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Abstract A new computing paradigm is currently on spot: autonomic computing
(AC), which is inspired by the human autonomic nervous system. AC is character-
ized by its self-∗ facets such as self-configuration, self-healing, self-optimization,
and self-protection. The overarching goal of AC is to realize computer systems,
and thus networked computing systems, that can manage themselves without
direct human interventions. Meeting this grand challenge of autonomic comput-
ing requires a fundamental approach to the notion of self-∗. To this end, taking
advantage of the categorical approach we establish, in this chapter, a firm formal
basis for modeling self-∗ in autonomic networked computing systems, developing
self-∗ monoid, category of self-∗ monoids, and series of self-∗ facets. All of these
are to achieve formal aspects of the self-∗.

1 Introduction

Networked computing is a characteristic of many modern computing systems and
implies an increased complexity in managing the system behavior. Autonomic com-
puting (AC) is essential to keep such systems manageable. In fact, the problem is
that many networked computing systems make central or global control impossible.
For example, the information needed to make decisions cannot be gathered cen-
trally (e.g., the type of mobile ad hoc networks (MANETs)). In such the networked
computing systems, AC is only possible when networked computational entities
autonomously interact and coordinate with each other to maintain properly the
required computations. Therefore, in the networking environments, we denote AC
as autonomic networked computing (ANC). In other words, when AC mechanism is

P. Cong-Vinh (B)
Centre for Applied Formal Methods, London South Bank University, Borough Road, London SE1
0AA, United Kingdom
e-mail: phanvc@ieee.org

M.K. Denko et al. (eds.), Autonomic Computing and Networking,
DOI 10.1007/978-0-387-89828-5 16, C© Springer Science+Business Media, LLC 2009

381



382 P. Cong-Vinh

implemented in the networked computing systems then it defines ANC paradigm.
The essence of ANC is to enable the autonomic networked computational entities to
govern themselves the set of services and resources delivered at any given time while
interacting and coordinating with each other. Hence, for ANC systems (ANCSs),
one of major challenges is how to support self-governance in the face of changing
user needs, environmental conditions, and computation objectives. In other words,
how does an ANCS understand relevant contextual data, change to those data and
adapt the services and resources, which it provides, in accordance with goal-driven
computational mechanisms?

Dealing with this grand challenge of ANCSs requires a well-founded modeling
and in-depth analysis on the notion of ANC. With this aim, we develop a firm formal
approach in which autonomic networked computational entities are able to detect,
diagnose and repair faults, as well as adapt their configuration and optimize their
performance in the face of changing user needs and environmental conditions. All
of these must be done while protecting and healing themselves in the face of natural
problems and malicious attacks.

AC is often described as self-∗ , but ANC focuses on self-knowledge in prefer-
ence to build self-governance. However, self-∗ functionality is still supported, but
the emphasis of ANC is on the foundation to realize self-∗, not in the different self-∗

technologies.
In this view, we see that rigorously approaching to ANC requests fundamental

research in all aspects of the self-∗. As a novel development for the self-∗, we con-
sider to formalize aspects of the self-∗ taking advantage of categorical language,
whose content is presented in this chapter.

2 Outline

The chapter is a reference material for readers who already have a basic understand-
ing of ANCS and are now ready to know the novel approach for formalizing self-∗

in ANCS using categorical language.
Formalization is presented in a straightforward fashion by discussing in detail

the necessary components and briefly touching on the more advanced components.
Several exercises and notes explaining how to use the formal aspects, including
justifications needed in order to achieve the particular results, are presented.

We attempt to make the presentation as self-contained as possible, although
familiarity with the notion of self-∗ in ANCS is assumed. Acquaintance with the
algebra and the associated notion of categorical language is useful for recognizing
the results, but is almost everywhere not strictly necessary.

The rest of this chapter is organized as follows: Sections 3, 4 and 5 present the
notions of AC, ANC, and some categorical terms, respectively. Section 6 presents
models of self-∗ in ANCSs. In Section 7, structures of self-∗ including self-∗ monoid,
a category of self-∗ monoids and some algebraic properties are developed. Section 8
is a place to develop series of self-∗ facets in detail. In Section 9, we briefly dis-
cuss an alternative approach and compare it with our development. Finally, a short
summary is given in Section 10.
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3 Autonomic Computing as Self-∗

AC imitates and simulates the natural intelligence possessed by the human auto-
nomic nervous system using generic computers. This indicates that the nature of
software in AC is the simulation and embodiment of human behaviors, and the
extension of human capability, reachability, persistency, memory, and information
processing speed [52]. AC was first proposed by IBM in 2001 where it is defined as

“Autonomic computing is an approach to self-managed computing systems with a minimum
of human interference. The term derives from the body’s autonomic nervous system, which
controls key functions without conscious awareness or involvement” [22].

AC is generally described as self-∗. Formally, let self-∗ be the set of self- ’s. Each
self- to be an element in self-∗ is called a self-∗ facet. That is,

self-∗ = {self- | self- is a self-∗ facet} (1)

We see that self-CHOP is composed of four self-∗ facets of self-configuration,
self-healing, self-optimization, and self-protection. Hence, self-CHOP is a subset
of self-∗. That is, self-CHOP = {self-configuration, self-healing, self-optimization,
self-protection} ⊂ self-∗. Every self-∗ facet must satisfy some certain criteria, so-
called self-∗ properties. In [55], Wolf and Holvoet classified the self-∗ properties in
autonomic networks.

In its AC manifesto, IBM proposed eight facets setting forth an AC system (ACS)
known as self-awareness, self-configuration, self-optimization, self-maintenance,
self-protection (security and integrity), self-adaptation, self-resource-allocation,
and open-standard-based [22]. Kinsner pointed out that these facets indicate that
IBM perceives AC is a mimicry of human nervous systems [27]. In other words,
self-awareness (consciousness) and non-imperative (goal-driven) behaviors are the
main features of ACSs [52].

4 Autonomic Networked Computing

From the notion of AC, an ACS is defined by Wang as

“An autonomic computing system is an intelligent system that implements nondeterminis-
tic, context-dependent, and adaptive behaviors based on goal- and inference-driven mecha-
nisms” [53].

This definition is concerned with three major factors of ACS:

• Variable events: AC systems do not rely on instructive and procedural informa-
tion, but are dependent on variable events of ever-changing external environment
and internal status formed by the long-term historical events.

• Variable behaviors: AC systems behave in a nondeterministic, context-
dependent, and adaptive manner.
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• Goal-driven mechanisms: AC systems do not rely on imperative and procedural
instructions, but are dependent on goal-, perception-, and inference-driven mech-
anisms.

Consequently, ANC, and thus self-∗, is achieved when an ACS is constructed as
a group of locally interacting autonomous computational entities that cooperate in
order to adaptively maintain the desired system-wide behavior without any external
or central control. Such an ACS is viewed as an ANCS.

