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Multiple Basins of Attraction

8.1 Introduction

Historically, simple models may have helped to lull some ecologists into think-
ing either that (i) models are useless because they do not reflect the natural
world, or (ii) the natural world is highly predictable.1 Here we investigate how
simple models can create unpredictable outcomes, in models of Lotka–Volterra
competition, resource competition, and intraguild predation. In all cases, we get
totally different outcomes, or alternative stable states, depending on different,
stochastic, initial conditions.

8.1.1 Alternative stable states

Alternative stable states, or alternative stable equilibria (ASE), are a set of two
or more possible stable attractors that can occur given a single set of external
environmental conditions. For a single list of species, there may exist more than
one set of abundances that provide stable equilibria. One key to assessing alter-
native stable states is that the stable states must occur with the same external
environmental conditions. If the external conditions differ, then the system is
merely governed by different conditions.2

If stable attractors exist, how does the system shift from one attractor to
another? The system can be shifted in a variety of ways, but the key is that
the system (i.e., the set of species abundances) gets shifted into a different part
of the state space, and then is attracted toward another state. System shifts
may occur due to demographic stochasticity, the random variation in births
and deaths that may be especially important when populations become small.
System shifts may also occur due to different assembly sequences. For instance
the outcome of succession may depend upon which species arrive first, second,

1 One notable exception was May’s work revealing that chaos erupts from a very
simple model of discrete logistic growth.

2 A very important complication is that if an abiotic factor is coupled dynamically to
the biotic community, then it becomes by definition an internal part of the system
and no longer external to it.
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third, etc. System shifts might also arise via a physical disturbance that causes
mortality. Different abundances may also arise from the gradual change and
return of an environmental factor, and the resulting set of alternative equilib-
ria is known as hysteresis, and below we examine a case related to resource
competition.

The term priority effects refers to the situation in which initial abundances
favor one species or group of species over others. We use “priority” to imply
that if a species is given an early advantage (“priority”) then it can suppress
other species, whereas without that head start, it would not do as well. In
contrast, for most stable models we considered previously, the location of the
attractor was independent of any early advantage. We use the terms effects of
initial conditions and priority effects to refer to situations in which starting
conditions influence the outcome. So, in a 4 billion year old world, what are
“starting conditions”? Starting conditions can refer to any point resulting from
a system shift, as we described above (e.g., a disturbance).

Part of our thinking about ASEs relies on two assumptions that some find
untenable, or at least not very useful [74]. First, the concept assumes that
fixed stable states exist and that, if perturbed, populations can return to these
states. Second, the concept assumes that communities move to these states
with all due haste, and achieve these states over observable time periods. If
these conditions are met, then ASEs can arise and be observed. We might
recognize that ASEs might be a fuzzier concept, in which there exists more
than one attractor, and where complex dynamics and long return times make
the attractors difficult to observe. Further, we can imagine that short-term
evolution of species’ traits cause attractors to shift through time. Last, we might
also want to acknowledge that saddles (i.e., attractor–repellers) also influence
dynamics and species abundances. If we embrace all of these complications, then
we might prefer a term other than ASE for this complex dynamical landscape
— multiple basins of attraction.

8.1.2 Multiple basins of attraction

Multiple basins of attraction (MBA) is a phrase describing an entire landscape
of “tendencies” in community dynamics. Imagine for a moment a two- or three-
dimensional coordinate system in which each axis is the abundance of one
species. An attractor is merely a place in the coordinate system (i.e., a partic-
ular set of species abundances) that exerts a pull on, or attracts, the dynamics
of the populations. A stable equilibrium is an example of a global attractor;
each local minimum or maximum in a stable limit cycle is also an attractor.
The unstable equilibrium we observed in a Lotka–Volterra competition model
is another example — it is a saddle, or an attractor–repellor, because it attracts
from one direction, but repels in another.

MBAs can be visualized as a topographic landscape, or mountain range.
We see lots of little valleys (attractors) and lots of peaks (repellers) (Fig. 8.1).
If we think more broadly about multiple basins of attraction, then we begin
to see that a strict definition of ASS lies at one end of a continuum, and it
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Fig. 8.1: Perspective and contour plots of a single complex dynamical landscape, con-
taining multiple basins of attraction. Imagine putting a ball into this landscape, and
jiggling the landscape around. The landscape represents the possible states of the
community, the ball represents the actual community structure at any one point in
time, and the jiggling represents stochasticity, either demographic, or environmental.

is matched at the other end by a system with one global stable equilibrium.
The entire continuum, and much more besides, can be conceived of in terms
of a landscape with some number of both basins of attraction (attractors) and
peaks (repellors) in the landscape; each of these may act with some unique force
or strength.

The potential for MBAs to occur has been noted for a few decades [78,
112, 130, 150], and the hunt for their signature in nature followed [24, 38, 115,
141,184–186,209,210]. There has been discussion about what causes more than
one basin of attraction, including space, stochasticity, and predation. Below we
examine two mechanisms that may reveal priority effects: strong interference
competition [175], and intraguild predation, an indirect interaction which has
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elements of both competition and predation [165]. We first investigate interfer-
ence competition using a three-species Lotka–Volterra model, and then with a
model of resource competition.

8.2 Lotka–Volterra Competition and MBA

You have already seen in this book the case of two-species Lotka–Volterra com-
petition where an attractor–repeller, or saddle, arises when interspecific com-
petition is greater than intraspecific competition. When this is the case, each
species can suppress the other, if it gets a head start. This is a priority effect.

Having a larger negative effect on your competitor than on yourself may
not be too unusual. Examples that come immediately to mind are cases where
species compete preemptively for space (territories, or substrate surface) or for
a resource with a unidirectional flow (drifting prey or particles in a stream, or
light coming down on a forest canopy), then one species may gain the upper
hand by acquiring a large proportion of resources first, that is, preempting
resources.

In human economic systems, businesses can have direct negative effects on
each other through questionable business practices. For instance, a larger com-
pany can temporarily flood a local market with below-cost merchandise, and
drive out smaller competitors, prior to raising prices again. Note that it requires
the raised prices for its long term equilibrium, but uses temporary below-market
prices to eliminate competitors. In contrast, economies of scale can provide a
very different kind of mechanism by which larger businesses can outcompete
smaller businesses at equilibrium.

