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Preface

Goals and audience

In spite of the presumptuous title, my goals for this book are modest. I wrote
it as

• the manual I wish I had in graduate school, and
• a primer for our graduate course in Population and Community Ecology at

Miami University1

It is my hope that readers can enjoy the ecological content and ignore the
R code, if they care to. Toward this end, I tried to make the code easy to ignore,
by either putting boxes around it, or simply concentrating code in some sections
and keeping it out of other sections.

It is also my hope that ecologists interested in learning R will have a rich yet
gentle introduction to this amazing programming language. Toward that end, I
have included some useful functions in an R package called primer. Like nearly
all R packages, it is available through the R projects repositories, the CRAN
mirrors. See the Appendix for an introduction to the R language.

I have a hard time learning something on my own, unless I can do something
with the material. Learning ecology is no different, and I find that my students
and I learn theory best when we write down formulae, manipulate them, and
explore consequences of rearrangement. This typically starts with copying down,
verbatim, an expression in a book or paper. Therefore, I encourage readers to
take pencil to paper, and fingers to keyboard, and copy expressions they see
in this book. After that, make sure that what I have done is correct by trying
some of the same rearrangements and manipulations I have done. In addition,
try things that aren’t in the book — have fun.

A pedagogical suggestion

For centuries, musicians and composers have learned their craft in part by
copying by hand to works of others. Physical embodiment of the musical notes

1 Miami University is located in the Miami River valley in Oxford, Ohio, USA; the
region is home to the Myaamia tribe that dwelled here prior to European occupa-
tion.
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and their sequences helped them learn composition. I have it on great authority
that most theoreticians (and other mathematicians) do the same thing — they
start by copying down mathematical expressions. This physical process helps get
the content under their skin and through their skull. I encourage you to do the
same. Whether otherwise indicated or not, let the first assigned problem at the
end of each chapter be to copy down, with a pencil and paper, the mathematical
expression presented in that chapter. In my own self-guided learning, I have
often taken this simple activity for granted and have discounted its value — to
my own detriment. I am not surprised how often students also take this activity
for granted, and similarly suffer the consequences. Seeing the logic of something
is not always enough — sometimes we have to actually recreate the logic for
ourselves.

Comparison to other texts

It may be useful to compare this book to others of a similar ilk. This book bears
its closest similarities to two other wonderful primers: Gotelli’s A Primer of
Ecology, and Roughgarden’s Primer of Theoretical Ecology. I am more familiar
with these books than any other introductory texts, and I am greatly indebted
to these authors for their contributions to my education and the discipline as a
whole.

My book, geared toward graduate students, includes more advanced material
than Gotelli’s primer, but most of the ecological topics are similar. I attempt
to start in the same place (e.g., “What is geometric growth?”), but I develop
many of the ideas much further. Unlike Gotelli, I do not cover life tables at all,
but rather, I devote an entire chapter to demographic matrix models. I include a
chapter on community structure and diversity, including multivariate distances,
species-abundance distributions, species-area relations, and island biogeography,
as well as diversity partitioning. My book also includes code to implement most
of the ideas, whereas Gotelli’s primer does not.

This book also differs from Roughgarden’s primer, in that I use the Open
Source R programming language, rather than Matlab®, and I do not cover
physiology or evolution. My philosphical approach is similar, however, as I tend
to “talk” to the reader, and we fall down the rabbit hole together2.

Aside from Gotelli and Roughgarden’s books, this book bears similarity in
content to several other wonderful introductions to mathematical ecology or
biology. I could have cited repeatedly (and in some places did so) the following:
Ellner and Guckenheimer (2006), Gurney and Nisbet (1998), Kingsland (1985),
MacArthur (1972), Magurran (2004), May (2001), Morin (1999), Otto and Day
(2006), and Vandermeer and Goldberg (2007). Still others exist, but I have not
yet had the good fortune to dig too deeply into them.
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2 From Alice’s Adventures in Wonderland (1865), L. Carroll (C. L. Dodgson).
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Fig. 1.1: Song Sparrow (Melospiza melodia) counts in Darrtown, OH, USA. From
Sauer, J. R., J. E. Hines, and J. Fallon. 2005. The North American Breeding Bird
Survey, Results and Analysis 1966–2004. Version 2005.2. USGS Patuxent Wildlife
Research Center, Laurel, MD.

Between 1966 and 1971, Song Sparrow (Melospiza melodia) abundance in
Darrtown, OH, USA, seemed to increase very quickly, seemingly unimpeded
by any particular factor (Fig. 1.1a). In an effort to manage this population, we
may want to predict its future population size. We may also want to describe its
growth rate and population size in terms of mechanisms that could influence its
growth rate. We may want to compare its growth and relevant mechanisms to
those of other Song Sparrow populations or even to other passerine populations.
These goals, prediction, explanation, and generalization, are frequently the goals
toward which we strive in modeling anything, including populations, communi-
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ties, and ecosystems. In this book, we start with simple models of populations
and slowly add complexity to both the form of the model, and the analysis of
its behavior. As we move along, we also practice applying these models to real
populations.

What is a model, and why are they important in ecology? First, a model is
an abstraction of reality. A road map, for instance, that you might use to find
your way from Mumbai to Silvasaa is a model of the road network that allows
you to predict which roads will get you to Silvasaa. As such, it excludes far more
information about western India than it includes. Partly as a result of excluding
this information, it is eminently useful for planning a trip. Models in ecology are
similar. Ecological systems are potentially vastly more complex than just about
any other system one can imagine for the simple reason that ecosystems are
composed of vast numbers of genetically distinct individuals, each of which is
composed of at least one cell (e.g., a bacterium), and all of these individuals may
interact, at least indirectly. Ecological models are designed to capture particular
key features of these potentially complex systems. The goal is to capture a key
feature that is particularly interesting and useful.

In this book, we begin with the phenomenon called density-independent
growth. We consider it at the beginning of the book for a few reasons. First, the
fundamental process of reproduction (e.g., making seeds or babies) results in
a geometric series.1 For instance, one cell divides to make two, those two cells
each divide to make four, and so on, where reproduction for each cell results
in two cells, regardless of how many other cells are in the population — that
is what we mean by density-independent. This myopically observed event of
reproduction, whether one cell into two, or one plant producing many seeds, is
the genesis of a geometric series. Therefore, most models of populations include
this fundamental process of geometric increase. Second, populations can grow in
a density-independent fashion when resources are plentiful. Third, it behooves
us to start with this simple model because most, more complex population
models include this process.

1.1 A Very Specific Definition

Density-independence in a real population is perhaps best defined quite specif-
ically and operationally as a lack of a statistical relation between the density of
a population, and its per capita growth rate. The power to detect a significant
relation depends, in part, on those factors which govern power in statistical re-
lations between any two continuous variables: the number of observations, and
the range of the predictor variable. Therefore, our conclusion, that a particular
population exhibits density-independent growth, may be trivial if our sample
size is small (i.e., few generations sampled), or if we sampled the population
over a very narrow range of densities. Nonetheless, it behooves us to come back

1 A mathematical series is typically a list of numbers that follow a rule, and that you
sum together.
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to this definition if, or when, we get caught up in the biology of a particular
organism.

We could examine directly the relation between the growth rate and popu-
lation size of our Song Sparrow population (Fig. 1.1b). We see that there is no
apparent relation between the growth rate and the density of the population.2

That is what we mean by “density-independent growth.”

1.2 A Simple Example

Let’s pretend you own a small piece of property and on that property is a pond.
Way back in June 2000, as a present for Mother’s Day, you were given a water
lily (Nymphaea odorata), and you promptly planted it, with its single leaf or
frond, in the shallows of your pond. The summer passes, and your lily blossoms,
producing a beautiful white flower. The following June (2001) you notice that
the lily grew back, and that there were three leaves, not just one. Perhaps you
cannot discern whether the three leaves are separate plants. Regardless, the
pond now seems to contain three times the amount of lily pad that it had last
year.

The following June (2002) you are pleased to find that instead of three
leaves, you now have nine. In June 2003, you have 27 leaves, and in 2004 you
have 81 leaves (Fig. 1.3). How do we describe this pattern of growth? How do
we predict the size of the population in the future? Can we take lessons learned
from our water lily and apply it to white-tailed deer in suburbia, or to bacteria
in the kitchen sink?

We rely on theory to understand and describe the growth of our water lily in
such a way as to apply it to other populations. The role of theory, and theoretical
ecology, is basically three-fold. We might like theory to allow us to describe the
pattern in sufficient detail (1) to provide a mechanistic explanation for how the
lily grew as fast or as slowly as it did, (2) allow us to make predictions about
the population size in the future, and (3) allow us to generalize among other
lily populations or other species. These goals typically compete with each other,
so real models are mathematical descriptions that result from tradeoffs among
these goals which depend precisely on our particular needs [109].

1.3 Exploring Population Growth

So, how fast are the lilies of the example growing? Between years 1 and 2, it
increased by 2 fronds; between years 2 and 3, it increased by 6. In subsequent
years it increased by 18, and 54 fronds. The number changes each year (Fig.
1.3), so how do we predict the future, or even explain the present? Can we find
a general rule that works for any year?

2 Consider that if area is fixed, “count” or population size differs from density by a
fixed multiplier
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Fig. 1.2: Hypothetical water lily population size through time.

Simple Graphing of Population Size (Fig. 1.3)

Here we create two vectors: population size, N, and years. Using c() allows us to
create an arbitrary vector, and the colon, :, provides a sequence of consecutive
integers.

> N <- c(1, 3, 9, 27, 81)

> year <- 2001:2005

> plot(year, N)

The lily population (Fig. 1.3) increases by a different amount each year.
What about proportions — does it increase by a different proportion each year?
Let’s divide each year’s population size by the previous year’s size, that is,
perform Nt+1/Nt for all t, where t is any particular point in time, and t + 1 is the
next point in time. For N, that amounts to 3/1, 9/3, . . . . What do we notice?

Vectorized math

Here we divide each element of one vector (the second through fifth element of N)
by each element of another vector (the first through fourth elements of N).

> rates = N[2:5]/N[1:4]

> rates

[1] 3 3 3 3

Lo, and behold! all of these proportions are the same: 3. Every year, the
lilies increase by the same proportion — they triple in abundance, increasing
by 200%. That is the general rule that is specific to our population. It is general
because it appears to apply to each year, and could potentially describe other
populations; it is not, for instance, based on the photosynthetic rate in lily pads.
It is specific because it describes a specific rate of increase for our water lily
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population. We can represent this as

N2002 = 3 × N2001

where N2002 is the size of the population in 2002. If we rearrange this, dividing
both sides by N2001, we get

N2002

N2001
= 3

where 3 is our rate of increase.
Generalizing this principle, we can state

Nt+1 = 3Nt

Nt+1

Nt
= 3.

1.3.1 Projecting population into the future

The above equations let us describe the rate of change population size N from
one year to the next, but how do we predict the size 10 or 20 years hence? Let’s
start with one year and go from there.

N2002 = 3N2001

N2003 = 3N2002 = 3 (3N2001)

N2004 = 3N2003 = 3 (3N2002) = 3 (3 (2N2001))

So, . . . what is the general rule that is emerging for predicting water lily N, some
years hence? Recall that 3 × 3 × 3 = 33 or a × a × a = a3, so more generally, we
like to state

Nt = λtN0 (1.1)

where t is the number of time units (years in our example), N0 is the size of
our population at the beginning, λ is the per capita rate of increase over the
specified time interval and Nt is the predicted size of the population after t time
units.

Note that lambda, λ, is the finite rate of increase. It is the per capita rate
of growth of a population if the population is growing geometrically. We discuss
some of the finer points of λ in Chapter 2. We can also define a related term,
the discrete growth factor, rd, where λ = (1 + rd).

Note that “time” is not in calendar years but rather in years since the initial
time period. It is also the number of time steps. Imagine that someone sampled
a population for five years, 1963–1967, then we have four time steps, and t = 4.
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Projecting population size

Here we calculate population sizes for 10 time points beyond the initial. First we
assign values for N0, λ, and time.

> N0 <- 1

> lambda <- 2

> time <- 0:10

Next we calculate Nt directly using our general formula.

> Nt <- N0 * lambda^time

> Nt

[1] 1 2 4 8 16 32 64 128 256 512 1024

1.3.2 Effects of initial population size

Let’s explore the effects of initial population size. First, if we just examine
equation 1.1, we will note that Nt = N0×stuff. Therefore, if one population starts
out twice as big as another, then it will always be twice as big, given geometric
growth (Fig. 1.3a). We see that small initial differences diverge wildly over time
(Fig. 1.3a), because “twice as big” just looks a lot bigger as the magnitude
increases.

Effects of Initial Population Size

We first set up several different initial values, provide a fixed λ, and set times from
zero to 4.

> N0 <- c(10, 20, 30)

> lambda <- 2

> time <- 0:4

We calculate population sizes at once using sapply to apply a function
(n*lambda^time) to each element of the first argument (each element of N0).

> Nt.s <- sapply(N0, function(n) n * lambda^time)

> Nt.s

[,1] [,2] [,3]

[1,] 10 20 30

[2,] 20 40 60

[3,] 40 80 120

[4,] 80 160 240

[5,] 160 320 480

The result is a matrix, and we see N0 in the first row, and each population is in its

own column. Note that population 2 is always twice as big as population 1.

If we change the y-axis scale to logarithms, however, we see that the lines are
parallel! Logarithms are a little weird, but they allow us to look at, and think
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about, many processes where rates are involved, or where we are especially
interested in the relative magnitudes of variables. Consider the old rule we get
when we take the logarithm of both sides of an equation, where the right hand
side is a ratio.

y =
a
b

(1.2)

log y = log
(a
b

)
= log a − log b (1.3)

Thus, when we change everything into logarithms, ratios (like λ) become dif-
ferences, which result in straight lines in graphs (Fig. 1.3b). On a linear scale,
populations that are changing at the same rates can look very different (Fig.
1.3a), whereas on a logarithmic scale, the populations will have parallel trajec-
tories (Fig. 1.3b).

Graphing a Matrix (Figs. 1.3a, 1.3b)

We can use matplot to plot a matrix vs. a single vector on the X-axis. By default it
labels the points according to the number of the column

> matplot(time, Nt.s, pch = 1:3)

We can also plot it with a log scale on the y-axis.

> matplot(time, Nt.s, log = "y", pch = 1:3)
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Fig. 1.3: Effects of variation in initial N on population size, through time. Different
symbols indicate different populations.

Note that changing the initial population size changes the intercept. It also
changes the slope in linear space, but not in log-linear space. It changes the
absolute rate of increase (N2−N1), but not the relative rate of increase (N2/N1).
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1.3.3 Effects of different per capita growth rates

Perhaps the most important single thing we can say about λ is that when λ < 1,
the population shrinks, and when λ > 1 the population grows. If we examine eq
1.1, Nt = λtN0, we will note that λ is exponentiated, that is, raised to a power.3

It will always be true that when λ > 1 and t > 1, λt > λ. It will also be true that
when λ < 1 and t > 1, λt < λ (Fig. 1.4).

Thus we see the basis of a very simple but important truism. When λ > 1,
the population grows, and when λ < 1 the population shrinks (Fig. 1.4). When
λ = 1, the population size does not change, because 1t = 1 for all t.

Effects of Different λ (Fig. 1.4)

Here we demonstrate the effects on growth of λ > 1 and λ < 1. We set N0 = 100, and
time, and then pick three different λ.

> N0 <- 100

> time <- 0:3

> lambdas <- c(0.5, 1, 1.5)

We use sapply again to apply the geometric growth function to each λ. This time,
x stands for each λ, which our function then uses to calculate population size. We
then plot it, and add a reference line and a little text.

> N.all <- sapply(lambdas, function(x) N0 * x^time)

> matplot(time, N.all, xlab = "Years", ylab = "N", pch = 1:3)

> abline(h = N0, lty = 3)

> text(0.5, 250, expression(lambda > 1), cex = 1.2)

> text(0.5, 20, expression(lambda < 1), cex = 1.2)

The reference line is a horizontal line with the l ine type dotted. Our text simply

indicates the regions of positive and negative growth.

We note that we have graphed discrete population growth. If we are counting
bodies, and the population reproduces once per year, then the population will
jump following all the births (or emergence from eggs). Further, it is probably
always the case that following a bout of synchronous reproduction, we observe
chronic ongoing mortality, with the result of population decline between spikes
of reproduction. Nonetheless, unless we collect the data, we can’t really say
much about what goes on in between census periods.

1.3.4 Average growth rate

In any real data set, such as from a real population of Nymphaea, Nt+1/Nt will
vary from year to year. Let’s examine this with a new data set in which annual
growth rate varies from year to year.

3 What happens to yx as x increases, if y > 1 — does yx increase? What happens if
y < 1 — does yx decrease? The answer to both these questions is yes.
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Fig. 1.4: Effects of variation in λ on population size through time. The dotted line
indicates no change (Nt = N0; λ = 1). Different symbols (circles, triangles, crosses)
indicate populations resulting from λ = (0.5, 1.0, 1.5), respectively. Any λ greater than
1 results in positive geometric growth; any λ < 1 results in negative geometric growth,
or population decline.

Since growth rate varies from year to year, we may want to calculate average
annual growth rate over several years. As we see below, however, the arithmetic
averages are not really appropriate.

Consider that Nt+1/Nt may be a random variable which we will call R.4 That
is, this ratio from any one particular year could take on a wide variety of values,
from close to zero, up to some (unknown) large number. Let’s pick two out of
a hat, where R = 0.5, 1.5. The arithmetic average of these is 1.0, so this might
seem to predict that, on average, the population does not change. Let’s project
the population for two years using each R once.

N0 = 100
N1 = N0 (0.5) = 50
N2 = N1 (1.5) = 75

We started with 100 individuals, but the population shrank! Why did that
happen? It happens because, in essence, we multiply the λ together, where
N2 = N0 R1 R2. In this case, then, what is a sensible “average”?

How do we calculate an average for things that we multiply together? We
would like a value for R which would provide the solution to

R̄t = R1R2 . . .Rt (1.4)

4 Some authors use R for very specific purposes, much as one might use λ; here we
just use it for a convenient letter to represent observed per capita change.
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where t is the number of time steps and R1 is the observed finite rate of increase
from year 1 to year 2. The bar over R indicates a mean.

All we have to do is solve for R.(
R̄t

)1/t
= (R1R2 . . .Rt)1/t (1.5)

R̄ = (R1R2 . . .Rt)1/t (1.6)
(1.7)

We take the t-th root of the product of all the R. This is called the geometric
average. Another way of writing this would be to use the product symbol, Π ,
as in

R̄ =

 t∏
i=1

Ri

1/t

(1.8)

If we examine the Song Sparrow data (Fig. 1.5), we see that projections based
on the geometric average R are less than when based on the arithmetic average;
this is always the case.
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Fig. 1.5: Song Sparrow population sizes, and projections based on arithmetic and
geometric mean R.
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Comparing arithmetic and geometric averages (Fig. 1.5)

First we select the number of observed R (t = 5); this will require that we use six
years of Song Sparrow data.

> t <- 5

> data(sparrows)

> SS6 <- sparrows[1:(t + 1), ]

Next we calculate λ for each generation, from t to t + 1, and calculate the arithmetic
and geometric means.

> SSgr <- SS6$Count[2:(t + 1)]/SS6$Count[1:t]

> lam.A <- sum(SSgr)/t

> lam.G <- prod(SSgr)^(1/t)

Now we can plot the data, and the projections based on the two averages (Fig. 1.5).

> N0 <- SS6$Count[1]

> plot(0:t, SS6$Count, ylab = "Projected Population Size")

> lines(0:t, N0 * lam.A^(0:t), lty = 2)

> lines(0:t, N0 * lam.G^(0:t), lty = 1)

> c("Arithmetic Ave.","Geometric Ave."),title = "Projections Based

+ lty = 2:1, bty = "n", xjust = 0)

1.4 Continuous Exponential Growth

Although many, many organisms are modeled well with discrete growth models
(e.g., insects, plants, seasonally reproducing large mammals), many populations
are poorly represented by discrete growth models. These populations (e.g., bac-
teria, humans) are often modeled as continuously growing populations. Such
models take advantage of simple calculus, the mathematics of rates.

Whereas geometric growth is proportional change in a population over a
specified finite time interval, exponential growth is proportional instantaneous
change over, well, an instant.

Imagine a population of Escherichia coli started by inoculating fresh Luria-
Bertania medium with a stab of E. coli culture. We start at time zero with about
1000 cells or CFUs (colony forming units), and wind up the next day with 1010

cells. If we used (incorrectly) a discrete growth model, we could calculate Nt+1/Nt

and use this as an estimate for λ, where λ = 1010/103 = 107 cells per cell per
day. We know, however, that this is a pretty coarse level of understanding about
the dynamics of this system. Each cell cycle is largely asynchronous with the
others, and so many cells are dividing each second. We could simply define our
time scale closer to the average generation time of a cell, for example λ = 2
cells cell−1 0.5 h−1, but the resulting discrete steps in population growth would
still be a poor representation of what is going on. Rather, we see population size
changing very smoothly from hour to hour, minute to minute. Can we come up
with a better description? Of course.

legend(0,70, On:",
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1.4.1 Motivating continuous exponential growth

If we assume that our E. coli cells are dividing asynchronously, then many cells
are dividing each fraction of a second — we would like to make that fraction of
a second an infinitely small time step. Unfortunately, that would mean that we
have an infinitely large number of time steps between t = 0 and t = 1 day, and
we couldn’t solve anything.

A long time ago, a very smart person5 realized that geometric growth de-
pends on how often you think a step of increase occurs. Imagine you think a
population increases at an annual growth rate λ = 1.5. This represents a 50%
increase or

N1 = N0 (1 + 0.5)

so the discrete growth increment is rd = 0.5. You could reason that twice-annual
reproduction would result in half of the annual rd. You could then do growth
over two time steps, and so we would then raise λ2, because the population is
taking two, albeit smaller, time steps. Thus we would have

N1 = N0 (1 + 0.5/2)2 = N0 (1 + 0.25)2

What if we kept increasing the number of time steps, and decreasing the growth
increment? We could represent this as

N1 = N0

(
1 +

rd

n

)n

N1

N0
=

(
1 +

rd

n

)n

Our question then becomes, what is the value of
(
1 +

rd
n

)n
as n goes to infinity?

In mathematics, we might state that we would like the solution to

lim
n→∞

(
1 +

rd

n

)n
. (1.9)

To begin with, we simply try larger and larger values of n, graph eq. 1.9 vs. n,
and look for a limit (Fig. 1.6).

5 Jacob Bernoulli (1654–1705)
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Numerical approximation of e

Here we use brute force to try to get an approximate solution to eq. 1.9. We’ll let n be
the number of divisions within one year. This implies that the finite rate of increase
during each of these fractional time steps is rd/n. Let the λ = 2 and therefore rd = 1.
Note that because N0 = 1, we could ignore it, but let’s keep it in for completeness.

> n <- 0:100

> N0 <- 1

> rd <- 1

Next, we calculate
(
1 +

rd
n

)n
for ever larger values of n.

> N1 <- N0 * (1 + rd/n)^n

Last, we plot the ratio and add some fancy math text to the plot (see ?plotmath for
details on mathematical typesetting in R).

> plot(n, N1/N0, type = "l")

> text(50, 2, "For n = 100,")

> text(50, bquote((1 + frac("r"["d"],"n"))^"n" == .(round(N1[101]/N0,

+ 3))))

0 20 40 60 80 100

1.
0

1.
5

2.
0

2.
5

n

N
1/

N
0 For n = 100,

(1 +
rd

n
)n = 2.705

Fig. 1.6: The limit to subdividing reproduction into smaller steps. We can compare
this numerical approximation to the true value, e1 = 2.718.

Thus, when reproduction occurs continuously, the population can begin to
add to itself right away. Indeed, if a population grew in a discrete annual step

1.6,
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Nt+1 = Nt (1 + rd), the same rd, divided up into many small increments, would
result in a much larger increase.

It turns out that the increase has a simple mathematical expression, and we
call it the exponential, e. As you probably recall, e is one of the magic numbers
in mathematics that keeps popping up everywhere. In this context, we find that

lim
n→∞

(
1 +

r
n

)n
= er (1.10)

where e is the exponential.
This means that when a population grows geometrically, with infinitely small

time steps, we say the population grows exponentially, and we represent that
as,

Nt = N0ert. (1.11)

We call r the instantaneous per capita growth rate, or the intrinsic rate of
increase.

Projection of population size with continuous exponential growth is thus no
more difficult than with discrete growth (Fig. 1.7).

Projecting a continuous population

We select five different values for r: two negative, zero, and two positive. We let t
include the integers from 1 to 100. We then use sapply to apply our function of
continuous exponential growth to each r, across all time steps. This results in a
matrix where each row is the population size at each time t, and each column uses
a different r.

> r <- c(-0.03, -0.02, 0, 0.02, 0.03)

> N0 <- 2

> t <- 1:100

> cont.mat <- sapply(r, function(ri) N0 * exp(ri * t))

Next we create side-by-side plots, using both arithmetic and logarithmic scales, and
add a legend.

> layout(matrix(1:2, nrow = 1))

> matplot(t, cont.mat, type = "l", ylab = "N", col = 1)

> legend("topleft", paste(rev(r)), lty = 5:1, col = 1, bty = "n",

+ title = "r")

> matplot(t, cont.mat, type = "l", ylab = "N", log = "y", col = 1)

1.4.2 Deriving the time derivative

We can also differentiate eq. 1.11 with respect to time to get the differential
equation for instantaneous population growth rate. Recall that the chain rule
tells us that the derivative of a product of two terms is the sum of the products
of the derivative of one times the other original term.

d
dt

(XY) =
dX
dt

Y +
dY
dt

X
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Fig. 1.7: Projecting continuous populations with different r.

Therefore to begin to differentiate eq. 1.11, with respect to t, we have,

d
dt

N0ert =
d
dt

N0 · (er)t
+

d
dt

(er)t
· N0

Recall also that the derivative of a constant is zero, and the derivative of at is
ln a

(
at), resulting in,

d
dt

N0ert = 0 · (er)t
+ ln er · (er)t

· N0

Given that ln e = 1, and that N0ert = N for any time t, this reduces to eq. 1.12.
The time derivative, or differential equation, for exponential growth is

dN
dt

= rN. (1.12)

1.4.3 Doubling (and tripling) time

For heuristic purposes, it is frequently nice to express differences in growth
rates in terms of something more tangible than a dimensionless number like r.
It is relatively concrete to say population X increases by about 10% each year
(λ = 1.10), but another way to describe the rate of change of a population is
to state the amount of time associated with a dramatic but comprehensible
change. The doubling time of a population is the time required for a population
to double in size. Shorter doubling times therefore mean more rapid growth.

We could determine doubling time graphically. If we examine the expanding
population in Fig. 1.4, we see that it takes about one and half years for the
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population size to change from N = 100 to N = 200. Not surprisingly, we can
do better than that. By doubling, we mean that Nt = 2N0. To get the time at
which this occurs, we solve eq. (1.11) for t,

2N0 = N0ert (1.13)
2 = ert (1.14)

ln (2) = rt ln (e) (1.15)

t =
ln (2)

r
. (1.16)

Thus, eq. 1.16 gives us the time required for a population to double, given a
particular r. We could also get any arbitrary multiple m of any arbitrary initial
N0.

Creating a function for doubling time

We can create a function for this formula, and then evaluate it for different values of
m and r. For m = 2, we refer to this as “doubling time.” When we define the function
and include arguments r and m, we also set a default value for m=2. This way, we
do not always have to type a value for m; be default the function will return the
doubling time.

> m.time <- function(r, m = 2) {

+ log(m)/r

+ }

Now we create a vector of r, and then use m.time to generate a vector of doubling
times.

> rs <- c(0, 1, 2)

> m.time(rs)

[1] Inf 0.6931 0.3466

Note that R tells us that when r = 0, it takes an infinite (Inf) amount of time to

double. This is what we get when we try to divide by zero!

1.4.4 Relating λ and r

If we assume constant exponential and geometric growth, we can calculate r
from data as easily as λ. Note that, so rearranging, we see that

Nt = N0ert

ln (Nt) = ln (N0) + rt.

In other words, r is the slope of the linear relation between ln (Nt) and time
(Fig. 1.7), and ln (N0) is the y-intercept. If the data make sense to fit a straight
regression line to log-transformed data, the slope of that line would be r.

It also is plain that,
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λ = er (1.17)
ln λ = r. (1.18)

Summarizing some of what we know about how λ and r relate to population
growth:

No Change λ = 1 , r = 0
Population Growth λ > 1 , r > 0
Population Decline λ < 1 , r < 0

Remember — λ is for populations with discrete generations, and r is for
continuously reproducing populations.

Units

What are the units for λ and r? As λ is a ratio of two population sizes, the
units could be individuals/individual, thus rendering λ dimensionless. Similarly,
we can view λ as the net number of individuals produced by individuals in
the population such that the units are net new individuals per individual per
time step, or inds ind−1 t−1. The intrinsic rate of increase, r, is also in units of
inds ind−1 t−1

Converting between time units

A nice feature of r as opposed to λ is that r can be used to scale eas-
ily among time units. Thus, r = 0.1 inds ind−1 year−1 becomes r = 0.1/365 =

0.00027 inds ind−1 day−1. You cannot do this with λ. If you would like to scale λ
from one time unit to another, first convert it to r using logarithms, make the
conversion, then convert back to λ.

1.5 Comments on Simple Density-independent Growth
Models

It almost goes without saying that if we are considering density-independent
growth models to be representative of real populations, we might feel as though
we are making a very long list of unrealistic assumptions. These might include
no immigration or emigration, no population structure (i.e. all individuals are
identical), and you can probably come up with many others [58]. However, I
would argue vociferously that we are making only one assumption:

N increases by a constant per capita rate over the time interval(s) of
interest.

Think about that. I am not saying that competition is not occurring, or that
no death is occurring, or that all individuals are reproductively viable, or there
is no abiotic disturbance, or that there is no population genetic structure. I am
just saying that for the time period of interest, all things balance out, or are
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of no substantive consequence, and the population chugs along at a particular
pace.

If the per capita rate is constant, then there can be no statistical relation
between the size of the population and its per capita growth rate. In the absence
of such a relation, we say that the growth rate is density-independent.

Other ecologists will disagree with my sentiments regarding an absence of
assumptions. That’s OK — still others may agree with these sentiments. Take
it upon yourself to acquire multiple perspectives and evaluate them yourself.

Both λ and r obviously depend on birth rates and death rates. For instance,
we could view geometric growth as

Nt+1 = Nt + BNt − DNt (1.19)

where B is the number of births per individual and D is the probability of an
individual dying during the specified time interval. Lambda, in this case, is
1+ (B − D) and rd = B−D. This form would be nice if we had data on births and
deaths, because, after all, one goal of Science is to explain complex phenomena
(e.g., λ) in terms of their determinants (e.g., B and D). Similarly, we can state
r = b − d where b and d are per capita instanteous rates. Such an advance in
understanding the determinants would be great.

Perhaps now is a good time to think about all the assumptions others might
tell us we are making when we present the above formulation. Are all individuals
in the population equally likely to produce progeny and/or die? Will birth and
death rates vary over time or as the size of the population changes more? How
will resource supply rate influence these rates? Is there really no immigration
or emigration? These are very interesting questions.

Simple density-independent growth provides, in some sense, a null hypothe-
sis for the dynamic behavior of a population. Malthus warned us that organisms
produce more progeny than merely replacement value, and population growth is
an exponential (or geometric) process [125]. The question then becomes “What
causes population growth to differ from a constant rate of change?” That, in a
nutshell, is what the rest of the book is about.

1.6 Modeling with Data: Simulated Dynamics

The main purpose of this section6 is to begin to understand the mechanics of
simulation. The preceding sections (the bulk of the chapter) emphasized under-
standing the deterministic underpinnings of simple forms of density independent
growth: geometric and exponential growth. This section explores the simulation
of density independent growth.

When we model populations, perhaps to predict the size of a population
in the future, we can take a variety of approaches. One type of approach em-
phasizes deterministic prediction, using, for instance, R̄. Another approach is to
simulate population dynamics and we take this up in this next section.

6 This section emphasizes work in R.
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To project population growth into the future should include some quantifi-
cation of the uncertainty with our guess. Simulation is one way we can project
populations and quantify the uncertainty. The way one often does that is to use
the original data and sample it randomly to calculate model parameters. In this
fashion, the simulations are random, but based on our best available knowldge,
i.e., the real data. The re-use of observed data occurs in many guises, and it is
known generally as bootstrapping or resampling.

1.6.1 Data-based approaches

In using our data to predict population sizes, let us think about three levels of
biological organization and mechanism: population counts, changes in popula-
tion counts, and individual birth and death probabilities. First, our count data
alone provide a sample of a very large number of different possible counts. If we
assume that there will be no trend over time, then a simple description of our
observed counts (e.g., mean and confidence intervals) provide all we need. We
can say “Song Sparrow counts in the Breeding Bird Survey in Darrtown, OH,
are about 51.”

Second, we could use the observed changes in population counts Rt = Nt+1/Nt

as our data. We would then draw an Rt at random from among the many
observed values, and project the population one year forward. We then repeat
this into the future, say, for ten years. Each simulation of a ten year period will
result in a different ten year trajectory because we draw Rt at random from
among the observed Rt. However, if we do many such simulations, we will have
a distribution of outcomes that we can describe with simple statistics (e.g.,
median, mean, quantiles).

Third, we might be able to estimate the individual probabilities of births and
deaths in the entire Darrtown population, and use those probabilities and birth
rates to simulate the entire population into the future. In such an individual-
based simulation, we would simulate the fates of individuals, keeping track of
all individual births and deaths.

There are myriad others approaches, but these give you a taste of what
might be possible. In this section we focus on the second of these alternatives,
in which we use observed Rt to simulate the dynamics of Song Sparrow counts.

Here we investigate Song Sparrow (Melospize melodia) dynamics using data
from the annual U.S. Breeding Bird Survey (http://www.mbr-pwrc.usgs.gov/
bbs/). Below we will

1. look at and collecting the data (annual R’s),
2. simulate one projection,
3. scale up to multiple simulations,
4. simplify simulations and perform 1000’s, and
5. analyze the output.

1.6.2 Looking at and collecting the data

Let’s start by looking at the data. Looking at the data is always a good idea —
it is a principle of working with data. We first load the data from the primer
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R package, and look at the names of the data frame. We then choose to attach
the data frame, because it makes the code easier to read.7

> names(sparrows)

[1] "Year" "Count" "ObserverNumber"

> attach(sparrows)

Now we plot these counts through time (Fig. 1.8).

> plot(Count ~ Year, type = "b")
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Fig. 1.8: Observations of Song Sparrows in Darrtown, OH (http://www.mbr-
pwrc.usgs.gov/bbs/).

We see that Song Sparrow counts8 at this site (the DARRTOWN transect, OH,
USA) fluctuated a fair bit between 1966 and 2003. They never were completely
absent and never exceeded ∼ 120 individuals.

Next we calculate annual Rt = Nt+1/Nt, that is, the observed growth rate for
each year t.9

> obs.R <- Count[-1]/Count[-length(Count)]

Thus our data are the observed Rt, not the counts per se. These R form the
basis of everything else we do. Because they are so important, let’s plot these
as well. Let’s also indicate R = 1 with a horizontal dotted line as a visual cue

7 I typically do not use attach but rather choose to always define explicitly the parent
data frame I am using. It helps me reduce silly mistakes.

8 Recall that these are samples or observations of sparrows. These are not population
sizes. Therefore, we will be simulating sparrows counts, not sparrow population
sizes.

9 The use of “-” in the index tells R to exclude that element (e.g., -1 means “exclude
the first element of the vector”).
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for zero population growth. Note that we exclude the last year because each Rt

is associated with Nt rather than Nt+1.

> plot(obs.R ~ Year[-length(Count)])

> abline(h = 1, lty = 3)

One thing that emerges in our graphic data display (Fig. 1.8) is we have an
unusually high growth rate in the early 1990’s, with the rest of the data clustered
around 0.5–1.5. We may want to remember that.

1.6.3 One simulation

Now that we have our randomly drawn Rs, we are ready to simulate dynamics. A
key assumption we will make is that these R are representative of R in the future,
and that each is equally likely to occur. We then resample these observed R with
replacement for each year of the simulation. This random draw of observed
R’s then determines one random realization of a possible population trajectory.
Let’s begin.

First, we decide how many years we want to simulate growth.

> years <- 50

This will result in 51 population sizes, because we have the starting year, year
0, and the last year.

Next we draw 50 R at random with replacement. This is just like having all
35 observed R written down on slips of paper and dropped into a paper bag.
We then draw one slip of paper out of the bag, write the number down, and
put the slip of paper back in the bag, and then repeat this 49 more times. This
is resampling with replacement10. The R function sample will do this. Because
this is a pseudorandom11 process, we use set.seed to make your process the
same as mine, i.e., repeatable.

> set.seed(3)

> sim.Rs <- sample(x = obs.R, size = years, replace = TRUE)

Now that we have these 50 R, all we have to do is use them to determine
the population size through time. For this, we need to use what programmers
call a for-loop (see B.6 for further details). In brief, a for-loop repeatedly loops
through a particular process, with one loop for each value of some indicator
variable. Here we calculate each sparrow count in the next year, Nt+1, using the
count in the current year Nt and the randomly drawn R for each year t.

10 We could resample without replacement. In that case, we would be assuming that all
of these Rt are important and will occur at some point, but we just don’t know when
— they constitute the entire universe of possiblities. Sampling with replacement,
as we do above, assumes that the observed Rt are all equally likely, but none is
particularly important — they are just a sample of what is possible, and they
might be observed again, or they might not.

11 A pseudorandom process is the best computers can do — it is a complex determin-
istic process that generates results that are indistinguishable from random.
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We begin by creating an empty output vector that is the right length to
hold our projection, which will be the number of Rs plus one.12

> output <- numeric(years + 1)

We want to start the projection with the sparrow count we had in the last year
(the “maximum,” or biggest, year) of our census data.

> output[1] <- Count[Year == max(Year)]

Now the fun really starts to take off, as we finally use the for-loop. For each
year t, we multiply Nt by the randomly selected Rt to get Nt+1 and put it into
the t + 1 element of output.

> for (t in 1:years) output[t + 1] <- {

+ output[t] * sim.Rs[t]

+ }

Let’s graph the result.

> plot(0:years, output, type = "l")

It appears to work (Fig. 1.9a) — at least it did something! Let’s review what
we have done. We

• had a bird count each year for 36 years. From this we calculated 35 R (for
all years except the very last).

• decided how many years we wanted to project the population (50 y).
• drew at random and with replacement the observed R — one R for each year

we want to project.
• got ready to do a simulation with a for-loop — we created an empty vector

and put in an initial value (the last year’s real data).
• performed each year’s calculation, and put it into the vector we made.

So what does Fig. 1.9a represent? It represents one possible outcome of
a trajectory, if we assume that R has an equal probability of being any of the
observed Rt. This particular trajectory is very unlikely, because it would require
one particular sequence of Rs. However, our simulation assumes that it is no
less likely than any other particular trajectory.

As only one realization of a set of randomly selected R, Fig. 1.9a tells us
very little. What we need to do now is to replicate this process a very large
number of times, and examine the distribution of outcomes, including moments
of the distribution such as the mean, median, and confidence interval of eventual
outcomes.

1.6.4 Multiple simulations

Now we create a way to perform the above simulation several times. There are
a couple tricks we use to do this. We still want to start small so we can figure
out the steps as we go. Here is what we would do next.

12 Remember that we always have one more population count than we do Rt.
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• We start by specifying that we want to do 10 simulations, where one simu-
lation is what we did above.

• We will need to use 50 × 10 = 500 randomly drawn Rs and store those in a
matrix.

• To do the ten separate, independent simulations, we will use sapply, to“ap-
ply”our simulations ten times. We have to use a for-loop for each population
simulation, because each Nt depends on the previous Nt−1. We use sapply
and related functions for when we want to do more than one independent
operation.

Here we specify 10 simulations, create a matrix of the 10 × 50 randomly
drawn R.

> sims = 10

> sim.RM <- matrix(sample(obs.R, sims * years, replace = TRUE),

+ nrow = years, ncol = sims)

Next we get ready to do the simulations. First, to hold each projection tem-
porarily, we will reuse output as many times as required. We then apply our
for-loop projection as many times as desired, for each value of 1:sims.

> output[1] <- Count[Year == max(Year)]

> outmat <- sapply(1:sims, function(i) {

+ for (t in 1:years) output[t + 1] <- output[t] * sim.RM[t,

+ i]

+ output

+ })

Now let’s peek at the results (Fig. 1.9b). This is fun, but also makes sure we
are not making a heinous mistake in our code. Note we use log scale to help us
see the small populations.

> matplot(0:years, outmat, type = "l", log = "y")

What does it mean that the simulation has an approximately even distribu-
tion of final population sizes on the log scale (Fig. 1.9b)? If we plotted it on a
linear scale, what would it look like?13

Rerunning this simulation, with new R each time, will show different dy-
namics every time, and that is the point of simulations. Simulations are a way
to make a few key assumptions, and then leave the rest to chance. In that sense
it is a null model of population dynamics.

13 Plotting it on the log scale reveals that the relative change is independent of pop-
ulation size; this is true because the rate of change is geometric. If we plotted it on
a linear scale, we would see that many trajectories result in small counts, and only
a few get really big. That is, the median size is pretty small, but a few populations
get huge.
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Fig. 1.9: Simulated population dynamics with R drawn randomly from observed Song
Sparrow counts.

1.6.5 Many simulations, with a function

Let’s turn our simulation into a user-defined function14 that simplifies our lives.
We also add another assumption: individuals are irreducible. Therefore, let us
use round(,0) to round to zero decimal places, i.e., the nearest integer.15

Our user defined function, PopSim, simply wraps the previous steps up in a
single function.16 The output is a matrix, like the one we plotted above.

> PopSim <- function(Rs, N0, years = 50, sims = 10) {

+ sim.RM = matrix(sample(Rs, size = sims * years, replace = TRUE),

+ nrow = years, ncol = sims)

+ output <- numeric(years + 1)

+ output[1] <- N0

+ outmat <- sapply(1:sims, function(i) {

+ for (t in 1:years) output[t + 1] <- round(output[t] *

+ sim.RM[t, i], 0)

+ output

+ })

+ return(outmat)

+ }

If you like, try to figure out what each step of the simulation is doing. Consider
it one of the end-of-chapter problems. Rely on on the code above to help you
decipher the function.
14 For user-defined functions, see sec. B.4.1.
15 We could use also use floor to round down to the lowest integer, or ceiling to

round up.
16 This process, of working through the steps one at a time, and then wrapping up

the steps into a function, is a useful work flow.



1.6 Modeling with Data: Simulated Dynamics 27

Now we have the pleasure of using this population simulator to examine a
number of things, including the sizes of the populations after 50 years. I first
simulate 1000 populations,17 and use system.time to tell me how long it takes
on my computer.

> system.time(output <- PopSim(Rs = obs.R, N0 = 43, sims = 1000))

user system elapsed

0.404 0.004 0.407

This tells me that it took less than half a second to complete 1000 simulations.
That helps me understand how long 100 000 simulations might take. We also
check the dimensions of the output, and they make sense.

> dim(output)

[1] 51 1000

We see that we have an object that is the size we think it should be. We shall
assume that everything worked way we think it should.

1.6.6 Analyzing results

We extract the last year of the simulations (last row), and summarize it.

> N.2053 <- output[51, ]

> summary(N.2053, digits = 6)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0 14.0 66.0 1124.6 291.8 332236.0

We see from this summary that the median final population size, among the
1000 simulations, is 66 individuals (median=50% quantile). While at least one
of the populations has become extinct (min. = 0), the maximum is huge (max. =
332236). The quantile function allows us to find a form of empirical confidence
intervals, including, approximately, the central 95% of the observations.18

> quantile(N.2053, prob = c(0.0275, 0.975))

2.75% 97.5%

0 5967

These quantiles suggest that in 2053, we might observe sparrow counts anywhere
from 0 to 5967, where zero and ∼ 6000 are equally likely.

Notice the huge difference between the mean, N = 1125, and the median,
N=66. Try to picture a histogram for which this would be true. It would be
skewed right (long right hand tail), as with the lognormal distribution; this is
common in ecological data.

17 If we were doing this in a serious manner, we might do 10–100 000 times.
18 Note that there are many ways to estimate quantiles (R has nine ways), but they

are approximately similar to percentiles.
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Let’s make a histogram of these data. Exponentially growing populations,
like this one, frequently show a lognormal distribution of abundances. Indeed,
some say the “natural” unit of a population is log(N), rather than N. We will
plot two frequency distributions of the final populations, one on the orignal
scale, one using the logarithms of the final population sizes plus 1 (we use N + 1
so that we can include 0’s — what is log(0)? log(1)?).

> hist(N.2053, main = "N")

> hist(log10(N.2053 + 1), main = "log(N+1)")

> abline(v = log10(quantile(N.2053, prob = c(0.0275, 0.975)) +

+ 1), lty = 3)

We added some reference lines on the second histogram, showing the 2.5 and
97.5% quantiles (Fig. 1.10). You can see that the logarithms of the population
sizes are much more well-behaved, more symmetrical.
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Fig. 1.10: Exploratory graphs of the distributions of the final simulated population
sizes.

Can we really believe this output? To what can we compare our output?
One thing that occurs to me is to compare it to the lower and upper bounds
that we might contrive from deterministic projections.

To compare the simulation to deterministic projections, we could find the
95% t-distribution based confidence limits for the geometric mean of R. If we
use our rules regarding the geometric mean, we would find that the logarithm
of the geometric mean of R is the arthmetic mean of the log R. So, one thing
we could do is calculate the t-based confidence limits19 on log R, backtransform
these to project the population out to 2053 with lower and upper bounds.

Here we take find the logarithms, caculate degrees of freedom and the rele-
vant quantiles for the t distribution.

19 Remember: the t-distribution needs the degrees of freedom, and a 95% confidence
region goes from the 2.5% and the 97.5% percentiles.
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> logOR <- log(obs.R)

> n <- length(logOR)

> t.quantiles <- qt(c(0.025, 0.975), df = n - 1)

Next we calculate the standard error of the mean, and the 95% confidence limits
for log R.

> se <- sqrt(var(logOR)/n)

> CLs95 <- mean(logOR) + t.quantiles * se

We backtransform to get R, and get a vector of length 2.

> R.limits <- exp(CLs95)

> R.limits

[1] 0.8968 1.1302

What do we see immediately about these values? One is less than 0, and one is
greater than 0. This means that for the lower limit, the population will shrink
(geometrically), while for the upper limit, the population will increase (geomet-
rically). Let’s go ahead and make the 50 y projection.

> N.Final.95 <- Count[Year == max(Year)] * R.limits^50

> round(N.Final.95)

[1] 0 19528

Here we see that the lower bound for the deterministic projection is the same
(extinction) as the simulation, while the upper bound is much greater than
that for the simulation. Why would that be? Perhaps we should examine the
assumptions of our deteministic approach.

We started by assuming that the log R could be approximated with the t
distribution, one of the most pervasive distributions in statistics and life. Let’s
check that assumption. We will compare the log R to the theoretical values for
a t distribution. We scale logOR to make the comparison more clear.

> qqplot(qt(ppoints(n), df = n - 1), scale(logOR))

> qqline(scale(logOR))

How do we interpret these results? If the distribution of an observed variable
is consistent with a particular theoretical distribution, the ordered quantiles of
data will be a linear (straight line) function of the theoretical quantiles of the
theoretical distribution. Deviations from that straight line illustrate how the
data deviate. Here we see that the data have three outliers that are much more
extreme (greater and smaller) than expected in the t-distribution, and more
data are cluster around the center of the distribution than we would expect.
We should ask whether those extreme values are mistakes in data collection or
recording or whether they are every bit as accurate as all the other measure-
ments.

Compare our two different confidence limits. These provide two different
answers to our original question, “what might be the Song Sparrow count at
this site in 2053?” Both of these assume a similar underlying model, density
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Fig. 1.11: Quantile-quantile plot used to compare log R to a t-distribution. Scaling
logOR in this case means that we subtracted the mean and divided by the standard
deviation. A histogram performs a similar service but is generally less discriminating
and informative.

independent growth, but give different answers. Of which approach are we more
confident? Why? What assumptions does each make?

We can be quite sure that our assumption regarding the t-distribution of our
R is unsupported — our data have outliers, relative to a t-distribution. What
would this do? It would increase the variance of our presumed distribution, and
lead to wider confidence intervals, even though most of the data conform to
a narrower distribution. Our simulation procedure, on the other hand, rarely
samples those extreme points and, by chance, samples observed R that fall much
closer to the median. This can occasionally be a problem in simulations based
on too little data — the data themselves do not contain enough variability.
Imagine the absurdity of a data-based simulation that relies on one observation
— it would be very precise (but wrong)!

Our conclusions are based on a model of discrete density-independent pop-
ulation growth — what assumptions are we making? are they valid? Are our
unrealistic assumptions perhaps nonetheless a good approximation of reality?
We will revisit these data later in the book (Chapter 3) to examine one of these
assumptions. We do not need to answer these questions now, but it is essential,
and fun, to speculate.

1.7 Summary

In this chapter, we have explored the meaning of density-independent popu-
lation growth. It is a statistically demonstrable phenomenon, wherein the per
captia growth rate exhibits no relation with population density. It is a useful
starting point for conceptualizing population growth. We have derived discrete
geometric and continuous exponential growth and seen how they are related.
We have caculated doubling times. We have discussed the assumptions that
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different people might make regarding these growth models. Last, we have used
simulation to explore prediction and inference in a density-independent context.

Problems

1.1. Geometric growth Analyze the following data, relying on selected snip-
pets of previous code.
(a) In the years 1996 through 2005, lily population sizes are N = 150, 100, 125,
200, 225, 150, 100, 175, 100, 150. Make a graph of population size versus time.
(b) Calculate R for each year; graph R vs. time.
(c) Calculate arithmetic and geometric average growth rates of this population.
(d) Based on the appropriate average growth rate, what would be the expected
population size in 2025? What would the estimated population size be if you
used the inappropriate mean? Do not use simulation for this.
(d*) Given these data, develop simulations as above with the user-defined func-
tion, PopSim. Describe the distribution of projected population sizes for 2010.

1.2. Doubling Time
(a) Derive the formula for doubling time in a population with contiunous ex-
ponential growth.
(b) What is the formula for tripling time?
(c) If we are modeling humans or E. coli, would a model of geometric, or expo-
nential growth be better? Why?
(d) If an E. coli population grew from 1000 cells to 2 × 109 cells in 6 h, what
would its intrinsic rate of increase be? Its doubling time?

1.3. Human Population Growth
(a) There were about 630 million people on the planet in 1700, and 6.3 billion
in 2003 [33]. What was the intrinsic rate of increase, r?
(b) Graph the model of human population size population size from 1700 to
2020.
(c) Add points on the graph indicating the population doublings from 1700
onward.
(d*) What will prevent humans from outweighing the planet by the end of
this century? What controls human population growth? Do these controls vary
spatially across the planet? See Cohen [33] to get going.

1.4. R functions
Find the R functions in Chapter 1. Demonstrate their uses.
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Density-independent Demography

Different populations have different numbers of individuals of different ages.
Consider the human populations of Mexico and Sweden in 1990. Mexico had
more individuals in total than Sweden, and a larger fraction of their population
was of child bearing age or younger (Figs. 2.1a, 2.1b).
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Fig. 2.1: Demography of human populations of Mexico and Sweden. Based on 1990
data from US Census Bureau, Population Division, International Programs Center.

In addition, the age-specific fertility rate is higher in Mexico, especially for
younger women (Fig. 2.1c). How did this happen, and why does Mexico have so
many young people? What are the consequences of this for their culture, their
use of resources, their domestic and foreign policies, and their future population
growth? How about Sweden?

Demography is the study of populations with special attention to age or
stage structure [113]. Originally, age-based human demography was the prove-
nance of actuaries who helped governments keep track of the number citizens
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of different ages and thus, for instance, know how many would be available
for conscription into the military.1The demography of a population is the age
(or stage) structure and the survival, fertility, and other demographic rates as-
sociated with those ages or life history stages. Age structure is the number or
relative abundance of individuals of different ages or age classes. Stage structure
is the number or relative abundance of individuals of different stages. Stages
are merely useful categories of individuals, such as size classes (e.g. diameters of
tropical trees) or life history stages (e.g. egg, larvae, and adult anurans). Stages
are particularly useful when (i) age is difficult to determine, and/or (ii) when
stage is a better predictor of demographic rates (e.g. birth, death, survival) than
is age. Demography is, in part, the study of how demographic rates vary among
ages or stages, and the consequences of those differences.

There are a few ways to study a population’s demography, and all ecology
text books can provide examples. Life tables are lists of important demographic
parameters such as survivorship, birth and death rates each age or age class.

Commonly, both age and stage based demography now take advantage of
matrix algebra to simplify and synthesize age and stage specific demography
[23]. This approach is essential when individuals don’t proceed through stages in
a simple sequential manner, perhaps reverting to an “earlier” stage. When used
with age-based demography, these matrices are referred to as Leslie matrices
[107]. L. P. Lefkovitch [100] generalized this approach to allow for complex
demography. This could include, for instance, regression from a large size class
to a smaller size class (e.g. a two-leaved woodland perennial to a one-leaved
stage). Using matrices to represent a population’s demography allows us to use
the huge workshop of linear algebra tools to understand and predict growth in
structured populations. Let’s start with a hypothetical example.

2.1 A Hypothetical Example

Pretend you are managing a small nature reserve and you notice that a new
invasive species, spotted mallwort (Capitalia globifera),2 is popping up every-
where. You think you may need to institute some control measures, and to
begin, you would like to understand its life cycle and population growth.

Careful examination of the flowers reveals perfect flowers,3 and you find from
the literature that mallwort is a perennial capable of self-fertilizing. The seeds
germinate in early fall, grow the following spring and early summer to a small
adult that has 2–3 leaves and which sometimes produce seeds. In the second
year and beyond, if the plants survive, they grow to large adults which have
four or more leaves and only then do they produce the majority of their seeds.

1 In his chapter entitled “Interesting Ways to Think about Death” G.E. Hutchinson
[84] cites C. F. Trenerry, E. L. Gover and A. S. Paul (The Origins and Early
History of Insurance, London, P. S. King & Sons, Ltd.) for description of early
Roman actuarial tables.

2 Not a real species.
3 Individual flowers possess both female and male reproductive structures.
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The seeds do not seem to survive more than one year, so there is probably no
seed bank.

You summarize what you have learned in the form of a life cycle graph (Fig.
2.1). Demographers use a life cycle graph to summarize stages that may be
observed at a single repeated point in time (e.g., when you go out to explore
in June). It also can include the probabilities that an individual makes the
transition from one stage to another over one time step (e.g. one year), as well
as the fecundities.

Fig. 2.2: Life cycle graph of the imaginary spotted mallwort (Capitalia globifera). Pi j

is the probability that an individual in stage j transitions to stage i over a single fixed
time interval between samples. Fi the number of progeny (transitioning into stage 1)
produced by an individual in stage j. Thus, for mallwort, P21 is the probability that a
seed (Seeds) makes it into the small adult stage (A-Small). P32 is the probability that
a small adult shows up as a large adult the next year. F2 is the average fertility for
individuals in the small adult stage and F3 is the average fertility for individuals in
the large adult stage.

As the manager responsible for this small reserve, you decide to keep track
of this new exotic species. After identifying a general area where the plant seems
to have obtained a foothold, you established 50 permanent 1 m2 sample plots,
located randomly throughout the invasion area. Each year, for two years, you
sample in early summer when the fruits are on the plants (when the weather
is pleasant and you can find interns and volunteers to help). In all plots you
tag and count all first year plants (2–3 leaves), and all older plants (4+ leaves).
You also are able to count fruits and have determined that there is one seed per
fruit.

Now that you have your data for two years, you would like to figure out
how quickly the population growing. You could simply keep track of the total
population size, N, or just the large adults. You realize, however, that different
stages may contribute very differently to growth, and different stages may be
better for focused control efforts. A description, or model, of the population
that includes different stages will provide this. We call such a model a demo-
graphic model, and it consists of a population projection matrix. The population
projection matrix is a matrix that represents the life cycle graph.

We use the projection matrix to calculate all kinds of fun and useful stuff
including
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• The finite rate of increase, λ (the asymptotic population growth rate).
• The stable stage distribution (the population structure that would emerge

if the demographic rates (P, F) do not change).
• Elasticty, the relative importance of each transition to λ.

2.1.1 The population projection matrix

The population projection matrix (a.k.a. the transition matrix) is simply an
organized collection of the per capita contribution of each stage j to the next
stage i in the specified time interval (often one year). These contributions, or
transitions, consist of (i) the probabilities that an individual in stage j in one
year makes it into stage i the next year, and (ii) the per capita fecundities for
reproductive stages (eq. 2.1).

Each element of the projection matrix (eq. 2.1) relates its column to its row.
Thus P21 in our matrix, eq. 2.1 is the probability that an individual in stage 1
(seeds; respresented by the column 1) makes it to the next census period and
shows up in stage 2 (1 year old small adult; represented by row 2). Similarly, P32
is the probability that an individual in stage 2 (a small one year old adult) has
made it to the large adult stage at the next census period. The fecundities are
not probabilities, of course, but are the per capita contribution of propagules
from the adult stage to the seed stage. The population projection matrix allows
us to multiply all of these transition elements by the abundances in each age
class in one year to predict, or project, the abundances of all age classes in the
following year.  0 F2 F3

P21 0 0
0 P32 P33

 (2.1)

2.1.2 A brief primer on matrices

We refer to matrices by their rows and columns. A matrix with three rows
and one column is a 3 × 1 matrix (a “three by one” matrix); we always state
the number of rows first. Matrices are composed of elements; an element of a
matrix is signified by its row and column. The element in the second row and
first column is a21.

To multiply matrices, we multiply and then sum each row by each column
(eq. B.3). More specifically, we multiply each row element of matrix A times
each column element of matrix B, sum them, and place this sum in the respec-
tive element of the final matrix. Consider the matrix multiplication in eq. B.3.
We first multiply each element of row 1 of A (a b), times the corresponding
elements of column 1 of B (m n), sum these products and place the sum in the
first row, first column of the resulting matrix. We then repeat this for each row
of A and each column of B
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A =

(
a b
c d

)
; B =

(
m o
n p

)
(2.2)

AB =

(
(am + bn) (ao + bp)
(cm + dn) (co + dp)

)
(2.3)

This requires that the number of columns in the first matrix must be the
same as the number of rows in the second matrix. It also means that the resulting
matrix will have the same number of rows as the first matrix, and the same
number of columns as the second matrix.

Matrices in R

Let’s define two 2 × 2 matrices, filling in one by rows, and the other by columns.

> M <- matrix(1:4, nr = 2, byrow = T)

> M

[,1] [,2]

[1,] 1 2

[2,] 3 4

> N <- matrix(c(10, 20, 30, 40), nr = 2)

> N

[,1] [,2]

[1,] 10 30

[2,] 20 40

Following our rules above, we would multiply and then sum the first row of M by
the first column of N, and make this element a11 of the resulting matrix product.

> 1 * 10 + 2 * 20

[1] 50

We multiply matrices using %*% to signify that we mean matrix multiplication.

> M %*% N

[,1] [,2]

[1,] 50 110

[2,] 110 250

2.1.3 Population projection

With our spotted mallwort we could multiply our projection matrix by the
observed abundances (seeds=S d, small adults - S A, large adults - LA) to project
the abundances of all age classes in subsequent years. 0 F2 F3

P21 0 0
0 P32 P33


 NS d

NS A

NLA

 =

 (0 × NS d + F2 × NS A + F3 × NLA)
(P21 × NS d + 0 × NS A + 0 × NLA)
(0 × NS d + P32 × NS A + 0 × NLA)

 (2.4)
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The next step is to create the projection matrix. Let’s pretend that over
the two years of collecting these data, you found that of the small adults we
tagged, about half (50%) survived to become large adults the following year.
This means that the transition from stage 2 (small adults) to stage 3 (large
adults) is P32 = 0.50. Of the large adults that we tagged, about 90% of those
survived to the next year, thus P33 = 0.90. We estimated that, on average, each
small adult produces 0.5 seeds (i.e. F2 = 0.50) and each large adult produces
20 seeds (i.e. F3 = 20). Last, we found that, on average, for every 100 seeds
(fruits) we counted, we found about 30 small adults (one year olds), meaning
that P21 = 0.30. Note that this requires that seeds survive until germination,
germinate, and then survive until we census them the following summer. We
can now fill in our population projection matrix, A.

A =

 0 F2 F3
P21 0 0
0 P32 P33

 =

 0 0.5 20
0.30 0 0

0 0.50 0.90

 (2.5)

Next we can multiply it the projection matrix, A, by the last year for which
we have data.

 0 0.5 20
0.3 0 0
0 0.5 0.9


 100

250
50

 =

 (0 × 100 + 0.5 × 250 + 20 × 50)
(0.3 × 100 + 0 × 250 + 0 × 50)

(0 × 100 + 0.5 × 250 + 0.9 × 50)

 =

1125
30

170

 (2.6)

If we wanted more years, we could continue to multiply the projection matrix
by each year’s projected population. We will observe that, at first, each stage
increases or decreases in its own fashion (Fig. 2.3a), and that over time, they
tend to increase in a more similar fashion. This is typical for demographic
models. It is one reason why it is important to examine stage-structured growth
rather than trying to lump all the stages together — we have a much richer
description of how the population is changing.
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Stage structured growth - one step

First, we create a population projection matrix, and a vector of stage class abun-
dances for year zero.

> A <- matrix(c(0, 0.5, 20, 0.3, 0, 0, 0, 0.5, 0.9), nr = 3,

+ byrow = TRUE)

> N0 <- matrix(c(100, 250, 50), ncol = 1)

Now we perform matrix multiplication between the projection matrix and N0.

> N1 <- A %*% N0

> N1

[,1]

[1,] 1125

[2,] 30

[3,] 170

Note that the first stage declined, while the second and third stages increased.

Stage structured growth - multiple steps

Now we project our population over six years, using a for-loop. We use a for-loop,
rather than sapply, because each year depends on the previous year (see the Ap-
pendix, sec. B.6). First, we set the number of years we want to project, and then
create a matrix to hold the results. We put N0 in the first column.

> years <- 6

> N.projections <- matrix(0, nrow = nrow(A), ncol = years +

+ 1)

> N.projections[, 1] <- N0

Now we perform the iteration with the for-loop.

> for (i in 1:years) N.projections[, i + 1] <- A %*% N.projections[,

+ i]

Last, we graph the results for each stage (Fig. 2.3a). To graph a matrix, R is expecting
that the data will be in columns, not rows, and so we need to transpose the projection
matrix.

> matplot(0:years, t(N.projections), type = "l", lty = 1:3,

+ col = 1, ylab = "Stage Abundance", xlab = "Year")

> legend("topleft", legend = c("Seeds", "Small Adult", "Large Adult"),

+ lty = 1:3, col = 1, bty = "n")

2.1.4 Population growth

We have projected the stages for six years — what is its observed rate of in-
crease, Rt = Nt+1/Nt? How do we even think about R and N in stage structured
growth? The way we think about and calculate these is to add all the individuals
in all stages to get a total N, and calculate R with that, as we did in Chapter 1.
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Fig. 2.3: Population dynamics and annual growth (R = Nt+1/Nt) of spotted mallwort.
Note that stage abundance is on a log-scale.

Rt = Nt+1/Nt. (2.7)

If we do that for our mallwort, we can see that Rt changes with time (Fig. 2.3b).
We can summarize the projection as n(t) = Atn0, where At is A multiplied by
itself t times.

Annual growth rate

Now let’s calculate Rt = Nt+1/Nt for each year t. We first need to sum all the stages,
by applying the sum function to each column.

> N.totals <- apply(N.projections, 2, sum)

Now we get each Rt by dividing all the Nt+1 by each Nt. Using negative indices cause
R to drop that element.

> Rs <- N.totals[-1]/N.totals[-(years + 1)]

We have one fewer Rs than we do years, so let’s plot each R in each year t, rather
than each year t + 1 (Fig. 2.3b).

> plot(0:(years - 1), Rs, type = "b", xlab = "Year", ylab = "R")

2.2 Analyzing the Projection Matrix

You seem to have a problem on your hands (Fig. 2.3a). Being a well-trained
scientist and resource manager, several questions come to mind: What the heck
do I do now? What is this population likely to do in the future? Can these
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data provide insight into a control strategy? How confident can I be in these
projections?

After you get over the shock, you do a little more research on demographic
models; Caswell [23] is the definitive treatise. You find that, indeed, there is
a lot you can do get more information about this population that might be
helpful.

Once you have obtained the projection matrix, A, you can analysis it using
eigenanalysis to estimate

• λ, the finite rate of increase,
• stable stage structure,
• reproductive value, and
• sensitivities and elasticities.

Below, we explain each of these quantities. These quantities will help you de-
termine which stages of spotted mallwort on which to focus eradication efforts.

2.2.1 Eigenanalysis

Eigenanalysis is a mathematical technique that summarizes multivariate data.
Ecologists use eigenanalysis frequently, for (i) multivariate statistics such as
ordination, (ii) stability analyses with two or more species, and (iii) analyzing
population projection matrices. Eigenanalysis is simply a method to transform a
square matrix into independent, orthogonal, and useful chunks — the eigenvec-
tors and their eigenvalues. In demography, the most useful piece is the dominant
eigenvalue and its corresponding vector.

Eigenanalysis is a technique that finds all the solutions for λ and w of

Aw = λw, (2.8)

where A is a particular summary of our data. 4 With projection matrix analysis,
A is the projection matrix. λ is an eigenvalue and w is an eigenvector. If we
write out eq. 2.8 for a 3 × 3 matrix, we would havea11 a12 a13

a21 a22 a33
a31 a32 a33


w11

w21
w31

 = λ

w11
w21
w31

 (2.9)

There are typically an infinite number of solutions to this equation, and
what eigenanalysis does is find set of solutions that are all independent of each
other, and which capture all of the information in A in a particularly useful
way.5 Typically, the first solution captures the most important features of the

4 For ordination, we analyze a correlation or covariance matrix, and for stability
analyses, we use the matrix of pairwise partial differential equations between each
pair of species. In these eigenanalyses of a square i × j matrix A, we can think of
the elements of A describing the “effect” of stage (or species) j on stage (or species)
i, where j is a column and i is a row.

5 The number of solutions is infinite because they are just simple multiples of the set
found with eigenanalysis.
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projection matrix. We call this the dominant eigenvalue, λ1 and its correspond-
ing eigenvector, w1. The first solution does not capture all of the information;
the second solution captures much of the important remaining information. To
capture all of the information in A requires as many solutions as there are
columns of A. Nonetheless, the first solution is usually the most useful.

Eigenanalysis in R

Here we perform eigenanalysis on A.

> eigs.A <- eigen(A)

> eigs.A

$values

[1] 1.834+0.000i -0.467+1.159i -0.467-1.159i

$vectors

[,1] [,2] [,3]

[1,] 0.98321+0i 0.97033+0.00000i 0.97033+0.00000i

[2,] 0.16085+0i -0.08699-0.21603i -0.08699+0.21603i

[3,] 0.08613+0i -0.02048+0.06165i -0.02048-0.06165i

Each eigenvalue and its corresponding eigenvector provides a solution to eq. 2.8.

The first, or dominant, eigenvalue is the long term asymptotic finite rate of
increase λ. Its corresponding eigenvector provides the stable stage distribution.

We can also use eigenanalysis get the reproductive values of each stage out
of A. To be a little more specific, w we described above are right eigenvectors,
so-called because we solve for them with w on the right side of A. We will also
generate left eigenvectors v (and their corresponding eigenvalues), where vA =

λ(v). The dominant left eigenvector provides the reproductive values (section
2.2.4).

2.2.2 Finite rate of increase – λ

The asymptotic annual growth rate finite rate of increase is the dominant eigen-
value of the projection matrix. Eigenvalues are always referred to with the Greek
symbol λ, and provides a solution to eq. (2.8). The dominant eigenvalue of any
matrix, λ1, is the eigenvalue with the largest absolute value, and it is frequently
a complex number.6 With projection matrices, λ1 will always be positive and
real.

We use eigenanalysis to solve eq. 2.8 and give us the answers — like magic.
Another way to find λ1 is to simply iterate population growth a very large
number of times, that is, let t be very large. As t grows, the annual growth rate,
Nt+1/Nt, approaches λ1 (Fig. 2.4).

6 When you perform eigenanalysis, it is common to get complex numbers, with real
and imaginary parts. Eigenanalysis is, essentially, solving for the roots of the matrix,
and, just like when you solved quadratic equations by hand in high school, it is
possible to get complex numbers.
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Finding λ

Next we explicitly find the index position of the largest absolute value of the eigen-
values. In most cases, it is the first eigenvalue.

> dom.pos <- which.max(eigs.A[["values"]])

We use that index to extract the largest eigenvalue. We keep the real part, using Re,
dropping the imaginary part. (Note that although the dominant eigenvalue will be
real, R will include an imaginary part equal to zero (0i) as a place holder if any of
the eigenvalues have a non-zero imaginary part).

> L1 <- Re(eigs.A[["values"]][dom.pos])

> L1

[1] 1.834

L1 is λ1, the aysmptotic finite rate of increase.

Power iteration method of eigenanalysis

Because growth is an exponential process, we can figure out what is most important
in a projection matrix by multiplying it by the stage structure many times. This
is actually one way of performing eigenanalysis, and it is called the power iteration
method. It is not terribly efficient, but it works well in some specific applications.
(This method is not used by modern computational languages such as R.) The
population size will grow toward infinity, or shrink toward zero, so we keep rescaling
N, dividing the stages by the total N, just to keep things manageable.
Let t be big, and rescale N.

> t <- 20

> Nt <- N0/sum(N0)

We then create a for-loop that re-uses Nt for each time step, making sure we have
an empty numeric vector to hold the output.

> R.t <- numeric(t)

> for (i in 1:t) R.t[i] <- {

+ Nt1 <- A %*% Nt

+ R <- sum(Nt1)/sum(Nt)

+ Nt <- Nt1/sum(Nt1)

+ R

+ }

Let’s compare the result directly to the point estimate of λ1 (Fig. 2.4).

> par(mar = c(5, 4, 3, 2))

> plot(1:t, R.t, type = "b", main = quote("Convergence Toward " *

+ lambda))

> points(t, L1, pch = 19, cex = 1.5)
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Fig. 2.4: Iterating the population, and recalculating Rt = Nt+1/Nt at each time step
converges eventually at the dominant eigenvalue, indicated as a solid point. It is pos-
sible to use the same power iteration method to get the other eigenvalues, but it is
not worth the trouble.

2.2.3 Stable stage distribution

The relative abundance of the different life history stages is called the stage
distribution, that is, the distribution of individuals among the stages. A property
of a stage structured population is that, if all the demographic rates (elements
of the population projection matrix) remain constant, its stage structure will
approach a stable stage distribution, a stage distribution in which the relative
number of individuals in each stage is constant. Note that a population can
grow, so that the absolute number of individuals increases, but the relative
abundances of the stages is constant; this is the stable stage distribution. If the
population is not actually growing (λ = 1) and demographic parameters remain
constant, then the population is stationary and will achieve a stationary stage
distribution, where neither absolute nor relative abundances change.

How do we find the stable stage distribution? It also turns out that w1,
which is the corresponding eigenvector of λ1 (eq. (2.8)), provides the necessary
information. We scale the eigenvector w1 by the sum of its elements because
we are interested in the distribution, where all the stages should sum to one. 7

Therefore the stable stage distribution is

S S D =
w1∑S

i=1 w1
(2.10)

where S is the number of stages.
Once a population reaches its stable stage distribution it grows exponen-

tially,

7 Eigenvectors can only be specified up to a constant, arbitrary multiplier.
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Nt = AtN0

Nt = λtN0

represented either in the matrix notation (for all stages), or simple scalar nota-
tion (for total N only).

Calculating the stable stage distribution

The dominant eigenvector, w, is in the same position as the dominant eigenvalue.
We extract w, keeping just the real part, and divide it by its sum to get the stable
stage distribution.

> w <- Re(eigs.A[["vectors"]][, dom.pos])

> ssd <- w/sum(w)

> round(ssd, 3)

[1] 0.799 0.131 0.070

This shows us that if the projection matrix does not change over time, the popu-

lation will eventually be composed of 80% seeds, 13% small adults, and 7% large

adults. Iterating the population projection will also eventually provide the stable

stage distribution (e.g., Fig. 2.3a).

2.2.4 Reproductive value

If the stage structure gives us one measure of the importance of a stage (its
abundance), then the reproductive value gives us one measure of the impor-
tance of an individual in each stage. Reproductive value is the expected contri-
bution of each individual to present and future reproduction. We characterize
all individuals in a stage using the same expected reproductive value.

We find each stage’s reproductive value by solving for the dominant left
eigenvector v, where

vA = λv (2.11)

Like the relation between the dominant right eigenvector and the stable stage
distribution, this vector is actually proportional to the reproductive values. We
typically scale it for v0 = 1, so that all reproductive values are relative to that
of the first stage class (e.g. newborns or seeds).

RV =
v1∑S

i=1 v1
(2.12)
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Calculating reproductive value

We get the left eigenvalues and -vectors by performing eigenanalysis on the transpose
of the projection matrix. The positions of the dominant right and left eigenvalues are
the same, and typically they are the first. We perform eigenanalysis, extracting just
the the dominant left eigenvector; we then scale it, so the stage 1 has a reproductive
value of 1.0.

> M <- eigen(t(A))

> v <- Re(M$vectors[, which.max(Re(M$values))])

> RV <- v/v[1]

> RV

[1] 1.000 6.113 21.418

Here we see a common pattern, that reproductive value, v, increases with age. In gen-

eral, reproductive value of individuals in a stage increases with increasing probability

of reaching fecund stages.

2.2.5 Sensitivity and elasticity

Sensitivity and elasticity tell us the relative importance of each transition (i.e.
each arrow of the life cycle graph or element of the matrix) in determining
λ. They do so by combining information on the stable stage structure and
reproductive values.

The stage structure and reproductive values each in their own way contribute
to the importance of each stage in determining λ. The stable stage distribution
provides the relative abundance of individuals in each stage. Reproductive value
provides the contribution to future population growth of individuals in each
stage. Sensitivity and elasticity combine these to tell us the relative importance
of each transition in determining λ.

Sensitivities of a population projection matrix are the direct contributions of
each transition to determining λ. We would say, speaking in more mathematical
terms, that the sensitivities for the elements ai j of a projection matrix are the
changes in λ, given small changes in each element, or δλ/δai j. Not surprisingly,
then, these are derived from the stable stage distribution and the reproductive
values. Specifically, the sensitivities are calculated as

δλ

δai j
=

vi jwi j

v · w
(2.13)

where viw j is the product of each pairwise combination of elements of the dom-
inant left and right eigenvectors, v and w. The dot product, v · w, is the sum
of the pairwise products of each vector element. Dividing by this causes the
sensitivities to be relative to the magnitudes of v and w.
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Sensitivity of projection matrices

Let’s calculate sensitivities now. First we calculate the numerator for eq. 2.13.

> vw.s <- v %*% t(w)

Now we sum these to get the denominator, and then divide to get the sensitivities.
(The dot product v ·w yields a 1 × 1 matrix; in order to divide by this quantity, the
simplest thing is to cause the dot product to be a simple scalar rather than a matrix
(using as.numeric), and then R will multiply each element.)

> (S <- vw.s/as.numeric(v %*% w))

[,1] [,2] [,3]

[1,] 0.258 0.04221 0.0226

[2,] 1.577 0.25798 0.1381

[3,] 5.526 0.90396 0.4840

We see from this that the most important transition exhibited by the plant is s21,

surviving from the seed stage to the second stage (the element s31 is larger, but is

not a transition that the plant undergoes).

Elasticities are sensitivities, weighted by the transition probabilities. Sensi-
tivities are large when reproductive value and or the stable age distribution are
high, and this makes sense biologically because these factors contribute a lot
to λ. We may, however, be interested in how a proportional change in a transi-
tion element influences lambda—how does a 10% increase in seed production,
or a 25% decline in juvenile survival influence λ? For these answers, we need
to adjust sensitivities to account for the relative magnitudes of the transition
elements, and this provides the elasticities, ei j, where

ei j =
ai j

λ

δλ

δai j
. (2.14)

Elasticity of projection matrices

In R, this is also easy.

> elas <- (A/L1) * S

> round(elas, 3)

[,1] [,2] [,3]

[1,] 0.000 0.012 0.246

[2,] 0.258 0.000 0.000

[3,] 0.000 0.246 0.238

Note that all the elasticities except the seed production by small adults
appear equally important. Specifically, the same proportional change in any of
these elements will result in approximately the same change in λ.

There are two nice features of elasticities. First, impossible transitions have
elasticities equal to zero, because we multiply by the projection matrix itself.
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Second, the elasticities sum to zero, and so it is easier to compare elasticities
among differ matrices and different organisms.

Once we have the sensitivities and elasticities, we can really begin to see
what is controlling the growth rate of a stage (or age) structured population.
Although these values do not tell us which stages and transitions will, in reality,
be influenced by natural phenomona or management practices, they provide
us with the predicted effects on λ of a proportional change in a demographic
rate, P or F. This is particularly important in the management of invasive
(or endangered) species where we seek to have the maximum impact for the
minimum amount of effort and resources [23,48].

2.2.6 More demographic model details

Births

For demographic models, a “birth” is merely the appearance in the first stage.
If we census birds, a “birth” might be a fledging, if this is the youngest age class
we sampled. If we census plants, we might choose to count seeds as the first
age class, or we might use seedling, or some size threshold as the first stage.
Regardless of the first stage- or age-class we use, a birth is the first appearance
of an individual in the first stage.

Pre- vs. post-breeding census

Note that you are sampling the population of mallwort at a particular time
of year. This sampling happens to be a postbreeding census because you cap-
tured everything right after breeding, when progeny were observed directly.
The projection matrix would look different, and the interpretation of the ma-
trix elements would differ, if we had used a prebreeding census, sampling the
population before breeding. In particular, the projection matrix would have only
two stages (small and large adults), because no seeds would be present at the
time of sampling. The contribution of adults to the youngest stage, therefore,
would represent both fertility and survival to the juvenile stage in late spring.
Nonetheless, both models would be equivalent, generating the same λ.

Birth pulse vs. birth flow model

Another assumption we are making is that individuals set seed, or give birth,
all at once. We refer to the relevant model as a birth-pulse model. On the other
hand, if we assume that we have continuous reproduction, we do things quite
differently, and would refer to this as a birth-flow model. Whether a population
is breeding continuously over a year, or whether reproduction is seasonal, will
influence how we estimate fecundities. Even for synchronously breeding pop-
ulations, many models pool years into a single age class or stage. As result,
we need to be careful about how we approximate probabilities that will differ
among individuals within the age- or stage-class.

These details can get very confusing, and smart people don’t always get it
right. Therefore, consult an expert [23,48], and remember that the stages of life
cycle graph and matrix are the stages that you collect at one point in time.
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2.3 Confronting Demographic Models with Data

This section uses R extensively throughout.
It is common to create a demographic matrix model with real data, and

then use that model for an applied purpose (e.g., [44, 50]). A central question,
however, is just how confident we can be in our model, and the values we derive
from it. It turns out that we can use our data to derive confidence intervals on
important parameters.

In Chapter 1, we used resampling to draw observed annual changes in bird
counts at random to generate growth trajectories and confidence intervals on
population size. Here we resample raw data to find confidence limits on λ. The
method used here, bootstrapping, and related data-based inference techniques
have a large literature [126]. Davison and Hinkley [46] have an comprehensive
R-based text. Such randomization methods are very useful for a wide range
of models in ecology, where the data do not conform clearly to parametric
distributions or to situations like demographic models [140] or null models [60]
for which analytical approximations are difficult or not possible.

The basic idea of bootstrapping is to

1. calculate the observed parameter(s) of interest (e.g., a mean, or λ) with your
model and data,

2. resample your data with replacement to create a large number of datasets
and recalculate your parameter(s) for each resampled dataset to generate a
distribution of the bootstrapped8parameter(s),

3. Calculate a confidence interval for the bootstrapped parameter values —
this will provide an estimate of the confidence you have in your observed
parameter. This will provide an empirical confidence interval.

