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Fig. 1.1: Song Sparrow (Melospiza melodia) counts in Darrtown, OH, USA. From
Sauer, J. R., J. E. Hines, and J. Fallon. 2005. The North American Breeding Bird
Survey, Results and Analysis 1966-2004. Version 2005.2. USGS Patuxent Wildlife
Research Center, Laurel, MD.

Between 1966 and 1971, Song Sparrow (Melospiza melodia) abundance in
Darrtown, OH, USA, seemed to increase very quickly, seemingly unimpeded
by any particular factor (Fig. 1.1a). In an effort to manage this population, we
may want to predict its future population size. We may also want to describe its
growth rate and population size in terms of mechanisms that could influence its
growth rate. We may want to compare its growth and relevant mechanisms to
those of other Song Sparrow populations or even to other passerine populations.
These goals, prediction, explanation, and generalization, are frequently the goals
toward which we strive in modeling anything, including populations, communi-
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ties, and ecosystems. In this book, we start with simple models of populations
and slowly add complexity to both the form of the model, and the analysis of
its behavior. As we move along, we also practice applying these models to real
populations.

What is a model, and why are they important in ecology? First, a model is
an abstraction of reality. A road map, for instance, that you might use to find
your way from Mumbai to Silvasaa is a model of the road network that allows
you to predict which roads will get you to Silvasaa. As such, it ezcludes far more
information about western India than it includes. Partly as a result of excluding
this information, it is eminently useful for planning a trip. Models in ecology are
similar. Ecological systems are potentially vastly more complex than just about
any other system one can imagine for the simple reason that ecosystems are
composed of vast numbers of genetically distinct individuals, each of which is
composed of at least one cell (e.g., a bacterium), and all of these individuals may
interact, at least indirectly. Ecological models are designed to capture particular
key features of these potentially complex systems. The goal is to capture a key
feature that is particularly interesting and useful.

In this book, we begin with the phenomenon called density-independent
growth. We consider it at the beginning of the book for a few reasons. First, the
fundamental process of reproduction (e.g., making seeds or babies) results in
a geometric series.! For instance, one cell divides to make two, those two cells
each divide to make four, and so on, where reproduction for each cell results
in two cells, regardless of how many other cells are in the population — that
is what we mean by density-independent. This myopically observed event of
reproduction, whether one cell into two, or one plant producing many seeds, is
the genesis of a geometric series. Therefore, most models of populations include
this fundamental process of geometric increase. Second, populations can grow in
a density-independent fashion when resources are plentiful. Third, it behooves
us to start with this simple model because most, more complex population
models include this process.

1.1 A Very Specific Definition

Density-independence in a real population is perhaps best defined quite specif-
ically and operationally as a lack of a statistical relation between the density of
a population, and its per capita growth rate. The power to detect a significant
relation depends, in part, on those factors which govern power in statistical re-
lations between any two continuous variables: the number of observations, and
the range of the predictor variable. Therefore, our conclusion, that a particular
population exhibits density-independent growth, may be trivial if our sample
size is small (i.e., few generations sampled), or if we sampled the population
over a very narrow range of densities. Nonetheless, it behooves us to come back

! A mathematical series is typically a list of numbers that follow a rule, and that you
sum together.
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to this definition if, or when, we get caught up in the biology of a particular
organism.

We could examine directly the relation between the growth rate and popu-
lation size of our Song Sparrow population (Fig. 1.1b). We see that there is no
apparent relation between the growth rate and the density of the population.?
That is what we mean by “density-independent growth.”

1.2 A Simple Example

Let’s pretend you own a small piece of property and on that property is a pond.
Way back in June 2000, as a present for Mother’s Day, you were given a water
lily (Nymphaea odorata), and you promptly planted it, with its single leaf or
frond, in the shallows of your pond. The summer passes, and your lily blossoms,
producing a beautiful white flower. The following June (2001) you notice that
the lily grew back, and that there were three leaves, not just one. Perhaps you
cannot discern whether the three leaves are separate plants. Regardless, the
pond now seems to contain three times the amount of lily pad that it had last
year.

The following June (2002) you are pleased to find that instead of three
leaves, you now have nine. In June 2003, you have 27 leaves, and in 2004 you
have 81 leaves (Fig. 1.3). How do we describe this pattern of growth? How do
we predict the size of the population in the future? Can we take lessons learned
from our water lily and apply it to white-tailed deer in suburbia, or to bacteria
in the kitchen sink?

We rely on theory to understand and describe the growth of our water lily in
such a way as to apply it to other populations. The role of theory, and theoretical
ecology, is basically three-fold. We might like theory to allow us to describe the
pattern in sufficient detail (1) to provide a mechanistic explanation for how the
lily grew as fast or as slowly as it did, (2) allow us to make predictions about
the population size in the future, and (3) allow us to generalize among other
lily populations or other species. These goals typically compete with each other,
so real models are mathematical descriptions that result from tradeoffs among
these goals which depend precisely on our particular needs [109].

1.3 Exploring Population Growth

So, how fast are the lilies of the example growing? Between years 1 and 2, it
increased by 2 fronds; between years 2 and 3, it increased by 6. In subsequent
years it increased by 18, and 54 fronds. The number changes each year (Fig.
1.3), so how do we predict the future, or even explain the present? Can we find
a general rule that works for any year?

2 Consider that if area is fixed, “count” or population size differs from density by a
fixed multiplier
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Fig. 1.2: Hypothetical water lily population size through time.

Simple Graphing of Population Size (Fig. 1.3)

Here we create two vectors: population size, N, and years. Using c() allows us to
create an arbitrary vector, and the colon, :, provides a sequence of consecutive
integers.

>N <-c¢(1, 3, 9, 27, 81)
> year <- 2001:2005
> plot(year, N)

The lily population (Fig. 1.3) increases by a different amount each year.
What about proportions — does it increase by a different proportion each year?
Let’s divide each year’s population size by the previous year’s size, that is,
perform N, /N, for all t, where ¢ is any particular point in time, and ¢+ 1 is the
next point in time. For N, that amounts to 3/1, 9/3, .... What do we notice?