The topic of AC has seen a number of developments through various research
investigations following the IBM initiative such as AC paradigm in [9, 18, 37, 41,
47]; different approaches and infrastructures in [1, 5, 44, 46, 55] for enabling auto-
nomic behaviors [48–51]; core enabling systems, technologies, and services in [15,
16, 45, 3, 21, 31] to support the realization of self-∗ properties in autonomic systems
and applications; specific realizations of self-∗ properties in autonomic systems and
applications in [8, 13, 24, 20, 26, 34, 39]; architectures and modeling strategies
of autonomic networks in [17, 33, 32]; middleware and service infrastructure as
facilitators of autonomic communications in [11, 35, 19]; approaches in [12, 4, 40]
to equipping current networks with autonomic functionality for migrating this type
of networks to autonomic networks.

Moreover, AC has also been intensely studied by various areas of engineer-
ing including artificial intelligence, control systems, and human-orientated systems
[25, 36, 53, 54]. Autonomic computing has been set as an important requirement
for systems devised to work in new generation global networked and distributed
environments such as wireless networks, P2P networks, Web systems, multi-agent
systems, and grids [10, 12, 28, 38, 56]. Such systems pose new challenges for
the development and application of autonomic computing techniques, due to their
special characteristics including nondeterminism, context-awareness, and goal- and
inference-driven adaptability [53].

5 Some Categorical Terms

In this section, we recall some concepts from the category theory [2, 6, 7, 29, 30]
used in this chapter.

5.1 What is a category?

� A category C can be viewed as a graph (Ob j(C), Arc(C), s, t), where

• Ob j(C) is the set of nodes we call objects,
• Arc(C) is the set of edges we call morphisms and
• s, t : Arc(C) −→ Ob j(C) are two maps called source (or domain) and target (or

codomain), respectively.

We write f : X −→ Y when f is in Arc(C) and s( f ) = X and t( f ) = Y .
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Explanation on terminology: An object in the category is an algebraic structure
such as a set. We are probably familiar with some notations for finite sets: {Student
A, Student B, Student C} is a name for the set whose three elements are Student
A, Student B, Student C. Note that the order in which the elements are listed is
irrelevant.

A morphism f in the category consists of three things: a set X , called the source
of the morphism; a set Y , called the target of the morphism; and a rule assigning to
each element x in the source an element y in the target. This y is denoted by f (x), read
“ f of x.” Note that the morphism is also called the map, function, transformation,
operator, or arrow. For example, let X = {Student A, Student B, Student C}, Y =
{Math, Physics, Chemistry, History} and let f assign each student his or her favorite
subject. The following internal diagram is an illustration.

{Student A

������������� Student B

f=favorite subject
��

Student C}

��{Math Chemistry History Physics}

(2)

This states that the favorite subject of the Student C is History, written by f (Student
C) = History, while Student A and Student B prefer Chemistry. There are some
important properties of any morphism

• From each element in the source {Student A, Student B, Student C}, there is
exactly one arrow leaving.

• To an element in the target {Math, Physics, Chemistry, History}, there may be
zero, one or more arrows arriving.

It is possible that the source and target of the morphism could be the same set. The
following internal diagram is an example.

{Student A

������������� Student B

e=favorite classmate������������� Student C}

�������������

{Student A Student B Student C}

(3)

and, in the case, the morphism is called an endomorphism whose representation is
available as in

{Student A ��Student B�� ����Student C}�� (4)

� Associated with each object X in Ob j(C), there is a morphism 1X = X −→
X , called the identity morphism on X , and to each pair of morphisms f : X −→
Y and g : Y −→ Z , there is an associated morphism f ; g : X −→ Z , called the
composition of f with g. The representations in (5) include the external diagrams of
identity morphism and composition of morphisms.
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X

1X

��
X

f ��
�� ��

f ;g
��Y

g ��Z (5)

Explanation on terminology: Here are the corresponding internal diagrams of the
identity morphism.

{Student A

��

Student B

1X

��

Student C}

��{Student A Student B Student C}

(6)

Or

{Student A
��

Student B		 Student C}��
(7)

And here, the composition of morphisms is described in the internal diagram

{Student A

������������� Student B

e=favorite classmate������������� Student C}

�������������

{Student A

������������� Student B

f=favorite subject
��

Student C}

��{Math Chemistry History Physics}

(8)

Or, in the external diagram X
e ��X

f ��Y . By diagram (8), we can obtain
answers for the question “What should each student support to his or her favorite
classmate for subject?” In fact, the answers are such as “ Student A likes Student
B, Student B likes Chemistry, so Student A should support Chemistry,” “Student B
likes Student C, Student C likes History, so Student B should support History” and
“Student C likes Student B, Student B likes Chemistry, so Student C should support
Chemistry.”

The composition of two morphisms e and f means that e and f are combined to

obtain a third morphism X
e; f ��Y . This is represented in the following internal

diagram.

{Student A

������������� Student B
e; f

������������� Student C}

�������������

{Math Chemistry History Physics}

(9)
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where, for example, e; f (Student B) = History is read as “the favorite subject of the
favorite classmate of Student B is History.”
� The following equation must hold for all objects X , Y in Ob j(C) and morphism
f : X −→ Y in Arc(C):

Identity: 1X ; f = f = f ; 1Y (10)

X1X 


f ��Y = X

f ��Y = X
f ��Y 1Y��

The following equation must hold for all objects X , Y and Z in Ob j(C) and
morphisms f : X −→ Y , g : Y −→ Z and h : Z −→ T in Arc(C):

Associativity: ( f ; g); h = f ; (g; h) (11)

X
f ��

�� ��
f ;g

��Y
g ��Z

h ��T = X
f ��Y

g ��
�� ��

g;h
��Z

h ��T

5.2 Isomorphism

A morphism f : X −→ Y in the category C is an isomorphism if there exists a
morphism g : Y −→ X in that category such that f ; g = 1X and g; f = 1Y .

X
f ��

�� ��

f ;g=1X

��Y
g ��X and Y

g ��
�� ��

g; f=1Y

��X
f ��Y (12)

That is, if the following diagram commutes.

X1X 



f

��Y

g


1Y�� (13)

5.3 Element of a set

For any set A, x ∈ A iff 1
x ��A (or x : 1 �� A) where 1 denotes a singleton set.

Focus on one element of {Math, Physics, Chemistry, History}, say {subject}, and call
this set “1.” Let us see what the morphisms from 1 to {Math, Physics, Chemistry,
History} are. There are exactly four of them.
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{subject}�� ��

Math

��{Math Chemistry History Physics} (14)

{subject}�� ��

Chemistry

��{Math Chemistry History Physics} (15)

{subject}�� ��

History

��{Math Chemistry History Physics} (16)

{subject}�� ��

Physics

��{Math Chemistry History Physics} (17)

By this way, we can write 1 2 ��N (or 2 : 1 �� N) for 2 ∈ N, 1
i ��N (or

i : 1 �� N) for i ∈ N and so on.