Here we explore how MBA can arise in a simple competitive system. We
use a three-species Lotka–Volterra model to illustrate how strong interference
competition may reveal priority effects. We use a slightly different representation
of the Lotka–Volterra competition model. Note that the sign of each α must
be negative, because we are adding them — this is similar to the notation in
Chapter 7, but differs from previous treatment of Lotka–Volterra competition
(Chapters 3, 5).

dN1

dt
= r1N1 (1 + α11N1 + α12N2 + α13N3)

dN2

dt
= r2N2 (1 + α21N1 + α22N2 + α23N3)

dN3

dt
= r3N3 (1 + α31N1 + α32N2 + α33N3)

Note two aspects of the above equations. First note that within the parentheses,
the Ni are all arranged in the same order — N1, N2, N3. This reflects their
relative positions in a food web matrix, and reveals the row-column relevance
of the subscripts of the αs. Second, note that αii = 1/Ki, and in some sense Ki
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results from a particular αii.3 We can represent these equations as

dNi

dt
= Ni

ri +

3∑
j=1

riαi jN j

 (8.1)

in a fashion similar to what we saw in Chapter 7.
Another aspect of three species Lotka–Volterra models that we will state,

without demonstration, is that the equilibria can depend on ri. This contrasts
with what we learned about the two-species model, which depended solely on
the αi j. Indeed, our example uses parameter values in which variation in r
contributes to the equilibria.

Consider a particular set of simulations (Fig. 8.2).
• Species differ in their intrinsic rates of increase (r1 = 0.6, r2 = 1, r3 = 2).
• Species with higher r also have slightly greater negative impacts on them-

selves (a11 = 0.001, a22 = 0.00101, a33 = 0.00102); this constitutes a tradeoff
between maximum growth rate and carrying capacity.

• All species have twice as big a negative effect on each other as they do on
themselves (ai j,i, j = 0.002); this creates unstable equilibria, which happen
to be attractor–repellers or saddles.

• Initial abundances are random numbers drawn from a normal distribution
with a mean of 200, and a standard deviation of 10; in addition we also
start them at precisely equal abundances (Ni = 200).

• Species 1 has the highest carrying capacity (smallest αii), and would there-
fore often considered the best competitor; in the absence of priority effects,
we would otherwise think that it could always displace the others.
Now ponder the results (Fig. 8.2). Does each species win in at least one

simulation? Which species wins most often? Does winning depend on having the
greatest initial abundance? Make a 3× 3 table for all species pair combinations
(column = highest initial abundance, row=winner), and see if there are any
combinations that never happen.

Note that when they start at equal abundances (Fig. 8.2), the species with
the intermediate carrying capacity and intermediate r displaces the other two
species. However, note also that (i) with a little stochasticity in initial conditions
(slight variation in Ni at t = 0), this simple model generates unpredictable
outcomes, and (ii) initial abundance does not determine everything.

It is critical to realize that this is occurring in part because species have
larger negative competitive effects on others than they have on themselves. In
this case the effects are direct, because the model is Lotka–Volterra competi-
tion. The effects may also be indirect, when species compete for more than one
limiting resource. MacArthur [120] showed, for instance, that when generalists
and specialists compete so that not all resources are available to all species,
alternative stable states occur [115]. After we work through the code for the
Lotka–Volterra example we just discussed, we take up MBA in the context of
resource competition.

3 We might also note is that it differs from notation typically used in textbooks for
two-species models.
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Fig. 8.2: Interaction between strong interference competition and initial abundances
with three competing species (solid line - sp. 1; dashed line - sp. 2; dotted line - sp.
3). The species with the highest initial abundance is indicated in vertical orientation
at the beginning of each trajectory (“Equal” indicates all species started at N = 200).
The eventual winner is indicated in horizontal orientation at the top of each graph.
See text for more details.

8.2.1 Working through Lotka–Volterra MBA

Here we create a function for multi-species Lotka–Volterra competition, taking
advantage of matrix operations. Note that we can represent the three species
as we would one, Ṅ = rN (1 − αN), because the αN actually becomes a matrix
operation, a %*% N.4

> lvcompg <- function(t, n, parms) {

+ r <- parms[[1]]; a <- parms[[2]]

+ dns.dt <- r * n * (1 - (a %*% n))

4 Recall that %*% is matrix multiplication in R because by default, R multiplies
matrices and vectors element-wise.
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+ return(list(c(dns.dt)))

+ }

We are going to use one set of parameters, but let initial abundances vary
stochastically around the unstable equilibrium point, and examine the results.

Next we decide on the values of the parameters. We will create intrinsic rates
of increase, rs, and intraspecific competition coefficients, αii, that correspond
roughly to an r − K tradeoff, that is, between maximum relative growth rate
(r) and carrying capacity (1/αii). Species 1 has the lowest maximum relative
growth rate and the weakest intraspecific density dependence.

Following these ecological guidelines, we create a vector of rs, and a matrix
of αs. We then put them together in a list,5 and show ourselves the result.

> r <- c(r1 = 0.6, r2 = 1, r3 = 2)

> a <- matrix(c(a11 = 0.001, a12 = 0.002, a13 = 0.002, a21 = 0.002,

+ a22 = 0.00101, a23 = 0.002, a31 = 0.002, a32 = 0.002,

+ a33 = 0.00102), nrow = 3, ncol = 3)

> parms <- list(r, a); parms

[[1]]

r1 r2 r3

0.6 1.0 2.0

[[2]]

[,1] [,2] [,3]

[1,] 0.001 0.00200 0.00200

[2,] 0.002 0.00101 0.00200

[3,] 0.002 0.00200 0.00102

Next we get ready to simulate the populations 24 times. We set the time, t, and
the mean and standard deviation of the initial population sizes. We then create
a matrix of initial population sizes, with one set of three species’ n0 for each
simulation. This will create a 3 × 24 matrix, where we have one row for each
species, and each column is one of the initial sets of population sizes.

> t = seq(0, 40, by = 0.1); ni <- 200; std = 10

> N0 <- sapply(1:30, function(i) rnorm(3, mean = ni, sd = std))

Now let’s replace the first set of initial abundances to see what would happen
if they start out at precisely the same initial abundances. We can use that as a
benchmark.6

> N0[, 1] <- ni

When we actually do the simulation, we get ready by first creating a graphics
device (and adjust the margins of each graph). Next we tell R to create a graph
layout to look like a 6 × 4 matrix of little graphs. Finally, we run the simulation,
calling one column of our initial population sizes at a time, integrate with the

5 A list is a specific type of R object.
6 R’s recycling rule tells it to use the single value of ni for all three values in the first

column of N0.
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ODE solver, and plot the result, 24 times. As we plot the result, we also record
which species has the greatest initial abundance.

