuboctahedron, 57, 59
Pseudorotation, 165, 167
Pufferfish, 93, 94
Pumpkin, as digonal polyhedron, 68
Puzzles, wooden, 103, 105
Pyramid, 5, 15, 18, 24, 30, 31, 42, 50, 53–55, 83, 84, 89,

112, 164, 166, 214, 222, 258, 282
ammonia molecule as, 162
as construction module, 30
Egyptian, 89
pentagonal, 14, 18, 42, 50, 112
square, 18, 30, 31, 42, 53, 163, 258
truncated, 53, 54, 258

Pyrite, 6, 7, 54, 103
Pythagoras, 42, 54, 171
Pythagoreans, 42, 54, 133

Q
Quadrangle, polytope analogous to, 219
Quartz, 91, 93
Quasi-equivalence, 177

R
Rademacher, H., 61
Radiolaria, 93, 95
Radio telescope, 90, 92, 93, 95
Radon’s Theorem, 274
Ramot, Israel, housing complex, 91, 92
Rankine, William, 173
Rausenberger, O., 62
Rearrangement

icosahedron/cuboctahedron/icosahedron, 167
in polyhedral boranes, 167

Reciprocal diagram, 232, 243, 248, 251
Reciprocal figure, 231–243, 245, 247, 249, 250
Reciprocation, 42, 58, 211–214
Rectangles, isothetic, 185, 186
Recycling bins, 7
Red Rhombohedron, 97, 100
Reed, Dorothy Mott, 98
Regularity, 5, 53–55, 57, 62, 184, 196, 211, 220
Regular polygon, definition of, 8, 41, 59, 195
Regular polyhedron, definition of, 125
Regular polylinks, 37, 39
Regular polytope, 62, 257–265, 283
Regular solid, definition of, 41, 196
Regular star polyhedra, 9, 58, 60
Reimer, Georg, 322
Reinhardt, Karl, 282
Reinhold, Van Nostrand, 322
Reptiles, 5
Rhind papyrus, 53
Rhombic dodecahedron

construction of, 30
relation to cube, 30, 31
relation to octahedron, 30, 31
as space filler, 31

Rhombicosidodecahedron
fused triple, 91
vertices of, 254

Rhombic tiling, 251
Rhombic triacontahedron, 56, 58, 127
Rhombicuboctahedron, lesser, 73–75
Rhombidodeca, 101
Rhombohedral lattices, Dirichlet domains of, 146
Rhombohedron, Red, 97, 100
Right prism, 83, 84
Rigidity, 24, 120, 121, 128, 198, 201–209, 267–277
Rigidity of paneled polyhedra, 207
Rigid structure, 201, 203, 207
Ring

of polyhedra, 207
of tetrahedra, 27, 28

Ringel, Gerhard, 229, 280
Robotics, 135, 171, 184–188, 198
Roessler, Carl, 322
Rogers, Cedric, 321
Rollett, A.P., 321
Romé de Lisle, J.B.L., 99
Rotational symmetry, 7, 72, 125, 139, 213, 254, 275
Rotation group, 45, 47, 48, 224
Rout of San Romano, The, 97
Rubik, Ernö, 53, 115
Rumi, 106

S
Sabin, Florence, 98
Sachs, Eva, 55
Sacrament of the Last Supper, The, 96, 98
Saffaro, Lucio, 323
Saidel, Beth, 66, 322
Salt, 141
San Marco, Basilica of, 9
Santissimi Apostoli, Church of, 6
Santos, Francisco, 281, 284
Sanyal, Raman, 289
Saturn, 44, 45
Saunders, William, 324
Schattschneider, Doris, 13–40, 70
Schewe, Lars, 280
Schläfli, Ludwig, 41, 43, 196
Schläfli symbols, definition of, 41
Schlegel diagram

of bubbles in foam, 181
of cube, 258
definition of, 69
dual, 69
of pentagonal hexacontahedron, 71
of pentagonal icositetrahedron, 71
of polyhedron, 257, 262
of snub cube, 70, 71
of snub dodecahedron, 71
of square antiprism, 69
of stellated icosahedron, 72

