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Abstract. A compact analog programmable multidimensional radial-
basis-function (RBF)-based classifier is demonstrated in this chapter.
The probability distribution of each feature in the templates is modeled
by a Gaussian function that is approximately realized by the bell-shaped
transfer characteristics of a proposed floating-gate bump circuit. The
maximum likelihood, the mean, and the variance of the distribution are
stored in floating-gate transistors and are independently programmable.
By cascading these floating-gate bump circuits, the overall transfer char-
acteristics approximate a multivariate Gaussian function with a diagonal
covariance matrix. An array of these circuits constitute a compact multi-
dimensional RBF-based classifier that can easily implement a Gaussian
mixture model. When followed by a winner-take-all circuit, the RBF-
based classifier forms an analog vector quantizer. Receiver operating
characteristic curves and equal error rate are used to evaluate the per-
formance of the RBF-based classifier as well as a resultant analog vector
quantizer. It is shown that the classifier performance is comparable to
that of digital counterparts. The proposed approach can be at least two
orders of magnitude more power efficient than the digital microprocessors
at the same task.

1 Motivations for Analog RBF Classifier

The aggressive scaling of silicon technologies has led to transistors and many
sensors becoming faster and smaller. The trend toward integrating sensors, in-
terface circuits, and microprocessors into a single package or into a single chip
is more and more prevalent. Fig. 1A illustrates the block diagram of a typical
microsystem, which receives analog inputs via sensors and performs classifica-
tion, decision-making, or, in a more general term, information-refinement tasks
in the digital domain. Although fabrication and packaging technologies enable
an unprecedented number of components to be packed into a small volume, the
accompanying power density can be higher than ever, which has become one
of the bottle-neck factors in the microsystem development. If the information-
refinement tasks can be performed in the analog domain with less power con-
sumption, the specifications for the analog-to-digital-converters, which are usu-
ally power-hungry, can be relaxed. In some cases, analog-to-digital conversion can
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Fig. 1. A: The block diagram of a typical microsystem. B: An analog RBF-based
classifier in an analog front-end for speech recognition includes a band-pass-filter bank
based analog Cepstrum generator, an analog RBF-based classifier, and a continuous-
time hidden Markov model. C: The block diagram of an analog RBF-based classifier
which is composed of an array of the proposed floating-gate bump cells. Followed by a
winner-take-all circuit, it results in a highly compact and power-efficient analog vector
quantizer.

be avoided altogether. In such systems, multivariate Gaussian response func-
tions are critical building blocks for a variety of applications, such as radial-
basis-function(RBF)-based classifiers, Gaussian mixture modeling of data, and
vector quantizers. This chapter discusses the development of an analog Gaus-
sian response function having a diagonal covariance matrix and demonstrates its
application to vector quantization.

Fig. 1B illustrates one possible application of this work as part of an analog
speech recognizer [1] that includes a band-pass-filter bank based analog Cep-
strum generator, an analog RBF-based classifier, and a winner-take-all (WTA)
stage, or a continuous-time hidden Markov model (HMM) block built from pro-
grammable analog waveguide stages. The input to the HMM stage could repre-
sent the RBF response directly or it could pass through a logarithmic element
first. By performing analog signal processing in the front end, not only the com-
putational load of the subsequent digital processor can be reduced, but also
the required specifications for the analog-to-digital converters can be relaxed in
terms of speed, accuracy, or both. As a result, the entire system can be more
power efficient.

In this chapter, a highly compact and power-efficient, programmable ana-
log RBF-based classifier is demonstrated. It is at least two orders of magnitude
more power efficient than the digital counterparts. As illustrated in Fig. 1C,
the analog RBF-based classifier is composed of an array of proposed floating-
gate bump cells having bell-shaped transfer characteristics that can realize the
Gaussian functions. The height, the width, and the center of a bump circuit
transfer curve, which represent the maximum likelihood, the variance, and the
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Fig. 2. A: Schematic of a conventional bump circuit introduced in [7]. B: Comparison
between the normalized Gaussian function and the normalized Bump function.

mean of a template distribution respectively, can be independently programmed.
The ability to program these three parameters empowers the classifiers to fit into
different scenarios with the full use of statistical information up to the second mo-
ment. When followed by a winner-take-all stage, an RBF-based classifier forms
a multi-dimensional analog vector quantizer.

