5}

Introduction to Bayesian Computation

5.1 Introduction

In the previous two chapters, two types of strategies were used in the sum-
marization of posterior distributions. If the sampling density has a familiar
functional form, such as a member of an exponential family, and a conju-
gate prior is chosen for the parameter, then the posterior distribution often
is expressible in terms of familiar probability distributions. In this case, we
can simulate parameters directly by using the R collection of random variate
functions (such as rnorm, rbeta, and rgamma), and we can summarize the
posterior using computations on this simulated sample. A second type of com-
puting strategy is what we called the “brute-force” method. In the case where
the posterior distribution is not a familiar functional form, then one simply
computes values of the posterior on a grid of points and then approximates
the continuous posterior by a discrete posterior that is concentrated on the
values of the grid. This brute-force method can be generally applied for one-
and two-parameter problems such as those illustrated in Chapters 3 and 4.
In this chapter, we describe the Bayesian computational problem and in-
troduce some of the more sophisticated computational methods that will be
employed in later chapters. One general approach is based on the behavior of
the posterior distribution about its mode. This gives a multivariate normal
approximation to the posterior that serves as a good first approximation in the
development of more exact methods. We then provide a general introduction
to the use of simulation in computing summaries of the posterior distribution.
When one can directly simulate samples from the posterior distribution, then
the Monte Carlo algorithm gives an estimate and associated standard error
for the posterior mean for any function of the parameters of interest. In the
situation where the posterior distribution is not a standard functional form,
rejection sampling with a suitable choice of proposal density provides an alter-
native method for producing draws from the posterior. Importance sampling
and sampling importance resampling (SIR) algorithms are alternative gen-
eral methods for computing integrals and simulating from a general posterior

J. Albert, Bayesian Computation with R, Use R, DOI 10.1007/978-0-387-92298-0_5,
(© Springer Science+Business Media, LLC 2009

88 5 Introduction to Bayesian Computation

distribution. The SIR algorithm is especially useful when one wishes to inves-
tigate the sensitivity of a posterior distribution with respect to changes in the
prior and likelihood functions.

5.2 Computing Integrals

The Bayesian recipe for inference is conceptually simple. If we observe data
y from a sampling density f(y|6), where € is a vector of parameters and one
assigns 0 a prior g(0), then the posterior density of is proportional to

g(0ly) o< g(0) f(yl0)-

The computational problem is to summarize this multivariate probability dis-
tribution to perform inference about functions of 6.

Many of the posterior summaries are expressible in terms of integrals.
Suppose we are interested in the posterior mean of a function h(6). This
mean is expressible as a ratio of integrals,

Binoyly) = LLOSOLICD

If we are interested in the posterior probability that h(6) falls in a set A, we
wish to compute

fh(e eAg() f(y|0)do
[9(0)f(yl0)do

Integrals are also involved when we are interested in obtaining marginal
densities of parameters of interest. Suppose we have the parameter § =
(61,02), where 6; are the parameters of interest and 5 are so-called nuisance
parameters. One obtains the marginal posterior density of #; by integrating
out the nuisance parameters from the joint posterior:

P(h(0) € Aly) =

9(61]y) o / 961, 0])db.

In the common situation where one needs to evaluate these integrals nu-
merically, there are a number of quadrature methods available. However, these
quadrature methods have limited use for Bayesian integration problems. First,
the choice of quadrature method depends on the location and shape of the
posterior distribution. Second, for a typical quadrature method, the number
of evaluations of the posterior density grows exponentially as a function of the
number of components of 6. In this chapter, we focus on the use of computa-
tional methods for computing integrals that are applicable to high-dimensional
Bayesian problems.

5.3 Setting Up a Problem in R 89

5.3 Setting Up a Problem in R

Before we describe some general summarization methods, we first describe
setting up a Bayesian problem in R. Suppose one is able to write an ex-
plicit expression for the joint posterior density. In writing this expression, it
is not necessary to include any normalizing constants that don’t involve the
parameters. Next, for the algorithms described in this book, it is helpful to
reparameterize all parameters so that they are all real-valued. If one has a
positive parameter such as a variance, then transform using a log function. If
one has a proportion parameter p, then it can be transformed to the real line
by the logit function logit(p) = log(p/(1 — p)).

After the posterior density has been expressed in terms of transformed
parameters, the first step in summarizing this density is to write an R function
defining the logarithm of the joint posterior density.

The general structure of this R function is

mylogposterior=function(theta,data)

{

[statements that compute the log density]
return(val)

}

To apply the functions described in this chapter, theta is assumed to be a
vector with k components; that is, § = (01, ..., 0). The input data is a vector
of observed values or a list of data values and other model specifications such
as the values of prior hyperparameters. The function returns a single value of
the log posterior density.

One common situation is where one observes a random sample y1, ...,y
from a sampling density f(y|f) and one assigns 6 the prior density g(0). The
logarithm of the posterior density of is given, up to an additive constant, by

log g(0ly) = log g(8) + > _log f(yi|6).
1=1

Suppose we are sampling from a normal distribution with mean p and stan-
dard deviation o, the parameter vector § = (u,logo), and we place an
N(10,20) prior on p and a flat prior on logo. The log posterior would have
the form

log g(0ly) = log ¢(11:10,20) + Y " log ¢(y;: 1. 0),
i=1
where ¢(y; u, o) is the normal density with mean p and standard deviation

0. To program this function, we first write the simple function that evaluates
the log likelihood of (u, o) for a component of y:

logf = function(y, mu, sigma)
dnorm(y,mean=mu,sd=sigma,log=TRUE)

90 5 Introduction to Bayesian Computation

Note that we use the log = TRUE option in dnorm to compute the logarithm
of the density. Then, if data represents the vector of observations yi, ..., yn,
one can evaluate the sum of log likelihood terms Y, log ¢(y;; 1,) using the
sum command:

sum(logf (data,mu,sigma))

The function mylogposterior defining the log posterior would in this case be
written as follows.

mylogposterior=function(theta,data)

{

n=length(data)

mu=theta[1]; sigma=exp(thetal[2])

logf = function(y, mu, sigma)
dnorm(y,mean=mu,sd=sigma,log=TRUE)

val=dnorm(mu, mean=10, sd=20,log=TRUE)+sum(logf (data,mu,sigma))

return(val)

}

5.4 A Beta-Binomial Model for Overdispersion

Tsutakawa et al. (1985) describe the problem of simultaneously estimating the
rates of death from stomach cancer for males at risk in the age bracket 45-64
for the largest cities in Missouri. Table 5.1 displays the mortality rates for 20
of these cities, where a cell contains the number n; at risk and the number of
cancer deaths y; for a given city.

