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An Introduction to Food Webs, and Lessons
from Lotka—Volterra Models

A food web is a real or a model of a set of feeding relations among species or
functional groups. This chapter has two foci, (i) a very brief introduction to
multi-species webs as networks, and (ii) a re-examination of old lessons regard-
ing the effect of food chain length on a web’s dynamical properties.
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Fig. 7.1: Two representations of a food web with 4 nodes and 8 directed links. The
link label “v” indicates the proportion of P’s diet comprised of R.

7.1 Food Web Characteristics

We need language to describe the components of a food web, such as links and
nodes, and we also need language to describe the properties of a web as a whole.
Generally speaking, networks such as food webs have emergent properties [133],
such as the number of nodes in the network. Emergent properties are typically
considered to be nothing more than characteristics which do not exist at sim-
pler levels of organization. For instance, one emergent property of a population
is its density, because population density cannot be measured in an individual;
that is why density is an emergent property.! While all food web models are

' If we assume no supernatural or spectral interference, then we can also assume that
density arises mechanistically from complicated interactions among individuals and
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based on simple pairwise interactions, the resulting emergent properties of mul-
tispecies webs quickly become complex due to indirect interactions and coupled
oscillations [11,208]. In addition, any extrinsic factor (e.g., seasonality) that
might influence species interactions may also influence the emergent properties
of food webs.

A few important network descriptors and emergent properties include,

Node A point of connection among links, a.k.a. trophospecies; each node in
the web may be any set of organisms that share sufficiently similar feeding
relations; in Fig. 7.1, P may be a single population of one species, or it may
be a suite of species that all feed on both B and R.

Link A feeding relation; a connection between nodes or trophospecies; may be
directed (one way) or undirected. A directed link is indicated by an arrow,
and is the effect (+, —) of one species on another. An undirected link is
indicated by a line (no arrow head), and is merely a connection, usually
with positive and negative effects assumed, but not quantified.

Connectance The proportion of possible links realized. Connectance may be
based on either directed, Cp, or undirected, Cy, links. For Fig. 7.1 these

would be
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where S is the number of species or nodes.

Degree distribution, Pr(i) The probability that a randomly chosen node will
have degree i, that is, be connected to i other nodes [133]. In Fig. 7.1, A is
of degree 1 (i.e., is connected to one other species). P and B are of degree
2, and R is of degree 3. If we divide through by the number of nodes (4, in
Fig. 7.1), then the degree distribution consists of the probabilities Pr (i) =
{0.25, 0.5, 0.25}. As webs increase in size, we can describe this distribution
as we would a statistical distribution. For instance, for a web with randomly
placed connections, the degree distribution is the binomial distribution [34].

Characteristic path length Sometimes defined as the average shortest path
between any two nodes [47]. For instance, for Fig. 7.1, the shortest path
between P and R is 1 link, and between A and P is 2 links. The average of
all pairwise shortest paths is (1+1+1+1+2+2)/6 = 1.3. It is also sometimes
defined as the average of all paths between each pair of nodes.

Compartmentation, C; The degree to which subsets of species are highly
connected or independent of other species.

To calculate compartmentation in a food web, first assume each species
interacts with itself. Next, calculate the proportion of shared interactions,
pij for each pair of species, by comparing the lists of species with which each

their environments, rather than via magic. Other scientists will disagree and say
that properties like density that appear to be simple additive aggregates do not
qualify for the lofty title of “emergent property.”
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species in a pair interacts. The numerator of p;; is the number of species
with which both of the pair interact. The denominator is the total number
of different species with which either species interacts.

As an example, let’s calculate this for the above food web (Fig. 7.1). A
interacts with A and R, B interacts with B, R, and P. Therefore, A and B
both interact with only R, whereas, together, A and B interact with A, B,
R, and P. The proportion, p;;, therefore is 1/4 = 0.25. We do this for each
species pair.

Next we sum the proportions, and divide the sum by the maximum possible
number of undirected links, Cy. To reiterate: For any pair of species, i and

Species| A B P C - S5 X pij
R 2/43/43/4 T =8) 2
A 1/41/4 ~35/6
B 3/3 =33/

=0.58

j (i # Jj), pij is the proportion of shared interactions, calculated from the
number of species that interact with both species i and j, divided by the
number of species that interact with either species i or species j. As above,
S is the number of species or nodes in the web.