A vector quantizer compares distances or similarities between an input vector
and the stored templates. It classifies the input data to the most representative
template. Vector quantization is a typical technique used in pattern recognition
and data compression. Crucial issues of the vector quantizer implementation
concern the storage efficiency and the computational cost for searching the best-
matching template. In the past decade, efficient digital [2, 3] and analog [4–6]
hardware vector quantizers have been developed. In general, the analog vector
quantizers have been shown to be more power efficient than their digital counter-
parts. However, in a previous design [4], the computational efficiency is partially
due to the fact that only the mean absolute distances between the input vec-
tor and the templates are compared instead of considering the possible feature
distributions. To have better approximation to the Gaussian distribution, many
variations of analog RBF circuits are designed [6–11]. Among these previous
works, the simple “bump” and “anti-bump” circuits in [7] are the most classic
because of their simplicity.

2 Bump circuits

The schematic of a conventional bump circuit in [7] is shown in Fig. 2A. If
all transistors operate in the subthreshold region, the branch currents in the
differential pair can be expressed as

I1 =
Ib

1 + e−κ∆Vin/UT
, I2 =

Ib

1 + eκ∆Vin/UT
, (1)
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where κ is the subthreshold slope factor, UT is the thermal voltage, and ∆Vin =
Vin1 − Vin2. The output current is the harmonic mean of I1 and I2 and can be
described as

Iout =
I1I2

I1 + I2
=

Ib

2 + eκ∆Vin/UT + e−κ∆Vin/UT
=

Ib

2
sech2

(

κ∆Vin

2UT

)

. (2)

The normalized bump function is compared with the normalized Gaussian func-
tion as shown in Fig. 2B. This simple circuit can implement the exponential
decay behavior of a Gaussian function. It is noticeable that, from (2), the width
of the transfer characteristic is fixed by the ratio of κ/UT.

The analog RBF or vector quantization circuits reported in [6–11] require
extra circuits to store or to periodically refresh template data. In [5, 12, 13],
floating-gate transistors are used to implement the bump and anti-bump circuits.
Because the template data are stored in the form of charges on floating gates,
the circuits are very compact. Particularly in [12, 13], two adaptive versions
of the floating-gate bump and anti-bump circuits are introduced to implement
competitive learning. Although the bump centers in these circuits are adaptive
to the mean values, the bump widths are still constant. As will be shown later,
the floating-gate bump circuit introduced in this chapter has the potential to
adapt to both the mean and the variance of the distribution.

3 Programmable Floating-gate Bump circuit

In the proposed analog classifier, the Gaussian response function is approximated
by the bell-shaped transfer characteristics of a floating-gate bump circuit. The
height, the width, and the center of the transfer curve represent the maximum
likelihood, the variance, and the mean of a distribution respectively. Adjusting
these parameters is equal to pre-scaling input signals in the analog fashion so that
the circuit outputs can fall into the effective input range of the following stage.
For example, in the analog vector quantizer implementation, despite the different
distributions in different applications, the required precision of the following
WTA circuit can remain relaxed if the input signals can be scaled properly.

The schematics of the proposed floating-gate bump circuit and its bias gen-
eration block are shown in Fig. 3. All floating-gate transistors have two in-
put capacitances and all input capacitances are of the same size. The proposed
floating-gate bump circuit is composed of three parts: an inverse generation
block, a conventional bump circuit, and in between a fully differential variable
gain amplifier (VGA).