Schlegel, V., 218
Schlickenrieder, Wolfram, 280
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Schmitt, Moritz, 279–289
Schulte, Egon, 217–222, 225
Schulz, André, 282
Sea urchin, 93
Seidel, Raimund, 233
Self-assembly model, 183, 184, 189
Self-intersection, 203, 215, 223, 229, 233, 267, 317
Semiregular antiprism, 8
Semiregular polyhedra packing of, 144
Semiregular polyhedron, definition of, 8
Semiregular prism, 8
Senechal, Marjorie, 3–11, 89–107, 193–199
Shaw, George Bernard, 123
Shearer, Alice, 18
Shephard, Geoffrey C., 79, 109, 211–216, 224, 225, 279,

296, 306
Sherer, Stan, 322–324
Silicates, 141
Simplex method, 62
Skeleton

of edges and vertices, 7, 198
models, 207
of polyhedron, 81
of radiolarian, 93

Skew face, 62, 194, 196
Skew polyhedron, projection of, 226
Small stellated dodecahedron, 42–44
Smith college campus school, student artwork, 3
Smith, Warren D., 287
Smoke rings, 173
Snelson, Kenneth, 267, 268
Snub cube, Schlegel diagram, 70, 71
Snub tessellation, 71
Snyder, John, 135
Soap bubble, 101, 104, 179, 180
Soap film, 6, 101, 178, 180, 181
Sodalite, model of, 175, 176
Sodium chloride, 141
Solid

Archimedean, 8, 37, 42, 44, 47, 55, 57, 59, 60, 62, 77,
80, 227

Miller’s, 60
Platonic, 5, 34, 39, 41–45, 47, 51, 54, 55, 59, 68, 77,

155, 197, 223–229, 283
polyhedron as, 57, 65–75, 174, 212, 257, 260, 263,

266
regular, 4–9, 41, 43, 51, 54–63, 140, 172, 174, 196

Solit, Matthew, 104
Solymosi, Jozsef, 281
Sommerville, D.M.Y., 60–61
Space

Euclidean, 211, 219, 222
partition of, 141, 180

Space-filling polyhedra, 120, 178, 183
Space-filling toroid, 222
Spaceframe

prefabricated concrete, 121
wood and plastic, 121

Spanning tree, 81–83, 204, 279, 280, 317
Sparsity counts for cut polyhedra, 209

Spatial perception, 109–123
Sphere

as model for atom, 8
packing of, 141, 172, 178, 179
points on, 51, 162, 263
rotations of, 45

Spherical blackboard, 69
Spherical complex, 219, 220, 222
Spherical polyhedron, 114, 248
Spider web, 196, 231–251
Spiked tetrahedron, 81
Spiny pufferfish, 94
Spurlino, John C., 324
Square antiprism, Schlegel diagram, 69
Square as a face, 20, 30, 50, 69, 75, 141, 142, 163, 183,

190, 258, 259, 263–266
Square pyramid

construction of, 30
as space filler, 31

Stanley, 288
Star. See Pentagram; Stellated dodecahedron; Stellated

icosahedron; Stellated polyhedra
Star polygon, 8, 60, 198
Star polyhedron, regular, 9–11, 58, 60
Star unfolding, 85, 86, 280
Statics, 9, 179, 231–233, 248, 312
Steatite icosahedron, 56
Steiner, J., 60
Steinitz, Ernst, 61–63, 198, 199, 220, 246, 281, 283, 288,

294–295, 319
Steinitz’s theorem, 198, 202, 234, 250
Stella octangula, 58
Stellated dodecahedron, construction of, 58
Stellated icosahedron, Schlegel diagram, 70
Stellated polyhedra, 58, 60
Stellation

of cube, 30, 42, 43
of octahedron, 30, 42, 43

Stereoscopic vision, 109
Stevens, Peter S., 321, 323
Stevin, Simon, 57
Stoer, Lorenz, 57
Strache, Wolf, 322
Streinu, Ileana, 201–209
Stress-energy, 269, 273
Stress matrix, 267, 273–278, 314, 315
Structural Constellation, 99
Structural perception, 109
Structuration as geometrical action, 110
Structure. See also Shape

equilibrium vs. average, 165
of tetrafluoro-1,3-dithietane, 160

Stuart, C. Todd, 322
Studying polyhedra, 53, 57, 171, 196
Sturmfels, Bernd, 281
Subgraph isomorphism, 36
Subway station, 122
Su, Francis, 286
Sulfates, 162
Sulfones, 161, 163
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Sulfuric acid, 161, 163
Sydler, J., 61
Symmetry

color, 144, 197
mirror, 7, 118, 128
molecular, 165
operation, 46, 54, 119, 123, 139, 153
of polyhedron, 46, 54, 145, 181, 211, 213, 214,

