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Lotka–Volterra Interspecific Competition

Different species frequently compete for limiting resources, and as a result have
negative impacts on each other. For example, change in species composition
during secondary succession (Fig. 5.1) appears mediated by, among other things,
a species’ ability to intercept light, grow, and cast shade over other species.
This chapter addresses very simple ways to represent such interactions between
species.
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Fig. 5.1: Changes in abundances of six species of Aster, Euthamia, and Solidago during
early secondary succession. This turnover of perennial weeds appears mediated by
competition for light, among other factors [7] (data from the long-term Buell-Small
Succession study [http://www.ecostudies.org/bss/]).
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5.1 Discrete and Continuous Time Models

Chapter 3 (Density-dependent Growth) was built upon the assumption that
individuals within a single population had negative effects on each other. Here
we assume that individuals of different species also have negative effects on
each other. This negative effect may arise as a direct effect via their behavior,
or indirect effects via their uptake of limiting resources.

In this chapter, we learn how to keep track of two species that compete,
that is, that have mutually negative effects upon each other. We begin with a
model of discrete growth, and then switch to a continuous growth model.

5.1.1 Discrete time model

We pick up from Chapter 3 with the discrete logistic growth model

Nt+1 = Nt + rdNt (1 − αNt) (5.1)

where the population size in one year, Nt+1, is equal to the previous year’s
population size, Nt, plus a growth increment. That growth increment includes
a proportional change, the discrete growth factor, rd. Last, we have the density
dependence term, (1−αNt), in which α is the per capita effect of each individual
upon all other individuals.

In Part 1 of this book, per capita effects on growth rates attempted to
encapsulate simulataneously all factors in the life of an organism that influence
the growth of that population. Here we make explicit one of those many other
negative impacts by adding another per capita effect — we add the negative
effect of another, competing, species. If members of a species’ own population
can have a per capita negative effect, then certainly individuals of other species
might have per capita negative effects.

Because we have two species, we now have to keep track of their particular
populations and per capita effects using subscripts. We now have

N1,t+1 = N1,t + r1,dN1,t
(
1 − α11N1,t − α12N2,t

)
, (5.2)

where α11 is the effect that an individual of species 1 has on its own growth
rate, and α12 is the effect that an individual of species 2 has on the growth rate
of species 1 (Fig. 5.2).

Now that we are including a second population, we need an equation de-
scribing the dynamics of that population

N2,t+1 = N2,t + r2,dN2,t
(
1 − α21N1,t − α22N2,t

)
, (5.3)

where α21 is the per capita effect of species 1 on species 2, and α22 is the per
capita effect that species 2 has on itself (Fig. 5.2).



5.1 Discrete and Continuous Time Models 137

Code for a model of discrete logistic competition

This will calculate Nt+1, given Nt, rd and a matrix of competition coefficients α.

> dlvcomp2 <- function(N, alpha, rd = c(1, 1)) {

+ N1.t1 <- N[1] + rd[1] * N[1] * (1 - alpha[1, 1] * N[1] -

+ alpha[1, 2] * N[2])

+ N2.t1 <- N[2] + rd[2] * N[2] * (1 - alpha[2, 1] * N[1] -

+ alpha[2, 2] * N[2])

+ c(N1.t1, N2.t1)

+ }

Note the indices for alpha match the subscripts in eqs. 5.2, 5.3.

5.1.2 Effects of α

Before proceeding it might be good to understand where these subscripts come
from. Why are they read from right to left — why not left to right? As we saw
in Chapter 2, it comes from the underlying linear algebra used to work with all
these equations. We define all of the α’s together as a matrix,

α =

(
α11 α12
α21 α22

)
=

(
0.010 0.005
0.008 0.010

)
(5.4)

The subscripts on the αs represent the row and column of the coefficient; α12
is in the first row, second column. This merely reflects how mathematicians
describe matrix elements and dimensions — row × column. When we use matrix
multiplication (Chapter 2), α12 becomes the effect of species 2 (column) on
species 1 (row). In this case, α11 = α22 = 0.01, α21 = 0.008, and α12 = 0.005. Thus,
both species have greater effects on themselves than on each other. Remember,
the larger the α, the larger the effect.

You can think of a row of coefficients as part of a growth rate equation
that includes those coefficients, so row 1 represents the equation governing the
growth rate of species 1, and using α11 and α12. In general, we can refer to the
intraspecific coefficients as αii and the interspecific coefficients as αi j.

If we model two species using α above (eq. (5.4)), we can see the negative
effects of interspecific competition (Fig. 5.2). Species 1 (solid line, Fig. 5.2) has
a larger negative affect on species 2 than species 2 has on species 1. As a result,
species 1 is able to maintain a positive growth rate at higher population sizes,
and thereby grow to a larger N than can species 2. Put another way, species 1
suppresses species 2 to a larger degree than vice versa. Nonetheless, each has a
smaller effect on the other than either does on itself (αi j < αii).
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Fig. 5.2: Discrete population growth of two competing species. Both species have the
same intraspecific competition coefficient, αii = 0.01. In the absence of interspecific
competition, both species would reach K. However, they both have negative effects on
each other (αi j > 0), and species 1 (solid line) has a greater negative effect on species
2 (α21 > α12).

Discrete logistic competition dynamics (Fig. 5.2)

First we specify the matrix of α’s, the effects each species has on itself and each
other, the initial population sizes, and the number of time steps.

> alphs <- matrix(c(0.01, 0.005, 0.008, 0.01), ncol = 2, byrow = TRUE)

> t <- 20

We then create a matrix to hold the results, put in the initial population sizes, and
project the populations.

