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PREFACE 

 
 
 
 
This book contains extended and revised versions of the best 

papers that were presented during the fifteenth edition of the
IFIP/IEEE WG10.5 International Conference on Very Large Scale 
Integration, a global System-on-a-Chip Design & CAD conference.  
The 15th conference was held at the Georgia Institute of Technology, 
Atlanta, USA (October 15-17, 2007). Previous conferences have taken 
place in Edinburgh, Trondheim, Vancouver, Munich, Grenoble, 
Tokyo, Gramado, Lisbon, Montpellier, Darmstadt, Perth and Nice. 

 
The purpose of this conference, sponsored by IFIP TC 10 Working 

Group 10.5 and by the IEEE Council on Electronic Design 
Automation (CEDA), is to provide a forum to exchange ideas and 
show industrial and academic research results in the field of 
microelectronics design.  The current trend toward increasing chip 
integration and technology process advancements brings about 
stimulating new challenges both at the physical and system-design 
levels, as well in the test of these systems. VLSI-SoC conferences aim 
to address these exciting new issues.  

 
The 2007 edition of VLSI-SoC maintained the traditional structure, 

which has been successful at the previous VLSI-SoC conferences. The 
quality of submissions (109 papers) made the selection process 
difficult, but finally 46 papers and 13 posters were accepted for 
presentation in VLSI-SoC 2007. Out of the 46 full papers presented at 
the conference, 16 regular papers were chosen by a selection 
committee to have an extended and revised version included in this 
book. These selected papers have authors from Brazil, France, 
Germany, Italy, Israel, The Netherlands, Portugal, Serbia, Spain, 
Switzerland and the United States of America. 
 

VLSI-SoC 2007 was the culmination of many dedicated 
volunteers: paper authors, reviewers, session chairs, invited speakers 
and various committee chairs, especially the local arrangements 
organizers. We thank them all for their contribution.  

 



 
This book is intended for the VLSI community mainly to whom 

that did not have the chance to take part in the VLSI-SOC 2007 
Conference. The papers were selected to cover a wide variety of 
excellence in VLSI technology and the advanced research they 
describe. We hope you will enjoy reading this book and find it useful 
in your professional life and to the development of the VLSI 
community as a whole. 

 
 

 
 

 The Editors 
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130nm and 90nm CMOS Technologies 
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Abstract. Statistical process variations are a critical issue for circuit design 

strategies to ensure high yield in sub-100nm technologies. In this work we 

investigate the variability of flip-flop race immunity in 130nm and 90nm low 

power CMOS technologies. An on-chip measurement technique with resolution 

of ~1ps is used to characterize hold time violations of flip-flops in short logic 

paths, which are generated by clock-edge uncertainties in synchronous designs. 

Statistical die-to-die variations of hold time violations are measured in various 

register-to-register configurations and show overall 3σ die-to-die standard 

deviations of 12-16%. Mathematical methods to separate the measured 

variability between systematic and random variability are discussed, and the 

results presented. They show that while systematic variability is the major issue 

in 130nm, it is significantly decreased in 90nm technology due to better process 

control. Another important point is that the race immunity decreases about 30% 

in 90nm, showing that smaller clock skews can lead to violations in 90nm. 

Normality tests to check if the variability follows a normal Gaussian 

distribution are also presented. 

Introduction 

Modern synchronous digital designs necessarily include a large amount of flip-flops 

(FF) in pipeline stages to improve data throughput. FF timing is determined by the 

CLK-Q propagation time, setup time and hold time. Complying with the specified 

setup and hold times is a pre-requisite for a stable sampling of the data signal around 

the clock edge. Due to the increasing relevance of process, voltage and temperature 

variations for robust circuit operation in modern CMOS technologies on the one hand 

and the frequent use of FFs in microprocessor, DSP cores and dedicated hardware on 

the other hand, a precise statistical characterization of FF is mandatory. This has 

motivated investigations of variability of the FF propagation time using Monte Carlo 

simulation [1]. Statistical variations of setup and FF propagation times in critical 

paths are essential for maximum chip performance. In contrast to this, a violation of 

the hold time in short FF-logic-FF paths lead to complete chip failure. In this case 
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races in short pipeline stages are generated by a combination of clock skew and jitter

between sending and receiving FFs, and process variations within the circuits. The 

internal race immunity is a figure of merit to characterize the robustness of a FF 

against race conditions and is defined as the difference between clock-to-Q delay and 

hold time. Hence, the race immunity strongly depends on the specific FF type [2]. 

Especially scan chains for DFT schemes [3] are sensitive circuit structures since no 

logic is placed between the FFs. Several techniques for diagnosis of hold time failures 

in scan chains [3-6] as well as in generic short logic paths [7] are proposed. These 

techniques are applied for buffer insertion, i.e. hold time fixing, to increase the delay 

of these paths during chip design [8]. However, depending on the design and FF 

properties, without detailed analysis of the critical clock skew and process variability, 

the extra delay introduced during hold-time fixing can be over or under estimated. In 

this work, we therefore present a statistical analysis of the race immunity in several 

test paths, due to process variability in 130nm and 90nm CMOS technologies. The 

experimental data is obtained using a precise on-wafer measurement technique with 

~1ps resolution. This measurement technique has been presented in [9] for a 130nm 

CMOS technology and is here transferred to 90nm CMOS to facilitate a comparison 

between both technologies. 

Test Circuit and Timing Issues 

To evaluate the impact of statistical variations on hold time violations four different 

logic paths are considered. The two basic configurations are two simple pipeline 

stages with two master-slave edge-triggered FFs without logic between them, similar 

to one stage of a scan chain. Further pipelines including six small inverters between 

the FFs, represent short logic paths. The FFs used in this work are conventional rising 

edge-triggered master-slave FFs composed of CMOS transmission gates in the 

forward propagation path and C
2
MOS latches in the feedback loops [10] with typical 

library extensions such as input and output node isolations and local clock buffers. 

For each configuration a version with the weakest FF of the standard cell library, 

i.e. smallest transistor sizes and hence largest sensitivity to process variations, and a 

version with 8x increased driving strength is used. Comparing the results of both it is 

possible to analyze the impact of different transistor dimensions on the variability. 

The inverters used in both versions are of the minimum size, since these 

configurations represent typical non-critical paths where large driving capability is 

not required.  

To emulate clock uncertainties, the sending and receiving FFs are controlled by 

different clock signals. The clock signal CLK2 of the receiving FFs is generated from 

the launching clock CLK1 of the sending FF by a programmable delay line as shown 

in fig. 1. If this artificial clock skew is large enough, i.e. CLK2 arrives after CLK1 

and exceeds the internal race immunity tCLK-Q-tHOLD of the FF, a race is produced 

and detected if the output of both FFs are of same value at same time (Q1(t)=Q2(t)). 

The violation can be detected by initializing the FFs with opposite values, and 

applying a pulse in the data input, as shown in fig. 2. As long as Q1(t)≠Q2(t) pipeline 
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operation is correct. Equation (1) describes the timing conditions in the case of a 

violation: 

0var <∆−−−− tttt CLKskewholdQCLK  (1) 

FF1
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FF1

Strong

FF1

Weak

FF2

Strong

FF1

Strong

FF2

Weak

FF2

Strong

Q1

Q2

Q3

Q4

D

CLK2
CLK1

CLK

Programmable Delay Element

 

Fig. 1. Different test circuits with sensitivity to race conditions 

CLK1
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CLK2 + skew

D

Q1 = D2

Q2

Q2
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Fig. 2. Timing diagram showing hold time violation 

∆tvar includes variations from different sources. 

It is possible to see that the probability of a hold time violation receives 

contribution of the FF race immunity (that is inherent to the FF type and size used in 

the design), the maximum clock skew found in the circuit, and process variations. If 

the clock uncertainty is very well controlled and race immunity is large enough, 

process variability plays a minor role, but this is not the case of the majority of semi-

custom designs that have to meet a short time-to-market. Usually, the clock 

uncertainty and race immunity are of about the same order of magnitude. 
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Measurement Scheme 

To specify the critical clock skew producing a hold time violation, the artificial skew 

is programmable over a wide range of 80 steps corresponding to a resolution of ~1ps. 

The programmable delay line is composed of two inverters, and 80 NMOS/PMOS 

gate capacitances as load elements connected to the inverters via pass transistors. 

Using capacitances as programmable electrical fan out elements is advantageous since 

a sub-gate delay resolution is achieved. The capacitances and transistors have been 

carefully designed to be able to achieve steps of the desired resolution.  

Programming is done using an 80-stage shift register to control the inputs of the 

pass transistors. For coarse-grain clock skew shifting a multiplexer to enable or 

disable a further buffer chain is added. It is needed because the versions with 0 or 6 

inverters have very different critical clock skews. Fig. 3 shows the implemented 

circuit. 

CLK2

CLK
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CAP79on

.

.

.

.

.

.

.

.

.

extra_delay

80 caps

CLK1

 

Fig. 3. Schematics of the programmable delay line for the clock skew emulation 

To measure the absolute time produced by a specific setting of the programmable 

delay line, it is additionally placed in the middle of a ring oscillator. The ring 

oscillator is connected to an 11-stage frequency divider to monitor the output 

frequency. Thus, it is possible to determine the programmed delay based on 

measuring and comparing the frequencies achieved with different numbers of 

capacitances. Fig. 4 shows the final layout of the different circuits in the 130nm 

CMOS technology. 

For the measurement, first the settings for all combinations of the 80 capacitances 

are written into the shift register. Then the frequencies of the ring oscillator on each 

die are measured for all configurations to calibrate the programmable skews and to 

eliminate impact of systematic variations from the measurement accuracy. For 

measurement of the delay variations of the logic path, the delay line is initialized with 

minimum delay, and the delay is stepwise increased until a violation in the pipeline is 

detected. The corresponding delay estimated from the ring oscillator measurements is 

the critical clock skew for the given die and operating conditions. The procedure is 

repeated for each of the 4 test circuits considering the rising and falling input 

transitions. Fig. 5 shows the measurement flow. The flow was repeated at different 

voltages: 1.5 V (nominal voltage), 1.2 V and 0.9 V. 
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Fig. 4. Final Layout 
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Fig. 5. Measurement flow 

 



6      Gustavo Neuberger, Gilson Wirth, Fernanda Kastensmidt, Ricardo Reis 

Separation of Systematic and Random Residual Variations 

With the discussed measurement technique, it is possible to measure the overall 

variability on the wafer. However, for a deeper analysis, it is necessary to make 

mathematical transformations in the obtained data. Several methods to make the 

separation between the different components of the variability are present in the 

literature [11, 12]. In this work, we will focus in how to separate the data between 

systematic (over the wafer) variability and residual (within-die, local, or residuals due 

to imperfection in the measurement) variability. 

A simple but widely used method is the moving average. In this method, the 

measured value in each die is substituted by the average of the value in the die itself 

with the values of the neighbor dies. If the number of dies is large, the average 

window can be expanded. We will analyze the results using a 3x3 window (the die 

with its direct adjacent neighbors) and a 5x5 window (with neighbors up to 2 dies of 

distance). The drawback of this method is some deterioration in the borders, since we 

do not have all neighbors available for the average. 

Another common method is curve fitting. In this method, we take the measured 

data and apply a linear regression to find the curve that it approximates better. The 

curve can be a paraboloid, a plane, a Gaussian, and many others, depending on 

specific issues of the fabrication process. This is a more complex method, and 

requires a mathematic intensive computation. 

Normality Tests 

To evaluate the randomness and check if the measured variability data is a normal 

Gaussian, mathematical normality tests were performed in the results. There are 

several tests that are designed to check this normality [13]. Although it is possible to 

see that our data have strong systematic component and is clearly not normal 

Gaussian, after the separation between systematic and random residual variability in 

the previous section, the random residual component can possibly be normal 

Gaussian. 

The first test used in the data was the Wilks-Shapiro (W-S) test. It returns a number 

called p-value, which may lay between 0 and 1. The larger this number, more likely is 

the distribution to be normal. A p-value larger than 0.05 is said to be a normal 

Gaussian curve at the 95% confidence level. 

Another common test is the Anderson-Darling (A-D) normality test. The result of 

this test is a number larger than 0. But now, the smaller this number, more likely is 

the distribution to be normal. It is considered that a value smaller than 0.787 gives a 

normal Gaussian distribution with 95% confidence. The A-D normality test is a 

modification of the Kolmogorov-Smirnov (K-S) test and gives more weight to the 

tails than the K-S test. 

An alternative way to check the normality is to calculate the kurtosis and the 

skewness of the data. Kurtosis is based on the size of a distribution’s tails. A kurtosis 

of about 3 means a distribution very close to a normal distribution. Skewness is the 
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measure of the asymmetry of the distribution. A normal distribution should be 

symmetrical and present a skewness value equal to 0. 

For the measured data, these tests were made for all test circuits, using the total 

data, but also both systematic and random parts separated. The software used to make 

the tests was DataPlot from NIST/Sematech [14]. 

Experimental Results 

The circuits are fabricated in 130nm and 90nm low power CMOS technologies using 

regular-VT core devices. For the 130nm CMOS technology, 182 chips are measured 

on one wafer, while only 36 dies are available in 90nm CMOS due to a larger reticle 

size. Nominal supply voltages are Vdd = 1.5V for 130nm CMOS, and Vdd = 1.32V 

for in 90nm CMOS, respectively. The temperature was 25°C in both cases. 

First, the variability of the ring oscillator frequency over the wafers is analyzed, 

with different results (fig. 6). The 130nm wafer shows a typical global wafer variation 

with slower dies in the center of the wafer, while in 90nm the distribution seems to be 

more random, with smaller systematic variability, probably due to the larger reticle 

size and better controlled manufacturing process. The frequencies are normalized to 

omit confidential technology data. The faster circuits achieve resolutions less than 

1ps, while none of the chips had a resolution of more than 1.2ps. It is important to 

note that the 90nm wafer was a test and not a production wafer, and the systematic 

variability was further reduced before the technology entered in production, even 

though the test wafer presented an improvement in systematic variability, if compared 

to 130nm. 

Fig. 6. Normalized frequency variability of the RO (a) over the 130nm wafer, (b) over the 

90nm wafer 

Fig. 7 shows the die-to-die distribution of the critical clock skew for 0-1 transitions 

in all 4 test circuits in 130nm wafers. The expected Gaussian curve for normal 
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distributions is observed. The 90nm wafer shows similar Gaussian curve. Based on 

this data and repeating the measurement procedure for 1-0 transitions, the mean 

critical clock skew and the standard deviation are extracted. Table 1 summarizes the 

results for 130nm. The results are normalized again. 

 
Fig. 7. Measured distribution of the critical clock skews for rising transitions in 130 

wafer. The mean critical skew is set to 0 ps 

Table 1. Normalized hold time violations in 130nm wafer at VDD=1.5V and T=25° 

Circuit Transition µ σ σ / µ (%) 

Rising 100.00 4.96 4.96 weak FFs, 

no inverters Falling 109.95 4.87 4.43 

Rising 88.87 4.02 4.52 strong FFs, 

no inverters Falling 95.00 4.09 4.31 

Rising 181.70 7.92 4.36 weak FFs, 

6 inverters Falling 192.71 7.73 4.01 

Rising 170.54 7.48 4.39 strong FFs, 

6 inverters Falling 177.52 7.41 4.17 

 

The σ deviation of the delay can be up to 5% of the nominal value. The critical 

skews are in the range of the clock skew that can be expected in circuits using the 

same technology, showing that these statistical effects have to be considered during 

hold-time fixing at the end of the layout generation. It is important to note that using 

larger FFs, the absolute variation of the critical skew decreases, but the relative value 

remains similar, since these circuits are faster. This indicates that larger FFs have an 

increased probability of violation, since the clock skew needed to provoke the failure 

is smaller.  
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The test circuits with extra inverters have an expected larger absolute variability, 

but relatively it is smaller, showing that the FFs are more sensitive to process 

variations than the inverters, or a large number of inverters average the variability. 

Another important point is that the master-slave FFs used in the experiment 

typically have a small or even negative hold time, and consequently larger race 

immunity. Repeating the experiments for faster FFs that are used in high-speed 

designs and have larger hold times, the results would be even more critical. 

The impact of the supply voltage in the race immunity variability was also 

analyzed. Figure 8 shows the results for both race immunity average and standard 

deviation for all 8 test path combinations at 130nm technology. In the average, it can 

be observed that the race immunity average more than doubles when the supply 

voltage changes from 1.5V to 0.9V, which is a typical operating range for SoCs with 

dynamic voltage scaling. If the clock skew more than doubles also for the same 

voltage drop, the probability of hold time violation increases. However, if the change 

of clock skew is less than double, the probability will decrease. On the other hand, 

analyzing the standard deviation, it is possible to see that it increases from almost 5% 

to almost 7%. Considering that it is relative to the average, the increase in the 

variability is relatively larger than the increase in the average. 

Comparison of Average Critical Skews between Vdd's in 

130nm
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Fig. 8. Dependence of race immunity on different voltages: (a) average race immunity, (b) 

relative standard deviation of race immunity 

Figure 9 shows a graphical comparison of the results of race immunity found for 

both technologies. It is possible to see that the race immunity decreases about 30% 

from 130nm to 90nm. This is an expected value, since it is the speed-up from one 

technology to another. However, it is much more difficult to scale the clock skew in 

the same percentage in the scaling. It shows that the problem of hold time violations 

becomes more critical, and the clock skew and variability must be better controlled in 

newer technologies. 
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Comparison of Average Critical Skews between 130nm 

and 90nm
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Fig. 9. Comparison of race immunity absolute value 

The next step in the analysis was to apply the separation methods described in the 

previous section in the RO frequency variability. The three methods were compared: 

moving average with a 3x3 window, moving average with a 5x5 window, and curve 

fitting. Figure 10 shows the curves obtained for the 130nm wafer. In 130nm, the curve 

obtained was a paraboloid, what could be observed already in the original data. 

However, in the 90nm wafer, the original data was very random and difficult to see 

any systematic dependence, but the mathematical methods showed a slightly inclined 

plane, with ring oscillator frequency increasing slightly from one side of the wafer to 

the other. 

Regarding the numerical results, the standard deviation calculated with the 3x3 

moving average method was very close to the one found with the curve fitting 

method. However, the 5x5 moving average method presented results more than 20% 

different from the other, always decreasing systematic variability while increasing the 

random residuals, showing that a 5x5 window may be too large for the available data, 
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masking part of the systematic variability, and especially leading to a deformation at 

the corners. 

Based on these results, we decided to continue the analysis using only the 3x3 

moving average method, due to its simplicity and very close results compared to 

curve fitting. The final step was to apply the method in the data obtained for the 

critical clock skew distribution in all circuit configurations. Table 2 shows the results 

of the total measured variability, and the systematic and residual variability calculated 

with the method. 

(a) (d)

(b) (e)

rel 3σ = 11.99% rel 3σ = 5.33%

rel 3σ = 10.23% rel 3σ = 7.08%
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(c) (f)rel 3σ = 12.85% rel 3σ = 5.73%
 

Fig. 10. Frequency variability curves in 130nm wafer: (a) systematic variability using the 

method Moving Average with 3x3 window, (b) systematic variability using the method Moving 

Average with 5x5 window, (c) systematic variability using the method Curve Fitting, (d) 

residual variability using the method Moving Average with 3x3 window, (e) residual variability 

using the method Moving Average with 5x5 window, (f) residual variability using the method 

Curve Fitting. 

Table 2. Total, systematic and residual variability in the critical clock skew using the 3x3 

moving average method in 130nm wafer 

Circuit Transition σ Total (%) σ Systematic (%) σ Residual (%) 

Rising 4.96 4.04 2.50 weak FFs, 

no inverters Falling 4.43 3.64 2.23 

Rising 4.52 3.47 2.53 strong FFs, 

no inverters Falling 4.31 3.35 2.37 

Rising 4.36 3.56 2.15 weak FFs, 

6 inverters Falling 4.01 3.33 1.89 

Rising 4.38 3.65 1.94 strong FFs, 

6 inverters Falling 4.17 3.45 1.86 

 

The results show that the systematic variability is dominant in 130nm technology, 

but the residual, probably influenced by the local and within-die variability, is 

expected to become much more important in 90nm and 65nm CMOS technologies, 

while the systematic variability probably will decrease due to a better process control. 

From table 2 it can be seen that using larger transistors (stronger FFs) and inverters 

between the flip-flops decreases the residual variability. This may result from a 

decrease in the local and within-die variability in larger transistors, and the averaging 

effect found if a larger number of gates (inverters) is used. 

The next step was to apply the normality test to the set of data. All 8 test paths and 

also the ring oscillator frequency were tested, using the methods described previously. 



Statistical Analysis of Normality of Systematic and Random Variability of Flip-Flop Race 

Immunity in 130nm and 90nm CMOS Technologies      13 

Dies that were clear outliers were removed. Table 3 shows the results of these tests 

applied to the ring oscillator frequency data from the 130nm wafer, while tables 4, 5, 

6 and 7 show the results for the different test paths.  

Table 3. Wilks-Shapiro and Anderson-Darling normality tests, kurtosis and skewness for total, 

systematic and random residual variability for frequency data in 130nm wafer 2 at VDD=1.5V 

and T=25° 

 Frequency 

 Total Syst Residual 

W-S p-value 0.0001 0.0004 0.000056 

Conclusion Reject Reject Reject 

A-D value 1.806 1.084 2.376 

Conclusion Reject Reject Reject 

Kurtosis 2.393 2.565 3.105 

Skewness 0.456 0.417 0.685 

Table 4. Wilks-Shapiro and Anderson-Darling normality tests, kurtosis and skewness for total, 

systematic and random residual variability for test path of weak FFs, no inverters, in 130nm 

wafer at VDD=1.5V and T=25° 

 Weak FFs, No Inv’s, Rising Weak FFs, No Inv’s, Falling 

 Total Syst Residual Total Syst Residual 

W-S p-value 0.1907 0.0011 0.447 0.114 0.001 0.269 

Conclusion Accept Reject Accept Accept Reject Accept 

A-D value 0.464 0.987 0.25 0.673 1.128 0.672 

Conclusion Accept Reject Accept Accept Reject Accept 

Kurtosis 2.396 2.317 2.89 2.434 2.313 3.062 

Skewness -0.134 -0.25 0.00372 -0.188 -0.356 0.167 

Table 5. Wilks-Shapiro and Anderson-Darling normality tests, kurtosis and skewness for total, 

systematic and random residual variability for test path of strong FFs, no inverters, in 130nm 

wafer at VDD=1.5V and T=25° 

 Strong FFs, No Inv’s, Rising Strong FFs, No Inv’s, Falling 

 Total Syst Residual Total Syst Residual 

W-S p-value 0.0259 0.0023 0.0783 0.0012 0.0003 0.957 

Conclusion Reject Reject Accept Reject Reject Accept 

A-D value 0.941 0.919 0.682 1.284 1.299 0.208 

Conclusion Reject Reject Accept Reject Reject Accept 

Kurtosis 2.224 2.526 2.197 2.111 2.346 2.786 

Skewness -0.149 -0.359 -0.00355 -0.227 -0.344 -0.0489 
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Table 6. Wilks-Shapiro and Anderson-Darling normality tests, kurtosis and skewness for total, 

systematic and random residual variability for test path of weak FFs, 6 inverters, in 130nm 

wafer at VDD=1.5V and T=25° 

 Weak FFs, 6 Inv’s, Rising Weak FFs, 6 Inv’s, Falling 

 Total Total Total Total Syst Residual 

W-S p-value 0.0247 0.00201 0.00201 0.00201 0.0003 0.957 

Conclusion Reject Reject Reject Reject Reject Accept 

A-D value 0.674 1.015 1.015 1.015 1.299 0.208 

Conclusion Accept Reject Reject Reject Reject Accept 

Kurtosis 2.595 2.419 2.419 2.419 2.346 2.786 

Skewness -0.335 -0.358 -0.358 -0.358 -0.344 -0.0489 

Table 7. Wilks-Shapiro and Anderson-Darling normality tests, kurtosis and skewness for total, 

systematic and random residual variability for test path of strong FFs, 6 inverters, in 130nm 

wafer at VDD=1.5V and T=25° 

 Strong FFs, 6 Inv’s, Rising Strong FFs, 6 Inv’s, Falling 

 Total Syst Residual Total Syst Residual 

W-S p-value 0.0169 0.0027 0.0681 0.0007 0.0003 0.111 

Conclusion Reject Reject Accept Reject Reject Accept 

A-D value 1.009 0.873 0.759 1.451 1.344 0.718 

Conclusion Reject Reject Accept Reject Reject Accept 

Kurtosis 2.351 2.392 2.533 2.245 2.281 2.877 

Skewness -0.259 -0.306 -0.27 -0.329 -0.336 -0.329 

 

Analysing the results, it is possible to see some similarities between the results of 

different test circuits. First, Wilks-Shapiro and Anderson-Darling tests produced 

consistent conclusions in all cases. In all cases, random variability is more normal 

than the equivalent systematic variability, while the total data is located somewhere 

between them. The only exception is the ring oscillator composed of 17 stages, where 

the random variability is strongly reduced due to the use of large transistor widths. 

Moreover, since the relative random variation of the total propagation delay of a delay 

chain or ring oscillator decreases according to 1/√n, where n is the logic depth of the 

circuit, for the ring oscillator used in the test circuit the logic depth between two 

rising edges, which are used for frequency measurement at the input of the frequency 

divider, is n=34 and therefore random variations are suppressed due to averaging. 

In all cases except for the ring oscillator frequency, the random variability is 

considered normal in the conclusion of the tests, while systematic variability is not 

normal (as expected, since it has a strong spatial dependence from the middle to the 

corners of the wafer). The total data is considered normal in the cases with weak FFs 

and no inverters, since these are the cases where random variability prevails, while it 

is not normal in other cases. In the case where we have large FFs and inverters, the 

role of random (local) variability is diminished and the role of systematic variability 

increases. 
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Analysing the kurtosis and skewness results, it is possible to see that in all cases, 

they are close to the values of 3 and 0, respectively, as expected for normal Gaussian 

curves. 

Conclusions 

This work presents an experimental analysis of the variability of hold time violations 

of edge-triggered master-slave FFs due to process variations in 130nm and 90nm low 

power CMOS technology. For accurate on-wafer characterization, a test circuit and a 

measurement technique with ~1ps resolution are presented. The proposed 

methodology provides detailed information about the circuit robustness of FFs under 

realistic operating conditions. This precise FF characterization then enables designers 

to perform hold-time fixing for short paths considering statistical variations of FFs as 

well as delay increasing inverters during buffer insertion. Moreover, during standard 

cell library development, the methodology is beneficial to optimize the FF portfolio, 

i.e. to balance race immunity and clock-to-Q propagation delay for various cell 

driving strengths and different FF topologies.  

The proposed technique can be extended to characterize other timing constraints. 

Finally, statistical timing violations in edge-triggered master-slave flip flops are 

investigated experimentally, at different supply voltages. Mathematical methods to 

isolate systematic and random residual variations from the experimental data are 

discussed and compared. Results show that the absolute race immunity reduces by 

about 30% from 130nm to 90nm CMOS technology due to speed improvement, 

leading to a faster CLK-Q delay. This indicates that hold time violations are a harder 

problem in newer technologies if the clock skew is not expected to scale in the same 

way. 

The results also show that the systematic variability is larger than random 

variability in a 130nm CMOS technology, but this trend is expected to not continue in 

newer technologies. However, there are design techniques available to reduce the 

impact of systematic variations, and the trend may be different between logic circuits 

and SRAMs. The normality tests performed in the results showed that, in general, 

random variability is a normal Gaussian distribution, while systematic variability is 

not, except in the cases with weak FFs and no inverters. 

Future work includes the investigation of the impact of different temperature and 

supply voltage on variability. 
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Abstract. We study a problem of reduction of the number of product
terms in representation of totally symmetric Boolean functions by Sum
of Products (SOP) and Fixed Polarity Reed-Muller (FPRM) expansions.
We propose a method, based on the Gray decoding, for reduction of the
number of product terms, and, consequently, the implementation cost
of the symmetric functions. The method is founded on the principles
of linear transformations of the input variables of an initial function.
It provides significant simplification both of the SOPs and the FPRMs
representations of the functions. Mathematical analysis as well as exper-
imental results demonstrate the efficiency of the proposed method.

1 Introduction

Linearization of switching functions based on linear transformation of variables is
a classical method of optimization in circuit synthesis originating already in 1958
[22]. It has been recently efficiently exploited by several authors and discussed
for different aspects due to its:

1. Effectiveness. The method provides considerable simplification of the repre-
sentation of functions with respect to different optimization criteria.

2. Simplicity of the implementation. The overhead comprises EXOR circuits
required to perform the selected linear combination of variables. The over-
head is usually quite negligible compared to the overall complexity of the
implementation [12].

The linearization can be performed over different data structures used to
represent functions. For example, it has been performed over Sum-of-Product
(SOP) expressions [10, 13, 15, 29], AND-EXOR expressions [5], word-level ex-
pressions [28] as well as decision diagrams [7, 14, 18].

In spectral techniques, the linearization is studied as a mean to reduce the
number of non-zero coefficients in spectral expressions for discrete functions [8],
[12]. In [12, 20], and [21] the extensions to multiple-valued logic functions are
discussed. The complexity of determining an optimal non-singular binary matrix
that defines the optimal linear transformation of variables is NP-complete. For
this reason a number of alternative strategies have been suggested in exploiting
this method.
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For achieving the exact optimum, some restrictions should to be made on the
number of variables in functions processed. For example, it has been reported in
[7] that the complete search over all possible linear transformations is feasible
for functions up to seven variables within reasonable space and time resources.
Another strategy in using the linearization is to apply the method for particular
classes of functions. For instance, in [10, 28] a method has been used for specific
circuits, such as n-bit adders. The optimal linear transform has been found for
this adder.

Sometimes, nearly optimal solutions can be provided by deterministic algo-
rithms if analysis of additional information about the functions is available ([8,
12] and [14] and references therein).

In this paper, we develop a compromising approach. We deal with symmet-
ric Boolean functions and demonstrate that for such functions an efficient linear
transformation of variables can be determined analytically without intense com-
putations. In particular, we show that a Gray decoding of the input variables
provides a significant reduction in the number of product terms.

Symmetric Boolean functions represent an important fraction of Boolean
functions. They are characterized by the fact that their outputs only depend on
the Hamming weights of their inputs. These functions can be represented in a
compact way both for their algebraic normal forms and for their value vectors.
As symmetric functions are the only functions having a known implementation
with a number of gates which is linear in the number of input variables [1],
they might be good candidates in term of implementation complexity. There are
efficient circuit-based methods and complete BDD-based methods for identifying
symmetries of completely and incompletely specified functions [11, 17, 19, 23, 30,
33].

In last several years, symmetric functions have been studied from different as-
pects. Optimal Fixed Polarity Reed-Muller (FPRM) expansions for totally sym-
metric functions are discussed in [4, 32] and references therein. A lower bound
on the number of gates in conjunctive (disjunctive) normal form representation
of symmetric Boolean functions is given in [31] and a method for generating
a minimal SOP cover is presented in [3]. A multilevel synthesis of symmetric
functions which exploits the disjoint decomposability and weight dependency
of the functions is presented in [16] and a mapping of symmetric and partially
symmetric functions to the CA-type FGPAs was suggested in [2]. A new ex-
pansion of symmetric functions and their application to non-disjoint functional
decompositions for LUT-type FPGAs is presented in [26].

In this paper we study a specific case of symmetric functions, and show
that for these functions, a linear transformation based on Gray decoding of
the input variables is very effective. We show that the Gray decoding almost
always reduces the complexity in terms of the following three criteria: the number
of gates in two-level realization, the number of FPRM terms and the number
of FPGA LUTs. Additionally we show that not only symmetric functions but
also partially symmetric functions may be efficiently implemented by using the
proposed technique. This technique can be considered as a combination of a well-
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known classical decomposition technique of the partially symmetric functions
([24]) with the proposed linear transformation.

The paper is organized as follows. Section 2 gives basic definitions of sym-
metric Boolean functions and Gray codes. Section 3 presents the implementation
of a symmetric function as a superposition of a Gray decoder and a non-linear
function. Section 4 presents an illustrative example discussing in detail applica-
tion of the proposed method. In Section 5 we discuss features of the proposed
method and prove that the solutions produced can never increase complexity of
representation of SOPs compared to the given initial representations. In Section
6 we discuss the use of the Gray decoding for partially symmetric functions.
Section 7 contains experimental results and Section 8 concludes the paper.

2 Preliminaries

2.1 Totally symmetric functions

Let f(x) = f(xn−1, . . . x0) a Boolean function of n ≥ 2 inputs and a single
output. The function f is symmetric in xi and xj iff

f(xn−1 . . . xi . . . xj . . . x0) = f(xn−1 . . . xj . . . xi . . . x0). (1)

The function f is totally symmetric iff it is symmetric in all pairs of its variables.
A function f(x) = Si(x) is called an elementary symmetric function with

working parameter i iff

Si(x) =

{

1 ||x|| = i
0 otherwise

where ||x|| is the Hamming weight of x. There are n + 1 elementary symmetric
functions satisfying

∑

x

Si(x)Sj(x) =

{(

n
i

)

i = j
0 otherwise

.

Any symmetric function can be represented as a linear combination of elementary
symmetric functions, i.e. f(x) = ⊕n

i=0aiSi(x) where ai ∈ {0, 1}. Hence, there are
2n+1 symmetric functions out of 22

n

functions.

Example 1. Consider an elementary 5-inputs symmetric function f(x) = S3(x).
The K-map of the function is given in Table 3. The minimal SOP representation
of the function consists of 10 minterms of 5 literals.

A Fixed Polarity Reed-Muller (FPRM) expansion is an EXOR of product
terms, where no two products consists of the same variables and each variable
appears in complemented or un-complemented form, but not in both [25]. In
matrix notation [1], the FPRM expansion of a function f(xn−1, . . . x0) with a
given polarity vector h = (hn−1, . . . h1, h0), is defined as

f(xn−1, . . . x0) =
(

⊗n−1

i=0
[1, x

hn−1−i

n−1−i ]
)

(

⊗n−1

i=0
Rhn−1−i(1)

)

F
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where ⊗ is a Kronecker product,

xhi

i =

{

xi if hi = 0
x′

i otherwise

and

Rhi(1) =























(

1 0
1 1

)

if hi = 0

(

0 1
1 1

)

otherwise

and F is the truth vector. The number of product terms in the FPRM depends
on the polarity vector.

Example 2. The FPRM expansion of the 3-out-of-5 function in Example 1 with
a positive polarity (h = 0) comprises 10 terms,

f = x4x3x2 ⊕ x4x3x1 ⊕ x4x2x1 ⊕ x3x2x1 ⊕ x4x3x0

⊕ x4x2x0 ⊕ x3x2x0 ⊕ x4x1x0 ⊕ x3x1x0 ⊕ x2x1x0.

The positive polarity produces the minimal number of terms, all the other 31
polarity vectors produces FPRM expansions of at least 16 product terms.

2.2 Gray code

The reflected binary code, also known as Gray code after Frank Gray [6], is used
for listing n-bit binary numbers so that successive numbers differ in exactly one
bit position. The definition of the Gray encoding and decoding is the following:
Elements of a binary vector of length n, z = (zn−1, . . . z0) and the vector x =
(xn−1, . . . x0) derived by Gray encoding are related as

xi =

{

zi i = n − 1
zi ⊕ zi+1 otherwise

and

zi =

{

xi i = n − 1
xi ⊕ zi+1 otherwise

.

This relation can be written using matrix notation as x = GE z and z = GD x
where GE = (τn−1, . . . , τ1, τ0) is a non-singular matrix of the form

GE =



















1 0 . . . 0 0
1 1 0 . . . 0 0
0 1 1 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 1 0
0 0 0 . . . 1 1



















. (2)

and GD = G−1

E . The matrices GE and GD are called the Gray encoding and the
Gray decoding matrices, respectively. The implementation of the Gray encoder
(decoder) requires n − 1 two-input EXOR gates.
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Example 3. Let n = 4 and z = (1, 1, 0, 1) then

x3 = z3 = 1

x2 = z3 ⊕ z2 = 0

x1 = z2 ⊕ z1 = 1

x0 = z1 ⊕ z0 = 1

or

x = (τ3, τ2, τ1, τ0)z =









1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1

















1
1
0
1









=









1
0
1
1









.

3 Implementation of totally symmetric functions by Gray

decoded inputs

In this paper we introduce an implementation of a symmetric function as a
superposition of two functions: a Gray decoder defined by the matrix GD, and
the corresponding function fGD

whereas f(x) = fGD
(GDx) (see Figure 3).

Fig. 1. Implementation of a Boolean function with a Gray decoding of the input vari-
ables

The main idea behind this approach is the following: A Boolean function
maps elements of the vector space {0, 1}n to {0, 1}. The vector space {0, 1}n is
spanned by n base vectors, usually the binary vectors {δi}

n−1

i=0
corresponding to

the integer value 2i are used. The set of δi’s is called the initial basis. This basis
is used in definition of SOP expressions.

Any set of n linearly independent vectors forms a basis, and in particular,
the columns {τi}

n−1

i=0
of the matrix GE .

Since Ix = GE z, the vector x can be interpreted as the coefficient vector
that defines an element of {0, 1}n using the initial basis, and z can be interpreted
as the coefficient vector representing an element with the set of τ ’s. Thus, the
matrices GE and GD define a linear transformation between the coefficient vec-
tors.
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Example 4. In Example 3, the element (1, 0, 1, 1) ∈ {0, 1}4 can be represented as
a linear combination of the initial base vectors δ3 = (1, 0, 0, 0), δ2 = (0, 1, 0, 0), δ1 =
(0, 0, 1, 0) and δ0 = (0, 0, 0, 1), or as a linear combination of the columns of GE .
Namely,

(1, 0, 1, 1) = 1 · δ3 + 0 · δ2 + 1 · δ1 + 1 · δ0 = 1 · τ3 + 1 · τ2 + 0 · τ1 + 1 · τ0,

thus, x = (1011) and z = (1101).

In theoretical considerations, complexity of circuit realization of a Boolean
function is usually estimated without referring to a specific implementation
technology. It is, therefore, often expressed in the number of two-input gates
(AND/OR) that are required for the realization of the function considered. For-
mally, this criterion can be written in terms of a cost function [12, 27]

µ(f) = |{x|x, τ ∈ {0, 1}n, f(x) = f(x + τ), ||τ || = 1}|

where + stands for a bitwise EXOR of two binary vectors and ||τ || is the Ham-
ming weight of a binary vector τ. The autocorrelation function of f, is defined
as R(τ) =

∑

x∈{0,1}n f(x)f(x⊕ τ). For a given function f, the value of µ can be
related to the values of the autocorrelation function of f, at points corresponding
to the base vectors,

µ(f) =

n−1
∑

i=0

R(δi).

In the case of initial basis, these are points 2i, and linear transformation of
variables performs the shift of these values.

There is a variety of minimization procedures that construct a linear transfor-
mation deterministically, see, for instance [14, 15] and [29] and references therein.
It should be noticed that implementation of such procedures may be a space and
time demanding task, and therefore, it is useful to take into considerations spe-
cific features of functions to be realized. In particular, we point out that for
totally symmetric Boolean functions the linear transformation of variables de-
rived from the Gray code almost always reduce the implementation cost. The
same transformation often reduces the number of terms in Fixed polarity Reed-
Muller expressions.

4 Motivation example

Consider the 3-out-of-5 function in Example 1. Let GE and the GD be the 5×5
Gray encoding and decoding matrices. The columns of GE are binary vectors of
length 5 corresponding to the integer values 1, 3, 6, 12 and 24. Let z = GDx be
the Gray decoded inputs. Table 4 shows the K-map of fGD

. The minimal SOP
representation of fGD

consists of 5 products,

fGD
(z4, z3, z2, z1, z0) =

z3z
′
2z0 + z3z

′
1z0 + z4z

′
2z0 + z′4z2z

′
1z0 + z4z

′
3z1z0.
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The FPRM expansion of fGD
with a polarity vector h = (11000) is

fGD
(z4, z3, z2, z1, z0) = z0 ⊕ z2z1z0 ⊕ z′3z2z0 ⊕ z′4z

′
3z0.

Table 1. K-map of a 3-out-of-5 function

x4x3x2 000 001 011 010 110 111 101 100
x1x0

00 1

01 1 1 1

11 1 1 1

10 1 1 1

Table 2. K-map of Gray coded 3-out-of-5 function

z4z3z2 000 001 011 010 110 111 101 100
z1z0

00

01 1 1 1 1 1 1

11 1 1 1 1

10

The values of the autocorrelation function of the original 3-out-of-5 function
are shown in Figure 2 (top figure). The values of R(τ) at positions τ = 1, 2, 4, 8
and 16 corresponding to the initial base vectors are all zero , thus, the mini-
mal SOP comprises 10 minterms. The autocorrelation values at positions τ =
1, 3, 6, 12 corresponding to the new base vectors (τ0, τ1, τ2 and τ3) are equal to
6.

Applying the Gray decoding on the inputs is equivalent to permuting the
autocorrelation values so that high autocorrelation values are now placed at
positions 2i. The autocorrelation function of fGD

is shown at the bottom of
Figure 2. The sum of the autocorrelation values of fGD

at positions 2i ,i =
0, . . . , 4 is 4 · 6 + 0, therefore, the number of pairs in the first merging step of
the Quine-McClusky minimization algorithm is now 12 which leads to a minimal
SOP representation.

5 Analysis

Let f(x) = f(xn−1, . . . x0)
∑n

i=0
aiSi(x), ai ∈ {0, 1}, a totally symmetric Boolean

function of n variables and a single output. The autocorrelation function of Si(x)
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Fig. 2. Autocorrelation function values of the original 3-out-of-5 symmetric function
f (top) and the values of the autocorrelation function corresponding to fGD

with the
Gray decoded inputs (bottom).

is [12]

RSi
(τ) =

∑

x∈{0,1}n

Si(x)Si(x ⊕ τ)

=

{

( n−||τ ||
i−||τ ||/2

)(

||τ ||
||τ ||/2

)

||τ || is even

0 otherwise

where
(

a
b

)

= 0 for b < 0.

The cross correlation between Si(x) and Sj(x) is

RSi,Sj
(τ) =

∑

x∈{0,1}n

Si(x)Sj(x ⊕ τ)

=

{(

n−||τ ||
i−w

)(

||τ ||
w

)

i − j + ||τ || is even

0 otherwise

where w = (i − j + ||τ ||)/2.

The autocorrelation function of f is

Rf (τ) =
∑

x∈{0,1}n

f(x)f(x ⊕ τ)

=
n

∑

i=0

aiRSi
(τ) +

n
∑

i, j = 0
i 6= j

aiajRSi,Sj
(τ). (3)
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Therefore, the autocorrelation values in positions corresponding the the initial
set of base vectors {δi}

n−1

i=0
is

Rf (δi) = 2

n−1
∑

k=1

akak+1RSk,Sk+1
(τ)

= 2

n−1
∑

k=1

akak+1

(

n − 1

k

)

. (4)

On the other hand, the autocorrelation values at positions corresponding to the
base vectors τi = δi + δi+1, i = 0, . . . n − 2, defined by the columns of the Gray
encoding matrix GE , are

Rf (τi) = 2
n

∑

k=0

ak

(

n − 2

k − 1

)

+ 2
n−2
∑

k=1

akak+2

(

n − 2

k

)

(5)

The following Theorem states that the realization cost of fGD
with the Gray

decoded inputs is less or equal to the realization cost of f for any totally sym-
metric function.

Theorem 1. Let f(x) =
∑n

i=1
aiSi(x), ai ∈ {0, 1} a totally symmetric function,

and let fGD
the corresponding function with the Gray decoded inputs, i.e. f(x) =

fGD
(GDx). Then,

µf ≤ µfGD
.

Proof. The proof is based the fact that RfGD
(δi) = Rf (G−1

D δi) = Rf (τi). Let

∆i = Rf (τi) − Rf (δi), clearly, ∆n−1 = 0 and for 0 ≤ i < n − 1, ∆i = 2
∑n

k=0
dk

where

dk = ak

((

n − 2

k − 1

)

− ak+1

(

n − 1

k

)

+ ak+2

(

n − 2

k

))

. (6)

We now show that ∆i ≥ 0 for all i. From 6, if ak = 0 than dk = 0, otherwise,
there are four possible cases:

1. If ak+1 = ak+2 = 0 than dk > 0.
2. If ak+1 = ak+2 = 1 than dk = 0 since

(

a

b

)

=

(

a − 1

b

)

+

(

a − 1

b − 1

)

.

3. If ak+1 = 0 and ak+2 = 1 than dk > 0.
4. If ak+1 = 1 and ak+2 = 0 than we may consider the sum dk + dk+1 and get

(

n − 2

k − 1

)

−

(

n − 1

k

)

+

(

n − 2

k

)

+ ak+2

(

n − 2

k

)

≥ 0 (7)

Therefore, RfGD
(δi) = Rf (τi) ≥ Rf (δi). From [12], the cost function µf of a

function f : {0, 1}n → {0, 1} equals to µf = 2n − 2Rf (0) + 2
∑n−1

i=0
Rf (δi), and

thus µfGD
≥ µf . ut
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6 Implementation of partially symmetric functions by

Gray decoded inputs

In this section we extend the use of the Gray decoder to the case of partially
symmetric functions. We start with the definition of partially symmetric func-
tions, and then we present a three-level implementation of partially symmetric
functions which is based on a set of Gray decoders.

A function is said to be symmetric with respect to a set λ, λ ⊆ {xn−1 . . . x0},
if it is invariant under all the permutations of the variables in λ. The variables
of the function can be partitioned into disjoint symmetry sets λ1, . . . , λk. A
function is called partially symmetric if it has at least one symmetry set λi of
size |λi| > 1. Without loss of generality, we assume that the input variables are
ordered, i.e. the first |λ1| variables are elements of the first symmetry set λ1, the
next |λ2| variables are elements of the second symmetry set λ2 etc.

A partially symmetric function f may be represented as a superposition of
two functions: a linear function defined by a matrix σ, and a function fσ whereas
f(x) = fσ(z) and z = σx. The linear transformation matrix σ represents k Gray
decoders that work on each symmetric set separately (see Figure 3). The matrix
σ is defined through its inverse matrix T as follows,

T =











GD,k · · · 0 0
...

...
...

0 · · · GD,2 0
0 · · · 0 GD,1











(8)

where GD,i is a Gray decoding matrix corresponding to |λi| variables. The overall
implementation cost of the Gray decoders is (n − k) XOR gates.

Fig. 3. The original function (top) and its linear decomposition with a set of Gray
decoders (bottom)

Recall that we are not interested in the optimal solution to the general mini-
mization problem of partially symmetric functions. Rather, we suggest a specific
linear transformation matrix based on the Gray decoder which is suitable for
partially symmetric functions. The following example clarifies this point.
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4 3 2 1 0

that has two symmetry sets λ1 = {x4, x3, x2} and λ2 = {x1, x0}. The K-map of
the function is given in Table 3. The SOP representation of the function consists
of 13 product terms and 62 literals.

Let T be the Gray encoding matrix as defined in Eq. 8 and σ = T−1 the Gray
decoding matrix. The columns of T are binary vectors of length 5 corresponding
to the integer values 1, 3, 4, 12 and 24, that is,

T =













1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 1 1













.

Let z = σx be the Gray decoded inputs. The K-map of fσ(z) is given in
Table 4. The minimal SOP representation of fσ consists of 5 products and only
16 literals.

Note that the values of R(τ) at positions τ = 1, 2, 4, 8 and 16 corresponding
to the initial base vectors, are 0, 0, 2, 2 and 2 respectively. However, the auto-
correlation values at positions τ = 1, 3, 4, 12 and 24 corresponding to the new
base vectors are equal to 0, 12, 2, 10 and 10. Therefore, the cost function of the
original function is µ(f) = 6 and it is smaller than µ(fσ) = 34. Nevertheless,
the linear transformation corresponding to the Gray decoder is not optimal. It
is possible to choose a different set of base vectors, for example, 3, 30, 5, 4 and 8,
that is,

T̂ =













0 0 0 1 0
1 0 0 1 0
0 1 1 1 0
0 0 0 1 1
0 0 1 0 1













,

for which the autocorrelation values are 12, 12, 10, 2 and 2, respectively. Thus,
the matrix σ̂ = T̂−1 defines a function fσ̂ having µ(fσ̂) = 36. Consequently, the
minimal SOP representation of fσ̂ comprises 4 product terms and 13 literals.
Clearly, this additional reduction in the number of literals (from 16 to 13) is
negligible.

Table 3. K-map of the original function in Example 5

x4x3x2 000 001 011 010 110 111 101 100
x1x0

00 1 1 1 1

01 1 1 1

11 1 1 1 1

10 1 1 1

The following lemma states that the Gray decoding of the inputs of a partially
symmetric function cannot increase the implementation cost.
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Table 4. K-map of Gray coded function in Example 5

z4z3z2 000 001 011 010 110 111 101 100
z1z0

00 1 1 1 1

01 1 1 1

11 1 1 1

10 1 1 1 1

Lemma 1. Let f be a partially symmetric function that has k ≥ 1 symmetric

sets λ1, . . . , λk. Let σ be the linear transformation matrix as defined in Eq. 8, and

fσ be the corresponding linearized function, f(x) = fσ(σx). Then µ(fσ) ≥ µ(f).

The proof of the lemma is similar to the proof of Theorem 1.

7 Experimental results

In this section, we compare the implementation cost of the original and Gray-
coded functions in terms of:
a) The number of Look-Up-Tables (LUT s) required to implement the function
by SPARTAN3 xcs200ft256 as computed by LeonardoSpectrum.
b) The number of literals (L) in its minimal SOP representation as produced by
ESPRESSO.
c) The number of nonzero terms in the optimal Fixed-Polarity Reed-Muller
(FPRM) expansion.

Tables 5 and 6 show the number LUTs for several totally symmetric functions
of 8 and 12 input variables, the number of literals in the minimal SOP expression
and the number of non-zero FPRM terms as computed with and without the
Gray decoding. The improvement in those parameters is given in percentage. The
symmetric functions f =

∑

i aiSi(x) are specified by a set I, I = {i|ai 6= 0},
of working parameters, I is written in the left column of Tables 5 and 6. The
simulation results show an average reduction of 70% in the number of LUTs, an
average reduction of 88% in the munber of literals, and 68% in the number of
non-zero FPRM coefficients.

Table 7 shows how the Gray decoding reduces the implementation cost of
several totally symmetric LGSynth93 benchmark functions. Given a polarity
vector, the number of non-zero FPRM terms of a k-output function is defined as
the size of the union of the non-zero terms in the FPRM expansion of each one
of the k single-output functions. For example, the original benchmark function
rd84 has four outputs, the number of non-zero FPRM terms of each is 28, 8, 1
and 70 and the size of the union of these terms is 107. The number of non-zero
terms of the corresponding Gray coded single-output functions is 14, 4, 1 and 38
and the size of their union is 39.

Simulation results that demonstrate the efficiency of Gray decoding on a
number of partially symmetric functions are shown in Table 8. The simulation
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results show an average reduction of 86% in the number of literals and an average
reduction of 60% in the number of non-zero FPRM coefficients. The first column
in the table is the benchmark name, the second column shows the number of
inputs, the third column specifies which single-output function is simulated, and
the forth column shows the number of symmetry sets in that function.

Table 5. Totally symmetric functions of 8 inputs

I LUT LUT % L L % FPRM FPRM %
orig Gray improv. orig Gray improv. orig Gray improv.

3 12 7 41.7 448 92 79.5 64 24 62.5
4 13 9 30.8 560 106 81.1 107 15 86.0

3, 4 18 13 27.8 490 185 62.2 96 31 67.7
3, 5 15 8 46.7 896 45 95.0 104 17 83.6

3, 4, 5 18 15 16.7 336 123 63.4 162 49 69.7
2, 3, 5, 7 19 10 47.4 904 74 91.8 36 40 -11.1

0, 2, 3, 5, 8 18 11 38.9 856 109 87.3 107 25 76.6

Table 6. Totally symmetric functions of 12 inputs

I LUT LUT % L L % FPRM FPRM %
orig Gray improv. orig Gray improv. orig Gray improv.