255–257, 267
rotational, 7, 72, 125, 139, 213, 254, 275
spherical, 162, 179
of uniform polyhedra, 9, 60, 253–255

Synagogue by Zvi Hecker, 90, 92
Szilassi, Lajos, 213
Szilassi polyhedron, 213, 306

T
Tait, Peter, 173
Tammes, problem of, 175
Tanigawa, S., 204, 208, 209
Taping joints, 134
Tarsia, 9
Tay graph, 204–206
Tay, T.-S., 204–206
Ten Problems in Geometry, 279–289
Tensegrities and Global Rigidity, 267–278
Tensegrity

centrally symmetric polyhedra, 275
compound tensegrities, 276, 277, 314
constraints, 269, 270
flexible, 270
graph, 267, 269, 276
highly symmetric tensegrities, 276
prismatic tensegrities, 275–276
rigid, 268, 270, 277

Tensegrity G.p/; 268–271, 274
Ten Tangled Triangles, 97, 102
Termes, Dick A., 323
Terrell, Robert, 276
Tessellation. See also Tiling

colored, 197
Dirichlet, 196, 231–251
of E3 by cubes, 221, 222
of egg, 67
of plane, 65, 68, 70, 196
of polyhedra, 72, 196, 231–251
snub, 71
of sphere, 72

Tetrafluoroaluminate ion, 160, 162
Tetrafluoro-1,3-dithietane, 160
Tetragonal crystal system, 148, 149
Tetragonal lattices, dirichlet domains of, 146
Tetrahedra

linking of, 121
packing of, 150
ring of rotating, 28

Tetrahedral rotation group, 46
Tetrahedral twins, 194
Tetrahedrane, 155, 158

Tetrahedron
B4Cl4 as, 155
brass, 101
construction of, 36
within cube, 101
as a deltahedron, 16, 18
electron pairs arranged as, 162–165
as face of polyhedron, 33, 37, 41, 42, 45
KAIF4 as, 160
as model of organic molecule, 145
molecule as, 145
ONF3 molecule as, 160
plane net of, 45
as self-dual, 212
soap bubble as, 101
sulfate ion as, 162
tetrafluoroaluminate ion as, 160, 162
truncated, 47, 48, 113
as unit of crystal structure, 145, 146, 148, 149

Tetrahedron
brass sculpture, 101
chemical journal, 172

Tetrakaidecahedra, 178, 179, 189
Tetraphenyl compounds, 148
Tetra-tert-butyltetrahedrane, 155, 158
Thayer, Bob, 323
Theatetus, 55
Thomson, Sir William. See Kelvin, Baron of Largs
The 3d conjecture, 288–289
Three-frequency icosahedron, 129–130
3-space, 63, 197, 231–233, 236, 239, 243, 248, 250,

257, 260–262, 264–266, 282, 284,
311, 316

Three Spheres II, 66
Tiling. See also Tessellation

face-to-face, 217–222, 284
locally finite, 217, 218, 220–222
monotypic, 218, 220–222
normal, 217, 218, 222, 285
of plane, 68, 218, 223, 283
rhombic, 254

Timaeus, 5, 55, 199
Tobacco necrosis virus, 105
Tomlinson, Brett, 70, 322
Toothpicks as construction materials, 13
Topological properties, 257
Topology, 59, 109, 116, 123
Toroidal polyhedron, 213
Toroid, space-filling, 222
Torus

coordinates, 7, 261–263
decomposition, 257–266
flat, 224, 264
polyhedral, 62, 260, 263
triangulation of, 14, 20, 26

Total photo, 104, 107
Toussaint, Godfried, 104, 182, 185, 187
Transfiguration as geometrical action, 110, 114
Transformations, models of plant growth, 187
Tree, dual of, 248
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Triangles
as faces, 82, 134
packing of, 141
polytopes analogous to, 218