> N <- matrix(NA, nrow = t + 1, ncol = 2)

> N[1, ] <- c(10, 10)

> for (i in 1:t) N[i + 1, ] <- dlvcomp2(N[i, ], alphs)

At last, we can plot the populations, adding a reference line for the size of the
populations, if there were only one species, at Ki = 1/αii.

> matplot(0:t, N, type = "l", col = 1, ylim = c(0, 110))

> abline(h = 1/alphs[1, 1], lty = 3)

> text(0, 1/alphs[1, 1], "K", adj = c(0, 0))

> legend("right", c(expression("Sp.1 " * (alpha[21] == 0.008)),

+ expression("Sp.2 " * (alpha[12] == 0.005))), lty = 1:2,

+ bty = "n")
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5.1.3 Continuous time model

Perhaps the classic model of competitive interactions is the continuous Lotka-
Volterra model of interspecific competition [93]. Following directly the structure
of the discrete version, we represent the two species as

dN1

dt
= r1N1 (1 − α11N1 − α12N2) (5.5)

dN2

dt
= r2N2 (1 − α21N1 − α22N2) (5.6)

where we interpret all the parameters as the instantaneous rates analogous to
the parameters in the discrete version above, but with different units, because
the effects are instantaneous, rather than effects over a given time interval (Table
5.1).

Table 5.1: Parameters of the continuous 2 species Lotka-Volterra competition model.
The rest of the chapter explains the meaning and motivation.

Parameter Description

ri Instantaneous rate of increase; intrinsic rate of growth; individuals pro-
duced per individual per unit time.

αii Intraspecific density dependence; intraspecific competition coefficient;
the negative effect of an individual of species i on its own growth rate.

αi j Interspecific density dependence; interspecific competition coefficient;
the effect of interspecific competition; the negative effect that an indi-
vidual of species j has on the growth rate of species i.

Ki 1/αii; carrying capacity of species i; the population size obtainable by
species i in the absence of species j.

α′i j αi j/αii; the relative importance of interspecific competition.

βi j αi j/α j j; the invasion criterion for species i; the relative importance of
interspecific competition; the importance of the effect of species j on
species i relative to the effect of species j on itself; see sec. 5.3.5.
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Continuous logistic competition

Here we simply write the code for 2-species Lotka-Volterra competition.

> lvcomp2 <- function(t, n, parms) {

+ with(as.list(parms), {

+ dn1dt <- r1 * n[1] * (1 - a11 * n[1] - a12 * n[2])

+ dn2dt <- r2 * n[2] * (1 - a22 * n[2] - a21 * n[1])

+ list(c(dn1dt, dn2dt))

+ })

+ }

We could then use this to numerically integrate the dynamics, using ode in the
deSolve package, and plot it (graph not shown).

> library(deSolve)

> parms <- c(r1 = 1, r2 = 0.1, a11 = 0.2, a21 = 0.1, a22 = 0.02,

+ a12 = 0.01)

> initialN <- c(2, 1)

> out <- ode(y = initialN, times = 1:100, func = lvcomp2, parms = parms)

> matplot(out[, 1], out[, -1], type = "l")

These equations are also commonly represented using carrying capacity, Ki,
to summarize intraspecific effects on abundance, and coefficients to modify the
intraspecific effects quantified with Ki = 1/αii. This representation looks like

dN1

dt
= r1N1

(
K1 − N1 − α

′
12N2

K1

)
(5.7)

dN2

dt
= r2N2

(
K2 − N2 − α

′
21N1

K2

)
. (5.8)

In this version, K1 = 1/α11, and note that α′12 differs from α12. The α′12 in eq.
5.7 merely modifies the effect of 1/K1. It turns out the α′1,2 is equal to the ratio
of the interspecific and intraspecific per capita effects, or

α12 =
α′12

K1

α′12 =
α12

α11
. (5.9)

Another useful measure of the relative importance of interspecific competition
is βi j = αi j/α j j (see Invasion criteria, below).

5.2 Equilbria

In this section, we describe how we find equilibria in a simple multispecies model,
by solving the growth equations for zero, much the way we did in Chapters 3
and 4. We begin with isoclines, and move on to boundary and internal equilibria
and invasion criteria.
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5.2.1 Isoclines

An isocline is, in general, a line connecting points on a graph or map that have
equal value. For instance, a topographic map has elevation isoclines, connecting
points of equal elevation. Here, our isoclines will connect points in state space
at which the growth rate for species i equals zero — every point on that line
will represent Ṅi = 0. We call these zero net growth isoclines.

A zero net growth isocline, typically referred to simply as an isocline or
ZNGI, is the set of all points for which the growth of a population is zero, when
all else (such as the population size of a competing species) is held constant.
An equilibrium is one (or sometimes more than one) of those points, and in
particular, it is a point at which the growth rates of all populations are zero.
You saw in Chapter 3 that the carrying capacity of a single species logistic
population is an equilibrium. With two species, it gets a tad trickier.

We find the isocline of a species by setting its growth rate equal to zero
and solving the equation for that species in terms of the other species. As an
example, let’s focus on N2 and solve for its zero net growth isocline. We find
below that there is a straight line that describes all points for which dN2/dt = 0,
if N1 were held constant. We start by setting eq. 5.6 to zero, and solving for N2.

dN2

dt
= r2N2 (1 − α21N1 − α22N2)

0 = r2N2 (1 − α21N1 − α22N2)

0 = 1 − α21N1 − α22N2

N2 =
1
α22
−
α21

α22
N1.