Trophic Level Trophic position may simply be categorized as basal, inter-
mediate or top trophic positions. Basal positions are those in which the
trophospecies feed on no other species. The top positions are those in which
the trophospecies are fed upon by nothing. One can also calculate a quanti-
tative measure of trophic level. This is important in part because omnivory,
something rampant in real food webs, complicates identification of a trophic
level. We can calculate trophic level for the top predator, P (Fig. 7.1), and
let us assume that P gets two-thirds of what it needs from B, and gets
one-third from A. B itself is on the second trophic level, so given that, the
trophic level of P is calculated as

S
Ti=1+ Z Tpi; =1+ (2(0.67) +1(0.33)) = 2.67

J=1

where T is the trophic level of species i, T'; is the trophic level of prey species
J, and p;; is the proportion of the diet of predator i consisting of prey ;.

Omnivory Feeding on more than one trophic level (v > 0, Fig. 7.1); it is not
merely feeding on different species or resources.

Intraguild predation A type of omnivory in which predation occurs between
consumers that share a resource; in Fig. 7.1 P and B share prey R. When
P gets most of its energy from B, we typically refer to that as omnivory
(v <0.5); when P gets most of its energy from R, we typically refer to that
as intraguild predation (v > 0.5).

This list of food web descriptors is a fine start but is by no means exhaustive.
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7.2 Food chain length — an emergent property

There are many interesting questions about food webs that we could address;
let us address one that has a long history, and as yet, no complete answer:
What determines the length of a food chain? Some have argued that chance
plays a large role [34,81,221], and others have shown that area [122,178] or
ecosystem size [167] may play roles. The explanation that we will focus on here
is dynamical stability. Communities with more species had been hypothesized
to be less stable, and therefore less likely to persist and be observed in nature.
Stuart Pimm and John Lawton [159] extended this work by testing whether
food chain length could be limited by the instability of long food chains [167].

7.2.1 Multi-species Lotka—Volterra notation

A many-species Lotka—Volterra model can be represented in a very compact

form,
S
b,‘ + Z Cl,'ij
J=1

where S is the number of species in the web, b; is the intrinsic rate of increase
of species i (i.e., r;), and g;; is a per capita effect of species j on species i.

When i = j, a;;j refers to an intraspecific effect, which is typically negative.
Recall that in our earlier chapters on competition, we used a; to represent
intraspecific per capita effects. Here for notational convenience, we leave i and
J in the equation, realizing that i = j for intraspecific interactions. Further, we
let a;; be any sign, either positive or negative, and sum the effects. If we let
X =N, b=r, and a = ra, then the following are equivalent:

dX;
— =X 7.1
m (7.1)

Ny = rNi (1 = a; Ny — @12N2)
X =X, (by +an X +anXz)

The notation in eq. 7.1 is at once both simple and flexible. When q;; is negative,
it may represent competition or the effect of a predator, j, on its prey, i. When
a;j is positive, it may represent mutualism or the effect of prey jon a predator i.

7.2.2 Background

In the early and mid-1970’s, Robert May and others demonstrated that im-
portant predictions could be made with relatively simple Lotka—Volterra mod-
els [127], and this work still comprises an important compendium of lessons for
ecologists today [133]. May used simple Lotka—Volterra models to show that
increasing the number of species in a food web tended to make the food web
less stable [127,134]. In species-rich webs, species were more likely to become
extinct. Further, he showed that the more connections there were among species
in the web (higher connectance), and the stronger those connections (higher in-
teraction strength), the less stable the web. At the time, this ran counter to a
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(c)

Fig. 7.2: (a), (b), and (c) correspond to Pimm and Lawton (1977) Figs. 1A, E, and B.
Note that (b) differs from (a) in that (b) has only two trophic levels instead of four.
Note also that (c) differs from (a) only in that species 4 has an additional omnivorous
link. All basal species exhibit negative density dependence.

prevailing sentiment that more diverse ecosystems were more stable, and led to
heated discussion.

May used specific quantitative definitions of all of his ideas. He defined
connectance as the proportion of interactions in a web, given the total number of
all possible directed interactions (i.e., directed connectance). Thus a linear food
chain with four species (Fig. 7.2a), and intraspecific competition in the basal
(bottom) species would have a connectance of 4/16 = 0.25. May’s definition of
interaction strength was the square root of the average of all aiz,. (i+7),

iS:I f:l,i;tj aij

S7_s . (7.2)
Squaring the a;; focuses on magnitudes, putting negative and positive values on
equal footing.

