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Fig. 4.1: A frequency distribution of the number of plant species (y-axis) that oc-
cupy different numbers of grassland remnants (x-axis). Note the U-shaped (bimodal)
distribution of the number of sites occupied. Other years were similar [35]

Over relatively large spatial scales, it is not unusual to have many species
that seem to occur everywhere, and even more species that seem to be found
in only one or a few locations. For example, Scott Collins and Susan Glenn [35]
showed that in grasslands, each separated by up to 4 km, there were more species
occupying only one site (Fig. 4.1, left-most bar) than two or more sites, and
also that there are more species occupying all the sites than most intermediate
numbers of sites (Fig. 4.1, right-most bar), resulting in a U-shaped frequency
distribution. Illke Hanski [70] coined the rare and common species “satellite”
and “core” species, respectively, and proposed an explanation. Part of the an-
swer seems to come from the effects of immigration and emigration in a spatial
context. In this chapter we explore mathematical representations of individuals
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and populations that exist in space, and we investigate the consequences for
populations and collections of populations.

4.1 Source-sink Dynamics

In Chapters 1-3, we considered closed populations. In contrast, one could
imagine a population governed by births plus immigration, and deaths plus
emigration (a BIDE model). Ron Pulliam [172] proposed a simple model that
includes all four components of BIDE which provides a foundation for thinking
about connected subpopulations. We refer to the dynamics of these as source-
sink dynamics. Examples of such linked populations might include many dif-
ferent types of species. For instance, a source-sink model could describe linked
populations of a single species might occupy habitat patches of different quality,
where organisms might disperse from patch to patch.

Habitat 1 Habitat 2

i21 = e12

i12 = e21

λ2 < 1λ1 > 1

Fig. 4.2: The simplest source-sink model.

The concept

The general idea of source-sink populations begins with the idea that spatially
separated subpopulations occupy distinct patches, and each exhibit their own
intrinisic dynamics due to births and deaths; that is, we could characterize a λ
for each subpopulation. In addition, individuals move from one patch to another;
that is, they immigrate and emigrate from one patch (or subpopulation) to
another. Therefore, the number of individuals we observe in a particular patch is
due, not only to the λ in that population, but also to the amount of immigration,
i, and emigration, e.

Subpopulations with more births than deaths, λ > 1, and with more emi-
gration than immigration, e > i, are referred to as source populations. Subpop-
ulations with fewer births than deaths, λ < 1, and with more immigration than
emigration, i > e, are referred to as sink populations.

When we think about what might cause variation in λ, we typically refer
to the quality of patches or habitats. Quality might be inferred from λ, or it
might actually be the subject of investigation and independent of λ — typically
we think of high quality habitat as having λ > 1 and poor quality habitat as
having λ < 1.
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The equations

Pulliam envisioned two linked bird populations where one could track adult
reproduction, and adult and juvenile survival and estimate λ, per capita growth
rate separately for each population. For the first population, the number of birds
in patch 1 at time t + 1, n1,t+1, is the result of adult survival PA, reproduction
β1, and survival of the juveniles PJ. Thus,

n1,t+1 = PAnt + PJβ1n1,t = λ1n1. (4.1)

Here β1n1,t is production of juveniles, and PJ is the survival of those juveniles
to time t + 1. Pulliam described the second population in the same fashion as

n2,t+1 = PAnt + PJβ2n1,t = λ2n2. (4.2)

Pulliam then assumed, for simplicity’s sake, that the two populations vary
only in fecundity (β), which created differences in λ1 and λ2. He called popu-
lation 1 the source population (λ1 > 1) and population 2 the sink population
(λ2 < 1). He also assumed that birds in excess of the number of territories in
the source population emigrated from the source habitat to the sink habitat.
Therefore, the source population held a constant density (all territories filled),
but the size of the population in the sink depended on both its own growth rate
λ2 < 1 and also the number of immigrants.

A result

One of his main theoretical findings was that population density can be a mis-
leading indicator of habitat quality (Fig. 4.3). If we assume that excess individ-
uals in the source migrate to the sink, then as habitat quality and reproduction
increase in the source population, the source population comprises an ever de-
creasing proportion of the total population! That is, as λ1 gets larger, n1/(n1+n2)
gets smaller. Thus, density can be a very misleading predictor of long-term pop-
ulation viability, if the source population is both productive and exhibits a high
degree of emigration.