(5.10)

Recall that the formula for a straight line is y = mx + b where m is the slope
and b is the intercept on the y axis. We can see that the expression for N2
in eq. 5.10 is a straight line, where y = N2, m = α21/α22, and b = 1/α22 (Fig.
5.3a). When N1 is zero, N2 = 1/α22. This is precisely what we saw in Chapter
3 (logistic growth), that a single species logistic population has an equilibrium
at its carrying capacity, K = 1/α.

The isocline (Fig. 5.3a) shows that as the competitor’s population size, N1,
becomes larger, N2 declines by α21/α22 for each additional individual of the
competing species 1, until finally N2 = 0 when N1 = 1/α21.
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Fig. 5.3: Phase plane plots of each of the two competing species, with Lotka-Volterra
zero growth isoclines. Arrows indicate population trajectories. Recall Ki = 1/αii.

Graphing an Isocline

Here we graph something similar, but not identical, to Fig. 5.3a. First, we define a
new matrix of competition coefficients, where α11 = α22 > α12 = α21.

> a <- matrix(c(0.01, 0.005, 0.005, 0.01), ncol = 2, byrow = TRUE)

We create an expression to plot the N2 isocline, as a function of possible values of
N1.

> N2iso <- expression(1/a[2, 2] - (a[2, 1]/a[2, 2]) * N1)

We then specify N1, and then evaluate and plot N2.

> N1 <- 0:200

> plot(N1, eval(N2iso), type = "l", ylim = c(0, 200), xlim = c(0,

+ 200), ylab = expression("N"[2]))

We add arrows to remind us of what happens if N2 is above or below the value on
the isocline.

> arrows(x0 = 90, y0 = 150, x1 = 90, y1 = 80, length = 0.1)

> arrows(x0 = 75, y0 = 0, x1 = 75, y1 = 50, length = 0.1)

The isocline for N2 (Fig. 5.3a) is the line at which dN2/dt = 0 for a fixed
value of N1. Just as in the single species logistic growth model, if N2 exceeds
its equilibrium, it declines, and if N2 is less than its equilibrium, it grows. The
isocline (Fig. 5.3a) is the set of balance points between positive and negative
growth. This is reflected in the arrows in Fig. 5.3a — if the N2 is ever above
this isocline, it declines and if it is ever below this isocline, it rises. This isocline
shows that whether N2 increases or decreases depends on N1.
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By analogy, the isocline for species 1 turns out to be

N1 =
1
α11
−
α12

α11
N2. (5.11)

Note that these isoclines are merely equations for straight lines, and it is
easy to do nonsensical things, such as specify coefficients that result in negative
population sizes. Therefore, let us proceed with some thoughtfulness and care.

5.2.2 Finding equilibria

By themselves, the isoclines tell us that if species 2 becomes extinct (N2 = 0),
then species 1 reaches its carrying capacity (N1 = 1/α11) (Fig. 5.3b). Similarly, if
N1 = 0, then N2 = 1/α22. These are important equilibria, because they verify the
internal consistency of our logical, and they provide end-points on our isoclines.

If the species coexist (N1, N2 > 0) it means that they must share one or more
points on their isoclines — such an equilibrium is the point where the lines
cross. We find these equilibria by solving the isoclines simultaneously. A simple
way to do this is to substitute the right hand side of the N2 isocline (eq. 5.10)
in for N2 in the N1 isocline (eq. 5.11). That is, we substitute an isocline of one
species in for that species’ abundance in another species’ isocline. Combining
eqs. 5.10 and 5.11, we get

N1 =
1
α11
−
α12

α11

(
1
α22
−
α21

α22
N1

)
N1 =

1
α11
−

α12

α11α22
+
α12α21

α11α22
N1

N1

(
1 −

α12α21

α11α22

)
=
α22 − α12

α11α22

N∗1 =
α22 − α12

α11α22 − α12α21
(5.12)

When we do this for N2, we get

N∗2 =
α11 − α21

α22α11 − α12α21
(5.13)

We now have the values for N∗1 and N∗2 at the point at which their isoclines
cross (Fig. 5.4a). These equilibria apply only when isoclines cross within feasible
state space.

The expressions for N∗1 and N∗2 look pretty complicated, but can we use
them to discern an intuitive understanding for species 1? First, we see that ri

is not in the expressions for the equilibria — they do not depend on ri. It is
important to remember that this intrinsic rate of increase is not germaine to
the long term equilibria for the two species model. Second, we can confirm that
as interspecific competition intensity falls to zero (α12 = α21 = 0), each species
reaches its own carrying capacity. That is, when putative competitors occupy
sufficiently different niches and no longer compete, then they both reach their
own carrying capacities.
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We can also say something a little less obvious about species 1. What hap-
pens when the negative effect of the competitor, N2, starts to increase, that is,
as α12 gets bigger? Or, put more obtusely but precisely, let’s find

N∗1 = lim
α12→∞

α22 − α12

α22α11 − α12α21
(5.14)

that is, find the limit of the equilibrium (eq. 5.12) as α12 gets very large. Well, the
αii become effectively zero because α12 gets so big. This leaves −α12/(−α12α21) =

1/α21. Huh? This means simply that as the negative effect of the competitor
increases, the abundance of species 1 becomes increasingly dependent upon
α21, its negative effect on its competitor. Thus we have an arms race: as the
negative effect of its competitor increases, the abundance of a species depends
increasingly on its ability to suppress the competitor.