> par(mar = c(2, 2, 1, 1))

> layout(matrix(1:30, ncol = 5))

> for (i in 1:30) {

+ lvout <- ode(N0[, i], t, lvcompg, parms)

+ matplot(t, lvout[, 2:4], type = "l", lwd = 1.5, col = 1)

+ if (all(N0[, i] == 200)) {

+ text(3, 500, "Equal", srt = 90)

+ }

+ else {

+ text(3, 500, paste("Sp.", which.max(N0[, i])), srt = 90)

+ }

+ lastN <- lvout[nrow(lvout), 2:4]

+ text(3, max(lastN), paste("Sp.", which.max(lastN)), adj = c(0,

+ 1))

+ }

8.3 Resource Competition and MBA

Above, we explored how simple Lotka–Volterra competition could result in un-
stable equilibria, causing saddles, and multiple basins of attraction. Here we
take a look an example of how resource competition can do the same thing.
Recall that resource competition is an indirect interaction, where species inter-
act through shared resources. This particular example results in a type of MBA
scenario, hysteresis, where gradual changes in the external environment result
in abrupt and sometimes catastrophic changes in the biological system (Fig.
8.4).

Scheffer and colleagues [184] provide evidence that anthropogenically en-
riched (eutrophic) lakes can shift away from dominance by submerged macro-
phytes7 rooted in substrate, into systems completely dominated by floating
plants such as duckweed (Lemna spp.) and water fern (Azolla spp.). Submerged
macrophytes can extract nutrients out of both sediments and the water column.
At low, typically unpolluted, nutrient levels, submerged plants can draw down
water nitrogen levels to a very low level, below levels tolerated by duckweed
and water fern. At high nutrient levels, floating plants are no longer limited by
water column nitrogen levels, and can create deep shade that kills submerged
vegetation. Aside from killing these wonderful submerged macrophytes, the loss
of this structure typically alters the rest of the lake food web.

Uncertainties arise in this scenario at intermediate levels of eutrophication
(Fig. 8.3). As stated above, submerged plants dominate at low nitrogen supply
rates, and floating plants dominate at high nitrogen supply rates. However, at
intermediate supply rates (∼ 1.5–2.5 mg L−1), the outcome depends on priority
effects.

7 “Macrophyte” is a term often used for aquatic rooted vascular plants.
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Fig. 8.3: The outcome of competition depends on both nutrient loading and priority
effects. The lines provide equilibrial biomasses that depend on nitrogen supply rate for
(a) submerged plants, and (b) floating plants. Thus both lines in (a) refer to possible
equilibria for submerged plants, and both lines in (b) refer to possible equilibria for
floating plants. (S = submerged plants, F = floating plants).

When submerged plants initially dominate a lake prior to eutrophication,
they continue exclude floating plants as nitrogen supply rates increase, up until
about 1.5 mg L−1 (Fig. 8.3a). If supply rates go higher (∼ 1.5–2.5 mg L−1), sub-
merged plants continue to dominate, because their high abundance can draw
nitrogen levels down quite low. Above this level, however, floating plants reach
sufficiently high abundance to shade out the submerged plants which then be-
come entirely excluded. Thus, at 2.5 mg L−1 we see a catastrophic shift in the
community.

Once the system is eutrophic, and dominated by floating plants, reducing
the nitrogen supply rate does not return the system to its original state in
a way that we might expect (Fig. 8.3a). Once the floating plants have created
sufficient shade, they can suppress submerged plants even at low nitrogen levels.
If changes in watershed management bring nitrogen supply rates back down,
submerged plants cannot establish until supply rate falls to 1 mg L−1. This is
well below the level at which submerged plants could dominate, if they were
abundant to begin with.

This is an excellent example of a system prone to hysteresis (Fig. 8.4).
Gradual changes in an external driver (e.g., nitrogen runoff) cause catastrophic
shifts in the internal system, because at intermediate levels of the driver, the
internal system is influenced by priority effects. Hysteresis is often defined as a
context-dependent response to an environmental driver. As a different example,
imagine that the state variable in Figure 8.4 is annual precipitation, and the
driver is average annual temperature. Imagine that over many years, the regional
average temperature increases. At first, increased temperature has little effect
on precipitation. Once precipitation reaches a particular threshold, precipitation
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drops dramatically, and additional increased temperature has little effect. When
the temperature starts to come back down, however, we find that the high levels
of precipitation do not return at the same threshold where we lost it. Rather, it
does not return until we bring temperature way back down to original levels. At
intermediate temperatures (grey region, Fig. 8.4), precipitation depends on what
the temperature used to be. This history dependence, or context dependence is
the hallmark of hysteresis. It is important to understand that, in principle,
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(e.g. Temperature)
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Fig. 8.4: Hysteresis. When the system changes from left to right, the threshold value of
the predictor of catastrophic change is greater than when the system moves from right
to left. At intermediate levels of the driver, the value of the response variable depends
on the history of the system. Each value, either high or low, represents an alternative,
stable, basin of attraction. The arrows in this figure represent the direction of change
in the environmental driver.

this is not the result of a time lag. It is not the case that this pattern is due
to a lagged or slow response by the state variable. Rather, these alternative
basins (Fig. 8.4, solid lines in the grey area) represent permanent stable states
from which the response variable cannot ever emerge, without some external
force, such as very large changes in the environmental driver. Time lags may be
important in other, different, circumstances, but are not, in principle, related
to hysteresis.
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8.3.1 Working through resource competition

Scheffer and colleagues represented submerged and floating plant interactions
in the following manner, where F and S are floating and submerged plants,
respectively [184].

dF
dt

= r f F
n

n + h f

1
1 + a f F

− l f F (8.2)

dS
dt

= rsS
n

n + hs

1
1 + asS + bF + W

− lsS (8.3)

(8.4)

As usual, r represents the maximum per capita rate of increase for F and S
respectively. Thus rF is exponential growth of floating plants. This exponential
growth is modified by terms for nitrogen (n) limited growth, and light lim-
ited growth. This modification results in type II functional responses. Here we
discuss these modifications.