Table 5.1. Cancer mortality data. Each ordered pair represents the number of
cancer deaths y; and the number at risk n; for an individual city in Missouri.

(0, 1083)[(0, 855) | (2, 3461)](0, 657)[(1, 1208)[(1, 1025)
(0, 527) [(2, 1668)| (1, 583) |(3, 582)| (0, 917) | (1, 857)
(1, 680) | (1, 917) | (54, 53637)|(0, 874) (0, 395) | (1, 581)
(3, 588) | (0, 383)

A first modeling attempt might assume that the {y;} represent indepen-
dent binomial samples with sample sizes {n;} and common probability of
death p. But it can be shown that these data are overdispersed in the sense
that the counts {y;} display more variation than would be predicted under
a binomial model with a constant probability p. A better-fitting model as-
sumes that y; is distributed from a beta-binomial model with mean 1 and
precision K:

flyiln, K) = <nj> B(Kn+y;, K(1—n) +n; —y;)

Y B(Kn, K(1—n))

5.4 A Beta-Binomial Model for Overdispersion 91

Suppose we assign the parameters the vague prior proportional to

1 1

90 K) o A AT R

Then the posterior density of (n, K) is given, up to a proportionality constant,
by

1 Kn+yJ,K(1—77)+nJ—y])
Kl|dat
g(n, K|data) o 27— +K2H BELKA-m)

where 0 <7 <1 and K > 0.

We write a short function betabinexchO to compute the logarithm of the
posterior density. The inputs to the function are theta, a vector containing
the values of 1 and K, and data, a matrix having as columns the vector of
counts {y; } and the vector of sample sizes {n;}.

betabinexchO=function (theta, data)
{
eta = thetal[1]
K = theta[2]
y = data[, 1]
n = datal, 2]
N = length(y)
logf = function(y, n, K, eta) lbeta(K * eta + y, K * (1 -
eta) + n - y) - lbeta(K * eta, K * (1 - eta))
val = sum(logf(y, n, K, eta))
val = val - 2 * log(l + K) - log(eta) - log(l - eta)
return(val)

}

We read in the dataset cancermortality and use the function mycontour
together with the log density function betabinexchO to display a contour plot
of the posterior density of (n, K) (see Figure 5.1).

> data(cancermortality)
> mycontour (betabinexch0,c(.0001,.003,1,20000), cancermortality,
+ xlab="eta",ylab="K")

Note the strong skewness in the density, especially toward large values of the
precision parameter K. This right-skewness is a common characteristic of the
likelihood function of a precision or variance parameter.

Following the general guidance in Section 5.3, suppose we transform each
parameter to the real line by using the reexpressions

01 = logit(n) = log (%), 0y = log(K).

92 5 Introduction to Bayesian Computation

The posterior density of (61, 02) is given by
01

e
1+ ©

02) ef1102
(

g1(01, 02|data) 29(1+)2’

where the right term in the product is the Jacobian term in the transformation.
The log posterior density of the transformed parameters is programmed in the
function betabinexch. Note the change in the next-to-last line of the function
that accounts for the logarithm of the Jacobian term.

K
10000 15000 20000
| | |

5000
|

I I I I I I I
0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

eta

Fig. 5.1. Contour plot of parameters 7 and K in the beta-binomial model problem.

betabinexch=function (theta, data)

{
eta = exp(thetal[1])/(1 + exp(thetal[1]))
K = exp(thetal2])
y = datal, 1]
n = datal, 2]
N = length(y)

logf = function(y, n, K, eta) lbeta(K * eta + y, K * (1 -
eta) + n - y) - lbeta(K * eta, K * (1 - eta))

5.4 A Beta-Binomial Model for Overdispersion 93

val = sum(logf(y, n, K, eta))
val = val + theta[2] - 2 * log(1l + exp(theta[2]))
return(val)

}

Figure 5.2 displays a contour plot of the posterior of (#1,62) using the
mycontour function.

> mycontour (betabinexch,c(-8,-4.5,3,16.5) ,cancermortality,
+ xlab="logit eta",ylab="log K")

Although the density has an unusual shape, the strong skewness has been
reduced and the distribution is more amenable to the computational methods
described in this and the following chapters.

16

log K
10

T T T T T T T 1
-8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5

logit eta

Fig. 5.2. Contour plot of transformed parameters logit(n) and log K in the beta-
binomial model problem.

94 5 Introduction to Bayesian Computation

5.5 Approximations Based on Posterior Modes

One method of summarizing a multivariate posterior distribution is based on
the behavior of the density about its mode. Let 6 be a vector-valued parameter
with prior density g(6). If we observe data y with sampling density f(y|6),
then consider the logarithm of the joint density of 6 and vy,

h(0,y) = log(g(0) f(y]0)).

In the following, we write this log density as h(f) since after the data are
observed 6 is the only random quantity. Denoting the posterior mode of 6 by
6, we expand the log density in a second-order Taylor series about 6. This
gives the approximation

h(0) ~ h(0) + (0 — 0)'h"(0)(0 — 0)/2,

where h' (é) is the Hessian of the log density evaluated at the mode. Using
this expansion, the posterior density is approximated by a multivariate normal
density with mean 6 and variance-covariance matrix

V= (=)

In addition, this approximation allows one to analytically integrate out 6
from the joint density and obtain the following approximation to the prior
predictive density,

Fy) = (2m)¥29(0) f(yl6)| — 1" (6)]2,

where d is the dimension of 6.

To apply this approximation, one needs to find the mode of the posterior
density of 8. One general-purpose optimization algorithm for finding this mode
is provided by Newton’s method. Suppose one has a guess at the posterior
mode 0. If #'~! is the estimate at the mode at the ¢ — 1 iteration of the
algorithm, then the next iterate is given by

gt _ 9t71 o [h//(gtfl)}71h/(9t71)7

where h/(0*1) and h”(0'~') are the gradient and Hessian of the log density
evaluated at the current guess at the mode. One continues these iterations
until convergence. There are many alternative algorithms available for finding
the posterior mode. In the following, we will use the Nelder-Mead algorithm,
which is the default method in the R function optim in the R base pack-
age. This algorithm is an iterative method based on the evaluation of the
objective function over vertices of a simplex (a triangle for two variables). For
the examples described in this book, the Nelder-Mead algorithm appears to
be preferable to Newton’s method since it is less sensitive to the choice of
starting value.