Summarizing, we see that in the absence of interspecific competition, species
are attracted toward their carrying capacities. Second, if interspecific competi-
tion is intense, then a species’ carrying capacity becomes less important, and its
abundance is increasingly determined by its ability to suppress its competitor.

Coexistance — the invasion criterion

Based on the numerators in eqs. 5.12 and 5.13, it seems that N∗1 and N∗2 may both
be greater than zero whenever αii − α ji > 0. This is, indeed, the case. Below we
step through the analysis of what we refer to as the “invasion criterion,” which
specifies the conditions for N∗i > 0.

In general, the details of any model and its dynamics may be quite compli-
cated, but as long as we know whether a species will always increase when it
is rare, or invade,1 then we know whether it can persist in the face of complex
interactions. Thus we don’t need to find its equilibrium, but merely its behavior
near zero.

How do we determine whether a species can increase when rare? Let’s explore
that with the Lotka-Volterra competition model. We can start by reexamining
species 1’s growth equation (eq. 5.5)

dN1

dt
= r1N1 (1 − α11N1 − α12N2) .

From this we can see that in the absence of any density dependence (α = 0)
and assuming r1 > 0, and N1 > 0, the population grows exponentially. Further,
we can see that dN/dt > 0 as long as (1 − α11N1 − α12N2) > 0. Therefore, let’s
examine this expression for density dependence and see what it looks like as N1
gets very close to zero. We start by expressing dN1/dt completely in terms of
N1 and α. We do this by substituting N2’s isocline (eq. 5.10) in place of N2 in
eq. 5.5. We then solve this for any growth greater than zero.

1 Note that ecologists who study invasion of exotic species may use the word “invade”
to mean the successful dispersal to, establishment and spread at a site. This incor-
porates a tremendous amount of species- or system-specific biology. Here we mean
“invasion” in only a much more strict or narrow sense — to increase when rare.
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0 < (1 − α11N1 − α12N2)

0 <
(
1 − α11N1 − α12

(
1
α22
−
α21

α22
N1

))
(5.15)

Now — what is the value of eq. 5.15 as N1 → 0? We can substitute 0 for N1,
and eq. (5.15) becomes

0 <
(
1 − α12

(
1
α22

))
0 < 1 −

α12

α22

α12 < α22. (5.16)

What is this saying? It is saying that as long as α12 < α22, then our focal species
can persist, increasing in abundance from near zero — N1 will increase when
rare, that is, it will successfully invade (Fig. 5.4a).

For two species to both persist, or coexist, it must be that case that

α12 < α22 , α21 < α11.

Simply put, for species to coexist stably, their effects on themselves must be
greater than their effects on each other (Fig. 5.4a).

Other equilibria

Given our isoclines and equilibria above, what other logical combinations might
we see, other than coexistence? Here we list others, and provide graphical in-
terpretations (Fig. 5.4).

Species 1 can invade when rare, but species 2 cannot (Fig. 5.4b).

α12 < α22 , α21 > α11

This leads to competitive exclusion by species 1 — species 1 wins. This is
referred to as a boundary equilibrium, because it is on the boundary of the state
space for one species. Equilibria where all Ni > 0 are referred to as internal
equilibria.

Species 1 cannot invade when rare, but species 2 can (Fig. 5.4c).

α12 > α22 , α21 < α11

This leads to competitive exclusion by species 2 — species 2 wins. This is the
other boundary equilibrium. Note that for both this and the previous boundary
equilibrium, the equilibrium equations (eqs. 5.12, 5.13) can return N∗ that are
negative or too large (> K). Recall that these equations derive from simple
equations of straight lines, and do not guarantee that they are used sensibly —
equations aren’t dangerous, theoreticians who use equations are dangerous.
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Neither species can invade when rare (Fig. 5.4d).

α12 > α22 , α21 > α11

This creates an unstable internal equilibrium — exclusion will occur, but either
species could win. This condition is sometimes referred to as founder control [14]
because the identity of the winner depends in part on the starting abundances. It
creates a saddle in state space. What the heck is a saddle? More on that below.
It suffices to say that from some directions, an saddle attracts the trajectories
of the populations, while from other directions, it repels the trajectories.2

5.3 Dynamics at the Equilibria

Here we use eigenanalysis to analyze the properties of the equilibrium, whether
they are attractors, repellers, or both, and whether the system oscillates around
these equilibria.

In Chapter 3, we assessed stability with the partial derivative of the growth
rate, with respect to population size. If it was negative the population was
stable, and the more negative the value, the shorter the return time. Here we
build on this, and present a general recipe for stability analysis [142]:
1. Determine the equilibrium abundances of each species by setting its growth

equation to zero, and solving for N.
2. Create the Jacobian matrix. This matrix represents the response of each

species to changes in its own population and to changes in each other’s
populations. The matrix elements are the partial derivatives of each species’
growth rate with respect to each population.

3. Solve the Jacobian. Substitute the equilibrium abundances into the partial
derivatives of the Jacobian matrix to put a real number into each element
of the Jacobian matrix.

4. Use the Jacobian matrix to find the behavior of the system near the equi-
libria. The trace, determinant, and eigenvalues of the Jacobian can tell us
how stable or unstable the system is, and whether and how it cycles.

5.3.1 Determine the equilibria

We just did this above. Given eqs. 5.12 and 5.13, we see that the α determine
completely N∗1 and N∗2 . This is not true for Lotka-Volterra systems with more
than two species; such systems also depend on ri.