3 65 26 60.0 2640 470 82.2 232 200 13.8
4 32 41 -28.1 5940 800 86.5 794 166 79.1

3, 4 143 71 50.3 5445 1225 77.5 562 306 45.6
3, 5 37 57 -54.1 12144 584 95.2 1024 136 86.7

3, 4, 5 204 118 40.2 7920 1170 85.2 1354 356 73.7
0, 2, 3, 5, 8 217 101 53.5 17876 1582 91.1 738 328 55.6

Table 7. Totally symmetric benchmark functions

in out LUT LUT L L FPRM FPRM

orig Gray orig Gray orig Gray

rd53 5 3 6 4 140 35 20 12
rd73 7 3 24 8 756 141 63 24
rd84 8 4 51 13 1774 329 107 39
9sym 9 1 36 36 504 135 173 33

total 117 61 3174 640 363 108
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Table 8. Partially symmetric benchmark functions

in out sets L L FPRM FPRM

func. orig Gray orig Gray

z4 7 1 2 12 1 3 1
z4 7 2 3 48 12 5 4
z4 7 3 3 136 22 9 6

radd 8 1 4 64 14 15 7
radd 8 2 4 184 27 9 6
radd 8 3 4 68 13 5 4
adr4 8 2 3 20 7 3 2
adr4 8 3 4 68 13 5 4
add6 12 1 6 63 6 63 11
add6 12 3 6 456 40 17 8

total 1119 155 134 53

8 Conclusions

The problem of linearization of logic functions may be considered as a deter-
mining a linear transform for variables in a given function, which produces a
representation of the function appropriate for particular applications. However,
it is not always necessary to determine the best possible linear transformation
for a class of functions. For many practical applications it is sufficient to find a
suitable transform producing acceptable solutions.

In this paper we consider the class of symmetric functions and point out
a suitable linear transformation of variables resulting in considerably reduced
number of product terms in AND-OR and Reed-Muller expressions.

We propose a method to represent a symmetric logic function as a super-
position of a linear portion that realize the Gray decoding of input vectors and
a non-linear portion. Being a particular case of the linear transformation, the
described Gray decoding transform enables to achieve very compact implemen-
tations of the initial symmetric function.

We have shown that the use of the Gray transform improves the complexity
of the initial function implementation in terms of a specific cost function. Ex-
perimental results show that for majority of benchmarks the proposed method
improves also a LUT based implementation of the function. The suggested ap-
proach can be extended to partially symmetric functions. In addition, we have
shown that it provides an average reduction of about 86% in the number of lit-
erals and an average reduction of about 60% in the number of non-zero FPRM
coefficients.
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Abstract. A compact analog programmable multidimensional radial-
basis-function (RBF)-based classifier is demonstrated in this chapter.
The probability distribution of each feature in the templates is modeled
by a Gaussian function that is approximately realized by the bell-shaped
transfer characteristics of a proposed floating-gate bump circuit. The
maximum likelihood, the mean, and the variance of the distribution are
stored in floating-gate transistors and are independently programmable.
By cascading these floating-gate bump circuits, the overall transfer char-
acteristics approximate a multivariate Gaussian function with a diagonal
covariance matrix. An array of these circuits constitute a compact multi-
dimensional RBF-based classifier that can easily implement a Gaussian
mixture model. When followed by a winner-take-all circuit, the RBF-
based classifier forms an analog vector quantizer. Receiver operating
characteristic curves and equal error rate are used to evaluate the per-
formance of the RBF-based classifier as well as a resultant analog vector
quantizer. It is shown that the classifier performance is comparable to
that of digital counterparts. The proposed approach can be at least two
orders of magnitude more power efficient than the digital microprocessors
at the same task.

1 Motivations for Analog RBF Classifier

The aggressive scaling of silicon technologies has led to transistors and many
sensors becoming faster and smaller. The trend toward integrating sensors, in-
terface circuits, and microprocessors into a single package or into a single chip
is more and more prevalent. Fig. 1A illustrates the block diagram of a typical
microsystem, which receives analog inputs via sensors and performs classifica-
tion, decision-making, or, in a more general term, information-refinement tasks
in the digital domain. Although fabrication and packaging technologies enable
an unprecedented number of components to be packed into a small volume, the
accompanying power density can be higher than ever, which has become one
of the bottle-neck factors in the microsystem development. If the information-
refinement tasks can be performed in the analog domain with less power con-
sumption, the specifications for the analog-to-digital-converters, which are usu-
ally power-hungry, can be relaxed. In some cases, analog-to-digital conversion can
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Fig. 1. A: The block diagram of a typical microsystem. B: An analog RBF-based
classifier in an analog front-end for speech recognition includes a band-pass-filter bank
based analog Cepstrum generator, an analog RBF-based classifier, and a continuous-
time hidden Markov model. C: The block diagram of an analog RBF-based classifier
which is composed of an array of the proposed floating-gate bump cells. Followed by a
winner-take-all circuit, it results in a highly compact and power-efficient analog vector
quantizer.

be avoided altogether. In such systems, multivariate Gaussian response func-
tions are critical building blocks for a variety of applications, such as radial-
basis-function(RBF)-based classifiers, Gaussian mixture modeling of data, and
vector quantizers. This chapter discusses the development of an analog Gaus-
sian response function having a diagonal covariance matrix and demonstrates its
application to vector quantization.

Fig. 1B illustrates one possible application of this work as part of an analog
speech recognizer [1] that includes a band-pass-filter bank based analog Cep-
strum generator, an analog RBF-based classifier, and a winner-take-all (WTA)
stage, or a continuous-time hidden Markov model (HMM) block built from pro-
grammable analog waveguide stages. The input to the HMM stage could repre-
sent the RBF response directly or it could pass through a logarithmic element
first. By performing analog signal processing in the front end, not only the com-
putational load of the subsequent digital processor can be reduced, but also
the required specifications for the analog-to-digital converters can be relaxed in
terms of speed, accuracy, or both. As a result, the entire system can be more
power efficient.

In this chapter, a highly compact and power-efficient, programmable ana-
log RBF-based classifier is demonstrated. It is at least two orders of magnitude
more power efficient than the digital counterparts. As illustrated in Fig. 1C,
the analog RBF-based classifier is composed of an array of proposed floating-
gate bump cells having bell-shaped transfer characteristics that can realize the
Gaussian functions. The height, the width, and the center of a bump circuit
transfer curve, which represent the maximum likelihood, the variance, and the
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Fig. 2. A: Schematic of a conventional bump circuit introduced in [7]. B: Comparison
between the normalized Gaussian function and the normalized Bump function.

mean of a template distribution respectively, can be independently programmed.
The ability to program these three parameters empowers the classifiers to fit into
different scenarios with the full use of statistical information up to the second mo-
ment. When followed by a winner-take-all stage, an RBF-based classifier forms
a multi-dimensional analog vector quantizer.

A vector quantizer compares distances or similarities between an input vector
and the stored templates. It classifies the input data to the most representative
template. Vector quantization is a typical technique used in pattern recognition
and data compression. Crucial issues of the vector quantizer implementation
concern the storage efficiency and the computational cost for searching the best-
matching template. In the past decade, efficient digital [2, 3] and analog [4–6]
hardware vector quantizers have been developed. In general, the analog vector
quantizers have been shown to be more power efficient than their digital counter-
parts. However, in a previous design [4], the computational efficiency is partially
due to the fact that only the mean absolute distances between the input vec-
tor and the templates are compared instead of considering the possible feature
distributions. To have better approximation to the Gaussian distribution, many
variations of analog RBF circuits are designed [6–11]. Among these previous
works, the simple “bump” and “anti-bump” circuits in [7] are the most classic
because of their simplicity.

2 Bump circuits

The schematic of a conventional bump circuit in [7] is shown in Fig. 2A. If
all transistors operate in the subthreshold region, the branch currents in the
differential pair can be expressed as

I1 =
Ib

1 + e−κ∆Vin/UT
, I2 =

Ib

1 + eκ∆Vin/UT
, (1)
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where κ is the subthreshold slope factor, UT is the thermal voltage, and ∆Vin =
Vin1 − Vin2. The output current is the harmonic mean of I1 and I2 and can be
described as

Iout =
I1I2

I1 + I2
=

Ib

2 + eκ∆Vin/UT + e−κ∆Vin/UT
=

Ib

2
sech2

(

κ∆Vin

2UT

)

. (2)

The normalized bump function is compared with the normalized Gaussian func-
tion as shown in Fig. 2B. This simple circuit can implement the exponential
decay behavior of a Gaussian function. It is noticeable that, from (2), the width
of the transfer characteristic is fixed by the ratio of κ/UT.

The analog RBF or vector quantization circuits reported in [6–11] require
extra circuits to store or to periodically refresh template data. In [5, 12, 13],
floating-gate transistors are used to implement the bump and anti-bump circuits.
Because the template data are stored in the form of charges on floating gates,
the circuits are very compact. Particularly in [12, 13], two adaptive versions
of the floating-gate bump and anti-bump circuits are introduced to implement
competitive learning. Although the bump centers in these circuits are adaptive
to the mean values, the bump widths are still constant. As will be shown later,
the floating-gate bump circuit introduced in this chapter has the potential to
adapt to both the mean and the variance of the distribution.

3 Programmable Floating-gate Bump circuit

In the proposed analog classifier, the Gaussian response function is approximated
by the bell-shaped transfer characteristics of a floating-gate bump circuit. The
height, the width, and the center of the transfer curve represent the maximum
likelihood, the variance, and the mean of a distribution respectively. Adjusting
these parameters is equal to pre-scaling input signals in the analog fashion so that
the circuit outputs can fall into the effective input range of the following stage.
For example, in the analog vector quantizer implementation, despite the different
distributions in different applications, the required precision of the following
WTA circuit can remain relaxed if the input signals can be scaled properly.

The schematics of the proposed floating-gate bump circuit and its bias gen-
eration block are shown in Fig. 3. All floating-gate transistors have two in-
put capacitances and all input capacitances are of the same size. The proposed
floating-gate bump circuit is composed of three parts: an inverse generation
block, a conventional bump circuit, and in between a fully differential variable
gain amplifier (VGA).

The inverse generation block, made up of two floating-gate summing am-
plifiers, provides the complementary input voltages to the VGA so that the
floating-gate common-mode voltage of M21 and M22 as well as the outputs of
the VGA are independent of the input signal common-mode level. If the charges
on M13 and M14 are matched and the transistors are in the saturation region,

Vin1 + V1c = Vin2 + V2c = Vconst, (3)
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Fig. 3. A: The symbol of a two-input floating-gate pMOS transistor. B: The schematic
of the bias generation circuit for the proposed floating-gate bump circuit. C: The
transfer characteristic of the inverse generation block. D: The schematic of the proposed
bump circuit that is composed of an inverse generation block, a fully differential variable
gain amplifier (VGA), and a conventional bump circuit.

where Vconst only depends on the bias voltage, Vb, and the charges on M13

and M14. If the charge on M02 in the bias generation circuit also matches that
on M13 and M14, the generated voltage, Vb, provides the summing amplifiers
an operating range that is one VDSsat away from the supply rails, as shown in
Fig. 3C.

The floating-gate voltages on M21 and M22 can be expressed as

Vfg,21 =
1

2
(Vin1 + Vconst − Vin2) +

Q21

CT
=

1

2
∆Vin + VQ,cm +

1

2
VQ,dm (4)

Vfg,22 =
1

2
(Vin2 + Vconst − Vin1) +

Q22

CT
= −

1

2
∆Vin + VQ,cm −

1

2
VQ,dm, (5)

where ∆Vin = Vin1 − Vin2, Q21 and Q22 are the amounts of charge on M21 and
M22 respectively, CT is the total capacitance seen from a floating gate, and

VQ,cm =
1

2

(

Q21 + Q22

CT
+ Vconst

)

, VQ,dm =
Q21 − Q22

CT
. (6)
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Fig. 4. Measured variable gain amplifier transfer characteristics. Vin2 is fixed at VDD/2
and Vin1 is swept from 0V to VDD, where VDD is 3.3V. In the programming mode, the
control gate voltages are set to be −∆VQ,cm∓VQ,dm/2 and the floating-gate transistors
are programmed to have 1 µA of current. A: The differential charge on M21 and M22 are
programmed to several different levels and the amount of the common-mode charge
is fixed. B: The common-mode charge on M21 and M22 are programmed to several
different levels and the amount of the differential charge is fixed.

From (4) and (5), these two floating-gate voltages do not depend on the input
signal common-mode level.

The variable gain of the VGA stems from the nonlinearity of the transfer
function from the floating-gate voltage, Vfg,21 (or Vfg,22), to the diode-connected
transistor drain voltage, V1 (or V2). Several pairs of the transfer curves corre-
sponding to different amounts of the charge on the floating gates are measured
and are shown in Fig. 4. The value of ∆Vin at the intersection indicates the
center of the bell-shaped transfer curve. As shown in Fig. 4A, the value of ∆Vin

at the intersection shifts as the differential charge changes, but the slopes at
the intersection are invariant. Thus, by programming the differential charge, the
center of the transfer function can be tuned without altering the width. On
the other hand, as shown in Fig. 4B, the slopes at the intersection point varies
with the common-mode charge while the value of ∆Vin at the intersection does
not. Therefore, we can program the common-mode charge to tune the width of
the bell-shaped transfer characteristics without affecting the center. Because the
template information are stored in a pair of floating-gate transistors as in [12,13],
this circuit has the potential to implement adaptive learning algorithms with not
only an adaptive mean but also an adaptive variance.

The detailed derivations of the relation between the VGA gain and the
common-mode charge are given in the appendix. The final equation is

∆Vout

∆Vin
≈ −γ

(

1 + e
−

γκp
2UT

(VDD−VQ,cm−VT0,p)
)

= η, (7)

where γ =
κp

κn

√

I0,pWpLn

I0,nLpWn
, the subscripts “p” and “n” refer to the pMOS and

nMOS transistors respectively, I0 is the subthreshold pre-exponential current
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Fig. 5. Gaussian fits of the transfer curves and the width dependance. A: Compari-
son of the measured 1D bumps (circles) and the corresponding Gaussian fits (dashed
lines). One of the bump input voltages is fixed at VDD/2, where VDD is 3.3V through
the measurement. The extracted standard deviation varies 5.87 times and the mean
only shifts 4.23%. The minimum achievable extracted standard deviation is 0.199V.
B: The width and common-mode charge relation in the semi-logarithmic scale. The
width is characterized by the extracted standard deviation, σ. The shift of the pro-
grammed common-mode floating gate voltage, ∆VQ,cm, represents the common-mode
charge level. The dashed line is the exponential curve fit.

factor, W and L are the dimensions of a transistor, κ is the subthreshold slope
factor, VT0 is the threshold voltage, and UT is the thermal voltage. From (2),
the transfer function of the complete bump circuit can be expressed as

Iout =
2Ib

2 + eκη∆Vin/UT + e−κη∆Vin/UT
, (8)

which is used to approximate a Gaussian function. By adjusting VQ,cm, the
magnitude of the VGA gain increases exponentially and the extracted standard
deviation decreases exponentially.

In Fig. 5A, the common-mode charge is programmed to several different
levels and the transfer curves with different widths are measured. The bell-
shaped curves are compared with their correspondent Gaussian fits. In Fig. 5, the
extracted standard deviation varies 5.87 times and the mean only shifts 4.23%.
In the semi-logarithmic plot of Fig. 5B, the extracted standard deviation, σ,
exponentially depends on the common-mode charge as predicted by (7). The
minimum achievable extracted standard deviation from the measurements is
0.199V, which is set by the maximum gain of the VGA. If two diode-connected
nMOS transistors are used as the load, the maximum VGA gain will be doubled
and the minimum achievable standard deviation can be reduced by half.

A diode-connected transistor, M37, in the bump circuit converts the output
current into a voltage. By feeding this voltage to the tail transistor, M30, in the
next stage bump circuit as shown in Fig. 6, the final output current approximates
a multivariate Gaussian function with a diagonal covariance matrix. Although
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Fig. 6. By connecting the diode-connected output transistor to the tail transistor of
the next stage bump cell, the resulting output current can approximate a multivariate
Gaussian function with a diagonal covariance matrix.

A B

Fig. 7. Measurement results from two cascading floating-gate bump circuits. ∆VX is the
input voltage difference ∆Vin = Vin1 −Vin2 of the first stage floating-gate bump circuit
and ∆VY is the input voltage difference of the second stage. In both stages, Vin2 =
VDD/2. The common-mode charges are programmed to different levels to approximate
bivariate Gaussian functions with different variance.

the feature dimension can be increased by cascading more floating-gate bump
cells, the bandwidth of the classifier decreases. The mismatches between the
floating-gate bump circuits can be trimmed out by using floating-gate program-
ming techniques. In Fig. 7, two 2-D “bumps” with different widths approximating
bivariate Gaussian functions with different standard deviations are shown. The
output currents of an array of these floating-gate bump circuits can easily be
summed up to implement GMMs.
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Fig. 8. A: Measured injection characterization points (circles) and the corresponding
curve fits (dashed lines). The pulse width is fixed at 200µsec. 10 different values of Vds

ranging from 5.6V to 6.5V and 30 channel current levels ranging from 20nA to 20µA
are used to obtain the curve fits for each curve. Cubic functions are used to regress the
nonlinear functions g(·) and f(·) in (10). B: The block diagram of programming an
array of floating-gate transistors. Drain-lines and gate-lines are shared in rows and in
columns respectively. By applying VDD to unselected drain-lines and gate-lines, floating-
gate transistors can be programmed individually.

4 Programming Floating-gate Transistor Array

How to accurately programming an array of floating-gate transistors is a critical
technique in the development of the proposed analog classifier. Fowler-Nordheim
tunneling and channel hot electron injection mechanisms are used to program
charge on floating gates. The techniques of programming an array of floating-gate
transistors have been detailed in many previous works [14, 15]. The floating-
gate programming method and the way to program an array of floating-gate
transistors will be briefly reviewed in this section.

Fowler-Nordheim tunneling removes electrons from the floating gates through
tunneling junctions, which are schematically represented by arrowheaded capac-
itors shown in Fig. 8B. Because of the poor selectivity, tunneling currents are
used as the global erase. To accurately program charges on floating gates, chan-
nel hot electron injection are employed. As detailed in [16], the injection current
can be modeled as

Iinj = Iinj0

(

Is

Is0

)α

e−∆Vds/Vinj , (9)

where Is is the channel current, Vinj is a device and bias dependent parameter,
and α is very close to 1. Instead of using this computationally complex physical
model as in [14], an empirical model proposed in [15] is used to perform floating-
gate transistor characterization and algorithmic programming.

Given a short pulse of Vds across a floating-gate device, the injection current
is proportional to ∆Is/Is0, where ∆Is = Is − Is0 is the increment of the channel
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current. From (9), logarithmic of this ratio should be a linear function of Vds

and a nonlinear function of log(Is0/Iu), where Iu is an arbitrary unity current.
It can be expressed as

log

(

∆Is

Is0

)

= g

(

log

(

Is0

Iu

))

Vds + f

(

log

(

Is0

Iu

))

, (10)

where g(·) and f(·) are weakly linear functions when the transistor is in the
subthreshold region and are nonlinear when the transistor is above threshold.
In the characterization process, Vds and Is0 are given and ∆Is can be measured.
Thus, g(log(Is0/Iu)) and f(log(Is0/Iu)) can be regressed by high order poly-
nomial functions. After the characterization process, we obtain the resulting
polynomial regressive functions, f̂(log(Is0/Iu)) and ĝ(log(Is0/Iu)). In the pro-
gramming process, with the regressive functions, the appropriate Vds value for
injection can be predicted by

Vds =

log

(

∆Is

Is0

)

− f̂

(

log

(

Is0

Iu

))

ĝ

(

log

(

Is0

Iu

)) , (11)

where Is0 is the given starting point and Is is the target value.
The measured and the regressive results for the injection characterization

are compared in Fig. 8A. Only one floating-gate transistor in the floating-gate
array is used in the characterization, and the regressive functions are cubic. The
measured regressive coefficient mismatches in the array are less than 10%. To
avoid overshooting the target value, we always apply slightly shorter and smaller
pulses of Vds than the predicted values. Therefore, despite the mismatches and
the discrepancy between the curve fits and the measured data, the current level
of the floating-gate transistor approaches the target value asymptotically. The
precision of the programmed current level can be as accurate as 99.5%, which
is consistent with other approaches [14, 15]. As presented in [17], the retention
time for the charges on floating gates can last over 10 years at room temperature.
Because the bump circuit is a differential structure, the center of the transfer
curve would not vary with the temperature. However, its width depends on the
temperature because of the UT term in (7).

To program an array of the floating-gate bump circuits, floating-gate tran-
sistors are arranged as in Fig. 8B in the programming mode. There are two
conditions required for injection: a channel current and a high channel-to-drain
field. We can deactivate the unselected columns (or rows) by applying VDD to the
corresponding gate-lines (or drain-lines) so that there are no currents through
(or no fields across) the devices for injection. In this manner, each floating-gate
transistor can be isolated from others and can be programmed individually.

5 A Programmable Analog Vector Quantizer

A “FG-pFET & Mirror” block shown in Fig. 9A is added in front of the first
bump cell to program its tail current, which sets the height of the “bump.”
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Fig. 9. A: The schematic of the “FG-pFET & Mirror” block. The charge on the
pMOS transistor can be programmed to set the height of the bell-shaped transfer
curve. B: The schematic of a current mode winner-take-all circuit. Only the output
voltage of the winning cell will be high to indicate the best-matching template.

For the analog vector quantizer implementation, the final output currents of
the RBF-based classifier are duplicated and are fed into a simple current mode
winner-take-all circuit, the schematic of which is shown in Fig. 9B. Only the
output voltage of the winning cell will be high to indicate the best-matching
template.

To have the access to all drain and gate terminals of floating-gate transis-
tors in the programming mode, multiplexers are inserted into the circuits as
shown in Fig. 10. Most of the multiplexers are in the inverse generation and bias
generation blocks. Since only one bias generation block is needed for the whole
system, when the system is scaled up, the bias generation block does not cost
extra complexity. In the analog RBF-based classifier and the vector quantizer,
the same input voltage vector is compared with all stored templates. Therefore,
the inverse generation can be shared by the same column of bump cells, each
of which only includes a VGA and a conventional bump circuit. The number of
inverse generation blocks is equal to the dimension of the feature space. Together
with the gate-line and drain-line decoders, most of the programming overhead
circuitries are at the peripheries of the floating-gate bump cell array; therefore
the system can be easily scaled up and maintain high compactness. The com-
pactness and the ease of scaling up are important issues in the implementation
of an analog speech recognizer that requires more than a thousand of bump cells.
The final architecture of our analog vector quantizer is shown in Fig. 11.

Two examples are used to demonstrate the reconfigurability of the classifiers
as shown in Fig. 12. Four templates are used and their outputs are superposed in
a 3-D plot. The floating-gate transistors of other unused templates are tunneled
off. Four bell-shaped output currents emulate the bivariate Gaussian likelihood
functions of four templates. The thick solid lines at the bottom, indicate the
boundaries determined by the WTA outputs.
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Fig. 10. The complete schematics of the floating-gate bump circuit. Multiplexers for
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connection in the operating mode. The tunneling junction capacitors are not shown for
simplicity. Most of the multiplexers are in the bias generation and inverse generation
blocks. Only two multiplexers are added in the bump cell that includes the VGA and
the conventional bump circuit.

6 Performance of The Analog Vector Quantizer

We have fabricated a prototyped analog vector quantizer in a 0.5µm CMOS
process. We also fabricated a 16 × 16 highly compact low-power version of an
analog vector quantizer in the 0.5µm CMOS process occupying less than 1.5 ×

1.5mm2. Some important parameters and measured results are listed in the
TABLE 1.

To measure the power consumption, several “bumps” are programmed with
identical width while other “bumps” are deactivated by tunneling their floating-
gate transistors off. The power consumption is averaged over the entire 2-D input
space. The slope of the curve in Fig. 13A indicates the average power consump-
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peripheries and the system can be scaled up easily.

A B

Fig. 12. Configurable classification results. The measured bump output currents (circle
contours) and the WTA voltages (thick solid lines at the bottom) of four templates are
superposed in a single plot. VX and VY are the Vin1 in the first stage and the second
stage floating-gate bump circuits respectively. Both of their Vin2 terminals are fixed
at VDD/2. A: Four templates are programmed to have the same variance and evenly
spaced means. B: Four templates are programmed to have different variances with
evenly spaced means.

tion per bump cell with a specific value of width. The relation between the power
consumption and the extracted standard deviation is shown in Fig. 13B.

The VGA is the main source of the power consumption. The gain is tunable
when the nMOS transistors in the VGA operate in the transition between above
threshold and subthreshold regions. The width tunability can also result from
the nonlinearity of the pMOS transistors when they are in transition between
saturation and ohmic region. From simulation, to save the power consumed in
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Fig. 13. Relation between the power consumption and the extracted variance. A:

Measured power consumption of the analog vector quantizer with different number
of floating-gate bump cells being activated with a fixed width. The slope of the curves
indicate the average power consumption per bump cell. B: The relation between the
power consumption per bump and the extracted variance of the bell-shaped transfer
curve. The larger the variance is, the more the power consumption.

the VGA, we can make nMOS transistors longer to reduce the above-threshold
currents and raise the source voltages of M23 and M24 to reduce the headroom.

Because the RBF output current is in the nano-amp range and the band-
width of our current preamplifier for measurement is approximately 1KHz at
that current level, we can not measure the speed of our floating-gate bump
circuit directly, which is expected to be around mega-Hz range. We can only
measure the response time from the input to the WTA outputs. The measured
transient response of the analog vector quantizer is shown in Fig. 14A. One of
the speed bottlenecks of the system is the inverse generation block. For a given
width, the speed and the power depend on the amount of charge on M13 and
M14. With more electrons on the floating gates, the circuit can achieve higher
speed but with the cost of more power consumption as shown in Fig. 14B. The

Table 1. Analog Vector Quantizer Parameters

Size of VQ 7(templates)×2(components)

Area/Bump Cell 42 × 82 µm2

Area/WTA Cell 20 × 35 µm2

Power Supply Rail VDD = 3.3V

Power Consumption/Bump Cell 90µW ∼ 160µW

Response Time 20µ ∼ 40µsec

Floating-gate Programming Accuracy 99.5%

Retention Time 10 years @ 25◦C
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Fig. 14. Response time and speed-power trade-off of an analog vector quantizer. A:

The response time between the input voltage and the WTA output. B: The relation
between the response time and the power consumption for a given bump width. The
inverse generation block dominates the response time in the steep region. The VGA
dominates in the flat region. Charge on M13 and M14 can be programmed to optimize
the speed-power trade-off.

steep portion of the curve implies that the inverse generation block dominates.
In this region, we can increase the speed by consuming more power in the in-
verse generation block. The flat region in Fig. 14B indicates the VGA dominant
region. In this region, burning more power in the inverse generation block does
not improve the speed of the system. Thus, given a variance, we can program
the charges on M13 and M14 so that the system operates at the knee of the curve
to optimize the trade-off between the speed and the power consumption in the
inverse generation block.

Finally, we evaluate the computational accuracy of the analog RBF. Since
the computation method and errors are different from those of traditional digi-
tal approaches, generic comparisons of effective bit-accuracy do not make sense.
Rather, we choose to evaluate the impact of using the analog RBFs on system
performance. To this end receiver operating characteristic (ROC) curves and
equal error rate (EER) are adopted. Two separate 2D bumps are programmed
to have the same variance with a fixed separation as shown in Fig. 15. The
corresponding Gaussian fits are used as the actual probability density functions
(pdf) of two classes. Comparing these two pdf’s using different thresholds ren-
ders a ROC curve of these two Gaussian distributed classes that is used as the
evaluation reference. With the knowledge of the class distributions, comparing
the output currents using different thresholds generates a ROC curve for the 2D
bumps. Comparing each of the two WTA output voltages with different thresh-
olds generates two ROC curves that characterize the classification results of the
vector quantizer. The EER, which is the intersection of the ROC curve and the
−45◦ line as shown in Fig. 16A, is the usual operating point of classifiers. In
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Fig. 15. Distributions of two “bumps” used to evaluate the classifier performance.
In the measurements for performance evaluation, the separation of the center is kept
constant but the widths of these two “bumps” varies. The measured bump output
currents (circle contours) and the WTA voltages (thick solid lines at the bottom) of
two templates are superposed in a single plot. VX and VY are the values at the Vin1

input terminals of the first and the second floating-gate bump circuits respectively. The
Vin2 terminals in both stages are fixed at VDD/2.

Fig. 16B, both the ROC areas and the EER are plotted to investigate the effect
of the bump width on the performance. At the EER point, the performance of
the analog RBF classifier, which uses floating-gate bump circuits to approximate
Gaussian likelihood functions, is undistinguishable from that of an ideal RBF-
based classifier. Despite the finite gain of the WTA circuit, the performance of
the analog vector quantizer is still comparable to an ideal maximum likelihood
(ML) classifier. By optimizing the precision and speed of the WTA circuit, the
performance can be improved but it is beyond the scope of this chapter.

7 Power Efficiency Comparison

To compare the efficiency of our analog system with the DSP hardware, we es-
timate the metric of millions of multiply accumulates per second per milli-watt
(MMAC/s/mW) of our classifiers. When the system is scaled up, the efficiency
of the bump cells dominates the performance. Therefore, we consider the per-
formance of a single bump cell only.

Each Gaussian function is estimated as 10 MACs and can be evaluated
by a bump cell in less than 10µ sec (which is still an overestimate) with the
power consumption of 120µW or so. This is equivalent to 8.3 MMAC/s/mW.
The performance of commercial low-power DSP microprocessors ranges from 1
MMAC/s/mW to 10 MMAC/s/mW and a special designed high performance
DSP microprocessor in [18] is better than 50 MMAC/s/mW. If this comparison
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Fig. 16. ROC and EER performance of the classifiers. A: The ROC curves of the
Gaussian fits (squares), output currents of the 2D bumps (circles) and WTA output
voltages (triangles and diamonds) with the extracted σ = 0.55V. The Gaussian fits
are used as the actual pdf’s of the two classes and the corresponding ROC curve is
used as a reference. The intersection of the ROC curve and the −45◦ line is the EER
point, which is the usual operating point. B: The effects of different bump widths
on the receiver operating characteristic (ROC) area and the equal error rate (EER)
performance. The separation of the means of two classes is 1.2V. The results show that
the analog VQ is comparable to an ideal maximum-likelihood (ML) classifier.

is expanded to include the WTA function, the efficiency of the proposed analog
system will improve even more relative to the digital system.

Although our power efficiency is comparable to the digital system, our classi-
fier consumes much more power compared to other analog vector-matrix-multipli-
cation systems [19,20], the efficiency of which ranges from 37 to 175 MMAC/s/µW .
The reason is that the transistors M23 and M24 are operating far above thresh-
old. By making M21 and M22 long and raising the source voltages of M23 and
M24 (which is not available in the current chip), from simulation, the power con-
sumption can be easily reduce by at least two orders of magnitude. If the WTA
circuit is also optimized, it is anticipated that future ICs will be at least two to
three orders of magnitude more efficient than DSP microprocessors at the same
task.

8 Conclusion

In this chapter, a new programmable floating-gate bump circuit is demonstrated.
The height, the center and the width of its bell-shaped transfer characteristics
can be programmed individually. A multivariate radial basis function with a
diagonal matrix can be realized by cascading these bump cells. Based on the
new bump circuit, a novel compact RBF-based soft classifier is built. By adding
a simple current mode winner-take-all circuit, we implement an analog vector
quantizer. The performance and the efficiency of the classifiers are comparable to
the digital system. With slight modifications, the overall efficiency is anticipated
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to be improved by at least two to three orders of magnitude better than DSP
microprocessors.

Appendix

The nMOS transistors in the VGA are assumed in the transition between the
above-threshold and the subthreshold regions. The pMOS transistors are as-
sumed in the above-threshold region. Because the transfer characteristics of the
two branches are symmetric, we can use the half circuit technique to analyze the
VGA gain. By equating the currents flowing through the pMOS and nMOS tran-
sistors, we can have

I0,p

(

Wp

Lp

)

1

4U2
T

[κp(VDD − Vfg,21 − VT0,p)]
2

= I0,n

(

Wn

Ln

)

ln2
(

1 + e
κn

2UT
(V1−VT0,n)

)

(12)

where the subscripts of “p” and “n” refer to pMOS and nMOS transistors respec-
tively, I0 is the subthreshold pre-exponential current factor, κ is the subthreshold
slope factor, VT0 is the threshold voltage, and UT is the thermal voltage. At the
peak of the bell-shaped transfer curve, VQ,dm = 0 and

Vfg,21 =
1

2
∆Vin + VQ,cm

V1 = Vout,cm +
1

2
∆Vout,

where Vout,cm = (V1 + V2)/2, ∆Vout = V1 − V2. We can obtain the gain of the
VGA by differentiating (12) with respect to Vfg,21 and have

∆Vout

∆Vin
=

dV1

dVfg,21
= −γ

(

1 + e
−

κn
2UT

(V1−VT0,n)
)

=
−γ

1 − e
−

γκp
2UT

(VDD−Vfg,21−VT0,p)

≈ −γ
(

1 + e
−

γκp
2UT

(VDD−VQ,cm−VT0,p)
)

, (13)

where γ =
κp

κn

√

I0,pWpLn

I0,nLpWn
. Therefore, the gain increases approximately expo-

nentially with the common-mode charge and, accordingly, we can expect the
exponential relation between the extracted standard deviation of the transfer
curve and the common-mode charge.
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Abstract.  

Test Data Compression techniques have been developed for reducing 
requirements in terms of Automatic Test Equipments. In this paper, we explore 
the benefits of using these techniques in the context of core-based SoCs. Test 
Data Compression is used to reduce the system test time by increasing the test 
parallelism of several cores without the expense of additional tester channels. In 
this paper, we first discuss the constraints on test architectures and on the 
design flow inferred by the use of compressed test data. We propose a method 
for seeking an optimal architecture in terms of total test application time. The 
method is independent of the compression scheme used for reduction of core 
test data. The gain in terms of test application time for the SoC is over 50% 
compared to a test scheme without compression. 

1. Introduction 

Testing a SoC mainly consists in testing each core in the system. In order to provide 
accessibility to these cores, the SoC architecture is completed by a Test Access 
Mechanism (TAM) and wrappers interfacing cores with the TAM (IEEE 1500 
standard [1]). The TAM is generally a bus whose bandwidth fits the number of SoC 
test IOs. TAM and wrappers are preferably co-designed in order to reduce the global 
Test Application Time (TAT): several methods formulated as optimization problems 
have been proposed for establishing the best trade-off between the number of test 
buses, the bus bandwidth, the wrapper size and the test parallelism (e.g. [2], [3], [4], 
[5], [6]). However, as the complexity of SoC design keeps on growing, testing 
becomes more and more expensive with regard to test time and test pin requirements. 
While increasing the number of scan chains in a core helps to reduce its test time, it 
also increases the bandwidth of the core interface with the TAM. The consequence of 
this local test time improvement is to either reduce the test parallelism possibilities at 
system level, or increase test resources requirements: larger TAM, larger numbers of 
test inputs and higher requirements in terms of tester channels. 

Several Test Data Compression (TDC) techniques aiming at reducing the number 
of visible scan chains have been developed. Concerning test pattern compression, also 
called horizontal compression, those techniques consist in compressing test patterns 
off line (i.e. reducing their bit width), storing the compressed test data in the ATE, 
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and decompressing test data on-chip for restoring initial test patterns (see Figure 1). 
Input-data compression schemes rely on the fact that test patterns originally contain 
don’t-care bits. These don’t care bits do not have to be stored into ATE but can be 
supplied on-chip in some other ways. LFSRs [7][8], Xor networks [9] [10], ring 
generator [11], RAM [12] [13], arithmetic units [14] and test pattern broadcasting 
among multiple scan chains [15] [16] [19] constitute a range of solutions for 
minimizing the number of data to be stored into ATE. All these methods reduce 
therefore the number of necessary ATE channels (WATE) required to test a standalone 
core including N scan chains ( N> WATE). 

Test Data

Horizontal Compression

Compressed
Test Data

N

W_ATE<<N

W_ATE

On-Chip Decompression

N

DUT

xxxxx01xxxxxxxxxx011x

0101111100

 
Fig. 1. Compression/Decompression scheme 

Note that as mentioned earlier, increasing the number of internal scan chains in a 
core, and therefore its interface with the TAM, allows reducing its test time since the 
resulting test scheme requires fewer scan-in clock cycles. However, if a compression 
technique is used for keeping the number of visible scan chains WATE as low as 
possible (WATE < N), the core test time may be affected compared to a solution where 
the number of visible scan chain is equal to the number of real scan chains (WATE 
=N). Because no matter the TDC technique is used, compressing an N-bits vector on a 
WATE-bits word to be stored in the ATE is not always possible. Consequently, it is 
necessary to serialize the non-compressible vectors with the help of a decompressor-
bypass mechanism, or to look for additional compressible test patterns for keeping the 
fault coverage obtained with the original non-compressed test sequence. In any case, a 
side-effect is an increase in TAT of the core under test. 

Concerning test responses, several methods have been proposed (e.g. [17], [18]). 
Conversely to TDC, those test responses compaction techniques do not impact TAT 
and are independent of the core netlist and of the test responses sequence. Thus, they 
can be directly employed in the framework of SoCs design. In the remainder of this 
paper, we focus on test pattern compression only. 

Several TDC approaches can be considered at system level. In a bottom-up 
approach, TDC is applied at core level by the core designer, and then wrapped cores 
(including decompressors) are embedded in the SoC by the system integrator. In this 
case, the test infrastructure design resumes to the classical TAM optimization 
problem since individual test times and number of visible scan chains on the core 
interfaces are known, and fixed, before system integration. The second approach 
consists in questioning test time optimization and compression schemes at system 
level. In this case, the cores come with their uncompressed test sequences and the 

  Julien DALMASSO, Marie-Lise FLOTTES, Bruno ROUZEYRE 54



system integrator must determine the compression ratio on every core, define the test 
infrastructure and resulting test time. This approach should allow optimizing the test 
of the system with regard to the test resources constraints and not only with regards to 
the pre-fixed test times of the individual cores as in the bottom-up approach. 

Concerning TDC at system level, several approaches focus on memory depth 
requirements using different forms of stream compression (e.g. [19], [20]), or on test 
pattern broadcasting among multiple cores (test time savings up to 23% are reported 
in [21]). TAM architectures using horizontal compression have been presented in 
[23], [24], [25] but the proposed methods rely on specific TDC techniques. Moreover, 
all architectural solutions are not considered since these techniques essentially target 
TAM architectures with a single decompressor for all cores, or architectures with a 
dedicated decompressor per core (or connected to duplicated versions of the same 
core). 

In this paper, we propose a method for exploring all TAM/TDC architectures 
including solutions with a dedicated decompressor per core and architectural solutions 
with shared decompressors. The final goal is to generate test architectures and test 
schedules that minimize the system TAT. The proposed technique is independent of 
the adopted compression scheme. 

Section 2 discusses the implication of TDC insertion at SoC level. The problem 
formulation as well as notations are given is Section 3. The algorithm is detailed is 
Section 4 whereas experimental results are reported in Section 5. Finally, Section 6 
draws some conclusions. 

2. SoC test architecture and compression 

2.1 Test infrastructure design 

A SoC test architecture is proposed by the IEEE 1500 Standard. It mainly consists of 
a TAM bus and wrappers around cores. The TAM links the SoC's test IOs to the 
cores. Each core wrapper interfaces the core and the TAM bus. As in [2] and [3], we 
assume a TAM architecture organized around a partitioned test bus, each core being 
connected to one sub-bus, as depicted in Figure 2 in which the TAM is split into two 
sub-buses TAM1 and TAM2. Cores connected to the same sub-bus are tested serially 
(e.g. C1, C2, C3), cores assigned to different TAMs can be tested in parallel (e.g. C1 
and C4 or C1 and C5). We do not make any assumption about the wrappers of the 
cores : they can be designed when building the test infrastructure at system level or 
pre-defined by the 1500-ready cores. In the rest of this paper, WTAM denotes the TAM 
bandwidth, and WTAMi the bandwidth of sub-bus i. 
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WTam1

WTam2

C5

C1 C2 C3

C4

WATE=WTam= ∑ WTami  
Fig. 2. TAM architecture 

 
Let's recall that, under the chosen TAM model, building the test infrastructure 

mainly consists in: 1) finding a partition of the bus into p sub-buses and determining 
their bandwidth, 2) assigning the cores to the p sub-buses, and designing their 
wrappers 3) deriving a test schedule so that the total test time is minimized. An 
underlying data of these tasks is the test times of cores. 

The test time of a core depends, among other things, on the size of its wrapper in 
terms I/Os interfaces with the TAM. The test time of the core and its wrapper size are 
linked by the following relation: 

Tcore = V × [1+max{si,so}] + min{si,so} 
where V is the number of test patterns, and si (so) the number of scan cycles required 
to load (unload) a test vector (test response). In Figure 3 for instance, two wrappers 
configurations of the same core are depicted. On the left hand side, the core is 
connected to the TAM through 2 visible scan chains and the test time is 13p+12 
cycles. On the right hand side, the wrapper interface is enlarged to 3 scan chains at the 
benefit of the test time, which is reduced to 10p+6 cycles. 

SC1: 10 FFs

SC2: 6 FFs

SC3: 2 FFs

Combinational logic

 

SC1: 10 FFs

SC2: 6 FFs

SC3: 2 FFs
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Fig. 3. Wrapper designs 

2.2 Compression and test infrastructure 

The TAM bandwidth can be increased thanks to TDC techniques without changing 
the requirements in terms of ATE channels (WATE). The tests parallelism can 
therefore be increased without additional cost and should result in a shorter test time. 
However, as explained in the introduction, TDC may also increase the test times of 
individual cores. More precisely, for a fixed number N of scan chains (or equivalently 
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for a fixed wrapper size), the test time of a core increases when the number of bits at 
the input of the decompressor gets smaller. For instance, using the TDC technique 
presented in [14], the test of the S38417 benchmarks circuit with N=16 scan chains 
needs 21451 clock cycles when WATE = 10 and increase to 38867 clocks cycles when 
WATE = 3 (see for instance, results given in Figure 9). 

The use of TDC impacts the building of the test infrastructure in two aspects: 
− 1) Since TDC modifies the test times of individual cores, the decompression ratios 

must be established during the design of the test infrastructure and not after. 
− 2) Since decompressors can be shared between several cores, test sequences to 

compress must be defined before decompressor assignation. 

Fig. 4. TAM/decompressors architectures 
 

Let's discuss this last point on the Figure 4 example: either a decompressor feeds 
several sub-buses (Figure 4.a) or one decompressor feeds a single sub-bus (in Figure 
4.b). The evaluation in terms of test time of a solution requires defining the bus 
partitioning, the core assignment, the test parallelism, the test sequence, and finally 
the compression of this sequence. Figure 4.a for instance depicts only one bus 
partitioning and core assignment possibility. It includes several test parallelism 
solutions (e.g. either C1 and C4 tested in parallel or C1 and C5). In turn, each one 
necessitates building the actual test sequence by concatenating the test sequences of 
the cores tested in parallel, C1 and C4 for instance. Finally the resulting test sequence 
has to be compressed in order to obtain the actual test time. Another way of dealing 
with this model is 1) to build the optimal test infrastructure and related test schedule 
without looking at compression 2) derive the whole SoC test sequence and compress 
it. Doing so, there is no chance to obtain an optimal solution since the test 
infrastructure (without decompressor) is built given the original test times of cores 
which are latter modified by the compression. We did such an experiment with the 
example given in section 5. Doing so, the obtained test time is 65699 cycles while a 
solution with 57941 cycles has been obtained using the method we propose here.  

Conversely, the cores connected downstream a decompressor in the second 
architecture style (Figure 4.b) are tested one after the other. The test sequences to 
compress are simply those of the cores and not issued from the concatenation of 
several ones. The compression of the test sequences can therefore be done 
independently of the test infrastructure building process. This alleviates the problems 
raised by the first model. 

So in the remaining, we consider the second architecture style and we propose a 
method for conjunctly building up the TAM, the wrappers (if needed) and the 
decompressors. 
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Each path for the ATE channels, through a decompressor, up to sub-bus is called a 
line. The architecture depicted in Figure 4.b) is composed of three lines for instance. 
It must be noted that within this architectural model and in the absence of additional 
constraints such as power limit for instance, the test scheduling is trivial (as without 
compression). The test time on a line is simply the sum of the individual test times of 
the cores since there is no test parallelism on the line. The total TAT at system level is 
the maximal test times over the lines. 

3. Problem statement and notations 

We state the problem of building the test infrastructure with decompressors as an 
optimization problem. Given the number of available ATE channels, the bandwidth of 
the TAM, and the test patterns, we want to determine the best partition of the test 
infrastructure into p lines and the interconnection of the cores to the sub-buses so that 
the TAT is minimized. 

In the remaining, we will use the following notations. the ratio WATE/N is denoted 
by ρ. n is the number of cores under test, wc the number of visible scan chains for 
every core c=1…n. Let p be the number of lines, and let WATE_i and WTAM_i, i=1,…,p 
be respectively the number of ATE channels and the bandwidth of the sub-bus on line 
i. Let ρi=WATE_i/WTAM_i be the decompression ratio of line i. c

wc
t ρ,  denotes the test 

time of core c with a wc bits wrapper for a ratio ρ. 
The problem is to determine: 
- the line number p; 
- the bitwidths WATE_i and WTAM_i for i=1,…,p; 
- an assignment of the cores to the lines; 
- optionally, the wrapper size wc  of each core, 
- and a test schedule so that TAT is minimal. 
The following constraints must be obeyed: 

∑
=

=
pi

iATEATE WW
,..,1

_  cons.1 

∑
=

≥
pi

iTAMTAM WW
,..,1

_     cons.2 

iATEiTAM WW __ ≥ , i =1,..,p  cons.3 

iTAMc Ww _≤  if c is connected to line i.  cons.4 
Variables to be determined are given in italic in Figure 5 (.WATE and WTAM being 

given) 
Concerning core wrappers, there are two cases: either the cores are wrapper-ready 

or their wrappers have to be designed. In the later case, it must be noted first that 
1≤wc≤max(#PIs,#POs)+ #scan chains. Secondly, once wc is determined, designing the 
wrapper so that the test time of the core is minimized resumes simply to balance the 
lengths of the visible scan chains. This won't be detailed in the remaining. 

In the scenario where the wrappers are already fixed, if a core is assigned to a line i 
for which WTAM_i is strictly greater than the wrapper size wc, only wc bits of TAM_i 
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are connected to the wrapper, the test time of the core is considered to be the same as 
if TAM_i was wc bits wide. For instance, and for a core c with wc =4, its test time 

c
wc

t ρ,  is the same whether it is assigned to a line with WATE = 2 and WTAM =6, or to a 

line with WATE = 2 and WTAM =4, i.e. ρ = 2/4.  

The test time c
wc

t ρ, of a core c must be pre-computed for all possible values of ρ (from 
1 to 1/wc). (cf. section 4 to see how this process can be speeded up). For examining 
the benefit of using TDC when designing the test infrastructure of a SoC, we 
developed the heuristic presented hereafter. 

 

WATE = 
ΣWATEi

WATE1 WTAM1

C? C?C?

WTAMp

C? C?

WATEp

WTAM = 
ΣWTAMi

p

wc? wc? wc?

wc?wc?

 

Fig. 5. Problem statement 

4. Algorithm 

The general flow chart of the method is depicted in Figure 6. First, all the possible 
combinations of lines are explored (line 1 and 2). The ATE channels partition can be 
easily determined knowing the total WATE width and the number of lines p by 
applying the formula of the partition of integer numbers. Namely, the number X(n,p) 
of partitions of a set of n elements into p subsets can be computed as:  

np if   0 and

1)1,(),( with ),(),(
1

>=

==−= ∑
=

X(n,p)

nXnnXkpnXpnX
p

k
 

(1) 

For instance, 10 ATE channels can be partitioned into p=3 subsets in X(10,3)=8 
different ways (1+1+8, 1+2+7, 1+3+6, etc…). 

Then for each ATE channels partition, all the compatible partitions of the TAM are 
calculated. A partition of the TAM is said to be compatible with a partition of the 
ATE channels if cons.3 is verified for all p lines. Furthermore, if cores are wrapper-
ready i.e. wc are fixed, the number of TAM partitions to be explored can be further 
reduced by considering cons.4. In other words, the narrowest TAM must be large 
enough to support the narrowest wrapper. It must be noticed that if WTAM_i=WATE_i, 
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no decompressor is present on this line. For a pair of partition, (ATE channels 
partition and TAM partition), cores must be assigned and the scheduling performed to 
obtain the TAT of this architecture (line 3 in Figure 6). 

 

 
 
Seeking for the assignment of cores to lines that minimizes TAT is an NP-

complete problem. So we developed the heuristic given in Figure 7. 
 

 
The first step determines an initial solution of the architecture, i.e an initial 

assignment of cores to the TAMs. Each core is positioned on the largest possible 
TAM i.e. and its wrapper size is set according to (cons.4). If the core is wrapper-
ready, it is assigned to the smallest bus i.e. respecting cons.4. For instance, in case of 
3 TAMs having resp. 5, 7 and 10 bits, a core with a 6-bits wrapper will be assigned to 
the 7 bits TAM. The first bus is not large enough to be connected to the core's 

 1. For all ATE channels partitions into p parts 
 2.    For each compatible TAM partition into p parts 
 3.         Find the best assignment of the cores to the p
             lines (that minimize TAT) ->cf Fig 5.              
 If this assignment reduces the global TAT, memorize
 this assignment and ATE/TAM architecture 
 

Fig. 6. Partition algorithm 

// Initial Solution 
– Sort cores by decreasing test data volume 
– Assign each core to the largest bus so that 

TAT increases as few as possible. 
// Improvement of the solution 
• While TAT is reduced   
– Find the line i with the highest TATi 
– For each core c assigned to i,  

• For all other lines k ( k ≠ i ) 
– Move core c from i to k 
– Compute newTAT and memorize i, k, c 

and newTAT  
– Move back core c from k to i 

– Move core c from i to k such that: 
1) the smallest TAT has been obtained 
2) the number of useless bits on k is 

minimized 
3) the standard deviation between TATi of 

all lines is maximized 
 

Fig. 7. Assignment algorithm 
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wrapper (cons.4). The second bus is preferred to the third one since, a priori, it is 
beneficial to reserve the larger one for cores with larger wrappers. 

The second step consists in improving this initial solution. For this, the cores are 
moved to other lines to reduce the global TAT.  

The principle is to move a core from the line with the highest TAT to another line 
so that the global TAT gets reduced as much as possible. For that, all cores of the line 
are virtually shifted to other lines and TATs are computed accordingly. The move that 
gives the highest benefit is chosen. In case of equality, the algorithm chooses (Core c, 
Line i) such that the number of useless bits on the line is minimized i.e. WTAM_i – wc 
is minimal. This is done for getting more room to move cores with larger wrappers to 
large buses, in next steps. Similarly, a third order criterion is used to unbalance test 
times over lines. 

Let's recall that the computation of TAT is straightforward (TATi denotes the test 
application time on line i): 

( ) ∑===
i  toassigned cores
,ii   TAT and p1,...,i,TATmaxTAT c

w ic
t

ρ

 (2) 

Note that the test times c
wc

t ρ,  for all cores and for all compression ratios 
(WATE_i/wc) are inputs of the proposed algorithm. These data are necessary to 
compute the system TAT (i.e. schedule the tests). Thus, as a pre-process, the 
compression algorithm must be performed for all compression ratios, for all cores and 
all wrapper sizes. This can be very CPU expensive depending on the compression 
technique used. We propose here an alternative to the exhaustive computation 

First, when the wrapper size is questioned, let's recall that as reported by many 
authors, the test time of a core, in the absence of compression i.e. ρ=1, is a stepwise 
decreasing function of the wrapper size. Furthermore it depends on the number of test 
vectors and not on the vectors themselves. Figure 8 reports the test time versus wc for 
the 10th core of the D695 ITC'02 benchmark. In general the number of steps is small. 
Only 15 optimal values of wc have to be considered for this core. 

Fig. 8. ITC'02 d695 benchmark (core 10) Test time vs wrapper size 

Secondly, whatever the TDC technique is used, the same behavior of the test time 
of cores versus decompression ratio can be observed (for a given wrapper size wc). It 
can be identified to the function: 
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Fig. 9. S38417 (wc = 16) computed/estimated test times 
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Only two values of t for one core are sufficient to identify α and β. The estimated 
values of c

wc
t ρ,  for several decompression ratios are thus obtained from only two 

measured values instead of wc computations. In order to improve the precision of the 
estimation, the compression algorithm is performed with the first and last 
decompression ratio values. 

This property has been validated with the TDC method [14]. This compression 
scheme is applicable with intellectual property cores and it is Test Suite independent, 
i.e. it does not required specific test generation or fault simulation. 

The measured and estimated tc,ρ values are reported on Figure 9 for the ISCAS’89 
s38417 benchmark (16-bits wrapper). The maximum error between measured and 
estimated values is smaller than 1%. Similar results have been obtained for all 
ISCAS’89 benchmarks and several configurations of wrappers. 