5.4 Functor

Functor is a special type of mapping between categories. Functor from a category to
itself is called an endofunctor. Note that the functors are also viewed as morphisms
in a category, whose objects are smaller categories.

5.5 T-algebra

Let C be a category, A an object in Ob j(C), T : C −→ C an endofunctor and

f a morphism T(A )
f−→ A ; then T-algebra is a pair 〈A , f 〉. Ob j(C) is called a

carrier of the algebra and T a signature of the algebra.

6 Self-∗ in ANCSs

As known that ANC, and thus self-∗, is achieved when ANCSs are constructed. In
this way, for forming ANCSs, we start with considering deterministic autonomic
networked computing systems (DANCSs) and then extend to nondeterministic auto-
nomic networked computing systems (NANCSs) by categorical approach in this
section.
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6.1 Self-∗ in DANCSs

DANC we want to abstract is intuitionally multiple partial morphism applications,
such as

s0
σ0 �� s1

σ1 �� s2
σ2 �� s3 · · · (18)

where

• All indexes i ∈ T (= N ∪ {0}) refer to times,
• s is a state of DANCS in the set, denoted by Sys, of states. si is the state s at the

time i,
• σ is a contextual data in the set, denoted by Context, of contextual data. σi is the

contextual data σ at the time i, which makes change of the state si to become
si+1.

The meaning of (18) is understood as

. . . s2(s1(s0())) = . . . s2(s1(σ0)) = . . . s2(σ1) = . . . σ2 (19)

The adaptation process in (18) can also be descriptively drawn as

s0() σ0 σ1 σ2 · · · � �� s1(σ0) σ1 σ2 · · · � �� σ0 s2(σ1) σ2 · · · (20)

or, in another representation

s0 ��σ0 σ1 σ2 · · · � �� σ0
s1 ��σ1 σ2 · · · � �� σ0 σ1

s2 ��σ2 · · · (21)

Note that in (20) and (21), we want to represent the above-mentioned adaptation
process of DANCS based on context where each step of the process is an application

of unary partial morphism 1
si ��Sys on 1

σi−1 ��Context , for all i in T .

The adaptation process, in (20) and (21), describes the notion of DANC in DANCSs
including the adaptation steps to change configurations of the system.

Definition 1 (Configuration of DANCS) We define a configuration of DANCS at
an adaptation step to be a member of the set Sys × Contexti∈T , where Contexti∈T

stands for

Contexti∈T = Context × Context × . . . × Context︸ ︷︷ ︸
i times

(22)

Explanation on terminology: As we know, when we combine sets by multiplication,
each set is a factor and the resulting set is the product. Hence, each set Context is
a factor of the resulting set Contexti∈T , Sys and Contexti∈T are two factors of the
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set Sys × Contexti∈T . The definition of multiplication of sets is very natural. Just
remember that a product is not just a set, but a set with two morphisms as in

• When i = 2 then Context2 = {< σ1, σ2 > |σ1, σ2 ∈ Context} is obtained by

σ1 ∈ Context

< σ1, σ2 >∈ Context2

f1

�����������������

f2 �����������������

σ2 ∈ Context

• When i = 3 then Context3 = {<< σ1, σ2 >, σ3 > |σ1, σ2, σ3 ∈ Context} is
obtained by

< σ1, σ2 >∈ Context2

<< σ1, σ2 >, σ3 >∈ Context3

g1

��																			

g2 ��




















σ3 ∈ Context

Specially, we have

• If i = 0 then Context0 = {}
• If i = 1 then Context1 = Context = {σ1|σ1 ∈ Context}
We hope that these diagrams seem suggestive to readers. Our aim is to learn to use
them as precise tools of understanding and reasoning, not merely as intuitive guides.

The DANC paradigm, which we want to approach to, is based on mapping a con-
figuration to another. Let us see the following examples

Example 1 A specific DANC can be specified by the following morphism:

Sel f -X : (Sys × Context) ��Sys (23)

(i.e., Sel f -X : (Sys × Context1) �� (Sys × Context0) or denoted by Sel f -X
(Sys × Context, Sys))

Example 2 Another specific DANC can be specified by

Sel f -X : (Sys × Context) �� (Sys × Context) (24)

(i.e., Sel f -X : (Sys × Context1) �� (Sys × Context1) or denoted by Sel f -X
(Sys × Context, Sys × Context))
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Example 3 Again, we can also specify another specific DANC as

Sel f -X : (Sys × Contextn) �� (Sys × Context) (25)

(i.e., Sel f -X : (Sys × Contextn) �� (Sys × Context1) or denoted by Sel f -X
(Sys × Contextn, Sys × Context))
and we can, in the completely same way, do for any other specific DANC.

Definition 2 Generally, an arbitrary DANC is specified by

Sel f -X : (Sys × Contexti∈T ) �� (Sys × Context j∈T ) (26)

Now, let us try to do the following exercise.

Exercise 1 (Self-∗ in DANCSs) Show that the morphism Self-X in (26) defines self-∗

in DANCSs

Solution This stems from (26) and the fact that ANC, and thus DANC, is described
through self-∗. �

Morphism Self-X is called a self-∗. Morphism Self-X in (26) defines a set
{Sel f -Xk∈N} of mappings such that

{Sel f -Xk∈N} : (Sys × Contexti∈T ) ��(Sys × Context j∈T ) (27)

Hence, let us do the exercise as in

Exercise 2 (Self-∗ facets in DANCSs) Show that the set {Sel f -Xk∈N} in (27) defines
self-∗ facets in DANCSs. Each mapping Self-Xk∈N is called a self-∗ facet.

Solution This originates as the result of the truth that self-∗ is the set of self-∗

facets. �

For further well-founded investigation, we can construct a category of the sets of
DANCS configurations and establish Self-X-algebras as described in the following
exercises.

Exercise 3 (Category of the sets of DANCS configurations) Show that the sets of
DANCS configurations as in Definition 1 define a category.

Solution In fact, let Cat(DANCS) be such a category of the sets of DANCS con-
figurations, whose structure is constructed as follows:

• Each set of configurations Sys × Contexti∈T defines an object.
That is, Obj(Cat(DANCS)) = {Sys × Contexti∈T }.

• Each Sel f -X defines a morphism.
That is, Arc(Cat(DANCS)) = {Sel f -X : (Sys × Contexti∈T ) �� (Sys ×
Context j∈T )}.
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It is easy to check that identity in (10) and associativity in (11) on all Sel f -Xs are
satisfied. �

Exercise 4 (Self-X-algebra(DANCS)) Show that each morphism Self-X in the cat-
egory Cat(DANCS) defines an algebra, so-called Self-X-algebra (DANCS).