2 The topography of mountain ranges can include saddles, which are precisely the
context in which we use “saddle” here. Search the web for Saddleback Mountain,
New York, USA, Lat/Long: 44◦ 8’ N; 73◦ 53’ W. See also pictures of horse saddles
— same shape.
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Fig. 5.4: Phase plane diagrams of Lotka-Volterra competitors under different inva-
sion conditions. Horizontal and vertical arrows indicate directions of attraction and
repulsion for each population (solid and dased arrows); diagonal arrows indicate com-
bined trajectory. Circles indicate equilibria; additional boundary equilibria can occur
whenever one species is zero.

Finding equilibria

We can create equations or expressions for the equilibria, N∗1 and N∗2 . These will be
symbolic representations that we later evaluate.

> N1Star <- expression((a22 - a12)/(a22 * a11 - a12 * a21))

> N2Star <- expression((a11 - a21)/(a22 * a11 - a12 * a21))

Next we create the α and evaluate our expressions.

> a11 <- a22 <- 0.01; a12 <- 0.001; a21 <- 0.001

> N1 <- eval(N1Star); N2 <- eval(N2Star); N1

[1] 90.9
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5.3.2 Create the Jacobian matrix

The next step is to find each partial derivative. The partial derivatives describe
how the growth rate of each species changes with respect to the abundance
of each other species and with respect to its own abundance. Thus a positive
value indicates that a growth rate increases as another population increases. A
negative value indicates a growth rate decreases as another population increases.
Here, we work through an example, explicitly deriving the partial derivative of
species 1’s growth rate with respect to itself.

First let’s expand the growth rate of species 1 (eq. 5.5)3

dN1

dt
= Ṅ1 = r1N1 − r1α11N2

1 − r1α12N2N1. (5.17)

Now we derive the partial differential equation (PDE)4 with respect to N1,
treating N2 as a constant5

∂Ṅ1

∂N1
= r1 − 2r1α11N1 − r1α12N2 (5.18)

We should think of this as the per capita effect of species 1 on its growth rate.
To derive the PDE with respect to N2, we treat N1 as a constant, and find

∂Ṅ1

∂N2
= −r1α12N1. (5.19)

This is the per capita effect of species 2 on species 1’s growth rate.
We then do the same for Ṅ2, and so derive the full matrix of PDE’s,

∂Ṅ1
∂N1

∂Ṅ1
∂N2

∂Ṅ2
∂N1

∂Ṅ2
∂N2

 =

 r1 − 2r1α11N1 − r1α12N2 −r1α12N1

−r2α21N2 r2 − 2r2α22N2 − r2α21N1

 . (5.20)

This matrix of PDE’s is the Jacobian matrix, or simply the “Jacobian.” As dif-
ferential equations, they describe the slopes of curves (i.e. the slopes of tangents
of curves) at a particular point. That is, they describe the straight line interpre-
tations as that point. As partial differential equations, they describe how the
growth rates change as population sizes change.

3 Recall that the time derivative, dN/dt, can be symbolized with Ṅ (“n-dot”).
4 PDEs are typically written using a fancy symbol, delta, as in ∂F/∂N. For most

intents and purposes, these are equivalent to “d”.
5 Recall that when taking a derivative with respect to X, we treat all other variables

as constants.
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Finding partial differential equations and the Jacobian matrix

Here we create equations or expressions for the for the growth rates, Ṅ1 and Ṅ2, and
use these to find the partial derivatives. First, expressions for the growth rates:

> dN1dt <- expression(r1 * N1 - r1 * a11 * N1^2 - r1 * a12 *

+ N1 * N2)

> dN2dt <- expression(r2 * N2 - r2 * a22 * N2^2 - r2 * a21 *

+ N1 * N2)

Next, we use each expression for Ṅ to get each the partial derivatives with respect
to each population size. Here we use the R function D() (see also ?deriv). We reveal
here the result for the first one only, the partial derivative of Ṅ1 with respect to
itself, and then get the others.

> ddN1dN1 <- D(dN1dt, "N1")

> ddN1dN1

r1 - r1 * a11 * (2 * N1) - r1 * a12 * N2

Here we find the remaining PDE’s.

> ddN1dN2 <- D(dN1dt, "N2")

> ddN2dN1 <- D(dN2dt, "N1")

> ddN2dN2 <- D(dN2dt, "N2")

Last we put these together to create the Jacobian matrix, which is itself an expression
that we can evaluate again and again.

> J <- expression(matrix(c(eval(ddN1dN1), eval(ddN1dN2), eval(ddN2dN1),

+ eval(ddN2dN2)), nrow = 2, byrow = TRUE))

5.3.3 Solve the Jacobian at an equilibrium

To solve the Jacobian at an equilibrium, we substitute the N∗i (eqs. 5.12, 5.13)
into the Jacobian matrix eq. (5.20). Refer to those equations now. What is the
value of N1 in terms of αii and αi j? Take that value and stick it in each element
of the Jacobian (eq. 5.21). Repeat for N2. When we do this, and rearrange, we
get,

J =

−r1α11

(
α22−α12

α11α22−α12α21

)
−r1α12

(
α22−α12

α11α22−α12α21

)
−r2α21

(
α11−α21

α11α22−α12α21

)
−r2α22

(
α11−α21

α11α22−α12α21

)
 . (5.21)

Yikes . . . seems a little intimidating for such a small number of species.
However, it is remarkable how each element can be expressed as a product of
−riαi jN∗i , where i refers to row, and j refers to column.
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Evaluating the Jacobian matrix

Assuming that above we selected particular α, used these to determine N∗1 and N∗2 ,
found the PDEs and created an expression for the Jacobian matrix, and labeled
everything appropriately, we can then evaluate the Jacobian at an equilibrium. For
αii = 0.01 and αi j = 0.001 (see above) we find

> r1 <- r2 <- 1

> J1 <- eval(J)

> J1

[,1] [,2]

[1,] -0.90909 -0.09091

[2,] -0.09091 -0.90909

Note that all of these PDEs are negative for this equilibrium. This indicates a stable

equilibrium, because it means that each population’s growth rate slows in response

to an increase in any other.