As a final remark let's note that the proposed heuristic can be adapted to additional 
constraints such as power limit, precedence constraints, etc…. Concerning the power 
consumption constraint for instance, two levels of optimization can be envisaged. At 
core level, the don’t care values not assigned by the compression scenari can be 
assigned in such a way that power consumption is limited during scan shifting. At 
system level, core test parallelism is not totally fixed by our architectural solution 
since cores assigned to the same line must be serially tested but there is no constraint 
on the test order. In Figure 2 for instance, cores on the first line can be tested in the 
following order C1, C2 and C3 or C1,C3 and C2 for instance. The best solution in 
terms of power consumption depends of the test order on the second line C4, C5 or 
C5, C4. 
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5. Results 

The first SoC used for experiments is the one described in [9][23] and depicted in 
Figure 10. It is composed of 16 ISCAS'89 benchmark circuits used as cores (i.e. with 
wrappers).  

Fig. 9. SoC example from [23] 

The test sequences of the circuits have been obtained with the Synopsis ATPG tool 
TETRAMAX [26] and compressed with our TDC technique described in [14]. The 
characteristics of the cores are given in table 1. 

Table 1. Characteristics of the cores 

Core number #scan chains (wc) test cycles 
1 to 4 5 9331 
5 to 8 6 9030 
9, 10 10 8804 
11,12 12 16048 
13,14 14 19845 
15,16 16 45760 

 
As explained before, the proposed method able to deal with either wrapper ready 

cores or with cores for which the 1500 wrapper has to be designed. The 2 following 
sub-sections present experimental results in both cases. 

 

5.1 Fixed wrapper 

In a first series of experiments, we assume that the wrappers are already designed. 
Wrappers sizes are equal to the number of scan chains. We have set the number of 
ATE channels to 32 and the maximal total TAM bitwidth to 64. The algorithm has 
been applied with a number of lines ranging from 2 to 6. Results are reported in Table 
2.  
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Table 2. Architectures exploration results 

#lines # conf. TAT Lines' parameters (WATE_i / WTAM_i) 
#bits used on 

TAM 

2 522 127413 (16,16) / (16, 48) 30 
3 44639 90457 (8,9,15) / (14,16,34) 42 
4 1345142 68361 (5,7,8,12) / (7,14,16,27) 53 
5 18605924 57941 (5,5,7,7,8) / (6,12,14,16,16) 64 
6 142238520 57941 (1,4,5,7,7,8) / (1,5,12,14,16,16) 63 
 
Col.2 indicates the number of architectural configurations that have been explored 

while col.3 gives the TAT of the elected architecture. The details of the test 
infrastructure are given in col.4. The last column indicates the actual number of TAM 
bits.  

For instance, for architecture with 3 lines, 44639 configurations have been 
explored. The optimal one leads to a TAT equal to 90457 test cycles. The architecture 
is composed of 3 lines with 3 decompressors such that (WATE_1, WTAM_1) = (8,14), 
(WATE_2, WTAM_2) = (9,16), and (WATE_3, WTAM_3) = (15,34). 

From this table, some observations can be done: 
- All potential test infrastructures are explored including those that do not contain 

decompressors. For instance, for the 2 lines configuration, the optimal architecture 
does not include a decompressor on the first bus WATE_1 = WTAM_1=16. 

- While a budget of a 64 bits TAM has been given, all those bits are not necessarily 
connected to cores (and thus are useless). This is the case for p=2, 3, 4, 6. This is 
mainly due to the wrapper sizes chosen for the cores. This means that the actual 
bitwidth of the TAM is smaller than 64 bits. 

Among all compressor/TAM architectures, the best TAT is obtained with p=5 
lines. The corresponding test schedule and architecture are given in Figure 11 and 
Figure 12. Test parallelism cannot be fully exploited with smaller values of p since at 
most p cores can be tested in parallel. For larger values of p (6, 7, …), further 
experiments have shown that TAT increases. 

Fig 11 Test schedule for a 32 → 64 
bits decompression with 5 lines 

TAT = 57941 cycles

Fig. 12 Final architecture 
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The reason is that the sizes of the wrappers relatively to the possible TAM_i widths 
act as a brake on parallelisation.  

We measured the benefit of using compressors in SoCs test architectures by 
comparing them to standard architectures i.e. without using compression, while 
setting the same environmental constraints. In the first case, we assumed the same 
limit on the numbers of available ATE channels (32 bits and thus a TAM of 32 bits), 
in a second case, the same area budget for building the TAM (64 bits wide and thus 
64 ATE channels). 

For the first case, the TAT is 127413 cycles for a standard TAM architecture when 
a number of sub-buses p ranges from 2 to 4 and 131210 cycles when p equals 5 or 6. 
These results have to be compared with the 57941 cycles when compression is used. 
Thus, the use of TDC technique in the context of SoC infrastructure design leads to a 
gain of 54.5% in terms of TAT for this example (at the expense of area overhead: 
larger TAM, decompressors). 

In the second case, i.e. a TAM of 64 bits (which means 64 ATE channels for a 
standard architecture vs 32 ATE channels with compression), comparative results are 
reported in Table 3. At the evidence, TDC has allowed to divide by two the number of 
ATE channels at the expense of only a 4% increase on TAT. 

Table 3. Architectures Comparison (fixed wrappers) 

 
 Proposed architecture: 

WATE =32, WTAM=64 
Standard architecture: 
WATE = 64, WTAM=64 

# lines TAT actual TAM 
bitwidth # lines TAT 

2 127413 30 2 127413 

3 90457 42 3 90457 
4 68361 53 4 68361 
5 57941 64 5 57941 
6 57941 63 6 55738 

5.2 Unfixed wrapper 

We did the same experiments, but without assuming fixed wrappers size i.e. letting 
the method determines the most adequate wrappers structures. TAT are reported in 
Table 4. It can be fist noted that since wrappers structures are questioned, bus width 
can be better utilized leading to shorter TAT. Secondly, as in the previous case, the 
use of TDC leads to a large TAT improvement.  

The same kind of experiments has been performed on the g1023 ITC'02 
benchmark. Unfortunately, in the ITC'02 suite, neither cores netlists nor test patterns 
are provided, all information necessary to perform compression. Only the number of 
test vectors is specified. We have randomly chosen test sequences including the given 
number of vectors. To be conservative, the patterns are such that they include 80% of 
don't care bits (many authors report a don't care bits percentage ranging from 95% to 
99% on industrial circuits). Comparative results are given in table 5.  
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Table 4. Architectures Comparison 

p 32→64 Decomp. 
Architecture 

Standard 64 bits 
Architecture  

Standard 32 bits 
Architecture  

2 66596 52953 97216 
3 61277 49814 96624 
4 57337 49129 96736 
5 55101 48592 96624 
6 54140 48517 96563 

 

Table 5. g1023 Comparison results 

  Decomp. 
Architecture Standard  Architecture  

p 32→64 16→32 64 bits 32 bits 16 bits 

2 17492 26256 15153 19633 33952

3 14185 23084 11274 17892 33718

4 12996 21409 11274 17235 33824

5 12399 20719 11274 17215 33824

6 12138 20667 11274 17235 33824

6. Conclusion 

In this paper, we explored the benefits of horizontal test data compression techniques 
in the context of the design of SoC test infrastructures. The increase in parallelism 
allowed by compression is fully exploited to reduce the test application time of the 
SoC. We propose a method that explores all architectural solutions from one single 
decompressor for all cores to architectures with a dedicated decompressor per core. 
Results obtained on a SoC based on ISCAS'89 benchmarks circuits have confirmed 
this TAT reduction with a ratio of more than 50%. While the experiments have been 
performed using a particular TDC technique, the method is independent of the used 
TDC. 

Presently, this method is geared to minimize the test time. Area overhead induced 
by decompressors and TAM is not taken into account. Seeking the best trade-off is a 
direction for future research. 
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Abstract. Analysis and verification environments for next-generation nano-scale
RFIC designs must be able to cope with increasing design complexity and to ac-
count for new effects, such as process variations and Electromagnetic (EM) cou-
plings. Designed-in passives, substrate, interconnect and devices can no longer be
treated in isolation as the interactions between them are becoming more relevant
to the behavior of the complete system. At the same time variations in process
parameters lead to small changes in the device characteristics that may directly
affect system performance. These two effects, however, cannot be treated sep-
arately as the process variations that modify the physical parameters of the de-
vices also affect those same EM couplings. Accurately capturing the effects of
process variations as well as the relevant EM coupling effects requires detailed
models that become very expensive to simulate. Reduction techniques able to
handle parametric descriptions of linear systems are necessary in order to obtain
better simulation performance. In this work we discuss parametric Model Order
Reduction techniques based on Structure-Preserving formulations that are able
to exploit the hierarchical system representation of designed-in blocks, substrate
and interconnect, in order to obtain more efficient simulation models.

1 Introduction

New coupling and loss mechanisms, including EM field coupling and substrate noise
as well as process-induced variability, are becoming too strong and too relevant to be
neglected, whereas more traditional coupling and loss mechanisms are more difficult to
describe given the wide frequency range involved and the greater variety of structures
to be modeled. The performance of each device in the circuit is strongly affected by
the environment surrounding it. In other words, the response of each circuit part de-
pends not only on its own physical and electrical characteristics, but to a great extent
also on its positioning in the IC, i.e. on the devices to which it is directly connected
to or coupled with. The high level of integration available in current RFIC designs
leads to proximity effects between the devices, which induce EM interactions, that can
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lead to different behaviors of the affected parts. In any manufacturing process there is
always a certain degree of uncertainty involved given our limited control over the envi-
ronment. For the most part this uncertainty was previously ignored when analyzing or
simulating complete systems, or assumed to be accounted for in the individual device
models. However, as we step towards the nano-scale and higher frequency eras, such
environmental, geometrical and electromagnetic fluctuations become more significant.
Nowadays, parameter variability can no longer be disregarded, and its effect must be
accounted for in early design stages so that unwanted consequences can be minimized.
This leads to parametric descriptions of systems, including the effects of manufactur-
ing variability, which further increases the complexity of such models. Reducing this
complexity is paramount for efficient simulation and verification. However, the result-
ing reduced models must retain the ability to capture the effects of small fluctuations,
in order to accurately predict behavior and optimize designs. This is the realm of Para-
metric Model Order Reduction (pMOR). Furthermore, these parametric fluctuations of
the physical characteristics of the devices can affect not only the performance of such
devices, but also the coupling between devices. For this reason the parametric models
of the individual blocks of a system can no longer be simulated in isolation but must
be treated as one entity and verified together. Such reduction must take advantage of
the hierarchical description of those systems, namely to account for designed-in ele-
ments as well as interconnect effects. To this end, structure-preserving techniques must
be used which not only retain structural properties of the individual systems but also its
connections and couplings.

The goal of this paper is therefore to present and discuss techniques for model order
reduction of interconnect, substrate or designed-in passives, taking into account their
dependence on relevant process or fabrication parameters and their coupling and con-
nections. The paper is structured as follows: Section 2 gives an introduction to Model
Order Reduction. In Section 3 an overview of several existing pMOR techniques will
be presented. In Section 4 an introduction to two-level hierarchical MOR will be done,
and an extension to improve the reduction will be presented. In Section 5 the proposed
methodology for combining the parametric techniques with the hierarchical reduction
will be proposed. To illustrate the procedure, its pros and cons, in Section 6 some re-
duction results will be presented for several real-life structures. Finally conclusions will
be drawn in Section 7.

2 Model Order Reduction

Model Order Reduction (MOR) is a framework whose aim is to efficiently find a be-
havioral equivalent yet reduced representation of a system. The system is usually rep-
resented in its state-space representation, which in descriptor form can be written as

Cẋ(t)+Gx(t) = Bu(t)
y(t) = Lx(t) (1)

where C,G ∈ Rn×n are respectively the dynamic and static matrices describing circuit
behavior, B ∈ Rn×m is the matrix that relates the input vector u ∈ Rm to the inner states
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x∈Rn and L∈Rn×p is the matrix that links those inner states to the outputs y∈Rp. This
time-domain descriptor yields a frequency response modeled via the transfer function

H(s) = L(sC +G)−1B (2)

for which we seek to generate a reduced order approximation, able to accurately capture
the input-output behavior of the system,

Ĥ(s) = L̂(sĈ + Ĝ)−1B̂. (3)

Existing methods for linear model reduction can be broadly characterized into two
types: those based on balancing techniques (sometimes also referred to as SVD5-based
[1]), and those that are based on projection methods.

The first set of techniques, those in the truncated balanced realization (TBR) family
[2], perform reduction based on the concept of controllability and observability of the
system states. They rely on balancing the system and then truncating the states with
small controllability and observability, information given by the Hankel Singular Val-
ues of the product of the system Gramians, which are obtained by solving a pair of
Lyapunov equations. These methods are purported to produce nearly optimal models
and have easy to compute a-posteriori error bounds. There are also known techniques
[3] that extent this framework in order to guarantee the passivity of the Reduced Order
Model (ROM), independently of the structure of its representation. However, the TBR
procedures are awkward to implement and expensive to apply, which limits their appli-
cability to small and medium sized problems. Hybrid techniques that combine some of
the features of each type of methods have also been presented [4–6].

Among the second set of techniques, Krylov subspace projection methods such
as PVL [7] and PRIMA [8] have been the most widely studied over the past decade.
They are very appealing because of their simplicity and performance in terms of effi-
ciency and accuracy. They rely on the computation of a basis for the Krylov subspace,
colspan{V} = Kr{A,R,q×m}, which encloses information about the transfer func-
tion, with A = G−1C, R = G−1B, and q the number of block moments matched (each
block with m columns). The projection of the high-dimensional original system in the
lower-dimensional generated subspace guarantees such implicit moment matching and
avoids numerical errors in the reduction process.

Ĝ = V T GV Ĉ = V TCV B̂ = V T B L̂ = LV (4)

Furthermore, this orthogonal projection (and congruence transformation), performed in
PRIMA, guarantees the preservation of the passivity in the reduction process if C,G
are positive definite and B = LT (see [8] for details). However the procedures in this
framework exhibit several known shortcomings. The lack of a general strategy for error
control and order selection, as well as a dependence on the original model’s structure if
passivity is to be guaranteed after the reduction are among the more obvious ones.

A different technique that attempts to establish a bridge between the two families of
methods was also proposed. The Poor Man’s TBR [9] is based on a projection scheme

5 SVD – Singular value decomposition.
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where the projection matrix approximately spans the dominant eigenspaces of the con-
trollability and observability matrices and provides an interesting platform for bridging
between the two types of techniques. The controllability Gramian is estimated via a
frequency-based quadrature rule of its integral form

X =
Z

∞

−∞

( jωC +G)−1BBT ( jωC +G)−Hdω (5)

where X is the controllability Gramian, and ω is the frequency. The Gramian can be
estimated by

X̄ = ∑
k

zkzH
k = ZZH (6)

where Z = [z1 z2 . . . ] and zk =
(

jω(k)C +G
)−1

B, with ω(k) the kth frequency sample.
In [9] it was shown that if the quadrature scheme is accurate enough, then the estimated
Gramian X̄ in (6) converges to the original one X , which implies that the dominant
eigenspace of X̄ converges to the dominant eigenspace of X (and in fact it converges
faster than the Gramian).

Still the technique is not without drawbacks, as it relies on proper choice of sam-
pling points, a non-trivial task in general.

3 Parametric Model Order Reduction

Actual fabrication of physical devices is susceptible to the variation of technological
and geometrical parameters due to deliberate adjustment of the process or from random
deviations inherent to the manufacturing procedures. This variability leads to a depen-
dence of the extracted circuit elements on several parameters, of electrical or geomet-
rical origin. This dependence results in a parametric state-space system representation,
which in descriptor form can be written as

C(λ)ẋ(t,λ)(λ)+G(λ)x(t,λ) = Bu(t)
y(t,λ) = Lx(t,λ) (7)

where the various elements have the meaning described for (1). The elements of the
matrices C and G, as well as the states of the system x, depend on a set of Q parame-
ters λ = [λ1,λ2, . . . ,λQ] which model the effects of the mentioned uncertainty. Usually
the system is formulated so that the matrices related to the inputs and outputs (B and
L) do not depend on the parameters. This time-domain descriptor yields a parametric
dependent frequency response modeled via the transfer function

H(s,λ) = L(sC(λ)+G(λ))−1B (8)

for which we again seek to generate a reduced order approximation, able to accurately
capture the input-output behavior of the system for any point in the multidimensional
frequency-parameter space.

Ĥ(s,λ) = L̂(sĈ(λ)+ Ĝ(λ))−1B̂ (9)
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In general, one attempts to generate a ROM whose structure is as much similar to the
original as possible, i.e. exhibiting a similar parametric dependence and retaining as
much of the original structure as possible. In this situation, the generated models can be
efficiently combined and used inside simulation environments.

3.1 Representation of the Parametric System

The treatment of the system matrices as appear in (7) is quite inappropriate, as the
parameter dependence can vary from element to element inside the matrices, and the
reduction methodology will likely not maintain this dependence. For this reason, an
approximate representation is generally used as the original system. An affine model
based on a Taylor Series expansion can be used for accurately approximating the be-
havior of the static and dynamic matrices, G(λ) and C(λ), expressed as a function of
the parameters.

G(λ1, . . . ,λQ) = ∑
∞
k1=0 . . .∑∞

kQ=0 Gk1,...,kQλ
k1
1 . . .λ

kQ
Q

C(λ1, . . . ,λQ) = ∑
∞
k1=0 . . .∑∞

kQ=0 Ck1,...,kQλ
k1
1 . . .λ

kQ
Q

(10)

where Gk1,...,kQ and Ck1,...,kQ are, respectively, the sensitivities of the static and dynamic
system matrices. The Taylor series can be extended up to the desired (or required) order,
including cross derivatives, for the sake of accuracy.

The techniques here presented can be combined with any order of the Taylor Series
in (10). However, for simplicity, in the following a first order approximation, with first
order sensitivities and no cross terms, will be used to illustrate the procedure.

G(λ1, . . . ,λQ) = G0 +Gλ1λ1 +Gλ2λ2 + . . .+GλQλQ

C(λ1, . . . ,λQ) = C0 +Cλ1λ1 +Cλ2λ2 + . . .+CλQλQ
(11)

where G0 and C0 are the nominal matrices, whereas Gλi and Cλi represent the 1st order
derivatives of the original matrices with respect to the ith parameter. Under this rep-
resentation of the parametric system, the structure for parameter dependence may be
maintained under a projection scheme, as long as the projection is not only applied to
the nominal matrices, but to the sensitivities as well.

Ĝ(λ1, . . . ,λQ) = Ĝ0 + Ĝλ1λ1 + Ĝλ2λ2 + . . .+ ĜλQλQ

Ĉ(λ1, . . . ,λQ) = Ĉ0 +Ĉλ1λ1 +Ĉλ2λ2 + . . .+ĈλQλQ
(12)

where Ĉ0 = V TC0V , Ĝ0 = V T G0V , Ĉλi = V TCλiV , and Ĝλi = V T GλiV , with V the pro-
jector whose columns span the desired subspace basis. This is one of the main features
that make the projection-based reduction the procedure followed by most of the para-
metric model order reduction techniques.

Another important issue is the passivity of the system. Taylor Series is not globally
accurate, and, under large parameter variations, can lead to loss of accuracy, and more
important, passivity. To avoid such pitfalls, the building of the Taylor Series formulation
must be done such that under any expected parameter setting, the system matrices retain
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their positive definiteness. A simple scheme for ensuring this is to compute the deriva-
tives element-wise, i.e. for each resistor, capacitor, etc..., consistently with the nominal,
and thus under any possible parameter setting the stamping of this value still yields a
positive definite matrix. Projection techniques are able to guarantee the passivity of the
reduced models under certain circumstances (as pointed in Section 2), usually fulfilled
in the case of electric models (for details see [8]).

3.2 Reduction via Multi-Dimensional Moment Matching

Some of the most appealing techniques for the reduction of the parametric systems
are multi-dimensional moment matching algorithms. These techniques appear as exten-
sions to nominal moment-matching ones [8, 7, 10]. Moment matching algorithms have
gained a well deserved reputation in nominal MOR due to their simplicity and effi-
ciency. The extensions of these techniques to the parametric case feature a similar sim-
plicity. They are usually based in the implicit or explicit matching of the moments of the
parametric transfer function (8). These moments depend not only on the frequency, but
on the set of parameters affecting the system, and thus are denoted as multi-dimensional
moments.

Some schemes, denoted as Multi-Parameter Moment Matching [11], rely on match-
ing, via different approaches, the multi-parameter moments of (8).

x(s,λ1, . . . ,λQ) =
∞

∑
k=0

k

∑
ks=0

k−ks

∑
k1=0

. . .
k−ks−k1....−kQ−1

∑
kQ=0

Mk,ks,k1,...,kQsksλ
k1
1 . . .λ

kQ
Q (13)

where Mk,ks,k1,...,kQ is a k-th (k = ks +k1 + . . .+kQ) order multi-parameter moment cor-

responding to the coefficient term sksλ
k1
1 . . .λ

kQ
Q . Following the same idea used in the

nominal moment matching techniques, a basis for the subspace formed from these mo-
ments can be built

colspan[V ] = colspan{M0,0,0,...,0,M1,1,0,...,0, . . . ,Mk,ks,k1,...,kQ} (14)

and the resulting matrix V can be used as a projection matrix for reducing the orig-
inal system. The generated parameterized ROM matches up to the k-th order multi-
parameter moment of the original system. The main inefficiencies of these techniques
arise from the fact that the same number of moments is matched for all the parameters
(including the frequency), and the expansion is performed around a single point. How-
ever, it should be noticed that the parameters usually fluctuate in small ranges around
their nominal values, whereas the frequency has a much wider range of variation. To
match the number of moments required to maintain the accuracy for large frequency
ranges may lead to large basis, and thus oversized reduced models. Some schemes have
been proposed to cope with this issue [12], but still suffer from some drawbacks.

A slightly different approach, that provides more compact ROMs, is presented in
[13], which relies on the computation of several subspaces, built separately for each
dimension, i.e. the frequency s and the parameter set λ. Given a parametric system
(7), the first step of the algorithm is to obtain the ks block moments of the transfer
function with respect to the frequency when the parameters take their nominal value (for
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example, via [8]). These block moments will be denoted as Vs. The next step is to obtain
the subspace which matches the kλi block moments of x with respect to each of the
parameters λi (with the values for the rest of the parameters j 6= i fixed to their nominal
values), and will be denoted by Vλi . Once all the subspaces have been computed, an
orthonormal basis can be obtained so that its columns span the union of all previously
computed subspaces.

colspan[V ] = colspan{Vs,Vλ1 , . . . ,VλQ} (15)

Applying the resulting matrix in a projection scheme ensures that the parametric ROM
matches ks moments of the original system with respect to the frequency, and kλi mo-
ments with respect to each parameter λi. If the cross-term moments are needed for accu-
racy reasons, the subspace that spans these moments can be also included by following
the same procedure.

Still a different alternative was proposed in [14], where the number of multi-parameter
moments matched is increased by applying a two step moment matching scheme. The
first step matches the parameter moments explicitly, and a second projection step is
applied to capture the frequency moments (for details see [14]). Unfortunately, the pa-
rameter dependence is lost and the passivity is not preserved.

Recent approaches [15, 16] were presented to overcome these shortcomings. They
rely on a recursive procedure to compute the same moments spanned by the approach in
[14]. Basically, the frequency moments of the nominal transfer function are generated,
and from these moments, in a recursive fashion, the frequency moments for each pa-
rameter moment are also generated. As an example, for first order moment with respect
to the parameters

colspan[V0] = colspan{V 0
0 ,V 1

0 , . . . ,V α0−1
0 }

colspan[Vλi ] = colspan{V 0
λi

,V 1
λi

, . . . ,V αi−1
λi

}
V j

λi
=−(G0 + seC0)−1(GλiV

j
0 + seCλiV

j−1
0 + seC0V j−1

λi
)

(16)

where V0 is the basis that allows matching α0 frequency moments for the nominal sys-
tem (V j

0 is related to the j th moment of the nominal system with respect to frequency),
and Vλi is the basis that allows matching αi frequency moments for the first moment of
the ith parameter, that is M1,0,··· ,1,··· up to Mαi,αi−1,··· ,1,··· in Eqn.( 13 (V j

λi
is related to the

j th frequency moment for the first moment of the ith parameter; see [15, 16] for further
details). This adds flexibility as the number of moments to match with respect to each
parameter and the frequency can be different. Furthermore, the number of frequency
moments generated for each parameter moment can be also different. Both techniques
differ in the methodology for selecting the most relevant moments, either by apply-
ing sampling on a tree scheme [15], or by generating the moments exhaustively until
no rank is added [16]. The moments generated are orthonormalized and applied as an
overall basis, V , in a projection scheme on the Taylor Series matrices.

colspan[V ] = colspan{V0,Vλ1 , . . . ,VλQ} (17)

These schemes avoid or minimize the growth of the ROM with the number of parame-
ters and moments to match.
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3.3 Reduction via Variational PMTBR

A different approach was also proposed that extends the PMTBR [9] algorithm to in-
clude variability [17]. This approach is based on the statistical interpretation of the
algorithm (see [9] for details) and enhances its applicability. In this interpretation, the
approximated Gramian is seen as a covariance matrix for a Gaussian variable, x(0),
obtained by exciting the underlying system description with white noise. Rewriting the
Gramian from (5) as

Xλ =
Z

Sλ

Z
∞

−∞

( jωC(λ)+G(λ))−1BBT ( jωC(λ)+G(λ))−H p(λ)dωdλ (18)

where p(λ) is the joint Probability Density Function (PDF) of λ in the parameter space,
Sλ. Just as in the original PMTBR algorithm, a quadrature rule can be applied in the
parameter plus frequency space to approximate the Gramian via numerical computation

zk = z(s = s(k),λ = λ
(k)) = (s(k)C(λ(k))+G(λ(k)))−1B (19)

where zk is the kth sample, obtained for a frequency value of s(k) and a parameter set
λ(k) (i.e. λ(k) = [λ(k)

1 . . .λ
(k)
Q ]). The sampling scheme can be combined with any repre-

sentation, i.e. does not require the computation of the sensitivities of the Taylor Series
representation as in the case of multi-dimensional moment matching techniques. On
the other hand, the Taylor Series representation exhibits further advantages in terms of
maintenance of the parametric dependence and reuse, which are useful for efficient use
of the reduced models in simulation environments. Note that the accuracy of the result-
ing ROM does not depend on the accuracy of the approximation of the integral, but on
the projection subspace. After the quadrature is performed in the overall variational sub-
space, the deterministic procedure is followed and the most relevant vectors are selected
via Singular Value Decomposition (SVD) in order to build a projection matrix

Z = [z1, . . . ,zk, . . .]−→V SU = SV D(Z) (20)

where S is the diagonal matrix with the singular values σi in its entries, and V and U
are the unitary matrices that span the vectors associated with such singular values. The
vectors of V whose associated singular values do not fall below a desired tolerance, are
used in a congruence transformation on the parametric system matrices (7) (and thus
retain the projection-based reduction advantages when applied to a Taylor Series repre-
sentation). As in the deterministic case, an error analysis and control can be included,
via the singular values, but in this variational case, only a bound on the expected error
can be given (as we are working with statistical analysis)

E{‖x̂0− x0‖2
2} ≤

n

∑
i=r+1

σ
2
i (21)

where r is the reduced order, n the original number of states, and σi are the singular
values obtained from (20). The complexity and computational cost is generally the same
as that of the deterministic PMTBR plus the previous quadrature operations, and, it
has been shown that the size of the reduced model is less sensitive to the number of
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Fig. 1. Illustration of two-level block hierarchy in the system matrix.

parameters in the description, and to how this parameter dependence is modeled. On
the other hand, the issue of sample selection, already an important one in the non-
parametric context, becomes even more relevant, since the sampling must now be done
in a potentially much higher-dimensional space.

4 Block Hierarchical Model Order Reduction

4.1 Structure Preservation

As pointed out, individual blocks inside an RFIC can no longer be treated in isola-
tion, and for this reason the complete system must be treated as an entity. Consider-
ing the linear system composed of all these interconnected component blocks including
designed-in passives, interconnect, etc, the joint description has an interesting structure,
where the diagonal blocks correspond to the individual block matrices, whereas the off-
diagonal blocks correspond to the static interconnections (in the G matrix) and dynamic
couplings (C matrix), as shown in Figure 1. Standard model order reductions techniques
can be applied to this joint, global system and while the resulting reduced model will
usually be able to accurately capture the input-output behavior of the complete set of
blocks, this approach leads to full reduced matrices. Furthermore, the original two-level
hierarchy with interconnections and couplings, in where the individual sub-systems can
be recognized, can no longer be recovered (as seen in top of Figure 2).

An alternative approach is to perform the reduction of the individual models in a
hierarchical fashion, i.e to reduce each model independently without taking into account
the rest of the models or the environment (as seen in bottom of Figure 2). Hence every
model is reduced separately and thus the hierarchy and structure of the global system
is maintained. However, to apply MOR to each model implies capturing its individual
behavior, not the global one. This can be inefficient as too much effort may be spent
capturing some local behavior that is not relevant for the global response (maybe filtered
by another model). Furthermore certain aspects of the global response might be missed
as it is not clear at the component level how relevant they are.

To avoid these problems, one can reduce each component block separately but ori-
ented to capture the global input-output response. This approach will provide us with
more control in the reduction stage while also preserving the structure of the intercon-
nections. The transfer function to match is the global one, so the most relevant behavior
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Fig. 2. Illustration of flat reduction in a Block Structured System (Up), and illustration of inde-
pendent reduction of each system (Down).

for the complete RF system is captured. Hence the global matrices are used in the pro-
cess of generating the basis for the projector, and thus only the global inputs and outputs
of the complete interconnected system are relevant. Therefore, the inefficiencies caused
by the large number of ports of the individual component blocks can be avoided. The
basis is later used for the reduction of the individual blocks, so the hierarchy can be
maintained.

Some recent methods have advocated this approach. In [18] a control theoretic view-
point of reduction of interconnected systems was presented, but it has the disadvantage
that it is unable to treat capacitive couplings, and it is cumbersome to define the inter-
connections in complex settings. A generalization that overcomes such problems is the
Block Structure Preserving (BSP) framework, first presented in [19], in which it was
applied to separate variables of different nature, and later generalized in [20, 21].

Considering a system composed of Nb sub-systems, the resulting description matri-
ces can be written as

G=

G11 . . . G1Nb
...

. . .
...

GNb1 . . . GNbNb

 C=

C11 . . . C1Nb
...

. . .
...

CNb1 . . . CNbNb


B =

[
B1

T . . . BNb
T ]T

L =
[
L1 . . . LNb

]
. (22)

The main idea is to retain the system block structure, i.e. the two-level hierarchy and
thus some degree of sparsity, after reduction via projection, allowing for a more efficient
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Fig. 3. Illustration of the effect of the Block Structure Preserving reduction.

reduction and use of the reduced model. The procedure relies on expanding the projector
of the global system (obtained via any classical MOR projection technique) into a block
diagonal matrix, with block sizes equal to the sizes of its Nb individual component
blocks (22). A basis that spans a suitable subspace for reduction via projection is then
computed (for example a Krylov subspace). The projector built from that basis can be
split and restructured into a block diagonal one so that the 2-level structure is preserved
under congruence transformation.

V =

 V1
...

VNb

 V̆ =

V1
. . .

VNb


V = colsp [Kr{A,R,q}]→ colspan [V ]⊂ colspan

[
V̆

] (23)

where Kr{A,R,q} is the q column Krylov subspace of the complete system (A = G−1C
and R = G−1B). The block-wise congruence transformation is (see Figure 3)

Ĝi j = V T
i Gi jVj Ĉi j = V T

i Ci jVj B̂i = V T
i Bi L̂ j = L jVj (24)

It should be noticed that the above projection matrix V̆ has Nb (number of blocks) times
more columns than the original projector. This leads to an Nb times larger reduced sys-
tem. On the other hand, this technique maintains the block structure of the original
system and gives us some flexibility when choosing the size of the reduced model de-
pending on the block layout and relevance. The reduced system will be able to match
up to Nb times q block moments of the original complete transfer function (see [20]
for details) under the best conditions (i.e. with very weak entries in the off-diagonal
blocks). Under the worst conditions, only q block moments are matched, i.e. the same
number than in the flat reduction.

This technique is applicable to the global system, composed of the individual blocks
and their connections (including both resistive as well as capacitive or inductive cou-
plings between the blocks). The BSP technique therefore preserves the block structure
of the system. However, the inner structure of the blocks themselves is lost since the
procedure turns any non-empty block in the original system into a full block, but it is
still possible to identify the blocks and relate them to the original device or interaction
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block. Nevertheless, if any block is empty in the global system matrix, it remains empty
after reduction, increasing the sparsity.

4.2 PMTBR in Block Structure MOR

Any projection-based MOR procedure can be extended in the BSP manner to maintain
the hierarchical structure of a system. In the case of the PMTBR algorithm, additional
characteristics of the procedure can be further taken advantageous of in the current
framework.

If the system has some internal structure, then the matrix Z that is computed from
the vector samples of the global system can be split into blocks. The estimated Gramian
can be written block-wise as Z1

...
ZNb

→ ZZH =

Z1ZH
1 . . . Z1ZH

Nb
...

. . .
...

ZNbZH
1 . . . ZNbZH

Nb

=X̄ (25)

But if we expand the matrix Z into diagonal blocks

Z̆=

Z1
. . .

ZNb

→ Z̆Z̆H=

Z1ZH
1

. . .
ZNbZH

Nb

=X̆ . (26)

From (25) it can be seen that ZiZH
i = X̄ii, i.e. the matrix X̆ = Z̆Z̆H is a block diago-

nal matrix whose entries are the block diagonal entries of the matrix X̄ . Under a good
quadrature scheme, the matrix X̄ converges to the original X , and therefore X̆ will con-
verge to the block diagonals of X . This means that the dominant eigenspace of X̆ con-
verges to the dominant eigenspace of the block diagonals of X . We can then apply an
SVD to each block of the Z matrix

Zi = ViSiUi → X̆ii = X̄ii = ViS2
i V T

i (27)

where Si is real diagonal, and Vi and Ui are unitary matrices. The dominant eigenvectors
of Vi in 27 corresponding to the dominant eigenvalues of Si, can be used as a projec-
tion matrix in a congruence transformation over the system matrices for model order
reduction. The elements of Si can also be used for a priori error estimation in a way
similar to how Hankel Singular Values are used in TBR procedures. Of course, the
convergence of these singular values, and therefore the error bounds, depends on the
strength of the coupling and the interconnections, but it is supposed that the impact of
the systems (placed in the block diagonals) in the global behavior dominates the im-
pact the couplings and interconnections may have in such global behavior. Using these
block projectors Vi, a structure preserving projector for the global system can be built
(23) which will capture the most relevant behavior of each block (revealed by the SVD)
with respect to the global response (recall that Z is composed of sample vectors of the
complete system). This approach provides us with more flexibility when reducing a
complete system composed of several blocks and the interactions between them, as it
allows to control the reduced size of each device via an error estimation on the global
response.
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5 Parametric Block Structure MOR

From the two-level hierarchical description of a system it is possible to have some extra
block information that allows us to perform a more efficient MOR. But the behavior
of the individual blocks that compose the system is subject to the effect of process
variations, both geometrical and electrical. Such variations, as previously pointed out,
also affect the interactions and couplings between these blocks. Any system-wide EM
simulations must address these effects. Therefore, the variability study must be done
over the complete system, and after model generation, a two-level parametric system
will be obtained, with the block matrices in the block diagonals and the interactions
between them in the off-diagonals. All these blocks will be functions of the relevant
process and geometrical parameter.

G =

 G11(λ{11}) . . . G1Nb(λ{1Nb})
...

. . .
...

GNb1(λ{Nb1}) . . . GNbNb(λ{NbNb})

 C =

 C11(λ{11}) . . . C1Nb(λ{1Nb})
...

. . .
...

CNb1(λ{Nb1}) . . . CNbNb(λ{NbNb})


B =

[
B1

T . . . BNb
T
]T L =

[
L1 . . . LNb

]
(28)

where λ{i j} represents the subset of parameters affecting block Gi j in (28) (it is sup-
posed that some parameters are local, and thus only affect some localized blocks).
From (28) is clear that we have a parametric system depending on λ =

SNb
i=1, j=1 λ{i, j}.

Therefore we can apply parametric MOR reduction. Note that any parameter affecting
several blocks (diagonal blocks and their interactions) is treated as a single parameter
(this avoids the treatment of the same parameter affecting different systems as several
different ones).

In this circumstances, BSP techniques can be applied in order to maintain the sys-
tem structure. This is possible as long as the selected pMOR technique is based on a
projection scheme, which is the case for most of the existing procedures (as already pre-
sented in Section 3). The extension is very simple: obtain a suitable basis for projection
from the complete system, and then split and expand it into a block structure preserving
projector. If the basis spans the most relevant behavior of the parametric system, then
the expanded BSP projector will capture those as well.

All the advantages and disadvantages mentioned in Section 4 hold here. But there is
an extra and important advantage in the parametric case: the BSP technique maintains
the block parametric dependence, i.e. if a block Ci j depends on a subset of param-
eters λ{i j}, then the reduced block Ĉi j = V T

i Ci jVj will depend on the same parameter
subset and no other. This fact has inherent advantages in terms of storage and use of
the sensitivities, as the reduced sensitivities are even sparser than the nominal matrices.
On the other hand, as previously discussed, some pMOR algorithms yield very large
ROMs, and therefore their combination with BSP techniques will lead to an extremely
large ROM.

However, it was shown in Section 3.3 that the ROM sizes obtained with the Vari-
ational PMTBR method are usually less sensitivity to the number of parameters, and
such method is an extension of the PMTBR framework to handle parametric systems;
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Algorithm I: Block Structure Preserving VPMTBR

Starting from a Block Structured System C,G,B,L with Nb blocks:
1: Select a quadrature rule of K points in the space [s, λ]

2: For each point compute: zk =
(

s(k)C(λ(k))+G(λ(k))
)−1

B

3: Form the matrix columns Z = [z1 . . .zK ]
4: Split it into Nb blocks, according to the system structure

Z =

 Z1
...

ZNb


5: For each block Z j obtain the SVD: Z j = VjS jUj
6: For each matrix Vj drop the columns whose singular values falls bellow the desired global

tolerance
7: Build a Block Structure Preserving Projector from the remaining columns

V̆ =

V1
. . .

VNb


8: Apply V̆ in a congruence transformation on the Block Structured System C,G,B,L

the main difference is that the sampling scheme for obtaining the matrix whose columns
span the desired subspace is extended to the multidimensional space of the parameters
and the frequency, the rest of the procedure being exactly the same.

For this reason, the Variational PMTBR framework can be easily extended and com-
bined with the BSP methodology, by direct use of the technique presented in Section
4.2 in the variational case. The advantages of the block size control and error estimation
provided in such case are still valid, although in this case, as in [17], only a bound on
the expected error can be given. This block-wise control is very useful when the various
component models of a complete system have very different relevant rank: if the same
ROM size is applied to every block, the reduction may grow unnecessarily large. In con-
trast, the complexity of the proposed methodology is exactly the same as that for the
non-structure-preserving techniques. The only difference is that the SVD (or orthonor-
malization in the moment matching approaches) must be done block-wise in order to
avoid numerical errors (e.g. the expansion of a orthogonal matrix to a block diagonal
does not guarantee the orthogonality of this new basis). This can become an advantage,
because for some blocks the number of vectors needed is lower, so less computational
effort is required in orthonormalization steps.

6 Results

To illustrate the proposed procedure we present results from two examples to which
several pMOR techniques were applied. These include [17] denoted as VPMTBR, [13]
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Fig. 4. Bus topology for Example 1.

Fig. 5. (Up) Y34 versus the frequency for Example 2 for the nominal, pertubed and parametric
ROMs with random parameter variation set. (Down) Relative Error of the ROMs w.r.t. the per-
turbed response.

denoted as PPTDM, and two Block Structure preserving methods: Algorithm I, denoted
as BS VPMTBR, and block structure based on [13], denoted as BS PPTDM. The non-
reduced model response will be denoted as Original or Perturbed, depending on whether
a parameter variation has been applied.

6.1 Example 1 - Coupled Buses

This example, depicted in Figure 4, is composed of 16 blocks: 2 buses of 8 parallel
lines each (each line modeled as an RC ladder of 100 segments) are on different metal
layers, and cross at a square angle. The inputs and outputs are taken at the edges of
each line of the first bus, so the system will have 16 ports. In this case there is no
interconnection, just coupling effects. Each line is assumed coupled to the previous and
the next line of their bus, and to every line of the other bus in the crossing area. Each
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Fig. 6. Example 1 - Structure of the matrices for the original system (up), and the ROM obtained
with BS VPMTBR (down). Note the different dimensions (nz is the number of nonzero elements
in matrix).

Table 1. Characteristics of the pMOR methods applied in Example 1

MOR Method Size NNZ (G C) Sparsity Ratio

NONE 1600 4768 12588 0.0018 0.0049

VPMTBR 71 5041 5041 1.000 1.000

PPTDM 544 295936 295936 1.000 1.000

BS VPMTBR 96 722 5438 0.078 0.590

BS PPTDM 160 1600 17200 0.062 0.672

line has its width (W) as a parameter, which implies 16 independent parameters. The
width variation affects the line model, as well as the in-bus coupling (width variation
also affects the interline spacing), and the inter-bus coupling (the crossing area varies).

Figure 5 shows the frequency response of the nominal system, the pertubed response
of the non-reduced system, and the responses of ROMs for VPMTBR, PPTDM, BS
VPMTBR and BS PPTDM. Again, the main characteristics of the resulting ROMs are
shown in Table 1. The PPTDM based algorithms result in very large ROMs even for
small number of moments to match (2 w.r.t. the frequency and 2 w.r.t. each parameter).
For these reasons each block moment from PPTDM was truncated to 10 vectors to keep
the size manageable (otherwise no reduction would be possible). While this seems to
produce acceptable results, there is little control over the result. On the other hand, the
PMTBR based techniques leads to more compressed ROMs, as the SVD reveals the
most relevant vectors. In the case of the BS VPMTBR, the control of each block allows
different reduction sizes for each bus: since the ports of the 2nd bus are not taken into
account, less effort is needed to capture its behavior. In fact, the models for the 1st bus
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Fig. 7. Interconnection scheme for Example 2, with original sizes and parameter indication.

Fig. 8. Example 2 - (Up) Magnitude in dB of Y11 versus the frequency of Example 1 for the nom-
inal, the pertubed and the parametric ROMs for a random parameter variation. (Down) Relative
Error (in dB) of Y11 for the ROMs w.r.t. the perturbed response.

are of sizes 8 to 10, while models for the 2nd bus are all size 3. The ability to control
reduction locally is clearly an advantage of the method. The effect of this control can be
seen in Figure 6, which shows the structure for the original (nominal and one sensitivity)
matrices (up), and the structure obtained with BS VPMTBR reduction.

6.2 Example 2 - EM based models

The second example system is composed of four blocks: a Multiple Input Multiple Out-
put (MIMO) RC ladder of size 101, with 2 ports, a MIMO EM based model of a planar
Spiral Inductor of size 4961, with 2 ports, another RC ladder of size 101 and 2 ports,
and an MIMO EM-based model for a metal-insulator-metal (MIM) capacitor. The four
systems are connected in series as shown in Figure 7, so the global inputs and out-
puts are taken in the first port of the first RC and the second port of the CMIM model.
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Fig. 9. Example 2 -(Up) Structure of the nominal G matrix (left), and the structure of the sensitiv-
ities of G w.r.t. p1 (centre, affecting the block related to the spiral), and w.r.t. p5 (right, affecting
the RC ladders) for the BSP-based reduction. (Down) Same matrices, but for the dynamic part.

Table 2. Example 2 - Characteristics of the pMOR methods applied

MOR Method Size NNZ (G C) Max. RE Generation Cost

(Blocks) (Sparsity Ratio)

NONE 11207 49305 13708 0 none

(101,4961,101,6044) (0.00039 0.00011)

VPMTBR 169 28561 28561 −18.7dB 90Samples(s+λ)

(169) (1.00 1.00) SV D(n×169)

BS VPMTBR 182 18146 14034 −31.9dB 90Samples(s+λ)

(8,91,8,75) (0.55 0.42) SV D(n×{8,91,8,75})

The system depends on six parameters, affecting different blocks. Figure 8 shows the
frequency response of the self-admittance Y11 of the nominal system, the pertubed re-
sponse of the non-reduced system, and the responses of the PMTBR-based models (the
PPTDM and BS PPTDM models do not produce competitive results sizewise, and there-
fore were omitted). Table 2 shows the main characteristics of the obtained ROMs. The
BS VPMTBR yields a slightly bigger ROM, but it maintains the block structure, both of
the nominal matrices and the sensitivities (see Figure 9), of the original system, and is
able to control the size of each reduced block depending on its relevance on the global
response. Furthermore, the block parameter dependence is clearly maintained. Figure 9
shows the structure of the matrices obtained with BS VPMTBR, for the nominal ma-
trices (left, G up and C down), where the effect of the block order control can be seen,
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and for two sensitivities, one affecting only the block related to the Spiral (centre), and
other affecting the RC ladders (right), which are extremely sparse. On the other hand,
the flat reduction via VPMTBR yields full matrices, both for the nominal and the sen-
sitivities. The accuracy is also better for the BSP based approach, and the procedure
requires similar computational effort.

7 Conclusion

In this paper we have presented a block structure-preserving parametric model order
reduction technique, as an extension of existing parametric MOR techniques, in order to
improve the reduction when a two-level hierarchical structure is available in the system
description. This type of structure is common in coupled or interconnected systems,
and can lead to simulation advantages. The methodology presented here is general in
the sense that it can be used with any projection parametric MOR technique to maintain
the two-level hierarchy and the block-parameter dependence. The presented extension
of the PMTBR-based procedures into the Block Structure Preserving framework, allows
more control on the reduction, provided by the inclusion of estimated error bounds on
the single blocks oriented to the global response.
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Abstract. Text pattern matching is one of the main and most computa-
tion intensive tasks of applications such as Network Intrusion Detection
Systems and DNA Sequencing Matching. Even though software solutions
are available, they do not often satisfy the performance requirements,
therefore specialized hardware designs can represent the right choice.
This paper presents a novel hardware architecture for efficient regular
expression matching: ReCPU.
This special-purpose processor is able to deal with the common regular
expression semantics by treating the regular expressions as a program-
ming language. With the parallelism exploited by the proposed solution
a throughput of more than one character comparison per clock cycle
(maximum performance of current state of the art solutions) is achieved
and just O(n) memory locations (where n is the length of the regular
expression) are required.
In this paper we are going to expose our complete framework for efficient
regular expression matching, both in its architecture and compiler. We
present an evaluation of area, time and performance by synthesizing and
simulating the configurable VHDL description of the proposed solution.
Furthermore, we performed a design space exploration to find the opti-
mal architecture configuration given some initial constraints. We present
these results by explaining the idea behind the adopted cost-function.

1 Introduction

1.1 State of the Art

Searching for a set of strings that match a given pattern in a large input text - i.e.
pattern matching - is a well known computation intensive task present in several
application fields. Nowadays, there is an increasing demand for high performance
pattern matching. In network security and QoS applications [1][2][3][4][5] it is
required to detect multiple packets which payload matches a predefined set of
patterns. In Network Intrusion Detection Systems (NIDS) regular expressions are
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used to identify network attacks by predefined patterns. Software solutions are
not feasible to perform this task without a sensible reduction of the throughput,
therefore dedicated hardware architecture can overcome this (e.g. as described
in [1]). Bioinformatics - as in case of the Human Genome project - requires DNA
sequence matching [6][7]: searching DNA patterns among millions of sequences is
a very computationally expensive task. Different alternative solutions to speedup
software approaches have been proposed (e.g. like in [7] where the DNA sequences
are compressed and a new research-algorithm is described).

For these application domains it is reasonable to move towards a full hard-
ware implementation, overcoming the performance achievable with any software
solution. Several research groups have been studying hardware architectures for
regular expression matching. They are mostly based on Non-deterministic Finite
Automaton (NFA) as described in [8] and [9]. In [5] a software that translates
a RE into a circuit description has been developed. A Non-deterministic Fi-
nite Automaton is used to dynamically create efficient circuits for the pattern
matching task.

FPGAs solutions have been presented: in the parallel implementation de-
scribed in [4] multiple comparators are used to increase the throughput for
parallel matching of multiple patterns. In [8] another FPGA implementation
is proposed, it requires O(n2) memory space and processes one text character in
O(1) time (one clock cycle), it is based on an hardware implementation of Non-
deterministic Finite Automaton (NFA). Additional time and space are necessary
to build the NFA structure starting from the given regular expression, therefore
the overall execution time is not constant: it can be linear in best cases and
exponential in worst ones. That is not the case for the solution proposed in this
paper: regular expressions are stored using O(n) memory locations. Furthermore,
it does not require any additional time to start the regular expressions matching.
In [9] an architecture that allows extracting and sharing common sub-regular ex-
pressions, with the goal of reducing the area of the circuit, is presented. In [6] a
DNA sequence matching processor using FPGA and Java interface is addressed.
Parallel comparators are used for the pattern matching. They do not implement
the regular expression semantics (i.e. complex operators), but just simple text
search based on exact string matching. The work proposed in [3] focuses on
pattern matching engines implemented with reconfigurable hardware. The im-
plementation is based on Non-deterministic Finite Automaton and it includes a
tool for automatic generation of the VHDL description.

These approaches require the re-generation of the HDL description, when-
ever a new regular expression needs to be executed. Each description is strictly
dependent on the given pattern. The time needed for the re-generation increases
the overall execution time and reduces the performance.

1.2 An Overview of ReCPU

This paper presents, to the best of our knowledge, a novel approach to solve the
pattern matching problem. Regular expressions are considered the programming
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language of a dedicated CPU. We do not build either Deterministic nor Non-
deterministic Finite Automaton of the given regular expression: so we have the
advantage that any modification on the regular expression does not require any
change on the HDL description. This way any additional setup time is avoided
and a considerable overall speed-up is achieved.

ReCPU - the proposed architecture - is a dedicated processor able to fetch
a regular expression from the instruction memory and to perform the pattern
matching with the text stored in the data memory. The architecture is optimized
to execute comparisons in parallel by means of several parallel units and a two-
stage pipeline. This architecture has several advantages: on average it compares
more than one character per clock cycle and it requires linear memory occupa-
tion (i.e. for a given regular expression of size n, the memory required is just
O(n)). In our solution it is easily possible to change the pattern at run-time just
updating the content of the instruction memory, without any modification of
the underlying hardware. Since it is based on a CPU-like approach a compiler is
necessary to obtain the machine executable code from a given regular expression
(i.e. a low-level operational description starting from a high-level representa-
tion). This guarantees much more flexibility than the other solutions described
in Sect. 1.1.

Regular
Expression

Compiler Synthesizer

Architecture
Parameters

HW design flowSW design flow

User definitions

Instruction memory

Data memory

Working flow

ReCPU

Fig. 1. ReCPU framework flows.

The ReCPU framework (i.e. CPU and compiler) has been inspired from the
VLIW design style [10]. This has several advantages: it is easily possible to
configure the design to achieve a particular trade-off between performance, area,
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power, etc. Moreover since some architectural parameters are exposed to the
compiler, it can automatically compile the portable high-level regular expression
description to a set of instructions targeted for a custom design.

In Fig. 1 the complete working flow of the proposed framework is shown: the
user defines the regular expression and the architectural parameters specifying
the number of parallel units. These information are used to synthesize ReCPU
on the hardware design flow and to compile the regular expression following
the software design flow. ReCPU works on the content of instructions and data
memory as it is visible in the bottom part of Fig. 1: the former is automatically
generated by the compiler, while the latter is specified by the user.

1.3 Organization of the Paper

This paper is organized as follows: in Sect. 1.2 the general concepts of ReCPU
design are described. A brief overview of regular expressions focusing first on
a formal definition and then on the semantics that has been implemented in
hardware, is addressed in Sect. 2.1. The idea behind considering regular expres-
sions as a programming language is fully covered in Sect. 2.2, by means of some
examples.

Section 3 provides a top-down detailed description of the hardware architec-
ture: the Data Path in Sect. 3.1 and the Control Unit in 3.2.

Results of synthesis on ASIC technology are discussed in terms of critical
path, maximum working frequency and area in Sect. 4.1, a comparison of the
performance with other solutions is also proposed. In Sect. 4.2 a Design Space
Exploration (DSE) for FPGA synthesis is provided. A possible cost function is
defined and applied to the DSE.

Conclusions and future works are addressed in Sect. 5.