2.3.1 An Example: Chamaedorea palm demography

Chamaedorea radicalis Mart. (Arecaceae) is an forest understory palm of north-
ern Mexico, and it is one of approximately 100 Chamaedorea species, many of
which are economically valuable as either small, shade-tolerant potting plants
or as harvested leaves in floral arrangements. Its demography is interesting for a
number of reasons, including both management and as an example of a popula-
tion that appears to be maintained through source-sink dynamics [12]. Berry et
al. modeled Chamaedorea demography with five stages (Fig. 2.5). Demography
is also influenced by substrate type, by livestock browsing, and harvesting [12].
Here we use a subset of the data to illustrate the generation of demographic
parameters and confidence intervals.

This study was conducted in the montane mesophyll forests of Sierra de
Guatemala mountain range, near the communities of San José and Alta Cimas
within the El Cielo Biosphere Reserve, Tamaulipas, Mexico (22◦55’–23◦30’N
and 99◦02’–99◦30’W). Villagers within El Cielo (palmilleros) harvest adult C.

8 “Bootstrapped” estimates are thus named because you are picking yourself up by
your own bootstraps – a seemingly impossible task.
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Fig. 2.5: Life cycle graph for Chamaedorea radicalis. Classification criteria are based
on the number of leaflets on the youngest fully-expanded leaf. Life-history stage tran-
sitions are indicated by arrows with solid lines and reproduction is indicated by dashed
lines. Abbreviations: S-seed, Ss-seedling (bifid leaves), J-Juvenile (3–9 leaflets), A1-
small adult (10–24 leaflets), A2-large adult (> 24 leaflets). Source: [12,50]

radicalis leaves for sale to international cut-foliage markets. Harvested leaves
are usually >= 40 cm in length, and have minimal damage from insects or
pathogens [50]. These palm leaves are the only natural resource that these
villagers are authorized to harvest, and provide the main source of income for
most families. Although C. radicalis is dioecious (more complications!), Berry
et al. [12] used a one sex model, because its simplifying assumptions were well
supported with data. Data collected allowed a postbreeding census model with
a birth-pulse dynamic.

2.3.2 Strategy

There are an infinite number of ways to do anything in R, and I am certain that
my approach to this bootstrapping is not the very best way, but it is useful. It
gives valid answers in a reasonable amount of time, and that is what we want
from a model.

This is how we proceed in this instance:

1. We import the data and look at it. The appearance of the data, how the
data are entered for instance, will influence subsequent decisions about how
to proceed.

2. We extract the relevant data and calculate the projection matrix elements
(fecundities and transition probabilities). We first do it all piecewise, to
figure out what we are doing. Then we can wrap it up inside a function
putting funcname <- function(data1, data2, data3) at the beginning
and collecting and returning all relevant parameters at the end (see sec.
B.4.1 for writing functions).

3. We also create a function to generate all the demographic parameters that
we will eventually want (λ, elasticities, etc.).

4. Last, we combine these two functions into one that also resamples the orig-
inal data (with replacement), and then calls the data extraction and calcu-
lation functions to generate the new parameters for the bootstrapped data.

5. The bootstrapping is repeated B times.
6. Having generated B bootstrapped estimates of all the parameters, we can

then calculate confidence intervals for any parameter that we like.
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2.3.3 Preliminary data management

Let’s import the data and have a look at it. For these purposes, we will assume
that the data are clean and correct. Obviously, if I were doing this for the first
time, data-checking and clean-up would be an important first step. Here we
simply load them from the primer package.

> data(stagedat)

> data(fruitdat)

> data(seeddat)

Now I look at the structure of the data to make sure it is at least approximately
what I think it is.

> str(stagedat)

'data.frame': 414 obs. of 4 variables:

$ PalmNo: int 1 2 3 4 5 6 7 8 9 10 ...

$ Y2003 : int 4 5 5 4 3 2 4 3 3 4 ...

$ Y2004 : int 5 4 5 5 4 3 5 3 4 4 ...

$ Y2005 : int 5 5 5 5 4 3 5 4 4 5 ...

The stage data provide the stage of each individual in the study. Each row is
an individual, and its ID number is in column 1. Data in columns 2–4 identify
its stage in years 2003–2005.

We can count, or tabulate, the number of individuals in each stage in 2004.

> table(stagedat[["Y2004"]])

0 2 3 4 5

17 58 48 126 165

We see, for instance, that in 2004 there were 165 individuals in stage 5. We also
see that 17 individuals were dead in 2004 (stage = 0); these were alive in either
2003 or 2005.

The fruit data have a different structure. Each row simply identifies the
stage of each individual (col 1) and its fertility (number of seeds) for 2004.

> str(fruitdat)

'data.frame': 68 obs. of 2 variables:

$ Stage: int 4 4 4 4 4 4 4 4 4 4 ...

$ Y2004: int 6 0 0 0 0 0 0 0 0 0 ...

We can tabulate the numbers of seeds (columns) of each stage (rows).

> table(fruitdat[["Stage"]], fruitdat[["Y2004"]])

0 1 2 3 4 5 6 8 15 22 30 37 70 98 107 109

4 28 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

5 23 1 1 1 2 2 0 1 1 1 1 1 1 1 1 1
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For instance, of the individuals in stage 4 (row 1), 28 individuals had no seeds,
and one individual had 6 seeds. Note also that only stage 4 and 5 had plants
with any seeds.

The seed data are the fates of each seed in a sample of 400 seeds, in a data
frame with only one column.

> table(seeddat)

seeddat

0 1 2

332 11 57

Seeds may have germinated (2), remained viable (1), or died (0).

2.3.4 Estimating projection matrix

Now we work through the steps to create the projection matrix from individuals
tagged in year 2003 and re-censused in 2004. If we convert the life cycle graph
(Fig. 2.5) into a transition matrix.

P11 0 0 F4 F5
P21 P22 P23 0 0
0 P32 P33 P34 0
0 0 P43 P44 P45
0 0 0 P54 P55

 (2.15)

Along the major diagonal (where i = j) the Pi j represent the probability that a
palm stays in the same stage. In the lower off-diagonal (i > j) the Pi j represent
the probability of growth, that an individual grows from stage j into stage i.
In the upper off-diagonal (i < j) the Pi j represent the probability of regression,
that an individual regresses from stage j back into stage i. The Fi represent the
fertility of stage i.

As a practical matter, we will use basic data manipulation in R to transform
the raw data into transition elements. We had no particular reason for having
the data in this form, this is simply how the data were available.

We first create a zero matrix that we will then fill.

> mat1 <- matrix(0, nrow = 5, ncol = 5)

Fertilities

For each stage, we get mean fertility by applying mean to each stage of the 2004
fertility data. Here Stage is a factor and tapply will caculate a mean for each
level of the factor. We will assume that half of the seeds are male. Therefore,
we divide fertility by 2 to calculate the fertility associated with just the female
seeds.

> ferts <- tapply(fruitdat$Y2004, fruitdat$Stage, mean)/2

> ferts
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4 5

0.1034 6.6667

These fertilities, F4 and F5, are the transitions from stages 4 and 5 (adults)
to stage 1 (seeds). Next we insert the fertilities (ferts) into the matrix we
established above.

> mat1[1, 4] <- ferts[1]

> mat1[1, 5] <- ferts[2]

Seed transitions

Now we get the frequencies of each seed fate (die, remain viable but dormant,
or germinate), and then divide these by the number of seeds tested (the length
of the seed vector); this results in proportions and probabilities.

> seed.freqs <- table(seeddat[, 1])

> seedfates <- seed.freqs/length(seeddat[, 1])

> seedfates

0 1 2

0.8300 0.0275 0.1425

The last of these values is P21, the transition from the first stage (seeds) to the
stage 2 (seedlings). The second value is the transition of seed dormancy (P1,1),
that is, the probability that a seed remains a viable seed rather than dying or
becoming a seedling.

Next we insert the seed transitions into our projection matrix.

> mat1[1, 1] <- seedfates[2]

> mat1[2, 1] <- seedfates[3]

Vegetative stage transitions

Here we calculate the transition probabilities for the vegetative stages. The pair
of for-loops will calculate these transitions and put them into stages 2–5.The
functions inside the for-loops (a) subset the data for each stage in 2003, (b)
count the total number of individuals in each stage in 2003 (year j), (c) sum
the number of individuals in each stage in 2004, given each stage for 2003, and
then (d) calculate the proportion of each stage in 2003 that shows up in each
stage in 2004.

> for (i in 2:5) {

+ for (j in 2:5) mat1[i, j] <- {

+ x <- subset(stagedat, stagedat$Y2003 == j)

+ jT <- nrow(x)

+ iT <- sum(x$Y2004 == i)

+ iT/jT

+ }

+ }

Here we can see the key parts of a real projection matrix.
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> round(mat1, 2)

[,1] [,2] [,3] [,4] [,5]

[1,] 0.03 0.00 0.00 0.10 6.67

[2,] 0.14 0.70 0.05 0.01 0.00

[3,] 0.00 0.23 0.42 0.04 0.00

[4,] 0.00 0.00 0.46 0.67 0.07

[5,] 0.00 0.00 0.02 0.26 0.90

Compare these probabilities and fertilities to the life cycle graph and its matrix
(Fig. 2.5, eq. (2.15)).

The diagonal elements P j, j are stasis probabilities, that an individual remains
in that stage. Growth, from one stage to the next, is the lower off-diagonal,
P j+1, j. Regression, moving back one stage, is the upper off diagonal, P j−1, j. The
fertilities are in the top row, in columns 4 and 5. Note that there is a transition
element in our data that is not in eq. (2.15): P53. This corresponds to very rapid
growth — a real event, albeit highly unusual.

A function for all transitions

What a lot of work! The beauty, of course, is that we can put all of those lines
of code into a single function, called, for instance, ProjMat, and all we have
to supply are the three data sets. You could examine this function by typing
ProjMat on the command line, with no parentheses, to see the code and compare
it to our code above. You code also try it with data.

> ProjMat(stagedat, fruitdat, seeddat)

This provides the observed transition matrix (results not shown).

2.3.5 Eigenanalyses

Next we want to do all those eigenanalyses and manipulations that gave us λ,
the stable age distribution,reproductive value, and the sensitivity and elasticity
matrices. All of this code is wrapped up in the function DemoInfo. Convince
yourself it is the same code by typing DemoInfo with no parentheses at the
prompt. Here we try it out on the projection matrix we created above, and
examine the components of the output.

> str(DemoInfo(mat1))

List of 6

$ lambda : num 1.13

$ SSD : num [1:5] 0.5632 0.195 0.0685 0.0811 0.0922

$ RV : num [1:5] 1 7.76 14.37 20.18 33.95

$ Sensitivities: num [1:5, 1:5] 0.072 0.559 1.034 1.452 2.442 ...

$ Elasticities : num [1:5, 1:5] 0.00174 0.0702 0 0 0 ...

$ PPM : num [1:5, 1:5] 0.0275 0.1425 0 0 0 ...
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We find that DemoInfo returns a list with six named components. The first
component is a scalar, the second two are numeric vectors, and the last three
are numeric matrices. The last of these is the projection matrix itself; it is often
useful to return that to prove to ourselves that we analyzed the matrix we
intended to.

2.3.6 Bootstrapping a demographic matrix

All of the above was incredibly useful and provides the best estimates of most or
all the parameters we might want. However, it does not provide any idea of the
certainty of those parameters. By bootstrapping these estimates by resampling
our data, we get an idea of the uncertainty.

Here we work through the steps of resampling our data, as we build a func-
tion, step by step, inch by inch. The basic idea of resampling is that we assume
that our sample data are the best available approximation of the entire popu-
lation. Therefore, we draw, with replacement, new data sets from the original
one. See the last section in Chapter 1 for ideas regarding simulations and boot-
strapping.

We will create new resampled (bootstrapped) data sets, where the rows of
the original data sets are selected at random with replacement. We then apply
ProjMat and DemoInfo.

The first step is to get the number of observations in the original data.

> nL <- nrow(stagedat)

> nF <- nrow(fruitdat)

> nS <- nrow(seeddat)

With these numbers, we will be able to resample our original data sets getting
the correct number of resampled observations.

Now we are going to use lapply to perform everything multiple times. By
“everything,” I mean

1. resample the observations to get bootstrapped data sets for vegetative
stages, seed fates, and fertilities,

2. calculate the projection matrix based on the three bootstrapped data sets,
3. perform eigenanalysis and calculate λ, stage structure, sensitivities, and

elasticities.

All of that is one replicate simulation, n = 1.
For now, let’s say n = 5 times as a trial. Eventually this step is the one we

will ask R to do 1000 or more times.

> n <- 5

Next we use lapply to do everything, that is, a replicate simulation, n times. It
will store the n replicates in a list, n components long. Each of the n components
will be the output of DemoInfo, which is itself a list.

> n <- 5

> out <- lapply(1:n, function(i) {

+ stageR <- stagedat[sample(1:nL, nL, replace = TRUE), ]
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+ fruitR <- fruitdat[sample(1:nF, nF, replace = TRUE), ]

+ seedR <- as.data.frame(seeddat[sample(1:nS, nS, replace = TRUE), ])

+ matR <- ProjMat(stagedat = stageR, fruitdat = fruitR,

+ seeddat = seedR)

+ DemoInfo(matR)

+ })

This code above uses sample to draw row numbers at random and with replace-
ment to create random draws of data (stageR, fruitR, and seedR). We then
use ProjMat to generate the projection matrix with the random data, and use
DemoInfo to perform all the eigenanalysis and demographic calculations.

Let’s look at a small subset of this output, just the five λ generated from
five different bootstrapped data sets. The object out is a list, so using sapply
on it will do the same thing to each component of the list. In this case, that
something is to merely extract the bootstrapped λ.

> sapply(out, function(x) x$lambda)

[1] 1.084 1.137 1.134 1.126 1.158

We see that we have five different estimates of λ, each the dominant eigenvalue
of a projection matrix calculated from bootstrapped data.

We now have all the functions we need to analyze these demographic data.
I have put all these together in a function called DemoBoot, whose arguments
(inputs) are the raw data, and n, the number of bootstrapped samples.

> args(DemoBoot)

function (stagedat = NULL, fruitdat = NULL, seeddat = NULL, n = 1)

NULL

2.3.7 The demographic analysis

Now we are armed with everything we need, including estimates and means to
evaluate uncertainty, and we can move on to the ecology. We first interpret point
estimates of of demographic information, including λ and elasticities. Then we
ask whether λ differs significantly from 1.0 using our bootstrapped confidence
interval.

First, point estimates based on original data.

> estims <- DemoInfo(ProjMat(stagedat, fruitdat, seeddat))

> estims$lambda

[1] 1.134

Our estimate of λ is greater than one, so the population seems to be growing.
Which transitions seem to be the important ones?

> round(estims$Elasticities, 4)
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[,1] [,2] [,3] [,4] [,5]

[1,] 0.0017 0.0000 0.0000 0.0009 0.0693

[2,] 0.0702 0.1196 0.0030 0.0005 0.0000

[3,] 0.0000 0.0738 0.0470 0.0049 0.0000

[4,] 0.0000 0.0000 0.0712 0.1234 0.0145

[5,] 0.0000 0.0000 0.0044 0.0793 0.3162

It appears that the most important transition is persistence in the largest adult
stage (a5,5 = 0.3). Specifically, proportional changes to the persistence in this
stage, neither regressing nor dying, are predicted to have the largest postive
effect on the lambda of this population.

We stated above that the population appears to be growing. However, this
was based on a sample of the population, and not the entire population. One
way to make inferences about the population is to ask whether the confidence
interval for λ lies above 1.0. Let’s use DemoBoot to bootstrap our confidence
interval for λ.9 First, we’ll run the bootstrap, and plot the λ’s.

> system.time(out.boot <- DemoBoot(stagedat, fruitdat, seeddat,

+ n = 1000))

user system elapsed

12.539 0.022 12.561

> lambdas <- sapply(out.boot, function(out) out$lambda)

> hist(lambdas, prob = T)

> lines(density(lambdas))

From this it seems clear that the population is probably growing (λ > 1.0),
because the lower limit of the histogram is relatively large (Fig. 2.6). We need to
get a real confidence interval, however. Here we decide on a conventional α and
then calculate quantiles, which will provide the median (the 50th percentile),
and the lower and upper limits to the 95% confidence interval.10

> alpha <- 0.05

> quantile(lambdas, c(alpha/2, 0.5, 1 - alpha/2))

2.5% 50% 97.5%

1.062 1.129 1.193

From this we see that the 95% confidence interval (i.e. the 0.025 and 0.975
quantiles) does not include 1.0. Therefore, we conclude that under the condi-
tions experienced by this population in this year, this Chamaedorea population,
from which we drew a sample, could be characterized as having a long-term
asymptotic growth rate, λ, that is greaater than 1.0, and therefore would be
likely to increase in abundance, if the environment remains the same.

9 The number of replicates needed for a bootstrap depend in part on how close the
interval is to critical points. If, for instance, your empirical P-value seems to be very
close to your cutoff of α = 0.05, then you should increase the replicates to be sure
of your result. These days n = 1000 is considered a bare minimum.

10 Quantiles are ordered points in a cumulative probability distribution function.
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Fig. 2.6: The frequency distribution for our bootstrapped λ. Note that it is fairly
symmetrical, and largely greater than 1.0.

A caveat and refinement

Bootstrapping as we have done above, known variously as the basic or per-
centile bootstrap, is not a cure-all, and it can give inappropriate estimation
and inferrence under some circumstances. A number of refinements have been
proposed that make bootstrapping a more precise and accurate procedure [46].
The problems are worst when the data are such that the bootstrap replicates
are highly skewed, so that the mean and median are quite different. When the
data are relatively symmetric, as ours is (Fig. 2.6), the inference is relatively
reliable.

Often skewness will cause the mean of the bootstrap samples to differ from
our observed estimate, and we refer to this as bias. We should adjust the boot-
strapped samples for this bias [140]. Here we calculate the bias.

> bias <- mean(lambdas) - estims$lambda

> bias

[1] -0.004208

We find that the bias is very small; this gives us confidence the our confidence
intervals are pretty good. Nonetheless, we can be thorough and correct our
samples for this bias. We subtract the bias from the bootstrapped λ to get our
confidence interval.

> quantile(lambdas - bias, c(alpha/2, 0.5, 1 - alpha/2))

2.5% 50% 97.5%

1.067 1.133 1.197

These bias-corrected quantiles also indicate that this population in this year
can be characterized by a λ > 1.
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If we want to infer something about the future success of this population, we
need to make additional assumptions. First, we must assume that our sample
was representative of the population; we have every reason to expect it is.
Second, we need to assume that this year was representative of other years. In
particular, we need to assume that the weather, the harvest intensity, and the
browsing intensity are all representative. Clearly, it would be nice to repeat this
for other years, and to try to get other sources of information regarding these
factors.

2.4 Summary

Demography is the study of structured populations. Structure may be described
by age or stage, and is represented by life cycle graphs and a corresponding pro-
jection or transition matrix of transition probabilities and fertilities. The finite
rate of increase, λ, and the stable stage/age distribution are key characteristics
of a population, and are estimated using eigenalysis; populations will grow ge-
ometrically at the per capita rate of λ only when the population has reached
its stable stage/age distribution. We measure the importance of transition el-
ements with sensitivities and elasticities, the absolute or relative contributions
λ of transition elements. Demographic information is frequently useful for en-
dangered and invasive species.

Problems

2.1. Demographic analysis of a plant population
Goldenseal (Hydrastis canadensis) is a wild plant with medicinal properties
that is widely harvested in eastern North American. Its rhizome (the thick
underground stem) is dug up, and so harvesting can and frequently does have
serious negative impacts on populations. A particular population of goldenseal
is tracked over several years and investigators find, tag, and monitor several
sizes of individuals [57]. After several years of surveys, they identify six relevant
stages: dormant seed, seedling, small 1-leaved plant, medium 1-leaved plant,
large 1-leaved plant, fertile plant (flowering, with 2 leaves). They determine
that the population project matrix is:

A =



0 0 0 0 0 1.642
0.098 0 0 0 0 0.437

0 0.342 0.591 0.050 0.095 0
0 0.026 0.295 0.774 0.177 0.194
0 0 0 0.145 0.596 0.362
0 0 0 0.016 0.277 0.489


(2.16)

(a) Draw a life cycle graph of this population of goldenseal. Include the matrix
elements associated with each transition.
(b) Start with N = (0 10 10 10 10 10) and graph population dynamics for all
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stages for 10 years.
(c) Determine the stable stage distribution.
(d) Determine λ. Explain what this tells us about the population, including any
assumptions regarding the stable stage distribution.
(d) Determine the elasticities. Which transition(s) are most influential in deter-
mining growth rate?
(e) Discuss which stages might be most suitable for harvesting; consider this
question from both a financial and ecological perspective.

2.2. Demographic analysis of an animal population
Crouse et al. [44] performed a demographic analysis of an endangered sea turtle
species, the loggerhead (Caretta caretta). Management of loggerhead popula-
tions seemed essential for their long term survival, and a popular management
strategy had been and still is to protect nesting females, eggs, and hatchlings.
The ground breaking work by Crouse11 and her colleagues compiled data to cre-
ate a stage-based projection matrix to analyze quantitatively which stages are
important and least important in influencing long-term growth rate. This work
led to US Federal laws requiring that US shrimp fishermen use nets that include
Turtle Excluder Devices (TEDs, http://www.nmfs.noaa.gov/pr/species/turtles/
teds.htm ). Crouse et al. determined the transition matrix for their loggerhead
populations:

A =



0 0 0 0 127 4 80
0.6747 0.7370 0 0 0 0 0

0 0.0486 0.6610 0 0 0 0
0 0 0.0147 0.6907 0 0 0
0 0 0 0.0518 0 0 0
0 0 0 0 0.8091 0 0
0 0 0 0 0 0.8091 0.8089


(2.17)

(a) Draw a life cycle graph of this loggerhead population. Include the matrix
elements associated with each transition.
(b) Determine the stable stage distribution.
(c) Determine λ. Explain what this tells us about the population, including any
assumptions regarding the stable stage distribution.
(d) Determine the elasticities. Which transition(s) are most influential in deter-
mining growth rate?
(e) What is the predicted long-term relative abundance of all stages? What do
we call this?
(f) If your interest is to maximize long-term growth rate, in which stage(s)
should you invest protection measures? Which stages are least likely to enhance
long-term growth rate, regardless of protective measures?
(g) Start with N = (0 10 10 10 10 10) and graph dynamics for all stages for 10
years.

11 Crouse was a graduate student at the time — graduate students are the life-blood
of modern science, doing cutting edge work and pushing their fields forward.



3

Density-dependent Growth

Let’s go back to our Song Sparrow (Melospiza melodia) data from Chapter 1
on density-independent growth — now we look at all the data.
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Fig. 3.1: Song Sparrow Melospiza melodia counts from 1966–2003 and the relation
between observed counts and annual growth rate determined from those counts, fit
with ordinary least squares regression. See Chapter 1 for data source.

In Chapter 1, we modeled Song Sparrow growth without reference to the
abundance, or counts, of sparrows, using a small subset of the data. When we
look at all the available data (Fig. 3.1a), it seems clear that the annual growth
rate (Rt = Nt+1/Nt) depends on the density of the bird population (Fig. 3.1b).
The larger the population, the lower R becomes, until above about 70 counted
birds, R < 1, indicating population decline. What might limit the population
growth of these sparrows? Space available for territories in their successional-
scrub type habitat? Availability of seeds, fruits and invertebrates? We don’t
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necessarily know precisely what limits it, but if it is something related to their
own abundance, perhaps we can study its density-dependence.

Density-dependent population growth is the case where the per capita popu-
lation growth rate depends statistically on the density of the population. Ecol-
ogists consider that negative density-dependence is typically a characteristic
of a population undergoing intraspecific competition. That is, individuals of the
same species are competing for shared resources. So, . . . how would we represent
this algebraically?1

3.1 Discrete Density-dependent Growth

3.1.1 Motivation

To begin, we recall our model of geometric growth for a single time step,

Nt+1 = λNt. (3.1)

We can pull this apart into two sections by recalling that we can decompose λ
into two parts, λ = 1 + rd, where rd is the discrete growth factor. This allows us
to state,

Nt+1 = λNt = Nt (1 + rd) = Nt + rdNt. (3.2)

Here we see the Nt+1 is equal to the previous year’s population, Nt, plus a
proportional change, rdNt. To add density dependence (e.g., Fig. 3.1b), we can
build density-dependence into that proportional change.

Density dependence means that the population will grow or shrink at a rate
that depends on its size. We can imagine that each individual in the population
exerts some tiny negative effect on rdNt, so that the realized per capita growth
increment shrinks as Nt grows.

Let us specify that the negative effect of each individual in the population
is the same, regardless of how many individuals there are. That is, we could
represent this negative effect with a constant, perhaps α, where αNt is the total
negative effect of all individuals in the population. On average, each individual
exerts the same negative impact, with a magnitude α, whether there is one
individual or 1000 individuals. A particularly convenient way of implementing
this is to keep using rd but to multiply it by a scaling factor. This scaling factor
should equal 1 when the population size is zero so that rd ×

(
scaling factor

)
= rd.

The scaling factor should be zero when the population is so big that per capita
growth increment is zero, rd ×

(
scaling factor

)
= 0. One such scaling factor looks

like this,
Per Capita Increment = rd (1 − αNt) (3.3)

where α is the per capita negative effect of an individual on the per capita
growth increment. As Nt shrinks toward zero, this expression grows toward rd;
as Nt grows, this expression shrinks toward zero.

1 root: Arabic. Al-jabr
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At precisely what value of N will per capita growth shrink to zero? We can
solve this by noting that rd is a constant and won’t change; all that matters is
inside the parentheses. We set the per capita increment equal to zero, and solve
for Nt.

0 = rd (1 − αNt) (3.4)
0 = rd − rdαNt (3.5)

Nt =
1
α
. (3.6)

When the population reaches the N = 1/α, the growth increment will be zero,
and the population will stop growing.

In a sense, the algebraic rearrangement (eq. 3.4) is at the core of theoretical
ecology. We began with a set of assumptions (constant rd and α), assumed a
relation between them (rd [1 − αNt]), and examined one of the consequences: the
population will stop changing when it reaches a density of 1/α, ceretus paribus.2

Welcome to theoretical ecology.
Now instead of density-independent per capita growth, rd, we have density-

dependent per capita growth rd (1 − αNt), and our population growth equation
becomes,

Nt+1 = Nt + rd (1 − αNt) Nt (3.7)

This describes discrete logistic growth. A common alternative representation
uses 1/α symbolized as K,

Nt+1 = Nt + rd

(
1 −

Nt

K

)
Nt (3.8)

where K represents the carrying capacity. The carrying capacity is the popu-
lation size at which the per capita growth increment has fallen to zero. The
context dictates whether we prefer to represent the scaling factor as the per
capita effect, α, or the population carrying capacity, K.

Writing a Function For Discrete Logistic Growth

An R function will simplify our explorations. It will return a vector of N, given α,
rd, N0, and t. The function arguments can have defaults (e.g., t=10).

> dlogistic <- function(alpha = 0.01, rd = 1, N0 = 2, t = 15) {

+ N <- c(N0, numeric(t))

+ for (i in 1:t) N[i + 1] <- {

+ N[i] + rd * N[i] * (1 - alpha * N[i])

+ }

+ return(N)

+ }

The function first makes a new vector containing N0, uses a for-loop to implement

eq. 3.7 for each time step, and then returns the vector N.

2 all else being equal
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With discrete logistic growth, if we start with a small population (N << K),
we will see the population rise and gradually approach K or 1/α (Fig. 3.2). We
refer to K as an attractor because N moves in a deterministic fashion toward K.
We explore the meanings of attractor and related terms throughout the book.
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Fig. 3.2: Discrete logistic growth with rd = 1, α = 0.01.

Graphing Population Size

We can use the function created above, dlogistic, with default settings, to generate
a population projection.

> Nts <- dlogistic()

Now we plot the projection, and put in a dotted line for 1/α or K.

> t <- 15

> a <- 0.01

> plot(0:t, Nts)

> abline(h = 1/a, lty = 3)

3.1.2 Relations between growth rates and density

We already know a lot about one description of density dependent growth, the
discrete logistic model. In particular, we know that with a constant per capita
negative effect, α, the population size at which growth falls to zero is K. Let us
explore further how the per capita growth increment, and the population growth
increment, vary with population size.

Casual examination of Fig. 3.2 suggests that the total population growth
increment (∆Nt = Nt+1−Nt) starts out small when both t and N are small, accel-
erates as N grows, and then over time, slows down and reaches an asymptote of
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K. Is this changing rate of population growth a function of time, or a function
of density? Let us first consider the growth increment as a function of N.

First consider the relation between the population growth increment and
population size (Fig. 3.3a). We see it increase as N grows, and then decrease
as N approaches K. The pattern is fairly symmetric. That is, it increases and
decreases at about the same rates.

Next consider the per capita growth increment (∆Nt/Nt; Fig. 3.3b). There is
a direct linear relation between the per capita growth increment and the size of
the population — this is linear density dependence. This linear dependence on
N comes from our assumption that the per capita negative effect is a constant,
α.

(Per Capita) Population Growth Increment vs. N (Fig. 3.3)

Using the previous projection, we now capture both the total and the per capita
growth increment per unit time, from t to t+1. We graph these versus Nt, population
size at t.

> total.incr <- Nts[1:t + 1] - Nts[1:t]

> per.capita.incr <- total.incr/Nts[1:t]

> plot(Nts[1:t], total.incr)

> plot(Nts[1:t], per.capita.incr)
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Fig. 3.3: Relations between the total and per capita discrete growth increments and
population size.

Let’s use a simple analytical approach to understand Figs. 3.3a and 3.3b a
little better. Take a look at eq. 3.7. First let’s rearrange the expression so that
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we can set the increment of change equal to zero. How would you do that? Take
a minute and try it, before you look at the answer below.

Setting the increment of change equal to zero, we rearrange with the popu-
lation growth increment on the left, and then set it to zero.

Nt+1 − Nt = rdNt (1 − αNt) (3.9)

Nt+1 − Nt = rdNt − rdαN2
t (3.10)

0 = rdNt − rdαN2
t (3.11)

What do we notice? One observation we could make is that we have a quadratic
equation,3 where the intercept is zero. This tells us that perhaps Fig. 3.3a is
symmetric because it is a quadratic expression in terms of N.

What would satisfy this quadratic expression (eq. 3.11), that is, cause the
growth increment to equal zero? Well, if rd or Nt equal zero, those would yield
potentially interesting solutions. Assuming neither rd nor Nt equal zero, we can
divide each side by these, and we are left with the solution we found in eq. 3.6,
that the growth increment will be zero when Nt = 1

α
= K.

Now let us examine the per capita growth increment (Fig. 3.3b). If we start
with the population growth increment eq. 3.9, all we need is to divide through
by Nt to get

Nt+1 − Nt

Nt
= rd − rdαNt. (3.12)

With rd and α being constants, and N varying, what is this expression? It is the
expression for a straight line,4 just like we observe (Fig. 3.3b). When Nt = 0, the
per capita increment equals rd, and when Nt = 1/α, the per capita increment
is zero. This is precisely where we started when we began the motivation for
discrete logistic growth.

3.1.3 Effect of initial population size on growth dynamics

What will be the effect of differences in initial population size? We could ap-
proach such a question in at least two ways [21]. For some of us, the simplest
way is to play games with numbers, trial and error, plugging in a variety of
initial population sizes, and see what happens to the dynamics. If we do this
systematically, we might refer to this as a simulation approach. For very com-
plicated models, this may be the only approach. Another approach, which is
often used in concert with the simulation approach, is the analytical approach.
We used this above, when we set the growth equation equal to zero and solved
for N. In general, this analytical approach can sometimes give us a definitive
qualitative explanation for why something happens. This has been used as a
justification for using simple models that actually have analytical solutions —
they can provide answers [132].

For an analytical approach, first consider the endpoint solutions to the dis-
crete logistc model eq. 3.10. The population will stop changing when Nt = K.

3 ax2 + bx + c = 0
4 y = mx + b.
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Note that it does not appear to matter what the initial population size was.
The only thing that matters is α. Recall also that the population would not
grow if for any reason Nt = 0 — the population will be stuck at zero. Based on
these analyses, it appears that the only thing that matters is whether the initial
population size is zero, or something greater than zero. If the latter, then initial
population size appears to have no effect on the eventual population size.

It always pays to check our analytical answer with a brute force numerical
approach, so we will use a little simple simulation to see if we are right. In
this case, we can vary systematically the initial population size, and see what
happens (Fig. 3.4a). What our approach shows us is that regardless of the initial
conditions (except zero), N converges on K — K is an attractor. We also might
notice that sometimes when N0 > K, it crashes below K before converging on
K in the end (more on that later). Last, because there is a qualitative shift in
the behavior of the population when N = 0, we might want to investigate what
happens when N gets very very close to zero. However, in this situation, the
analytical solution is so straightforward that it seems convincing that as long
as N > 0, it will grow toward K.
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Fig. 3.4: (a) Dynamics due to different initial N (zero was also specifically included,
and α = 0.01). (b) Dynamics due to different α. All N, except N = 0, converge on
K = 1/α, regardless of the particular value of α (rd = 1).
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Numerical Evaluation of Initial Conditions (Fig. 3.4a)

Here we draw randomly 30 N0 from a uniform distribution between zero and 1.2K.
We also include zero specifically. We then use sapply to run dlogistic for each N0,
using defaults for the other arguments.

> N0s <- c(0, runif(30) * 1.1 * 1/a)

> N <- sapply(N0s, function(n) dlogistic(N0 = n))

> matplot(0:t, N, type = "l", lty = 1, lwd = 0.75, col = 1)

> text(t, 1/a, expression(italic("K") == 1/alpha), adj = c(1,

+ 0))

A serious simulation might include a much larger number of N0.

3.1.4 Effects of α

Our conclusions thus far have been based on specific values of α and rd. Have
we been premature? Just to be on the safe side, we should probably vary these
also.

What will happen if α varies? This seems easy. First, when Nt is zero, the
population growth increment eq. 3.9 is zero, regardless of the magnitude of α.
However, when Nt > 0, N will increase until it reaches 1/α (K; Fig. 3.4b). The
outcome seems pretty clear — by decreasing the negative effect of individuals
on each other (i.e. decrease α) then the final N increases, and α determines the
final N.

Numerical Evaluation of α (Fig. 3.4b)

Here we draw 30 random K from a uniform distribution from 50 to 1000, and convert
these to α. We use sapply to run dlogistic for each α.

> a.s <- 1/runif(30, min = 50, max = 1000)

> N <- sapply(a.s, function(a) dlogistic(alpha = a, t = 15))

We next plot all populations, and use some fancy code to add some informative text
in the right locations.

> matplot(0:t, N, type = "l", ylim = c(0, 1000), lty = 1, lwd = 0.75,

+ col = 1)

> text(8, 1/min(a.s), bquote(italic(alpha) == .(round(min(a.s),

+ 3))), adj = c(1, 0.5))

> text(10, 1/max(a.s), bquote(italic(alpha) == .(round(max(a.s),

+ 3))), adj = c(0, 1.2))

Note that we use the minimum and maximum of a.s to both position the text, and

provide the values of the smallest and largest α.
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3.1.5 Effects of rd

What will variation in rd do? Probably nothing unexpected, if our exploration of
geometric growth is any guide. Our analytical approach indicates that it should
have no effect on K (sec. 3.1.2). Nonetheless, let us be thorough and explore the
effects of rd by varying it systematically, and examining the result.

Yikes — what is going on in Fig. 3.5? Perhaps it is a good thing we decided
to be thorough. These wild dynamics are real — let’s go back and look more
carefully at rd.
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Fig. 3.5: The variety of population dynamics resulting from different values of rd for
the discrete logistic growth model (rd = 1, 1.2, . . . , 3, α = 0.01). See Fig. 3.6 for a more
informative view.

Simple Numerical Evaluation of rd (Fig. 3.5)

Here we vary rd by creating a short systematic sequence rd = 1.3, 1.6, . . . , 2.8. We set
t = 50, and use dlogistic to create a trajectory for each of the six rd.

> rd.v <- seq(1.3, 2.8, by = 0.3)

> t <- 15

> Ns <- data.frame(sapply(rd.v, function(r) dlogistic(rd = r,

+ t = t)))

> matplot(0:t, Ns, type = "l", col = 1)

Note that many populations do not seem to settle down at K.
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If we examine each projection separately, we see a cool pattern is emerging
(Fig. 3.6). At the lowest rd, the population grows gradually toward its carrying
capacity, K, and stays there. Once rd = 1.6 − 1.9 it overshoots K just a bit,
creating oscillations; these oscillations, however, dampen back down to K. When
rd = 2.2, however, the populations seem to bounce back and forth between two
values. When rd = 2.5, N bounces around, but now it bounces around between
four different values. When rd = 2.8, however, it seems to bounce back and forth
around K, but at values that vary every time. This model is just about as simple
as a model can be, and includes no random numbers. What is going on?
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Fig. 3.6: A more informative view of the effects of variation in rd on population dy-
namics.
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Presentation of Limit Cycles (Fig. 3.6)

First we make a data frame with the six rd values in the first column, and the
respective populations in rows, using t() to transpose Ns. This puts the data in
wide format, with a different time step in each column. (This might, for instance,
be how you record data in a field experiment with repeated measurements through
time).

> tmp <- data.frame(rd = as.factor(rd.v), t(Ns))

Next, we reshape the data to long format, were all N are in the second column, and
each is associated with a time step and its rd value (cols. 3 and 4).

> Ns2 <- reshape(tmp, varying = list(2:ncol(tmp)), idvar = "rd",

+ v.names = "N", direction = "long")

> str(Ns2)

. . . (output omitted) We plot each trajectory separately using xyplot in a different
graphics package, lattice. Known as a conditioning plot, xyplot graphs y vs. x
conditional on g (y ∼ x | g).

> library(lattice)

> print(xyplot(N ~ time | rd, data = Ns2, type = "l", layout = c(3,

+ 2, 1), col = 1))

What is going on is the emergence of stable limit cycles, and chaos.5 At
low rd, we have simple asymptotic approach to K. As rd increases, we see the
population overshoot the carrying capacity and exhibit damped oscillations.
When 2 < rd < 2.449, the population is attracted to two-point limit cycles. In
this case, these two points are stable attractors. Regardless where the population
starts out, it is attracted to the same two points, for a given rd. As rd increases
further, the number of points increases to a four-point limit cycle (e.g., at rd =

2.5), then an eight-point cycle, a 16-point limit cycle, and so on. These points are
stable attractors. As rd increases further , however, stable limit cycles shift into
chaos (rd > 2.57). Chaos is a non-repeating, deterministic fluctuating trajectory,
that is bounded, and sensitive to initial conditions.

Robert May [128] shocked the ecological community when he first demon-
strated stable limit cycles and chaos using this model. His groundbreaking work,
done on a hand calculator, showed how very complicated, seemingly random
dynamics emerge as a result of very simple deterministic rules. Among other
things, it made population biologists wonder whether prediction was possible
at all. In general, however, chaos seems to require very special circumstances,
including very high population growth.

Is there a biological interpretation of these fluctuations? Consider some sim-
ple environment, in which small vegetation-eating animals with high reproduc-
tive rates eat almost all the vegetation in one year. The following year, the
vegetation will not have recovered, but the animal population will still be very
high. Thus the high growth rate causes a disconnect between the actual popula-
tion size, and the negative effects of those individuals comprising the population.

5 Not the evil spy agency featured in the 1960’s US television show, Get Smart.
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The negative effects of the actions of individuals (e.g., resource consumption)
are felt by the offspring of those individuals, rather than the individuals them-
selves. We won’t belabor the point here, but it is certainly possible to extend
this delayed density dependence to a wide variety of populations. The discrete
logistic model has a built in delay, or time lag, of one time step, because the
growth increment makes a single leap of one time step. This delay is missing
from the analogous continuous time model because the growth increment covers
an infinity small time step, thanks to the miracles of calculus.6

Bifurcations

Up until now, we have examined N as a function of time. We have graphed it
for different α and N0, but time was always on the X-axis. Now we are going to
examine N as a function of rd, so rd is on the X-axis. Specifically, we will plot
the stable limits or attractors vs. rd (Fig. 3.7). What does it mean? For rd < 2,
there is only a single N. This is what we mean by a stable point equilibrium,
or point attractor — as long as rd is small, N always converges to a particular
point.7 When 2 < rd < 2.45, then all of a sudden there are two different N;
that is, there is a two-point stable limit cycle. Note that when rd ≈ 2 these
oscilliations between the two point attractors around K are small, but as we
increase rd, those two points are farther apart. The point at which the limit
cycle emerges, at rd = 2, is called a bifurcation; it is a splitting of the single
attractor into two attractors. At rd ≈ 2.45, there is another bifurcation, and each
the two stable attractors split into two, resulting in a total of four unique N. At
rd ≈ 2.53, there are eight N. All of these points are periodic attractors because
N is drawn to these particular points at regular intervals. As rd increases the
number of attractors will continue to double, growing geometrically. Eventually,
we reach a point when there becomes an infinite number of unique points, that
are determined by rd.8 This completely deterministic, non-repeating pattern in
N is a property of chaos. Chaos is not a random phenomenon; rather it is the
result of deterministic mechanisms generating non-repeating patterns.

6 A time lag can be explicitly built in to a continuous time model, with only a small
effort.

7 It need not be the same N for each rd, although in this case it is.
8 They are also determined by the initial N, but we will get to that later.
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Fig. 3.7: Illustration of the long term dynamics of discrete logistic population growth.
When a small change in a continuous parameter results in a change in the number of
attractors (e.g. a single point equilibrium to a stable 2-point limit cycle), we call this
a bifurcation.

Bifurcation Plot: Attractors as a Function of rd (Fig. 3.7)

Here we perform more comprehensive simulations, and plot the point and periodic
attractors vs. rd. First we pick some constraints for the simulation: the number of
different rd, the sequence of rd values, and the number of time steps.

> num.rd <- 201; t <- 400

> rd.s <- seq(1, 3, length = num.rd)

Next we use sapply for the simulations.

> tmp <- sapply(rd.s, function(r) dlogistic(rd = r, N0 = 99,

+ t = t))

Next we convert the output to a data frame and stack up the N in one column. We
also rename each of the stacked columns, and add new columns for the respective rd

and time steps.

> tmp.s <- stack(as.data.frame(tmp))

> names(tmp.s) <- c("N", "Old.Column.ID")

> tmp.s$rd <- rep(rd.s, each = t + 1)

> tmp.s$time <- rep(0:t, num.rd)

We save just the later dynamics in order to focus on the N after they have converged
on the periodic attractors. Here we select the last 50% of the time steps. (Your figure
will look a little different than Fig. 3.7 because I used more rd and time steps.)

> N.bif <- subset(tmp.s, time > 0.5 * t)

> plot(N ~ rd, data = N.bif, pch = ".", xlab = quote("r"["d"]))
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There has been a great deal of effort expended trying to determine whether
a particular model or real population exhibits true chaos. In any practical sense,
it may be somewhat unimportant whether a population exhibits true chaos, or
merely a higher order periodic attractor [49]. The key point here is that very
simple models, and therefore potentially simple mechanisms, can generate very
complex dynamics.

Sensitivity to initial conditions

Another very important characteristic feature of chaotic populations is that they
are very sensitive to initial conditions. Thus emerges the idea that whether a
butterfly in Sierra Leone flaps its wings twice or thrice may determine whether
a hurricane hits the southeastern United States in New Orleans, Louisiana, or
in Galveston, Texas.9

If we generate simulations where we vary initial population size by a single
individual, we find that this can have an enormous impact on the similarity
of two populations’ dynamics, and on our ability to predict future population
sizes (Fig. 3.8). Note how the populations start with similar trajectories, but
soon diverge so that they experience different sequences of minima and maxima
(Fig. 3.8). This is part of what was so upsetting to ecologists about May’s 1974
paper — perhaps even the simplest deterministic model could create dynamics
so complex that we could not distinguish them from random [128]. Over time,
however, we came to learn that (i) we could distinguish random dynamics from
some chaos-like dynamics, and (ii) the hunt for chaos could be very exciting, if
most frequently disappointing [8, 39,90].

Sensitivity to Intitial Conditions

We start with three populations, all very close in initial abundance. We then pro-
pogate with a rd to generate chaos for 100 time steps.

> N.init <- c(97, 98, 99); t <- 30

> Ns <- sapply(N.init, function(n0) dlogistic(rd = 2.7, N0 = n0,

+ t = t))

Now we would like to graph them over the first 12 times, and look at the correlations
between N1 and the other two populations.

> matplot(0:t, Ns, type = "l", col = 1)

Boundedness, and other descriptors

One last issue that we should note is the extent to which our populations are
bounded. A population may have complex dynamics, but we may be able to
characterize a given population by its upper and lower bounds. In spite of the

9 Clearly, this suggests that the solution to increased storm severity due to global
warming is to kill all butterflies.
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Fig. 3.8: Effects of differences in initial population size on the short term and long
term dynamics, and their correspondence, of three populations.

differences created by the initial conditions, the upper and lower bounds of our
chaotic populations were very similar (Fig. 3.8). Note also as rd increases (Fig.
3.7) the oscillations increase very systematically.

In general, we can describe many characteristics of populations, even if we
cannot predict exactly what the population size will be five years hence. For
instance, we can describe the shape of density dependence (linear, nonlinear),
and characteristics of N, such as the average, the variance, the periodicity, the
upper and lower bounds, and the color (i.e. degree of temporal auto-correlation).
Indeed, these characteristics may vary among types of organisms, body sizes,
or environments.

3.2 Continuous Density Dependent Growth

The classic version of continuous density dependent growth [93] is the continu-
ous logistic growth equation, the continuous version of eq. 3.8 above,

dN
dt

= rN
(K − N

K

)
(3.13)

which, as we saw above, is no different than

dN
dt

= rN (1 − αN) . (3.14)

Take a moment to see the parallels between these and eq. 3.7.
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3.2.1 Generalizing and resimplifying the logistic model

By now you might be wondering why we are studying such simplistic models
that make such unrealistic assumptions. Let’s use the next couple of pages to
figure out how we might relax some of these assumptions, and generalize eq.
3.14.

First let’s realize that the density independent per capita growth rate, r,
is really a net rate — it is the difference between the density independent,
instantaneous birth and death rates, b and d. If we start with per capita logistic
growth, the generalization would look like this.

dN
Ndt

= r (1 − αN) (3.15)

= (b − d) (1 − αN) (3.16)
= b − d − bαN + dαN (3.17)

where b − d = r.
Note that the positive, density-independent effect on growth rate of b is

counterbalanced a bit by a negative density-dependent effect of b. As N in-
creases, increasing births tend to rein in growth rate a bit, because more births
mean a larger negative density-dependent effect. Similarly, mortality, d includes
a small positive density-dependent effect that helps enhance growth rate because
it reduces the negative effect of αN — death frees up resources.

Density dependence is the effect of density on growth rate, and thus far we
have let that be 1−αN. Let’s represent this as the function F (N) = 1−αN. We
can now note that α is also a net effect — N will have separate effects on the
birth and death rates, and α could be just the sum of more arbitrary constants
(e.g., αN = (x + y)N); 1 − αN is merely the simplest form of F (N). We can
generalize further and let density affect the birth and death rates separately,

dN
Ndt

= rN F (N) (3.18)

F (N) = B (N) + D (N) (3.19)

We might anticipate that density has no effect on death rates when N is
low, because there is no particular limiting factor (Fig. 3.9a). Paradoxically,
however, when N becomes large, the ensuing mortality benefits growth rate a
bit because death frees up limiting resources (Fig. 3.9a). Such an idea might
have the simple form

D (N) = gN2 (3.20)

where g is a constant. This function starts out at zero (no effect) and increases
rapidly (Fig. 3.9a). This means that at low density, mortality does not influence
growth rate, whereas at high density, mortality enhances growth rate.

The density dependence for birth rates could also be more complicated. The
Allee effect [192] arises when a population gets very small and mating success
declines because mates can’t find each other, leading to a large negative per
capita impact of N. We can describe this with a quadratic function,
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B (N) = −aN2 + eN − f (3.21)

where a, e, and f are constants. Here, the negative effect of N on birth rates,
B(N), will be important at low N because when N = 0, B(N) = − f . The negative
effect will also be large at very high N because −aN2 becomes a large negative
number at large N (Fig. 3.9a). The point here is that we can alter density
dependence to incorporate specific biology.

If we sum the density dependences, we have a function F (N) = B(N) + D(N)
that is analogous to 1−αN, but which is a different shape, because it describes
a particular underlying biology (Fig. 3.9b). Note the differences between the
simple linear density dependence of the logistic model, and the nonlinear density
dependence of our generalization.
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Fig. 3.9: Elaborating on simple logistic growth. (a), a specific example of a generalized
density dependence via effects on birth rate and death rate. (b) Net density dependence
for our generalized model and logisitc linear density dependence.
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Density Dependence on Birth and Death Rates (Figs. 3.9a, 3.9b)

To make expressions for eqs. 3.21, 3.20, use expression.

> B.N <- expression(-a * N^2 + e * N - f)

> D.N <- expression(g * N^2)

We then provides constants and evaluate the expressions to plot the density depen-
dence on birth and death rates.

> a <- 1/1600; e <- 80 * a; f <- 0.2; g <- 4e-05; N <- 0:100

> plot(N, eval(B.N), type = "l", ylab = "B(N), D(N)")

> lines(N, eval(D.N), lty = 2)

> abline(h = 0, lty = 3)

> legend("bottom", c("Effect on Birth Rate", "Effect on Death Rate"),

+ lty = 1:2, bty = "n")

The sum of these two rates is merely density dependence,

> plot(N, eval(B.N) + eval(D.N), type = "l", ylim = c(-0.4,

+ 1), ylab = "Net Density Dependence, F(N)")

> abline(h = 0, lty = 3)

and we can compare this to linear density dependence of the logistic model (1−αN).
If α = 0.01, we have

> curve(1 - 0.01 * x, 0, 100, lty = 2, add = T)

> legend("topright", c("Generalized", "Logistic"), lty = 1:2,

+ bty = "n")

The extreme flexibility we are introducing has a serious downside—we now
have to estimate more parameters. Clearly, if r = 0.5, then b and d can take on
any values, provided their difference is 0.5. We can make the same argument
with regard to linear density dependence as well — B(N) and D(N) could take
an infinite variety of forms, provided their sum equals 1 − αN.

In an attempt to simplify our lives a bit, and in the absence of any additional
information, let us impose the simplest function for B and D, a linear constant

dN
Ndt

= (b − mbN) − (d − mdN) (3.22)

where mb and md are constants that describe the effect of an additional indi-
vidual on the base density-independent per capita birth and death rates, re-
spectively. If we really wanted to simplify our lives, we could let mb + md = m,
b − d = r, and simplify to

dN
Ndt

= r − mN (3.23)

Thus, the net effect of N is linear, even though the effects of N on birth and death
rates may not be. For reasons that probably have more to do with history than
with mathematics, we create another constant, α = m/r, and we find ourselves
back to

dN
Ndt

= r (1 − αN) . (3.24)
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Let’s review the circular path of elaboration and simplification upon which
we have travelled. We started with a historical representation of logistic growth,
using K to represent an equilibrium population size toward which N is at-
tracted. We represented this in a tad more mechanistic fashion (I would argue)
by rephrasing the limitation factor in terms of a per capita effect of an individ-
ual on the growth rate. We then expanded and generalized this expression to
see that the net effects, r and α, could each be thought of as two components
related to birth rates and death rates. We further expanded on density depen-
dence, allowing it to be curvilinear. We then collapsed this back to a simple
difference (r − mN, eq. 3.23) and finally recast it in the original expression.

The integral of logistic growth

We might as well add that there is an expression for Nt, analogous to Nt =

N0 exp(rt) for exponential growth. If we integrate eq. 3.24, we have

Nt =
N0ert

1 + αN0 (ert − 1)
. (3.25)

Note the resemblance to the exponential equation. We have the exponential
equation in the numerator, divided by a correction factor which starts at 1
when t = 0. The correction factor then grows with time, at a rate which is
virtually the same as exponential growth but adjusted by α and scaled by N0.
Thus when t = 0, and if N0 is small, we have near-exponential growth, decreased
merely by a factor of αN0. We will take advantage of this integral below, when
we describe some data in terms of the logistic growth model.

3.2.2 Equilibria of the continuous logistic growth model

As we did with the discrete model, we can determine the equilibria of the
continuous logistic growth model, that is the values of N for which dN/dt = 0.
Consider again eq. 3.14

dN
dt

= rN (1 − αN) . (3.26)

What values of N will cause the growth rate to go to zero, thus causing the
population to stop changing? As with the discrete model, we would find that if
N = 0, 1/α, the growth rate would be zero, and the population stops changing.
Therefore the equilibria for continuous logistic growth are N∗ = 0, 1/α.

3.2.3 Dynamics around the equilibria — stability

The stability of a system10 is a measure of how much it tends to stay the same,
in spite of external disturbances or changes in the state of the system.

10 A system might be nearly any set of interacting parts, such as a population, or an
economy, or the internet.
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The term stability has been given many more specific meanings, including
resilience, resistant, reactivity, and permanence. We won’t go into these here,
but one could consider them different facets of stability [25].11 We will focus
on resilience, the tendency for a population to return an equilibrium, or be
attracted toward an equilibrium, if it is perturbed from it.

Consider the stability of a marble inside a wok. If the wok doesn’t move,
then the marble just sits in the lowest spot on the bottom. If the wok is bumped,
the marble jiggles and rolls around a bit, but settles back down to the bottom.
This is a stable system because there is a point at the bottom of the bowl (the
attractor) toward which the marble rolls — all points inside the wok allow the
marble to find the lowest point (the attractor). For this reason, we call the
collection of points on the inside surface of the wok the basin of attraction. The
steeper the sides, the more quickly the marble moves toward the bottom. This
rate is referred to as its resilience.

To translate the notion of a basin into a population, let the position of
marble inside the wok be the value of N at any particular point. Bumping the
wok is any disturbance that causes a change in N. The slope of the sides of the
wok reflects the biology and its mathematics that cause N to move quickly or
slowly back toward the bottom. For the logistic model, this rate is determined
by r and α, and also by N itself. The attractor at the very bottom of the bowl
is the population’s carrying capacity, K = 1/α.12

When we imagine a marble in a wok, it becomes easy to envision K as an
attractor at the bottom of the bowl. That is why we consider the carrying
capacity a stable equilibrium point, or attractor, even if other factors, such as
a disturbance, may cause N to deviate from it.

The equilibrium we have focused on has been K, but recall that N = 0 is also
an equilibrium. This equilibrium is actually the edge of the wok — the slightest
jiggle, and the marble falls in and moves toward the center of the wok, K. The
biological analog of this “jiggle” is the additional of one or a very small numbers
of individuals to an otherwise extinct population. For example, consider that
a sterile petri dish with nutrient agar has an E. coli population size of zero.
If that E. coli N = 0 gets “perturbed” with a single added cell, the population
will move quickly toward its carrying capacity K. In this sense, N = 0 is an
equilibrium, but it is an unstable equilibrium. We also call such an unstable
equilibrium a repeller.

Analytical linear stability analysis

We are interested in the dynamics or stability of N at each of the equilibria, N∗.
Here we use analytical linear stability analysis to show mathematically what we
11 Resistance refers to the tendency to resist change in the first place; resilience refers

to the long term rate of return to an equilibrium; reactivity refers to the rate of
change immediately following such a disturbance [148], and permanence is the de-
gree to which a system does not simplify by entering one of its boundary equilibria.

12 The marble’s inertia, which contributes to its momentum, is analogous to a time
lag in density dependence that we saw in the discretet model; with a time lag, a
population can overshoot the equilibrium.
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described above with the marble and the wok. While somewhat limited in its
scope, linear stability is nonetheless a powerful technique for dynamic model
analysis.

In a nutshell, what we do is determine whether the growth rate, which is
zero at each equilibrium, becomes positive or negative in response to a small
change in N. That is, if N takes a tiny step away from the equilbrium, does
that tiny step shrink, or grow? If a tiny step results in a shrinking of that step,
back toward the equilibrium, that demonstrates stability. If a tiny step results in
growth and a bigger step, that demonstrates instability. That is what analytical
stability analysis tells us.

Consider a plot of the growth rate, dN/dt vs. N (Fig. 3.10). The equilibria,
N∗, are the N (x-axis) at which dN/dt = 0 (points a, d). Note where population
growth rate is positive and where it is negative. What will happen to this
population if it finds itself at N = 50? It will grow, moving along the x-axis,
until population growth rate slows so much that it comes to rest where N =

1/α = K = 100. Thus, N changes until it converges on the equilibrium, N∗, where
dN/dt = 0. Alternatively at N = 110, dN/dt is negative, and so N shrinks back
down to K (point d). This return toward K means that K is an attractor and a
stable equilibrium.

Next, consider N = 0, at point a; it cannot change on its own. However,
if “perturbed” at all, with the addition of one or more individuals, then this
“perturbation” will grow, sending N across the x-axis, away from N = 0, toward
N = K. This stasis at N = 0, and movement away from N = 0 with the slightest
perturbation means that N = 0 is a repeller and an unstable equilibrium.

Linear stability analysis will calculate the degree of attraction or repulsion.

Growth rate vs. N

We first define an expression, and constants.

> pop.growth.rate <- expression(r * N * (1 - alpha * N))

> r <- 1; alpha <- 0.01; N <- 0:120

A basic plot.

> plot(N, eval(pop.growth.rate), type = "l",

+ ylab = "Population Growth Rate (dN/dt)", xlab = "N")

> abline(h = 0); legend("topright", "r=1", lty = 1)

Add a few points with labels,

> N <- c(0, 10, 50, 100, 115)

> points(N, eval(pop.growth.rate), cex = 1.5)

> text(N, eval(pop.growth.rate), letters[1:5], adj = c(0.5, 2))

and arrows for the direction of change in N.

> arrows(20, 2, 80, 2, length = 0.1, lwd = 3)

> arrows(122, -2, 109, -2, length = 0.1, lwd = 3)

How fast will N return to N∗ = K, if perturbed? Let’s start by imagining that
we have two populations with different intrinsic rates of increase (r = 1, 0.5),
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Fig. 3.10: Population growth rate, dN/dt, as a function of N. Points a–e are labelled
for convenience. At values of N associated with points a and d, population growth
rate equals zero. At values of N associated with b and c growth rate is positive, and
for e growth rate is negative. Note this is growth rate as a function of N (time is not
explicitly part of this graph).

and focus in on the growth rate at N∗ = K (Fig. 3.11a). For which one of these
populations will dN/dt go to zero more quickly? If each population loses a few
individuals and declines by x to N∗− x, which population will return to N∗ more
quickly? Not surprisingly, it is the population with the higher r — when r = 1,
its population growth rate (y-axis) is greater than when r = 0.5, and therefore
will return at a faster rate.

Note also that this same population (r = 1) has a negative growth rate of
greater magnitude at N∗+ x. Regardless of whether it gains or loses individuals,
it will return to N∗ more quickly than the population with the lower r.

How do we quantify the rate of return at N∗ so that we can compare two or
more populations? The slope of the curve at N∗ quantifies the rate of return,
because the slope is the exponential return rate. To calculate the slope of a
curve we use calculus, because the slope of a curve is a derivative. In this case,
we need the derivative of the growth rate (dN/dt) with respect to the variable
on the x-axis, N. Such a derivative is called a partial derivative. Therefore we
need the partial derivative of growth rate, with respect to N. This will be the
slope of the growth rate with respect to N.

To find the partial derivative, let us denote the growth rate as Ṅ (“N-dot”),
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Fig. 3.11: Very close to an equilibrium, a population recovers from a perturbation,
moving toward the equilibrium attractor, at rate e−r. (a), Slopes of population growth
vs. N near the equilibrium; around the equilibrium attractor, small decreases in N
lead to positive growth rate, whereas small increases lead to negative growth rate; the
population with the steeper slope changes faster. (b), Regardless of the particular r of a
population, a population recovers from a perturbation, moving toward the equilibrium
attractor, at rate e−r.

Ṅ = rN (1 − αN) . (3.27)

Ṅ is a common symbol for a time derivative such as a growth rate.
Given Ṅ, its partial derivative with respect to N is

∂Ṅ
∂N

= r − 2rαN. (3.28)

Further, we are interested in the equilibrium, where N = 1/α. If we substitute
this into eq. 3.28 and simplify, this reduces to

∂Ṅ
∂N

= −r . (3.29)

At N∗ = 1/α, the slope is −r. This negative slope at the equilibrium demonstrates
the stability of this equilibrium.

Near N∗, population growth rate is −rx.13 That is, the rate of change of x
(Figs. 3.11a, 3.11b) is

dx
dt

= −rx (3.30)

This allows us to pretend that the perturbation will diminish exponentially,
because the growth rate is constant. We say “pretend,” because we realize that
13 Because ∆y/∆x = −r, i.e. the change in y equals the change in x times the slope.
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this rate applies only in the small region where we can assume the slope is a
straight line. We can describe the size of x at any time t by integrating this
well-known differential equation with respect to time as

xt = x0e−rt (3.31)

where x0 is the size of the initial displacement relative to the equilibrium, and
xt is the size of the displacement at time t relative to the equilibrium.

If we choose an xt carefully, and do so for any and all such analyses, we can
determine the time required to reach xt and we call that time the characteristic
return time. To determine the characteristic return time, we will let xt = x0/e,
thus defining the characteristic return time as the amount of time required to
reduce the perturbation by 63% (i.e. 1/e). We can solve for t by dividing through
by x0 and taking the log of both sides,

x0

e
= x0e−rt (3.32)

log
(
e−1

)
= −rt (3.33)

t = −
1

(−r)
. (3.34)

Thus we see return time, t, here is a positive number, with the same units as
r, and depends on the slope of the the growth rate with respect to N. It also
depends on the assumption of linearity very close to the equilibrium.

To review, we took the partial derivative of dN/dt with respect to N, and
then evaluated the partial derivative at N∗ to get the rate of change of the
perturbation, x. A negative value indicates that the perturbation will decline
through time, indicating a stable equilibrium or attractor. A positive value
would indicate that the perturbation will grow over time, thus indicating an
unstable equilibrium, or a repellor.

Symbolic differentiation

We can use R’s minimal symbolic capabilities to get derivatives. Here we get the
partial derivative and evaluate for the two equilibria (Fig. 3.10).

> dF.dN <- deriv(pop.growth.rate, "N")

> N <- c(0, 1/alpha)

> eval(dF.dN)

[1] 0 0

attr(,"gradient")

N

[1,] 1

[2,] -1

The first value, 1, corresponds to the first value of N, which is 0. Because it is positive,

this indicates that the perturbation will increase with time, meaning that N = 0 is

a repellor. The second value, −1, is negative, and so indicates that the perturbation

will decrease with time, meaning that N = 1/α is an attractor.
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3.2.4 Dynamics

How does the continuous logistic growth equation behave? It is very well be-
haved, compared to the discrete version. It has a very characteristic shape (Fig.
3.12a), and regardless of r or N0, it moves converges boringly toward K = 1/α
(Fig. 3.12b).

Function for an ODE

Making a function to use with R’s ODE solver is pretty easy, provided we follow
the rules (see Appendix, secs. , B.10). To make the code transparent, I translate the
vector parameters and the vector of populations (in this single species model, we
have only one population).

> clogistic <- function(times, y, parms) {

+ n <- y[1]

+ r <- parms[1]

+ alpha <- parms[2]

+ dN.dt <- r * n * (1 - alpha * n)

+ return(list(c(dN.dt)))

+ }

We create vectors for the parameters and the initial densities for all of the popula-
tions in the model. We also specify the time.

> prms <- c(r = 1, alpha = 0.01)

> init.N <- c(1)

> t.s <- seq(0.1, 10, by = 0.1)

We load the deSolve library, and run ode. The output is a matrix that includes the
time steps and the N (Fig. 3.12a).

> library(deSolve)

> out <- ode(y = init.N, times = t.s, clogistic, parms = prms)

> plot(out[, 1], out[, 2], type = "l", xlab = "Time", ylab = "N")

So why is the continuous version so boring, while the discrete version is so
complex? Remind yourself what is going on with the discrete version. The model
could only take steps from one generation to the next. The step into generation
t + 1 was a function of N at t, and not a function of Nt+1. Therefore the rate
of change in N was not influenced by a contemporaneous value of N. There
was a delay between N and the effect of N on the population growth rate. For
many organisms, this makes sense because they undergo discrete reproductive
events, reproducing seasonally, for instance. In contrast, the continuous logistic
population growth is always influenced by a value of N that is updated continu-
ously, instantaneously. That is the nature of simple differential equations. They
are instantaneous functions of continuous variables. We can, if we so choose,
build in a delay in the density dependence of continuous logistic growth. This
is referred to as “delayed density dependence” or “time-lagged logistic growth”

dN
dt

= rN (1 − αNt−τ) (3.35)
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Fig. 3.12: Dynamics of continuous logistic population growth. (a) The characteristic
shape of logistic growth. (b) Regardless of N0 or r, populations converge slowly (small
r) or quickly (high r) on K = 1/α.

where τ is the degree of the delay, in time units associated with the particular
model. Just as with the discrete model, the dynamics of this continuous model
can get very complicated, with sufficient lag and sufficient r.

Plotting Random Populations ( (Fig. 3.12b))

We use the above function to create 20 populations with different traits. We start
with an empty matrix, and then for each of the populations, we draw random N0

and r, run the ODE solver, keeping just the column for N. Last we plot the output.

> outmat <- matrix(NA, nrow = length(t.s), ncol = 20)

> for (j in 1:20) outmat[, j] <- {

+ y <- runif(n = 1, min = 0, max = 120)

+ prms <- c(r = runif(1, 0.01, 2), alpha = 0.01)

+ ode(y, times = t.s, clogistic, prms)[, 2]

+ }

> matplot(t.s, outmat, type = "l", col = 1, ylab = "All Populations")

3.3 Other Forms of Density-dependence

There are commonly used types of density-dependence other than logistic. Some,
like the Richards model, are more flexible and have more parameters. Others,
like the Gompertz model, are used more widely in other fields, such as cancer
research for tumor growth, von Bertlanaffy for body size growth, and the Ricker
model for fisheries; the Richards model provides even more flexibility, at the
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cost of more paramteters. Here we explore a simple extension of the logistic
model, the theta-logistic model, which adds a parameter to increase flexibility
and generality.

dN
dt

= rN
(
1 − (αN)θ

)
(3.36)

Here θ is strictly positive (θ > 0); θ = 0 means zero growth, and θ < 0 would mean
negative growth below K, and unbounded positive growth above K. Approxi-
mations of eq. 3.36 that allow θ ≤ 0 are possible [188], but the interpretation
becomes strained.

Theta-logistic function

Here we make a function that we can use with ode, the numerical integration func-
tion.

> thetalogistic <- function(times, y, parms) {

+ n <- y[1]

+ with(as.list(parms), {

+ dN.dt <- r * n * (1 - (alpha * n)^theta)

+ return(list(c(dN.dt)))

+ })

+ }

Using with() and as.list() creates an environment in which R will look inside

parms for named elements. This will work as long as we name the parameters in

parms.

By varying θ, we can change the linear density dependence of the simple
logistic model to curvilinear density dependence (Fig. 3.13a). This curvilinearity
arises because when αN < 1.0 (i.e. 0 < N < K),

(αN)θ < αN, θ > 1 (3.37)

(αN)θ > αN, θ < 1. (3.38)

In contrast, when αN = 1.0, then (αN)θ < αN. This means that θ does not affect
K.

When θ > 1, this weakens density dependence at low N, so the population
grows faster than logistic, all else being equal. When θ < 1, this strengthens
density dependence at low N, causing the population to grow more slowly than
logistic, all else being equal.

The effects of θ on density dependence controls the shape of relation between
growth rate vs. N (a.k.a. the production function, Fig. 3.13b). First, note that
for a given r, growth rate for N < K increases with θ. Second, note that the
position of peak of the production function shifts to the right as θ increases.
That is, as θ increases, the N at which the maximum growth rate occurs also
increases. If we wanted to shift the peak growth rate to a higher N without also
increasing the height of the peak, we could decrease r simultaneously.

We could speculate on biological meaning of θ and the shape of the denisty
dependence. For instance, very high θ suggests a threshold, wherein the popu-
lation exhibits little density dependence until very close to K. Perhaps this is
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Fig. 3.13: Theta-logistic growth. In a review of population dynamics, Sibly et al.
[188] use theta-logistic density dependence, 1− (N/K)θ, to show that populations most
frequently have a concave-up θ < 1 pattern.

related to territoriality, or a spatial refuge from predators. Alternatively, low
θ might suggest resource preemption, wherein a small number of individuals
can sequester large amounts of resources, but increasing N results in reduced
preemption. For organisms with very plastic body sizes (plants, fish), this could
mean that at low N, average body size is large, but as N → K, average body size
decreases. While θ, per se, is devoid of mechanism, discovering the magnitude of
θ for different types of species [188] could lead to the generation of new testable
hypotheses about what controls populations.

Theta-logistic density dependence

We first graph theta-logistic, for θ < 1, θ = 1, and θ > 1 (Fig. 3.13a).

> r <- 0.75

> alpha <- 0.01

> theta <- c(0.5, 1, 2)

> N <- 0:110

> theta.out <- sapply(theta, function(th) {

+ 1 - (alpha * N)^th

+ })

> matplot(N, theta.out, type = "l", col = 1)

> abline(h = 0)

> legend("topright", legend = paste("theta =", c(2, 1, 0.5)),

+ lty = 3:1, bty = "n")
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Theta-logistic growth rate

We plot the growth rate (a.k.a. the production function) for the theta-logistic model
with θ < 1, θ = 1, and θ > 1 (Fig. 3.13b).

> thetaGR.out <- sapply(theta, function(th) {

+ r * N * (1 - (alpha * N)^th)

+ })

> matplot(N, thetaGR.out, type = "l", col = 1)

> abline(h = 0)

We also add an example of growth with low θ, but higher r.

Theta-logistic dynamics

We solve numerically for N, and plot the dynamics for N with θ < 1, θ = 1, and θ > 1
(Fig. 3.13c).

> prms <- c(r = 0.75, alpha = 0.01, theta = 1)

> thetaN <- sapply(theta, function(th) {

+ prms["theta"] <- th

+ ode(y = 1, t.s, thetalogistic, prms)[, 2]

+ })

> matplot(t.s, thetaN, type = "l")

3.4 Maximum Sustained Yield

The classical model of harvesting fisheries and wildlife populations is based on
a particular conceptualization of maximum sustained yield (MSY ). Maximum
sustained yield is historically defined as the population size where both popu-
lation growth rate and harvest rate are at a maximum. For the logistic growth
model, this is half the carrying capacity. We can solve this by finding the maxi-
mum of the production function. To do this we use calculus (differentiation) to
find where the slope of the production function equals zero. Starting with the
partial derivative with respect to N (eq. 3.28), we solve for zero.

0 = r − 2rαN (3.39)

N =
r

2rα
=

K
2

(3.40)

Similarly, we could determine this peak for the θ-logistic model as well.

∂Ṅ
∂N

= r − (θ + 1) r (αN)θ (3.41)

0 =
K

(θ + 1)1/θ (3.42)

When θ = 1, this reduces to K/2, as for the logistic model. As we saw above,
θ < 1 causes this value to be less than K/2.
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Even if we assume the logistic model is appropriate for a given population,
harvests in practice seldom reduce populations to K/2, because often N and
K vary with time and are difficult to estimate. Moreover, there are economic
forces that often lead to over-harvesting. More contemporary models of popu-
lation harvesting incorporate these concepts [182]. We should note that when
more detailed information is available on age- or stage-specific survivorship and
reproduction, age- or stage-structured models of harvesting are the preferred
method (e.g., Chapter 2). For many populations, such as marine fisheries, how-
ever, data are often available only on stock size (N) and total catch (H). In some
fisheries models, the total catch is fixed and does not vary with N. This leads
to highly unstable population dynamics and fortunately is no longer practiced
in most fisheries. Usually the total catch H is modeled as a function of N.

Let us assume that total catch or harvest, H, is a simple linear function of
N; the harvest rate FN is usually described this way.14 In this case, a maxi-
mum sustained yield, MSY, can be determined from the logistic growth-harvest
model. This basic model is then

dN
dt

= rN(1 −
N
K

) − FN (3.43)

where FN = H harvest rate, and F is the per capita fishing mortality rate.
Here we assume a fixed per capita catch mortality F so that total harvest is
H = F × N. MSY occurs at K/2 (Fig. 3.14b). Therefore would like to know the
value of F for which a new N∗ = K/2 rather than K. We can determine the value
of F for which this is true by finding when dN/dt = 0 and N = K/2.

0 = r
K
2

1 − K
2

K

 − F
K
2

(3.44)

F =
r
2

(3.45)

MSY and harvesting (Fig. 3.14a)

Here we illustrate the interaction harvesting at a rate associated with MSY for
logistic growth. We set logistic model parameters, and first plot logistic growth
without harvest.

> r <- 0.5; alpha <- 0.01; N <- 0:105

> plot(N, eval(pop.growth.rate), type = "l", ylim = c(-3, 15),

+ ylab = "dN/dt and FN")

> abline(h = 0)

We then calculate F based on our solution eq. 9.6, and plot the linear harvest function
with an intercept of zero, and slope of F.

> F <- r/2

> abline(c(0, F), lty = 2)

14 We could, but will not, further describe this by F = qE, where q is the catchability
coefficient for the fishery, and E is fishing effort in hours.
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Equilibrium solution for logistic growth with harvesting (Fig. 3.14b)

When we add harvesting at rate F = r/2, we get a new equilibrium. Here we illustrate
this using the same parameters as above, but now using the entire function with both
growth and harvest.

> pgr.H <- expression(r * N * (1 - alpha * N) - F * N)

> N <- 0:55

> plot(N, eval(pgr.H), type = "l", ylab = "dN/dt (growth - harvesting)")

> abline(h = 0)

This merely represents the new equilibrium (where dN/dt crosses the x-axis) with a

harvest of rate F = r/2.

If harvesting occurs at a rate of F < r/2, the slope of the harvest line
is shallower (cf. Fig. 3.14a), and we refer to this as under-harvesting. If the
rate is F > r/2, then the slope is steeper (cf. Fig. 3.14a), and we refer to this
as over-harvesting. Roughgarden and Smith [182] show that under-harvesting
is probably the most ecologically stable, whereas over-harvesting is frequently
thought to be the economically optimal approach.
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(b) Logistic Growth with Harvesting

Fig. 3.14: Illustration of maximum sustained yield under harvesting. (a) both the
logistic growth model eq. 3.13 and the linear harvest model eq. 9.6, and (b) the
combined growth model that includes harvesting as a source of mortality. Equilibria
occur when the growth rate, y, equals zero, crossing the x axis.

Typically the economically optimal approach leads to over-harvesting be-
cause the marginal income on a fishery is related to the interest rate on invested
income, F = (r + ρ)/2, where ρ is the interest rate (usually ρ is set to 0.05). We
can substitute this into eq. 3.43 and solve for N (ignoring N = 0).
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0 = rN(1 −
N
K

) −
r + ρ

2
N (3.46)

N
r
K

= r −
r
2
−
ρ

2
(3.47)

N =
K
2

(
1 −

ρ

r

)
. (3.48)

Thus, unless ρ = 0, the typical economic optimum N∗e will be smaller than N∗ =

K/2. This makes intuitive economic sense if we consider income from invested
profits. The margin of error, however, is much smaller, putting the fisheries
population, and the investment of fishing fleets and associated econmoies at
greater risk. Roughgarden and Smith [182] showed that ecological stability of
a fishery is likely to beget economic and cultural stability. They show that the
supposed “economic optimal” harvesting rate was so low that it increased the
extinction risk of the harvested population to unacceptably high levels. The
collapse of a fishery is, of course, both economically and culturally devastating.

3.5 Fitting Models to Data

Using theory to guide our data collection, and using data to guide our theory
is, in part, how science progresses. In this section, we will use the use the
theory of simple continuous logistic growth (linear density dependence) to frame
our examination of the effects of nutrients on interactions of an alga that is
embedded within a simple food web.

The focus of this section is the practice of describing data in terms of deter-
ministic and stochastic models; this has been greatly facilitated by the R lan-
guage and environment [13].

3.5.1 The role of resources in altering population interactions
within a simple food web

Increasing resource availability may increase or, paradoxically, decrease the pop-
ulations that use those resources [176,179,200]. Here we explore how adding re-
sources influences the strength of per capita denisty dependence, α, of an alga,
Closterium acerosum, embedded in a simple food web [195].

The variety of observed responses to resource availability is sometimes me-
diated by the configuration of the food web in which a population is embed-
ded. To explore the interaction between food web configuration and edibility,
Stevens and Steiner [195] performed a simple experimental resource enrichment
using a food web with one predator (Colpidium striatum) and two compet-
ing consumers which differed in their edibility; bacteria, which were edible and
Closterium acerosum, which was inedible. Resources were added at two concen-
trations, a standard level, and a ten-fold dilution. We were interested in whether
the inedible competitor Closterium could increase in abundance in the face of
competition from bacteria. Although Closterium is inedible, it may be unable
to increase in response to resource additions because it is competing with many
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bacterial taxa which appear to also be predator resistant. In addition, many
bacteria are able to grow quickly in enriched environments. However, keystone
predation theory [104] suggested that Closterium might prosper because the
bacteria which coexist with the predator may be poor competitors, and the
bacteria with the greatest capacity for utilizing higher resource levels may be
kept in check by a predator which also might increase in abundance. Stevens
and Steiner [195] presented time-averaged responses, perhaps related to K, be-
cause the predictions of keystone predation theory were focused on equilibrium
predictions.

Here, we will explore the effects of the resource supply rate on two pa-
rameters of linear density dependence (logistic growth) r, and α of Closterium
acerosum.

In the rest of this section, we will follow a generally cautious and pragmatic
step-wise scheme which we adapt for our purposes here. We will

• import the data and examine its structure.
• look at the population dynamics of each replicate microcosm.
• consider whether we have outliers due to sampling.
• estimate parameters for one of the populations.
• fit logistic models to each population.
• fit a model to all populations and test the effects of nutrients on logistic

growth parameters.

3.5.2 Initial data exploration

First we load two more libraries, the data, and check a summary.

> library(nlme)

> library(lattice)

> data(ClostExp)

> summary(ClostExp)

Nutrients No.per.ml Day rep ID

high:72 Min. : 1.0 Min. : 1.0 a:36 a.low :18

low :72 1st Qu.: 16.2 1st Qu.:11.0 b:36 d.low :18

Median : 42.0 Median :26.0 c:36 c.low :18

Mean : 131.5 Mean :25.9 d:36 b.low :18

3rd Qu.: 141.5 3rd Qu.:39.0 c.high :18

Max. :1799.1 Max. :60.0 a.high :18

(Other):36

Next we plot each replicate of the high and low nutrient treatments.

> xyplot(No.per.ml ~ Day | Nutrients, ClostExp, groups = rep,

+ type = "b", scales = list(relation = "free"),

+ auto.key = list(columns = 4, lines = T))

Right away, we might notice several things (Fig. 3.15). First, the high nutrient
populations achieve higher abundances (note values on the y-axes). This seems
consistent with the ten-fold difference in resource concentration [195]. Perhaps
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Fig. 3.15: Raw data for Closterium time series. Each line connects estimates of the
Closterium popoulation in a single replicate microcosm. Each estimate is based on
a ∼ 0.3 mL sample drawn from the microcosm after it has been mixed. Low nutrient
concentration is 1/10× the standard (high) concentration.

the second thing we notice is that the low nutrient populations seem more
variable, relative to their own population sizes. Third, several observations seem
remarkably high — which days?

> subset(ClostExp, Nutrients == "high" & No.per.ml > 1000)

Grouped Data: No.per.ml ~ Day | ID

Nutrients No.per.ml Day rep ID

114 high 1799 41 b b.high

116 high 1398 41 d d.high

> subset(ClostExp, Nutrients == "low" & No.per.ml > 100)

Grouped Data: No.per.ml ~ Day | ID

Nutrients No.per.ml Day rep ID

54 low 130.6 18 b b.low

55 low 144.0 18 c c.low

134 low 124.8 53 b b.low

142 low 158.2 60 b b.low

143 low 113.0 60 c c.low

What might we make of these observations? Are they mistakes, or important
population dynamics, or some combination thereof? There may be several rea-
sonable explanations for these data which we revisit at the end of this section.
For now, we will assume that these points are no less accurate than the other
values, and so will retain them.