5.3.4 Use the Jacobian matrix

Just the way we used eigenanalysis to understand long term asymptotic behavior
of demographic matrices, we can use eigenanalysis of the Jacobian to assess the
long-term asymptotic behavior of these competing Lotka-Volterra populations.
We can again focus on its dominant, or leading, eigenvalue (λ1). The dominant
eigenvalue will be the eigenvalue with the greatest real part, and not necessarily
the eigenvalue with the greatest magnitude.6 In particular, the dominant eigen-
value, λ1, may have a real part for which the magnitude, or absolute value is
smaller, but which is less negative or more positive (e.g., λ1 = −.01, λ2 = −1.0).
For continuous models, the dominant eigenvalue, λ1, is approximately the rate
of change of a perturbation, x, from an equilibrium,

xt = x0eλ1t. (5.22)

Thus, the more negative the value, the faster the exponential decline back to-
ward the equilibrium (i.e., toward x = 0). We can think of the dominant eigen-
value as a “perturbation growth rate”: negative values mean negative growth
(i.e. a decline of the perturbation), and positive values indicate positive growth
of the perturbation, causing the system to diverge or be repelled away from the
equilibrium.

In addition to the dominant eigenvalue, we need to consider the other eigen-
values. Table 5.2 provides a summary for interpreting eigenvalues with respect
to the dynamics of the system. The eigenvalues depend upon elements of the
Jacobian, and values calculated from the elements, notably the determinant,
the trace, and the discriminant; a similar set of rules of system behavior can
be based upon these values [181]. For instance, the Routh-Hurwitz criterion for

6 This criterion is different than for demographic, discrete time projection matrices.
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stability tells us that a two-species equilibrium will be locally stable, only if
J11 + J22 < 0 and if J11J22 − J12J21 > 0. The biological interpretation of this
criterion will be posed as a problem at the end of the chapter. For now, Table
5.2 will suffice.

Table 5.2: Interpretation of eigenvalues of Jacobian matrices.

Eigenvalues Interpretation

All real parts < 0 Globally Stable Point (Point Attractor)
Some real parts < 0 Saddle (Attractor-Repellor)
No real parts < 0 Globally Unstable Point (Point Repellor)
Real parts = 0 Neutral

Imaginary parts absent No oscillations
Imaginary parts present (±ωi) Oscillations with period 2π/ω

Eigenanalysis of the Jacobian matrix

Now that we have evaluated the Jacobian matrix (previous box), we simply perform
eigenanalysis on the matrix (from previous boxes: α11 = α22 = 0.01, α12 = α21 =

0.001, r = 1).

> eigStable <- eigen(J1)

> eigStable[["values"]]

[1] -0.8182 -1.0000

The dominant eigenvalue is negative (the larger of the two: λ1 = -0.818) indicating

a globally stable equilibrium (Table 5.2). Both eigenvalues are real, not complex,

indicating that there would be no oscillations (Table 5.2).

5.3.5 Three interesting equilbria

Here we examine the dynamical properties of three particularly interesting inter-
nal equilibria that are, respectively, stable, unstable, and neutral. In each case,
our examples use α11 = α22 = 0.01 and r1 = r2 = 1. What is most important,
however, is not the particular eigenvalues, but rather their sign, and how they
vary with α12 and α21, and the resulting stability properties and trajectories.

Given our stability criteria above, let us next examine the dominant eigen-
value of the Jacobian for each equilibrium . . . but which values of αi j, α ji should
we choose? We can describe our invasion criterion for species i as

βi j = αi j/α j j (5.23)

where, if βi j < 1, species i can invade. This ratio is the relative strength of
inter- vs. intraspecific competitive effect. It turns out to be useful to calculate
λ1 (“perturbation growth rate”) for combinations of βi j, β ji.



152 5 Lotka–Volterra Interspecific Competition

Stable equilibrium – βi j, β ji < 1

These criteria correspond to α12 < α22 , α21 < α11. As the relative strength of
interspecific effects increases toward 1.0, λ1 approaches zero, at which point the
system would no longer have a single global point attractor.

When βi j, β ji < 1, then both species can invade each other. We find that all
of the eigenvalues of the Jacobian are negative and real (Fig. 5.5), demonstrat-
ing that these populations will reach a stable equilibrium (Table 5.2). When
we plot these eigenvalues for these combinations of β, we see that the domi-
nant eigenvalue increases from negative values toward zero as either β12 or β21
approaches 1 (Fig. 5.5).
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(b) Trajectories of N1, N2 for β < 1

Fig. 5.5: Stable equilibria: as the relative strength of interspecific competition in-
creases (βi j → 1), instability increases (λ1 → 0). (a) λ1 → 0 as β → 1, (b) a globally
stable equilibrium attracts trajectories from all locations (solid dots represent initial
abundances).