Vectorized math

Here we divide each element of one vector (the second through fifth element of N)
by each element of another vector (the first through fourth elements of N).

> rates = N[2:5]/N[1:4]
> rates

[1]1 3333

Lo, and behold! all of these proportions are the same: 3. Every year, the
lilies increase by the same proportion — they triple in abundance, increasing
by 200%. That is the general rule that is specific to our population. It is general
because it appears to apply to each year, and could potentially describe other
populations; it is not, for instance, based on the photosynthetic rate in lily pads.
It is specific because it describes a specific rate of increase for our water lily
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population. We can represent this as
Nagoz = 3 X Nagos

where Npy; is the size of the population in 2002. If we rearrange this, dividing
both sides by Nypo1, we get

Noooz _3

Nooor

where 3 is our rate of increase.
Generalizing this principle, we can state

Ny = 3N,
Nt+l =3
Ny

1.3.1 Projecting population into the future

The above equations let us describe the rate of change population size N from
one year to the next, but how do we predict the size 10 or 20 years hence? Let’s
start with one year and go from there.

Nogo2 = 3Na001
N2oo3 = 3N2002 = 3 (3N2oo1)
Naoos = 3N2003 = 3 (BN2002) = 3 (3 (2N2001))

So, ...what is the general rule that is emerging for predicting water lily N, some
years hence? Recall that 3 X3 x3 =33 or a X a X a = a®, so more generally, we
like to state

N = ANy (1.1)

where ¢ is the number of time units (years in our example), Ny is the size of
our population at the beginning, A is the per capita rate of increase over the
specified time interval and N, is the predicted size of the population after ¢ time
units.

Note that lambda, A, is the finite rate of increase. It is the per capita rate
of growth of a population if the population is growing geometrically. We discuss
some of the finer points of A4 in Chapter 2. We can also define a related term,
the discrete growth factor, ry, where A = (1 + ry).

Note that “time” is not in calendar years but rather in years since the initial
time period. It is also the number of time steps. Imagine that someone sampled
a population for five years, 1963-1967, then we have four time steps, and ¢ = 4.
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Projecting population size
Here we calculate population sizes for 10 time points beyond the initial. First we
assign values for Ny, 4, and time.

> NO <- 1
> lambda <- 2
> time <- 0:10

Next we calculate N, directly using our general formula.

> Nt <- NO * lambda“time
> Nt

[1] 1 2 4 8 16 32 64 128 256 512 1024

1.3.2 Effects of initial population size

Let’s explore the effects of initial population size. First, if we just examine
equation 1.1, we will note that N, = Ny xstuff. Therefore, if one population starts
out twice as big as another, then it will always be twice as big, given geometric
growth (Fig. 1.3a). We see that small initial differences diverge wildly over time
(Fig. 1.3a), because “twice as big” just looks a lot bigger as the magnitude
increases.

Effects of Initial Population Size

We first set up several different initial values, provide a fixed 4, and set times from
zero to 4.

> NO <- c(10, 20, 30)
> lambda <- 2
> time <- 0:4

We calculate population sizes at once using sapply to apply a function
(n*lambda~time) to each element of the first argument (each element of NO).

> Nt.s <- sapply(NO, function(n) n * lambda time)
> Nt.s

[,1]1 [,2]1 [,3]
[1,] 10 20 30
[2,] 20 40 60
[3,] 40 80 120
[4,] 80 160 240
[5,1 160 320 480

The result is a matrix, and we see Ny in the first row, and each population is in its
own column. Note that population 2 is always twice as big as population 1.

If we change the y-axis scale to logarithms, however, we see that the lines are
parallel! Logarithms are a little weird, but they allow us to look at, and think
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about, many processes where rates are involved, or where we are especially
interested in the relative magnitudes of variables. Consider the old rule we get
when we take the logarithm of both sides of an equation, where the right hand
side is a ratio.

(1.2)

SR

y:
a
logyzlog(z)zloga—logb (1.3)

Thus, when we change everything into logarithms, ratios (like 1) become dif-
ferences, which result in straight lines in graphs (Fig. 1.3b). On a linear scale,
populations that are changing at the same rates can look very different (Fig.
1.3a), whereas on a logarithmic scale, the populations will have parallel trajec-
tories (Fig. 1.3b).

Graphing a Matriz (Figs. 1.3a, 1.3b)

We can use matplot to plot a matrix vs. a single vector on the X-axis. By default it
labels the points according to the number of the column

> matplot(time, Nt.s, pch = 1:3)

We can also plot it with a log scale on the y-axis.

> matplot(time, Nt.s, log = "y", pch = 1:3)
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Fig. 1.3: Effects of variation in initial N on population size, through time. Different
symbols indicate different populations.

Note that changing the initial population size changes the intercept. It also
changes the slope in linear space, but not in log-linear space. It changes the
absolute rate of increase (N, — Ny ), but not the relative rate of increase (N/Ny).
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1.3.3 Effects of different per capita growth rates

Perhaps the most important single thing we can say about A is that when A < 1,
the population shrinks, and when A > 1 the population grows. If we examine eq
1.1, N, = ' Ny, we will note that A is exponentiated, that is, raised to a power.>
It will always be true that when A > 1 and ¢ > 1, A’ > A. It will also be true that
when A <1 and t> 1, A" <2 (Fig. 1.4).

Thus we see the basis of a very simple but important truism. When 4 > 1,
the population grows, and when A < 1 the population shrinks (Fig. 1.4). When
A =1, the population size does not change, because 1’ = 1 for all ¢.

Effects of Different A (Fig. 1.4)

Here we demonstrate the effects on growth of 2 > 1 and 4 < 1. We set Ny = 100, and
time, and then pick three different A.

> NO <- 100

> time <- 0:3

> lambdas <- c¢(0.5, 1, 1.5)

We use sapply again to apply the geometric growth function to each A. This time,

x stands for each A, which our function then uses to calculate population size. We
then plot it, and add a reference line and a little text.