Finally, we might note that the populations seem to decline before they
increase (days 0–5, Fig. 3.15). These declines might well represent a bit of
evolutionary change, under the new environment into which these populations
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have been introduced [56] from their stock cultures; we might consider removing
the first two sample points to avoid confound mechanisms of evolution versus
simple growth. In general, however, we should be cautious about throwing out
data that do not conform to our expectations — let us leave these data in, for
the time being.

Now we estimate the parameters of deterministic logistic growth, first with-
out, and then with, an explicit consideration of time.

3.5.3 A time-implicit approach

How might we estimate the parameters without explicitly considering the tem-
poral dynamic? Recall the relation between per capita population growth vs.
population size,

dN
Ndt

= r − rαN. (3.49)

Here we see that per capita growth rate is a linear function (i.e., y = mx + b)
of population density, N. Therefore, all we have to do is calculate per capita
growth rate from our data and fit a simple linear regression of those growth
rates versus N. The y-intercept (when N = 0) will be our estimate of r, and the
slope will be an estimate of rα.

We will estimate per capita growth rate, pgr, with

pgr =
log (Nt+i/Nt)

i
(3.50)

where i is the time interval between the two population densities [188]. In this
and other contexts, logarithm of two populations is sometimes referred to simply
as the log ratio.

Let’s estimate this for one of the microcosms, high nutrient, replicate c.

> Hi.c <- subset(ClostExp, Nutrients == "high" & rep == "c")

We calculate the differences in density, the time intervals over which these
changes occured, and the per capita growth rate.

> n <- nrow(Hi.c)

> N.change <- Hi.c$No.per.ml[-1]/Hi.c$No.per.ml[-n]

> interval <- diff(Hi.c$Day)

> pgr <- log(N.change)/interval

We can then (i) plot these as functions of Nt (as opposed to Nt+1), (ii) fit a linear
regression model through those points, and (iii) plot that line (Fig. 3.18a).

> Nt <- Hi.c$No.per.ml[-n]

> plot(pgr ~ Nt)

> mod1 <- lm(pgr ~ Nt)

> abline(mod1)

The linear regression model defines a best fit straight line through these points,

> summary(mod1)
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Fig. 3.16: Per capita growth rate vs. population size at the beginning of the interval
(data from one high nutrient replciate).

Call:

lm(formula = pgr ~ Nt)

Residuals:

Min 1Q Median 3Q Max

-1.021 -0.206 0.129 0.182 0.480

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.154556 0.125327 1.23 0.24

Nt -0.000495 0.000395 -1.25 0.23

Residual standard error: 0.382 on 15 degrees of freedom

Multiple R-squared: 0.0944, Adjusted R-squared: 0.0341

F-statistic: 1.56 on 1 and 15 DF, p-value: 0.23

where y-intercept is the first coefficient of the linear regression; this is an esti-
mate of r (eq. 3.49). The slope of the line is the second coefficient and is rα (eq.
3.49).

Now we can do this with all the replicates. Rearranging the data is a bit
complicated, but this will suffice. Essentially, we split up the ClostExp data
frame into subsets defined by nutrient and replicate ID, and then apply a func-
tion that performs all of the steps we used above for a single microcosm. The
output will be a list where each component is a new small data frame for each
microcosm.

> EachPop <- lapply(split(ClostExp, list(ClostExp$Nutrients,

+ ClostExp$rep)), function(X) {

+ n <- nrow(X)

+ N.change <- (X$No.per.ml[-1]/X$No.per.ml[-n])
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+ interval <- diff(X$Day)

+ data.frame(Nutrients = as.factor(X$Nutrients[-n]),

+ rep = as.factor(X$rep[-n]),

+ pgr = log(N.change)/interval, Nt = X$No.per.ml[-n])

+ })

Next we just stack all those individual data frames up into one.

> AllPops <- NULL

> for (i in 1:length(EachPop)) AllPops <- rbind(AllPops, EachPop[[i]])

Finally, we plot all of the microcosms separately.

> xyplot(pgr ~ Nt | rep * Nutrients, AllPops, layout = c(4,

+ 2, 1), scales = list(x = list(rot = 90)), panel = function(x,

+ y) {

+ panel.grid(h = -1, v = -4)

+ panel.xyplot(x, y, type = c("p", "r"))

+ })
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Fig. 3.17: Per capita growth rates vs. population size, N, at the beginning of the
interval for which the growth rate is calculated (includes all microcosms). Note that
y-intercepts are all fairly similar, while the maximum N, slopes and x-intercepts differ
markedly.
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The biggest difference about these populations appears to be that the carrying
capacities differ between the high and low nutrients (Fig. 3.17). First note that
the y-intercepts are all remarkably similar, indicating that their r are all very
similar. The big differences between the high and low nutrients are that the
slopes of the relations and the x-intercepts are both very different. The slope is
rα, while the x-intercept is K. Next we fit a statistical model to these data.

A statistical model of per capita growth

A mixed model15 is a statistical model that includes both random effects (e.g.,
blocks, or subjects) and fixed effects (e.g., a treatment) [161]. Let’s not worry
about the details right now, but we’ll just use it to test for differences in slope,
where we have measure the same microcosms repeatedly through time.

Previously, we showed that it makes at least a modicum of sense to fit eq.
3.49 to each microcosm (Fig. 3.17). Having done that, we next fit all of these
to a single mixed model, in which the microcosm is our block or subject which
may exert some unknown random effect on the populations. First we make sure
we have a unique ID label for each microcosm.

> AllPops$ID <- with(AllPops, Nutrients:rep)

> modSlope <- lme(pgr ~ Nt + Nutrients + Nt:Nutrients,

+ data = AllPops, random = ~1 | ID)

The above code specifies that per capita growth rate, pgr, depends in part upon
population size, Nt — this will be the slope of the pgr Nt relation. The effect of
nutrient level, Nutrients, will simply alter the intercept, or height, of the lines.
The code also specifies that the slope the relation can depend upon the nutrient
level, Nt:Nutrients. Finally, the code also specifies that each microcosm makes
its own unique and random contribution to the per capita growth rate of its
Closterium population.

In a proper statistical analysis, it would be necessary to first check the
assumptions of this model, that the noise (the residuals) and the random effects
are both normally distributed. A plot of the residuals vs. the fitted or predicted
values should reveal a scatter of points with relatively constant upper and lower
bounds.

> xyplot(resid(modSlope) ~ fitted(modSlope))

Our plot (Fig. 3.18a) reveals larger residuals for larger fitted values — this is
not good. Quantile-quantile plots of the residuals and random effects should
reveal points along a straight diagonal line.

> qqmath(~resid(modSlope) | ID, data = AllPops, layout = c(8,

+ 1, 1))

> qqmath(~ranef(modSlope))

15 This section is advanced material. You may want to skim over the parts you don’t
understand, and focus on conclusions, or perhaps the general process.
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Fig. 3.18: Diagnostic plots for fitting the per capita growth rate to population size.

Our random effects (Fig. 3.18b) are very small, indicating only small system-
atic differences among microcosms that are not accounted for by the treatment.
Nonetheless, their scatter of points along the diagonal are fairly consistent with
a normal distribution. The residuals (Fig. 3.18c) for each microcosm seem fairly
normally distributed except that several populations have outliers (replicates
low:a-c, high:c). Taken as a group (Fig. 3.18a), we see that the residual variation
increases the mean (fitted). This is at least in part due to having more obser-
vations at larger values, but is also a typical and common problem — variables
with small absolute values simple cannot vary as much as variables with large
absolute value. Therefore, we specify that that model takes that into account
by weighting residuals observations differently, depending upon the expected
(i.e. fitted or mean) value.

> modSlope2 <- update(modSlope, weights = varExp())

We then compare these two models,
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> anova(modSlope, modSlope2)

Model df AIC BIC logLik Test L.Ratio p-value

modSlope 1 6 169.1 186.4 -78.55

modSlope2 2 7 163.9 184.1 -74.97 1 vs 2 7.153 0.0075

and find that the slightly more complicated one (modSlope2 with 7 degrees of
freedom) is significantly better (likelihood ratio = 7.1, P < 0.05) and is more
parsimonious (smaller AIC) [18].

Now we provide a preliminary test of the fixed effects (nutrients and popu-
lation size) with analysis of variance.

> anova(modSlope2)

numDF denDF F-value p-value

(Intercept) 1 126 0.823 0.3659

Nt 1 126 3.665 0.0578

Nutrients 1 6 11.198 0.0155

Nt:Nutrients 1 126 27.659 <.0001

The first thing we see in this analysis of variance output is that the effect of
population size, Nt, depends upon nutrient level (Nt:Nturients, P < 0.0001).
Given this, we should avoid drawing conclusions based on the main effects
of nutrients. Next we go on to estimate intercepts and slopes associated with
different treatments.

> summary(modSlope2)$tTable

Value Std.Error DF t-value p-value

(Intercept) 0.1336241 0.0568611 126 2.3500 2.033e-02

Nt -0.0002861 0.0001146 126 -2.4965 1.383e-02

Nutrientslow 0.0641174 0.0878452 6 0.7299 4.930e-01

Nt:Nutrientslow -0.0056023 0.0010652 126 -5.2592 6.014e-07

Given R’s default contrasts (linear model parameters), this output indicates
that the intercept (our estimate of r) for the high nutrient group is ∼ 0.13, and
the slope of the high nutrient microcosms is −0.000286. The intercept for the
low nutrient level is calculated as 0.13 − 0.07, and we find it is not significantly
smaller (P > 0.05). On the other hand, the slope of the low nutrient microcosms
is −0.000278 − 0.00573, which is significantly smaller than the slope of the high
nutrient microcosms (P < 0.05). This information can guide another take on
these data.

> cfs <- fixef(modSlope2)

> cfs

(Intercept) Nt Nutrientslow Nt:Nutrientslow

0.1336241 -0.0002861 0.0641174 -0.0056023

> -cfs[2]/cfs[1]

Nt

0.002141
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> -(cfs[2] + cfs[4])/(cfs[1] + cfs[3])

Nt

0.02978

indicating that the per capita effects are much smaller in the high nutrient
treatment. (The label Nt is an unimportant artifact, retained from using the
coefficients to calculate the values.) Next, we use these estimates to help us fit
a times series model.

3.5.4 A time-explicit approach

Here we use the above information to help us fit the time-explicit version of the
logistic growth model. In this section, we

1. create and examine a nonlinear logistic model,
2. fit the model to each microcosm using nlsList to confirm it makes sense,

and
3. fit a single nonlinear mixed model that tests which logistic growth param-

eters varies between treatments.

At each step, we examine the output and diagnose the fit; it should give you
a very brief introduction to this process. For more thorough treatments, see
[13,161].

First, we code in R a model of eq. 3.25, that is, logistic growth with param-
eters α, r, and N0.

> ilogistic <- function(t, alpha, N0, r) {

+ N0 * exp(r * t)/(1 + alpha * N0 * (exp(r * t) - 1))

+ }

Let’s make sure this makes sense by plotting this curve on top of the raw
data, focusing on the raw data and model parameters for the high nutrient
microcosms.

> plot(No.per.ml ~ Day, ClostExp, subset = Nutrients == "high")

> curve(ilogistic(x, alpha = -cfs[2]/cfs[1], N0 = 6, r = cfs[1]),

+ 1, 60, add = T, lty = 2)

Our model and the coefficients we generated above seem to be a reasonable
approximation of the data (Fig. 3.19). Now let’s use nlsList to fit the logistic
model to each microcosm separately.

> Cmod.list <- nlsList(No.per.ml ~ ilogistic(Day, alpha, N0,

+ r) | ID, data = ClostExp, start = c(alpha = 1/100, N0 = 5,

+ r = 0.15), control = list(maxiter = 1000))

We note that models cannot be fit for three microcosms. For now, we plot the
coefficients for each microcosm for which a model was fit.

> plot(coef(Cmod.list), layout = c(3, 1, 1))
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Fig. 3.19: High nutrient microcosms and the logistic growth model using coefficients
from modSlope2.
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Fig. 3.20: Coefficients estimated for each microcosm separately. Missing coefficients
occurred when model fits could not be easily acheived.

We can see that the coefficients (Fig. 3.20) are somewhat similar to those we
estimated above with modSlope2. We note, however, that for one replicate α < 0,
which does not make sense. If we check the residuals,

> plot(Cmod.list)

we see that the residuals increase dramatically with the fitted values (graph not
shown). This is consistent with our previous observations.
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In this next step, we create a single nonlinear mixed model using nlme. We
use pdDiag to specify that each microcosm has its own unique effect on each of
the parameters, aside from nutrient concentrations. We use weights to specify
that the variance of the residuals is a power function (a2t) of the mean, and
which fits an extra parameter, t.

> Cmod.all <- nlme(Cmod.list, random = pdDiag(form = alpha +

+ N0 + r ~ 1), weights = varPower())

We saw above that the nutrients caused a big difference in the slopes of the
pgr vs. N relations. Now we would like to estimate the alpha for each level of
nutrients. In estimating these, we can also test whether they are different.

First we capture the fixed effect coefficients of the current model.

> cfs2 <- fixef(Cmod.all)

> cfs2

alpha N0 r

0.009266 7.143118 0.130551

Next we update the model, specifying that alpha should depend on nutrient
level, that is, estimate one α for each level of nutrient. We specify that the
other paramters are the same in both treatments. This will mean that we have
one additional coefficent, and we need to provide the right number of starting
values, and in the correct order (alpha1, alpha2, N0, r).

> Cmod.all2 <- update(Cmod.all, fixed = list(alpha ~ Nutrients,

+ N0 + r ~ 1), start = c(cfs2[1], 0, cfs2[2], cfs2[3]))

It would be good practice to plot diagnostics again, as we did above. Here,
however, we push on and check the confidence intervals for our parameters
summary.

> summary(Cmod.all2)

Nonlinear mixed-effects model fit by maximum likelihood

Model: No.per.ml ~ ilogistic(Day, alpha, N0, r)

Data: ClostExp

AIC BIC logLik

1549 1575 -765.3

Random effects:

Formula: list(alpha ~ 1, N0 ~ 1, r ~ 1)

Level: ID

Structure: Diagonal

alpha.(Intercept) N0 r Residual

StdDev: 6.533e-20 1.392 2.56e-09 1.488

Variance function:

Structure: Power of variance covariate

Formula: ~fitted(.)

Parameter estimates:

power
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0.8623

Fixed effects: list(alpha ~ Nutrients, N0 + r ~ 1)

Value Std.Error DF t-value p-value

alpha.(Intercept) 0.002 0.0003 133 5.021 0

alpha.Nutrientslow 0.016 0.0026 133 6.185 0

N0 6.060 1.4245 133 4.254 0

r 0.139 0.0144 133 9.630 0

Correlation:

al.(I) alph.N N0

alpha.Nutrientslow -0.019

N0 -0.289 0.048

r 0.564 0.058 -0.744

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-1.3852 -0.6010 -0.2038 0.3340 4.5236

Number of Observations: 144

Number of Groups: 8

If we look first at the random effects on the parameters, we see that the variance
components for alpha or r are vanishingly small, we should therefore remove
them from the analysis, and then compare the two models.

> Cmod.all3 <- update(Cmod.all2, random = N0 ~ 1)

> anova(Cmod.all2, Cmod.all3)

Model df AIC BIC logLik Test L.Ratio p-value

Cmod.all2 1 9 1548 1575 -765.3

Cmod.all3 2 7 1544 1565 -765.3 1 vs 2 0.0008463 0.9996

We see that the less complex model is not significantly different (P > 0.05) and
is more parsimonious (smaller AIC, Akaike’s information criterion, [18]).

At last, we can examine the confidence intervals to get the estimates on the
intraspecific competition coefficents, αii.

> intervals(Cmod.all3)$fixed

lower est. upper

alpha.(Intercept) 0.000978 0.001599 0.00222

alpha.Nutrientslow 0.011095 0.016206 0.02132

N0 3.279937 6.057370 8.83480

r 0.110739 0.138860 0.16698

attr(,"label")

[1] "Fixed effects:"

see that the analysis, such as it is, indicates that the confidence intervals for the
estimated α do not overlap, indicating that the expected values are very, very
different from each other. We could calculate the bounds on Khigh and Klow as
well, based on our lower and upper confidence limits on αhigh, αlow.

> 1/intervals(Cmod.all3)$fixed[1:2, c(1, 3)]
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lower upper

alpha.(Intercept) 1022.41 450.43

alpha.Nutrientslow 90.13 46.91

This aproximately ten-fold difference in K seems surprisingly consistent with the
ten-fold difference in nutrient concentration initially established in the experi-
ment. This ten-fold increase in Closterium may be merely an odd coincidence
because it implies that all species in the food web should have increased ten-
fold, but that was not the case [195]. On the other hand, it may guide future
experiments in keystone predation.

We can plot the fixed effects, and also the added variation due random
variation in N0 and r due to the ID of the microcosms.

> plot(augPred(Cmod.all3, level = 0:1), layout = c(4, 2, 1),

+ scales = list(y = list(relation = "free")))
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Fig. 3.21: Times series plots augmented with the overall predictions (solid lines for
the fixed effects) and predictions for individual microcosms (dashed lines).

When we plot our data along the with the model (Fig. 3.21), we can see the dis-
parity between the predictions and the data — the source of those big residuals
we’ve been ignoring.

There may be at least a couple issues to consider when we think about the
disparities.
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Sampling error We do not have much idea about how accurate or precise our
sampling is; this might be remedied in the next experiment by using a mean
with multiple samples per time interval.

Experimental Design In this system, 10% of the medium was replaced each
week (to remove waste products and replenish nutrients), and this is likely
to introduce variability.

Dynamics Species interactions may drive dynamics, derived from feedback be-
tween (i) bacteria recycling nutrients, (ii) bacteria consuming nutrients, (iii)
the predator Colpidium consuming bacteria, and (iv) Closterium consuming
nutrients (Chapters 5, 6).

Perhaps the first steps for an improved experiment might include sampling at
least twice for each sample period, to at least find out what our sampling error
is. It may, or may not, be a problem, but a few trials would let us know. We
also might increase the frequency and decrease the magnitude of the medium
replacement, and to make sure the timing of the sampling corresponds appro-
priately with the medium replace. After we take care of these issues, then we
can take a harder look at the dynamics.

Conclusions

Our results show that lowering nutrient concentration increased the intraspe-
cific interaction strengths, αii, ten-fold. Alternatively, we could express this as
a ten-fold change in the carrying capacity K of these populations. The effect of
resources on interaction strength is sometimes a heated topic of discussion, and
our precise definitions, derived from simple growth models, provides an unam-
biguous result. Our analysis has also pointed to ways that we might perform
better experiments. More generally, by framing our experiment in terms of exist-
ing theory, we can interpret our results in a more precise manner, and facilitate
better advances in the future [13]. This will help us make more constructive
contributions to the field.

3.6 Summary

In this chapter, we motivated density dependence, focusing specifically on dis-
crete and continuous logistic growth which assumes linear density dependence.
We explored how algebraic rearrangements can yield useful and interesting in-
sights, and how we might think about generalizing or simplifying logistic growth.
We showed how the time lag built into the discrete model results in chaos. We
explored ideas of maximum sustained yield, and how we might fit the continuous
logistic growth model to real data.
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Problems

3.1. Dynamics of an annual plant
(a) Calculate rd of an annual plant that has a maximum growth rate of Nt+1/Nt =

2 at very, very small population sizes.
(b) Calculate the appropriate per capita density dependent effect of an annual
plant with a carrying capacity K of 100 inds·m−2.
(c) Write the appropriate logistic growth equation that incorporates the intrinsic
growth of (a) and the density dependence of (b).
(d) Graph the 10 y dynamics (t = 0, . . . , 10) of the annual plant in (a) and (b),
starting with N0 = 1.

3.2. Dynamics of E. coli
(a) Calculate r of E. coli that has a doubling time of 30 min. Express this rate
in hours.
(b) Calculate the per capita density dependent effect of an E. coli culture
that grows logistically over a 24 h period, and which levels off at a density
of 107 CFU·mL−1 (CFU is colony forming units — for E. coli its is equivalent
to individuals).
(c) Graph the 50 h dynamics (t = 0, . . . , 50) of the E. coli population in (a) and
(b), starting with N0 = 1000.

3.3. Nonlinear Density Dependence
Sibly et al. [188] found that most species have nonlinear and concave-up density
dependence. They use the θ-logistic growth model. (a) Create a theta-logistic
continuous growth model for use with the ode() function in the deSolve pack-
age.
(b) Show that with θ = 1, it is identical our function clogistic above.
(c) Graph N for t = 0, . . . , 100 using a few different values of θ and explain how
θ changes logistic growth.

3.4. Harvested Populations
The logistic growth equation and other similar equations have been used and
abused in efforts to achieve a maximum sustained yield of a harvested popula-
tion. The immediate goal of maximum sustained yield management practices
is to kill only the number of individuals that reduces the population to half of
its carrying capacity, assuming that eq. 3.13 describes the population growth.
Answer the questions below to help you explain why this would be a goal.
(a) Find expressions for population growth rates when N = K/4, K/2, 3K/4
(substitute these values for N in eq. 3.13, and show your work). Which of these
results in the highest population growth rate? How do these relate to the man-
agement of a harvested population?
(b) Show the derivation of the partial derivative of the continuous logistic growth
model, with respect to N (i.e., ∂Ṅ/∂N). Solve for zero to determine when total
population growth rate reaches a maximum. Show your work.
(c) What would be the ecological and economic rationale for not killing more
individuals, and keeping N > K/2?
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(d) What would the consequences be for the population if you assume linear
density dependence (1 − α/N), but in fact the population is governed by non-
linear density dependence where θ < 1 and θ > 1 (Figs. 3.13a-3.13c)?
(e) What economic benefit would you gain if you harvested the entire popula-
tion all at once (and eliminated it from the face of the planet)? What could you
do with all that money?
(f) How would you incorporate both harvesting and economic considerations
into your logistic growth model?

3.5. Environmental Variability
Most environments change continually. Temperature, resource availability, changes
in predator or pathogen abundance all influence the carrying capacity of the
environment.
(a) Use the discrete version of the logistic growth equation to model a popu-
lation in a variable environment. Do this by creating a discrete logistic growth
function that adds (or subtracts) a random amount to K in each time step.
Use one of the many functions that can draw random numbers from particular
distributions (e.g., rpois(), rlnorm(), runif()). You might start by playing
with one of the random number generators:
Kstart <- 100; time <- 1:20; K <- numeric(20);
for(i in 1:20) K[i] <- Kstart + rnorm(1, m=0, sd=5);
plot(time, K).
(b) All distributions are characterized by their moments. For instance, the Nor-
mal distribution is typically defined by its mean, µ, and variance, σ2. Focus on
just one moment of your selected distribution in (a), and use your simulations
to determine quantitatively the relation between K and the resulting N derived
from the discrete growth model. For instance, you might vary the standard de-
viation of the random normal distribution that contributes to K, and examine
how the standard deviation of K, σK relates to mean N, µN .
(c) Create a reddened time series for K.16(Hint: What are the values of x and
y when you do x <- sample(c(-1,0,1), 20, replace=TRUE); y <- cum-
sum(x) ?). Use this time series to create a reddened population dynamic. (Hint:
First create the vector of reddened K’s equal in length to your time series.
Then create a growth function that can access the vector, e.g. DLG.RK <- func-

16 Environmental factors such as temperature frequently vary in a gradual fashion,
such that if the weather is hot today, it is likely to be hot tomorrow. Such variation
is described in terms of auto-correlation or a spectral distribution or color [67,155].
Spectral decomposition of a times series involves a description of the series in terms
of waves of different wavelengths or frequencies. White noise is variation that is
described by equal contributions of all wavelengths (hence the term “white”), and
it is a series that is completely random from one time step to the next. Reddened
environmental variation is variation that is described by a predominance of longer
wavelengths (hence the term “red”), and it is a series in which values tend to change
gradually, where values that are close together in time tend to be more similar,
or auto-correlated. Spectral variation is also referred to as 1/ f noise (“one over f
noise”).
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tion(alpha=0.001, rd=1, N0=10, gens=20, K=K.red). Then, inside the for
loop, use an indexed K, such as 1-N[t]/K[t].
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Populations in Space
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Fig. 4.1: A frequency distribution of the number of plant species (y-axis) that oc-
cupy different numbers of grassland remnants (x-axis). Note the U-shaped (bimodal)
distribution of the number of sites occupied. Other years were similar [35]

Over relatively large spatial scales, it is not unusual to have many species
that seem to occur everywhere, and even more species that seem to be found
in only one or a few locations. For example, Scott Collins and Susan Glenn [35]
showed that in grasslands, each separated by up to 4 km, there were more species
occupying only one site (Fig. 4.1, left-most bar) than two or more sites, and
also that there are more species occupying all the sites than most intermediate
numbers of sites (Fig. 4.1, right-most bar), resulting in a U-shaped frequency
distribution. Illke Hanski [70] coined the rare and common species “satellite”
and “core” species, respectively, and proposed an explanation. Part of the an-
swer seems to come from the effects of immigration and emigration in a spatial
context. In this chapter we explore mathematical representations of individuals
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and populations that exist in space, and we investigate the consequences for
populations and collections of populations.

4.1 Source-sink Dynamics

In Chapters 1-3, we considered closed populations. In contrast, one could
imagine a population governed by births plus immigration, and deaths plus
emigration (a BIDE model). Ron Pulliam [172] proposed a simple model that
includes all four components of BIDE which provides a foundation for thinking
about connected subpopulations. We refer to the dynamics of these as source-
sink dynamics. Examples of such linked populations might include many dif-
ferent types of species. For instance, a source-sink model could describe linked
populations of a single species might occupy habitat patches of different quality,
where organisms might disperse from patch to patch.

Habitat 1 Habitat 2

i21 = e12

i12 = e21

λ2 < 1λ1 > 1

Fig. 4.2: The simplest source-sink model.

The concept

The general idea of source-sink populations begins with the idea that spatially
separated subpopulations occupy distinct patches, and each exhibit their own
intrinisic dynamics due to births and deaths; that is, we could characterize a λ
for each subpopulation. In addition, individuals move from one patch to another;
that is, they immigrate and emigrate from one patch (or subpopulation) to
another. Therefore, the number of individuals we observe in a particular patch is
due, not only to the λ in that population, but also to the amount of immigration,
i, and emigration, e.

Subpopulations with more births than deaths, λ > 1, and with more emi-
gration than immigration, e > i, are referred to as source populations. Subpop-
ulations with fewer births than deaths, λ < 1, and with more immigration than
emigration, i > e, are referred to as sink populations.

When we think about what might cause variation in λ, we typically refer
to the quality of patches or habitats. Quality might be inferred from λ, or it
might actually be the subject of investigation and independent of λ — typically
we think of high quality habitat as having λ > 1 and poor quality habitat as
having λ < 1.



4.1 Source-sink Dynamics 113

The equations

Pulliam envisioned two linked bird populations where one could track adult
reproduction, and adult and juvenile survival and estimate λ, per capita growth
rate separately for each population. For the first population, the number of birds
in patch 1 at time t + 1, n1,t+1, is the result of adult survival PA, reproduction
β1, and survival of the juveniles PJ. Thus,

n1,t+1 = PAnt + PJβ1n1,t = λ1n1. (4.1)

Here β1n1,t is production of juveniles, and PJ is the survival of those juveniles
to time t + 1. Pulliam described the second population in the same fashion as

n2,t+1 = PAnt + PJβ2n1,t = λ2n2. (4.2)

Pulliam then assumed, for simplicity’s sake, that the two populations vary
only in fecundity (β), which created differences in λ1 and λ2. He called popu-
lation 1 the source population (λ1 > 1) and population 2 the sink population
(λ2 < 1). He also assumed that birds in excess of the number of territories in
the source population emigrated from the source habitat to the sink habitat.
Therefore, the source population held a constant density (all territories filled),
but the size of the population in the sink depended on both its own growth rate
λ2 < 1 and also the number of immigrants.

A result

One of his main theoretical findings was that population density can be a mis-
leading indicator of habitat quality (Fig. 4.3). If we assume that excess individ-
uals in the source migrate to the sink, then as habitat quality and reproduction
increase in the source population, the source population comprises an ever de-
creasing proportion of the total population! That is, as λ1 gets larger, n1/(n1+n2)
gets smaller. Thus, density can be a very misleading predictor of long-term pop-
ulation viability, if the source population is both productive and exhibits a high
degree of emigration.

A model

We can use a matrix model to investigate source-sink populations [12]. Let us
mix up typical demographic notation (e.g., Chapter 2) with that of Pulliam
[172], so that we can recognize Pulliam’s quantities in a demographic matrix
model setting. Further, let us assume a pre-breeding census, in which we count
adults. The population dynamics would thus be governed by A

A =

(
PA1 + PJ1β1 M12

M21 PA2 + PJ2β2

)
(4.3)

where the upper left element (row 1, column 1) reflects the within-patch
growth characteristics for patch 1. The lower right quadrant (row 2, and column
2) reflects the within-patch growth characteristics of patch 2.
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We then assume, for simplicity, that migration, M, is exclusively from the
source to the sink (M21 > 0, M12 = 0). We further assume that λ1 > 1 but all
excess individuals migrate to patch 2, so M21 = λ1 − 1 > 0. Then A simplifies to

A =

(
1 0

λ1 − 1 λ2

)
(4.4)

The spatial demographic Pulliam-like model

We first assign λ for the source and sink populations, and create a matrix.

> L1 <- 2

> L2 <- 0.4

> A <- matrix(c(1, 0, L1 - 1, L2), nrow = 2, byrow = TRUE)

We can then use eigenanalysis, as we did in Chapter 2 for stage structured popula-
tions. The dominant eigenvalue will provide the long term asymptotic total popula-
tion growth. We can calculate the stable “stage” distribution, which in this case is
the distribution of individuals between the two habitats.

> eigen(A)

$values

[1] 1.0 0.4

$vectors

[,1] [,2]

[1,] 0.5145 0

[2,] 0.8575 1

From the dominant eigenvalue, we see Pulliam’s working assumption that the total
population growth is set at λ = 1. We also see from the dominant eigenvector that
the sink population actually contains more individuals than the source population
(0.51/(0.51+0.86) < 0.5).
We could graph these results as well, for a range of λ1 (Fig. 4.3). Here we let p1 be
the proportion of the population in the source.

> L1s <- seq(1, 3, by = 0.01)

> p1 <- sapply(L1s, function(l1) {

+ A[2, 1] <- l1 - 1

+ eigen(A)$vectors[1, 1]/sum(eigen(A)$vectors[, 1])

+ })

> plot(L1s, p1, type = "l", ylab = "Source Population",

+ xlab = expression(lambda[1]))

4.2 Two Types of Metapopulations

Our logistic model (Chapter 3) is all well and good, but it has no concept
of space built into it. In many, and perhaps most circumstances in ecology,
space has the potential to influence the dynamics of populations and ecosystem
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Fig. 4.3: The declining relative abundance in the high quality habitat in a source-sink
model. The proportion of the total population (n1/(n1 + n2)) in the source population
may decline with increasing habitat quality and growth rate λ1 habitat.

fluxes [101,102,116]. The logistic equation represents a closed population, with
no clear accounting for emigration or immigration. In particular cases, however,
consideration of space may be essential. What will we learn if we start consid-
ering space, such that sites are open to receive immigrants and lose emigrants?

First we consider ideas associated with different types of “collections;” we
then consider a mathematical framework for these ideas.

A single spatially structured population

One conceptual framework that we will consider below is that of a single closed
population, where individuals occupy sites in an implicitly spatial context (Fig.
4.4). Consider a population in space, where a site is the space occupied by
one individual. One example might be grasses and weeds in a field. In such a
population, for an individual within our population to successfully reproduce
and add progeny to the population, the individual must first actually occupy a
site. For progeny to establish, however, a propagule must arrive at a site that
is unoccupied. Thus the more sites that are already occupied, the less chance
there is that a propagule lands on an unoccupied site. Sites only open up at
some constant per capita rate as individuals die at a per capita death rate.

A metapopulation

The other conceptual framework that we consider here is that of metapopu-
lations. A metapopulation is a population of populations, or a collection of
populations (Fig. 4.4). Modeling metapopulations emerged from work in pest
management when Levins [110] wanted to represent the dynamics of the propor-
tion of fields infested by a pest. He assumed that a field was either occupied by
the pest, or not. The same models used to represent a population of individuals
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A

B

C

D

E

F

(a) A closed collection (b) An open collection

Fig. 4.4: Collections of sites. (a) Sites may be recolonized via internal propagule pro-
duction and dispersal only, or (b) sites may receive immigrants from an outside source
that is not influenced by the collection. Each site (A-F) may be a spot of ground
potentially occupied by a single plant, or it may be an oceanic island potentially oc-
cupied by a butterfly population. Sites may also be colonized via both internal and
external sources.

that occupy sites (above) can also be used to represent populations that occupy
sites, with conceptually similar ecological interpretation. In this case, each site
is a location that either contains a population or not. In this framework, we
keep track of the proportion of all populations that remain extant, that is, the
proportion of sites that are occupied. As with a single population (above), the
metapopulation is closed, in the sense that there exists a finite number of sites
which may exchange migrants.

Whether we consider a single spatial population, or single metapopulation,
we can envision a collection of sites connected by dispersal. Each site may be
a small spot of ground that is occupied by a plant, or it may be an oceanic
island that is occupied by a population. All we know about a single site is that
it is occupied or unoccupied. If the site is occupied by an individual, we know
nothing of how big that individual is; if the site is occupied by a population,
we know nothing about how many indiviuals are present. The models we derive
below keep track of the proportion of sites that are occupied. These are known
loosely as metapopulation models. Although some details can differ, whether we
are modeling a collection of spatially discrete individuals in single population
or a collection of spatially discrete populations, these two cases share the idea
that there are a collection of sites connected by migration, and each is subject
to extinction.

The most relevant underlying biology concerns colonization and extinction
in our collection of sites (Fig. 4.4). In this chapter, we will assume that all sites
experience equal rates; when we make this assumption, we greatly simplify
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everything, and we can generalize across all sites. All of the models we con-
sider are simple elaborations of what determines colonization and extinction.
Another useful concept to consider is whether the collection of sites receives
propagules from the outside, from some external source that is not influenced
by the collection of sites (Fig. 4.4).

4.3 Related Models

Here we derive a single mathematical framework to describe our two types of
models. In all cases, we will consider how total rates of colonization, C, and
extinction, E, influence the the rate of change of p, the proportion of sites that
are occupied,

dp
dt

= C − E. (4.5)

We will consider below, in a somewhat orderly fashion, several permutations of
how we represent colonization and extinction of sites (e.g., [62, 63]).

4.3.1 The classic Levins model

Levins [110] proposed what has come to be known as the classic metapopulation
model,

dp
dt

= ci p (1 − p) − ep. (4.6)

This equation describes the dynamics of the proportion, p, of a set of fields
invaded by a pest (Fig. 4.5a). The pest colonizes different fields at a total rate
governed by the rate of propagule production, ci, and also on the proportion of
patches that contain the pest, p. Thus, propagules are being scattered around
the landscape at rate ci p. The rate at which p changes, however, is also related
to the proportion of fields that are unoccupied, (1 − p), and therefore available
to become occupied and increase p. Therefore the total rate of colonization is
ci p(1− p). The pest has a constant local extinction rate e, so the total extinction
rate in the landscape is ep.

The parameters ci and e are very similar to r of continuous logistic growth,
insofar as they are dimensionless instantaneous rates. However, they are some-
times thought of as probabilities. The parameter ci is approximately the pro-
portion of open sites colonized per unit time. For instance, if we created or
found 100 open sites, we could come back in a year and see how many became
occupied over that time interval of one year, and that proportion would be a
function of ci. The parameter e is often thought of as the probability that a site
becomes unoccupied per unit time. If we found 100 occupied sites in one year,
we could revisit them a year later and see how many became unoccupied over
that time interval of one year.

We use the subscript i to remind us that the colonization is coming from
within the sites that we are studying (i.e. internal colonization). With internal
colonization, we are modeling a closed spatial population of sites, whether “site”
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refers to an entire field (as above), or a small patch of ground occupied by an
individual plant [202].

The Levins metapopulation model (Fig. 4.5a)

A function for a differential equation requires arguments for time, a vector of the
state variables (here we have one state variable, p), and a vector of parameters.

> levins <- function(t, y, parms) {

+ p <- y[1]

+ with(as.list(parms), {

+ dp <- ci * p * (1 - p) - e * p

+ return(list(dp))

+ })

+ }

By using with, we can specify the parameters by their names, as long as parms

includes names. The function returns a list that contains a value for the derivative,
evaluated at each time point, for each state variable (here merely dp/dt). We then
use levins in the numerical integration function ode in the deSolve package.

> library(deSolve)

> prms <- c(ci = 0.15, e = 0.05)

> Initial.p <- 0.01

> out.L <- data.frame(ode(y = Initial.p, times = 1:100, func = levins,

+ parms = prms))

We then plot the result (Fig. 4.5a).

> plot(out.L[, 2] ~ out.L[, 1], type = "l", ylim = c(0, 1),

+ ylab = "p", xlab = "time")

Can we use this model to predict the eventual equilibrium? Sure — we just
set eq. 4.6 to zero and solve for p. This model achieves and equilibrium at,

0 = ci p − ci p2 − ep

p∗ =
ci − e

ci
= 1 −

e
ci
.

When we do this, we see that p∗ > 0 as long as ci > e (e.g., Fig. 4.5a). When is
p∗ = 1, so that all the sites are filled? In principle, all sites cannot be occupied
simultaneously unless e = 0!

4.3.2 Propagule rain

From where else might propagules come? If a site is not closed off from the rest
of the world, propagules could come from outside the collection of sites that we
are actually monitoring.

For now, let us assume that our collection of sites is continually showered
by propagules from an external source. If only those propagules are important,
then we could represent the dynamics as,
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Fig. 4.5: Three metapopulation models, using similar parameters (ci = 0.15, ce = 0.15,
e = 0.05).

dp
dt

= ce (1 − p) − ep (4.7)

where ce specifies rate of colonization coming from the external source. Gotelli
[63] refers to this model as a metapopulation model with“propagule rain”or the
“island–mainland” model. He calls it this because it describes a constant influx
of propagules which does not depend on the proportion, p, of sites occupied for
propagule production. Extinction here is mediated only by the proportion of
sites occupied, and has a constant per site rate.

The propagule rain metapopulation model (Fig. 4.5b)

A function for a differential equation requires arguments for time, a vector of the
state variables (here we have one state variable, p), and a vector of parameters.

> gotelli <- function(t, y, parms) {

+ p <- y[1]

+ with(as.list(parms), {

+ dp <- ce * (1 - p) - e * p

+ return(list(dp))

+ })

+ }

The function returns a list that contains a value for the derivative, evaluated at each

time point, for each state variable (here merely dp/dt.

We can solve for this model’s equilibrium by setting eq. 4.7 equal to zero.

0 = ce − ce p − ep (4.8)

p∗ =
ce

ce + e
. (4.9)
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Of course, we might also think that both internal and external sources are
important, in which case we might want to include both sources in our model,

dp
dt

= (ci p + ce) (1 − p) − ep (4.10)

(4.11)

As we have seen before, however, adding more parameters is not something we
take lightly. Increasing the number of parameters by, in this case, 50% could
require a lot more effort to estimate.

4.3.3 The rescue effect and the core-satellite model

Thus far, we have ignored what happens between census periods. Imagine that
we sample site “A” each year on 1 January. It is possible that between 2 Jan-
uary and 31 December the population at site A becomes extinct and then is
subsequently recolonized, or “rescued” from extinction. When we sample on 1
January in the next year, we have no way of knowing what has happened in the
intervening time period. We would not realize that the population had become
extinct and recolonization had occurred.

We can, however, model total extinction rate E with this rescue effect,

E = −ep (1 − p) . (4.12)

Note that as p → 1, the total extinction rate approaches zero. Total extinc-
tion rate declines because as the proportion of sites occupied increases, it be-
comes increasingly likely that dispersing propagules will land on all sites. When
propagules happen to land on sites that are on the verge of extinction, they can
“rescue” that site from extinction.

Brown and Kodric-Brown [17] found that enhanced opportunity for immi-
gration seemed to reduce extinction rates in arthropod communities on this-
tles. They coined this effect of immigration on extinction as the “rescue effect.”
MacArthur and Wilson [121] also discussed this idea in the context of island
biogeography. We can even vary the strength of this effect by adding yet another
parameter q, such that the total extinction rate is −ep (1 − qp) (see [62]).

Assuming only internal propagule supply and the simple rescue effect results
in what is referred to as the the core-satellite model,

dp
dt

= ci p (1 − p) − ep (1 − p) (4.13)

This model was made famous by Illka Hanski [70]. It is referred to as the core-
satellite model, for reasons we explore later.
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The core-satellite metapopulation model

A function for a differential equation requires arguments for time, a vector of the
state variables (here we have one state variable, p), and a vector of parameters.

> hanski <- function(t, y, parms) {

+ p <- y[1]

+ with(as.list(parms), {

+ dp <- ci * p * (1 - p) - e * p * (1 - p)

+ return(list(dp))

+ })

+ }

The function returns a list that contains a value for the derivative, evaluated at each

time point, for each state variable (here merely dp/dt).

Graphing propagule rain and core-satellite models (Fig. 4.5b)

First, we integrate the models using the same parameters as for the Levins model,
and collect the results.

> prms <- c(ci <- 0.15, ce <- 0.15, e = 0.05)

> out.IMH <- data.frame(ode(y = Initial.p, times = 1:100,

+ func = gotelli, parms = prms))

> out.IMH[["pH"]] <- ode(y = Initial.p, times = 1:100, func = hanski,

+ parms = prms)[, 2]

We then plot the result (Fig. 4.5a).

> matplot(out.IMH[, 1], out.IMH[, 2:3], type = "l", col = 1,

+ ylab = "p", xlab = "time")

> legend("topleft", c("Hanski", "Propagule Rain"), lty = 2:1,

+ bty = "n")

Core-satellite equilibria

What is the equilibrium for the Hanski model (eq. 4.13)? We can rearrange this
to further simplify solving for p∗.

dp
dt

= (ci − e) p (1 − p) (4.14)

This shows us that for any value of p between zero and one, the sign of the
growth rate (positive or negative) is determined by ci and e. If ci > e, the rate
of increase will always be positive, and because occupancy cannot exceed 1.0,
the metapopulation will go to full occupancy (p∗ = 1), and stay there. This
equilibrium will be a stable attractor or stable equilibrium. What happens if
for some reason the metapopulation becomes globally extinct, such that p = 0,
even though ci > e? If p = 0, then like logistic growth, the metapopulation
stops changing and cannot increase. However, the slightest perturbation away
from p = 0 will lead to a positive growth rate, and increase toward the stable
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attractor, p∗ = 1. In this case, we refer to p∗ = 0 as an unstable equilibrium and
a repellor.

If ci < e, the rate of increase will always be negative, and because occupancy
cannot be less than 0, the metapopulation will become extinct (p∗ = 0), and stay
there. Thus p∗ = 0 would be a stable equilibrium or attractor. What is predicted
to happen if, for some odd reason this population achieved full occupancy, p = 1,
even though ci < e? In that case, (1 − p) = 0, and the rate of change goes to
zero, and the population is predicted to stay there, even though extinction is
greater than colonization. How weird is that? Is this fatal flaw in the model, or
an interesting prediction resulting from a thorough examination of the model?
How relevant is it? How could we evaluate how relevant it is? We will discuss
this a little more below, when we discuss the effects of habitat destruction.

What happens when ci = e? In that case, ci−e = 0, and the population stops
changing. What is the value of p when it stops changing? It seems as though it
could be any value of p, because if ci−e = 0, the rate change goes to zero. What
will happen if the population gets perturbed — will it return to its previous
value? Let’s return to question in a bit.

To analyze stability in logistic growth, we examined the slope of the partial
derivative at the equilibrium, and we can do that here. We find that the partial
derivative of eq. 4.13 with respect to p is

∂ṗ
∂p

= c − 2cp − e + 2ep (4.15)

where ṗ is the time derivative (eq. 4.13). A little puzzling and rearranging will
show

∂ṗ
∂p

= (ci − e) (1 − 2p) (4.16)

and make things simpler. Recall our rules with regard to stability (Chapter 3).
If the partial derivative (the slope of the time derivative) is negative at an equi-
librium, it means the the growth rate approaches zero following a perturbation,
meaning that it is stable. If the partial derivative is positive, it means that the
change accelerates away from zero following the perturbation, meaning that the
equilibrium is unstable. So, we find the following guidelines:

• ci > e
– p = 1, ∂ṗ/∂p < 0, stable equilibrium.
– p = 0, ∂ṗ/∂p > 0, unstable equilibrium.

• ci < e
– p = 1, ∂ṗ/∂p > 0, unstable equilibrium.
– p = 0, ∂ṗ/∂p < 0, stable equilibrium.

What if ci = e? In that case, both the time derivative (dp/dt) and the partial
derivative (∂ṗ/∂p) are zero for all values of p. Therefore, if the population
gets displaced from any arbitrary point, it will remain unchanged, not recover,
and will stay displaced. We call this odd state of affairs a neutral equilibrium.
We revisit neutral equilibrium when we discuss interspecific competition and
predation.
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We can also explore the stability of one of these equilibria by plotting the
metapopulation growth rate as a function of p (Fig. 4.6). When we set ci > e,
and examine the slope of that line at p∗ = 1, we see the slope is negative,
indicating a stable equilibrium.

An equilibrium for the core-satellite metapopulation model (Fig. 4.6)

We first create an expression for the growth itself, dp/dt. We then plot it, while we
evaluate it, on the fly.

> dpdtCS <- expression((ci - e) * p * (1 - p))

> ci <- 0.15

> e <- 0.05

> p <- seq(0, 1, length = 50)

> plot(p, eval(dpdtCS), type = "l", ylab = "dp/dt")

Levins vs. Hanski

Why would we use Levins’ model instead of Hanski’s core-satellite model? To
explore this possibility, let’s see how the Hanski model might change gradu-
ally into the Levins model. First we define the Hanski model with an extra
parameter, a,

dp
dt

= ci p (1 − p) − ep (1 − ap) . (4.17)

Under Hanski’s model, a = 1 and under Levins’ model a = 0. If we solve for the
equilibrium, we see that

p∗ =
c − e
c − ae

(4.18)

so that we can derive either result for the two models. In the context of logistic
growth, where K = Hp∗, this result, eq. 4.18, implies that for the Hanski model,
K fills all available habitat, whereas the Levins model implies that K fills only
a fraction of the total available habitat. That fraction results from the dynamic
balance between ci and e.

4.4 Parallels with Logistic Growth

It may have already occurred to you that the closed spatial population described
here sounds a lot like simple logistic growth. A closed contiguous population,
spatial or not, reproduces in proportion to its density, and is limited by its own
density. Here we will make the connection a little more clear. It turns out that a
simple rearrangement of eq. 4.6 will provide the explicit connection between lo-
gistic growth and the spatial population model with internal colonization [181].

Imagine for a moment that you are an avid birder following a population
of Song Sparrows in Darrtown, OH, USA (Fig. 3.1a). If Song Sparrows are
limited by the number of territories, and males are competing for territories,
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Fig. 4.6: Metapopulation growth rate as a function of p, in the core-satellite model
(ci = 0.15, e = 0.05). When we plot population growth rate for the core-satellite model,
for arbitrary parameter values where ci > e, we see that growth rate falls to zero at
full occupancy (i.e., at p∗ = 1). We also see that the slope is negative, indicating that
this equilibrium is stable.

then you could think about male Song Sparrows as “filling up” some proportion,
p, of the available habitat. You have already described this population with
the logistic growth model (dN/dt = rN(1 − αN)). Lately, however, you have
been thinking about how territories, spatially arranged in the landscape, may
limit this population. You therefore decide that you would like to use Levins’
spatially-implicit metapopulation model instead (eq. 4.6). How will you do it?
You do it by rescaling logistic growth.

Let us start by defining our logistic model variables in other terms. First we
define N as

N = pH

where N is the number of males defending territories, H is the total number of
possible territories, and p is the proportion of possible territories occupied at
any one time. At equilibrium, N∗ = K = p∗H, so α = 1/(p∗H). Recall that for
the Levins model, p∗ = (ci − e)/ci, so therefore,

α =
ci

(ci − e) H
.

We now have N, α, and K in terms of p, H, ci and e, so what about r? Recall
that for logistic growth, the per capita growth rate goes to r as N → 0 (Chapter
3). For the Levins metapopulation model, the per patch growth rate is

1
p

dp
dt

= ci (1 − p) − e. (4.19)

As p → 0 this expression simplifies to ci − e, which is equivalent to r. Summa-
rizing, then, we have,
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r = ci − e (4.20)
N = pH (4.21)

α =
1
K

=
1

p∗H
=

ci

H (ci − e)
(4.22)

(4.23)

Substituting into logistic growth (Ṅ = rN(1 − αN)), we now have

d(pH)
dt

= (ci − e) pH
(
1 −

ci

H (ci − e)
Hp

)
(4.24)

= (ci − e) pH −
ci − e
ci − e

ci p2H (4.25)

= H (ci p (1 − p) − ep) (4.26)

which is almost the Levins model. If we note that H is a constant, we realize
that we can divide both sides by H, ending up with the Levins model eq. 4.6.

4.5 Habitat Destruction

Other researchers have investigated effects of habitat loss on metapopulation
dynamics [88, 146, 202]. Taking inspiration from the work of Lande [95, 96],
Karieva and Wennergren [88] modeled the effect of habitat destruction, D, on
overall immigration probability. They incorporated this into Levins’ model as

dp
dt

= ci p(1 − D − p) − ep (4.27)

where D is the amount of habitat destroyed, expressed as a fraction of the
original total available habitat.

Habitat destruction model

To turn eq. 4.27 into a function we can use with ode, we have,

> lande <- function(t, y, parms) {

+ p <- y[1]

+ with(as.list(parms), {

+ dp <- ci * p * (1 - D - p) - e * p

+ return(list(dp))

+ })

+ }

Habitat destruction, D, may vary between 0 (= Levins model) to complete
habitat loss 1.0; obviously the most interesting results will come for intermediate
values of D (Fig. 4.7).
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Fig. 4.7: Metapopulation dynamics, combining the Levins model and habitat destruc-
tion (ci = 0.15, e = 0.05).

Illustrating the effects of habitat destruction (Fig. 4.7)

We can plot the dynamics for three levels of destruction, including none. We first
set all the parameters, and time.

> library(deSolve)

> prmsD <- c(ci = 0.15, e = 0.05, D = 0)

> Ds <- c(0, 0.2, 0.5)

> Initial.p <- 0.01

> t <- 1:200

We then create an empty matrix of the right size to hold our results, and then
integate the ODE.

> ps <- sapply(Ds, function(d) {

+ prmsD["D"] <- d

+ ode(y = Initial.p, times = t, func = lande, parms = prmsD)[,

+ 2]

+ })

Last, we plot it and add some useful labels.

> matplot(t, ps, type = "l", ylab = "p", xlab = "time")

> text(c(200, 200, 200), ps[200, ], paste("D = ", Ds, sep = ""),

+ adj = c(1, 0))

What is the equilibrium under this model? Setting eq. 4.27 to zero, we can
then solve for p.

0 = ci − ciD − ci p − e (4.28)

p∗ =
ci − ciD − e

ci
= 1 −

e
ci
− D (4.29)
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Thus we see that habitat destruction has a simple direct effect on the metapop-
ulation.

A core-satellite habitat loss scenario

Let us return now to that odd, but logical, possibility in the core-satellite model
where ci < e and p = 1. Recall that in this case, p = 1 is an unstable equilibrium
(p = 0 is the stable equilibrium for ci < e). We discuss this in part for greater
ecological understanding, but also to illustrate why theory is sometimes useful
— because it helps us explore the logical consequences of our assumptions, even
when, at first blush, it seems to make little sense.

Imagine that at one time, a metapopulation is regulated by the mechanisms
in the core-satellite model, including the rescue effect, and ci > e. We therefore
pretend that, the metapopulation occupies virtually every habitable site (let
p = 0.999). Now imagine that the environment changes, causing ci < e. Perhaps
human urbanization reduces colonization rates, or climate change enhances ex-
tinction rates. All of a sudden, our metapopulation is poised on an unstable
equilibrium. What will happen and how might it differ with and without the
rescue effect?

When ci > e, we see that p∗ = 1 is the stable attractor (Fig. 4.8). However,
when ci < e, we see the inevitable march toward extinction predicted by the
Hanski model (core-satellite) (Fig. 4.8). Last, when we compare it to the Levins
model, we realize something somewhat more interesting. While the Levins model
predicts very rapid decline, the Hanski model predicts a much more gradual
decline toward extinction. Both models predict extinction, but the rescue effect
delays the appearance of that extinction. It appears that the rescue effect (which
is the difference between the two models) may act a bit like the“extinction debt”
[202] wherein deterministic extinction is merely delayed, but not postponed
indefinitely. Perhaps populations influenced by the rescue effect might be prone
to unexpected collapse, if the only stable equilibria are 1 and 0. Thus simple
theory can provide interesting insight, resulting in very different predictions for
superficial similar processes.
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The unexpected collapse of core populations

Here we plot the dynamics of metapopulations starting at or near equilbrium. The
first two use the Hanski model, while the third uses Levins. The second and third
use ci < e.

> C1 <- ode(y = 0.999, times = t, func = hanski, parms = c(ci = 0.2,

+ e = 0.01))

> C2 <- ode(y = 0.999, times = t, func = hanski, parms = c(ci = 0.2,

+ e = 0.25))

> L2 <- ode(y = 0.95, times = t, func = levins, parms = c(ci = 0.2,

+ e = 0.25))

Next, we plot these and add a legend.

> matplot(t, cbind(C1[, 2], C2[, 2], L2[, 2]), type = "l",

+ ylab = "p", xlab = "Time", col = 1)

> legend("right", c("c > e", "c < e", "c < e (Levins)"), lty = 1:3,

+ bty = "n")
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Fig. 4.8: Metapopulation dynamics, starting from near equilibrium for ci = 0.20 and e =

0.01. If the environment changes, causing extinction rate to increase until it is greater
than colonization rate, we may observe greatly delayed, but inevitable, extinction (e.g.,
ci = 0.20, e = 0.25).

4.6 Core-Satellite Simulations

Here1 we explore a simple question that Hanski posed long ago: what would
communities look like if all of the populations in the community could be de-

1 This section relies extensively on code
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scribed by their independent own core-satellite model? To answer this question,
he created communities as collections of independent (non-interacting) popu-
lations that behave according to his metapopulation model with internal colo-
nization and the rescue effect [70]. He found that such simulated communities
predict that many species will be in almost all sites (“core species”), and even
more species will exist at very few sites (“satellite species”). This seems to be
a relatively common phenomenon [35], and an observation we described at the
beginning of the chapter (Fig. 4.1).

Hanksi’s goal was to simulate simultaneously a substantive number of
species, to create a community. Each species is assumed to be governed by
internal propagule production only, and the rescue effect. Further, he assumed
that the long term average density independent growth rate (r = ci − e) was
zero. That is, the populations were not systematically increasing or decreasing.
However, he allowed for stochastic year-to-year variation in probabilities ci and
e.

In these simulations here, we will select the mean for each parameter, ci

and e, and the proportion, φ (“phi”) by which they are allowed to vary. The
realized values of ci,t and et at any one point in time are random draws from
a uniform distribution within the ranges i ± φi and e ± φe. (This requires that
we do numerical integration at each integer time step since there is no obvious
analytical solution to an equation in which the parameters vary through time.
This will keep these parameters constant for an entire year, and yet also allow
years to vary.)

We start by using the args() function to find out what arguments (i.e.
options) are available in the simulation function, MetaSim.

> args(MetaSim)

function (Time = 50, NSims = 1, method = "hanski", ci = 0.25,

e = 0.25, phi = 0.75, p0 = 0.5, D = 0.5)

NULL

What options (or arguments) can you vary in MetSim? The ‘method’ may
equal CoreSatellite, Levins, IslandMainland, or HabitatDestruction. The
default is CoreSatellite; if an argument has a value to begin with (e.g.
method=’CoreSatellite’), then it will use that value unless you replace it.

Let’s start with an initial run of 10 simulations (produces dynamics for 10
populations) to reproduce Hanski’s core-satellite pattern by using the rescue
effect with equal i and e.

> out.CS.10 <- MetaSim(method = "hanski", NSims = 10)

> matplot(out.CS.10$t, out.CS.10$Ns, type = "l", xlab = "Time",

+ ylab = "Occupancy", sub = out.CS.10$method)

These dynamics (Fig. 4.9) appear to be completely random. A random walk
is a dynamic that is a random increase or decrease at each time step. Such a
process is not entirely random because the abundance at time t is related to the
abundance at time t−1, so observations in random walks are correlated through
time; they are temporally autocorrelated.
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Fig. 4.9: Core-satellite species dynamics with stochasticity (ī = ē = 0.2).

Does a single metapopulation growth rate appear related to p, the metapop-
ulation size? What would a deterministic dynamic look like if ci > e? It would
increase rapidly at first, and then slow down as it approached 1.0. Can you
detect that slow-down here? Similarly, as a metapopulation declines toward
extinction, its progression toward p = 0 slows down. As a result, we tend to
accumulate a lot of common and rare species, for which p is close to one or
zero.

Now we will do more simulations (50 species), and run them for longer (500
time intervals vs. 50). Doing many more simulations will take a little longer, so
be patient2.

> system.time(out.CS.Lots <- MetaSim(method = "hanski", NSims = 50,

+ Time = 1000))

user system elapsed

49.628 0.112 49.737

time series, although this may not tell you much. Alternatively, we can plot a
histogram of the 50 species’ final abundances, at t = 500.

> hist(out.CS.Lots$Ns[501, ], breaks = 10, main = NULL,

+ xlab = expression("Occupancy (" * italic("p") * ")"),

+ ylab = "Number of Species",

+ sub = paste(out.CS.Lots$method, " Model", sep = ""))

2 system.time merely times the process, in secs.
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Fig. 4.10: The species-abundance distribution resulting from dynamics for 50 inde-
pendent metapopulations with internal colonization. (a) includes the rescue effect
(Hanski’s model), and note that most species are either common (p > 0.8) or rare
(p < 0.2). Levins model (b) does not include the rescue effect, and there are very few
core species (p > 0.8).

Our simulations (Fig. 4.10) should be consistent with the core-satellite hypoth-
esis — are they? In Hanski’s model, we see that most metapopulations are
either core species (p > 0.8) or satellite species (p < 0.2) (Fig. 4.10a). This is
not to imply that there should be hard rules about what constitutes a core and
satellite species, but rather merely shows we have a plethora of both common
and uncommon species.

What does the Levins model predict? Let’s run the simulations and find out.

> system.time(out.L.Lots <- MetaSim(NSims = 50, Time = 500,

+ method = "levins"))

user system elapsed

23.921 0.036 23.958

Now we plot a histogram of the 50 species’ final abundances, at t = 500.

> hist(out.L.Lots$Ns[501, ], breaks = 10,

+ xlab = expression("Occupancy (" * italic("p") * ")"),

+ ylab = "Number of Species", main = NULL,

+ sub = paste(out.L.Lots$method, " Model", sep = ""))

In contrast to the core-satellite model, the Levins model predicts that many
fewer species are common (Fig. 4.10b). Thus these two population models
make contrasting predictions regarding the structure of communities (i.e. rela-
tive species abundances), and provide testable alternatives [35].
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4.7 Summary

In this chapter, we have introduced space as an important component of popu-
lation dynamics. We provided a source-sink framework for linked populations,
where population size depends on both intrinsic capacities of a habitat patch,
and on immigration and emigration rates. We used a metapopulation framework
to model (i) a population of individuals within a site, and (ii) a population of
populations within a region. We showed similarities and differences between re-
lated metapopulation models, and between related metapopulation and logistic
models. We investigated the response of metapopulations to habitat destruc-
tion. Last, we have shown how different population dynamics lead to different
community structure.

Problems

4.1. Equilibria
Derive expressions and calculate equilibria for the following metapopulation
models, with ci = 0.05, e = 0.01. Show your work — start with the differential
equations, set to zero, and solve p∗; then substitute in values for ci, e.
(a) Levins model.
(b) Propagule rain model (gotelli).
(c) Propagule rain model that also includes both external and internal propagule
production and dispersal.
(d) Hanski model.
(e) Lande (habitat destruction) model (with D=0.1).

4.2. Habitat destruction
Compare different levels of habitat destruction.
(a) Use the habitat destruction model (lande) to compare 9 levels of destruction
(ds <- seq(0,.8, by=.1)), using ci = 0.1, e = 0.01. Plot of graph of the
dynamics through time, and calculate the equilibria directly.
(b) Write an ODE function for a habitat destruction model with rescue effect.
Let the “rescue” have an additional parameter, a, such that extinction rate is
ep(1 − ap).
(c) Let D = 0.5, ci = 0.1, e = 0.02, and vary a over five levels (including
a = 0, 1) to investigate the effects of “relative rescue effect” on the equilibria
and dynamics of a metapopulation.



Part II

Two-species Interactions



5

Lotka–Volterra Interspecific Competition

Different species frequently compete for limiting resources, and as a result have
negative impacts on each other. For example, change in species composition
during secondary succession (Fig. 5.1) appears mediated by, among other things,
a species’ ability to intercept light, grow, and cast shade over other species.
This chapter addresses very simple ways to represent such interactions between
species.
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Fig. 5.1: Changes in abundances of six species of Aster, Euthamia, and Solidago during
early secondary succession. This turnover of perennial weeds appears mediated by
competition for light, among other factors [7] (data from the long-term Buell-Small
Succession study [http://www.ecostudies.org/bss/]).
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5.1 Discrete and Continuous Time Models

Chapter 3 (Density-dependent Growth) was built upon the assumption that
individuals within a single population had negative effects on each other. Here
we assume that individuals of different species also have negative effects on
each other. This negative effect may arise as a direct effect via their behavior,
or indirect effects via their uptake of limiting resources.

In this chapter, we learn how to keep track of two species that compete,
that is, that have mutually negative effects upon each other. We begin with a
model of discrete growth, and then switch to a continuous growth model.

5.1.1 Discrete time model

We pick up from Chapter 3 with the discrete logistic growth model

Nt+1 = Nt + rdNt (1 − αNt) (5.1)

where the population size in one year, Nt+1, is equal to the previous year’s
population size, Nt, plus a growth increment. That growth increment includes
a proportional change, the discrete growth factor, rd. Last, we have the density
dependence term, (1−αNt), in which α is the per capita effect of each individual
upon all other individuals.

In Part 1 of this book, per capita effects on growth rates attempted to
encapsulate simulataneously all factors in the life of an organism that influence
the growth of that population. Here we make explicit one of those many other
negative impacts by adding another per capita effect — we add the negative
effect of another, competing, species. If members of a species’ own population
can have a per capita negative effect, then certainly individuals of other species
might have per capita negative effects.

Because we have two species, we now have to keep track of their particular
populations and per capita effects using subscripts. We now have

N1,t+1 = N1,t + r1,dN1,t
(
1 − α11N1,t − α12N2,t

)
, (5.2)

where α11 is the effect that an individual of species 1 has on its own growth
rate, and α12 is the effect that an individual of species 2 has on the growth rate
of species 1 (Fig. 5.2).

Now that we are including a second population, we need an equation de-
scribing the dynamics of that population

N2,t+1 = N2,t + r2,dN2,t
(
1 − α21N1,t − α22N2,t

)
, (5.3)

where α21 is the per capita effect of species 1 on species 2, and α22 is the per
capita effect that species 2 has on itself (Fig. 5.2).
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Code for a model of discrete logistic competition

This will calculate Nt+1, given Nt, rd and a matrix of competition coefficients α.

> dlvcomp2 <- function(N, alpha, rd = c(1, 1)) {

+ N1.t1 <- N[1] + rd[1] * N[1] * (1 - alpha[1, 1] * N[1] -

+ alpha[1, 2] * N[2])

+ N2.t1 <- N[2] + rd[2] * N[2] * (1 - alpha[2, 1] * N[1] -

+ alpha[2, 2] * N[2])

+ c(N1.t1, N2.t1)

+ }

Note the indices for alpha match the subscripts in eqs. 5.2, 5.3.

5.1.2 Effects of α

Before proceeding it might be good to understand where these subscripts come
from. Why are they read from right to left — why not left to right? As we saw
in Chapter 2, it comes from the underlying linear algebra used to work with all
these equations. We define all of the α’s together as a matrix,

α =

(
α11 α12
α21 α22

)
=

(
0.010 0.005
0.008 0.010

)
(5.4)

The subscripts on the αs represent the row and column of the coefficient; α12
is in the first row, second column. This merely reflects how mathematicians
describe matrix elements and dimensions — row × column. When we use matrix
multiplication (Chapter 2), α12 becomes the effect of species 2 (column) on
species 1 (row). In this case, α11 = α22 = 0.01, α21 = 0.008, and α12 = 0.005. Thus,
both species have greater effects on themselves than on each other. Remember,
the larger the α, the larger the effect.

You can think of a row of coefficients as part of a growth rate equation
that includes those coefficients, so row 1 represents the equation governing the
growth rate of species 1, and using α11 and α12. In general, we can refer to the
intraspecific coefficients as αii and the interspecific coefficients as αi j.

If we model two species using α above (eq. (5.4)), we can see the negative
effects of interspecific competition (Fig. 5.2). Species 1 (solid line, Fig. 5.2) has
a larger negative affect on species 2 than species 2 has on species 1. As a result,
species 1 is able to maintain a positive growth rate at higher population sizes,
and thereby grow to a larger N than can species 2. Put another way, species 1
suppresses species 2 to a larger degree than vice versa. Nonetheless, each has a
smaller effect on the other than either does on itself (αi j < αii).
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Fig. 5.2: Discrete population growth of two competing species. Both species have the
same intraspecific competition coefficient, αii = 0.01. In the absence of interspecific
competition, both species would reach K. However, they both have negative effects on
each other (αi j > 0), and species 1 (solid line) has a greater negative effect on species
2 (α21 > α12).

Discrete logistic competition dynamics (Fig. 5.2)

First we specify the matrix of α’s, the effects each species has on itself and each
other, the initial population sizes, and the number of time steps.

> alphs <- matrix(c(0.01, 0.005, 0.008, 0.01), ncol = 2, byrow = TRUE)

> t <- 20

We then create a matrix to hold the results, put in the initial population sizes, and
project the populations.

> N <- matrix(NA, nrow = t + 1, ncol = 2)

> N[1, ] <- c(10, 10)

> for (i in 1:t) N[i + 1, ] <- dlvcomp2(N[i, ], alphs)

At last, we can plot the populations, adding a reference line for the size of the
populations, if there were only one species, at Ki = 1/αii.

> matplot(0:t, N, type = "l", col = 1, ylim = c(0, 110))

> abline(h = 1/alphs[1, 1], lty = 3)

> text(0, 1/alphs[1, 1], "K", adj = c(0, 0))

> legend("right", c(expression("Sp.1 " * (alpha[21] == 0.008)),

+ expression("Sp.2 " * (alpha[12] == 0.005))), lty = 1:2,

+ bty = "n")
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5.1.3 Continuous time model

Perhaps the classic model of competitive interactions is the continuous Lotka-
Volterra model of interspecific competition [93]. Following directly the structure
of the discrete version, we represent the two species as

dN1

dt
= r1N1 (1 − α11N1 − α12N2) (5.5)

dN2

dt
= r2N2 (1 − α21N1 − α22N2) (5.6)

where we interpret all the parameters as the instantaneous rates analogous to
the parameters in the discrete version above, but with different units, because
the effects are instantaneous, rather than effects over a given time interval (Table
5.1).

Table 5.1: Parameters of the continuous 2 species Lotka-Volterra competition model.
The rest of the chapter explains the meaning and motivation.

Parameter Description

ri Instantaneous rate of increase; intrinsic rate of growth; individuals pro-
duced per individual per unit time.

αii Intraspecific density dependence; intraspecific competition coefficient;
the negative effect of an individual of species i on its own growth rate.

αi j Interspecific density dependence; interspecific competition coefficient;
the effect of interspecific competition; the negative effect that an indi-
vidual of species j has on the growth rate of species i.

Ki 1/αii; carrying capacity of species i; the population size obtainable by
species i in the absence of species j.

α′i j αi j/αii; the relative importance of interspecific competition.

βi j αi j/α j j; the invasion criterion for species i; the relative importance of
interspecific competition; the importance of the effect of species j on
species i relative to the effect of species j on itself; see sec. 5.3.5.
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Continuous logistic competition

Here we simply write the code for 2-species Lotka-Volterra competition.

> lvcomp2 <- function(t, n, parms) {

+ with(as.list(parms), {

+ dn1dt <- r1 * n[1] * (1 - a11 * n[1] - a12 * n[2])

+ dn2dt <- r2 * n[2] * (1 - a22 * n[2] - a21 * n[1])

+ list(c(dn1dt, dn2dt))

+ })

+ }

We could then use this to numerically integrate the dynamics, using ode in the
deSolve package, and plot it (graph not shown).

> library(deSolve)

> parms <- c(r1 = 1, r2 = 0.1, a11 = 0.2, a21 = 0.1, a22 = 0.02,

+ a12 = 0.01)

> initialN <- c(2, 1)

> out <- ode(y = initialN, times = 1:100, func = lvcomp2, parms = parms)

> matplot(out[, 1], out[, -1], type = "l")

These equations are also commonly represented using carrying capacity, Ki,
to summarize intraspecific effects on abundance, and coefficients to modify the
intraspecific effects quantified with Ki = 1/αii. This representation looks like

dN1

dt
= r1N1

(
K1 − N1 − α

′
12N2

K1

)
(5.7)

dN2

dt
= r2N2

(
K2 − N2 − α

′
21N1

K2

)
. (5.8)

In this version, K1 = 1/α11, and note that α′12 differs from α12. The α′12 in eq.
5.7 merely modifies the effect of 1/K1. It turns out the α′1,2 is equal to the ratio
of the interspecific and intraspecific per capita effects, or

α12 =
α′12

K1

α′12 =
α12

α11
. (5.9)

Another useful measure of the relative importance of interspecific competition
is βi j = αi j/α j j (see Invasion criteria, below).

5.2 Equilbria

In this section, we describe how we find equilibria in a simple multispecies model,
by solving the growth equations for zero, much the way we did in Chapters 3
and 4. We begin with isoclines, and move on to boundary and internal equilibria
and invasion criteria.
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5.2.1 Isoclines

An isocline is, in general, a line connecting points on a graph or map that have
equal value. For instance, a topographic map has elevation isoclines, connecting
points of equal elevation. Here, our isoclines will connect points in state space
at which the growth rate for species i equals zero — every point on that line
will represent Ṅi = 0. We call these zero net growth isoclines.

A zero net growth isocline, typically referred to simply as an isocline or
ZNGI, is the set of all points for which the growth of a population is zero, when
all else (such as the population size of a competing species) is held constant.
An equilibrium is one (or sometimes more than one) of those points, and in
particular, it is a point at which the growth rates of all populations are zero.
You saw in Chapter 3 that the carrying capacity of a single species logistic
population is an equilibrium. With two species, it gets a tad trickier.

We find the isocline of a species by setting its growth rate equal to zero
and solving the equation for that species in terms of the other species. As an
example, let’s focus on N2 and solve for its zero net growth isocline. We find
below that there is a straight line that describes all points for which dN2/dt = 0,
if N1 were held constant. We start by setting eq. 5.6 to zero, and solving for N2.

dN2

dt
= r2N2 (1 − α21N1 − α22N2)

0 = r2N2 (1 − α21N1 − α22N2)

0 = 1 − α21N1 − α22N2

N2 =
1
α22
−
α21

α22
N1.

(5.10)

Recall that the formula for a straight line is y = mx + b where m is the slope
and b is the intercept on the y axis. We can see that the expression for N2
in eq. 5.10 is a straight line, where y = N2, m = α21/α22, and b = 1/α22 (Fig.
5.3a). When N1 is zero, N2 = 1/α22. This is precisely what we saw in Chapter
3 (logistic growth), that a single species logistic population has an equilibrium
at its carrying capacity, K = 1/α.

The isocline (Fig. 5.3a) shows that as the competitor’s population size, N1,
becomes larger, N2 declines by α21/α22 for each additional individual of the
competing species 1, until finally N2 = 0 when N1 = 1/α21.
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Fig. 5.3: Phase plane plots of each of the two competing species, with Lotka-Volterra
zero growth isoclines. Arrows indicate population trajectories. Recall Ki = 1/αii.

Graphing an Isocline

Here we graph something similar, but not identical, to Fig. 5.3a. First, we define a
new matrix of competition coefficients, where α11 = α22 > α12 = α21.

> a <- matrix(c(0.01, 0.005, 0.005, 0.01), ncol = 2, byrow = TRUE)

We create an expression to plot the N2 isocline, as a function of possible values of
N1.

> N2iso <- expression(1/a[2, 2] - (a[2, 1]/a[2, 2]) * N1)

We then specify N1, and then evaluate and plot N2.

> N1 <- 0:200

> plot(N1, eval(N2iso), type = "l", ylim = c(0, 200), xlim = c(0,

+ 200), ylab = expression("N"[2]))

We add arrows to remind us of what happens if N2 is above or below the value on
the isocline.

> arrows(x0 = 90, y0 = 150, x1 = 90, y1 = 80, length = 0.1)

> arrows(x0 = 75, y0 = 0, x1 = 75, y1 = 50, length = 0.1)

The isocline for N2 (Fig. 5.3a) is the line at which dN2/dt = 0 for a fixed
value of N1. Just as in the single species logistic growth model, if N2 exceeds
its equilibrium, it declines, and if N2 is less than its equilibrium, it grows. The
isocline (Fig. 5.3a) is the set of balance points between positive and negative
growth. This is reflected in the arrows in Fig. 5.3a — if the N2 is ever above
this isocline, it declines and if it is ever below this isocline, it rises. This isocline
shows that whether N2 increases or decreases depends on N1.
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By analogy, the isocline for species 1 turns out to be

N1 =
1
α11
−
α12

α11
N2. (5.11)

Note that these isoclines are merely equations for straight lines, and it is
easy to do nonsensical things, such as specify coefficients that result in negative
population sizes. Therefore, let us proceed with some thoughtfulness and care.

5.2.2 Finding equilibria

By themselves, the isoclines tell us that if species 2 becomes extinct (N2 = 0),
then species 1 reaches its carrying capacity (N1 = 1/α11) (Fig. 5.3b). Similarly, if
N1 = 0, then N2 = 1/α22. These are important equilibria, because they verify the
internal consistency of our logical, and they provide end-points on our isoclines.

If the species coexist (N1, N2 > 0) it means that they must share one or more
points on their isoclines — such an equilibrium is the point where the lines
cross. We find these equilibria by solving the isoclines simultaneously. A simple
way to do this is to substitute the right hand side of the N2 isocline (eq. 5.10)
in for N2 in the N1 isocline (eq. 5.11). That is, we substitute an isocline of one
species in for that species’ abundance in another species’ isocline. Combining
eqs. 5.10 and 5.11, we get

N1 =
1
α11
−
α12

α11

(
1
α22
−
α21

α22
N1

)
N1 =

1
α11
−

α12

α11α22
+
α12α21

α11α22
N1

N1

(
1 −

α12α21

α11α22

)
=
α22 − α12

α11α22

N∗1 =
α22 − α12

α11α22 − α12α21
(5.12)

When we do this for N2, we get

N∗2 =
α11 − α21

α22α11 − α12α21
(5.13)

We now have the values for N∗1 and N∗2 at the point at which their isoclines
cross (Fig. 5.4a). These equilibria apply only when isoclines cross within feasible
state space.

The expressions for N∗1 and N∗2 look pretty complicated, but can we use
them to discern an intuitive understanding for species 1? First, we see that ri

is not in the expressions for the equilibria — they do not depend on ri. It is
important to remember that this intrinsic rate of increase is not germaine to
the long term equilibria for the two species model. Second, we can confirm that
as interspecific competition intensity falls to zero (α12 = α21 = 0), each species
reaches its own carrying capacity. That is, when putative competitors occupy
sufficiently different niches and no longer compete, then they both reach their
own carrying capacities.
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We can also say something a little less obvious about species 1. What hap-
pens when the negative effect of the competitor, N2, starts to increase, that is,
as α12 gets bigger? Or, put more obtusely but precisely, let’s find

N∗1 = lim
α12→∞

α22 − α12

α22α11 − α12α21
(5.14)

that is, find the limit of the equilibrium (eq. 5.12) as α12 gets very large. Well, the
αii become effectively zero because α12 gets so big. This leaves −α12/(−α12α21) =

1/α21. Huh? This means simply that as the negative effect of the competitor
increases, the abundance of species 1 becomes increasingly dependent upon
α21, its negative effect on its competitor. Thus we have an arms race: as the
negative effect of its competitor increases, the abundance of a species depends
increasingly on its ability to suppress the competitor.

Summarizing, we see that in the absence of interspecific competition, species
are attracted toward their carrying capacities. Second, if interspecific competi-
tion is intense, then a species’ carrying capacity becomes less important, and its
abundance is increasingly determined by its ability to suppress its competitor.

Coexistance — the invasion criterion

Based on the numerators in eqs. 5.12 and 5.13, it seems that N∗1 and N∗2 may both
be greater than zero whenever αii − α ji > 0. This is, indeed, the case. Below we
step through the analysis of what we refer to as the “invasion criterion,” which
specifies the conditions for N∗i > 0.

In general, the details of any model and its dynamics may be quite compli-
cated, but as long as we know whether a species will always increase when it
is rare, or invade,1 then we know whether it can persist in the face of complex
interactions. Thus we don’t need to find its equilibrium, but merely its behavior
near zero.

How do we determine whether a species can increase when rare? Let’s explore
that with the Lotka-Volterra competition model. We can start by reexamining
species 1’s growth equation (eq. 5.5)

dN1

dt
= r1N1 (1 − α11N1 − α12N2) .

From this we can see that in the absence of any density dependence (α = 0)
and assuming r1 > 0, and N1 > 0, the population grows exponentially. Further,
we can see that dN/dt > 0 as long as (1 − α11N1 − α12N2) > 0. Therefore, let’s
examine this expression for density dependence and see what it looks like as N1
gets very close to zero. We start by expressing dN1/dt completely in terms of
N1 and α. We do this by substituting N2’s isocline (eq. 5.10) in place of N2 in
eq. 5.5. We then solve this for any growth greater than zero.

1 Note that ecologists who study invasion of exotic species may use the word “invade”
to mean the successful dispersal to, establishment and spread at a site. This incor-
porates a tremendous amount of species- or system-specific biology. Here we mean
“invasion” in only a much more strict or narrow sense — to increase when rare.
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0 < (1 − α11N1 − α12N2)

0 <
(
1 − α11N1 − α12

(
1
α22
−
α21

α22
N1

))
(5.15)

Now — what is the value of eq. 5.15 as N1 → 0? We can substitute 0 for N1,
and eq. (5.15) becomes

0 <
(
1 − α12

(
1
α22

))
0 < 1 −

α12

α22

α12 < α22. (5.16)

What is this saying? It is saying that as long as α12 < α22, then our focal species
can persist, increasing in abundance from near zero — N1 will increase when
rare, that is, it will successfully invade (Fig. 5.4a).

For two species to both persist, or coexist, it must be that case that

α12 < α22 , α21 < α11.

Simply put, for species to coexist stably, their effects on themselves must be
greater than their effects on each other (Fig. 5.4a).

Other equilibria

Given our isoclines and equilibria above, what other logical combinations might
we see, other than coexistence? Here we list others, and provide graphical in-
terpretations (Fig. 5.4).

Species 1 can invade when rare, but species 2 cannot (Fig. 5.4b).

α12 < α22 , α21 > α11

This leads to competitive exclusion by species 1 — species 1 wins. This is
referred to as a boundary equilibrium, because it is on the boundary of the state
space for one species. Equilibria where all Ni > 0 are referred to as internal
equilibria.

Species 1 cannot invade when rare, but species 2 can (Fig. 5.4c).

α12 > α22 , α21 < α11

This leads to competitive exclusion by species 2 — species 2 wins. This is the
other boundary equilibrium. Note that for both this and the previous boundary
equilibrium, the equilibrium equations (eqs. 5.12, 5.13) can return N∗ that are
negative or too large (> K). Recall that these equations derive from simple
equations of straight lines, and do not guarantee that they are used sensibly —
equations aren’t dangerous, theoreticians who use equations are dangerous.
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Neither species can invade when rare (Fig. 5.4d).