5.6 The Example 95

After one writes an R function to evaluate the log posterior density, the R
function laplace in the LearnBayes package finds the joint posterior mode by
using optim and the default Nelder-Mead algorithm. The inputs to laplace
are the function defining the joint posterior, an intelligent guess at the poste-
rior mode, and data and parameters used in the definition of the log posterior.
The choice of “intelligent guess” can be important since the algorithm may
fail to converge with a poor choice of starting value. Suppose that a suitable
starting value is used and laplace is successful in finding the posterior mode.
The output of laplace is a list with four components. The component mode
gives the value of the posterior mode é, the component var is the associated
variance-covariance matrix V', the component int is the approximation to
the logarithm of the prior predictive density, and converge indicates if the
algorithm converged.

5.6 The Example

We illustrate the use of the function laplace for our beta-binomial modeling
example. Based on our contour plot, we start the Nelder-Mead method with
the initial guess (logit(n),log K) = (—7,6).

> fit=laplace(betabinexch,c(-7,6),cancermortality)
> fit

$mode
[1] -6.819793 7.576111

$var

[,1] [,2]
[1,] 0.07896568 -0.1485087
[2,] -0.14850874 1.3483208

$int
[1] -570.7743

$converge
(1] TRUE

We find the posterior mode to be (—6.82,7.58). From the output of laplace,
we have the approximation that (logit(n),log K) is approximately bivariate
normal with mean vector fit$mode and variance-covariance matrix fit$var.
Using the mycontour function with the log bivariate normal function 1binorm,
Figure 5.3 displays the contours of the approximate normal density. Compar-
ing Figure 5.2 and Figure 5.3, we see significant differences between the exact
and approximate normal posteriors.

96 5 Introduction to Bayesian Computation

> npar=list (m=fit$mode,v=fit$var)
> mycontour (1binorm,c(-8,-4.5,3,16.5) ,npar,
+ xlab="logit eta", ylab="log K")

12 14 16
|

log K
10

T T T T T T T T
-8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5

logit eta

Fig. 5.3. Contour plot of normal approximation of logit(n) and log K in the beta-
binomial model problem.

One advantage of this algorithm is that one obtains quick summaries of
the parameters by using the multivariate normal approximation. By using
the diagonal elements of the variance-covariance matrix, one can construct
approximate probability intervals for logit(n) and log K. For example, the
following code constructs 90% probability intervals for the parameters:

> se=sqrt(diag(fit$var))
> fit$mode-1.645+*se

[1] -7.282052 ©5.665982
> fit$mode+1.645+*se

[1] -6.357535 9.486239

5.7 Monte Carlo Method for Computing Integrals 97

So a 90% interval estimate for logit(n) is (—7.28, —6.36), and a 90% interval
estimate for log K is (5.67, 9.49).

5.7 Monte Carlo Method for Computing Integrals

A second general approach for summarizing a posterior distribution is based on
simulation. Suppose that 0 has a posterior density g(6|y) and we are interested
in learning about a particular function of the parameters k(). The posterior
mean of h(f) is given by

Emwmn:/%wmwwma

Suppose we are able to simulate an independent sample ', ...,0™ from the
posterior density. Then the Monte Carlo estimate at the posterior mean is
given by the sample mean

S)

m

E:

The associated simulation standard error of this estimate is estimated by

m > 7
S%_¢&4WM—M?
(m—1)m

The Monte Carlo approach is an effective method for summarizing a poste-
rior distribution when simulated samples are available from the exact posterior
distribution. For a simple illustration of the Monte Carlo method, return to
Section 2.4, where we were interested in the proportion of heavy sleepers p
at a college. With the use of a beta prior, the posterior distribution for p
was beta(14.26, 23.19). Suppose we are interested in the posterior mean of p2.
(This is the predictive probability that two students in a future sample will
be heavy sleepers.) We simulate 1000 draws from the beta posterior distribu-
tion. If {p’} represent the simulated sample, the Monte Carlo estimate at this
posterior mean will be the mean of the {(p?)?}, and the simulated standard
error is the standard deviation of the {(p?)?} divided by the square root of
the simulation sample size.

> p=rbeta(1000, 14.26, 23.19)
> est=mean(p~2)

> se=sd(p~2)/sqrt (1000)

> c(est,se)

[1] 0.149122267 0.001885676

The Monte Carlo estimate at F(p?|data) is 0.149, with an associated simula-
tion standard error of 0.002.

98 5 Introduction to Bayesian Computation

5.8 Rejection Sampling

In the examples of Chapters 2, 3, and 4, we were able to produce simulated
samples directly from the posterior distribution since the distributions were
familiar functional forms. Then we would be able to obtain Monte Carlo es-
timates of the posterior mean for any function of the parameters of interest.
But in many situations, such as the beta-binomial example of this chapter,
the posterior does not have a familiar form and we need to use an alternative
algorithm for producing a simulated sample.

A general-purpose algorithm for simulating random draws from a given
probability distribution is rejection sampling. In this setting, suppose we wish
to produce an independent sample from a posterior density g(f]y) where the
normalizing constant may not be known. The first step in rejection sampling
is to find another probability density p(f) such that:

It is easy to simulate draws from p.
The density p resembles the posterior density of interest g in terms of
location and spread.

e For all § and a constant ¢, g(0|y) < cp(0).

Suppose we are able to find a density p with these properties. Then one
obtains draws from ¢ using the following accept/reject algorithm:

1. Independently simulate 6 from p and a uniform random variable U on the
unit interval.

2. IfU < g(0)y)/(cp(8)), then accept 0 as a draw from the density g; other-
wise reject 6.

3. Continue steps 1 and 2 of the algorithm until one has collected a sufficient
number of “accepted” 6.

Rejection sampling is one of the most useful methods for simulating draws
from a variety of distributions, and standard methods for simulating from
standard probability distributions such as normal, gamma, and beta are typ-
ically based on rejection algorithms. The main task in designing a rejection
sampling algorithm is finding a suitable proposal density p and constant value
c. At step 2 of the algorithm, the probability of accepting a candidate draw
is given by ¢(0|y)/(cp(#)). One can monitor the algorithm by computing the
proportion of draws of p that are accepted; an efficient rejection sampling
algorithm has a high acceptance rate.

We consider the use of rejection sampling to simulate draws of § =(logit(n),
log K) in the beta-binomial example. We wish to find a proposal density of
a simple functional form that, when multiplied by an appropriate constant,
covers the posterior density of interest. One choice for p would be a bivari-
ate normal density with mean and variance given as outputs of the function
laplace. Although this density does resemble the posterior density, the nor-
mal density has relatively sharp tails and the ratio g(8|y)/p() likely would
not be bounded. A better choice for a covering density is a multivariate t with

5.8 Rejection Sampling 99

mean and scale matrix chosen to match the posterior density and a small
number of degrees of freedom. The small number of degrees of freedom gives
the density heavy tails and one is more likely to find bounds for the ratio
9(01y)/p(0)-

In our earlier work, we found approximations to the posterior mean
and variance-covariance matrix of 6 =(logit(n),log K) based on the Laplace
method. If the output variable of laplace is fit, then fit$mode is the pos-
terior mode and fit$var the associated variance-covariance matrix. Suppose
we decide to use a multivariate t density with location fit$mode, scale matrix
2 fit$var, and 4 degrees of freedom. These choices are made to mimic the
posterior density and ensure that the ratio g(0|y)/p(0) is bounded from above.