The inverse generation block, made up of two floating-gate summing am-
plifiers, provides the complementary input voltages to the VGA so that the
floating-gate common-mode voltage of M21 and M22 as well as the outputs of
the VGA are independent of the input signal common-mode level. If the charges
on M13 and M14 are matched and the transistors are in the saturation region,

Vin1 + V1c = Vin2 + V2c = Vconst, (3)
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Fig. 3. A: The symbol of a two-input floating-gate pMOS transistor. B: The schematic
of the bias generation circuit for the proposed floating-gate bump circuit. C: The
transfer characteristic of the inverse generation block. D: The schematic of the proposed
bump circuit that is composed of an inverse generation block, a fully differential variable
gain amplifier (VGA), and a conventional bump circuit.

where Vconst only depends on the bias voltage, Vb, and the charges on M13

and M14. If the charge on M02 in the bias generation circuit also matches that
on M13 and M14, the generated voltage, Vb, provides the summing amplifiers
an operating range that is one VDSsat away from the supply rails, as shown in
Fig. 3C.

The floating-gate voltages on M21 and M22 can be expressed as

Vfg,21 =
1

2
(Vin1 + Vconst − Vin2) +

Q21

CT
=

1

2
∆Vin + VQ,cm +

1

2
VQ,dm (4)

Vfg,22 =
1

2
(Vin2 + Vconst − Vin1) +

Q22

CT
= −

1

2
∆Vin + VQ,cm −

1

2
VQ,dm, (5)

where ∆Vin = Vin1 − Vin2, Q21 and Q22 are the amounts of charge on M21 and
M22 respectively, CT is the total capacitance seen from a floating gate, and

VQ,cm =
1

2

(

Q21 + Q22

CT
+ Vconst

)

, VQ,dm =
Q21 − Q22

CT
. (6)
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Fig. 4. Measured variable gain amplifier transfer characteristics. Vin2 is fixed at VDD/2
and Vin1 is swept from 0V to VDD, where VDD is 3.3V. In the programming mode, the
control gate voltages are set to be −∆VQ,cm∓VQ,dm/2 and the floating-gate transistors
are programmed to have 1 µA of current. A: The differential charge on M21 and M22 are
programmed to several different levels and the amount of the common-mode charge
is fixed. B: The common-mode charge on M21 and M22 are programmed to several
different levels and the amount of the differential charge is fixed.

From (4) and (5), these two floating-gate voltages do not depend on the input
signal common-mode level.

The variable gain of the VGA stems from the nonlinearity of the transfer
function from the floating-gate voltage, Vfg,21 (or Vfg,22), to the diode-connected
transistor drain voltage, V1 (or V2). Several pairs of the transfer curves corre-
sponding to different amounts of the charge on the floating gates are measured
and are shown in Fig. 4. The value of ∆Vin at the intersection indicates the
center of the bell-shaped transfer curve. As shown in Fig. 4A, the value of ∆Vin

at the intersection shifts as the differential charge changes, but the slopes at
the intersection are invariant. Thus, by programming the differential charge, the
center of the transfer function can be tuned without altering the width. On
the other hand, as shown in Fig. 4B, the slopes at the intersection point varies
with the common-mode charge while the value of ∆Vin at the intersection does
not. Therefore, we can program the common-mode charge to tune the width of
the bell-shaped transfer characteristics without affecting the center. Because the
template information are stored in a pair of floating-gate transistors as in [12,13],
this circuit has the potential to implement adaptive learning algorithms with not
only an adaptive mean but also an adaptive variance.

The detailed derivations of the relation between the VGA gain and the
common-mode charge are given in the appendix. The final equation is

∆Vout

∆Vin
≈ −γ

(

1 + e
−

γκp
2UT

(VDD−VQ,cm−VT0,p)
)

= η, (7)

where γ =
κp

κn

√

I0,pWpLn

I0,nLpWn
, the subscripts “p” and “n” refer to the pMOS and

nMOS transistors respectively, I0 is the subthreshold pre-exponential current
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Fig. 5. Gaussian fits of the transfer curves and the width dependance. A: Compari-
son of the measured 1D bumps (circles) and the corresponding Gaussian fits (dashed
lines). One of the bump input voltages is fixed at VDD/2, where VDD is 3.3V through
the measurement. The extracted standard deviation varies 5.87 times and the mean
only shifts 4.23%. The minimum achievable extracted standard deviation is 0.199V.
B: The width and common-mode charge relation in the semi-logarithmic scale. The
width is characterized by the extracted standard deviation, σ. The shift of the pro-
grammed common-mode floating gate voltage, ∆VQ,cm, represents the common-mode
charge level. The dashed line is the exponential curve fit.