α12 > α22 , α21 > α11

This creates an unstable internal equilibrium — exclusion will occur, but either
species could win. This condition is sometimes referred to as founder control [14]
because the identity of the winner depends in part on the starting abundances. It
creates a saddle in state space. What the heck is a saddle? More on that below.
It suffices to say that from some directions, an saddle attracts the trajectories
of the populations, while from other directions, it repels the trajectories.2

5.3 Dynamics at the Equilibria

Here we use eigenanalysis to analyze the properties of the equilibrium, whether
they are attractors, repellers, or both, and whether the system oscillates around
these equilibria.

In Chapter 3, we assessed stability with the partial derivative of the growth
rate, with respect to population size. If it was negative the population was
stable, and the more negative the value, the shorter the return time. Here we
build on this, and present a general recipe for stability analysis [142]:
1. Determine the equilibrium abundances of each species by setting its growth

equation to zero, and solving for N.
2. Create the Jacobian matrix. This matrix represents the response of each

species to changes in its own population and to changes in each other’s
populations. The matrix elements are the partial derivatives of each species’
growth rate with respect to each population.

3. Solve the Jacobian. Substitute the equilibrium abundances into the partial
derivatives of the Jacobian matrix to put a real number into each element
of the Jacobian matrix.

4. Use the Jacobian matrix to find the behavior of the system near the equi-
libria. The trace, determinant, and eigenvalues of the Jacobian can tell us
how stable or unstable the system is, and whether and how it cycles.

5.3.1 Determine the equilibria

We just did this above. Given eqs. 5.12 and 5.13, we see that the α determine
completely N∗1 and N∗2 . This is not true for Lotka-Volterra systems with more
than two species; such systems also depend on ri.

2 The topography of mountain ranges can include saddles, which are precisely the
context in which we use “saddle” here. Search the web for Saddleback Mountain,
New York, USA, Lat/Long: 44◦ 8’ N; 73◦ 53’ W. See also pictures of horse saddles
— same shape.
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Fig. 5.4: Phase plane diagrams of Lotka-Volterra competitors under different inva-
sion conditions. Horizontal and vertical arrows indicate directions of attraction and
repulsion for each population (solid and dased arrows); diagonal arrows indicate com-
bined trajectory. Circles indicate equilibria; additional boundary equilibria can occur
whenever one species is zero.

Finding equilibria

We can create equations or expressions for the equilibria, N∗1 and N∗2 . These will be
symbolic representations that we later evaluate.

> N1Star <- expression((a22 - a12)/(a22 * a11 - a12 * a21))

> N2Star <- expression((a11 - a21)/(a22 * a11 - a12 * a21))

Next we create the α and evaluate our expressions.

> a11 <- a22 <- 0.01; a12 <- 0.001; a21 <- 0.001

> N1 <- eval(N1Star); N2 <- eval(N2Star); N1

[1] 90.9
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5.3.2 Create the Jacobian matrix

The next step is to find each partial derivative. The partial derivatives describe
how the growth rate of each species changes with respect to the abundance
of each other species and with respect to its own abundance. Thus a positive
value indicates that a growth rate increases as another population increases. A
negative value indicates a growth rate decreases as another population increases.
Here, we work through an example, explicitly deriving the partial derivative of
species 1’s growth rate with respect to itself.

First let’s expand the growth rate of species 1 (eq. 5.5)3

dN1

dt
= Ṅ1 = r1N1 − r1α11N2

1 − r1α12N2N1. (5.17)

Now we derive the partial differential equation (PDE)4 with respect to N1,
treating N2 as a constant5

∂Ṅ1

∂N1
= r1 − 2r1α11N1 − r1α12N2 (5.18)

We should think of this as the per capita effect of species 1 on its growth rate.
To derive the PDE with respect to N2, we treat N1 as a constant, and find

∂Ṅ1

∂N2
= −r1α12N1. (5.19)

This is the per capita effect of species 2 on species 1’s growth rate.
We then do the same for Ṅ2, and so derive the full matrix of PDE’s,

∂Ṅ1
∂N1

∂Ṅ1
∂N2

∂Ṅ2
∂N1

∂Ṅ2
∂N2

 =

 r1 − 2r1α11N1 − r1α12N2 −r1α12N1

−r2α21N2 r2 − 2r2α22N2 − r2α21N1

 . (5.20)

This matrix of PDE’s is the Jacobian matrix, or simply the “Jacobian.” As dif-
ferential equations, they describe the slopes of curves (i.e. the slopes of tangents
of curves) at a particular point. That is, they describe the straight line interpre-
tations as that point. As partial differential equations, they describe how the
growth rates change as population sizes change.

3 Recall that the time derivative, dN/dt, can be symbolized with Ṅ (“n-dot”).
4 PDEs are typically written using a fancy symbol, delta, as in ∂F/∂N. For most

intents and purposes, these are equivalent to “d”.
5 Recall that when taking a derivative with respect to X, we treat all other variables

as constants.
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Finding partial differential equations and the Jacobian matrix

Here we create equations or expressions for the for the growth rates, Ṅ1 and Ṅ2, and
use these to find the partial derivatives. First, expressions for the growth rates:

> dN1dt <- expression(r1 * N1 - r1 * a11 * N1^2 - r1 * a12 *

+ N1 * N2)

> dN2dt <- expression(r2 * N2 - r2 * a22 * N2^2 - r2 * a21 *

+ N1 * N2)

Next, we use each expression for Ṅ to get each the partial derivatives with respect
to each population size. Here we use the R function D() (see also ?deriv). We reveal
here the result for the first one only, the partial derivative of Ṅ1 with respect to
itself, and then get the others.

> ddN1dN1 <- D(dN1dt, "N1")

> ddN1dN1

r1 - r1 * a11 * (2 * N1) - r1 * a12 * N2

Here we find the remaining PDE’s.

> ddN1dN2 <- D(dN1dt, "N2")

> ddN2dN1 <- D(dN2dt, "N1")

> ddN2dN2 <- D(dN2dt, "N2")

Last we put these together to create the Jacobian matrix, which is itself an expression
that we can evaluate again and again.

> J <- expression(matrix(c(eval(ddN1dN1), eval(ddN1dN2), eval(ddN2dN1),

+ eval(ddN2dN2)), nrow = 2, byrow = TRUE))

5.3.3 Solve the Jacobian at an equilibrium

To solve the Jacobian at an equilibrium, we substitute the N∗i (eqs. 5.12, 5.13)
into the Jacobian matrix eq. (5.20). Refer to those equations now. What is the
value of N1 in terms of αii and αi j? Take that value and stick it in each element
of the Jacobian (eq. 5.21). Repeat for N2. When we do this, and rearrange, we
get,

J =

−r1α11

(
α22−α12

α11α22−α12α21

)
−r1α12

(
α22−α12

α11α22−α12α21

)
−r2α21

(
α11−α21

α11α22−α12α21

)
−r2α22

(
α11−α21

α11α22−α12α21

)
 . (5.21)

Yikes . . . seems a little intimidating for such a small number of species.
However, it is remarkable how each element can be expressed as a product of
−riαi jN∗i , where i refers to row, and j refers to column.
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Evaluating the Jacobian matrix

Assuming that above we selected particular α, used these to determine N∗1 and N∗2 ,
found the PDEs and created an expression for the Jacobian matrix, and labeled
everything appropriately, we can then evaluate the Jacobian at an equilibrium. For
αii = 0.01 and αi j = 0.001 (see above) we find

> r1 <- r2 <- 1

> J1 <- eval(J)

> J1

[,1] [,2]

[1,] -0.90909 -0.09091

[2,] -0.09091 -0.90909

Note that all of these PDEs are negative for this equilibrium. This indicates a stable

equilibrium, because it means that each population’s growth rate slows in response

to an increase in any other.

5.3.4 Use the Jacobian matrix

Just the way we used eigenanalysis to understand long term asymptotic behavior
of demographic matrices, we can use eigenanalysis of the Jacobian to assess the
long-term asymptotic behavior of these competing Lotka-Volterra populations.
We can again focus on its dominant, or leading, eigenvalue (λ1). The dominant
eigenvalue will be the eigenvalue with the greatest real part, and not necessarily
the eigenvalue with the greatest magnitude.6 In particular, the dominant eigen-
value, λ1, may have a real part for which the magnitude, or absolute value is
smaller, but which is less negative or more positive (e.g., λ1 = −.01, λ2 = −1.0).
For continuous models, the dominant eigenvalue, λ1, is approximately the rate
of change of a perturbation, x, from an equilibrium,

xt = x0eλ1t. (5.22)

Thus, the more negative the value, the faster the exponential decline back to-
ward the equilibrium (i.e., toward x = 0). We can think of the dominant eigen-
value as a “perturbation growth rate”: negative values mean negative growth
(i.e. a decline of the perturbation), and positive values indicate positive growth
of the perturbation, causing the system to diverge or be repelled away from the
equilibrium.

In addition to the dominant eigenvalue, we need to consider the other eigen-
values. Table 5.2 provides a summary for interpreting eigenvalues with respect
to the dynamics of the system. The eigenvalues depend upon elements of the
Jacobian, and values calculated from the elements, notably the determinant,
the trace, and the discriminant; a similar set of rules of system behavior can
be based upon these values [181]. For instance, the Routh-Hurwitz criterion for

6 This criterion is different than for demographic, discrete time projection matrices.
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stability tells us that a two-species equilibrium will be locally stable, only if
J11 + J22 < 0 and if J11J22 − J12J21 > 0. The biological interpretation of this
criterion will be posed as a problem at the end of the chapter. For now, Table
5.2 will suffice.

Table 5.2: Interpretation of eigenvalues of Jacobian matrices.

Eigenvalues Interpretation

All real parts < 0 Globally Stable Point (Point Attractor)
Some real parts < 0 Saddle (Attractor-Repellor)
No real parts < 0 Globally Unstable Point (Point Repellor)
Real parts = 0 Neutral

Imaginary parts absent No oscillations
Imaginary parts present (±ωi) Oscillations with period 2π/ω

Eigenanalysis of the Jacobian matrix

Now that we have evaluated the Jacobian matrix (previous box), we simply perform
eigenanalysis on the matrix (from previous boxes: α11 = α22 = 0.01, α12 = α21 =

0.001, r = 1).

> eigStable <- eigen(J1)

> eigStable[["values"]]

[1] -0.8182 -1.0000

The dominant eigenvalue is negative (the larger of the two: λ1 = -0.818) indicating

a globally stable equilibrium (Table 5.2). Both eigenvalues are real, not complex,

indicating that there would be no oscillations (Table 5.2).

5.3.5 Three interesting equilbria

Here we examine the dynamical properties of three particularly interesting inter-
nal equilibria that are, respectively, stable, unstable, and neutral. In each case,
our examples use α11 = α22 = 0.01 and r1 = r2 = 1. What is most important,
however, is not the particular eigenvalues, but rather their sign, and how they
vary with α12 and α21, and the resulting stability properties and trajectories.

Given our stability criteria above, let us next examine the dominant eigen-
value of the Jacobian for each equilibrium . . . but which values of αi j, α ji should
we choose? We can describe our invasion criterion for species i as

βi j = αi j/α j j (5.23)

where, if βi j < 1, species i can invade. This ratio is the relative strength of
inter- vs. intraspecific competitive effect. It turns out to be useful to calculate
λ1 (“perturbation growth rate”) for combinations of βi j, β ji.
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Stable equilibrium – βi j, β ji < 1

These criteria correspond to α12 < α22 , α21 < α11. As the relative strength of
interspecific effects increases toward 1.0, λ1 approaches zero, at which point the
system would no longer have a single global point attractor.

When βi j, β ji < 1, then both species can invade each other. We find that all
of the eigenvalues of the Jacobian are negative and real (Fig. 5.5), demonstrat-
ing that these populations will reach a stable equilibrium (Table 5.2). When
we plot these eigenvalues for these combinations of β, we see that the domi-
nant eigenvalue increases from negative values toward zero as either β12 or β21
approaches 1 (Fig. 5.5).
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Fig. 5.5: Stable equilibria: as the relative strength of interspecific competition in-
creases (βi j → 1), instability increases (λ1 → 0). (a) λ1 → 0 as β → 1, (b) a globally
stable equilibrium attracts trajectories from all locations (solid dots represent initial
abundances).

Unstable equilibria – βi j, β ji > 1

These criteria correspond to α12 > α22, α21 > α11 (Fig. 5.6). As we saw above,
the Lotka-Volterra competition model has not only stable equilibria, but also
unstable equilibria, when both populations are greater than zero. Although an
unstable equilibrium cannot persist, βi j, β ji > 1 creates interesting and probably
important dynamics [74]. One of the results is referred to as founder control,
where either species can colonize a patch, and whichever species gets there first
(i.e. the founder) can resist any invader [14].

Another interesting phenomenon is the saddle itself; this unstable equilib-
rium is an attractor-repeller, that is, it attracts from some directions and repels
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from others (Fig. 5.6). This implies that the final outcome of dynamics may be
difficult to predict from initial trajectories.
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(b) Trajectories of N1, N2 for β < 1

Fig. 5.6: Unstable equilibria: as the relative strength of interspecific competition in-
creases (βi j > 1), instability increases (λ1 > 0). (a) λ1 increases as β increases, (b) the
unstable equilibrium may attract trajectories from some initial states, but repel from
others (solid dots represent initial abundances).

Recall the geometric interpretation of this unstable equilibrium — a saddle.
The trajectory of a ball rolling across a saddle can depend to a very large degree
on where the ball starts. Place it on the crown of the saddle, and it will tend
to roll in a very deterministic fashion directly toward the unstable equilibrium,
even if it eventually rolls off the side.

Eigenanalysis of the Jacobian where βi j, β ji > 1

Here we create values for α that create an unstable equilbrium.

> a11 <- a22 <- 0.01

> a12 <- a21 <- 0.011

> N1 <- eval(N1Star)

> N2 <- eval(N2Star)

> eigen(eval(J))[["values"]]

[1] 0.04762 -1.00000

The dominant eigenvalue is now positive, while the other is negative, indicating a

saddle (Table 5.2).
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Neutral equilibria — βi j = β ji = 1

What happens when the inter- and intraspecific effects of each species are equal?
This puts the populations on a knife’s edge, between an unstable saddle and
a stable attractor. Let’s think first about a geometric interpretation, where we
shift between a bowl, representing a stable attractor, and a saddle, representing
what we call a neutral saddle.

Imagine that we begin with a stable attractor, represented by a bowl, where
αi j < αii. We drop a ball in a bowl, and the bowl rolls to the bottom — the global
attractor. As we increase the interspecific competition coefficients, αi j → αii, we
are pressing down on just two points on opposite sides of the bowl. Our hands
push down on two opposite sides, until the bowl is flat in one direction, but
has two remaining sides that slope downward. Perhaps you think this looks like
a taco shell? The same shape is easily replicated by just picking up a piece of
paper by opposite edges, letting it sag in the middle. This is the neutral saddle.
What would eigenanalysis tell us? Let’s find out.

We could just charge ahead in R, and I encourage you to do so, repeating the
steps above. You would find that doesn’t work because when βi j = β ji = 1, our
equilibria are undefined (numerator and denominator are zero in eq. 5.12, 5.13.
Hmmm. Perhaps we can simplify things by taking the limit of the equilibrium,
as αi j → α j j. Let α12 = a and α22 = a + h, and let α21 = b and α11 = b + h. Then
we want the limit of the equilibrium as h goes to zero.

lim
h→0

(a + h) − a
(a + h) (b + h) − ab

=
1

a + b
(5.24)

Thus, N∗1 = 1/(α11 + α22), assuming α12 = α22 and α21 = α11. Therefore, the
equilibrium population size is simply the inverse of the sum of these coefficients.
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Fig. 5.7: Trajectories of N1, N2 for β12, β21 = 1. The entire isocline is an attractor, a
neutral saddle, and the final abundances depend on the initial abundances and the
ratio of α11 : α22. The circle represents our one derived equilibrium (eq. 5.24).
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Eigenanalysis of the Jacobian where βi j = β ji = 1

Here we create values for α that create a neutral equilbrium.

> a11 <- a21 <- 0.01

> a22 <- a12 <- 0.015

We determine N∗ differently (eq. 4.17) because the usual expression fails when the
denominator equals 0.

> N1 <- N2 <- 1/(a11 + a22)

> eigen(eval(J))[["values"]]

[1] -1 0

The dominant eigenvalue is now zero, indicating a neutral equilibrium (Table 5.2).
The neutral nature of this equilibrium results in more than one equilibrium. Let’s
try a different one, also on the isocline.

> N1 <- 1/(a11)

> N2 <- 0

> eigen(eval(J))[["values"]]

[1] -1 0

Again λ1 = 0 so this equilibrium is also neutral.

When we perform eigenanalysis, we find that the largest of the two eigen-
values is zero, while the other is negative. This reveals that we have neither a
bowl nor an unstable saddle, but rather, a taco shell, with a level bottom — a
neutral saddle.

For example, if the populations start at low abundances, both populations
will tend to increase at constant rates until they run into the isocline. Thus,
both populations can increase when rare, but the relative abundances will never
change, regardless of initial abundances.

Recall the Lotka-Volterra isoclines, and what we originally stated about
them. We stated that the equilibrium will be the point where the isoclines cross.
When all βi j = β ji = 1, the isoclines completely overlap, so we have an infinite
number of equilibria—all the points along the line

N2 =
1
α22
−
α11

α22
N1 (5.25)

and the initial abundances determine the trajectory and the equilibrium (Fig.
5.7).

5.4 Return Time and the Effect of r

Above, we referred to λ1 as the perturbation growth rate. More commonly, peo-
ple refer to another quantity known as characteristic return time (see Chapter
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3). Return time is commonly calculated as the negative inverse of the largest
real part of the eigenvalues,

RT = −
1
λ1
. (5.26)

It is the time required to return a fraction of the distance7 back toward an
equilibrium. Negative return times (λ1 > 0) refer to “backward time,” or time
into the past when this population would have been this far away (Fig. 5.8).

If we envision the populations sitting at an equilibrium, we can then envi-
sion a small perturbation that shifts them away from that point in state space
(see Chap. 3). Let’s call this displacement x0. The rate of change of in x is
approximately the exponential rate,

dx
dt
≈ cλ1t. (5.27)

where c is a constant, so the distance traveled, x, is given by (eq. 5.22). There-
fore, a negative λ1 indicates an exponential decline in the disturbance, back
toward the equilibrium (Fig. 5.8). The units of return time are the same as
for r. Recall that all of this depends on the linearization of the curved surface
around an equilibrium; it therefore applies exactly to only an infinitesimally
small region around the equilibrium. It also usually provides the average, re-
gardless of whether the perturbation is a population decline or a population
increase.
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Fig. 5.8: For small βi j (αi j < α j j), return time is positive because some time will lapse
before the system returns toward to its equilibrium. For large βi j (αi j > α j j), return
time is negative, because it would have been some time in the past that this system
was closer to its (unstable) equilibrium. (αii = 0.01)

7 This “fraction” happens to be about 63% or 1/e; thus the hypothetical initial per-
turbation x0 shrinks to 0.37x0.



5.5 Summary 157

Effect of r on stability and return time

Consider the Jacobian matrix (eq. 5.21), and note that −ri appears in each
Jacobian element. Therefore, the larger the r, the greater the magnitude of the
Jacobian elements. This causes λ1 to increase in magnitude, reflecting greater
responsiveness to perturbation at the equilibrium (Fig. 5.9).

If we consider return time for continuous models where β12, β21 < 1, greater
r shortens return time, increasing stability (Fig. 5.9). For continuous models
where β12, β21 > 1, greater r increases perturbation growth rate, decreasing
stability (Fig. 5.9). For discrete models, which we have not discussed in this
context, recall that increasing rd of discrete logistic growth can destabilize the
population because of the built-in lag. The same is true for discrete competition
models — increasing rd too much destabilizes the interaction.
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Fig. 5.9: The dominant eigenvalue of the Jacobian matrix varies with r as well as
with β — higher r causes greater responsiveness to perturbations around an internal
equilibrium. (a) r = 1, (b) r = 0.5.

5.5 Summary

This chapter has provided several useful results.

• We can represent species effects on each other in precisely the same way we
represented their effects on themselves.

• Considering only two species, species i can invade species j when the effect
of species j on species i is less than its effect of species j on itself.

• Two species coexist stably when their effects on each other are smaller than
their effects on themselves.
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• The dominant eigenvalue of the Jacobian matrix (perturbation growth rate),
and its negative inverse, return time, are useful mathematical definitions of
stability.

• Perturbation growth rate decreases as βi j, β ji decrease, and are either both
less than one or both greater than 1 (βi j = αi j/α j j).

• The magnitude of perturbation growth rate increases with r.

Problems

5.1. Basics
Let α11 = α22 = 0.1, α12 = 0.05, α21 = 0.01.
(a) Determine N∗1 , N∗2 , K1, K2.
(b) Draw (by hand, or in R) the ZNGIs (zero net growth isoclines); include
arrows that indicate trajectories, and label the axes.
(c) Select other values for the α and repeat (a) and (b); swap your answers with
a friend, and check each other’s work.
(d) Start with equilibria for competing species, and show algebraically that when
interspecific competition is nonexistent, species reach their carrying capacities.

5.2. Derive and simplify the expression for N∗1/N
∗
2 in terms of the α.

5.3. Show the derivations of the partial derivatives of dN2/dt, with respect to
N2 and to N1; begin with eq. 5.6.

5.4. Total community size
Assume for convenience that α11 = α22 and α12 = α21, and let NT = N1 + N2.
(a) Write N∗T as a function of α11, α22, α12, α21.
(b) Describe in words how NT varies as αi j varies from αii → 0.
(c) Graph (by hand, or in R) the relation between NT versus αi j. Let αii = 0.01.

5.5. Interpret the Routh-Hurwitz criterion in terms of species relative inter-
and intraspecific competitive abilities.

5.6. The Jacobian matrix
Here we turn words into math. Note that this is one way of making our as-
sumptions very precise and clear. In each case below (a.–d.), (i) use algebraic
inequalities between the βs and between the αs to show what the assumptions
imply for the equalities and inequalities with respect to all αs, (ii) use these in-
equalities to simplify the Jacobian matrix (eq. (5.21) as much as possible, (iii)
show algebraically how these (in)equalities determine the sign of each element
of the Jacobian, and (iv) explain in words how the magnitudes of the Jacobian
elements determine stability properties.
(a) Assume that both species are functionally equivalent, and intraspecific com-
petition is more intense than interspecific competition.
(b) Assume species are functionally equivalent and that each species has a
greater impact on each other than they do on themselves.
(c) Assume species are functionally equivalent and interspecific competition is
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precisely equal to intraspecific competition.
(d) Assume species have the same carrying capacity, and can coexist, but that
species 1 is dominant.
(e) Assume species 1 is the better competitor (note: this may have multiple
interpretations).
(f) Assume species 1 and 2 are equivalent (note: this may have multiple inter-
pretations).
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Enemy–Victim Interactions

Enemy–victim interactions, a.k.a. consumer–resource, or exploitative interac-
tions are among the most dramatic interactions we can witness, whether that
interaction is a cheetah chasing down a gazelle, or an osprey diving for a fish.
Humans have always had a fascination with predators and death, and ecolo-
gists are humans, for the most part. In addition, plants are consumers too, but
watching grass take up nitrate and CO2 (i.e., grow) is somewhat less scintillating
than tracking wolves across the tundra. Nonetheless, these are both examples
of consumer–resource interactions; most competition, by the way, is thought to
operate through uptake of shared, limiting resources [120,200].
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Fig. 6.1: Lynx–snowshoe hare cycles.

One of the most famous examples of species interactions in all of ecology
is the lynx–snowshoe hare cycle, based on data from the Hudson Bay Trading
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Co. trapping records (Fig. 6.1).1 For decades, the lynx–hare cycle was used as
a possible example of a predator-prey interaction, until a lot of hard work by a
lot of people [94,191] showed an asymmetric dynamic — while the lynx depends
quite heavily on the hare, and seems to track hare abundance, the hare cycles
seem to be caused by more than just lynx.

In this chapter, we will do a few things. First, we will cover various fla-
vors of consumer–resource models of different levels of complexity, and style.
Also known as enemy–victim relations, or exploitative interactions, we repre-
sent cases in which one species has a negative effect and one a positive effect
on the other. In doing so, we will illustrate some fundamental concepts about
consumer–resource dynamics, such as how predators respond to prey abun-
dances in both a numerical and a functional manner. We will try to develop an
understanding of the range of dynamics for both continuous and discrete time
systems.

6.1 Predators and Prey

This section covers a brief introduction to the classic predator–prey models, the
Lotka–Volterra model, and the Rosenzweig-MacArthur extension.

6.1.1 Lotka–Volterra model

The Lotka–Volterra predator–prey model [117] is the simplest consumer–resource
model we will cover. It is useful for a variety of reasons. First, its simplicity
makes it relatively easy to explain. Second, it lays the groundwork for other
consumer–resource interactions. Third, and perhaps more importantly, it cap-
tures a potentially fundamental feature of these interactions — instability. When
prey reproduce and are limited only by the predator, and the predators are lim-
ited only by the abundance of prey, these interactions are not stable. This is, one
could argue, the fundamental component of a predator–prey interaction. Only
when you add additional, albeit realistic, factors (which we will cover later) do
you get stable consumer–resource interactions. It seems to be true that reality
helps stabilize the interactions, but at the core of the interaction is a tension of
instability.

The Lotka–Volterra predator–prey model is relatively simple.

dH
dt

= bH − aPH (6.1)

dP
dt

= eaPH − sP (6.2)

Here the prey is H (herbivore, perhaps), the predator is P, and b, a, e, and s
are parameters that we will discuss shortly. Let’s break these equations down.

1 These data are actually collected from a number of different regions and embedded
with a complex food web, so it probably doesn’t make much sense to think of this
as only one predator-prey pair of populations.
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First, we examine the model with regard to its terms that increase growth (+
terms) and those that reduce growth rate (− terms). Second, we find the terms
where death of prey (in the prey equation) relates to growth of predators (in
the predator equation).

The prey equation (eq. 6.1) has only two terms, bH and aPH. Therefore
the prey population is growing at an instantaneous rate of bH. What does
this mean? It means that its per capita rate is density independent, that is,
it is growing exponentially, in the absence of the predator. This, as you know,
frequently makes sense over very short time periods, but not over the long term.
The units of b are similar to those for r — number of herbivores produced per
herbivore.

What about the loss term, aPH? This term is known as mass action, a term
borrowed from chemistry, where the rate of a reaction of two substances (e.g.,
P and H) is merely a linear function, a, of their masses. That is, given the
abundances of each population, they encounter each other with the outcome of
prey death at instantaneous rate a. Thus a is frequently known as the kill rate
or “attack” rate.2 The units of a are number of herbivores killed per predator
per herbivore. When multiplied by PH, the units of the term become number
of herbivores.

Lotka–Volterra predator–prey model

Here we create a function for the Lotka–Volterra predator–prey model that we use
in ode.

> predpreyLV <- function(t, y, params) {

+ H <- y[1]

+ P <- y[2]

+ with(as.list(params), {

+ dH.dt <- b * H - a * P * H

+ dP.dt <- e * a * P * H - s * P

+ return(list(c(dH.dt, dP.dt)))

+ })

+ }

See the Appendix, B.10 for more information about using ode.

Functional response

What we have just described is the functional response of the predator [77].
The functional response is the rate at which a single predator kills prey. We
can represent this a graph of the relation between the number of prey killed per
predator per unit time (y-axis) vs. the prey available (x-axis) — the predators
kill prey at rate aPH, so a single predator kills prey at rate aH. This simple
relation is linear, and is known as a type I functional response (Fig. 6.2a).
What does this assume about predator behavior? For one, it assumes that no

2 In more detailed models, we may distinguish between encounter rate, attack rate,
kill rate, and handling time, adding greatly to the detail of the model.
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matter how abundant prey become, a single predator can and will always kill
a fixed proportion, whether there are 0.1 or 100 prey·m2 available. Other types
of functional responses are often discussed, including types II and III; these
saturate (reach an asymptote) at high prey densities, and we will discuss these
later in the chapter.
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Fig. 6.2: Types I, II, and III predator functional responses; these are the rates at
which predators kill prey across different prey densities. (a) The original functional
responses; (b) Functional responses on a per prey basis. The Lotka–Volterra model
assumes a type I functional response.

Ofttimes, especially with messy data, it is very difficult to distinguish among
functional response types, especially at low prey densities [87]. It is sometimes
easier to distinguish among them if we examine the functional responses on a
per prey basis. This results in a much more stark contrast among the functional
responses (Fig. 6.2b), at low prey densities.
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Functional responses

This will graph types I, II, and III predator functional responses. Parameter a is the
attack rate for mass action (type I). Parameter w is the maximum rate and D is the
half saturation constant for the Michaelis-Menten/Holling disc equation in types II
and III.

> a <- 0.1

> w <- 0.1

> D <- w/a

> curve(a * x, 0, 2, xlab = "Prey Density",

+ ylab = "Prey Killed Per Predator")

> curve(w * x/(D + x), 0, 2, add = TRUE, lty = 2)

> curve(w * x^2/(D^2 + x^2), 0, 2, add = TRUE, lty = 3)

It is sometimes easier to distinguish among these if we examine the per attack rate
per prey, as a function of prey density.

> curve(w * x^2/(D^2 + x^2)/x, 0, 2, ylim = c(0, a), lty = 3,

+ xlab = "Prey Density", ylab = "Prey Killed Per Predator Per Prey")

> curve(w * x/(D + x)/x, 0, 2, lty = 2, add = TRUE)

> curve(a * x/x, 0, 2, add = TRUE, lty = 1)

> legend("right", c("Type I", "Type II", "Type III"), lty = 1:3,

+ bty = "n")

Numerical response

The numerical response of the predators is merely the population-level response
of predators to the prey, that derives from both the growth and death terms.

In the Lotka–Volterra model, predators attack, kill or capture prey at rate
a, but for the population to grow, they need to convert that prey into new
predator biomass or offspring. They assimilate the nutrients in prey and convert
the prey into predator body mass or offspring at rate e. Thus e is the efficiency
(assimilation or conversion efficiency) of converting dead prey into new predator
mass or predator numbers. The units of e are derived easily. Recall from above
the units of a. The units of e must take the expression aPH with its units of
numbers of herbivores, and give eaPH units of numbers of predators. Therefore
the units of e are numbers of predators per number of herbivores killed.

In this model, we pretend that predators die at a constant proportional rate,
that is, at a constant per capita rate, s, in the absence of prey. At first blush, this
may seem quite unrealistic. If, however, we consider that (i) not all predators
are the same age, size, body condition, or occupying the same habitat, and (ii)
they are all different genotypes, then we might expect many to die quickly, and a
few to hang on for much longer. The exponential decay described by this simple
formula of constant proportional loss may be a very good place to start when
considering loss from a complex system such as a population. The numerical
response is the combined response of this loss and the growth term.
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Lotka–Volterra isoclines

What does this model tell us about the forces that govern the dynamics of
predator–prey populations? Are there attractors or repellors? What can we
learn?

As we saw in previous chapters, a good place to start learning about species
interactions is with the ZNGIs or zero net growth isoclines. These tell us when
populations tend to decrease or increase. How do we determine these ZNGIs for
predator–prey interactions? We do so in the same fashion as for single species
models, and for Lotka–Volterra competition — by setting the growth equations
equal to zero and solving for the relevant state variable. Here we set the “herbi-
vore” population growth rate equal to zero and solve for H∗ — this is the value
of H when Ḣ = 0. As with L-V competition, it may be an isocline, a line along
which all points in P and H space (the combinations of P and H) Ḣ = 0. Solving
for H,

0 = bH − aPH (6.3)
0 = H(b − aP) (6.4)

H = 0 (6.5)

It seems at first that the only solution is for extinction of herbivores. What
other condition, however, allows Ḣ = 0? Further rearrangement shows us that
this will hold if (b − aP) = 0, that is,

P =
b
a

(6.6)

then this provides the isocline for which Ḣ = 0 (Fig. 6.3). Note that it depends
only on the traits of the predator and prey, or the ratio of the intrinsic growth
rate, b, and the attack rate, a. The faster the prey grows, the more predators
you need to keep them in check. The more vulnerable the prey are to predators,
or the better the hunters are, the fewer predators are needed to keep the prey
in check.

Now let’s solve for the predator isocline, the set of points at which predator
growth rate stops. We set Ṗ = 0 and solve

0 = eaPH − sP

0 = P(eaH − s)

P = 0, H =
s

ea
(6.7)

What conditions cause the predator growth rate to equal zero? One equilib-
rium occurs at P∗ = 0, and the other occurs at H = s/(ea). As we saw for the
herbivore, the state at which Ṗ = 0 is independent of the predator population
itself, but rather depends upon species’ traits only. It depends upon the density-
independent per capita death rate s, conversion efficiency, e, and the attack rate,
a. The higher the predator’s death rate, s, the more herbivores are required to
maintain predator growth. The more efficient the predator is at assimilating
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Fig. 6.3: Lotka–Volterra predator–prey isoclines. The isoclines (solid and dashed lines)
are the set of all points for which the predator growth rate or the herbivore growth
rate are zero. Increases and decreases in abundance are indicated by arrows (solid -
prey, dashed - predator). Prey abundance, H, decreases in quadrants 1 and 2 because
predator abundance, P, is high; prey abundance increases in quadrants 3 and 4 because
predator abundance is low. In contrast, predator abundance, P, increases in quadrants
4 and 1 because prey abundance is high, whereas predator abundance decreases in
quandrants 2 and 3 because prey abundance is low. These reciprocal changes in each
species abundance results in counterclockwise dynamics between the two populations.

prey and converting them to biomass or progeny, e, the fewer prey are needed
to maintain predator growth. The more efficient they are at encountering, at-
tacking and killing prey, a, the fewer prey are required to maintain predator
growth. We could also flip that around to focus on the prey, and state that the
more nutritious the prey, or the more vulnerable they are to attack, the fewer
are needed to maintain the predator population.

Fig. 6.3 illustrates the concepts we described above — predators increase
when they have lots of food, and die back when food is scarce.
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Lotka–Volterra prey and predator isoclines (Fig. 6.3)

We first select parameters and calculate these isoclines.

> b <- 0.5

> a <- 0.01

> (Hi <- b/a)

[1] 50

> e <- 0.1

> s <- 0.2

> (Pi <- s/(e * a))

[1] 200

We then set up an empty plot with plenty of room; we next add the prey isocline
and arrows indicating trajectories. Last, we add the predator isocline, text, arrows,
and then label each quadrant.

> plot(c(0, 2 * Pi), c(0, 2 * Hi), type = "n", xlab = "H",

+ ylab = "P")

> abline(h = Hi)

> text(Pi, Hi, "Prey isocline", adj = c(1.3, -0.3))

> arrows(x0 = c(0.85 * Pi, 1.15 * Pi), y0 = c(0.3 * Hi, 1.7 *

+ Hi), x1 = c(1.15 * Pi, 0.85 * Pi), y1 = c(0.3 * Hi, 1.7 *

+ Hi), len = 0.2)

> abline(v = Pi, lty = 2)

> text(Pi, Hi, "Predator isocline", adj = c(1.1, -0.2), srt = 90)

> arrows(x0 = c(0.3 * Pi, 1.7 * Pi), y0 = c(1.15 * Hi, 0.85 *

+ Hi), x1 = c(0.3 * Pi, 1.7 * Pi), y1 = c(0.85 * Hi, 1.15 *

+ Hi), lty = 2, len = 0.2)

> text(x = c(2 * Pi, 0, 0, 2 * Pi), y = c(2 * Hi, 2 * Hi, 0,

+ 0), 1:4, cex = 2)

What do the dynamics in Fig. 6.3 tell us? Follow the path of the arrows.
First, note that they cycle — they go around and around in a counterclockwise
fashion, as each population responds to the changing abundances of the other
species. We don’t know much more than that yet, but we will later. The counter-
clock wise direction illustrates a negative feedback loop between predators and
prey.

Next we use linear stability analysis to learn more about the long-term
behavior of this interaction. We will use this analysis to compare several different
predator–prey models.

6.1.2 Stability analysis for Lotka–Volterra

In this section, we will perform the necessary analytical work to understand
the dynamics of Lokta–Volterra predator–prey dynamics, and we follow this up
with a peek at the time series dynamics to confirm our understanding based on
the analytical work.
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As before (e.g., Chapter 5), we can follow four steps: determine equilibria,
create the Jacobian matrix, and solve and use the Jacobian.

Lotka–Volterra equilibrium

As you recall from Chapter 5, all we have to do is to solve the isoclines for
where they cross. Thus we could set these equations equal to each other. It
turned out, however, that the isoclines were so simple that we find that the
prey and predator will come to rest at the (x, y) coordinates, (b/a, s/(ea)).

Creating, solving and using the Jacobian matrix

Take a look at the growth equations again (eqs. 6.1, 6.2). Here we take the partial
derivatives of these because we want to know how each population growth rate
changes in response to changes in the abundance each of the other population.
The partial derivatives of the herbivore growth equation, with respect to itself
and to the predator, go into the first row of the matrix, whereas the partial
derivatives of the predator growth rate, with respect to the herbivore and itself
go into the second row.3  ∂Ḣ

∂H
∂Ḣ
∂P

∂Ṗ
∂H

∂Ṗ
∂P

 =

 b − aP −aH

eaP eaH − s

 (6.8)

We can replace the P and H in the Jacobian with the equibria found above.
When we do this, we get

 b − a(b/a) −a(s/(ae))

ea(b/a) ea(s/(ae)) − s

 =

 0 −s/e

eb 0

 . (6.9)

Typically a system will be more stable if the diagonal elements are more
negative — that would mean that each population is self regulating, and it
corresponds to the Routh-Hurwitz criterion,4

J11 + J22 < 0. (6.10)

We notice that in eq. 6.9 these diagonal elements are both zero; these zeroes
reveal that there is no negative density dependence within each population; that
is no self-regulation.

The other part of the Routh-Hurwitz criteria is the condition,

J11J22 − J12J21 > 0. (6.11)

3 Recall that a partial derivative is just a derivative of a derivative, with respect to
another state variable. In this case, it is not “the second derivative” per se, because
that would be with respect to time, not with respect to one of the populations.

4 See Chapter 5 for an earlier use of the Routh-Hurwitz criteria
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In the predator–prey context, this suggests that the herbivore declines due to
the predator (J12 < 0) and the predator increases due to the herbivore (J21 > 0).
The signs of these elements make their product negative, and help make the
above condition true. Note that because J11J22, this condition reduces to bs > 0.
Thus it seems that this will be true as along as both b and s are positive (which
is always the case).

If we performed eigenanalysis on the above Jacobian matrix, we would find
that the eigenvalues are complex (see next box). Because they are complex, this
means that the populations will oscillate or cycle, with period 2π/ω (Table 5.2).
Because the real parts are zero, this means that the Lotka–Volterra predator–
prey exhibits neutral stability (Table 5.2). Recall that neutral stability is the“in-
between” case where perturbations at the equilibrium neither grow nor decline
over time.

Lotka–Volterra predator–prey eigenanalysis

We can perform eigenanalysis given the parameters above.

> Jac <- matrix(c(0, -s/e, e * b, 0), byrow = TRUE, nr = 2)

> eigen(Jac)[["values"]]

[1] 0+0.3162i 0-0.3162i

Lotka–Volterra Dynamics

What do predator–prey cycles look like (Figs. 6.4a, 6.4b)? Typically, prey
achieve higher abundances than predators — this makes sense if the “predators”
are not pathogens (see Disease, below). It also makes sense when we assume
that predators are not perfectly efficient at converting prey to offspring — that
is, they have to metabolize a lot of energy per offspring (e � 1). Another char-
acteristic we note is that the predator populations lag behind the prey — for
instance, the prey peak occurs before the predator peak (Fig. 6.4a).

Lotka–Volterra predator–prey dynamics (Fig. 6.4a)

Here we set parameters and integrate the populations, with initial abundances of
H0 = 25, P0 = 5.

> params1 <- c(b = b, a = a, s = s, e = e)

> Time <- seq(0, 100, by = 0.1)

> LV.out <- ode(c(H0 = 25, P0 = 5), Time, predpreyLV, params1)

Next we graph the populations over time.

> matplot(Time, (LV.out[, 2:3]), type = "l", ylab = "Population Size")

What do neutral cycles look like? Both populations oscillate indefinitely,
going neither toward extinction, nor toward a stable node or point (Fig. 6.4b).
An odd characteristic is that we could choose arbitrarially any new initial abun-
dance, and the populations would continue to cycle on a new trajectory, passing
through these new abundances every period (Fig. 6.4b).
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Fig. 6.4: Dynamics of the Lotka–Volterra predator–prey model. Both figures result
from the same set of model parameters. (a) The times series shows the population sizes
through time; these dynamics correspond to the largest oscillations in (b). (b) The
phase plane plot includes three different starting abundances, indicated by symbols;
the largest cycle (through solid dot) (a).

Lotka–Volterra predator–prey dynamics (Fig. 6.4b)

We integrate the same model as above twice more, but with arbitrarily different
starting abundances — everything else is the same.

> LV.out2 <- ode(c(H0 = 500, P0 = 15), Time, predpreyLV, params1)

> LV.out3 <- ode(c(H0 = 300, P0 = 50), Time, predpreyLV, params1)

Now we plot the phase plane portrait of the first predator–prey pair, add trajectories
associated with different starting points, and finally add the isoclines.

> plot(LV.out[, 2], LV.out[, 3], type = "l", ylab = "P", xlab = "H")

> points(25, 5, cex = 1.5, pch = 19)

> arrows(x0 = c(1300, -20, 500), y0 = c(125, 175, 0), x1 = c(650,

+ -20, 950), y1 = c(200, 100, 2), length = 0.1)

> lines(LV.out2[, 2], LV.out2[, 3])

> points(500, 15, cex = 1.5)

> lines(LV.out3[, 2], LV.out3[, 3])

> points(300, 50, cex = 1.5, pch = 2)

> abline(h = b/a, lty = 2)

> abline(v = s/(e * a), lty = 2)

6.1.3 Rosenzweig–MacArthur model

Michael Rosenzweig, a graduate student at the time, and his adviser, Robert
MacArthur, proposed a predator–prey model that added two components to the
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Lotka–Volterra model [177,180]. First, they felt that in the absence of predators,
prey would become self-limiting.

A second element added to the Lotka–Volterra model was a saturating func-
tional response of the predators to prey density (Fig. 6.2). They felt that if prey
density became high enough, predators would reach a maximum number of prey
killed per unit time. First, predator appetite could become satiated, and second,
many predators need time to handle prey (catch, subdue, and consume it). The
time required to do this is referred to as handling time and may not change
with prey density. Therefore the predator would ultimately be limited not by
prey density, but by its own handling time. Foraging theory and species-specific
predator–prey models explore these components of predator behavior [72,123].
These realities (for some predators) cause an upper limit to the number of prey
a predator can consume per unit time. This limitation is known as a type II
functional response [77] (Fig. 6.2), and may take a variety of different forms
— any monotonically saturating function is referred to as a type II functional
response.

Here we add prey self-limitation by using logistic growth. We add the type
II functional response using the Michaelis-Menten or Monod function.5

dH
dt

= bH(1 − αH) − w
H

D + H
P (6.12)

dP
dt

= ew
H

D + H
P − sP (6.13)

(6.14)

where w and D are new constants.
Here we focus on the functional response, w H

D+H (Fig. 6.2). How can we
interpret this fraction? First let’s consider what happens when prey density is
very high. We do that by examining the limit of the functional response as prey
density goes to infinity. As H gets really big, D + H gets closer to H because D
stays relatively small. In contrast, the numerator wH will continue to grow as a
multiple of w, so w will always be important. Therefore, the functional response
reduces to w H/H = w, or we state

lim
H→∞

w
H

D + H
=

wH
H

= w. (6.15)

That is a pretty convenient interpretation, that w is the maximum capture rate.
What is the shape of the function at low prey abundance, or as H → 0? H be-

comes smaller and smaller, and D becomes relatively more and more important.
Therefore, the functional response reduces to (w/D)H, or

lim
H→0

w
H

D + H
=

w
D

H (6.16)

Note that this is a linear functional response where w/D = a, where a was the
attack rate in the Lotka–Volterra type I functional response aH. Cool!

5 An alternative parameterization is the Holling disc equation aHP/(1 + bH).
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Rosenzweig-MacArthur predator–prey function

Before we move on, let’s make an R function of the Rosenzweig-MacArthur model.

> predpreyRM <- function(t, y, p) {

+ H <- y[1]

+ P <- y[2]

+ with(as.list(p), {

+ dH.dt <- b * H * (1 - alpha * H) - w * P * H/(D +

+ H)

+ dP.dt <- e * w * P * H/(D + H) - s * P

+ return(list(c(dH.dt, dP.dt)))

+ })

+ }

Rosenzweig-MacArthur isoclines

As usual, our first step is to find the zero net growth isoclines — we will first
derive them, and then discuss them. We can begin with the prey,6 setting Ḣ = 0.

0 = bH(1 − αH) − w
PH

D + H

P =
(D + H)

w
b (1 − αH)

P =
b
w

(
D + (1 − αD) H − αH2

)
(6.17)

You will notice that it is a quadratic equation, and we can see that it is concave
down (−αH2, when α > 0), and the peak typically occurs at some H > 0.7

Next we find the predator isocline.

0 = ew
PH

D + H
− sP

0 = P
( ewH

D + H
− s

)
One equilibrium is P = 0; let’s focus on the other, where ewH

D+H − s = 0. This is
telling us that the population growth rate of the predator will be zero when. . . ?
Right — when H takes on a value such that this expression is true. To find that
value, we solve this part of the expression for H.

0 =
ewH

D + H
− s

ewH − sH = sD

H =
sD

ew − s
(6.18)

Thus Ṗ = 0 when H = sD/(ew − s). It is thus the straight line and independent
of P — it depends entirely on the parameters.

6 or as Rosenzweig liked to say, the “victim”
7 Recall the rules you learned long ago, regarding the quadratic equation. . . .
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Fig. 6.5: Rosenzweig-MacArthur predator–prey isoclines for the predator (dashed) and
the prey (solid). The isoclines are the set of all points for which the predator growth
rate (dashed) and the herbivore growth rate (solid) are zero. The arrows get shorter,
and the arrowheads closer together because the populations change more slowly as we
approach the steady state equilibrium. Note that the x-intercept of the prey isocline
is K.

Consider the dynamics around these isoclines (Fig. 6.5). Whenever the prey
are abundant (right of dashed predator isocline), the predators increase, and
when the prey are rare, the predators decrease. In contrast, whenever the preda-
tors are abundant (above solid prey isocline), then prey decline, and when
predators are rare, then prey increase. In this case (Fig. 6.5), we see the classic
counter-clockwise cycling through state space leading to a stable point equilib-
rium.
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Rosenzweig-MacArthur isoclines (Fig. 6.5)

Let’s graph the zero net growth isoclines for this model. First we set parameters,
and make an expression for the prey isocline.

> b <- 0.8

> e <- 0.07

> s <- 0.2

> w <- 5

> D <- 400

> alpha <- 0.001

> H <- 0:(1/alpha)

> Hiso <- expression(b/w * (D + (1 - alpha * D) * H - alpha *

+ H^2))

> HisoStable <- eval(Hiso)

We also want to add a single trajectory, so we integrate using ode.

> p.RM <- c(b = b, alpha = alpha, e = e, s = s, w = w, D = D)

> Time <- 150

> RM1 <- ode(c(900, 120), 1:Time, predpreyRM, p.RM)

Finally, we plot everything, starting with the isoclines, and adding the trajectory
using arrows.

> plot(H, HisoStable, type = "l", ylab = "P", xlab = "H", ylim = c(0,

+ 150))

> abline(v = s * D/(e * w - s), lty = 2)

> arrows(RM1[-Time, 2], RM1[-Time, 3], RM1[-1, 2], RM1[-1,

+ 3], length = 0.1)

Note that an arrow illustrates the change per one unit of time because we chose to

have ode return H, P at every integer time step.

Creating and using the Jacobian

As we did for the Lotka–Volterra system, here we demonstrate stability by
analyzing the Jacobian matrix of partial derivatives of each populations growth
rate with respect to each other. We put all these together in a matrix, and it
looks like this. ∂Ḣ

∂H
∂Ḣ
∂P

∂Ṗ
∂H

∂Ṗ
∂P

 =

 b − 2αbH −
(

wP
D+H −

wPH
(D+H)2

)
−w H

D+H

ewP
D+H −

ewPH
(D+H)2 ew H

D+H − s

 (6.19)

You could review your rules of calculus, and prove to yourself that these are
the correct partial derivatives.
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Analysis of the Jacobian for Rosenzweig-MacArthur

Here we are going to write expressions for the two time derivatives, make a list
of all the partial derivatives, find the stable equilibrium point, evaluate the partial
derivatives as we stick them into the Jacobian matrix, and then perform eigenanalysis
on the Jacobian. First, the time derivatives.

> dhdt <- expression(b * H * (1 - alpha * H) - w * P * H/(D +

+ H))

> dpdt <- expression(e * w * P * H/(D + H) - s * P)

Next we create a list of the partial derivatives, where their order will allow us, below,
to fill columns of the Jacobian matrix.

> RMjac1 <- list(D(dhdt, "H"), D(dpdt, "H"), D(dhdt, "P"),

+ D(dpdt, "P"))

We need the stable equilibria, H∗, P∗. We know the value of H∗ right away, because
the predator isocline is a constant. Predator abundance exhibits zero growth when
H = sD/ (ew − s), or

> H <- s * D/(e * w - s)

Now all we have to do is substitute that into the herbivore isocline, and we are
finished.

> P <- eval(Hiso)

Now we “apply” the eval function to each component of the list of PD’s, using the
values of H and P we just created. We stick these values into a matrix and perform
eigenanalysis.

> (RM.jac2 <- matrix(sapply(RMjac1, function(pd) eval(pd)),

+ nrow = 2))

[,1] [,2]

[1,] -0.2133 -2.857

[2,] 0.0112 0.000

> eigen(RM.jac2)[["values"]]

[1] -0.1067+0.1436i -0.1067-0.1436i

If we substitute in all of the relevant parameters and equilibria (see previous
box), we would find that at the equilibrium, the Jacobian evaluates to

> RM.jac2

[,1] [,2]

[1,] -0.2133 -2.857

[2,] 0.0112 0.000

where we note8 that the effect of both the prey itself and predators on the prey
population growth rate (at the equilibrium) are negative, whereas the effect

8 Recall that species 1 is in column 1 and row 1, and we interpret this as the effect
of [column] on [row]
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of prey on predators is positive, and the predators have no effect at all on
themselves. How does this compare to the Jacobian matrix for Lotka–Volterra?
There, the effect of prey on itself was zero.

If we examine the eigenvalues of this matrix,

> eigen(RM.jac2)[["values"]]

[1] -0.1067+0.1436i -0.1067-0.1436i

We find that for these paramater values the dominant eigenvalue is negative,
indicating that the equilibrium is a stable attractor (Table 5.2). The presence
of the imaginary part shows a cyclical approach toward the equilibrium — we
could calculate the period of that cycle, if we wanted to (Table 5.2).

6.1.4 The paradox of enrichment

Rosenzweig and MacArthur [177, 180] realized that the type II functional re-
sponse of the predator actually could destablize the interaction. They focused
primarily on traits (or parameters) that bring the predator isocline closer to the
y-axis, including predator assimilation efficiency —“overly” efficient predators
(e.g., large e) can drive prey extinct.

In 1971, Rosenzweig described the “paradox of enrichment” where simply
increasing the carrying capacity of the prey could destabilize the system [179].
In this case, the saturating nature of the functional response allows the prey to
escape control when all individual predators become saturated — this allows
prey to achieve higher peak abundances, until they reach carrying capacity. At
that point, the predators can eventually achieve high abundance and drive the
prey back down. In addition, when predators have a low half-saturation constant
(small D) this allows them to kill a higher proportion of the prey when the prey
are rare, thus driving the prey to even lower levels.

When would predator–prey cycles be stable, and when would they explode
and destabilize? It all has to do with the position of the predator isocline relative
to the hump of the prey isocline. When the hump or peak of the prey isocline
is inside the predator isocline, the system has a stable point attractor (Fig.
6.5). When the carrying capacity of the prey increases, it draws the hump to
the outside the predator isocline (Fig. 6.6a). This eliminates the stable point
attractor (Fig. 6.6b), the cycles get larger, never returning to the equilibrium.

If we focus primarily on “enrichment” of the prey population, that means
increasing carrying capacity or decreasing the self-limitation (decreasing α). If
we look at the Jacobian matrix (eq. 6.19), we notice that α occurs only in the
prey’s negative effect on itself. It is common sense that this negative feedback of
the prey upon itself is an important mechanism enhancing stability9, preventing
large oscillations. What we see in the Jacobian matrix is that decreasing α
reduces self regulation in the system.

The phase plane portrait (Fig. 6.6a) reveals that the equilibrium, where the
isoclines cross, is a repeller, an unstable equilibrium — the populations spiral
away from the equilbrium.

9 Recall the Routh-Hurwitz criteria, J11 + J22 < 0, J11J22 − J12J21 > 0
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Fig. 6.6: Illustrating the paradox of enrichment. (a) One example of the paradox of
enrichment, where large carrying capacity causes cycles instead of a stable attractor
(compare to Fig. 6.5). (b) Stability declines when the prey are too strongly self-
limiting (very small K) or especially when they have the capacity to achieve very high
abundances (large K).

Phase plane portrait for the paradox of enrichment (Fig. 6.6a)

Let’s graph the zero net growth isoclines for this model. We use previous parameter
values, but change α, and reevaluate range of H we need, and the new trajectory.

> p.RM["alpha"] <- alpha <- 5e-04

> Time <- 100

> H <- 0:(1/alpha)

> RM2 <- ode(c(500, 110), 1:Time, predpreyRM, p.RM)

Next, we plot everything, starting with the prey isoclines with large K (solid line)
and then the small K (dotted line). Last, we add the trajectory for the system with
large K, small α.

> plot(H, eval(Hiso), type = "l", ylab = "P", xlab = "H", ylim = c(0,

+ max(RM2[, 3])))

> lines(0:1000, HisoStable, lty = 3)

> abline(v = s * D/(e * w - s), lty = 2)

> arrows(RM2[-Time, 2], RM2[-Time, 3], RM2[-1, 2], RM2[-1,

+ 3], length = 0.1)
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The Jacobian for the paradox of enrichment (Fig. 6.6b)

Using the expressions created above, we vary α and examine the effect on λ1, the
dominant eigenvalue. We select αs so that K ranges very small (K = H∗) to very
large.

> H <- with(as.list(p.RM), s * D/(e * w - s))

> alphas <- 1/seq(H, 3000, by = 10)

For each αi in our sequence, we calculate P∗, then evaluate the Jacobian, arranging
it in a matrix. The result is a list of evaluated Jacobian matrices.

> RM.jacList <- lapply(1:length(alphas), function(i) {

+ alpha <- alphas[i]

+ P <- eval(Hiso)

+ matrix(sapply(RMjac1, function(pd) eval(pd)), nrow = 2)

+ })

For each evaluated Jacobian matrix, we perform eigenanalysis, and retain the max-
imum real part of the eigen values.

> L1 <- sapply(RM.jacList, function(J) max(Re(eigen(J)[["values"]])))

Finally, we plot these dominant eigenvalues vs. the carrying capacities that generated
them.

> plot(1/alphas, L1, type = "l", xlab = quote(italic(K) ==

+ 1/alpha), ylab = quote(lambda[1]))

> abline(h = 0, lty = 3)

> abline(v = H, lty = 2)

6.2 Space, Hosts, and Parasitoids

A parasitoid is a ghastly thing. These animals, frequently small wasps, charac-
teristically lay an egg on their hosts, often a caterpillar, the young hatch out,
and then slowly consume the juicy bits of the host. Neither the adult wasp nor
their larvae immediately kill their host. Many eggs can be laid on a host, and
many larvae can live (at least briefly) in the host. Ultimately, however, the host
is gradually consumed and one or a few larvae per host metamorphosizes into
an adult. Thus parasitoid larvae always consume and kill their hapless host. In
this sense, their natural history is intermediate between that of predator and
parasite — they are parasite-like, or a parasitoid. Thank the gods for para-
sitoids, as they often help suppress other animals that we like even less, such
as herbivores that eat our crops.

There are a variety of characteristics about host–parasitoid relations that
might make them different from the kind of predator–prey relations that we
have been thinking about up until now. In particular, the life cycles of host
and prey are so intimately connected that there is a one-to-one correspondence
between dead hosts and the number of parasitoids in the next generation. If
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we know how many hosts are killed, then we know approximately how many
parasitoids are born.

6.2.1 Independent and random attacks

In keeping with convention of parasitoid models, let us describe dynamics of
hosts and their parasitoid enemies with a discrete time model [131]. This makes
sense, as these organisms, typically insects, frequently complete their life cycles
together and within a year. Let us pretend that the hosts, H, grow geometrically
in the absence of parasitoids, such that Ht+1 = RHt. If we assume that some
individuals are attacked and killed by parasitoids, Ha, then this rate becomes

Ht+1 = R (Ht − Ha) (6.20)

Further, we assume a couple things about parasitoid natural history. First,
we pretend the parasitoids search randomly and independently for prey, and
are able to search area, a (the “area of discovery”), in their life time. The total
number of attack events then is Et = aHtPt. “Attack events” is sort of a strange
way to put it but it makes perfect sense, given the natural history. Adults may
lay an egg on any host it encounters, but this event does not kill the host.
Therefore, hosts can receive more than one egg, thereby making the number of
attacked hosts lower than the number of attack events, Et. Each attack occurs
as a random event, and for now we assume that each attack is independent of
all others.

For many species of parasitoids, only one adult can emerge from a single
host, regardless of how many eggs were laid on that host. Therefore, the number
of emerging adult parasitoids, Pt+1, is simply the number of hosts that were
attacked at all, whether the host received one egg or many. Therefore, the
number of parasitoids at time t + 1 is merely the number of hosts that were
attacked, and we can represent this as

Pt+1 = Ha. (6.21)

The assumption of one dead host = one new parasitoid can be easily relaxed if
we introduce a constant q, such that Pt+1 = qHa.

Nicholson and Bailey [149] took advantage of a well known discrete probabil-
ity distribution, the Poisson distribution,10 to create a simple discrete analytical
model of host–parasitoid dynamics.

Ht+1 = RHte−aPt (6.22)

Pt+1 = Ht

(
1 − e−aPt

)
(6.23)

10 This distribution was discovered by a French mathematician (Siméon-Denis Poisson
(1781–1840), so we pronounce the name “pwah-sohn,” like the “fois” of fois gras, and
the “sohn” with a quiet “n,” like, well, like the French would say it. It is the series

1
eµ
,
µ

1!eµ
,
µ2

2!eµ
, · · ·

µr

r!eµ

representing the probabilities of occurrence of 0, 1, 2, . . . r.
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Here aPt is the mean number of attacks per larva (λ of the Poisson distribution)
and results from Pt parasitoids searching a particular area, a. Parameter a is
known as the“area of discovery,” the area searched during a parasitoid’s lifetime
— more area searched (i.e., larger a) means more hosts killed, and fewer to
survive and contribute to the next generation. The Poisson distribution tells
us that if attacks are random and independent, then e−aPt is the probability of
a host not being attacked. Therefore, Hte−aPt is the expected number of hosts
which are not attacked and survive to reproduce.

We can find the equilibrium for this discrete model. Recall that, in models of
continuous differential equations, this meant letting dN/dt = 0. In the discrete
case, it means letting Nt+1 − Nt = 0. The equilibrium, N∗, is the value of N
when this is true, so N∗ = Nt+1 = Nt. We use this to find the equilibrium of the
parasitoids, starting with eq. 6.22,

H∗ = RH∗e−aPt

1 = Re−aPt

P∗ = Pt =
log R

a
(6.24)

If we recognize that in eq. 6.23, Pt+1 = Ht − Ht+1/R, and that H∗ = Ht = Ht+1,
then we find the host equilibrium

H∗ = P∗
R

R − 1
. (6.25)

The next section motivates the Nicholson-Bailey model with a simulation
of these dynamics. It may provide a more intuitive understanding than simply
throwing a probability distribution at the problem. In the end, we wind up at
the same place, and this should be reassuring.
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Fig. 6.7: Dynamics around the unstable equilibrium of the Nicholson-Bailey host–
parasitoid model (R = 3, a = 0.005). Arrows indicate a single time step; the point is
the equilibrium at the center.

Dynamics of the Nicholson-Bailey host–parasitoid model (Fig. 6.7)

This model assumes that parasitoids search a fixed area, and each attacks hosts
randomly and independently. We set the duration of the time series, the model
parameters, and create an empty data frame to hold the results.

> time <- 20

> R <- 3

> a <- 0.005

> HPs <- data.frame(Hs <- numeric(time), Ps <- numeric(time))

Next we calculate the equilibrium, and use a nearby point for the initial abundances.

> Pst <- log(R)/a

> Hst <- Pst * R/(R - 1)

> HPs[1, ] <- c(Hst + 1, Pst)

We then project the dynamics, one generation at a time, for each time step.

> for (t in 1:(time - 1)) HPs[t + 1, ] <- {

+ H <- R * HPs[t, 1] * exp(-a * HPs[t, 2])

+ P <- HPs[t, 1] * (1 - exp(-a * HPs[t, 2]))

+ c(H, P)

+ }

Last we plot the trajectory, placing a point at the (unstable) equilibrium, and using
arrows to highlight the direction and magnitude of the increment of change per time
step.

> plot(HPs[, 1], HPs[, 2], type = "n", xlab = "H", ylab = "P")

> points(Hst, Pst)

> arrows(HPs[-time, 1], HPs[-time, 2], HPs[-1, 1], HPs[-1,

+ 2], length = 0.05)
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Simulating Random Attacks

This section relies on code and could be skipped if necessary.
This model makes strong assumptions about the proportion of hosts that

escape attacks, that depends on parasitoid attacks being random and indepen-
dent. Therefore let us simulate parasitoid attacks that are random and inde-
pendent and compare those data to field data. Let’s start with some field data
collected by Mark Hassell [131], which are the number of parasitoid larvae per
host, either 0, 1, 2, 3, or 4 larvae.

> totals <- c(1066, 176, 48, 8, 5)

Here, 1066 hosts have no larvae. We can recreate the data set, where we have
one observation per host: the number of larvae in that host.

> obs <- rep(0:4, totals)

To simulate random attacks, let’s use the same number of hosts, and the same
number of attacks, and let the computer attack hosts at random. We calcu-
late the total number of hosts, H, and the total and mean number of attacks
experienced by hosts.

> H <- sum(totals)

> No.attacks <- sum(obs)

> mean.attacks <- mean(obs)

Next, the predators “sample” the hosts at random and with equal probability.
To code this, we identify the hosts by numbering them 1–H. We then attack
these hosts independently, that is, we replace each attacked host back into the
pool of possible prey.

> attack.events <- sample(x=1:H, size=No.attacks, replace=TRUE)

We then count the number times different hosts were attacked.

> N.attacks.per.host <- table(attack.events)

and then find count the number of hosts that were attacked once, twice, or
more.

> (tmp <- table(N.attacks.per.host))

N.attacks.per.host

1 2 3

236 34 4

We see, for instance, that 34 hosts were attacked twice. This also allows us to
know how many hosts were not attacked,

> not.att <- H - sum(tmp)

Let’s compare the observed data to the simulated data.

> obs.sim <- rep(0:max(N.attacks.per.host), c(not.att, tmp))

> table(obs)
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obs

0 1 2 3 4

1066 176 48 8 5

> table(obs.sim)

obs.sim

0 1 2 3

1029 236 34 4

There seem to be fewer unattacked hosts and more attacked hosts in the random-
attack simulation than in the observed data. Is this simply a consequence of the
observed values being one of many random possibilities? Or is it a systematic
difference? How do we check this?

One way to check whether the observed data differ from our model of random
and independent attacks is to simulate many such observations, and compare
the observed data (1066 unattacked hosts) to the distribution of the simulated
results. Here we do this by performing n simulations of the same steps we used
above.

> n <- 1000

> unatt.sim <- sapply(1:n, function(j) {

+ host.sim.att <- sample(x=1:H, size=No.attacks, replace=TRUE)

+ attacks.per <- table(host.sim.att)

+ n.attd <- length(attacks.per)

+ H - n.attd

+ })

Next we just make a histogram (Fig. 6.8) of the number of unattacked hosts,
adding a dotted line to show where the true data lie, and a dashed line for the
prediction, under the assumption of random and independent attacks, based on
the Poisson distribution.

> hist(unatt.sim, xlab = "Simulated # of Unattacked Hosts",

+ prob = TRUE, xlim = c(1000, 1070))

> abline(v = 1066, lty = 3)

> abline(v = exp(-mean.attacks), lty = 2)

Our simulation results (Fig. 6.8) indicate that the observed data include far
more unattacked hosts than expected by chance.

Another, quicker way to evaluate the assumption of independent and random
attacks is to compare the ratio of the variance of the observed larvae per host
to the mean. If the data follow a Poisson distribution, this ratio is expected to
equal to one.

> (I <- var(obs)/mean(obs))

[1] 1.404

This ratio is greater than one, but we do not know if this could be due to
chance. We can test it, because under the null hypothesis, we expect that the
product of the ratio and the number of hosts, H, follows a χ2 distribution, with
H − 1 degrees of freedom. We can ask how likely this ratio, or a more extreme
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Fig. 6.8: Histogram of simulated host populations, attacked at a rate of 0.24 mean
attacks per host, assuming a attacks on hosts are random and independent of each
other.

ratio, would be, if attacks are random and independent. We compare it to the
cumulative probability density function for the χ2 distribution.

> 1 - pchisq(I * H, df = H - 1)

[1] 0

We find that, given this large number of observations (1303 hosts), it is exceed-
ingly unlikely to observe a ratio this large or larger. It is nice that this agrees
with our simulation! We feel more confident when a parameteric test agrees
with a simulation of our ideas; perhaps both are not necessary, but working
through both helps us to understand what we are doing.

6.2.2 Aggregation leads to coexistence

The above model (eqs. 6.22, 6.23) has two problems. The first is that it doesn’t
reflect the biology — parasitoids tend to aggregate on particular hosts or on
local populations of the hosts. Some hosts are more likely to get attacked than
others, resulting in more unattacked hosts and more hosts receiving multiple
attacks, than predicted under random and independent attacks. This may be
related to their searching behavior, or to spatial distributions of hosts in the
landscape. The second problem is that the above model is not stable, and pre-
dicts that the parasitoid or host becomes extinct. We know that in nature they
don’t become extinct! Perhaps we can kill two birds with one stone, and fix
both problems with one step. That is what Robert May [131] and others have
done, by assuming that parasitoids aggregate.

May proposed the following logic for one reason we might observe more
unattacked hosts than expected. Imagine that the distribution of parasitoids
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among patches in the landscape can be described with one probability distribu-
tion, with some particular mean and variance in the number of parasitoids per
patch. Imagine next that their attacks on hosts within each patch are random
and independent and thus described with the Poisson distribution. This will re-
sult in a compound distribution of attacks — a combination of the among-patch,
and within-patch distributions. If we examine the distribution of larvae per host,
for all hosts in the landscape, we will find a higher proportion of unattacked
hosts, and a higher proportion of hosts that are attacked many times.

The negative binomial distribution can describe data, such as the number of
larvae per host, in which the variance is greater than the mean. Thus the neg-
ative binomial distribution can describe greater aggregation than the Poisson
distribution (where µ = σ2), and thereby describe nature somewhat more accu-
rately. May suggested that while the true distribution of larvae in hosts, in any
particular case, was unlikely to truly be a negative binomial, it was nonetheless
a useful approximation.

Ecologists frequently use the negative binomial distribution for data where
the variance is greater than the mean. There are different derivations of the
distribution, and therefore different parameterizations [13]. In ecology, we typi-
cally use the mean, µ, and the overdispersion parameter k. The variance, σ2, is
a function of these, where σ2 = µ+µ2/k; by overdispersion we mean that σ2 > µ.
Large values of k (k > 10) indicate randomness, and the distribution becomes
indistinguishable from the Poisson. Small values (k < 2) indicate aggregation.11

Fig. 6.9 shows examples.

Showing the negative binomial distribution (Fig. 6.9)

R has the negative binomial distribution built in, but does not use k as one of its
arguments; rather, size = k. Here we generate a graph showing the distribution
with different values of k.

> nb.dat <- cbind(Random = dnbinom(0:5, mu = 0.5, size = 10^10),

+ `k=10` = dnbinom(0:5, mu = 0.5, size = 10), `k=1` = dnbinom(0:5,

+ mu = 0.5, size = 1), `k=0.01` = dnbinom(0:5, mu = 0.5,

+ size = 0.01))

> matplot(0:5, nb.dat, type = "b", pch = 1:4, col = 1, ylim = c(0,

+ 1), xlab = "Attacks per Hosts", ylab = "Probability")

> legend("topright", rev(colnames(nb.dat)), pch = 4:1, lty = 4:1,

+ bty = "n")

> mtext(quote(mu == 0.5), padj = 2)

The proportion of unattacked hosts expected under the negative binomial
is (1 + aPt/k)−k. Therefore, we can write the analytical expressions for the pop-
ulation dynamics that are very similar to those of the Nicholson-Bailey model,
but using the negative binomial distribution.

11 Although k is often referred to as a “clumping” or “aggregation” parameter, we
might think of it as a randomness parameter, because larger values result in more
random, Poisson-like distributions.
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Ht+1 = RHt

(
1 +

aPt

k

)−k

(6.26)

Pt+1 = Ht − Ht

(
1 +

aPt

k

)−k

(6.27)

May [131] referred to this as a phenomenlogical model (as opposed to mech-
anistic) because the negative binomial merely approximates the true, perhaps
compound, distribution.

Equilibria for a discrete-time model

The equilibria of the host and parasitoid populations in May’s model (eqs. 6.26,
6.27) are derived simply, once we decide upon how to describe the condition
for an equilibrium (a.k.a. steady state). In models of differential equations, this
meant letting dN/dt = 0. In the discrete case it means letting Nt+1 −Nt = 0. The
equilibrium is the value of N when this is true, so N∗ = Nt+1 = Nt. Following this
train of thought, we have H∗ = Ht+1 = Ht and P∗ = Pt+1 = Pt.

To solve for equilbria, we begin with the expression for hosts (eq. 6.26), and
solve for equilibrium parasitoid density. In this case, we can divide eq. 6.26 both
sides by H∗.
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1 = R
(
1 +

aPt

k

)−k

R−1 =

(
1 +

aPt

k

)−k

R1/k = 1 +
aPt

k

P∗ =
k
a

(
R1/k − 1

)
(6.28)

Given this, what causes increases in P∗? Certainly decreasing a leads to increases
in P∗. If a parasitoid population has a smaller a (i.e. smaller area of discovery),
this means that they require less space, and can thereby achieve higher density.
Increasing k means less aggregated attack events, which increases the probability
that a parasitoid larvae is alone on a host, and this increases parasitoid density,
but only up to a limit.

If we want H∗ as well, we can solve for that too. One of many ways is to
realize that, eq. 6.27 can be rearranged to show

Pt+1 = Ht −
Ht+1

R

and given contant H and P,

H∗ = P∗
( R
R − 1

)
(6.29)

where P∗ is eq. 6.26.

6.2.3 Stability of host–parasitoid dynamics

As with differential equation models, we can analyze the stability in the im-
mediate vicinity of equilibria in discrete time models using eigenanalysis of the
Jacobian matrix. Although analogous, there are some important differences be-
tween continuous and discrete models.

• The Jacobian matrix is comprised of partial derivatives of growth incre-
ments (e.g., ∆N = Nt+1 − Nt), rather than of time derivatives (e.g., Ṅ).

• Interpretation of eigenvalues of the Jacobian reflects the difference between
finite rate of increase (λ) and the intrinsic rate of increase (r); e.g., for
discrete models, λ = 1 indicates zero growth.

• Populations with discrete generations can grow too quickly to be stable
(e.g., chaos in discrete logistic growth).
In the discrete time case, the Jacobian matrix is the set of partial derivatives

of the discrete growth increment rather than of the time derivatives used for
continuous growth12. The growth increments are the increments of change over
an entire time step, or ∆H = Ht+1−Ht and ∆P = Pt+1−Pt. Taking those increments
from eqs. 6.26, 6.27, the Jacobian matrix of partial differential equations is
12 Note dN/dt is also an increment — it is the increment ∆N as ∆t → 0, whereas in the

discrete case, ∆t = 1.
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∂H

∂∆H
∂P

∂∆P
∂H

∂∆P
∂P

 =

R (1 + aP)−k − 1 −akHR (1 + aP)−(k+1)

1 − (1 + aP)−k akH (1 + aP)−(k+1)

 (6.30)

To analyze this at the equilibrium, we substitute H∗, P∗ for H, P, and perform
eigenanalysis. The resulting eigenvalues, λ1, λ2, then reflect perturbation growth
increments, the discrete time analogy of the instantaneous perturbation growth
rates of continuous models.

Recall that for continuous time, λ1 is the instantaneous rate of change in a
peturbation at equilibrium,

ẋ = λ1x, xt = x0eλ1t (6.31)

where x is the perturbation at the equilibrium; if λ1 < 0, the perturbation would
decline. For discrete growth, we can think of λ1 as the discrete growth factor of
a perturbation at equilibrium,

xt+1 = λ1xt (6.32)

where x is the perturbation. Here, we see that x will decline as long as 0 <
λ1 < 1. Second, if λ1 < 0, then xt+1 changes sign with each time step, and the
perturbation oscillates around 0. That is alright, as the magnitude also decreases
with each time step, so the perturbation still declines toward zero. However, if
λ < −1, those oscillations grow and the perturbation oscillates permanently.
This is directly analogous to the oscillations, or stable limit cycles, we saw in
the discrete logistic growth model. Thus, a criterion for stability in discrete
growth models is that for all eigenvalues, −1 < λ < 1.

For discrete models, we also need to be a little more concerned about the
imaginary part of the eigenvalues, because they contribute to the magnitude
of the oscillations and eigenvalues. We therefore add that the magnitude of
λ = a + bi is |λ| =

√
a2 + b2. Thus, the system is stable when |λ| ≤ 1. The

magnitude of a complex number is known as its modulus. The moduli (plural
of modulus) of the host–parasite model therefore includes the complex plane,
were the real part of each eigenvalue is on the x-axis, and the imaginary part
is on the y-axis (Fig. 6.10a). The magnitude or modulus of an eigenvalue is the
length of the vector in this plane.

We can illustrate the stability criterion for discrete models in a few ways.
The phase plane portrait or time series would illustrate the dynamics directly.
However, it is also useful to show the relation between a measure of stability
and parameters influencing stability (e.g., Fig. 6.6b). Since aggregation seems
so important in the host–parasitoid model, we can show how stability (λ) varies
with k. We can thus investigate how much aggregation is required for stability
[154]. We would anticipate that stability declines (|λ| → 1) as k increases.
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Fig. 6.10: Dynamical stability of a discrete host–parasitoid model with aggregation
(a) Region of stability for the rate of change following a small perturbation away
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eigenvalues. The length of the vector is the modulus.

Stability of the host–parasitoid model with aggregation (Fig. 6.10b)

We proceed largely as we did for continuous models, first with expressions for, and
partial derivatives of, the relevant functions — for discrete models we use F(Nt),
where of Nt+1 = F(Nt).

> F.H <- expression(R * H * (1 + a * P/k)^-k - H)

> F.P <- expression(H - H * (1 + a * P/k)^-k - P)

> F.H.H <- D(F.H, "H")

> F.H.P <- D(F.H, "P")

> F.P.H <- D(F.P, "H")

> F.P.P <- D(F.P, "P")

We next specify a sequence of k’s, and for each k, find the equilibria, evaluate the
Jacobian, and return the eigenvalues of the Jacobian.

> k <- 10^seq(-1, 1, by = 0.01)

> R <- 3

> a <- 0.005

> HPeigs <- sapply(k, function(ki) {

+ k <- ki

+ P <- k * (R^(1/k) - 1)/a

+ H <- P * R/(R - 1)

+ jac <- matrix(c(eval(F.H.H), eval(F.H.P), eval(F.P.H),

+ eval(F.P.P)), nrow = 2, byrow = TRUE)

+ eigen(jac)[["values"]]

+ })

Last, we plot the eigenvalue with the greatest absolute magnitude, and retain the
sign of the real part, λ vs. k.

> modmaxs <- apply(HPeigs, 2, function(lambdas) {

+ i <- which.max(Mod(lambdas))

+ sign(Re(lambdas[i])) * Mod(lambdas[i])

+ })

> plot(k, modmaxs, type = "l", ylab = quote("Stability " *

+ (lambda[1])))

> abline(h = -1, lty = 3)
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Graphing eigenvalues in the complex number plane (Fig. 6.10a)

It is typically important to evaluate the modulus, or magnitude, of the eigenvalues
of a Jacobian matrix for a discrete model. First we set up the unit circle which will
define the stability region in the complex number plane.

> th <- seq(-pi, pi, len = 100)

> z <- exp((0+1i) * th)

We then plot the circle and add the eigenvalues for our smallest k;

> par(pty = "s")

> plot(z, type = "l")

> points(0, 0, pch = 3)

> points(HPeigs[, 100])

> arrows(x0 = c(0, 0), y0 = c(0, 0), x1 = Re(HPeigs[, 100]),

+ y1 = Im(HPeigs[, 100]))

The length of the arrows are the moduli, |λ|.

Dynamics of the May host–parasitoid model

Here we simply play with May’s model. The following generates a phase plane
diagram of the dynamics, although it is not shown. We set the duration of the
time series, the model parameters, and create an empty data frame to hold the
results.

> time <- 20

> R <- 3

> a <- 0.005

> k <- 0.6

> HP2s <- data.frame(Hs <- numeric(time), Ps <- numeric(time))

Next we calculate the equilibrium, and use a nearby point for the initial abun-
dances.

> P2st <- k * (R^(1/k) - 1)/a

> H2st <- P2st * R/(R - 1)

> P2st

[1] 628.8

> H2st

[1] 943.2

> HP2s[1, ] <- c(1000, 500)

We then project the dynamics, one generation at a time, for each time step.

> for (t in 1:(time - 1)) HP2s[t + 1, ] <- {

+ H <- R * HP2s[t, 1] * (1 + a * HP2s[t, 2]/k)^(-k)

+ P <- HP2s[t, 1] - HP2s[t, 1] * (1 + a * HP2s[t, 2]/k)^(-k)

+ c(H, P)

+ }
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Last we plot the trajectory, placing a point at the equilibrium, and using arrows
to highlight the direction and magnitude of the increment of change per time
step.

> plot(HP2s[, 1], HP2s[, 2], type = "l", xlab = "H", ylab = "P")

> points(H2st, P2st)

> arrows(HP2s[-time, 1], HP2s[-time, 2], HP2s[-1, 1], HP2s[-1,

+ 2], length = 0.05)

6.3 Disease

Here we discuss epidemiological disease models. Pathogens cause diseases, and
are typically defined as microorganisms (fungi, bacteria, and viruses) with some
host specificity, and which undergo population growth within the host.

Our simplest models of disease are funny, in that they don’t model pathogens
(the enemy) at all. These famous models, by Kermack and McCormick [91],
keep track of different types of hosts, primarily those with and without disease
symptoms. That makes them epidemiological models. Specifically, these are SIR
models [91] that model all N hosts by keeping track of

Susceptible hosts Individuals which are not infected, but could become in-
fected,

Infected hosts Individuals which are already infected, and
Resistant hosts Individuals which are resistant to the disease, typically as-

sumed to have built up an immunity through past exposure,

where N = S +I+R. It is important to note that N, S , I, and R are densities. That
is, we track numbers of individuals in a fixed area. This is important because
it has direct consequences for the spread, or transmission, of disease [136].

Disease spreads from infected individuals to susceptible individuals. The rate
depends to some extent on the number or alternatively, on the fraction of the
population that is infected. Resistant individuals are not typically considered
vectors of the pathogens, and so increased abundance of resistant individuals
slow the transmission rate by diluting the other two groups.

A good starting place is a simple SIR model for a population of constant
size, with no immigration or emigration [48,91].

dS
dt

= −βIS (6.33)

dI
dt

= βIS − γI (6.34)

dR
dt

= γI (6.35)
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Density–dependent SIR model

Here we create the function for the system of ODE’s in eq. 6.33.