Solution This stems from definition of T-algebra in Section 5, where functor T
is defined such that T = ⊎{Sel f -X}. Note that the notation

⊎
stands for disjoint

union or coproduct. �

With the result of Exercise 4, we obtain a compact formal definition of DANCS
as in

Definition 3 (DANCS) Each Self-X-algebra(DANCS) defines a DANCS

Both Sys and Context may be infinite. If both Sys and Context are finite, then we
have a finite DANCS, otherwise we have an infinite DANCS.

6.2 Self-∗ in NANCSs

In NANC we want to model is intuitionally multiple partial morphism applications,
such as

s0
σ0|x0 �� s1

σ1|x1 �� s2
σ2|x2 �� s3 · · · (28)

where

• All indexes i in T , si, and σi are similar in meaning to the ones mentioned in (18)
• xi is a real number that can be thought of as the multiplicity (or weight) with

which the adaptation from si to si+1 occurs.

Adaptation process of NANC in diagram (28) can be separated into two comple-
mentary parts as follows:

s0
σ0 �� s1

σ1 �� s2
σ2 �� s3 . . . (29)

and

s0
x0 �� s1

x1 �� s2
x2 �� s3 . . . (30)

On the one hand, diagram (29) emphasizes 1
σi �� Context, for all i in T , in the

adaptation process. This allows us to discover conveniently sequence of σi as series

of contextual data. On the other hand, diagram (30) gives rise to 1
xi �� R, for all i

in T , as weights of the series of contextual data in the adaptation process to support
an evaluation of weight-based quantitative behaviors of the series of contextual data.
Some first steps of the adaptation process in (28) can also be descriptively drawn as
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s0
σ0|x0,1

������������
σ0|x0,n

��������������

s1,1
σ1|x1,1,1

��



 σ1|x1,1,k

������������ . . . . . . s1,n

σ1|x1,n,1����������
σ1|x1,n,m

����
��

��
��

�

s2,1,1 . . . . . . s2,1,k s2,n,1 . . . . . . s2,n,m

(31)

Diagram (31) is thought of as

• For the first step,

s1 ∈ {s1,1, . . . , s1,n} ⊂ Sys
and
x0 ∈ {x0,1, . . . , x0,n} ⊂ R

• For the second step,
s2 ∈ {s2,1,1, . . . , s2,1,k} ∪ . . . ∪ {s2,n,1, . . . , s2,n,m} ⊂ Sys
and
x1 ∈ {x1,1,1, . . . , x1,1,k} ∪ . . . ∪ {x1,n,1, . . . , x1,n,m} ⊂ R

and the meaning of (28) is viewed as the following morphism.

Sel f -X : (Sys × Context) �� (Sys ��R) (32)

Explanation on terminology: The adaptation morphism Self-X in (32) is nondeter-
ministic and this can be explained as follows: Self-X assigns to each configuration in
Sys × Context a morphism Sys �� R that can be seen as a kind of nondetermin-
istic configuration (or so-called distributed configuration) and specifies for every
state s′ in Sys a multiplicity (or weight) Self-X(< s, σ >)(s′) in R.

This nondeterminism of NANC makes extension in representation of the categorical
models mentioned in Section 6.1. Let us see the following examples

Example 4 A specific NANC, which is specified by the following morphism, is an
extension of (23):

Sel f -X : (Sys × Context) �� (Sys �� R) (33)

(i.e., Sel f -X : (Sys × Context1) �� ((Sys × Context0) �� R) or denoted by
Sel f -X ( (Sys × Context), (Sys �� R) ))

Example 5 The model in (24) extended for NANC is specified by

Sel f -X : (Sys × Context) �� ((Sys × Context) �� R) (34)

(i.e., Sel f -X : (Sys × Context1) �� ((Sys × Context1) �� R) or denoted by
Sel f -X ( (Sys × Context), ((Sys × Context) �� R) ))
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Example 6 Again, we specify another specific NANC as an extension of (25) in

Sel f -X : (Sys × Contextn) �� ((Sys × Context) �� R) (35)

(i.e., Sel f -X : (Sys × Contextn) �� ((Sys × Context1) �� R) or denoted by
Sel f -X ( (Sys × Contextn), ((Sys × Context) �� R)))

and, in the completely same way, we do for an arbitrary NANC as in

Definition 4 Generally, an arbitrary NANC is specified by

Sel f -X : (Sys × Contexti∈T ) �� ((Sys × Context j∈T ) �� R) (36)

Let us do the exercise as described in

Exercise 5 (Self-∗ in NANCSs) Show that the morphism Self-X in (36) defines self-
∗ in NANCSs

Solution This stems from (36) and the fact that ANC, and thus NANC, is described
through self-∗. �

Morphism Self-X in (36) defines a set {Sel f -Xk∈N} of mappings such that

{Sel f -Xk∈N} : (Sys × Contexti∈T ) �� ((Sys × Context j∈T ) �� R) (37)

Thus, let us do the following exercises

Exercise 6 (Self-∗ facets in NANCSs) Show that the set {Sel f -Xk∈N} in (37) defines
self-∗ facets in NANCSs. Each mapping Self-Xk∈N is called a self-∗ facet.

Solution This originates as the result of the truth that self-∗ is the set of self-∗

facets. �

Exercise 7 (Category of the sets of NANCS configurations) Show that the cat-
egory Cat( DANCS) equipped with structure (Sys × Contexti∈T ) �� ((Sys ×
Context j∈T ) �� R) defines a category Cat(NANCS) of the sets of NANCS con-
figurations.

Solution This result comes immediately from Exercise 3. �

Exercise 8 (Self-X-algebra(NANCS)) Show that the structure (Sys × Contexti∈T )
�� ((Sys × Context j∈T ) �� R) in the category Cat(NANCS) defines an

algebra, so-called Self-X-algebra (NANCS).

Solution This originates from definition on T-algebra in Section 5, where functor
T is defined such that T = ⊎{Sel f -X} (similar to Exercise 4) with Self-X defined
in (36). �

With this result of Exercise 8, we obtain a compact formal definition of NANCS
as in
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Definition 5 (NANCS) Each Self-X-algebra (NANCS) defines a NANCS

Moreover, let us do the following exercise to obtain a significant relationship
between DANCSs and NANCSs.

Exercise 9 (Relationship between DANCSs and NANCSs) Show that DANCSs
are just of specific NANCSs. In other words, using categorical language, DANCSs

⊂ �� NANCSs

Solution In fact, by the adaptation morphism in (36) of NANCSs, let f be the
morphism f : (Sys × Context j∈T ) �� R, Conf be Sys × Context j∈T and the finite

set R(Con f ) = {1 c �� Con f | f (c) �= 0} ⊆ �� Con f . Hence it follows that when

∃! 1
c �� Con f : f (c) = 1 but ∀c′ �= c : f (c′) = 0 (i.e., the set R(Con f ) is a

singleton set of configuration with weight of 1. Note that the notation ∃! is read as
“exist only”) then (36) becomes the adaptation morphism of DANCSs as in (26). In
other words, in the case, NANCSs will become DANCSs. �

7 Structures of Self-∗

In this section, we construct self-∗ monoid and then a category of self-∗ monoids in
order to consider the significant properties of the self-∗.