2 Proposed Approach

2.1 Regular Expressions Overview

Formal Definition. A regular expression [11] (RE), also known as pattern, is
an expression that describes the elements of a set of strings. The theoretical
concept of regular expression was introduced by Stephen C. Kleene in the 1950s
as a model to describe and classify formal languages.

Nowadays, REs are used to perform searches on text data and are commonly
present in programming languages, text-editors and word processors for text
editing. In this section we propose a brief review of the basic concepts of formal
languages to be able to expose formally the concept of regular expression. This
helps to understand the different features of ReCPU that we are going to describe
in the next sections.

Given a finite alphabet Σ of elementary symbols, we define a string as an
ordered combination of some elements of Σ. A particular string, belonging to
any Σ, is the empty string, containing no elements and indicated with ε.
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Let us define Σ∗ as the set of all possible strings generated with the elements
of Σ. A language L over Σ is a set of strings generated by the alphabet, thus it
is a subset of Σ∗. In other words

L (Σ) ⊂ Σ∗

The simplest language L contains only strings composed by a single element
of the alphabet and the empty string. It can be used to generate other languages,
called regular languages, by applying three basic operators

– concatenation, denoting the set {{a, b} |a ∈ L1 ∧ b ∈ L2};
– union (or alternation), denoting the set {L1 ∪ L2};
– star (or closure), denoting the set that can be made by concatenating zero

or more strings of L.

Using the strings of the language and the operators, it is possible to write for-
mulas representing regular languages (i.e. a new set of strings derived from the
regular language). This formula is known as regular expression. A language can
be titled as regular only if it exists a regular expression able to describe the
whole set of strings composing it.

We can define formally regular expressions as follows [12]:

Definition 1. A regular expression over the alphabet Σ is defined as:

1. ∅ is a regular expression corresponding to the empty language ∅.
2. ε is a regular expression corresponding to the language ε.
3. For each symbol a ∈ Σ, a is a regular expression corresponding to language

a.
4. For any regular expression R and S over Σ, corresponding to the languages

LR and LS respectively, each of the following is a regular expression corre-
sponding to the indicated language:
(a) concatenation: (RS)⇔ LRLS;
(b) union: (R|S)⇔ LR ∪ LS;
(c) star: R∗ ⇔ L∗

R.
5. Only the formulas produced applying rules 1-4 are regular expressions over

Σ.

Given an arbitrary set of strings T and a regular expression R, the pattern
matching problem can be defined as follows:

Definition 2. To find the elements of T , if there are any, which are also ele-
ments of the regular language described by R.

The Syntax. In the IEEE POSIX 1003.2 document, a standard syntax for REs
has been proposed. Even though it is a bit different from the formal definition,
it recalls the same concepts. In an RE single characters are considered regular
expressions that match themselves and additional operators are defined. Let us
consider two REs: a and b, the operators that have been implemented in our
architecture are:
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– a · b: it matches all the strings that match a and b;
– a|b: matches all strings that match either a or b ;
– a∗: matches all strings composed by zero or more occurrences of a3;
– a+: matches all strings composed by one or more occurrences of a;
– (a): parenthesis are used to define the scope and precedence of the operators

(e.g. to match zero or more occurrences of a and b, it is necessary to define
the following RE: (ab)∗).

2.2 Regular Expressions as a Programming Language

The novel idea we propose is to translate a given RE into a set of low-level in-
structions (i.e. machine code) part of a program stored in the instruction memory
and executed by ReCPU. This approach is the same used in general purpose pro-
cessors: a program is coded using a high-level language - that is more readable by
programmers - and then compiled, optimized and linked to produce an efficient
low-level set of instructions executed by the microprocessor. An example of this,
is to code a program using C, then build it using gcc to obtain the compiled
binary program that is executed by the CPU.

In our case the high-level representation is the RE defined according to the
standard syntax described in [11] or in [13]. The compilation flow is inspired
by the VLIW style [10], because some architectural parameters are exposed to
the compiler, that is able to exploit an high level of parallelism issuing the in-
structions to different parallel units (i.e. the clusters). Similarly, the Regular
Expression compiler (REc) is aware of the number and the structure of config-
urable units in the ReCPU architecture and based on this it splits the RE into
different low-level instructions, issuing as many character comparisons as the
number of parallel comparators available in the architecture.

Given a regular expression, REc4 generates the sequence of instructions that
are executed by the core of the architecture on the text stored in the data mem-
ory. REc provides in output two binary images: one for the instruction memory
and the other one for the data memory, with the input text adapted to the con-
figuration of the architecture. The compiler does not need to perform many opti-
mizations due to the simplicity of the RE programming language. However, some
controls are performed to detect syntactical mistakes and possible problems of
stack-overflow. Given the stack-size (see Sect. 3 for more details) REc computes
the maximum level of nested parenthesis allowed and determines whether the
architecture can execute the specified RE or not. A RE is completely matched
whenever a NOP instruction is fetched from the instruction memory. If any in-
struction fails during the execution, the RE is considered completely failed and it
is restarted. The binary code of a low-level instruction produced by the compiler
is composed by an opcode and a reference text as shown in Fig. 2. The opcode is
divided in three different parts:

3 Please notice that this operator is different from the formal star operator previously
defined.

4 REc is the Regular Expression compiler written in Python
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– the most significant bit (MSB) used to indicate an open parenthesis;
– the next 2-bits for the internal operand used within the reference;
– the last bits for the external operand for describing loops and close paren-

thesis.

The complete list of the opcodes is shown5 in Table 1.

RamDataWidthInstr 

Parenthesis

Inner operator

Outer operator

char 1 char 2 ... char nopcode

Reference

Fig. 2. Instruction Structure.

Table 1. Bitwise representation of the opcodes.

Opcode Associated Operator

0 00 000 nop

1 -- --- (

0 01 --- and
0 10 --- or

0 -- 001 )*
0 -- 010 )+
0 -- 011 )|
0 -- 1-- )

The novel idea of considering REs as a programming language is clarified by
the following examples: operators like ∗ and + correspond to loop instructions.
Such operators find more occurrences of the same pattern (i.e. a loop on the same
RE instruction). This technique guarantees the possibility to handle complex
REs looping on more than one instruction. The loop terminates whenever the
pattern matching fails. In case of + at least one valid iteration of the loop is
required to validate the RE, while for ∗ there is no limitation to the minimum
number of iterations.
5 Please notice that don’t care values are expressed as ’-’.
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Another characteristic of complex REs that can be perfectly managed con-
sidering REs as a programming language is the use of nested parenthesis (e.g.
(((ab) ∗ (c|d))|(abc))). This can be handled with the function call paradigm of
common programming languages, so that we can deal with it as in the majority
of processors. We consider an open parenthesis as a call instruction and a closed
one as a return. Whenever an open parenthesis is encountered, the current con-
text is pushed into an entry of a stack data structure and the execution continues
normally. Whenever a close parenthesis is found, a pop operation is performed
on the stack and the overall validity of the RE is checked by combining the outer
operator of the the current instruction, the current context and the previous one
popped from the stack. The context is composed by the internal registers of the
Control Unit that contain the memory location and the partial matching result
(see Sect. 3.2 for further details). This way, our architecture can tackle very
complex nested REs using a well and widely known approach.

A simple example of translating a RE into a sequence of instructions is listed
in Table 2 (where it has been hypothesized to have a ReCPU that compares
4 characters per comparison unit - see Sect. 3 for further details). The given
RE is (ABCD)|(aacde), the open parenthesis are translated into calls, while the
closed parenthesis are translated into returns. The original RE is split into sev-
eral sub-expressions. This mechanism allows us to exploit the maximum possible
capacity of the internal parallel comparators. The overall RE result is computed
by combining the partial results of each sub-expression. If during the execution
the RE does not match, the program is restarted from the first instruction with
a different starting address in the data memory. Otherwise, the execution con-
tinues until the NOP instruction is fetched. At this point the RE is considered
completed.

Table 2. Translation of the RE=(ABCD)|(aacde), into ReCPU instructions using 4
cluster units.

SubRE Translated Instructions

( call
ABCD compare text with ”ABCD”
)| return: process OR
( call
aacd compare text with ”aacd”
e) compare text with ”e” and return, overall evaluation
NOP end of RE
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Fig. 3. Block diagram of ReCPU with 4 Clusters, each of those has a ClusterWidth
of 4. The main blocks are: Control Path and Data Path (composed by a Pipeline with
Fetch/Decode and Execution stages).
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3 Architecture Description

ReCPU has a Harvard based architecture that uses two separate memory banks:
one storing the text and the other one the instructions (i.e. the RE). Both
RAMs are dual port to allow parallel accesses to the parallel buffers described in
Sect. 3.1. As shown in Fig. 3, the structure of ReCPU is divided into two parts:

– The Data Path is in charge of decoding the instructions, executing the com-
parisons and producing the partial matching result.

– The Control Unit selects the next instruction to be executed, collects the
partial matching results to check the correctness of the RE and is in charge
of executing complex instructions such as loops and parenthesis.

One of the main features of ReCPU is the capability to process more than
one character comparison per clock cycle. In this design we applied some well
known computer architecture techniques - such as pipelining and prefetching - to
provide a higher throughput. We achieved this goal by incrementing the level of
data and instruction parallelism and by limiting the number of stall conditions,
which are the largest waste of computation time during the execution.

The architecture is adaptable by the designer who can specify the number
of parallel units, their internal structure as well as the width of the buffers and
the memory ports. To adapt the architecture to the requirements is necessary
to trade-off performance, area, power, etc. To find the optimal architecture a
cost-function has been defined and a Design Space Exploration has been carried
out (see Sect. 4).

This section overviews the internal structure of ReCPU - shown in the block
diagram of Fig. 3 - focusing on the microarchitectural implementation. A detailed
description of the two main blocks: the Data Path and the Control Unit, is
provided in the sections 3.1 and 3.2.

3.1 Data Path

We applied some techniques from processor architecture field to increase the
parallelism of ReCPU: pipelining, data and instructions prefetching, and use of
multiple memory ports. The pipeline is composed by two stages: Fetch/Decode
and Execute. The Control Unit, as explained in Sect. 3.2, takes one cycle to
fill the pipeline and then it starts taking advantage of the prefetch mechanism
without any further loss of cycles. Moreover we introduced duplicated buffers in
each stage to avoid stalls. This solution is advantageous because the replicated
blocks and the corresponding control logic are not so complex: the increase in
terms of area is acceptable, and no overhead in terms of critical path. This way,
we have a reduction of the execution latency with a consequent performance
improvement.

Due to the regular flow of the instructions a good prediction technique with
duplicated instruction fetching structures is able to avoid stalls. In the Fetch/De-
code stage, two instruction buffers load two sequential instructions: when an RE
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starts matching, one buffer is used to prefetch the next instruction and the
other is used as backup of the first one. In case the matching process fails (i.e.
prefetching is useless) the content of the second buffer - the backup of the first
one - can be used without the need of stalling the pipeline. Similarly, the parallel
data buffers reduce the latency of the access to the data memory.

According to this design methodology in the Fetch/Decode stage, the decoder
and the pipeline registers are duplicated. By means of a multiplexer, just one
set of pipeline register values are forwarded to the Execution stage. As shown
in Fig. 3, the multiplexer is controlled by the Control Unit. The decoder logic
extracts from the instruction the reference string (i.e. the characters of the pat-
tern that must be compared with the text), its length - indicated as valid ref
and necessary because the number of characters composing the sub-RE can be
lower than the width of the cluster - and the operators used.

The second stage (see Fig. 3) of the pipeline is the Execute: it is a fully
combinatorial circuit. The reference coming from the previous stage is compared
with the data read from the RAM and previously stored in one of the two
parallel buffers. Like in Fetch/Decode stage this technique reduces the latency
of the access to the memory avoiding the need of a stall if a jump in the data
memory is required. A jump in the data memory is required whenever one or
more instructions are matching the text and then the matching fails (because
the current instruction is not satisfied). In this case a jump in the data memory
restarts the search from the address where the first match occurred.

The core of ReCPU is based on sets of parallel bitwise comparators grouped
in units called Clusters, which are shown in Fig. 4. Each comparator compares
an input text character with a different one coming from the reference of the
instruction (see Fig. 2). The number of elements of a Cluster is indicated as
ClusterWidth and represents the number of characters that can be compared
every clock cycle whenever a sub-RE is matching. This figure influences the
throughput whenever a part of the pattern starts matching the input text. The
Execute stage is composed by several Clusters - the total number is indicated
as NCluster - used to compare a sub-RE. Each Cluster is shifted one character
from the previous cluster in order to cover a wider set of data in a single clock
cycle. This influences the throughput whenever the pattern is not matching.
The results of each comparator Cluster are collected and evaluated by the block
called Engine. It produces a match/not-match signal to the Control Unit.

Our approach is based on a fully-configurable VHDL implementation. It is
possible to modify some architectural parameters such as: number and dimen-
sions of the parallel comparator units (ClusterWidth and NCluster), width of
buffer registers and memory addresses. This way it is possible to define the best
architecture according to the user requirements, finding a good trade-off between
timing, area constraints and desired performance. Each parameter is propagated
through the modules using the VHDL generics technique. Moreover, we defined
some packages to define some constants, types and other values used in entities
and architectures.
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Fig. 4. Detail of comparator clusters.

3.2 Control Unit

In Sect. 2, we defined an RE as a sequence of instructions that represent a set of
conditions to be satisfied. If all the instructions of an RE are matched, then the
RE itself is matched. Essentially, the ReCPU Data Path fetches an instruction,
decodes it and verifies whether it matches the current part of the text or not. But
it cannot identify the result of the whole RE. Moreover the Data Path does not
have the possibility to request data or instructions from the external memories,
because it does not know the next address to be loaded.

To manage the execution of the RE we designed a Control Unit block based
on some specific hardware components. The core of the Control Unit is the
Finite State Machine (FSM) shown in Fig. 5. The execution of an RE requires
two input addresses: the RE and the text start addresses. The FSM is designed
in such a way that after the preload of the pipeline (FD state), two different
cases can occur. When the first instruction of an RE does not match the text,
the FSM loops in the EX NM state, as soon as a match is detected the FSM goes
into the EX M state.

While the text is not matching, the same instruction address is fetched and
the data address advances exploiting the comparisons with the clusters of the
Data Path. If no match is detected the data memory address is incremented by
the number of clusters. This way, multiple characters are compared every single
clock cycle leading to a throughput clearly greater than one character per clock
cycle. Further details are presented in Sect. 4.

When an RE starts matching, the FSM goes into EX M state and the ReCPU
switches to the matching mode by using a single cluster to perform the pattern
matching task on the data memory. As for the previous case more than one
character per clock cycle is checked by the different comparators of a cluster.
When the FSM is in this state and one of the instructions of the RE fails the
whole process has to be restarted from the point where the RE started to match.
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Fig. 5. Finite state machine of the Control Path.

In both cases (matching or not matching), whenever a NOP instruction is
detected the RE is considered complete, so the FSM goes into the NOP state
and the overall result is given as output. The ReCPU returns a signal indicating
the matching of the RE and the memory location of the first character matching
the string. We conceived an operation mode able to find more than one pattern in
a text: each time a RE is matched, ReCPU stops until an input signal requests
another RE matching. In such case the RE is reloaded and the sequence of
operations is restarted.

A particular case is represented by loops (i.e. + or * operators). We exploit
these operators with a call and return paradigm. When an open parenthesis
is detected a call is performed: the Control Unit saves the content of the status
register (i.e. the actual matching value, the current program counter and the
current internal operator) in the stack module drawn in Fig. 3. The RE is then
executed normally until a return instruction is detected. A return is basically a
closed parenthesis followed by +, * or |. It restores the old context and updates
the value of the global matching. If a not matching condition is verified while
the FSM is processing a call, the stack is erased and the whole RE is considered
not matching. The process is restarted as in the simple not matching case.

Problems of overflow in the number of elements stored in the stack are avoided
by the compiler. It knows the size of the stack and computing the maximum level
of nested parenthesis it is able to determine whether the architecture can execute
the RE or not.
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4 Experimental Results

4.1 Analysis of Synthesis and Simulation Results

ReCPU has been synthesized using Synopsys Design Compiler6 on the STMicro-
electronics HCMOS8 ASIC technology library featuring 0.18µm silicon process.
The proposed architecture has been synthesized setting NCluster and Cluster-
Width equal to 4. The synthesis results are presented in Table 3:

Table 3. Synthesis results for ReCPU architecture with NCluster and ClusterWidth
set to 4.

Critical Path Area Max Clock Frequency

3.14 ns 51082 µm2 318.47 MHz

The papers describing the hardware solutions covered in Sect. 1 show a max-
imum clock frequency between 100MHz and 300MHz. The results show how our
solution is competitive with the others having the advantage of processing in
average more than one character per clock cycle (i.e. the case for all the other
solutions like [8] and [9]).

Let us analyze different scenarios to figure out the performance of our imple-
mentation: whenever the input text is not matching the current instruction and
the opcode represents a · operator the maximum level of parallelism is exploited
and the performance in terms of time required to process a character are up to

Tcnm =
Tcp

NCluster + ClusterWidth− 1
(1)

where the Tcnm, expressed in ns/char, depends on the number of clusters, the
width of the cluster and the critical path delay Tcp. If the input text is not
matching the current instruction and the opcode is a | then the performance are
given by the following formula:

Tonm =
Tcp

NCluster
. (2)

If the input text is matching the current instruction then the performance
depends on the width of one cluster (all the other clusters are not used)

Tm =
Tcp

ClusterWidth
. (3)

For each different scenarios, using the time per character computed with the
formulas (1), (2) and (3) it possible to compute the corresponding bit-rate to
evaluate the maximum performance. The bit-rate Bx represents the number of
bits7 processed in one second and can be computed as follows:
6 www.synopsys.com
7 It is computed considering that 1 character = 8 bits.
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Bx =
1
Tx
· 8 · 109 (4)

where Tx is any of the quantities (1), (2) and (3).
The numerical results for the implementation we have synthesized are shown

in Table 4.

Table 4. Time requested to process one character and corresponding bit-rate for the
synthesized architecture.

Tcnm Tonm Tm Bcnm Bonm Bm

ns/char ns/char ns/char Gbit/s Gbit/s Gbit/s

0.44 0.78 0.78 18.18 10.19 10.19

The results summarized in Table 4 represent the maximum achievable through-
put with different scenarios. Whenever there is a function call (i.e. nested paren-
thesis) one additional clock cycle of latency is required. The throughput of the
proposed architecture depends on the RE as well as on the input text so it is
not possible to compute a fixed throughput but just to provide the maximum
performance achievable in different cases.

In our experiments we compared ReCPU with the popular software grep8

using three different text files of 65K characters each. For those files we chose a
different content trying to stress the behavior of ReCPU. We ran grep on a Linux
Fedora Core 4.0 PC with Intel Pentium 4 at 2.80GHz, 512MB RAM measuring
the execution time with Linux time command and taking as result the real value.
The results are presented in Table 5.

Table 5. Performance comparison between grep and ReCPU on a text file of 65K
characters.

Pattern grep ReCPU Speedup

E|F |G|HAA 19.1 ms 32.7 µs 584.8

ABCD 14.01 ms 32.8 µs 426.65

(ABCD)+ 26.2 ms 393.1 µs 66.74

We noticed that if loop operators are not present our solution performs equal
either with more than one instruction and OR operators or with a single AND
instruction (see the first two entries of the table). In these cases the speedup is
more than 400 times, achieving extremely good results with respect to software
solutions. In case of loop operators it is possible to notice a slow-down in the
performance but still achieving a speedup of more than 60 times.

8 www.gnu.org/software/grep
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To prove the performance improvements of our approach respect to the other
published solutions, we compare the bit-rates described in the Table 6. It was
not possible to compare the bit-rate for [6], [9] because this quantity was not
published in the papers.

In Table 6 and in Fig. 6, the bit-rate range for different solutions is shown. We
compared it with the one of ReCPU computing a speedup factor that underlines
the goodness of our approach. It is shown that the performance achievable with
our solution is n times faster than the other published research works. Our
solution guarantees several advantages apart from the bit-rate improvement:
O(n) memory locations are necessary to store the RE and it is possible to modify
the pattern at run-time just updating the program memory. It is interesting
to notice - analyzing the results in the table - that in the worst case we are
performing pattern matching almost two times faster.
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Fig. 6. Comparison of the bitrates of ReCPU and the state of the art solutions.

Table 6. Bit-Rate comparison between literature solutions and ReCPU.

Solution bit-rate ReCPU Speedup
published in Gbit/s Gbit/s factor (x)

[3] (2.0, 2.9) (10.19, 18.18) (5.09, 6.26)

[5] (1.53, 2.0) (10.19, 18.18) (6.66, 9.09)

[4] (5.47, 8.06) (10.19, 18.18) (1.82, 2.25)

[8] (0.45, 0.71) (10.19, 18.18) (22, 25)
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4.2 Design Space Exploration

In this section we present a Design Space Exploration used to find the optimal
ReCPU architecture configuration synthesized on a Xilinx Virtex-II FPGA9.
Taking advantage of the fully configurable VHDL description, we modified the
structure altering the number of parallel comparator clusters - i.e. NCluster
(NC) - and the number of bitwise comparator units - i.e. ClusterWidth (CW).
We analyzed how area and performance scale.

We performed the Design Space Exploration with NCluster in the range
{2, 4, 8, 16, 32, 64} and ClusterWidth in {4, 8}. Also the width of the memory
ports (i.e. RWD: RamWidthData, RWI: RamWidthInstruction) must be adapted
according to the following rules:

RWI = CW

RWD = CW + NC

Increasing the number of NCluster, more characters are compared simulta-
neously, and so ReCPU results to be faster whenever the pattern is not matching
the input text. Nevertheless, due to the higher hardware complexity, the Critical
Path raises up and thereby the maximum possible clock frequency decreases. On
the other side, a larger ClusterWidth corresponds to much better performance
whenever the input string starts matching, since a wider sub-RE is processed in
a single clock cycle. The results of the synthesis are shown in Table 7.

Table 7. Results of the synthesis of ReCPU with different parameters on Xilinx Virtex-
II FPGA.

NC CW RWD RWI Critical Path Max Freq. Norm. Tcnm Tonm Tm Cost Norm.
ns MHz Area ns ns ns Cost

2 4 6 4 8.938 111.88 0.1334 1.8 4.4 2.2 2.68 1.00
4 4 8 4 9.722 102.86 0.1619 1.4 2.4 2.4 2.17 0.97
8 4 12 4 10.078 99.23 0.2086 0.9 1.3 2.5 1.8 0.81
16 4 20 4 11.157 89.63 0.3128 0.6 0.7 2.8 1.72 0.77
32 4 36 4 11.583 86.33 0.4944 0.3 0.4 2.9 1.62 0.73
64 4 68 4 12.974 77.08 1 0.2 0.2 3.2 1.72 0.77
2 8 10 8 8.938 111.88 0.1334 1.0 4.5 1.1 1.92 0.86
4 8 12 8 9.722 102.87 0.1619 0.9 2.4 1.2 1.44 0.65
8 8 16 8 10.078 99.23 0.2086 0.7 1.3 1.3 1.11 0.50
16 8 24 8 11.157 89.63 0.3128 0.5 0.7 1.4 0.99 0.45
32 8 40 8 11.583 86.33 0.4944 0.3 0.4 1.4 0.89 0.40
64 8 72 8 12.974 77.08 1 0.2 0.2 1.6 0.91 0.41

In the Design Space Exploration to evaluate the different configurations that
have been synthesized and listed in Table 7, we defined a cost function that

9 A Virtex-II pro, technology xc2vp30-fg676-7.
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takes into account the previously described scenarios considering the area and
the performance. It is defined as follows:

costf = p1 · Tcnm + p2 · Tonm + p3 · Tm . (5)

with a corresponding probability. To better analyze the overall implementation
it is necessary to distinguish among different cases. We have not performed a
statistical analysis on the utilization of the operators as well as on the probabili-
ties of having or not a matching. This would be necessary to compute an average
performance index, but it is strictly dependent on the input search text.

Let us consider an input text and an RE such that the probability of having
an and operator in the current instruction and the probability of having an or
operator in the current instruction are the same (i.e. pand = por = 0.5). Among
these cases there is respectively the probability pm = 0.25 of matching the pat-
tern and 0.25 of not matching. We actually consider all the cases equiprobable.
The costf(·) is the resulting average time per character based on the previous
probabilities. Let us define

– p1 as the probability of having an and operator with a not matching pattern
(p1 = 0.25);

– p2 as the probability of having an or operator with a not matching pattern
(p2 = 0.25);

– p3 as the probability of having a matching with any operator (0.5).

The Design Space Exploration optimizes the costf(·) given these probabilities
for the inputs (i.e. search text and RE). We choose to optimize the cost function
with respect to the area of the design. The normalized values computed in Table 7
are plotted in Fig. 7, where the Pareto optimal points have been highlighted.
Each point in the graph is a synthesis of ReCPU with a different set of values
for the generics VHDL parameters. It is easily possible to identify which points
belong to the Pareto front, and which others are the dominated ones. The best
configuration out-coming from this analysis is listed in Table 8.

Table 8. The best configuration out-coming from the analysis of the Pareto points
generated by the Design Space Exploration.

NC CW RWD RWI Critical Path Max Freq. Norm. Tcnm Tonm Tm Cost Norm.
ns MHz Area ns ns ns Cost

8 8 16 8 10.078 99.23 0.2086 0.7 1.3 1.3 1.11 0.50

5 Conclusions and Future Works

Nowadays the need of high performance computing is growing up. An example of
this is represented by biological sciences (e.g. Humane Genome Project) where
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Fig. 7. This plot shows the normalized values of area and cost function of Table 7. The
optimal points belonging to the Pareto front are colored in red while the non-optimal
are in blue.

DNA sequence matching is one of the main applications. To achieve higher per-
formance it is necessary to use hardware solutions for pattern matching tasks.
In this paper we presented a novel architecture for hardware regular expression
matching.

Our contribution involves a completely different approach of dealing with the
regular expressions. REs are considered the programming language of a parallel
and pipelined architecture. This guarantees the possibility of changing the RE
at run-time just modifying the content of the instruction memory and it involves
a high improvement in terms of performance.

Some features, like the multiple characters checking, instructions prefetching
and parallelism exposure to the compiler level are inspired from the VLIW design
style.

The current state of the art solutions guarantee a fixed performance of one
character per clock cycle. Our goal was to figure out a way of extract additional
parallelism to achieve in average much better performance. We proposed a solu-
tion that has a bit-rate of at least 10.19 Gbit/s with a peak of 18.18 Gbit/s.

We presented the results of the synthesis on ASIC technology to compare the
performance with the other state of the art solutions. Moreover, we exploited the
configurable VHDL design of ReCPU to perform a Design Space Exploration,
proposing a possible cost function based on the probabilities of matching or not
a pattern with different RE operators. We provided the results of the exploration
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by optimizing the cost function respect to the area requested to synthesize our
design on an FPGA.

Future works are focused on the definition of a reconfigurable version of the
proposed architecture based on FPGA-devices. This way, we could exploit the
possibility to dynamically reconfigure the architecture at run-time. The study of
possible optimizations of the Data Path to reduce the critical path and increase
the maximum possible clock frequency is an alternative. We would also like to
explore the possibility of adding some optimizations in the compiler.

Another possible development is to use ReCPU in a parallel multi-core envi-
ronment. This way it could be possible to create a cluster of pattern matching
processors working together and increasing the throughput. The advantages in-
clude the possibility of having a ReCPU cluster in a single System-On-Chip,
achieving considerable high performance at a contained cost due to the density
of the actual silicon technology that offer large areas with contained costs.
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Abstract. The idea behind the proposition of Networks-on-Chip (NoCs) for 

modern and future systems on chip capitalizes on the fact that busses do not scale well 

when shared by a large number of cores. Even if NoC research is a relatively young 

field, the literature abounds with propositions of NoC architectures. Several of these 

propositions claim providing quality of service (QoS) guarantees, which is essential 

for real time and multimedia applications. The most widespread approach to attain 

some degree of QoS guarantee relies on a two-step process. The first step is to 

characterize application performance through traffic modeling and simulation. The 

second step consists in tuning a given network template to achieve some degree of 

QoS guarantee. These QoS targeted NoC templates usually provide specialized 

structures to allow either the creation of connections (circuit switching) or the 

assignment of priorities to connectionless flows. It is possible to identify three 

drawbacks in this two-step process approach. First, it is not possible to guarantee QoS 

for new applications expected to run on the system, if those are defined after the 

network design phase. Second, even with end-to-end delay guarantees, connectionless 

approaches may introduce jitter. Third, to model traffic precisely for a complex 

application is a very hard task. If this problem is tackled by oversimplifying the 

modeling phase, errors may arise, leading to NoC parameterization that is poorly 

adapted to achieve the required QoS. This Chapter has two main objectives. The first 

one is to evaluate the area-performance trade-off and the limitations of circuit 

switching and priority scheduling to meet QoS. This evaluation will show where such 

implementations are really suited for QoS, and when more elaborate mechanisms to 

meet QoS are needed. The second objective comprises proposing a method, called 

rate-based scheduling, to approach QoS requirements considering the execution time 

state of the NoC. The evaluation of circuit switching and priority scheduling show 

that: (i) circuit switching can guarantee QoS only to a small number of flows; the 

technique do not scale well, and can potentially waste significant bandwidth; (ii) 

priority-based approaches may display best-effort behavior and, in worst-case 

situations, may lead to unacceptable latency for low priority flows, besides being 

subject to jitter. In face of these limitations, rate-based scheduling arises as an option 

to improve the performance of QoS flows when varying traffic scenarios are used. 
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1 Introduction 

As described in [1], networks on-chip (NoCs) are a promising way to implement 

future interconnection architectures, due to their: (i) energy efficiency and reliability 

[2]; (ii) scalability of bandwidth when compared to bus architectures; (iii) reusability; 

(iv) distributed routing decisions [2]. Network interfaces, routers and point-to-point 

links define a NoC infrastructure. A network interface connects IPs to the NoC, and is 

responsible to prepare and deliver packets or entire messages to other IPs through the 

NoC and to receive packets/messages from the network to the IP [2]. 

Currently, most NoC implementations only provide support to best effort (BE) 

services [1], even those proposed by NoC companies like Arteris [3]. BE services 

guarantee delivery of all packets from a source to a target, but provide no bounds for 

throughput, jitter or latency. This kind of service usually assigns the same priority to 

all packets, leading to unpredictable transmission delays. The term Quality of Service 

(QoS) refers to the capacity of a network to control traffic constraints to meet design 

requirements of an application or of some of its specific modules. Thus, BE services 

are inadequate to satisfy QoS requirements for applications/modules with tight 

performance requirements, as in the case of multimedia streams. To meet 

performance requirements and thus guarantee QoS, the network needs to include 

specific characteristics at some level in its protocol stack. Accessing the relative 

priority and requirements of each flow enables an efficient assignment of resources to 

flows [4].  

Present NoC implementations providing support to QoS try to achieve performance 

requirements at design time. The network is designed according to the application, 

requiring accurate traffic modeling and simulation to obtain the desired bandwidth 

and latency figures for the target application. The simulation results allow 

dimensioning the network to support application requirements. Network synthesis 

occurs after simulation. However, it is still possible that QoS guarantee is not met for 

new applications. Modern SoCs, such as 3G phones, support different application 

profiles. Designing the network to support all possible traffic scenarios is unfeasible 

in terms of power and area. Thus, some mechanism has to be used at execution time to 

enable meeting QoS requirements for a wide range of applications. Some examples of 

mechanisms are those long used in IP and ATM networks, including admission 

control and traffic shaping. The main advantage of using such mechanisms is to 

support new applications after network design, at the cost of extra area and power. 

NoCs proposed to meet QoS (e. g. [5] [6] [7] [8] [9] [10] [11] [12]) employ circuit 

switching and/or priority scheduling in their router architectures to attain performance 

requirements. Nonetheless, these techniques are implemented at design time for some 

devised traffic scenarios. For real applications, there can be a significant uncertainty 

during execution time: some flows may disappear and re-appear randomly or 

periodically, and they may also be interdependent [13]. To the knowledge of the 

Authors, there is no NoC implementation with built-in mechanisms to meet QoS 

taking into account the state of the network at execution time.  

This Chapter has two objectives. The first is to evaluate area-performance trade-off 

and limitations of circuit switching and priority scheduling to meet QoS. This shows 

where such implementations are really suited for achieving QoS, and where more 
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elaborate mechanisms are needed. The second is to propose a method, rate-based 

scheduling, to approach QoS requirements considering the NoC execution time state. 

The rest of this Chapter is organized as follows. Section 2 is an overview of NoCs 

that offer guarantees of QoS. Section 3 details four NoC designs: (i) a best effort 

NoC; (ii) a static priority scheduling NoC; (iii) a NoC employing dynamic priority 

scheduling to meet QoS; and (iv) a NoC employing circuit and packet switching. 

Section 4 proposes the rate-based scheduling policy. Section 5 analyzes latency, jitter 

and throughput for all NoCs. Section 6 gives conclusions and suggests future works. 

2 Related Work 

Current NoC designs employ at least one of three methods to provide QoS: (i) 

dimensioning the network to provide enough bandwidth to satisfy all IP requirements; 

(ii) providing support to circuit switching for all or selected IPs; (iii) making available 

priority scheduling for packet transmission. 

Harmanci et al. [14] present a quantitative comparison between circuit switching 

and priority scheduling, showing that the prioritization of flows on top of a 

connectionless communication network is able to guarantee end-to-end delays in a 

more stable form than circuit switching. However, the reference does not quantify 

results. A possible explanation for this is the use of a TLM SystemC modeling, 

instead of clock cycle accurate models. Also, structural limitations of circuit 

switching and priority scheduling are not depicted. 

The first method to provide QoS mentioned above is advocated e. g. by the Xpipes 

NoC [6]. The designer sizes Xpipes according to application requirements, adjusting 

each channel bandwidth to fulfill the requirements. However, applying this method 

alone does not guarantee avoidance of local congestions (hot spots), even if 

bandwidth is largely increased. This fact, coupled to ever-increasing performance 

requirements [15], makes the method improper to satisfy a wide range of applications.  

The second method, support to circuit switching1, provides a connection-oriented 

distinction between flows. This method is used in Æthereal [7], aSOC [8], Octagon 

[9], Nostrum [10] and SoCBUS [11] NoCs. For example, the Nostrum NoC [10] 

employs virtual circuits (VC), with the routing of QoS flows decided at design time. 

The communications on the physical channels are globally scheduled in time slots 

using TDM. The VCs guarantee throughput and constant latency at execution time, 

even with variable traffic rates. Circuit switching NoCs create connections for all or 

to selected flows. The establishment of connections requires allocation of resources 

such as buffers and/or channel bandwidth. This scheme has the advantage of 

guaranteeing tight temporal bounds for individual flows. However, the method has 

two main disadvantages: (i) poor scalability [14]; (ii) inefficient bandwidth usage. 

The router area is proportional to the number of supported connections, penalizing 

                                                           

 
1 Here, the term circuit switching is used to refer to both, networks providing physical level 

structures to establish connection between source and destination, as well as to packet switched 

networks employing higher level services (such as virtual circuits) to create connections. 
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scalability. Resource allocation for a given flow is based on worst case scenarios. 

Consequently, network resources may be wasted, particularly for bursty flows.  

QNoC [5], DiffServ-NoC [14] and RSoC [12] are examples of NoCs adopting the 

third method, packet switching with priorities. This connectionless technique groups 

traffic flows into different classes, with different service levels for each class. It 

requires separate buffering to manipulate packets according to the services levels. To 

each service level corresponds a priority class. The network serves non-empty higher 

priority buffers first. Packets stored in lower priority buffers are transmitted only 

when no higher priority packets is waiting to be served. This scheme offers better 

adaptation to varying network traffic and a potentially better utilization of network 

resources. However, end-to-end latency and throughput cannot be guaranteed, except 

to higher priority flows. Also, it is necessary to devise some form of starvation 

prevention for lower priority flows. When flows share resources, even higher priority 

flows can have an unpredictable behavior. Thus, this method often provides a poorer 

QoS support than circuit switching. 

Neither circuit switching nor priority methods guarantee QoS for multiple 

concurrent flows. When using circuit switching, the network may reject flows, due to 

a limited amount of simultaneously supported connections, even if bandwidth is 

available. When multiple flows with the same priority compete for resources, priority-

based networks have behavior similar to BE networks (see Section 5). As mentioned 

before, networks using any of the three methods above employ techniques at design 

time to guarantee QoS through traffic modeling, simulation-based network sizing and 

network synthesis. The drawbacks of sizing the network at design time are: (i) the 

complexity of traffic modeling and system simulation is very high, being thus error-

prone; and (ii) the network designed in this way may not guarantee QoS for new 

applications. The first drawback may force the use of simplified 

application/environment models, which can in turn lead to incorrect dimensioning of 

the NoC parameters for synthesis. The second drawback may arise if new applications 

must execute after product delivery, as occurs in reconfigurable or systems. 

The main performance figures used in the above reviewed NoCs are end-the-end 

latency and throughput. But when QoS is considered, another concept can be of 

relevance, jitter, the variation in latency, caused by network congestion, or route 

variations [16]. In connectionless networks, buffers introduce jitter. When packets are 

blocked, latency increases. Once the network can release packets from blocking, 

latency reduces, due to burst packet diffusion. Thus, networks using only priorities 

cannot guarantee jitter control. Some works advocate different methods to enhance 

QoS. For example, Andreasson and Kumar proposed a slack-time aware routing [13] 

[17], a source routing technique to improve overall network utilization by 

dynamically controlling the injection of BE packets in the network at specific paths, 

while guaranteed throughput (GT) packets are not employing these. However, this 

work does not aim at QoS achievement. 

The NoCs to be described in the next two Sections share a basic set of common 

features: 2D mesh topology, wormhole packet switching, deterministic distributed 

routing, and physical channels multiplexed in at least two virtual channels (VC). This 

certainly does not cover all possible features found in NoC architectures proposed in 

the literature. But many of these features are found in several NoCs [18] [19]. 
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3 Reference �oC Designs 

This Section presents four NoC designs. The first is a NoC supporting BE services 

only (BE-NoC). The second and third add priority schemes to the BE-NoC, to enable 

differentiating flows. The fourth design adds circuit-switching to the BE-NoC. 

3.1 Best Effort �oC - BE-�oC  

The BE-NoC is based on Hermes [19], a parameterizable infrastructure used to 

implement low area overhead packet switching NoCs with 2D mesh or torus 

topology, which allows to select the routing algorithm, the flit size and the buffer 

depth. This work employs Hermes with a parameterizable number of virtual channels 

(VCs) [20]. The first and the second flits of a packet are header information, 

respectively containing the target address, and the payload size (up to 2
(flit size, in bits)

) in 

flits. The remainder flits are payload. 

Credit based is the flow control algorithm assumed here. Fig. 1 shows the credit-

based interface between routers. The output port signals are: (1) clock_tx: 

synchronizes data transmission; (2) tx: indicates data availability; (3) lane_tx: 

indicates the VC or lane transmitting data; (4) data_out: data to be sent; (5) credit_in: 

indicates available buffer space, for each lane. 
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Fig. 1. Physical router interface for the BE-NoC. 

The router has centralized switching control logic and five bi-directional ports: 

East, West, North, South, and Local. The Local port establishes a communication 

between the router and its local core. The other ports connect to neighbor routers. Any 

physical channel may support multiplexed VCs. Fig. 2 presents the internal router 

structure, with two lanes per physical channel. Although physical channel 

multiplexing may increase switching performance [1], it is important to keep a 

compromise among performance, complexity and router area. 

Each input port has a depth d buffer for temporary flit storage. When n lanes are 

used, a buffer with d/n depth is associated to each lane. The input port receives flits, 

storing them in the buffer indicated by signal lane_rx (Fig. 1). Next, it decrements the 

amount of lane credits. When an output port transmits a flit, this flit is removed from 

the buffer and the credit counter is incremented. Credit availability reaches a neighbor 

router through signal credit_out (Fig. 1). 
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The XY routing algorithm sends packets in the X direction up to the target X 

coordinate, and then proceeds in the Y direction until reaching the target router. The 

behavior of this algorithm allows the use of the partial crossbar of Fig. 2. Packets 

coming from the Local, East or West ports may go to any output port. Packets coming 

from the North port can only be transmitted to the South and Local ports, and packets 

coming from the South port can only be follow to the North and Local ports. A partial 

crossbar reduces router area by up to 3%, compared to a full crossbar. 
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Fig. 2. Router internal structure, for two virtual channels Hermes NoC. “Solder points” indicate 

existing connections in the partial crossbar. 

Multiple packets may arrive simultaneously in a given router. A centralized round-

robin arbitration grants access to incoming packets. The priority of a lane is a function 

of the last lane having a routing request granted. If the incoming packet request is 

granted by the arbiter, the XY routing algorithm is executed to connect the input port 

to the correct output port. When the algorithm returns a busy output port, the header 

flit and all subsequent flits of this packet are blocked.  

After routing execution, the output port allocates the bandwidth among the n lanes. 

Each lane with flits to transmit occupies at least 1/n of the physical channel 

bandwidth. If only one lane satisfies this condition, it occupies the whole physical 

channel bandwidth. After all flits in a packet are transmitted, the port is released. 

3.2 Static Priority �oC – SP-�oC 

The objective of this design is to add the ability to provide differentiated services 

to the flows, using a resource allocation mechanism based on static priorities (similar 

to QNoC [5]). This design modifies the arbitration and scheduling router policies 

without modifying the BE-NoC router interface. 
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In the SP-#oC, each lane is associated to a priority and is served according to it. 

The priority of each lane is given by its index, as defined by Equation 1. In this way, 

this NoC allows the network to differentiate n flows, where n is the number of lanes 

per physical channel. 

1−= iLofpriority i
, for all i ≥ 1 (1) 

To differentiate flows, the packet header is extended by a new field, named 

priority. This field determines which lane is used for packet transmission. For 

example, lane L2 transmits packets with priority 1. The user may assign to the priority 

field a value between 0 (lowest priority) and n-1 (highest priority) . Only the source 

router verifies the priority field. The remaining routers transmit packets using the 

same lane allocated by the source router. 

The assignment of priorities to virtual channels requires modification of router 

arbitration and scheduling algorithms. In priority-based arbitration, when multiple 

packets arrive simultaneously at the router input ports, the packet with higher priority 

is served first, even if other packets are waiting to be served. In priority-based 

scheduling2, packets with higher priority are also served first. Then, data transmission 

in lower priority lanes depends on the load of the higher priority lanes, which can 

vary dynamically. For this reason, end-to-end latency bounds cannot be determined 

for all lanes, only for the highest priority lane. Consequently, it is hard to support 

multiple services with guaranteed QoS using priorities [21]. 

Priority-based arbitration and scheduling are effective for a small number of virtual 

channels [21]. For example, it is possible to reserve a virtual channel for real-time 

flows, a second one for non-real-time flows with controlled losses, and a third one for 

best-effort traffic. The drawback of the approach is the fact that the router area 

increases approximately with the square of the number of virtual channels [20]. 

3.3 Dynamic Priority �oC – DP-�oC 

In a DP-#oC, priority is assigned to flows as opposed to the SP-#oC, where 

priority is assigned to lanes. Thus, SP-#oCs statically reserve NoC resources at 

design time to certain types of flows (e. g., the lane L2 is reserved for the flow with 

priority 1). In DP-#oCs such reservation does not exist. 

In DP-#oCs, lane priority varies according to the packet priority. This allows: (i) 

transmitting packets through any lane; (ii) transmitting packets through different lanes 

along the packet path; (iii) transmitting packets with the same priority through 

different lanes in the same physical link using time division multiplexing (TDM). In 

DP-#oCs, the priority field is also included in the packet header, being possible to 

assign to this field any value between zero and (2t-1), where t is the flit width. 

DP-#oCs keep the same external router interface of previous designs, requiring 

modifications in arbitration, routing table and scheduling. The arbitration method 

serves the packets with higher priority first, as in SP-#oCs. However, as the priority is 

                                                           

 
2 Scheduling defines which flow can use a given output port. 
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defined in the packet, it is necessary to compare the priority field of all incoming 

packets, increasing the time to perform arbitration by two clock cycles. The routing 

table is extended with a new field, named priority. This field determines the priority 

of the output port lanes. The scheduling policy verifies the packets waiting to be 

transmitted to the free lanes in decreasing priority order. A round-robin algorithm is 

used to solve conflicts when packets with the same priority dispute the same lane. In 

SP-#oCs, this kind of conflict never arises. 

3.4 Circuit Switching �oC – CS-�oC 

The Circuit switching NoC adds differentiated services by enabling connection 

establishment. The network offers a guaranteed throughput (GT) service to flows with 

QoS requirements. To flows without QoS requirements, the network offers a best 

effort (BE) service. This approach, GT plus BE, is similar to the one implemented in 

the Æthereal NoC. 

This design employs two lanes, L1 and L2. Lane L1 carries circuit switching data, 

while lane L2 is used to transmit packet switching data. GT flows have priority higher 

than BE flows, with end-to-end latency guarantee. When a given GT flow leaves the 

physical channel idle, BE flows may use this channel, without incurring in any 

significant penalty to GT data arriving while a BE flow is using the channel. 

The physical interface between routers in CS-NoC has all signals of the previous 

NoC, plus an additional signal, ack_in (and ack_out respectively), to signal 

connection establishment (ack_in asserted) and connection release (ack_in 

unasserted). 

A GT flow requires connection establishment before starting data transmission. A 

connection between a source and a target node require the reservation of lane L1 

along the path between their respective routers. The path reservation avoids the 

establishment of other connections in the same path. 

The hardware to implement circuit switching is simpler than in packet switching, 

since a register can be used instead of a buffer, and the control flow is simplified, 

requiring neither handshake nor credit control. Some NoCs, such as Æthereal, store in 

a table data such as the required bandwidth of the GT flows, but this table increases 

router area significantly. Multiple flows may use the physical channel, multiplexing 

the bandwidth (TDM). In the CS-NoC only one connection can be established per 

physical channel, not requiring this additional area. A specific protocol is used to 

establish and release connections. In summary, connections are established or 

released using BE control packets. These packets are differentiated from BE data 

packets by the most significant bit of the first header flit. When this bit is asserted, the 

BE packet has control function, and the second flit indicates the command to be 

executed (connection establishment or release). BE control packets do not contain 

payload.  
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4 A �oC Supporting Rate-Based Scheduling – RB-�oC 

This Section proposes the design of a router with a built-in mechanism which 

overcomes circuit switching and priority scheduling limitations stated in Section 3. 

BE flows are transmitted using a single specific VC per channel, while QoS flows 

may use any VC. This resource reservation for QoS flows is needed to avoid that 

multiple BE flows momentarily block some channel for a QoS flow. 

Telecom networks have employed rate-based scheduling policies to control 

congestion. Examples of such policies are virtual clock (VC) [21], weighted fair 

queuing (WFQ) and the method proposed in [22]. The rate-based scheduling policy 

proposed here comprises two steps: admission control followed by dynamic 

scheduling. 

The admission step determines if the network may accept a new QoS flow without 

penalizing performance guarantees already assigned to other QoS flows. It starts by 

sending a control packet from the source router to the target router, containing the rate 

required by the IP. The QoS flow is admitted into the network if and only if all routers 

in the path to the target can transmit at the required rate. When the control packet 

arrives at the target, an acknowledgment signal is back propagated to the source 

router. This process is similar to the connection establishment in circuit switching but, 

differently from circuit switching, there is no static resource reservation. 

When the QoS flow is admitted, a virtual connection is established between the 

source and target router, as in ATM networks. This virtual connection corresponds to 

a line in the flow table (see Fig. 3) of each router in the connection path. Each line of 

the flow table identifies the QoS flow using the following fields: source router, target 

router, required rate, and used rate.  
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Fig. 3. Router architecture with support for rate-based scheduling. 
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The flow table depth determines how many simultaneous QoS flows can be 

admitted by each router. The virtual connection is released by the source router with 

another control packet. Once the virtual path is established, the source router may 

start sending QoS flow packets. When packets arrive at a router input port they are 

stored in input buffers, arbitrated and routed to an output port (Fig. 3). Packets 

assigned to the same output port are served according to the proposed scheduling 

policy. 

In the implemented scheduling policy, BE flows are transmitted only when no QoS 

flow requires the physical channel. The RB-NoC employs a notion of priority to 

differentiate QoS flows among them, but priority is defined in a different way from 

SP-NoC and DP-NoC definitions. In an RB-NoC, a QoS flow priority is the 

difference between the required rate and the rate currently used by it. When two or 

more QoS flows compete, the higher priority flow is scheduled first. 

As illustrated in Fig. 3, the flow table is read by the scheduler (blocks named S in 

Fig. 3) to find the priority of each QoS flow assigned to a same output port. The flow 

priority is periodically updated according to Equation 2. A positive priority means 

that the flow used less than its required rate in the considered sampling period. A 

negative priority means that the flow violates its rate in the sampling period. 

ii rateusedraterequiredpriority −= ,   where i designates a given flow (2) 

The required rate is fixed during the admission control step. The used rate (UR) is 

periodically computed according to Equation 3, where CR is the current rate used 

during the current period, and UR is the average of the previous used rate and the 

current used rate.  
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Fig. 4 illustrates packets of a given QoS flow being transmitted. Timestamps T0 to 

T4 designate when the rates are sampled, assuming in this example 10 time units in 

each interval. The table in the Figure shows the behavior of one flow, from T0 to T4. 

 

 

Time T0 T1 T2 T3 T4 

Source 01 01 01 01 01 

Target 55 55 55 55 55 

Required rate  25% 25% 25% 25% 25% 

Current rate  (CR) 0% 20% 30% 0% 50% 

Used rate (UR) 0% 20% 25% 12% 31% 

Actual rate  0% 20% 25% 16% 25% 

Priority 25 5 0 13 -6 

 

T0 T1 T2 T3 T4 

Time 

 

 

Fig. 4. Transmission of packets for a given QoS flow. 

In this example, the 4th line of the table contains the required rate (25%) for this 
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flow. At timestamp T1 the current rate (5th line) is 20%, corresponding to the channel 

bandwidth used by the flow in the previous interval (T0-T1). According to the 

Equation 3, it is possible to obtain the used rate (6
th
 line of the table). The 8

th
 line of 

the table contains the flow priority, which is updated according to Equation 2.  

The interval between timestamps is an important parameter of the proposed 

method. The 7
th
 line contains the actual flow rate (shown here for comparison 

purposes, not physically present in the flow table). If the chosen interval is too short, 

the computed used rate may not correspond to the actual rate, compromising the 

scheduling method. If the interval is too long, the computed used rate will be accurate, 

but the flow priority will remain fixed for a long period, also compromising the 

method. 

To minimize the error induced by the sampling period, the method in fact employs 

two sample intervals. In the previously presented example, consider a second current 

rate (CR2) and a sample interval 4 times larger than the original one. In this example, 

CR2 will be equal to 100% (summation of CR from T0 to T4) in T4. Dividing CR2 by 

4, the corrected used rate is obtained (CUR, Equation 4). It can be observed that 

applying CUR to UR each n intervals (4 in this example), the error is minimized.  

n

CR

n

CR
CUR

n

i

i∑
−

===

1

02  

(4) 

Consequently, in Equation 3, URi receives CUR when i mod n is zero, where n 

corresponds to the result of dividing the longer sample interval value by the shorter. If 

the used rate is considered alone in the priority computation (priorityi = 100 - URi), 

the scheduling policy tends to balance physical channel use, which implies 

disregarding that distinct QoS flows may require distinct rates, and should thus be 

avoided. 

5 Experimental Results 

The behavior of a network depends on its architecture as well as on the running 

application. For example, in some applications (e.g. streaming) long messages may 

dominate, while in others (e.g. controllers) short messages dominate traffic 

characteristics. According to [4], the influence of traffic in system performance is 

greater than that of network structural parameters. Thus, it is important to dispose of 

traffic generators to model the behavior of real traffic. This Section shows 

experiments comparing the performance of the described NoCs through functional 

VHDL simulation. The parameters for all NoCs are: 8x8 mesh topology; XY routing; 

16-bit flits; 2 virtual channels; 8-flit buffers associated to each input lane. An 8x8, 64-

router NoC is big enough to provide significant results on which to draw conclusions 

about future SoC interconnects, while allowing reasonable RTL simulation time. The 

flit with has no influence here on the QoS behavior. Thus, a close to minimum value 

was chosen. Buffer sizing is a complex subject, but previous experiments [19] have 

showed that 8 is a minimum size that does not impair NoC performance.  
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5.1 Experimental setup 

Table 1 presents the flows used in the experiments. Flow A is characterized as a 

CBR (constant bit rate) service, i. e. a flow transmitting at a fixed rate [23]. Flow B is 

a variable bit rate (VBR) service [23]. This flow is modeled using a Pareto 

distribution [24]. According to [24], Pareto distributions are observable in bursty 

traffic between on-chip modules in typical MPEG-2 video and networking 

applications. Flows A and B have QoS requirements of latency and jitter. Nodes 

generating flows A and B transmit 2000 packets. The results do not take consider the 

first 100 packets, which correspond to the warm-up period. Also, the last 100 packets 

are discarded from results, since the traffic by end of simulation does not correspond 

to regular load operation. Flow C is a BE flow, also modeled using a Pareto 

distribution. This flow disturbs flows with QoS requirements (A and B), being 

considered as noise traffic. For this reason, results for the C flow are not discussed.  