> SIR <- function(t, y, p) {

+ {

+ S <- y[1]

+ I <- y[2]

+ R <- y[3]

+ }

+ with(as.list(p), {

+ dS.dt <- -B * I * S

+ dI.dt <- B * I * S - g * I

+ dR.dt <- g * I

+ return(list(c(dS.dt, dI.dt, dR.dt)))

+ })

+ }

In this model, the transmission coefficient, β, describes the instantaneous
rate at which the number of infected hosts increases per infected individual. It
is directly analogous to the attack rate of type I Lotka–Volterra perdator–prey
models. Recall that it is based on the law of mass action, borrowed from physics
and chemistry. It assumes that the rate at which events occur (new infections)
is due to complete and random mixing of the reactants (S , I), and the rate at
which the reactants collide and react can be described by a single constant, β. As
density of either type of molecule increases, so too does the rate of interaction.
In Lotka–Volterra predation, we referred to βS as a linear functional response;
here we refer to βS as the transmission function and in particular we call it a
mass action or density–dependent transmission function. The transmission rate
is the instantaneous rate for the number of new infections or cases per unit
time [136].

Resistant individuals might be resistant for one of two reasons. They may
die, or they may develop immunities. In either case, we assume they cannot catch
the disease again, nor spread the disease. As this model assumses a constant
population size, we continue to count all R individuals, regardless of whether
they become immune or die.

The individuals become resistant to this disease at the constant per capita
rate, γ. The rate γ is also the inverse of the mean residence time, or duration,
of the disease13.

Disease incidence is the number of new infections or cases occurring over a
defined time interval. This definition makes incidence a discrete-time version of
transmission rate. Prevalence is the fraction of the population that is infected
I/N.

A common question in disease ecology is to ask under what conditions will
an outbreak occur. Another way of asking that is to ask what conditions cause

13 This is an interesting phenomenon of exponential processes — the mean time as-
sociated with the process is equal to the inverse of the rate. This is analogous to
turnover time or residence time for a molecule of water in a lake.
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İ > 0. We can set dI/dt > 0 and solve for something interesting about what is
required for an outbreak to occur.

0 < βIS − γI
γ

β
< S (6.36)

What does this tell us? First, because we could divide through by I, it means
that if no one is infected, then an outbreak can’t happen — it is the usual,
but typically unstable equilibrium at 0. Second, it tells us that an outbreak
will occur if the absolute density of susceptibles14 is greater than γ/β. If we
consider the pre-outbreak situation where S ≈ N, then simply making the pop-
ulation size (and density) low enough can halt the spread of disease. This is
why outbreaks tend to occur in high density populations, such as agricultural
hosts (e.g., cattle), or historically in urban human populations, or in schools.

Vaccinations are a way to reduce S without reducing N. If a sufficient number
of individuals in the population are vaccinated to reduce S below γ/β, this tends
to protect the unvaccinated individuals as well.

Another common representation of this is called the “force of infection” or
“basic reproductive rate of the disease.” If we assume that in a large population
S ≈ N, then rearranging eq. 6.36 gives us

R0 =
βN
γ

(6.37)

where R0 is the basic reproductive rate of the disease. If R0 > 1, then an outbreak
(i.e., disease growth) is plausible. This is analogous to the finite rate of increase
of a population where λ > 1.

Simple SIR dynamics (Fig. 6.11)

Here we model the outbreak of a nonlethal disease (e.g., a new cold virus in winter
on a university campus). We assume that the disease is neither live-threatening,
and nor is anyone resistant, thus Rt=0 = 0. We can investigate the SIR model by
pretending that, as is often the case, we begin with a largely uninfected population
and t = 0, so I0 = 1 and S 0 ≈ N. We first set parameters.

> N <- 10^4

> I <- R <- 1

> S <- N - I - R

> parms <- c(B = 0.01, g = 4)

We next integrate for three months.

> months <- seq(0, 3, by = 0.01)

> require(deSolve)

> SIR.out <- data.frame(ode(c(S, I, R), months, SIR, parms))

> matplot(months, SIR.out[, -1], type = "l", lty = 1:3, col = 1)

> legend("right", c("R", "I", "S"), lty = 3:1, col = 3:1, bty = "n")

14 S is the absolute density, whereas S/N is the relative density.
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Fig. 6.11: Epidemic with the simplest SIR model. Assumes constant population size.

6.3.1 SIR with frequency–dependent transmission

It is important at this point to reiterate a point we made above — these conclu-
sions apply when S, I, and R are densities [136]. If you increase population size
but also the area associated with the population, then you have not changed
density. If population size only increases, but density is constant, then interac-
tion frequency does not increase. Some populations may increase in density as
they increase is size, but some may not. Mass action dynamics are the same as
type I functional response as predators — there is a constant linear increase in
per capita infection rate as the number of susceptible hosts increases.

In addition to mass action (a.k.a. density dependent) transmission, investi-
gators have used other forms of density dependence. One the most common is
typically known as frequency–dependent transmission, where

dS
dt

= −β
S I
N

(6.38)

dI
dt

= β
S I
N
− γI (6.39)

dI
dt

= γI. (6.40)
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Frequency–dependent SIR model

Here we create the function for the system of ODEs in eq. 6.33.

> SIRf <- function(t, y, p) {

+ {

+ S <- y[1]

+ I <- y[2]

+ R <- y[3]

+ N <- S + I + R

+ }

+ with(as.list(p), {

+ dS.dt <- -B * I * S/N

+ dI.dt <- B * I * S/N - g * I

+ dR.dt <- g * I

+ return(list(c(dS.dt, dI.dt, dR.dt)))

+ })

+ }

The proper form of the transmission function depends on the mode of trans-
mission [136]. Imagine two people are on an elevator, one sick (infected), and
one healthy but susceptible, and then the sick individual sneezes [48]. This re-
sults in a particular probability, β, that the susceptible individual gets infected.
Now imagine resistant individuals get on the elevator — should adding resistant
individuals change the probability that the susceptible individual gets infected?
Note what has and has not changed. First, with the addition of a resistant
individual, N has increased, and prevalence, I/N, has decreased. However, the
densities of I and S remain the same (1 per elevator). What might happen?
There are at least two possible outcomes:
1. If sufficient amounts of the virus spread evenly throughout the elevator,

adding a resistant individual does not change the probability of the suscep-
tible becoming sick, and the rate of spread will remain dependent on the
densities of I and S — the rate will not vary with declining prevalence.

2. If only the immediate neighbor gets exposed to the pathogen, then the
probability that the neighbor is susceptible declines with increasing R, and
thus the rate of spread will decline with declining prevalence.

It is fairly easy to imagine different scenarios, and it is very important to justify
the form of the function.

Density–dependent transmission (Fig. 6.12) is independent of the number of
resistant individuals; having higher density of infected individuals or more sus-
ceptible individuals always enhances transmission rate, assuming both I, S > 0.
In contrast, frequency–dependent transmission does depend on the density of
resistant (living) individuals because they can “get in the way” of transmission
(consider our elevator example above). That is, they reduce to probability of in-
fected individuals coming into contact with susceptible hosts15. That is, there is
a greater probability that the immediate neighbor of an infected host is already
infected, and so cannot become a new infection or case. Similarly, having more

15 Note N = S + I + R, and that increasing R cause decreasing S I/N.
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Fig. 6.12: The rate of transmission may depend only on the linear dependence of
mass action, or may depend curvilinearly on the prevalence, the frequency of infected
individuals in the population.

susceptible hosts makes it more likely the immediate neighbor of a susceptible
host is another susceptible host and not a source of infection.

Transmission models (Fig. 6.12)

Here we plot density–dependent and frequency–dependent transmission rates, as
functions of S and I. We rescale the transmission coefficient appropriately (βF =

NmaxβD) [136].

> R <- 0

> S <- I <- 1000

> Ss <- Is <- seq(1, S, length = 11)

> N <- S + I + R

> betaD <- 0.1

> betaF <- betaD * N

We use sapply to calculate the transmission functions for each combination of the
values of I and S .

> mat1 <- sapply(Is, function(i) betaD * i * Ss)

> mat2 <- sapply(Is, function(i) betaF * i * Ss/(i + Ss + R))

Now we plot these matrices.

> layout(matrix(1:2, nr = 1))

> persp(mat1, theta = 20, phi = 15, r = 10, zlim = c(0, betaD *

+ S * I), main = "Density Dependent", xlab = "I", ylab = "S",

+ zlab = "Transmission Rate")

> persp(mat2, theta = 20, phi = 15, r = 10, zlim = c(0, betaF *

+ S * I/N), main = "Frequency Dependent", xlab = "I", ylab = "S",

+ zlab = "Transmission Rate")
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What does frequency–dependent transmission imply about dynamics? Let’s
solve for dI/dt > 0.

0 < β
S I
N
− γI

γ < β
S
N
. (6.41)

As we did above, let’s consider the pre-outbreak situation where S ≈ N, so that
S/N ≈ 1. In that case, the basic reproductive rate is R0 = β/γ, which is inde-
pendent of N. An outbreak will occur as long as β > γ, regardless of population
density. This is in direct contrast to the density–dependent transmission model
(eqs. 6.38, 6.40), where outbreak could be prevented if we simply reduce the
population, N, to a sufficently low density. Both modes of transmission are ob-
served in human and non-human populations, so it is important to understand
how the disease is spread in order to predict its dynamics.

Another interesting phenomenon with frequency–dependent transmission is
that prevalence (I/N) can decline with increasing population size (Fig. 6.13).
Two phenomena contribute to this pattern. First, outbreak in a completely
susceptible population typically begins with a single individual, and so initial
prevalence is always I/N = 1/N. Second, as a consequence of this, the transmis-
sion rate is lower in larger populations because βS I/N is small. As a consequence,
prevalence remains low for a relatively long time. In a seasonal population, most
individuals in large populations remain uninfected after four months. Depend-
ing upon the organism, this could be long enough to reproduce. In contrast,
a density–dependent model typically shows the oppositive, pattern, with more
rapid, extreme outbreaks and greater prevalence in more dense populations
(Fig. 6.13).
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Fig. 6.13: Prevalence (I/N) vs. population density. With frequency–dependent trans-
mission, (a), prevalence may decrease with population density. In contrast, with
density–dependent transmission, (b), prevalence may increase with density.

SIR dynamics with frequency–dependent transmission (Fig. 6.13)

Here we demonstrate that prevalence can decline with increasing population size
in a frequency–dependent disease (e.g., a smut on plant [3]). Let us assume that
resistance cannot be acquired, so γ = 0, and R = 0. We can investigate the SIR
model by pretending that, as is often the case, we begin with a largely uninfected
population and t = 0, so I0 = 1 and S 0 ≈ N. We first set parameters.

> S <- 4^(0:4); I <- 1

> parmsf <- c(B = 1, g = 0)

> parmsd <- c(B = 1/16, g = 0)

We next integrate for six months, letting R = S/2.

> Months <- seq(0, 8, by = 0.1)

> outd <- sapply(S, function(s) {

+ out <- ode(c(s, I, R), Months, SIR, parmsd)

+ out[, 3]/apply(out[, 2:4], 1, sum)

+ })

> outf <- sapply(S, function(s) {

+ out <- ode(c(s, I, R), Months, SIRf, parmsf)

+ out[, 3]/apply(out[, 2:4], 1, sum)

+ })

Last, we make the figures.

> matplot(Months, outd, type = "l", col = 1, ylab = "Prevalence (I/N)")

> matplot(Months, outf, type = "l", col = 1, ylab = "Prevalence (I/N)")

> legend("bottomright", legend = S, lty = 1:length(S), bty = "n")
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6.3.2 SIR with population dynamics

(The following sections rely on code.)
The above model assumes a constant population size — sort of. Recall that

the “resistant group” could consist of those that acquire the ultimate immunity,
death. In any event, we could make a more complex model that includes popu-
lation growth and death unrelated to disease. Here we add births, b, potentially
by all types, sick or not (S + I + R), and we assume that the newborns are
susceptible only. We also added a mortality term to each group (mS , mI, mR).

dS
dt

= b (S + I + R) − βS I − mS (6.42)

dI
dt

= βS I − γI − mI (6.43)

dR
dt

= γI − mR (6.44)

Note that the births add only to the susceptible group, whereas density inde-
pendent mortality subtracts from each group.

Disease model with population growth

Here we create the function for the system of ODE’s in eq. 6.42.

> SIRbd <- function(t, y, p) {

+ S <- y[1]

+ I <- y[2]

+ R <- y[3]

+ with(as.list(p), {

+ dS.dt <- b * (S + I + R) - B * I * S - m * S

+ dI.dt <- B * I * S - g * I - m * I

+ dR.dt <- g * I - m * R

+ return(list(c(dS.dt, dI.dt, dR.dt)))

+ })

+ }

Let’s start to work with this model — that frequently means making sim-
plifying assumptions. We might start by assuming that if infected and resistant
individuals can contribute to offspring, then the disease is relatively benign.
Therefore, we can assume that mortality is the same for all groups (mi = m).
Last, let us assume (again) a constant population size. This means that birth
rate equals mortality or b = m.

Now imagine a large city, with say, a million people. Let’s then assume that
we start of with a population of virtually all susceptible people, but we introduce
a single infected person.

> N <- 10^6

> R <- 0

> I <- 1

> S <- N - I - R
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Let us further pretend that the disease runs its course over about 10–14 days.
Recall that γ (“gamma”) is the inverse of the duration of the disease.

> g <- 1/(13/365)

Given a constant population size and exponential growth, then the average life
span is the inverse of the birth rate. Let us pretend that the average life span
is 50 years.

> b <- 1/50

For this model, the force of infection turns out to be R0 = 1+1/ (b + α), where α
is the average age at onset of the disease [48]. We can therefore estimate β from
all the other parameters, including population size, average life span, average
age at onset, and the average duration of the disease. For instance, imagine that
we have a disease of children, where the average onset of disease is 5 y, so we
have

> age <- 5

> R0 <- 1 + 1/(b * age)

so β becomes

> B <- R0 * (g + b)/N

Finally, we can integrate the population and its states. We create a named
vector of parameters, and decide on the time interval.

> parms <- c(B = B, g = g, b = b, m = b)

> years <- seq(0, 30, by = 0.1)

It turns out that because of the relatively extreme dynamics (Fig. 6.14), we
want to tell the ODE solver to take baby steps, so as to properly capture the
dynamics — we use the hmax argument to make sure that the maximum step
it takes is relatively small.

> SIRbd.out <- data.frame(ode(c(S = S, I = I, R = R), years,

+ SIRbd, parms, hmax = 0.01))

> matplot(SIRbd.out[, 1], sqrt(SIRbd.out[, -1]), type = "l",

+ col = 1, lty = 1:3, ylab = "sqrt(No. of Individuals)",

+ xlab = "Years")

> legend("right", c("S", "I", "R"), lty = 1:3, bty = "n")

Note that the population quickly becomes resistant (Fig. 6.14). Note also
that we have oscillations, albeit damped oscillations. An analytical treatment
of the model, including eigenanalysis of the Jacobian matrix could show us
precisely the predicted periodicity [48]. It depends on the the age at onset, and
the duration of the disease.
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Fig. 6.14: Epidemic for a nonlethal disease, with an SIR model which includes births
and deaths, and a constant population size.

6.3.3 Modeling data from Bombay

Here we try our hand at fitting the SIR model to some data. Kermack and
McCormick [91] provided data on the number of plague deaths per week in
Bombay16 in 1905–06. We first enter them and look at them17.

> data(ross)

> plot(CumulativeDeaths ~ Week, data = ross)

As with most such enterprises, we wish we knew far more than we do about
the which depends on fleas, rodents, humans, and Yersinia pestis on which the
dynamics depend. To squeeze this real-life scenario into a model with a small
number of parameters requires a few assumptions.

A good starting place is a simple SIR model for a population of constant
size (eq. 6.33) [48,91].

Optimization

We next want to let R find the most accurate estimates of our model parameters
β, γ. The best and most accessible reference for this is Bolker [13]. Please read
the Appendix B.11 for more explanation regarding optimization and objective
functions.

Now we create the objective function. An objective function compares a
model to data, and calculates a measure of fit (e.g., residual sum of squares,
likelihood). Our objective function will calculate the likelihood18 of particular

16 Bombay is the coastal city now known as Mumbai, and is the capital of Maharash-
tra; it is one of the largest cities in the world.

17 Data provided kindly by S.P. Ellner
18 Likelihood is the probability of data, given a particular model and its parameters.
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Fig. 6.15: Cumulative deaths for plague, in Bombay, India, 1905–1906 (raw data and
fitted model, as described in this section).

values for SIR model parameters. These parameters include γ and β of the SIR
model. The parameters will also include two other unknowns, (i) N, total rele-
vant population size of Bombay at the time (1905–1906), and (ii) I0, initial size
of the infected population at our t = 0. A survey of easily accessed census data
suggests the population at the time was in the neighborhood of ∼ 106 individu-
als. We also might assume that I0 would be a very small number, perhaps ∼ 1
in principle.

Some details about our objective function:
1. Arguments are transformed parameters (this allows the optimizer to work

on the logit19 and log scales).
2. Transformed parameters are backtransformed to the scale of the model.
3. Parameters are used to integrate the ODEs using ode, retaining only the

resistant (i.e. dead) group (the fourth column of the output); this provides
the predicted values given the parameters and the time from onset, and the
standard deviation of the residuals around the predicted values.

4. It returns the negative log-likelihood of the data, given the parameter values.
Here is our objective function. Note that its last value is the negative sum

of the log-probabilities of the data (given a particular realization of the model).

> sirLL = function(logit.B, logit.g, log.N, log.I0) {

+ parms <- c(B = plogis(logit.B), g = plogis(logit.g))

+ x0 <- c(S = exp(log.N), I = exp(log.I0), R = 0)

+ Rs <- ode(y = x0, ross$Week, SIR, parms, hmax = 0.01)[,

19 A logit is the transformation of a proportion which will linearize the logistic curve,
logit (p) = log(p/(1 − p)).
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+ 4]

+ SD <- sqrt(sum((ross$CumulativeDeaths - Rs)^2)/length(ross$Week))

+ -sum(dnorm(ross$CumulativeDeaths, mean = Rs, sd = SD,

+ log = TRUE))

+ }

We then use this function, sirLL, to find the likelihood of the best parame-
ters. The mle2 function in the bbmle library20 will minimize the negative log-
likelihood generated by sirLL, and return values for the parameters of interest.

We will use a robust, but relatively slow method called Nelder-Mead (it is
the default). We supply mle2 with the objective function and a list of initial
parameter values. This can take a few minutes.

> require(bbmle)

> fit <- mle2(sirLL, start = list(logit.B = qlogis(1e-05),

+ logit.g = qlogis(0.2), log.N = log(1e+06), log.I0 = log(1)),

+ method = "Nelder-Mead")

> summary(fit)

Maximum likelihood estimation

Call:

mle2(minuslogl = sirLL, start = list(logit.B = qlogis(1e-05),

logit.g = qlogis(0.2), log.N = log(1e+06), log.I0 = log(1)),

method = "Nelder-Mead")

Coefficients:

Estimate Std. Error z value Pr(z)

logit.B -9.4499 0.0250 -377.39 <2e-16

logit.g 1.0180 0.0663 15.34 <2e-16

log.N 9.5998 0.0181 530.15 <2e-16

log.I0 1.2183 0.1386 8.79 <2e-16

-2 log L: 389.2

This gets us some parameter estimates, but subsequent attempts to actually get
confidence intervals failed. This occurs frequently when we ask the computer to
estimate too many, often correlated, parameters for a given data set. Therefore,
we have to make assumptions regarding selected parameters. Let us assume for
the time being that the two variable estimates are correct, that the population
size of the vulnerable population was approximately exp(9.6) and the number
of infections at the onset of the outbreak was 1.2. We will hold these constant
and ask R to refit the model, using the default method.

> <- mle2(sirLL,start= as.list(coef(fit)), fixed = list(log.N = coef(fit)[3],

+ log.I0 = coef(fit)[4]), method = "Nelder-Mead")

> summary(fit2)

20 You will need to load the bbmle package from a convenient mirror, unless someone
has already done this for the computer you are using. See the Appendix for details
about packages (A.3) and optimization in R (B.11).

fit2
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Maximum likelihood estimation

Call:

mle2(minuslogl= sirLL, start = as.list(coef(fit)), method = "Nelder-Mead",

fixed = list(log.N = coef(fit)[3], log.I0 = coef(fit)[4]))

Coefficients:

Estimate Std. Error z value Pr(z)

logit.B -9.44971 0.00632 -1495.4 <2e-16

logit.g 1.01840 0.03423 29.8 <2e-16

-2 log L: 389.2

Next we want to find confidence intervals for β and γ. This can take several
minutes, but results in a likelihood profile for these parameters, which show the
confidence regions for these parameters (Fig. 6.16).

> pr2 <- profile(fit2)

> par(mar = c(5, 4, 4, 1))

> plot(pr2)

We see that the confidence intervals for the transformed variables provide esti-
mates of our confidence in these parameters.
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Fig. 6.16: Likelihood profile plots, indicating confidence intervals on transformed SIR
model parameters.
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Last we get to plot our curve with the data. We first backtransform the
coefficients of the objective function.

> p <- as.numeric(c(plogis(coef(fit2)[1:2]), exp(coef(fit2)[3:4])))

> p

[1] 7.871e-05 7.347e-01 1.476e+04 3.381e+00

We then get ready to integrate the disease dynamics over this time period.

> inits <- c(S = p[3], I = p[4], R = 0)

> params <- c(B = p[1], g = p[2])

> SIR.Bombay <- data.frame(ode(inits, ross$Week, SIR, params))

Last, we plot the model and the data (Fig. 6.15).

> matplot(SIR.Bombay[, 1], SIR.Bombay[, 3:4], type = "l", col = 1)

> points(ross$Week, ross$CumulativeDeaths)

> legend("topleft", c("I", "R"), lty = 1:2, bty = "n")

So, what does this mean (Fig. 6.15)? We might check what these values mean,
against what we know about the reality. Our model predicts that logit of γ was
a confidence interval,

> (CIs <- confint(pr2))

2.5 % 97.5 %

logit.B -9.4630 -9.436

logit.g 0.9452 1.095

This corresponds to a confidence interval for γ of

> (gs <- as.numeric(plogis(CIs[2, ])))

[1] 0.7201 0.7493

Recall that the duration of the disease in the host is 1/γ. Therefore, our model
predicts a confidence interval for the duration (in days) of

> 7 * 1/gs

[1] 9.720 9.342

Thus, based on this analysis, the duration of the disease is right around 9.5
days. This seems to agree with what we know about the biology of the Bubonic
plague. Its duration, in a human host, is typically thought to last 4–10 days.

6.4 Summary

This chapter has skimmed the surface of a tremendous amount of territory. Some
of the things we’ve learned include the notion that predator–prey relations can
unstable (Lotka–Volterra predator–prey), and that additional biology stabilize
or destabilize dynamics (negative density dependence, type II and III functional
responses); increasing resources does not always help those we intend to help
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(paradox of enrichment). We learned that space, and the spatial distribution
of hosts and their parasitoids matter (host–parasitoid dynamics) to population
dynamics. We also learned that disease outbreaks are expected, under some
conditions and not others, and that the mode of disease transmission matters,
and can be modeled in a variety of ways.

Problems

6.1. Lotka–Volterra Predator–prey Model
(a) Write down the two species Lotka–Volterra predator–prey model.
(b) Describe how Fig. 6.4 illustrates neutral oscillatory dynamics.
(c) What are the units of the predator–prey model coefficients b, a, e, and s?
How do we interpret them?

6.2. Rosenzweig-MacArthur Predator–prey Model
(a) Write down the two species Rosenzweig-MacArthur predator–prey model.
(b) How do we interpret b, K, w, D, e and s? What are their units?
(c) What is the value of the functional response when H = D? Explain how this
result provides the meaning behind the name we use for D, the half saturation
constant.
(d) For each point A–D in Fig. 6.5, determine whether the growth rate for the
predator and the herbivore are zero, positive, or negative.
(e) In what way is the Rosenzweig-MacArthur predator isocline (Fig. 6.5) similar
to the Lotka–Volterra model? It also differs from the Lotka–Volterra isocline–
explain the ecological interpretation of D in the type II functional response and
its consequence for this isocline.
(f) Explain the interpretation of real and imaginary parts of the eigenvalues for
this paramterization of the Rosenzweig-MacArthur predator–prey model.
(g) In what ways does Fig. 6.6a match the interpretation of the eigenanalysis
of this model?
(h) Examine the prey isoclines in Fig. 6.6a. How you can tell what the carrying
capacities of the prey are?
(i) What do the above eigenanalyses tell us about how the stability of the
predator–prey interaction varies with the carrying capacity of the prey?
(j) Consult Fig. 6.6a. What is the relation between the carrying capacity of the
prey and the magnitude of the oscillations? What is the relation between the
carrying capacity of the prey and the minimum population size? What does
this interpretation imply about natural ecosystems?

6.3. Effects of dispersion on host–parasitoid dynamics
(a) Demonstrate the effects of aggregation on host–parasitoid dynamics. Specif-
ically, vary the magnitude of k to find the effects on stability.
(b) Demonstrate the effects of a on stability.
(c) Demonstrate the effects of R on stability.
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6.4. Effects of age at onset and disease duration on outbreak period-
icity
(a) Create three simulations showing how diseases of different durations influ-
ence the periodicity of the outbreaks.
(b) Create three simulations showing how the age at onset for different diseases
influence the periodicity of the outbreaks.
(c) Consider which factor is more important in influencing outbreak interval.
How do you measure the interval? What criteria would you use to determine
“importance”? How do the realities of age and duration influence your selection
of criteria? Write a short essay that asserts a thesis, and then provides support
based on this exercise.
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Special Topics



7

An Introduction to Food Webs, and Lessons
from Lotka–Volterra Models

A food web is a real or a model of a set of feeding relations among species or
functional groups. This chapter has two foci, (i) a very brief introduction to
multi-species webs as networks, and (ii) a re-examination of old lessons regard-
ing the effect of food chain length on a web’s dynamical properties.

R

A B

P

 v 

 v-1 

As predators
As prey R B A P

R 0 − − −

B + 0 0 −

A + 0 0 0
P + + 0 0

Fig. 7.1: Two representations of a food web with 4 nodes and 8 directed links. The
link label “v” indicates the proportion of P’s diet comprised of R.

7.1 Food Web Characteristics

We need language to describe the components of a food web, such as links and
nodes, and we also need language to describe the properties of a web as a whole.
Generally speaking, networks such as food webs have emergent properties [133],
such as the number of nodes in the network. Emergent properties are typically
considered to be nothing more than characteristics which do not exist at sim-
pler levels of organization. For instance, one emergent property of a population
is its density, because population density cannot be measured in an individual;
that is why density is an emergent property.1 While all food web models are

1 If we assume no supernatural or spectral interference, then we can also assume that
density arises mechanistically from complicated interactions among individuals and
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based on simple pairwise interactions, the resulting emergent properties of mul-
tispecies webs quickly become complex due to indirect interactions and coupled
oscillations [11, 208]. In addition, any extrinsic factor (e.g., seasonality) that
might influence species interactions may also influence the emergent properties
of food webs.

A few important network descriptors and emergent properties include,

Node A point of connection among links, a.k.a. trophospecies; each node in
the web may be any set of organisms that share sufficiently similar feeding
relations; in Fig. 7.1, P may be a single population of one species, or it may
be a suite of species that all feed on both B and R.

Link A feeding relation; a connection between nodes or trophospecies; may be
directed (one way) or undirected. A directed link is indicated by an arrow,
and is the effect (+, −) of one species on another. An undirected link is
indicated by a line (no arrow head), and is merely a connection, usually
with positive and negative effects assumed, but not quantified.

Connectance The proportion of possible links realized. Connectance may be
based on either directed, CD, or undirected, CU , links. For Fig. 7.1 these
would be

CD =
L

S 2 =
8

16
= 0.5

CU =
L(

S 2 − S
)
/2

=
4
6

= 0.67

where S is the number of species or nodes.
Degree distribution, Pr(i) The probability that a randomly chosen node will

have degree i, that is, be connected to i other nodes [133]. In Fig. 7.1, A is
of degree 1 (i.e., is connected to one other species). P and B are of degree
2, and R is of degree 3. If we divide through by the number of nodes (4, in
Fig. 7.1), then the degree distribution consists of the probabilities Pr (i) =

{0.25, 0.5, 0.25}. As webs increase in size, we can describe this distribution
as we would a statistical distribution. For instance, for a web with randomly
placed connections, the degree distribution is the binomial distribution [34].

Characteristic path length Sometimes defined as the average shortest path
between any two nodes [47]. For instance, for Fig. 7.1, the shortest path
between P and R is 1 link, and between A and P is 2 links. The average of
all pairwise shortest paths is (1+1+1+1+2+2)/6 = 1.3̄. It is also sometimes
defined as the average of all paths between each pair of nodes.

Compartmentation, CI The degree to which subsets of species are highly
connected or independent of other species.
To calculate compartmentation in a food web, first assume each species
interacts with itself. Next, calculate the proportion of shared interactions,
pi j for each pair of species, by comparing the lists of species with which each

their environments, rather than via magic. Other scientists will disagree and say
that properties like density that appear to be simple additive aggregates do not
qualify for the lofty title of “emergent property.”
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species in a pair interacts. The numerator of pi j is the number of species
with which both of the pair interact. The denominator is the total number
of different species with which either species interacts.

As an example, let’s calculate this for the above food web (Fig. 7.1). A
interacts with A and R, B interacts with B, R, and P. Therefore, A and B
both interact with only R, whereas, together, A and B interact with A, B,
R, and P. The proportion, pi j, therefore is 1/4 = 0.25. We do this for each
species pair.
Next we sum the proportions, and divide the sum by the maximum possible
number of undirected links, CU . To reiterate: For any pair of species, i and

Species A B P

R 2/4 3/4 3/4
A 1/4 1/4
B 3/3

CI =

∑S−1
i=1

∑S
j=i+1 pi j(

S 2 − S
)
/2

= 3.5/6

= 0.58

j (i , j), pi j is the proportion of shared interactions, calculated from the
number of species that interact with both species i and j, divided by the
number of species that interact with either species i or species j. As above,
S is the number of species or nodes in the web.

Trophic Level Trophic position may simply be categorized as basal, inter-
mediate or top trophic positions. Basal positions are those in which the
trophospecies feed on no other species. The top positions are those in which
the trophospecies are fed upon by nothing. One can also calculate a quanti-
tative measure of trophic level. This is important in part because omnivory,
something rampant in real food webs, complicates identification of a trophic
level. We can calculate trophic level for the top predator, P (Fig. 7.1), and
let us assume that P gets two-thirds of what it needs from B, and gets
one-third from A. B itself is on the second trophic level, so given that, the
trophic level of P is calculated as

Ti = 1 +

S∑
j=1

T j pi j = 1 + (2 (0.67) + 1 (0.33)) = 2.67

where Ti is the trophic level of species i, T j is the trophic level of prey species
j, and pi j is the proportion of the diet of predator i consisting of prey j.

Omnivory Feeding on more than one trophic level (v > 0, Fig. 7.1); it is not
merely feeding on different species or resources.

Intraguild predation A type of omnivory in which predation occurs between
consumers that share a resource; in Fig. 7.1 P and B share prey R. When
P gets most of its energy from B, we typically refer to that as omnivory
(v < 0.5); when P gets most of its energy from R, we typically refer to that
as intraguild predation (v > 0.5).

This list of food web descriptors is a fine start but is by no means exhaustive.
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7.2 Food chain length — an emergent property

There are many interesting questions about food webs that we could address;
let us address one that has a long history, and as yet, no complete answer:
What determines the length of a food chain? Some have argued that chance
plays a large role [34, 81, 221], and others have shown that area [122, 178] or
ecosystem size [167] may play roles. The explanation that we will focus on here
is dynamical stability. Communities with more species had been hypothesized
to be less stable, and therefore less likely to persist and be observed in nature.
Stuart Pimm and John Lawton [159] extended this work by testing whether
food chain length could be limited by the instability of long food chains [167].

7.2.1 Multi-species Lotka–Volterra notation

A many-species Lotka–Volterra model can be represented in a very compact
form,

dXi

dt
= Xi

bi +

S∑
j=1

ai jX j

 (7.1)

where S is the number of species in the web, bi is the intrinsic rate of increase
of species i (i.e., ri), and ai j is a per capita effect of species j on species i.

When i = j, ai j refers to an intraspecific effect, which is typically negative.
Recall that in our earlier chapters on competition, we used αii to represent
intraspecific per capita effects. Here for notational convenience, we leave i and
j in the equation, realizing that i = j for intraspecific interactions. Further, we
let ai j be any sign, either positive or negative, and sum the effects. If we let
X = N, b = r, and a = rα, then the following are equivalent:

Ṅ1 = r1N1 (1 − α11N1 − α12N2)

Ẋ = X1 (b1 + a11X1 + a12X2)

The notation in eq. 7.1 is at once both simple and flexible. When ai j is negative,
it may represent competition or the effect of a predator, j, on its prey, i. When
ai j is positive, it may represent mutualism or the effect of prey j on a predator i.

7.2.2 Background

In the early and mid-1970’s, Robert May and others demonstrated that im-
portant predictions could be made with relatively simple Lotka–Volterra mod-
els [127], and this work still comprises an important compendium of lessons for
ecologists today [133]. May used simple Lotka–Volterra models to show that
increasing the number of species in a food web tended to make the food web
less stable [127, 134]. In species-rich webs, species were more likely to become
extinct. Further, he showed that the more connections there were among species
in the web (higher connectance), and the stronger those connections (higher in-
teraction strength), the less stable the web. At the time, this ran counter to a
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Fig. 7.2: (a), (b), and (c) correspond to Pimm and Lawton (1977) Figs. 1A, E, and B.
Note that (b) differs from (a) in that (b) has only two trophic levels instead of four.
Note also that (c) differs from (a) only in that species 4 has an additional omnivorous
link. All basal species exhibit negative density dependence.

prevailing sentiment that more diverse ecosystems were more stable, and led to
heated discussion.

May used specific quantitative definitions of all of his ideas. He defined
connectance as the proportion of interactions in a web, given the total number of
all possible directed interactions (i.e., directed connectance). Thus a linear food
chain with four species (Fig. 7.2a), and intraspecific competition in the basal
(bottom) species would have a connectance of 4/16 = 0.25. May’s definition of
interaction strength was the square root of the average of all a2

i j (i , j),

I =

√∑S
i=1

∑S
j=1,i, j ai j

S 2 − S
. (7.2)

Squaring the ai j focuses on magnitudes, putting negative and positive values on
equal footing.

An important component of May’s work explored the properties of randomly
connected food webs. At first glance this might seem ludicrous, but upon con-
sideration, we might wonder where else one could start. Often, simpler (in this
case, random) might be better. The conclusions from the random connection
models act as null hypotheses for how food webs might be structured; deviations
from May’s conclusions might be explained by deviations from his assumptions.
Since this work, many ecologists have studied the particular ways in which webs
in nature appear non-random.

One conclusion May derived was a threshold between stability and instability
for random webs, defined by the relation

I (S CD)1/2 = 1 (7.3)



216 7 An Introduction to Food Webs

where I is the average interaction strength, S is the number of species, and
CD is directed connectance. If I (S C)1/2 > 1, the system tended to be unstable
(Fig. 7.3). Thus, if we increase the number of species, we need to decrease the
average interaction strength if we want them to persist. The larger and more
tightly connected (larger I, S , and CD) the web, the more likely it was to come
crashing down. Therefore, if longer food chains were longer by virtue of having
more species, they would be less stable because of the extra species, if for no
other reason.

0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30

Interaction Strength (I )

N
um

be
r 

of
 S

pe
ci

es
 (

S
)

Uns
ta

ble
 W

eb
s

Stable W
ebs

Fig. 7.3: Relation between the average interaction strength and the number of species
able to coexist (here directed connectance is CD = 0.3). The line represents the maxi-
mum number of species that are predicted to be able to coexist at equilibrium. Fewer
species could coexist, but, on average, more species cannot coexist at equilibrium.

Pimm and Lawton felt that it seemed reasonable that long chains might be
less stable also because predator-prey dynamics appear inherently unstable, and
a connected series of unstable relations seemed less likely to persist than shorter
chains. They tested whether food chain length per se, and not the number of
species, influenced the stability of food chains. Another question they addressed
concerned omnivory. At the time, surveys of naturally occurring food webs
had indicated that omnivory was rare [160]. Pimm and Lawton tested whether
omnivory stabilized or destabilized food webs [159,160].

Like May, Pimm and Lawton [159] used Lotka–Volterra models to investigate
their ideas. They designed six different food web configurations that varied
food chain length, but held the number of species constant (Fig. 7.2). For each
food web configuration, they varied randomly interaction strength and tested
whether an otherwise randomly structured food web was stable. Their food
webs included negative density dependence only in the basal species.

Pimm and Lawton concluded that (i) shorter chains were more stable than
longer chains, and (ii) omnivory destabilized food webs (Fig. 7.5). While these
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conclusions have stood the test of time, Pimm and Lawton failed to highlight
another aspect of their data — that omnivory shortened return times for those
webs that were qualitatively stable (Fig. 7.7). Thus, omnivory could make more
stable those webs that it didn’t destroy. Subsequent work has elaborated on
this, showing that weak omnivory is very likely to stabilize food webs [137,138].

7.3 Implementing Pimm and Lawton’s Methods

Here we use R code to illustrate how one might replicate, and begin to extend,
the work of Pimm and Lawton [159].

In previous chapters, we began with explicit time derivatives, found partial
derivatives and solved them at their equilibria. Rather than do all this, Pimm
and Lawton bypassed these steps and went straight to the evaluated Jacobian
matrix. They inserted random estimates for the elements of the Jacobian into
each non-zero element in the food web matrix. These estimates were constrained
within (presumably) reasonable limits, given large less abundant predators and
small more abundant prey.

Their methods followed this approach.
1. Specify a food web interaction matrix.2

2. Include negative density dependence for basal species only.
3. Set upper and lower bounds for the effects of predators on prey (0 to −10)

and prey on predators(0 to +0.1); these are the Jacobian elements.
4. Generate a large number of random Jacobian matrices and perform linear

stability analysis.
5. Determine qualitative stability (test λ1 < 0), and return time for each ran-

dom matrix. Use these to examine key features of the distributions of return
times (e.g., average return time).

6. Compare the stability and return times among different food web configu-
rations that varied systematically in food chain length and the presence of
omnivory, but hold the number of species constant.
It is worth discussing briefly the Jacobian elements. May [127] defined in-

teraction strength as the Jacobian element of a matrix, which represents the
total effect of one individual on the population growth rate of another species.
Think about how you calculate the Jacobian — as the partial derivative of
one species’ growth rate with respect to the size of the other population. It is
the instantaneous change in the population growth rate per unit change in the
population of another, at the equilibrium. The units chosen for the Jacobian
elements thus mean that individual predators have relatively much larger effects
on the population growth rates of prey than vice versa.

Let’s build a function that does what Pimm and Lawton did. There are an
infinite number of ways to do this, but this will suffice. First, we’ll create a
matrix that represents qualitatively the simplest longest food chain (Fig. 7.2a)
where each species feeds only on one other species and where no prey are fed

2 In the original publication, webs E and D seem to be represented incorrectly.
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upon by more than one consumer. Initially, we will use the values of greatest
magnitude used by Pimm and Lawton.

> Aq = matrix(c(-1, -10, 0, 0, 0.1, 0, -10, 0, 0, 0.1, 0, -10,

+ 0, 0, 0.1, 0), nrow = 4, byrow = TRUE)

Note that this matrix indicates a negative effect of the basal species on itself,
large negative effects (−10) of each consumer on its prey, and small positive
effects of each prey on its consumer.

For subsequent calculations, it is convenient to to find out from the matrix
itself how big the matrix is, that is, how many species, S , are in the web.

> S <- nrow(Aq)

Next, we create a random realization of this matrix by multiplying each ele-
ment times a unique random number between zero and 1. For this matrix, that
requires 42 unique numbers.

> M <- Aq * runif(S^2)

Next we perform eigenanalysis on it, retaining the eigenvalues.

> eM <- eigen(M)[["values"]]

Pimm and Lawton tested whether the dominant eigenvalue was greater than
0 (unstable) and if less than zero, they calculated return time. We will simply
record the dominant eigenvalue (the maximum of the real parts of the eigenval-
ues).

> deM <- max(Re(eM))

Given the stabilizing effect of the intraspecific negative density dependence, we
will hang on to that as well.

> intraNDD <- sqrt(sum(diag(M)^2)/S)

Given lessons from May’s work [134], we might also want to calculate the average
interaction strength, not including the intraspecific interactions. Here we set the
diagonal interactions equal to zero, square the remaining elements, find their
average, and take the square root.

> diag(M) <- 0

> IS <- sqrt(sum(M^2)/(S * (S - 1)))

Recall that weak omnivory is supposed to stabilize food webs [138]. For webs
that include omnivory, we will calculate the interaction strength of omnivory in
the same way we do for other interactions, as the square root of the average of
the squared ai j (eq. 7.2).

We can wrap all this up in a function where we specify the i, j of one of the
directed omnivorous links.3

> args(pimmlawton)

function (mat, N = 1, omni.i = NA, omni.j = NA, omega = NULL)

3 It does not matter which we specify, either the i j or the ji.
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Now we can check this function for a single simulation for our first web,

> set.seed(1)

> pimmlawton(Aq)

DomEig Im IntraDD I

1 -0.01593 0.4626 0.1328 2.304

Now let’s do it 2000 times, as Pimm and Lawton did. Each row will be an
independent randomization, and the columns will be the dominant eigenvalue,
the intraspecific density dependence, and the average interaction strength.

> out.A <- pimmlawton(Aq, N = 2000)

We might like to look at basic summary statistics of the information we collected
— what are their minima and maxima and mean?

> summary(out.A)

DomEig Im IntraDD I

Min. :-2.28e-01 Min. :0.000 Min. :0.000178 Min. :0.265

1st Qu.:-4.30e-02 1st Qu.:0.301 1st Qu.:0.117873 1st Qu.:2.241

Median :-1.50e-02 Median :0.634 Median :0.245611 Median :2.851

Mean :-2.92e-02 Mean :0.592 Mean :0.246466 Mean :2.766

3rd Qu.:-3.53e-03 3rd Qu.:0.881 3rd Qu.:0.376127 3rd Qu.:3.369

Max. :-7.19e-08 Max. :1.373 Max. :0.499709 Max. :4.762

We see that out of 2000 random food chains, the largest dominant eigenvalue
is still less than zero (λ1 < 0). What does that mean? It means that all of the
chains are qualitatively stable, and that the return times are greater than zero
(−1/λ1 > 0).4

May’s work showed that stability is related to interaction strength. Let’s
examine how the dominant eigenvalue is related to interaction strength.5

> pairs(out.A)

The results of our simulation (Fig. 7.4) show that the dominant eigenvalue
can become more negative with greater intraspecific negative density depen-
dence (IntraDD) and greater intersepcifiic interaction strength (I). Recall what
this means — the dominant eigenvalue is akin to a perturbation growth rate at
the equilibrium and is the negative inverse of return time. Therefore, stability
can increase and return time decrease with increasing interaction strengths.

Note also (Fig. 7.4) that many eigenvalues seem very close to zero — what
does this mean for return times? The inverse of a very small number is a very
big number, so it appears that many return times will be very, very large,
and rendering the webs effectively unstable. Let’s calculate return times and
examine a summary.

4 Recall that a negative return time indicates that any “perturbation” at the equi-
librium would have been closer to zero at some time in the past, i.e., that the
perturbation is growing.

5 Recall that if we think of stability analysis as the analysis of a small perturba-
tion at the equilibrium, then the dominant eigenvalue is the growth rate of that
perturbation.
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Fig. 7.4: Perturbations at the equilibrium tend to dissipate more rapidly (more neg-
ative dominant eigenvalues) with greater intraspecific negative density dependence
(IntraDD) and greater interspecifiic interaction strength (I). This graph also demon-
strates the independence of IntraDD and I in these simulations.

> RT.A <- -1/out.A[["DomEig"]]

> summary(RT.A)

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.38e+00 2.32e+01 6.68e+01 1.17e+04 2.83e+02 1.39e+07

We find that the maximum return time is a very large number, and even the
median is fairly large (67). In an ever-changing world, is there any meaningful
difference between a return time of 1000 generations vs. neutral stability?

Pimm and Lawton addressed this by picking an arbitrarily large number
(150) and recording the percentage of return times greater than that. This
percentage will tell us the percentage of webs that are not effectively stable.

> sum(RT.A > 150)/2000

[1] 0.348
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Now let’s extract the return times that are less than or equal to 150 and make
a histogram with the right number of divisions or bins to allow it to look like
the one in the original [159].

> A.fast <- RT.A[RT.A < 150]

> histA <- hist(A.fast, breaks = seq(0, 150, by = 5), main = NULL)

This histogram (Fig. 7.5a) provides us with a picture of the stability for a food
chain like that in Fig. 7.2a. Next, we will compare this to other webs.
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Fig. 7.5: Histograms for three of the six food chains (A, E, and B) used by Pimm and
Lawton.

7.4 Shortening the Chain

Now let’s repeat all this (more quickly) for a shorter chain, but with the same
number of species (Fig. 7.2b). So, we first make the web function.

> Eq = matrix(c(-1, 0, 0, -10, 0, -1, 0, -10, 0, 0, -1, -10,

+ 0.1, 0.1, 0.1, 0), nrow = 4, byrow = TRUE)

Next we run the 2000 simulations, and check a quick summary.

> out.E <- pimmlawton(Eq, N = 2000)

> summary(out.E)

DomEig Im IntraDD I

Min. :-0.48631 Min. :0.000 Min. :0.0471 Min. :0.206

1st Qu.:-0.28429 1st Qu.:0.142 1st Qu.:0.3894 1st Qu.:2.301

Median :-0.20151 Median :0.674 Median :0.4901 Median :2.861

Mean :-0.20865 Mean :0.583 Mean :0.4805 Mean :2.799

3rd Qu.:-0.12473 3rd Qu.:0.897 3rd Qu.:0.5814 3rd Qu.:3.372

Max. :-0.00269 Max. :1.423 Max. :0.8346 Max. :4.772

The summary shows that, again, that all webs are stable (λ1 < 0). A histogram
of return times also shows very short return times (Fig. 7.5b). Plots of λ1 vs.
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interaction strengths show that with this short chain, and three basal species
that the role of intraspecfic density dependence becomes even more important,
and the predator-prey interactions less important in governing λ1.

> layout(matrix(1:2, nr = 1))

> plot(DomEig ~ IntraDD, data = out.E)

> plot(DomEig ~ I, data = out.E)
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Fig. 7.6: For a food chain with two levels, and three basal species, perturbation growth
rate (λ1) declines with increasing intraspecific negative density dependence (IntraDD)
and is unrelated to predator-prey interaction strengths.

Note that with the shorter food chain, a greater proportion of the λ1 are more
negative (farther away from zero) than in the four level food chain. Clearly
then, shortening the web stabilizes it, in spite of still having the same number
of species.

Let us again categorize these as having long and short return times, and
graph the distribution of the short ones.

> RT.E <- -1/out.E[["DomEig"]]

> E.fast <- RT.E[RT.E < 150]

> histE <- hist(E.fast, breaks = seq(0, 150, by = 5), main = NULL)

7.5 Adding Omnivory

Real webs also have omnivory — feeding on more than one trophic level. A
nagging question, then and now, concerns the effect of omnivory on food web
dynamics. Pimm and Lawton compared food web dynamics with and with-
out omnivory. Let’s now create the web (Fig. 7.2c) that they used to compare
directly with their linear food chain (Fig. 7.2a).
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> Bq = matrix(c(-1, -10, 0, 0, 0.1, 0, -10, -10, 0, 0.1, 0,

+ -10, 0, 0.1, 0.1, 0), nrow = 4, byrow = TRUE)

Next we run the 2000 simulations, and check a quick summary.

> out.B <- pimmlawton(Bq, N = 2000, omni.i = 2, omni.j = 4)

> summary(out.B)

DomEig IntraDD I I.omni

Min. :-0.182 Min. :0.000291 Min. :0.568 Min. :0.00643

1st Qu.: 0.178 1st Qu.:0.125840 1st Qu.:2.707 1st Qu.:1.70230

Median : 0.527 Median :0.245658 Median :3.275 Median :3.45300

Mean : 0.576 Mean :0.248152 Mean :3.217 Mean :3.49159

3rd Qu.: 0.913 3rd Qu.:0.371943 3rd Qu.:3.782 3rd Qu.:5.24184

Max. : 1.839 Max. :0.499965 Max. :5.389 Max. :7.06030

With omnivory, we now see that most webs have λ1 > 0, and thus are unstable.
This was one of the main points made by Pimm and Lawton. Let’s look at the
data.

> pairs(out.B)

It means that most of the randomly constructed webs were not stable point
equilibria. To be complete, let’s graph what Pimm and Lawton did.

> RT.B <- -1/out.B[["DomEig"]]

> B.fast <- RT.B[RT.B < 150 & RT.B > 0]

> out.B.fast <- out.B[RT.B < 150 & RT.B > 0, ]

> out.B.stab <- out.B[RT.B > 0, ]

> histB <- hist(B.fast, breaks = seq(0, 150, by = 5), main = NULL)

7.5.1 Comparing Chain A versus B

Now let’s compare the properties of the two chains, without, and with, omnivory,
chains A and B (Figs. 7.2a, 7.2c). Because these are stochastic simulations, it
means we have distributions of results. For instance, we have a distribution of
return times for chain A and a distribution for return times for chain B. That
is, we can plot histograms for each of them. Pimm and Lawton compared their
webs in common sense ways. They compared simple summaries, including

• the proportion of random webs that were stable (positive return times),
• the proportion of stable random webs with return times greater than 150.

Now let’s try graphical displays. Rather than simply chopping off the long
return times, we use base 10 logarithms of return times because the distributions
are so right-skewed. We create a histogram6 of the return times for chain A,
and nonparametric density functions for both chain A and B.7

6 Note that now we use probabilities for the y-axis, rather than counts. The proba-
bility associated with any particular return time is the product of the height of the
column and the width of the column (or bin).

7 These density smoothers do a good job describing empirical distributions of contin-
uous data, often better than histograms, which have to create discrete categories
or “bins” for continuous data.
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> hist(log(RT.A, 10), probability = T, ylim = c(0, 1), main = NULL,

+ xlab = expression(log[10]("Return Time")))

> lines(density(log(RT.A, 10)))

> lines(density(log(RT.B[RT.B > 0], 10)), lty = 2, lwd = 2)

> legend("topright", c("Chain A", "Chain B"), lty = 1:2, lwd = 1:2,

+ bty = "n")
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Fig. 7.7: Comparing the distributions of return times for chain A and B. ”Density” is
probability density. The distribution of return times for chain A is the solid line, and
the distribution of return times for chain B is the dashed line.

By overlaying the density function of web B on top of web A return times
(Fig. 7.7), we make an interesting observation. The omnivorous webs with pos-
itive return times (those plotted) actually tended to have shorter return times
than the linear chain. Pimm and Lawton noted this, but did not emphasize it.
Rather, they sensibly focused on the more obvious result, that over 90% of the
omnivorous webs had negative return times, indicating an absence of a stable
point equilibrium.

7.6 Re-evaluating Take-Home Messages

The primary messages made by Pimm and Lawton [159] were that

• shorter webs are more stable than long chains,
• omnivory destabilized webs.

These conclusions were a major part of the lively debate surrounding these
issues. It was consistent with the apparent observation of the time, that empiri-
cal food webs revealed little omnivory [159,160], and that food chains in nature
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seemed to be much shorter than could occur, if primary productivity (green
plants and algae) was channeled upwards into a linear chain.

Let’s consider their assumptions.
First, Pimm and Lawton made the argument, as many others have (includ-

ing us), that systems with stable point equilibria are more likely to persist
than systems with oscillations, such as stable limit cycles. That is, we presume
a strong correlation between the tendency to oscillate, and the tendency for
species to become extinct (i.e., the system to collapse). It is easy to show that
a system can be pushed from a stable equilibrium into oscillations which even-
tually become so big as to drive an element of the system to extinction. This is
a very reasonable assumption, but one which is not challenged enough. Other
measures of system stability could be used, such as the minimum that occurs
in a long series of fluctuations [85,138].

Second, Pimm and Lawton ignored the effects of self-regulated basal species.
By exhibiting negative density dependence, the basal species stabilized the
web. When Pimm and Lawton made a shorter web, they also added more self-
regulated populations. Thus, they necessarily confounded chain length with the
number of species with negative density dependence. Which change caused the
observed differences among webs? We don’t know.

Third, they assumed that the effect of web topology (i.e., short vs. long
chain) was best evaluated with the average properties of the topology, rather
than the maximum properties of the topology. By these criteria, webs without
omnivory were clearly better. On average, webs without omnivory were more
often stable than chains with omnivory, even if some of their return times tended
to be quite long. Therefore, one might argue that if a web assembles in nature,
it is more likely to persist (i.e., be stable) if it lacks omnivory.

However, let us consider this preceding argument further. The world is a
messy place, with constant insults and disturbances, and resources and envi-
ronmental conditions fluctuating constantly. In addition, there is a constant rain
of propagules dropping into communities, and species abundances are changing
all the time. In a sense then, communities are being constantly perturbed. The
only webs that can persist in the face of this onslaught are the most stable ones,
that is the ones with the shortest return times. We just showed that Pimm and
Lawton’s own analyses showed that the most stable webs tended to be those
with omnivory. Subsequent work supports this claim that omnivory is rampant
in nature [166], and this is supported by theory that shows weak interactions,
including omnivory, stabilize food webs [137,138].

Pimm and Lawton made very important contributions to this lengthy de-
bate, and we are finally figuring out how to interpret their results.

7.7 Summary

Over 35 years ago, May started using simple, highly artificial dynamical de-
scriptions of communities, using mathematical approaches that had been well
established, if somewhat controversial, more than 50 years earlier by Alfred
Lotka, Vito Volterra, and others [93]. Such simple abstractions are still useful
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today [14]. May’s results, and those of Pimm and Lawton remain logical deduc-
tions that have resonance throughout community ecology. May, and Pimm and
Lawton showed that under very simple assumptions, adding complexity usually
destabilizes food webs. We have found that in practice, it is very difficult to
build or restore structurally complex, speciose ecosystems [6, 19]. Further, we
all now realize that omnivory is quite widespread [199], and additional theory
indicates that omnivory can actually stabilize food webs by speeding a return
to equilibrium and bounding systems farther from minima [137, 207]. Simple
Lotka–Volterra webs will likely reveal more interesting generalizations in the
years ahead.

Problems

7.1. General questions
(a) For each web, write out all four species’ differential equations, using row,
column subscripts for each parameter. Label species 1 X1 or N1, and the others
accordingly.
(b) State the type of predator functional response used in these models, explain
how you know, and explain the effect that this type of response typically has
on dynamics.
(c) Describe the role played by intraspecific negative density dependence in
these models — which species have it and what is it likely to do?
(d) Explain whether the results of this chapter support the contention that
longer food chains are less stable.
(e) Explain whether the results of this chapter support the contention that
omnivory destabilizes food chains.

7.2. More models
(a) Rewrite the above code to replicate the rest of Pimm and Lawton’s results.
(b) Replicate the results of Pimm and Lawton’s companion paper [160].
(c) Test the effects of intraspecific negative density dependence. Vary the aver-
age magnitude of negative density dependence.
(d) Design a new simulation experiment of your own.
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Multiple Basins of Attraction

8.1 Introduction

Historically, simple models may have helped to lull some ecologists into think-
ing either that (i) models are useless because they do not reflect the natural
world, or (ii) the natural world is highly predictable.1 Here we investigate how
simple models can create unpredictable outcomes, in models of Lotka–Volterra
competition, resource competition, and intraguild predation. In all cases, we get
totally different outcomes, or alternative stable states, depending on different,
stochastic, initial conditions.

8.1.1 Alternative stable states

Alternative stable states, or alternative stable equilibria (ASE), are a set of two
or more possible stable attractors that can occur given a single set of external
environmental conditions. For a single list of species, there may exist more than
one set of abundances that provide stable equilibria. One key to assessing alter-
native stable states is that the stable states must occur with the same external
environmental conditions. If the external conditions differ, then the system is
merely governed by different conditions.2

If stable attractors exist, how does the system shift from one attractor to
another? The system can be shifted in a variety of ways, but the key is that
the system (i.e., the set of species abundances) gets shifted into a different part
of the state space, and then is attracted toward another state. System shifts
may occur due to demographic stochasticity, the random variation in births
and deaths that may be especially important when populations become small.
System shifts may also occur due to different assembly sequences. For instance
the outcome of succession may depend upon which species arrive first, second,

1 One notable exception was May’s work revealing that chaos erupts from a very
simple model of discrete logistic growth.

2 A very important complication is that if an abiotic factor is coupled dynamically to
the biotic community, then it becomes by definition an internal part of the system
and no longer external to it.
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third, etc. System shifts might also arise via a physical disturbance that causes
mortality. Different abundances may also arise from the gradual change and
return of an environmental factor, and the resulting set of alternative equilib-
ria is known as hysteresis, and below we examine a case related to resource
competition.

The term priority effects refers to the situation in which initial abundances
favor one species or group of species over others. We use “priority” to imply
that if a species is given an early advantage (“priority”) then it can suppress
other species, whereas without that head start, it would not do as well. In
contrast, for most stable models we considered previously, the location of the
attractor was independent of any early advantage. We use the terms effects of
initial conditions and priority effects to refer to situations in which starting
conditions influence the outcome. So, in a 4 billion year old world, what are
“starting conditions”? Starting conditions can refer to any point resulting from
a system shift, as we described above (e.g., a disturbance).

Part of our thinking about ASEs relies on two assumptions that some find
untenable, or at least not very useful [74]. First, the concept assumes that
fixed stable states exist and that, if perturbed, populations can return to these
states. Second, the concept assumes that communities move to these states
with all due haste, and achieve these states over observable time periods. If
these conditions are met, then ASEs can arise and be observed. We might
recognize that ASEs might be a fuzzier concept, in which there exists more
than one attractor, and where complex dynamics and long return times make
the attractors difficult to observe. Further, we can imagine that short-term
evolution of species’ traits cause attractors to shift through time. Last, we might
also want to acknowledge that saddles (i.e., attractor–repellers) also influence
dynamics and species abundances. If we embrace all of these complications, then
we might prefer a term other than ASE for this complex dynamical landscape
— multiple basins of attraction.

8.1.2 Multiple basins of attraction

Multiple basins of attraction (MBA) is a phrase describing an entire landscape
of “tendencies” in community dynamics. Imagine for a moment a two- or three-
dimensional coordinate system in which each axis is the abundance of one
species. An attractor is merely a place in the coordinate system (i.e., a partic-
ular set of species abundances) that exerts a pull on, or attracts, the dynamics
of the populations. A stable equilibrium is an example of a global attractor;
each local minimum or maximum in a stable limit cycle is also an attractor.
The unstable equilibrium we observed in a Lotka–Volterra competition model
is another example — it is a saddle, or an attractor–repellor, because it attracts
from one direction, but repels in another.

MBAs can be visualized as a topographic landscape, or mountain range.
We see lots of little valleys (attractors) and lots of peaks (repellers) (Fig. 8.1).
If we think more broadly about multiple basins of attraction, then we begin
to see that a strict definition of ASS lies at one end of a continuum, and it
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Fig. 8.1: Perspective and contour plots of a single complex dynamical landscape, con-
taining multiple basins of attraction. Imagine putting a ball into this landscape, and
jiggling the landscape around. The landscape represents the possible states of the
community, the ball represents the actual community structure at any one point in
time, and the jiggling represents stochasticity, either demographic, or environmental.

is matched at the other end by a system with one global stable equilibrium.
The entire continuum, and much more besides, can be conceived of in terms
of a landscape with some number of both basins of attraction (attractors) and
peaks (repellors) in the landscape; each of these may act with some unique force
or strength.

The potential for MBAs to occur has been noted for a few decades [78,
112, 130, 150], and the hunt for their signature in nature followed [24, 38, 115,
141,184–186,209,210]. There has been discussion about what causes more than
one basin of attraction, including space, stochasticity, and predation. Below we
examine two mechanisms that may reveal priority effects: strong interference
competition [175], and intraguild predation, an indirect interaction which has
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elements of both competition and predation [165]. We first investigate interfer-
ence competition using a three-species Lotka–Volterra model, and then with a
model of resource competition.

8.2 Lotka–Volterra Competition and MBA

You have already seen in this book the case of two-species Lotka–Volterra com-
petition where an attractor–repeller, or saddle, arises when interspecific com-
petition is greater than intraspecific competition. When this is the case, each
species can suppress the other, if it gets a head start. This is a priority effect.

Having a larger negative effect on your competitor than on yourself may
not be too unusual. Examples that come immediately to mind are cases where
species compete preemptively for space (territories, or substrate surface) or for
a resource with a unidirectional flow (drifting prey or particles in a stream, or
light coming down on a forest canopy), then one species may gain the upper
hand by acquiring a large proportion of resources first, that is, preempting
resources.

In human economic systems, businesses can have direct negative effects on
each other through questionable business practices. For instance, a larger com-
pany can temporarily flood a local market with below-cost merchandise, and
drive out smaller competitors, prior to raising prices again. Note that it requires
the raised prices for its long term equilibrium, but uses temporary below-market
prices to eliminate competitors. In contrast, economies of scale can provide a
very different kind of mechanism by which larger businesses can outcompete
smaller businesses at equilibrium.

Here we explore how MBA can arise in a simple competitive system. We
use a three-species Lotka–Volterra model to illustrate how strong interference
competition may reveal priority effects. We use a slightly different representation
of the Lotka–Volterra competition model. Note that the sign of each α must
be negative, because we are adding them — this is similar to the notation in
Chapter 7, but differs from previous treatment of Lotka–Volterra competition
(Chapters 3, 5).

dN1

dt
= r1N1 (1 + α11N1 + α12N2 + α13N3)

dN2

dt
= r2N2 (1 + α21N1 + α22N2 + α23N3)

dN3

dt
= r3N3 (1 + α31N1 + α32N2 + α33N3)

Note two aspects of the above equations. First note that within the parentheses,
the Ni are all arranged in the same order — N1, N2, N3. This reflects their
relative positions in a food web matrix, and reveals the row-column relevance
of the subscripts of the αs. Second, note that αii = 1/Ki, and in some sense Ki
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results from a particular αii.3 We can represent these equations as

dNi

dt
= Ni

ri +

3∑
j=1

riαi jN j

 (8.1)

in a fashion similar to what we saw in Chapter 7.
Another aspect of three species Lotka–Volterra models that we will state,

without demonstration, is that the equilibria can depend on ri. This contrasts
with what we learned about the two-species model, which depended solely on
the αi j. Indeed, our example uses parameter values in which variation in r
contributes to the equilibria.

Consider a particular set of simulations (Fig. 8.2).
• Species differ in their intrinsic rates of increase (r1 = 0.6, r2 = 1, r3 = 2).
• Species with higher r also have slightly greater negative impacts on them-

selves (a11 = 0.001, a22 = 0.00101, a33 = 0.00102); this constitutes a tradeoff
between maximum growth rate and carrying capacity.

• All species have twice as big a negative effect on each other as they do on
themselves (ai j,i, j = 0.002); this creates unstable equilibria, which happen
to be attractor–repellers or saddles.

• Initial abundances are random numbers drawn from a normal distribution
with a mean of 200, and a standard deviation of 10; in addition we also
start them at precisely equal abundances (Ni = 200).

• Species 1 has the highest carrying capacity (smallest αii), and would there-
fore often considered the best competitor; in the absence of priority effects,
we would otherwise think that it could always displace the others.
Now ponder the results (Fig. 8.2). Does each species win in at least one

simulation? Which species wins most often? Does winning depend on having the
greatest initial abundance? Make a 3× 3 table for all species pair combinations
(column = highest initial abundance, row=winner), and see if there are any
combinations that never happen.

Note that when they start at equal abundances (Fig. 8.2), the species with
the intermediate carrying capacity and intermediate r displaces the other two
species. However, note also that (i) with a little stochasticity in initial conditions
(slight variation in Ni at t = 0), this simple model generates unpredictable
outcomes, and (ii) initial abundance does not determine everything.

It is critical to realize that this is occurring in part because species have
larger negative competitive effects on others than they have on themselves. In
this case the effects are direct, because the model is Lotka–Volterra competi-
tion. The effects may also be indirect, when species compete for more than one
limiting resource. MacArthur [120] showed, for instance, that when generalists
and specialists compete so that not all resources are available to all species,
alternative stable states occur [115]. After we work through the code for the
Lotka–Volterra example we just discussed, we take up MBA in the context of
resource competition.

3 We might also note is that it differs from notation typically used in textbooks for
two-species models.
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Fig. 8.2: Interaction between strong interference competition and initial abundances
with three competing species (solid line - sp. 1; dashed line - sp. 2; dotted line - sp.
3). The species with the highest initial abundance is indicated in vertical orientation
at the beginning of each trajectory (“Equal” indicates all species started at N = 200).
The eventual winner is indicated in horizontal orientation at the top of each graph.
See text for more details.

8.2.1 Working through Lotka–Volterra MBA

Here we create a function for multi-species Lotka–Volterra competition, taking
advantage of matrix operations. Note that we can represent the three species
as we would one, Ṅ = rN (1 − αN), because the αN actually becomes a matrix
operation, a %*% N.4

> lvcompg <- function(t, n, parms) {

+ r <- parms[[1]]; a <- parms[[2]]

+ dns.dt <- r * n * (1 - (a %*% n))

4 Recall that %*% is matrix multiplication in R because by default, R multiplies
matrices and vectors element-wise.
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+ return(list(c(dns.dt)))

+ }

We are going to use one set of parameters, but let initial abundances vary
stochastically around the unstable equilibrium point, and examine the results.

Next we decide on the values of the parameters. We will create intrinsic rates
of increase, rs, and intraspecific competition coefficients, αii, that correspond
roughly to an r − K tradeoff, that is, between maximum relative growth rate
(r) and carrying capacity (1/αii). Species 1 has the lowest maximum relative
growth rate and the weakest intraspecific density dependence.

Following these ecological guidelines, we create a vector of rs, and a matrix
of αs. We then put them together in a list,5 and show ourselves the result.

> r <- c(r1 = 0.6, r2 = 1, r3 = 2)

> a <- matrix(c(a11 = 0.001, a12 = 0.002, a13 = 0.002, a21 = 0.002,

+ a22 = 0.00101, a23 = 0.002, a31 = 0.002, a32 = 0.002,

+ a33 = 0.00102), nrow = 3, ncol = 3)

> parms <- list(r, a); parms

[[1]]

r1 r2 r3

0.6 1.0 2.0

[[2]]

[,1] [,2] [,3]

[1,] 0.001 0.00200 0.00200

[2,] 0.002 0.00101 0.00200

[3,] 0.002 0.00200 0.00102

Next we get ready to simulate the populations 24 times. We set the time, t, and
the mean and standard deviation of the initial population sizes. We then create
a matrix of initial population sizes, with one set of three species’ n0 for each
simulation. This will create a 3 × 24 matrix, where we have one row for each
species, and each column is one of the initial sets of population sizes.

> t = seq(0, 40, by = 0.1); ni <- 200; std = 10

> N0 <- sapply(1:30, function(i) rnorm(3, mean = ni, sd = std))

Now let’s replace the first set of initial abundances to see what would happen
if they start out at precisely the same initial abundances. We can use that as a
benchmark.6

> N0[, 1] <- ni

When we actually do the simulation, we get ready by first creating a graphics
device (and adjust the margins of each graph). Next we tell R to create a graph
layout to look like a 6 × 4 matrix of little graphs. Finally, we run the simulation,
calling one column of our initial population sizes at a time, integrate with the

5 A list is a specific type of R object.
6 R’s recycling rule tells it to use the single value of ni for all three values in the first

column of N0.
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ODE solver, and plot the result, 24 times. As we plot the result, we also record
which species has the greatest initial abundance.

> par(mar = c(2, 2, 1, 1))

> layout(matrix(1:30, ncol = 5))

> for (i in 1:30) {

+ lvout <- ode(N0[, i], t, lvcompg, parms)

+ matplot(t, lvout[, 2:4], type = "l", lwd = 1.5, col = 1)

+ if (all(N0[, i] == 200)) {

+ text(3, 500, "Equal", srt = 90)

+ }

+ else {

+ text(3, 500, paste("Sp.", which.max(N0[, i])), srt = 90)

+ }

+ lastN <- lvout[nrow(lvout), 2:4]

+ text(3, max(lastN), paste("Sp.", which.max(lastN)), adj = c(0,

+ 1))

+ }

8.3 Resource Competition and MBA

Above, we explored how simple Lotka–Volterra competition could result in un-
stable equilibria, causing saddles, and multiple basins of attraction. Here we
take a look an example of how resource competition can do the same thing.
Recall that resource competition is an indirect interaction, where species inter-
act through shared resources. This particular example results in a type of MBA
scenario, hysteresis, where gradual changes in the external environment result
in abrupt and sometimes catastrophic changes in the biological system (Fig.
8.4).

Scheffer and colleagues [184] provide evidence that anthropogenically en-
riched (eutrophic) lakes can shift away from dominance by submerged macro-
phytes7 rooted in substrate, into systems completely dominated by floating
plants such as duckweed (Lemna spp.) and water fern (Azolla spp.). Submerged
macrophytes can extract nutrients out of both sediments and the water column.
At low, typically unpolluted, nutrient levels, submerged plants can draw down
water nitrogen levels to a very low level, below levels tolerated by duckweed
and water fern. At high nutrient levels, floating plants are no longer limited by
water column nitrogen levels, and can create deep shade that kills submerged
vegetation. Aside from killing these wonderful submerged macrophytes, the loss
of this structure typically alters the rest of the lake food web.

Uncertainties arise in this scenario at intermediate levels of eutrophication
(Fig. 8.3). As stated above, submerged plants dominate at low nitrogen supply
rates, and floating plants dominate at high nitrogen supply rates. However, at
intermediate supply rates (∼ 1.5–2.5 mg L−1), the outcome depends on priority
effects.

7 “Macrophyte” is a term often used for aquatic rooted vascular plants.
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Fig. 8.3: The outcome of competition depends on both nutrient loading and priority
effects. The lines provide equilibrial biomasses that depend on nitrogen supply rate for
(a) submerged plants, and (b) floating plants. Thus both lines in (a) refer to possible
equilibria for submerged plants, and both lines in (b) refer to possible equilibria for
floating plants. (S = submerged plants, F = floating plants).

When submerged plants initially dominate a lake prior to eutrophication,
they continue exclude floating plants as nitrogen supply rates increase, up until
about 1.5 mg L−1 (Fig. 8.3a). If supply rates go higher (∼ 1.5–2.5 mg L−1), sub-
merged plants continue to dominate, because their high abundance can draw
nitrogen levels down quite low. Above this level, however, floating plants reach
sufficiently high abundance to shade out the submerged plants which then be-
come entirely excluded. Thus, at 2.5 mg L−1 we see a catastrophic shift in the
community.

Once the system is eutrophic, and dominated by floating plants, reducing
the nitrogen supply rate does not return the system to its original state in
a way that we might expect (Fig. 8.3a). Once the floating plants have created
sufficient shade, they can suppress submerged plants even at low nitrogen levels.
If changes in watershed management bring nitrogen supply rates back down,
submerged plants cannot establish until supply rate falls to 1 mg L−1. This is
well below the level at which submerged plants could dominate, if they were
abundant to begin with.

This is an excellent example of a system prone to hysteresis (Fig. 8.4).
Gradual changes in an external driver (e.g., nitrogen runoff) cause catastrophic
shifts in the internal system, because at intermediate levels of the driver, the
internal system is influenced by priority effects. Hysteresis is often defined as a
context-dependent response to an environmental driver. As a different example,
imagine that the state variable in Figure 8.4 is annual precipitation, and the
driver is average annual temperature. Imagine that over many years, the regional
average temperature increases. At first, increased temperature has little effect
on precipitation. Once precipitation reaches a particular threshold, precipitation
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drops dramatically, and additional increased temperature has little effect. When
the temperature starts to come back down, however, we find that the high levels
of precipitation do not return at the same threshold where we lost it. Rather, it
does not return until we bring temperature way back down to original levels. At
intermediate temperatures (grey region, Fig. 8.4), precipitation depends on what
the temperature used to be. This history dependence, or context dependence is
the hallmark of hysteresis. It is important to understand that, in principle,
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Fig. 8.4: Hysteresis. When the system changes from left to right, the threshold value of
the predictor of catastrophic change is greater than when the system moves from right
to left. At intermediate levels of the driver, the value of the response variable depends
on the history of the system. Each value, either high or low, represents an alternative,
stable, basin of attraction. The arrows in this figure represent the direction of change
in the environmental driver.

this is not the result of a time lag. It is not the case that this pattern is due
to a lagged or slow response by the state variable. Rather, these alternative
basins (Fig. 8.4, solid lines in the grey area) represent permanent stable states
from which the response variable cannot ever emerge, without some external
force, such as very large changes in the environmental driver. Time lags may be
important in other, different, circumstances, but are not, in principle, related
to hysteresis.
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8.3.1 Working through resource competition

Scheffer and colleagues represented submerged and floating plant interactions
in the following manner, where F and S are floating and submerged plants,
respectively [184].

dF
dt

= r f F
n

n + h f

1
1 + a f F

− l f F (8.2)

dS
dt

= rsS
n

n + hs

1
1 + asS + bF + W

− lsS (8.3)

(8.4)

As usual, r represents the maximum per capita rate of increase for F and S
respectively. Thus rF is exponential growth of floating plants. This exponential
growth is modified by terms for nitrogen (n) limited growth, and light lim-
ited growth. This modification results in type II functional responses. Here we
discuss these modifications.

Nitrogen limitation The first factor to modify exponential growth above is
n/ (n + hx), water column nitrogen limitation. It varies from 0–1 and is a
function of water column nitrogen concentration, n. The half saturation
constant h controls the shape of the relation: when h = 0 there is no nitrogen
limitation, that is, the term equals 1.0 even at very low n. If h > 0, then
the growth rate is a Michaelis-Menten type saturating function where the
fraction approaches zero as n→ 0, but increases toward 1.0 (no limitation)
at high nutrient levels. For submerged plants, hs = 0 because they are never
limited by water column nitrogen levels because they derive most of the
nitrogen from the substrate.

Nitrogen concentration Nitrogen concentration, n, is a simple saturating
function that declines with increasing plant biomass which achieves a max-
imum N in the absence of any plants.

n =
N

1 + qsS + q f F
(8.5)

The nutrient concentration, n, depends not only on the maximum N nutrient
concentration, but also on the effect of submerged and floating plants which
take up nitrogen out of the water at rates 1/ (1 + qS S ) and 1/

(
1 + q f F

)
respectively; 1/q is the half-saturation constant.

Light limitation The second factor to modify exponential growth is light lim-
itation, 1/(1+aF); 1/a f and 1/as are half-saturation constants — they deter-
mine the plant densities at which the growth rates are half of the maxima;
b represents the shade cast by a single floating plant, and W represents the
light intercepted by the water column.

Loss The second terms in the above expressions l f F and lsS are simply density
independent loss rates due to respiration or mortality.

Scheffer and colleagues very nicely provide units for their parameters and
state variables (Table 8.1).
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Table 8.1: Parameter and variable units and base values. Plant mass (g) is dry weight.

Parameter/Variable Value Units

F, S (varies) g m−2

N, n (varies) mg L−1

as, a f 0.01 (g m−2)−1

b 0.02 (g m−2)−1

qs, q f 0.075, 0.005 (g m−2)−1

hs, h f 0.0, 0.2 mg L−1

ls, l f 0.05 g g−1 day−1

rs, r f 0.5 g g−1 day−1

Consider the meanings of the parameters (Table 8.1). What is a, and why
is 1/as = 1/a f ? Recall that they are half-saturation constants of light limited
growth; their identical values indicate that both plants become self-shading
at the same biomasses. What is q? It is the per capita rate at which plants
pull nitrogen out of the water. Why is qs > q f ? This indicates that a gram of
submerged plants can pull more nitrogen out of the water than a gram of floating
plant. Last, why is hs = 0? Because submerged plants grow independently of
the nitrogen content in the water column.

Code for Scheffer et al.

Now we are set to model this in R, using a built-in function for the ODEs,
scheffer. First, let’s set the parameters (Table 8.1), time, initial abundances,
and see what we have.

> p <- c(N = 1, as = 0.01, af = 0.01, b = 0.02, qs = 0.075,

+ qf = 0.005, hs = 0, hf = 0.2, ls = 0.05, lf = 0.05, rs = 0.5,

+ rf = 0.5, W = 0)

> t <- 1:200

> Initial <- c(F = 10, S = 10)

We then run the solver, and plot the result.

> S.out1 <- ode(Initial, t, scheffer, p)

> matplot(t, S.out1[, -1], type = "l")

> legend("right", c("F", "S"), lty = 1:2, bty = "n")

From this run, at these nutrient levels, we observe the competitive dominance
of the submerged vegetation (Fig. 8.5a). Let’s increase nitrogen and see what
happens.

> p["N"] <- 4

> S.out2 <- ode(Initial, t, scheffer, p)

> matplot(t, S.out2[, -1], type = "l")

Ah-ha! At high nutrient levels, floating vegetation triumphs (Fig. 8.5b). So
where are the cool multiple basins of attraction? We investigate that next.
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Fig. 8.5: The outcome of competition depends on the nutrient loading.

Let’s mimic nature by letting the effect of Homo sapiens increase gradually
with increasing over-exploitation of the environment. We will vary N, increasing
it slowly, and hang on to only the final, asymptotic abundances, at the final time
point.

> N.s <- seq(0.5, 4, by = 0.1); t <- 1:1000

> S.s <- t(sapply(N.s, function(x) {

+ p["N"] <- x

+ ode(Initial, t, scheffer, p)[length(t), 2:3]

+ }))

Now we plot, not the time series, but rather the asymptotic abundances vs. the
nitrogen levels (Fig. 8.6a).

> matplot(N.s, S.s, type = "l")

> legend("topright", c("F", "S"), lty = 1:2, bty = "n")

> arrows(0.5, 500, 2, 500, length = 0.1, lwd = 3, col = "grey")

> text(0.5, 500, "Increasing N", adj = c(0, -0.5))

Now we can see this catastrophic shift at around 2.7 mg N L−1 (Fig. 8.6a).
As nitrogen increases, we first see a gradual shift in community composition,
but then, wham!, all of a sudden, a small additional increase at ≈ 2.7 causes
dominance by floating plants, and the loss of our submerged plants.

Now let’s try to fix the situation by reducing nitrogen levels. We might imple-
ment this by asking upstream farmers to use no-till practices, for instance [211].
This is equivalent to starting at high floating plant abundances, low submerged
plant abundances, and then see what happens at different nitrogen levels.

> Initial.Eutrophic <- c(F = 600, S = 10)

> S.s.E <- t(sapply(N.s, function(x) {
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+ p["N"] <- x

+ ode(Initial.Eutrophic, c(1, 1000), scheffer, p)[2, 2:3]

+ }))

Now we plot, not the time series, but rather the asymptotic abundances vs. the
nitrogen levels (Fig. 8.6b).

> matplot(N.s, S.s.E, type = "l")

> arrows(4, 500, 2, 500, length = 0.1, lwd = 3, col = "grey")

> text(4, 500, "Declining N", adj = c(1, -0.5))

Fig. 8.6: The outcome of competition depends on the history of nutrient loading.

Wait a second! If we start at high floating plant biomass (Fig. 8.6b), the
catastrophic shift takes place at a much lower nitrogen level. This is telling us
that from around N =0.9–2.7, the system has two stable basins of attraction,
or alternative stable states. It might be dominated either by floating plants or
by submerged plants. This is often described as hysteresis, where there is more
than one value of the response for each value of the predictor variable.

Now let’s represent these changes for the two state variables in the aquatic
plant model. First we represent the floating plants. Here we plot the low abun-
dance state for the floating plants, adjusting the figure margins to accommodate
all abundances, and then add in the high abundance data (Fig. 8.3b).

> plot(N.s[1:23], S.s[1:23, 1], type = "l", lwd = 2, xlim = c(0,

+ 4), ylim = c(0, 900), main = "Floating Plants", ylab =

+ expression("Biomass (g m"^-2 * ")"), xlab = "Nitrogen Supply Rate")

> lines(N.s[-(1:5)], S.s.E[-(1:5), 1], lwd = 2)

Here we reinforce the concepts of multiple basins and hysteresis, by showing
where the attractors are. I will use arrows to indicate these basins. At either
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high nitrogen or very low nitrogen, there is a single, globally stable attractor.
At low nutrients, only submerged plants exist regardless of starting conditions.
At high nutrients, only floating plants persist. Let’s put in those arrows (Fig.
8.3b).

