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Introduction to Bayesian Thinking

2.1 Introduction

In this chapter, the basic elements of the Bayesian inferential approach are
introduced through the basic problem of learning about a population propor-
tion. Before taking data, one has beliefs about the value of the proportion and
one models his or her beliefs in terms of a prior distribution. We will illus-
trate the use of different functional forms for this prior. After data have been
observed, one updates one’s beliefs about the proportion by computing the
posterior distribution. One summarizes this probability distribution to per-
form inferences. Also, one may be interested in predicting the likely outcomes
of a new sample taken from the population.

Many of the commands in the R base package can be used in this setting.
The probability distribution commands such as dbinom and dbeta, and simu-
lation commands, such as rbeta, rbinom, and sample, are helpful in simulat-
ing draws from the posterior and predictive distributions. Also we illustrate
the special R commands pdisc, histprior, and discint in the LearnBayes
package, which are helpful in constructing priors and computing and summa-
rizing a posterior.

2.2 Learning About the Proportion of Heavy Sleepers

Suppose a person is interested in learning about the sleeping habits of Amer-
ican college students. She hears that doctors recommend eight hours of sleep
for an average adult. What proportion of college students get at least eight
hours of sleep?

Here we think of a population consisting of all American college students
and let p represent the proportion of this population who sleep (on a typical
night during the week) at least eight hours. We are interested in learning
about the location of p.
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The value of the proportion p is unknown. In the Bayesian viewpoint, a
person’s beliefs about the uncertainty in this proportion are represented by
a probability distribution placed on this parameter. This distribution reflects
the person’s subjective prior opinion about plausible values of p.

A random sample of students from a particular university will be taken to
learn about this proportion. But first the researcher does some initial research
to learn about the sleeping habits of college students. This research will help
her in constructing a prior distribution.

In the Internet article “College Students Don’t Get Enough Sleep” in The
Gamecock, the student newspaper of the University of South Carolina (April
20, 2004), the person doing the study reads that a sample survey reports that
most students spend only six hours per day sleeping. She reads a second article
“Sleep on It: Implementing a Relaxation Program into the College Curriculum”
in Fresh Writing, a 2003 publication of the University of Notre Dame. Based
on a sample of 100 students, “approximately 70% reported receiving only five
to six hours of sleep on the weekdays, 28% receiving seven to eight, and only
2% receiving the healthy nine hours for teenagers.”

Based on this information, the person doing the study believes that college
students generally get less than eight hours of sleep and so p (the proportion
that sleep at least eight hours) is likely smaller than .5. After some reflection,
her best guess at the value of p is .3. But it is very plausible that this proportion
could be any value in the interval from 0 to .5.

A sample of 27 students is taken – in this group, 11 record that they had
at least eight hours of sleep the previous night. Based on the prior information
and these observed data, the researcher is interested in estimating the pro-
portion p. In addition, she is interested in predicting the number of students
that get at least eight hours of sleep if a new sample of 20 students is taken.

Suppose that our prior density for p is denoted by g(p). If we regard a
“success” as sleeping at least eight hours and we take a random sample with
s successes and f failures, then the likelihood function is given by

L(p) ∝ ps(1 − p)f , 0 < p < 1.

The posterior density for p, by Bayes’ rule, is obtained, up to a proportionality
constant, by multiplying the prior density by the likelihood:

g(p|data) ∝ g(p)L(p).

We demonstrate posterior distribution calculations using three different choices
of the prior density g corresponding to three methods for representing the re-
searcher’s prior knowledge about the proportion.

2.3 Using a Discrete Prior

A simple approach for assessing a prior for p is to write down a list of plausible
proportion values and then assign weights to these values. The person in our
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example believes that

.05, .15, .25, .35, .45, .55, .65, .75, .85, .95

are possible values for p. Based on her beliefs, she assigns these values the
corresponding weights

1, 5.2, 8, 7.2, 4.6, 2.1, 0.7, 0.1, 0, 0,

which can be converted to prior probabilities by dividing each weight by the
sum. In R, we define p to be the vector of proportion values and prior the
corresponding weights that we normalize to probabilities. The plot command
is used with the “histogram” type option to graph the prior distribution, and
Figure 2.1 displays the graph.