7.1 Self-∗ Monoid

We know that self-∗ is specified by the morphism Sel f -X : (Sys × Contextn∈T )
�� (Sys × Contextn∈T ), which defines the set {Sel f -Xi∈N(Sys × Contextn∈T ,

Sys× Contextn∈T )} of self-∗ facets. Let Self-Xn∈T be the set of such self-∗ facets,
then

Self-Xn∈T = {Sel f -Xi∈N(Sys × Contextn∈T , Sys × Contextn∈T )} (38)

Note that, in the case, we write Sel f -Xn∈T
i∈N

to stand for Sel f -Xi∈N(Sys × Contextn∈T ,
Sys× Contextn∈T ). Thus, we have

Self-Xn∈T = {Sel f -Xn∈T
i∈N

} (39)

This set with the composition operation “; ” satisfies two following properties.

7.1.1 Composition of Self-∗ Facets

Let f and g be members of Self-Xn∈T , then the composition of self-∗ facets f ; g :
(Sys × Contextn∈T ) �� (Sys × Contextn∈T ) is as g : ( f : (Sys × Contextn∈T )
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�� (Sys × Contextn∈T )) �� (Sys × Contextn∈T ). In other words, let f =
Sel f -Xn∈T

i∈N
and g = Sel f -Xn∈T

j∈N
then

(Sel f -Xn∈T
i∈N

; Sel f -Xn∈T
j∈N

) = Sel f -Xj∈N(Sel f -Xn∈T
i∈N

, Sys × Contextn∈T ) (40)

7.1.2 Identity of Self-∗ Facets

There exist identities 1n∈T : (Sys × Contextn∈T ) �� (Sys × Contextn∈T ) of self-∗

facets in Self-Xn∈T such that, for every f in Self-Xn∈T , 1n∈T ; f = f ; 1n∈T = f to be
held. In other words, this can be specified by

Sel f -Xn∈T
i∈N

= Sel f -Xi∈N(1n∈T , Sys × Contextn∈T ) (41)

= Sel f -Xi∈N(Sys × Contextn∈T , 1n∈T )

= Sel f -Xi∈N(Sys × Contextn∈T , Sys × Contextn∈T )

Thus, Self-Xn∈T with the composition operation “; ” is called self-∗ monoid. More-
over, the monoid Self-Xn∈T is also a monoid category including only one object to be
the set {Sel f -Xn∈T

i∈N
}, each of whose members is a self-∗ facet, and by the composition

operation as a morphism, then the associativity and identity on the morphisms are
completely satisfied.

7.2 A Category of Self-∗ Monoids

By the self-∗ monoids Self-Xi∈T , we can construct Cat(Self-X) to be a category of
self-∗ monoids. In fact, Cat(Self-X) is constructed as follows:

• Objects: Ob j(Cat(Self-X)) is the set of self-∗ monoids Self-Xi∈T . That is,

Ob j(Cat(Self-X)) = {Self-Xi∈T } (42)

• Morphisms: Associated with each object Self-Xi∈T in Ob j(Cat(Self-X)), we

define a morphism Self-Xi∈T
1Self-Xi∈T ��Self-Xi∈T , the identity mor-

phism on Self-Xi∈T such that

Self-Xi∈T
1Self-Xi∈T

de f= 1i∈T ��Self-Xi∈T (43)

or

{Sel f -Xi∈T
k∈N

} 1Self-Xi∈T
de f= 1i∈T ��{Sel f -Xi∈T

k∈N
} (44)
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and to each pair of morphisms Self-Xi∈T f �� Self-X j∈T and Self-X j∈T g ��

Self-X j∈T such that

Self-Xi∈T f
de f= 1i∈T ×Context j−i

��Self-X j∈T (45)

and

Self-X j∈T
g

de f= 1 j∈T ×Contextk− j

��Self-Xk∈T (46)

there is an associated morphism Self-Xi∈T f ;g ��Self-Xk∈T , the composition of f
with g, such that

Self-Xi∈T f ;g=1i∈T ×Contextk−i

��Self-Xk∈T (47)

For every object in Ob j(Cat(Self-X)) and the morphisms

Self-Xi∈T f
de f= 1i∈T ×Context j−i

��Self-X j∈T (48)

Self-X j∈T
g

de f= 1 j∈T ×Contextk− j

��Self-Xk∈T (49)

and

Self-Xk∈T h
de f= 1k∈T ×Contextm−k

��Self-Xm∈T (50)

in Arc(Cat(Self-X)), the following equations hold:

Associativity: ( f ; g); h = f ; (g; h) = 1i∈T × Contextm−i

Identity: 1Self-Xi∈T ; f = f = f ; 1Self-X j∈T

(i.e., 1i∈T ; 1i∈T × Context j−i = 1i∈T × Context j−i = 1i∈T × Context j−i; 1 j∈T )

As a result, the above-mentioned monoid morphisms can be diagrammatically
drawn such as

Self-Xi∈T 1i∈T ×Context±k
��Self-Xi±k∈T (51)

or

{Sel f -Xi∈T
l∈N

} 1i∈T ×Context±k
��{Sel f -Xi±k∈T

l∈N
} (52)

These are all the basic ingredients we need to have the category Cat(Self-X). Let us
see a general definition of category presented in Section 5 for reference.
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7.3 Some Properties of Category Cat(Self-X)

By the construction of category Cat(Self-X), some emerging significant properties
are presented in this subsection.

Property 1 All monoid morphisms of Cat(Self-X) are monoid isomorphisms.

Proof This result immediately stems from diagram (51). In fact, for every pair
of monoid morphisms in Arc(Cat(Self-X)) between Self-Xi∈T and Self-X j∈T , we
always have the following diagram:

Self-Xi∈T

1i∈T

��

1i∈T ×Context j−i

��
Self-X j∈T

1 j∈T

��

1 j∈T ×Contexti− j

�� (53)

These monoid morphisms satisfy an isomorphic relationship. Q.E.D.

Property 2 Isomorphisms between any pair of monoids in Cat(Self-X) are ever iso-
morphisms between the pair of ANCSs.

Proof This comes from the fact that each object of category Cat(Self-X) is just an
ANCS. Q.E.D.

From the above-mentioned justification of Cat(Self-X), we are able to derive
Self-Xi∈T . Derivation of every Self-Xi∈T is simplified by the following facts:

Property 3 There exists always a self-∗ monoid Self-X, as simply as it can, in
Cat(Self-X) constructed. Hence, it is available to start with.