> arrows(3, 10, 3, 620, length = 0.1); arrows(3, 820, 3, 720, length =

> arrows(0.5, 620, 0.5, 50, length = 0.1)

Next we want arrows to indicate the alternative basins of attraction at interme-
diate nitrogen supply rates. Floating plants might be at kept at low abundance
at intermediate nitrogen supply rates if submerged plants are abundant (Fig.
8.6b). Let’s indicate that with a pair of arrows.

> arrows(2.5, -10, 2.5, 60, length = 0.1)

> arrows(2.5, 200, 2.5, 100, length = 0.1)

> text(2.5, 100, "Coexisting\nwith S", adj = c(1.1, 0))

Alternatively, if submerged plants were at low abundance, floating plants would
get the upper hand by lowering light levels, which would exclude submerged
plants altogether (Fig. 8.3b). Let’s put those arrows in (Fig. 8.3b).

> arrows(2, 480, 2, 580, length = 0.1); arrows(2, 750, 2, 650, length = 0.1)

> text(2, 700, "Monoculture", adj = c(1.1, 0))

Now let’s repeat the exercise with the submerged plants. First we plot the
high abundance state, and then add the low abundance state (Fig. 8.3a).

> plot(N.s[1:23], S.s[1:23, 2], type = "l", lwd = 2, xlim = c(0,

+ 4), ylim = c(0, 900), main = "Submerged Plants",

ylab = expression("Biomass (g m"^-2 *+ ")"), xlab = "Nitrogen SupplyRate")

> lines(N.s[-(1:5)], S.s.E[-(1:5), 2], lwd = 2)

Now we highlight the global attractors that occur at very low or very high
nitrogen supply rates (Fig. 8.3a).

> arrows(0.7, 30, 0.7, 830, length = 0.1)

> arrows(3.8, 830, 3.8, 30, length = 0.1)

Next we highlight the local, alternative stable equilibria that occur at interme-
diate nitrogen supply rates; either the submerged plants are dominating due to
nitrogen competition, and achieving high abundance,

> arrows(2.3, 650, 2.3, 750, length = 0.1)

> arrows(2.3, 900, 2.3, 800, length = 0.1)

> text(2.4, 900, "Coexisting\nwith F", adj = c(0, 1))

or they are excluded entirely, due to light competition (Fig. 8.3a).

> arrows(2, 130, 2, 30, length = 0.1)

> text(2, 140, "Excluded\nDue to Light Comp.", adj = c(0.5,

+ -0.3))

Once again, we see what underlies these alternative states, or basins (Fig.
8.3). One population gains a numerical advantage that results in an inordi-
nately large negative effect on the loser, and this competitive effect comes at

0.1)
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little cost to the dominant species. At intermediate nitrogen supply rates, the
submerged vegetation can reduce ambient nitrogen levels in the water column
to undetectable levels because it gets most of its nitrogen from sediments. On
the other hand, if floating plants can ever achieve high densities (perhaps due
to a temporary nutrient pulse), then the shade they cast at intermediate supply
rates prevents lush growth of the submerged plants. As a consequence, the sub-
merged plants can never grow enough to draw nitrogen levels down to reduce
the abundance of the floating plants.

8.4 Intraguild Predation

Intraguild predation (IGP) differs from omnivory only in degree (Chapter 7). In
omnivory, a predator shares a resource with one or more of its prey (Fig. 8.4).
Thus the top predator feeds relatively high on the food chain, getting most of its
energy or resources by eating its competitor (a > 0.5 in Fig. 8.4). An extension
of this is the case of intraguild predation, in which a species preys upon one
or more of its competitors (Fig. 8.4). Intraguild predation is thus refers to the
case in which the top predator gets most of its energy or resources from the
more basal resource, eating lower on the food chain (a < 0.5 in Fig. 8.4). The
distinction is not qualitative, but rather quantitative. If both consumer species
prey upon each other, then we could make the argument that the name we
ascribe to it depends entirely upon one’s perspective. In such a case, however,
we generally refer to the relations as intraguild predation.

N

P

a

B

1-a A

Fig. 8.7: We typically use “omnivory” when a > 0.5, and “intraguild predation” when
a < 0.5. If we remove A from this model, then the species represent those of Holt and
Polis [79].
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8.4.1 The simplest Lotka–Volterra model of IGP

We can extend our good ol’ Lotka–Volterra competition model to describe in-
traguild predation. All we do is add a term onto each competitor. For the
competitor that gets eaten (the “IG-prey”), we subtract mass action predation,
with a constant attack rate, a. For the top predator (the “IG-predator”), we add
this same term, plus an conversion efficiency, b � 1.

dN1

dt
= r1N1 (1 − α11N1 − α12N2) + baN1N2 (8.6)

dN2

dt
= r2N2 (1 − α21N1 − α22N2) − aN1N2 (8.7)

Here a is attack rate of the IG-predator, N1, on the IG-prey, N2; b is the conver-
sion efficiency of the prey into predator growth. Recall that this is the classic
type I predator functional response of Lotka–Volterra predation.

Let’s work through a little logic.

• In the absence of the other species, each species will achieve its usual car-
rying capacity, 1/αii.

• If we could have stable coexistence without IG-predation, then adding pre-
dation will increase the risk of extinction for the prey, and increase the
abundance (if only temporarily) for the predator.

• If the poorer competitor is able to feed on the better competitor, this has
the potential to even the scales.

• If the poor competitor is also the prey, then — forget about it — the chances
of persistence by the IG-prey are slim indeed.

Now let’s move on to a model of intraguild predation with resource compe-
tition.

8.4.2 Lotka–Volterra model of IGP with resource competition

Here we introduce a simple IGP model where the competition between con-
sumers is explicit resource competition [79], rather than direct competition as
in the Lotka–Volterra model above. The resource for which they compete is a
logistic population.

dP
dt

= βPBαBPPB + βPNαNPPN − mPP (8.8)

dN
dt

= βNBαBN BN − mN N − αNPPN (8.9)

dB
dt

= rB (1 − αBBB) − αBN BN − αBPPB (8.10)

Recall that the units for attack rate, α, are number of prey (killed) per individual
of prey per individual of predator; the units for conversion efficiency, β, are
number of predators (born) per number of prey (killed, and presumably eaten
and assimilated). The consumers in this model have a type I functional response
(mass action). The basal resource species exhibits logistic population growth.

Holt and Polis show analytically that five equilibria are present [79].
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1. All species have zero density.
2. Only the resource, B, is present, at B = K.
3. Only the resource, B, and IG-prey, N, are present.
4. Only the resource, B, and IG-predator, P, are present.
5. All species present.

We will explore how initial conditions influence the outcomes of this simple
IGP model. We will focus on the last three equilibria, with two or three species
present.

Are there lessons we can apply from the previous competition models? In
those cases, we tended to get MBAs when the negative effects each species on
its competitors was greater than its negative effects on itself. How can we apply
that to predation?
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Fig. 8.8: Initial abundance (a) determines whether the IG-predator, P, or the IG-prey,
N, win (b). Parameters are those set with the vector params1 (see below).

Let us think about net effects of the IG-predator and IG-prey, both com-
petition and consumption. Recall that the IG-prey must be the superior com-
petitor — this means that, given similar attack rates on the basal resource B
(αBN = αBP), the IG-prey must have a greater conversion efficiency (βNB > βPB).8

In the absence of IG-predation, the superior competitor would always exclude
the inferior competitor. However, if we add predation to suppress the superior
competitor, then the IG-predator could win. If the relationship is such that each
species has a larger net effect on each other than on themselves, we see that
initial abundance (Fig. 8.8a) determines the winners (Fig. 8.8b). This allows
either species to win, but not coexist.

8 Think of conversion efficiency as the effect of the prey i on the predator j, βi j.
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Fig. 8.9: Conversion efficiencies and attack rates control coexistence. (a) With low
conversion effciency, and high attack rates, species do not coexist. (b) By reducing the
attack rate of the predator on the prey (αNP = 10−4 → 10−7), and increasing the direct
benefit of prey to the predator (βPN = 10−5 → 0.5), we get coexistence. Parameters are
otherwise the same as in Fig. 8.11 (see params2 below).

How might we get coexistence between IG-predator and IG-prey? We have
already provided an example where the IG-prey is the better resource competi-
tor (Fig. 8.8). To reduce the negative effect of the IG-predator on the IG-prey,
we can reduce attack rate. However, when we do that, the predator cannot in-
crease when it is rare (Fig. 8.9a). If we further allow the predator to benefit
substantially from each prey item (increasing conversion efficiency), then we see
that the IG-predator can increase when rare, but eliminate the prey. Indeed,
these are the essential components suggested by Holt and Polis: species coexist
when their negative effects on each other are weaker (of smaller magnitude)
than their negative effects on themselves. In a consumer–resource, predator-
prey context, this can translate to reduced attack rates, and greater efficiency
of resource use.

8.4.3 Working through an example of intraguild predation

To play with IBP in R, we start by examining an R function for the above
Lotka–Volterra intraguild predation model, igp.

> igp

function (t, y, params)

{

B <- y[1]

N <- y[2]

P <- y[3]
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with(as.list(params), {

dPdt <- bpb * abp * B * P + bpn * anp * N * P - mp *

P

dNdt <- bnb * abn * B * N - mn * N - anp * N * P

dBdt <- r * B * (1 - abb * B) - abn * B * N - abp * B *

P

return(list(c(dBdt, dNdt, dPdt)))

})

}

This code uses three-letter abbreviations (αNP = anp). The first letter, a or b,
stands for α and β. The next two lower case letters correspond to one of the
populations, B, N, and P.

Next, we create a vector to hold all those parameters.

> params1 <- c(bpb = 0.032, abp = 10^-8, bpn = 10^-5, anp = 10^-4,

+ mp = 1, bnb = 0.04, abn = 10^-8, mn = 1, r = 1, abb = 10^-9.5)

Here we get ready to actually do the simulations or numerical integration with
ode. We set the time, and then we set four different sets (rows) of initial popu-
lation sizes, label them, and look at them.

> t = seq(0, 60, by = 0.1)

> N.init <- cbind(B = rep(10^9, 4), N = 10^c(2, 5, 3, 4), P = 10^c(5,

+ 2, 3, 4))

Now we integrate the population dynamics and look at the results. Here we
first set up a graphics device with a layout of four figures and fiddle with the
margins. We then use a for-loop to integrate and plot four times. Then we add
a legend.

> quartz(, 4, 4)

> layout(matrix(1:4, nr = 2))

> par(mar = c(4, 4, 1, 1))

> for (i in 1:4) {

+ igp.out <- ode(N.init[i, 1:3], t, igp, params1)

+ matplot(t, log10(igp.out[, 2:4] + 1), type = "l", lwd = 2,

+ ylab = "log(Abundance)")

+ }

Clearly, initial abundances affect which species can coexist (Fig. 8.10). If
either consumer begins with a big advantage, it excludes the other consumer.
In addition, if they both start at low abundances, the IG-prey, N, excludes the
predator; if they start at moderate abundances, the IG-predator, P, wins.

Now we need to get more thorough and systematic. The above code and
its results show us the dynamics (through time) of particular scenarios. This is
good, because we need to see how the populations change through time, just
to see if unexpected things happen, because sometimes unexpected dynamics
happen. A complementary way to analyze this model is to vary initial conditions
more systematically and more thoroughly, and then simply examine the end
points, rather than each entire trajectory over time. It is a tradeoff — if we
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Fig. 8.10: Dynamics of Lotka Volterra intraguild predation, with differing initial abun-
dances. See code for parameter values. Solid line - basal resource, dashed line - IG-prey,
dotted line - IG-predator.

want to look at a lot of different initial conditions, we can’t also look at the
dynamics.

In the next sections, we examine the effects of relative abundance of the two
consumers, and then of their absolute abundances.

8.4.4 Effects of relative abundance

First we will vary the relative abundances of the IG-prey and IG-predator, N
and P. We create a slightly more complete set of initial abundances, with B
constant, and N increases as P decreases.

> logNP <- seq(2, 5, by = 0.1)

> N.inits <- cbind(B = rep(10^9, length(logNP)), N = 10^logNP,

+ P = 10^rev(logNP))

We see (scatterplot matrix not shown) that we do have negative covariation
in the starting abundances in the two consumer species, the IG-prey and IG-
predator.
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Next, we need to perform all9 the simulations, and hold on to all the end-
points.10 We do it over a long time span to see the (hopefully) truly asymptotic
outcomes. We use a little manipulation to hang on to the initial abundances,
at t = 50 and the final abundances at t = 500, putting them each in their own
column and hanging on to it.

> t1 <- 1:500

> MBAs <- t(sapply(1:nrow(N.inits), function(i) {

+ tmp <- ode(N.inits[i, ], t1, igp, params1, hmax = 0.1)

+ cbind(tmp[1, 3:4], tmp[50, 3:4], tmp[500, 3:4])

+ }))

> colnames(MBAs) <- c("N1", "P1", "N50", "P50", "N500", "P500")

Now we need to show our results. We are interested in how the relative initial
abundances of the two consumers influence the emergence of MBA. Therefore,
let’s put the ratio of those two populations (actually the logarithm of the ratio,
log[N/P]11) on an X-axis, and graph the abundances of those two species on the
Y-axis. Finally, we plot side by side the different time points, so we can see the
initial abundances, the transient abundances, and (perhaps) something close to
the asymptotic abundances.

> matplot(log10(N.inits[, "N"]/N.inits[, "P"]), log10(MBAs[,

+ 1:2] + 1), type = "l", col = 1, lty = 2:3, lwd = 2, ylab = "log(Abundance+1)",

+ xlab = "log[N/P]")

> legend("right", c("N", "P"), lty = 2:3, col = 1, bty = "n")

> matplot(log10(N.inits[, "N"]/N.inits[, "P"]), log10(MBAs[,

+ 3:4]+ 1), type = "l", col = 1,lty = 2:3, lwd = 2, ylab = "log(Abundance+1)",

+ xlab = "log[N/P]")

> matplot(log10(N.inits[, "N"]/N.inits[, "P"]), log10(MBAs[,

+ 5:6]+ 1), type = "l", col= 1,lty = 2:3, lwd = 2, ylab = "log(Abundance+1)",

+ xlab = "log[N/P]")

It is still amazing to me that different initial abundances can have such a
dramatic effect (Fig. 8.11). It is also interesting that they take so long to play
out. It all really just makes you wonder about the world we live in.

8.4.5 Effects of absolute abundance

Now let’s hold relative abundance constant and equal, and vary absolute abun-
dance. Recall that in our first explorations, we found different outcomes, de-

9 Recall that sapply and related functions “apply” a function (in this case a simu-
lation) to each element of the first argument (in this case each row number of the
initial abundance matrix).

10 We transpose the output matrix (t()) merely to keep the populations in columns.
We also use the hmax argument in ode to make sure the ODE solver doesn’t try to
take steps that are too big.

11 logarithms of ratios frequently have much nicer properties than the
ratios themselves. Compare hist(log(runif(100)/runif(100))) vs.
hist(runif(100)/runif(100)).
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pending on different total abundances. Now instead of varying N and P in
opposite order, we have them covary positively.

> logAbs <- seq(2, 7, by = 0.2)

> N.abs.inits <- cbind(B = rep(10^9, length(logAbs)), N = 10^logAbs,

+ P = 10^logAbs)

Now we simulate12 the model, using the same basic approach as above, setting
the time, and hanging on to three different time points.

> t1 <- 1:500

> MBA.abs <- t(sapply(1:nrow(N.abs.inits), function(i) {

+ tmp <- ode(N.abs.inits[i, ], t1, igp, params1, hmax = 0.1)

+ cbind(tmp[1, 3:4], tmp[50, 3:4], tmp[500, 3:4])

+ }))

> colnames(MBAs) <- c("N1", "P1", "N50", "P50", "N500", "P500")

We plot it as above, except that now we simply use log10-abundances on the
x-axis, rather than the ratio of the differing abundances.

> layout(matrix(1:3, nr = 1))

> matplot(log10(N.abs.inits[, "N"]), log10(MBA.abs[, 1:2] +

+ 1), type = "l", main = "Initial Abundances (t=1)", col = 2:3,

+ lty = 2:3,lwd = 2,ylab = "log(Abundance+1)",xlab= expression(log[10]("N")))

> legend("right", c("N", "P"), lty = 2:3, col = 2:3, bty = "n")

> matplot(log10(N.abs.inits[, "N"]), log10(MBA.abs[, 3:4] +

+ 1), type = "l", main = "At time = 50)", col = 2:3, lty = 2:3,

+ lwd = 2, ylab = "log(Abundance+1)", xlab = expression(log[10]("N")))

> matplot(log10(N.abs.inits[, "N"]), log10(MBA.abs[, 5:6] +

+ 1), type = "l", main = "At time = 500", col = 2:3, lty = 2:3,

+ lwd = 2, ylab = "log(Abundance+1)", xlab = expression(log[10]("N")))

8.4.6 Explanation

Now, . . . we have to explain it! Let’s begin with what we think we know from
Lotka–Volterra competition — each species has a bigger effect on the others
than on itself. How do we apply that here. First let’s look at the per capita
direct effects, the parameters for each interaction.

B N P
B r − rαBBB −αBN −αBP

N βNBαBN 0 −αNP

P βPBαBP βPNαNP 0

(8.11)

Then we calculate the values for these and ask if competitors have larger effects
on each other than they do on themselves.

12 Unfortunately ’simulate’ may mean ’integrate,’ as it does here, or any other kind
of made up scenario.
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Fig. 8.11: Initial, transient, and near-asymptotic abundances of the intraguild prey, N,
and predator, P, of Lotka–Volterra intraguild predation, with differing initial abun-
dances.

> params1

bpb abp bpn anp mp bnb abn

3.200e-02 1.000e-08 1.000e-05 1.000e-04 1.000e+00 4.000e-02 1.000e-08

mn r abb

1.000e+00 1.000e+00 3.162e-10

> with(as.list(params1), {

+ rbind(B = c(r - r * abb * 10^9, -abn, -abp), N = c(bnb *

+ abn, 0, -anp), P = c(bpb * abp, bpn * anp, 0))

+ })

[,1] [,2] [,3]

B 6.838e-01 -1e-08 -1e-08

N 4.000e-10 0e+00 -1e-04

P 3.200e-10 1e-09 0e+00

> with(as.list(params1), {

+ rbind(B = c(r - r * abb * 10^9, -abn, -abp), N = c(bnb,

+ 0, -anp), P = c(bpb, bpn, 0))

+ })

[,1] [,2] [,3]

B 0.6838 -1e-08 -1e-08

N 0.0400 0e+00 -1e-04

P 0.0320 1e-05 0e+00

So, from this we are reminded that the per capita direct effects on B, the basal
resource, by both consumers are the same. N, the IG-prey, however, benefits
more per capita, and so can attain a higher population size, and therefore could
persist, and also exclude P. Thus it has a larger indirect negative effect on P
than on itself. P, on the other hand, could have a huge direct negative effect on
N. To achieve this effect, however, P has to have a sufficiently large population
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size. That is exactly why we get the results we do. If N starts out as relatively
abundant, it reduces B and probably excludes P. If, on the other hand, P is
abundant, they can have a large direct negative effect on N, and exclude N.

Holt and Polis suggest that coexistence is more likely when (i) the IG-prey
is the better competitor (as we have above) and (ii) the IG-predator benefits
substantially from feeding on the IG-prey, that is, when the conversion efficiency
of prey into predators, βPN , is relatively large.

Let’s try increasing βPN to test this idea. Let’s focus on the ASS where
the predator is excluded, when both species start out at low abundances (Fig.
8.10, upper right panel). We can focus on the invasion criterion by starting N
and B at high abundance and then test whether the predator can invade from
low abundance. We can really ramp up βPN to be 100 times βPB. This might
make sense if N nutrient value is greater than B. In real food chains this seems
plausible, because the C:N and C:P ratios of body tissue tend to decline as one
moves up the food chain [193]; this makes animals more nutritious, in some
ways, than plants.

> params2 <- params1

> params2["anp"] <- 10^-7

Now we numerically integrate the model, and plot it.

> t <- 1:500

> N.init.1 <- c(B = 10^9, N = 10^7, P = 1)

> trial1 <- ode(N.init.1, t, igp, params2)

> matplot(t, log10(trial1[, -1] + 1), type = "l", col = 1,

+ ylab = quote(log[10] * ("Density+1")))

> legend("bottomright", c("B", "N", "P"), lty = 1:3, bty = "n")

Whoa, dude! Fig. 8.9a reveals very different results from those in Fig. 8.11, but
makes sense, right? We make the predator benefit a lot more from each prey
item, then the predator doesn’t need to be a good competitor, and can persist
even if the IG prey reduces the basal resource level. Our next step is to rein the
predator back in. One way to do this is to reduce the attack rate, so that the
predator has a smaller per capita direct effect on the prey. It still benefits from
eating prey, but has a harder time catching them. Let’s change αNP from 10−4
to 10−7 and see what happens.

> params2["bpn"] <- 0.5

> trial2 <- ode(N.init.1, t, igp, params2)

> matplot(t, log10(trial2[, -1] + 1), type = "l", col = 1,

+ ylab = quote(log[10] * ("Density+1")))

Now that we have allowed the predator to benefit more from individual
prey (Fig. 8.9b), but also made it less likely to attack and kill prey, we get
coexistence regardless of the predator starting at low abundance. Additional
exploration would be nice, but we have made headway. In particular, it turns
out that this model of intraguild predation yields some very interesting cases,
and the outcomes depend heavily on the productivity of the system (i.e., the
carrying capacity of B). Nonetheless, we have explored the conditions that help
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facilitate coexistence of the consumers — the IG-prey is the superior exploitative
competitor, and the IG-predator benefits substantively from the prey.

8.5 Summary

A few points are worth remembering:
• Alternative stable equibria, alternative stable states, and multiple basins of

attraction are defined generally as mulitple attractors in a system defined
by a particular suite of species in a environment in which external fluxes
are constant.

• Hysteresis is typically an example of alternative stable states that are re-
vealed through gradual changes in an external driver, such as temperature,
or nutrient supply rate.

• Alternative stable equilibria will have low invasibility by definition; this lack
of invasibility might come about through large direct negative effects (high
attack rate, or aggression), or through a preempted resource (e.g. light in-
terception, an exclusive substitutable resource, or allelopathy). There could
also be life history variation, where long lived adults prevent colonization
by less competitive juveniles, or juveniles vulnerable to predation [165].

• Alternative stable equilibria seem to be more common when species have
relatively larger negative effects on each other and weaker negative effects
on themselves.

Problems

8.1. General
Compare and contrast the terms “alternative stable states” and “multiple basins
of attraction.” Define each and explain how the terms are similar and how they
differ.

8.2. Lotka–Volterra competition
(a) Explain what we learn from Figure 8.2 regarding how growth rate, initial
abundance and intraspecific density dependence (or carrying capacity) influ-
ence outcomes. Specifically, which of these best predicted the final outcome of
competition? Which was worst? Explain.
(b) Explain in non-mathematical terms why strong interference allows for pri-
ority effects.
(c) Create a simulation to more rigorously test the conclusions you drew in part
(a) above.

8.3. Resource competition
(a) Explain hysteresis.
(b) Alter the equation for submerged plants to represent the hypothetical situa-
tion in which submerged plants get most or all of their resources from the water
column. Explain your rationale, and experiment with some simulations. What
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would you predict regarding (i) coexistence and (ii) hysteresis? How could you
test your predictions?

8.4. Intraguild Predation
(a) Use Figure 8.8 to explain how initial abundances influence outcomes. Are
there initial conditions that seem to result in all species coexisting? Are there
things we should do to check this?
(b) Explain how high attack rates and low conversion efficiencies by the top
predator create alternative stable states.



9

Competition, Colonization, and Temporal Niche
Partitioning

In this chapter, we will explore and compare models in which transient dynamics
at one spatial or temporal scale result in long-term coexistence at another. All
these models assume that species coexist because there exists at least a brief
window in time during which each species has an advantage.
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Fig. 9.1: Successional trajectory of annual and perennial herbaceous and woody plants
in the Buell-Small Succession Study (http://www.ecostudies.org/bss/). These are
mean percent cover from 480 plots across 10 fields, sampled ever 1–2 years.

We begin with a simple model of the competition–colonization tradeoff, ex-
plore habitat destruction and the extinction debt, and then examine a model
that adds an important subtlety: finite rates of competitive exclusion. We finish
up with an introduction to the storage effect

9.1 Competition–colonization Tradeoff

Models of coexistence via this tradeoff have been around for awhile [4,73,80,108,
111, 187, 189]. In this tradeoff, species coexist because all individuals die, and
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therefore all species have to have some ability to colonize new space. Therefore,
this means that species have two ways of being successful. Successful species may
be very good at colonizing open sites, or they may be very good at displacing
other species from a given site. These two extremes setup the basic tradeoff
surface, wherein species coexist when they make this tradeoff in a manner in
which none of them have too superior a combination of both traits.

Here we provide the two-species model of this phenomenon [73]. We explored
the basis of this model back in our chapter on metapopulation dynamics. Sim-
larly, here we focus on the case where the state variable is the proportion of
available sites, rather than N. In addition, we extend this to two species us-
ing [73]. Here we represent the proportion of sites occupied by each of two
species,

dp1

dt
= c1 p1 (1 − p1) − m1 p1 (9.1)

dp2

dt
= c2 p2 (1 − p1 − p2) − m2 p2 − c1 p1 p2 (9.2)

where pi is the proportion of available sites occupied by species i, and ci and
mi are the per capita colonizing and mortality rates of species i. Note that m is
some combination of inherent senescense plus a background disturbance rate;
we will refer to these simply as mortality.

As represented in eq. 9.1, species 1 is the superior competitor. The rate
of increase in p1 is a function of the per capita colonizing ability times the
abundance of species 1 (c1 p1) times the space not already occupied by that
species (1− p1). One could estimate c1 by measuring the rate at which an open
site is colonized, assuming one would also be able to measure p1. The rate of
decrease is merely a density-independent per capita rate m1.

Eq. 9.2 represents the inferior competitor. The first term includes only space
that is unoccupied by either species 1 or 2 (1 − p1 − p2). Note that species 1
does not have this handicap; rather species 1 can colonize a site occupied by
species 2. The second species also has an additional loss term, c1 p1 p2 (eq. 9.2).
This term is the rate at which species 1, the superior competitor, colonizes sites
occupied by species 2, and immediately displaces it. Note that species 1 is not
influenced at all by species 2.

Competition–colonization tradeoff model

Here we implement in R a function of ODEs for eqs. 9.1, 9.2.

> compcol <- function(t, y, params) {

+ p1 <- y[1]

+ p2 <- y[2]

+ with(as.list(params), {

+ dp1.dt <- c1 * p1 * (1 - p1) - m1 * p1

+ dp2.dt <- c2 * p2 * (1 - p1 - p2) - m2 * p2 - c1 *

+ p1 * p2

+ return(list(c(dp1.dt, dp2.dt)))

+ })

+ }
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At equilibrium, species 1 has the same equilibrium as in the Levins single
species metapopulation model.

p∗1 = 1 −
m1

c1
(9.3)

The abundance of species 1 increases with its colonizing ability, and decreases
with its mortality rate.

Species 2 is influenced by species 1 — how do we know? We see the species
1 appears in the equation for species 2. Let’s solve for p∗2 now.

0 = c2 p2 (1 − p1 − p2) − m2 p2 − c1 p1 p2

0 = p2 (c2 − c2 p1 − c2 p2 − m2 − c1 p1)

0 = c2 − c2 p1 − c2 p2 − m2 − c1 p1

c2 p2 = c2 − c2 p1 − m2 − c1 p1

p∗2 = 1 − p∗1 −
m2

c2
−

c1

c2
p∗1 (9.4)

(9.5)

In addition to the trivial equilibrium (p∗2 = 0), we see that the nontrivial equilib-
rium depends on the equilibrium of species 1. This equilibrium makes intuitive
sense, in that species 2 cannot occupy sites already occupied by species 1, and
like species one is limited by its own mortality and colonization rates (−m2/c2).
It is also reduced by a bit due to those occasions when both species colonize
the same site ((c1/c2)p1), but only species 1 wins.

Substituting p∗1 into that equilibrium, we have the following.

p∗2 = 1 −
(
1 −

m1

c1

)
−

m2

c2
−

c1

c2

(
1 −

m1

c1

)
(9.6)

p∗2 =
m1

c1
−

m2 − m1 + c1

c2
(9.7)

What parallels can you immediately draw between the equilibrium for the two
species? The form of the equilibrium is quite similar, but with two additions for
species 2. The numerator of the correction term includes its own mortality, just
like species 1, but its mortality is adjusted downward (reduced) by the mortal-
ity of species 1. Thus the greater the mortality rate of species 1, greater is the
opportunity for species 2. This term is also adjusted upward by the colonizing
ability of species 1; the greater species 1’s colonizing ability, the more frequently
it lands on and excludes (immediately) species 2, causing a drop in species 2’s
equilibrium abundance. In order to focus on the competition–colonization trade-
off, it is common to assume mortality is the same for both species. Tradeoffs
with regard to martality may also be quite important, especially if high mor-
tality is correlated with high colonization rate, and negatively correlated with
competitive ability.

If we assume m1 = m2, perhaps to focus entirely on the competition–
colonization tradeoff, we can simplify eq. 9.7 further to examine when species
2 can invade (i.e. p∗2 > 0). Eq. 9.7 can simplify to
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m
c1

>
c1

c2
(9.8)

How can we interpret these? Species 2 can invade if the space not occupied
by species 1 (m/c1) is greater the species 1’s ability to colonize an open patch
faster than species 2 (c1/c2). An alternative representation (mc2 > c2

1) shows
that species two can persist if mortality is high (but cannot exceed c1), or if
species 2’s colonization rate is high. That seems fairly restrictive, on the face
of it. However, if we assume that species 2 is the better colonizer, then this
simply specifies how much better it has to be; it also indicates that increasing
disturbance (and hence mortality) will enhance the abundance of the species
which can recolonize those disturbances.

Thus, this model predicts that these species can coexist, even though one is
a superior competitor. Further, it predicts that species 2 will become relatively
more abundant as mortality increases.

Estimating colonization and mortality rates

Just exactly what corresponds to a “site” is not always defined, although site-
based models such as these have often been used in a qualitative manner to
describe the dynamics plant communities [83,152,153,202]. Indeed, such models
could describe systems such as a single field, where a “site” is a small spot of
ground, sufficient for the establishment of an individual [202]. Alternatively, a
“site” could be an entire field in a large region of mixed successional stages. For
the time being, let us continue to focus on a single field as a collection of small
plots (e.g., 0.1 × 0.1 m), each of which might hold 1–3 potentially reproductive
individuals. There may be several ways to estimate model parameters for these
sorts of models [152,202], and here we try to estimate c and m directly. Assume
that we clear all plants from 100 0.1× 0.1 m plots. In the first year, we find that
annuals (e.g., ragweed) showed up in 95 plots, and perennials (e.g. goldenrod)
showed up in 60 plots. The following year, we find that 70 of the plots have
perennials and 90 plots have annuals. Most plots contain both annuals and
perennials.

If we make sufficient assumptions, we could easily estimate c and m. Further,
in making these assumptions and making estimates, we provide an example that
allows one to think critically about the ways in which the assumptions are close
to reality or are misleading.

Let us assume that
1. perennials are virtually everywhere in this field (p ≈ 1) and annual seeds

are abundant throughout the soil (p ≈ 1, then cp ≈ c,
2. these small plots do not contribute much to the propagule pool, and that

they receive all of their propagules from the ubiquitous rain of propagules
from the surrounding vegetation.

3. in the first two years, these two species do not interact strongly.
Clearly these assummptions are wrong, but perhaps not too wrong, and will
allow us to calculate some back-of-the-envelope estimates of parameters. With
these assumption, we can estimate c and m using the propagule rain metapop-
ulation model, ṗ = c(1− p)−mp. The discrete time version of this is simply the
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difference equation1

pt+1 = pt + cd(1 − pt) − md pt (9.9)

where cd and md are the discrete time versions of the colonization and mortality
constants.

With only two parameters, we need only a small amount of data to estimate
these constants — remember the old rule from algebra? We need two equations
to estimate two unknowns. Based on our data above, we have

0.5 = 0 + cd (1 − 0) − md (0)

0.7 = 0.5 + cd (1 − 0.5) − md (0.5)

and very quickly we find that cd = 0.5 and, given that, we find that md = 0.1.
We have another species as well, and we can estimate cd and md for species

2 as well.

0.95 = 0 + cd (1 − 0) − md (0)

0.90 = 0.95 + cd (1 − 0.95) − md (0.95)

and very quickly we find that cd = 0.95 and, given that, we find that md ≈ 0.1.
What do the dynamics look like if we assume no interaction? Both species

rise to achieve their equilibria (Fig. 9.2a). We have fit the data assuming that
the species did not interact, and clearly this is not true, but we have begun the
process of thinking critically about what we mean.

Let us assume that the species start interacting in year 2 — what would the
dynamics look like? The difference equation for species 2 then becomes

p2,t+1 = p2,t + c2,d(1 − p2,t) − m1,d p2,t − c1,d1 p1,t p2,t (9.10)

where we include the subscript for each species. The dynamics differ radically
when we include competitive exclusion (Fig. 9.2b). The species reach very dif-
ferent equilibria.

Let us extrapolate these dynamics (Fig. 9.2) to secondary succession in
general (e.g., Fig. 9.1). Our model results seem qualitatively consistent with
what we know about successional trajectories. With a lot of open sites, perhaps
early in secondary or primary succession, good colonizers get in quickly and fill
the site. They are subsequently replaced by the competitively superior species.
This is a classic view of succession, with pioneer and climax species. Note that
our example focused on small plots within a single field, but we could apply it
to a much larger scale. This could approximate a landscape mosaic composed
of patches of different sucessional ages, in which species of different dispersal
and competitive abilities persist in the landscape, because they occupy patches
of different ages.

1 In general, we can create a difference equation from any differential equation, Ṅ =

F(N), where Nt+1 = Nt + F(N) but where parameter estimates will differ somewhat.
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Fig. 9.2: Dynamics of perennials (sp. 1) and annuals (sp. 2) without and with in-
teraction. The interaction assumes that species 1 excludes species 2 instantaneously
whenever they come into contact (cd,1 = 0.5, cd,2 = 0.95, md,1 = md,2 = 0.1)

Estimating and using cd and md

Let us code the data we derive above, and project over 20 years. First without
interaction.

> cd1 <- 0.5; cd2 <- 0.95; md1 <- 0.1; md2 <- 0.1

We create a big enough matrix, and perform the projection.

> t <- 20

> ps <- matrix(0, nrow = t + 1, ncol = 2)

> for (i in 1:t) ps[i + 1, ] <- {

+ p1 <- ps[i, 1] + cd1 * (1 - ps[i, 1]) - md1 * ps[i, 1]

+ p2 <- ps[i, 2] + cd2 * (1 - ps[i, 2]) - md2 * ps[i, 2]

+ c(p1, p2) }

> matplot(0:t + 1, ps, type = "b", ylab = "Proportion of Sites",

+ xlab = "Time", xlim = c(0, t + 1), ylim = c(0, 1))

Now assume they interact from year 2 onward.

> ps2 <- matrix(0, nrow = t + 1, ncol = 2)

> ps2[1, ] <- ps[2, ]

> for (i in 1:t) ps2[i + 1, ] <- {

+ p1 <- ps2[i, 1] + cd1 * ps2[i, 1] * (1 - ps2[i, 1]) -

+ md1 * ps2[i, 1]

+ p2 <- ps2[i, 2] + cd2 * ps2[i, 2] * (1 - ps2[i, 2]) -

+ md2 * ps2[i, 2] - cd1 * ps2[i, 2]

+ c(p1, p2) }

> matplot(1:t + 1, ps2[-(t + 1), ], type = "b", ylab = "Proportion of

+ Sites", xlab = "Time", xlim = c(0, t + 1), ylim = c(0, 1))
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Habitat destruction

Nee and May [146] later showed that, given these tradeoffs, an interesting phe-
nomenon arose. If species coexist via this competition–colonization tradeoff,
destruction of habitat increases the abundance of the inferior competitor. How
does it do this? First let’s derive this analytically, and then consider it from an
intuitive point of view.

We can alter the above equations to include habitat destruction, D.

dp1

dt
= c1 p1 (1 − D − p1) − m1 p1

dp2

dt
= c2 p2 (1 − D − p1 − p2) − m2 p2 − c1 p1 p2

We can then solve for the equilibria.

p∗1 = 1 − D −
m1

c1
(9.11)

p∗2 =
m1

c1
−

m2

c2
−

c1

c2

(
1 − D −

m1

c1

)
(9.12)

(9.13)

What does this mean to us? First note that habitat destruction has a simple
and direct negative effect on the abundance of species 1. For species 2, we
see the first two terms are unaltered by habitat destruction. The third and
last term represents the proportion of colonization events won by the superior
competitor, species 1, and thus depends on the abundance of species 1. Because
habitat destruction has a direct negative effect on species 1, this term shows
that habitat destruction can increase the abundance of inferior competitors by
negatively affecting the superior competitor.

We must also discuss what this does not mean. Typically, an ecologist might
imagine that disturbed habitat favors the better colonizer, by making more sites
available for good colonizers, and perhaps creating microhabitat conditions that
favor rapid growth (e.g., pulse of high resources). This is different than habitat
destruction, which removes entirely the habitat in question. Imagine a parking
lot is replacing a grassland, or suburban sprawl is replacing forest; the habitat
is shrinking — rather than merely being disturbed — and this has a negative
impact on the better competitor.

Multispecies competition–colonization tradeoff and habitat
destruction

The work of David Tilman and his colleagues in grassland plant communities
at the Cedar Creek Natural History Area (a NSF-LTER site) initially tested
predictions from the R∗ model, and its two-resource version, the resource ratio
model [200,201,218,222]. They found that soil nitrogen was really the only re-
source for which the dominant plant species (prairie grasses) competed strongly.
If this is true, then the single resource R∗ model of competition predicted that
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the best competitor would eliminate the other species, resulting in monocul-
tures of the best competitor. The best competitors were little bluestem and
big bluestem (Schizachyrium scoparium and Andropogon gerardii), widespread
dominants of mixed and tall grass prairies, and R∗ predicted that they should
exclude everything else. However, they observed that the control plots, although
dominated by big and little bluestem, were also the most diverse. While big and
little bluestem did dominate prairies, the high diversity of these communities di-
rectly contradicts the R∗ model of competition.2 Another pattern they observed
was that weaker competitors colonized and became abundant in abandoned
fields sooner than the the better competitors. It turned out that variation in
dispersal abilities might be the key to understanding both of these qualitative
patterns [65,162,174].

In an effort to understand how bluestem-dominated prairies could maintain
high diversity in spite of single resource competition, Tilman generalized the [73]
equations to include n species [202].

dpi

dt
= ci pi

1 − i∑
j=1

p j

 − mi pi −

 i−1∑
j=1

c j p j pi

 (9.14)

where the last term describes the negative effect on species i of all species of
superior competitive ability.

Multispecies competition–colonization model

Here we create an R function for eq. 9.14.

> compcolM <- function(t, y, params) {

+ S <- params[["S"]]

+ D <- params[["D"]]

+ with(params, list(dpi.dt <- sapply(1:S, function(i) {

+ params[["ci"]][i] * y[i] * (1 - D - sum(y[1:i])) -

+ params[["m"]][i] * y[i] - sum(params[["ci"]][0:(i -

+ 1)] * y[0:(i - 1)] * y[i])

+ })))

+ }

This code seems strange, that is, unlike previous systems of ODEs in which we wrote

each separate equation out. The above code merely implements the strict hierarchy

of eq. 6.12, and is inspired by a similar approach by Roughgarden [181]. It also

allows us to specify, on the fly, the number of species we want. We also sneak in a

parameterization for habitat destruction, D, and we will address that later.

One goal was to explain the successional patterns of grasses in his study
area, the low nutrient grassland/savanna of Minnesota sand plains. Following
early succession, the common perennial prairie grass species seemed to form an
abundance hierarchy based on competitive ability: the best competitors were the
most abundant, and the worst competitors were least abundant. A caricature

2 For different views see [40,204].
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of a generic species abundance distribution is the geometric distribution, where
each species, with rank i makes up a constant, declining, fraction of the total
density of all individuals (see Chapter 10 for more detail).3 Specifically, the
proportional abundance of each species i can be calculated as a function of
proportional abundance of the most abundant species, d, and the species rank,
i.

pi = d(1 − d)i−1 (9.15)

Thus if the most abundant species makes up 20% of the assemblage (d = 0.20),
the second most abundant species makes up 20% of the remaining 80%, or
0.2(1 − 0.2)1 = 0.16 = 16% of the community. Tilman et al. [202] showed that if
all species experience the same loss rate, then species abundances will conform
to a geometric distribution when colonization rates conform to this rule

ci =
m

(1 − d)2i−1 (9.16)
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Fig. 9.3: (a) Rank–abundance distribution and the colonization rates that create them
(m = 0.04). (b) Successional dynamics with the competition–colonization tradeoff, from
low initial abundances. Here, equilibrium abundance of the best competitor is 20%
(d = 0.2), mortality is 4% (m = 0.04), and colonization rates are determined by eq.
9.16, resulting, at equilibrium, in a geometric species rank–abundance distribution.

3 The most abundant species has rank equal to 1.
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Calculating rank–abundance distributions and colonization rates (Fig. 9.3a)

Here we select 10 species, with the most abundant species equaling 20% of the
biomass in the community, and specify a common mortality or disturbance rate m.
We then create expressions for eqs. 9.15 and 9.16.

> S <- 10

> ranks <- 1:S

> d <- 0.2

> m = 0.04

> geo.p <- expression(d * (1 - d)^(ranks - 1))

> ci <- expression(m/(1 - d)^(2 * ranks - 1))

Next we create a plot with two y-axes.

> par(mar = c(5, 4, 1, 4), mgp = c(2, 0.75, 0))

> plot(ranks, eval(geo.p), type = "b", ylab = "Proportional Abundance",

+ xlab = "Rank", xlim = c(1, S))

> par(new = TRUE)

> plot(ranks, eval(ci), type = "b", axes = FALSE, ann = FALSE,

+ lty = 2)

> axis(4)

> mtext("Colonization Rates", side = 4, line = 2)

Sucessional dynamics of prairie grasses (Fig. 9.3b)

Here, we set all mortality rates to the same value, one per species, pool all the
necessary parameters into a vector (params), and select initial abundances. The
initial abundances are merely very low abundances — this merely results in fun,
early successional dynamics.

> params <- list(ci = eval(ci), m = rep(m, S), S = S, D = 0)

> init.N <- rep(0.01, S)

> t = seq(1, 200, 0.1)

> cc.out <- ode(init.N, t, compcolM, params)

> par(mgp = c(2, 0.75, 0))

> matplot(t, cc.out[, -1], type = "l", ylab = "Proportion of Habitat",

+ xlab = "Years", col = 1)

Tilman and colleagues [203] startled folks when they showed that a com-
mon scenario of habitat destruction led to a perfectly counterintuitive result:
that habitat destruction led to the very slow but deterministic loss of the best
competitor. It was unsettling not only that the dominant species would be lost
first (a result demonstrated by Nee and May [146]), but also that the loss of
dominant species will take a long time. This implied that we would not realize
the true cost of habitat destruction until long after the damage was done. These
two conclusions posed a problem for conservationists.

• Species that were thought safe from extirpation at local scales — the best
competitors — could actually be the ones most likely to become extinct,
and further,
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• That the process of extinction may take a long time to play out, and so the
data demonstrating this loss might require a long time to collect (Fig. 9.4).

These two predictions constitute the original conception for extinction debt.
However, the term has become more broadly used to described the latter phe-
nomenon, that extinction due to habitat destruction may take a long time, and
current patterns may be a function of past land use [75,114].

We see (Fig. 9.4) the predictable, if counterintuitive, result: the most abun-
dant species, the competitive dominant, becomes extinct over a long period of
time, and the next best competitor replaces it as the most abundant species.
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Fig. 9.4: Extinction debt. Destruction of 25% of the habitat causes the loss of the
competitive dominant (wide solid line). Parameters the same as in Fig. 9.3b, but initial
abundances are equilibrium abundances in the absence of habitat destruction. The
second best competitor (wide dashed line) will eventually become the most common
species.

Competition is a local phenomenon, and the better competitor can typically
hold onto a given site; however, individuals of all species eventually die. There-
fore, for two species to actually coexist in a landscape, even the best competitor
must colonize some new space at some point. If habitat destruction reduces habi-
tat availability too far, the worst colonizer (i.e., the best competitor) will be
unable to disperse effectively to new habitat.
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Extinction debt (Fig. 9.4)

We use the same functions and parameters as above. We add habitat destruction
for a quarter of the available habitat, which is greater that the equilibrium for the
dominant species, and will result in the slow loss of the dominant species. We also
start the species off at their equilibrium abundances, determined by the geometric
distribution.

> params["D"] <- 0.25

> init.N <- eval(geo.p)

> cchd.out <- ode(init.N, t, compcolM, params)

> matplot(t, cchd.out[, -1], type = "l", lty = 1:5, lwd = rep(c(3,

+ 1), each = 5), col = 1, ylab = "Proportion of Habitat",

+ xlab = "Years")

9.2 Adding Reality: Finite Rates of Competitive
Exclusion

While the competition–colonization tradeoff is undoubtedly important, it ig-
nores some fundamental reality that may be very important in explaining pat-
terns and understanding mechanisms. The models above all assume competitive
exclusion is instantaneous. That assumption may be approximately or quali-
tatively correct, but on the other hand, it may be misleading. Given the im-
plications of extinction debt for conservation, it is important to explore this
further. Indeed, Pacala and Rees did so [152], and came to very different con-
clusions than did Tilman et al. [202]. This section explores the work of Pacala
and Rees [152].

If we look at species in the real world, a couple of observations arise, with
respect to tradeoff of species of different successional status. First, species char-
acterized by high dispersal ability are also often characterized by high maximum
growth rates, related to high metabolic and respiration rates, and allocation to
reproductive tissue. These we refer to as r-selected species [119,122]. Second, we
observe that when deaths of individuals free up resources, individuals with high
maximum growth rates can take advantage of those high levels of resources to
grow quickly and reproduce. Third, we observe that the arrival of a propagule
of a superior competitor in the vicinity of a poor competitor does not result in
the instantaneous draw down of resource levels and exclusion of the poor com-
petitor. Rather, the poor competitor may continue to grow and reproduce even
in the presence of the superior competitor prior to the reduction of resources
to equilibrium levels. It is only over time, and in the absence of disturbance,
that better resource competitors will tend to displace individuals with good
colonizing ability and high maximum growth rates.

Pacala and Rees [152] wanted to examine the impact of finite rates of com-
petitive exclusion on the competition–colonization tradeoff. Implicit in this is
the role of maximum growth rate as a trait facilitating coexistance in the land-
scape. High growth rate can allow a species to reproduce prior to resource re-
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duction and competitive exclusion. This creates an ephemaral niche, and Pacala
and Rees referred to this as the successional niche. Species which can take good
advantage of the successional niche are thus those with the ability to disperse
to, and reproduce in, sites where resources have not yet been depleted by supe-
rior competitors. To facilitate their investigation, Pacala and Rees added finite
rates of succession to a simple two species competition–colonization model.

Possible community states

They envisioned succession on an open site proceeding via three different path-
ways. They identified five possible states of the successional community (Fig.
9.5).

1. Free — Open, unoccupied space.
2. Early — Occupied by only the early sucessional species.
3. Susceptible — Occupied by only the late successional species and susceptible

to invasion because resource levels have not yet been driven low enough to
exclude early successional species.

4. Mixed — Occupied by both species, and in transition to competitive ex-
clsuion.

5. Resistant — Occupied by only the late successional species and resistant
to invasion because resource levels have been driven low enough to exclude
early successional species.

Pathways

Given the five states, succession can then proceed along any of three pathways
(Fig 9.5):

1. Free → Early → Mixed → Resistant,
2. Free → Susceptible → Mixed → Resistant,
3. Free → Susceptible → Resistant.

In this context, Pacala and Rees reasoned that the competition–colonization
tradeoff focuses on mutually exclusive states, and assumes there are only Free,
Early, and Resistant states. In contrast, if species coexist exclusively via the
competition–maximum growth rate tradeoff, then we would observe only Free,
Mixed, and Resistant states. They showed that these two mechanisms are not
mutually exclusive and that the roles of finite rates of competitive exclusion
and the successional niche in maintaining diversity had been underestimated.

Note that the interpretation of this model is thus a little different than
other models that we have encountered. It is modeling the dynamics of differ-
ent community states. It makes assumptions about species traits, but tracks the
frequency of different community states. Technically speaking, any metapopula-
tion model is doing this, but in the contexts we have seen, the states of different
patches of the environment were considered to be completely correlated with the
abundance of each species modeled. Here we have five different state variables,
or possible states, and only two species.
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Fig. 9.5: The state variables in the [152] model. Dashed lines indicate mortality; the
larger size of the Mixed state merely reminds us that it contains two species instead
of one. Each pathway is labelled with the per capita rate from one state to the other.
For instance the rate at which Mixed sites are converted to Resistant sites is g(M),
and the rate at which Free sites are converted to Early sites is ac(M + E)

The traits of the two species that create these four states are embedded in
this model with four parameters, c, α, m, γ. There is a base colonization rate, c,
relative colonization rate of the poor competitor, α, mortality (or disturbance
rate), m, and the rate of competitive exclusion, γ. We could think of γ as the
rate at which the better competitor can grow and deplete resources within a
small patch. We model the community states as follows, using F to indicate a
fifth state of Free (unoccupied) space.

dS
dt

= [c (S + R + M)] F − [αc (M + E)] S − γS − mS (9.17)

dE
dt

= [αc (M + E)] F − [c (S + R + M)] E − mE (9.18)

dM
dt

= [αc (M + E)] S + [c (S + R + M)] E − γM − mM (9.19)

dR
dt

= γ (S + M) − mR (9.20)

F = 1 − S − E − M − R (9.21)
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Successional niche model

In addition to representing the original successiona niche model, we can also slip in a
parameters for habitat destruction, D. As with the above model, habitat destruction
D is simply a value between 0–1 that accounts for the proportion of the habitat
destroyed. Pacala and Rees [152] didn’t do that, but we can add it here. We also
have to ensure that F cannot be negative.

> succniche <- function(t, y, params) {

+ S <- y[1]

+ E <- y[2]

+ M <- y[3]

+ R <- y[4]

+ F <- max(c(0, 1 - params["D"] - S - E - M - R))

+ with(as.list(params), {

+ dS = c * (S + R + M) * F - a * c * (M + E) * S -

+ g * S - m * S

+ dR = g * (S + M) - m * R

+ dM = a * c * (M + E) * S + c * (S + R + M) * E -

+ g * M - m * M

+ dE = a * c * (M + E) * F - c * (S + R + M) * E -

+ m * E

+ return(list(c(dS, dE, dM, dR)))

+ })

+ }

Now we can examine the dynamics of this model. When we make the
rate of competitive exclusion very high, the model approximates the simple
competition–colonization tradeoff (Fig. 9.5)4 The susceptible and mixed states
are not apparent, and the better competitor slowly replaces the good colonizer.

4 When γ = 5, this means that in one year, exclusion will be 99.3% complete, because
it is a pure negative exponential process, where Xt = X0eγt. Similarly, recall our cal-
culation of doubling time, t = log(X)/r, where X is the relative size of the population
(e.g., 2, if the population doubles); here r < 0 and time is < 1.
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Dynamics of the successional niche model with a high rate of competitive
exclusion (Fig. 9.6a)

For no particular reason, we pretend that the poor competitor is 7× as fast at
colonizing (α = 7), and that the rate of competitive exclusion is very high, γ = 5. We
assume mortality is low, and there is no habitat destruction.

> params.suc <- c(a = 7, c = 0.2, g = 5, m = 0.04, D = 0)

Next we let time be 50 y, and initial abundances reflect a competitive advantage to
the early successional species, and run the model.

> t = seq(0, 100, 0.1)

> init.suc <- c(S = 0.01, E = 0.03, M = 0, R = 0)

> ccg.out <- data.frame(ode(init.suc, t, succniche, params.suc))

Last we plot our projections.

> matplot(t, ccg.out[, -1], type = "l", ylab = "Relative Frequency",

+ xlab = "Time", ylim = c(0, 1), col = 1)

> legend("topright", colnames(ccg.out)[5:2], lty = 4:1, bty = "n")

Now let’s slow down competitive exclusion, that is, we will slow the tran-
sition from M to R. We set γ to be a small number, so that only 10% of the
mixed plots become resistant plots over one year (γ = 0.1). When we slow down
competitive exclusion, we see that we get persistence of both species (Fig. 9.6b).
First, we get greater frequency of the mixed state, where we always see a large
fraction of the mixed habitat occupied by both species (state M), relative to the
case with rapid competitive exclusion (Fig. 9.6a). In addition, we see a higher
proportion of habitat in early succession phase (state E).

Dynamics of the successional niche model with a low rate of competitive
exclusion (Fig. 9.6b)

Here we slow down the rate of competitive exclusion, and 90% of the mixed sites
stay mixed after a one year interval.

> params.suc["g"] <- 0.1

> exp(-0.1)

[1] 0.9048

> ccg.out <- data.frame(ode(init.suc, t, succniche, params.suc))

We plot our projections.

> matplot(t, ccg.out[, -1], type = "l", ylab = "Relative Frequency",

+ xlab = "Time", ylim = c(0, 1), col = 1)

Now let’s imagine that mortality rate increases from 1% (Fig. 9.6a) to 10%
(Fig. 9.6c). (m = 0.04 vs. m = 0.105). With this moderate disturbance rate, the
system takes longer to approach an equilibrium, and also has a higher frequency
of sites with just the early sucessional species (Fig. 9.6c). This reflects the
mechanisms underlying the intermediate disturbance hypothesis [37]. At very
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(b) γ = 0.1
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(c) m = 0.105
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(d) α = 1, c = 0.7, γ = 0.1

Fig. 9.6: Unless otherwise noted in the figure, α = 7, c = 0.2, γ = 5,
m = 0.04. (a) Competition–colonization (high rate of competitive exclusion), (b)
Competition–colonization and the successional niche (slower competitive exclusion),
(c) Competition–colonization with intermediate rather than low disturbance, and (d)
Successional niche (equal colonizing ability).

low disturbance rates, the best competitor prevails. At moderate disturbance
rates, however, we have far more habitat that supports both pioneer species
(good colonizers) as well as climax species (superior competitor). Note that
slowing down competitive exclusion (Fig. 9.6b) or increasing the disturbance
rate (Fig. 9.6c) result in similar frequencies of both species, but via different
mechanisms.
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Dynamics of the successional niche model with an intermediate disturbance
rate (Fig. 9.6c)

Here we have a low rate of competitive exclusion (as above), but higher disturbance
rates (10% of the habitat is disturbed each year).

> params.suc["g"] <- 5

> params.suc["m"] <- 0.105

> ccg.out <- data.frame(ode(init.suc, t, succniche, params.suc))

> matplot(t, ccg.out[, -1], type = "l", ylab = "Relative Frequency",

+ xlab = "Time", ylim = c(0, 1), col = 1)

Now let’s explore the pure successional niche. Imagine that there is no
competition–colonization tradeoff: both species have high colonization rates, but
the superior competitor retains its competitive edge. However, we also assume
that the rate of competitive exclusion is finite (γ � ∞). The pure competition–
colonization model would predict that we do not get coexistence. In contrast,
we will find that the successional niche model allows coexistence. Let’s set the
relative competitive ability equal (α = 1) and increase the base colonization rate
to the higher of the two original rates (c = 7). We also let the rate of competitive
exclusion be small (γ < 1).

What do the dynamics of the pure successional niche model look like (Fig.
9.6d)? We see that we achieve coexistence because the system retains both the
mixed state and the resistant state. With both species colonizing everywhere
(high c), the successional niche allows coexistence because of the finite rate of
competitive exclusion. Species 1 now occupies a pure successional niche persist-
ing in the mixed state M (Fig. 9.6d).

Dynamics of the successional niche model with no competition–colonization
tradeoff (Fig. 9.6d)

Here we equal and high colonization rates, and a slow rate of competitive exclusion.

> params.suc <- c(a = 1, c = 0.7, g = 0.1, m = 0.04, D = 0)

> ccg.out <- data.frame(ode(init.suc, t, succniche, params.suc))

> matplot(t, ccg.out[, -1], type = "l", ylab = "Relative Frequency",

+ xlab = "Time", ylim = c(0, 1), col = 1)

Let’s consider the successional niche analytically, by effectively eliminating
colonization limitation for either species (c >> 1, α = 1). If there is no coloniza-
tion limitation, then propagules of both species are everywhere, all the time.
This means that states F, E, and S no longer exist, because you never have free
space or one species without the other. Therefore M is one of the remaining
states. The only monoculture that exists is R, because in R, both propagules
may arrive, but the early successional species 1 cannot establish. Therefore the
two states in the pure successional niche model are M and R.

How does M now behave? M can only increase when R dies back. M will
decrease through competitive exclusion. We might also imagine that M would
decrease through its own mortality; we have stipulated, however, that colo-
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nization is not limiting. Therefore, both species are always present, if only as
propagules. The rates of change for M and R, therefore are,

dM
dt

= mR − γM

R = 1 − M

The equilibria for the two states can be found by first setting Ṁ = 0 and
substituting 1 − M in for R, as

0 = m (1 − M) − γM

M∗ =
m

γ + m

making R∗ = γ/(γ + m).
Up until now, we have focused on the frequencies of the four states, rather

than the frequencies of the two types of species (early successional and compet-
itive dominant). If we are interested in the relative abundances of the two types
of species, we merely have to make assumptions about how abundant they are
in each different state. If we assume that they are equally abundant in each
state, then the abundance of the early successional species is E + M and the
abundance of the competitive dominant is S + M + R.

Let us finally investigate extinction debt with this model. We should first
verify that we get extinction debt with a“pure”competition–colonization trade-
off (large γ, large α). We should then reduce γ and α to make the successional
niche the primmary mechanism, and see what happens to the pattern of extinc-
tion.

We can compare patterns of extinction under these two scenarios (Fig. 9.7,
without and with the successional niche). In doing so, we find a complete re-
versal of our conclusions: when the primary mechanism of coexistence is the
successional niche, we find that the competitive dominant persists, rather than
the early successional species. (Recall that when colonization rates are equal,
the rate of extinction must be slow in order to achieve coexistance even without
habitat destruction).

These opposing predictions highlight the important of getting the mecha-
nism right. They also illustrate the power of simplistic models to inform under-
standing.
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(a) α = 10, γ = 10
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(b) α = 1, γ = 0.1

Fig. 9.7: Extinction dynamics beginning equilibrium abundances. (a) Relying on the
competition–colonization tradeoff results in a loss of the competitive dominant, (b)
Relying on the successional niche tradeoff results in a persistance of the competitive
dominant.

Dynamics of the extinction debt with the successional niche model (Fig. 9.7)

Here we approximate the competitive-colonization model with unequal colonization
rates, and a very high rate of competitive exclusion. We then find, through brute
force, the equlibria for our parameter set by integrating a long time and keeping the
last observations as the equilibria.

> params.suc1 <- c(a = 10, c = 0.1, g = 10, m = 0.04, D = 0)

> Xstar1 <- ode(init.suc, 1:500, succniche, params.suc1)[500, -1]

We then create habitat destruction, and plot the result.

> params.suc1D <- c(a = 10, c = 0.1, g = 10, m = 0.04,

+ D = as.numeric(Xstar1["R"]))

> t = 1:100

> ccg.out1 <- data.frame(ode(Xstar1, t, succniche, params.suc1D))

> matplot(t, ccg.out1[, -1], type = "l", col = 1,

+ ylab = "Relative Frequency", xlab = "Time")

Next, we include the successional niche, by making colonization rates equal and high,
and γ small. We then find our equilibria, without habitat destruction.

> params.suc2 <- c(a = 1, c = 1, g = 0.1, m = 0.04, D = 0)

> Xstar2 <- ode(init.suc, 1:500, succniche, params.suc2)[500,

+ -1]

We then create habitat destruction, and plot the result.

> params.suc2D <- c(a = 1, c = 0.7, g = 0.1, m = 0.04,

+ D = as.numeric(Xstar1["R"]))

> ccg.out2 <- data.frame(ode(Xstar2, t, succniche, params.suc2D))

> matplot(t, ccg.out2[, -1], type = "l", ylab = "Relative Frequency",

+ xlab = "Time", col = 1)

> legend("topright", colnames(ccg.out2[5:2]), lty = 4:1, bty = "n")
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9.3 Storage effect

What if all of this is wrong? What if none of these tradeoffs underlie coexistance?
Jim Clark and his colleagues [31] examined dispersal traits of co-occurring de-
ciduous forest trees (fecundity, dispersal), and successional status, and found
no evidence that early successional species had higher dispersal capacity. This
suggests a lack of support for competition–colonization tradeoffs. Rather, they
found evidence that asynchronous success in reproduction of these long-lived or-
ganisms allowed them to coexist. Together, these traits constitute a mechanism
referred to as the storage effect [28,217].

In the storage effect, competing species can store energy for reproduction
until favored conditions arise [28,217]. Assumptions include:

Variable environment Each species encounters both favorable and unfavor-
able periods for reproduction.

Buffered population growth Each species stores energy in a resistant stage
(e.g., long lived adults, seeds, spores, eggs) between favorable periods.

Environment–competition covariation The same conditions that favor re-
production for a particular species also increase competition intensity for
that species. If, for instance, winter rains favor a particular desert annual,
that desert annual will experience the greatest intraspecific competition fol-
lowing a wet winter precisely because of its large population size.

One prediction of the storage effect is that small population sizes will be more
variable (have higher CV, coefficient of variation) than large populations of
competing species [89].

In one sense, the storage effect constitutes a temporal niche [28]. That is,
the theory simply stipulates that different species succeed at different times. For
rare species to coexist with common species, their relative success needs to be
somewhat greater than the relative success of common species. In the absence
of environmental variability, species would not coexist.

Here we provide one set of equations describing the dynamics of the storage
effect for each species i in the community [26].

Ni,t+1 = (1 − d) Ni,t + Ri,tNi,t (9.22)

Ri,t = eEi,t−Ci,t (9.23)
Ei,t = F

(
Xi,t

)
(9.24)

Ci,t =

S∑
i=1

αieEi,t Ni,t (9.25)

(9.26)

Here, E is an unspecified function of the environment, Xi,t, so that E specifically
differs among species and across time. We can think of exp(Ei,t) (the first growth
factor in Ri,t) as the maximum per capita reproductive rate for species i, at time
t, in the absence of competition. It is determined by the environment at time t.
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The other growth factor, exp(−Ci,t), is the effect of competition. It allows us
to intensify competition at large population sizes (e.g., during favorable condi-
tions), and lessen competition at low population sizes (e.g., during poor condi-
tions). These two factors allow us to represent independently the positive and
negative effects of the environment on an organism’s capacity to grow (Ei), and
also to represent how competition intensity covaries with population density
(Ci). There are many other representations of the storage effect [29, 217], but
this is a simple and convenient one [26].

The storage effect is a special case of lottery models [143]. Originally de-
veloped for reef fishes [183], lottery models are considered general models for
other systems with important spatial structure such as forest tree assemblages.
Conditions associated with lottery systems [30] include:

1. Juveniles (seedlings, larvae) establish territories in suitable locations and
hold this territory for the remainder of their lives. Individuals in non-
suitable sites do not survive to reproduce.

2. Space is limiting; there are always far more juveniles than available sites.
3. Juveniles are highly dispersed such that their relative abundances and their

spatial distributions are independent of the distribution of parents.

These conditions facilitate coexistence because the same amount of open space
has a greater benefit for rare species than for common species. While the invul-
nerable nature of successful establishment slows competitive exclusion, perma-
nent nonequilibrium coexistence does not occur unless there is a storage effect,
such as with overlapping generations, where a reproductive stage (resting eggs,
seeds, long lived adults) buffers the population during unfavorable environmen-
tal conditions, and negative environment–competition covariation.

9.3.1 Building a simulation of the storage effect

Here we simulate one rare and one common species, wherein the rare species
persists only via the storage effect. We conclude with a simple function, ches-
son, that simplifies performing more elaborate simulations.

Fluctuating environment

First we create a variable environment. Environments are frequently noisy and
also temporally autocorrelated — we refer to a special type of scale-independent
autocorrelation as red noise or 1/ f noise (“one over ’f’ noise”) [67]. Here we
use simply white noise, which is not temporally autocorrelated, but rather,
completely random at the time scale we are examining.

> years <- 100

> t <- 1:years

> variability = 4

> env <- rnorm(years, m = 0, sd = variability)

> plot(t, env, type = "l")
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Differential responses to the environment

A key part of the storage effect is that species have differential reproduction
in response to a fluctuating environment (Fig. 9.8). However, species can differ
for all sorts of reasons. Therefore, we will let our two species have different
average fitness. We do this specifically because in the absence of the stochastic
temporal niche of the storage effect, the species with the higher fitness would
eventually replace the rare species. We want to show that the storage effect
allows coexistance in spite of this difference. We will let these fitnesses be

> w.rare <- 0.5

> w.comm <- 1

but as we will see in the simulation, competitive exclusion does not happen —
the species coexist. For the example we are building (Fig. 9.8), we will pretend
that

• our rare species grows best when the environment (maybe rainfall) is above
average,

• our common species grows best when the environment is below average,
and,

• both grow under average conditions; their niches overlap, and we will call
the overlap rho, ρ.

As merely a starting point, we let overlap, ρ, be equal to the standard
deviation of our environmental variabiity.

> rho <- sd(env)
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Fig. 9.8: Environmental variability, niche overlap (ρ), and the resulting buffered pop-
ulation growth rates.
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Code for a pretty histogram (Fig. 9.8)

Here we simply create a pretty histogram.

> hist.env <- hist(env, col = "lightgray",

+ main = "Histogram of Environment")

> abline(v = c(c(-rho, rho)/2), lty = 3)

> arrows(x0 = -rho/2, y0 = mean(hist.env[["counts"]]), x1 = rho/2,

+ y1 = mean(hist.env[["counts"]]), code = 3, length = 0.1)

> text(0, mean(hist.env[["counts"]]), quote(italic(rho)), adj = c(1.5,

+ 0), cex = 1.5)

> text(min(hist.env[["breaks"]]), mean(hist.env[["counts"]]),

+ "Common sp.\ngrows best", adj = c(0, 0))

> text(max(hist.env[["breaks"]]), mean(hist.env[["counts"]]),

+ "Rare sp.\ngrows best", adj = c(1, 0))

To quantitfy reproduction as a function of the environment, we will simply
let each species growth rate be, in part, the product of its fitness and the
environment, with the sign appropriate for each species.

> a.rare <- (env + rho/2) * w.rare

> a.comm <- -(env - rho/2) * w.comm

This will allow the rare species to have highest reproduction when the environ-
ment variable is above average, and the common species to have high reproduc-
tion when the environmental variable is below average. It also allows them to
share a zone of overlap, ρ, when they can both reproduce (Fig. 9.8a).

Buffered population growth

A key feature of the storage effect is that each species has buffered population
growth. That is, each species has a life history stage that is very resistant to poor
environmental conditions. This allows the population to persist even in really
bad times. In some cases, the resistant stage may be a long-lived adult, as with
many tree species, or other large-bodied organisms. In other cases, species have
very resistant resting stages, such as the eggs of zooplankton [20], or the seeds
of annual plants [54].

To model this buffering effect, we will simply prevent the reproductive rates
from falling below zero. (We will, however, create mortality (below) that is
independent of the growth rate of each species). Let us impose this constraint
of reproduction ≥ 0 now.

> Es <- matrix(NA, nrow = years, ncol = 2)

> Es[, 1] <- ifelse(a.rare > 0, a.rare, 0)

> Es[, 2] <- ifelse(a.comm > 0, a.comm, 0)

> matplot(t, Es, type = "l", col = 1)

> matplot(env, Es, col = 1)

As we said, however, organisms will die. Let us create a variable for community-
wide mortality, δ, as if a disturbance kills a constant fraction of the community.

> d <- 0.1
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Covariance between competition and environment

We also want to assume that species compete for shared, limiting resources.
Individuals have negative effects on each other. As a result, the more individuals
of all species there are (increasing Ntotal), the more negative the total effect is. To
account for this, we will stipulate a per capita negative effect α of any individual
on any other. Therefore, in good times (high Ntotal), the effect of competition
increases. In contrast, when times are bad, and N is small, competition is low.
This is what Chesson and colleagues mean by covariation between competition
and the environment.

Eq. (9.22) provides a reasonable way to represent the competitve effect Ci,t.
Here we simplify further, and assume that the per capita effect of competition
on growth is constant through time. However, to emphasize that point that one
species has higher average fitness, we let the rare species experience greater per
capita effects of competition. For our example, let us set αrare = 0.0002, αcomm =

0.0001.

> alpha <- c(2 * 1e-05, 1e-05)

Thus, these α are the species-specific effects of all individuals on the rare and
common species.

Simulating dynamics

Finally, we simulate these dynamics. We should create matrices to hold stuff as
we simulate each year, for N, C, and R. Unlike E, these are simplest to collect
as we simulate N, year by year.

> Ns <- matrix(NA, nrow = years + 1, ncol = 2)

> Cs <- matrix(NA, nrow = years, ncol = 2)

> Rs <- matrix(NA, nrow = years, ncol = 2)

Next we initialize our populations at t0.

> Ns[1, ] <- c(1000, 1e+05)

Finally, we run the for-loop

> for (i in 1:years) Ns[i + 1, ] <- {

+ juveniles <- sum(exp(Es[i, ]) * Ns[i, ])

+ Cs[i, ] <- alpha * juveniles

+ Rs[i, ] <- exp(Es[i, ] - Cs[i, ])

+ (1 - d) * Ns[i, ] + Rs[i, ] * Ns[i, ]

+ }

and plot the populations.

> matplot(c(0, t), Ns, type = "b", log = "y")
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Fig. 9.9: A simulation of coexistence via the storage effect. E (middle panel) is maxi-
mum environment-mediated reproduction, in the absence of competition. See text and
Fig. 9.8 for more information about species responses to the environment and average
fitness.

Examining characteristics of the storage effect

Let us go back and examine a few of the characteristics that we should observe,
if the storage effect is operating. First, note that above we showed differential
responses to the environment, incomplete niche overlap, and buffered growth
(Fig. 9.8).

Next, we will try to examine the environment-competition covariation. This
is not trivial, and papers are written about how to estimate this. For now,
recall that in Chapter 3, we began with an examination of negative density-
dependence. Here we quantify the magnitude of this negative effect, as our
“effect of competition.” Let us invent a new value, ν, to measure how much the
observed growth rate is affected by large population sizes,
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νi,t = log
(

Rmax

Ri,t

)
(9.27)

where Ri,t is the observed annual population growth rate, Nt+1/Nt, for species i,
and Rmax is the maximum of these.

To measure the covariation, we will find first Ntotal,t, Ri,t, and Ri,max.

> Nt1 <- rowSums(Ns)[1:years]

> R.obs <- Ns[-1, ]/Ns[-(years + 1), ]

> Rmax <- apply(R.obs, 2, max)

Now we calculate νi, and estimate the covariance.

> nu <- log(t(Rmax/t(R.obs)))

> colnames(nu) <- c("nu.rare", "nu.comm")

> var(Nt1, nu)

nu.rare nu.comm

[1,] 534.1 745.2

This illustrates that both populations exhibit positive covariation between the
quality of the environment (defined operationally as Ntotal) and the intensity of
competition.

Last, recall that we stated above that the CV (coefficent of variation) should
be greater for rare species than for common species. If we check that for our
populations (eliminating the first half of the time series),

> apply(Ns[round(years/2):years, ], 2, function(x) sd(x)/mean(x) *

+ 100)

[1] 44.62 55.07

we see that, indeed, the rare species has a higher CV. Examination of the time
series (Fig. 9.9) confirms this.

To facilitate playing more games, the function chesson provides an easy
wrapper for storage effect simulations (Fig. 9.10). Please try ?chesson at the
Rprompt.

Here we run the chesson model, and calculate the overlap, ρ, for each sim-
ulation.

> outA <- chesson(years = 500, specialization = 1, spread = 0.1)

> outB <- chesson(years = 500, specialization = 5, spread = 0.67)

> outA$overlap

[1] 0.9172

> outB$overlap

[1] 0.1234

By specifying greater specialization and greater spread between the environ-
mental optima of the species pair in the second model, we have reduced niche
overlap (Fig. 9.10a). Overlap in this model is the area under both species fitness-
independent response curves. Note that large differences in overall fitness can
alter effective overlap described by the density-independent reproductive rate,
Ei,t (Fig. 9.10b).
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> matplot(outB[["env"]], outB[["Es"]], pch = 1:2, xlim = c(-0.6,

+ 0.6), ylab = "Density-independent Reproduction", xlab = "Environment")

> matplot(outA[["env"]], outA[["Es"]], pch = c(19, 17), add = TRUE)
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Fig. 9.10: Species responses to the environment, using the chesson model. Relative to
the pair of species represented by solid circles, the pair of species with open symbols
shows greater difference between optimal environments (greater spread), and nar-
rower niches (greater specialization). (a) The underlying Beta probability density
distributions; the grey area under the curves of the more differentiated species is ρ,
the degree of niche overlap. (b) Density-independent reproduction (the parameter Ei,t

from eq. 9.22). (grey/red triangles - common species, black circles - rare species; open
symbols - highly differentiated species, solid symbols - similar species). See text and
help page (?chesson) for more details.

9.4 Summary

This chapter focused far more than previous chapters on the biological impor-
tance of temporal dynamics.

• In the framework of this chapter, the dynamics of succession result from the
processes of mortality or disturbance, dispersal, and competitive exclusion.
This framework can be applied over a broad range of spatial and temporal
scales.

• Coexistence is possible via tradeoffs between competition, dispersal, and
growth rate; the level of disturbance can influence the relative abundances
of co-occuring species.

• The consequences of habitat destruction depend critically on the mecha-
nisms underlying coexistence.
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• The storage effect is an example of temporal niche differentiation. It depends
on differential responses to the environment, buffered population growth,
and covariation between competition intensity and population size.

Problems

Competition, colonization, and the successional niche

9.1. Basic interpretation
(a) Explain each of the paramters c, α, γ and m. Explain what each does in the
model.

9.2. Two models in one?
(a) Given the model of Pacala and Rees, explain which parameters you would
manipulate and to what values you would set them to make it a pure competition–
colonization model.
(b) Given the model of Pacala and Rees, explain which parameters you would
manipulate and to what values you would set them to make it a pure succes-
sional niche model.

9.3. For each “pure” model, explain how transient dynamics at the local scale
result in a steady state at the large scale.

9.4. How would you evaluate the relative importance of these two mechanisms
in maintaining biodiversity through successional trajectories and at equilib-
rium?

Storage effect

9.5. Develop a two-species example of the storage effect, in which you manip-
ulate both (i) fitness differences, and (ii) environmental variation. Show how
these interact to determine relative abundances of the two species.
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Community Composition and Diversity
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Fig. 10.1: Empirical rank–abundance distributions of successional plant communities
(old-fields) within the temperate deciduous forest biome of North America. “Year”
indicates the time since abandonment from agriculture. Data from the Buell-Small
succession study (http://www.ecostudies.org/bss/)

It seems easy, or at least tractable, to compare the abundance of a single
species in two samples. In this chapter, we introduce concepts that ecologists
use to compare entire communities in two samples. We focus on two quantities:
species composition, and diversity. We also discuss several issues related to this,
including species–abundance distributions, ecological neutral theory, diversity
partitioning, and species–area relations. Several packages in R include functions
for dealing specifically with these topics. Please see the “Environmetrics” link
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within the “Task Views” link at any CRAN website for downloading Rpackages.
Perhaps the most comprehensive (including both diversity and composition) is
the vegan package, but many others include important features as well.

10.1 Species Composition

Species composition is merely the set of species in a site or a sample. Typically
this includes some measure of abundance at each site, but it may also simply be
a list of species at each site, where “abundance” is either presence or absence.
Imagine we have four sites (A–D) from which we collect density data on two
species, Salix whompii and Fraxinus virga. We can enter hypothetical data of
the following abundances.

> dens <- data.frame(Salwho = c(1, 1, 2, 3), Fravir = c(21,

+ 8, 13, 5))

> row.names(dens) <- LETTERS[1:4]

> dens

Salwho Fravir

A 1 21

B 1 8

C 2 13

D 3 5

Next, we plot the abundances of both species; the plotted points then are the
sites (Fig. 10.2).

> plot(dens, type = "n")

> text(dens, row.names(dens))

In Fig. 10.2, we see that the species composition in site A is most different from
the composition of site D. That is, the distance between site A and D is greater
than between any other sites. The next question, then, is how far apart are
any two sites? Clearly, this depends on the scale of the measurement (e.g., the
values on the axes), and also on how we measure distance through multivariate
space.

10.1.1 Measures of abundance

Above we pretended that the abundances were absolute densities (i.e., 1 = one
stem per sample). We could of course represent all the abundances differently.
For instance, we could calculate relative density, where each species in a sample
is represented by the proportion of the sample comprised of that species. For
site A, we divide each species by the sum of all species.

> dens[1, ]/sum(dens[1, ])

Salwho Fravir

A 0.04545 0.9545
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Fig. 10.2: Hypothetical species composition for four sites (A–D).

We see that Salix makes up about 5% of the sample for Site A, and Fraxinus
makes up about 95% of the sample. Once we calculate relative densities for
each species at each site, this eliminates differences in total density at each site
because all sites then total to 1.

We could also calculate relative measures for any type of data, such as
biomass or percent cover.

In most instances, relative density refers to the density of a species relative
to the other species in a sample (above), but it can also be density in a sam-
ple relative to other samples. We would thus make each species total equal 1,
and then its abundance at each site reflects the proportion of a species total
abundance comprised by that site. For instance, we can make all Salix densities
relative to each other.

> dens[, 1]/sum(dens[, 1])

[1] 0.1429 0.1429 0.2857 0.4286

Here we see that sites A and B both have about 14% of all Salix stems, and
site D has 43%.

Whether our measures of abundance are absolute or relative, we would like to
know how different samples (or sites) are from each other. Perhaps the simplest
way to describe the difference among the sites is to calculate the distances
between each pair of sites.

10.1.2 Distance

There are many ways to calculate a distance between a pair of sites. One of
the simplest, which we learned in primary school, is Euclidean distance. With
two species, we have two dimensional space, which is Fig. 10.2. The Euclidean
distance between two sites is merely the length of the vector connecting those
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sites. We calculate this as
√

x2 + y2, where x and y are the (x, y) distances be-
tween a pair of sites. The x distance between sites B and C is the difference in
Salix abundance between the two sites,

> x <- dens[2, 1] - dens[3, 1]

where dens is the data frame with sites in rows, and species in different columns.
The y distance between sites B and C is difference in Fraxinus abundance be-
tween the two sites.

> y <- dens[2, 2] - dens[3, 2]

The Euclidean distance between these is therefore

> sqrt(x^2 + y^2)

[1] 5.099

Distance is as simple as that. We calculate all pairwise Euclidean distances
between sites A–D based on 2 species using built-in functions in R.

> (alldists <- dist(dens))

A B C

B 13.000

C 8.062 5.099

D 16.125 3.606 8.062

We can generalize this to include any number of species, but it becomes increas-
ingly harder to visualize. We can add a third species, Mandragora officinarum,
and recalculate pairwise distances between all sites, but now with three species.

> dens[["Manoff"]] <- c(11, 3, 7, 5)

> (spp3 <- dist(dens))

A B C

B 15.264

C 9.000 6.481

D 17.205 4.123 8.307

We can plot species abundances as we did above, and pairs(dens) would give
us all the pairwise plots given three species. However, what we really want for
species is a 3-D plot. Here we load another package1 and create a 3-D scatterplot.

> pairs(dens)# not shown

> library(scatterplot3d)

> sc1 <- scatterplot3d(dens, type='h', pch="",

+ xlim=c(0,5), ylim=c(0, 25), zlim=c(0,15))

> text(sc1$xyz.convert(dens), labels=rownames(dens))

In three dimensions, Euclidean distances are calculated the same basic way, but
we add a third species, and the calculation becomes

√
x2 + y2 + z2. Note that

we take the square root (as opposed to the cube root) because we originally
squared each distance. We can generalize this for two sites for R species as

1 You can install this package from any R CRAN mirror.
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DE =

√√√ R∑
i=1

(xai − xbi)2 (10.1)

Of course, it is difficult (impossible?) to visualize arrangements of sites with
more than three axes (i.e., > 3 species), but we can always calculate the distances
between pairs of sites, regardless of how many species we have.