> N.all <- sapply(lambdas, function(x) NO * x“time)

> matplot(time, N.all, xlab = "Years", ylab = "N", pch = 1:3)
> abline(h = NO, 1ty = 3)

> text (0.5, 250, expression(lambda > 1), cex = 1.2)

> text (0.5, 20, expression(lambda < 1), cex = 1.2)

The reference line is a horizontal line with the /ine type dotted. Our text simply

indicates the regions of positive and negative growth.

We note that we have graphed discrete population growth. If we are counting
bodies, and the population reproduces once per year, then the population will
jump following all the births (or emergence from eggs). Further, it is probably
always the case that following a bout of synchronous reproduction, we observe
chronic ongoing mortality, with the result of population decline between spikes
of reproduction. Nonetheless, unless we collect the data, we can’t really say
much about what goes on in between census periods.

1.3.4 Average growth rate

In any real data set, such as from a real population of Nymphaea, Ny /N; will
vary from year to year. Let’s examine this with a new data set in which annual
growth rate varies from year to year.

3 What happens to y* as x increases, if y > 1 — does y* increase? What happens if
y < 1 — does y* decrease? The answer to both these questions is yes.
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Fig. 1.4: Effects of variation in A on population size through time. The dotted line
indicates no change (N, = Np; 4 = 1). Different symbols (circles, triangles, crosses)
indicate populations resulting from A = (0.5, 1.0, 1.5), respectively. Any A greater than
1 results in positive geometric growth; any 1 < 1 results in negative geometric growth,
or population decline.

Since growth rate varies from year to year, we may want to calculate average
annual growth rate over several years. As we see below, however, the arithmetic
averages are not really appropriate.

Consider that N,,i/N, may be a random variable which we will call R.# That
is, this ratio from any one particular year could take on a wide variety of values,
from close to zero, up to some (unknown) large number. Let’s pick two out of
a hat, where R = 0.5, 1.5. The arithmetic average of these is 1.0, so this might
seem to predict that, on average, the population does not change. Let’s project
the population for two years using each R once.

No = 100
Ni = Ny (0.5) = 50
N>=N; (1.5 =75

We started with 100 individuals, but the population shrank! Why did that
happen? It happens because, in essence, we multiply the A together, where
N; = NOR| R;. In this case, then, what is a sensible “average”?

How do we calculate an average for things that we multiply together? We
would like a value for R which would provide the solution to

R'=RR,...R, (1.4)

* Some authors use R for very specific purposes, much as one might use A; here we
just use it for a convenient letter to represent observed per capita change.
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where f is the number of time steps and R; is the observed finite rate of increase
from year 1 to year 2. The bar over R indicates a mean.
All we have to do is solve for R.

(®)" = RiRs...R)" (1.5)
R=(RiR,...R)"" (1.6)
(1.7)

We take the r-th root of the product of all the R. This is called the geometric
average. Another way of writing this would be to use the product symbol, I7,

as in I »
R= [1_[ R,-) (1.8)

i=1

If we examine the Song Sparrow data (Fig. 1.5), we see that projections based
on the geometric average R are less than when based on the arithmetic average;
this is always the case.

[ ’
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Fig. 1.5: Song Sparrow population sizes, and projections based on arithmetic and
geometric mean R.
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Comparing arithmetic and geometric averages (Fig. 1.5)

First we select the number of observed R (t = 5); this will require that we use six
years of Song Sparrow data.

>t <=5
> data(sparrows)
> 8S6 <- sparrows[1:(t + 1), ]

Next we calculate A for each generation, from ¢ to ¢+ 1, and calculate the arithmetic
and geometric means.

> SSgr <- SS6$Count[2:(t + 1)]/SS6$Count[1:t]
> lam.A <- sum(SSgr)/t
> lam.G <- prod(SSgr)~(1/t)

Now we can plot the data, and the projections based on the two averages (Fig. 1.5).

> NO <- SS6$Count[1]

> plot(0:t, SS6$Count, ylab = "Projected Population Size")

> lines(0:t, NO * lam.A~(0:t), 1ty = 2)

> lines(0:t, NO * lam.G~(0:t), 1ty 1)

> legend (0,70, c("Arithmetic Ave.", "Geometric Ave."), title = "Projections Based On:",
+ 1ty = 2:1, bty = "n", xjust = 0)

1.4 Continuous Exponential Growth

Although many, many organisms are modeled well with discrete growth models
(e.g., insects, plants, seasonally reproducing large mammals), many populations
are poorly represented by discrete growth models. These populations (e.g., bac-
teria, humans) are often modeled as continuously growing populations. Such
models take advantage of simple calculus, the mathematics of rates.

Whereas geometric growth is proportional change in a population over a
specified finite time interval, exponential growth is proportional instantaneous
change over, well, an instant.

Imagine a population of Escherichia coli started by inoculating fresh Luria-
Bertania medium with a stab of E. coli culture. We start at time zero with about
1000 cells or CFUs (colony forming units), and wind up the next day with 10'°
cells. If we used (incorrectly) a discrete growth model, we could calculate N /N;
and use this as an estimate for A, where 1 = 10'°/10% = 107 cells per cell per
day. We know, however, that this is a pretty coarse level of understanding about
the dynamics of this system. Each cell cycle is largely asynchronous with the
others, and so many cells are dividing each second. We could simply define our
time scale closer to the average generation time of a cell, for example 1 = 2
cellscell ™' 0.5h~!, but the resulting discrete steps in population growth would
still be a poor representation of what is going on. Rather, we see population size
changing very smoothly from hour to hour, minute to minute. Can we come up
with a better description? Of course.
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1.4.1 Motivating continuous exponential growth

If we assume that our E. coli cells are dividing asynchronously, then many cells
are dividing each fraction of a second — we would like to make that fraction of
a second an infinitely small time step. Unfortunately, that would mean that we
have an infinitely large number of time steps between t = 0 and ¢ = 1day, and
we couldn’t solve anything.