An important component of May’s work explored the properties of randomly
connected food webs. At first glance this might seem ludicrous, but upon con-
sideration, we might wonder where else one could start. Often, simpler (in this
case, random) might be better. The conclusions from the random connection
models act as null hypotheses for how food webs might be structured; deviations
from May’s conclusions might be explained by deviations from his assumptions.
Since this work, many ecologists have studied the particular ways in which webs
in nature appear non-random.

One conclusion May derived was a threshold between stability and instability
for random webs, defined by the relation

I(SCp)'? =1 (7.3)
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where I is the average interaction strength, S is the number of species, and
Cp is directed connectance. If 1(SC)Y/? > 1, the system tended to be unstable
(Fig. 7.3). Thus, if we increase the number of species, we need to decrease the
average interaction strength if we want them to persist. The larger and more
tightly connected (larger I, S, and Cp) the web, the more likely it was to come
crashing down. Therefore, if longer food chains were longer by virtue of having
more species, they would be less stable because of the extra species, if for no
other reason.

30

25

Number of Species (S)
10 15
!

0.2 0.4 0.6 0.8 1.0

Interaction Strength (1)

Fig. 7.3: Relation between the average interaction strength and the number of species
able to coexist (here directed connectance is Cp = 0.3). The line represents the maxi-
mum number of species that are predicted to be able to coexist at equilibrium. Fewer
species could coexist, but, on average, more species cannot coexist at equilibrium.

Pimm and Lawton felt that it seemed reasonable that long chains might be
less stable also because predator-prey dynamics appear inherently unstable, and
a connected series of unstable relations seemed less likely to persist than shorter
chains. They tested whether food chain length per se, and not the number of
species, influenced the stability of food chains. Another question they addressed
concerned omnivory. At the time, surveys of naturally occurring food webs
had indicated that omnivory was rare [160]. Pimm and Lawton tested whether
omnivory stabilized or destabilized food webs [159,160].

Like May, Pimm and Lawton [159] used Lotka—Volterra models to investigate
their ideas. They designed six different food web configurations that varied
food chain length, but held the number of species constant (Fig. 7.2). For each
food web configuration, they varied randomly interaction strength and tested
whether an otherwise randomly structured food web was stable. Their food
webs included negative density dependence only in the basal species.

Pimm and Lawton concluded that (i) shorter chains were more stable than
longer chains, and (ii) omnivory destabilized food webs (Fig. 7.5). While these
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conclusions have stood the test of time, Pimm and Lawton failed to highlight
another aspect of their data — that omnivory shortened return times for those
webs that were qualitatively stable (Fig. 7.7). Thus, omnivory could make more
stable those webs that it didn’t destroy. Subsequent work has elaborated on
this, showing that weak omnivory is very likely to stabilize food webs [137,138].

7.3 Implementing Pimm and Lawton’s Methods

Here we use R code to illustrate how one might replicate, and begin to extend,
the work of Pimm and Lawton [159].

In previous chapters, we began with explicit time derivatives, found partial
derivatives and solved them at their equilibria. Rather than do all this, Pimm
and Lawton bypassed these steps and went straight to the evaluated Jacobian
matrix. They inserted random estimates for the elements of the Jacobian into
each non-zero element in the food web matrix. These estimates were constrained
within (presumably) reasonable limits, given large less abundant predators and
small more abundant prey.

Their methods followed this approach.

1. Specify a food web interaction matrix.?

2. Include negative density dependence for basal species only.

3. Set upper and lower bounds for the effects of predators on prey (0 to —10)
and prey on predators(0 to +0.1); these are the Jacobian elements.

4. Generate a large number of random Jacobian matrices and perform linear
stability analysis.

5. Determine qualitative stability (test 4; < 0), and return time for each ran-
dom matrix. Use these to examine key features of the distributions of return
times (e.g., average return time).

6. Compare the stability and return times among different food web configu-
rations that varied systematically in food chain length and the presence of
omnivory, but hold the number of species constant.

It is worth discussing briefly the Jacobian elements. May [127] defined in-
teraction strength as the Jacobian element of a matrix, which represents the
total effect of one individual on the population growth rate of another species.
Think about how you calculate the Jacobian — as the partial derivative of
one species’ growth rate with respect to the size of the other population. It is
the instantaneous change in the population growth rate per unit change in the
population of another, at the equilibrium. The units chosen for the Jacobian
elements thus mean that individual predators have relatively much larger effects
on the population growth rates of prey than vice versa.