There are many ways, in addition to Euclidean distances, to calculate dis-
tance. Among the most commonly used in ecology is Bray–Curtis distance,
which goes by other names, including Søorenson distance.

DBC =

R∑
i=1

|xai − xbi|

xai + xbi
(10.2)

where R is the number of species in all samples. Bray–Curtis distance is merely
the total difference in species abundances between two sites, divided by the
total abundances at each site. Bray–Curtis distance (and a couple others) tends
to result in more intuitively pleasing distances in which both common and
rare species have relatively similar weights, whereas Euclidean distance depends
more strongly on the most abundant species. This happens because Euclidean
distances are based on squared differences, whereas Bray–Curtis uses absolute
differences. Squaring always amplifies the importance of larger values. Fig. 10.3
compares graphs based on Euclidean and Bray–Curtis distances of the same
raw data.

Displaying multidimensional distances

A simple way to display distances for three or more species is to create a plot in
two dimensions that attempts to arrange all sites so that they are approximately
the correct distances apart. In general this is impossible to achieve precisely,
but distances can be approximately correct. One technique that tries to create
an optimal (albiet approximate) arrangement is non-metric multidimensional
scaling. Here we add a fourth species (Aconitum lycoctonum) to our data set
before plotting the distances.

> dens$Acolyc <- c(16, 0, 9, 4)

The non-metric multidimensional scaling function is in the vegan package. It
calculates distances for us using the original data. Here we display Euclidean
distances among sites (Fig. 10.3a).

> library(vegan)

> mdsE <- metaMDS(dens, distance = "euc", autotransform = FALSE,

+ trace = 0)

> plot(mdsE, display = "sites", type = "text")

Here we display Bray–Curtis distances among sites (Fig. 10.3b).

> mdsB <- metaMDS(dens, distance = "bray", autotransform = FALSE,

+ trace = 0)

> plot(mdsB, display = "sites", type = "text")
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Fig. 10.3: Nonmetric multidimensional (NMDS) plots showing approximate distances
between sites. These two figures display the same raw data, but Euclidean distances
tend to emphasize differences due to the more abundant species, whereas Bray-Curtis
does not. Because NMDS provides iterative optimizations, it will find slightly different
arrangements each time you run it.

10.1.3 Similarity

Sometimes, we would like to know how similar two communities are. Here we
describe two measures of similarity, percent similarity, and Sørensen similarity
[124].

Percent similarity may be the simplest of these; it is simply the sum of
the minimum percentages for each species in the community. Here we convert
each species to its relative abundance; that is, its proportional abundance at
each site. To do this, we treat each site (row) separately, and then divide the
abundance of each species by the sum of the abundances at each site.

> (dens.RA <- t(apply(dens, 1, function(sp.abun) sp.abun/sum(sp.abun))))

Salwho Fravir Manoff Acolyc

A 0.02041 0.4286 0.2245 0.3265

B 0.08333 0.6667 0.2500 0.0000

C 0.06452 0.4194 0.2258 0.2903

D 0.17647 0.2941 0.2941 0.2353

Next, to compare two sites, we find the minimum relative abundance for each
species. Comparing sites A and B, we have,

> (mins <- apply(dens.RA[1:2, ], 2, min))

Salwho Fravir Manoff Acolyc

0.02041 0.42857 0.22449 0.00000

Finally, we sum these, and multiply by 100 to get percentages.



10.2 Diversity 291

> sum(mins) * 100

[1] 67.35

The second measure of similarity we investigate is Sørensen’s similarity,

S s =
2C

A + B
(10.3)

where C is the number of species two sites have in common, and A and B are
the number of species at each site. This is equivalent to dividing the shared
species by the average richness.

To calculate this for sites A and B, we could find the species which have
non-zero abundances both sites.

> (shared <- apply(dens[1:2, ], 2, function(abuns) all(abuns !=

+ 0)))

Salwho Fravir Manoff Acolyc

TRUE TRUE TRUE FALSE

Next we find the richness of each.

> (Rs <- apply(dens[1:2, ], 1, function(x) sum(x >

+ 0)))

A B

4 3

Finally, we divide the shared species by the summed richnesses and multiply by
2.

> 2 * sum(shared)/sum(Rs)

[1] 0.8571

Sørensen’s index has also been used in the development of more sophisticated
measures of similarity between sites [144,164].

10.2 Diversity

To my mind, there is no more urgent or interesting goal in ecology and evolution-
ary biology than understanding the determinants of biodiversity. Biodiversity
is many things to many people, but we typically think of it as a measure of
the variety of biological life present, perhaps taking into account the relative
abundances. For ecologists, we most often think of species diversity as some
quantitative measure of the variety or number of different species. This has
direct analogues to the genetic diversity within a population [45, 213], and the
connections between species and genetic diversity include both shared patterns
and shared mechanisms. Here we confine ourselves entirely to a discussion of
species diversity, the variety of different species present. Consider this example.
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Table 10.1: Four hypothetical stream invertebrate communities. Data are total num-
bers of individuals collected in ten samples (sums across samples). Diversity indices
(Shannon-Wiener, Simpson’s) explained below.

Species Stream 1 Stream 2 Stream 3 Stream 4

Isoperla 20 50 20 0
Ceratopsyche 20 75 20 0
Ephemerella 20 75 20 0
Chironomus 20 0 140 200

Number of species (R) 4 3 4 1
Shannon-Wiener H 1.39 1.08 0.94 0
Simpson’s S D 0.75 0.66 0.48 0

We have four stream insect communities (Table 10.1). Which has the highest
“biodiversity”?

We note that one stream has only one species — clearly that can’t be the
most “diverse” (still undefined). Two streams have four species — are they the
most diverse? Stream 3 has more bugs in total (200 vs. 80), but stream 1 has a
more equal distribution among the four species.

10.2.1 Measurements of variety

So, how shall we define “diversity” and measure this variety? There are many
mathematical expressions that try to summarize biodiversity [76, 92]. The in-
quisitive reader is referred to [124] for a practical and comprehensive text on
measures of species diversity. Without defining it precisely (my pay scale pre-
cludes such a noble task), let us say that diversity indices attempt to quantify

• the probability of encountering different species at random, or,
• the uncertainty or multiplicity of possible community states (i.e., the en-

tropy of community composition), or,
• the variance in species composition, relative to a multivariate centroid.

For instance, a simple count of species (Table 10.1) shows that we have 4, 3, 4,
and 1 species collected from streams 1–4. The larger the number of species, the
less certain we could be about the identity of an individual drawn blindly and
at random from the community.

To generalize this further, imagine that we have a species pool2 of R species,
and we have a sample comprised of only one species. In a sample with only
one species, then we know that the possible states that sample can take is
limited to one of only R different possible states — the abundance of one species
is 100% and all others are zero. On the other hand, if we have two species
then the community could take on R (R − 1) different states — the first species
could be any one of R species, and the second species could be any one of the
other species, and all others are zero. Thus increasing diversity means increasing

2 A species pool is the entire, usually hypothetical, set of species from which a sample
is drawn; it may be all of the species known to occur in a region.
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the possible states that the community could take, and thus increasing our
uncertainty about community structure [92]. This increasing lack of information
about the system is a form of entropy, and increasing diversity (i.e., increasing
multiplicity of possible states) is increasing entropy. The jargon and topics of
statistical mechanics, such as entropy, appear (in 2009) to be an increasingly
important part of community ecology [71,171].

Below we list three commonly used diversity indices: species richness,
Shannon-Wiener index, and Simpson’s diversity index.

• Species richness, R, the count of the number of species in a sample or area;
the most widely used measure of biodiversity [82].

• Shannon-Wiener diversity.3

H′ = −

R∑
i=1

pi ln (pi) (10.4)

where R is the number of species in the community, and pi is the relative
abundance of species i.

• Simpson’s diversity. This index is (i) the probability that two individuals
drawn from a community at random will be different species [147], (ii) the
initial slope of the species-individuals curve [98] (e.g., Fig. 10.6), and (iii)
the expected variance of species composition (Fig. 10.5) [97,194].

S D = 1 −
R∑

i=1

p2
i (10.5)

The summation
∑R

i=1 p2
i is the probability that two individuals drawn at

random are the same species, and it is known as Simpson’s “dominance.”
Lande found that this Simpon’s index can be more precisely estimated,
or estimated accurately with smaller sample sizes, than either richness or
Shannon-Wiener [97].

These three indices are actually directly related to each other — they com-
prise estimates of entropy, the amount of disorder or the multiplicity of possible
states of a system, that are directly related via a single constant [92]. However,
an important consequence of their differences is that richness depends most
heavily on rare species, Simpson’s depends most heavily on common species,
and Shannon-Wiener stands somewhere between the two (Fig. 10.4).

Relations between number of species, relative abundances, and
diversity

This section relies heavily on code and merely generates Fig. 10.4.
Here we display diversities for communities with different numbers and rela-

tive abundances of species (Fig. 10.4). We first define functions for the diversity
indices.

3 Robert May stated that this index is connected by merely an “ectoplasmic thread”
to information theory [135], but there seems be a bit more connection than that.
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Fig. 10.4: Relations between richness, Shannon-Weiner, and Simpson’s diversities (note
difference in y-axis scale between the figures). Communities of 2–20 species are com-
posed of either equally abundant species (a) or with the most common species equal
to 90% of the community (b).

> H <- function(x) {

+ x <- x[x > 0]

+ p <- x/sum(x)

+ -sum(p * log(p))

+ }

> Sd <- function(x) {

+ p <- x/sum(x)

+ 1 - sum(p^2)

+ }

Next we create a list of communities with from 1 to 20 equally abundant species,
and calculate H and S D for each community.

> Rs <- 2:20

> ComsEq <- sapply(Rs, function(R) (1:R)/R)

> Hs <- sapply(ComsEq, H)

> Sds <- sapply(ComsEq, Sd)

> plot(Rs, Hs, type = "l", ylab = "Diversity", ylim = c(0,

+ 3))

> lines(Rs, Sds, lty = 2)

> legend("right",c(expression(italic("H")), expression(italic("S"["D"]))),

+ lty = 1:2, bty = "n")

Now we create a list of communities with from 2 to 25 species, where one
species always comprises 90% of the community, and the remainder are equally
abundant rare species. We then calculate H and S D for each community.

> Coms90 <- sapply(Rs, function(R) {

+ p <- numeric(R)
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+ p[1] <- 0.9

+ p[2:R] <- 0.1/(R - 1)

+ p

+ })

> Hs <- sapply(Coms90, H)

> Sds <- sapply(Coms90, Sd)

> plot(Rs, Hs, type = "l", ylim = c(0, 0.7))

> lines(Rs, Sds, lty = 2)

Simpson’s diversity, as a variance of composition

This section relies heavily on code.
Here we show how we would calculate the variance of species composition.

First we create a pretend community of six individuals (rows) and 3 species
(columns). Somewhat oddly, we identify the degree to which each individual is
comprised of each species; in this case, individuals can be only one species.4

Here we let two individuals be each species.

> s1 <- matrix(c(1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0,

+ 0, 0, 0, 0, 0, 1, 1), nr = 6)

> colnames(s1) <- c("Sp.A", "Sp.B", "Sp.C")

> s1

Sp.A Sp.B Sp.C

[1,] 1 0 0

[2,] 1 0 0

[3,] 0 1 0

[4,] 0 1 0

[5,] 0 0 1

[6,] 0 0 1

We can plot these individuals in community space, if we like (Fig. 10.5a).

> library(scatterplot3d)

> s13d <- scatterplot3d(jitter(s1, 0.3), type = "h",

+ angle = 60, pch = c(1, 1, 2, 2, 3, 3), xlim = c(-0.2,

+ 1.4), ylim = c(-0.2, 1.4), zlim = c(-0.2,

+ 1.4))

> s13d$points3d(x = 1/3, y = 1/3, z = 1/3, type = "h",

+ pch = 19, cex = 2)

Next we can calculate a centroid, or multivariate mean — it is merely the vector
of species means.

> (centroid1 <- colMeans(s1))

Sp.A Sp.B Sp.C

0.3333 0.3333 0.3333

4 Imagine the case where the columns are traits, or genes. In that case, individuals
could be characterized by affiliation with multiple columns, whether traits or genes.
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Given this centroid, we begin to calculate a variance by (i) subtracting each
species vector (0s, 1s) from its mean, (ii) squaring each of these deviates, and
(3) summing to get the sum of squares.

> (SS <- sum(sapply(1:3, function(j) (s1[, j] -

+ centroid1[j]))^2))

[1] 4

We then divide this sum by the number of individuals that were in the commu-
nity (N)

> SS/6

[1] 0.6667

We find that the calculation given above for Simpson’s diversity returns exactly
the same number. We would calculate the relative abundances, square them,
add them, and subtract that value from 1.

> p <- c(2, 2, 2)/6

> 1 - sum(p^2)

[1] 0.6667

In addition to being the variance of species composition, this number is also the
probability that two individuals drawn at random are different species. As we
mentioned above, there are other motivations than these to derive this and other
measures of species diversity, based on entropy and information theory [92] —
and they are all typically correlated with each other.
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Fig. 10.5: Plotting three examples of species composition. The centroid of each compo-
sition is a solid black dot. The third example (on right) has zero abundances of species
C. Simpson’s diversity is the variance of these points around the centroid. Individual
points are not plotted at precisely 0 or 1 — they are plotted with a bit of jitter or
noise so that they do not overlap entirely.
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10.2.2 Rarefaction and total species richness

Rarefaction is the process of generating the relationship between the number of
species vs. the number of individuals in one or more samples. It is typically de-
termined by randomly resampling individuals [59], but could also be determined
by resampling samples. Rarefaction allows direct comparison of the richness of
two samples, corrected for numbers of individuals. This is particularly impor-
tant because R depends heavily on the number of individuals in a sample. Thus
rarefaction finds the general relation between the number(s) of species vs. num-
ber of individuals (Fig. 10.6), and is limited to less than or equal to the number
of species you actually observed. A related curve is the species-accumulation
curves, but this is simply a useful but haphazard accumulation of new species
(a cumulative sum) as the investigator samples new individuals.

Another issue that ecologists face is trying to estimate the true number of
species in an area, given the samples collected. This number of species would
be larger than the number of species you observed, and is often referred to as
total species richness or the asymptotic richness. Samples almost always find
only a subset of the species present in an area or region, but we might prefer
to know how many species are really there, in the general area we sampled.
There are many ways to do this, and while some are better than others, none
is perfect. These methods estimate minimum numbers of species, and assume
that the unsampled areas are homogeneous and similar to the sampled areas.

Before using these methods seriously, the inquisitive reader should consult
[59, 124] and references at http://viceroy.eeb.uconn.edu/EstimateS. Below, we
briefly explore an example in R.

An example of rarefaction and total species richness

Let us “sample” a seasonal tropical rainforest on Barro Colorado Island (BCI)
http://ctfs.si.edu/datasets/bci/). Our goal will be to provide baseline data for
later comparison to other such studies.

We will use some of the data from a 50 ha plot that is included in the vegan
package [36,151]. We will pretend that we sampled every tree over 10 cm dbh,5

in each of 10 plots scattered throughout the 50 ha area. What could we say
about the forest within which the plots were located? We have to consider the
scale of the sampling. Both the experimental unit and the grain are the 1 ha
plots. Imagine that the plots were scattered throughout the 50 ha plot, so that
the extent of the sampling was a full 50 ha.6 First, let’s pretend we have sampled
10 1 ha plots by extracting the samples out of the larger dataset.

> library(vegan)

> data(BCI)

> bci <- BCI[seq(5, 50, by = 5), ]

5 “dbh” is diameter at 1.37 m above the ground.
6 See John Wiens’ foundational paper on spatial scale in ecology [220] describing the

meaning of grain, extent, and other spatial issues.
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Next, for each species, I sum all the samples into one, upon which I will base
rarefaction and total richness estimation.

Next we combine all the plots into one sample (a single summed count for
each species present), select numbers of individuals for which I want rarefied
samples (multiples of 500), and then perform rarefaction for each of those num-
bers.

> N <- colSums(bci)

> subs3 <- c(seq(500, 4500, by = 500), sum(N))

> rar3 <- rarefy(N, sample = subs3, se = T, MARG = 2)

Next we want to graph it, with a few bells and whistles. We set up the graph of
the 10 plot, individual-based rarefaction, and leave room to graph total richness
estimators as well (Fig. 10.6).

> plot(subs3, rar3[1, ], ylab = "Species Richness",

+ axes = FALSE, xlab = "No. of Individuals",

+ type = "n", ylim = c(0, 250), xlim = c(500,

+ 7000))

> axis(1, at = 1:5 * 1000)

> axis(2)

> box()

> text(2500, 200, "Individual-based rarefaction (10 plots)")
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Fig. 10.6: Baseline tree species richness estimation based on ten 1 ha plots, using
individual-based rarefaction. We also include two different total richness estimators,
ACE and Chao 2, and the observed total tree richness in the 50 ha plot for comparison.

Here we plot the expected values and also ± 2 SE.
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> lines(subs3, rar3[1, ], type = "b")

> lines(subs3, rar3[1, ] + 2 * rar3[2, ], lty = 3)

> lines(subs3, rar3[1, ] - 2 * rar3[2, ], lty = 3)

Next we hope to estimate the minimum total number of species (asymptotic
richness) we might observe in the area around (and in) our 10 plots, if we
can assume that the surrounding forest is homogeneous (it would probably be
best to extrapolate only to the 50 ha plot). First, we use an abundance-based
coverage estimator, ACE, that appears to give reasonable estimates [124]. We
plot intervals, the expected values ± 2 SE (Fig. 10.6).

> ace <- estimateR(N)

> segments(6000, ace["S.ACE"] - 2 * ace["se.ACE"],

+ 6000, ace["S.ACE"] + 2 * ace["se.ACE"], lwd = 3)

> text(6000, 150, "ACE estimate", srt = 90, adj = c(1,

+ 0.5))

Next we use a frequency-based estimator, Chao 2, where the data only need to
be presence/absence, but for which we also need multiple sample plots.

> chaoF <- specpool(bci)

> segments(6300, chaoF[1, "chao"] - 2 * chaoF[1,

+ "chao.se"], 6300, chaoF[1, "chao"] + 2 * chaoF[1,

+ "chao.se"], lwd = 3, col = "grey")

> text(6300, 150, "Chao2 estimate", srt = 90, adj = c(1,

+ 0.5))

Last we add the observed number of tree species (over 10 cm dbh) found in the
entire 50 ha plot.

> points(6700, dim(BCI)[2], pch = 19, cex = 1.5)

> text(6700, 150, "Richness observed in 50 ha",

+ srt = 90, adj = c(1, 0.5))

This shows us that the total richness estimators did not overestimate the total
number of species within the extent of this relatively homogenous sample area
(Fig. 10.6).

If we wanted to, we could then use any of these three estimators to compare
the richness in this area to the richness of another area.

10.3 Distributions

In addition to plotting species in multidimensional space (Fig. 10.3), or esti-
mating a measure of diversity or richness, we can also examine the distributions
of species abundances.

Like any other vector of numbers, we can make a histogram of species abun-
dances. As an example, here we make a histogram of tree densities, where each
species has its own density (Fig. 10.7a). This shows us what is patently true for
nearly all ecological communities — most species are rare.
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10.3.1 Log-normal distribution

Given general empirical patterns, that most species are rare, Frank Preston
[168,170] proposed that we describe communities using the logarithms of species
abundances (Fig. 10.7).7 This often reveals that a community can be described
approximately with the normal distribution applied to the log-transformed data,
or the log-normal ditribution. We can also display this as a rank–abundance
distribution (Fig. 10.7c). To do this, we assign the most abundant species as
rank = 1, and the least abundant has rank = R, in a sample of R species, and
plot log-abundance vs. rank.

May [129] described several ways in which common processes may drive
log-normal distributions, and cause them to be common in data sets. Most
commonly cited is to note that log-normal distributions arise when each ob-
servation (i.e., each random variable) results from the product of independent
factors. That is, if each species’ density is determined by largely independent
factors which act multiplicatively on each species, the resulting densities would
be log-normally distributed.
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Fig. 10.7: Three related types of distributions of tree species densities from Barro
Colorado Island [36]. (a) Histogram of raw data, (b) histogram of log-transformed
data; typically referred to as the “species–abundance distribution,” accompanied here
with the normal probability density function, (c) the “rank–abundance distribution,”
as typically presented with the log-transformed data, with the complement of the cu-
mulative probability density function (1-pdf) [129]. Normal distributions were applied
using the mean and standard deviation from the log-transformed data, times the total
number of species.

7 Preston used base 2 logs to make his histogram bins, and his practice remains
standard; we use the natural log.
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Log-normal abundance distributions (Fig. 10.7)

We can plot tree species densities from Barro Colorado Island [36], which is aailable
online, or in the vegan package. First we make the data available to us, then make
a simple histogram.

> data(BCI)

> N <- sort(colSums(BCI), decr = TRUE)

> hist(N, main = NULL)

Next we make a species–abundance distribution, which is merely a histogram of the
log-abundances (classically, base 2 logs, but we use base e). In addition, we add the
normal probability density function, getting the mean and standard deviation from
the data, and plotting the expected number of species by multiplying the densities
by the total number of species.

> hist(log(N), xlab = "Log Density Classes", main = NULL)

> m.spp <- mean(log(N))

> sd.spp <- sd(log(N))

> R <- length(N)

> curve(dnorm(x, m.spp, sd.spp) * R, 0, 8, add = T)

Next we create the rank–abundance distribution, which is just a plot of log-
abundances vs. ranks.

> plot(log(N), type = "b", ylim = c(0, 8), main = NULL,

+ xlab = "Species Rank", ylab = "Log Density")

> ranks.lognormal <- R * (1 - pnorm(log(N), m.spp,

+ sd.spp))

> lines(ranks.lognormal, log(N))

We can think of the rank of species i as the total number of species that are more

abundant than species i. This is essentially the opposite (or complement) of the

integral of the species–abundance distribution [129]. That means that if we can

describe the species abundance distribution with the normal density function, then

1-cumulative probability function is the rank.

10.3.2 Other distributions

Well over a dozen other types of abundance distributions exist to describe abun-
dance patterns, other than the log-normal [124]. They can all be represented as
rank–abundance distributions.

The geometric distribution8 (or pre-emption niche distribution) reflects a
simple idea, where each species pre-empts a constant fraction of the remaining
niche space [129, 145]. For instance, if the first species uses 20% of the niche
space, the second species uses 20% of the remaining 80%, etc. The frequency of
the ith most abundant species is

8 This probability mass function, Pi = d (1 − d)i−1, is the probability distribution of
the number of attempts, i, needed for one success, if the independent probability
of success on one trial is d.
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Ni =
NT

C
d (1 − d)i−1 (10.6)

where d is the abundance of the most common species, and C is just a constant
to make

∑
Ni = NT , where C = 1 − (1 − d)S T . Thus this describes the geometric

rank–abundance distribution.
The log-series distribution [55] describes the expected frequency of species

with n individuals,

F (S n) =
αxn

n
(10.7)

where α is a constant that represents diversity (greater α means greater di-
versity); the α for a diverse rainforest might be 30–100. The constant x is a
fitted, and it is always true that 0.9 < x < 1.0 and x increases toward 0.99
as N/S → 20 [124]. x can be estimated from S/N = [(1 − x)/x] · [− ln(1 − x)].
Note that this is not described as a rank–abundance distribution, but species
abundances can nonetheless be plotted in that manner [129].

The log-series rank–abundance distribution is a bit of a pain, relying on the
standard exponential integral [129], E1(s) =

∫ ∞
s exp(−t)/t dt. Given a range of N,

we calculate ranks as
F (N) = α

∫ ∞

s
exp(−t)/t dt (10.8)

where we can let t = 1 and s = N log (1 + α/NT ).
The log-series distribution has the interesting property that the total number

of species in a sample of N individuals would be S T = α log(1 + N/α). The
parameter α is sometimes used as a measure of diversity. If your data are log-
series distributed, then α is approximately the number of species for which you
expect 1 individual, because x ≈ 1. Two very general theories predict a log-series
distribution, including neutral theory, and maximum entropy. Oddly, these two
theories both predict a log-series distribution, but make opposite assumptions
about niches and individuals (see next section).

MacArthur’s broken stick distribution is a classic distribution that results in
a very even distribution of species abundances [118]. The number of individuals
of each species i is

Ni =
NT

S T

S T∑
n=i

1
n

(10.9)

where NT and S T are the total number of individuals and species in the sam-
ple, respectively. MacArthur described this as resulting from the simultaneous
breakage of a stick at random points along the stick. The resulting size fragments
are the Ni above. MacArthur’s broken stick model is thus both a stochastic and
a deterministic model. It has a simulation (stick breakage) that is the direct
analogue of the deterministic analytical expression.

Other similarly tactile stick-breaking distributions create a host of differ-
ent rank–abundance patterns [124, 206]. In particular, the stick can be broken
sequentially, first at one random point, then at a random point along one of
two newly broken fragments, then at an additional point along any one of the
three broken fragments, etc., with S T −1 breaks creating S T species. The critical
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difference between the models then becomes how each subsequent fragment is se-
lected. If the probability of selecting each fragment is related directly to its size,
then this becomes identical to MacArthur’s broken stick model. On the other
hand, if each subsequent piece is selected randomly, regardless of its size, then
this results in something very similar to the log-normal distribution [196, 205].
Other variations on fragment selection generate other patterns [206].
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Fig. 10.8: A few common rank–abundance distributions, along with the BCI data
[36]. The log-normal curve is fit to the data, and the broken stick distribution is
always determined by the number of species. Here we let the geometric distribution
be determined by the abundance of the most common species. The log-series was
plotted so that it matched qualitatively the most abundant species.
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Generating other rank–abundance distributions

We can illustrate the above rank–abundance distributions as they might relate to the
BCI tree data (see previous code). We start with MacArthur’s broken stick model.
We use cumulative summation backwards to add all 1/ni, and then re-sort it by rank
(cf. eq. 10.9).

> N <- sort(colSums(BCI), decr = TRUE)

> f1 <- sort(cumsum(1/(R:1)), decr = TRUE)

> Nt <- sum(N)

> NMac <- Nt * f1/sum(f1)

Next, we create the geomtric rank–abundance distribution, where we let the BCI
data tell us d, the density of the most abundant species; therefore we can multiply
these by NT to get expected abundances.

> d <- N[1]/Nt

> Ngeo.f <- d * (1 - d)^(0:(R - 1))

> Ngeo <- Nt * Ngeo.f

Last, we generate a log-series relevant to the BCI data. First, we use the opti-

mal.theta function in the untb package to find a relevant value for Fisher’s α. (See
more and θ and α below under neutral theory).

> library(untb)

> alpha <- optimal.theta(N)

To calculate the rank abundance distribution for the log-series, we first need a func-
tion for the “standard exponential integral” which we then integrate for each popu-
lation size.

> sei <- function(t = 1) exp(-t)/t

> alpha <- optimal.theta(N)

> ranks.logseries <- sapply(N, function(x) {

+ n <- x * log(1 + alpha/Nt)

+ f <- integrate(sei, n, Inf)

+ fv <- f[["value"]]

+ alpha * fv

+ })
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Plotting other rank–abundance distributions (Fig. 10.8)

Now we can plot the BCI data, and all the distributions, which we generated above.
Note that for the log-normal and the log-series, we calculated ranks, based on the
species–abundance distributions, whereas in the standard form of the geometric and
broken stick distributions, the expected abundances are calculated, in part, from the
ranks.

> plot(1:R, N, ylim = c(0.1, 2000), xlim = c(1,

+ 301), axes = FALSE, log = "y")

> axis(2)

> axis(1, 1 + seq(0, 300, by = 50))

> box()

> lines(1:R, NMac, lty = 4)

> lines(1:R, Ngeo, lty = 3)

> lines(ranks.logseries, N, lty = 2)

> lines(ranks.lognormal, N, lty = 1)

> legend("topright", c("Broken Stick", "Log-series",

+ "Log-normal", "Geometric"), lty = c(4, 2,

+ 1, 3), bty = "n")

Note that we have not fit the the log-series or geometric distributions to the data,

but rather, placed them in for comparison. Properly fitting curves to distributions

is a picky business [124, 151], especially when it comes to species abundance distri-

butions.

10.3.3 Pattern vs. process

Note the resemblance between stick-breaking and niche evolution — if we en-
vision the whole stick as all of the available niche space, or energy, or limit-
ing resources, then each fragment represents a portion of the total occupied
by each species. Thus, various patterns of breakage act as models for niche
partitioning and relative abundance patterns. Other biological and stochastic
processes create specific distributions. For instance, completely random births,
deaths, migration, and speciation will create the log-series distribution and the
log-normal-like distributions (see neutral theory below). We noted above that
independent, multiplicatively interacting factors can create the log-normal dis-
tribution.

On the other hand, all of these abundance distributions should probably
be used primarily to describe patterns of commonness, rarity, and not to infer
anything about the processes creating the patterns. These graphical descriptions
are merely attractive and transparent ways to illustrate the abundances of the
species in your sample/site/experiment.

The crux of the issue is that different processes can cause the same abun-
dance distribution, and so, sadly, we cannot usually infer the underlying pro-
cesses from the patterns we observe. That is, correlation is different than cau-
sation. Abundances of real species, in nature and in the lab, are the result of
mechanistic processes, including those described in models of abundance distri-
butions. However, we cannot say that a particular pattern was the result of a
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particular process, based on the pattern alone. Nonetheless, they are good sum-
maries of ecological communities, and they show us, in a glance, a lot about
diversity.

Nonetheless, interesting questions remain about the relations between pat-
terns and processes. Many ecologists would argue that describing patterns and
predicting them are the most important goals of ecology [156], while others ar-
gue that process is all important. However, both of these camps would agree
about the fallacy of drawing conclusions about processes based on pattern —
nowhere in ecology has this fallacy been more prevalent than with abundance
distributions [66].

10.4 Neutral Theory of Biodiversity and Biogeography

One model of abundance distributions is particularly important, and we elabo-
rate on it here. It is referred to variously as the unified neutral theory of biodi-
versity and biogeography [81], or often “neutral theory” for short. Neutral theory
is important because it does much more than most other models of abundance
distributions. It is a testable theory that makes quantitative predictions across
several levels of organization, for both evolutionary and ecological processes.

Just as evolutionary biology has neutral theories of gene and allele frequen-
cies, ecology has neutral theories of population and community structure and
dynamics [9, 22, 81]. Neutral communities of species are computationally and
mathematically related and often identical to models of genes and alleles [53]
(Table 10.2). Thus, lessons you have learned about genetic drift often apply
to neutral models of communities. Indeed, neutral ecological dynamics at the
local scale are often referred to as ecological drift, and populations change via
demographic stochasticity.9

Stephen Hubbell proposed his “unified neutral theory of biodiversity and
biogeography” (hereafter NTBB, [81]) as a null model of the dynamics of indi-
viduals, to help explain relative abundances of tropical trees. Hubbell describes
it as a direct descendant of MacArthur and Wilson’s theory of island biogeog-
raphy [121, 122] (see below, species–area relations). Hubbell proposed it both
as a null hypothesis and also — and this is the controversial part — as a model
of community dynamics that closely approximates reality.

The relevant “world” of the NTBB is a metacommunity (Fig. 10.9), that is,
a collection of similar local communities connected by dispersal [102].10 The
metacommunity is populated entirely by individuals that are functionally iden-
tical. The NTBB is a theory of the dynamics of individuals, modeling individual

9 Some have called neutral theory a null model, but others disagree [61], describing
distinctions between dynamical, process-based neutral models with fitted parame-
ters, vs. static data-based null models [60]. Both can be used as benchmarks against
which to measure other phenomena. Under those circumstances, I suppose they
might both be null hypotheses.

10 The metacommunity concept is quite general, and a neutral metacommunity is but
one caricature [102].
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Fig. 10.9: A cartoon of a local community of forest canopy trees (small box) nested
inside part of the metacommunity of a tropical forest. The true metaccommunity
would extend far beyond the boundaries of this figure to include the true potential
source of propagules. Shades of grey indicate different species. The local community
is a sample of the larger community (such as the 50 ha forest dynamics plot on BCI)
and receives migrants from the metacommunity. Mutation gives rise to new species
in the metacommunity. For a particular local community, such as a 50 ha plot on an
island in the Panama canal, the metacommunity will include not only the surrounding
forest on the island, but also Panama, and perhaps much of the neotropics [86].

births, deaths, migration and mutation. It assumes that within a guild, such
as late successional tropical trees, species are essentially neutral with respect
to their fitness, that is, they exhibit fitness equivalence. This means that the
probabilities of birth, death, mutation and migration are identical for all in-
dividuals. Therefore, changes in population sizes occur via random walks, that
is, via stochastic increases and decreases with time step (Fig. 10.10). Random
walks do not imply an absence of competition or other indirect enemy mediated
negative density dependence. Rather, competition is thought to be diffuse, and
equal among individuals. We discuss details of this in the context of simula-
tion. Negative density dependence arises either through a specific constraint on
the total number of individuals in a community [81], or as traits of individuals
related to the probabilities of births, deaths, and speciation [214].

A basic paradox of the NTBB, is that in the absence of migration or muta-
tion, diversity gradually declines to zero, or monodominance. A random walk
due to fitness equivalence will eventually result in the loss of all species except
one.11 However, the loss of diversity in any single local community is predicted
to be very, very slow, and is countered by immigration and speciation (we dis-

11 This is identical to allele frequency in genetic drift.
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Fig. 10.10: Neutral ecological drift. Here we start with 10 species, each with 90 individ-
uals, and let their abundances undergo random walks within a finite local community,
with no immigration. Here, one generation is equal to nine deaths and nine births.
Note the slow decline in unevennes — after 1000 deaths, no species has become extinct.

cuss more details below). Thus, species do not increase deterministically when
rare — this makes the concept of coexistence different than the stable coexis-
tance criteria discussed in previous chapters. Coexistance here is not stable but
rather only a stochastic event with a limited time horizon which is balanced by
the emergence of new species.

If all communities are thought to undergo random walks toward monodomi-
nance, how is diversity maintained in any particular region? Two factors main-
tain species in any local community. First, immigration into the local com-
munity from the metacommunity can bring in new species. Even though each
local community is undergoing a random walk toward monodominance, each
local community may become dominated by any one of the species in the pool
because all species have equal fitness. Thus separate local communities are pre-
dicted to become dominated by different species, and these differences among
local communities help maintain diversity in the metacommunity landscape.12

Second, at longer time scales and larger spatial scales, speciation (i.e., mutation
and lineage-splitting) within the entire metacommunity maintains biodiversity.
Mutation and the consequent speciation provide the ultimate source of varia-
tion. Random walks toward extinction in large communities are so lengthy that
the extinctions are balanced by speciation.

12 This is the same as how genetic drift operates across subpopulations connected by
low rates of gene exchange.
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Introducing new symbols and jargon for ecological neutral theory, we state
that the diversity of the metacommunity, θ, is a function of the number of
individuals in the metacommunity, JM, and the per capita rate at which new
species arise (via mutation) ν (θ = 2JMν; Table 10.2). A local community un-
dergoes ecological drift; drift causes the slow loss of diversity, which is balanced
by a per capita (JL) immigration rate m.

Table 10.2: Comparison of properties and jargon used in ecological and population
genetic neutral theory (after Alonso et al. [1]). Here x is a continuous variable for
relative abundance of a species or allele (0 ≤ x ≥ 1, x = n/J). Note this is potentially
confused with Fisher’s log-series 〈φn〉 = θxn/n, which is a discrete species abundance
distribution in terms of numbers of individuals, n (not relative abundance), and where
x = b/d.

Property Ecology Population Genetics

Entire System (size) Metacommunity (JM) Population (N)
Nested subsystem (size) Local community (JL) Subpop. or Deme (N)
Smallest neutral system unit Individual organism Individual gene
Diversity unit Species Allele
Stochastic process Ecological drift Genetic drift
Generator of diversity (rate
symbol)

Speciation (ν) Mutation (µ)

Fundamental diversity number θ ≈ 2JMν θ ≈ 4Nµ
Fundamental dispersal number I ≈ 2JLm θ ≈ 4Nm
Relative abundance distribu-
tion (Φ (x))

θ
x (1 − x)θ−1 θ

x (1 − x)θ−1

Time to common ancestor −JM x
1−x log x −Nx

1−x log x

It turns out that the abundance distribution of an infinitely large metacom-
munity is Fisher’s log-series distribution, and that θ of neutral theory is α of
Fisher’s log-series [2, 105, 215]. However, in any one local community, random
walks of rare species are likely to include zero, and thus become extinct in the
local community by chance alone. This causes a deviation from Fisher’s log-
series in any local community by reducing the number of the the rarest species
below that predicted by Fisher’s log-series. In particular, it tends to create a
log-normal–like distribution, much as we often see in real data (Fig. 10.8). These
theoretical findings and their match with observed data are thus consistent with
the hypothesis that communities may be governed, in some substantive part,
by neutral drift and migration.

Both theory and empirical data show that species which coexist may be more
similar than predicted by chance alone [103], and that similarity (i.e., fitness
equality) among species helps maintain higher diversity than would otherwise
be possible [27]. Chesson makes an important distinction between stabilizing
mechanisms, which create attractors, and equalizing mechanisms, which reduce
differences among species, slow competitive exclusion and facilitate stabilization
[27].
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The NTBB spurred tremendous debate about the roles of chance and de-
terminism, of dispersal-assembly and niche-assembly, of evolutionary processes
in ecology, and how we go about “doing community ecology” (see, e.g., articles
in Functional Ecology, 19(1), 2005; Ecology, 87(6), 2006). This theory in its
narrowest sense has been falsified with a few field experiments and observation
studies [32,223]. However, the degree to which stochasticity and dispersal versus
niche partitioning structure communities remains generally unknown. Contin-
ued refinements and elaboration (e.g., [2, 52, 64, 86, 164, 216]) seem promising,
continuing to intrigue scientists with different perspectives on natural communi-
ties [86,99]. Even if communities turn out to be completely non-neutral, NTBB
provides a baseline for community dynamics and patterns that has increased the
rigor of evidence required to demonstrate mechanisms controlling coexistence
and diversity. As Alonso et al. state, “. . . good theory has more predictions per
free parameter than bad theory. By this yeardstick, neutral theory fares fairly
well” [1].

10.4.1 Different flavors of neutral communities

Neutral dynamics in a local community can be simulated in slightly different
ways, but they are all envisioned as some type of random walk. A random walk
occurs when individuals reproduce or die at random, with the consequence that
each population increases or decreases by chance.

The simplest version of a random walk assumes that births and deaths and
consequent increases and decreases in population size are equally likely and
equal in magnitude. A problem with this type of random walk is that a com-
munity can increase in size (number of individuals) without upper bound, or
can disappear entirely, by chance. We know this doesn’t happen, but it is a
critically important first step in conceptualizing a neutral dynamic [22].

Hubbell added another level of biological reality by fixing the total number
of individuals in a local community, JL, as constant. When an individual dies, it
is replaced with another individual, thus keeping the population size constant.
Replacements come from within the local community with probability 1−m, and
replacements come from the greater metacommunity with probability m. The
dynamics of the metacommunity are so slow compared to the local community
that we can safely pretend that it is fixed, unchanging.

Volkov et al. [215] took a different approach by assuming that each species
undergoes independent biased random walks. We imagine that each species un-
dergoes its own completely independent random walk, as if it is not interacting
with any other species. The key is that the birth rate, b, is slightly less than the
death rate, d — this bias toward death gives us the name biased random walk.
In a deterministic model with no immigration or speciation, this would result
in a slow population decline to zero. In a stochastic model, however, some pop-
ulations will increase in abundance by chance alone. Slow random walks toward
extinctions are balanced by speciation in the metacommunity (with probabil-
ity ν).

If species all undergo independent biased random walks, does this mean
species don’t compete and otherwise struggle for existance? No. The reason that
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b < d is precisely because all species struggle for existance, and only those with
sufficiently high fitness, and which are lucky, survive. Neutral theory predicts
that it is these species that we observe in nature — those which are lucky, and
also have sufficiently high fitness.

In the metacommunity, the average number of species, 〈φM
n 〉, with population

size n is
〈φM

n 〉 = θ
xn

n
(10.10)

where x = b/d, and θ = 2JMν [215]. The M superscript refers to the metacom-
munity, and the angle brackets indicate merely that this is the average. Here
b/d is barely less than one, because it a biased random walk which is then offset
by speciation, ν. Now we see that this is exactly Fisher’s log-series distribution
(eq. 10.7), where that x = b/d and θ = α. Volkov et al. thus show that in a
neutral metacommunity, x has a biological interpretation.

The expected size of the entire metacommunity is simply the sum of all of
the average species’ n [215].

JM =

∞∑
n=1

n〈φM
n 〉 = θ

x
1 − x

(10.11)

Thus the size of the metacommunity is an emergent property of the dynamics,
rather than an external constraint. To my mind, it seems that the number of
individuals in the metacommunity must result from responses of individuals to
their external environment.

Volkov et al. went on to derive expressions for births, deaths, and average
relative abundances in the local community [139,215]. Given that each individ-
ual has an equal probability of dying and reproducing, and that replacements
can also come from the metacommunity with a probability proportional to their
abundance in the metacommunity, one can specify rules for populations in lo-
cal communities of a fixed size. These are the probability of increase, bn,k, or
decrease, dn,k, in a species, k, of population size n.

bn,k = (1 − m)
n
JL

JL − n
JL − 1

+ m
µk

JM

(
1 −

n
JL

)
(10.12)

dn,k = (1 − m)
n
JL

JL − n
JL − 1

+ m
(
1 −

muk

JM

)
n
JL

(10.13)

These expressions are the sum of two joint probabilities, each of which is com-
prised of several independent events. These events are immigration, and birth
and death of individuals of different species. Here we describe these probabil-
ities. For a population of size n of species k, we can indicate per capita, per
death probabilities including

• m, the probability that a replacement is immigrant from the metacommu-
nity, and 1−m, the probability that the replacement is from the local com-
munity.
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• n/JL, the probability that an individual selected randomly from the local
community belongs to species k, and 1−n/JL or (J −n)/(JL), the probability
that an individual selected randomly from the local community belongs to
any species other than k.

• (J − n)/(JL − 1), the conditional probability that, given that an individual of
species k has already been drawn from the population, an individual selected
randomly from the local community belongs to any species other than to
species k.

• µk/JM, the probability that an individual randomly selected from the meta-
community belongs to species k, and 1− n/JM, the probability that an indi-
vidual randomly selected from the metacommunity belongs to any species
other than k.

Each of these probabilities is the probability of some unspecified event — that
event might be birth, death, or immigration.

Before we translate eqs. 10.12, 10.13 literally, we note that b and d each have
two terms. The first term is for dynamics related to the local community, which
happen with probability 1 − m. The second is related to immigration from the
metacommunity which occurs with probability m. Consider also that if a death
is replaced by a birth of the same species, or a birth is countered by a death
of the same species, they cancel each other out, as if nothing ever happened.
Therefore each term requires a probability related to species k and to non-k.

Eq. 10.12, bn,k, is the probability that an individual will be added to the
population of species k. The first term is the joint probability that an addition
to the population comes from within the local community (1−m) and the birth
comes from species k (n/JL) and there is a death of an individual of any other
species ((JL − n)/(JL − 1)).13 The second term is the joint probability that the
addition to the population comes from the metacommunity via immigration (m)
and that the immigrant is of species k (µk/JM) and is not accompanied by a
death of an individual of its species (n/JL).

An individual may be subtracted from the population following similar logic.
Eq. 10.13, dn.k, is the probability that a death will remove an individual from
the population of species k. The first term is the joint probability that the death
occurs in species k (n/JL) and the replacement comes from the local community
(1−m) and is some species other than k ((JL−n)/(JL−1)). The second term is the
joint probability that the death occurs in species k (n/JL), and that it is replaced
by an immigrant (m) and the immigrant is any species in the metacommunity
other than k (1 − µk/JM).

10.4.2 Investigating neutral communities

Here we explore netural communities using the untb package, which contains a
variety of functions for teaching and research on neutral theory.
13 The denominator of the death probability is JL − 1 instead of JL because we have

already selected the first individual who will do the reproduction, so the total
number of remaining individuals is JL − 1 rather than JL; the number of non-k
individuals remains JL − n
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Pure drift

After loading the package and setting graphical parameters, let’s run a sim-
ulation of drift. Recall that drift results in the slow extinction of all but one
species (Fig. 10.10). We start with a local community with 20 species, each with
25 individuals14 The simulation then runs for 1000 generations (where 9/900
individuals die per generation).15

> library(untb)

> a <- untb(start = rep(1:20, 25), prob = 0, gens = 2500,

+ D = 9, keep = TRUE)

We keep, in a matrix, all 450 trees from each of the 1000 time steps so that
we can investigate the properties of the community. The output is a matrix
where each element is an integer whose value represents a species ID. Rows are
time steps and we can think of columns as spots on the ground occupied by
trees. Thus a particular spot of ground may be occupied by an individual of
one species for a long time, and suddenly switch identity, because it dies and
is replaced by an individual of another species. Thus the community always
has 450 individuals (columns), but the identities of those 450 change through
time, according to the rules laid out in eqs. 10.12, 10.13. Each different species is
represented by a different integer; here we show the identitites of ten individuals
(columns) for generations 901–3.

> (a2 <- a[901:903, 1:10])

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 2 19 5 19 9 4 16 9 1 19

[2,] 2 19 5 19 9 4 16 9 1 19

[3,] 2 19 5 19 9 4 16 9 1 19

Thus, in generation 901, tree no. 1 is species 2 and in generation 902, tree no.
3 is species 5.

We can make pretty pictures of the communities at time steps 1, 100, and
2500, by having a single point for each tree, and coding species identity by
shades of grey.16

> times <- c(1, 50, 2500)

> sppcolors <- sapply(times, function(i) grey((a[i,

+ ] - 1)/20))

This function applies to the community, at each time step, the grey function.
Recall that species identity is an integer; we use that integer to characterize
each species’ shade of grey.

Next we create the three graphs at three time points, with the appropriate
data, colors, and titles.
14 This happens to be the approximate tree density (450 trees ha−1, for trees > 10 cm

DBH) on BCI.
15 Note that display.untb is great for pretty pictures, whereas untb is better for

more serious simulations.
16 We could use a nice color palette, hcl, based on hue, chroma, and luminance, for

instance hcl(a[i,]*30+50)
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> layout(matrix(1:3, nr = 1))

> par(mar = c(1, 1, 3, 1))

> for (j in 1:3) {

+ plot(c(1, 20), c(1, 25), type = "n", axes = FALSE)

+ points(rep(1:20, 25), rep(1:25, each = 20),

+ pch = 19, cex = 2, col = sppcolors[, j])

+ title(paste("Time = ", times[j], sep = ""))

+ }

Fig. 10.11: Three snapshots of one community, drifting through time. Shades of grey
represent different species. Second row contains rank abundance distributions; third
row contains species abundance distributions. Drift results in the slow loss of diversity.

From these graphs (Fig. 10.11), we see that, indeed, the species identity of the
450 trees changes through time. Remember that this is not spatially explicit —
we are not stating that individual A is next, or far away from, individual B.
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Rather, this is a spatially implicit representation — all individuals are charac-
terized by the same probabilities.

Next let’s graph the rank abundance distribution of these communities (Fig.
10.11). For each time point of interest, we first coerce each “ecosystem” into a
count object, and then plot it. Note that we plot them all on a common scale
to facilitate comparison.

> layout(matrix(1:3, nr = 1))

> for (i in times) {

+ plot(as.count(a[i, ]), ylim = c(1, max(as.count(a[times[3],

+ ]))), xlim = c(0, 20))

+ title(paste("Time = ", i, sep = ""))

+ }

Next we create species abundance distributions, which are histograms of species’
abundances (Fig. 10.11). If we want to plot them on a common scale, it takes
a tad bit more effort. We first create a matrix of zeroes, with enough columns
for the last community, use preston to create the counts of species whose
abundances fall into logarithmic bins, plug those into the matrix, and label the
matrix columns with the logarithmic bins.

> out <- lapply(times, function(i) preston(a[i,

+ ]))

> bins <- matrix(0, nrow = 3, ncol = length(out[[3]]))

> for (i in 1:3) bins[i, 1:length(out[[i]])] <- out[[i]]

> bins

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 0 0 0 0 0 20 0 0 0

[2,] 0 0 0 0 1 17 2 0 0

[3,] 0 0 0 0 1 4 1 2 1

> colnames(bins) <- names(preston(a[times[3], ]))

Finally, we plot the species–abundance distributions.

> layout(matrix(1:3, nr = 1))

> for (i in 1:3) {

+ par(las = 2)

+ barplot(bins[i, ], ylim = c(0, 20), xlim = c(0,

+ 8), ylab = "No. of Species", xlab = "Abundance Category")

+ }

Bottom line: drift causes the slow loss of species from local communities (Fig.
10.11). What is not illustrated here is that without dispersal, drift will cause
different species to become abundant in different places because the variation is
random. In that way, drift maintains diversity at large scales, in the metacom-
munity. Last, low rates of dispersal among local communities maintains some
diversity in local communities without changing the entire metacommunity into
a single large local community. Thus dispersal limitiation, but not its absence,
maintains diversity.

Next, let’s examine the dynamics through time. We will plot individual
species trajectories (Fig. 10.12a).
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> sppmat <- species.table(a)

> matplot(1:times[3], sppmat[1:times[3], ], type = "l",

+ ylab = "Population Density")

The trajectories all start at the same abundance, but they need not have. The
trajectories would still have the same drifting quality.
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Fig. 10.12: Dynamics and average variation within populations. In random walks,
average variation (measured with the coefficient of variation) increases with time.

For random walks in general, the observed variance and coefficient of varia-
tion (CV = σ̂/x̄) of a population will grow over time [32]. Here we calculate the
average population CV of cumulative observations (note the convenient use of
nested (s)apply functions). Let’s calculate the CV’s for every tenth time step.

> cvtimes <- seq(2, 2500, by = 10)

> CV.within <- sapply(cvtimes, function(i) {

+ cvs <- apply(sppmat[1:i, ], 2, function(x) sd(x)/mean(x))

+ mean(cvs)

+ })

Now plot the average CV through time. The average observed CV should in-
crease (Fig. 10.12b).

> plot(cvtimes, CV.within, type = "l")

This shows us that the populations never approach an equilibrium, but wander
aimlessly.

Real data

Last, we examine a BCI data set [36]. We load the data (data from 50 1 ha
plots × 225 species, from the vegan package), and sum species abundances to
get each species total for the entire 50 h plot (Fig. 10.13a).
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> library(vegan)

> data(BCI)

> n <- colSums(BCI)

> par(las = 2, mar = c(7, 4, 1, 1))

> xs <- plot(preston(rep(1:225, n), n = 12, original = TRUE))

We would like to estimate θ and m from these data, but that requires specialized
software for any data set with a realistic number of individuals. Specialized
software would provide maximum likelihood estimates (in a reasonable amount
of computing time) for m and θ for large communities [51,69,86]. The BCI data
have been used repeatedly, so we rely on estimates from the literature (θ ≈ 48,
m ≈ 0.1) [51,215]. We use the approach of Volkov et al. [215] to generate expected
species abundances (Fig. 10.13a).

> v1 <- volkov(sum(n), c(48, 0.1), bins = TRUE)

> points(xs, v1[1:12], type = "b")

More recently, Jabot and Chave [86] arrived at estimates that differed from
previous estimates by orders of magnitude (Fig. 10.13b). Their novel approach
estimated θ and m were derived from both species abundance data and from
phylogenetic data (θ ≈ 571, m ≈ 0.002). This is possible because neutral theory
makes a rich array of predictions, based on both ecological and evolutionary
processes. Their data were only a little bit different (due to a later census),
but their analyses revealed radically different estimates, with a much greater
diversity and larger metacommunity (greater θ), and much lower immigration
rates (smaller m).

Here we derive expected species abundance distributions. The first is based
soley on census data, and is similar to previous expections (Fig. 10.13b).

> v2 <- volkov(sum(n), c(48, 0.14), bins = TRUE)

> xs <- plot(preston(rep(1:225, n), n = 12, original = TRUE),

+ col = 0, border = 0)

> axis(1, at = xs, labels = FALSE)

> points(xs, v2[1:12], type = "b", lty = 2, col = 2)

However, when they also included phylogenetic data, they found very different
expected species abundance distributions (Fig. 10.13b).

> v4 <- volkov(sum(n), c(571, 0.002), bins = TRUE)

> points(xs, v4[1:12], type = "b", lty = 4, col = 2)

If nothing else, these illustrate the effects of increasing θ and reducing m.

10.4.3 Symmetry and the rare species advantage

An important advance in neutral theory is the quantification of a symmetric
rare species advantage. The symmetry hypothesis posits that all species have
a symmetrical rare species advantage [214, 216]. That is, all species increase
when rare to the same degree (equal negative density dependence). In a strict
sense, all individuals remain the same in that their birth and death probabilities
change with population size in the same manner for all species. This obviously



318 10 Community Composition and Diversity

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

0

5

10

15

20

25

30

35

l

l

l

l

l

l l

l

l

l

l

l

(a) Original estimates

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

0

5

10

15

20

25

30

35

l

l

l

l

l
l

l

l

l

l

l

l

l

l l l
l l l

l

l

l

l

l

(b) Jabot and Chave estimates

Fig. 10.13: Species abundance distributions for BCI trees. (a) Data for histogram
from [36], overlain with expected abundances with θ and m values fitted to the data
[51,215]. (b) Jabot and Chave found that when they used only species abundances (as
did previous investigators) their pattern was similar to previous findings (solid line).
However, adding phylogenetic information led to very different expectations (dashed
line).

reduces the chance of random walks to extinction, but is nonetheless the same
among all species. Estimation of the magnitude of the rare species advantage is
interesting addition to stepwise increasing complexity.

To sum up: it is safe to say that neutral theory has already made our think-
ing about community structure and dynamics more sophisticated and subtle, by
extending island biogeography to individuals. The theory is providing quanti-
tative, pattern-generating models, that are analogous to null hypotheses. With
the advent of specialized software, theory is now becoming more useful in our
analysis of data [51,69,86].

10.5 Diversity Partitioning

We frequently refer to biodiversity (i.e., richness, Simpson’s, and Shannon-
Wiener diversity) at different spatial scales as α, β, and γ diversity (Fig. 10.14).

• Alpha diversity, α, is the diversity of a point location or of a single sample.
• Beta diversity, β, is the diversity due to multiple localities; β diversity is

sometimes thought of as turnover in species composition among sites, or
alternatively as the number of species in a region that are not observed in
a sample.

• Gamma diversity, γ, is the diversity of a region, or at least the diversity
of all the species in a set of samples collected over a large area (with large
extent relatve to a single sample).



10.5 Diversity Partitioning 319

Diversity across spatial scales can be further be partitioned in one of two ways,
either using additive or multiplicative partitioning.

Additive partitioning [42,43,97] is represented as

ᾱ + β = γ (10.14)

where ᾱ is the average diversity of a sample, γ is typically the diversity of the
pooled samples, and β is found by difference (β = γ − ᾱ). We can think of β
as the average number of species not found in a sample, but which we know
to be in the region. Additive partitioning allows direct comparison of average
richness among samples at any hierarchical level of organization because all
three measures of diversity (α, β, and γ) are expressed in the same units. This
makes it analogous to partitioning variance in ANOVA. This is not the case for
multiplicative partitioning diversity.

Partitioning can also be multiplicative [219],

ᾱβ = γ (10.15)

where β is a conversion factor that describes the relative change in species
composition among samples. Sometimes this type of β diversity is thought of
as the number of different community types in a set of samples. However, one
must use this interpretation with great caution, as either meaning of β diversity
depends completely on the sizes or extent of the samples used for α diversity.
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Fig. 10.14: Hierarchical sampling of moth species richness in forest patches in Indiana
and Ohio, USA [198]. α-diversity is the diversity of a single site (richness indicated
by numbers). γ-diversity is the total number of species found in any of the samples
(here γ = 230 spp.). Additive β-diversity is the difference, γ− ᾱ, or the average number
of species not observed in a single sample. Diversity partitioning can be done at two
levels, sites within ecoregions and ecoregions within the geographic region (see example
in text for details).
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Let us examine the limits of β diversity in extremely small and extremely
large samples. Imagine that our sample units each contain, on average, one
individual (and therefore one species) and we have 106 samples. If richness is
our measure of diversity, then ᾱ = 1. Now imagine that in all of our samples we
find a total of 100 species, or γ = 100. Our additive and multiplicative partitions
would then be βA = 99, and βM = 100, respectively. If the size of the sample unit
increases, each sample will include more and more individuals and therefore
more of the diversity, and by definition, β will decline. If each sample gets large
enough, then each sample will capture more and more of the species until a
sample gets so large that it includes all of the species (i.e., ᾱ → γ). At this
point, βA → 0 and βM → 1.

Note that βA and βM do not change at the same rates (Fig. 10.15). When
we increase sample size so that each sample includes an average of two species
(ᾱ = 2), then βA = 98 and βM = 50. If each sample were big enough to have on
average 50 species (ᾱ = 50), then βA = 50 and βM = 2. So, the β’s do not change
at the same rate (Fig. 10.15).
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Fig. 10.15: Relations of βA (with additive partitioning) and βM (with multiplicative
partitioning) to ᾱ, for a fixed γ = 500 species. In our example, we defined diversity as
species richness, so the units of βA and α are number of species per sample, and ᾱ is
the mean number of species in a sample.

Multiplicative βM is sometimes thought of as the number of independent
“communities” in a set of samples. This would make sense if our sampling regime
were designed to capture representative parts of different communities. For ex-
ample, if we sampled an elevational gradient, or a productivity gradient, and
our smallest sample was sufficiently large so as to be representative of that point
along the gradient17 then βM could provide a measure of the relative turnover in

17 One type of sample that attempts to do this is a relevé.
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composition or“number of different communities.” However, we know that com-
position is also predicted to vary randomly across the landscape [36]. Therefore,
if each sample is small, and not really representative of a “community,” then the
small size of the samples will inflate βM and change the interpretation.

As an example, consider the BCI data, which consists of 50 contiguous 1 ha
plots. First, we find γ (all species in the data set, or the number of columns),
and ᾱ (mean species number per 1 ha plot).

> (gamma <- dim(BCI)[2])

[1] 225

> (alpha.bar <- mean(specnumber(BCI)))

[1] 90.78

Next we find additive β-diversity and multiplicative β-diversity.

> (beta.A <- gamma - alpha.bar)

[1] 134.2

> (beta.M <- gamma/alpha.bar)

[1] 2.479

Now we interpret them. These plots are located in a relatively uniform tropical
rainforest. Therefore, they each are samples drawn from a single community
type. However, the samples are small. Therefore, each 1 ha plot (104 m2 in size)
misses more species than it finds, on average (βA > ᾱ). In addition, βM = 2.48,
indicating a great deal of turnover in species composition. We could mistakenly
interpret this as indicating something like ∼ 2.5 independent community types
in our samples. Here, however, we have a single community type — additive
partitioning is a little simpler and transparent in its interpretation.

For other meanings of β-diversity, linked to neutral theory, see [36,144].

10.5.1 An example of diversity partitioning

Let us consider a study of moth diversity by Keith Summerville and Thomas
Crist [197,198]. The subset of their data presented here consists of woody plant
feeding moths collected in southwest Ohio, USA. Thousands of individuals were
trapped in 21 forest patches, distributed in two adjacent ecoregions (12 sites -
North Central Tillplain [NCT], and 9 sites - Western Allegheny Plateau [WAP],
Fig. 10.14). This data set includes a total of 230 species, with 179 species present
in the NCT ecoregion and 173 species present in the WAP ecoregion. From these
subtotals, we can already see that each ecoregion had most of the combined total
species (γ).

We will partition richness at three spatial scales: sites within ecoregions (ᾱ1),
ecoregions (ᾱ2), and overall (γ). This will result in two β-diversities: β1 among
sites within each ecoregion, and β2 between ecoregions. The relations among
these are straightforward.



322 10 Community Composition and Diversity

ᾱ2 = ᾱ1 + β1 (10.16)
γ = ᾱ2 + β2 (10.17)

γ = ᾱ1 + β1 + β2 (10.18)

To do this in R, we merely implement the above equations using the data in
Fig. 10.14 [198]. First, we get the average site richness, ᾱ1. Because we have dif-
ferent numbers of individuals from different site, and richness depends strongly
on the number of individuals in our sample, we may want to weight the sites by
the number of individuals. However, I will make the perhaps questionable argu-
ment for the moment that because trapping effort was similar at all sites, we will
not adjust for numbers of individuals. We will assume that different numbers of
individuals reflect different population sizes, and let number of individuals be
one of the local determinants of richness.

> data(moths)

> a1 <- mean(moths[["spp"]])

Next we calculate average richness richness for the ecoregions. Because we had
12 sites in NCT, and only nine sites in WAP for what might be argued are
landscape constraints, we will use the weighted average richness, adjusted for
the number of sites.18 We also create an object for γ = 230.

> a2 <- sum(c(NCT = 179, WAP = 173) * c(12, 9)/21)

> g <- 230

Next, we get the remaining quantities of interest, and show that the partition
is consistent.

> b1 <- a2 - a1

> b2 <- g - a2

> abg <- c(a1 = a1, b1 = b1, a2 = a2, b2 = b2, g = g)

> abg

a1 b1 a2 b2 g

65.43 111.00 176.43 53.57 230.00

> a1 + b1 + b2 == g

[1] TRUE

The partitioning reveals that β1 is the largest fraction of overall γ-richness
(Fig. 10.16). This indicates that in spite of the large distance between sampling
areas located in different ecoregions, and the different soil types and associated
flora, most of the variation occurs among sites within regions. If there had been
a greater difference in moth community composition among ecoregions, then
β2-richness would have made up a greater proportion of the total.

18 The arithmetic mean is
∑

aiYi, where all ai = 1/n, and n is the total number of
observations. A weighted average is the case where the ai represent unequal weights,
often the fraction of n on which each Yi is based. In both cases,

∑
a = 1.
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Fig. 10.16: Hierarchical partitioning of moth species richness in forest patches [198].
See Fig. 10.14 for geographical locations.

These calculations show us how simple this additive partition can be, al-
though more complicated analyses are certainly possible. It can be very impor-
tant to weight appropriately the various measures of diversity (e.g., the number
of individuals in each sample, or number of samples per hierarchical level). The
number of individuals in particular has a tremendous influence on richness,
but has less influence on Simpson’s diversity partitioning. The freely available
PARTITION software will perform this additive partitioning (with sample sizes
weights) and perform statistical tests [212].

10.5.2 Species–area relations

The relation between the number of species found in samples of different area
has a long tradition [5, 10, 120–122, 169, 178], and is now an important part of
the metastasizing subdiscipline of macroecology [15,71].

Most generally, the species–area relation (SAR) is simply an empirical pat-
tern of the number of species found in patches of different size, plotted as a
function of the sizes of the respective patches (Fig. 10.17). These patches may
be isolated from each other, as islands in the South Pacific [121], or mountain-
tops covered in coniferous forest surrounded by a sea of desert [16], or calcareous
grasslands in an agricultural landscape [68]. On the other hand, these patches
might be nested sets, where each larger patch contains all others [41,163].

Quantitatively, the relation is most often proposed as a simple power law,

R = cAz (10.19)

where R is the number of species in a patch of size A, and c and z are fitted
constants. This is most often plotted as a log–log relation, which makes it linear.

log (R) = b + zA (10.20)
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Fig. 10.17: Power law species–area relations.

where b is the intercept (equal to log c) and z is the slope.

Drawing power law species–area relations (Fig. 10.17)

Here we simply draw some species area curves.

> A <- 10^1:10

> c <- 1.5

> z <- 0.25

> curve(c * x^z, 10, 10^10, n = 500,

+ ylab = "No. of Species", xlab = "Area (ha)")

> A <- 10^1:10

> c <- 1.5

> z <- 0.25

> curve(log(c, 10) + z * x, 1, 10, ylab = quote(log[10]("No.of Species")),

+ xlab = quote(log[10]("Area (ha)")))
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Fig. 10.18: Fitted power law species–area relations.

Fitting a species–area relation (Fig. 10.18)

Here we fit a species–area curve to data, and examine the slope. We could fit a
nonlinear power relation (y = cAz); this would be appropriate, for instance, if the
residual noise around the line were of the same magnitude for all patch areas. We
could use reduced major axis regression, which is appropriate when there is equiv-
alent uncertainty or error on both x and y. Last (and most often), we could use
a simple linear regression on the log-transformed data, which is appropriate when
we know x to a high degree of accuracy, but measure y with some error, and the
transformation causes the residual errors to be of similar magnitude at all areas. We
start with the last (log-transformed). Here we plot the data, and fit a linear model
to the common log-transformed data.

> plot(log(spp, 10) ~ log(area, 10), moths)

> mod <- lm(log(spp, 10) ~ log(area, 10), data = moths)

> abline(mod)

Next we fit the nonlinear curve to the raw data, and overlay that fit (on the log
scale).

> mod.nonlin <- nls(spp ~ a * area^z, start = list(a = 1,

+ z = 0.2), data = moths)

> curve(log(coef(mod.nonlin)[1], 10) + x * coef(mod.nonlin)[2],

+ 0, 3, add = TRUE, lty = 2)
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Assessing species–area relations

Note that in Figure 10.18, the fits differ slightly between the two methods. Let’s
compare the estimates of the slope — we certainly expect them to be similar, given
the picture we just drew.

> confint(mod)

2.5 % 97.5 %

(Intercept) 1.50843 1.6773

log(area, 10) 0.09026 0.1964

> confint(mod.nonlin)

2.5% 97.5%

a 31.61609 50.1918

z 0.08492 0.1958

We note that the estimates of the slopes are quite similar. Determining the better

of the two methods (or others) is beyond the scope of this book, but be aware that

methods can matter.

The major impetus for the species–area relation came from (i) Preston’s
work on connections between the species–area relation and the log-normal
species abundance distribution [169,170], and (ii) MacArthur and Wilson’s the-
ory of island biogeography19 [122].

Preston posited that, given the log-normal species abundance distributions
(see above), then increasingly large samples should accumulate species at partic-
ular rates. Direct extensions of this work, linking neutral theory and maximum
entropy theory to species abundances and species–area relations continues to-
day [10,71,81]

Island biogeography

MacArthur and Wilson proposed a simple theory wherein the number of species
on an oceanic island was a function of the immigration rate of new species, and
extinction rate of existing species (Fig. 10.19). The number of species at any one
time was a dynamic equilibrium, resulting from both slow inevitable extinction
and slow continual arrival of replacements. Thus species composition on the
island was predicted to change over time, that is, to undergo turnover.

Let us imagine immigration rate, y, as a function of the number of species
already on an island, x (Fig. 10.19). This relation will have a negative slope, be-
cause as the number of species rises, that chance that a new individual actually
represents a new species will decline. The immigration rate will be highest when
there are no species on the island, x = 0, and will fall to zero when every con-
ceivable species is already there. In addition, the slope should be decelerating

19 (Originally proposed in a paper entitled “An Equilibrium Theory of Insular Zoo-
geography” [121])
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(concave up) because some species will be much more likely than others to im-
migrate. This means that the immigration rate drops steeply as the most likely
immigrants arrive, and only the unlikely immigrants are missing. Immigrants
may colonize quickly for two reasons. First, as Preston noted, some species are
simply much more common than others. Second, some species are much better
dispersers than others.

Now let us imagine extinction rate, y, as a function of the number of species,
x (Fig. 10.19). This relation will have a positive slope, such that the probability
of extinction increases with the number of species. This is predicted to have
an accelerating slope (concave-up), for essentially the same sorts of reasons
governing the shape of the immigration curve: Some species are less common
than others, and therefore more likely to become extinct due to demographic and
environmental stochasticity, and second, some species will have lower fitness for
any number of reasons. As the number of species accumulates, the more likely
it will become that these extinction-prone species (rare and/or lower fitness)
will be present, and therefore able to become extinct.

The rate of change of the number of species on the island, ∆R, will be the
difference between immimigration, I, and extinction, E, or

∆R = I − E. (10.21)

When ∆R = 0, we have an equilibrium. If we knew the quantitative form of im-
migration and extinction, we could solve for the equilibrium. That equilibrium
would be the point on the x axis, R, where the two rates cross (Fig. 10.19).

In MacArthur and Wilson’s theory of island biogeography, these rates could
be driven by the sizes of the islands, where

• larger islands had lower extinction rates because of larger average popula-
tion sizes, and

• larger islands had higher colonization rates because they were larger targets
for dispersing species.

The distance between an island and sources of propagules was also predicted
to influence these rates, where

• islands closer to mainlands had higher colonization rates of new species
because more propagules would be more likely to arrive there, and

• the effect of area would be more important for islands far from mainlands
than for islands close to mainlands.

Like much good theory, these were simple ideas, but had profound effects on
the way ecologists thought about communities. Now these ideas, of dispersal
mediated coexistence and landscape structure, continue to influence community
ecologists [15,81,102].

Drawing immigration and extinction curves

It would be fun to derive a model of immigration and extinction rates from
first principles [121], but here we can illustrate these relations with some simple
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Fig. 10.19: Immigration and extinction curves for the theory of island biogeography.
The declining curves represent immigration rates as functions of the number of species
present on an island. The increasing curves represent extinction rates, also as functions
of island richness. See text for discussion of the heights of these curves, i.e., controls
on these rates. Here the dashed lines represent an island that is shrinking in size.

phenomenological graphs. We will assume that immmigration rate, I, can be
represented as a simple negative exponential function exp(I0 − iR), where I0 is
the rate of immigration to an empty island, and −i is the per species negative
effect on immigration rate.

> I0 <- log(1)

> b <- 0.1

> curve(exp(I0 - b * x), 0, 50, xlab = "No. of Species (R)",

+ ylab = "Rate (I or E)")

Note that extinction rate, E, must be zero if there are no species present. Imag-
ine that extinction rate is a function of density and that average density declines
as the number of species increases, or N̄ = 1/R.20

> d <- 0.01

> curve(exp(d * x) - 1, 0, 50, add = TRUE)

We subtract 1 merely to make sure that E = 0 when R = 0.
The number of species, R, will result from ∆R = 0 = I−E, the point at which

the lines cross.

I = eI0−bR (10.22)

E = edR − 1 (10.23)
δR = 0 = I − E (10.24)

20 Why would this make sense ecologically?
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Here we find this empricially by creating a function of R to minimize — we
will minimize (I − E)2; squaring the difference gives the quantity the convenient
property that the minimum will be approached from either positive or negative
values.

> deltaR <- function(R) {

+ (exp(I0 - b * R) - (exp(d * R) - 1))^2

+ }

We feed this into an optimizer for one-parameter functions, and specify that we
know the optimum will be achieved somewhere in the interval between 1 and
50.

> optimize(f = deltaR, interval = c(1, 50))[["minimum"]]

[1] 16.91

The output tells us that the minimum was achieved when R ≈ 16.9.
Now imagine that rising sea level causes island area to shrink. What is this

predicted to do? It could

1. reduce the base immigration rate because the island is a smaller target,
2. increase extinction rate because of reduced densities.21

Let us represent reduced immigration rate by reducing I0.

> I0 <- log(1/2)

> curve(exp(I0 - b * x), 0, 50, add = TRUE, lty = 2)

Next we increase extinction rate by increasing the per species rate.

> d <- 0.014

> curve(exp(d * x) - 1, 0, 50, add = TRUE, lty = 2)

If we note where the rates cross, we find that the number of predicted species
has declined. With these new immigration and extinciton rates the predicted
number of species is

> optimize(f = deltaR, interval = c(1, 50))[["minimum"]]

[1] 11.00

or 11 species, roughly a 35% decline ((17 − 11)/17 = 0.35).
The beauty of this theory is that it focuses our attention on landscape level

processes, often outside the spatial and temporal limits of our sampling regimes.
It specifies that any factor which helps determine the immigration rate or ex-
tinction rate, including island area or proximity to a source of propagules, is
predicted to alter the equilibrium number of species at any point in time. We
should further emphasize that the identity of species should change over time,
that is, undergo turnover, because new species arrive and old species become
extinct. The rate of turnover, however, is likely to be slow, because the species
that are most likely to immigrate and least likely to become extinct will be the
same species from year to year.
21 We might also predict an increased extinction rate because of reduced rescue effect

(Chapter 4).



330 10 Community Composition and Diversity

10.5.3 Partitioning species–area relations

You may already be wondering if there is a link between island biogeography
and β-diversity. After all, as we move from island to island, and as we move from
small islands to large islands, we typically encounter additional species, and that
is what we mean by β-diversity. Sure enough, there are connections [42].

Let us consider the moth data we used above (Fig. 10.14). The total number
of species in all of the patches is, as before, γ. The average richness of these
patches is ᾱ, and also note that part of what determines that average is the area
of the patch. That is, when a species is missing from a patch, part of the reason
might be that the patch is smaller than it could be. We will therefore partition
β into yet one more category: species missing due to patch size, βarea. This new
quantity is the average difference between ᾱ and the diversity predicted for the
largest patch (Fig. 10.20). In general then,

β = βarea + βreplace (10.25)

where βreplace is the average number of species missing that are not explained
by patch size.

In the context of these data (Fig. 10.20), we now realize that β1 = βarea +

βecoregion, so the full partition becomes

γ = ᾱ1 + βarea + βecoregion + βgeogr.region (10.26)

where βreplace = βecoregion +βgeogr.region. Note that earlier in the chapter, we did not
explore the effect of area. In that case, βecoregion included both the effect of area
and the effect of ecoregion; here we have further partitioned this variation into
variation due to patch size, as well as variation due to ecoregion. This reduces
the amount of unexplained variation among sites within each ecoregion.

Let’s calculate those differences now. We will use quantities we calculated
above for ᾱ1, ᾱ2, γ, and a nonlinear species–area model from above. We can
start to create a graph similar to Fig. 10.20.

> plot(spp ~ area, data = moths, ylim = c(30, 230),

+ xlab = "Area (ha)", ylab = "No. of Species (R)")

> curve(coef(mod.nonlin)[1] * x^coef(mod.nonlin)[2],

+ 0, max(moths[["area"]]), add = TRUE, lty = 2,

+ lwd = 2)

> abline(h = g, lty = 3)

> text(275, g, quote(gamma), adj = c(0.5, 1.5),

+ cex = 1.5)

Next we need to find the predicted richness for the maximum area. We use our
statistical model to find that.

> (MaxR <- predict(mod.nonlin, list(area = max(moths[["area"]]))))

[1] 88.62

We can now find βarea, βeco and βgeo.
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> b.area <- MaxR - a1

> b.eco <- a2 - (b.area + a1)

> b.geo <- g - a2

Now we have partitioned γ a little bit more finely with a beastiary of β’s, where

• ᾱ1 is the average site richness.
• βarea is the average number of species not observed, due to different patch

sizes.
• βeco is the average number of species not observed at a site, is not missing

due to patch size, but is in the ecoregion.
• βgeo is the average number of species not found in the samples from different

ecoregions.

Finally, we add lines to our graph to show the partitions.

> abline(h = g, lty = 3)

> abline(h = b.eco + b.area + a1, lty = 3)

> abline(h = b.area + a1, lty = 3)

> abline(h = a1, lty = 3)

Now we have further quantified how forest fragment area explains moth species
richness. Such understanding of the spatial distribution of biodiversity pro-
vides a way to better quantify patterns governed by both dispersal and habitat
preference, and allows us to better describe and manage biodiversity in human-
dominated landscapes.

Fig. 10.20: Combining species–area relations with additive diversity partitioning. For-
est fragment area explains relatively little of the diversity which accumulates in iso-
lated patches distributed in space. However, it is likely that area associated with the
collection of samples (i.e., the distances among fragments) contributes to βeco and βgeo.
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10.6 Summary

We have examined communities as multivariate entities which we can describe
and compare in a variety of ways.

• Composition includes all species (multivariate data), whereas species diver-
sity is a univariate description of the variety of species present.

• There are many ways to quantify species diversity, and they tend to be
correlated. The simplest of these is richness (the number of species present),
whereas other statistics take species’ relative abundances into account.

• Species abundance distributions and rank abundance distributions are anal-
ogous to probability distributions, and provide more thorough ways to de-
scribe the patterns of abundance and variety in communities. These all
illustrate a basic law of community ecology: most species are rare. Null
models of community structure and processes make predictions about the
shape of these distributions.

• Ecological neutral theory provides a dynamical model, not unlike a null
model, which allows quantitative predictions relating demographic, immi-
gration, and speciation rates, species abundance distributions, and patterns
of variation in space and time.

• Another law of community ecology is that the number of species increases
with sample area and appears to be influenced by immigration and extinc-
tion rates.

• We can partition diversity at different spatial scales to understand the struc-
ture of communities in landscapes.

Problems

Table 10.3: Hypothetical data for Problem 1.

Site Sp. A Sp. B Sp. C

Site 1 0 1 10
Site 2 5 9 10
Site 3 25 20 10

10.1. How different are the communities in Table 10.3?
(a) Convert all data to relative abundance, where the relative abundance of
each site sum to 1.
(b) Calculate the Euclidean and Bray-Curtis (Sørensen) distances between each
pair of sites for both relative and absolute abundances.
(c) Calculate richness, Simpson’s and Shannon-Wiener diversity for each site.

10.2. Use rarefaction to compare the tree richness in two 1 ha plots from the BCI
data in the vegan package. Provide code, and a single graph of the expectations
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for different numbers of individuals; include in the graph some indication of the
uncertainty.

10.3. Select one of the 1 ha BCI plots (from the vegan package), and fit three
different rank abundance distributions to the data. Compare and contrast their
fits.

10.4. Simulate a neutral community of 1000 individuals, selecting the various
criteria on yur own. Describe the change through time. Relate the species abun-
dance distributions that you observe through time to the parameters you choose
for the simulation.

10.5. Using the dune species data (vegan package), partition species richness
into ᾱ, β, and γ richness, where rows are separate sites. Do the same thing using
Simpson’s diversity.
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A Brief Introduction to R

R is a language. Use it every day, and you will learn it quickly.
S, the precursor to R, is a quantitative programming environment devel-

oped at AT&T Bell Labs in the 1970s. S-Plus is a commercial, “value-added”
version and was begun in the 1980s, and R was begun in the 1990s by Robert
Gentleman and Ross Ihaka of the Statistics Department of the University of
Auckland. Nearly 20 senior statisticians provide the core development group
of the R language, including the primary developer of the original S language,
John Chambers, of Bell Labs.

R is an official part of the Free Software Foundation’s GNU project1

(http://www.fsf.org/). It is free to all, and licensed to stay that way.
R is a language and environment for dynamical and statistical computing

and graphics. R is similar to the S language, different implementation of S.
Technically speaking, R is a “dialect” of S. R provides a very wide variety of
statistical (linear and nonlinear modelling, classical statistical tests, time-series
analysis, classification, clustering, ...) and graphical techniques, and is highly
extensible. R has become the lingua franca of academic statistics, and is very
useful for a wide variety of computational fields, such as theoretical ecology.

A.1 Strengths of R/S

• Simple and compact syntax of the language. You can learn R quickly, and
can accomplish a lot with very little code.

• Extensibility. Anyone can extend the functionality of R by writing code.
This may be a simple function for personal use, or a whole new family of
statistical procedures in a new package.

• A huge variety of statistical and computing procedures. This derives from
the ease with which R/S can be extended and shared by users around the
world.

• Rapid updates.

1 Pronounced “g-noo” — it is a recursive acronym standing for “GNU’s Not Unix.”
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• Replicability and validation. All data analyses should be well documented,
and this only happens reliably when the analyses are performed with scripts
or programs, as in R or SAS. Point-and-click procedures cannot be validated
by supervisors, reviewers, or auditors.

• Getting help from others is easy. Any scripted language can be quickly and
easily shared with someone who can help you. I cannot help someone who
says “first I clicked on this, and then I clicked on that . . . .”

• Repetitive tasks simplified. Writing code allows you to do anything you
want a huge number of times. It also allows very simple updates with new
data.

• High quality graphics. Well-designed publication-quality plots can be pro-
duced with ease, including mathematical symbols and formulae where
needed. Great care has been taken over the defaults for the minor design
choices in graphics, but the user retains full control.

• R is available as Free Software under the terms of the Free Software Foun-
dation’s GNU General Public License in source code form. It compiles and
runs out of the box on a wide variety of UNIX platforms and similar sys-
tems (including FreeBSD and Linux). It also compiles and runs on Windows
9x/NT/2000 and Mac OS.