A long time ago, a very smart person® realized that geometric growth de-
pends on how often you think a step of increase occurs. Imagine you think a
population increases at an annual growth rate 2 = 1.5. This represents a 50%
increase or

Ny =Ny (1+0.5)

so the discrete growth increment is ry = 0.5. You could reason that twice-annual
reproduction would result in half of the annual r;. You could then do growth
over two time steps, and so we would then raise A%, because the population is
taking two, albeit smaller, time steps. Thus we would have

Ny = No(1+0.5/2)* = Ny (1 +0.25)°

What if we kept increasing the number of time steps, and decreasing the growth
increment? We could represent this as

rd"
Ni=No(1+%)
n

Ny ra\"
—=(1+—)
N() n

n
4

Our question then becomes, what is the value of (1 + ) as n goes to infinity?
In mathematics, we might state that we would like the solution to

lim (1 N r—d)". (1.9)

n—oco n

To begin with, we simply try larger and larger values of n, graph eq. 1.9 vs. n,
and look for a limit (Fig. 1.6).

5 Jacob Bernoulli (1654-1705)
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Numerical approrimation of e

Here we use brute force to try to get an approximate solution to eq. 1.9. We’ll let n be
the number of divisions within one year. This implies that the finite rate of increase
during each of these fractional time steps is ry/n. Let the 4 = 2 and therefore r; = 1.
Note that because Ny = 1, we could ignore it, but let’s keep it in for completeness.

>n <- 0:100
> NO <- 1
>rd <- 1

Next, we calculate (1 + %)n for ever larger values of n.
> N1 <- NO * (1 + rd/n)"n

Last, we plot the ratio and add some fancy math text to the plot (see ?plotmath for
details on mathematical typesetting in R).

> plot(n, N1/NO, type = "1")
> text(50, 2, "For n = 100,")

> text (50, 1.6, bquote((1+ frac("r"["d"], "n")) ""n" == . (round(N1[101]/NO,
+ 3))))
v |
(aV}
o
- For n =100,
Z oV
= .
n_
0 (1 +H) =2.705
o |

0 20 40 60 80 100

Fig. 1.6: The limit to subdividing reproduction into smaller steps. We can compare
this numerical approximation to the true value, e' = 2.718.

Thus, when reproduction occurs continuously, the population can begin to
add to itself right away. Indeed, if a population grew in a discrete annual step
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N1 = N; (1 +ry), the same ry, divided up into many small increments, would
result in a much larger increase.

It turns out that the increase has a simple mathematical expression, and we
call it the exponential, e. As you probably recall, e is one of the magic numbers
in mathematics that keeps popping up everywhere. In this context, we find that

r n
lim (1 + -) = (1.10)
n—oo n

where e is the exponential.

This means that when a population grows geometrically, with infinitely small
time steps, we say the population grows exponentially, and we represent that
as,

N, = Nye™. (1.11)

We call r the instantaneous per capita growth rate, or the intrinsic rate of
increase.

Projection of population size with continuous exponential growth is thus no
more difficult than with discrete growth (Fig. 1.7).

Projecting a continuous population

We select five different values for r: two negative, zero, and two positive. We let ¢
include the integers from 1 to 100. We then use sapply to apply our function of
continuous exponential growth to each r, across all time steps. This results in a
matrix where each row is the population size at each time ¢, and each column uses
a different r.

>r <- ¢(-0.03, -0.02, 0, 0.02, 0.03)

> NO <- 2

>t <- 1:100

> cont.mat <- sapply(r, function(ri) NO * exp(ri * t))

Next we create side-by-side plots, using both arithmetic and logarithmic scales, and
add a legend.

> layout (matrix(1:2, nrow = 1))

> matplot(t, cont.mat, type = "1", ylab = "N", col = 1)

> legend("topleft", paste(rev(r)), 1ty = 5:1, col = 1, bty = "n",
+ title = "r")

> matplot(t, cont.mat, type = "1", ylab = "N", log = "y", col = 1)

1.4.2 Deriving the time derivative

We can also differentiate eq. 1.11 with respect to time to get the differential
equation for instantaneous population growth rate. Recall that the chain rule
tells us that the derivative of a product of two terms is the sum of the products
of the derivative of one times the other original term.

dx dy

d
Car =Ly %y
a X =gty
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Fig. 1.7: Projecting continuous populations with different r.

Therefore to begin to differentiate eq. 1.11, with respect to ¢, we have,

d d d
—N, FIZ—N' r\t el rt_N
g V0" = 3 Mo (e") +dt(e) 0

Recall also that the derivative of a constant is zero, and the derivative of a' is
Ina(a'), resulting in,

d

d—tNoe” =0-() +1Ine" - () - Ny
Given that Ine = 1, and that Nye™ = N for any time ¢, this reduces to eq. 1.12.
The time derivative, or differential equation, for exponential growth is

dN
— =rN. 1.12
5 =" (1.12)

1.4.3 Doubling (and tripling) time

For heuristic purposes, it is frequently nice to express differences in growth
rates in terms of something more tangible than a dimensionless number like r.
It is relatively concrete to say population X increases by about 10% each year
(2 = 1.10), but another way to describe the rate of change of a population is
to state the amount of time associated with a dramatic but comprehensible
change. The doubling time of a population is the time required for a population
to double in size. Shorter doubling times therefore mean more rapid growth.
We could determine doubling time graphically. If we examine the expanding
population in Fig. 1.4, we see that it takes about one and half years for the
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population size to change from N = 100 to N = 200. Not surprisingly, we can
do better than that. By doubling, we mean that N, = 2Ny. To get the time at
which this occurs, we solve eq. (1.11) for ¢,

2N() = Noe” (113)
2=¢" (1.14)
In(2) = rtin(e) (1.15)
Q)
=— (1.16)

Thus, eq. 1.16 gives us the time required for a population to double, given a
particular r. We could also get any arbitrary multiple m of any arbitrary initial
No.

Creating a function for doubling time

We can create a function for this formula, and then evaluate it for different values of
m and r. For m = 2, we refer to this as “doubling time.” When we define the function
and include arguments r and m, we also set a default value for m=2. This way, we
do not always have to type a value for m; be default the function will return the
doubling time.

> m.time <- function(r, m = 2) {
+ log(m)/r
+ }

Now we create a vector of r, and then use m.time to generate a vector of doubling
times.