Table 1. Characterization of the flows used in the experiments. 

Type  Service QoS Distribution Number of  Packets Packet Size Target 

A CBR Yes Uniform (20%) 2000 50 Fixed 

B VBR Yes Pareto (40% in the ON period) 2000 50 Fixed 

C BE No Pareto (20% in the ON period) Random 20 Random  
 

All simulations scenarios were repeated for different amounts of packets per flow 

(100, 200, 1000 and 2000) and different packet sizes (50 and 500 flits). The same 

results were observed for latency, throughput and jitter for every experiment counting 

200 flits per flow or more. This means that the network reaches a steady state in this 

situation. Results for long packets (500 flits) are proportional to the results for short 

packets (50 flits). From the results included below it is easy to infer other behaviors. 

Two evaluation scenarios are defined. In the first, two QoS flows (F1 and F2) 

originated at different nodes share part of the path to targets. In the second, three QoS 

flows (F1, F2 and F3) generate traffic, all sharing part of the path. All remaining 

network nodes transmit disturbing C flows. Fig. 5 presents the spatial distribution of 

source and target nodes. The placement of source and target nodes aims to evaluate 

situations where the flows with QoS requirements compete for network resources. 

Spatial traffic distributions and the experimental scenarios were chosen to highlight 

the limitations of priority scheduling and circuit switching when resources are shared 

among flows. Models CBR (e.g. non-compacted video) and VBR (MPEG) are 

artificial but relevant workload models [10]. Equation 5 gives the minimal latency to 

transfer a packet from a source to a target, in clock cycles. 

P#Rlatencynimalmi +×= )(  (5) 

In this Equation: (i) R is the router minimal latency (arbitration and routing), equal 

to 5 for the BE, SP, DP and CS NoCs; for the RB-NoC this value is 13; (ii) N is the 

number of routers in the path; (iii) P is the packet size. Table 2 summarizes the 

conducted experiments. Column Priority (P) has no meaning for BE-NoC and RB-

NoC. In the CS-NoC, flows with P=1 are GT flows and flows with priority 0 are BE 

flows. 
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(a) Scenario I – two QoS flows 

competing for resources 

(b) Scenario II – three QoS flows 

competing for resources 

Fig. 5. Spatial traffic distribution of source and target nodes for flows with QoS requirements. 

Dotted lines indicate the path of each flow. Rounded rectangles highlight the area where flows 

compete for network resources. All other nodes transmit C flows, disturbing the QoS flows. 

Table 2. Experimental scenarios. NA stands for Not Applicable. 

Flow F1 (QoS) Flow F2 (QoS) Flow F3 (QoS) Noise flows (BE) 
Experiment 

Traffic 

Distribution Type P Type P Type P Type P 

I I A (CBR) 1 A (CBR) 0 NA NA C 0 

II I A (CBR) 1 A (CBR) 1 NA NA C 0 

III I B (VBR) 1 B (VBR) 1 NA NA C 0 

IV II A (CBR) 1 A (CBR) 1 A (CBR) 0 C 0 

V II B (VBR) 1 B (VBR) 1 B (VBR) 0 C 0 

 P = Priority      NA = Not Applicable  

The number of virtual channels (VCs) defines how many flows compete for 

resources in the same channel. As all NoC designs have two VCs, there are three 

options when more than one QoS flow coexist: all flows with low priority (using BE-

NoC), some flows with high priority (I, IV and V for SP-NoC, DP-NoC, CS-NoC), or 

all flows with high priority (II and III for SP-NoC, DP-NoC, CS-NoC).  

5.2 SP-�oC priority mechanism analysis 

This Section compares SP-NoC to BE-NoC with regard to latency, jitter, latency 

spreading and throughput.  Fig. 6 gives the average latency and jitter for Experiment 

I. BE-NoC does not differentiate flows; i. e. average latency and jitter of packets 

depend on the transmission traffic conditions. Thus, BE-NoC gives no guarantees to 

any flow.  

In SP-NoC, the highest priority flow F1 has average latency near the optimum 

minimum latency (5(10)+50) and jitter is close to zero. This occurs because F1 has 

higher priority and exclusive usage of the virtual channel L2. Therefore, whenever F1 

has data to send, it has access to the physical channel. However, F2 is always blocked 
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while F1 is delivering flits. F2 shows an average latency of about 50 clock cycles 

greater that the minimum latency and its jitter is about 40 clock cycles, representing 

80% of the packet size. This experiment shows that a priority mechanism helps 

guaranteeing QoS, if flows with a same priority do not compete. 
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 Fig. 6. Results for flows F1 and F2, Experiment I. 

Fig. 7 shows average latency, jitter and latency spreading for Experiment II. Flows 

F1 and F2 have the same priority, competing for lane L2. It is noticeable that F2 has 

average latency near to minimum and F1 latency is around 50% larger than the 

minimum. This occurs because F1 and F2 are CBR flows, i. e. they insert packets in 

the network at fixed intervals. As F2 source node is closer to the disputed region, it is 

served first. For the same reason, F1 and F2 have jitter near zero and small spreading. 
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Fig. 7. Results for flows F1 and F2, Experiment II, CBR traffic. 

However, when F1 and F2 are VBR flows (Experiment III) results are quite 

different (see Fig. 8). Here, packets enter the network at variable intervals, using a 

40% load for the ON period, representing a 20% effective load. The ON-OFF traffic 

model randomizes the packet injection instants. Thus, there is no flow always served 

first. This has two consequences: (i) the jitter of both flows increases, and (ii) due to 

the duration of the OFF periods, both latencies approach the minimum value.  

Fig. 7 and Fig. 8 show the priority mechanism behavior when flows with a same 

priority compete for network resources. In the case of CBR flows (Experiment II), 

one of the flows has unpredictable behavior, similar to a BE flow. In the case of VBR 
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flows (Experiment III), the priority mechanism guarantees latencies close to minimum 

for the flows with higher priority. However, these present high values of jitter. 

Depending on the parameters that specify QoS for the flows, the usage of priority 

mechanism should be limited to specific situations, where competition among equal 

priority flows is avoidable or kept to a minimum. 
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Fig. 8. Results for flows F1 and F2, Experiment III, VBR traffic. 

Fig. 9 illustrates the average latency, the jitter and the throughput for Experiment 

IV. Here, two high priority flows compete for resources with a third low priority flow. 

It is possible to observe that average latency and jitter of priority flows (F1 and F2) 

have the same behavior of Fig. 7. These flows have 99% of packets with throughput 

between 15% and 20%, in accordance with the insertion rates. However, the low 

priority flow (F3) has higher average latency (about 2.5 times the minimum latency 

(5(8)+50) and highest jitter.  
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Fig. 9. Results for flows F1, F2 and F3, Experiment IV, CBR traffic. 

The F3 packets throughput presents large variation, having packets with rate 

superior to the injection rate. This is due to the fact that packets are sent in burst after 

the release of the blocking condition. If F3 had some attached throughput QoS 

requirement, using a priority mechanism would not be adequate. 

Fig. 10 shows results of Experiment V, where 3 VBR flows compete for resources. 

Priority flows are transmitted with near to minimum latency (90 clock cycles) and 

jitter close to 0. These flows have 90% of the packets with throughput between 35% 

and 45%, and 10% of the packets with throughput between 0% and 5%. This occurs 
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because a VBR flow uses an ON-OFF Pareto distribution. Here, the flow with low 

priority (F3) is penalized, showing high latency and jitter, and erratic throughput 

(excessive throughput spreading). 
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Fig. 10. Results for flows F1, F2 and F3, Experiment V, VBR traffic. 

 

Table 3 summarizes the evaluation of the static priority mechanism.  

Table 3. SP-NoC evaluation summary (all flows compete with BE packets). 
 

QoS guarantee 
Experiment Description 

Latency Jitter Throughput Reason 

I 
One priority CBR flow, without 

competition with priority flows 
Yes Yes Yes 

When the priority flows has data to 

transmit, it has access to the physical link. 

II 
Two priority CBR flows, with 

competition 
No Yes Yes 

The injection at fixed intervals serves first 

the flow which is nearer to the congestion 

area. Consequently, this flow has near to 

minimum latency, while the second flow 

has its latency significantly increased. 

III 
Two priority VBR flows, with 

competition 
Yes No Yes 

The injection at random intervals results in 

near to minimum latency, but jitter is 

increased. 

IV 
Three priority CBR flows, with 

competition 
No Yes Yes Idem to Experiment II 

V 
Three priority VBR flows, with 

competition 
Yes No Yes Idem to Experiment III 

 

5.3 DP-�oC priority mechanism analysis 

This Section compares DP-#oC and SP-#oC. The following performance figures 

are evaluated: latency, jitter and latency spreading. Fig. 11 shows the results obtained 

in Experiment I, where a priority flow is transmitted without competing with any 

other priority flow, but competing with BE flows. The performance of the DP-#oC is 

inferior to the SP-#oC. Two reasons may be advanced to explain this: 

1. The minimal latency for the SP-NoC is 100 clock cycles ((5*(10)+50), where 5 is 

the arbitration/routing delay, 10 is the number of hops and 50 is the packet length), 

while in DP-#oC is 120 clock cycles ((7*(10)+50), due to the two extra clock 

cycles in the arbitration/routing delay). 

2. Even if the DP-#oC privileges higher priority flows, there is no lane reservation 

for priority packets. Thus, if there is no higher priority packet being transmitted, 

BE flows may use all lanes, blocking priority packets until a lane is freed. 

This behavior leads to unpredictable jitter values. Here, the average jitter of F2 
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(without priority) is smaller than F1 (with priority). The second reason advanced 

above leads to an important latency spreading, since priority packets are blocked. 
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Fig. 11. Results for flows F1, F2, Experiment I. 

Fig. 12 and Fig. 13 show the results obtained when flows with the same priority 

compete for resources (output links). For both experiments, the performance of the 

DP-#oC is again inferior to the SP-#oC, for the same reason: absence of resource 

reservation. Increasing the number of different priorities could be effective with more 

lanes; however, the router area grows quadratically with the amount of lanes.  
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Fig. 12. Results for flows F1, F2, Experiment II, CBR Flows. 
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Fig. 13. Results for flows F1, F2, Experiment III, VBR Flows. 

QoS in �etworks-on-Chip - Beyond Priority and Circuit Switching Techniques   125



 

Whenever the number of flows competing for a same channel is smaller or equal to 

the number of available virtual channels the DP-NoC can effectively guarantee QoS 

requirements. 

5.4 Circuit Switching Mechanism Analysis 

If a QoS flow has to be transmitted without competing with other QoS flows, 

circuit switching mechanism is the surest way to guarantee QoS. Fig. 14 illustrates the 

amount of time required for connection establishment, data transmission and 

connection release, using flows of Experiment II, with F1 and F2 being GT flows, 

competing for the same lane. The time to establish and release a connection, small in 

this experiment, varies with network traffic, as BE packets control these actions. 
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Fig. 14. Evaluation of time to connection establishment, data transmission and connection 

release for F1 and F2 in Experiment II using CS-NoC.  

Both flows transmit 100,000 flits (equivalent to 2,000 50-flit packets of the 

previous experiments). As the rate for the flows is 20% of the available bandwidth, 

the total time to transmit all 100,000 flits is 500,000 clock cycles. As illustrated in 

Fig. 14, F2 establishes its connection first. The flow F2 spends 148 clock cycles to 

create the connection, plus 500,000 clock cycles to transmit data, and 73 clock cycles 

to remove the connection. Flow 1 waits all these clock cycles to start transmission. 

The, the total transmission time for both flows is approximately 1,000,000 cycles.  

If packet switching is used, as in BE, SP, and DP NoCs, channels are shared 

among flows, resulting in a smaller time to deliver all flits (in the present case, 

approximately 500,000). This shows the main disadvantage of circuit switching: static 

reservation of resources, potentially wasting NoC bandwidth. This disadvantage can 

be partially minimized using time division multiplexing (TDM) to allocate the 

bandwidth in fixed size time slices. However, it should be noticed that regular 

behavior of the traffic is required when using TDM (as CBR flows) to adjust the 

incoming data rate to the reserved time slots. Otherwise the risk of wasting bandwidth 

is again present, possibly coupled to the risk of losing data. 
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5.5 Rate-based scheduling results 

In this Section, the Rate-based NoC (RB-#oC) is compared to the SP-#oC. Table 

4 presents latency, jitter and throughput values for Experiment II (2 CBR flows with 

the same priority). Both scheduling policies guarantee throughput close to the inserted 

rate (20%). Analyzing the priority scheduling, F2 has average latency near to ideal, 

while F1 flow has higher latency (average latency is 77% greater than the ideal 

latency). Flows F1 and F2 insert packets at fixed intervals. As the F2 source node is 

closer to the region disputed by the flows, it is always served first. This experiment 

demonstrates that priority-based scheduling is inefficient for QoS when flows with the 

same priority compete for the same resources. In rate-based scheduling, the priority is 

dynamically updated according to the used rate, not as a function of the arrival time of 

the packets in the router. Therefore, as both flows have the same required rate, 

bandwidth is equally divided between the flows, resulting in almost the same latency 

values for both flows, near to ideal values. Jitter is slightly increased when compared 

to priority-based scheduling, due to the higher minimal latency of the router. This 

result demonstrates the efficiency of the method. 

Table 4. Results for flows F1 and F2, Experiment II, CBR traffic using SP-NoC and RB-NoC. 
 

SP-NoC RB-NoC 
Performance Figures 

F1 F2 F1 F2 

Ideal (ck) 250,00 250,00 330,00 330,00 

Minimum (ck) 441,00 250,00 330,00 330,00 

Average (ck) 443,40 251,86 333,54 332,42 

L
at

en
cy

 

Maximal (ck) 450,00 258,00 350,00 346,00 

Jitter (ck) 2,14 1,78 4,07 3,01 

Average throughput (%) 19,80 19,80 19,80 19,80 
 

Table 5 displays results for Experiment III, where F1 and F2 are VBR flows. Here, 

packets are inserted at variable intervals, using a 40% load for the ON period. The 

ON-OFF traffic model randomizes packet injection instants, which inserts jitter. Thus, 

jitter is not showed in Table 5. In both scheduling methods, F1 has average latency 

near to the ideal one. In priority scheduling, F2 has average latency 56% higher than 

the ideal latency, and the rate-based scheduling only 33% higher. Despite the fact they 

have similar behavior, rate-based is superior to priority-based scheduling, since it is 

able to reduce the percentage of deviation from the ideal latency. 

Table 5. Results for flows F1 and F2, Experiment III, VBR traffic using SP-NoC and RB-NoC. 
 

SP-NoC RB-NoC 
Performance Figures 

F1 F2 F1 F2 

Ideal (ck) 250,00 250,00 330,00 330,00 

Minimum (ck) 250,00 250,00 330,00 330,00 

Average (ck) 253,40 321,96 337,58 440,00 

L
at

en
cy

 

Maximal (ck) 266,00 390,00 477,00 545,00 

Average throughput (%) 38,82 39,26 38,86 39,40 
  

QoS in �etworks-on-Chip - Beyond Priority and Circuit Switching Techniques   127



 

5.6 Area Results 

Table 6 details the router area mapped to a 0.35µm CMOS standard cell library 

(TSMC). Router area is similar for the BE-NoC and the SP-NoC. DP-NoC area is 

superior to others, since its arbitration/routing logic needs more comparators. SC-NoC 

has the smallest area, since simple registers replace the input buffers of the circuit 

switching lane. Results point to the fact that static priority (SP-NoC) and circuit 

switching (CS-NoC) do not significantly increase area, compared to the BE-NoC. 

These mechanisms may be used to force the NoC to respect QoS requirements 

without increasing total area. The area for all implementations is dominated by the 

buffers. It is recommended to use memory generators to optimize area. Considering 

real IPs (with 200,000 gates), an area overhead of around 10% per IP is expected. 

Table 6. Router area results targeting a 0, 35µm CMOS standard-cell library (flit size=16, 2 

virtual channels, buffer depth=8), using the Leonardo synthesis tool. 
 

 BE-NoC SP-NoC DP-NoC CS-NoC 

Number of equivalent gates 18,657 18,621 21,080 12,792 

Estimated clock frequency (MHz) 160 168 147 175  

Table 7 presents router areas obtained with the Synplify synthesis tool, targeting 

FPGA devices. The results follow the same proportion as the ASIC mappings, with a 

little area penalty for the DP-NoC, and the smallest area for the CS-NoC. 

Table 7. Router area results for 2V1000 FPGA (flit size=16, 2 virtual channels, buffer 

depth=8). 
 

Mapping to Xilinx XC2V1000 FPGA device 

Used Used /Available Resource 

BE-NoC SP-NoC DP-NoC CS-NoC 
Available 

BE-NoC SP-NoC DP-NoC CS-NoC 

Slices 1071 1158 1383 967 5.120 20,92% 22,62% 27,01% 18,89% 

LUTs 1984 2150 2529 1622 10.240 19,38% 21,00% 24,70% 15,84% 

Flip Flops 513 479 646 467 11.212 4,56% 4,27% 5,76% 4,17%  

The area for the RB-NoC router is not available because the HDL description is not 

optimized for synthesis. A small increase in area can be expected here, because only a 

small table and few counters were added to the NoC router. 

6 Conclusions and Future Work 

This work evaluated different methods to provide QoS for NoCs. Dynamic priority 

is inefficient to guarantee QoS, due the absence of resource allocation. Static priority 

and connection establishment methods may guarantee QoS. However, both present 

limitations, especially when flows with QoS requirements compete for network 

resources. As shown in Experiment I, if no flows with a same priority compete for 

resources, static priority mechanisms are effective. When flows with a same priority 

compete for resources, the static priority mechanism does not provide rigid guarantees 
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to any of the flows. An alternative to this, increasing the number of priorities, implies 

increasing the amount of virtual channels, which can be prohibitive in terms of silicon 

area. In connection establishment methods, all QoS requirements are guaranteed after 

connection establishment. However, if some other flow not using connection 

establishment has deadlines to send data as QoS requirement then this method will be 

not able to guarantee this requirement.  

The state of the art in NoCs still does not provide efficient solutions to achieve 

QoS for applications when the network traffic is not known in advance. The proposed 

rate-based scheduling policy adjusts the flow priority w.r.t. the required flow rate and 

current rate used by the flow. Good results were obtained with CBR flows, with flow 

latencies near to ideal values. Rate-based scheduling overcomes the problem of flows 

with a same priority competing for resources, by balancing flows according to their 

required rates. With VBR traffic, where packets are randomly injected into the 

network, the proposed approach is also superior to priority-based scheduling. 

However, in this case rate-based scheduling does not currently achieves minimal 

latencies when QoS flows compete. One clear advantage of rate-based scheduling 

concerns high priority flows with differentiated QoS requirements. The experiments 

discussed in Section 5.5 assumed priority flows with the same throughput 

requirement, 20% of the available bandwidth. This was done for coherence with the 

other experiments. Other experiments were conducted over the RB-NoC only. In one 

of these, two competing CBR flows require 10 and 30% of the available bandwidth 

and receive 9,61 and 28,81% respectively, under the same conditions of noise traffic. 

As future work it is possible to enumerate: (i) reducing the RB-NoC router 

minimal latency, responsible by increases in jitter and latency; (ii) evaluating the 

proposed method when more than three flows compete for resources; (iii) evaluating 

area overhead of the RB-NoC; (iv) implementing congestion control mechanisms. 
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Abstract. Optimization based sizing methods allow automating the synthesis of
analog circuits. Automated analog circuit synthesis techniques depend on fast
and reliable estimation of circuit performance. This paper presents a highly ac-
curate method of estimating performances by constructing models of the circuit
matrix instead of the traditionally used performance models. Device matching
in analog circuits is utilized to identify identical elements in the circuit matrix
and reduce the number of elements to be modeled. Experiments conducted on
benchmark circuits demonstrate the effectiveness of the method in achieving cor-
rect performance prediction. Results show that the performances can be predicted
within a mean error of 0.1% compared to a SPICE simulation. Techniques such
as hashing and near neighbor searches are proposed to expedite the matrix model
evaluation procedure. These techniques avoid recomputations by saving previ-
ously visited solutions. The procedure is used for synthesizing analog circuits
from various specifications such as performance parameters, frequency response.
The proposed method gives accurate results for synthesis for various types of
circuit specifications.

1 Introduction

Fast and accurate sizing of analog circuits has been a challenging problem in the EDA
industry. Circuit sizing is the process of determining device dimensions and biasing of a
given topology to achieve the desired performance goals.Automated synthesis methods
are either knowledge based or optimization based. The former rely on expert knowledge
for generating automated design plans or design equations. The latter methods on the
other hand, construct sizing as a weighted cost minimization problem. Design variables
(v1,.., vm) including device lengths and widths, biasing sources are identified for the
circuit being sized. The design variable values that minimize the weighted performance
cost is accepted as the sizing solution. Thus, the sizing problem can be formulated as
follows:

minimize
N

∑

i=1

Weight[i] ∗ (Perf [i] − Perfspec[i]) (1)

where, Perf = F(v1, ..., vm)
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An optimization algorithm such as Simulated Annealing (SA) or Genetic Algorithm
(GA) proposes device sizes and bias from a search range and the evaluator verifies if
the performance goal is met. The evaluator has to be both fast and accurate. Spice simu-
lation, symbolic analysis and regression models have been used by researchers for per-
formance evaluation. Spice simulation is the most accurate but requires a large runtime.
Using symbolic analysis provides a faster alternative but suffers from term explosion
for larger circuits. With macromodels, the relation between the design variables and
circuit performance is captured by a black box abstraction. These evaluate much faster
than direct simulation and can achieve speedy synthesis. However, the performance pa-
rameters are extremely difficult to model. Macromodels can suffer from inaccuracies
and research efforts are directed at using complex modeling strategies to achieve good
accuracy.

2 Related Work

This section reviews some of the methods proposed for optimization based sizing of
analog circuits in recent years. Krasnicki et al. [1, 2] propose a sizing flow with a SPICE
level simulator for predicting the circuit performance. Although, using a simulator gives
highly accurate results, it proves expensive in terms of runtime. Symbolic analyzers
used for performance prediction are also highly accurate as well as faster than spice [3,
4]. However, the limitation of symbolic models is the exponential increase of symbolic
terms with circuit size making them less scalable.

Performance macromodeling has emerged as faster sizing technique compared to
exact spice-like optimization approaches. Here, data for some chosen performance pa-
rameters is gathered at a number of sample points in the circuit design space. Regres-
sion models are then developed for each performance parameter. During sizing, these
fast evaluating regression models are used instead of simulation to speed up the synthe-
sis process. Wolfe et al. [5], Doboli et al. [6] used neural networks for regressing over
performance parameters. Support Vector Machines were used for the same by Kiely et
al. [7], Bernanandinis et al. [8] and Ding et al. [9]. Other techniques used for modeling
include adaptive splines [10, 11], boosted regressors [12]. A review of several perfor-
mance modeling methods proposed in recent years can be found in [13, 14].

3 Introduction to Circuit Matrix Models

To obtain performance parameters of an analog circuit at a given point in the search
space, the system matrix of the circuit is generated. This matrix, also called the cir-
cuit matrix, is derived based on the Modified Nodal Analysis (MNA) formulation. The
circuit matrix can be represented as follows:

(G + sC)x = B;
y = LT x

here, G: conductance submatrix, C: susceptance submatrix, B: input vector, L: out-
put vector, x: unknown state vector, y: output vector
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Pre-defined MNA stamps for all circuit elements allow circuit matrix generation to
be quite straightforward. The MNA stamp of a mosfet is written in terms of its small
signal values such as transconductance (gm), output conductance (gds), capacitance
(cgs, cgd, cgb) etc., whereas for other circuit elements stamps are in terms of the com-
ponent values. The small signal values of mosfets are obtained by linearizing the circuit
around the operating point. The circuit matrix is solved to obtain the frequency re-
sponse of the circuit. Performance parameters such as the low frequency gain, Unity
gain frequency (UGF), Gain Margin (GM), Phase Margin (PM) are calculated from
the frequency response. In simulation based synthesis, the spice engine generates and
solves the circuit matrix. Macromodeling approaches use fast evaluating models and
eliminate the use of spice. As shown in fig. 1 macromodeling is possible at two places
in the synthesis flow:

1. Modeling the performance parameters
2. Modeling the circuit matrix
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Fig. 1. (a) Performance Modeling Approach (b) Matrix Modeling Approach

Most of the existing macromodeling techniques use the first approach i.e. they
model the performance parameters directly. Such methods greatly concentrate on the
performance estimation speed, but suffer a tradeoff with accuracy. This paper presents
an alternative method of estimating performance characteristics of linear analog cir-
cuits by constructing a model of the circuit matrix. The advantage, as will be seen, is
that the matrix can be very accurately modeled even with simpler modeling approaches
such as multivariate polynomial regression. Since it is possible to accurately estimate
performance values, true design convergence is obtained by this method.

Performance is not directly modeled but it is calculated from the matrix model.
Although this requires some extra computation time, the speed loss is not significant
and is offset by the gain in accuracy and advantage of true convergence. The matrix
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model generation time is dependent on the circuit size. We have significantly reduced
the number of models to be built by utilizing device matching properties of analog
circuits. When matrix models are used in optimization based synthesis, partial model
evaluation is done to speed up the matrix computation in successive iterations.

4 Comparison of Circuit Matrix Models and Performance Models

Performance estimation of analog circuits can use either system level models or perfor-
mance level models. It is known that the relation between performance parameters such
as UGF, PM and device sizes is extremely nonlinear [15, 5]. Sophisticated modeling ap-
proaches such as posynomials, neural networks are needed for modeling these severely
nonlinear responses. However, these approaches too give significant errors [13]. We
have observed that system matrix elements have lesser nonlinearity and can be accu-
rately modeled.
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Fig. 2. Phase Margin vs. Device Width of OTA

Consider the operational Transconductance Amplifier (OTA) in fig. 4(a) as an ex-
ample. We generated plots of performance parameters against device sizes and matrix
elements against device sizes. Figures 2, 3 are representative plots of performance (PM)
and matrix element (gds M4). We can intuitively state from the figures that the matrix
element is less nonlinear. The qualitative observation that matrix elements have less
nonlinearity is now backed with two quantitative measures:

1. entropy of response curves
2. variance of local differentials

Entropy measures the complexity of a response curve [16], higher the entropy more
complex the response. Entropy is calculated by definition from [17]. Variance of local
first order differentials measures smoothness of a response, with lesser variance indicat-
ing greater smoothness. A response that has low entropy and is smooth is less complex
to model. Worst case entropy and local variance values among all matrix elements is
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Table 1. Entropy and Local Differential Variation of OTA

Response Variable Variance of Local Differen-
tial

Entropy

Matrix Element 0.0316 0.8565
(Worst Case)
Gain 0.0369 0.8072

UGF 0.0422 0.7076

Gain Margin 0.2318 1.5674

Phase Margin 0.4248 3.8017

Results are on a dataset of 2000 points

shown in Table 1. The table also shows the entropy and local variance for performance
parameters. Phase and Gain Margins have entropy and local variance an order greater
than the matrix elements. From these qualitative and quantitative measures we can infer
that matrix elements are less nonlinear and can be modeled with greater accuracy than
their performance counterparts.
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Fig. 3. Matrix Element vs. Device Width of OTA

5 Modeling Methodology

The matrix elements show a linear or curvilinear variation with respect to design vari-
ables. We model the response matrix by polynomial regression. The input variables of
the model, usually the transistor widths, are normalized on a [0,1] range using eq.( 2),
since for polynomial regression it is important that higher order terms do not have high
collinearity with lower order terms [18].

xtransformed =
x − xmin

xmax − xmin
(2)
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The response is modeled using a least squares (LS) polynomial fit given by the
following equation:

Y (x1...xn) = β0 + β1x1 + .. + βnxn + β11x
2
1 + β12x1x2 + .. (3)

(where βis are coefficients of the polynomial fit.)

It is observed that the capacitance sub-matrix terms are highly collinear with re-
spect to the design variables, and lower order polynomials are sufficient for modeling
them. The conductance sub-matrix containing terms such as gm, gds etc are more non-
linear and are modeled by higher order polynomials. Once the response model within
acceptable error limits is obtained by a LS fit, the regression coefficients are saved. The
response at any unknown design point within the model bounds can now be predicted
by simply plugging the input variable values in the model given by eq.( 3). This makes
response prediction extremely fast.

5.1 Circuit Matrix Generation

The first step in matrix macromodeling is generation of the circuit matrix. Subsequently
values for the matrix are obtained in the design space and the matrix is modeled. Since
we want to model the circuit matrix in terms of its elements, we would like to reduce
the number of matrix elements to be modeled to as few as possible. To enable this
reduction, we take advantage of:

– matched element identification
– reverse element identification

Fig. 4. (i) OTA schematic (ii) Actual vs. Modeled Frequency Response of OTA

In the OTA circuit fig 4, we can see that the transistor pairs M0 − M1, M2 −

M3, M4 − M5 and M6 − M7 are matched. Using the half circuit concept [19] we
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know that the small signal values of the matched pairs will be equal. Thus, if the matrix
elements are linear combinations of small signal values of matched elements, even these
matrix elements will be identical. As a simple example, in the OTA the pairs M0−M1
and M2 − M3 are matched and gm0 = gm1 and gm2 = gm3. If the circuit matrix
has two elements, one being gm0 + gm2 and the other being gm1 + gm3, we know
that these two elements will always have the same value. Thus a single model will be
sufficient for both these matrix elements. With the MNA formulation we have seen that
such identical elements occur at many places in the circuit matrix.

It is also observed that in the MNA matrix, some elements appear only with a re-
versal of polarity. For example, one matrix element is gm4 and the other is −gm4. It
is possible to use a single model for elements that occur with opposite signs. Thus, we
observed two properties of the circuit matrix elements which will help us reduce the
number of elements to be modeled.

When the circuit matrix is generated through its MNA formulation, the matrix coef-
ficients are first generated in a symbolic form to identify identical and reverse polarity
elements. For our benchmarks, the number of non-zero coefficients in the original ma-
trix versus the number of coefficients that need modeling after reduction is depicted in
Table 2. The achievable reduction depends on the topology and the number of matched
elements.

Table 2. Reduction of Matrix Elements

Benchmark Original Matrix
Elements

Elements after Re-
duction

Percentage Reduc-
tion

TSO 43 24 44

OTA 39 14 64

Differential Ampli-
fier

145 61 58

5.2 Data Generation and Modeling

As with any modeling approach, we first need to generate raw data on which the model
will be built. The data is obtained by performing a spice operating point analysis at a
number of design points and storing values of circuit matrix elements. We have used
random numbers drawn on a uniform distribution of the device ranges to sample the en-
tire design space. About 2000 random data points are sampled for circuits with smaller
design space such as the two stage amplifier, OTA and about 4000 points for circuits
such as the differential amplifier with a larger design space . We have used high or-
der polynomial response surface models for the circuit matrix as these give adequate
accuracy.

For polynomial models it is important to choose the order appropriately since choos-
ing a lower order than necessary will give an erroneous model, whereas choosing a
higher order will cause overfitting. In our benchmark circuits we find that polynomials
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Table 3. Modeling Accuracy for OTA

Matrix Ele-
ment

Polynomial
Model Order

Max Error
(%)

Mean Error
(%)

Std Dev (%)

C11 2 0.0667 0.0129 0.0094

C13 2 0.0439 0.0107 0.0085

C16 3 0.0467 0.0122 0.0089

C33 3 0.0908 0.0153 0.0155

C35 1 0.0409 0.0102 0.0085

C55 1 0.0430 0.0104 0.0081

C66 3 0.0488 0.0115 0.0087

G11 2 0.0641 0.0179 0.0119

G13 6 0.2016 0.0207 0.0266

G15 6 0.1879 0.0198 0.0252

G51 7 0.3574 0.0602 0.0508

G55 6 0.1888 0.0196 0.0254

G61 4 0.1423 0.0202 0.0192

G66 4 0.1256 0.0268 0.0206

with order 8 and beyond tend to overfit. We predefine the maximum order as 7 for our
models. The model error is calculated using eq.( 4). We define an error of 0.5% as the
allowable model error.

Starting with a linear model, if the model error is less than the allowable error, that
order is chosen, else we fit a polynomial with one higher order. This is done till the
maximum order of 7 is reached. In some cases, increasing the order, gives very little
return in terms of error reduction (the adjusted R2 regression criterion), in which we
use a lower order model to avoid complexity. Algorithm 1 shows the entire modeling
procedure. Table 3 shows the modeling accuracy for each matrix element of the OTA
matrix. The frequency response of the OTA with the original system matrix versus the
modeled matrix at a random design point is shown in fig. 4. It is seen that the two
frequency responses match extremely well.

ModelError =

∣

∣

∣

∣

ActualV alue − PredictedV alue

ActualV alue

∣

∣

∣

∣

∗ 100% (4)

After the model has been generated using sample data, the next step is model vali-
dation. Validation is necessary to ensure that the regression model obtained holds good
for the entire design space and not just the sample data used to build the model. Valida-
tion of the model involves assessing the effectiveness of the model against an indepen-
dent set of data and is essential if confidence in the model is to be expected [20]. For
the purpose of validation we generate an independent set of random data points, 1000
data points for smaller circuits and 2000 points for larger circuits. The validated matrix
model is used for estimating the performance of the analog circuit.
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Algorithm 1 Generate Matrix Model
Input: circuit.spice
Output: regression coefficients for all matrix elements
Generate System Matrix();
Identify Unique Elements();
Generate Data();
∀ Unique Elements do:
order = 1;
done = false;
while (!done) do

polyfit(response, variables, order);
Error(order) = Calc Model Error(order);
if (error(order) <= max allowed err) then

Save Reg Coeffs(element);
done = true; break;

end if
if ((error(order)-error(order-1)) <= 1%) then

Save Reg Coeffs(element);
done = true; break;

end if
if (order <= max allowed ord) then

Increment(order,1);
else

Save Reg Coeffs(element);
done = true;

end if
end while
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6 Experiments and Results

We have used three benchmark circuits: the two stage amplifier (TSO), the operational
transconductance amplifier (OTA) and the high gain differential amplifier (DA) for test-
ing the accuracy of our models. The TSO [5] is a 8 transistor circuit with five design
variables (fig. 5), the OTA is a 9 transistor circuit with four variables (fig. 4)and the
differential amplifier [21] is a 33 transistor circuit with five variables (fig. 6). Design
space reduction was done as explained in [5] to obtain the design variables. The design
variables and their ranges used for the experiments (Table 4) are selected similar to
earlier published performance macromodeling work of [5] to enable a comparison of
results for the two methods. The design variable ranges are such that all design points
lie in a valid pocket i.e. all transistors are in saturation in the given range.

Fig. 5. (i) TSO schematic (ii) Actual vs. Modeled Frequency Response of TSO

Operating point analysis is done using Synopsys R©Hspice and values for the ele-
ments of the matrix are obtained. For generating and evaluating the polynomial regres-
sion models the Matlab R©Statistics Toolbox running on a 1.7GHz Pentium R©M with
512 MB RAM is used.

Table 5 shows the time required to build the models and the time to estimate per-
formance values for a given size. Table 6 shows the maximum matrix modeling errors
for the benchmarks. It is seen that the elements are modeled very accurately with the
maximum error about 0.5-4%. Figures 5, 7 compare the ac frequency response obtained
from actual circuit matrix and the modeled circuit matrix for the TSO and Differential
amplifier for a randomly chosen circuit size. The modeled response matches the actual
response extremely well. We compare our model building and estimation time with a
performance macromodeling approach [9] that uses support vector machines. As per-
formance is directly modeled in the second case the estimation time is lower, but the
maximum error is 10.1%.
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Table 4. Design variable ranges for Benchmarks

Benchmark Mosfet Count Number of
Variables

Ranges

TSO 8 5 M1-M5,M7:20-80um, Cc:2-
10pF, l:2um

OTA 9 4 M2-M5:20-200um
M0,M1,M6,M7:20-35um,
l:2um

DA 33 5 M1-M10, 4*M25, 4*M26,
2*M23, 2*M27, 2*M28,
2*M32: 40-200um, Cc:
10-50pF, l: 4um

Table 5. Modeling and Estimation Time

Benchmark Modeling Time Performance (All) Estima-
tion Time

Matrix Modeling Approach
TSO 3.7min 0.033sec

OTA 16sec 0.021sec

DA 31.7min 0.104sec

Competing Approach [9]
TSO 131.15min 0.01sec

OTA 50.085min 0.001sec

The performance parameters are calculated from the generated matrix models and
results are compared with a spice simulation. Table 7 shows the maximum, mean and
standard deviation of the performance estimation error for all benchmarks. The maxi-
mum error with matrix models is about 3% and the highest mean error is about 0.1%.
To enable a comparison with performance macromodeling, polynomial regression mod-
els were built on the performance parameters directly. Table 8 comprises the results of
directly modeling the performance. As would be expected, the errors are higher. The
TSO and Differential Amplifier circuits are identical to the work of [5] which uses neu-
ral networks for performance estimation. The maximum performance estimation error
in [5] is 45% and highest mean error is about 5%.

As the circuit matrix is modeled, the time for an operating point analysis is saved
which can be upto 70% of the total analysis time [3]. Although the performance is not

Table 6. Worst Case Validation Error

Benchmark Validation Dataset Size Worst case Error (%)
TSO 1000 1.8

OTA 1000 0.51

DA 2000 4.37
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Table 7. Performance Estimation Accuracy with Proposed Approach

Benchmark Max Error (%) Mean Error (%) Std Dev
Two Stage Op-Amp

Gain 0.3231 0.0301 0.0370

UGF 0.6234 0.0544 0.0623

GM 1.2944 0.0900 0.1220

PM 0.7848 0.0521 0.0833

CMRR 0.7372 0.0668 0.0818

Operational Transconductance Amplifier
Gain 0.1555 0.0134 0.0168

UGF 0.3111 0.0232 0.0320

GM 0.3199 0.0363 0.0367

PM 1.2864 0.0597 0.1068

Differential Amplifier
Gain 3.2670 0.1214 0.1490

UGF 2.2863 0.1473 0.1820

PM 0.7970 0.0648 0.0666

available directly and needs an extra step for its computation, the performance calcula-
tion time is much smaller than a spice evaluation. The added advantage with our method
is that since the entire ac behavior is modeled, any related performance can be evalu-
ated. Thus, if a performance parameter is required, it simply needs to be evaluated from
the matrix model and a new model need not be generated for that parameter.

7 Synthesis Using Circuit Matrix Models

This section describes circuit sizing using the developed circuit matrix models. An op-
timization algorithm such as Simulated Annealing (SA) used for sizing works by per-
turbing the current solution to propose a new solution. With incremental perturbation a
single parameter of the current solution is varied in every iteration. An important obser-
vation is that a design parameter affects only some elements of the circuit matrix. Thus
during an SA move only the affected matrix elements are re-evaluated.

Synthesis is explained using the Differential Amplifier as an example. The Differ-
ential Amplifier has 61 matrix elements and 5 design variables. The design variables are
four mosfet widths (w1 − w4) and capacitance Cc. The correlation coefficient between
matrix elements and design variables is calculated. If the p value of the correlation is
less than 0.1, the correlation is considered significant. Based on the p values it is seen
that w1 affects 8 matrix elements, w2 affects 30, w3 and w4 affect 30 and 36 elements
respectively whereas 11 elements are dependent on Cc. Thus, with a maximum of 36
elements are evaluated when w4 changes and only 8 elements need to be evaluated if
w1 changes.

During synthesis, new solutions are proposed by incrementally updating the current
solution. Based on the design variable that is perturbed, the affected matrix elements
are calculated from their models. The circuit matrix is then solved for various values
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Table 8. Estimation Accuracy by Direct Performance Modeling

Benchmark Polynomial
Order

Max Error
(%)

Mean Error
(%)

Std Dev

Two Stage Op-Amp
Gain 4 0.2523 0.0285 0.0272

UGF 7 14.06 1.4307 1.2449

GM 5 3.4894 0.6363 0.4933

PM 6 2.6748 0.3855 0.3463

CMRR 5 0.4704 0.0512 0.0555

Operational Transconductance Amplifier
Gain 5 0.7582 0.0784 0.0878

UGF 6 8.4583 1.3731 1.0731

GM 7 7.1955 0.6016 0.7836

PM 7 3.3e3 186.31 411.50

Differential Amplifier
Gain 4 6.2527 1.2365 1.1651

UGF 2 35.8732 9.9997 9.3995

PM 4 0.5234 0.0490 0.0567

of the frequency variable ’s’. This gives the frequency response for the circuit. Values
such as gain, bandwidth are calculated from the frequency response and compared with
the given specification. The sizing algorithm terminates when a solution satisfying the
required specifications is found or if no solution can be found in reasonable amount
of time. Circuit sizing results for the Differential Amplifier by Simulated Annealing
are given in Table 9. The target specifications are given in column 1. Column 2 gives
the predicted values for performance at the sizing solution, and column 3 is the actual
spice verified values for the sizing solution. It can be seen that the predicted and actual
performance values match very well. Thus circuit matrix models are very accurate and
can be used for performance prediction during synthesis.

Table 9. Differential Amplifier Synthesis with Partial Model Evaluation

Performance Specification Estimated Actual
Gain ≥ 78 dB 78.86 79.04

UGF ≥ 25 MHz 25.38 24.95

Phase Margin ≥ 88 Deg 88.43 88.72

8 Techniques for Faster Synthesis

This section describes two techniques to speed up the synthesis of analog circuits us-
ing circuit matrix models. Both techniques are based on reducing the time required to
evaluate matrix elements from their models during each iteration of the synthesis run.
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8.1 Speedup by Hashing

Here we store computed matrix elements in hash tables which are fetched when re-
quired to reduce model evaluation time. The SA algorithm used for synthesis starts
with an initial random sizing solution and continuously makes incremental changes to
the solution till the target specifications are satisfied. Although exactly same solutions
are rarely encountered during the synthesis run, sub-solutions often get repeated. For
example, for a circuit with 4 design variables two solutions proposed at different SA
iterations are v1 = 10, v2 = 20, v3 = 30, v4 = 40 and v1 = 10, v2 = 40, v3 = 60, v4 = 40.
Although, the solutions proposed are different, the sub-solution v1 = 10, v4 = 40 is the
same in both cases. Thus, if we save matrix elements dependent on v1, v4 computed at
the earlier iteration, they can be simply fetched and model evaluation time is saved.

Each matrix element is a function of a subset of design variables. We group all ma-
trix elements that depend on the same design variable subset into a class called hash
class. One hash table is constructed for each hash class. The sub-solution and the corre-
sponding matrix element values for each hash class are stored in the hash table. During
synthesis, the hash table is queried to check if the sub-solution was encountered previ-
ously. If the sub-solution was visited earlier, all the hash class elements can be obtained
at once from the hash table, otherwise they are evaluated from their models and stored.

Thus, the steps involved in using hash tables for faster model evaluation are:

– group matrix elements into hash classes
– initiate one hash table for each hash class
– retrieve matrix elements from the hash table when possible

For example, the 61 matrix elements of Differential Amplifier circuit are divided
into 9 different hash classes. The largest hash class has 16 matrix elements while the
smallest has 1 element. Hash tables are constructed using a R-B tree data structure [22].
Both insertion and querying is performed in O( log n ) time. Using hash tables to avoid
matrix element recomputation gives an average synthesis speedup of 2.8x measured
over a set of 35 synthesis experiments of the DA. Details of the procedure of using
hashing for expedited synthesis and further experimental results can be found in [23].

8.2 Speedup by Near Neighbor Searches

Hash tables store and reuse matrix element values, thus reducing the time required to
evaluate the matrix from its element models. Hashing is useful only when a newly pro-
posed sub-solution exactly matches a previously visited one. However, during a synthe-
sis run there may be many sub-solutions close to previously visited solutions without
matching exactly. In such cases, computing values of matrix elements incrementally
from a close (neighboring) previously visited design point helps in saving matrix model
evaluation time.

For example, consider a matrix element M dependent on variables v1, v2, v3, there-
fore M = f(v1, v2, v3). A first order Taylor series expansion for M is given by:

dM =
∂M

∂v1
· dv1 +

∂M

∂v2
· dv2 +

∂M

∂v3
· dv3 (5)

145



Almitra Pradhan and Ranga Vemuri

If the value of M is already calculated at some design point (v1 = x, v2 = y, v3 = z), its
value can be quickly obtained at the neighboring design point (v1 = x + ∆x, v2 = y + ∆y,
v3 = z + ∆z) using eq.( 5). Thus instead of evaluating a higher order polynomial model,
the element evaluation is done using the linear equation above making the computation
faster. For all design points visited during synthesis, the value of the computer matrix
element M and its associated differentials ∂M/∂v are stored and reused to compute
matrix value at many neighboring points. Thus, computing matrix element values using
the above method require the following steps:

– find a previously evaluated neighbor of the currently proposed sub-solution
– obtain the matrix element value and the value of differentials at the neighboring

point
– calculate the matrix element value at the new point using eq.( 5)

A good neighbor searching algorithm is essential for the success of this method.
An optimal (near) neighbor search algorithm proposed by Arya et al. [24] can be suc-
cessfully applied for this purpose. Since only few of the matrix elements require actual
evaluation from their models the speedup by this method is much more than hashing
alone. For the Differential Amplifier synthesis, computing matrix elements incremen-
tally from its neighbors results in a speedup of about 13x over simple matrix element
evaluation whereas with hashing it was only 2.8x. Further details of this method and
experimental results can be found in [25].

9 Synthesizing circuit with different specifications

In the case of performance macromodels, performance data is gathered for certain pa-
rameters. Models are developed for these parameters and are used for synthesis. Using
models makes performance evaluation faster than simulation and expedites the synthe-
sis process. However, only the parameters for which performance models have been de-
veloped can be included in the synthesis. On the other hand, with circuit matrix models
the target specifications need not be known beforehand. Performance parameter values
required are calculated from the frequency response obtained from solving the circuit
matrix. This is demonstrated with a band pass filter circuit.

9.1 Additional specifications for synthesis

Fig. 8 shows a 2nd order band pass filter with a Sallen Key implementation. Design
variables identified for the filter synthesis are widths of mosfets M9, M7, resistor R3,
capacitors C1, C2. The filter is to be synthesized with target specifications for gain,
bandwidth and center frequency. The synthesis engine proposes sizes for design vari-
ables. For each set of sizes, the circuit matrix is obtained from evaluating the element
models. Substituting the ’s’ variable with frequency values gives the frequency response
of the circuit. The values of gain, bandwidth and center frequency are calculated from
the frequency response till a sizing solution meeting the specifications is obtained. The
synthesis results are shown in table 10.
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Suppose, the filter has to be synthesized for another application where target spec-
ification include FP1 (frequency at the edge of the start of the pass band), FP2 (fre-
quency at the edge of the end of the pass band) in addition to gain, bandwidth and
center frequency. With circuit matrix models, synthesizing circuit with these additional
specifications is simple. The cost function is changed to include the additional specifi-
cations. Both FP1 and FP2 are calculated from the frequency response along with the
other specifications and synthesis procedure is the same as before. Table 10 shows the
synthesis results.

Table 10. Synthesis results for the band pass filter

Performance Specification Estimated Actual
Gain ≥ 14 dB 15.18 15.44

Bandwidth ≥ 2000 Hz 2409 2417

Center Frequency ≥ 2500 Hz 2590 2592

FP1 ≥ 200 Hz 273 273

FP2 ≤ 15000 Hz 12109 12103

9.2 Alternate forms of target specifications

With circuit matrix models, circuits can be synthesized with alternate forms of target
specifications and not necessarily performance parameters alone. In the next experi-
ment, we synthesize the filter circuit with the specifications given in the form of a fre-
quency response instead of parameters such as gain, bandwidth. The input specifications
are in terms of the magnitude response at different frequencies (phase response spec-
ifications can be added similarly). The cost function is changed to include frequency
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response parameters instead of performance parameters. The rest of the synthesis pro-
cess remains the same. Figure 9 shows the synthesis results. The blue line shows the
specified response. The red dots show the frequency response achieved by the target
circuit and the green dots are the SPICE frequency response for the sized circuit. Thus
synthesis is possible with alternate specifications only by changing the cost function.
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Fig. 9. Synthesizing filter from Frequency Response

10 Conclusion

Two methods for performance estimation of analog circuits, performance modeling and
circuit modeling, are compared. It is demonstrated that the circuit matrix can be accu-
rately modeled using polynomial regression. The number of coefficients that need to
be modeled are significantly reduced by taking advantage of transistor matching. The
accuracy of the proposed method is validated through experiments on three operational
amplifier benchmarks. Techniques such as hashing and near neighbor searches can sig-
nificantly speed up the synthesis process. Using circuit matrix models, synthesis can
be performed for different types of specification such as performance parameters or
frequency response.
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Abstract. In nanometer scale CMOS parameter variations are a challenge for the
design of high yield integrated circuits. Statistical Timing Analysis techniques re-
quire statistical modeling of logic blocks in the netlist in order to compute mean
and standard deviate for system performance. In this work we propose an accurate
and computer efficient methodology for statistical modeling of circuit blocks. Nu-
merical error propagation techniques are applied to model within-die and die-to-
die process variations at electrical level. The model handles co-variances between
parameters and spatial correlation, and gives as output the statistical parameters
that can be applied at higher level analysis tools, as for instance statistical timing
analysis tools. Moreover, we develop a methodology to compute the quantitative
contribution of each circuit random parameter to the circuit performance vari-
ance. This methodology can be employed by the designer or by an automatic tool
in order to improve circuit yield.
The methodology for yield analysis proposed in this work is shown to be a solid
alternative to traditional Monte Carlo analysis, reducing by orders of magnitude
the number of electrical simulations required to analyze memory cells, logic gates
and small combinational blocks at electrical level. As a case study, we model the
yield loss of a SRAM memory due to variability in access time, considering vari-
ance in threshold voltage, channel width and length, which may present both die-
to-die and within-die variations. We compare results obtained using the proposed
method with statistical results obtained by Monte Carlo simulation. A speedup of
1000× is achieved, with mean error of the standard deviate being 7% compared
to MC.

1 Introduction

Performance and reliability of deep-sub-micron technologies are being increasingly af-
fected by process variations and leakage current [24]. Variability in the manufacturing
process imposes limitations to the design of circuits in recent technologies. Process
variations are related to machinery limited precision and process methodology varia-
tions like temperature and lithography exposure time, and discreteness of the material.
These variations are stochastic and the prediction of the percentage of manufactured
circuits which will achieve a given performance becomes a major problem for the cir-
cuit designer. Therefore, the use of statistical methods in circuit design is of increasing
relevance.
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Electrical parameter variabilitymay be decomposed into die-to-die variations (D2D)
and within-die variations (WD) [27]. Within-die variations may arise from different
sources, for instance the discreteness of matter and energy (dopant atoms, photo resist
molecules, and photons). A well known example of a WD parameter is threshold volt-
age (VtMahmoodi2005Estimation-of-d. Random Dopant Fluctuations (RDF) is mainly
caused by the irregular distribution of doping atoms in the channel, and this effect nowa-
days represents one of the greatest challenges for the industry [10]. Consider σvt0 the
standard deviation in threshold voltage for minimum sized transistors, then the depen-
dence of σvt on transistor size is given by [25]:

σvt = σvt0

√

Lmin×Wmin

L×W (1)

Die-to-die variations may arise from equipment asymmetries (like asymmetries in
chamber gas flows, thermal gradients and so on) or imperfections in equipment oper-
ation and process flow. These asymmetries and imperfections affect the average value
of a parameter from die to die, wafer to wafer, and lot to lot. Variations may also be
originated by the pattern or layout induced deviation of a parameter from its nominal
value [6]. Parameters such as oxide thickness, transistor channel length and channel
width may show systematic variations [12]. In the case of a D2D parameter k, transis-
tors close to each other are affected by the same constant fluctuation δk.

Statistical Static Timing Analysis (SSTA) gives at logic level a quantitative risk
management for the design as a function of the circuit topology, the electrical parame-
ters and the variations [26]. In order to apply a SSTA methodology, the cell libraries are
characterized at electrical level, for which nowadays Monte Carlo simulation is com-
monly employed. Larger designs, composed by many hundreds of transistors, may be
decomposed in functional blocks and treated at different levels of abstraction. A block
may be a simple or complex gate, a sequential block (e.g. flip-flop) or a memory cell. At
the block level the variability may be evaluated using the methodology proposed in this
manuscript. The result provided by this methodology (mean, standard deviation) may
then be used by higher abstraction level techniques, as for instance Statistical Static
Timing Analysis (SSTA), to provide risk management at this higher abstraction levels.