factor, W and L are the dimensions of a transistor, κ is the subthreshold slope
factor, VT0 is the threshold voltage, and UT is the thermal voltage. From (2),
the transfer function of the complete bump circuit can be expressed as

Iout =
2Ib

2 + eκη∆Vin/UT + e−κη∆Vin/UT
, (8)

which is used to approximate a Gaussian function. By adjusting VQ,cm, the
magnitude of the VGA gain increases exponentially and the extracted standard
deviation decreases exponentially.

In Fig. 5A, the common-mode charge is programmed to several different
levels and the transfer curves with different widths are measured. The bell-
shaped curves are compared with their correspondent Gaussian fits. In Fig. 5, the
extracted standard deviation varies 5.87 times and the mean only shifts 4.23%.
In the semi-logarithmic plot of Fig. 5B, the extracted standard deviation, σ,
exponentially depends on the common-mode charge as predicted by (7). The
minimum achievable extracted standard deviation from the measurements is
0.199V, which is set by the maximum gain of the VGA. If two diode-connected
nMOS transistors are used as the load, the maximum VGA gain will be doubled
and the minimum achievable standard deviation can be reduced by half.

A diode-connected transistor, M37, in the bump circuit converts the output
current into a voltage. By feeding this voltage to the tail transistor, M30, in the
next stage bump circuit as shown in Fig. 6, the final output current approximates
a multivariate Gaussian function with a diagonal covariance matrix. Although
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Fig. 6. By connecting the diode-connected output transistor to the tail transistor of
the next stage bump cell, the resulting output current can approximate a multivariate
Gaussian function with a diagonal covariance matrix.

A B

Fig. 7. Measurement results from two cascading floating-gate bump circuits. ∆VX is the
input voltage difference ∆Vin = Vin1 −Vin2 of the first stage floating-gate bump circuit
and ∆VY is the input voltage difference of the second stage. In both stages, Vin2 =
VDD/2. The common-mode charges are programmed to different levels to approximate
bivariate Gaussian functions with different variance.

the feature dimension can be increased by cascading more floating-gate bump
cells, the bandwidth of the classifier decreases. The mismatches between the
floating-gate bump circuits can be trimmed out by using floating-gate program-
ming techniques. In Fig. 7, two 2-D “bumps” with different widths approximating
bivariate Gaussian functions with different standard deviations are shown. The
output currents of an array of these floating-gate bump circuits can easily be
summed up to implement GMMs.
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Fig. 8. A: Measured injection characterization points (circles) and the corresponding
curve fits (dashed lines). The pulse width is fixed at 200µsec. 10 different values of Vds

ranging from 5.6V to 6.5V and 30 channel current levels ranging from 20nA to 20µA
are used to obtain the curve fits for each curve. Cubic functions are used to regress the
nonlinear functions g(·) and f(·) in (10). B: The block diagram of programming an
array of floating-gate transistors. Drain-lines and gate-lines are shared in rows and in
columns respectively. By applying VDD to unselected drain-lines and gate-lines, floating-
gate transistors can be programmed individually.

4 Programming Floating-gate Transistor Array

How to accurately programming an array of floating-gate transistors is a critical
technique in the development of the proposed analog classifier. Fowler-Nordheim
tunneling and channel hot electron injection mechanisms are used to program
charge on floating gates. The techniques of programming an array of floating-gate
transistors have been detailed in many previous works [14, 15]. The floating-
gate programming method and the way to program an array of floating-gate
transistors will be briefly reviewed in this section.