To set up the rejection algorithm, we need to find the value of the bounding
constant. We want to find the constant ¢ such that

g(0ly) < cp(0) forall 6.

Equivalently, since g is programmed on the log scale, we want to find the
constant d = log ¢ such that

log g(0ly) —log p(f) < d forall 6.

Basically we wish to maximize the function log g(8|y) — log p(0) over all §. A
convenient way to perform this maximization is by using the laplace function.
We write a new function betabinT that computes values of this difference
function. There are two inputs, the parameter theta and a list datapar with
components data, the data matrix, and par, a list with the parameters of the
t proposal density (mean, scale matrix, and degrees of freedom).

betabinT=function(theta,datapar)

{

data=datapar$data

tpar=datapar$par

d=betabinexch(theta,data)-dmt (theta,mean=c(tpar$m),
S=tpar$var,df=tpar$df,log=TRUE)

return(d)

3

For our problem, we define the parameters of the t proposal density and the
list datapar:

> tpar=list(m=fit$mode,var=2*fit$var,df=4)
> datapar=list(data=cancermortality,par=tpar)

We run the function laplace with this new function and using an “intel-
ligent” starting value.

> start=c(-6.9,12.4)
> fitl=laplace(betabinT,start,datapar)
> fitl$mode

100 5 Introduction to Bayesian Computation

[1] -6.888963 12.421993

We find that the maximum value d occurs at the value § = (—6.889, 12.422).
We note that this 6 value is not at the extreme portion of the space of simulated
draws, which indicates that we indeed have found an approximate maximum.
The value of d is found by evaluating the function at the modal value.

> betabinT(fit1$mode,datapar)
[1] -569.2829

We implement rejection sampling using the function rejectsampling. The
inputs are the function logf defining the log posterior, the parameters of the t
covering density tpar, the maximum value of d denoted by dmax, the number
of candidate values simulated n, and the data for the log posterior function
data. In this function, we simulate a vector of 6 from the proposal density,
compute the values of log g and log f on these simulated draws, compute the
acceptance probabilities, and return only the simulated values of 8 where the
uniform draws are smaller than the acceptance probabilities. In the function
rejectsampling, these four steps are accomplished by the commands

theta=rmt (n,mean=c (tpar$m) ,S=tpar$var,df=tpar$df)

1f=1logf (theta,data)

lg=dmt (theta,mean=c (tpar$m) ,S=tpar$var,df=tpar$df,log=TRUE)
prob=exp (1f-1lg-dmax)

theta[runif (n)<prob,]

We run the function rejectsampling using the constant value of d found
earlier and simulate 10,000 draws from the proposal density. We see that
the output value theta has only 2406 rows, so the acceptance rate of this
algorithm is 2406/10,000 = .24. This is a relatively inefficient algorithm since
it has a small acceptance rate, but the proposal density was found without
too much effort.

> theta=rejectsampling(betabinexch,tpar,-569.2813,10000,
+ cancermortality)
> dim(theta)

[1] 2406 2

We plot the simulated draws from rejection sampling on the contour plot
of the log posterior density in Figure 5.4. As expected, most of the draws fall
within the inner contour of the exact density.

> mycontour (betabinexch,c(-8,-4.5,3,16.5) ,cancermortality,
+ xlab="logit eta",ylab="log K")
> points(thetal,1],thetal,2])

5.9 Importance Sampling 101

14
|

12

log K

T T T T T T T I
-8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5

logit eta

Fig. 5.4. Contour plot of logit(n) and log K in the beta-binomial model problem
together with simulated draws from the rejection algorithm.

5.9 Importance Sampling

5.9.1 Introduction

Let us return to the basic problem of computing an integral in Bayesian in-
ference. In many situations, the normalizing constant of the posterior density
9(0ly) will be unknown, so the posterior mean of the function h(6) will be
given by the ratio of integrals

[h(0)g(0)f(y|0)do
[9(0)f(yl0)|do

where ¢(0) is the prior and f(y|0) is the likelihood function. If we were able
to simulate a sample {67} directly from the posterior density g, then we could
approximate this expectation by a Monte Carlo estimate. In the case where we
are not able to generate a sample directly from g, suppose instead that we can
construct a probability density p that we can simulate and that approximates
the posterior density g. We rewrite the posterior mean as

E(h(0)ly) =

102 5 Introduction to Bayesian Computation

fh (9)f(y|9) p(6)do
f g 9)f y\9) (6)d6
B fh p(6)do
S ww)p(o)da ’

where w(6) = g(0)f(y|0)/p(0) is the weight function. If 61, ...,6™ are a simu-
lated sample from the approximation density p, then the importance sampling
estimate of the posterior mean is

Y (COTICD)
T w(ed)

E(h@®)ly) =

This is called an importance sampling estimate because we are sampling values
of 6 that are important in computing the integrals in the numerator and de-
nominator. The simulation standard error of an importance sampling estimate
is estimated by

o \/ZJ 1((h(07) — hrs)w(69))2
S@h[s - Z;”le(m))

As in rejection sampling, the main issue in designing a good importance
sampling estimate is finding a suitable sampling density p. This density should
be of a familiar functional form so simulated draws are available. The density
should mimic the posterior density g and have relatively flat tails so that the
weight function w() is bounded from above. One can monitor the choice of
p by inspecting the values of the simulated weights w(67). If there are no
unusually large weights, then it is likely that the weight function is bounded
and the importance sampler is providing a suitable estimate.

To illustrate the use of different proposal densities in importance sampling
in our example, consider the problem of estimating the posterior mean of a
function of f; = log K conditional on a value of #; =logit(n). The posterior
density of 05, conditional on 6, is given by

K?]+yj7K(1777)+nj 7yj)
0
gl(2|data, 01) 1+K 2 H Kn,K(l _77)) ’

where 7 = exp(61)/(1 +exp(f1)) and K = exp(fz2). In the following, we write
the function betabinexch.cond to compute this posterior density conditional
on the value 61 = —6.818793. This function is written to allow the input of a
vector of values of 6, = log K. Also, unlike the other functions in this chapter,
the function betabinexch.cond returns the value of the density rather than
the value of the log density.