Nitrogen limitation The first factor to modify exponential growth above is
n/ (n + hx), water column nitrogen limitation. It varies from 0–1 and is a
function of water column nitrogen concentration, n. The half saturation
constant h controls the shape of the relation: when h = 0 there is no nitrogen
limitation, that is, the term equals 1.0 even at very low n. If h > 0, then
the growth rate is a Michaelis-Menten type saturating function where the
fraction approaches zero as n→ 0, but increases toward 1.0 (no limitation)
at high nutrient levels. For submerged plants, hs = 0 because they are never
limited by water column nitrogen levels because they derive most of the
nitrogen from the substrate.

Nitrogen concentration Nitrogen concentration, n, is a simple saturating
function that declines with increasing plant biomass which achieves a max-
imum N in the absence of any plants.

n =
N

1 + qsS + q f F
(8.5)

The nutrient concentration, n, depends not only on the maximum N nutrient
concentration, but also on the effect of submerged and floating plants which
take up nitrogen out of the water at rates 1/ (1 + qS S ) and 1/

(
1 + q f F

)
respectively; 1/q is the half-saturation constant.

Light limitation The second factor to modify exponential growth is light lim-
itation, 1/(1+aF); 1/a f and 1/as are half-saturation constants — they deter-
mine the plant densities at which the growth rates are half of the maxima;
b represents the shade cast by a single floating plant, and W represents the
light intercepted by the water column.

Loss The second terms in the above expressions l f F and lsS are simply density
independent loss rates due to respiration or mortality.

Scheffer and colleagues very nicely provide units for their parameters and
state variables (Table 8.1).
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Table 8.1: Parameter and variable units and base values. Plant mass (g) is dry weight.

Parameter/Variable Value Units

F, S (varies) g m−2

N, n (varies) mg L−1

as, a f 0.01 (g m−2)−1

b 0.02 (g m−2)−1

qs, q f 0.075, 0.005 (g m−2)−1

hs, h f 0.0, 0.2 mg L−1

ls, l f 0.05 g g−1 day−1

rs, r f 0.5 g g−1 day−1

Consider the meanings of the parameters (Table 8.1). What is a, and why
is 1/as = 1/a f ? Recall that they are half-saturation constants of light limited
growth; their identical values indicate that both plants become self-shading
at the same biomasses. What is q? It is the per capita rate at which plants
pull nitrogen out of the water. Why is qs > q f ? This indicates that a gram of
submerged plants can pull more nitrogen out of the water than a gram of floating
plant. Last, why is hs = 0? Because submerged plants grow independently of
the nitrogen content in the water column.

Code for Scheffer et al.

Now we are set to model this in R, using a built-in function for the ODEs,
scheffer. First, let’s set the parameters (Table 8.1), time, initial abundances,
and see what we have.

> p <- c(N = 1, as = 0.01, af = 0.01, b = 0.02, qs = 0.075,

+ qf = 0.005, hs = 0, hf = 0.2, ls = 0.05, lf = 0.05, rs = 0.5,

+ rf = 0.5, W = 0)

> t <- 1:200

> Initial <- c(F = 10, S = 10)

We then run the solver, and plot the result.

> S.out1 <- ode(Initial, t, scheffer, p)

> matplot(t, S.out1[, -1], type = "l")

> legend("right", c("F", "S"), lty = 1:2, bty = "n")

From this run, at these nutrient levels, we observe the competitive dominance
of the submerged vegetation (Fig. 8.5a). Let’s increase nitrogen and see what
happens.

> p["N"] <- 4

> S.out2 <- ode(Initial, t, scheffer, p)

> matplot(t, S.out2[, -1], type = "l")

Ah-ha! At high nutrient levels, floating vegetation triumphs (Fig. 8.5b). So
where are the cool multiple basins of attraction? We investigate that next.
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Fig. 8.5: The outcome of competition depends on the nutrient loading.

Let’s mimic nature by letting the effect of Homo sapiens increase gradually
with increasing over-exploitation of the environment. We will vary N, increasing
it slowly, and hang on to only the final, asymptotic abundances, at the final time
point.

> N.s <- seq(0.5, 4, by = 0.1); t <- 1:1000

> S.s <- t(sapply(N.s, function(x) {

+ p["N"] <- x

+ ode(Initial, t, scheffer, p)[length(t), 2:3]

+ }))

Now we plot, not the time series, but rather the asymptotic abundances vs. the
nitrogen levels (Fig. 8.6a).

> matplot(N.s, S.s, type = "l")

> legend("topright", c("F", "S"), lty = 1:2, bty = "n")

> arrows(0.5, 500, 2, 500, length = 0.1, lwd = 3, col = "grey")

> text(0.5, 500, "Increasing N", adj = c(0, -0.5))

Now we can see this catastrophic shift at around 2.7 mg N L−1 (Fig. 8.6a).
As nitrogen increases, we first see a gradual shift in community composition,
but then, wham!, all of a sudden, a small additional increase at ≈ 2.7 causes
dominance by floating plants, and the loss of our submerged plants.

Now let’s try to fix the situation by reducing nitrogen levels. We might imple-
ment this by asking upstream farmers to use no-till practices, for instance [211].
This is equivalent to starting at high floating plant abundances, low submerged
plant abundances, and then see what happens at different nitrogen levels.

> Initial.Eutrophic <- c(F = 600, S = 10)

> S.s.E <- t(sapply(N.s, function(x) {
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+ p["N"] <- x

+ ode(Initial.Eutrophic, c(1, 1000), scheffer, p)[2, 2:3]

+ }))

Now we plot, not the time series, but rather the asymptotic abundances vs. the
nitrogen levels (Fig. 8.6b).

> matplot(N.s, S.s.E, type = "l")

> arrows(4, 500, 2, 500, length = 0.1, lwd = 3, col = "grey")

> text(4, 500, "Declining N", adj = c(1, -0.5))

Fig. 8.6: The outcome of competition depends on the history of nutrient loading.

Wait a second! If we start at high floating plant biomass (Fig. 8.6b), the
catastrophic shift takes place at a much lower nitrogen level. This is telling us
that from around N =0.9–2.7, the system has two stable basins of attraction,
or alternative stable states. It might be dominated either by floating plants or
by submerged plants. This is often described as hysteresis, where there is more
than one value of the response for each value of the predictor variable.