Fowler-Nordheim tunneling removes electrons from the floating gates through
tunneling junctions, which are schematically represented by arrowheaded capac-
itors shown in Fig. 8B. Because of the poor selectivity, tunneling currents are
used as the global erase. To accurately program charges on floating gates, chan-
nel hot electron injection are employed. As detailed in [16], the injection current
can be modeled as

Iinj = Iinj0

(

Is

Is0

)α

e−∆Vds/Vinj , (9)

where Is is the channel current, Vinj is a device and bias dependent parameter,
and α is very close to 1. Instead of using this computationally complex physical
model as in [14], an empirical model proposed in [15] is used to perform floating-
gate transistor characterization and algorithmic programming.

Given a short pulse of Vds across a floating-gate device, the injection current
is proportional to ∆Is/Is0, where ∆Is = Is − Is0 is the increment of the channel

41



S.-Y. Peng, P. E. Hasler, D. V. Anderson

current. From (9), logarithmic of this ratio should be a linear function of Vds

and a nonlinear function of log(Is0/Iu), where Iu is an arbitrary unity current.
It can be expressed as

log

(

∆Is

Is0

)

= g

(

log

(

Is0

Iu

))

Vds + f

(

log

(

Is0

Iu

))

, (10)

where g(·) and f(·) are weakly linear functions when the transistor is in the
subthreshold region and are nonlinear when the transistor is above threshold.
In the characterization process, Vds and Is0 are given and ∆Is can be measured.
Thus, g(log(Is0/Iu)) and f(log(Is0/Iu)) can be regressed by high order poly-
nomial functions. After the characterization process, we obtain the resulting
polynomial regressive functions, f̂(log(Is0/Iu)) and ĝ(log(Is0/Iu)). In the pro-
gramming process, with the regressive functions, the appropriate Vds value for
injection can be predicted by

Vds =

log

(

∆Is

Is0

)

− f̂

(

log

(

Is0

Iu

))

ĝ

(

log

(

Is0

Iu

)) , (11)

where Is0 is the given starting point and Is is the target value.
The measured and the regressive results for the injection characterization

are compared in Fig. 8A. Only one floating-gate transistor in the floating-gate
array is used in the characterization, and the regressive functions are cubic. The
measured regressive coefficient mismatches in the array are less than 10%. To
avoid overshooting the target value, we always apply slightly shorter and smaller
pulses of Vds than the predicted values. Therefore, despite the mismatches and
the discrepancy between the curve fits and the measured data, the current level
of the floating-gate transistor approaches the target value asymptotically. The
precision of the programmed current level can be as accurate as 99.5%, which
is consistent with other approaches [14, 15]. As presented in [17], the retention
time for the charges on floating gates can last over 10 years at room temperature.
Because the bump circuit is a differential structure, the center of the transfer
curve would not vary with the temperature. However, its width depends on the
temperature because of the UT term in (7).

To program an array of the floating-gate bump circuits, floating-gate tran-
sistors are arranged as in Fig. 8B in the programming mode. There are two
conditions required for injection: a channel current and a high channel-to-drain
field. We can deactivate the unselected columns (or rows) by applying VDD to the
corresponding gate-lines (or drain-lines) so that there are no currents through
(or no fields across) the devices for injection. In this manner, each floating-gate
transistor can be isolated from others and can be programmed individually.

5 A Programmable Analog Vector Quantizer

A “FG-pFET & Mirror” block shown in Fig. 9A is added in front of the first
bump cell to program its tail current, which sets the height of the “bump.”
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Fig. 9. A: The schematic of the “FG-pFET & Mirror” block. The charge on the
pMOS transistor can be programmed to set the height of the bell-shaped transfer
curve. B: The schematic of a current mode winner-take-all circuit. Only the output
voltage of the winning cell will be high to indicate the best-matching template.

For the analog vector quantizer implementation, the final output currents of
the RBF-based classifier are duplicated and are fed into a simple current mode
winner-take-all circuit, the schematic of which is shown in Fig. 9B. Only the
output voltage of the winning cell will be high to indicate the best-matching
template.