A model

We can use a matrix model to investigate source-sink populations [12]. Let us
mix up typical demographic notation (e.g., Chapter 2) with that of Pulliam
[172], so that we can recognize Pulliam’s quantities in a demographic matrix
model setting. Further, let us assume a pre-breeding census, in which we count
adults. The population dynamics would thus be governed by A

A =

(
PA1 + PJ1β1 M12

M21 PA2 + PJ2β2

)
(4.3)

where the upper left element (row 1, column 1) reflects the within-patch
growth characteristics for patch 1. The lower right quadrant (row 2, and column
2) reflects the within-patch growth characteristics of patch 2.
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We then assume, for simplicity, that migration, M, is exclusively from the
source to the sink (M21 > 0, M12 = 0). We further assume that λ1 > 1 but all
excess individuals migrate to patch 2, so M21 = λ1 − 1 > 0. Then A simplifies to

A =

(
1 0

λ1 − 1 λ2

)
(4.4)

The spatial demographic Pulliam-like model

We first assign λ for the source and sink populations, and create a matrix.

> L1 <- 2

> L2 <- 0.4

> A <- matrix(c(1, 0, L1 - 1, L2), nrow = 2, byrow = TRUE)

We can then use eigenanalysis, as we did in Chapter 2 for stage structured popula-
tions. The dominant eigenvalue will provide the long term asymptotic total popula-
tion growth. We can calculate the stable “stage” distribution, which in this case is
the distribution of individuals between the two habitats.

> eigen(A)

$values

[1] 1.0 0.4

$vectors

[,1] [,2]

[1,] 0.5145 0

[2,] 0.8575 1

From the dominant eigenvalue, we see Pulliam’s working assumption that the total
population growth is set at λ = 1. We also see from the dominant eigenvector that
the sink population actually contains more individuals than the source population
(0.51/(0.51+0.86) < 0.5).
We could graph these results as well, for a range of λ1 (Fig. 4.3). Here we let p1 be
the proportion of the population in the source.

> L1s <- seq(1, 3, by = 0.01)

> p1 <- sapply(L1s, function(l1) {

+ A[2, 1] <- l1 - 1

+ eigen(A)$vectors[1, 1]/sum(eigen(A)$vectors[, 1])

+ })

> plot(L1s, p1, type = "l", ylab = "Source Population",

+ xlab = expression(lambda[1]))

4.2 Two Types of Metapopulations

Our logistic model (Chapter 3) is all well and good, but it has no concept
of space built into it. In many, and perhaps most circumstances in ecology,
space has the potential to influence the dynamics of populations and ecosystem
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Fig. 4.3: The declining relative abundance in the high quality habitat in a source-sink
model. The proportion of the total population (n1/(n1 + n2)) in the source population
may decline with increasing habitat quality and growth rate λ1 habitat.

fluxes [101,102,116]. The logistic equation represents a closed population, with
no clear accounting for emigration or immigration. In particular cases, however,
consideration of space may be essential. What will we learn if we start consid-
ering space, such that sites are open to receive immigrants and lose emigrants?

First we consider ideas associated with different types of “collections;” we
then consider a mathematical framework for these ideas.

A single spatially structured population

One conceptual framework that we will consider below is that of a single closed
population, where individuals occupy sites in an implicitly spatial context (Fig.
4.4). Consider a population in space, where a site is the space occupied by
one individual. One example might be grasses and weeds in a field. In such a
population, for an individual within our population to successfully reproduce
and add progeny to the population, the individual must first actually occupy a
site. For progeny to establish, however, a propagule must arrive at a site that
is unoccupied. Thus the more sites that are already occupied, the less chance
there is that a propagule lands on an unoccupied site. Sites only open up at
some constant per capita rate as individuals die at a per capita death rate.

A metapopulation

The other conceptual framework that we consider here is that of metapopu-
lations. A metapopulation is a population of populations, or a collection of
populations (Fig. 4.4). Modeling metapopulations emerged from work in pest
management when Levins [110] wanted to represent the dynamics of the propor-
tion of fields infested by a pest. He assumed that a field was either occupied by
the pest, or not. The same models used to represent a population of individuals
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(a) A closed collection (b) An open collection

Fig. 4.4: Collections of sites. (a) Sites may be recolonized via internal propagule pro-
duction and dispersal only, or (b) sites may receive immigrants from an outside source
that is not influenced by the collection. Each site (A-F) may be a spot of ground
potentially occupied by a single plant, or it may be an oceanic island potentially oc-
cupied by a butterfly population. Sites may also be colonized via both internal and
external sources.

that occupy sites (above) can also be used to represent populations that occupy
sites, with conceptually similar ecological interpretation. In this case, each site
is a location that either contains a population or not. In this framework, we
keep track of the proportion of all populations that remain extant, that is, the
proportion of sites that are occupied. As with a single population (above), the
metapopulation is closed, in the sense that there exists a finite number of sites
which may exchange migrants.