Now let’s represent these changes for the two state variables in the aquatic
plant model. First we represent the floating plants. Here we plot the low abun-
dance state for the floating plants, adjusting the figure margins to accommodate
all abundances, and then add in the high abundance data (Fig. 8.3b).

> plot(N.s[1:23], S.s[1:23, 1], type = "l", lwd = 2, xlim = c(0,

+ 4), ylim = c(0, 900), main = "Floating Plants", ylab =

+ expression("Biomass (g m"^-2 * ")"), xlab = "Nitrogen Supply Rate")

> lines(N.s[-(1:5)], S.s.E[-(1:5), 1], lwd = 2)

Here we reinforce the concepts of multiple basins and hysteresis, by showing
where the attractors are. I will use arrows to indicate these basins. At either
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high nitrogen or very low nitrogen, there is a single, globally stable attractor.
At low nutrients, only submerged plants exist regardless of starting conditions.
At high nutrients, only floating plants persist. Let’s put in those arrows (Fig.
8.3b).

> arrows(3, 10, 3, 620, length = 0.1); arrows(3, 820, 3, 720, length =

> arrows(0.5, 620, 0.5, 50, length = 0.1)

Next we want arrows to indicate the alternative basins of attraction at interme-
diate nitrogen supply rates. Floating plants might be at kept at low abundance
at intermediate nitrogen supply rates if submerged plants are abundant (Fig.
8.6b). Let’s indicate that with a pair of arrows.

> arrows(2.5, -10, 2.5, 60, length = 0.1)

> arrows(2.5, 200, 2.5, 100, length = 0.1)

> text(2.5, 100, "Coexisting\nwith S", adj = c(1.1, 0))

Alternatively, if submerged plants were at low abundance, floating plants would
get the upper hand by lowering light levels, which would exclude submerged
plants altogether (Fig. 8.3b). Let’s put those arrows in (Fig. 8.3b).

> arrows(2, 480, 2, 580, length = 0.1); arrows(2, 750, 2, 650, length = 0.1)

> text(2, 700, "Monoculture", adj = c(1.1, 0))

Now let’s repeat the exercise with the submerged plants. First we plot the
high abundance state, and then add the low abundance state (Fig. 8.3a).

> plot(N.s[1:23], S.s[1:23, 2], type = "l", lwd = 2, xlim = c(0,

+ 4), ylim = c(0, 900), main = "Submerged Plants",

ylab = expression("Biomass (g m"^-2 *+ ")"), xlab = "Nitrogen SupplyRate")

> lines(N.s[-(1:5)], S.s.E[-(1:5), 2], lwd = 2)

Now we highlight the global attractors that occur at very low or very high
nitrogen supply rates (Fig. 8.3a).

> arrows(0.7, 30, 0.7, 830, length = 0.1)

> arrows(3.8, 830, 3.8, 30, length = 0.1)

Next we highlight the local, alternative stable equilibria that occur at interme-
diate nitrogen supply rates; either the submerged plants are dominating due to
nitrogen competition, and achieving high abundance,

> arrows(2.3, 650, 2.3, 750, length = 0.1)

> arrows(2.3, 900, 2.3, 800, length = 0.1)

> text(2.4, 900, "Coexisting\nwith F", adj = c(0, 1))

or they are excluded entirely, due to light competition (Fig. 8.3a).

> arrows(2, 130, 2, 30, length = 0.1)

> text(2, 140, "Excluded\nDue to Light Comp.", adj = c(0.5,

+ -0.3))

Once again, we see what underlies these alternative states, or basins (Fig.
8.3). One population gains a numerical advantage that results in an inordi-
nately large negative effect on the loser, and this competitive effect comes at

0.1)
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little cost to the dominant species. At intermediate nitrogen supply rates, the
submerged vegetation can reduce ambient nitrogen levels in the water column
to undetectable levels because it gets most of its nitrogen from sediments. On
the other hand, if floating plants can ever achieve high densities (perhaps due
to a temporary nutrient pulse), then the shade they cast at intermediate supply
rates prevents lush growth of the submerged plants. As a consequence, the sub-
merged plants can never grow enough to draw nitrogen levels down to reduce
the abundance of the floating plants.

8.4 Intraguild Predation

Intraguild predation (IGP) differs from omnivory only in degree (Chapter 7). In
omnivory, a predator shares a resource with one or more of its prey (Fig. 8.4).
Thus the top predator feeds relatively high on the food chain, getting most of its
energy or resources by eating its competitor (a > 0.5 in Fig. 8.4). An extension
of this is the case of intraguild predation, in which a species preys upon one
or more of its competitors (Fig. 8.4). Intraguild predation is thus refers to the
case in which the top predator gets most of its energy or resources from the
more basal resource, eating lower on the food chain (a < 0.5 in Fig. 8.4). The
distinction is not qualitative, but rather quantitative. If both consumer species
prey upon each other, then we could make the argument that the name we
ascribe to it depends entirely upon one’s perspective. In such a case, however,
we generally refer to the relations as intraguild predation.

N

P

a

B

1-a A

Fig. 8.7: We typically use “omnivory” when a > 0.5, and “intraguild predation” when
a < 0.5. If we remove A from this model, then the species represent those of Holt and
Polis [79].
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8.4.1 The simplest Lotka–Volterra model of IGP

We can extend our good ol’ Lotka–Volterra competition model to describe in-
traguild predation. All we do is add a term onto each competitor. For the
competitor that gets eaten (the “IG-prey”), we subtract mass action predation,
with a constant attack rate, a. For the top predator (the “IG-predator”), we add
this same term, plus an conversion efficiency, b � 1.

dN1

dt
= r1N1 (1 − α11N1 − α12N2) + baN1N2 (8.6)

dN2

dt
= r2N2 (1 − α21N1 − α22N2) − aN1N2 (8.7)

Here a is attack rate of the IG-predator, N1, on the IG-prey, N2; b is the conver-
sion efficiency of the prey into predator growth. Recall that this is the classic
type I predator functional response of Lotka–Volterra predation.

Let’s work through a little logic.

• In the absence of the other species, each species will achieve its usual car-
rying capacity, 1/αii.

• If we could have stable coexistence without IG-predation, then adding pre-
dation will increase the risk of extinction for the prey, and increase the
abundance (if only temporarily) for the predator.

• If the poorer competitor is able to feed on the better competitor, this has
the potential to even the scales.