>rs <- c(0, 1, 2)
> m.time(rs)

[1] Inf 0.6931 0.3466

Note that R tells us that when r = 0, it takes an infinite (Inf) amount of time to
double. This is what we get when we try to divide by zero!

1.4.4 Relating A and r

If we assume constant exponential and geometric growth, we can calculate r
from data as easily as 1. Note that, so rearranging, we see that

Nt = N()ert
In(N,) = In (No) + rt.

In other words, r is the slope of the linear relation between In(N;) and time
(Fig. 1.7), and In (Np) is the y-intercept. If the data make sense to fit a straight
regression line to log-transformed data, the slope of that line would be r.

It also is plain that,
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A=e (1.17)
Ind=r (1.18)

Summarizing some of what we know about how A and r relate to population
growth:

No Change A=1,r=0
Population Growth A1>1,r>0
Population Decline A1<1,r<0

Remember — A is for populations with discrete generations, and r is for
continuously reproducing populations.

Units

What are the units for 2 and r? As A is a ratio of two population sizes, the
units could be individuals/individual, thus rendering A dimensionless. Similarly,
we can view A as the net number of individuals produced by individuals in
the population such that the units are net new individuals per individual per
time step, or indsind™' 7~!. The intrinsic rate of increase, r, is also in units of
indsind™!' 7!

Converting between time units

A nice feature of r as opposed to A is that r can be used to scale eas-
ily among time units. Thus, » = 0.1indsind™' year™' becomes r = 0.1/365 =
0.00027 indsind™ day™'. You cannot do this with A. If you would like to scale A
from one time unit to another, first convert it to r using logarithms, make the
conversion, then convert back to A.

1.5 Comments on Simple Density-independent Growth
Models

It almost goes without saying that if we are considering density-independent
growth models to be representative of real populations, we might feel as though
we are making a very long list of unrealistic assumptions. These might include
no immigration or emigration, no population structure (i.e. all individuals are
identical), and you can probably come up with many others [58]. However, I
would argue vociferously that we are making only one assumption:

N increases by a constant per capita rate over the time interval(s) of
1nterest.

Think about that. I am not saying that competition is not occurring, or that
no death is occurring, or that all individuals are reproductively viable, or there
is no abiotic disturbance, or that there is no population genetic structure. I am
just saying that for the time period of interest, all things balance out, or are
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of no substantive consequence, and the population chugs along at a particular
pace.

If the per capita rate is constant, then there can be no statistical relation
between the size of the population and its per capita growth rate. In the absence
of such a relation, we say that the growth rate is density-independent.

Other ecologists will disagree with my sentiments regarding an absence of
assumptions. That’s OK — still others may agree with these sentiments. Take
it upon yourself to acquire multiple perspectives and evaluate them yourself.

Both A and r obviously depend on birth rates and death rates. For instance,
we could view geometric growth as

NH—l :N[+BN[_DN[ (1.19)

where B is the number of births per individual and D is the probability of an
individual dying during the specified time interval. Lambda, in this case, is
1+(B - D) and r; = B—D. This form would be nice if we had data on births and
deaths, because, after all, one goal of Science is to explain complex phenomena
(e.g., 2) in terms of their determinants (e.g., B and D). Similarly, we can state
r = b—d where b and d are per capita instanteous rates. Such an advance in
understanding the determinants would be great.

Perhaps now is a good time to think about all the assumptions others might
tell us we are making when we present the above formulation. Are all individuals
in the population equally likely to produce progeny and/or die? Will birth and
death rates vary over time or as the size of the population changes more? How
will resource supply rate influence these rates? Is there really no immigration
or emigration? These are very interesting questions.

Simple density-independent growth provides, in some sense, a null hypothe-
sis for the dynamic behavior of a population. Malthus warned us that organisms
produce more progeny than merely replacement value, and population growth is
an exponential (or geometric) process [125]. The question then becomes “What
causes population growth to differ from a constant rate of change?” That, in a
nutshell, is what the rest of the book is about.

1.6 Modeling with Data: Simulated Dynamics

The main purpose of this section® is to begin to understand the mechanics of
simulation. The preceding sections (the bulk of the chapter) emphasized under-
standing the deterministic underpinnings of simple forms of density independent
growth: geometric and exponential growth. This section explores the simulation
of density independent growth.

When we model populations, perhaps to predict the size of a population
in the future, we can take a variety of approaches. One type of approach em-
phasizes deterministic prediction, using, for instance, R. Another approach is to
stmulate population dynamics and we take this up in this next section.

6 This section emphasizes work in R.
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To project population growth into the future should include some quantifi-
cation of the uncertainty with our guess. Simulation is one way we can project
populations and quantify the uncertainty. The way one often does that is to use
the original data and sample it randomly to calculate model parameters. In this
fashion, the simulations are random, but based on our best available knowldge,
i.e., the real data. The re-use of observed data occurs in many guises, and it is
known generally as bootstrapping or resampling.

1.6.1 Data-based approaches

In using our data to predict population sizes, let us think about three levels of
biological organization and mechanism: population counts, changes in popula-
tion counts, and individual birth and death probabilities. First, our count data
alone provide a sample of a very large number of different possible counts. If we
assume that there will be no trend over time, then a simple description of our
observed counts (e.g., mean and confidence intervals) provide all we need. We
can say “Song Sparrow counts in the Breeding Bird Survey in Darrtown, OH,
are about 51.”

Second, we could use the observed changes in population counts R, = Ny /N;
as our data. We would then draw an R; at random from among the many
observed values, and project the population one year forward. We then repeat
this into the future, say, for ten years. Each simulation of a ten year period will
result in a different ten year trajectory because we draw R, at random from
among the observed R,. However, if we do many such simulations, we will have
a distribution of outcomes that we can describe with simple statistics (e.g.,
median, mean, quantiles).

Third, we might be able to estimate the individual probabilities of births and
deaths in the entire Darrtown population, and use those probabilities and birth
rates to simulate the entire population into the future. In such an individual-
based simulation, we would simulate the fates of individuals, keeping track of
all individual births and deaths.