> p = seq(0.05, 0.95, by = 0.1)

> prior = c(1, 5.2, 8, 7.2, 4.6, 2.1, 0.7, 0.1, 0, 0)

> prior = prior/sum(prior)

> plot(p, prior, type = "h", ylab="Prior Probability")
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Fig. 2.1. A discrete prior distribution for a proportion p.
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In our example, 11 of 27 students sleep a sufficient number of hours, so
s = 11 and f = 16, and the likelihood function is

L(p) ∝ p11(1 − p)16, 0 < p < 1.

(Note that the likelihood is a beta density with parameters s + 1 = 12 and
f + 1 = 17.) The R function pdisc in the package LearnBayes computes
the posterior probabilities. To use pdisc, one inputs the vector of propor-
tion values p, the vector of prior probabilities prior, and a data vector data
consisting of s and f . The output of pdisc is a vector of posterior probabili-
ties. The cbind command is used to display a table of the prior and posterior
probabilities. The xyplot function in the lattice package is used to construct
comparative line graphs of the prior and posterior distributions in Figure 2.2.

> data = c(11, 16)

> post = pdisc(p, prior, data)

> round(cbind(p, prior, post),2)

p prior post
[1,] 0.05 0.03 0.00
[2,] 0.15 0.18 0.00
[3,] 0.25 0.28 0.13
[4,] 0.35 0.25 0.48
[5,] 0.45 0.16 0.33
[6,] 0.55 0.07 0.06
[7,] 0.65 0.02 0.00
[8,] 0.75 0.00 0.00
[9,] 0.85 0.00 0.00
[10,] 0.95 0.00 0.00

> library(lattice)

> PRIOR=data.frame("prior",p,prior)

> POST=data.frame("posterior",p,post)

> names(PRIOR)=c("Type","P","Probability")

> names(POST)=c("Type","P","Probability")

> data=rbind(PRIOR,POST)

> xyplot(Probability~P|Type,data=data,layout=c(1,2),

+ type="h",lwd=3,col="black")

Here we note that most of the posterior probability is concentrated on the
values p = .35 and p = .45. If we combine the probabilities for the three most
likely values, we can say the posterior probability that p falls in the set {.25,
.35, .45} is equal to .940.

2.4 Using a Beta Prior

Since the proportion is a continuous parameter, an alternative approach is to
construct a density g(p) on the interval (0, 1) that represents the person’s
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Fig. 2.2. Prior and posterior distributions for a proportion p using a discrete prior.

initial beliefs. Suppose she believes that the proportion is equally likely to be
smaller or larger than p = .3. Moreover, she is 90% confident that p is less
than .5. A convenient family of densities for a proportion is the beta with
kernel proportional to

g(p) ∝ pa−1(1 − p)b−1, 0 < p < 1,

where the hyperparameters a and b are chosen to reflect the user’s prior beliefs
about p. The mean of a beta prior is m = a/(a + b) and the variance of the
prior is v = m(1−m)/(a+b+1), but it is difficult in practice for a user to assess
values of m and v to obtain values of the beta parameters a and b. It is easier
to obtain a and b indirectly through statements about the percentiles of the
distribution. Here the person believes that the median and 90th percentiles of
the proportion are given, respectively, by .3 and .5. The function beta.select
in the LearnBayes package is useful for finding the shape parameters of the
beta density that match this prior knowledge. The inputs to beta.select are
two lists, quantile1 and quantile2, that define these two prior percentiles,
and the function returns the values of the matching beta parameters.
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> quantile2=list(p=.9,x=.5)

> quantile1=list(p=.5,x=.3)

> beta.select(quantile1,quantile2)

[1] 3.26 7.19

We see that this prior information is matched with a beta density with a =
3.26 and b = 7.19. Combining this beta prior with the likelihood function,
one can show that the posterior density is also of the beta form with updated
parameters a + s and b + f .

g(p|data) ∝ pa+s−1(1 − p)b+f−1, 0 < p < 1,

where a+s = 3.26+11 and b+f = 7.19+16. (This is an example of a conjugate
analysis, where the prior and posterior densities have the same functional
form.) Since the prior, likelihood, and posterior are all in the beta family, we
can use the R command dbeta to compute the values of the prior, likelihood,
and posterior. These three densities are displayed using three applications of
the R curve command in the same graph in Figure 2.3. This figure helps show
that the posterior density in this case compromises between the initial prior
beliefs and the information in the data.