Let’s build a function that does what Pimm and Lawton did. There are an
infinite number of ways to do this, but this will suffice. First, we’ll create a
matrix that represents qualitatively the simplest longest food chain (Fig. 7.2a)
where each species feeds only on one other species and where no prey are fed

2 In the original publication, webs E and D seem to be represented incorrectly.
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upon by more than one consumer. Initially, we will use the values of greatest
magnitude used by Pimm and Lawton.

> Aq = matrix(c(-1, -10, 0, 0, 0.1, 0, -10, 0, 0, 0.1, 0, -10,
+ 0, 0, 0.1, 0), nrow = 4, byrow = TRUE)

Note that this matrix indicates a negative effect of the basal species on itself,
large negative effects (—10) of each consumer on its prey, and small positive
effects of each prey on its consumer.

For subsequent calculations, it is convenient to to find out from the matrix
itself how big the matrix is, that is, how many species, S, are in the web.

> S <- nrow(Aq)

Next, we create a random realization of this matrix by multiplying each ele-
ment times a unique random number between zero and 1. For this matrix, that
requires 4% unique numbers.

> M <- Aq * runif(S°2)
Next we perform eigenanalysis on it, retaining the eigenvalues.
> eM <- eigen(M) [["values"]]

Pimm and Lawton tested whether the dominant eigenvalue was greater than
0 (unstable) and if less than zero, they calculated return time. We will simply
record the dominant eigenvalue (the maximum of the real parts of the eigenval-
ues).

> deM <- max(Re(eM))

Given the stabilizing effect of the intraspecific negative density dependence, we
will hang on to that as well.

> intraNDD <- sqrt(sum(diag(M)"2)/S)

Given lessons from May’s work [134], we might also want to calculate the average
interaction strength, not including the intraspecific interactions. Here we set the
diagonal interactions equal to zero, square the remaining elements, find their
average, and take the square root.

> diag(M) <- 0
> IS <- sqrt(sum(M~2)/(S * (S - 1)))

Recall that weak omnivory is supposed to stabilize food webs [138]. For webs
that include omnivory, we will calculate the interaction strength of omnivory in
the same way we do for other interactions, as the square root of the average of
the squared a;; (eq. 7.2).

We can wrap all this up in a function where we specify the i, j of one of the
directed omnivorous links.3

> args(pimmlawton)
function (mat, N = 1, omni.i = NA, omni.j = NA, omega = NULL)

3 It does not matter which we specify, either the ij or the ji.
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Now we can check this function for a single simulation for our first web,

> set.seed(1)
> pimmlawton (Aq)

DomEig Im IntraDD I
1 -0.01593 0.4626 0.1328 2.304

Now let’s do it 2000 times, as Pimm and Lawton did. Each row will be an
independent randomization, and the columns will be the dominant eigenvalue,
the intraspecific density dependence, and the average interaction strength.

> out.A <- pimmlawton(Aq, N = 2000)

We might like to look at basic summary statistics of the information we collected
— what are their minima and maxima and mean?

> summary (out.A)

DomEig Im IntraDD I
Min. :-2.28e-01 Min. :0.000 Min. :0.000178 Min. :0.265
1st Qu.:-4.30e-02 1st Qu.:0.301 1st Qu.:0.117873 1st Qu.:2.241
Median :-1.50e-02 Median :0.634 Median :0.245611 Median :2.851
Mean :=2.92e-02 Mean :0.592 Mean :0.246466 Mean :2.766
3rd Qu.:-3.53e-03 3rd Qu.:0.881 3rd Qu.:0.376127 3rd Qu.:3.369
Max. :=7.19e-08 Max. :1.373 Max. :0.499709 Max. :4.762

We see that out of 2000 random food chains, the largest dominant eigenvalue
is still less than zero (1; < 0). What does that mean? It means that all of the
chains are qualitatively stable, and that the return times are greater than zero
(-=1/2; > 0).2

May’s work showed that stability is related to interaction strength. Let’s
examine how the dominant eigenvalue is related to interaction strength.®

> pairs(out.A)

The results of our simulation (Fig. 7.4) show that the dominant eigenvalue
can become more negative with greater intraspecific negative density depen-
dence (IntraDD) and greater intersepcifiic interaction strength (I). Recall what
this means — the dominant eigenvalue is akin to a perturbation growth rate at
the equilibrium and is the negative inverse of return time. Therefore, stability
can increase and return time decrease with increasing interaction strengths.