5.9 Importance Sampling 103

betabinexch.cond=function (log.K, data)

{
eta = exp(-6.818793)/(1 + exp(-6.818793))
K = exp(log.K)
y = datal, 1]; n = datal, 2]; N = length(y)
logf=0*log.K
for (j in 1:length(y))
logf = logf + lbeta(K * eta + y[j], K * (1 -
eta) + n[jl - y[j]) - lbeta(K * eta, K * (1 - eta))
val = logf + log.K - 2 * log(l + K)
return(exp(val-max(val)))
}

To compute the mean of log K for the cancer mortality data, suppose we
let the proposal density p be normal with mean 8 and standard deviation 2.
In the R code below, we use the integrate function to find the normalizing
constant of the posterior density of log K. Then, using the curve function,
we display the conditional posterior density of log K and the normal proposal
density in the top left graph of Figure 5.5. The top right graph displays the
weight function, the ratio of the posterior density to the proposal density.

I=integrate(betabinexch.cond, 2,16, cancermortality)

par (mfrow=c(2,1))

curve (betabinexch.cond(x,cancermortality)/I$value, from=3,to=16,

ylab="Density", xlab="log K",lwd=3, main="Densities")

curve (dnorm(x,8,2) ,add=TRUE)

legend ("topright",legend=c ("Exact", "Normal") ,lwd=c(3,1))

curve (betabinexch.cond (x,cancermortality)/I$value/
dnorm(x,8,2) ,from=3,to=16, ylab="Weight",xlab="log K",
main="Weight = g/p")

+ + VVV+ VVYV

Although the normal proposal density resembles the posterior density with re-
spect to location and spread, the posterior density has a flatter right tail than
the proposal and the weight function is unbounded for large log K. Suppose
instead that we let the proposal density have the t functional form with loca-
tion 8, scale 2, and 2 degrees of freedom. Using a similar set of R commands,
the bottom graphs of Figure 5.5 display the posterior and proposal densities
and the weight function. Here the t proposal density has flatter tails than the
posterior density and the weight function is bounded. Here the t functional
form is a better proposal for importance sampling.

5.9.2 Using a Multivariate t as a Proposal Density

For a posterior density of a vector of real-valued parameters, a convenient
choice of sampler p is a multivariate t density. The R function impsampling
will implement importance sampling for an arbitrary posterior density when

104 5 Introduction to Bayesian Computation

Densities Weight = g/p
B — Exact ~
o —— Normal
o
IS ® o
= 4 £
2 2 o4
a 2 =
o
o
S o
= T T T T T T T T T T T T T T
4 6 8 10 12 14 16 4 6 8 10 12 14 16
log K log K
Densities Weight = g/p
w
b — Exact N
o — T(2) o |
N i
o
= z @
k2 7] 5 -
8 2 z 2
o
wn
4 9
8 o |
(S T T T T T T T ° T T T T T T T
4 6 8 10 12 14 16 4 6 8 10 12 14 16
log K log K

Fig. 5.5. Graph of the posterior density of log K and weight function using a normal
proposal density (top) and a t(2) proposal density (bottom). By using a t proposal
density, the weight function appears to be bounded from above.

p is a t density. There are five inputs to this function: logf is the function
defining the logarithm of the posterior, tpar is a list of parameter values of
the t density, h is a function defining the function h(#) of interest, n is the size
of the simulated sample, and data is the vector or list used in the definition
of logf. In the function impsampling, the functions rmt and dmt from the
mnormt library are used to simulate and compute values of the t density. In
the following portion of R code from impsampling, we simulate draws from
the sampling density, compute values of the log sampling density and the
log posterior density at the simulated draws, and compute the weights and
importance sampler estimate.

theta = rmt(n, mean = c(tpar$m), S = tpar$var, df = tpar$df)
1f = matrix(0, c(dim(theta)[1], 1))

lp = dmt(theta, mean = c(tpar$m), S = tpar$var, df = tpar$df,
log = TRUE)

md = max(1f - 1p)

wt = exp(1f - 1p - md)

est = sum(wt * H)/sum(wt)

5.10 Sampling Importance Resampling 105

Note that the value md is the maximum value of the difference of logs of
the posterior and proposal density — this value is used in the computation
of the weights to prevent possible overflow. The output of impsampling is
a list with four components: est is the importance sampling estimate, se is
the corresponding simulation standard error, theta is a matrix of simulated
draws from the proposal density p, and wt is a vector of the corresponding
weights.

To illustrate importance sampling, let us return to our beta-binomial ex-
ample and consider the problem of estimating the posterior mean of log K.
For this example, the proposal density used in the development of a rejection
algorithm seems to be a good choice for importance sampling. We choose a t
density where the location is the posterior mode (found from laplace), the
scale matrix is twice the estimated variance-covariance matrix, and the num-
ber of degrees of freedom is 4. This choice for p will resemble the posterior
density and have flat tails that we hope will result in bounded weights. We
define a short function myfunc to compute the function h. Since we are inter-
ested in the posterior mean of log K, we define the function to be the second
component of the vector . We are now ready to run impsampling.

> tpar=list(m=fit$mode,var=2*fit$var,df=4)

> myfunc=function(theta)

+ return(thetal[2])

> s=impsampling(betabinexch, tpar,myfunc, 10000, cancermortality)
> cbind(sest, sse)

[,1] [,2]
[1,] 7.957802 0.01967276

We see from the output that the importance sampling estimate of the mean
of log K is 7.958 with an associated standard error of 0.020. To check if the
weight function is bounded, we compute a histogram of the simulated weights
(not shown here) and note that there are no extreme weights.

5.10 Sampling Importance Resampling

In rejection sampling, we simulated draws from a proposal density p and
accepted a subset of these values to be distributed according to the poste-
rior density of interest g(f]y). There is an alternative method of obtaining a
simulated sample from the posterior density g motivated by the importance
sampling algorithm.

As before, we simulate m draws from the proposal density p denoted by
6!, ...,0™ and compute the weights {w(67) = g(67]y)/p(67)}. Convert the
weights to probabilities bu using the formula

L w(e)
P (i)

106 5 Introduction to Bayesian Computation

Suppose we take a new sample #*! ..., 0*™ from the discrete distribution
over 01, ...,0™ with respective probabilities p!,...,p™. Then the {§*/} will
be approximately distributed according to the posterior distribution g. This
method, called sampling importance resampling, or SIR for short, is a weighted
bootstrap procedure where we sample with replacement from the sample {6}
with unequal sampling probabilities.