Whether we consider a single spatial population, or single metapopulation,
we can envision a collection of sites connected by dispersal. Each site may be
a small spot of ground that is occupied by a plant, or it may be an oceanic
island that is occupied by a population. All we know about a single site is that
it is occupied or unoccupied. If the site is occupied by an individual, we know
nothing of how big that individual is; if the site is occupied by a population,
we know nothing about how many indiviuals are present. The models we derive
below keep track of the proportion of sites that are occupied. These are known
loosely as metapopulation models. Although some details can differ, whether we
are modeling a collection of spatially discrete individuals in single population
or a collection of spatially discrete populations, these two cases share the idea
that there are a collection of sites connected by migration, and each is subject
to extinction.

The most relevant underlying biology concerns colonization and extinction
in our collection of sites (Fig. 4.4). In this chapter, we will assume that all sites
experience equal rates; when we make this assumption, we greatly simplify
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everything, and we can generalize across all sites. All of the models we con-
sider are simple elaborations of what determines colonization and extinction.
Another useful concept to consider is whether the collection of sites receives
propagules from the outside, from some external source that is not influenced
by the collection of sites (Fig. 4.4).

4.3 Related Models

Here we derive a single mathematical framework to describe our two types of
models. In all cases, we will consider how total rates of colonization, C, and
extinction, E, influence the the rate of change of p, the proportion of sites that
are occupied,

dp
dt

= C − E. (4.5)

We will consider below, in a somewhat orderly fashion, several permutations of
how we represent colonization and extinction of sites (e.g., [62, 63]).

4.3.1 The classic Levins model

Levins [110] proposed what has come to be known as the classic metapopulation
model,

dp
dt

= ci p (1 − p) − ep. (4.6)

This equation describes the dynamics of the proportion, p, of a set of fields
invaded by a pest (Fig. 4.5a). The pest colonizes different fields at a total rate
governed by the rate of propagule production, ci, and also on the proportion of
patches that contain the pest, p. Thus, propagules are being scattered around
the landscape at rate ci p. The rate at which p changes, however, is also related
to the proportion of fields that are unoccupied, (1 − p), and therefore available
to become occupied and increase p. Therefore the total rate of colonization is
ci p(1− p). The pest has a constant local extinction rate e, so the total extinction
rate in the landscape is ep.

The parameters ci and e are very similar to r of continuous logistic growth,
insofar as they are dimensionless instantaneous rates. However, they are some-
times thought of as probabilities. The parameter ci is approximately the pro-
portion of open sites colonized per unit time. For instance, if we created or
found 100 open sites, we could come back in a year and see how many became
occupied over that time interval of one year, and that proportion would be a
function of ci. The parameter e is often thought of as the probability that a site
becomes unoccupied per unit time. If we found 100 occupied sites in one year,
we could revisit them a year later and see how many became unoccupied over
that time interval of one year.

We use the subscript i to remind us that the colonization is coming from
within the sites that we are studying (i.e. internal colonization). With internal
colonization, we are modeling a closed spatial population of sites, whether “site”
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refers to an entire field (as above), or a small patch of ground occupied by an
individual plant [202].

The Levins metapopulation model (Fig. 4.5a)

A function for a differential equation requires arguments for time, a vector of the
state variables (here we have one state variable, p), and a vector of parameters.

> levins <- function(t, y, parms) {

+ p <- y[1]

+ with(as.list(parms), {

+ dp <- ci * p * (1 - p) - e * p

+ return(list(dp))

+ })

+ }

By using with, we can specify the parameters by their names, as long as parms

includes names. The function returns a list that contains a value for the derivative,
evaluated at each time point, for each state variable (here merely dp/dt). We then
use levins in the numerical integration function ode in the deSolve package.

> library(deSolve)

> prms <- c(ci = 0.15, e = 0.05)

> Initial.p <- 0.01

> out.L <- data.frame(ode(y = Initial.p, times = 1:100, func = levins,

+ parms = prms))

We then plot the result (Fig. 4.5a).

> plot(out.L[, 2] ~ out.L[, 1], type = "l", ylim = c(0, 1),

+ ylab = "p", xlab = "time")

Can we use this model to predict the eventual equilibrium? Sure — we just
set eq. 4.6 to zero and solve for p. This model achieves and equilibrium at,

0 = ci p − ci p2 − ep

p∗ =
ci − e

ci
= 1 −

e
ci
.

When we do this, we see that p∗ > 0 as long as ci > e (e.g., Fig. 4.5a). When is
p∗ = 1, so that all the sites are filled? In principle, all sites cannot be occupied
simultaneously unless e = 0!

4.3.2 Propagule rain

From where else might propagules come? If a site is not closed off from the rest
of the world, propagules could come from outside the collection of sites that we
are actually monitoring.

For now, let us assume that our collection of sites is continually showered
by propagules from an external source. If only those propagules are important,
then we could represent the dynamics as,
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Fig. 4.5: Three metapopulation models, using similar parameters (ci = 0.15, ce = 0.15,
e = 0.05).

dp
dt

= ce (1 − p) − ep (4.7)

where ce specifies rate of colonization coming from the external source. Gotelli
[63] refers to this model as a metapopulation model with“propagule rain”or the
“island–mainland” model. He calls it this because it describes a constant influx
of propagules which does not depend on the proportion, p, of sites occupied for
propagule production. Extinction here is mediated only by the proportion of
sites occupied, and has a constant per site rate.