Note also (Fig. 7.4) that many eigenvalues seem very close to zero — what
does this mean for return times? The inverse of a very small number is a very
big number, so it appears that many return times will be very, very large,
and rendering the webs effectively unstable. Let’s calculate return times and
examine a summary.

# Recall that a negative return time indicates that any “perturbation” at the equi-
librium would have been closer to zero at some time in the past, i.e., that the
perturbation is growing.

3 Recall that if we think of stability analysis as the analysis of a small perturba-
tion at the equilibrium, then the dominant eigenvalue is the growth rate of that
perturbation.
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Fig. 7.4: Perturbations at the equilibrium tend to dissipate more rapidly (more neg-
ative dominant eigenvalues) with greater intraspecific negative density dependence
(IntraDD) and greater interspecifiic interaction strength (I). This graph also demon-
strates the independence of IntraDD and | in these simulations.

> RT.A <- -1/out.A[["DomEig"]]
> summary (RT.A)

Min. 1st Qu. Median Mean 3rd Qu. Max.
4.38e+00 2.32e+01 6.68e+01 1.17e+04 2.83e+02 1.39e+07

We find that the maximum return time is a very large number, and even the
median is fairly large (67). In an ever-changing world, is there any meaningful
difference between a return time of 1000 generations vs. neutral stability?
Pimm and Lawton addressed this by picking an arbitrarily large number
(150) and recording the percentage of return times greater than that. This
percentage will tell us the percentage of webs that are not effectively stable.

> sum(RT.A > 150)/2000

[1] 0.348
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Now let’s extract the return times that are less than or equal to 150 and make
a histogram with the right number of divisions or bins to allow it to look like
the one in the original [159].

> A.fast <- RT.A[RT.A < 150]

> histA <- hist(A.fast, breaks = seq(0, 150, by = 5), main = NULL)

This histogram (Fig. 7.5a) provides us with a picture of the stability for a food
chain like that in Fig. 7.2a. Next, we will compare this to other webs.
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(a) Four level chain (b) Two level chain  (c) Four levels + omnivory

Fig. 7.5: Histograms for three of the six food chains (A, E, and B) used by Pimm and
Lawton.

7.4 Shortening the Chain

Now let’s repeat all this (more quickly) for a shorter chain, but with the same
number of species (Fig. 7.2b). So, we first make the web function.

> Eq = matrix(c(-1, 0, 0, -10, 0, -1, O,
+ 0.1, 0.1, 0.1, 0), nrow = 4, byrow =

-10, 0, 0,
TRUE)

-1, -10,

Next we run the 2000 simulations, and check a quick summary.

> out.E <- pimmlawton(Eq, N = 2000)
> summary (out.E)

DomEig Im IntraDD I
Min. :-0.48631 Min. :0.000 Min. :0.0471 Min. :0.206
1st Qu.:-0.28429 1st Qu.:0.142 1st Qu.:0.3894 1st Qu.:2.301
Median :-0.20151 Median :0.674 Median :0.4901 Median :2.861
Mean :-0.20865 Mean :0.583 Mean :0.4805 Mean :2.799
3rd Qu.:-0.12473 3rd Qu.:0.897 3rd Qu.:0.5814 3rd Qu.:3.372
Max. :-0.00269 Max. :1.423 Max. :0.8346 Max. :4.772

The summary shows that, again, that all webs are stable (1; < 0). A histogram
of return times also shows very short return times (Fig. 7.5b). Plots of 4; wvs.
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interaction strengths show that with this short chain, and three basal species
that the role of intraspecfic density dependence becomes even more important,
and the predator-prey interactions less important in governing A;.

> layout (matrix(1:2, nr = 1))
> plot(DomEig ~ IntraDD, data = out.E)
> plot(DomEig ~ I, data = out.E)
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Fig. 7.6: For a food chain with two levels, and three basal species, perturbation growth
rate (4;) declines with increasing intraspecific negative density dependence (IntraDD)
and is unrelated to predator-prey interaction strengths.

Note that with the shorter food chain, a greater proportion of the A; are more
negative (farther away from zero) than in the four level food chain. Clearly
then, shortening the web stabilizes it, in spite of still having the same number
of species.

Let us again categorize these as having long and short return times, and
graph the distribution of the short ones.