In [12] cell characterization using numerical error propagation is proposed. How-
ever, their cell modeling methodology does not include D2D variation, although their
proposed SSTA algorithm considers spatial correlation at gate level. Furthermore, the
quantitative contribution of each random parameter to the circuit performance variance
is not analyzed. As shown further in our work, this analysis may help to improve yield.
Finally, in that work only first order approximation for numerical derivatives is em-
ployed, and the algorithm complexity and accuracy are not analyzed. In our work we
show that the model accuracy may be very sensitive to numerical derivative approxima-
tion. Higher order approximations may lead to a better accuracy.

Yield analysis of SRAM memories using Monte Carlo has been studied in [2], [3]
and [4]. Error propagation at electrical level for yield analysis of SRAM memory has
been explored in [14] and [15], but Vth is the only random variable analyzed (Monte
Carlo is performed to simulate D2D). Sensitivities are computed using first order nu-
merical approximation. In these works failures in SRAM cell are statistically modeled
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(access time failure, read failure, write failure and hold failure), and yield of SRAM
memory is given as a function of redundant columns employed in the design. Simula-
tions in these works show that the most significant source of failures in SRAM cell is
access time failure. In [9] an electrical-level analysis of SRAM cell static noise margin
is presented, which is based in the extraction of the electric parameters by an atomistic
device simulator. This method is robust because the transistor cards are the most con-
sistent and closely related to the device variations, but still a huge number of device and
electric-level simulations must be run (200 runs in that case).

This manuscript presents a general methodology for analysis of circuit blocks at
electrical level which is able to considerWD and D2D variations, as well as co-variances
between electrical parameters. Also, we implement a method to point out the parame-
ters which most contribute to circuit performance variance. The methodology is general
because it is independent of circuit topology (SRAM cell, multiplexer block, complex
gate, etc), and circuit performance parameter of interest (delay, leakage current, power,
etc). It maintains the generality of the traditional Monte Carlo techniques, still largely
employed in commercial electrical simulators [23].

As a case study we discuss yield analysis and optimization of a SRAM memory.
SRAM memory is a good case study because memory yield is directly dependent on
SRAM cell yield, and SSTA is not required to analyze critical paths and signal correla-
tions. For this case study we develop a methodology of yield improvement based on the
analysis of parameter contribution to variability. We resize the transistors that present
the major contribution to the access time variance.

The paper is organized as follows. Section 2 presents a high-level introduction to
the methodology. Sections 3 and 4 formally define the problem of statistical analysis of
integrated circuits at electrical level and describe the mathematical foundations of the
proposed methodology. Section 5 exposes a formulation for the sensitivity of the vari-
ance to the electrical parameters. Section 6 gives formulations for numerical compu-
tation of derivatives using higher order approximations. Section 7 details the proposed
algorithm, and presents a study on its complexity. Section 8 focuses on the methodol-
ogy applied to yield analysis and yield maximization of a SRAM memory, considering
variability in the SRAM cell access time. Finally, last section presents our conclusions.

2 Methodology

This work describes a framework to compute variability in circuit electrical behavior
and its dependency on the design and process parameters. The methodology is based on
the computation of variance using error propagation, where derivatives are numerically
computed using electrical simulations – in this work HSPICE[23] is employed.

Both circuit netlist and the set of circuit parameters which are modeled as random
variables are user inputs. Each random variable has its mean and standard deviation, as
well as its kind (WD or D2D).

A first script generates a set of runs for the electrical simulator – in our the case
HSPICE .DATA command [23]. This library is included in the netlist file, and HSPICE
is run in SWEEP mode.
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Fig. 1. High level flowchart

One value (circuit response) is computed at each run. These values are gathered
in order to compute the partial derivatives for each electrical parameter. Finally, error
propagation is employed to compute the variance. An approximation for the mean is
obtained by simulation using nominal values.

3 Model

Consider an electric circuit denoted byω , composed of n transistors represented as com-
ponents of the vector −→τ = (τ1, . . . ,τn), interconnected according to a topology Γ . By

definition, the circuit response is given by the function F(−→α 1, . . . ,
−→α n,
−→
β 1, . . . ,

−→
β n,ω),

where the vectors−→α i = (α(1)
i , ...,α(p)

i ) and
−→
β i = (β (1)

i , ...,β (q)
i ) represent respectively

the WD and D2D parameters of transistor i, p is the number of WD parameters and q

the number of D2D parameters. For instance, the case−→α 3 = (Vt) and
−→
β 3 = (Tox,L,W )

represents typical input parameters for transistor τ3, including oxide thickness (Tox),
threshold voltage (Vt) and dimensions (L andW ) of the transistor.

In the presence of variability in the fabrication process, electrical characteristics and
physical dimensions of the circuit can be considered random variables and consequently
the output is a random variable. Consider, without loss of generality, that parameters
(as for instance Tox, Vt, L,W ) are Gaussian variables with mean (μ) and variance (σ2),

i.e, αk1
i = N

(

μ(αk1
i ),σ2(αk1)

)

and β k2i = N
(

μ(β k2i ),σ2(β k2)
)

, where i = 1, ...,n,

k1 = 1, ..., p and k2 = 1, ...,q.
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The circuit statistical response S is a function that depends on N = n× (p+ q)
random variables (includingWD and D2D parameters), given by the functional relation

S = F(−→α 1, . . . ,
−→α n,
−→
β 1, . . . ,

−→
β n,ω) (2)

3.1 D2D and WD random variables

In order to model the impact of process variations on the electric circuit response, D2D
and WD are treated differently. In the case of a D2D parameter, the same fluctuation af-
fects transistors close to each other. Still their absolute values may be different because
they may have distinct averages.

Other random variables are modeled as Gaussian random variables, which are de-
noted in this work as WD parameters. A WD variable assumes a random value for each
transistor, although it can be subject to covariance coefficients (σi j).

Notice that both D2D and WD parameters are random variables. The difference
between them is the randomness context: each instance of a WD variable assumes a
different random value, while a D2D parameter has a single random fluctuation that
applies to a set of devices.

D2D parameters Spatial correlation impels the D2D electrical parameter of all tran-
sistors to change in a synchronized way. For instance, if the dimensionW is assumed to
present D2D variations andW1 of transistor τ1 changes by a quantity δW , the dimen-
sionW2 of a transistor τ2 changes by the same quantity δW although their mean (μ(W1)
and μ(W2)) in the standard sampling process can be different. The parameterW is then
defined as a variable that presents

1. exactly the same variation δW inside an single electrical block;
2. but different variation in different electrical blocks, as for instance variation δW1 in
block 1 and variation δW2 in block 2.

The reader should notice that the position (x,y) of a device is not taken into account.
Parameters that present D2D variations can be modeled as

β j
i = μ(β j

i )+ ξ j ·σ(β j)

where ξ j = N(0,1) is a standard normal variable which is independent of the transistor
1 ≤ i ≤ n. It means that the same variable j will have the same shift of magnitude ξ j ·
σ(β j) independent of the transistor to which it is applied. In other words, the variables
β j
1 , ...,β

j
n are the same random variable except by their mean values. Looking at the

contribution of this variables for error estimation, it is important to define the general
variable β j = μ(β j) + ξ j ·σ(β j), where μ(β j) is a transistor-independent constant.
Then it can be written as

β j
i (k) = μ(β j

i )+ ξ j ·σ(β j) = μ(β j
i )+β j− μ(β j) (3)
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Which leads to suitable simplification

F(−→α 1, . . . ,
−→α n,
−→
β 1, . . . ,

−→
β n,ω)=F(−→α 1, . . . ,

−→α n,β 1, . . . ,β q

the computation of partial derivatives becomes

∂F
∂β j =

n

∑
i=1

∂F

∂β j
i

∂β j
i

∂β j (4)

=
n

∑
i=1

∂F

∂β j
i

(5)

because according to equation 3 it is true that ∂β j
i /∂β

j = 1, for all i ∈ {1, ...,n}.

4 Error propagation and Monte Carlo

When measuring a quantity denoted by f which depends of n variables, x1, x2, ..., xn,
an important point is to determine the uncertainty in f given the uncertainty in each
variable. A general formula is known if we suppose that {xi}ni=1 are random Gaussian
variables, which is a widely accepted procedure [6]. In this case the uncertainty in f
( this is an error estimate, including systematic and statistical sources) is given by the
classical error propagation formula [21]:

σ2f =
n

∑
i=1

(

∂ f
∂xi

∣

∣

∣

∣

xi=xi

)2

σ2xi +2
n

∑
i=1

n

∑
j=i

(

∂ f
∂xi

∣

∣

∣

∣

xi=xi

∂ f
∂x j

∣

∣

∣

∣

x j=x j

)

σxi,x j (6)

where σ2xi is the variance (error estimate of variable xi) while σxi,x j is the covariance
between variables xi and x j.

For highly non-linear parameters the methodology may lead to significant errors
in the yield estimation. However, for most of the practical situations, the parameter
distributions are expected not to be highly non-linear. The study of the shape of the
actual distribution (and linearity) of the parameters is a topic of intense research, and
general models are not yet available. It is out of the scope of this work to provide such
models.What can be said is that if the parameters are not highly non linear, the proposed
methodology is expected to provide an appropriate yield estimation methodology.

The general error propagation formula (equation 6) applied to the model for WD
and D2D variations in an electric circuit, considering co-variances, is:
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σ2S =
n

∑
i=1

p

∑
j=1

⎛

⎝

∂F

∂α j
i

∣

∣

∣

∣

∣

α j
i =μ(α j

i )

⎞

⎠

2

σ2(α j) +
q

∑
j=1

⎛

⎝

n

∑
i=1

∂F

∂β j
i

∣

∣

∣

∣

∣

β j
i =μ(β j

i )

⎞

⎠

2

σ2(β j)

+ 2
n

∑
i=1

p

∑
j=1

p

∑
k= j

⎛

⎝

∂F

∂α j
i

∣

∣

∣

∣

∣

α j
i =μ(α j

i )

∂F

∂αk
i

∣

∣

∣

∣

αki =μ(αki )

⎞

⎠σ(α j,αk)

+ 2
n

∑
i=1

q

∑
j=1

q

∑
k= j

⎛

⎝

∂F

∂β j
i

∣

∣

∣

∣

∣

β j
i =μ(β j

i )

∂F

∂β ki

∣

∣

∣

∣

β ki =μ(β ki )

⎞

⎠σ(β j,β k)

+ 2
n

∑
i=1

p

∑
j=1

q

∑
k=1

⎛

⎝

∂F

∂α j
i

∣

∣

∣

∣

∣

α j
i =μ(α j

i )

∂F

∂β ki

∣

∣

∣

∣

β ki =μ(β ki )

⎞

⎠σ(α j,β k) (7)

The reader should notice that covariances between electrical parameters do not im-
ply in any overhead in the number of simulations.

The non-biased sampling estimator to the standard deviation computed from a sam-
ple of nsample experimental measures of S, denoted as S1, S2, ..., Snsample, is calculated
by the expression

δS =

√

√

√

√

1
(nsample−1)

nsample

∑
i=0

(Si−〈Si〉) 2

must be numerically equal to σS for a nsample sufficiently large, i.e.,

δS ≈ σS

Monte Carlo simulation [5] is often employed in order to obtain the probability den-
sity function (PDF) of some circuit output (delay, power consumption, leakage current,
...). Usually, a run with a large number of samples nsample is generated, aiming the con-
vergence of the standard deviation. However, the error in a Monte Carlo simulation is
hardly reduced, once it is O(1/

√
nsample).

The inputs in the error propagation formulation are 1) the partial derivatives of the
circuit response to the random parameters; 2) standard deviation of the random pa-
rameters; and 3) the correlation between random parameters. Standard deviations and
correlation coefficients are technology dependent and are given by the foundry. Accord-
ing to what will be shown in section 6, as F(k1, . . . ,kN) is an arbitrary function that can

be computed by electrical simulation, the numerical estimates for derivatives ∂F
∂ki

∣

∣

∣

ki=ki
also can be computed by electrical simulation.

5 Sensitivity of the circuit variability to the electrical parameters

When dealing with the challenges imposed by design for manufacturability, it is essen-
tial to have a methodology capable of identifying which parameters contribute most to
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the circuit variability. Once error propagation decomposes the circuit response variance
into its components, it can be used to point out which devices of the circuit could be
re-designed in order to optimize yield.

Error propagation uncovers the quantitative contribution of each transistor to the
variability in circuit performance. Revisiting equation 7, the sensitivity of the circuit
response variance to a within-die parameter αk is given by

K(αk) =
( ∂F
∂αk

)2σ2αk . (8)

For D2D components, a re-weighted function can be defined as

pik =

(

∣

∣∂F/∂β ki
∣

∣

∑m
j=1

∣

∣∂F/∂β kj
∣

∣

)

(9)

where ∑m
i=1 pik = 1 form synchronized variables. For a parameter β ki that presents D2D

variation the sensitivity is given by

K(β ki ) = pik×
(

∂F
∂β k

2

σ2β k

)

(10)

6 Numerical estimate of partial derivatives

Numerical approximations of derivatives is applied in order to present a genericmethod-
ology independent of circuit topology. Linear approximations using 1, 2 and 4 points
around the nominal values are exploited, aiming to obtain the sensitivity of circuit re-
sponse for the random variables. The difference between these formulas is the accuracy
in the numerical estimates and the number of electric simulations needed: higher order
approximations require more simulations, but are more accurate.
ProblemFormulation:Consider a general function of n variables f = f (x1,x2, . . . ,xn),

such that numerical values for the variables are x1 = x1, . . . ,xn = xn. By error propa-
gation we have σ2f = (∂ f/∂x1)2x1=x1σ

2
x1 + ...+ (∂ f/∂xn)2xn=xnσ

2
xn . Find a numerical

approximation for ∂ f/∂xi (i= 1, . . . ,n).

6.1 1st Order Approximation

Expanding the n-dimensional Taylor series around point f (x1, . . . ,xi, . . . ,xn) up to order
2 we obtain:

f (x1, . . . ,xi+ ε, . . . ,xn) = f (x1, . . . ,xi, . . . ,xn)+ ε
∂ f (x1, . . . ,xi, . . . ,xn)

∂xi
+O(ε2) (11)

The numerical value of f (x1, . . . ,xn) is computed by electrical simulation. Thus, one
can calculate the sensitivity at point f (x1, . . . ,xi+ε, . . . ,xn), rewriting 11 and assuming
ε 	 1 as follows
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∂ f
∂xi

(x1, . . . ,xi, . . . ,xn) =
f (x1, . . . ,xi+ ε, . . . ,xn)− f (x1, . . . ,xi, . . . ,xn)

ε
+O(ε)

(12)

Complexity of 1st order approximation: For this case 2 electrical simulations are
required to compute each partial derivative: one is required to compute f (x1, ..,xi +
ε, ...,xn) and another one for f (x1, ..,xi, ...xn). However, as f (x1, ..,xi, ...xn) is the same
for all partial derivatives, it needs to be computed only once. Thus, computation of all
partial derivatives using first order approximation requires n+1 runs.

6.2 2nd Order Approximation

In order to obtain a more precise approximation, algebraic manipulations over Taylor
expansion results in a formula with accuracyO(ε2). Consider Taylor expansions around
the points f (x1, . . . ,xi + ε, . . . ,xn) and f (x1, . . . ,xi− ε, . . . ,xn), and a better approxima-
tion for ∂

∂xi
f (x1, . . . ,xi, . . . ,xn) can be computed according to:

∂
∂xi

f (x1, . . . ,xi, . . . ,xn) =
f (x1, . . . ,xi+ ε, . . . ,xn)− f (x1, . . . ,xi− ε, . . . ,xn)

2ε
+O(ε2)

(13)

Complexity of 2nd order approximation: this formulation requires 2 electrical
simulations for each variable of interest: one to evaluate f (x1, . . . ,xi + ε, . . . ,xn) and
another one to evaluate f (x1, . . . ,xi− ε, . . . ,xn). Therefore, to calculate n partial deriva-
tives over all the variables – 2nd order approximation requires 2n runs.

6.3 4th Order Approximation

An O(ε4) approximation can be obtained for the numerical estimate of the derivative,
as in (please refer to Appendix A for detailed algebraic manipulations) :

∂ f
∂xi

(x1, ...,xn) =
1
3
· [− f (x1, ...,xi+2ε, ...,xn)+ f (x1, ..,xi−2ε, ...,xn)]

4ε

+
4
3
· f (x1, ..,xi+ ε, ...,xn)− f (x1, ..,xi− ε, ...,xn)

2ε
+O(ε4)

(14)

Complexity of 4th order approximation: for each variable 4 electrical simulations
must be run. Hence, an O(ε4) approximation requires 4n electrical simulations.
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7 Algorithm

Algorithm 1 presents the general methodology developed along the last section. The
numerical method for derivatives is the one which gives and error of O(ε2). Notice
that algorithm for other approximations are very similar – in fact the unique difference
would be the formula for derivative computation (l. 5-6 and 12-13).

Consider a circuit net-list ω which has a vector of transistors −→τ connected accord-
ing to the specified topology. The circuit response F is specified in the net-list of ω ,
for instance it can be a DC or a transient analysis. The vector of random variations −→α
and vector of systematic variations

−→
β are related to the model of variability that will

be implemented. The vector of mean values −→μ is in accordance to nominal transis-
tors parameters in ω . The vector of standard deviations −→σ depends on the foundry and
technology node, and the vector of steps ε(β ) are as small as possible (in this work the
steps are assumed to be equal to the standard deviations). Finally, C is the matrix of
co-variances between the electrical parameters.

At line 2 of the algorithm the nominal value is computed, which will be an approx-
imation for the average.

First, for all the transistors (lines 3-24), numerical derivatives for WD parameters
(lines 4-10) and D2D parameters (lines 11-23) are computed. Notice that the approach
for derivative computation requires 2 HSpice runs for each parameter, since the algo-
rithm being studied employs aO(ε2) approximation for the computation of derivatives.

For WD parameters, electrical simulations are computed (l. 5 and 6) and in the next
step the derivative is calculated using these values (l. 7). Then the sensibility of variance
to the parameter is computed in l. 8, and added to the circuit variance.

For D2D parameters, electrical simulations are run (l. 12 and 13) and next the
derivative is computed (l. 14). As the contribution of D2D parameters is given in func-
tion of the sum of these parameters (ζ (β j) at line 16) to all transistors (eq. 10), the
actual contribution is computed at line 22 (at l. 15 K is employed as a temporary vari-
able).

Correlations are added to the circuit variance in lines 25-41. For all transistors, add
correlation betweenWD toWD parameters (l. 26 - 30), D2D to D2D (l. 31-35), andWD
and D2D (36-40). The reader should notice that the number of correlation coefficients
given as input does not affect the number of HSpice simulations needed. Thus, the
covariances do not affect the running time of the method.

The algorithm computes the following outputs:

1. matrix of contributions K, which represents the contribution of the parameter 1≤
j ≤ (p+q) of the transistor 1≤ i≤ n;

2. variance of circuit response σ2F and
3. approximation for the average value of the response μF .

7.1 Complexity

The proposed tool runs as a front-end for HSpice and computational complexity of each
electrical simulation depends on the kind of analysis – DC, AC, transient, ... – and the
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Algorithm 1 Error propagation using numerical derivatives

Require: ω,−→τ = (τ1, ...,τn),
−→α = (α11 , ...,α

p
n ),
−→
β = (β 11 , ...,β qn ),−→μ = (μ(α11 ), ...,μ(α p

n ),μ(β 11 ), ...,μ(β qn )),−→σ = (σ(α11 ), ...,σ(α p
n ),

σ(β 11 ), ...,σ(β qn )),−→ε = (ε(α1), ...,ε(α p),ε(β 1), ...,ε(β q)),Cp+q
p+q

1: σ2F ← 0;ζ (
−→
β )← 0

2: μF ← F(α11 = μ(α11 ), . . . ,α
p
n = μ(α p

n ),β 11 = μ(β 11 ), . . . ,β qn = μ(β qn ),ω)
3: for all i such that 1≤ i≤ n do
4: for all j such that 1≤ j ≤ p do
5: s↓ ← F(α11 = μ(α11 ), . . . ,α

j
i = μ(α j

i )− ε(α j), . . . ,α p
n = μ(α p

n ),β 11 = μ(β 11 ), . . . ,β q
n = μ(β q

n ),ω)

6: s↑ ← F(α11 = μ(α11 ), . . . ,α
j
i = μ(α j

i )+ ε(α j), . . . ,α p
n = μ(α p

n ),β 11 = μ(β 11 ), . . . ,β q
n = μ(β q

n ),ω)

7: s ji ← s↑ − s↓
8: K j

i ←
(

s ji
2ε(α j

i )

)2
σ2(α j)

9: σ2F ← σ2F +K j
i

10: end for
11: for all j such that 1≤ j ≤ q do
12: s↓ ← F(α11 = μ(α11 ), . . . ,α

p
n = μ(α p

n ),β 11 = μ(β 11 ), . . . ,β j
i = μ(β j

i )− ε(β j), . . . ,β q
n = μ(β q

n ),ω)

13: s↑ ← F(α11 = μ(α11 ), . . . ,α
p
n = μ(α p

n ),β 11 = μ(β 11 ), . . . ,β j
i = μ(β j

i )+ ε(β j), . . . ,β q
n = μ(β q

n ),ω)

14: sp+ j
i ← s↑ − s↓

15: Kp+ j
i ←

(

sp+ j
i

2ε(β j)

)

16: ζ (β j)← ζ (β j)+Kp+ j
i

17: end for
18: end for
19: for all j such that 1≤ j ≤ q do
20: σ2F ← σ2F +ζ (β j)2σ2(β j)
21: for all i such that 1≤ i≤ n do
22: Kp+ j

i ← (
Kp+ j
i

ε(β j)
)(ζ (β j)2σ2(β

j
i ))

23: end for
24: end for
25: for all i such that 1≤ i≤ n do
26: for all j such that 1≤ j ≤ p do
27: for all k such that j ≤ k ≤ p do
28: σ2F ← 2× sp+ j

i × sp+ki ×Ckj
29: end for
30: end for
31: for all j such that 1≤ j ≤ q do
32: for all k such that j ≤ k ≤ q do
33: σ2F ← 2× s ji × ski ×Cp+k

p+ j
34: end for
35: end for
36: for all j such that 1≤ j ≤ p do
37: for all k such that j ≤ k ≤ p do
38: σ2F ← 2× s ji × sp+ki ×Cp+k

j
39: end for
40: end for
41: end for
Ensure: K,μF ,σ2F
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algorithms implemented by the simulator. For a suitable study about transient and DC
analysis performed by spice refer to [17] and its references.

The number of electrical simulations required to compute the circuit variance is a
function of the following inputs:

n: number of transistors
p: number of parameters that present WD variations
q: number of parameters that present D2D variations
d: numerical method employed to compute the derivatives
ω: spice netlist

Section 6 introduced 3 linear approximations for the computation of partial deriva-
tives. Each one has a different accuracy order and each requires a given number of
electrical simulations to compute partial derivative for a variable. Let d be the num-
ber of electrical simulations required to compute the derivative using each numerical
method. Therefore, d is related to the desired accuracy as follows:

Accuracy d Equation
0(ε) 1 12
0(ε2) 2 13
0(ε4) 4 14

One electrical simulation is run using nominal values in order to compute the nom-
inal response, which is an approximation for the average.

The complexity required to compute variance using numerical error propagation is
exactly

C(n,d, p,q,ω) = [d×n× (p+q)+1]Cspice(n, p,q,ω)

where Cspice(n, p,q,ω) is the computational complexity of one spice run for the given
netlist and the parameters n, p,q.

8 Case Study: Yield Analysis of a SRAMMemory

In the last sections the mathematical foundations of the proposed parametric yield anal-
ysis methodology were exposed. This section presents a case study, describing the ap-
plication of the method to yield analysis and yield improvement of a SRAM memory
based on cell access time failure [7]. The transistors nomenclature employed in this
work is as shown in picture 2. Electric simulations were run in HSpice, using the 70nm
node Berkeley Predictive Technology Model [8].

Variations in threshold voltage, channel width and channel length are modeled. The
electrical parameters which are assumed to show variability are as follows:

Parameter Type nominal 3σ
Length WD 70 nm 3.5 nm
Length D2D 70 nm 3.5 nm
Width WD 100 nm 7.5 nm
Width D2D 100 nm 7.5 nm
Vt(PMOS) WD -0.22 V 40 mV
Vt(NMOS) WD 0.2 V 40 mV
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vdd

gnd
bit bit

wl

M1

M2

M3

M4

M5

M6

Fig. 2. 6-transistors SRAM cell

This data is in accordance to the ITRS [11] and [19]. In our case study, we assume
that there is no correlation between parameters, but we consider the functional depen-
dence given by equation 1.

Access time is the time needed to read the data stored in a cell, computed as the
time needed to discharge the bit line (bit) or the negated bit line (bit) to 0.5VDD, if a
zero or an one is stored in the cell, respectively. Access time failure is assumed to occur
if the access time of a given cell is greater than the maximum value allowed for the
design. For the results presented in this section, both bit line (bit) and negated bit line
(bit) are assumed to be pre-charged to VDD. After pre-charge, signal wl is set to VDD
and transistors M1 and M4 are switched to on. Bit is maintained at VDD if an one is
stored in the cell, or is discharged to gnd if the cell stores a zero.

The access time may be written as a function of the random variables, where con-
sidering the cell symmetry we have:

TAC = TAC(LM1, . . . ,LM3,WM1, . . . ,WM3,VtM1, . . . ,VtM3,)

Channel width and channel length will be considered to present WD and D2D vari-
ations. Thus, according to equation 4 access time can be written as
TAC = TAC(LwdM1, . . . ,L

wd
M3,L

d2d ,Wwd
M1 , . . . ,W

wd
M3 ,W

d2d,VtM1, . . . ,VtM3).

Rewriting equation 7 we have:
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Considering TMAX a design constraint related to target circuit clock, then the proba-
bility p of a SRAM cell do not present access time violation failure is given by

p= P(TAC ≤ TMAX) =
1

σTAC
√
2π

∫ TMAX

−∞
e
− (x−μTAC )2

2σ2TAC dx (16)

Next sections expose the algorithm 7 applied to a SRAMmemory, using the specific
formulations in order to provide a comprehensive explanation. Circuit partial deriva-
tives are computed using electric simulations. Derivatives and variances are inputs for
equation 15, which gives SRAM cell access time variance. The PDF is plotted by using
the standard deviate obtained applying error propagation and mean value approximated
by simulation using nominal values for input parameters. After, the yield of the entire
memory chip is computed. In the last section of this case study, we analyze the con-
tribution of each parameter to the circuit variability, and improve yield resizing critical
transistors.

8.1 Yield of the SRAM cell

The access time variance is computed by error propagation, which has as input the nu-
merical estimates of derivatives and the standard deviates. The derivatives can be com-
puted using equation 12, 13 or 14, according to the desired trade-of between accuracy
and run-time. Higher number of points implies in higher order accuracy and running
time increases. Figure 3 shows a comparison between PDF obtained using values com-
puted using error propagation (using 1, 2 and 4 points around mean) and histogram
given by Monte Carlo. The yield of the SRAM cell considering access time failure as a
function of the design constraint TMAX is shown by figure 4.

Numerical error propagation using 1, 2 or 4 points requires respectively 10, 19 or
37 electrical simulations, while we run Monte Carlo using 104 runs. Monte Carlo sim-
ulation with 104 runs has a running time of 3̃4000 seconds, while the running time for
error propagation with numerical derivatives using 2 points is less than 80 seconds in a
dual processor Sun Fire V240 (UltraSPARC IIIi 1 GHz).
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Fig. 3.Monte Carlo histogram (104 Spice simulations) compared to PDF obtained by error prop-
agation using 1 point (10 Spice simulations), 2 points (19 Spice simulations) and 4 points (37
Spice simulations)

Fig. 4. Yield of the SRAM cell as a function of TMAX computed using Monte Carlo (104 runs)
compared to error propagation using 1 point (10 runs), 2 points (19 runs) and 4 points (37 runs)
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Fig. 5. Influence of Transistors Width in Access Time Variability

8.2 Resizing of the critical transistors

Once the sensitivity and contribution of each electric parameter are computed, the de-
sign can be optimized in order to diminish the effect of these parameters, decreasing
the variance. Although this work presents an yield optimization based in the access
time failure only, there are of other issues which need to be taken into account during
yield optimization (for instance read margin, write margin and hold margin in the case
of SRAM cells).

By resizing the transistors, three components of access time variance are affected.
While Wwd andWd2d are directly affected, Vt variance decreases because of the func-
tional relation given by equation 1.

Figure 5 presents the access time PDFs for several transistor channel widths varying
from 100nm to 160nm (in these experiments we assumeWM1 = . . . =WM6 =W ). The
PDFs were computed using MC (104 runs) and EP (9 runs for 1 point, 19 runs for 2
points and 37 runs for 4 points). SRAM cell access time variance and average are in-
versely proportional to transistors channel width. Thus, memory yield can be increased
by properly sizing the transistors which more contribute to access time variance.

Figure 6 reports the sensitivity of the access time variance to each parameter (in
percentage). The transistors are shown in pairs because of the symmetry of the SRAM
cell. The transistor which contributes most to the variance is M1-M4(6̃5%), and the
second most preponderant is M3-M6 (3̃5%). The most significant parameter is Vt of
transistor M1-M4: 27% of the access time variance is caused by this parameter.
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Fig. 6. Sensitivity of the access time variance to each parameter

Fig. 7. Impact of transistors M1 and M4 in access time variability by Monte Carlo (104 runs)
compared to error propagation using derivatives with 1 (10 runs), 2 (19 runs) and 4 points (37
runs)
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Fig. 8. Impact of transistors M2 and M5 in access time variability by Monte Carlo (104 runs)
compared to error propagation using derivatives with 1 (10 runs), 2 (19 runs) and 4 points (37
runs)

Fig. 9. Impact of transistors M3 and M6 in access time variability by Monte Carlo (104 runs)
compared to error propagation using derivatives with 1 (10 runs), 2 (19 runs) and 4 points (37
runs)
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Figure 7 reveals the access time PDFs obtained from experiments whereW2 =W3 =
W5 =W6 = 100nm andW1 =W4 varies from 100nm to 160nm in increments of 10nm.
By sizing these transistors the standard deviate decreases 35% (comparingW1 =W4 =
160nm againstW1 =W4 = 100nm) while average decreases 7%. Skewness and average
decrease as W increases.

Figure 8 points out the impact of resizing transistors M2 and M5. As the previous
analysis of the contribution of these parameters indicated, they do not impact in the
access time variance. Thus, the skewness is not correlated to W. Figure 9 presents the
impact of resizing transistors M3 and M6. The standard deviate decreases by 20% and
average decreases by 7% increasing these transistors by 60%.

The above simulations indicate that Monte Carlo and error propagation both present
similar results which corroborate the hypothesis that the skewness can be decreased
by optimizing the parameters pointed out by the methodology. The average difference
between standard deviate computed by error propagation using 1 point and the one
computed by Monte Carlo is 7%. For the simulations using 1 point around mean for
derivatives, a total of 10 electrical simulations must be computed. Thus, this approach
means to improve running time 1000× compared to MC using 104 runs. Computation
of partial derivatives for access time using 2 points gives and adjustment of O(ε2),
and in this case 17 electrical simulations are required. Using this approach the average
difference between standard deviate computed usingMC and EP is 6%, and the speedup
is up to 580×. Derivatives using 4 points requires 37 simulations, but for our case
study the precision O(ε4) does not significantly improve solution accuracy (average
difference is 6%, which is similar to approach using 2 points). In this case, approach
using 2 points for numerical derivatives conciliates running time and solution quality,
but for some application a higher order approach may be necessary.

8.3 Yield Analysis of the SRAM memory

SRAM memories present a regular architecture in which most of the chip area is dedi-
cated to regularly disposed SRAM cells. Consider a memory grid designed with NCOL
columns,NROW rows of SRAM cells and NR redundant columns, as figure 10 illustrates.
If process fabrication variability causes at least one memory cell to fail in a column, that
column must be discarded and replaced by a redundant column – this can be done dur-
ing circuit test phase, setting a set of fuses. If process variability causes more thanNR (at
least NR+1) columns to fail, than the circuit is considered faulty and must be discarded,
reducing yield and increasing product cost.

Denoting p as the probability of the SRAM cell to work properly in the presence of
process variability, PCOL = (p)NROW is the probability that none cell fails in the column.
We are interested in the probability to manufacture NCOL working columns in a total
of NCOL +NR designed columns. Thus, the yield (percentage of working chips) of a
SRAM memory design is given by a binomial distribution, [13]:

PMEM =
NCOL+NR

∑
i=NCOL

(

NCOL +NR
i

)

(PCOL)
i(1−PCOL)NCOL+NR−i (17)
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Fig. 10. Scheme of a SRAM memory

Consider a 2 Kbytes SRAM memory for which the architectural parameters are
NCOL = 512 and NROW = 32 (rows of 4 bytes without redundancy in the row). Also
assumeNR = 24 (4% of total number of columns). Figure 11 shows the memory yield as
a function of TMAX for the design where all transistors haveW = 100 and for the design
which transistors M1-M4 are re-sized toW = 160. The figure presents points computed
using equation 17 (squares) as well as the fit of its points to a logistic function (line)
given by

yield(Tmax) = a2+
(a1−a2)

1+(Tmax/T0)p
(18)

where a1 , a2 , T0 and p are parameters.
The logistic function fit to the design with W=100 for all transistors has T0 = 6.28×

10−10 and p= 1702.7,while the design where transistorsM1-M4 are re-sized toW=160
presents T0 = 5.810−10 and p = 2151.1. Thus, the re-sized circuit presents a smaller
mean for the access time and a yield that grows faster as function of TMAX , if compared
to the original design.

9 Conclusions

In this work we present a computer-efficient method for electrical yield simulation of
combinational and sequential circuit blocks. The method is based on error propagation.
The numerical methods employed for the computation of derivatives assures the in-
dependence of topology and parameters to be analyzed. The main contributions of this
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Fig. 11. SRAM memory yield. Increasing W of transistor M1-M4, the memory yield increases
for the same TMAX

work are (1) support forWD and D2D variations, as well as co-variances; (2) yield anal-
ysis based solely on numerical formulations (no analytical formulations are needed),
including the study of accuracy, numerical complexity and higher order numerical ap-
proximations; (3) analysis of the sensitivity of the variance to the electrical parameters;
and (4) development of a general method (algorithm) which can be employed for yield
analysis of combinational or sequential blocks.

We studied the three numerical formulations for the computation of derivatives.
They differ in the upper bound of the numerical error as well as the number of electrical
simulations required to compute the derivatives. We verify an accuracy increase of 1%
in the formulation which hasO(ε2) in comparison toO(ε). No significant improvement
is observed when using the O(ε4) formulation. This is due to the limited precision of
the electrical simulations, since the function being modeled is not smooth.

Based on an error propagation formulation, we derived the sensitivity of the circuit
response variance as a function of each electrical parameter. This analysis plays a fun-
damental role when dealing with any kind of electrical block – memories, library cells,
sequential and combinational blocks –, because it can guide the designer to figure out
what parameters are the most preponderant to the variance in circuit behavior. During
the yield optimization phase, this data can lead to a better understanding of how to im-
prove circuit yield. This is an advantage of using error propagation instead of sampling
techniques.

The proposed methodology keeps the generality of electrical (Spice) level simula-
tions, and can thus be applied to yield analysis in many CMOS circuits. The method
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shows results that are statistically equivalent to the usual sampling techniques, like
Monte Carlo simulation, while increasing simulation speed by orders of magnitude.
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A 4th Order Derivative

By expansion in Taylor Series we have:

f (x1, . . . ,xi+2ε, . . . ,xn) = f (x1, . . . ,xi, . . . ,xn)+2ε f ′(x1, . . . ,xi, . . . ,xn)

+
4ε2

2!
f ′′(x1, . . . ,xi, . . . ,xn)+

8ε3

3!
f ′′′(x1, . . . ,xi, . . . ,xn)

+
16ε4

4!
f (4)(x1, . . . ,xi, . . . ,xn) (19)

f (x1, . . . ,xi+ ε, . . . ,xn) = f (x1, . . . ,xi, . . . ,xn)+ ε f ′(x1, . . . ,xi, . . . ,xn)

+
ε2

2!
f ′′(x1, . . . ,xi, . . . ,xn)+

ε3

3!
f ′′′(x1, . . . ,xi, . . . ,xn)

+
ε4

4!
f (4)(x1, . . . ,xi, . . . ,xn) (20)

f (x1, . . . ,xi− ε, . . . ,xn) = f (x1, . . . ,xi, . . . ,xn)− ε f ′(x1, . . . ,xi, . . . ,xn)

+
ε2

2!
f ′′(x1, . . . ,xi, . . . ,xn)− ε3

3!
f ′′′(x1, . . . ,xi, . . . ,xn)

+
ε4

4!
f (4)(x1, . . . ,xi, . . . ,xn) (21)
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f (x1, . . . ,xi−2ε, . . . ,xn) = f (x1, . . . ,xi, . . . ,xn)−2ε f ′(x1, . . . ,xi, . . . ,xn)

+
4ε2

2!
f ′′(x1, . . . ,xi, . . . ,xn)− 8ε

3

3!
f ′′′(x1, . . . ,xi, . . . ,xn)

+
16ε4

4!
f (4)(x1, . . . ,xi, . . . ,xn) (22)

Combining the equations 19 and 22 we obtain:

f (x1, . . . ,xi+2ε, . . . ,xn) − f (x1, . . . ,xi−2ε, . . . ,xn) = 4ε f ′(x1, . . . ,xi, . . . ,xn)

+
16ε3

3!
f ′′′(x1, . . . ,xi, . . . ,xn)+O(ε5) (23)

Similarly, from equations 20 and 21 we can write:

f (x1, . . . ,xi+ ε, . . . ,xn) − f (x1, . . . ,xi− ε, . . . ,xn) = 2ε f ′(x1, . . . ,xi, . . . ,xn)

+
2ε3

3!
f ′′′(x1, . . . ,xi, . . . ,xn)+O(ε5) (24)

Multiplying equation 24 for (−8) we have:

16ε3

3!
f ′′′(x1, . . . ,xi, . . . ,xn) = −16ε f ′(x1, . . . ,xi, . . . ,xn)+8 f (x1, . . . ,xi+ ε, . . . ,xn)

− 8 f (x1, . . . ,xi− ε, . . . ,xn)+O(ε5) (25)

and substituting 16ε
3

3! f ′′′(x1, . . . ,xi, . . . ,xn) given by equation 25 on equation 23, then
an O(ε4) approximation can be derived as follows:

∂ f
∂xi

(x1, ...,xn) =
1
3
· [− f (x1, ...,xi+2ε, ...,xn)+ f (x1, ..,xi−2ε, ...,xn)]

4ε

+
4
3
· f (x1, ..,xi+ ε, ...,xn)− f (x1, ..,xi− ε, ...,xn)

2ε
+O(ε4)

(26)
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Abstract. Solvers for Boolean Satisfiability (SAT) are state-of-the-art
to solve verification problems. But when arithmetic operations are con-
sidered, the verification performance degrades with increasing data-path
width. Therefore, several approaches that handle a higher level of ab-
straction have been studied in the past. But the resulting solvers are still
not robust enough to handle problems that mix word level structures
with bit level descriptions.
In this paper, we present the satisfiability solver SWORD – a SAT like
solver that facilitates word level information. SWORD represents the
problem in terms of modules that define operations over bit vectors.
Thus, word level information and structural knowledge become available
in the search process. The experimental results show that on our bench-
marks SWORD is more robust than Boolean SAT, K*BMDs or SMT.

1 Introduction

The number of elements integrated within digital circuits grows exponentially
and this trend is going to continue for at least another 10 years. Already today
millions of gates are integrated in a single circuit. Throughout the design flow
for such complex systems, techniques to represent and manipulate the function
are needed. In particular, to formally verify the correctness of a circuit with
respect to all design states and input sequences, techniques for symbolic function
manipulation are applied.

Current state-of-the-art tools for formal verification use Boolean techniques
like Binary Decision Diagrams (BDDs) [1], AND-Inverter-Graphs [2] and provers
for Boolean Satisfiability (SAT) [3, 4]. No word level information such as knowl-
edge about arithmetic operations or structural knowledge is directly used for
function manipulation. As a result, the performance of verification tools de-
grades with increasing data-path width. Especially handling data paths is a
difficult problem.

For this reason, approaches to exploit such high level information have been
proposed in the past [5–7]. But pure word level approaches suffer from com-
plexity problems when irregularities in the word level structure occur, e.g. bit
slicing [8]. The recent concept of Satisfiability Modulo Theories (SMT) [9–12] is
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more powerful since multiple provers are combined, but still structural informa-
tion is not available. Related work is discussed in more detail in Section 2 and
empirically compared in Section 6.

In this paper, we propose SWORD – a SAT-like prover that uses word level
information and also resembles the structure of the original problem. Internally,
the problem is represented as a composition of modules; each module is defined
over bit vectors and enforces the constraints for a word level operation on the
corresponding Boolean variables. The main advantages of this approach are the
following:

– Compact problem representation:
The composition of word level modules is a much more compact representa-
tion than the transformation to Boolean constraints.

– Knowledge about structure and semantics:
This knowledge is determined by the position of a module within the problem
instance and the type of a module. Such information helps to predict the
impact of a decision or of learned information during the search process
more accurately.

– Efficient reasoning:
Different types of modules require different reasoning procedures and deci-
sion heuristics to allow for an efficient search procedure. These procedures
are designed for each type of module individually in the proposed framework.

Thus, SWORD combines the advantages of a Boolean proof procedure with the
power of word level knowledge. The proposed solver is empirically compared to
K*BMDs [6] as a word level decision diagram, the Boolean SAT solver MiniSat
[4] and the SMT solver Yices [11, 12].

The paper is structured as follows: Related work is discussed in more de-
tail in the next section. The preliminaries and limits regarding Boolean SAT
are reviewed in Section 3. Then, the basic algorithm of SWORD and the use of
modules to effectively model a problem are introduced in Section 4. Section 5 dis-
cusses the advantages of this approach. Experimental evidence for the efficiency
of SWORD in comparison to other prover paradigms is provided in Section 6.
Finally, a summary and the conclusions are presented in Section 7.

2 Related Work

Several approaches to incorporate word level information in the proof process
have been proposed so far. BDDs have been generalized to the word level quite
early [5] resulting in K*BMDs [6] as a very general form. These diagrams can
represent word level multiplications very efficiently, but whenever bit nibbling
occurs – as is common practice in circuit descriptions – the performance de-
grades. In fact, *BMDs may be exponentially large for certain functions [8].

A different approach is the transformation of the problem into Integer Linear
Programming (ILP) constraints [7]. But the same limitations to pure word level
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descriptions have been observed. A pure ILP-based approach is often too slow
for real world applications.

Combining Boolean provers and word level provers seems to be more promis-
ing. The framework proposed in [13] is based on an ATPG engine that is en-
hanced by arithmetic word level primitives. An arithmetic constraint solver is
applied to validate bit level assignments on the circuit. But the powerful learning
concepts known from Boolean SAT are not incorporated.

Due to the tremendous improvements in the performance of provers for
Boolean SAT in the recent past [14–16, 4], several researchers investigated the
combination of SAT with other proof techniques, i.e. Satisfiability Modulo The-
ories (SMT) [9–12]. An SMT solver integrates a Boolean SAT solver with an-
other solver (or multiple solvers) for specialized theories. Usually, the SAT solver
works on an abstract representation of the problem and steers the overall search
process. Each satisfiable assignment for the Boolean SAT problem has to be val-
idated on the concrete problem using the theory solver. The solver proposed in
[17] can be seen as a specialized SMT solver for bit vector logic. Tightly coupling
the different solvers, especially to enforce learning due to conflicts resulting from
partial assignments and to efficiently carry out implications, is a challenge in
this area. Usually, validating a given SAT assignment by using the theory solver
is very time consuming. Therefore, the overall performance is limited by the per-
formance of the theory solver. In our framework no theory solvers are needed.
Moreover, structural information about the original problem is available.

A very general theoretical framework for hierarchical SAT solving was pre-
sented in [18]. There, the problem is also decomposed into modules, where each
module may have different implication procedures. But no experimental evidence
was given and no hints for an implementation were provided.

Nonetheless our solver works similar to such a hierarchical solver. Besides
specialized implication procedures also dedicated decision heuristics are applied
to different types of modules.

3 Boolean SAT Solving

Our algorithm inherits the basic structure of a classical algorithm to solve a
problem instance of Boolean Satisfiability (SAT) [14]. Therefore, we briefly re-
view the techniques applied in Boolean SAT solvers.

3.1 Definition

The Boolean satisfiability problem (SAT problem) is to determine whether there
exists an assignment α to an Boolean function f such that f(α) = 1 (i.e. f is
satisfiable) or to prove that no such assignment exists (i.e. f is unsatisfiable).

A SAT instance is represented as a Boolean formula in Conjunctive Normal
Form (CNF) which is given as a set of clauses; each clause is a set of literals
and each literal is a propositional variable or its negation. The CNF formula
is satisfied if all clauses are satisfied. A clause is satisfied if at least one of its
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(c) decision

(d) propagation
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(b) SAT

noyes

failed

Fig. 1. DPLL algorithm in modern Boolean SAT solvers

literals is satisfied. A variable is satisfied when 1 is assigned to the variable, the
negation of a variable is satisfied under the assignment 0.

3.2 Basic Algorithm

The basic search procedure to find a satisfying assignment is shown in Fig. 1 and
has the structure of the DPLL algorithm [19, 3]. Instead of simply traversing the
complete space of assignments, intelligent decision heuristics [16], conflict based
learning [14] and sophisticated engineering of the implication algorithm [15] lead
to an effective search procedure. The description follows the implementation of
the procedure in modern SAT solvers. While there are free variables left (a), a
decision is made (c) to assign a value to one of these variables. Then, implications
are determined due to the last assignment by Boolean Constraint Propagation
(BCP) (d). This may cause a conflict (e) that is analyzed. If the conflict can be
resolved by undoing assignments from previous decisions, backtracking is done
(f). Otherwise, the instance is unsatisfiable (g). If no further decision can be
done, i.e. a value is assigned to all variables and this assignment did not cause
a conflict, the CNF is satisfied (b). In the following, the decision level d denotes
the number of variables assigned by decisions in the current partial assignment,
i.e. neglecting variable assignments due to implications.

3.3 Limits of Boolean SAT

Due to the translation of the problem into CNF, the power of BCP as an im-
plication engine and the efficiency of learning are limited. In the verification
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domain, the original problem is usually given at the word level. Operations are
defined over bit vectors. Each Boolean variable that is visible in a bit vector at
this level is called module variable in the following. The translation of word level
operations over bit vectors of module variables into CNF involves the creation
of a large number of auxiliary variables [20]. The dependencies between these
variables are modeled by constraints in terms of clauses.

Example 1. Consider an n×n-multiplier. On the word level, 4n module variables
are needed for the bit vectors of the operands and the result.

On the other hand, the multiplier can be represented by n2 AND gates [21],
i.e. the number of auxiliary variables is in θ(n2). A single gate can be modeled
by three clauses for each element. Therefore, the multiplier can be represented
by a CNF with θ(n2) clauses1.

Simplified, all these auxiliary variables have to be considered during BCP;
but implications on auxiliary variables do not yield a reduction of the search
space for the original problem. Moreover, conflict clauses may be derived that are
defined over auxiliary variables only – again without pruning the search space of
the original problem. In principle, this problem can be prevented by introducing
additional clauses that describe the implications on module variables directly,
but then the translation becomes inefficient due to a large number of clauses.

4 Using Word Level Information

In this section, we describe the architecture of SWORD and how word level
information is used during the solve process. Therefore, we first explain the
representation of the problem and present the overall algorithm. Afterwards the
utilization of word level information in decision making, the implication engine
and conflict analysis are explained in more detail.

4.1 Representation

SWORD represents the problem in terms of so called modules. Each module
defines an operation over bit vectors of module variables. Each module variable
is a Boolean variable. By this, structural and semantical knowledge is available
and can be exploited during the search process by special algorithms for each
kind of module (we will explain this in more detail later).

Example 2. Fig. 2 shows an equivalence checking problem in terms of a miter
circuit. A multiplier is compared to a realization that sums up the partial prod-
ucts.

SWORD represents this problem by using one module representing a multi-
plier, n−1 modules representing an adder, n modules representing a multiplexor
and one module representing a comparator. No auxiliary variables are needed.
1 More efficient translations may be available, but in principle, the problem instance

still grows.
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Fig. 2. Miter example of a multiplier

Besides providing word level information the representation in terms of mod-
ules has another advantage: The problem description of SWORD is much more
compact than a CNF. To represent it for a classical SAT solver we need θ(n2)
clauses (see Example 1). Our representation consists of 2n + 2 modules, only.
Furthermore we need no auxiliary variables in total.

4.2 Overall Algorithm

The overall algorithm of SWORD is shown in Fig. 3. This algorithm is similar
to the DPLL procedure as applied in standard SAT solvers (see Section 3.2):
While free variables remain (a) a decision is made (c), implications resulting
from this decision are carried out (d), and if a conflict occurs, it is analyzed (f).
The important difference is that SWORD has two operation levels: the global
algorithm controls the overall search process and calls the local procedures of
modules for decision and implication. Thus, decision making and implication
engine can be adjusted for each type of module.

In more detail, the solver first chooses a particular module based on a global
decision heuristic (c.1). Then, this module chooses a value for one of its variables
according to a local decision heuristic (c.2). Afterwards, the solver calls the local
implication procedures (d.2) of all modules that are potentially affected (d.1) by
the previous decision or implication. Here a variable watching scheme similar to
the one presented in [15] is used which can efficiently determine these modules.
The chosen modules imply further assignments and detect conflicts.

In the following, the global and local algorithms are described in more detail,
respectively.
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Fig. 3. Algorithm

4.3 Decision Strategies

Global Decision. The global decision procedure chooses a module that assigns
a value to one of its connected module variables. So the global decision procedure
has to decide which module will make the best decision, i.e. which decision of a
module leads to as many implications as possible. Therefore, a (global) heuristic
is employed to decide which modules are “more important” than others. To
determine the importance of a particular module, semantical information such
as the type or structural information such as the position within the overall
problem are available.

Example 3. Again, consider the miter circuit shown in Fig. 2. In this example
the primary inputs and the outputs of the multiplier module are considered
more important than, for example, the select input of one of the multiplexors.
Therefore, the global decision heuristic selects the multiplier module first.

To realize this efficiently, the global decision heuristic currently uses a static
priority based on the type of the module. Here, more complex modules (e.g. mul-
tipliers) are considered as being more important and, therefore, are selected for
a decision with a higher priority than less complex modules. The complexity is
measured in the number of two-input gates needed to describe a module. Fur-
thermore, the priority of a particular module can be increased/decreased when
it is located near to the primary inputs/outputs or the objective. By this, each
global decision can be done very efficiently, because no complex data manipula-
tion is necessary.
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Local Decision. The local decision procedure of a module assigns a value to
one of its module variables. The impact of a particular decision depends on the
type of a module. Therefore, different strategies are applied for different types
of modules. For example, a module representing a multiplier uses a different
heuristic than a module representing an AND gate. In the following, an adder
exemplifies the local decision procedures of SWORD.

An n-bit adder ADD : Bn × Bn → Bn+1 is considered which is represented
by a module in SWORD. The module variables connected to this module are
given by an−1, . . . , a0 and bn−1, . . . , b0 that represent the inputs of the adder and
on, . . . , o0 that represent the outputs.

For an adder, assigning some variables ai, bi or oi (with n > i ≥ 0) while
variables aj , bj or oj (with i > j ≥ 0) are still unassigned, often does not allow to
imply values for the outputs since then, the value of the respective carry bits are
unknown, too. In contrast, when all of the least significant bits of both operands
are given, the corresponding bits of the outputs can be determined. Therefore,
the variable representing the least significant unassigned bit is assigned first.

In the implmentation, the local decision procedure is realized as a Finite
State Machine (FSM). This allows to carry out decisions efficiently. The FSM
has n + 1 states and is in state i (n > i ≥ 0) when all variables with lower
significance than i are assigned, i.e. aj , bj and oj (i > j ≥ 0) are assigned. Thus,
if the FSM is in state i, only the variables ai, bi and oi are considered. If all
of these variables are assigned, the FSM proceeds to state i + 1. Otherwise, at
least two of these variables are unassigned (because an implication is carried out
when only one variable is unassigned, as explained in the next section).