There are myriad others approaches, but these give you a taste of what
might be possible. In this section we focus on the second of these alternatives,
in which we use observed R, to simulate the dynamics of Song Sparrow counts.

Here we investigate Song Sparrow (Melospize melodia) dynamics using data
from the annual U.S. Breeding Bird Survey (http://www.mbr-pwrc.usgs.gov/
bbs/). Below we will

1. look at and collecting the data (annual R’s),
simulate one projection,

scale up to multiple simulations,

simplify simulations and perform 1000’s, and
analyze the output.

Al

1.6.2 Looking at and collecting the data

Let’s start by looking at the data. Looking at the data is always a good idea —
it is a principle of working with data. We first load the data from the primer
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R package, and look at the names of the data frame. We then choose to attach
the data frame, because it makes the code easier to read.”

> names (sparrows)
[1] "Year" "Count" "ObserverNumber"
> attach(sparrows)

Now we plot these counts through time (Fig. 1.8).

> plot(Count ~ Year, type = "b")
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Fig. 1.8: Observations of Song Sparrows in Darrtown, OH (http://www.mbr-
pwrc.usgs.gov/bbs/).

We see that Song Sparrow counts® at this site (the DARRTOWN transect, OH,
USA) fluctuated a fair bit between 1966 and 2003. They never were completely
absent and never exceeded ~ 120 individuals.

Next we calculate annual R; = N;y1/N;, that is, the observed growth rate for
each year ¢.%

> obs.R <- Count[-1]/Count[-length(Count)]

Thus our data are the observed R;, not the counts per se. These R form the
basis of everything else we do. Because they are so important, let’s plot these
as well. Let’s also indicate R = 1 with a horizontal dotted line as a visual cue

7 1 typically do not use attach but rather choose to always define explicitly the parent
data frame I am using. It helps me reduce silly mistakes.

8 Recall that these are samples or observations of sparrows. These are not population
sizes. Therefore, we will be simulating sparrows counts, not sparrow population
sizes.

° The use of “~” in the index tells R to exclude that element (e.g., -1 means “exclude
the first element of the vector”).



1.6 Modeling with Data: Simulated Dynamics 23

for zero population growth. Note that we exclude the last year because each R,
is associated with N; rather than N, ;.

> plot(obs.R ~ Year[-length(Count)])
> abline(h = 1, 1ty = 3)

One thing that emerges in our graphic data display (Fig. 1.8) is we have an
unusually high growth rate in the early 1990’s, with the rest of the data clustered
around 0.5-1.5. We may want to remember that.

1.6.3 One simulation

Now that we have our randomly drawn Rs, we are ready to simulate dynamics. A
key assumption we will make is that these R are representative of R in the future,
and that each is equally likely to occur. We then resample these observed R with
replacement for each year of the simulation. This random draw of observed
R’s then determines one random realization of a possible population trajectory.
Let’s begin.

First, we decide how many years we want to simulate growth.

> years <- 50

This will result in 51 population sizes, because we have the starting year, year
0, and the last year.

Next we draw 50 R at random with replacement. This is just like having all
35 observed R written down on slips of paper and dropped into a paper bag.
We then draw one slip of paper out of the bag, write the number down, and
put the slip of paper back in the bag, and then repeat this 49 more times. This
is resampling with replacement'®. The R function sample will do this. Because
this is a pseudorandom!! process, we use set.seed to make your process the
same as mine, i.e., repeatable.

> set.seed(3)
> sim.Rs <- sample(x = obs.R, size = years, replace = TRUE)

Now that we have these 50 R, all we have to do is use them to determine
the population size through time. For this, we need to use what programmers
call a for-loop (see B.6 for further details). In brief, a for-loop repeatedly loops
through a particular process, with one loop for each value of some indicator
variable. Here we calculate each sparrow count in the next year, N1, using the
count in the current year N, and the randomly drawn R for each year t.

10 We could resample without replacement. In that case, we would be assuming that all
of these R, are important and will occur at some point, but we just don’t know when
— they constitute the entire universe of possiblities. Sampling with replacement,
as we do above, assumes that the observed R, are all equally likely, but none is
particularly important — they are just a sample of what is possible, and they
might be observed again, or they might not.

A pseudorandom process is the best computers can do — it is a complex determin-
istic process that generates results that are indistinguishable from random.
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We begin by creating an empty output vector that is the right length to
hold our projection, which will be the number of Rs plus one.'?

> output <- numeric(years + 1)

We want to start the projection with the sparrow count we had in the last year
(the “maximum,” or biggest, year) of our census data.

> output[1] <- Count[Year == max(Year)]

Now the fun really starts to take off, as we finally use the for-loop. For each
year t, we multiply N, by the randomly selected R, to get N;;; and put it into
the t + 1 element of output.

> for (t in 1:years) output[t + 1] <- {
+ output [t] * sim.Rs[t]
+}

Let’s graph the result.
> plot(0:years, output, type = "1")

It appears to work (Fig. 1.9a) — at least it did something! Let’s review what
we have done. We

e had a bird count each year for 36 years. From this we calculated 35 R (for
all years except the very last).

e decided how many years we wanted to project the population (50y).

e drew at random and with replacement the observed R — one R for each year
we want to project.

e got ready to do a simulation with a for-loop — we created an empty vector
and put in an initial value (the last year’s real data).

e performed each year’s calculation, and put it into the vector we made.

So what does Fig. 1.9a represent? It represents one possible outcome of
a trajectory, if we assume that R has an equal probability of being any of the
observed R;. This particular trajectory is very unlikely, because it would require
one particular sequence of Rs. However, our simulation assumes that it is no
less likely than any other particular trajectory.

As only one realization of a set of randomly selected R, Fig. 1.9a tells us
very little. What we need to do now is to replicate this process a very large
number of times, and examine the distribution of outcomes, including moments
of the distribution such as the mean, median, and confidence interval of eventual
outcomes.

1.6.4 Multiple simulations

Now we create a way to perform the above simulation several times. There are
a couple tricks we use to do this. We still want to start small so we can figure
out the steps as we go. Here is what we would do next.