• Accessibility. Go now to www.r-project.org. Type “R” into Google. The
R Project page is typically the first hit.

There is a tremendous amount of free documentation for R. Rcomes with a
selection of manuals under the “Help” menu — explore these first. At the main
R project web site, see the “Documentation” on the left sidebar. The FAQ’s are
very helpful. The “Other” category includes a huge variety of items; search in
particular for “Contributed documentation.”2 There you will find long (100+
pages) and short tutorials. You will also find two different “RReference Cards,”
which are useful lists of commonly used functions.3

A.2 The R Graphical User Interface (GUI)

R has a very simple but useful graphical user interface (GUI; Fig. A.1). A few
points regarding the GUI:

• “You call this a graphical user interface?” Just kidding — the GUI is not
designed for point-and-click modeling.

• The R GUI is designed for package management and updates.
• The R GUI is designed for use with scripts.

The R GUI does not provide a “statistics package.” R is a language and
programming environment. You can download an R package called Rcmdr that
provides a point-and-click interface for introductory statistics, if you really,
really want to. In my experience, students who plan to use statistics in their

2 I find this when I google “r ‘contributed documentation’.”
3 Try googling ‘R Reference Card’ in quotes.



A.2 The R Graphical User Interface (GUI) 337

Fig. A.1: The Mac OS X R GUI. Color coded syntax not visible in this figure.

research find it more frustrating to learn this interface than to learn to take
advantage of the language.

The R GUI is designed for maintenance. With the R GUI you can check for
updates, and download any of the hundreds of small packages that extend R in
hundreds of ways. (A package is not unlike a “PROC,” for SAS users — first
you tell call it, then you use it).

The R GUI is designed for using scripts. Scripts are text files that contain
your analysis; that is, they contain both code to do stuff, and comments about
what you are doing and why. These are opened within R and allow you to do
work and save the code.

• Scripts are NOT Microsoft Word documents that require Microsoft Word to
open them, but rather, simple text files, such as one could open in Notepad,
or SimpleText.

• Scripts are a written record of everything you do along the way to achieving
your results.
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• Scripts are the core of data analysis, and provide many of the benefits of
using a command-driven system, whether R, Matlab, or some other program
or environment.

• Scripts are interactive. I find that because scripts allow me to do anything
and record what I do, they are very interactive. They let me try a great
variety of different things very quickly. This will be true for you too, once
you begin to master the language.

The R GUI can be used for simple command line use. At the command line,
you can add 2+2 to get 4. You could also do ar(lake.phosphorus) to perform
autoregressive time series analysis on a variable called lake.phosphorus, but
you would probably want to do that in a script that you can save and edit, to
keep track of the analysis that you are doing.

A.3 Where is R?

As an Open Source project, R is distributed across the web. People all around
the world continue to develop it, and much of it is stored on large computer
servers (“mirrors”) across the world. Therefore, when you download R, you
download only a portion of it — the language and a few base packages that
help everything run. Hundreds of “value-added” packages are available to make
particular tasks and groups of tasks easier. We will download one or more of
these.

It is useful to have a clear conception of where different parts of R reside (Fig.
A.2). Computer servers around the world store identical copies of everything
(hence the terms archive and “mirrors”). When you open R, you load into your
computer’s virtual, temporary RAM more than just the R language — you
automatically load several useful packages including “base,”“stat,” and others.
Many more packages exist (about a dozen come with the normal download) and
hundreds are available at each mirror. These are easily downloaded through the
R GUI.

A.4 Starting at the Very Beginning

To begin with, we will go through a series of steps that will get you up and
running using a script file with which to interact with R, and using the proper
working directory. Start here.

1. Create a new directory (i.e., a folder) in “Documents” (Mac) or “My Docu-
ments” (Windows). and call it “Rwork.” For now, calling it the same thing
as everyone else will just simplify your life. If you put “Rwork” elsewhere,
adjust the relevant code as you go. For now, keep all of your script files and
output files into that directory.

2. Open the R GUI in a manner that is appropriate for your operating system
and setup (e.g., double-click the desktop icon).
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You and Your Computer

Workspace
(in RAM)

Computer
Hard Drive

Results Saved
('write', 'save', 'dev.print')

YOU
Keyboard and ScreenResults to view

CRAN Mirrors
 on the internet

Additional
packages loaded

Code is 'submitted' to R.

Install R with base packages;
add additional packages

Fig. A.2: A conceptual representation of where R exists. ”CRAN” stands for ”Com-
prehensive R Archive Network.” ”RAM” (random access memory) is your computer’s
active brain; R keeps some stuff floating in this active memory and this ”stuff” is the
workspace.

3. Set the working directory. You can do this via Misc directory in Mac OS
X or in the File menu in Windows using “Change dir....” Set the working
directory to “Rwork.” (If you have not already made an Rwork directory, do
so now — put it in “Documents” or “My Documents.”)

4. Open a new R script (“New Document”) by using the File menu in the
R GUI. On the first line, type # My first script with the pound sign. On
the next line, type setwd(‘∼/Documents/Rwork’) if you are on a Mac, or
setwd(‘C:/Documents and Settings/Users/Jane/My
on Windows, assuming you are named “Jane;” if not, use the appropriate
pathname. Save this file in “Rwork;” save it as “RIntro.R.” Windows may
hide the fact that it is saving it as a “.txt” file. I will assume you can prevent
this.

You should submit code to R directly from the script. Use the script to store
your ideas as comments (beginning with #) and your code, and submit code
directly from the script file within R (see below for how to do that). You do not
need to cut-and-paste. There are slight differences between operating systems
in how to submit code from the script file to the command line.

• In Microsoft Windows, place the cursor on a line in the script file or high-
light a section of code, and then hit Ctrl-R to submit the code.

• In Apple Mac OS X, highlight a section of code and then hit Command-
return to submit the code (see the Edit menu).

From this point on, enter all of the code (indicated in typewriter font, and
beginning with “>”) in your script file, save the file with Command-S (Mac) or
Ctrl-S (Windows), and then submit the code as described above. Where a line
begins with “+,” ignore the plus sign, because this is just used by R to indicate
continued lines of code. You may enter a single line of code on more than one
line. R will simply continue as if you wrote it all on one line.

You can start the help interface with this command.

> help.start()

Documents/Rwork’)
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This starts the HTML interface to on-line help (using a web browser available
at your machine). You can use help within the R GUI, or with this HTML help
system.

Find out where you are using getwd() (get the working d irectory). Use a
comment (beginning with #) to remind yourself what this does.

> # Here I Get my Working Directory; that is,

> # I find out which folder R is currently operating from.

> getwd()

The precise output will depend on your computer.
You can also set the working d irectory using setwd(); if you created a

directory called Rwork as specified above, one of the following these should
work, depending on your operating system. If these both fail, keep trying, or
use the menu in the R GUI to set the working directory.

> setwd("~/Documents/Rwork")

or

> setwd("C:/Documents and Settings/Users/Jane/My Documents/Rwork")

On the Mac, a UNIX environment, the tilde-slash (∼ /) represents your home
directory.

I urge you to use setwd at the beginning of each script file you write so that
this script always sets you up to work in a particular, specified directory. As you
write your script file, remember,

• Text that begins with “#” will be ignored by R.
• Text that does not make sense to R will cause R to return an error message,

but will not otherwise mess things up.

Remember that a strength of R is that you can provide, to yourself and
others, comments that explain every step and every object. To add a comment,
simply type one or more “#,” followed by your comment.

Finally, have fun, be amused. Now you are ready for programming in R.
R is a language. Use it every day, and you will learn it quickly.



B

Programming in R

This material assumes you have completed Appendix A, the overview of R. Do
the rest of this Appendix in a script. Make comments of your own throughout
your script.

Open and save a new file (or script) in R. Think of your script as a pad of
paper, on which you program and also on which you write notes to yourself.
See Appendix A for instructions.

You will want to take copious notes about what you do. Make these notes
in the script file, using the pound sign #. Here is an example:

> # This will calculate the mean of 10 random standard normal variables.

> mean( rnorm( 10 ) )

[1] 0.1053

You submit this (as described above) from the script directly to the Console
with (select) Command-r on a Mac, or Ctrl-r on Windows.

B.1 Help

You cannot possibly use R without using its help facilities. R comes with a lot
of documentation (see the relevant menu items), and people are writing more
all the time (this document is an example!).

After working through this tutorial, you could go through the document
“An Introduction to R” that comes with R. You can also browse “Keywords by
Topic” which is found under “Search Engine & Keywords” in the Help menu.

To access help for a specific function, try

> `?`(mean)

Help for 'mean' is shown in browser /usr/bin/open ...

Use

help("mean", htmlhelp = FALSE)

or

options(htmlhelp = FALSE)

to revert.
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or

> help(mean)

Help for 'mean' is shown in browser /usr/bin/open ...

Use

help("mean", htmlhelp = FALSE)

or

options(htmlhelp = FALSE)

to revert.

The help pages provide a very regular structure. There is a name, a brief
description, its usage, its arguments, details about particular aspects of its use,
the value (what you get when you use the function), references, links to other
functions, and last, examples.

If you don’t know the exact name of the R function you want help with, you
can try

> help.search("mean")

> apropos("mean")

These will provide lists of places you can look for functions related to this
keyword.

Last, a great deal of R resides in packages online (on duplicate servers around
the world). If you are on line, help for functions that you have not yet down-
loaded can be retrieved with

> RSiteSearch("violin")

> RSiteSearch("violin", restrict = c("functions"))

To learn more about help functions, combine them!

> help(RSiteSearch)

B.2 Assignment

In general in R, we perform an action, and take the results of that action and
assign the results to a new object, thereby creating a new object. Here I add
two numbers and assign the result to an new object I call a.

> a <- 2 + 3

> a

[1] 5

Note that I use an arrow to make the assignment — I make the arrow with a
less-than sign, <, and a dash. Note also that to reveal the contents of the object,
I can type the name of the object.

I can then use the new object to perform another action, and assign

> b <- a + a

I can perform two actions on one line by separating them with a semicolon.



B.3 Data Structures 343

> a + a; a + b

[1] 10

[2] 15

Sometimes the semicolon is referred to as an “end of line” operator.

B.3 Data Structures

We refer to a single number as a scalar; a scalar is a single real number. Most
objects in R are more complex. Here we describe some of these other objects:
vectors, matrices, data frames, lists, and functions.

B.3.1 Vectors

Perhaps the fundamental unit of R is the vector, and most operations in R are
performed on vectors. A vector may be just a column of scalars, for instance;
this would be a column vector.

Here we create a vector called Y.
To enter data directly into R, we will use c() and create an R object, in

particular a vector. A vector is, in this case, simply a group of numbers arranged
in a row or column. Type into your script

> Y <- c(8.3, 8.6, 10.7, 10.8, 11, 11, 11.1, 11.2,

+ 11.3, 11.4)

where the arrow is a less-than sign, <, and a dash, -. Similarly, you could use

> Y = c(8.3, 8.6, 10.7, 10.8, 11, 11, 11.1, 11.2, 11.3,

+ 11.4)

These are equivalent.
R operates (does stuff) to objects. Those objects may be vectors, matrices,

lists, or some other class of object.

Sequences

I frequently want to create ordered sequences of numbers. R has a shortcut for
sequences of integers, and a slightly longer method that is completely flexible.
First, integers:

> 1:4

[1] 1 2 3 4

> 4:1

[1] 4 3 2 1

> -1:3
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[1] -1 0 1 2 3

> -(1:3)

[1] -1 -2 -3

Now more complex stuff, specifying either the units of the sequence, or the total
length of the sequence.

> seq(from = 1, to = 3, by = 0.2)

[1] 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

> seq(1, 3, by = 0.2)

[1] 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

> seq(1, 3, length = 7)

[1] 1.000 1.333 1.667 2.000 2.333 2.667 3.000

I can also fill in with repetitive sequences. Compare carefully these examples.

> rep(1, 3)

[1] 1 1 1

> rep(1:3, 2)

[1] 1 2 3 1 2 3

> rep(1:3, each = 2)

[1] 1 1 2 2 3 3

B.3.2 Getting information about vectors

Here we can ask R to tell us about Y, getting the length (the number of elements),
the mean, the maximum, and a six number summary.

> sum(Y)

[1] 105.4

> mean(Y)

[1] 10.54

> max(Y)

[1] 11.4

> length(Y)

[1] 10

> summary(Y)
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Min. 1st Qu. Median Mean 3rd Qu. Max.

8.3 10.7 11.0 10.5 11.2 11.4

A vector could be character, or logical as well, for instance

> Names <- c("Sarah", "Yunluan")

> Names

[1] "Sarah" "Yunluan"

> b <- c(TRUE, FALSE)

> b

[1] TRUE FALSE

Vectors can also be dates, complex numbers, real numbers, integers, or factors.
For factors, such as experimental treatments, see section B.3.5. We can also ask
R what classes of data these belong to.

> class(Y)

[1] "numeric"

> class(b)

[1] "logical"

Here we test whether each element of a vector is greater than a particular
value or greater than its mean. When we test an object, we get a logical vector
back that tells us, for each element, whether the condition was true or false.

> Y > 10

[1] FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

> Y > mean(Y)

[1] FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

We test using >, <, >=, <=,==, ! = and other conditions. Here we test whether
a vector is equal to a number.

> Y == 11

[1] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE

A test of “not equal to”

> Y != 11

[1] TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE

This result turns out to be quite useful, including when we want to extract
subsets of data.
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Algebra with vectors

In R, we can add, subtract, multiply and divide vectors. When we do this, we
are really operating on the elements in the vectors. Here we add vectors a and
b.

> a <- 1:3

> b <- 4:6

> a + b

[1] 5 7 9

Similarly, when we multiply or divide, we also operate on each pair of elements
in the pair of vectors.

> a * b

[1] 4 10 18

> a/b

[1] 0.25 0.40 0.50

We can also use scalars to operate on vectors.

> a + 1

[1] 2 3 4

> a * 2

[1] 2 4 6

> 1/a

[1] 1.0000 0.5000 0.3333

What R is doing is recycling the scalar (the 1 or 2) as many times as it needs
to in order to match the length of the vector. Note that if we try to multiply
vectors of unequal length, R performs the operation but may or may not give
a warning. Above, we got no warningmessage. However, if we multiply a vector
of length 3 by a vector of length 2, R returns a warning.

> a * 1:2

[1] 1 4 3

R recycles the shorter vector just enough to match the length of the longer
vector. The above is the same as

> a * c(1, 2, 1)

[1] 1 4 3

On the other hand, if we multiply vectors of length 4 and 2, we get no error,
because four is a multple of 2.
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> 1:4 * 1:2

[1] 1 4 3 8

Recycling makes the above the same as the following.

> 1:4 * c(1, 2, 1, 2)

[1] 1 4 3 8

B.3.3 Extraction and missing values

We can extract or subset elements of the vector.
I extract subsets of data in two basic ways, by

• identifying which rows (or columns) I want (i.e. the first row), or
• providing a logical vector (of TRUE’s and FALSE’s) of the same length as

the vector I am subsetting.

Here I use the first method, using a single integer, and a sequence of integers.

> Y[1]

[1] 8.3

> Y[1:3]

[1] 8.3 8.6 10.7

Now I want to extract all girths greater than the average girth. Although I don’t
have to, I remind myself what the logical vector looks like, and then I use it.

> Y > mean(Y)

[1] FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

> Y[Y > mean(Y)]

[1] 10.7 10.8 11.0 11.0 11.1 11.2 11.3 11.4

Note that I get back all the values of the vector where the condition was TRUE.
In R, missing data are of the type “NA.” This means “not available,” and

R takes this appellation seriously. thus is you try to calculate the mean of
a vector with missing data, R resists doing it, because if there are numbers
missing from the set, how could it possibly calculate a mean? If you ask it to
do something with missing data, the answer will be missing too.

Given that R treats missing data as missing data (and not something to be
casually tossed aside), there are special methods to deal with such data. For
instance, we can test which elements are missing with a special function, is.na.

> a <- c(5, 3, 6, NA)

> a

[1] 5 3 6 NA

> is.na(a)
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[1] FALSE FALSE FALSE TRUE

> !is.na(a)

[1] TRUE TRUE TRUE FALSE

> a[!is.na(a)]

[1] 5 3 6

> na.exclude(a)

[1] 5 3 6

attr(,"na.action")

[1] 4

attr(,"class")

[1] "exclude"

Some functions allow you to remove missing elements on the fly. Here we let a
function fail with missing data, and then provide three different ways to get the
same thing.

> mean(a)

[1] NA

> mean(a, na.rm = TRUE)

[1] 4.667

> d <- na.exclude(a)

> mean(d)

[1] 4.667

Note that R takes missing data seriously. If the fourth element of the set really
is missing, I cannot calculate a mean because I don’t know what the vector is.

B.3.4 Matrices

A matrix is a two dimensional set of elements, for which all elements are of the
same type. Here is a character matrix.

> matrix(letters[1:4], ncol = 2)

[,1] [,2]

[1,] "a" "c"

[2,] "b" "d"

Here we make a numeric matrix.

> M <- matrix(1:4, nrow = 2)

> M

[,1] [,2]

[1,] 1 3

[2,] 2 4
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Note that the matrix is filled in by columns, or column major order. We could
also do it by rows.
> M2 <- matrix(1:4, nrow = 2, byrow = TRUE)

> M2

[,1] [,2]

[1,] 1 2

[2,] 3 4

Here is a matrix with 1s on the diagonal.
> I <- diag(1, nrow = 2)

> I

[,1] [,2]

[1,] 1 0

[2,] 0 1

The identity matrix plays a special role in matrix algebra; in many ways it
is equivalent to the scalar 1. For instance, the inverse of a matrix, M, is M−1,
which is the matrix which satisfies the equality MM−1 = I, where I is the identity
matrix. We solve for the inverse using a few different methods, including
> Minv <- solve(M)

> M %*% Minv

[,1] [,2]

[1,] 1 0

[2,] 0 1

QR decomposition is available (e.g., qr.solve()).
Note that R recycles the “1” until the specified number of rows and columns

are filled. If we do not specify the number of rows and columns, R fills in the
matrix with what you give it (as it did above).

Extraction in matrices

I extract elements of matrices in the same fashion as vectors, but specify both
rows and columns.
> M[1, 2]

[1] 3

> M[1, 1:2]

[1] 1 3

If I leave either rows or columns blank, R returns all rows (or columns).
> M[, 2]

[1] 3 4

> M[, ]

[,1] [,2]

[1,] 1 3

[2,] 2 4
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Simple matrix algebra

Basic matrix algebra is similar to algebra with scalars, but with a few very
important differences. Let us define another matrix.

> N <- matrix(0:3, nrow = 2)

> N

[,1] [,2]

[1,] 0 2

[2,] 1 3

To perform scalar, or element-wsie operations, we have

A =

(
a b
c d

)
; B =

(
m o
n p

)
(B.1)

AB =

(
am bo
cn dp

)
(B.2)

The element-wise operation on these two is the default in R,

> M * N

[,1] [,2]

[1,] 0 6

[2,] 2 12

where the element in row 1, column 1 in M is multiplied by the element in the
same position in N.

To perform matrix mulitplication, recall from Chap. 2 that,

A =

(
a b
c d

)
; B =

(
m o
n p

)
(B.3)

AB =

(
(am + bn) (ao + bp)
(cm + dn) (co + dp)

)
(B.4)

To perform matrix mulitplication in R, we use %*%,

> M %*% N

[,1] [,2]

[1,] 3 11

[2,] 4 16

Refer to Chapter 2 (or “matrix algebra” at Wikipedia) for why this is so.
Note that matrix multiplication is not commutative, that is, NM , MN.

Compare the previous result to

> N %*% M

[,1] [,2]

[1,] 4 8

[2,] 7 15
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Note that a vector in R is not defined a priori as a column matrix or a row
matrix. Rather, it is used as either depending on the circumstances. Thus, we
can either left multiply or right multiply a vector of length 2 and M.

> 1:2 %*% M

[,1] [,2]

[1,] 5 11

> M %*% 1:2

[,1]

[1,] 7

[2,] 10

If you want to be very, very clear that your vector is really a matrix with one
column (a column vector), you can make it thus.

> V <- matrix(1:2, ncol = 1)

Now when you multiply M by V, you will get the expected sucesses and failure,
according to the rules of matrix algebra.

> M %*% V

[,1]

[1,] 7

[2,] 10

> try(V %*% M)

R has formal rules about how it converts vectors to matrices on-the-fly, but it
is good to be clear on your own.

Other matrix operations are available. Whenever we add or subtract matri-
ces together, or add a matrix and a scalar, it is always element-wise.

> M + N

[,1] [,2]

[1,] 1 5

[2,] 3 7

> M + 2

[,1] [,2]

[1,] 3 5

[2,] 4 6

The transpose of a matrix is the matrix we get when we substitute rows for
columns, and columns for rows. To transpose matrices, we use t().

> t(M)

[,1] [,2]

[1,] 1 2

[2,] 3 4
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More advanced matrix operations are available as well, for singular value
decomposition (svd), eigenanalysis (eigen), finding determinants (det), QR
decomposition (qr), Choleski factorization (chol), and related functions. The
Matrix package was designed to handle with aplomb large sparse matrices.

B.3.5 Data frames

Data frames are two dimensional, a little like spreadsheets and matrices. All
columns having exactly the same number of rows. Unlike matrices, each col-
umn can be a different data type (e.g., numeric, integer, charactor, complex,
imaginary). For instance, the columns of a data frame could contain the names
of species, the experimental treatment used, and the dimensions of species traits,
as character, factor, and numeric variables, respectively.

> dat <- data.frame(species = c("S.altissima", "S.rugosa",

+ "E.graminifolia", "A. pilosus"), treatment = factor(c("Control",

+ "Water", "Control", "Water")), height = c(1.1,

+ 0.8, 0.9, 1), width = c(1, 1.7, 0.6, 0.2))

> dat

species treatment height width

1 S.altissima Control 1.1 1.0

2 S.rugosa Water 0.8 1.7

3 E.graminifolia Control 0.9 0.6

4 A. pilosus Water 1.0 0.2

We can extract data from data frames just the way we can with matrices.

> dat[2, ]

species treatment height width

2 S.rugosa Water 0.8 1.7

> dat[3, 4]

[1] 0.6

We can test elements in data frames, as here where I test whether each element
column 2 is “Water.” I then use that to extract rows of data that are associated
with this criterion.

> dat[, 2] == "Water"

[1] FALSE TRUE FALSE TRUE

> dat[dat[, 2] == "Water", ]

species treatment height width

2 S.rugosa Water 0.8 1.7

4 A. pilosus Water 1.0 0.2

I could also use the subset function

> subset(dat, treatment == "Water")
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species treatment height width

2 S.rugosa Water 0.8 1.7

4 A. pilosus Water 1.0 0.2

There are advantages to using data frames which will become apparent.

Factors

Factors are a class of data; as such they could belong above with our discussion
of character and logical and numeric vectors. I tend, however, to use them in
data frames almost exclusively, because I have a data set that includes a bunch
of response variables, and the factors imposed by my experiment.

When defining a factor, R by default orders the factor levels in alphabetic
order — we can reorder them as we like. Here I demonstrate each piece of code
and then use the pieces to make a factor in one line of code.

> c("Control", "Medium", "High")

[1] "Control" "Medium" "High"

> rep(c("Control", "Medium", "High"), each = 3)

[1] "Control" "Control" "Control" "Medium" "Medium" "Medium"

[7] "High" "High" "High"

> Treatment <- factor(rep(c("Control", "Medium", "High"),

+ each = 3))

> Treatment

[1] Control Control Control Medium Medium Medium High

[8] High High

Levels: Control High Medium

Note that R orders the factor alphabetically. This may be relevant if we do
something with the factor, such as when we plot it (Fig. B.1a).

> levels(Treatment)

[1] "Control" "High" "Medium"

> stripchart(1:9 ~ Treatment)

Now we can re-specify the factor, telling R the order of the levels we want,
taking care to remember that R can tell the difference between upper and lower
case (Fig. B.1b). See also the function relevel.

> Treatment <- factor(rep(c("Control", "Medium", "High"),

+ each = 3), levels = c("Control", "Medium", "High"))

> levels(Treatment)

[1] "Control" "Medium" "High"

> stripchart(1:9 ~ Treatment)
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Fig. B.1: Graphics before and after the factor was releveled to place the factor levels
in a logical order.

B.3.6 Lists

An amazing data structure that R boasts is the list. A list is simply a collection
of other objects kept together in a hierarchical structure. Each component of
the list can be a complete different class of object. Let’s build one.

> my.list <- list(My.Y = Y, b = b, Names, Weed.data = dat,

+ My.matrix = M2, my.no = 4)

> my.list

$My.Y

[1] 8.3 8.6 10.7 10.8 11.0 11.0 11.1 11.2 11.3 11.4

$b

[1] 4 5 6

[[3]]

[1] "Sarah" "Yunluan"

$Weed.data

species treatment height width

1 S.altissima Control 1.1 1.0

2 S.rugosa Water 0.8 1.7

3 E.graminifolia Control 0.9 0.6

4 A. pilosus Water 1.0 0.2

$My.matrix

[,1] [,2]

[1,] 1 2

[2,] 3 4

$my.no

[1] 4
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We see that this list is a set of objects: a numeric vector, a logical vector, a
character vector, a data frame, a matrix, and a scalar (a number). Lists can be
nested within other lists.

Note that if we do not specify a name for a component, we can still extract
it using the number of the component.

I extract list components in several ways, including by name, and by number
(see ?’[’ for more information).

> my.list[["b"]]

[1] 4 5 6

> my.list[[2]]

[1] 4 5 6

If I use a name, there are a few ways, including

> my.list[["b"]]

[1] 4 5 6

> my.list$b

[1] 4 5 6

If by number, that are two ways, with one or two brackets. In addition to two
brackets, as above, we can use one bracket. This allows for extraction of more
than one component of the list.

> my.list[1:2]

$My.Y

[1] 8.3 8.6 10.7 10.8 11.0 11.0 11.1 11.2 11.3 11.4

$b

[1] 4 5 6

Note that I can extract a subset of one component.

> my.list[["b"]][1]

[1] 4

If one way of extraction is working for you, experiment with others.

B.3.7 Data frames are also lists

You can also think of a data frame as a list of columns of identical length. I like
to extract columns the same way — by name.

> mean(dat$height)

[1] 0.95
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B.4 Functions

A function is a command that does something. You have already been using
functions, throughout this document. Let’s examine functions more closely.

Among other things, a function has a name, arguments, and values. For
instance,

> help(mean)

This will open the help page (again), showing us the arguments. The first argu-
ment x is the object for which a mean will be calculated. The second argument
is trim=0. If we read about this argument, we find that it will “trim” a specified
fraction of the most extreme observations of x. The fact that the argument trim
is already set equal to zero means that is the default. If you do not use trim,
then the function will use trim=0. Thus, these two are equivalent.

> mean(1:4)

[1] 2.5

> mean(1:4, trim = 0)

[1] 2.5

R is an “object-oriented” language. A consequence of this is that the same func-
tion name will perform different actions, depending on the class of the object.1

> class(1:10)

[1] "integer"

> class(warpbreaks)

[1] "data.frame"

> summary(1:10)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 3.25 5.50 5.50 7.75 10.00

> summary(warpbreaks)

breaks wool tension

Min. :10.0 A:27 L:18

1st Qu.:18.2 B:27 M:18

Median :26.0 H:18

Mean :28.1

3rd Qu.:34.0

Max. :70.0

In the warpbreaks data frame, summary provides the six number summary for
each numeric or integer column, but provides “tables” of the factors, that is, it
counts the occurrences of each level of a factor and sorts the levels. When we
use summary on a linear model, we get output of the regression,

1 R has hundreds of built-in data sets for demonstrating things. We use one here
called ’warpbreaks.’ You can find some others by typing data().
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> summary(lm(breaks ~ wool, data = warpbreaks))

Call:

lm(formula = breaks ~ wool, data = warpbreaks)

Residuals:

Min 1Q Median 3Q Max

-21.04 -9.26 -3.65 4.71 38.96

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 31.04 2.50 12.41 <2e-16

woolB -5.78 3.54 -1.63 0.11

Residual standard error: 13 on 52 degrees of freedom

Multiple R-squared: 0.0488, Adjusted R-squared: 0.0305

F-statistic: 2.67 on 1 and 52 DF, p-value: 0.108

B.4.1 Writing your own functions

One very cool thing in R is that you can write your own functions. Indeed it is
the extensibility of R that makes it the home of cutting edge working, because
edge cutters (i.e., leading scientists) can write code that we all can use. People
actually write entire packages, which are integrated collections of functions, and
R has been extended with hundreds of such packages available for download at
all the R mirrors.

Let’s make our own function to calculate a mean. Let’s further pretend you
work for an unethical boss who wants you to show that average sales are higher
than they really are. Therefore your function should provide a mean plus 5%.

> MyBogusMean <- function(x, cheat = 0.05) {

+ SumOfX <- sum(x)

+ n <- length(x)

+ trueMean <- SumOfX/n

+ (1 + cheat) * trueMean

+ }

> RealSales <- c(100, 200, 300)

> MyBogusMean(RealSales)

[1] 210

Thus a function can take any input, do stuff, including produce graphics, or
interact with the operating system, or manipulated numbers. You decide on the
arguments of the function, in this case, x and cheat. Note that we supplied a
number for cheat; this results in the cheat argument having a default value,
and we do not have to supply it. If an argument does not have a default, we
have to supply it. If there is a default value, we can change it. Now try these.

> MyBogusMean(RealSales, cheat = 0.1)

[1] 220
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> MyBogusMean(RealSales, cheat = 0)

[1] 200

B.5 Sorting

We often like to sort our numbers and our data sets; a single vector is easy. To
do something else is only a little more difficult.

> e <- c(5, 4, 2, 1, 3)

> e

[1] 5 4 2 1 3

> sort(e)

[1] 1 2 3 4 5

> sort(e, decreasing = TRUE)

[1] 5 4 3 2 1

If we want to sort all the rows of a data frame, keeping records (rows) intact, we
can use order. This function is a little tricky, so we explore its use in a vector.

> e

[1] 5 4 2 1 3

> order(e)

[1] 4 3 5 2 1

> e[order(e)]

[1] 1 2 3 4 5

Here order generates an index to properly order something. Above, this index
is used to tell R to select the 4th element of e first — order puts the number
’4’ into the first spot, indicating that R should put the 4th element of e first.
Next, it places ’3’ in the second spot because the 3rd element of e belongs in
the 2nd spot of an ordered vector, and so on.

We can use order to sort the rows of a data frame. Here I order the rows
of the data frame according to increasing order of plant heights.

> dat

species treatment height width

1 S.altissima Control 1.1 1.0

2 S.rugosa Water 0.8 1.7

3 E.graminifolia Control 0.9 0.6

4 A. pilosus Water 1.0 0.2

> order.nos <- order(dat$height)

> order.nos
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[1] 2 3 4 1

This tells us that to order the rows, we have to use the 2nd row of the original
data frame as the first row in the ordered data frame, the 3rd row as the new
second row, etc. Now we use this index to select the rows of the original data
frame in the correct order to sort the whole data frame.

> dat[order.nos, ]

species treatment height width

2 S.rugosa Water 0.8 1.7

3 E.graminifolia Control 0.9 0.6

4 A. pilosus Water 1.0 0.2

1 S.altissima Control 1.1 1.0

We can reverse this too, of course.

> dat[rev(order.nos), ]

species treatment height width

1 S.altissima Control 1.1 1.0

4 A. pilosus Water 1.0 0.2

3 E.graminifolia Control 0.9 0.6

2 S.rugosa Water 0.8 1.7

B.6 Iterated Actions: the apply Family and Loops

We often want to perform an action again and again and again. . . , perhaps
thousands or millions of times. In some cases, each action is independent —
we just want to do it a lot. In these cases, we have a choice of methods. Other
times, each action depends on the previous action. In this case, I always use
for-loops.2 Here I discuss first methods that work only for independent actions.

B.6.1 Iterations of independent actions

Imagine that we have a matrix or data frame and we want to do the same thing
to each column (or row). For this we use apply, to “apply” a function to each
column (or row). We tell apply what data we want to use, we tell it the“margin”
we want to focus on, and then we tell it the function. The margin is the side of
the matrix. We describe matrices by their number of rows, then columns, as in
“a 2 by 5 matrix,” so rows constitute the first margin, and columns constitute
the second margin. Here we create a 2 × 5 matrix, and take the mean of rows,
for the first margin. Then we sum the columns for the second margin.

> m <- matrix(1:10, nrow = 2)

> m

2 There are other methods we could use. These are discussed by others, under var-
ious topics, including “flow control.” We use ODE solvers for continuous ordinary
differential equations.
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[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

> apply(m, MARGIN = 1, mean)

[1] 5 6

> apply(m, MARGIN = 2, sum)

[1] 3 7 11 15 19

See ?rowMeans for simple, and even faster, operations.
Similarly, lapply will “apply” a function to each element of a list, or each

column of a data frame, and always returns a list. sapply does something
similar, but will simplify the result, to a less complex data structure if possible.

Here we do an independent operation 10 times using sapply, defining a
function on-the-fly to calculate the mean of a random draw of five observations
from the standard normal distribution.

> sapply(1:10, function(i) mean(rnorm(5)))

[1] -0.5612 -0.4815 -0.4646 0.7636 0.1416 -0.5003 -0.1171

[8] 0.2647 0.6404 -0.1563

B.6.2 Dependent iterations

Often the repeated actions depend on previous outcomes, as with population
growth. Here we provide a couple of examples where we accomplish this with
for loops.

One thing to keep in mind for for loops in R: the computation of this is
fastest if we first make a holder for the output. Here I simulate a random walk,
where, for instance, we start with 25 individuals at time = 0, and increase or
decrease by some amount that is drawn randomly from a normal distribution,
with a mean of zero and a standard deviation 2. We will round the “amount” to
the nearest integer (the zero-th decimal place). Your output will differ because
it is a random process.

> gens <- 10

> output <- numeric(gens + 1)

> output[1] <- 25

> for (t in 1:gens) output[t + 1] <- output[t] + round(rnorm(n = 1,

+ mean = 0, sd = 2), 0)

> output

[1] 25 29 25 26 28 29 30 32 33 29 30
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B.7 Rearranging and Aggregating Data Frames

B.7.1 Rearranging or reshaping data

We often need to rearrange our data. A common example in ecology is to collect
repeated measurements of an experimental unit and enter the data into multiple
columns of a spreadsheet, creating a wide format. R prefers to analyze data in
a single column, in a long format. Here we use reshape to rearrange this.

These data are carbon dioxide uptake in 12 individual plants. They are
currently structured as longitudinal data; here we rearrange them in the wide
format, as if we record uptake seven sequential observations on each plant in
different columns. See ?reshape for details. Here v.names refers to the column
name of the response variable, idvar refers to the column name for the variable
that identifies an individual on which we have repeated measurements, and
timevar refers to the column name which identifies different observations of
the same individual plant.

> summary(CO2)

Plant Type Treatment conc

Qn1 : 7 Quebec :42 nonchilled:42 Min. : 95

Qn2 : 7 Mississippi:42 chilled :42 1st Qu.: 175

Qn3 : 7 Median : 350

Qc1 : 7 Mean : 435

Qc3 : 7 3rd Qu.: 675

Qc2 : 7 Max. :1000

(Other):42

uptake

Min. : 7.7

1st Qu.:17.9

Median :28.3

Mean :27.2

3rd Qu.:37.1

Max. :45.5

> CO2.wide <- reshape(CO2, v.names = "uptake", idvar = "Plant",

+ timevar = "conc", direction = "wide")

> names(CO2.wide)

[1] "Plant" "Type" "Treatment" "uptake.95"

[5] "uptake.175" "uptake.250" "uptake.350" "uptake.500"

[9] "uptake.675" "uptake.1000"

This is often how we might record data, with an experimental unit (individual,
or plot) occupying a single row. If we import the data in this format, we would
typically like to reorganize it in the long format, because most analyses we
want to do may require this. Here, v.names and timevar are the names we
want to use for some new columns, for the response variable and the identifier
of the repeated measurement (typically the latter may be a time interval, but
here it is a CO2 concentration). times supplies the identifier for each repeated
observation.
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> CO2.long <- reshape(CO2.wide, v.names = "Uptake",

+ varying = list(4:10), timevar = "Concentration",

+ times = c(95, 175, 250, 350, 500, 675, 1000))

> head(CO2.long)

Plant Type Treatment Concentration Uptake id

1.95 Qn1 Quebec nonchilled 95 16.0 1

2.95 Qn2 Quebec nonchilled 95 13.6 2

3.95 Qn3 Quebec nonchilled 95 16.2 3

4.95 Qc1 Quebec chilled 95 14.2 4

5.95 Qc2 Quebec chilled 95 9.3 5

6.95 Qc3 Quebec chilled 95 15.1 6

If we wanted to, we could use order() to re-sort the data frame, for instance
to match the original.

> CO2.long2 <- with(CO2.long, CO2.long[order(Plant,

+ Concentration), ])

> head(CO2.long2)

Plant Type Treatment Concentration Uptake id

1.95 Qn1 Quebec nonchilled 95 16.0 1

1.175 Qn1 Quebec nonchilled 175 30.4 1

1.250 Qn1 Quebec nonchilled 250 34.8 1

1.350 Qn1 Quebec nonchilled 350 37.2 1

1.500 Qn1 Quebec nonchilled 500 35.3 1

1.675 Qn1 Quebec nonchilled 675 39.2 1

See also the very simple functions stack and unstack.

B.7.2 Summarizing by groups

We often want to summarize a column of data by groups identified in another
column. Here I summarize CO2 uptake by the means of each experimental
treatment, chilling. The code below provides the column to be summarized
(uptake), a vector (or list of vectors) containing the group id’s, and the function
to use to summarize each subset (means). We calculate the mean CO2 uptake
for each group.

> tapply(CO2[["uptake"]], list(CO2[["Treatment"]]),

+ mean)

nonchilled chilled

30.64 23.78

We can get fancier, as well, with combinations of groups, for each combination
of Type and Treatment.

> tapply(CO2[["uptake"]], list(CO2[["Treatment"]],

+ CO2[["Type"]]), sd)

Quebec Mississippi

nonchilled 9.596 7.402

chilled 9.645 4.059
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We can also define a function on-the-fly to calculate both mean and standard
deviation of Type and Treatment combination. We will need, however, to define
groups differently, by creating the interaction of the two factors.

> tapply(CO2[["uptake"]], list(CO2[["Treatment"]],

+ CO2[["Type"]]), function(x) c(mean(x), sd(x)))

Quebec Mississippi

nonchilled Numeric,2 Numeric,2

chilled Numeric,2 Numeric,2

See also by that actually uses tapply to operate on data frames.
When we summarize data, as in tapply, we often want the result in a nice

neat data frame. The function aggregate does this. Its use is a bit like tapply
— you provide (i) the numeric columns of a data frame, or a matrix, (ii) a list
of named factors by which to organize the responses, and then (iii) the function
to summarize (or aggregate) the data. Here we summarize both concentration
and uptake.

> aggregate(CO2[, 4:5], list(Plant = CO2[["Plant"]]),

+ mean)

Plant conc uptake

1 Qn1 435 33.23

2 Qn2 435 35.16

3 Qn3 435 37.61

4 Qc1 435 29.97

5 Qc3 435 32.59

6 Qc2 435 32.70

7 Mn3 435 24.11

8 Mn2 435 27.34

9 Mn1 435 26.40

10 Mc2 435 12.14

11 Mc3 435 17.30

12 Mc1 435 18.00

A separate package entitled reshape supplies some very elegant and intuitive
approaches to the sorting, reshaping and aggregating of data frames. I typically
use the reshape package (with functions melt and cast), rather than the re-
shape function supplied in the stat. I do so merely because I find it a little
more intuitive. R also has strong connections to relational database systems
such as MySQL.

B.8 Getting Data out of and into the Workspace

We often want to get data into R, and we sometimes want to get it out, as well.
Here we start with the latter (referred to as writing data), and finish with the
former (referred to as reading data).

Here I create a data frame of numbers, and write it to a text file in two
different formats. The first is a file where the observations in each row are
separated by tabs, and the second separates them by commas.
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> dat <- data.frame(Name = rep(c("Control", "Treatment"),

+ each = 5), First = runif(10), Second = rnorm(1))

> write.table(dat, file = "dat.txt")

> write.csv(dat, file = "dat.csv")

Open these in a spreadsheet such as Calc (in OpenOffice and NeoOffice). We
can then read these into R using the read.* family of functions.

> dat.new <- read.csv("dat.csv")

> dat.new2 <- read.table("dat.txt", header = TRUE)

These objects will both be data frames.
Now let’s get a statistical summary and export that.

> mod.out <- summary(aov(First ~ Name, data = dat))

> mod.out[[1]]

Df Sum Sq Mean Sq F value Pr(>F)

Name 1 0.1562 0.1562 4.44 0.068

Residuals 8 0.2814 0.0352

> write.csv(mod.out[[1]], "ModelANOVA.csv")

Open this in a spreadsheet, such as Calc, in OpenOffice, or in any other appli-
cation.

See also the xtable package for making tables in LATEX or HTML formats.

B.9 Probability Distributions and Randomization

R has a variety of probability distributions built-in. For the normal distribution,
for instance, there are four functions:

dnorm The probability density function, that creates the widely observed bell-
shaped curve.

pnorm The cumulative probability function that we usually use to describe the
probability that a test statistic is greater than or equal to a critical value.

qnorm The quantile function that takes probabilities as input.
rnorm A random number generator which draws values (quantiles) from a dis-

tribution with a specified mean and standard deviation.

For each of these, default parameter values return the standard normal distri-
bution (µ = 0, σ = 1), but these parameters can be changed.

Here we have the 95% confidence intervals.

> qnorm(p = c(0.025, 0.975))

[1] -1.96 1.96

Next we create a histogram using 20 random draws from a normal distribution
with a mean of 11 and a standard deviation of 6; we overlay this with the
probability density function (Fig. B.2).
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> myplot <- hist(rnorm(20, m = 11, sd = 6), probability = TRUE)

> myplot

$breaks

[1] 0 5 10 15 20 25

$counts

[1] 1 8 6 4 1

$intensities

[1] 0.01 0.08 0.06 0.04 0.01

$density

[1] 0.01 0.08 0.06 0.04 0.01

$mids

[1] 2.5 7.5 12.5 17.5 22.5

$xname

[1] "rnorm(20, m = 11, sd = 6)"

$equidist

[1] TRUE

attr(,"class")

[1] "histogram"

> lines(myplot$mids, dnorm(myplot$mids, m = 11, sd = 6))

Histogram of rnorm(20, m = 11, sd = 6)

rnorm(20, m = 11, sd = 6)
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Fig. B.2: Histogram of random numbers drawn from a normal distribution with µ = 11
and σ = 6. The normal probability density function is drawn as well.



366 B Programming in R

B.10 Numerical integration of ordinary differential
equations

In order to study continuous population dynamics, we often would like to inte-
grate complex nonlinear functions of population dynamics. To do this, we need
to use numerical techniques that turn the infinitely small steps of calculus, dx,
into very small, but finite steps, in order to approximate the change in y, given
the change in x, or dy/dx. Mathematicians and computer scientists have devised
very clever ways of doing this very accurately and precisely. In R, the best pack-
age for this is deSolve, which contains several solvers for differential equations
that perform numerical integration. We will access these solvers (i.e. numerical
integraters) using the ode function in the deSolve package. This function, ode,
is a “wrapper” for the underlying suite of functions that do the work. That is,
it provides a simple way to use any one of the small suite of functions.

When we have an ordinary differential equation (ODE) such as logistic
growth,3 we say that we “solve” the equation for a particular time interval given
a set of parameters and initial conditions or initial population size. For instance,
we say that we solve the logistic growth model for time at t = 0, 1 . . . 20, with
parameters r = 1, α = 0.001, and N0 = 10.

Let’s do an example with ode, using logistic growth. We first have to define
a function in a particular way. The arguments for the function must be time, a
vector of populations, and a vector or list of model parameters.

> logGrowth <- function(t, y, p) {

+ N <- y[1]

+ with(as.list(p), {

+ dN.dt <- r * N * (1 - a * N)

+ return(list(dN.dt))

+ })

+ }

Note that I like to convert y into a readable or transparent state variable (N
in this case). I also like to use with which allows me to use the names of my
parameters [157]; this works only is p is a vector with named paramters (see
below). Finally, we return the derivative as a list of one component.

The following is equivalent, but slightly less readable or transparent.

> logGrowth <- function(t, y, p) {

+ dN.dt <- p[1] * y[1] * (1 - p[2] * y[1])

+ return(list(dN.dt))

+ }

To solve the ODE, we will need to specify parameters, and initial conditions.
Because we are using a vector of named parameters, we need to make sure we
name them! We also need to supply the time steps we want.

> p <- c(r = 1, a = 0.001)

> y0 <- c(N = 10)

> t <- 1:20

3 e.g.dN/dt = rN(1 − αN)
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Now you put it all into ode, with the correct arguments. The output is a matrix,
with the first column being the time steps, and the remaining being your state
variables. First we load the deSolve package.

> library(deSolve)

> out <- ode(y = y0, times = t, func = logGrowth, parms = p)

> out[1:5, ]

time N

[1,] 1 10.00

[2,] 2 26.72

[3,] 3 69.45

[4,] 4 168.66

[5,] 5 355.46

If you are going to model more than two species, y becomes a vector of length
2. Here we create a function for Lotka-Volterra competition, where

dN1

dt
= r1N1 (1 − α11N1 − α12N2) (B.5)

dN2

dt
= r2N2 (1 − α22N2 − α21N1) (B.6)

(B.7)

> LVComp <- function(t, y, p) {

+ N <- y

+ with(as.list(p), {

+ dN1.dt <- r[1] * N[1] * (1 - a[1, 1] * N[1] -

+ a[1, 2] * N[2])

+ dN2.dt <- r[2] * N[2] * (1 - a[2, 1] * N[1] -

+ a[2, 2] * N[2])

+ return(list(c(dN1.dt, dN2.dt)))

+ })

+ }

Note that LVComp assumes that N and r are vectors, and the competition coef-
ficients are in a matrix. For instance, the function extracts the the first element
of r for the first species (r[1]); for the intraspecific competition coefficient for
species 1, it uses the element of a that is in the first column and first row
(a[1,1]). The vector of population sizes, N, contains one value for each popu-
lation at one time point. Thus here, the vector contains only two elements (one
for each of the two species); it holds only these values, but will do so repeatedly,
at each time point. Only the output will contain all of the population sizxes
through time.

To integrate these populations, we need to specify new initial conditions,
and new parameters for the two-species model.

> a <- matrix(c(0.02, 0.01, 0.01, 0.03), nrow = 2)

> r <- c(1, 1)

> p2 <- list(r, a)

> N0 <- c(10, 10)
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> t2 <- c(1, 5, 10, 20)

> out <- ode(y = N0, times = t2, func = LVComp, parms = p2)

> out[1:4, ]

time 1 2

[1,] 1 10.00 10.00

[2,] 5 35.54 21.80

[3,] 10 39.61 20.36

[4,] 20 39.99 20.01

The ode function uses a superb ODE solver, lsoda, which is a very powerful,
well tested tool, superior to many other such solvers. In addition, it has several
bells and whistles that we will not need to take advantage of here, although I
will mention one, hmax. This tells lsoda the largest step it can take. Once in
a great while, with a very stiff ODE (a very wiggly complex dynamic), ODE
assumes it can take a bigger step than it should. Setting hmax to a smallish
number will limit the size of the step to ensure that the integration proceeds as
it should.

One of the other solvers in the deSolve, lsodar, will also return roots (or
equilibria), for a system of ODEs, if they exist. Here we find the roots (i.e. the
solutions, or equilibria) for a two species enemy-victim model.

> EV <- function(t, y, p) {

+ with(as.list(p), {

+ dv.dt <- b * y[1] * (1 - 0.005 * y[1]) -

+ a * y[1] * y[2]

+ de.dt <- a * e * y[1] * y[2] - s * y[2]

+ return(list(c(dv.dt, de.dt)))

+ })

+ }

To use lsodar to find equilibria, we need to specify a root finding function whose
inputs are are the sme of the ODE function, and which returns a scalar (a single
number) that determines whether the rate of change (dy/dx) is sufficiently close
to zero that we can say that the system has stopped changed, that is, has
reached a steady state or equilibrium. Here we sum the absolute rates of change
of each species, and then subtract 10−10; if that difference is zero, we decide
that, for all pratcial purposes, the system has stopped changing.

> rootfun <- function(t, y, p) {

+ dstate <- unlist(EV(t, y, p))

+ return(sum(abs(dstate)) - 1e-10)

+ }

Note that unlist changes the list returned by EV into a simple vector, which
can then be summed.

Next we specify parameters, and time. Here all we want is the root, so we
specify that we want the value of y after a really long time (t = 1010). The
lsodar function will stop sooner than that, and return the equilibrium it finds,
and the time step at which it occurred.
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> p <- c(b = 0.5, a = 0.02, e = 0.1, s = 0.2)

> t <- c(0, 1e+10)

Now we run the function.

> out <- ode(y = c(45, 200), t, EV, parms = p, rootfun = rootfun,

+ method = "lsodar")

> out[, ]

time 1 2

[1,] 0.0 45 200.0

[2,] 500.8 100 12.5

Here we see that the steady state population sizes are V = 100 and E = 12.5,
and that given our starting point, this steady state was achieved at t = 500.8.
Other information is available; see ?lsodar after loading the deSolve package.

B.11 Numerical Optimization

We frequently have a function or a model that we think can describe a pattern
or process, but we need to “play around with” the numerical values of the
constants in order to make the right shape with our function/model. That is,
we need to find the value of the constant (or constants) that create the “best”
representation of our data. This problem is known as optimization.

Optimization is an entire scientific discipline (or two). It boils down to
quickly and efficiently finding parameters (i.e. constants) that meet our cri-
teria. This is what we are doing when we “do” statistics. We fit models to data
by telling the computer the structure of the model, and asking it to find values
of the constants that minimize the residual error.

Once you have a model of the reality you want to describe, the basic steps
toward optimization we consider are (i) create an objective function, (ii) use
a routine to minimize (or maximize) the objective function through optimal
choice of parameter values, and (iii) see if the “optimal” parameters values make
sense, and perhaps refine and interpret them.

An objective function compares the data to the predicted values from the
model, and returns a quantitative measure of their difference. One widely used
objective function the least-squares criterion, that is, the objective function is
the average or the sum of the squared deviations between the model values and
the data — just like a simple ANOVA might. An optimization routine then tries
to find model parameters that minimize this criterion.

Another widely used objective function is the likelihood function, or max-
imum likelihood. The likelihood function uses a probability distribution of our
choice (often the normal distribution). The objective function then calculates
the collective probability of observing those data, given the parameters and fit
of the model. In other words, we pretend that the model and the predicted
values are true, measure how far off each datum is from the predicted value,
and then use a probability distribution to calculate the probability of seeing
each datum. It then multiplies all those probabilities to get the likelihood of
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observing those data, given the selected parameters. An optimization routine
then tries to find model parameters that maximize this likelihood. In practice,
it is more computationally stable to calculate the negative of the sum of the
logarithms of the probabilities, and try to minimize that quantity, rather than
maximize the likelihood — but in principle they are they same thing.

Once we have an objective function, an optimization routine makes educated
guesses regarding good values for the parameters, until it finds the best values
it can, those which minimize the objective function. There are a great variety of
optimization routines, and they all have their strengths. One important tradeoff
they exhibit is that the fastest and most accurate methods are sometimes the
least able to handle difficult data [13]. Below, we rely on a combination to take
advantage of the strengths of each type.

Here we introduce two of R’s general purpose functions in the base pack-
age, optimize and optim, and another, in the bbmle package, mle2 [13]. The
function optimize should be used where we are in search of one parameter;
use others when more than one parameter is being optimized. There are many
other optimization routines in R, but we start here4.

Here we start with one of R’s general optimization functions, the one de-
signed for finding a single parameter. Let us find the mean (x̄) of some data
through optimization. We will start with data, y, and let our conceptual model
of that data be µ, the mean. We then create a objective function whose output
will get smaller as the parameter of our model approaches the value we want.
Poughly speaking, the mean is the value that minimizes the total difference be-
tween all the data and the itself. We will use the least-squares criterion, where
the sum of all the squared deviations reaches a minimum when µ approaches
the mean.

> y <- c(1, 0:10)

> f <- function(y, mu) {

+ sum((y - mu)^2)

+ }

Our function, f, subtracts µ from each value of y, squares each of these differ-
ences, and then sums these squared differences, to get the sum of squares. Our
goal is to minimize this. If we guessed at it by hand, we would get this (Fig.
B.3).

> guesses <- seq(4, 6, by = 0.05)

> LS.criterion <- sapply(guesses, function(mu) f(mu = mu,

+ y = y))

> plot(guesses, LS.criterion, type = "l")

Fig. B.3 shows us that the minimum of the objective function occurs when mu
is a little over 4.5. Now let’s let R minimize our least squared deviations. With
optimize, we provide the function first, we then provide a range of possible
values for the parameter of interest, and then give it the values of parameters
or data used by the function, other than the parameter we want to fit.

4 Indeed, all statistical models are fancy optimization routines.
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Fig. B.3: Illustration of the least squares criterion. Our objective function returns (i.e.
generates) the squared deviations between the fitted model and the data. Optimization
minimizes the criterion (“LS.criterion”) and thereby finds the right guess (x axis).

> (results <- optimize(f, c(0, 10), y = y))

$minimum

[1] 4.667

$objective

[1] 124.7

We see that optimize returns two components in a list. The first is called
minimum, which is the parameter value that causes our function f to be at a
minimum. The second component, objective is the value of f when mu =
4.667.

Next we demonstrate mle2, a function for maximum likelihood estimation.
Maximum likelihood relies on probability distributions to find the probability
of observing a particular data set, assuming the model is correct. This class of
optimization routines finds the parameters that maximize that probability.

Let us solve the same problem as above. For the same data, y, we create
a maximum likelihood function to calculate the mean. In maximum likelihood,
we actually minimize the negative logarithm of the likelihood because it is more
computationally stable — the same parameters that minimize the negative log-
likelihood also maximize the likelihood. We assume that the data are normally
distributed, so it makes sense to assume that the probabilities derive from the
normal probability density function.
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> LL <- function(mu, SD) {

+ -sum(dnorm(y, mean = mu, sd = SD, log = TRUE))

+ }

This objective function calculates the negative logarithm of the probability
density of each datum, given a particular mean and standard deviation, mu,
SD. The optimization routine, mle2, then finds mu and SD that minimize the
negative log-likelihood of those data.

> library(bbmle)

> (fit <- mle2(LL, start = list(mu = 5, SD = 1), control = list(maxit = 10^5)))

Call:

mle2(minuslogl= LL, start = list(mu = 5, SD = 1), control = list(maxit = 10^5))

Coefficients:

mu SD

4.667 3.223

Log-likelihood: -31.07

Another way to put this objective function into mle2 is with a formula interface.

> mle2(y ~ dnorm(mu, sd = SD), start = list(mu = 1,

+ SD = 2))

Call:

mle2(minuslogl = y ~ dnorm(mu, sd = SD), start = list(mu = 1,

SD = 2))

Coefficients:

mu SD

4.667 3.223

Log-likelihood: -31.07

We can examine this more closely, examing the probablities associated with the
profile confidence intervals.

> summary(fit)

Maximum likelihood estimation

Call:

mle2(minuslogl = LL,start = list(mu = 5, SD = 1), control = list(maxit = 10^5))

Coefficients:

Estimate Std. Error z value Pr(z)

mu 4.667 0.930 5.02 5.3e-07

SD 3.223 0.658 4.90 9.6e-07

-2 log L: 62.14

> pr <- profile(fit)
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> par(mar = c(5, 4, 3, 2))

> plot(pr)
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Fig. B.4: Profile confidence intervals for various limits, based on mle2.

Often we have reason to limit parameters to particular bounds. Most often,
we may need to ensure that a parameter is greater than zero, or less than zero,
or less often between zero and one. Sometimes we have a rationale based on
physical or biological constraints that will limit a parameter within particular
values.

To constrain parameters, we could use a routine that applies constraints di-
rectly (see particular optimization methods under mle2,nlminb, and optim). We
could also transform the parameters, so that the optimizer uses the transformed
version, while the ODE model uses the parameters in their original units. For
instance, we could let the optimizer find the best value of a logarithm of our
parameter that allows the original parameter to make model predictions that
fit the data. Another consequence of using logarithms, rather than the original
scale is that it facilitates computational procedures in estimating vary large
and very small numbers. An example helps make this clear — see an extended
example in Chap. 6, on disease models.

B.12 Derivatives

We can use deriv and D to have R provides derivatives. First we supply an
expression, and then we get gradients.

> host1 <- expression(R * H * (1 + a * P)^-k)

> D(host1, "H")
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R * (1 + a * P)^-k

B.13 Graphics

R is well known for its graphics capabilities, and entire books have been written
of the subject(s). For beginners, however, R can be frustrating when compared
to the point-and-click systems of most graphics “packages.” This frustration
derives from two issues. First, R’s graphics have of a learning curve, and second,
R requires us to type in, or code, our specifications. The upsides of these are
that R has infinite flexibility, and total replicability, so that we get exactly the
right figure, and the same figure, every time we run the same code.

B.13.1 plot

The most used graphics function is plot. Here I demonstrate several uses.
First let’s just create the simplest scatterplot (Fig. B.5a).

> data(trees)

> attach(trees)

> plot(Girth, Height)

To this we can add a huge variety of variation, using arguments to plot.

B.13.2 Adding points, lines and text to a plot

After we have started a plot, we may want to add more data or information.
Here set up a new graph without plotting points, add text at each point, then
more points, a line and some text.

> par(mar = c(5, 4, 3, 2))

> plot(Girth, Volume, type = "n", main = "My Trees")

> points(Girth, Volume, type = "h", col = "lightgrey",

+ pch = 19)

Now we want to add points for these data, using the tree heights as the plotting
symbol. We are going to use an alternate coloring system, designed with human
perception in mind (hcl). We scale the colors so that the hue varies between
30 and 300, depending on the height of the tree; I allow the symbols to be
transparent (90% opaque) overlapping. I also allow the size of the numbers to
vary with height (cex = 0.5 + hts) Last, we add a legend (Fig. B.5b).

> hts <- (Height - min(Height))/max(Height - min(Height))

> my.colors <- hcl(h = 30 + 270 * hts, alpha = 0.9)

> text(Girth, Volume, Height, col = my.colors, cex = 0.5 +

+ hts)
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Fig. B.5: See code for graphics parameters used to generate these plots. Fig. (b) uses an
alternate color scheme that provides human perception-adjusted hsv (hue, saturation,
and value) specification.

B.13.3 More than one response variable

We often plot more than one response variable on a single axis. We could use
lines or points to add each additional variable. We could also use matplot to
plot a matrix of variables vs. one predictor (Fig. B.5c).

> trees.sort <- trees[order(trees$Girth, trees$Height),

+ ]

> matplot(trees.sort$Girth, trees.sort[, 2:3], type = "b")

> text(18, 40, "Volume", col = "darkred")

> text(10, 58, "Height")
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Table B.1: Commonly used arguments to plot. See help pages at ?plot and
?plot.default for more information.

Argument Meaning

type Determines the type of X-Y plot, for example p, l, s, for points,
lines, stair-step, and none, respectively. “None” is useful for set-
ting up a plotting region upon which to elaborate (see example
below). Defaults to p; see ?plot.default for other types.

axes Indicates whether to plot the axes; defaults to TRUE. Useful if
you want more control over each axis by using the axis function
separately (see below).

pch Point character (numeric value, 1–21). This can be a single value
for an entire plot, or take on a unique value for each point, or
anything in between. Defaults to 1. To add text more than one
character in length, for instance a species name, we can easily
add text to a plot at each point (see the next section).

lty Line type, such as solid (1), dashed (2), etc. Defaults to 1.
lwd Line width (numeric value usually 0.5–3; default is 1).
col Color; can be specified by number (e.g., 2), or character (e.g.

“red”). Defaults to 1 (“black”). R has tremendous options for
color; see ?hcl.

main, ylab, xlab Text for main title, or axis labels.
xlim, ylim Limits for x and y axes, e.g. ylim=c(0, 1.5) sets the limits for

the y-axis at zero and 1.5. Defaults are calcualted from the data.
log Indicates which axes should use a (natural) logarithm scale, e.g.

log = ‘xy’ causes both axes to use logarithmic scales.

We frequently want to add a second y-axis to a graph that has a different scale
(Fig. B.5d). The trick we use here is that we plot a graph, but then tell R we
want to do the next command“. . . as if it was on a new device”5 while it really is
not. We overlay what we just did with new stuff, without clearing the previous
stuff.

For our example, let’s start with just X and our first Y. Note we also specify
extra margin space room on the right hand side, preparing for the second Y
axis.

> quartz(, 4, 4)

> par(mar = c(5, 4, 2, 4))

> plot(Girth, Volume, main = "My Trees")

Now we try our trick. We draw a new plot “as if” it were a new graph. We use
the same X values, and the new Y data, and we also specify no labels. We also
use a different line type, for clarity.

> par(new = TRUE)

> plot(Girth, Height, axes = FALSE, bty = "n", xlab = "",

+ ylab = "", pch = 3)

5 From the par help page.
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Now we put the new Y values on the fourth side, the right hand Y axis. We
add a Y axis label using a function for marginal text (Fig. B.5d).

> axis(4)

> mtext("Height", side = 4, line = 3)

> par(mar = c(5, 4, 2, 4))

> plot(Girth, Volume, main = "My Trees")

> par(new = TRUE)

> plot(Girth, Height, axes = FALSE, bty = "n", xlab = "",

+ ylab = "", pch = 3)

> axis(4)

> mtext("Height", side = 4, line = 3)

B.13.4 Controlling Graphics Devices

When we make a graph with the plot function, or other function, it will typi-
cally open a graphics window on the computer screen automatically; if we desire
more control, we can use several functions to be more deliberate. We create new
graphics “devices” or graphs in several ways, including the functions windows()
(Microsoft Windows OS), quartz() (Mac OS), x11() (X11 Window system).
For instance, to open a “graphics device” on a Mac computer that is 5 inches
wide and 3 inches tall, we write

> quartz(width = 5, height = 3)

To do the same thing on a computer running Windows, we type

> windows(width = 5, height = 3)

To control the parameters of the graph, that is, what it looks like, aside from
data, we use arguments to the par function. Many of these arguments refer to
sides of the graph. These a numbered 1–4 for the bottom X axis, the left side Y
axis, the top, and the right side Y axis. Arguments to par are many (see ?par),
and include the following.

mar controls the width of margins on each side; units are number of lines of
text; defaults to c(5, 4, 4, 2) + 0.1, so the bottom has the most room, and
the right hand side has the least room.

mgp controls the spacing of the axis title, labels and the actual line itself; units
of number of lines of text, and default to c(3, 1, 0), so the axis title sits
three lines away from the edge of the plotting region, the axis labels, one
line away and the axis line sits at the edge of the plotting region.

tcl tick length, as a fraction of the height of a line of text; negative values put
the tick marks outside, positive values put the tick marks inside. Defaults
to -0.5.

We can build each side of the graph separately by initiating a graph but not
plotting axes plot(..., axes = FALSE), and then adding the axes separately.
For instance, axis(1) adds the bottom axis.

Last, we can use layout to make graph with several smaller subgraphs (see
also (mfrow and mfcol arguments to par and the function split.screen). The
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function layout takes a matrix as its argument, the matrix contains a sequence
of numbers that tells R how to fill the regions Graphs can fit in more than one
of these regions if indicated by the same number.

Here we create a compound graphic organized on top of a 4 × 4 grid; it will
have two rows, will be be filled in by rows. The first graph will be the upper
left, the second the upper right, and the third will fill the third and fourth spots
in the second. We will fill each with a slightly different plot of the same data
(Fig. B.6).

> quartz(, 5, 5)

> layout(matrix(c(1, 2, 3, 3), nrow = 2, byrow = TRUE))

> plot(Girth, Height)

Now we add the second and third ones but with different settings.

> par(mar = c(3, 3, 1, 1), mgp = c(1.6, 0.2, 0), tcl = 0.2)

> plot(Girth, Height)

> par(mar = c(3, 3, 2, 1), mgp = c(1.6, 0.2, 0), tcl = 0.2)

> plot(Girth, Height, axes = FALSE, xlim = c(8, 22))

> axis(1, tcl = -0.3)

> axis(2, tick = F)

> rug(Height, side = 2, col = 2)

> title("A Third, Very Wide, Plot")

B.13.5 Creating a Graphics File

Now that you have made this beautiful thing, I suppose you would like to stick
it into a manuscript. One way to get graphics out of R and into something
else (presentation software, a manuscript), is to create a graphics device, and
then save it with dev.print in a format that you like, such as PDF, postscript,
PNG, or JPEG.

For instance, we might do this to save a graphics file in our working directory.

> getwd()

> quartz(, 4, 4)

> plot(Height, Volume, main = "Tree Data")

> dev.print(pdf, "MyTree.pdf")

This should have saved a small PDF figure in your current working directory,
returned by getwd.

You will have to find your own way to make graphics files that suits your
operating system, your preferred applications, and your personality.

B.14 Graphical displays that show distributions

Here we take a quick look at ways to reveal distributions of data. First, two views
to see in the Console, a six number summary of quantiles and the mean, and the
good ol’ stem and leaf plot, a favorite of computational botanists everywhere.
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Fig. B.6: A variety of examples with different graphics parameters.

> summary(Girth)

Min. 1st Qu. Median Mean 3rd Qu. Max.

8.3 11.0 12.9 13.2 15.2 20.6

> stem(Girth)

The decimal point is at the |

8 | 368

10 | 57800123447

12 | 099378

14 | 025

16 | 03359

18 | 00

20 | 6
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Here we will create 4 various plots revealing different ways to look at your data,
each with a couple bells and whistles. For kicks, we put them into a single
compound figure, in a “layout” composed of a matrix of graphs.

> layout(matrix(c(1, 2, 2, 3, 4, 4), nrow = 2, byrow = TRUE))

> plot(1:length(Girth), Girth, xlab = "Order of Sample Collection?")

> hist(Girth, prob = TRUE)

> rug(Girth)

> lines(density(Girth))

> boxplot(Girth, main = "Boxplot of Girth")

> points(jitter(rep(1, length(Girth))), Girth)

> qqnorm(log(Girth))

> qqline(log(Girth))

> title(sub = "Log transformed data")

B.15 Eigenanalysis

Performing eigenanalysis in Ris easy. We use the eigen function which returns a
list with two components. The first named component is a vector of eigenvalues
and the second named component is a matrix of corresponding eigenvectors.
These will be numeric if possible, or complex, if any of the elements are complex
numbers.

Here we have a typical demographic stage matrix.

> A <- matrix(c(0, 0.1, 10, 0.5), nrow = 2)

> eig.A <- eigen(A)

> str(eig.A)

List of 2

$ values : num [1:2] 1.28 -0.78

$ vectors: num [1:2, 1:2] -0.9919 -0.127 -0.997 0.0778

Singular value decomposition (SVD) is a generalization of eigenanalysis and
is used in Rfor some applications where eigenanalysis was used historically,
but where SVD is more numerically accurate (prcomp for principle components
analysis).

B.16 Eigenanalysis of demographic versus Jacobian
matrices

Eigenanalyses of demographic and Jacobian matrices are worth comparing. In
one sense, they have similar meanings — they both describe the asymptotic
(long-term) properties of a system, either population size (demographic ma-
trix) or a perturbation at an equilibrium. The quantitative interpretation of
the eigenvalues will therefore differ.

In the case of the stage (or age) structured demographic model, the elements
of the demographic matrix are discrete per capita increments of change over a
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Fig. B.7: Examples of ways to look at the distribution of your data. See ?hist, for
example, for more information.

specified time interval. This is directly analogous to the finite rate of increase,
λ, in discrete unstructured models. (Indeed, an unstructured discrete growth
model is a stage-structured model with one stage). Therefore, the eigenvalues
of a demographic matrix will have the same units — a per capita increment
of change. That is why the dominant eigenvalue has to be greater than 1.0 for
the population to increase, and less than 1 (not merely less than zero) for the
population to decline.
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In the case of the Jacobian matrix, comprised of continuous partial differ-
ential equations, the elements are per capita instantaneous rates of change. As
differential equations, they describe the instantanteous rates of change, analo-
gous to r. Therefore, values greater than zero indicate increases, and values less
than zero indicate decreases. Because these rates are evaluated at an equilib-
rium, the equilibrium acts like a new zero — positive values indicate growth
away from the equilibrium, and negative values indicate shrinkage back toward
the equilibrium. When we evaluate these elements at the equilibrium, the num-
bers we get are in the same units as r, where values greater than zero indicate
increase, and values less than zero indicate decrease. The change they describe
is the instantaneous per capita rate of change of each population with respect
to the others. The eigenvalues summarizing all of the elements Jacobian matrix
thus must be less than zero for the disturbance to decline.

So, in summary, the elements of a demographic matrix are discrete incre-
ments over a real time interval. Therefore its eigenvalues represent relative per
capita growth rates a discrete time interval, and we interpret the eigenvalues
with respect to 1.0. On the other hand, the elements of the Jacobian matrix are
instantaneous per captia rates of change evaluated at an equilibrium. Therefore
its eigenvalues represent the per capita instantaneous rates of change of a tiny
perturbation at the equilibrium. We interpret the eigenvalues with respect to 0
indicating whether the perturbation grows or shrinks.

B.17 Symbols used in this book

I am convinced that one of the biggest hurdles to learning theoretical ecology
— and the one that is easiest to overcome — is to be able to “read” and hear
them in your head. This requires being able to pronounce Greek symbols. Few
of us learned how to pronounce “α” in primary school. Therefore, I provide here
an incomplete simplistic American English pronunciation guide for (some of)
the rest of us, for symbols in this book. Only a few are tricky, and different
people will pronounce them differently.
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Table B.2: Symbols and their pronunciation; occasional usage applies to lowercase,
unless otherwise specified. A few symbols have common variants. Any symbol might
be part of any equation; ecologists frequently ascribe other meanings which have to be
defined each time they are used. See also http://en.wikipedia.org/wiki/Greek letters

Symbol Spelling Pronunciation; occasional or conventional usage

A, α alpha
distribution)

B, β beta bay’-ta; turnover diversity
Γ, γ gamma gam’-ma; regional diversity
∆, δ, ∂ delta del’-ta; change or difference
E, ε, ε epsilon ep’-si-lon; error
Θ, θ theta thay’-ta (“th” as in “thanks”); in neutral theory, biodiversity.
Λ, λ lambda lam’-da; eigenvalues, and finite rate of increase
M, µ mu meeoo, myou; mean
N, ν nu noo, nou
Π, π pi pie; uppercase for product (of the elements of a vector)
P, ρ rho row (as in “a boat”); correlation
Σ, σ, ς sigma sig’-ma; standard deviation (uppercase is used for summation)
T, τ tau

“t”).
Φ, φ phi fie, figh
X, χ chi kie, kigh
Ψ, ψ psi sie, sigh
Ω, ω omega oh-may’-ga; degree of omnivory

(sounds like what you say when you stub your toe - “Ow!” but with a

al’-fa; point or local diversity (or a parameter in the logseries abundance
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greek symbols, 382
α, see competition coefficient
α-diversity, 318
β, see transmission coefficient
β-diversity, 318
βi j, 139, see competition coefficient,

invasion criterion
γ, 193, see successional niche, SIR

models
γ-diversity, 318
λ, see lambda
λ1, see eigenvalue, dominant, see return

time
ν, 309, see neutral theory
θ, diversity, see neutral theory
θ-logistic, see logistic growth

ACE, 299
additive partitioning, see diversity

partitioning
age structure, 34
age-specific fertility, 33
aggregation, 185
AIC, 100
alternative stable equilibria, 227
Andropogon gerardii, 262
area of discovery, 181
assimilation efficiency, 165
asymptotic richness, 297
attack rate, 163
attractor, 64

periodic, 72
average growth rate, 10

basic reproductive rate of disease, 194

BCI, 303, 316
bias-corrected quantiles, 58
bifurcation, 72
biodiversity, see diversity
birth, 48
birth-flow, 48
birth-pulse, 48
bluestem, 262
Bombay, see Mumbai
bootstrapped confidence interval, 56
bootstrapping, 49
Bray–Curtis distance, see distance
Buell-Small, 135, 255
buffered population growth, 275
butterflies, 74

carrying capacity, 63
Cedar Creek Natural History Area, 261
Chamaedorea, 49
Chao 2, 299
chaos, 71, 74

boundedness, 74
characteristic path length, 212
climax species, 259
Closterium acerosum, 92
coefficent of variation, 281
coefficient of variation, 316
compartmentation, 212
competition coefficient, see logistic

growth
two species, 136

competition coefficient
subscripts, 137

competition–colonization tradeoff, see
tradeoffs
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confint, 326
connectance, 212
conversion efficiency, 165, 243
core-satellite, see metapopulation
covariance, see environment–competition

covariation
coverage estimator, 299
CV, see coefficent of variation

damped oscillations, 71
degree distribution, 212
demographic model, 35
demography, 33

stage-structured growth, 38
density–dependent transmission, 193
density-dependence, 62
density-independence, 4
derivative

exponential growth, 16
discrete growth increment, 14
dispersal-assembly and niche-assembly

neutral theory, 310
distance, 287

Bray–Curtis, 289
Euclidean distance, 287

diversity, 291
diversity partitioning, 318

species–area relations, 330
dominance, 293
doubling time, 17
drift, see neutral theory
duration, see residence time

e, 15
E. coli, 14
ecoregions, 319
eigenanalysis

demographic matrix, 41
eigenvalue

dominant, 42, 150
El Cielo Biosphere Reserve, 49
elasticity, 47
emergent property, 211
entropy, 292, 293
environment–competition covariation,

275
epidemiological models, 192
Euclidean distance, see distance
experimental unit, 297
explanation, 3
extinction debt, 265, 273

fecundities, 36
fertility, 52
finite rate of competitive exclusion, 267
finite rate of increase, 7
Fisher’s log-series, see species–abundance

distribution, log-series
fitness equivalence, see neutral theory

neutral theory, 307
floating plants, 234
food chain length, 214
food web characteristics, 211
force of infection, 194
frequency–dependent transmission, 195
functional response, 163

generalization, 3
geometric

species–abundance distribution, 301
geometric series, 4
grain, 297

habitat destruction, 125, 261
half saturation constant, 165
handling time, 172
harvesting, fisheries, 90
harvesting, palm, 49
hierarchical partitioning, see diversity

partitioning
diversity partitioning, 322

Holling disc equation, 172
Hudson Bay Trading Co., 161
human economic systems, 230
hysteresis, 228, 234

IGP, see intraguild predation
incidence, 193
increase when rare, see invasion criterion
instantaneous per capita growth rate, 16
interaction strength, average, 216
interaction strength, quantified, 215
intraguild predation, 213, 242
intrinsic rate of increase, 16
invasion criterion, 144
island biogeography, 326
isoclines

interspecific competition, 143
predator–prey, Lotka–Volterra, 166
predator–prey, Rosenzweig–

MacArthur, 173
two species, Lotka–Volterra, 141

Jacobian elements, 217
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Jacobian matrix, 148
discrete host–parasitoid model, 188
Rosenzweig–MacArthur predator–

prey, 175
Jacobian matrix

Lotka–Volterra predator–prey, 169
JM, 309

neutral theory, 309

K, 75
k, 186

lambda, 7
dominant eigenvalue, 42
of the Poisson distribution, 181
power iteration, 43
relating to r, 18, 19
source-sink, 112

landscape level processes, 329
landscape mosaic, 259
Lefkovitch, 34
Levins, see metapopulation
life cycle graph, 35
life history stages, 34
links, 211
log-normal

species–abundance distribution, 300,
303

log-normal ditribution, see species–
abundance distribution

log-series
species–abundance distribution, 302,

309
logarithms, 8
logistic growth

discrete, 63
effect of rd, 69
equilibrium, stability, and dynamics,

79
generalizing, 76
integral, 79
theta-logistic, 87

Lotka–Volterra
equilibrium and r, 231
food web, 214
intraguild predation, 243
multiple basins of attraction, 230
predator–prey, 162
three-species competition, 230
two-species competition, 135

lottery models, 276

lynx–hare cycles, 161

MacArthur’s broken stick
species–abundance distribution, 302

macrophytes, 234
mass action, 165, 193
matplot, 9
matrix algebra, 36
maximum entropy theory, 326
maximum sustained yield, 89
MBA, see multiple basins of attraction
Melospiza melodia, 3, 21, 61
metacommunity, see neutral theory

neutral theory, 306
metapoopulation

rescue effect, 120
metapopulation, 114, 115

core-satellite, 120
core-satellite simulations, 128
Gotelli, 118
habitat destruction, 125
Hanski, 120
Levins, 117
parallels with logistic growth, 123
propagule rain, 118
propagule rain, estimation, 258

Michaelis-Menten, 165, 172
mixed model, 98
model, 4
modulus, 189
moths, 319
multidimensional distance, see distance

distance, 289
Multiple basins of attraction, 228
multiplicative partitioning, see diversity

partitioning
Mumbai, 202

negative binomial distribution, 186
network, 212
niche overlap, 281
Nicholson-Bailey, 181
nlme, 103
nodes, 211
non-metric multidimensional scaling, 289
North Central Tillplain, 321
numerical response, 165
Nymphaea odorata, 5

omnivory, 213, 222
omnivory, stabilizing, 225
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outbreak, 193
overdispersion, 186

paradox of enrichment, 177
parallels with genetic drift

neutral theory, 307
parasitoids, 179
partial derivative, 82
partial differential equation, 148
PARTITION software, 323
partitioning, see diversity partitioning
path length, see characteristic path

length
pattern vs. process, 305

species–abundance distribution, 305
per capita growth increment, 62
perturbation growth rate, see return

time, stability analysis
phase plane portrait, 177
phase plane portrait, 170, 174
pioneer species, 259
plague, 202
Poisson distribution, 180
postbreeding census, 48
prebreeding census, 48
predator–prey, 161
prediction, 3
prevalence, 193
primary productivity, 225
priority effects, 228, 230
projection

geometric growth, 20
population projection matrix, 35

propagule rain, see metapopulation

quadratic equation, 66
quantile, 27

R∗, 262
R0, see basic reproductive rate
r-selected, 266
random connection models, 215
random walk, 310

neutral theory, 310
random walks, biased

neutral theory, 310
rank–abundance distribution, 300, see

species–abundance distribution
rarefaction, 297
rd, see per capita growth increment
regression, 325

relative density, 287
reproductive value, 45
residence time, 193
resistant, see successional niche, SIR

models
return time, 155, 220, 222
richness, 293
Rosenzweig–MacArthur, 171
Routh-Hurwitz criteria, 150, 169

saddle, 146
neutral, 154

sapply, 10
SAR, see species–area relation
scale, 297
scaling (logistic growth), 124
Schizachyrium scoparium, 262
sensitivity, 46
sequential broken stick

species–abundance distribution, 302
Shannon-Wiener, 293
similarity, 290
Simpson’s diversity, 293, 295
sink, see source-sink
SIR models, 192
Solidago, 135
Song Sparrow, 3, 21
Sørensen’s similarity, 291
Søorenson distance, see distance

distance, 289
source-sink, 112
specialization, 281
species composition, 286
species pool, 292
species–area relation, 323
species–area relations

diversity partitioning, 330
species-accumulation curve, 297
stability analysis

recipe, 146
single species, 80

stabilizing vs. equalizing mechanisms
neutral theory, 309

stable limit cycles, 71
stage distribution

stable, 44
stationary, 44

stage structure, 34
statistical mechanics, 293
storage effect, 275
succession, 255
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successional niche, 267

susceptible, see successional niche, SIR
models

symbolic differentiation, 84

symmetry, see neutral theory

neutral theory, 317

taco shell, see saddle, neutral

temporal niche, 283

time lag, 72

total species richness, 297

tradeoffs

r vs. K, 233

competition–colonization, 255

competition–maximum growth rate,
266

transition, 35

transmission coefficient, 193

trophic level, 213
trophic position, 213
trophospecies, 212
type I functional response, 163

unified neutral theory of biodiversity and
biogeography, see neutral theory

units
exponential and geometric growth, 19

untb, 312

vaccinations, 194
variance in species composition, 292, 295
victim, 173

Western Allegheny Plateau, 321

zero net growth isocline, see isocline
ZNGI, see isocline
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