An additional state R is needed to recalculate the state when it was inval-
idated: Due to backtracking the state of the local FSM of a module may be
invalidated because currently assigned variables may become unassigned. This
is recognized by tracking the decision level. The decision level of the last state
transition, i.e. since the last change of a state, is stored in dch and the lowest
decision level that has been reached after a backtrack intermediately is stored
in dbt. The state of the FSM may only be invalidated when dbt < dch.

Example 4. Fig. 4 illustrates this mechanism. The global search tree is indicated
by the plain line and the decision levels that are reached are also shown. A
transition of the FSM of a module is indicated by a cross. The table shows the
values of dch and dbt before the transition is done. The first transition occurs at
A and dch is changed from 0 to d; dbt is uninitialized. At B the decision level has
increased; the state is still valid; dch is updated to d + 1. Due to a backtrack dbt

is set to d + 2. Thus, at C the state from decision level d + 1 is still valid. In
contrast, when transition D is done, the state is potentially invalid and has to
be recalculated.

The resulting FSM for a 3-bit adder is shown in Fig. 5; only state transitions
are indicated, internal variables are not shown.
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Fig. 5. FSM for an adder

4.4 Implication Engine

The implication engine is also divided into a global part and local procedures
that are dedicated to the type of a module.

Detection of Affected Modules. Globally, those modules that may be af-
fected by a previous decision or implication have to be identified. This is done
by a variable watching scheme. Currently, a conservative approach is applied:
the local propagation procedure of each module that contains a variable that
has been assigned is called. Such a static scheme is efficient, because module
variables usually only connect to a few modules – often only two modules.

Local Implication. The local implication procedures only consider the con-
nected module variables for the propagation of values. For efficiency these pro-
cedures do not determine all implications that are possible, but only those that
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can be derived efficiently. Again, the local implication procedure of an adder
exemplifies the local implication procedures.

The implication procedure works similar to the decision procedure: If, for
example, the input bit ai and the output bit oi and all less significant input
bits (aj and bj with i > j ≥ 0) are assigned, then the third variable (bi in
the example) can be implied. This implication procedure does not guarantee to
detect implications on higher significant bits and is therefore not too powerful.
But in most cases implications on these bits are improbable.

The implication procedure relies on the same FSM that is used for decisions.
Additionally, the carry bits cn−1, . . . , c0 are internally updated at each state
transition. In state i (n > i ≥ 1) carry bit ci−1 is also given. Therefore, an
implication can be carried out efficiently based on the current state i, the value
of the carry bit ci−1 and the values of the module variables ai, bi, oi.

Note, due to the implication procedure a conflicting assignment may not be
detected directly. But when the FSM reaches state n, i.e. all module variables
are assigned, the consistency of the assignment will be validated. However, due
to the order of decisions conflicts are usually detected early. The mechanisms for
conflict analysis are explained in detail in the next section.

4.5 Conflict Analysis

In SWORD, conflict analysis and learning are quite similar to the classical ap-
proach of a SAT solver. Upon detection of a conflict, the module returns the
conflicting variables to the global solve process. Then, conflict analysis is carried
out. Currently, we adapted the implementation of MiniSat [4]. Because SWORD
does not work in terms of clauses, a separate implication graph is stored globally.
Each module updates this graph when an implication is carried out. The learned
information is stored in terms of clauses as in standard SAT solvers. Therefore,
an additional clause module exists which handles all clauses generated by conflict
analysis (and applies the known state-of-the-art SAT techniques).

Note, that the implication graph itself is more compact than the one of a
Boolean SAT solver, because there are no auxiliary variables contained in the
graph. As a result all clauses derived by conflict analysis consist of module
variables and prune the search space of the original problem domain directly.

The conflict graph keeps track of the reasons for a particular assignment.
Thus, the identification of a reason is crucial in this context. The smaller the
reason, the smaller the conflict clauses and the more effectively the search space
is pruned. Again, an adder is used to give an idea of how the implication graph
is created.

Example 5. Assume, oi is implied based on the internal value of ci−1 and the
module variables ai and bi. Furthermore, due to previous assignments ai−1 =
0 and bi−1 = 0, the reasons for these assignments are already stored in the
implication graph. In this case input bits with lower significance than i − 1 do
not influence the value of oi, because no carry bit is propagated beyond i − 1.
Thus, the four variables ai, bi, ai−1 and bi−1 are identified as the reason for
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the implication on oi. The four edges (ai, oi), (bi, oi), (ai−1, oi) and (bi−1, oi) are
added to the implication graph. Note, that the reasons for ai−1 = 0 and bi−1 = 0
are already stored in the graph.

Like in standard SAT solvers, only conflict clauses up to a certain length are
learned. The ratio behind this heuristic is that short clauses prune a large part
of the search space while longer clauses are less valuable.

Semantical knowledge is also exploited in this process. For example, a conflict
clause is not learned if it contains variables that are associated to a complex
module like a multiplier – in this case only backtracking is carried out. This
heuristic is motivated by the observation that usually a large number of clauses is
learned that describe the behavior of a multiplier which causes memory overhead
but does not speed up the search.

5 Discussion

The first observation is that SWORD represents problems in a much more com-
pact way than a CNF based solver. In contrast to modeling the internal structure
of a module by clauses, the functionality is described on an algorithmic level. As
already explained, this leads to a smaller number of variables and less constraints
that have to be handled.

At the same time, this representation enables more efficient implications.
Instead of a large number of clauses usually only the connecting modules have
to be considered to imply a value for a particular variable. The implication
procedures of particular modules are not as strong as possible (using the notation
of [18] they are not maximally implicative and in the notation of constraint
programming they are not fully arc-consistent). Of course, it is possible to create
stronger implication procedures, but only at the cost of more complex modules
and higher computation time. Currently, the implication procedures are crafted
manually and exploit the knowledge about the decision order. By this, it is
possible to trade-off between implicative power and efficiency. Investigating more
powerful procedures that are automatically generated remains future work. One
promising approach that starts from BDDs has been suggested in [22].

Implications and decisions are restricted to module variables. Therefore, in
contrast to CNF based SAT, no auxiliary variables can occur in the implication
graph. Thus, the size of the implication graph is reduced and, as a result, the
time needed to traverse the implication graph is reduced. Similarly, the conflict
clauses consist of module variables only. Therefore, instead of learning a large
number of locally conflicting assignments, the overall search space is pruned.

Finally, structural information about predecessors or successors of modules
is available within SWORD. Currently, this information is not fully exploited.
Only the global decision heuristic evaluates the position of modules in a static
preprocessing step. For Boolean SAT dynamic decision procedures have proven
to be much more efficient. Thus, combining structural knowledge with heuristics
from Boolean SAT is another direction for future work.
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6 Experimental Results

This section provides experimental results for SWORD in comparison to the
Boolean SAT solver MiniSat [4], K*BMDs [6] using the package of [23] as a
representative of pure word level approaches, and the SMT solver Yices using
the theory of bit vectors [11, 12]. All experiments have been carried out on an
AMD Athlon64 3500+ (Linux, 2.2 GHz, 1 GB). Unless mentioned otherwise the
time out was set to 500 CPU seconds.

We considered different benchmark problems. In the following, the name
indicates the type of the problem. The prefix ec indicates equivalence checking
of a multiplier (mul ) on the word level with another multiplier that is given
as word level module (mul ), as sum of partial products (pp ), or as gate level
description (gt ), respectively. Thereby, a miter circuit is used. In some cases, the
least significant bit was ignored in the miter (indicated by li ) and in other cases
a fault was injected at the gate level to create a satisfiable instance (indicated
by ft ). The prefix pc arith indicates a property checking problem that contains
arithmetic modules. Finally, a number indicates the bit width of the data path.

6.1 Parameter Studies

For selected representative instances Table 1 reports run times in CPU seconds
to evaluate different features of SWORD. To demonstrate the influence of the
parameters, alternative configurations are used. The last column DEF provides
the run times of SWORD in the current configuration. The influence of the de-
cision heuristic is studied in columns RAND and MSB. If the modules in the
global decision heuristic are randomly selected, the numbers in column RAND
are obtained. Column MSB gives the results, if the arithmetic modules are as-
signed from the higher to the lower bits, what is typically not clever. As can be
seen, both approaches lead to high run times and even time outs in comparison
with the heuristic shown in column DEF. In the remaining columns, learning
strategies are evaluated. Column CCLS reports results for learning all conflict
clauses regardless of the length and the origin. In column 30% only short conflict
clauses are learned that consist of up to 30% of the variables contained in the
problem instance; clauses including variables from a multiplier are learned as
well. The maximum relative length of 30% for learned clauses was experimen-
tally determined. Finally, column DEF gives the run time of SWORD using all
features: the global decision heuristic using priorities, the local decision heuristic
that assigns least significant bits first, and conflict based learning of short clauses
together with neglecting clauses coming from complex modules, like multipliers.
As can be seen, DEF is the most robust approach and clearly outperforms all
others. Therefore, this setting was used for the experiments in the following.

6.2 Comparison to Boolean SAT solver

Table 2 shows results in comparison to MiniSat. For each benchmark the number
of variables to represent the problem, the number of clauses for MiniSat and
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Table 1. Parameter studies

Heuristic Learning
circuit RAND MSB CCLS 30% DEF

ec mul mul 10 53.97 47.95 >500 36.88 37.09

ec mul pp 9 125.83 187.06 45.51 45.29 15.54

ec mul gt 10 >500 >500 >500 >500 113.84

ec mul mul li 10 59.32 48.19 >500 36.93 37.01

pc arith a 9 >500 >500 >500 37.57 37.83

pc arith b 13 >500 >500 363.42 30.68 30.91

the number of modules for SWORD are given in columns var, cls and mod,
respectively. The memory requirements (in MB) and the CPU time (in seconds)
are provided in columns mem and time. The improvement in run time of SWORD
over MiniSat (i.e. the run time of SWORD divided to the run time of MiniSat) is
shown in column imp. An x in column sat indicates whether the problem instance
is satisfiable. Since for most satisfiable instances both solvers had small run
times, we mainly report numbers for unsatisfiable instances here (satisfiability
is studied in more detailed below).

SWORD is quite efficient regarding memory consumption. This is due to the
problem representation. Especially word level problems are much more compact
than a corresponding SAT instance. This benefit decreases only slightly when the
problem is partially converted to gate level. Moreover, in contrast to the SAT
solver, SWORD is quite robust with respect to larger bit widths of the data
path. Considering run time, except for pc arith b[10-13], SWORD significantly
outperforms MiniSat on all benchmark circuits. For benchmarks in the table the
improvement is always larger than a factor of two and in one case even three
orders of magnitude.

Furthermore, we studied in more depth satisfiable instances. The instances
are generated by removing or substituting a single Boolean gate in a multiplier
circuit, i.e. all instances were derived from ec mul gt 16. In this manner over 4000
instances were generated. For all of them MiniSat and SWORD were started with
a time out of 5 CPU seconds. Table 3 summarizes the results by giving in the
number of instances where the solver took less than 0.01 seconds and where a
time out occurred in row two and three, respectively.

Here, it can clearly be seen that SWORD solves most of the instances in al-
most no time and in addition has fewer time outs than MiniSat. For all instances
where both solvers computed a solution within the given limit, Fig. 6 graphically
shows the results. As can clearly be seen in the lower half of the diagram, there
are many more instances that SWORD can handle in very low run time.

6.3 Comparison to Word Level Solvers

Table 4 provides run times for K*BMDs, SWORD and Yices. As expected
K*BMDs performs very well on pure word level problems and outperform SWORD
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Table 2. Comparison to MiniSat

MiniSat SWORD
circuit sat var cls mem time var mod mem time imp

ec mul mul 7 519 1766 3.98 2.02 43 3 2.73 0.35 5.77
ec mul mul 8 687 2348 4.50 10.79 49 3 2.73 1.67 6.46
ec mul mul 9 879 3014 5.65 54.96 55 3 2.73 8.02 6.85
ec mul mul 10 1095 3764 8.45 461.44 61 3 2.73 37.09 12.44

ec mul pp 7 1012 3381 4.24 3.98 228 17 2.73 0.62 6.41
ec mul pp 8 1331 4460 5.00 25.76 292 19 2.73 3.10 8.30
ec mul pp 9 1694 5689 6.93 189.24 364 21 2.73 15.54 12.17
ec mul pp 10 2101 7068 >10.16 >500 444 23 2.86 59.85 >8.35

ec mul gt 7 519 1766 3.98 2.02 274 246 2.73 0.91 2.21
ec mul gt 8 687 2348 4.50 10.79 360 328 2.86 4.69 2.30
ec mul gt 9 879 3014 5.65 54.96 458 422 2.86 23.20 2.36
ec mul gt 10 1095 3764 8.45 461.44 568 528 2.86 113.84 4.05

ec mul mul li 7 518 1761 3.99 2.03 43 3 2.73 0.34 5.97
ec mul mul li 8 686 2342 4.36 7.95 49 3 2.73 1.66 4.78
ec mul mul li 9 878 3009 5.90 88.88 55 3 2.73 7.95 11.17
ec mul mul li 10 1094 3759 8.11 409.51 61 3 2.73 37.01 11.06

ec mul gt ft 18 x 3687 12788 17.16 70.58 1880 1808 3.12 <0.01 >7058.00
ec mul gt ft 19 x 4119 14294 16.84 54.88 2098 2022 3.29 0.01 5488.00
ec mul gt ft 21 x 4575 15884 20.10 73.91 2328 2248 3.30 <0.01 >7391.00
ec mul gt ft 22 x 5055 17558 24.91 111.03 2570 2486 3.43 0.03 3701.00

pc arith a 6 572 1980 4.11 3.78 55 10 2.73 0.36 10.50
pc arith a 7 740 2562 5.00 28.52 61 10 2.73 1.72 16.58
pc arith a 8 932 3228 6.93 196.98 67 10 2.73 8.21 23.99
pc arith a 9 1148 3978 >10.16 >500 73 10 2.73 37.83 >13.21

pc arith b 10 250 852 3.60 0.01 77 17 3.89 1.42 <0.1
pc arith b 11 268 911 3.61 0.01 82 17 4.68 4.68 <0.1
pc arith b 12 286 970 3.59 0.01 87 17 6.70 12.24 <0.1
pc arith b 13 304 1029 3.59 0.01 92 17 7.70 30.91 <0.1

in this case (e.g. benchmark set ec mul mul). But when the description is pro-
vided at the bit level the performance degrades significantly (ec mul gt). Further-
more, bit level operations cannot be handled efficiently (ec mul mul li). Yices
also handles the pure word level problems extremely efficient. But again, when
word level and lower level descriptions are mixed, the performance degrades. On
these benchmarks SWORD is more robust.

6.4 Summary

SWORD is very efficient in comparison to the most powerful available SAT solver
on our verification benchmarks. This especially holds if the word level structure
can be exploited. Furthermore, in contrast to other word level approaches that
break down if Boolean operations are used, SWORD is very robust also in this
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Table 3. Data for satisfiable instances

time MiniSat SWORD

<0.01 50 2183
>500 708 565

 0.01

 0.1
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Fig. 6. Run time for satisfiable instances

case. This can be seen in the comparison with K*BMDs and Yices which often
do not finish within the given time out.

7 Conclusions

We presented the solver SWORD that uses a SAT like algorithm and exploits
word level information in the search process. SWORD works on a representation
of the problem in terms of modules. This yields a powerful framework for decision
making, implications and conflict analysis. Considering a problem directly at the
word level significantly reduces the size of the instances. Moreover, the word level
information is exploited in all steps of the search process. In contrast to other
word level solvers, SWORD is robust with respect to bit level operations on our
benchmarks.

In future work, the efficiency of SWORD will be further improved by inves-
tigating more powerful decision heuristics and engineering the watching mech-
anisms for implication and backtracking. Furthermore, the local procedures for
different types of modules are currently coded manually; an automatic approach
to generate this code could be applied to study different version of the pro-
cedures for a single type of module. Finally, the application to other problem
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Table 4. Comparison to K*BMDs and SMT

circuit K*BMD SWORD Yices

ec mul mul 7 <0.01 0.35 <0.01
ec mul mul 8 <0.01 1.67 <0.01
ec mul mul 9 <0.01 8.02 <0.01
ec mul mul 10 <0.01 37.09 <0.01

ec mul pp 7 0.01 0.62 15.83
ec mul pp 8 0.01 3.10 105.56
ec mul pp 9 0.01 15.54 >500
ec mul pp 10 0.01 59.85 >500

ec mul gt 7 3.48 0.91 10.93
ec mul gt 8 13.60 4.69 82.40
ec mul gt 9 53.45 23.20 >500
ec mul gt 10 202.31 113.48 >500

ec mul mul li 7 >500 0.34 0.29
ec mul mul li 8 >500 1.66 1.96
ec mul mul li 9 >500 7.95 58.15
ec mul mul li 10 >500 37.01 >500

pc arith a 6 0.5 0.36 <0.01
pc arith a 7 2.1 1.72 <0.01
pc arith a 8 8.7 8.21 <0.01
pc arith a 9 35.8 37.83 <0.01

pc arith b 10 1.69 1.42 0.07
pc arith b 11 3.18 4.68 0.15
pc arith b 12 6.36 12.24 0.34
pc arith b 13 12.82 30.91 0.96

domains than verification is an important topic. As one example logic synthesis
for reversible circuits with SWORD was introduced in [24].
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Abstract. The performances of continuous time delta sigma converters are se-
verely affected by clock jitter and no generic technique to predict the corre-
sponding degradations is nowadays available. This paper presents a new ana-
lytical approach to quantify the power spectral density of jitter errors. This 
generic computational method can be applied to all kind of continuous time 
delta sigma converters. Furthermore, clock imperfections are described by 
means of phase noise spectrum, consequently all possible type of jitters can be 
taken into account. This paper also describes the temporal non ideal clock mod-
els that have been created to simulate the impact of jitter on delta sigma con-
verters and validate the theoretical results. 

 

1. INTRODUCTION 

The current attractiveness for low pass continuous time delta sigma converter is 
largely due to the fact that it is possible to make them work at higher frequencies than 
their equivalent discrete time implementation. This specificity is widely used in order 
to increase the bandwidth or the resolution of the converters. This uninterrupted aug-
mentation of sampling frequency induces an amplification of the ratio between jitter 
and clock period, making less and less negligible the influence of jitter on the con-
verter performances. 

Jitter impact on continuous time delta sigma converter is a tricky problem. The 
need of a better comprehension of the phenomena and an accurate estimation of the 
jitter degradations is nowadays still high. In the present paper, our new approach of 
the jitter problem will be described. 

 
In section 2, after a quick reminder of the jitter impact on discrete time delta sigma 

converters, we will focus on the specificity of continuous time implementation re-
garding clock jitter and explain our approach to analyze this problem. Hence, we will 
derive the complete set of equations describing the impact of jitter on a 2nd order 
modulator and discuss about the possibility to extend this result to more complex ar-
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chitectures. Finally in section 4, the equations accuracy will be verified via some nu-
merical comparisons with simulations. 

2. INFLUENCE OF JITTER ON DELTA SIGMA 
CONVERTERS 

In a discrete time delta sigma (DT ��� WKH� LQSXW� VLJQDO� LV� VDPSOHG� EHIRUH� EHLQJ�
converted. So analyzing clock jitter on those converters is equivalent to the investiga-
tion of irregular sampling problem [1]. This assumption can be done as long as the 
imperfections of the clock do not perturb the transfer function of the converter loop. 
Under the assumption of a white phase noise for the clock signal, the maximum 
achievable signal to noise ratio (SNR) of a discrete time converter is given by: 

 

( ) 





=

22
max2

log10
σπ I

265615  (1) 

 
In this well known formula, σ is the standard deviation of the Gaussian distribution 

of jitter at each clock edge; OSR is the oversampling ratio of the converter and fmax is 
the maximal input frequency. Despite the important restrictions for the application of 
this equation, white phase noise and sinusoidal input, this formula is widely used for 
WKH�GHVLJQ�RI�'7 � 

8QIRUWXQDWHO\��LQ�FRQWLQXRXV�WLPH�GHOWD�VLJPD�FRQYHUWHUV��&7 ��WKH�MLWWHU�LPSDFW�
can not be reduced to the irregular sampling problem, and so (1) is inappropriate. The 
main reason why this equation is not valid any more is the fact that the sampling ele-
PHQW�LQ�&7 �LV�QRW�LQ�IURQW�of the loop but inside it, see figure 1. Moreover, in con-
tinuous time implementation the quantization noise introduced by the inner ADC is 
also responsible of losses linked to the clock imperfections. This phenomenon makes 
continuous time delta sigma converter much more sensible to clock jitter than discrete 
time analog-to-digital converters. 

 
Several articles have already beHQ�SXEOLVKHG�RQ�WKH�VSHFLILF�WRSLF�RI�MLWWHU�LQ�&7 �

[2]-[4], giving us some interesting clues to understand the phenomena. In our ap-
proach of the jitter problem, we have decided not to make any initial assumption on 
the impact of this imperfection. So the first step of the study is to identify all possible 
errors introduced by jitter; only after this phase a mathematical estimation of the er-
rors will be practicable. 

 
If we consider that clock jitter has an impact on every continuous time function or 

signal�� WZR�NLQGV�RI� MLWWHU�HUURUV�FDQ�EH� LGHQWLILHG� LQ�D�&7 ��7KH� ILUVW� HUURU�� FDOOHG�
sampling error, relates to the continuous input signal x(t) whereas the second one is 
introduced by the continuous time loop filter H(s). This second type of error is called 
integration error and is specific to continuous time delta sigma converters. 

 

dB

194 J. Goulier, E. Andre, M. Renaudin 



H(s)

DAC

y(n)x(t)
)V

u(t)

)V

H(s)

DAC

y(n)x(t)
)V

u(t)

)V

 
Figure 1.�7\SLFDO�EORFN�GLDJUDP�RI�D� B&7 

 

2.1 Sampling error 

The source of this error is the continuous time input signal x(t). Thus this error 
happens in both discrete and continuous time� ��+RZHYHU�WKH�TXDQWLW\�RI�QRLVH�Ln-
troduced by sampling errors is quite different whether the implementation is continu-
RXV�RU�GLVFUHWH��,Q�D�&7 ��WKH�LQSXW�VLJQDO�LV�SURFHVVHG�E\�WKH�ORRS�ILOWHU�EHIRUH�Ee-
ing sampled. 

2.2 Integration error 

This kind of error is specific to continuous time delta sigma converters and is re-
lated to the couple DAC/loop filter. Indeed, the processing of the jittered DAC output 
by the loop filter is responsible for the introduction of errors. 

It is obvious that every clock non ideality modifies the timing diagram provided by 
the DAC. Those slight timing variations, normally processed by the continuous time 
filter, introduce voltage errors on every stage of the loop filter. The errors introduced 
in the loop filter by the variation of the integration period are defined by the term “in-
tegration errors”. The number of integration errors is equal to the modulator order 
since there is one voltage error at each integrator output. 

In spite of the localization of integration errors inside the loop filter, the DAC im-
plementation has a strong influence on those errors. Indeed the DAC is the triggering 
element of integration errors, so every modification of its implementation induces im-
portant changes in the resuOWLQJ�HUURUV��,W�LV�IRU�H[DPSOH�ZHOO�NQRZQ�WKDW�&7 �XVLQJ�
switched capacitor DAC are less sensitive to jitter than those with non return-to-zero 
(NRZ) DAC. 

 
To conclude this phase of identification of the jitter errors, the impact of clock im-

perfections can be summarized as the introduction of N+1 errors for an Nth order 
modulator: one sampling error and N integration errors. 
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3. ANALYTICAL EVALUATION OF JITTER 
DEGRADATION  

In the previous section, the errors introduced by jitter have been identified; we now 
need to quantify them in order to derive a mathematical expression of the perform-
ance degradations. First the complete set of equations for a 2nd order �PRGXODWRU�
with NRZ feedback will be established. Then we will show that it is possible to ex-
tend those formulas to other architectures. 

3.1� 6HFRQG�RUGHU� �ZLWK�15=�IHHGEDFN 

The architecture of the considered converter and the localization of the integration 
errors are given on figure 2. For the following calculations the classical linear model 
RI� �PRGXODWRUV�ZLOO�EH�XVHG��7KLV�PHDQV�WKDW�WKH�QRQ-linear quantizer is replaced by 
a white noise adder. 
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Figure 2.�6HFRQG�RUGHU� �ZLWK�15=�IHHGback 

 

Estimation of integration errors 
 

The input signal is continuous and directly applied to the loop filter; it is thus cor-
rectly processed by all the continuous time blocs preceding the sampler without intro-
ducing integration errors. Therefore to estimate the integration errors we simply as-
sume that the input signal is nil. 

 
Consider W the jitter error during the Nth clock period, that is to say from the in-

stant t=nTS to W �Q���76� W. Throughout the period, the voltage Vdac is constant 
and sent back to the loop filter trough a1 and a2, which is the principle of NRZ feed-
back DAC. The perturbation of the integration time due to the jitter W introduces two 
integration errors, e1 in the first integrator and e2 in the second stage of the modula-
tor. 
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The error e1 is due to the fact that a1*Vdac is integrated during Ts� W�instead of 
Ts. At the end of the nth clock period, that is to say at W7QW ∆++= )1( , the error in-

troduced by jitter is equal to: 

W9DH ∆∗= 11  (2) 

 
This error is generated within the first stage of the  thus an equivalent voltage 

error Ve1 at the input of the first integrator can be computed. 

∫∫
+∆++






 ∆∗∗+∗=∗ GWW9D9DGW9D )1(

11

)1(

1
 

(3) 

Therefore, we can write : 

7
W9D9H ∆∗= 11  (4) 

 

In order to derive the power spectral density (PSD) of this error 6 �I�, we can cal-
culate the Fourier transform of its autocorrelation function. The autocorrelation func-
tion U  of the error 9H� is given by: 

[ ]

)()(

)(1)(1)(
2

1

1

P7UP7U7
D

P779H79H(P7U

∆⋅





=

+⋅=
  

(5) 

where E denotes the expectation operator, U  and U are respectively the autocor-
relation functions of the feedback voltage and timing jitter. By applying the Fourier 
transform to (3), the error spectrum can be found: 

)()()(
2

1
1 I6I67

DI6 ⊗





=  (6) 

The symbol ⊗ represents the convolution operator. 

If we multiply this spectrum by the signal transfer function STF of the modulator 
and replace the temporal jitter spectrum 6 by the phase noise spectrum 6 , the equa-
tion of the PSD of the error H� at the output of the converter can be computed. 
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I67I6 θπ





=  

(7) 

From equations (6) and (7), the expression of 6  at the output of the converter can 
be derived. 
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= θπ

 (8) 

 

Of course, the same calculation method can be applied to the error H�, introduced 
within the second stage of the modulator. The equation is just a little bit more complex 
because H� has got two components, the first part of the error is due to the single inte-
gration of D 9 , and the second one to the double integration of D 9 . 

W9W
D
D7D

DW9DH ∆∗+




 ∆++∆∗= 1
2

1

2

1
2 2

12  (9) 

where 9  is the output voltage of the first integrator, which is the integral of 9 . 

From this equation an equivalent second stage voltage error 9H� can be derived. 
Furthermore, the quantities 7V and W are quite smaller than 1; consequently two terms 
of (9) can be neglected and 9H� approximated to: 

( )7
W99D9H ∆+≈ 122  (10) 

Finally, if the Fourier transform of the autocorrelation function of 9H��is calculated 
and multiplied by the transfer function 7) between the input of the second stage and 
the output of the modulator, we can derive an expression for the PSD of 9H�. 

Furthermore, we know that 9D� is the continuous time integral of 9GDF. The rela-
tion between those two signals is: 

( ) )(
2

)( 2

2
1

1 I6I
DI6
π

=  
(11) 

So, the PSD of 9H� is given by: 
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 (12) 

 

In this chapter, the PSD expressions of the two integration errors have been calcu-
lated, in the special case of a second order delta sigma modulator with NRZ feedback 
DAC. 

Estimation of the sampling error 
 

In section 2, we have stated that one part of the jitter error is linked to the discreti-
zaWLRQ�RI� WKH� LQSXW� VLJQDO�E\� WKH�&7 ��(YHQ� WKRXJK� WKLV� MLWWHU�GHJUDGDWLRQ� LV� HDVLO\�
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understandable, the input signal being sampled when it gets through the modulator, we 
lack a detailed explanation of the phenomenon allowing us to analytically define an 
exact formula of the sampling error PSD. 

)URP�H[WHQVLYH�REVHUYDWLRQV�DQG�VLPXODWLRQV�RI�MLWWHU�LQ�&7 �LW�FRPHV�RXW�WKDW��LQ�
15=�IHHGEDFN� �� WKH�HUURUV�LQWURGXFHG�E\�MLWWHU�LQ�UHODWLRQ�ZLWK�WKH�LQSXW�VLJQDO�DUH�
equal to the errors that would happen if the input signal was filtered by the STF of the 
modulator before being sampled. This behavioral analysis has no physical meaning 
VLQFH�PRGHOLQJ�D�&7 �E\�D�67)�HTXLYDOHQW�EORFk followed by a sampler is irrelevant. 
However it allows us to quantify the sampling error and to give an easy and under-
standable equation. 

The PSD of the errors introduced by an isolated sampler is given in [5]: 

)()()(
2

I6I6)
II6 θ⊗


















=  (13) 

If this equation is applied to our specific case, the following mathematical equation 
is obtained. This formula gives us the PSD of the errors introduced by clock jitter in re-
lation with the input signal. 
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From the three PSD equations, (6) (12) and (14), two essential remarks can be 
made. First, the dependency of jitter degradations to quantization noise, which is a 
specificity of &7 �� LV�FRQILUPHG�E\� ����DQG� ���). The second remark relates to the 
importance of phase noise profile. All formulas present a convolution involving phase 
noise, so the knowledge of the clock imperfections is a prerequisite for a good estima-
tion of jitter degradations. 

With the estimated PSD of all the errors introduced by the jitter in the CT ��LW�LV�
quite simple to find the SNR degradation. Indeed, we just have to integrate (6), (12) 
and (14) on the right range of frequencies. 

In section 4, we will express in figure some examples in order to attest of the for-
mulas accuracy. First, the possible extension of those equations to generic converter 
architectures is discussed. 

3.2� Nth order CT �ZLWK�15=�IHHGEDFN  

The above calculations have been conducted in the special case of a 2nd order con-
verter to facilitate the comprehension of the phenomena; it is obviously possible to do 
exactly the same work with other architectures. However, the computation of the jitter 
equations, already time-consuming with the second order modulator, is becoming al-
most endless as soon as the order of the loop filter is increased. 
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In reality, it is not necessary to extract the whole set of equations every time the 
modulator architecture is changed. In fact, in high order modulators, the errors intro-
duced by the integration stages that are close to the quantizer have a small influence on 
performances because there are shaped by the loop. Thus the set of equations, defined 
in the preceding section can be considered as a good approximation of the impact of 
jitter for every modulator with NRZ feedback DAC. 
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Figure 3. 4th�RUGHU�  converter with NRZ feedback 

 

Let’s consider a 4th order continuous time delta sigma converter with NRZ feed-
back DAC. We know from section 2 that this modulator owns one sampling error and 
4 integration errors. 

 

The conversion principle of this particular converter is comparable to the second 
order modulator described previously (feedback structure and NRZ DAC). Thus the 
formulation of the sampling error PSD is not changed. Therefore, equation (14) can be 
used again to estimate the impact of jitter, related to the input signal, for the considered 
4th order modulator.  

This result does not mean that the power of the sampling error introduced by the 
clock imperfections is similar. It is well known that the transfer function STF(f) of a 
CT  modulator depends on the loop filter architecture. So, the signal transfer func-
tion of a 4th order modulator is different from the STF of a second order modulator. 
Therefore, the numerical value of the sampling error PSD will be different as soon as 
the modulator is changed. 

 

The number of integration error is equal to the number of integrators used to realize 
the continuous time loop filter. So, in the considered 4th order modulator, there is 4 in-
tegration errors. 

The errors introduced inside the third and fourth stages of the loop filter will have a 
really small impact on the performances of the modulator in comparison with the inte-
gration errors of the first two stages. Integration errors are shaped by the loop transfer 
functions. Thus, the jitter error computation can be wisely reduced to the calculation of 
the first two integration errors only. The expressions for those two integration errors 
have already been derived in section 2, see equations (6) and (12). 
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So the set of equations derived for the second order modulator can be used without 
any modification to compute the degradations introduced b\� MLWWHU� IRU� HYHU\� &7 �
converter with NRZ feedback DAC. 

 

3.3� Jitter compensation techniques : Switched Capacitor feedback and Finite 
Impulse Response DAC 

 

In the last decade, different methods have been proposed to reduce the jitter sensi-
WLYLW\�RI�&7 ��6ZLWFhed Capacitor (SC) DAC [6]-[8] and FIRDAC [9] [10] are two 
techniques which have proven their efficiency. If the computation principle previously 
deVFULEHG�LV�DSSOLHG�WR� �XVLQJ�WKRVH�FRUUHFWLRQ�V\VWHPV��WKH�UHVXOWDQW�EHQHILW�FDQ�EH�
evaluated. 

The main idea behind those two correction techniques is to reduce the impact of jit-
ter by making the feedback DAC completely independent of the clock imperfections. 
In a continuous time delta sigma converter, the outputs of DACs are integrated by the 
loop filter. Therefore, the important parameter in a &7 �LV�QRW�WKH�YDOXH�RI�WKH�FXrrent 
sent back in the conversion loop but the quantity of charges integrated during the clock 
period by the continuous time filter. 

Switched capacitor DAC 
 

Let’s consider again the case of the second order modulator with a feedback archi-
tecture, see figure 2. But this time the NRZ feedback scheme is replaced by a switched 
capacitor DAC. 

With this kind of digital to analog converter, the quantity of charges sent back in 
the loop during a clock period is controlled by the charge and the discharge of a ca-
pacitor. If the SC DAC and the loop filter are designed neatly, that is to say that time 
constants for the charge and discharge of the capacitors are quite smaller than the clock 
period, the quantity of charge sent back in the loop is independent of jitter. Therefore, 
the error H��introduced in the first integrator is nil and the integration error of the sec-
ond stage H� is strongly reduced. No details of the computation of the following equa-
tions are given here, because the derivation of those two formulas is really similar to 
the work presented in section 3.1. 

0)(1 =I6  (15) 
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(16) 

 

The power spectral density of the sampling error is modified too by the introduc-
tion of the SC DAC. Contrarily to the modulator with NRZ feedback, the sampling er-
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ror is not sent back integrally in the conversion loop when SC technique is used. 
Therefore, the PSD of the sampling error is shaped by the loop filter: 
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 (17) 

 

If the equations (15), (16) and (17) are compared with the equations derived in sec-
tion 3.1 (formulas (6), (12) and (14)), the benefit from the utilization of switched ca-
pacitor DAC is clearly visible. Indeed the integration errors are reduced and the sam-
pling errors are shaped by the conversion loop. However, the PSD of clock jitter errors 
is not equal to zero; this correction system is therefore not perfect. 

 

In this paragraph, the case of switched capacitor ADC has been analyzed in details 
and the set of equations providing the jitter errors PSD has been derived. This study 
has shown that the calculations are really comparable to those detailed in paragraph 
3.1. Some numerical results for a 3rd order modulator with a SC DAC will be given in 
section 4. 

Finite impulse response DAC 
 

The principle of this jitter correction is again to reduce the impact of jitter on the 
signal sent back in the loop filter by the DACs. However the strategy employed is 
completely different from the one used with SC DAC. The idea here is to spread the 
feedback current over several periods in order to limit the jitter influence. With the 
FIRDAC technique, the impact of clock imperfections are not corrected on each pe-
riod, as it is the case with SC DAC. Nevertheless, jitter error PSD is reduced by a sim-
ple effect of averaging. 

The modifications on the NRZ feedback DAC structure are really small. The digital 
to analog converters are just split in smaller elements in order to reduce the instantane-
ous current sent back in the loop during each clock period. On figure 4, a temporal dia-
gram example of DAC currents is represented with a classical NRZ feedback and with 
a 4 stages FIRDAC correction. 

FIRDAC technique is definitely less efficient than SC DAC, because it only realize 
an averaging of jitter errors. However, its implementation is easier and the impact on 
the analog loop filter is usually lower than the integration of switched capacitor DAC. 
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Figure 4. FIRDAC impact on the feedback current 

 

4. VALIDATION OF THE ANALYTICAL JITTER ERRORS 
ESTIMATION  

In the previous sections, our approach to estimate the impact of clock jitter on the 
RXWSXW�VLJQDO�RI�&7 �KDV�EHHQ�H[SODLQHG��7R�SURYH�WKH�DFFXUDF\�RI�WKH�JLYHQ�IRUPu-
las, they will now be compared with simulations. 

4.1 Clock jitter modeling 

In order to siPXODWH� WKH� LPSDFW�RI� MLWWHU� RQ�&7 �� WHPSRUDO�PRGHOV�RI� QRQ-ideal 
clocks are needed. To realize clock signals presenting different phase noise profile, a 
voltage controlled oscillator (VCO) has been modeled. This frequency synthesis circuit 
has been chosen because it is simple enough to be accurately modeled and it allows us 
to generate a wide range of jittered clocks. This non ideal clock model has been created 
ZLWK�0DWODE�6LPXOLQN�EORFNV�DQG�XVHG�WR�GULYH�&7 �PRGXODWRUV� 

The phase noise profile of our VCO model is characterized by a -20dB/decade 
slope and a phase noise floor. The decreasing phase noise slope is a classical feature of 
an oscillator while the phase noise floor represents the bufferization of the clock signal. 
Thus, this model possesses two tuning parameters, the levels of the noise slope and 
noise floor, allowing us to generate different non ideal clocks. Moreover this VCO has 
been included in a phase locked loop (PLL) to create a more complex jittered clock. 

The VCO phase noise profile can be easily translated to temporal imperfections us-
ing the classical relations between phase noise and temporal jitter [11]. In fact, the 
phase noise slope of the VCO corresponds to an accumulated Gaussian timing error 
while phase noise floor relates to an independent Gaussian temporal error. It is those 
two temporal imperfections that have been used to create the Matlab Simulink model 
of VCO. 

203A new analytical approach of the impact of jitter on continuous time delta sigma converters



The model accuracy has been validated using phase noise profile comparisons. 
Figure 5 shows a validation example of the VCO model. The black curve is the theo-
retical phase noise level while the grey one is the phase noise profile extracted from the 
simulation of the Matlab VCO model. 
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Figure 5. VCO phase noise model validation 

4.2 Jitter equations comparisons with simulations  

 
Figure 6.�&7 �VLPXODWLRQ�ZLWK�QRQ�LGHDO�FORFN 

 

From the equations stated in section 3, we know that jitter degradations are related 
to the architecture of the converter, the phase noise profile and the input signal PSD. 
To prove the precision of our jitter impact computation, formulas and simulations have 
been compared for different CT  architecture and several phase noise profiles. The 
comparisons have focused on two criterions, the converter output PSD and the SNR 
value. To simulate the impact of jitter on the performances of CT , the VCO model 
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described in the preceding paragraph has been used to drive different converters, see 
figure 6. 

 

To explore the architecture dependency, three different converter architectures have 
been used: 

− A 2nd order feedback modulator with NRZ DAC 
− A 4th order feedback modulator with NRZ DAC 
− A 3rd order feedback modulator with Switched capacitor DAC 

 

All modulators used a 4-bits internal quantizer. Moreover, two sinusoidal signals 
with the same amplitude but different frequencies, Fin1=5MHz and Fin2=25MHz, 
have been used to illustrate the relation between the jitter degradation and the input 
PSD. 

Finally, to demonstrate how the clock phase noise profile modifies the errors intro-
duced by jitter, two dissimilar clocks have been defined. The frequency of both clocks 
is 500MHz. The first clock has a flat phase noise profile at -120dBc/Hz, whereas the 
second clock is a type 1 PLL, with a 500kHz cut off frequency. The PLL phase noise is 
equal to -90dBc/Hz at 500kHz and the phase noise floor is located at -120dBc/Hz. The 
phase noise profiles of those two clocks are represented on figure 7. 
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Figure 7. Clocks phase noise profiles, (a) white noise, (b) PLL 

 

For all the possible combinations of architecture, input signal and clock, the con-
verter output PSD and the SNR from 0 to 10 MHz have been derived from equations 
and simulations. 

For each test case, the correct superposition of the simulated PSD with the calcu-
lated one demonstrates the reliability of our jitter impact estimation method. PSD 
comparison examples, with the two non ideal clocks, are shown in figures 8 and 9. The 
out of band PSD is not shown on those figures because it is dominated by quantifica-
tion noise. The curves correspond to the output signals of the 2nd order feedback 
modulator with NRZ DAC and a sinusoidal input signal at 5MHz. 
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The PSD superpositions are evident, and they are confirmed by the calculation of 
SNR values. For the white phase noise clock comparison case, the SNR achieved by 
the simulated converter is equal to 64.82dB and the SNR given by the equation is 
64.50dB. In the second test case, the SNR values are respectively 62.63dB and 
62.59dB. 
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Figure 8. Output spectrum comparison of a 2nd�RUGHU�&7 �FRQWUROOHG�E\�WKH�ZKLWH�SKDVH�
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Figure 9. Output spectrum comparison of a 2nd�RUGHU�&7 �FRQWUROOHG�E\�WKH�3//�FORFN 
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The same PSD and SNR comparisons have been done with the others converters 
and clocks and resulted in comparable conclusions on the accuracy of the jitter estima-
tion method. The SNR values of the 12 test cases described above are summarized in 
table 1. The SNR from simulations are in regular characters, while those from formulas 
are in bold font. For information, the SNR value of the input signal sampled by non 
ideal clocks is also given in table 1. Those numbers correspond to the degradations in-
troduced by a jittered clock if a DT  was used. 

The SNR comparison, encapsulated in table 1, illustrates the accuracy of the mathe-
matical jitter error estimation method presented in this paper. The discrepancies be-
tween calculated and simulated SNR values are indeed really small, always less than 1 
dB. 

Moreover, the jitter degradation dependence to the three key parameters (modulator 
architecture, phase noise and input signal) is highlighted by both simulations and equa-
tions. The validity of our approach of the jitter problem and the accuracy of the equa-
tions are clearly demonstrated by the given results. 

 
 

∞ 87.06dB 73.17dB 66.81dB 72.21dB

72.5dB 64.82dB 63.73dB 62.63dB 63.64dB

95dB 71.05dB 69.10dB 65.20dB 68.90dB

86.6dB 80.80dB 83.58dB 66.17dB 83.25dB

Clock 1 : white noise clock 2 : PLL

Sampled input signal

Ideal Clock

2nd order modulator 
with NRZ feedback

4th order modulator 
with NRZ feedback

3rd order modulator 
with SC return

 

Table 1. SNR comparisons 

 

5. CONCLUSION 

In this paper, a new analytical approach to solve the problem of clock jitter in 
&7  is presented. By focusing on continuous time components and signals, two 
kinds of jitter errors have been identified and mathematical equations of those errors 
PSD have been derived. Finally, the accuracy of the jitter errors formulas has been 
proven with exhaustive comparisons with simulated converters controlled by non ideal 
clocks. 
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Fin1 Fin2 Fin1 Fin2

87.02dB 73.04dB 67.10dB 72.99dB

64.50dB 63.94dB 62.59dB 63.91dB

70.65dB 68.96dB 65.53dB 68.92dB

81.25dB 83.96dB 66.81dB 83.91dB
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The provided results quite clearly confirm the relation between the jitter errors and 
the converter architecture. This strong relationship automatically draws aside the pos-
sibility to derive a single and simple jitter error equation as it is the case for discrete 
time converters. However, the presented work provides an efficient mathematical 
method to specify the clock phase noise profile needed to achieve the targeted per-
formances of &7  converters. 
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Abstract. This paper aims at defining an adaptive genetic algorithm
tailored for the allocation of dynamically reconfigurable modules. This
algorithm can be tuned at run-time with a set of parameters to best
characterize different architectural scenarios (i.e., single device or multi-
FPGAs characterized by several kinds of communication infrastructures)
and to adapt the performance of the algorithm itself to the scenario in
which it has to operate.

The proposed approach has been validated on a large set of meaningful
combinations of parameters (i.e. changing the mutation or the crossover
probability), in order to demonstrate the possibility of performing either
a fast or an accurate allocation phase.

1 Introduction

Nowadays, thanks to reconfigurable devices (such as FPGAs), it is possible to
dynamically tailor the hardware to a specific application, in order to dramatically
improve its performance. One of the most suitable approaches in the develop-
ment of reconfigurable systems is the module-based approach (see [1]), in which
the original application is partitioned into several functions, each one of them
implemented as a single module. These modules, thus, can be either dynami-
cally loaded into the system or removed from the system, in order to change its
overall functionality. The most recent Xilinx design flow, the Early Access Par-
tial Reconfiguration (EAPR) flow, is based on the same approach, as described
in [2].

One of the most interesting challenges in such a scenario is the allocation of
requested modules in the free space of the reprogrammable device. The allocation
phase has to take into account the fragmentation of the device in order to keep
the maximum set of contiguous free slots, able to contain bigger modules. On
the other hand, this phase has to be executed in a very short time, since it is not
desirable to further increase the overhead due to the reconfiguration processes.

The approach presented in [5] trades the execution time for quality of place-
ment, introducing a placement algorithm that is a hybrid solution of the best-fit
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and first-fit algorithm. Another feasible solution to this problem is represented
by the adaptive genetic algorithm proposed in this paper. This algorithm can be
tuned for different scenarios of dynamic reconfiguration. In fact, since it can be
executed with a different combination of parameters, it can perform the alloca-
tion task either in a very short time or in a very accurate way, as shown by the
presented experimental results.

This paper deals with the application of an adaptive genetic algorithm to
the allocation of dynamically reconfigurable modules, introducing a very flexible
approach to perform the allocation phase. In particular, the next section presents
the scenario in which the genetic algorithm can be applied. Section 4 introduces
the genetic algorithm on which the adaptive genetic algorithm presented in this
paper is based. Section 5 describes the details of the adaptive genetic algorithm
and all the parameters that it is possible to tune in order to achieve different
levels of performance. Section 6 presents the experimental results that prove the
effectiveness of the proposed approach. Finally, conclusions are drawn in Section
7.

2 Module based reconfiguration approach

As previously hinted, one of the more widely used approaches to reconfiguration
is the module based approach, that has been proposed by Xilinx in [1]. This
approach consist of splitting the reconfigurable device into two different parts:

– a static part, and
– a reconfigurable part.

The reconfigurable part has to be furthermore partitioned in a set of recon-
figurable slots, as shown in Figure 1 (2). Both the size of the static part and the
number of reconfigurable slots (that strictly depends on reconfigurable modules
size) can be tuned in order to adapt the system to the particular design.

In order to change the functionality of the implemented system, it is possible
to develop a set of reconfigurable modules, as shown in Figure 1 (3). These
modules can be of different size, but they have to span the whole height of the
device in order to be compliant with Xilinx Virtex 2 and Xilinx Virtex 2 Pro
reconfigurable devices (while the newest Xilinx Virtex IV and Xilinx Virtex V
devices also support rectangular modules of any size).

Each reconfigurable module can be dynamically placed on one or more recon-
figurable slots (depending on its size), as shown in Figure 1 (4), where modules
A, B and C have been configured on the reconfigurable part of the device.

When a module ends the computation, it can be unused for a unknown time
interval (such as modules B and C in Figure 1 (5)); in this case, it is possible to
remove the module from the system in order to free the resources occupied by
the module itself. Another solution, presented in Figure 1 (6), consists of keeping
the module configured on the device, implementing thus a sort of module cache.
The latter solution occupies a larger amount of reconfigurable resources, but it
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Fig. 1. Module based reconfiguration approach

makes it possible to avoid a reconfiguration (avoiding thus the reconfiguration
time overhead) when a module that is cached is required. For instance, referring
to Figure 1 (6), if either module B or module C is required, there is not the
need to perform a reconfiguration, since they are both already configured in the
system; this means that they can be used at any time without requiring any
additional setup time.

3 Reconfiguration scenarios

One of the most general platforms on which a configurable or reconfigurable
system can be developed is a multi-FPGA scenario where the reconfigurable
resources are distributed on several interconnected FPGAs. In such a scenario
it is common to have a master FPGA able to reconfigure, partially or totally,
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other slave FPGAs. These slave FPGAs can be divided into several slots that
can be filled with IP-Cores (or modules) by the master FPGA.
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Fig. 2. Multi-FPGA scenarios

Figure 2 presents a collection of different scenarios. In all these scenarios,
each master FPGA is characterized by the presence of an embedded PowerPC
processor, on which the Operating System runs, in addition to the static hard-
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ware components such as a memory controller, general purpose inputs/outputs,
and a reconfiguration manager.

The slave FPGAs, instead, hold the reconfigurable resources used to dynami-
cally load hardware modules into the system. These resources are used according
to a 1D-placement with a granularity of four CLB (Configurable Logic Block)
columns [6]. This means that dynamic modules always use the full height of the
FPGA, while their width is a multiple of four CLB columns, even if this scenario
can be easily extended to the 2D scenario realized using Xilinx Virtex-4 [3] and
Virtex-5 FPGAs [4].

In the first scenario, called Scenario A in Figure 2, there is one FPGA that
is used both as a master and as a slave FPGA. An example of such a scenario
can be found in [8]. This FPGA is logically divided into two different parts:

– a �xed part, that is the part of the FPGA that contains the PowerPC
processor and that acts as a single master FPGA;

– a recon�gurable part, that is handled as a single slave FPGA, even if the
number of slots that it is possible to configure is smaller.

On the other hand, in all the remaining scenarios each FPGA of the system
acts either as a master or as a slave FPGA, without logical internal divisions.

The differences between these scenarios reside in the different ways in which
the communication infrastructure is implemented. The second scenario (Scenario
B) presents a chain communication in which the master FPGA can communicate
with just one slave FPGA, and each slave FPGA can communicate just with the
following one, for instance by using a communication module in the last slot.

Scenario C and Scenario D, instead, represent a point to point connection
and a bus-based connection, respectively. In both these scenarios the master
FPGA is able to communicate directly with each slave FPGA. [7] presents an
architecture that can be represented using Scenario D.

Even if the presented scenarios differ in the logical partitioning of master
and slave FPGAs sets and in their communication infrastructures, they can be
reduced to the same class of platforms from the software point of view. For this
reason they can be handled by the same software solution, as described in the
following.

4 The genetic algorithm

A first version of the genetic algorithm that can be used for the allocation of dy-
namically reconfigurable modules has been first proposed in [9]. This approach
proposes the encoding of a single chromosome (that has to contain the informa-
tion about the solution that it represents) as a pair of arrays, the Slots and the
Modules arrays:

– The Slots array consists of a collection of genes, which contain the infor-
mation on which module is configured on each slot of the reprogrammable
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device. In particular, each gene directly corresponds to a single slot of a slave
FPGA. Since on a device of n slots it is possible to configure not more than n
modules (this is possible only when each configured module requires just one
slot), the alleles of these genes are represented by a number between 0 and
n-1. The numbers contained in the Slots array correspond to the position of
a gene in the second array.

– The Modules array consists of a set of genes that represent hardware IP-
Cores. The following numbers represent the coding of the alleles for this
kind of gene:
• 0: this number means that the module is not configured on the repro-

grammable device, since it has not been placed yet or it has already been
deleted from the system;

• 1: this number indicates that the module has been already configured on
the FPGA and it is still running, so at this time it cannot be directly
unloaded from the system;

• -2: a module characterized by this number is a cached IP-Core. In other
words it is a module that has already been placed on the reprogrammable
device but it is not currently used, thus it is possible to unload it to
overwrite its slots with the configuration of a more useful IP-Core.

1
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3
2

3
3

0
0

-2
1

0
2

1
3

Slots

Modules

Fig. 3. Genetic algorithm chromosome

The example shown in Figure 3 represents a status of the system in which
the second module (module 1) is configured on the first slot of the FPGA (slot 0)
and the fourth module (module 3) is placed on the third and on the fourth slot
(slot 2 and slot 3), while the second slot (slot 1) is free (since the first module,
module 0, is not configured).

The Slots array gives further information, indicating that the second module
(module 1) is cached, while the fourth module (module 3) is still running. This
means that the largest module that is possible to configure starting from this
status is a module that requires two slots, since it can be configureb on the
first two slots of the FPGA (slot 0 and slot 1), by unloading the second module
(module 1) that is currently cached.

After the choice of the proper coding for chromosomes, genes and alleles, it
has to be defined a suitable fitness function. Main objective of the allocation
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manager is to handle the configurable space of the reprogrammable device to
avoid both a waste of slots and the refusing of the configuration of an IP-Core,
that happens when there is no place where it is possible to configure it. This
means that it is desirable to keep the free slots all together, without breaking
them in a lot of smaller separate set of free slots, since a large collection of
contiguous slots allows to configure also bigger modules.