> a = 3.26

> b = 7.19

> s = 11

> f = 16

> curve(dbeta(x,a+s,b+f), from=0, to=1,

+ xlab="p",ylab="Density",lty=1,lwd=4)

> curve(dbeta(x,s+1,f+1),add=TRUE,lty=2,lwd=4)

> curve(dbeta(x,a,b),add=TRUE,lty=3,lwd=4)

> legend(.7,4,c("Prior","Likelihood","Posterior"),

+ lty=c(3,2,1),lwd=c(3,3,3))

We illustrate different ways of summarizing the beta posterior distribution
to make inferences about the proportion of heavy sleepers p. The beta cdf and
inverse cdf functions pbeta and qbeta are useful in computing probabilities
and constructing interval estimates for p. Is it likely that the proportion of
heavy sleepers is greater than .5? This is answered by computing the posterior
probability P (p >= .5|data), which is given by the R command

> 1 - pbeta(0.5, a + s, b + f)

[1] 0.0684257

This probability is small, so it is unlikely that more than half of the students
are heavy sleepers. A 90% interval estimate for p is found by computing the
5th and 95th percentiles of the beta density:
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Fig. 2.3. The prior density g(p), the likelihood function L(p), and the posterior
density g(p|data) for learning about a proportion p.

> qbeta(c(0.05, 0.95), a + s, b + f)

[1] 0.2562364 0.5129274

A 90% posterior credible interval for the proportion is (0.256, 0.513).
These summaries are exact because they are based on R functions for the

beta posterior density. An alternative method of summarization of a posterior
density is based on simulation. In this case, we can simulate a large number of
values from the beta posterior density and summarize the simulated output.
Using the random beta command rbeta, we simulate 1000 random proportion
values from the beta(a + s, b + f) posterior by using the command

> ps = rbeta(1000, a + s, b + f)

and display the posterior as a histogram of the simulated values in Figure 2.4.

> hist(ps,xlab="p",main="")

The probability that the proportion is larger than .5 is estimated using
the proportion of simulated values in this range.
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Fig. 2.4. A simulated sample from the beta posterior distribution of p.

> sum(ps >= 0.5)/1000

[1] 0.075

A 90% interval estimate can be estimated by the 5th and 95th sample quantiles
of the simulated sample.

> quantile(ps, c(0.05, 0.95))

5% 95%
0.2599039 0.5172406

Note that these summaries of the posterior density for p based on simulation
are approximately equal to the exact values based on calculations from the
beta distribution.

2.5 Using a Histogram Prior

Although there are computational advantages to using a beta prior, it is
straightforward to perform posterior computations for any choice of prior.
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We outline a “brute-force”method of summarizing posterior computations for
an arbitrary prior density g(p).

• Choose a grid of values of p over an interval that covers the posterior
density.

• Compute the product of the likelihood L(p) and the prior g(p) on the grid.
• Normalize by dividing each product by the sum of the products. In this

step, we are approximating the posterior density by a discrete probability
distribution on the grid.

• Using the R command sample, take a random sample with replacement
from the discrete distribution.

The resulting simulated draws are an approximate sample from the posterior
distribution.

We illustrate this “brute-force” algorithm for a “histogram”prior that may
better reflect the person’s prior opinion about the proportion p. Suppose it
is convenient for our person to state her prior beliefs about the proportion of
heavy sleepers by dividing the range of p into ten subintervals (0, .1), (.1, .2),
. . . (.9, 1), and then assigning probabilities to the intervals. The person in
our example assigns the weights 1, 5.2, 8, 7.2, 4.6, 2.1, 0.7, 0.1, 0, 0 to these
intervals – this can be viewed as a continuous version of the discrete prior
used earlier.