> RT.E <- -1/out.E[["DomEig"]]
> E.fast <- RT.E[RT.E < 150]
> histE <- hist(E.fast, breaks = seq(0, 150, by = 5), main = NULL)

7.5 Adding Omnivory

Real webs also have omnivory — feeding on more than one trophic level. A
nagging question, then and now, concerns the effect of omnivory on food web
dynamics. Pimm and Lawton compared food web dynamics with and with-
out omnivory. Let’s now create the web (Fig. 7.2¢) that they used to compare
directly with their linear food chain (Fig. 7.2a).
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> Bq = matrix(c(-1, -10, 0, 0, 0.1, 0, -10, -10, 0, 0.1, O,
+ -10, 0, 0.1, 0.1, 0), nrow = 4, byrow = TRUE)
Next we run the 2000 simulations, and check a quick summary.

> out.B <- pimmlawton(Bq, N = 2000, omni.i = 2, omni.j = 4)
> summary (out.B)

DomEig IntraDD I I.omni
Min. :-0.182 Min. :0.000291 Min. :0.568 Min. :0.00643
1st Qu.: 0.178 1st Qu.:0.125840 1st Qu.:2.707 1st Qu.:1.70230
Median : 0.527 Median :0.245658 Median :3.275 Median :3.45300
Mean : 0.576 Mean :0.248152 Mean :3.217 Mean :3.49159
3rd Qu.: 0.913 3rd Qu.:0.371943 3rd Qu.:3.782 3rd Qu.:5.24184
Max. :1.839 Max. :0.499965 Max. :5.389 Max. :7.06030

With omnivory, we now see that most webs have 4; > 0, and thus are unstable.
This was one of the main points made by Pimm and Lawton. Let’s look at the
data.

> pairs(out.B)

It means that most of the randomly constructed webs were not stable point
equilibria. To be complete, let’s graph what Pimm and Lawton did.

RT.B <- -1/out.B[["DomEig"]]

B.fast <- RT.B[RT.B < 150 & RT.B > 0]

out.B.fast <- out.B[RT.B < 150 & RT.B > 0, ]

out.B.stab <- out.B[RT.B > 0, ]

histB <- hist(B.fast, breaks = seq(0, 150, by = 5), main = NULL)

vV V.V Vv Vv

7.5.1 Comparing Chain A versus B

Now let’s compare the properties of the two chains, without, and with, omnivory,
chains A and B (Figs. 7.2a, 7.2¢c). Because these are stochastic simulations, it
means we have distributions of results. For instance, we have a distribution of
return times for chain A and a distribution for return times for chain B. That
is, we can plot histograms for each of them. Pimm and Lawton compared their
webs in common sense ways. They compared simple summaries, including

e the proportion of random webs that were stable (positive return times),
e the proportion of stable random webs with return times greater than 150.

Now let’s try graphical displays. Rather than simply chopping off the long
return times, we use base 10 logarithms of return times because the distributions
are so right-skewed. We create a histogram® of the return times for chain A,
and nonparametric density functions for both chain A and B.7

% Note that now we use probabilities for the y-axis, rather than counts. The proba-
bility associated with any particular return time is the product of the height of the
column and the width of the column (or bin).

7 These density smoothers do a good job describing empirical distributions of contin-
uous data, often better than histograms, which have to create discrete categories
or “bins” for continuous data.
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> hist(log(RT.A, 10), probability = T, ylim = c(0, 1), main = NULL,
+ xlab = expression(log[10] ("Return Time")))

> lines(density(log(RT.A, 10)))

> lines(density(log(RT.B[RT.B > 0], 10)), 1ty = 2, 1lwd = 2)

> legend("topright", c("Chain A", "Chain B"), lty = 1:2, 1lwd = 1:2,
+ bty = "Il")

1.0

B —— Chain A
- - ChainB

Density

log1o(Return Time)

Fig. 7.7: Comparing the distributions of return times for chain A and B. "Density” is
probability density. The distribution of return times for chain A is the solid line, and
the distribution of return times for chain B is the dashed line.

By overlaying the density function of web B on top of web A return times
(Fig. 7.7), we make an interesting observation. The omnivorous webs with pos-
itive return times (those plotted) actually tended to have shorter return times
than the linear chain. Pimm and Lawton noted this, but did not emphasize it.
Rather, they sensibly focused on the more obvious result, that over 90% of the
omnivorous webs had negative return times, indicating an absence of a stable
point equilibrium.