The propagule rain metapopulation model (Fig. 4.5b)

A function for a differential equation requires arguments for time, a vector of the
state variables (here we have one state variable, p), and a vector of parameters.

> gotelli <- function(t, y, parms) {

+ p <- y[1]

+ with(as.list(parms), {

+ dp <- ce * (1 - p) - e * p

+ return(list(dp))

+ })

+ }

The function returns a list that contains a value for the derivative, evaluated at each

time point, for each state variable (here merely dp/dt.

We can solve for this model’s equilibrium by setting eq. 4.7 equal to zero.

0 = ce − ce p − ep (4.8)

p∗ =
ce

ce + e
. (4.9)
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Of course, we might also think that both internal and external sources are
important, in which case we might want to include both sources in our model,

dp
dt

= (ci p + ce) (1 − p) − ep (4.10)

(4.11)

As we have seen before, however, adding more parameters is not something we
take lightly. Increasing the number of parameters by, in this case, 50% could
require a lot more effort to estimate.

4.3.3 The rescue effect and the core-satellite model

Thus far, we have ignored what happens between census periods. Imagine that
we sample site “A” each year on 1 January. It is possible that between 2 Jan-
uary and 31 December the population at site A becomes extinct and then is
subsequently recolonized, or “rescued” from extinction. When we sample on 1
January in the next year, we have no way of knowing what has happened in the
intervening time period. We would not realize that the population had become
extinct and recolonization had occurred.

We can, however, model total extinction rate E with this rescue effect,

E = −ep (1 − p) . (4.12)

Note that as p → 1, the total extinction rate approaches zero. Total extinc-
tion rate declines because as the proportion of sites occupied increases, it be-
comes increasingly likely that dispersing propagules will land on all sites. When
propagules happen to land on sites that are on the verge of extinction, they can
“rescue” that site from extinction.

Brown and Kodric-Brown [17] found that enhanced opportunity for immi-
gration seemed to reduce extinction rates in arthropod communities on this-
tles. They coined this effect of immigration on extinction as the “rescue effect.”
MacArthur and Wilson [121] also discussed this idea in the context of island
biogeography. We can even vary the strength of this effect by adding yet another
parameter q, such that the total extinction rate is −ep (1 − qp) (see [62]).

Assuming only internal propagule supply and the simple rescue effect results
in what is referred to as the the core-satellite model,

dp
dt

= ci p (1 − p) − ep (1 − p) (4.13)

This model was made famous by Illka Hanski [70]. It is referred to as the core-
satellite model, for reasons we explore later.
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The core-satellite metapopulation model

A function for a differential equation requires arguments for time, a vector of the
state variables (here we have one state variable, p), and a vector of parameters.

> hanski <- function(t, y, parms) {

+ p <- y[1]

+ with(as.list(parms), {

+ dp <- ci * p * (1 - p) - e * p * (1 - p)

+ return(list(dp))

+ })

+ }

The function returns a list that contains a value for the derivative, evaluated at each

time point, for each state variable (here merely dp/dt).

Graphing propagule rain and core-satellite models (Fig. 4.5b)

First, we integrate the models using the same parameters as for the Levins model,
and collect the results.

> prms <- c(ci <- 0.15, ce <- 0.15, e = 0.05)

> out.IMH <- data.frame(ode(y = Initial.p, times = 1:100,

+ func = gotelli, parms = prms))

> out.IMH[["pH"]] <- ode(y = Initial.p, times = 1:100, func = hanski,

+ parms = prms)[, 2]

We then plot the result (Fig. 4.5a).

> matplot(out.IMH[, 1], out.IMH[, 2:3], type = "l", col = 1,

+ ylab = "p", xlab = "time")

> legend("topleft", c("Hanski", "Propagule Rain"), lty = 2:1,

+ bty = "n")

Core-satellite equilibria

What is the equilibrium for the Hanski model (eq. 4.13)? We can rearrange this
to further simplify solving for p∗.

dp
dt

= (ci − e) p (1 − p) (4.14)

This shows us that for any value of p between zero and one, the sign of the
growth rate (positive or negative) is determined by ci and e. If ci > e, the rate
of increase will always be positive, and because occupancy cannot exceed 1.0,
the metapopulation will go to full occupancy (p∗ = 1), and stay there. This
equilibrium will be a stable attractor or stable equilibrium. What happens if
for some reason the metapopulation becomes globally extinct, such that p = 0,
even though ci > e? If p = 0, then like logistic growth, the metapopulation
stops changing and cannot increase. However, the slightest perturbation away
from p = 0 will lead to a positive growth rate, and increase toward the stable
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attractor, p∗ = 1. In this case, we refer to p∗ = 0 as an unstable equilibrium and
a repellor.