In R, we represent this histogram prior with the vector midpt, which con-
tains the midpoints of the intervals, and the vector prior, which contains
the associated prior weights. We convert the prior weights to probabilities by
dividing each weight by the sum. We graph this prior in Figure 2.5 using the
R functions curve and histprior in the LearnBayes package.

> midpt = seq(0.05, 0.95, by = 0.1)

> prior = c(1, 5.2, 8, 7.2, 4.6, 2.1, 0.7, 0.1, 0, 0)

> prior = prior/sum(prior)

> curve(histprior(x,midpt,prior), from=0, to=1,

+ ylab="Prior density",ylim=c(0,.3))

We compute the posterior density by multiplying the histogram prior by
the likelihood function. (Recall that the likelihood function for a binomial
density is given by a beta(s+1, f +1) density; this function is available using
the dbeta function.) In Figure 2.6, the posterior density is displayed using
the curve function.

> curve(histprior(x,midpt,prior) * dbeta(x,s+1,f+1),

+ from=0, to=1, ylab="Posterior density")

To obtain a simulated sample from the posterior density by our algorithm,
we first construct an equally spaced grid of values of the proportion p and
compute the product of the prior and likelihood on this grid. Then we convert
the products on the grid to probabilities.
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Fig. 2.5. A histogram prior for a proportion p.

> p = seq(0, 1, length=500)

> post = histprior(p, midpt, prior) *

+ dbeta(p, s+1, f+1)

> post = post/sum(post)

Last, we take a sample with replacement from the grid using the R function
sample.

> ps = sample(p, replace = TRUE, prob = post)

Figure 2.7 shows a histogram of the simulated values.

> hist(ps, xlab="p", main="")

The simulated draws can be used as before to summarize any feature of the
posterior distribution of interest.

2.6 Prediction

We have focused on learning about the population proportion of heavy sleepers
p. Suppose our person is also interested in predicting the number of heavy
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Fig. 2.6. The posterior density for a proportion using a histogram prior

sleepers ỹ in a future sample of m = 20 students. If the current beliefs about
p are contained in the density g(p), then the predictive density of ỹ is given
by

f(ỹ) =
∫

f(ỹ|p)g(p)dp.

If g is a prior density, then we refer to this as the prior predictive density, and
if g is a posterior, then f is a posterior predictive density.

We illustrate the computation of the predictive density using the different
forms of prior density described in this chapter. Suppose we use a discrete prior
where {pi} represent the possible values of the proportion with respective
probabilities {g(pi)}. Let fB(y|n, p) denote the binomial sampling density
given values of the sample size n and proportion p:

fB(y|n, p) =
(

n

y

)
py(1 − p)n−y, y = 0, ..., n.

Then the predictive probability of ỹ successes in a future sample of size m is
given by

f(ỹ) =
∑

fB(ỹ|m, pi)g(pi).
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Fig. 2.7. A histogram of simulated draws from the posterior distribution of p with
the use of a histogram prior.

The function pdiscp in the LearnBayes package can be used to compute the
predictive probabilities when p is given a discrete distribution. As before, p is
a vector of proportion values and prior a vector of current probabilities. The
remaining arguments are the future sample size m and a vector ys of numbers
of successes of interest. The output is a vector of the corresponding predictive
probabilities.

> p=seq(0.05, 0.95, by=.1)

> prior = c(1, 5.2, 8, 7.2, 4.6, 2.1, 0.7, 0.1, 0, 0)

> prior=prior/sum(prior)

> m=20; ys=0:20

> pred=pdiscp(p, prior, m, ys)

> round(cbind(0:20,pred),3)

pred
[1,] 0 0.020
[2,] 1 0.044
[3,] 2 0.069
[4,] 3 0.092
[5,] 4 0.106
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[6,] 5 0.112
[7,] 6 0.110
[8,] 7 0.102
[9,] 8 0.089
[10,] 9 0.074
[11,] 10 0.059
[12,] 11 0.044
[13,] 12 0.031
[14,] 13 0.021
[15,] 14 0.013
[16,] 15 0.007
[17,] 16 0.004
[18,] 17 0.002
[19,] 18 0.001
[20,] 19 0.000
[21,] 20 0.000

We see from the output that the most likely numbers of successes in this future
sample are ỹ = 5 and ỹ = 6.