To have the access to all drain and gate terminals of floating-gate transis-
tors in the programming mode, multiplexers are inserted into the circuits as
shown in Fig. 10. Most of the multiplexers are in the inverse generation and bias
generation blocks. Since only one bias generation block is needed for the whole
system, when the system is scaled up, the bias generation block does not cost
extra complexity. In the analog RBF-based classifier and the vector quantizer,
the same input voltage vector is compared with all stored templates. Therefore,
the inverse generation can be shared by the same column of bump cells, each
of which only includes a VGA and a conventional bump circuit. The number of
inverse generation blocks is equal to the dimension of the feature space. Together
with the gate-line and drain-line decoders, most of the programming overhead
circuitries are at the peripheries of the floating-gate bump cell array; therefore
the system can be easily scaled up and maintain high compactness. The com-
pactness and the ease of scaling up are important issues in the implementation
of an analog speech recognizer that requires more than a thousand of bump cells.
The final architecture of our analog vector quantizer is shown in Fig. 11.

Two examples are used to demonstrate the reconfigurability of the classifiers
as shown in Fig. 12. Four templates are used and their outputs are superposed in
a 3-D plot. The floating-gate transistors of other unused templates are tunneled
off. Four bell-shaped output currents emulate the bivariate Gaussian likelihood
functions of four templates. The thick solid lines at the bottom, indicate the
boundaries determined by the WTA outputs.
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connection in the operating mode. The tunneling junction capacitors are not shown for
simplicity. Most of the multiplexers are in the bias generation and inverse generation
blocks. Only two multiplexers are added in the bump cell that includes the VGA and
the conventional bump circuit.

6 Performance of The Analog Vector Quantizer

We have fabricated a prototyped analog vector quantizer in a 0.5µm CMOS
process. We also fabricated a 16 × 16 highly compact low-power version of an
analog vector quantizer in the 0.5µm CMOS process occupying less than 1.5 ×

1.5mm2. Some important parameters and measured results are listed in the
TABLE 1.

To measure the power consumption, several “bumps” are programmed with
identical width while other “bumps” are deactivated by tunneling their floating-
gate transistors off. The power consumption is averaged over the entire 2-D input
space. The slope of the curve in Fig. 13A indicates the average power consump-
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Fig. 11. Architecture of an analog vector quantizer. The core is the bump cell ar-
ray followed by a WTA circuit. The main complexity from programming are at the
peripheries and the system can be scaled up easily.

A B

Fig. 12. Configurable classification results. The measured bump output currents (circle
contours) and the WTA voltages (thick solid lines at the bottom) of four templates are
superposed in a single plot. VX and VY are the Vin1 in the first stage and the second
stage floating-gate bump circuits respectively. Both of their Vin2 terminals are fixed
at VDD/2. A: Four templates are programmed to have the same variance and evenly
spaced means. B: Four templates are programmed to have different variances with
evenly spaced means.

tion per bump cell with a specific value of width. The relation between the power
consumption and the extracted standard deviation is shown in Fig. 13B.

The VGA is the main source of the power consumption. The gain is tunable
when the nMOS transistors in the VGA operate in the transition between above
threshold and subthreshold regions. The width tunability can also result from
the nonlinearity of the pMOS transistors when they are in transition between
saturation and ohmic region. From simulation, to save the power consumed in
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Fig. 13. Relation between the power consumption and the extracted variance. A:

Measured power consumption of the analog vector quantizer with different number
of floating-gate bump cells being activated with a fixed width. The slope of the curves
indicate the average power consumption per bump cell. B: The relation between the
power consumption per bump and the extracted variance of the bell-shaped transfer
curve. The larger the variance is, the more the power consumption.

the VGA, we can make nMOS transistors longer to reduce the above-threshold
currents and raise the source voltages of M23 and M24 to reduce the headroom.