If ci < e, the rate of increase will always be negative, and because occupancy
cannot be less than 0, the metapopulation will become extinct (p∗ = 0), and stay
there. Thus p∗ = 0 would be a stable equilibrium or attractor. What is predicted
to happen if, for some odd reason this population achieved full occupancy, p = 1,
even though ci < e? In that case, (1 − p) = 0, and the rate of change goes to
zero, and the population is predicted to stay there, even though extinction is
greater than colonization. How weird is that? Is this fatal flaw in the model, or
an interesting prediction resulting from a thorough examination of the model?
How relevant is it? How could we evaluate how relevant it is? We will discuss
this a little more below, when we discuss the effects of habitat destruction.

What happens when ci = e? In that case, ci−e = 0, and the population stops
changing. What is the value of p when it stops changing? It seems as though it
could be any value of p, because if ci−e = 0, the rate change goes to zero. What
will happen if the population gets perturbed — will it return to its previous
value? Let’s return to question in a bit.

To analyze stability in logistic growth, we examined the slope of the partial
derivative at the equilibrium, and we can do that here. We find that the partial
derivative of eq. 4.13 with respect to p is

∂ṗ
∂p

= c − 2cp − e + 2ep (4.15)

where ṗ is the time derivative (eq. 4.13). A little puzzling and rearranging will
show

∂ṗ
∂p

= (ci − e) (1 − 2p) (4.16)

and make things simpler. Recall our rules with regard to stability (Chapter 3).
If the partial derivative (the slope of the time derivative) is negative at an equi-
librium, it means the the growth rate approaches zero following a perturbation,
meaning that it is stable. If the partial derivative is positive, it means that the
change accelerates away from zero following the perturbation, meaning that the
equilibrium is unstable. So, we find the following guidelines:

• ci > e
– p = 1, ∂ṗ/∂p < 0, stable equilibrium.
– p = 0, ∂ṗ/∂p > 0, unstable equilibrium.

• ci < e
– p = 1, ∂ṗ/∂p > 0, unstable equilibrium.
– p = 0, ∂ṗ/∂p < 0, stable equilibrium.

What if ci = e? In that case, both the time derivative (dp/dt) and the partial
derivative (∂ṗ/∂p) are zero for all values of p. Therefore, if the population
gets displaced from any arbitrary point, it will remain unchanged, not recover,
and will stay displaced. We call this odd state of affairs a neutral equilibrium.
We revisit neutral equilibrium when we discuss interspecific competition and
predation.
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We can also explore the stability of one of these equilibria by plotting the
metapopulation growth rate as a function of p (Fig. 4.6). When we set ci > e,
and examine the slope of that line at p∗ = 1, we see the slope is negative,
indicating a stable equilibrium.

An equilibrium for the core-satellite metapopulation model (Fig. 4.6)

We first create an expression for the growth itself, dp/dt. We then plot it, while we
evaluate it, on the fly.

> dpdtCS <- expression((ci - e) * p * (1 - p))

> ci <- 0.15

> e <- 0.05

> p <- seq(0, 1, length = 50)

> plot(p, eval(dpdtCS), type = "l", ylab = "dp/dt")

Levins vs. Hanski

Why would we use Levins’ model instead of Hanski’s core-satellite model? To
explore this possibility, let’s see how the Hanski model might change gradu-
ally into the Levins model. First we define the Hanski model with an extra
parameter, a,

dp
dt

= ci p (1 − p) − ep (1 − ap) . (4.17)

Under Hanski’s model, a = 1 and under Levins’ model a = 0. If we solve for the
equilibrium, we see that

p∗ =
c − e
c − ae

(4.18)

so that we can derive either result for the two models. In the context of logistic
growth, where K = Hp∗, this result, eq. 4.18, implies that for the Hanski model,
K fills all available habitat, whereas the Levins model implies that K fills only
a fraction of the total available habitat. That fraction results from the dynamic
balance between ci and e.

4.4 Parallels with Logistic Growth

It may have already occurred to you that the closed spatial population described
here sounds a lot like simple logistic growth. A closed contiguous population,
spatial or not, reproduces in proportion to its density, and is limited by its own
density. Here we will make the connection a little more clear. It turns out that a
simple rearrangement of eq. 4.6 will provide the explicit connection between lo-
gistic growth and the spatial population model with internal colonization [181].