Suppose instead that we model our beliefs about p using a beta(a, b) prior.
In this case, we can analytically integrate out p to get a closed-form expression
for the predictive density,

f(ỹ) =
∫

fB(ỹ|m, p)g(p)dp

=
(

m

ỹ

)
B(a + ỹ, b + m − ỹ)

B(a, b)
, ỹ = 0, ...,m,

where B(a, b) is the beta function. The predictive probabilities using the beta
density are computed using the function pbetap. The inputs to this function
are the vector ab of beta parameters a and b, the size of the future sample m,
and the vector of numbers of successes y. The output is a vector of predictive
probabilities corresponding to the values in y. We illustrate this computation
using the beta(3.26, 7.19) prior used to reflect the person’s beliefs about the
proportion of heavy sleepers at the school.

> ab=c(3.26, 7.19)

> m=20; ys=0:20

> pred=pbetap(ab, m, ys)

We have illustrated the computation of the predictive density for two
choices of prior densities. One convenient way of computing a predictive den-
sity for any prior is by simulation. To obtain ỹ, we first simulate, say, p∗ from
g(p), and then simulate ỹ from the binomial distribution fB(ỹ|p∗).

We demonstrate this simulation approach for the beta(3.26, 7.19) prior.
We first simulate 1000 draws from the prior and store the simulated values
in p:
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> p=rbeta(1000, 3.26, 7.19)

Then we simulate values of ỹ for these random ps using the rbinom function.

> y = rbinom(1000, 20, p)

To summarize the simulated draws of ỹ, we first use the table command
to tabulate the distinct values.

> table(y)

y
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
13 32 65 103 102 115 114 115 95 83 58 36 29 14 15
15 16
6 5

We save the frequencies of ỹ in a vector freq. Then we convert the frequencies
to probabilities by dividing each frequency by the sum and use the plot
command to graph the predictive distribution (see Figure 2.8).

> freq=table(y)

> ys=as.integer(names(freq))

> predprob=freq/sum(freq)

> plot(ys,predprob,type="h",xlab="y",

+ ylab="Predictive Probability")

Suppose we wish to summarize this discrete predictive distribution by an
interval that covers at least 90% of the probability. The R function discint
in the LearnBayes package is useful for this purpose. In the output, the vector
ys contains the values of ỹ and predprob contains the associated probabili-
ties found from the table output. The matrix dist contains the probability
distribution with the columns ys and predprob. The function discint has
two inputs: the matrix dist and a given coverage probability covprob. The
output is a list where the component set gives the credible set and prob gives
the exact coverage probability.

> dist=cbind(ys,predprob)

> dist
ys predprob

[1,] 0 0.013
[2,] 1 0.032
[3,] 2 0.065
[4,] 3 0.103
[5,] 4 0.102
[6,] 5 0.115
[7,] 6 0.114
[8,] 7 0.115
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Fig. 2.8. A graph of the predictive probabilities of the number of sleepers ỹ in a
future sample of size 20 when the proportion is assigned a beta(3.26, 7.19) prior.

[9,] 8 0.095
[10,] 9 0.083
[11,] 10 0.058
[12,] 11 0.036
[13,] 12 0.029
[14,] 13 0.014
[15,] 14 0.015
[16,] 15 0.006
[17,] 16 0.005

> covprob=.9

> discint(dist,covprob)

$prob
[1] 0.918

$set
[1] 1 2 3 4 5 6 7 8 9 10 11
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We see that the probability that ỹ falls in the interval {1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11} is 91.8%. To say it in a different way, let ỹ/20 denote the proportion
of sleepers in the future sample. The probability that this sample proportion
falls in the interval [1/20, 11/20] is 91.8%. As expected, this interval is much
wider than a 91.8% probability interval for the population proportion p. In
predicting a future sample proportion, there are two sources of uncertainty,
the uncertainty in the value of p and the binomial uncertainty in the value
of ỹ, and the predictive interval is relatively long since it incorporates both
types of uncertainty.