• If the poor competitor is also the prey, then — forget about it — the chances
of persistence by the IG-prey are slim indeed.

Now let’s move on to a model of intraguild predation with resource compe-
tition.

8.4.2 Lotka–Volterra model of IGP with resource competition

Here we introduce a simple IGP model where the competition between con-
sumers is explicit resource competition [79], rather than direct competition as
in the Lotka–Volterra model above. The resource for which they compete is a
logistic population.

dP
dt

= βPBαBPPB + βPNαNPPN − mPP (8.8)

dN
dt

= βNBαBN BN − mN N − αNPPN (8.9)

dB
dt

= rB (1 − αBBB) − αBN BN − αBPPB (8.10)

Recall that the units for attack rate, α, are number of prey (killed) per individual
of prey per individual of predator; the units for conversion efficiency, β, are
number of predators (born) per number of prey (killed, and presumably eaten
and assimilated). The consumers in this model have a type I functional response
(mass action). The basal resource species exhibits logistic population growth.

Holt and Polis show analytically that five equilibria are present [79].



244 8 Multiple Basins of Attraction

1. All species have zero density.
2. Only the resource, B, is present, at B = K.
3. Only the resource, B, and IG-prey, N, are present.
4. Only the resource, B, and IG-predator, P, are present.
5. All species present.

We will explore how initial conditions influence the outcomes of this simple
IGP model. We will focus on the last three equilibria, with two or three species
present.

Are there lessons we can apply from the previous competition models? In
those cases, we tended to get MBAs when the negative effects each species on
its competitors was greater than its negative effects on itself. How can we apply
that to predation?
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Fig. 8.8: Initial abundance (a) determines whether the IG-predator, P, or the IG-prey,
N, win (b). Parameters are those set with the vector params1 (see below).

Let us think about net effects of the IG-predator and IG-prey, both com-
petition and consumption. Recall that the IG-prey must be the superior com-
petitor — this means that, given similar attack rates on the basal resource B
(αBN = αBP), the IG-prey must have a greater conversion efficiency (βNB > βPB).8

In the absence of IG-predation, the superior competitor would always exclude
the inferior competitor. However, if we add predation to suppress the superior
competitor, then the IG-predator could win. If the relationship is such that each
species has a larger net effect on each other than on themselves, we see that
initial abundance (Fig. 8.8a) determines the winners (Fig. 8.8b). This allows
either species to win, but not coexist.

8 Think of conversion efficiency as the effect of the prey i on the predator j, βi j.
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Fig. 8.9: Conversion efficiencies and attack rates control coexistence. (a) With low
conversion effciency, and high attack rates, species do not coexist. (b) By reducing the
attack rate of the predator on the prey (αNP = 10−4 → 10−7), and increasing the direct
benefit of prey to the predator (βPN = 10−5 → 0.5), we get coexistence. Parameters are
otherwise the same as in Fig. 8.11 (see params2 below).

How might we get coexistence between IG-predator and IG-prey? We have
already provided an example where the IG-prey is the better resource competi-
tor (Fig. 8.8). To reduce the negative effect of the IG-predator on the IG-prey,
we can reduce attack rate. However, when we do that, the predator cannot in-
crease when it is rare (Fig. 8.9a). If we further allow the predator to benefit
substantially from each prey item (increasing conversion efficiency), then we see
that the IG-predator can increase when rare, but eliminate the prey. Indeed,
these are the essential components suggested by Holt and Polis: species coexist
when their negative effects on each other are weaker (of smaller magnitude)
than their negative effects on themselves. In a consumer–resource, predator-
prey context, this can translate to reduced attack rates, and greater efficiency
of resource use.

8.4.3 Working through an example of intraguild predation

To play with IBP in R, we start by examining an R function for the above
Lotka–Volterra intraguild predation model, igp.

> igp

function (t, y, params)

{

B <- y[1]

N <- y[2]

P <- y[3]
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with(as.list(params), {

dPdt <- bpb * abp * B * P + bpn * anp * N * P - mp *

P

dNdt <- bnb * abn * B * N - mn * N - anp * N * P

dBdt <- r * B * (1 - abb * B) - abn * B * N - abp * B *

P

return(list(c(dBdt, dNdt, dPdt)))

})

}

This code uses three-letter abbreviations (αNP = anp). The first letter, a or b,
stands for α and β. The next two lower case letters correspond to one of the
populations, B, N, and P.

Next, we create a vector to hold all those parameters.

> params1 <- c(bpb = 0.032, abp = 10^-8, bpn = 10^-5, anp = 10^-4,

+ mp = 1, bnb = 0.04, abn = 10^-8, mn = 1, r = 1, abb = 10^-9.5)

Here we get ready to actually do the simulations or numerical integration with
ode. We set the time, and then we set four different sets (rows) of initial popu-
lation sizes, label them, and look at them.

> t = seq(0, 60, by = 0.1)

> N.init <- cbind(B = rep(10^9, 4), N = 10^c(2, 5, 3, 4), P = 10^c(5,

+ 2, 3, 4))

Now we integrate the population dynamics and look at the results. Here we
first set up a graphics device with a layout of four figures and fiddle with the
margins. We then use a for-loop to integrate and plot four times. Then we add
a legend.

> quartz(, 4, 4)

> layout(matrix(1:4, nr = 2))

> par(mar = c(4, 4, 1, 1))

> for (i in 1:4) {

+ igp.out <- ode(N.init[i, 1:3], t, igp, params1)

+ matplot(t, log10(igp.out[, 2:4] + 1), type = "l", lwd = 2,

+ ylab = "log(Abundance)")

+ }

Clearly, initial abundances affect which species can coexist (Fig. 8.10). If
either consumer begins with a big advantage, it excludes the other consumer.
In addition, if they both start at low abundances, the IG-prey, N, excludes the
predator; if they start at moderate abundances, the IG-predator, P, wins.

Now we need to get more thorough and systematic. The above code and
its results show us the dynamics (through time) of particular scenarios. This is
good, because we need to see how the populations change through time, just
to see if unexpected things happen, because sometimes unexpected dynamics
happen. A complementary way to analyze this model is to vary initial conditions
more systematically and more thoroughly, and then simply examine the end
points, rather than each entire trajectory over time. It is a tradeoff — if we
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Fig. 8.10: Dynamics of Lotka Volterra intraguild predation, with differing initial abun-
dances. See code for parameter values. Solid line - basal resource, dashed line - IG-prey,
dotted line - IG-predator.

want to look at a lot of different initial conditions, we can’t also look at the
dynamics.