Triangular antiprism, 159, 160
Triangular arrangement of electron pairs, 163
Triangular bipyramid as a deltahedron, 16
Triangular dipyramid, 34, 36
Triangular prism, 89, 113, 115
Triangular pyramid, construction of, 30
Triangulated polyhedron, 134, 155
Triangulation of torus, 213, 316
Tricapped trigonal prism

borane as, 154
carborane as, 154

Trigonal bipyramid
carborane as, 154
dicarborane as, 154
electron pairs arranged as, 163
model of, 162, 163
molecules shaped as, 164
pseudorotation in, 165

Trihedral regions, 232
Triprismane, 157, 158, 299
Trivial flex, 268
Truncated 600-Cell, 97, 102
Truncated cube, vertices of, 8, 72, 253
Truncated cuboctahedron, 47–49
Truncated dodecahedron, vertices of, 254
Truncated icosahedron, 47, 77–80, 126, 127, 129, 133,

135, 254
Truncated icosahedron, vertices of, 254
Truncated icosidodecahedron, vertices of, 254
Truncated octahedron, vertices of, 54, 72, 253
The Truncated Pentagonal Hexecontahedron, 128–129
Truncated pyramid, volume of, 53–54
Truncated rhombic triacontahedron, 127–128
Truncated tetrahedron, 47, 49, 113, 114
Truncation, definition of, 97
Tunnels in polyhedra, 227
24-cell, 258–261, 263, 265–266, 283, 311
Twins, tetrahedral, 194
2-cell, 194, 195, 247
2-cell complex, 194
2-manifold

definition of, 215
polyhedral, 222, 307

2-sphere, definition of, 194

U
Uccello, Paolo, 9, 42, 57, 96, 97

After the Flood, 97
The Rout of San Romano, 97

Ukrainian Easter egg painting, 67
Uniform polyhedron, 10
Unit cell, 141–144, 146, 149, 189
Universally globally rigid, 270, 274, 275, 277

V
Valence, 162–165, 175, 219, 220, 222,

227, 303
Valence shell electron pair repulsion (VSEPR), 162–173,

175
Valence shell electron repulsion, 162, 175
Vanadinite, 140
van der Waerden, B.L., 42
van’t Hoff, Jacobus Henricus, 174
Venice, 9
Venus, 44
Verheyen, Hugo F., 97, 323
Verheyen, Hugo F., IRODO, 101
Verlag, Hirmer, 322
Vertex(ices)

definition of, 41, 57, 80, 193, 217, 249
number of, 51, 59, 67, 73, 104, 118, 134, 205,

207, 208, 219, 224, 226, 228, 229, 277,
286, 295

permutation of, 51, 72, 73, 152, 261, 290
symmetrically equivalent, 10

Vibrations, 154, 165, 166
Villains, deltahedral, 18
Virus

icosahedral, 176, 177, 184
self-assembly of, 183–184
southern bean mosaic, 105
spherical, 176
tobacco necrosis, 105
tumor, 177

Void, von Helmholtz, Hermann, 173
von Helmholtz, Hermann, 173
Von Staudt, 60
Voronoi diagram, 232, 237, 250, 251
Voronoi domains, 282
Voronoi, George, 142
Vortex atom, 173, 174
VSEPR. See Valence shell electron pair repulsion

(VSEPR)

W
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Wallace, William, 61
Walnut clusters, shapes of, 172
Walter, Marion, 13–40
Water, 5, 42, 140, 157, 163
Waterfall, 99
Waterhouse, William, 55
Watson, James Dewey, 176
Weaire, D., 189
Weakly neighborly complex, 163
Weimer, Diana, 28
Wenninger, Magnus, 13–40
Werner, Alfred, 175
Weyl, Hermann, 45, 202
What-If-Not strategy, 17
Whirlpools in the aether, 173
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puzzles, 103, 105
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Wright, E.M., 254, 311
Wrinch, Dorothy, 5, 6
Wulfenite, 139
Wyckoff, R.W.G., 323
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Yog-Sothoth, 10, 11
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Zeolites, 141, 142, 144
Ziegler, Günter M., 229
Zigzag polygon, 195, 196
Zinc bromide, 148
Zirconium borohydride, 154
Zodiac, 42
Zometool, 135, 201
Zonohedra, juxtaposed, 120
Zonohedral cap, 246
Zonohedron, definition of, 120