Because the RBF output current is in the nano-amp range and the band-
width of our current preamplifier for measurement is approximately 1KHz at
that current level, we can not measure the speed of our floating-gate bump
circuit directly, which is expected to be around mega-Hz range. We can only
measure the response time from the input to the WTA outputs. The measured
transient response of the analog vector quantizer is shown in Fig. 14A. One of
the speed bottlenecks of the system is the inverse generation block. For a given
width, the speed and the power depend on the amount of charge on M13 and
M14. With more electrons on the floating gates, the circuit can achieve higher
speed but with the cost of more power consumption as shown in Fig. 14B. The

Table 1. Analog Vector Quantizer Parameters

Size of VQ 7(templates)×2(components)

Area/Bump Cell 42 × 82 µm2

Area/WTA Cell 20 × 35 µm2

Power Supply Rail VDD = 3.3V

Power Consumption/Bump Cell 90µW ∼ 160µW

Response Time 20µ ∼ 40µsec

Floating-gate Programming Accuracy 99.5%

Retention Time 10 years @ 25◦C
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Fig. 14. Response time and speed-power trade-off of an analog vector quantizer. A:

The response time between the input voltage and the WTA output. B: The relation
between the response time and the power consumption for a given bump width. The
inverse generation block dominates the response time in the steep region. The VGA
dominates in the flat region. Charge on M13 and M14 can be programmed to optimize
the speed-power trade-off.

steep portion of the curve implies that the inverse generation block dominates.
In this region, we can increase the speed by consuming more power in the in-
verse generation block. The flat region in Fig. 14B indicates the VGA dominant
region. In this region, burning more power in the inverse generation block does
not improve the speed of the system. Thus, given a variance, we can program
the charges on M13 and M14 so that the system operates at the knee of the curve
to optimize the trade-off between the speed and the power consumption in the
inverse generation block.

Finally, we evaluate the computational accuracy of the analog RBF. Since
the computation method and errors are different from those of traditional digi-
tal approaches, generic comparisons of effective bit-accuracy do not make sense.
Rather, we choose to evaluate the impact of using the analog RBFs on system
performance. To this end receiver operating characteristic (ROC) curves and
equal error rate (EER) are adopted. Two separate 2D bumps are programmed
to have the same variance with a fixed separation as shown in Fig. 15. The
corresponding Gaussian fits are used as the actual probability density functions
(pdf) of two classes. Comparing these two pdf’s using different thresholds ren-
ders a ROC curve of these two Gaussian distributed classes that is used as the
evaluation reference. With the knowledge of the class distributions, comparing
the output currents using different thresholds generates a ROC curve for the 2D
bumps. Comparing each of the two WTA output voltages with different thresh-
olds generates two ROC curves that characterize the classification results of the
vector quantizer. The EER, which is the intersection of the ROC curve and the
−45◦ line as shown in Fig. 16A, is the usual operating point of classifiers. In
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Fig. 15. Distributions of two “bumps” used to evaluate the classifier performance.
In the measurements for performance evaluation, the separation of the center is kept
constant but the widths of these two “bumps” varies. The measured bump output
currents (circle contours) and the WTA voltages (thick solid lines at the bottom) of
two templates are superposed in a single plot. VX and VY are the values at the Vin1

input terminals of the first and the second floating-gate bump circuits respectively. The
Vin2 terminals in both stages are fixed at VDD/2.

Fig. 16B, both the ROC areas and the EER are plotted to investigate the effect
of the bump width on the performance. At the EER point, the performance of
the analog RBF classifier, which uses floating-gate bump circuits to approximate
Gaussian likelihood functions, is undistinguishable from that of an ideal RBF-
based classifier. Despite the finite gain of the WTA circuit, the performance of
the analog vector quantizer is still comparable to an ideal maximum likelihood
(ML) classifier. By optimizing the precision and speed of the WTA circuit, the
performance can be improved but it is beyond the scope of this chapter.

7 Power Efficiency Comparison

To compare the efficiency of our analog system with the DSP hardware, we es-
timate the metric of millions of multiply accumulates per second per milli-watt
(MMAC/s/mW) of our classifiers. When the system is scaled up, the efficiency
of the bump cells dominates the performance. Therefore, we consider the per-
formance of a single bump cell only.