Proof It emerges that

Self-X = {Sel f -Xi∈N(Sys × Context0, Sys × Context0)} (54)

= {Sel f -Xi∈N(Sys, Sys)}

thus

1
Self-X ��Ob j(Cat(Self-X)) (55)

Q.E.D.

Property 4 Given Self-X, we can compute Self-Xi∈T .

Proof We evaluate self-∗ monoid Self-Xi∈T such that

1
Self-Xi∈T

��Ob j(Cat(Self-X)) (56)
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based on the facts that
⎛

⎜⎜⎝
1

Self-X ��Ob j(Cat(Self-X))
and

Self-X
10×Contexti

��Self-Xi∈T

⎞

⎟⎟⎠ (57)

Note that Self-X
10 ��Self-X . Q.E.D.

Property 5 Given Self-Xi∈T , we can compute Self-X j∈T for every j �= i.

Proof Self-∗ monoid Self-X j∈T is evaluated such that

1
Self-X j∈T

��Ob j(Cat(Self-X)) (58)

based on the facts that
⎛

⎜⎜⎝
1

Self-Xi∈T
��Ob j(Cat(Self-X))

and

Self-Xi∈T 1i∈T ×Context j−i
��Self-X j∈T

⎞

⎟⎟⎠ (59)

Q.E.D.

From the construction of Cat(Self-X), we see that every Self-Xi∈T can be formed
in the unifying way based on Properties 3–5. As a result, we gain a substantial
procedure of construction at a high abstract level without any excessive inclination
toward a specific implementation detail. This is quite helpful when we want to jus-
tify whether or not some certain properties of the construction are true. In fact, we
can prove

Property 6 Every monoid Self-Xi∈T can be constructed by any other monoid in
Cat(Self-X)

Proof Applying Properties 3–5 to construct every monoid Self-Xi∈T from another
monoid in Cat(Self-X). Q.E.D.

This is certainly a property we expect of any construction procedure.

Property 7 Cat(Self-X) is a complete graph

Proof In fact, this is a consequence stemming from Property 6. Q.E.D.

This is indeed a property of our abstract construction mechanism.

8 Series of Self-∗ Facets

A number of different notations are in use for denoting series of self-∗ facets.

s f = ( f0, f1, f2, . . .) (60)
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is a common notation which specifies a series of self-∗ facets sf which is indexed by
the natural numbers in T (= N ∪ {0}). We are also accustomed to

s f = ( ft∈T ) (61)

Informally, series of self-∗ facets can be understood as a rope on which we hang up
a sequence of self-∗ facets for display. Hence it follows that

Definition 6 (Series of self-∗ facets) For morphisms 1
t �� T and 1

ft ��

Self-Xn∈T , there exists a unique morphism T
s f �� Self-Xn∈T such that the equa-

tion t; s f = ft holds. This is described by the following commutative diagram

1
t ��

ft

���
��

��
��

��
��

��
��

��
� T

s f

��
Self-Xn∈T

(62)

Morphism T
s f ��Self-Xn∈T defines a series of self-∗ facets.

Explanation on semantics: Note that morphism T
s f ��Self-Xn∈T is read as

∀t[t ∈ T =⇒ ∃! ft[ ft ∈ Self-Xn∈T & s f (t) = ft]]

In other words, T
s f ��Self-Xn∈T generates series of self-∗ facets as an infinite

sequence of s f (0) = f0, s f (1) = f1, . . ., s f (t) = ft , . . . which is written as
(s f (0), s f (1), . . . , s f (t), . . .) or ( f0, f1, . . . , ft , . . .)

Definition 7 (Set of series of self-∗ facets) Given T
s f ��Self-Xn∈T then the set of

series of self-∗ facets, denoted by Self-Xn∈T
ω , is defined by

Self-Xn∈T
ω = {s f | T

s f ��Self-Xn∈T } (63)

We obtain

Corollary 1 If T
s f ��Self-Xn∈T then 1

s f ��Self-Xn∈T
ω

Proof This result stems immediately from Definitions 6 and 7. Q.E.D.

Explanation on semantics: This corollary means that for each morphism T
s f ��

Self-Xn∈T , there is a morphism 1
s f �� Self-Xn∈T

ω generating member in Self-Xn∈T
ω .
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That is, morphism T
s f �� Self-Xn∈T generates series of self-∗ facets and 1

s f ��

Self-Xn∈T
ω constructs the set of series of self-∗ facets.

For series of self-∗ facets, we can define a mechanism to generate them. This mecha-

nism consists of an object T equipping with structural morphisms 1
0 ��T

succ ��T

with the property that for Self-Xn∈T , any 1
f0 �� Self-Xn∈T and Self-Xn∈T next ��

Self-Xn∈T then there exists a unique morphism T
s f �� Self-Xn∈T such that the

following diagram commutes

1 0 ��

f0

���
��

��
��

��
��

��
��

T
succ ��

s f

��

T

s f

��
Self-Xn∈T

next
��Self-Xn∈T

(64)

Definition 8 (Construction of series of self-∗ facets) We define a construction mor-
phism of series of self-∗ facets, denoted by ‡, such that

Self-Xn∈T × [T
s f ��Self-Xn∈T ]

‡ ��[T
s f ��Self-Xn∈T ] (65)

Explanation on semantics: This definition means that ‡(A × B
f×g ��C × D ) =

A‡B
f ‡g ��C‡D . It follows that any series of self-∗ facets T

s f �� Self-Xn∈T

can be represented in a format including two parts of head and tail to be connected
by “‡” such that

T
s f ��Self-Xn∈T equiv≡ 1

0 ���� �	

f0

��T
s f ��Self-Xn∈T ‡1

t>0 ���� �	

ft>0

��T
s f ��Self-Xn∈T

(66)

where 1
0 ���� �	

f0

��T
s f ��Self-Xn∈T = s f (0) and 1

t>0 ���� �	

ft>0

��T
s f ��Self-Xn∈T = (s f (1),

s f (2), . . .) to be called head and tail, respectively.

Definition 9 (Head of series of self-∗ facets) We define a head construction mor-

phism, denoted by 1
0 �� ( ) , such that

1
0 �� ( ) : [T

s f �� Self-Xn∈T ] �� Self-Xn∈T (67)
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Explanation on semantics: This definition states that ∀(a‡s)[(a‡s) ∈ [T
s f ��

Self-Xn∈T ] =⇒ ∃! f0[ f0 ∈ Self-Xn∈T & 1
0 �� (a‡s) = a = f0]]

It follows that 1
0 ��(T

s f ��Self-Xn∈T )
equiv≡ 1

0 ��T
s f ��Self-Xn∈T .