This sampling algorithm is straightforward to implement in R using the
sample command. Suppose we wish to obtain a simulated sample of size n.
As in importance sampling, we first simulate from the proposal density which
in this situation is a multivariate t distribution, and then compute the impor-
tance sampling weights stored in the vector wt.

theta = rmt(n, mean = c(tpar$m), S = tpar$var, df = tpar$df)
1f = logf (theta, data)

lp = dmt(theta, mean = c(tpar$m), S = tpar$var, df = tpar$df,
log = TRUE)

md = max(1lf - 1p)

wt = exp(1f - 1lp - md)

To implement the SIR algorithm, we first convert the weights to probabilities
and store them in the vector probs. Next we use sample to take a sample
with replacement from the indices 1, ..., n, where the sampling probabilities
are contained in the vector probs; the simulated indices are stored in the
vector indices.

probs=wt/sum(wt)
indices=sample(l:n,size=n,prob=probs,replace=TRUE)

Finally, we use the random indices in indices to select the rows of theta
and assign them to the matrix theta.s. The matrix theta.s contains the
simulated draws from the posterior.

theta.s=thetalindices,]

The function sir implements this algorithm for a multivariate t proposal
density. The inputs to this function are the function defining the log posterior
logf, the list tpar of parameters of the multivariate proposal density, the
number n of simulated draws, and the data used in the log posterior func-
tion. The output is a matrix of simulated draws from the posterior. In the
beta-binomial modeling example, we implement the SIR algorithm using the
command

> theta.s=sir(betabinexch, tpar, 10000, cancermortality)

We have illustrated the use of the SIR algorithm in converting simulated
draws from a proposal density to draws from the posterior density. But this
algorithm can be used to convert simulated draws from one probability density
to a second probability density. To show the power of this method, suppose we
wish to perform a Bayesian sensitivity analysis with respect to the individual

5.10 Sampling Importance Resampling 107

observations in the dataset. Suppose we focus on posterior inference about the
log precision parameter log K and question how the inference would change
if we removed individual observations from the likelihood. Let g(f]y) denote
the posterior density from the full dataset and g(f|y(—;)) denote the posterior
density with the ith observation removed. Let {67} represent a simulated
sample from the full dataset. We can obtain a simulated sample from g(6]y(_;))
by resampling from {67}, where the sampling probabilities are proportional
to the weights

9(Oly—)
w0 =gl
1
— fwilo)
B(Kn,K(1-n))
B(Kn+yi;, K(1—=n) +n; —y;)

Suppose that the inference of interest is a 90% probability interval for the
log precision log K. The R code for this resampling for the “leave observation
i out” follows. One first computes the sampling weights and the sampling
probabilities. Then the sample command is used to do the resampling from
theta and the simulated draws from the “leave one out” posterior are stored
in the variable theta.s. We summarize the simulated values of log K by the
5th, 50th, and 95th quantiles.

weight=exp(lbeta(K*eta,K*(1-eta))-

lbeta(Kxeta+y[i] ,K*(1-eta)+n[i]l-y[i]))
probs=weight/sum(weight)
indices=sample(l:m,size=m,prob=probs,replace=TRUE)
theta.s=thetalindices,]
summary.obs[i,]=quantile(theta.s[,2],c(.05,.5,.95))

The function bayes.influence computes probability intervals for log K
for the complete dataset and “leave one out” datasets using the SIR algorithm.
We assume one already has simulated a sample of values from the complete
data posterior, and the draws are stored in the matrix variable theta.s. The
inputs to bayes.influence are theta.s and the dataset data. In this case,
suppose we have just implemented the SIR algorithm, and the posterior draws
are stored in the matrix theta.s. Then the form of the function would be

> S=bayes.influence (theta.s, cancermortality)

The output of this function is a list S; S$summary is a vector containing the
5th, 50th, and 95th percentiles, and S$summary . obs is a matrix where the ¢th
row gives the percentiles for the posterior with the ith observation removed.

Figure 5.6 is a graphical display of the sensitivity of the posterior inference
about log K with respect to the individual observations. The bold line shows
the posterior median and 90% probability interval for the complete dataset,

108 5 Introduction to Bayesian Computation

and the remaining lines show the inference with each possible observation re-
moved. Note that if observation number 15 is removed ((y;,n;) = (54, 53637)),
then the location of log K is shifted toward smaller values. Also, if either obser-
vation 10 or observation 19 is removed, log K is shifted toward larger values.
These two observations are notable since each city experienced three deaths
and had relatively high mortality rates.

> plot(c(0,0,0),S$summary, type="b",1lwd=3,x1im=c(-1,21),

+ ylim=c(5,11), xlab="Observation removed",ylab="log K")
> for (i in 1:20)

+ lines(c(i,i,i),S$summary.obs[i,],type="b")

- o o
0%0 o o o o 4 °
o o 5 o 0o o o
o | o
o
o 4
¥ °© N
©
g 090 | o o o SR o
o|loo | o?® 0 oo °
o
~
° o
© o0°0 | o) o oo 1)
o oo ©00© 00 o °
o
o -
T T T T T
0 5 10 15 20

Observation removed

Fig. 5.6. Ninety percent interval estimates for log K for the full dataset (thick line)
and interval estimates for datasets with each individual observation removed.

5.11 Further Reading

Rejection sampling is a general method used in simulating probability dis-
tributions; rejection sampling for statistical problems is described in Givens

5.12 Summary of R Functions 109

and Hoeting (2005), Monahan (2001), and Robert and Casella (2004). Tanner
(1996) introduces normal approximations to posterior distributions in Chap-
ter 2 and Monte Carlo methods in Chapter 3. Robert and Casella (2004) in
Chapter 3 describe different aspects of Monte Carlo integration. Smith and
Gelfand (1992) introduce the use of rejection sampling and the SIR algorithm
in simulating from the posterior distribution.

5.12 Summary of R Functions

bayes.influence — computes probability intervals for the log precision pa-
rameter K in a beta-binomial model for all “leave one out” models using sam-
pling importance resampling

Usage: bayes.influence(theta,data)

Arguments: theta, matrix of simulated draws from the posterior of (logit eta,
log K) for a beta-binomial model; data, matrix with columns of counts and
sample sizes

Value: summary, vector of 5th, 50th and 95th percentiles of log K for the
posterior of complete sample; summary . obs, matrix where the ¢th row contains
the 5th, 50th and 95th percentiles of log K for the posterior when the ith
observation is removed

betabinexchO — computes the logarithm of the posterior for the parameters
(mean and precision) in a beta-binomial model

Usage: betabinexchO(theta,data)

Arguments: theta, vector of parameter values (eta, K); data, matrix with
columns of counts and sample sizes

Value: value of the log posterior

betabinexch — computes the logarithm of the posterior for the parameters
(logit mean and log precision) in a beta-binomial model

Usage: betabinexch(theta,data)

Arguments: theta, vector of parameter values (logit eta, log K); data, matrix
with columns of counts and sample sizes