Each Gaussian function is estimated as 10 MACs and can be evaluated
by a bump cell in less than 10µ sec (which is still an overestimate) with the
power consumption of 120µW or so. This is equivalent to 8.3 MMAC/s/mW.
The performance of commercial low-power DSP microprocessors ranges from 1
MMAC/s/mW to 10 MMAC/s/mW and a special designed high performance
DSP microprocessor in [18] is better than 50 MMAC/s/mW. If this comparison
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Fig. 16. ROC and EER performance of the classifiers. A: The ROC curves of the
Gaussian fits (squares), output currents of the 2D bumps (circles) and WTA output
voltages (triangles and diamonds) with the extracted σ = 0.55V. The Gaussian fits
are used as the actual pdf’s of the two classes and the corresponding ROC curve is
used as a reference. The intersection of the ROC curve and the −45◦ line is the EER
point, which is the usual operating point. B: The effects of different bump widths
on the receiver operating characteristic (ROC) area and the equal error rate (EER)
performance. The separation of the means of two classes is 1.2V. The results show that
the analog VQ is comparable to an ideal maximum-likelihood (ML) classifier.

is expanded to include the WTA function, the efficiency of the proposed analog
system will improve even more relative to the digital system.

Although our power efficiency is comparable to the digital system, our classi-
fier consumes much more power compared to other analog vector-matrix-multipli-
cation systems [19,20], the efficiency of which ranges from 37 to 175 MMAC/s/µW .
The reason is that the transistors M23 and M24 are operating far above thresh-
old. By making M21 and M22 long and raising the source voltages of M23 and
M24 (which is not available in the current chip), from simulation, the power con-
sumption can be easily reduce by at least two orders of magnitude. If the WTA
circuit is also optimized, it is anticipated that future ICs will be at least two to
three orders of magnitude more efficient than DSP microprocessors at the same
task.

8 Conclusion

In this chapter, a new programmable floating-gate bump circuit is demonstrated.
The height, the center and the width of its bell-shaped transfer characteristics
can be programmed individually. A multivariate radial basis function with a
diagonal matrix can be realized by cascading these bump cells. Based on the
new bump circuit, a novel compact RBF-based soft classifier is built. By adding
a simple current mode winner-take-all circuit, we implement an analog vector
quantizer. The performance and the efficiency of the classifiers are comparable to
the digital system. With slight modifications, the overall efficiency is anticipated
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to be improved by at least two to three orders of magnitude better than DSP
microprocessors.

Appendix

The nMOS transistors in the VGA are assumed in the transition between the
above-threshold and the subthreshold regions. The pMOS transistors are as-
sumed in the above-threshold region. Because the transfer characteristics of the
two branches are symmetric, we can use the half circuit technique to analyze the
VGA gain. By equating the currents flowing through the pMOS and nMOS tran-
sistors, we can have

I0,p

(

Wp

Lp

)

1

4U2
T

[κp(VDD − Vfg,21 − VT0,p)]
2

= I0,n

(

Wn

Ln

)

ln2
(

1 + e
κn

2UT
(V1−VT0,n)

)

(12)

where the subscripts of “p” and “n” refer to pMOS and nMOS transistors respec-
tively, I0 is the subthreshold pre-exponential current factor, κ is the subthreshold
slope factor, VT0 is the threshold voltage, and UT is the thermal voltage. At the
peak of the bell-shaped transfer curve, VQ,dm = 0 and

Vfg,21 =
1

2
∆Vin + VQ,cm

V1 = Vout,cm +
1

2
∆Vout,

where Vout,cm = (V1 + V2)/2, ∆Vout = V1 − V2. We can obtain the gain of the
VGA by differentiating (12) with respect to Vfg,21 and have

∆Vout

∆Vin
=

dV1

dVfg,21
= −γ

(

1 + e
−

κn
2UT
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)

=
−γ
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2UT
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≈ −γ
(

1 + e
−

γκp
2UT

(VDD−VQ,cm−VT0,p)
)

, (13)

where γ =
κp

κn

√

I0,pWpLn

I0,nLpWn
. Therefore, the gain increases approximately expo-

nentially with the common-mode charge and, accordingly, we can expect the
exponential relation between the extracted standard deviation of the transfer
curve and the common-mode charge.
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