7.6 Re-evaluating Take-Home Messages

The primary messages made by Pimm and Lawton [159] were that

e shorter webs are more stable than long chains,
e omnivory destabilized webs.

These conclusions were a major part of the lively debate surrounding these
issues. It was consistent with the apparent observation of the time, that empiri-
cal food webs revealed little omnivory [159,160], and that food chains in nature
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seemed to be much shorter than could occur, if primary productivity (green
plants and algae) was channeled upwards into a linear chain.

Let’s consider their assumptions.

First, Pimm and Lawton made the argument, as many others have (includ-
ing us), that systems with stable point equilibria are more likely to persist
than systems with oscillations, such as stable limit cycles. That is, we presume
a strong correlation between the tendency to oscillate, and the tendency for
species to become extinct (i.e., the system to collapse). It is easy to show that
a system can be pushed from a stable equilibrium into oscillations which even-
tually become so big as to drive an element of the system to extinction. This is
a very reasonable assumption, but one which is not challenged enough. Other
measures of system stability could be used, such as the minimum that occurs
in a long series of fluctuations [85,138].

Second, Pimm and Lawton ignored the effects of self-regulated basal species.
By exhibiting negative density dependence, the basal species stabilized the
web. When Pimm and Lawton made a shorter web, they also added more self-
regulated populations. Thus, they necessarily confounded chain length with the
number of species with negative density dependence. Which change caused the
observed differences among webs? We don’t know.

Third, they assumed that the effect of web topology (i.e., short vs. long
chain) was best evaluated with the average properties of the topology, rather
than the maximum properties of the topology. By these criteria, webs without
omnivory were clearly better. On average, webs without omnivory were more
often stable than chains with omnivory, even if some of their return times tended
to be quite long. Therefore, one might argue that if a web assembles in nature,
it is more likely to persist (i.e., be stable) if it lacks omnivory.

However, let us consider this preceding argument further. The world is a
messy place, with constant insults and disturbances, and resources and envi-
ronmental conditions fluctuating constantly. In addition, there is a constant rain
of propagules dropping into communities, and species abundances are changing
all the time. In a sense then, communities are being constantly perturbed. The
only webs that can persist in the face of this onslaught are the most stable ones,
that is the ones with the shortest return times. We just showed that Pimm and
Lawton’s own analyses showed that the most stable webs tended to be those
with omnivory. Subsequent work supports this claim that omnivory is rampant
in nature [166], and this is supported by theory that shows weak interactions,
including omnivory, stabilize food webs [137,138].

Pimm and Lawton made very important contributions to this lengthy de-
bate, and we are finally figuring out how to interpret their results.

7.7 Summary

Over 35 years ago, May started using simple, highly artificial dynamical de-
scriptions of communities, using mathematical approaches that had been well
established, if somewhat controversial, more than 50 years earlier by Alfred
Lotka, Vito Volterra, and others [93]. Such simple abstractions are still useful
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today [14]. May’s results, and those of Pimm and Lawton remain logical deduc-
tions that have resonance throughout community ecology. May, and Pimm and
Lawton showed that under very simple assumptions, adding complexity usually
destabilizes food webs. We have found that in practice, it is very difficult to
build or restore structurally complex, speciose ecosystems [6,19]. Further, we
all now realize that omnivory is quite widespread [199], and additional theory
indicates that omnivory can actually stabilize food webs by speeding a return
to equilibrium and bounding systems farther from minima [137,207]. Simple
Lotka—Volterra webs will likely reveal more interesting generalizations in the
years ahead.

Problems

7.1. General questions

(a) For each web, write out all four species’ differential equations, using row,
column subscripts for each parameter. Label species 1 X or Ny, and the others
accordingly.

(b) State the type of predator functional response used in these models, explain
how you know, and explain the effect that this type of response typically has
on dynamics.

(c) Describe the role played by intraspecific negative density dependence in
these models — which species have it and what is it likely to do?

(d) Explain whether the results of this chapter support the contention that
longer food chains are less stable.

(e) Explain whether the results of this chapter support the contention that
omnivory destabilizes food chains.

7.2. More models

(a) Rewrite the above code to replicate the rest of Pimm and Lawton’s results.
(b) Replicate the results of Pimm and Lawton’s companion paper [160].

(c) Test the effects of intraspecific negative density dependence. Vary the aver-
age magnitude of negative density dependence.

(d) Design a new simulation experiment of your own.
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