Value: value of the log posterior

impsampling — implements importance sampling to compute the posterior
mean of a function using a multivariate t proposal density,

Usage: impsampling(logf,tpar,h,n,data)

Arguments: logf, function defining the log density; tpar, list of parameters of
a multivariate t proposal density including the mean m, the scale matrix var,
and the degrees of freedom df; h, function that defines h(theta); n, number
of simulated draws from the proposal density; data, data and or parameters
used in the function logf

Value: est, estimate at the posterior mean; se, simulation standard error of
the estimate; theta, matrix of simulated draws from proposal density; wt,
vector of importance sampling weights

110 5 Introduction to Bayesian Computation

laplace — for a general posterior density, computes the posterior mode, the
associated variance-covariance matrix, and an estimate of the logarithm of the
normalizing constant

Usage: 1aplace(logpost,mode,par)

Arguments: logpost, function that defines the logarithm of the posterior den-
sity; mode, vector that is a guess at the posterior mode; par, vector or list of
parameters associated with the function logpost

Value: mode, current estimate of the posterior mode; var, current estimate
of the associated variance-covariance matrix; int, estimate of the logarithm
of the normalizing constant; converge, indication (TRUE or FALSE) if the
algorithm converged

1lbinorm — computes the logarithm of a bivariate normal density

Usage: 1binorm(xy,par)

Arguments: xy, vector consisting of two variables x and y; par, list containing
m, a vector of means, and v, a variance-covariance matrix

Value: value of the kernel of the log density function

rejectsampling — implements a rejection sampling algorithm for a probabil-
ity density using a multivariate t proposal density

Usage: rejectsampling(logf,tpar,dmax,n,data)

Arguments: Logf, function that defines the logarithm of the density of interest;
tpar, list of parameters of a multivariate t proposal density, including the
mean m, the scale matrix var, and the degrees of freedom df; dmax, logarithm
of the rejection sampling constant; n, number of simulated draws from the
proposal density; data, data and/or parameters used in the function logf
Value: matrix of simulated draws from density of interest

sir — implements the sampling importance resampling algorithm for a multi-
variate t proposal density

Usage: sir(logf,tpar,n,data)

Arguments: logf, function defining logarithm of density of interest; tpar, list
of parameters of a multivariate t proposal density including the mean m, the
scale matrix var, and the degrees of freedom df; n, number of simulated draws
from the posterior; data, data and parameters used in the function logf
Value: matrix of simulated draws from the posterior, where each row corre-
sponds to a single draw

5.13 Exercises

1. Estimating a log-odds with a normal prior
Suppose y has a binomial distribution with parameters n and p, and we
are interested in the log-odds value 6 = log (p/(1 — p)) . Our prior for 0 is
that 6 ~ N(u, o). It follows that the posterior density of is given, up to
a proportionality constant, by

5.13 Exercises 111

expt) o {—(9 - M)T '

1+ exp(6))” o 202

g(0ly) o (

More concretely, suppose we are interested in learning about the proba-

bility that a special coin lands heads when tossed. A priori we believe that

the coin is fair, so we assign 6 an N(0,.25) prior. We toss the coin n =5
times and obtain y = 5 heads.

a) Using a normal approximation to the posterior density, compute the
probability that the coin is biased toward heads (i.e., that € is posi-
tive).

b) Using the prior density as a proposal density, design a rejection algo-
rithm for sampling from the posterior distribution. Using simulated
draws from your algorithm, approximate the probability that the coin
is biased toward heads.

c¢) Using the prior density as a proposal density, simulate values from
the posterior distribution using the SIR algorithm. Approximate the
probability that the coin is biased toward heads.

. Genetic linkage model from Rao (2002)

Suppose 197 animals are distributed into four categories with the following

frequencies:

Category 1 2 3 4
Frequency 125 18 20 34

Assume that the probabilities of the four categories are given by the vector

1 61 1 0

where # is an unknown parameter between 0 and 1. If 6 is assigned a
uniform prior, then the posterior density of 6 is given by

g(0]data) (; 4 Z) - <i(1 - 9)) " (i(l - 9))20 <Z)S4 ,

where 0 < 6 < 1. If 0 is transformed to the real-valued logit n =
log (8/(1 — 0)), then the posterior density of 1 can be written as

o1\ 125 1 o1\ 35
dat 2 ,—00 < 1 < 00.
f(n|aa)o<< +1+e’7> (14 em)® (1+6"> osnEee

a) Use a normal approximation to find a 95% probability interval for 7.
Transform this interval to obtain a 95% probability interval for the
original parameter of interest 6.

b) Design a rejection sampling algorithm for simulating from the pos-
terior density of 1. Use a t proposal density using a small number
of degrees of freedom and mean and scale parameters given by the
normal approximation.

112

3.

5 Introduction to Bayesian Computation

Estimation for the two-parameter exponential distribution
Martz and Waller (1982) describe the analysis of a “type I/time-truncated”
life testing experiment. Fifteen reciprocating pumps were tested for a pre-
specified time and any failed pumps were replaced. One assumes that the
failure times follow the two-parameter exponential distribution

1 .
fylB, p) = Be (y u)/ﬁ7 y > p.

Suppose one places a uniform prior on (u,3). Then Martz and Waller
show that the posterior density is given by

o8, pldata) & - exp{=(t =)/}, i< t,
where n is the number of items placed on test, t is the total time on test,
t1 is the smallest failure time, and s is the observed number of failures in

a sample of size n. In the example, data were reported in cycles to failure;

n = 15 pumps were tested for a total time of t = 15962989. Eight failures

(s = 8) were observed, and the smallest failure time was t; = 237217.

a) Suppose one transforms the parameters to the real line using the trans-
formations 67 = log 3,02 = log(ty — w). Write down the posterior
density of (61,02).

b) Construct an R function that computes the log posterior density of
(01,02).

¢) Use the laplace function to approximate the posterior density.

d) Use a multivariate t proposal density and the SIR algorithm to simu-
late a sample of 1000 draws from the posterior distribution.

e) Suppose one is interested in estimating the reliability at time ¢o, de-
fined by

R(ty) = e~ (to—1)/B.

Using your simulated values from the posterior, find the posterior

mean and posterior standard deviation of R(ty) when tq = 10° cycles.
Poisson regression
Haberman (1978) considers an experiment involving subjects reporting
one stressful event. The collected data are yq, ..., y18, where y; is the num-
ber of events recalled ¢ months before the interview. Suppose y; is Poisson
distributed with mean \;, where the {\;} satisfy the loglinear regression
model

log \; = Bo + B
The data are shown in Table 5.2. If (8p, 31) is assigned a uniform prior,
then the logarithm of the posterior density is given, up to an additive
constant, by

18

log g(fo, B1|data) =) [yz'(ﬁo + Bri) — exp(Bo + B17) |

i=1

5.13 Exercises 113

Table 5.2. Numbers of subjects recalling one stressful event.