Definition 10 (Tail of series of self-∗ facets) We define a tail construction mor-
phism, denoted by ( )′, such that

( )′ : [T
s f ��Self-Xn∈T ] ��[T

s f ��Self-Xn∈T ] (68)

Explanation on semantics: This definition means that ∀(a‡s)[(a‡s) ∈ [T
s f ��

Self-Xn∈T ] =⇒ ∃!( f1, f2, . . .)[( f1, f2, . . .) ∈ [T
s f ��Self-Xn∈T ] & (a‡s)′ = s =

( f1, f2, . . .)]]

As a convention, ( )〈n〉 denotes applying recursively the ( )′ n times. Thus, specif-
ically, ( )〈2〉, ( )〈1〉, and ( )〈0〉 stand for (( )′)′, ( )′, and ( ), respectively.

It follows that the first member of series of self-∗ facets T
s f ��Self-Xn∈T is given

by

1
0 �� ((T

s f ��Self-Xn∈T )′)
equiv≡ 1 1 ��T

s f ��Self-Xn∈T (69)

and, in general, for every k ∈ T the k-th member of series of self-∗ facets T
s f ��

Self-Xn∈T is provided by

1
0 �� ((T

s f ��Self-Xn∈T )〈k〉)
equiv≡ 1

k ��T
s f ��Self-Xn∈T (70)

Series of self-∗ facets to be an infinite sequence of all ft∈T is viewed and treated

as single mathematical entity, so the derivative of series of self-∗ facets T
s f ��

Self-Xn∈T is given by (T
s f ��Self-Xn∈T )′

Now using this notation for derivative of series of self-∗ facets, we can specify series

of self-∗ facets T
s f �� Self-Xn∈T as in

Definition 11 A series of self-∗ facets T
s f ��Self-Xn∈T can be specified by

– Initial value: 1
0 ��T

s f ��Self-Xn∈T and

– Differential equation: ((T
s f ��Self-Xn∈T )〈n〉)′ = (T

s f ��Self-Xn∈T )〈n+1〉
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Explanation on semantics: The initial value of T
s f ��Self-Xn∈T is defined as

its first element 1
0 �� T

s f �� Self-Xn∈T , and the derivative of series of self-∗

facets, denoted by (T
s f �� Self-Xn∈T )′, is defined by ((T

s f ��Self-Xn∈T )〈n〉)′ =
(T

s f �� Self-Xn∈T )〈n+1〉, for any integer n in T . In other words, the initial value and

derivative equal the head and tail of T
s f ��Self-Xn∈T , respectively. The behav-

ior of a series of self-∗ facets T
s f ��Self-Xn∈T consists of two aspects: it allows

for the observation of its initial value 1
0 ��T

s f �� Self-Xn∈T ; and it can make

an evolution to the new series of self-∗ facets (T
s f ��Self-Xn∈T )′, consisting of

the original series of self-∗ facets from which the first element has been removed.

The initial value of (T
s f ��Self-Xn∈T )′, which is 1

0 �� ((T
s f ��Self-Xn∈T )′) =

1 1 ��T
s f �� Self-Xn∈T can in its turn be observed, but note that we have to

move from T
s f �� Self-Xn∈T to (T

s f ��Self-Xn∈T )′ first in order to do so. Now
a behavioral differential equation defines a series of self-∗ facets by specifying its
initial value together with a description of its derivative, which tells us how to con-
tinue.

Note: Every member ft∈T in Self-Xn∈T can be considered as a series of self-∗ facets
in the following manner. For every ft∈T in Self-Xn∈T , a unique series of self-∗ facets
is defined by morphism f :

1
ft ���� �	

( ft ,◦,◦,...)

��Self-Xn∈T f ��Self-Xn∈T
ω (71)

such that the equation ft ; f = ( fi, ◦, ◦, . . .) holds, where ◦ denotes empty member
(or null member) in Self-Xn∈T . Thus ( ft , ◦, ◦, . . .) is in Self-Xn∈T

ω .

Definition 12 (Equivalence) For any T
s f 1 ��Self-Xn∈T and T

s f 2 ��Self-Xn∈T ,

sf1 = sf2 iff 1
t ��T

s f 1 ��Self-Xn∈T = 1
t ��T

s f 2 ��Self-Xn∈T with every t
in T .

Definition 13 (Bisimulation) Bisimulation on Self-Xn∈T
ω is a relation, denoted by

∼, between series of self-∗ facets T
s f 1 ��Self-Xn∈T and T

s f 2 ��Self-Xn∈T such

that if s f 1 ∼ s f 2 then 1
0 ��(s f 1) = 1

0 ��(s f 2) and (s f 1)′ ∼ (s f 2)′.

Two series of self-∗ facets are bisimular if, regarding their behaviors, each of the
series “simulates” the other and vice versa. In other words, each of the series cannot
be distinguished from the other by the observation. Let us do the following exercises
related to the bisimulation between series of self-∗ facets.
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Exercise 10 Let s f , s f 1 and s f 2 be in Self-Xn∈T
ω . Show that if s f ∼ s f 1 and s f 1 ∼

s f 2 then (s f ∼ s f 1) ◦ (s f 1 ∼ s f 2) = s f ∼ s f 2, where the symbol ◦ denotes a
relational composition. For more descriptive notation, we can write this in the form

s f ∼ s f 1, s f 1 ∼ s f 2

(s f ∼ s f 1) ◦ (s f 1 ∼ s f 2) = s f ∼ s f 2
(72)

and conversely, if s f ∼ s f 2 then there exists s f 1 such that s f ∼ s f 1 and s f 1 ∼ s f 2.
This can be written as

s f ∼ s f 2

∃s f 1 : s f ∼ s f 1 and s f 1 ∼ s f 2
(73)

Solution Proving (72) originates as the result of the truth that the relational com-
position between two bisimulations L1 ⊆ s f × s f 1 and L2 ⊆ s f 1 × s f 2 is a
bisimulation obtained by L1 ◦ L2 = {〈x, y〉 | x L1 z and z L2 y for some z ∈ s f 1},
where x ∈ s f , z ∈ s f 1 and y ∈ s f 2.

Proving (73) comes from the fact that there are always s f 1 = s f or s f 1 = s f 2
as simply as they can. Hence, (73) is always true in general. �

Exercise 11 Let s fi,∀i ∈ N, be in Self-Xn∈T
ω and

⋃
i∈N

be union of a family of sets.

Show that

s f ∼ s fi with i ∈ N⋃
i∈N

(s f ∼ s fi) = s f ∼ ⋃
i∈N

s fi
(74)

and conversely,

s f ∼ ⋃
i∈N

s fi

∃i ∈ N : s f ∼ s fi
(75)

Solution Proving (74) stems straightforwardly from the fact that s f bisimulates s fi

(i.e., s f ∼ s fi) then, s f bisimulates each series in
⋃
i∈N

s fi.