In the next sections, we examine the effects of relative abundance of the two
consumers, and then of their absolute abundances.

8.4.4 Effects of relative abundance

First we will vary the relative abundances of the IG-prey and IG-predator, N
and P. We create a slightly more complete set of initial abundances, with B
constant, and N increases as P decreases.

> logNP <- seq(2, 5, by = 0.1)

> N.inits <- cbind(B = rep(10^9, length(logNP)), N = 10^logNP,

+ P = 10^rev(logNP))

We see (scatterplot matrix not shown) that we do have negative covariation
in the starting abundances in the two consumer species, the IG-prey and IG-
predator.
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Next, we need to perform all9 the simulations, and hold on to all the end-
points.10 We do it over a long time span to see the (hopefully) truly asymptotic
outcomes. We use a little manipulation to hang on to the initial abundances,
at t = 50 and the final abundances at t = 500, putting them each in their own
column and hanging on to it.

> t1 <- 1:500

> MBAs <- t(sapply(1:nrow(N.inits), function(i) {

+ tmp <- ode(N.inits[i, ], t1, igp, params1, hmax = 0.1)

+ cbind(tmp[1, 3:4], tmp[50, 3:4], tmp[500, 3:4])

+ }))

> colnames(MBAs) <- c("N1", "P1", "N50", "P50", "N500", "P500")

Now we need to show our results. We are interested in how the relative initial
abundances of the two consumers influence the emergence of MBA. Therefore,
let’s put the ratio of those two populations (actually the logarithm of the ratio,
log[N/P]11) on an X-axis, and graph the abundances of those two species on the
Y-axis. Finally, we plot side by side the different time points, so we can see the
initial abundances, the transient abundances, and (perhaps) something close to
the asymptotic abundances.

> matplot(log10(N.inits[, "N"]/N.inits[, "P"]), log10(MBAs[,

+ 1:2] + 1), type = "l", col = 1, lty = 2:3, lwd = 2, ylab = "log(Abundance+1)",

+ xlab = "log[N/P]")

> legend("right", c("N", "P"), lty = 2:3, col = 1, bty = "n")

> matplot(log10(N.inits[, "N"]/N.inits[, "P"]), log10(MBAs[,

+ 3:4]+ 1), type = "l", col = 1,lty = 2:3, lwd = 2, ylab = "log(Abundance+1)",

+ xlab = "log[N/P]")

> matplot(log10(N.inits[, "N"]/N.inits[, "P"]), log10(MBAs[,

+ 5:6]+ 1), type = "l", col= 1,lty = 2:3, lwd = 2, ylab = "log(Abundance+1)",

+ xlab = "log[N/P]")

It is still amazing to me that different initial abundances can have such a
dramatic effect (Fig. 8.11). It is also interesting that they take so long to play
out. It all really just makes you wonder about the world we live in.

8.4.5 Effects of absolute abundance

Now let’s hold relative abundance constant and equal, and vary absolute abun-
dance. Recall that in our first explorations, we found different outcomes, de-

9 Recall that sapply and related functions “apply” a function (in this case a simu-
lation) to each element of the first argument (in this case each row number of the
initial abundance matrix).

10 We transpose the output matrix (t()) merely to keep the populations in columns.
We also use the hmax argument in ode to make sure the ODE solver doesn’t try to
take steps that are too big.

11 logarithms of ratios frequently have much nicer properties than the
ratios themselves. Compare hist(log(runif(100)/runif(100))) vs.
hist(runif(100)/runif(100)).
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pending on different total abundances. Now instead of varying N and P in
opposite order, we have them covary positively.

> logAbs <- seq(2, 7, by = 0.2)

> N.abs.inits <- cbind(B = rep(10^9, length(logAbs)), N = 10^logAbs,

+ P = 10^logAbs)

Now we simulate12 the model, using the same basic approach as above, setting
the time, and hanging on to three different time points.

> t1 <- 1:500

> MBA.abs <- t(sapply(1:nrow(N.abs.inits), function(i) {

+ tmp <- ode(N.abs.inits[i, ], t1, igp, params1, hmax = 0.1)

+ cbind(tmp[1, 3:4], tmp[50, 3:4], tmp[500, 3:4])

+ }))

> colnames(MBAs) <- c("N1", "P1", "N50", "P50", "N500", "P500")

We plot it as above, except that now we simply use log10-abundances on the
x-axis, rather than the ratio of the differing abundances.

> layout(matrix(1:3, nr = 1))

> matplot(log10(N.abs.inits[, "N"]), log10(MBA.abs[, 1:2] +

+ 1), type = "l", main = "Initial Abundances (t=1)", col = 2:3,

+ lty = 2:3,lwd = 2,ylab = "log(Abundance+1)",xlab= expression(log[10]("N")))

> legend("right", c("N", "P"), lty = 2:3, col = 2:3, bty = "n")

> matplot(log10(N.abs.inits[, "N"]), log10(MBA.abs[, 3:4] +

+ 1), type = "l", main = "At time = 50)", col = 2:3, lty = 2:3,

+ lwd = 2, ylab = "log(Abundance+1)", xlab = expression(log[10]("N")))

> matplot(log10(N.abs.inits[, "N"]), log10(MBA.abs[, 5:6] +

+ 1), type = "l", main = "At time = 500", col = 2:3, lty = 2:3,

+ lwd = 2, ylab = "log(Abundance+1)", xlab = expression(log[10]("N")))

8.4.6 Explanation

Now, . . . we have to explain it! Let’s begin with what we think we know from
Lotka–Volterra competition — each species has a bigger effect on the others
than on itself. How do we apply that here. First let’s look at the per capita
direct effects, the parameters for each interaction.

B N P
B r − rαBBB −αBN −αBP

N βNBαBN 0 −αNP

P βPBαBP βPNαNP 0

(8.11)

Then we calculate the values for these and ask if competitors have larger effects
on each other than they do on themselves.

12 Unfortunately ’simulate’ may mean ’integrate,’ as it does here, or any other kind
of made up scenario.
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Fig. 8.11: Initial, transient, and near-asymptotic abundances of the intraguild prey, N,
and predator, P, of Lotka–Volterra intraguild predation, with differing initial abun-
dances.