2.7 Further Reading

A number of books are available that describe the basic tenets of Bayesian
thinking. Berry (1996) and Albert and Rossman (2001) describe the Bayesian
approach for proportions at an introductory statistics level. Albert (1996) de-
scribes Bayesian computational algorithms for proportions using the statistics
package Minitab. Antleman (1996) and Bolstad (2004) provide elementary de-
scriptions of Bayesian thinking suitable for undergraduate statistics classes.

2.8 Summary of R Functions

beta.select – finds the shape parameters of a beta density that matches
knowledge of two quantiles of the distribution
Usage: beta.select(quantile1,quantile2)
Arguments: quantile1, list with components p, the value of the first proba-
bility, and x, the value of the first quantile; quantile2, list with components
p, the value of the second probability, and x, the value of the second quantile
Value: vector of shape parameters of the matching beta distribution

discint – computes a highest probability interval for a discrete distribution
Usage: discint(dist,prob)
Arguments: dist, a probability distribution written as a matrix, where the first
column contains the values and the second column contains the probabilities;
prob, the probability content of interest
Value: prob, the exact probability content of the interval, and set, the set of
values of the probability interval

histprior – computes the density of a probability distribution defined on a
set of equal-width intervals
Usage: histprior(p,midpts,prob)
Arguments: p, the vector of values for which the density is to be computed;
midpts, the vector of midpoints of the intervals; prob, the vector of probabil-
ities of the intervals
Value: vector of values of the probability density
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pbetap – computes the predictive distribution for the number of successes of
a future binomial experiment with a beta distribution for the proportion
Usage: pbetap(ab, n, s)
Arguments: ab, the vector of parameters of the beta prior; n, the size of the
future binomial sample; s, the vector of the numbers of successes for a future
binomial experiment
Value: the vector of predictive probabilities for the values in the vector s

pdisc – computes the posterior distribution for a proportion for a discrete
prior distribution
Usage: pdisc(p, prior, data)
Arguments: p, a vector of proportion values; prior, a vector of prior proba-
bilities; data, a vector consisting of the number of successes and number of
failures
Value: the vector of posterior probabilities

pdiscp – computes the predictive distribution for the number of successes of
a future binomial experiment with a discrete distribution for the proportion
Usage: pdiscp(p, probs, n, s)
Arguments: p, the vector of proportion values; probs, the vector of probabil-
ities; n, the size of the future binomial sample; s, the vector of the numbers
of successes for a future binomial experiment
Value: the vector of predictive probabilities for the values in the vector s

2.9 Exercises

1. Estimating a proportion with a discrete prior
Bob claims to have ESP. To test this claim, you propose the following
experiment. You will select one card from four large cards with different
geometric figures, and Bob will try to identify it. Let p denote the prob-
ability that Bob is correct in identifying the figure for a single card. You
believe that Bob has no ESP ability (p = .25), but there is a small chance
that p is either larger or smaller than .25. After some thought, you place
the following prior distribution on p:

p 0 .125 .250 .375 .500 .625 .750 .875 1
g(p) .001 .001 .950 .008 .008 .008 .008 .008 .008

Suppose that the experiment is repeated ten times and Bob is correct six
times and incorrect four times. Using the function pdisc, find the posterior
probabilities of these values of p. What is your posterior probability that
Bob has no ESP ability?

2. Estimating a proportion with a histogram prior
Consider the following experiment. Hold a penny on edge on a flat hard
surface, and spin it with your fingers. Let p denote the probability that it
lands heads. To estimate this probability, we will use a histogram to model
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our prior beliefs about p. Divide the interval [0,1] into the ten subinter-
vals [0, .1], [.1, .2], ..., [.9, 1], and specify probabilities that p is in each
interval. Next spin the penny 20 times and count the number of successes
(heads) and failures (tails). Simulate from the posterior distribution by
(1) computing the posterior density of p on a grid of values on (0, 1) and
(2) taking a simulated sample with replacement from the grid. (The func-
tions histprior and sample are helpful in this computation.) How have
the interval probabilities changed on the basis of your data?