Unstable equilibria – βi j, β ji > 1

These criteria correspond to α12 > α22, α21 > α11 (Fig. 5.6). As we saw above,
the Lotka-Volterra competition model has not only stable equilibria, but also
unstable equilibria, when both populations are greater than zero. Although an
unstable equilibrium cannot persist, βi j, β ji > 1 creates interesting and probably
important dynamics [74]. One of the results is referred to as founder control,
where either species can colonize a patch, and whichever species gets there first
(i.e. the founder) can resist any invader [14].

Another interesting phenomenon is the saddle itself; this unstable equilib-
rium is an attractor-repeller, that is, it attracts from some directions and repels
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from others (Fig. 5.6). This implies that the final outcome of dynamics may be
difficult to predict from initial trajectories.
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(b) Trajectories of N1, N2 for β < 1

Fig. 5.6: Unstable equilibria: as the relative strength of interspecific competition in-
creases (βi j > 1), instability increases (λ1 > 0). (a) λ1 increases as β increases, (b) the
unstable equilibrium may attract trajectories from some initial states, but repel from
others (solid dots represent initial abundances).

Recall the geometric interpretation of this unstable equilibrium — a saddle.
The trajectory of a ball rolling across a saddle can depend to a very large degree
on where the ball starts. Place it on the crown of the saddle, and it will tend
to roll in a very deterministic fashion directly toward the unstable equilibrium,
even if it eventually rolls off the side.

Eigenanalysis of the Jacobian where βi j, β ji > 1

Here we create values for α that create an unstable equilbrium.

> a11 <- a22 <- 0.01

> a12 <- a21 <- 0.011

> N1 <- eval(N1Star)

> N2 <- eval(N2Star)

> eigen(eval(J))[["values"]]

[1] 0.04762 -1.00000

The dominant eigenvalue is now positive, while the other is negative, indicating a

saddle (Table 5.2).
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Neutral equilibria — βi j = β ji = 1

What happens when the inter- and intraspecific effects of each species are equal?
This puts the populations on a knife’s edge, between an unstable saddle and
a stable attractor. Let’s think first about a geometric interpretation, where we
shift between a bowl, representing a stable attractor, and a saddle, representing
what we call a neutral saddle.

Imagine that we begin with a stable attractor, represented by a bowl, where
αi j < αii. We drop a ball in a bowl, and the bowl rolls to the bottom — the global
attractor. As we increase the interspecific competition coefficients, αi j → αii, we
are pressing down on just two points on opposite sides of the bowl. Our hands
push down on two opposite sides, until the bowl is flat in one direction, but
has two remaining sides that slope downward. Perhaps you think this looks like
a taco shell? The same shape is easily replicated by just picking up a piece of
paper by opposite edges, letting it sag in the middle. This is the neutral saddle.
What would eigenanalysis tell us? Let’s find out.

We could just charge ahead in R, and I encourage you to do so, repeating the
steps above. You would find that doesn’t work because when βi j = β ji = 1, our
equilibria are undefined (numerator and denominator are zero in eq. 5.12, 5.13.
Hmmm. Perhaps we can simplify things by taking the limit of the equilibrium,
as αi j → α j j. Let α12 = a and α22 = a + h, and let α21 = b and α11 = b + h. Then
we want the limit of the equilibrium as h goes to zero.

lim
h→0

(a + h) − a
(a + h) (b + h) − ab

=
1

a + b
(5.24)

Thus, N∗1 = 1/(α11 + α22), assuming α12 = α22 and α21 = α11. Therefore, the
equilibrium population size is simply the inverse of the sum of these coefficients.
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Fig. 5.7: Trajectories of N1, N2 for β12, β21 = 1. The entire isocline is an attractor, a
neutral saddle, and the final abundances depend on the initial abundances and the
ratio of α11 : α22. The circle represents our one derived equilibrium (eq. 5.24).
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Eigenanalysis of the Jacobian where βi j = β ji = 1

Here we create values for α that create a neutral equilbrium.

> a11 <- a21 <- 0.01

> a22 <- a12 <- 0.015

We determine N∗ differently (eq. 4.17) because the usual expression fails when the
denominator equals 0.

> N1 <- N2 <- 1/(a11 + a22)

> eigen(eval(J))[["values"]]

[1] -1 0

The dominant eigenvalue is now zero, indicating a neutral equilibrium (Table 5.2).
The neutral nature of this equilibrium results in more than one equilibrium. Let’s
try a different one, also on the isocline.

> N1 <- 1/(a11)

> N2 <- 0

> eigen(eval(J))[["values"]]

[1] -1 0

Again λ1 = 0 so this equilibrium is also neutral.

When we perform eigenanalysis, we find that the largest of the two eigen-
values is zero, while the other is negative. This reveals that we have neither a
bowl nor an unstable saddle, but rather, a taco shell, with a level bottom — a
neutral saddle.

For example, if the populations start at low abundances, both populations
will tend to increase at constant rates until they run into the isocline. Thus,
both populations can increase when rare, but the relative abundances will never
change, regardless of initial abundances.

Recall the Lotka-Volterra isoclines, and what we originally stated about
them. We stated that the equilibrium will be the point where the isoclines cross.
When all βi j = β ji = 1, the isoclines completely overlap, so we have an infinite
number of equilibria—all the points along the line

N2 =
1
α22
−
α11

α22
N1 (5.25)

and the initial abundances determine the trajectory and the equilibrium (Fig.
5.7).