	Shaping Space
	Contents
	Preface
	Part I First Steps
	1 Introduction to the Polyhedron Kingdom
	The Regular “Solids”
	Direct Descendants
	Impossible Polyhedra
	Next Steps


	2 Six Recipes for Making Polyhedra
	Constructing PolyhedraWithout Being Told How To!
	Getting Started: How to Attach Polygons
	What Shape Are You Going to Make?
	Shapes You Can Make with Triangles
	A Note to the Teacher
	AWord About Materials

	Constructing Pop-Up Polyhedra
	Required Materials
	General Instructions for Preparing the Pattern Pieces
	Constructing the Cube
	Constructing the Octahedron
	A helpful hint

	The Great Stellated Dodecahedron
	Getting Started
	Assembling the Model

	Creating Kaleidocycles and More
	Folding Strips of Triangles
	Kaleidocycles
	The Isoaxis
	Further Exploration
	Information on ConstructionMaterials

	The Rhombic Dodecahedron
	The Pyramids
	Construction of the Polyhedra
	Juxtaposition of Polyhedra
	Space-Fillers
	A Note on Materials

	Balloon Polyhedra
	If EulerWere a Clown
	Cheating with One Balloon
	Polyballoon Constructions
	Tangles
	Practical Guide for Twisting Balloon Polyhedra


	3 Regular and Semiregular Polyhedra
	Symmetry

	4 Milestones in the History of Polyhedra
	Milestone 1
	Milestone 2 
	Milestone 3
	Milestone 4
	Milestone 5
	Milestone 6
	Milestone 7
	Milestone 8
	Milestone 9
	Milestone 10
	Milestone 11
	Milestone 12
	Milestone 13
	Milestone 14
	Milestone 15
	Milestone 16
	Milestone 17
	Milestone 18
	Milestone 19
	Milestone 20
	Milestone 21
	Milestone 22
	Milestone 23
	Milestone 24
	Milestone 25

	5 Polyhedra: Surfaces or Solids?
	6 Dürer's Problem
	Convex Polyhedra and Nets
	The Open Problem
	Nonconvex Polyhedra

	Spanning Cut Tree
	Some Polyhedra with Nets
	General Unfoldings
	Nonconvex General Unfoldings



	Part II Polyhedra in Nature and Art
	7 Exploring the Polyhedron Kingdom
	An ArchitecturalWalking Tour
	TheNature Preserve
	The Gallery of Polyhedral Art
	A Note on Polyhedral Society
	A Polyhedral Artisan Fair

	8 Spatial Perception and Creativity
	9 Goldberg Polyhedra
	Goldberg Polyhedra
	32 Faces, GP(1,1), The Truncated Icosahedron
	42 Faces, GP(2,0), The Truncated Rhombic Triacontahedron
	72 Faces, GP(2,1), The Truncated Pentagonal Hexecontahedron
	92 Faces, GP(3,0), Dual to a Three-Frequency Icosahedron
	122 Faces, GP(2,2)
	132 Faces, GP(3,1)
	492 Faces, GP(5,3) and GP(7,0)
	2562 Faces, GP(16,0)

	A General Approach
	Geometric Realizations
	Counting Components
	Paths

	Models and Artwork

	10 Polyhedra and Crystal Structures
	11 Polyhedral Molecular Geometries
	Boron Hydride Cages
	Polycyclic Hydrocarbons
	Structures with a Central Atom
	Regularities in Nonbonded Distances
	The VSEPR Model
	Consequences of Intramolecular Motion
	Post Script 20 Years Later

	12 Form, Function, and Functioning
	Does Form Explain Function? Science Looks to Geometry for Models
	Spheres and Whirlpools as Models for Atoms and Molecules
	Polyhedra as Models for Atoms, Molecules, and Viruses
	Modeling Condensed Matter
	Packing of Spheres of Various Sorts
	Polyhedra as Models for Plant Structures

	Does Form Explain Dynamic Functioning? Science Looks to Geometry for Mechanistic Models
	Plant Growth and Polyhedral Transformation
	Polyhedral Models for Self-Assembly of Viruses
	Robotics and Motions of Polyhedra
	Polyhedron Theory Accommodates Changing Expectations
	Addendum