> params1

bpb abp bpn anp mp bnb abn

3.200e-02 1.000e-08 1.000e-05 1.000e-04 1.000e+00 4.000e-02 1.000e-08

mn r abb

1.000e+00 1.000e+00 3.162e-10

> with(as.list(params1), {

+ rbind(B = c(r - r * abb * 10^9, -abn, -abp), N = c(bnb *

+ abn, 0, -anp), P = c(bpb * abp, bpn * anp, 0))

+ })

[,1] [,2] [,3]

B 6.838e-01 -1e-08 -1e-08

N 4.000e-10 0e+00 -1e-04

P 3.200e-10 1e-09 0e+00

> with(as.list(params1), {

+ rbind(B = c(r - r * abb * 10^9, -abn, -abp), N = c(bnb,

+ 0, -anp), P = c(bpb, bpn, 0))

+ })

[,1] [,2] [,3]

B 0.6838 -1e-08 -1e-08

N 0.0400 0e+00 -1e-04

P 0.0320 1e-05 0e+00

So, from this we are reminded that the per capita direct effects on B, the basal
resource, by both consumers are the same. N, the IG-prey, however, benefits
more per capita, and so can attain a higher population size, and therefore could
persist, and also exclude P. Thus it has a larger indirect negative effect on P
than on itself. P, on the other hand, could have a huge direct negative effect on
N. To achieve this effect, however, P has to have a sufficiently large population
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size. That is exactly why we get the results we do. If N starts out as relatively
abundant, it reduces B and probably excludes P. If, on the other hand, P is
abundant, they can have a large direct negative effect on N, and exclude N.

Holt and Polis suggest that coexistence is more likely when (i) the IG-prey
is the better competitor (as we have above) and (ii) the IG-predator benefits
substantially from feeding on the IG-prey, that is, when the conversion efficiency
of prey into predators, βPN , is relatively large.

Let’s try increasing βPN to test this idea. Let’s focus on the ASS where
the predator is excluded, when both species start out at low abundances (Fig.
8.10, upper right panel). We can focus on the invasion criterion by starting N
and B at high abundance and then test whether the predator can invade from
low abundance. We can really ramp up βPN to be 100 times βPB. This might
make sense if N nutrient value is greater than B. In real food chains this seems
plausible, because the C:N and C:P ratios of body tissue tend to decline as one
moves up the food chain [193]; this makes animals more nutritious, in some
ways, than plants.

> params2 <- params1

> params2["anp"] <- 10^-7

Now we numerically integrate the model, and plot it.

> t <- 1:500

> N.init.1 <- c(B = 10^9, N = 10^7, P = 1)

> trial1 <- ode(N.init.1, t, igp, params2)

> matplot(t, log10(trial1[, -1] + 1), type = "l", col = 1,

+ ylab = quote(log[10] * ("Density+1")))

> legend("bottomright", c("B", "N", "P"), lty = 1:3, bty = "n")

Whoa, dude! Fig. 8.9a reveals very different results from those in Fig. 8.11, but
makes sense, right? We make the predator benefit a lot more from each prey
item, then the predator doesn’t need to be a good competitor, and can persist
even if the IG prey reduces the basal resource level. Our next step is to rein the
predator back in. One way to do this is to reduce the attack rate, so that the
predator has a smaller per capita direct effect on the prey. It still benefits from
eating prey, but has a harder time catching them. Let’s change αNP from 10−4
to 10−7 and see what happens.

> params2["bpn"] <- 0.5

> trial2 <- ode(N.init.1, t, igp, params2)

> matplot(t, log10(trial2[, -1] + 1), type = "l", col = 1,

+ ylab = quote(log[10] * ("Density+1")))

Now that we have allowed the predator to benefit more from individual
prey (Fig. 8.9b), but also made it less likely to attack and kill prey, we get
coexistence regardless of the predator starting at low abundance. Additional
exploration would be nice, but we have made headway. In particular, it turns
out that this model of intraguild predation yields some very interesting cases,
and the outcomes depend heavily on the productivity of the system (i.e., the
carrying capacity of B). Nonetheless, we have explored the conditions that help
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facilitate coexistence of the consumers — the IG-prey is the superior exploitative
competitor, and the IG-predator benefits substantively from the prey.

8.5 Summary

A few points are worth remembering:
• Alternative stable equibria, alternative stable states, and multiple basins of

attraction are defined generally as mulitple attractors in a system defined
by a particular suite of species in a environment in which external fluxes
are constant.

• Hysteresis is typically an example of alternative stable states that are re-
vealed through gradual changes in an external driver, such as temperature,
or nutrient supply rate.

• Alternative stable equilibria will have low invasibility by definition; this lack
of invasibility might come about through large direct negative effects (high
attack rate, or aggression), or through a preempted resource (e.g. light in-
terception, an exclusive substitutable resource, or allelopathy). There could
also be life history variation, where long lived adults prevent colonization
by less competitive juveniles, or juveniles vulnerable to predation [165].

• Alternative stable equilibria seem to be more common when species have
relatively larger negative effects on each other and weaker negative effects
on themselves.

Problems

8.1. General
Compare and contrast the terms “alternative stable states” and “multiple basins
of attraction.” Define each and explain how the terms are similar and how they
differ.

8.2. Lotka–Volterra competition
(a) Explain what we learn from Figure 8.2 regarding how growth rate, initial
abundance and intraspecific density dependence (or carrying capacity) influ-
ence outcomes. Specifically, which of these best predicted the final outcome of
competition? Which was worst? Explain.
(b) Explain in non-mathematical terms why strong interference allows for pri-
ority effects.
(c) Create a simulation to more rigorously test the conclusions you drew in part
(a) above.

8.3. Resource competition
(a) Explain hysteresis.
(b) Alter the equation for submerged plants to represent the hypothetical situa-
tion in which submerged plants get most or all of their resources from the water
column. Explain your rationale, and experiment with some simulations. What
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would you predict regarding (i) coexistence and (ii) hysteresis? How could you
test your predictions?

8.4. Intraguild Predation
(a) Use Figure 8.8 to explain how initial abundances influence outcomes. Are
there initial conditions that seem to result in all species coexisting? Are there
things we should do to check this?
(b) Explain how high attack rates and low conversion efficiencies by the top
predator create alternative stable states.
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