5.4 Return Time and the Effect of r

Above, we referred to λ1 as the perturbation growth rate. More commonly, peo-
ple refer to another quantity known as characteristic return time (see Chapter
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3). Return time is commonly calculated as the negative inverse of the largest
real part of the eigenvalues,

RT = −
1
λ1
. (5.26)

It is the time required to return a fraction of the distance7 back toward an
equilibrium. Negative return times (λ1 > 0) refer to “backward time,” or time
into the past when this population would have been this far away (Fig. 5.8).

If we envision the populations sitting at an equilibrium, we can then envi-
sion a small perturbation that shifts them away from that point in state space
(see Chap. 3). Let’s call this displacement x0. The rate of change of in x is
approximately the exponential rate,

dx
dt
≈ cλ1t. (5.27)

where c is a constant, so the distance traveled, x, is given by (eq. 5.22). There-
fore, a negative λ1 indicates an exponential decline in the disturbance, back
toward the equilibrium (Fig. 5.8). The units of return time are the same as
for r. Recall that all of this depends on the linearization of the curved surface
around an equilibrium; it therefore applies exactly to only an infinitesimally
small region around the equilibrium. It also usually provides the average, re-
gardless of whether the perturbation is a population decline or a population
increase.
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Fig. 5.8: For small βi j (αi j < α j j), return time is positive because some time will lapse
before the system returns toward to its equilibrium. For large βi j (αi j > α j j), return
time is negative, because it would have been some time in the past that this system
was closer to its (unstable) equilibrium. (αii = 0.01)

7 This “fraction” happens to be about 63% or 1/e; thus the hypothetical initial per-
turbation x0 shrinks to 0.37x0.
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Effect of r on stability and return time

Consider the Jacobian matrix (eq. 5.21), and note that −ri appears in each
Jacobian element. Therefore, the larger the r, the greater the magnitude of the
Jacobian elements. This causes λ1 to increase in magnitude, reflecting greater
responsiveness to perturbation at the equilibrium (Fig. 5.9).

If we consider return time for continuous models where β12, β21 < 1, greater
r shortens return time, increasing stability (Fig. 5.9). For continuous models
where β12, β21 > 1, greater r increases perturbation growth rate, decreasing
stability (Fig. 5.9). For discrete models, which we have not discussed in this
context, recall that increasing rd of discrete logistic growth can destabilize the
population because of the built-in lag. The same is true for discrete competition
models — increasing rd too much destabilizes the interaction.
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Fig. 5.9: The dominant eigenvalue of the Jacobian matrix varies with r as well as
with β — higher r causes greater responsiveness to perturbations around an internal
equilibrium. (a) r = 1, (b) r = 0.5.

5.5 Summary

This chapter has provided several useful results.

• We can represent species effects on each other in precisely the same way we
represented their effects on themselves.

• Considering only two species, species i can invade species j when the effect
of species j on species i is less than its effect of species j on itself.

• Two species coexist stably when their effects on each other are smaller than
their effects on themselves.
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• The dominant eigenvalue of the Jacobian matrix (perturbation growth rate),
and its negative inverse, return time, are useful mathematical definitions of
stability.

• Perturbation growth rate decreases as βi j, β ji decrease, and are either both
less than one or both greater than 1 (βi j = αi j/α j j).

• The magnitude of perturbation growth rate increases with r.

Problems

5.1. Basics
Let α11 = α22 = 0.1, α12 = 0.05, α21 = 0.01.
(a) Determine N∗1 , N∗2 , K1, K2.
(b) Draw (by hand, or in R) the ZNGIs (zero net growth isoclines); include
arrows that indicate trajectories, and label the axes.
(c) Select other values for the α and repeat (a) and (b); swap your answers with
a friend, and check each other’s work.
(d) Start with equilibria for competing species, and show algebraically that when
interspecific competition is nonexistent, species reach their carrying capacities.

5.2. Derive and simplify the expression for N∗1/N
∗
2 in terms of the α.

5.3. Show the derivations of the partial derivatives of dN2/dt, with respect to
N2 and to N1; begin with eq. 5.6.

5.4. Total community size
Assume for convenience that α11 = α22 and α12 = α21, and let NT = N1 + N2.
(a) Write N∗T as a function of α11, α22, α12, α21.
(b) Describe in words how NT varies as αi j varies from αii → 0.
(c) Graph (by hand, or in R) the relation between NT versus αi j. Let αii = 0.01.

5.5. Interpret the Routh-Hurwitz criterion in terms of species relative inter-
and intraspecific competitive abilities.

5.6. The Jacobian matrix
Here we turn words into math. Note that this is one way of making our as-
sumptions very precise and clear. In each case below (a.–d.), (i) use algebraic
inequalities between the βs and between the αs to show what the assumptions
imply for the equalities and inequalities with respect to all αs, (ii) use these in-
equalities to simplify the Jacobian matrix (eq. (5.21) as much as possible, (iii)
show algebraically how these (in)equalities determine the sign of each element
of the Jacobian, and (iv) explain in words how the magnitudes of the Jacobian
elements determine stability properties.
(a) Assume that both species are functionally equivalent, and intraspecific com-
petition is more intense than interspecific competition.
(b) Assume species are functionally equivalent and that each species has a
greater impact on each other than they do on themselves.
(c) Assume species are functionally equivalent and interspecific competition is
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precisely equal to intraspecific competition.
(d) Assume species have the same carrying capacity, and can coexist, but that
species 1 is dominant.
(e) Assume species 1 is the better competitor (note: this may have multiple
interpretations).
(f) Assume species 1 and 2 are equivalent (note: this may have multiple inter-
pretations).
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