3. Estimating a proportion and prediction of a future sample
A study reported on the long-term effects of exposure to low levels of
lead in childhood. Researchers analyzed children’s shed primary teeth for
lead content. Of the children whose teeth had a lead content of more than
22.22 parts per million (ppm), 22 eventually graduated from high school
and 7 did not. Suppose your prior density for p, the proportion of all such
children who will graduate from high school, is beta(1, 1), and so your
posterior density is beta(23, 8).
a) Use the function qbeta to find a 90% interval estimate for p.
b) Use the function pbeta to find the probability that p exceeds .6.
c) Use the function rbeta to take a simulated sample of size 1000 from

the posterior distribution of p.
d) Suppose you find ten more children who have a lead content of more

than 22.22 ppm. Find the predictive probability that nine or ten of
them will graduate from high school. (Use your simulated sample from
part (c) and the rbinom function to take a simulated sample from the
predictive distribution.)

4. Contrasting predictions using two different priors
Suppose two persons are interested in estimating the proportion p of stu-
dents at a college who commute to school. Suppose Joe uses a discrete
prior given in the following table:

p 0.1 0.2 0.3 0.4 0.5
g(p) 0.5 0.2 0.2 0.05 0.05

Sam decides instead to use a beta(3, 12) prior for the proportion p.
a) Use R to compute the mean and standard deviation of p for Joe’s prior

and for Sam’s prior. Based on this computation, do Joe and Sam have
similar prior beliefs about the location of p?

b) Suppose one is interested in predicting the number of commuters y in
a future sample of size 12. Use the functions pdiscp and pbetap to
compute the predictive probabilities of y using both Joe’s prior and
Sam’s prior. Do the two people have similar beliefs about the outcomes
of a future sample?

5. Estimating a normal mean with a discrete prior
Suppose you are interested in estimating the average total snowfall per
year μ (in inches) for a large city on the East Coast of the United States.
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Assume individual yearly snow totals y1, ..., yn are collected from a popu-
lation that is assumed to be normally distributed with mean μ and known
standard deviation σ = 10 inches.
a) Before collecting data, suppose you believe that the mean snowfall μ

can be the values 20, 30, 40, 50, 60, and 70 inches with the following
probabilities:

μ 20 30 40 50 60 70
g(μ) .1 .15 .25 .25 .15 .1

Place the values of μ in the vector mu and the associated prior proba-
bilities in the vector prior.

b) Suppose you observe the yearly snowfall totals 38.6, 42.4, 57.5, 40.5,
51.7, 67.1, 33.4, 60.9, 64.1, 40.1, 40.7, and 6.4 inches. Enter these data
into a vector y and compute the sample mean ybar.

c) In this problem, the likelihood function is given by

L(μ) ∝ exp
(
− n

2σ2
(μ − ȳ)2

)
,

where ȳ is the sample mean. Compute the likelihood on the list of
values in mu and place the likelihood values in the vector like.

d) One can compute the posterior probabilities for μ using the formula
post=prior*like/sum(prior*like)

Compute the posterior probabilities of μ for this example.
e) Using the function discint, find an 80% probability interval for μ.

6. Estimating a Poisson mean using a discrete prior (from Antle-
man (1996))
Suppose you own a trucking company with a large fleet of trucks. Break-
downs occur randomly in time and the number of breakdowns during an
interval of t days is assumed to be Poisson distributed with mean tλ. The
parameter λ is the daily breakdown rate. The possible values for λ are
.5, 1, 1.5, 2, 2.5, and 3 with respective probabilities .1, .2, .3, .2, .15, and
.05. If one observes y breakdowns, then the posterior probability of λ is
proportional to

g(λ) exp(−tλ)(tλ)y,

where g is the prior probability.
a) If 12 trucks break down in a six-day period, find the posterior proba-

bilities for the different rate values.
b) Find the probability that there are no breakdowns during the next

week. Hint: If the rate is λ, the conditional probability of no break-
downs during a seven-day period is given by exp{−7λ}. One can com-
pute this predictive probability by multiplying a list of conditional
probabilities by the posterior probabilities of λ and finding the sum
of the products.
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