Imagine for a moment that you are an avid birder following a population
of Song Sparrows in Darrtown, OH, USA (Fig. 3.1a). If Song Sparrows are
limited by the number of territories, and males are competing for territories,
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Fig. 4.6: Metapopulation growth rate as a function of p, in the core-satellite model
(ci = 0.15, e = 0.05). When we plot population growth rate for the core-satellite model,
for arbitrary parameter values where ci > e, we see that growth rate falls to zero at
full occupancy (i.e., at p∗ = 1). We also see that the slope is negative, indicating that
this equilibrium is stable.

then you could think about male Song Sparrows as “filling up” some proportion,
p, of the available habitat. You have already described this population with
the logistic growth model (dN/dt = rN(1 − αN)). Lately, however, you have
been thinking about how territories, spatially arranged in the landscape, may
limit this population. You therefore decide that you would like to use Levins’
spatially-implicit metapopulation model instead (eq. 4.6). How will you do it?
You do it by rescaling logistic growth.

Let us start by defining our logistic model variables in other terms. First we
define N as

N = pH

where N is the number of males defending territories, H is the total number of
possible territories, and p is the proportion of possible territories occupied at
any one time. At equilibrium, N∗ = K = p∗H, so α = 1/(p∗H). Recall that for
the Levins model, p∗ = (ci − e)/ci, so therefore,

α =
ci

(ci − e) H
.

We now have N, α, and K in terms of p, H, ci and e, so what about r? Recall
that for logistic growth, the per capita growth rate goes to r as N → 0 (Chapter
3). For the Levins metapopulation model, the per patch growth rate is

1
p

dp
dt

= ci (1 − p) − e. (4.19)

As p → 0 this expression simplifies to ci − e, which is equivalent to r. Summa-
rizing, then, we have,
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r = ci − e (4.20)
N = pH (4.21)

α =
1
K

=
1

p∗H
=

ci

H (ci − e)
(4.22)

(4.23)

Substituting into logistic growth (Ṅ = rN(1 − αN)), we now have

d(pH)
dt

= (ci − e) pH
(
1 −

ci

H (ci − e)
Hp

)
(4.24)

= (ci − e) pH −
ci − e
ci − e

ci p2H (4.25)

= H (ci p (1 − p) − ep) (4.26)

which is almost the Levins model. If we note that H is a constant, we realize
that we can divide both sides by H, ending up with the Levins model eq. 4.6.

4.5 Habitat Destruction

Other researchers have investigated effects of habitat loss on metapopulation
dynamics [88, 146, 202]. Taking inspiration from the work of Lande [95, 96],
Karieva and Wennergren [88] modeled the effect of habitat destruction, D, on
overall immigration probability. They incorporated this into Levins’ model as

dp
dt

= ci p(1 − D − p) − ep (4.27)

where D is the amount of habitat destroyed, expressed as a fraction of the
original total available habitat.

Habitat destruction model

To turn eq. 4.27 into a function we can use with ode, we have,

> lande <- function(t, y, parms) {

+ p <- y[1]

+ with(as.list(parms), {

+ dp <- ci * p * (1 - D - p) - e * p

+ return(list(dp))

+ })

+ }

Habitat destruction, D, may vary between 0 (= Levins model) to complete
habitat loss 1.0; obviously the most interesting results will come for intermediate
values of D (Fig. 4.7).
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Fig. 4.7: Metapopulation dynamics, combining the Levins model and habitat destruc-
tion (ci = 0.15, e = 0.05).

Illustrating the effects of habitat destruction (Fig. 4.7)

We can plot the dynamics for three levels of destruction, including none. We first
set all the parameters, and time.

> library(deSolve)

> prmsD <- c(ci = 0.15, e = 0.05, D = 0)

> Ds <- c(0, 0.2, 0.5)

> Initial.p <- 0.01

> t <- 1:200

We then create an empty matrix of the right size to hold our results, and then
integate the ODE.

> ps <- sapply(Ds, function(d) {

+ prmsD["D"] <- d

+ ode(y = Initial.p, times = t, func = lande, parms = prmsD)[,

+ 2]

+ })

Last, we plot it and add some useful labels.

> matplot(t, ps, type = "l", ylab = "p", xlab = "time")

> text(c(200, 200, 200), ps[200, ], paste("D = ", Ds, sep = ""),

+ adj = c(1, 0))

What is the equilibrium under this model? Setting eq. 4.27 to zero, we can
then solve for p.

0 = ci − ciD − ci p − e (4.28)

p∗ =
ci − ciD − e

ci
= 1 −

e
ci
− D (4.29)
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Thus we see that habitat destruction has a simple direct effect on the metapop-
ulation.

A core-satellite habitat loss scenario

Let us return now to that odd, but logical, possibility in the core-satellite model
where ci < e and p = 1. Recall that in this case, p = 1 is an unstable equilibrium
(p = 0 is the stable equilibrium for ci < e). We discuss this in part for greater
ecological understanding, but also to illustrate why theory is sometimes useful
— because it helps us explore the logical consequences of our assumptions, even
when, at first blush, it seems to make little sense.