Conversely, proving (75) develops as the result of the fact that for each 〈x, y〉 ∈⋃
i∈N

(s f × s fi), there exists i ∈ N such that 〈x, y〉 ∈ s f × s fi. In other words, it is

formally denoted by
⋃
i∈N

(s f ×s fi) = {〈x, y〉 | ∃i ∈ N : x ∈ s f and y ∈ s fi}, where

x ∈ s f and y ∈ s fi. �

The union of all bisimulations between s f and s fi (i.e.,
⋃
i∈N

(s f ∼ s fi) ) is the greatest

bisimulation. The greatest bisimulation is called the bisimulation equivalence or
bisimilarity [23, 42] (again denoted by the notation ∼).
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Exercise 12 Check that the bisimilarity ∼ on
⋃
i∈N

(s f ∼ s fi) is an equivalence

relation.

Solution In fact, a bisimilarity ∼ on
⋃
i∈N

(s f ∼ s fi) is a binary relation ∼ on
⋃
i∈N

(s f ∼ s fi), which is reflexive, symmetric and transitive. In other words, the

following properties hold for ∼
• Reflexivity:

∀(a ∼ b) ∈ ⋃
i∈N

(s f ∼ s fi)

(a ∼ b) ∼ (a ∼ b)
(76)

• Symmetry: ∀(a ∼ b), (c ∼ d) ∈ ⋃
i∈N

(s f ∼ s fi),

(a ∼ b) ∼ (c ∼ d)

(c ∼ d) ∼ (a ∼ b)
(77)

• Transitivity: ∀(a ∼ b), (c ∼ d), (e ∼ f ) ∈ ⋃
i∈N

(s f ∼ s fi),

((a ∼ b) ∼ (c ∼ d))
∧

((c ∼ d) ∼ (e ∼ f ))

(a ∼ b) ∼ (e ∼ f )
(78)

to be an equivalence relation on
⋃
i∈N

(s f ∼ s fi). �

For some constraint α , if s f 1 ∼ s f 2 then two series s f 1 and s f 2 have the following
relation.

s f 1 |= α
s f 2 |= α

(79)

That is, if series s f 1 satisfies constraint α then this constraint is still preserved on
series s f 2. Thus it is read as s f 1 ∼ s f 2 in the constraint of α (and denoted by
s f 1 ∼α s f 2).

For validating whether s f 1 = s f 2, a powerful method is so-called proof principle
of coinduction [43] that states as follows:

Theorem 1 (Coinduction) For any T
s f 1 ��Self-Xn∈T and T

s f 2 ��Self-Xn∈T , if
s f 1 ∼ s f 2 then s f 1 = s f 2.

Proof In fact, for two series of self-∗ facets s f 1 and s f 2 and a bisimulation
s f 1 ∼ s f 2. We see that by inductive bisimulation for k ∈ T , then s f 1〈k〉 ∼ s f 2〈k〉.

Therefore, by Definition 13, 1
0 �� (s f 1〈k〉) = 1

0 �� (s f 2〈k〉) . By the equivalence
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in (70), then 1
k ��s f 1 = 1

k ��s f 2 with every k ∈ T . It follows that, by Defi-
nition 12, we obtain s f 1 = s f 2. Q.E.D.

Hence in order to prove the equivalence between two series of self-∗ facets s f 1 and
s f 2, it is sufficient to establish the existence of a bisimulation relation s f 1 ∼ s f 2.
In other words, using coinduction we can justify the equivalence between two series
of self-∗ facets s f 1 and s f 2 in Self-Xn∈T

ω .

Exercise 13 (Generating series of self-∗ facets) For every sf in Self-Xn∈T
ω , show

that

s f = 1
0 �� (s f )‡(s f )′ (80)

Solution This stems from the coinductive proof principle in Theorem 1. In fact, it

is easy to check the following bisimulation s f ∼ 1
0 �� (s f )‡(s f )′ . It follows that

s f = 1
0 ��(s f )‡(s f )′ �

In (80), operation ‡ as a kind of series integration, the exercise states that series
derivation and series integration are inverse operations. It gives a way to obtain s f

from (s f )′ and the initial value 1
0 �� (s f ). As a result, the exercise allows us to

reach solution of differential equations in an algebraic manner.

9 Discussions and Comparisons

The aim of this chapter has been both to give an in-depth analysis as well as to
present the new material on the notion of self-∗ computing. Below we briefly discuss
the Wang’s approach in [53] and compare it with our development.

• In the paper entitled “Toward Theoretical Foundations of Autonomic Comput-
ing” [53], a particular way of considering AC has been approached as a novel
computing system at the highest level of machine intelligence, whose goal- and
inference-driven computational behaviors have been expressed on top of imper-
ative computing (IC) techniques with event-,time-, and interrupt-driven com-
putational behaviors. By that approach, Wang has developed the overarching
foundations and engineering paradigms of AC including the notions of behav-
iorism, cognitive informatics, denotational mathematics, and intelligent science.
In particular, the paper has presented the theorems of the necessary and suffi-
cient conditions of IC and AC, and the generic intelligence model of natural and
machine intelligence for further dealing with advanced AC techniques and their
engineering applications.

However, by our approach, each computational behavior defined by Y. Wang
in [53] becomes really an algebraic object of category. In addition, imperative
computing systems, adaptive computing systems, and autonomic computing sys-
tems are just instances of a functor on such the category.
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• In the considered context, we apply the category theory, which deals in an abstract
way with algebraic objects and relationships between them for specifying interac-
tion behaviors in ANCSs. For modeling, analyzing, and verifying the interaction
behaviors, category theory is much better-approaching than other ones such as
process algebras (or process calculi), FSM (Finite State Machine), or UML
(Unified Modeling Language). In fact, the categorical approach becomes more
powerful since process algebras and FSM are just of algebraic objects of cate-
gory and UML is really a semi-formal approach. Categories were first described
by Samuel Eilenberg and Saunders Mac Lane in 1945 [29], but have since
grown substantially to become a branch of modern mathematics. Category theory
spreads its influence over the development of both mathematics and theoretical
computer science. The categorical structures themselves are still the subject of
active research, including work to increase their range of practical applicability.

10 Conclusions

In this chapter, we have rigorously approached to the notion of self-∗ in ANCSs
from which formal aspects of the self-∗ emerge.

We have started with investigating self-∗ in DANCSs and NANCSs, where we
have modeled configuration of the system at every adaptation step as a member in
the set Sys × Contexti∈T , then self-∗ as a morphism from a configuration to another
and self-∗ facet as a member of self-∗. Moreover, Self-Xi∈T has been constructed

as a self-∗ monoid to shape series T
s f �� Self-Xi∈T of self-∗ facets. By the self-∗

monoids, we have formed Cat(Self-X) to be a category of the self-∗ monoids for
discovering the significant properties of the self-∗.
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