	Part III Polyhedra in the Geometrical Imagination
	13 The Polyhedron Kingdom Tomorrow
	What Is a Polyhedron (Yet Again)?
	A Polyhedral Phrasebook
	Why a Theory of Polyhedra?
	Polyhedral Themes
	The Polyhedrist’s Bookshelf
	Antiquities: 1850 BCE–1599 CE
	Classics: 1600 CE–1899 CE
	Modernists: 1900–Present


	14 Paneled and Molecular Polyhedra: How Stable Are They?
	Bar-and-Joint Frameworks
	Molecular Frameworks
	Molecular Frameworks as Body-and-Hinge Frameworks
	Rigidity of generic body-and-hinge frameworks.
	Independent Frameworks by Edge Subdivisions

	Polyhedral Molecular Frameworks
	Paneled Polyhedra

	15 Duality of Polyhedra
	16 Combinatorial Prototiles
	Nontiles
	Construction of Monotypic Tilings
	Related Problems

	17 Polyhedra Analogues of the Platonic Solids
	Platonohedra
	Construction of the Platonohedra
	Regular Polyhedra
	The Flag Diagram
	Problems
	UPDATE 2010

	18 Convex Polyhedra, Dirichlet Tessellations, and Spider Webs
	Cell Decompositions and Reciprocal Figures
	SpiderWebs and Projections
	TheMain Result
	Realizations of Abstract Graphs
	Infinite Plane Examples
	UPDATE 2009

	19 Uniform Polyhedra from Diophantine Equations
	Interlude
	Uniform Polyhedra with Icosahedral Symmetry

	20 Torus Decompostions of Regular Polytopes in 4-space
	Decompositions
	The Cube and Its Associated Polyhedra
	The Hypercube and Its Associated Polytopes
	Fold-Out Decomposition of the Hypercube and 24-Cell
	Cartesian and Torus Coordinates
	Coordinates for Polyhedra and Polytopes
	The Hopf Mapping
	The Hopf Decomposition of the Hypercube
	Torus Decomposition of the 24-Cell

	21 Tensegrities and Global Rigidity
	Terminology and Notation
	Local and Global Rigidity
	Affine Transformations
	The StressMatrix and the Fundamental Theorem
	Examples
	The Square Tensegrity
	Polygon Tensegrities
	Radon Tensegrities
	Centrally Symmetric Polyhedra
	Prismatic Tensegrities
	Highly Symmetric Tensegrities
	Compound Tensegrities
	Pure and Flexible Examples


	22 Ten Problems in Geometry
	1. Unfolding Polytopes
	2. Almost Disjoint Triangles
	3. Representing Polytopes with Small Coordinates
	4. Polyhedra that Tile Space
	5. Fatness
	6. The Hirsch Conjecture
	7. Unimodality
	8. Decompositions of the Cube
	9. The Ball-and-Cube Problem
	10. The 3d Conjecture


	Notes and References
	Notes and References for Chapter 2
	Notes and References for Chapter 3
	Notes and References for Chapter 4
	Notes and References for Chapter 5
	Notes and References for Chapter 6
	Notes and References for Chapter 8
	Notes and References for Chapter 9
	Notes and References for Chapter 10
	Notes and References for Chapter 11
	Notes and References for Chapter 12
	Notes and References for Chapter 13
	Notes and References for Chapter 14
	Notes and References for Chapter 15
	Notes and References for Chapter 16
	Notes and References for Chapter 17
	Notes and References for Chapter 18
	Notes and References for Chapter 19
	Notes and References for Chapter 20
	Notes and References for Chapter 21
	Notes and References for Chapter 22
	Notes on Problem 1
	Notes on Problem 2
	Notes on Problem 3
	Notes on Problem 4
	Notes on Problem 5
	Notes on Problem 6
	Notes on Problem 7
	Notes on Problem 8
	Notes on Problem 9
	Notes on Problem 10


	Sources and Acknowledgments
	Sources
	Preface
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 21

	Acknowledgments
	Chapter 2
	Chapter 4
	Chapter 10
	Chapter 11
	Chapter 15
	Chapter 16
	Chapter 18
	Chapter 20
	Chapter 22


	Index