Imagine that at one time, a metapopulation is regulated by the mechanisms
in the core-satellite model, including the rescue effect, and ci > e. We therefore
pretend that, the metapopulation occupies virtually every habitable site (let
p = 0.999). Now imagine that the environment changes, causing ci < e. Perhaps
human urbanization reduces colonization rates, or climate change enhances ex-
tinction rates. All of a sudden, our metapopulation is poised on an unstable
equilibrium. What will happen and how might it differ with and without the
rescue effect?

When ci > e, we see that p∗ = 1 is the stable attractor (Fig. 4.8). However,
when ci < e, we see the inevitable march toward extinction predicted by the
Hanski model (core-satellite) (Fig. 4.8). Last, when we compare it to the Levins
model, we realize something somewhat more interesting. While the Levins model
predicts very rapid decline, the Hanski model predicts a much more gradual
decline toward extinction. Both models predict extinction, but the rescue effect
delays the appearance of that extinction. It appears that the rescue effect (which
is the difference between the two models) may act a bit like the“extinction debt”
[202] wherein deterministic extinction is merely delayed, but not postponed
indefinitely. Perhaps populations influenced by the rescue effect might be prone
to unexpected collapse, if the only stable equilibria are 1 and 0. Thus simple
theory can provide interesting insight, resulting in very different predictions for
superficial similar processes.
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The unexpected collapse of core populations

Here we plot the dynamics of metapopulations starting at or near equilbrium. The
first two use the Hanski model, while the third uses Levins. The second and third
use ci < e.

> C1 <- ode(y = 0.999, times = t, func = hanski, parms = c(ci = 0.2,

+ e = 0.01))

> C2 <- ode(y = 0.999, times = t, func = hanski, parms = c(ci = 0.2,

+ e = 0.25))

> L2 <- ode(y = 0.95, times = t, func = levins, parms = c(ci = 0.2,

+ e = 0.25))

Next, we plot these and add a legend.

> matplot(t, cbind(C1[, 2], C2[, 2], L2[, 2]), type = "l",

+ ylab = "p", xlab = "Time", col = 1)

> legend("right", c("c > e", "c < e", "c < e (Levins)"), lty = 1:3,

+ bty = "n")
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Fig. 4.8: Metapopulation dynamics, starting from near equilibrium for ci = 0.20 and e =

0.01. If the environment changes, causing extinction rate to increase until it is greater
than colonization rate, we may observe greatly delayed, but inevitable, extinction (e.g.,
ci = 0.20, e = 0.25).

4.6 Core-Satellite Simulations

Here1 we explore a simple question that Hanski posed long ago: what would
communities look like if all of the populations in the community could be de-

1 This section relies extensively on code
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scribed by their independent own core-satellite model? To answer this question,
he created communities as collections of independent (non-interacting) popu-
lations that behave according to his metapopulation model with internal colo-
nization and the rescue effect [70]. He found that such simulated communities
predict that many species will be in almost all sites (“core species”), and even
more species will exist at very few sites (“satellite species”). This seems to be
a relatively common phenomenon [35], and an observation we described at the
beginning of the chapter (Fig. 4.1).

Hanksi’s goal was to simulate simultaneously a substantive number of
species, to create a community. Each species is assumed to be governed by
internal propagule production only, and the rescue effect. Further, he assumed
that the long term average density independent growth rate (r = ci − e) was
zero. That is, the populations were not systematically increasing or decreasing.
However, he allowed for stochastic year-to-year variation in probabilities ci and
e.

In these simulations here, we will select the mean for each parameter, ci

and e, and the proportion, φ (“phi”) by which they are allowed to vary. The
realized values of ci,t and et at any one point in time are random draws from
a uniform distribution within the ranges i ± φi and e ± φe. (This requires that
we do numerical integration at each integer time step since there is no obvious
analytical solution to an equation in which the parameters vary through time.
This will keep these parameters constant for an entire year, and yet also allow
years to vary.)

We start by using the args() function to find out what arguments (i.e.
options) are available in the simulation function, MetaSim.

> args(MetaSim)

function (Time = 50, NSims = 1, method = "hanski", ci = 0.25,

e = 0.25, phi = 0.75, p0 = 0.5, D = 0.5)

NULL

What options (or arguments) can you vary in MetSim? The ‘method’ may
equal CoreSatellite, Levins, IslandMainland, or HabitatDestruction. The
default is CoreSatellite; if an argument has a value to begin with (e.g.
method=’CoreSatellite’), then it will use that value unless you replace it.

Let’s start with an initial run of 10 simulations (produces dynamics for 10
populations) to reproduce Hanski’s core-satellite pattern by using the rescue
effect with equal i and e.