12 Remember that we always have one more population count than we do R,.
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o We start by specifying that we want to do 10 simulations, where one simu-
lation is what we did above.

e We will need to use 50 x 10 = 500 randomly drawn Rs and store those in a
matrix.

e To do the ten separate, independent simulations, we will use sapply, to “ap-
ply” our simulations ten times. We have to use a for-loop for each population
simulation, because each N; depends on the previous N,_;. We use sapply
and related functions for when we want to do more than one independent
operation.

Here we specify 10 simulations, create a matrix of the 10 x 50 randomly
drawn R.

> sims = 10
> sim.RM <- matrix(sample(obs.R, sims * years, replace = TRUE),
+ nrow = years, ncol = sims)

Next we get ready to do the simulations. First, to hold each projection tem-
porarily, we will reuse output as many times as required. We then apply our
for-loop projection as many times as desired, for each value of 1:sims.

> output[1] <- Count[Year == max(Year)]
> outmat <- sapply(1:sims, function(i) {

+ for (t in 1:years) output[t + 1] <- output[t] * sim.RM[t,
+ i]

+ output

+ 3P

Now let’s peek at the results (Fig. 1.9b). This is fun, but also makes sure we
are not making a heinous mistake in our code. Note we use log scale to help us
see the small populations.

> matplot(0:years, outmat, type = "1", log = "y")

What does it mean that the simulation has an approximately even distribu-
tion of final population sizes on the log scale (Fig. 1.9b)? If we plotted it on a
linear scale, what would it look like?!3

Rerunning this simulation, with new R each time, will show different dy-
namics every time, and that is the point of simulations. Simulations are a way
to make a few key assumptions, and then leave the rest to chance. In that sense
it is a null model of population dynamics.

13 Plotting it on the log scale reveals that the relative change is independent of pop-
ulation size; this is true because the rate of change is geometric. If we plotted it on
a linear scale, we would see that many trajectories result in small counts, and only
a few get really big. That is, the median size is pretty small, but a few populations
get huge.
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Fig. 1.9: Simulated population dynamics with R drawn randomly from observed Song
Sparrow counts.

1.6.5 Many simulations, with a function

Let’s turn our simulation into a user-defined function'# that simplifies our lives.
We also add another assumption: individuals are irreducible. Therefore, let us
use round(,0) to round to zero decimal places, i.e., the nearest integer.'®

Our user defined function, PopSim, simply wraps the previous steps up in a
single function.'® The output is a matrix, like the one we plotted above.

> PopSim <- function(Rs, NO, years = 50, sims = 10) {

sim.RM = matrix(sample(Rs, size = sims * years, replace = TRUE),
nrow = years, ncol = sims)

output <- numeric(years + 1)

output [1] <- NO

outmat <- sapply(1:sims, function(i) {
for (t in 1:years) output[t + 1] <- round(output[t] *

sim.RM[t, i], 0)

output

»

return (outmat)

+ o+ + o+ + F o+ o+ o+ o+ o+

}

If you like, try to figure out what each step of the simulation is doing. Consider
it one of the end-of-chapter problems. Rely on on the code above to help you
decipher the function.

4 For user-defined functions, see sec. B.4.1.

15 We could use also use floor to round down to the lowest integer, or ceiling to
round up.

16 This process, of working through the steps one at a time, and then wrapping up
the steps into a function, is a useful work flow.
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Now we have the pleasure of using this population simulator to examine a
number of things, including the sizes of the populations after 50 years. I first
simulate 1000 populations,'” and use system.time to tell me how long it takes
on my computer.

> system.time (output <- PopSim(Rs = obs.R, NO = 43, sims = 1000))

user system elapsed
0.404 0.004 0.407

This tells me that it took less than half a second to complete 1000 simulations.
That helps me understand how long 100000 simulations might take. We also
check the dimensions of the output, and they make sense.

> dim(output)
[1] 51 1000

We see that we have an object that is the size we think it should be. We shall
assume that everything worked way we think it should.

1.6.6 Analyzing results

We extract the last year of the simulations (last row), and summarize it.

> N.2053 <- output[51, ]
> summary(N.2053, digits = 6)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 14.0 66.0 1124.6 291.8 332236.0

We see from this summary that the median final population size, among the
1000 simulations, is 66 individuals (median=50% quantile). While at least one
of the populations has become extinct (min. = 0), the maximum is huge (max. =
332236). The quantile function allows us to find a form of empirical confidence
intervals, including, approximately, the central 95% of the observations.'®

> quantile(N.2053, prob = c(0.0275, 0.975))

2.75% 97.5%
0 5967

These quantiles suggest that in 2053, we might observe sparrow counts anywhere
from 0 to 5967, where zero and ~ 6000 are equally likely.

Notice the huge difference between the mean, N = 1125, and the median,
N=66. Try to picture a histogram for which this would be true. It would be
skewed right (long right hand tail), as with the lognormal distribution; this is
common in ecological data.

17 If we were doing this in a serious manner, we might do 10-100000 times.
18 Note that there are many ways to estimate quantiles (R has nine ways), but they
are approximately similar to percentiles.
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Let’s make a histogram of these data. Exponentially growing populations,
like this one, frequently show a lognormal distribution of abundances. Indeed,
some say the “natural” unit of a population is log(N), rather than N. We will
plot two frequency distributions of the final populations, one on the orignal
scale, one using the logarithms of the final population sizes plus 1 (we use N + 1
so that we can include 0’s — what is log(0)? log(1)?).

> hist(N.2053, main = "N")

> hist(log10(N.2053 + 1), main = "log(N+1)")

> abline(v = logl0(quantile(N.2053, prob = c(0.0275, 0.975)) +
+ 1), 1ty = 3)

We added some reference lines on the second histogram, showing the 2.5 and
97.5% quantiles (Fig. 1.10). You can see that the logarithms of the population
sizes are much more well-behaved, more symmetrical.
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Fig. 1.10: Exploratory graphs of the distributions of the final simulated population
sizes.