Months| 12|34 |5/6|7(89/10/11{12{13|14|15|16|17|18
vy; [15|11|14|17(5]11|10({4(8({10| 7|9 |11| 3|61 |1 |4

a) Write an R function to compute the logarithm of the posterior density
of (Bo, B1)-

b) Suppose we are interested in estimating the posterior mean and stan-
dard deviation for the slope ;. Approximate these moments by a
normal approximation about the posterior mode (function laplace).

¢) Use a multivariate t proposal density and the SIR algorithm to simu-
late 1000 draws from the posterior density. Use this sample to estimate
the posterior mean and standard deviation of the slope ;. Compare
your estimates with the estimates using the normal approximation.

. Grouped Poisson data

Hartley (1958) fits a Poisson model to the following grouped data:

Number of Events 0 1 2 34 Total
Group Frequency 11 37 64 128 240

Suppose the mean Poisson parameter is A, and the frequency of observa-
tions with j events is n;,j = 0,1, 2, and ns is the frequency of observations
with at least three events. If the standard noninformative prior g(A) = 1/A
is assigned, then the posterior density is given by

2 n3

e Write an R function to compute the logarithm of the posterior density
of \.

e Use the function laplace to find a normal approximation to the pos-
terior density of the transformed parameter § = log \.

e Use a t proposal density and the SIR algorithm to simulate 1000 draws
from the posterior. Use the simulated sample to estimate the posterior
mean and standard deviation of A\. Compare the estimates with the
normal approximation estimates found in part (a).

. Mixture of exponential data

Suppose a company obtains boxes of electronic parts from a particular
supplier. It is known that 80% of the lots are acceptable and the lifetimes
of the “acceptable” parts follow an exponential distribution with mean
Aa. Unfortunately, 20% of the lots are unacceptable and the lifetimes of
the “bad” parts are exponential with mean Ap, where Ag > Ap. Suppose
Y1, ..., Yn are the lifetimes of n inspected parts that can come from either
acceptable or unacceptable lots. The y;s are a random sample from the
mixture distribution

114 5 Introduction to Bayesian Computation

f(ylAa, AB) = p% exp(—y/Aa) + (1 - p))\i exp(—y/Ap);
A B
where p = .8. Suppose (A4, Ap) are assigned the noninformative prior
proportional to 1/(AaAg).
The following function log.exponential .mix computes the log posterior
density of the transformed parameters 0 = (04,05) = (log Aa,log Ap) :

log.exponential .mix=function(theta, y)

{

lambda.A=exp(thetal[1]); lambda.B=exp(thetal2])
sum(log(.8*dexp(y,1/lambda.A)+(1-.8)*dexp(y,1/lambda.B)))
}

The following lifetimes are observed from a sample of 30 parts:

9.3 4.9 3.526.0 0.6 1.0 3.5 26.9
2.6 20.4 1.0 10.0 1.7 11.3 7.7 14.1
24.8 3.8 8.4 1.1 24.590.7 16.4 30.7
8.5 5.9 14.7 0.5 99.5 35.2

a) Construct a contour plot of (64,0p) over the grid (1,4, —2, 8).

b) Using the function laplace, search for the posterior mode with a
starting guess of (64,05) = (3,0).

¢) Search for the posterior mode with a starting guess of (04,05) = (2,4).

d) Explain why you obtain different estimates of the posterior mode in
parts (a) and (b).

7. Variance components model

Box and Tiao (1973) analyze data concerning batch-to-batch variation in

yields of dyestuff. The following data arise from a balanced experiment

whereby the total product yield was determined for five samples from each

of six randomly chosen batches of raw material.

Batch Batch Yield (in grams)
1 1545 1440 1440 1520 1580
1540 1555 1490 1560 1495
1595 1550 1605 1510 1560
1445 1440 1595 1465 1545
1595 1630 1515 1635 1625
1520 1455 1450 1480 1445

ST W N

Let y;; denote the jth observation in batch i. To determine the relative
importance of between-batch variation versus sampling variation, the fol-
lowing multilevel model is applied (N denotes the number of batches and
n denotes the number of observations per batch).

o y;is N(u+b,04),i=1,..,N,j=1,..,n

e by,..,by are a random sample from N (0, 0p).

e (07,0}) is assigned a uniform prior.

5.13 Exercises 115

In this situation, the focus is on the marginal posterior distribution of
the variance components. It is possible to analytically integrate out the
random effects by, ..., by, resulting in the marginal posterior density of
(1, 05, o?) given, up to a proportionality constant, by

[T [¢ (5l \Jo3/n + 02) o (Siln = 1)/2,1/202)]

i=1

where g; and S; are respectively the mean yield and the “within sum of
squares” of the ith batch, ¢(y|p, o) is the normal density with mean pu
and standard deviation o, and fg(y|a,b) is the gamma density propor-
tional to y*~! exp(—by). The posterior density of § = (u,logo,,logoy) is
programmed in the following R function log.post.var.comp. The input
y in the function is a matrix with N rows and n columns, where a row
contains the measurements for a particular batch.

log.post.var.comp=function(theta,y)

{

mu = theta[l]; sigma.y = exp(theta[2]); sigma.b = exp(thetal3])

Y=apply(y,1,mean); n=dim(y) [2]

S=apply(y,1,var)*(n-1)

loglike=sum(dnorm(Y,mu,sqrt(sigma.y 2/n+sigma.b~2),log=TRUE)+
dgamma (S, shape=(n-1)/2,rate=1/(2*sigma.y"~2) ,1og=TRUE))

return(loglike+theta[2]+theta[3])

}

a) Using the function laplace, find the posterior mode of € using the
starting value 6 = (1500, 3, 3). Try the alternative starting values of
0 = (1500, 1,1) and 6 = (1500, 10,10) to assess the sensitivity of the
Nelder-Mead algorithm to the starting value.

b) Use the normal approximation to find 90% interval estimates for the
logarithms of the standard deviations log oy, and log oy,.

¢) Using the results from part (b), find 90% interval estimates for the
variance components o and o

	Introduction to Bayesian Computation
	Introduction
	Computing Integrals
	Setting Up a Problem in R
	A Beta-Binomial Model for Overdispersion
	Approximations Based on Posterior Modes
	The Example
	Monte Carlo Method for Computing Integrals
	Rejection Sampling
	Importance Sampling
	Introduction
	Using a Multivariate t as a Proposal Density

	Sampling Importance Resampling
	Further Reading
	Summary of R Functions
	Exercises

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