> out.CS.10 <- MetaSim(method = "hanski", NSims = 10)

> matplot(out.CS.10$t, out.CS.10$Ns, type = "l", xlab = "Time",

+ ylab = "Occupancy", sub = out.CS.10$method)

These dynamics (Fig. 4.9) appear to be completely random. A random walk
is a dynamic that is a random increase or decrease at each time step. Such a
process is not entirely random because the abundance at time t is related to the
abundance at time t−1, so observations in random walks are correlated through
time; they are temporally autocorrelated.
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Fig. 4.9: Core-satellite species dynamics with stochasticity (ī = ē = 0.2).

Does a single metapopulation growth rate appear related to p, the metapop-
ulation size? What would a deterministic dynamic look like if ci > e? It would
increase rapidly at first, and then slow down as it approached 1.0. Can you
detect that slow-down here? Similarly, as a metapopulation declines toward
extinction, its progression toward p = 0 slows down. As a result, we tend to
accumulate a lot of common and rare species, for which p is close to one or
zero.

Now we will do more simulations (50 species), and run them for longer (500
time intervals vs. 50). Doing many more simulations will take a little longer, so
be patient2.

> system.time(out.CS.Lots <- MetaSim(method = "hanski", NSims = 50,

+ Time = 1000))

user system elapsed

49.628 0.112 49.737

time series, although this may not tell you much. Alternatively, we can plot a
histogram of the 50 species’ final abundances, at t = 500.

> hist(out.CS.Lots$Ns[501, ], breaks = 10, main = NULL,

+ xlab = expression("Occupancy (" * italic("p") * ")"),

+ ylab = "Number of Species",

+ sub = paste(out.CS.Lots$method, " Model", sep = ""))

2 system.time merely times the process, in secs.
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Fig. 4.10: The species-abundance distribution resulting from dynamics for 50 inde-
pendent metapopulations with internal colonization. (a) includes the rescue effect
(Hanski’s model), and note that most species are either common (p > 0.8) or rare
(p < 0.2). Levins model (b) does not include the rescue effect, and there are very few
core species (p > 0.8).

Our simulations (Fig. 4.10) should be consistent with the core-satellite hypoth-
esis — are they? In Hanski’s model, we see that most metapopulations are
either core species (p > 0.8) or satellite species (p < 0.2) (Fig. 4.10a). This is
not to imply that there should be hard rules about what constitutes a core and
satellite species, but rather merely shows we have a plethora of both common
and uncommon species.

What does the Levins model predict? Let’s run the simulations and find out.

> system.time(out.L.Lots <- MetaSim(NSims = 50, Time = 500,

+ method = "levins"))

user system elapsed

23.921 0.036 23.958

Now we plot a histogram of the 50 species’ final abundances, at t = 500.

> hist(out.L.Lots$Ns[501, ], breaks = 10,

+ xlab = expression("Occupancy (" * italic("p") * ")"),

+ ylab = "Number of Species", main = NULL,

+ sub = paste(out.L.Lots$method, " Model", sep = ""))

In contrast to the core-satellite model, the Levins model predicts that many
fewer species are common (Fig. 4.10b). Thus these two population models
make contrasting predictions regarding the structure of communities (i.e. rela-
tive species abundances), and provide testable alternatives [35].
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4.7 Summary

In this chapter, we have introduced space as an important component of popu-
lation dynamics. We provided a source-sink framework for linked populations,
where population size depends on both intrinsic capacities of a habitat patch,
and on immigration and emigration rates. We used a metapopulation framework
to model (i) a population of individuals within a site, and (ii) a population of
populations within a region. We showed similarities and differences between re-
lated metapopulation models, and between related metapopulation and logistic
models. We investigated the response of metapopulations to habitat destruc-
tion. Last, we have shown how different population dynamics lead to different
community structure.

Problems

4.1. Equilibria
Derive expressions and calculate equilibria for the following metapopulation
models, with ci = 0.05, e = 0.01. Show your work — start with the differential
equations, set to zero, and solve p∗; then substitute in values for ci, e.
(a) Levins model.
(b) Propagule rain model (gotelli).
(c) Propagule rain model that also includes both external and internal propagule
production and dispersal.
(d) Hanski model.
(e) Lande (habitat destruction) model (with D=0.1).

4.2. Habitat destruction
Compare different levels of habitat destruction.
(a) Use the habitat destruction model (lande) to compare 9 levels of destruction
(ds <- seq(0,.8, by=.1)), using ci = 0.1, e = 0.01. Plot of graph of the
dynamics through time, and calculate the equilibria directly.
(b) Write an ODE function for a habitat destruction model with rescue effect.
Let the “rescue” have an additional parameter, a, such that extinction rate is
ep(1 − ap).
(c) Let D = 0.5, ci = 0.1, e = 0.02, and vary a over five levels (including
a = 0, 1) to investigate the effects of “relative rescue effect” on the equilibria
and dynamics of a metapopulation.
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