Can we really believe this output? To what can we compare our output?
One thing that occurs to me is to compare it to the lower and upper bounds
that we might contrive from deterministic projections.

To compare the simulation to deterministic projections, we could find the
95% t-distribution based confidence limits for the geometric mean of R. If we
use our rules regarding the geometric mean, we would find that the logarithm
of the geometric mean of R is the arthmetic mean of the logR. So, one thing
we could do is calculate the z-based confidence limits!? on log R, backtransform
these to project the population out to 2053 with lower and upper bounds.

Here we take find the logarithms, caculate degrees of freedom and the rele-
vant quantiles for the ¢ distribution.

1 Remember: the t-distribution needs the degrees of freedom, and a 95% confidence
region goes from the 2.5% and the 97.5% percentiles.
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> logOR <- log(obs.R)
> n <- length(logOR)
> t.quantiles <- qt(c(0.025, 0.975), df = n - 1)

Next we calculate the standard error of the mean, and the 95% confidence limits
for logR.

> se <- sgrt(var(logOR)/n)
> CLs95 <- mean(logOR) + t.quantiles * se

We backtransform to get R, and get a vector of length 2.

> R.limits <- exp(CLs95)
> R.1limits

[1] 0.8968 1.1302

What do we see immediately about these values? One is less than 0, and one is
greater than 0. This means that for the lower limit, the population will shrink
(geometrically), while for the upper limit, the population will increase (geomet-
rically). Let’s go ahead and make the 50y projection.

> N.Final.95 <- Count[Year == max(Year)] * R.1limits~50
> round(N.Final.95)

[1] 0 19528

Here we see that the lower bound for the deterministic projection is the same
(extinction) as the simulation, while the upper bound is much greater than
that for the simulation. Why would that be? Perhaps we should examine the
assumptions of our deteministic approach.

We started by assuming that the logR could be approximated with the 7
distribution, one of the most pervasive distributions in statistics and life. Let’s
check that assumption. We will compare the logR to the theoretical values for
a t distribution. We scale 1ogOR to make the comparison more clear.

> qqplot(qt(ppoints(n), df = n - 1), scale(logOR))
> gqline(scale(logOR))

How do we interpret these results? If the distribution of an observed variable
is consistent with a particular theoretical distribution, the ordered quantiles of
data will be a linear (straight line) function of the theoretical quantiles of the
theoretical distribution. Deviations from that straight line illustrate how the
data deviate. Here we see that the data have three outliers that are much more
extreme (greater and smaller) than expected in the #-distribution, and more
data are cluster around the center of the distribution than we would expect.
We should ask whether those extreme values are mistakes in data collection or
recording or whether they are every bit as accurate as all the other measure-
ments.

Compare our two different confidence limits. These provide two different
answers to our original question, “what might be the Song Sparrow count at
this site in 20537” Both of these assume a similar underlying model, density
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Fig. 1.11: Quantile-quantile plot used to compare logR to a t-distribution. Scaling
logOR in this case means that we subtracted the mean and divided by the standard
deviation. A histogram performs a similar service but is generally less discriminating
and informative.

independent growth, but give different answers. Of which approach are we more
confident? Why? What assumptions does each make?

We can be quite sure that our assumption regarding the #-distribution of our
R is unsupported — our data have outliers, relative to a t-distribution. What
would this do? It would increase the variance of our presumed distribution, and
lead to wider confidence intervals, even though most of the data conform to
a narrower distribution. Our simulation procedure, on the other hand, rarely
samples those extreme points and, by chance, samples observed R that fall much
closer to the median. This can occasionally be a problem in simulations based
on too little data — the data themselves do not contain enough variability.
Imagine the absurdity of a data-based simulation that relies on one observation
— it would be wvery precise (but wrong)!

Our conclusions are based on a model of discrete density-independent pop-
ulation growth — what assumptions are we making? are they valid? Are our
unrealistic assumptions perhaps nonetheless a good approximation of reality?
We will revisit these data later in the book (Chapter 3) to examine one of these
assumptions. We do not need to answer these questions now, but it is essential,
and fun, to speculate.

1.7 Summary

In this chapter, we have explored the meaning of density-independent popu-
lation growth. It is a statistically demonstrable phenomenon, wherein the per
captia growth rate exhibits no relation with population density. It is a useful
starting point for conceptualizing population growth. We have derived discrete
geometric and continuous exponential growth and seen how they are related.
We have caculated doubling times. We have discussed the assumptions that
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different people might make regarding these growth models. Last, we have used
simulation to explore prediction and inference in a density-independent context.

Problems

1.1. Geometric growth Analyze the following data, relying on selected snip-
pets of previous code.

(a) In the years 1996 through 2005, lily population sizes are N = 150, 100, 125,
200, 225, 150, 100, 175, 100, 150. Make a graph of population size versus time.
(b) Calculate R for each year; graph R vs. time.

(¢) Calculate arithmetic and geometric average growth rates of this population.
(d) Based on the appropriate average growth rate, what would be the expected
population size in 20257 What would the estimated population size be if you
used the inappropriate mean? Do not use simulation for this.

(d*) Given these data, develop simulations as above with the user-defined func-
tion, PopSim. Describe the distribution of projected population sizes for 2010.

1.2. Doubling Time

(a) Derive the formula for doubling time in a population with contiunous ex-
ponential growth.

(b) What is the formula for tripling time?

(c) If we are modeling humans or E. coli, would a model of geometric, or expo-
nential growth be better? Why?

(d) If an E. coli population grew from 1000 cells to 2 x 10° cells in 6 h, what
would its intrinsic rate of increase be? Its doubling time?

1.3. Human Population Growth

(a) There were about 630 million people on the planet in 1700, and 6.3 billion
in 2003 [33]. What was the intrinsic rate of increase, r?

(b) Graph the model of human population size population size from 1700 to
2020.

(c) Add points on the graph indicating the population doublings from 1700
onward.

(d*) What will prevent humans from outweighing the planet by the end of
this century? What controls human population growth? Do these controls vary
spatially across the planet? See Cohen [33] to get going.

1.4. R functions
Find the R functions in Chapter 1. Demonstrate their uses.
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