For this reason the fitness function has been defined as a number that in-
creases of a small quantity for each free slot. This quantity starts from a default
value, but it gets bigger when a free slot is followed by another free slot. On the
opposite, when a free slot is followed by a slot containing a cached or a running
module, the gain comes back to the default value. Moreover, to prefer solutions
with a large number of cached modules, that are useful to speed up the recon-
figuration process, a fixed reward is introduced for each cached IP-Core of the
solution.

Figure 4 shows an example of the evaluation of the fitness function of three
given chromosomes, with a default gain of 2 points, increased of 1 point for
each contiguous free slot, and a fixed reward of 1 point for each cached module.
The three chromosomes are very similar, but the seventh module (module 6)
is placed in a different position in each solution. In the first example (A), the
seventh module is located at the end of the FPGA, in the second example (B) it
is configured to break the set of the last four free slots, while in the third example
(C) it has been placed in the most suitable location, that is the second slot (slot
1). Even if the number of configured IP-Cores, the number of cached modules
and the total number of free slots are the same for all the solutions, the first one
presents two sets of free slots (whose sizes are 1 and 3 slots, respectively) with
a fitness of 13, the second one 4 sets (with sizes of 1, 2 and 1 slots, respectively)
with a fitness of 11, while the third one is a single set of 4 slots with a fitness of
16. Obviously the last solution is the most suitable, since it is the only one that
allows the configuration of a new module that requires 4 contiguous slots, in fact
it presents the largest fitness value within the class of the presented solutions.

The proposed genetic algorithm is performed each time a set of new mod-
ules has to be configured on the reprogrammable devices of the system. If each
module can be placed in n positions, an exhaustive search with a set of m IP-
Cores requires nm evaluations of feasible solutions. With a genetic algorithm it
is possible to considerably decrease the time required by the allocation process,
since it works on a smaller set of solutions, trying to modify them to reach a
good sub-optimum solution in a reasonable time.

In particular, the first step of the algorithm is the creation of an initial set of
randomly generated chromosomes. Then, after the fitness evaluation, a subset
of chromosomes is chosen to create a new population. These chromosomes are
called parents of the offspring, that is formed through the crossover process.

The crossover task is performed by randomly choosing two parents. The
new chromosome is generated by keeping the genes of the first part of the first
parent, while the other genes are directly taken from the second parent. During
this phase it is possible to introduce, with a random probability, a mutation.
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Fig. 4. Fitness evaluation examples

This is defined as a change in the partial solutions found by the parents, which
means that the location inherited by the parents can be randomly modified, to
prevent that all solutions in the population fall into a local optimum.
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5 Adaptive genetic algorithm

The genetic algorithm described in Section 4 has been extended with a set of
configurable parameters that make the algorithm dynamically adaptive with
respect to the platform scenario where it has to work. These parameters provide
the possibility of choosing either a fast or a very accurate allocation phase,
depending on the timing performance and on the space constraints.

The parameters that can be tuned to tailor the solution onto a specific sce-
nario are:

– initial population size, that is the initial size of the randomly generated
population, as described in Section 5.1;

– selection size, the number of chromosomes that are chosen to create the
new population, described in Section 5.2;

– maximum number of rounds, introduced in Section 5.3, that is the max-
imum number of generations that can be performed before stopping the
execution of the algorithm;

– minimum �tness, described in Section 5.4, that is the fitness threshold;
– crossover probability, that is the probability of performing a crossover of

two parents in order to generate a new offspring (otherwise the first parent
is not modified), as presented in Section 5.5;

– neutral mutation probability, described in Section 5.6, that is the prob-
ability of performing a neutral mutation on the new chromosome;

– positive mutation probability, described in Section 5.7, that is the prob-
ability of performing a positive mutation on the new chromosome;

– negative mutation probability, described in Section 5.8, that is the prob-
ability of performing a negative mutation on the new chromosome.

Each parameter can be tuned in order to achieve the desired performance,
both in terms of time and in terms of refused modules.

It is possible, in fact, that a particular scenario requires a fast allocation
phase, for instance when the module that has to be deployed has to be available in
a very short time. In this case it is possible to run the genetic algorithm with a set
of parameters that provides a feasible position for the module in a fast way. The
execution of the algorithm with this set of parameters affects the performance of
the algorithm itself and increases the fragmentation of the reconfigurable device,
but this negative effect can be kept under control by choosing the most suitable
set of parameters, as shown in Section 6.

On the other hand, when a module is requested in advance with respect to its
real utilization time (for instance when pre-fetching is performed), it is possible
to execute the genetic algorithm with a set of parameters that allows the search
for a solution that minimizes the fragmentation of the reprogrammable device.
To achieve this result, it is necessary to know the right set of parameters that
are able to reduce the average number of refused modules during the whole life
of the system.

For these reasons, each parameter has been tested with a large set of signifi-
cant values, as described in the following sections.
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5.1 Initial population size

Each time a module is requested, the genetic algorithm has to create an initial
population that consists of randomly generated individuals. Each one of these
individuals has to satisfy all the constraints, since it has to represent a feasible
solution. The single chromosome within the population will change its character-
istics, but the total number of chromosomes will not change, since the population
size is fixed to the value of the size of the initial population. The initial popula-
tion size, then, will affect the whole execution of the genetic algorithm, since it
represents the size of the population on which each operation (such as crossover
and mutations) will be performed. The genetic algorithm has been tested with
three different values, that are 10, 50 and 100 chromosomes.

5.2 Selection size

When the fitness of each chromosome of the population is evaluated in order
to choose the chromosomes that will act as parents (that are, in other words,
the chromosomes with the maximum fitness value) during the generation of the
new population, it is possible to select a set of these chromosomes that will be
kept, without any changes, in the next generation. The selection size is hence
the number of chromosomes that will be kept without any changes, while the
difference between the initial population size and the selection size represents the
number of chromosomes that have to be created during the offspring generation
phase. The selection size depends on the initial population size: for this reason
the values of the selection size has been chosen as 1/4, 1/2 and 3/4 of the initial
population size, that represent three different situations, in which few, half or a
lot is preserved from the previous generation.

5.3 Maximum number of rounds

The generation (that consists of the evaluation of the fitness, in the selection
of the most suitable solutions and in the generation of the children) has to
be performed either for the maximum number of rounds or until the minimum
fitness is reached. In the first case, in which the minimum fitness is never reached,
the value that represents the maximum number of rounds has to be chosen
keeping into account that a big value requires a large execution time, while a
small value can lead to a solution that is not optimal and that increases the
fragmentation of the reconfigurable device. In particular, in our experiments, we
used for this parameter the following values: 10, 20 and 50.

5.4 Minimum �tness

The minimum fitness represents the threshold that has to be exceeded in order
to accept a chromosome as a final solution. This parameter is very important
since it allows an early-stop of the algorithm when a good solution has been
found. Obviously, with a small minimum fitness value, the final solution will
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not be optimized, while a big value of this parameter will probably bring the
algorithm to execute for the maximum number of rounds, as described in Section
5.3. The minimum fitness is hence a measurement of the goodness of the desired
soution. The goodness index will be explained more in details in Sextion 6. For
our experiments we used three different values: 100, 1000 and 2000.

5.5 Crossover probability

The crossover task is performed by randomly choosing two parents within the set
of the selected chromosomes, as introduced in Section 5.2. Each new chromosome
is generated by keeping the genes of the first part of the first parent, while the
other genes are directly taken from the second parent. When the crossover is
not performed, the new chromosome is equal to one of the two parents, chosen
randomly. In both cases, children always represent valid solutions for the given
problem. The crossover parameter is hence responsible for the generation of an
offspring that mixes the good characteristics of the most suitable solutions of the
previous generation, in the hope to determine a better one. In our experiments
we tested this probability with the following values: 25%, 50% and 75%.

5.6 Neutral mutation probability

Each time a new chromosome is generated it is possible to perform a neutral
mutation by modifying the position of the requested module within the recon-
figurable device (for this reason it has been called neutral mutation, since it
preserves the status of the modules configured on the reconfigurable device).
This mutation allows the generation of a new solution that was not present in
the initial population, so it is an index of the difference between the solutions
achieved by a population and the following one. The new location of the re-
quested module has to be a feasible position, since each chromosome has always
to represent a feasible solution. As with the other probabilities, we tested this
parameter with the following values: 25%, 50% and 75%.

5.7 Positive mutation probability

With a positive mutation it is possible to free space on the reprogrammable
device by deleting a module that was previously kept in cache. This mutation
allows the increase of the number of positions where the requested module can
be placed (as described in Section 6) without any penalization. The slots occu-
pied by the deleted module are marked in a special way, since they have to be
recognized at the end of the algorithm, when slots that have been deleted but
that are not used by the requested module can be simply reintroduced without
introducing any overhead and increasing the goodness of the final solution. Also
this probability has been tested with the following values: 25%, 50% and 75%.
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5.8 Negative mutation probability

A negative mutation, in which a module that has been removed from the cache
will be reintroduced in the cache, can be introduced to increase the goodness
of the solution at run-time. This kind of modules, in fact, can be reintroduced
in the cache in order to avoid the placement of the requested module, without
any penalization, in a location that will lead to delete a cached module. In our
experiments, we used the following values for this probability: 25%, 50% and
75%.

6 Experimental results

Each combination of the values of the parameters presented in Section 5 has been
tested in order to achieve the performance characterization of all the possible
sets of parameters.

The base scenario on which these tests have been performed consists of a
reconfigurable device that has been divided in fifty reconfigurable slots. Further-
more, the size of the single module that can be deployed on the system ranges
from one to three slots.

Table 1. Parameters values

Parameter First Second Third
value value value

Initial 10 50 100
population size (IPS)

Selection size 1
4
∗ IPS 1

2
∗ IPS 3

4
∗ IPS

Maximum number 10 20 50
of rounds

Minimum 100 1000 2000
�tness

Crossover 25 50 75
probability

Neutral mutation 25 50 75
probability

Positive mutation 25 50 75
probability

Negative mutation 25 50 75
probability

Table 1 presents all the possible values for each parameter. Since there are
eight parameters and each parameter presents three different values, it is nec-
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essary to perform 38 = 6561 experiments in order to evaluate all the possible
combinations of the parameters' values.

For each combination of parameters an experiment has been performed that
consists of the following steps:

– fifty tests, consisting of fifty module requests each, have been performed. In
particular, each test performs the following tasks:
• a random module request is given as input to the genetic algorithm;
• the result (success/fail) of this process and the time required for its

execution are stored to calculate the fitness of the current solution;
• randomly a module is deleted from the reconfigurable device (in order

to avoid the saturation of the device itself);
– at the end of each test the status of the reprogrammable device has been

reset and the average results of the simulations (number of refused modules,
cash index and timing performance) have been updated.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

0

25

50

75

100

Fig. 5. Goodness index for all the solutions

Figure 5 shows the average goodness index (that represent the fitness of
a given solution) for each combination of parameters (the test ow previously
described has been performed two times in order to avoid erroneous results).
The goodness has been evaluated as follows:

Goodness = CI
ET∗RM

where:

– CI is the Cache Index: this index is inversely proportional to the fragmen-
tation of the reprogrammable device (CI = 1

Fragmentation );
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– ET is the Elapsed Time: it represents the time necessary to perform a whole
experiment, that consists of 2500 module requests;

– RM is the number of Refused Modules. In other words, this index represents
the number of modules that have not been placed during the execution of
the algorithm.

Table 2. Top four experimental results

Combination 22 942 1554 2289
number

Initial 10 10 10 10
population size

Selection size 2 7 5 5

Maximum number 10 20 50 10
of rounds

Minimum 100 100 100 1000
�tness

Crossover 25 50 25 25
probability

Neutral mutation 75 75 50 75
probability

Positive mutation 50 50 50 25
probability

Negative mutation 25 75 75 75
probability

Number of 250 230 175 262
refused modules

Elapsed 0.5465 0.544 0.6885 0.5295
time (s)

Cash 15450 13540 12977 14399
index

Goodnes 113 108 107 104
index

Table 2 chesh index and inversely proportional to both the number of refused
modules and the elapsed time. It is also possible to tune this goodness function
in order to give more importance to the first two components (for instance, by
using this function for the goodness index, Goodness = CI2

ET∗RM2 ,the result will
be a solution optimized in terms of the number of refused modules) or to the
last one (for instance, by using the following function, Goodness = CI

ET 2∗RM , the
result will be a solution optimized with respect to timing performance).
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Table 3 presents two combinations of parameters that lead to a very small
number of refused modules (both combinations have achieved less then 200 re-
fused modules). In both these combinations the maximum number of rounds has
been set to 50 and in the second one the initial population size has been set to
50 too.

Table 3. Refused modules optimization

Combination 1554 1891
number

Initial 10 50
population size

Selection size 5 37

Maximum number 50 50
of rounds

Minimum 100 100
�tness

Crossover 25 50
probability

Neutral mutation 50 25
probability

Positive mutation 50 25
probability

Negative mutation 75 25
probability

Number of 175 180
refused modules

Elapsed 0.6885 1.792
time (s)

Cash 12977 17381
index

Goodnes 107 54
index

Table 5 shows the top three combinations that are able to perform the allo-
cation of a requested module in a very short time. By using these combinations,
in fact, it is possible to accomplish a single module request in less than 0.2
milliseconds, since 2500 modules requests require less than 0.5 seconds. All the
combinations presented in Table 5 are characterized by an initial population size
of 10, by a selection size of 7, by a maximum number of 10 and by a minimum
fitness of 100.
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Table 4. Timing optimization

Combination 166 169 179
number

Initial 10 10 10
population size

Selection size 7 7 7

Maximum number 10 10 10
of rounds

Minimum 100 100 100
�tness

Crossover 25 25 25
probability

Neutral mutation 25 25 50
probability

Positive mutation 50 75 75
probability

Negative mutation 25 25 50
probability

Number of 522 546 335
refused modules

Elapsed 0.473 0.476 0.477
time (s)

Cash 12579 11854 14770
index

Goodnes 51 46 92
index

Finally, Figure 6 shows a comparison between timing performance of the
genetic algorithm and an exhaustive approach. The experiment has been per-
formed on a reconfigurable module 8 columns wide. Communication overhead
(that is needed in order both to perform a module request and to know where
the module has been placed) is around 1 ms. Since communication with the
Reconfigurator Manager occurs two times, the total communication overhead is
around 2 ms. These values, that can be found in Table 5, are the same for both
the genetic algorithm and the exhaustive approach.

On the other hand, the Reconfigurator Manager overhead strictly depends on
the algorithm that has been chosen. With an exhaustive approach, around 3 ms
are needed in order to perform the allocation phase, while the genetic algorithm
is able to decrease this value to 1 ms (introducing a negligible worsening in the
quality of the output, as shown by the previous experimental results). Thus, the
adoption of a Reconfigurator Manager based on the proposed genetic algorithm
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provides the possibility to achieve a total speedup of ∼ 1.5, since the genetic
algorithm makes it possible for the Reconfiguration Manager to perform the
allocation phase around 3 times faster.

Fig. 6. Timing performance comparison

7 Conclusions

Figure 5 proves that the goodness index (Y-axis), evaluated for all the possi-
ble combinations of the parameters (X-axis), is a cyclic function and that it is
significantly affected by the changes in the parameters value.

Furthermore, results presented in Section 6 have shown how it is possible
to perform an allocation of a requested module with a different combination
of parameters in order to achieve different optimizations. It is possible either
to minimize the number of refused modules or to reduce the time required for
the computation. It is also possible, finally, to use a combination of parameters
that optimizes the goodness index; this makes it possible to achieve an optimal
compromise between the three presented metrics.

The genetic algorithm presented in Section 4 and extended as described in
Section 5 has been proved to be an effective solution for dynamically reconfig-
urable modules allocation.
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Table 5. Timing performance comparison

Algorithm Exhaustive Genetic

Hardware reconfiguration ∼ 3 ms ∼ 3 ms
(8 columns module)

Communication overhead ∼ 1 ms ∼ 1 ms
(request)

Communication overhead ∼ 1 ms ∼ 1 ms
(response)

Reconfiguration Manager ∼ 1 ms ∼ 3 ms
overhead

Reconfiguration Manager ∼ 3 1
speedup

Total ∼ 5 ms ∼ 7 ms
time

Total ∼ 1.5 ms 1
speedup

Total reconfiguration ∼ 2 ms ∼ 4 ms
overhead

Total reconfiguration overhead ∼66 % ∼133 %
w.r.t. hardware reconfiguration time
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The Hazard-Free Superscalar Pipeline Fast Fourier 

Transform Architecture and Algorithm 

Bassam Mohd       Earl E. Swartzlander, Jr.       Adnan Aziz 

Abstract. This chapter examines the superscalar pipeline Fast Fourier 

Transform algorithm and architecture. The algorithm presents a memory 

management scheme that avoids memory contention throughout the pipeline 

stages. The fundamental algorithm, a switch-based FFT pipeline architecture 

and an example 64-point FFT implementation are presented. The pipeline 

consists of log2N stages, where N is number of FFT points. Each stage can have 

M Processing Elements (PEs.)  As a result, the architecture speed up is 

M*log2N. The pipeline algorithm is configurable to any M > 1. 

I. INTRODUCTION 

THE FAST FOURIER TRANSFORM (FFT) ALGORITHM, presented in [1], is a standard 

method for computing the Discrete Fourier Transform (DFT). The FFT algorithm 

consists of log2N loops; where each loop executes N/2 complex operations. FFT 

processor design has been researched extensively in the last few decades for speed, 

area and power optimization. As a result, many implementations have been proposed 

and developed to address one or more of the following optimization areas: 

architecture, memory access and power consumption. A variety of FFT architectures 

have been proposed, which employ different techniques such as pipelining, multi-

processing and cache-design, as shown in Figure 1 [2]. A single memory architecture 

consists of a scalar processor connected to a single N-word memory via a 

bidirectional bus. While this architecture is simple, its performance suffers from 

inefficient memory bandwidth. A cache memory architecture adds a cache memory 

between the processor and the memory to increase the effective memory bandwidth. 

A dual memory architecture uses two memories connected to a digital array signal 

processor. A memory controller generates addresses to memories in a ping-pong 

fashion. The processor array architecture consists of independent processing 

elements, with local buffers, which are connected using an interconnect network. 

Finally, the pipeline FFT architecture utilizes logrN blocks; each block consists of 

delay lines and radix-r butterfly units.    

Processor memory access is another area of optimization that has received 

considerable research. Several algorithms have been proposed to avoid memory 

contention. Specifically, the address generation algorithm and logic are optimized for 

speed and area. A memory address generation scheme was presented by Cohen in [3], 

that allows parallel organization of memory so that the pairs of data that are used at 

any instant reside in different memories. The address generation is based on a counter, 
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shifters and rotators. In [4], Pease proposed dividing the memory into sub-memories 

for overlapping the access. He observed that the operand addresses differ only in the 

(n-i)-th bit for the butterfly operand pair in stage i, where n is the number of address 

bits. A multi-bank memory address assignment for a radix-r FFT was developed in 

[5]. A fast address generation scheme is described in [6] with hardware cost 

comparable to the address generation scheme in [3]. Ma and Wanhammar presented 

an address generation scheme in [7] to reduce the hardware complexity and power 

consumption. Power is reduced by activating only half of the memory during memory 

access and by minimizing the number of memory accesses. The methods do not 

address conflicts for multi-processors accessing memory simultaneously. 

 

 

Fig. 1. FFT Processor Memory-System Architectures (after [2])  

Lastly, several power reduction techniques were designed for energy-efficient 

processors; including techniques to reduce memory accesses. A cache-memory 

architecture was described in [8] to reduce communication energy between FFT 

processors and memories. In [9] and [10], Zhong, et al. described a power-scalable 

reconfigurable ring-architecture multiprocessor for a single chip FFT/IFFT processor. 
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The processor is capable of processing different FFT sizes with scalable power across 

FFT sizes. However, while the use of the processor ring architecture seems to be an 

interesting idea, the case for using the ring architecture to compute FFTs is weak. The 

architecture seems to be better suited for more serialized computations such as FIR 

filters. Also, large values of N require more complex processor programs. Further, 

power does scale well for N ≤ 128. 

This chapter presents a superscalar pipeline architecture to achieve maximum speed 

for FFT processing. A switch fabric controls and connects single-port memories and 

processing elements (PEs). A memory management algorithm avoids memory access 

contention. Rearranging data in the memories requires tracking them throughout the 

pipeline to process the right pair of data for FFT computations. The ordering of data 

elements is used to calculate the twiddle factors and other important indices. The 

algorithm provides an implicit method to track data. The superscalar pipeline achieves 

a speed up of M*log2N. 

The chapter is organized as follows. Section II discusses current pipeline designs. 

Next, Section III explains the pipeline architecture and analyzes pipeline speedup 

hazards and optimizations. Section IV discusses hazard conditions and resolutions. It 

provides a pseudo code for the pipeline memory management algorithm. Section V 

details the design of a 64-point FFT with emphasis on the data movement and storage 

in the pipeline and memories. Section VI compares the proposed design with other 

pipeline FFTs. 

 

II. EXISTING PIPELINE FFT ARCHITECTURES 

This section reviews the main pipeline FFT architectures. Groginsky and Works 

developed an early pipeline FFT design [11]. Several pipeline FFTs have been 

implemented [12]-[14]. Later, several pipeline architectures were proposed and 

designed [15]-[17]. Pipeline FFT processors consist of logrN stages, each stage 

utilizes variable sizes of memories and complex multipliers/adders depending on the 

pipeline type. Because it performs logrN butterflies in parallel, the radix-r pipeline 

FFT processor has as a speed-up of (at least) logrN compared to an FFT performed on 

a single radix-r FFT processor. Based on the number of paths between stages, FFT 

pipelines are classified into Single-path Delay Feedback (SDF) and Multi-path Delay 

Commutator (MDC). The modular pipeline constructs the pipeline from two smaller 

pipelines to reduce power. The rest of this section will explain the SDF, MDC and 

modular pipelines. 

SDF Pipeline FFT 

The SDF pipeline FFT has one path between stages, as shown in Figure 2. The 

pipeline uses feedback registers in each stage. The feedback registers store previous 

stage outputs for use by the butterfly. Figure 2 illustrates the SDF pipeline FFT for a 

Algorithm  229



radix-r N-point FFT and shows an example of an 8-point radix-2 pipeline [15], [16]. 

Each SDF stage is comprised of:  

• A radix-r FFT butterfly. Each butterfly is followed by a complex multiplier (shown 

explicitly in Figure 2), with the exception of the last stage. 

• Shift registers to hold intermediate values. For stage i, the number of shift registers 

is (r-1)(N/r(stage+1)), e.g., stage 0 has (r-1)(N/r) registers.  

The pipeline hardware complexity depends on the number of delay elements and 

multipliers. The total number of complex multipliers is (logrN -1) [15], [16]. 

Additionally, the total number of registers in the pipeline is N-1. A high radix SDF 

(i.e., r >2) can be also implemented by cascading several radix-2 processing elements 

referred to as 2
s 

[15]. Calculating pipeline throughput and complexity is 

straightforward. The SDF pipeline accepts a new point each clock cycle. Further, it 

outputs one point per cycle. Therefore, the pipeline throughput is one point per cycle. 

 

 

Fig. 2. SDF Pipeline FFT (after [15]) 

 

MDC Pipeline FFT 

The radix-r MDC pipeline FFT utilizes r paths between stages, as shown in Figure 

3 [15], [16]. With the exception of one path, all paths utilize delays with different 

numbers of registers. Each stage receives r intermediate results from the previous 

stage, and passes r outputs to the next stage. An example of an 8-point radix-2 MDC 

pipeline FFT is shown in Figure 3. An MDC stage is comprised of: 

• An r-input commutator,  

• A radix-r butterfly which includes (r-1) complex multipliers  

Bassam Mohd       Earl E. Swartzlander, Jr.       Adnan Aziz 230 



The Hazard-Free Superscalar Pipeline Fast Fourier Transform Architecture and 

• Two sets of shift registers. The first set is located before the commutator (shown as 

D). This set does not exist in stage 0. The second set is situated after the 

commutator. Moreover, the number of registers in the j-th element of each set in 

stage i can be expressed as: Dij  = DDij  = j × ( N/ ri+1). An example of the shift 

register sizes for a 1024-point radix-4 pipeline FFT is shown in Table 1. 

 

 

Fig. 3. Radix -r N-point MDC Pipeline (after [16])  

Table 1. DMC Delay Element Sizes for a 1024 Point Radix-4 FFT Processor 

Stage D size DD size 

0 N/A 64, 128, 192 

1 16, 32, 48 16, 32, 48 
2 16, 32, 48 16, 32, 48 

3 4, 8, 12 4, 8, 12 

4 1, 2, 3 1, 2, 3 

 

The pipeline complexity is a function of the number and size of delay shift 

registers, adders and multipliers. The total number of delay registers is (r+1)N/2 – r. 

In addition, there are (r-1) (logrN -1) complex multipliers and 2(r-1) (logrN -1) 

complex adders in the pipeline [12], [16]. In contrast to the SDF pipeline, the MDC 

pipeline receives r points and outputs r points in each clock cycle. Thus, the pipeline 

throughput is r. 
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The Modular Pipeline 

El-Khasahab, et al. developed the modular pipeline FFT detailed in [18]-[20]. The 

N-point modular pipeline FFT consists of two N -point FFT modules joined by a 

specialized center element. The center element contains coefficient and data memory 

as well as addressing, routing and control logic. The modular pipeline FFT 

significantly reduces the size of the shift registers. Moreover, the coefficient storage is 

concentrated within the center element, which can be implemented using energy-

efficient RAM memories. Further, the throughput of the modular pipeline FFT is 

identical to that of the standard pipeline FFT, although the end-to-end latency is very 

slightly higher.  

The modular pipeline FFT algorithm is expressed mathematically by the following 

equation, which demonstrates the two-stage N-point FFT: 
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(1) 

 

To obtain the correct results, the transforms of the first stage are combined (in a 

fixed way) and fed to the second stage.  Further, adjustment is made for intermediate 

results prior to second stage. Figure 4 shows how to construct a 16-point FFT with the 

second stage having same four FFTs as first stage. This demonstrates that the N-point 

FFT is now divided into two N  point FFTs.  

 
Fig. 4. 16-Point FFT Butterfly with Identical First and Second Stages [18] 
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Figure 5 shows the overall architecture of an N-point radix-2 modular pipeline 

FFT. It consists of the two N -point FFT blocks and a center element. The center 

element includes an address generator, RAMs for storing intermediate values and 

ROMs for the coefficients. The design allows data to be both read and written 

simultaneously to maximize performance. The pipeline operation can be explained as 

follows. Two discrete inputs are received from the left side of the pipeline. The 

address generation guarantees the two points have different parities, and hence they 

reside in different memories. Once N points have been output from the first stage, 

the control dispatches intermediate data to second stage. At the same time, the next 

N points begin entering the first stage. Hence the pipeline is able to input and 

output data every clock.   

 

 

Fig. 5. Radix-2 Modular Pipeline Architecture [19] 

Table 2 compares the modular pipeline with a conventional N-point pipeline FFT. 

Despite the fact that it requires a larger memory; the modular pipeline has fewer shift 

registers. The modular pipeline FFT requires an additional pre-rotation multiplication 

and has very slightly higher latency than the standard pipeline FFT. 

Table 2. Complexity of Radix-r Conventional and Modular Pipeine FFTs Using Optimum 

Sized Stages 

Parameter STANDARD Modular 

ROM (Coefficient) N-r 2( N -r) 

Shift Registers N-r 2( N -r) 

Complex Multipliers logr(N)-1 logr(N)-1 

Central Element RAM 0 N 

Throughput r points / cycle r points / cycle 
Delay  










r

N
2

 ( )NN
r

+
2  
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III. THE SWITCH-BASED ARCHITECTURE 

This section describes the superscalar pipeline architecture for a radix-2 FFT.  

Superscalar Pipeline Architecture 

The pipeline architecture of an N-point radix-2 FFT consists of log2(N) stages. 

Figure 6 shows a block diagram of the pipeline stage. Stage i of the pipeline executes 

the i-th loop of the Radix-2 decimation-in-frequency FFT algorithm. 

Each stage consists of: 

1. A switch fabric that connects PEs and memories. 

2. PEs that have three inputs (a, b, w) and two outputs (c, d) and perform the radix-2 

butterfly operation: 

   c  = a + b 

   d = (a – b) * w  (1) 

(a, b) are inputs, w is the twiddle factor and (c, d) are outputs. There are M PEs 

per stage, where 

• N/2 ≥ M ≥ 2 

• M = 2
p
, where p is an integer p > 1. 

3. Memories that store intermediate results. There are 4*M single-port memories per 

stage, the size of each memory is equal to N/(2*M). Memories can be implemented 

as RAM, caches, register files or flip-flops, based on the size of the memory and 

cost constraints. One half of the input memories will be active per cycle, while the 

other half will be active in the following cycle 

 

4. Memories that store twiddle factors. Since the twiddle factors do not change, the 

twiddle factor memories can be implemented as ROMs. There are M ROMs per 

stage, each with size equal to N/(2*M) words.  

 

 

Switch
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M(i+1,0)

M(i+1,1)

M(i+1,4M-1)

PE 
0

ROM 
(r-1)

ROM 
0

ROM 
1
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(M-1)

PE 
1

M(i,0)
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M(i,4M-1)

Pipeline Stage i

 
Fig. 6. Block Diagram of the Switch-Based Pipeline Stage [21] 
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Figure 7 shows an overview of pipeline architecture. Each stage is capable of 

calculating M radix-2 butterfly results. Using the Instruction Level Parallelism (ILP) 

classification from [22], the architecture is a superscalar machine with Instruction 

Parallelism (IP) equal to M. It is also a super-pipeline where each cycle has N/(2*M) 

minor-cycles. The architecture applies to the decimation-in-time FFT as well, where 

the specifications of stage i in the decimation-in-time algorithm is the same as that of 

stage log2(N)–i in the decimation-in-frequency algorithm. A scalar machine takes 

(N/2)*log2(N) steps to execute an N-point radix-2 FFT algorithm. The architecture 

consists of log2(N) stages, where each stage executes M operations. Therefore, the 

pipeline speedup is: M*log2(N). The maximum pipeline speedup is (N/2)*log2(N), 

when M = N/2. In this case memories are reduced to registers, and the switch fabric 

connects each any register to any PE. Clearly, while this case provides the most speed 

up, its hardware is expensive. The optimum value of M is decided by design 

parameters: speed, area and power. 
 

 
Fig. 7. Overview of the Pipeline Architecture [21] 

Pipeline Design Optimization 

Upon close examination of the FFT algorithm, it is clear that not all twiddle factors 

are used in all stages. Also, the algorithm allows PEs to have identical twiddle factors 

in some stages, and therefore, not all the ROMs are required. In fact, the number and 

size of ROMs per stage can be reduced as outlined in Table 3. 

Table 3. Number and Size of ROM Size Per Stage 

Stage “i” 
Number of 

ROMs 
Size of ROM 

0 M N/(2*M) 

log2M ≥ i ≥ 0   M N/(M* 2i) 

i > log2M M/2(i- log2M)  1 

 

If the pipeline is designed for a specific value of N, where N is fixed, the pipeline 

connectivity and twiddle factors are fixed. As a result, the design implementation can 

be optimized since the connectivity of each stage is predetermined. Figure 8 illustrates 

the connectivity of 16-point 2-PE pipeline. Furthermore, in many computations the 

value of the twiddle factor is one. A twiddle factor of one reduces the PE computation 

to add/subtract operations. Also, several PEs execute specific sets of twiddle factors, 

which can lead to design simplification. 
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Fig. 8. Example FFT Data Flow [21] 

 

As indicated earlier, the speed up of the pipeline depends on two factors: the 

number of PEs/stage (i.e., M) and the number of stages (log2(N)) since Speedup = 

M*log2(N). One might ask, “Given fixed target speedup (e.g., S), which factor should 

be increased to achieve more efficient design: the number-of-stages or the number-of-

PEs/stage?” Consider a pipeline with a speedup of S with two designs: Design A and 

design B, as shown in Table 4. Design A has one PE per stage, while design B has 

one stage. Clearly, 

• Design B requires less memory than design A since the design A total memory is 

proportional to S.  

• Design A switch fabric is simpler than that of design B. The complexity of the 

design B switch fabric is proportional to S
2
. 

Table 4. Analyzing Speed Up Factors 

Parameter Design A Design B 

Number of Stages S 1 

Number of PEs per Stage 1 S 

Memory Size N/2 N/(2*S) 
Number of Memories 4*(S+1) 2*S 

Total Memory 2*N*(S+1) N 

Switch Complexity 2*2 S*S 

 

The main disadvantage of the increasing the number of stages is the increase in total 

memory. On the other hand, increasing the number of PEs per stage increases the 

complexity of the switch fabric. Hence, the tradeoffs between the two factors depend 

Bassam Mohd       Earl E. Swartzlander, Jr.       Adnan Aziz 236 



The Hazard-Free Superscalar Pipeline Fast Fourier Transform Architecture and 

on the constraints on the total memory and the maximum complexity of the switch. 

Only specific design goals and technology processes can determine the optimum 

solution. 

Pipeline Hazards 

The main source of hazards in the pipeline is memory contention. Memory 

contention occurs when one or more PEs requests two or more accesses to a given 

memory at the same time. Memory contention results in stalling the pipeline and 

reduces the system speed. In the decimation-in-frequency FFT, memory contention 

does not occur in the early stages, it occurs from stage log2(M)+1 to the last stage. In 

the decimation-in-time FFT, contention affects stage 0 to stage log2(N) – log2(M) – 1. 

Figure 8 shows an example of memory contention for N=16 and M=2. It is clear 

that stage 0 and stage 1 have no contention. However, contention occurs in stage 2 

and stage 3.  Observe the following:  

• In stage 2 the inputs for the top PE are x2(0) and x2(2), both of which reside in 

MEM0.  

• In stage 3 the inputs for the top PE are x3(0) and x3(1), both of which reside in 

MEM0. 

One solution for memory contention is to use a multi-port memory. However, 

multi-port memories are expensive and can slow down the system performance. In 

addition, the later stages of the pipeline have higher degree of contention which 

requires more ports in the memory. Eventually, it becomes impractical to implement 

the required multi-port memory. Moreover, the number of memory ports varies in the 

memory hierarchy. Register files usually have more ports than caches and SRAMs.  

Requiring a certain number of memory ports restricts where the intermediate results 

can be saved in the memory system. Another solution to resolve memory contention 

is to employ a memory management mechanism to mitigate the hazard, as discussed 

in the next section. 

IV. HAZARD FREE PIPELINE ALGORITHM 

The main idea of the algorithm is resolve memory contention in the early stages of 

the pipeline. The rest of the section describes the hazard conditions, memory 

management operations and the algorithm.  

Detecting Pipeline Hazards 

From Figure 8, in stage 0, x(0) and x(8) go to PE0. Similarly, x(1) and x(9) go to 

PE1,..., etc. Define stage distance as the index delta in each stage. The stage distance 

for a 16-point pipeline FFT is shown in Table 5. 
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Table 5. Stage Distance For 16-point Pipeline FFT 

Stage Distance 
Stage 

Decimation-In-Frequency 

 

Decimation-in-Time 

0 8 1 

1 4 2 

2 2 4 

3 1 8 

 

In general, for an N-point pipeline FFT, the stage distance for stage i is equal to 

N/2
(i+1)

. Memory contention occurs when the stage distance falls in a single memory 

space. From Section III, the memory size is equal to N/(2*M). Hence, memory 

contention occurs in stage i if the following condition is satisfied: 

)(log

)2/(2/

2

)1(

Mi

NN
Mi

≥

≤
+

 
(2) 

A stage that satisfies condition (2) will be referred to as a hazard stage; the rest of the 

stages are safe stages. For instance, in Figure 8, stage 2 and stage 3 are hazard stages. 

Define memory pair (i, j)t as memory location x(i) and x(j) for stage t. In stage 2, the 

following memory pairs are hazard pairs: (0, 2)2, (1, 3)2, (4, 6)2, (5, 7)2. Other pairs 

will be referred to as safe pairs, for instance (3, 5)2. The stage distance can be 

represented in binary form: 
    Stage-3 distance = 001 

 Define pair (i, j)t as a hazard pair if and only if: 

1. t is a hazard stage 

2. The bit wise Exclusive-OR of addresses i and j is equal to the stage t distance.  

For example, the address pair (5, 7)2 is a hazard pair since:  

    Stage-2 distance = 210 

    510 ⊕ 710 = 1012 ⊕ 1112 = 0102 = Stage-2 distance 

On the other hand, address pair (3, 5)2 is a safe pair because: 

    310 ⊕ 510 = 0112 ⊕ 1012 = 1102 != Stage-2 distance 

 

Memory Management Operations 

Let xi(t) and xj(t) be the i-th and j-th elements in stage t and i < j. Define the 

memory management operations as follows (see Figure 9): 

• Normal Operation: Inputs xi(t) and xj(t) are provided to the first and second inputs 

of the PE: a, b. The results c and d are saved in xi(t+1) and xj(t+1).  

• Shuffle Operation affects how PE results are saved back in memory. In shuffle 

operation, the results c and d are saved in xj(t+1) and xi(t+1)  

• Swap Operation: The swap operation affects the order of PE inputs. In swap 

operation, xi(t) is provided to b (instead of a) and xj(t) is provided to a (instead of 

b). The reason for the swap operation is because the PE is an asymmetric unit and 

the memory management algorithm changes the normal order of data in the 
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memory. If the algorithm detects a case with incorrect inputs, the swap operation is 

performed.  

• Swap and shuffle operation: A PE operation can have both swap and shuffle 

memory operations at the same time. 

 

 

 

Fig. 9. Memory Management Operations [21] 

The Algorithm 

The main idea of the pipeline algorithm is to identify hazard pairs in early stages 

and perform memory management operations to resolve the hazard. Because data is 

rearranged in memory, the algorithm has to track where data is. One idea to track the 

movement of data is to use a separate memory to store the data indexes (i.e., pointers), 

as shown in Figure 10. This approach provides a great flexibility in moving data in 

the memory. It also simplifies the reordering logic of the final stage hardware. The 

downside of this approach is it increases memory size. Also, it increases loading the 

operands in the PE by one cycle to retrieve pointers from memory.  Another (less 

flexible) solution is to move data in memory in a fixed way to simplify data tracking 

in the pipeline. This approach resolves hazards for next stage only. As a result of 

reordering data in the pipeline, results from the last stage in the pipeline should be 

reordered.  
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Fig. 10. Tracking Shuffled Data [21] 

The algorithm utilizes several counters to calculate memory addresses and 

determine memory management operations. There are three main counters which are 

described in the upper three rows of Table 6. Other counters are derived from the 

main counters and described in the rest of the table. The flow of the algorithm of stage 

i is shown in Figure 11. The pseudocode of the algorithm is listed at the end of the 

section.  Figure 12 illustrates the shuffle and swap operations performed by the 

algorithm to resolve the memory contentions in Figure 8 example. 

Table 6. The Main Counters 

Counter Description/Usage 

Current_Stage Stage counter 

Current_Stage_Cycle Cycle counter within a stage 

Current_Cycle_Operation Operation counter within a cycle 
Horizontal_op_index Determines shuffle operations 

Vertical_op_index Used in generating RAM addresses 

Group_Count Determines swap operation 
Current_Operation Used in generating RAM addresses 
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Fig. 11. Algorithm Flow in Stage i 

 

 
 

 

Fig. 12. Resolving Contentions in Pipeline Hazard Example [21] 
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Algorithm Pseudocode 

// Preparation Step 

Number_Of_Stages   = log2NUMBER_OF_FFT_POINTS 

Cycles_Per_Stage  = N/(2*NUMBER_OF_PE)  

Memory_Size       = N/2
(NUMBER_OF_PE+1)

    

Safe_Stage        = log2NUMBER_OF_PE 

// Start main nester loops 

for Current_Stage=0 to (Number_Of_Stages -1) 

 Group_Size = N/2
(Current_Stage+1)

    

 for Current_Stage_Cycle=0 to (Cycles_Per_Stage -1) 

  for Current_Cycle_Operation=0 to (NUMBER_OF_PE -1) 

   // Calculate Operation Indices  

   Horizontal_op_index = Cycles_Per_Stage *  

                         Current_Cycle_Operation 

                         + Current_Stage_Cycle 

   Vertical_op_index   = NUMBER_OF_PE * Current_Stage_Cycle 

                         + Current_Cycle_Operation  

   Current_Stage_Rev = Number_Of_Stages - Current_Stage – 1 

   Current_Group     = floor(Horizontal_op_index/ 

                             2
Current_Stage_Rev

) 

   Current_Operation = Horizontal_op_index mod 2
Current_Stage_Rev

 

   // Calculate Memory Address    

   M0_addr = Current_Stage_Cycle 

   If Current_Stage <= Safe_Stage 

     M1_addr = M0_addr 

   Else 

     K = Safe_Stage +1 

     L = Current_Stage  

     M1_Addr = Reverse M0_Addr0 bits between K to L bits 

   End 

   // Calculate Memory Select 

   If Current_Stage <= Safe_Stage 

     Group_Offset = Current_Group * N /2Current_Stage 

     Group_Count  = Horizontal_op_index mod Group_Size 

     Memory_Count = floor (Group_Count / Memory_Size) 

     Offset       = Memory_Count * Memory_Size 

     M0_Select    = Offset + Group_Offset  

     M1_Select    = Offset + Group_Offset + Group_Size 

   Else 

     Memory_Count = Vertical_op_index mod NUMBER_OF_PE 

     Offset    = 2 * Memory_Count * Memory_Size 

     M0_Select = Offset; 

     M1_Select = Offset + 2 * Memory_SiZe 

   End 

   M0_data = Memory(Current_Stage, M0_Select0) [ M0_addr ]        

   M1_data = Memory(Current_Stage, M1_Select1) [ M0_addr ]        

   // Determine if swap operation is required 

   If  Current_Group is even   

       AND Current_Sage <= Safe_Stage 

     // Read data with no swap 

     M0_data = Memory(Current_Stage, M0_Select) [ M0_addr ]        

     M1_data = Memory(Current_Stage, M1_Select) [ M1_addr ]             

   Else 

     // Read Data and perform Swap 

     M1_data = Memory(Current_Stage, M0_Select) [ M0_addr ]        

     M0_data = Memory(Current_Stage, M1_Select) [ M1_addr ]        

 End 

 // Read Twiddle 
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 ROM_SELECT  = Current_Cycle_Operation 

 ROM_Address = Current_Operation * 2
Current_Stage

 

   W   = ROM(Current_Stage, ROM_SELECT) [ROM_Address ] 

 // Enable PE to perform FFT butterfly operation 

 [Result1, Result0] =  

       PECurrent_Cycle_Operation(M0_data, M1_data, W); 

   // Perform shuffle operation 

   Shuffle_Bit = log2NUMBER_OF_FFT_POINTS  

                 - Current_Stage - 2 

   Shuffle_Flag = Horizontal_op_index [Shuffle_Bit] 

   If  Current_Stage >= Sage_Stage  AND  

     Shuffle_Flag == 1 

     // Shuffle ResultsShuffle = 1 

     Memory(Current_Stage+1, M0_Select) [ M0_addr ] = Result1       

     Memory(Current_Stage+1, M1_Select) [ M1_addr ] = Result0       

   Else 

     // No Shuffling  

     Memory(Current_Stage+1, M0_Select) [ M0_addr ] = Result0       

     Memory(Current_Stage+1, M1_Select) [ M1_addr ] = Result1       

   End 

  end // Current_Cycle_Operation 

 end // Current_Stage_Cycle loop 
end // Current_Stage loop 

V. 64-POINT PIPELINE FFT DESIGN 

This section explains a 64-point pipeline FFT design using four PEs per stage. 

Therefore, although there are 16 memories per stage, only eight memories will be 

active memory at any time. The memory size is eight words. There are four ROMs 

per stage, each with a capacity of eight words. The pipeline speed up equals 6*4=24. 

The following tables detail the operation of the pipeline PEs and illustrate the memory 

contents.  

Table 7 gives the PE operand pairs for Stage 0. The rows give the operand pairs for 

PE0, PE1, PE2 and PE3. The columns give the pairs for each micro-cycle in Stage 0 

cycles. There are eight micro-cycles per stage. For example, at micro-cycle 0: 

• PE0 input operands will be MEM[0] and MEM[32]   

• PE1 input operands will be MEM[8] and MEM[40] 

• PE2 input operands will be MEM[16] and MEM[48] 

• PE3 input operands will be MEM[24] and MEM[56] 

Tables 8-12 give the PE operand pairs for Stages 1-5. Underlined pairs indicate 

shuffle operation. Since Stages 0-2 are safe stages, the first shuffle operation starts in 

Stage 2 to prevent hazards in stage 3. Table 13 lists the memory contents for pipeline 

stages. For example, the output of stage 2 has the memory contents for Memory 0 as 

follows: 0, 1, 2, 3, 12, 13, 14, and 15. 
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Table 7. Pipeline Stage-0 Operand Paris 

Stage-0 Cycles 
PE 

0 1 2 3 4 5 6 7 

0 0,32 1,33 2,34 3,35 4,36 5,37 6,38 7,38 

1 8,40 9,41 10,42 11,43 12,44 13,45 14,46 15,47 

2 16,48 17,49 18,50 19,51 20,52 21,53 22,54 23,55 

3 24,56 25,57 26,58 27,59 28,60 29,61 30,61 31,63 

 

 

Table 8. Pipeline Stage-1 Operand Paris 

Stage-1 Cycles 
PE 

0 1 2 3 4 5 6 7 

0 0,16 1,17 2,18 3,19 4,20 5,21 6,22 7,23 

1 8,24 9,25 10,26 11,27 12,28 13,29 14,30 15,31 

2 32,48 33,49 34,50 35,51 36,52 37,53 38,54 39,55 

3 40,56 41,57 42,58 43,59 44,60 45,61 46,62 47,63 

 

 

Table 9. Pipeline Stage-2 Operand Paris 

Stage-2 Cycles 
PE 

0 1 2 3 4 5 6 7 

0 0,8 1,9 2,10 3,11 4,12 5,13 6,14 7,15 

1 16,24 17,25 18,26 19,27 20,28 21,29 22,30 23,31 

2 32,40 33,41 34,42 35,42 36,44 37,45 38,46 39,47 

3 48,56 49,57 50,58 51,59 52,60 53,61 54,62 55,63 

 

 

Table 10. Pipeline Stage-3 Operand Paris 

Stage-3 Cycles 
PE 

0 1 2 3 4 5 6 7 

0 0,4 1,5 2.6 3,7 12,8 13,9 14,10 15,11 

1 16,20 17,21 18,22 19,23 28,24 29,25 30,26 31,27 

2 32,36 33,37 34,38 35,39 44,40 45,41 46,42 47,43 

3 48,52 49,53 50,54 51,55 60,56 61,57 62,58 63,59 
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Table 11. Pipeline Stage-4 Operand Paris 

Stage-4 Cycles 
PE 

0 1 2 3 4 5 6 7 

0 0,2 1,3 6,4 7,5 12,14 13,15 10,8 11,9 

1 16,18 17,19 22,20 23,21 28,30 29,31 26,2 27,25 

2 32,34 33,35 38,36 39,37 44,46 45,47 42,40 43,41 

3 48,50 49,51 54,52 55,53 60,62 61,63 58,56 59,57 

 

Table 12. Pipeline Stage-5 Operand Paris 

Stage-5 Cycles 
PE 

0 1 2 3 4 5 6 7 

0 0,1 3,2 6,7 5,4 12,13 15,14 10,11 9,8 

1 16,17 19,18 22,23 21,20 28,29 31,30 26,27 25,25 

2 32,33 35,34 38,39 37,36 44,45 47,46 42,43 41,40 

3 48,49 51,50 54,55 53,52 60,61 63,62 58,59 57,56 

 

 
 

Table 13. Pipeline Memory Content 

Stages 
MEM 

Input 0 1 2 3 4 5 
0 0 0 0 0 0 0 

1 1 1 1 1 3 3 

2 2 2 2 6 6 6 

3 3 3 3 7 5 5 

4 4 4 12 12 12 12 

5 5 5 13 13 15 15 

6 6 6 14 10 10 10 

0 

7 7 7 15 11 9 9 

8 8 8 8 8 8 8 

9 9 9 9 9 11 11 

10 10 10 10 14 14 14 

11 11 11 11 15 13 13 

12 12 12 4 4 4 4 

13 13 13 5 5 7 7 

14 14 14 6 2 2 2 

1 

15 15 15 7 3 1 1 

16 16 16 16 16 16 16 

17 17 17 17 17 19 19 

18 18 18 18 22 22 22 

19 19 19 19 23 21 21 

20 20 20 28 28 28 28 

21 21 21 29 29 31 31 

22 22 22 30 26 26 26 

2 

23 23 23 31 27 25 25 

24 24 24 24 24 24 24 

25 25 25 25 25 27 27 
3 

26 26 26 26 30 30 30 
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27 27 27 27 31 29 29 

28 28 28 20 20 20 20 

29 29 29 21 21 23 23 

30 30 30 22 18 18 18 

31 31 31 23 19 17 17 

32 32 32 32 32 32 32 

33 33 33 33 33 35 35 

34 34 34 34 38 38 38 

35 35 35 35 35 37 37 

36 36 36 44 44 44 44 

37 37 37 45 45 47 47 

38 38 38 46 42 42 42 

4 

39 39 39 47 43 41 41 

40 40 40 40 40 40 40 

41 41 41 41 41 43 43 

42 42 42 42 46 46 46 

43 43 43 43 47 45 45 

44 44 44 36 36 36 36 

45 45 45 37 37 39 39 

46 46 46 38 34 34 34 

5 

47 47 47 39 35 33 33 

48 48 48 48 48 48 48 

49 49 49 49 49 51 51 

50 50 50 50 54 54 54 

51 51 51 51 55 53 53 

52 52 52 60 60 60 60 

53 53 53 61 61 63 63 

54 54 54 62 58 58 58 

6 

55 55 55 63 59 57 57 

56 56 56 56 56 56 56 

57 57 57 57 57 59 59 

58 58 58 58 62 62 62 

59 59 59 59 63 61 61 

60 60 60 52 52 52 52 

61 61 61 53 53 55 55 

62 62 62 54 50 50 50 

7 

63 63 63 55 51 49 49 

VI. Comparison with Other FFT Pipelines 

The hardware complexity of a pipeline FFT is measured by the number of complex 

adders, complex multipliers and the memory size. A radix-2 butterfly consists of one 

complex multiplier and two complex adders which can be implemented using four 

real multipliers and six real adders. A radix-4 butterfly consists of three complex 

multipliers and eight complex adders and can be implemented using 12 real 

multipliers and 22 real adders. Less expensive (but slower) butterfly implementations 

exist especially for slow pipelines, e.g., SDF pipelines. The rest of this section uses 

counts of complex operations to compare different pipelines. 

The SDF pipeline FFT has a total of (logrN -1) multipliers and N-1 delay elements. 

Further, the MDC pipeline FFT utilizes (r+1)N/2 – r delay elements, and (r-1) (logrN 

-1) real multipliers and roughly 2(r-1) (logrN -1) adders. Table 14 summarizes the 

hardware and timing complexities for FFT pipeline architectures discussed in 

references [18], [20]. The table also illustrates the complexities for the switch based 

architecture (shown in the last row of the table.) The other pipeline architectures 

require delay elements in the pipeline implementation. Delays are implemented by 

shift registers (which dissipate high dynamic power) or by RAMs with additional 

address generation hardware (which increases design complexity). The modular 

pipeline reduces number of delay elements to 2( N -r). The switch-based pipeline 

uses SRAM memory arrays, which consume less power than registers and are easier 
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to implement. Moreover, the throughputs of the other pipelines are limited to one 

(single-path) or a few (multi-path) data per clock, while the switch based 

implementation has a throughput of M.  Unfortunately, the switch based pipeline 

requires larger memory size and more hardware in the data path.    

Table 14. FFT Pipeline Architectures 

FFT Pipeline 

 

Multipliers  

 
Adders Memory Size Speed up 

Radix-2 SDF  2(log4 N-1) 4 log4N N  - 1 log2N 

Radix-4 SDF log4 N-1 8 log4N N  - 1 log2N 

Radix-2 MDC  2(log4 N-1) 4 log4N 3N/2  - 2 log2N 

Radix-4 MDC 3(log4 N-1) 8 log4N 5N/2  - 4 log2N 

Radix-4 Single-path Delay Commutator log4 N-1 3 log4N 2N/2  - 2 log2N 

Radix-22 Single-path Delay feedback log4 N-1 4 log4N N - 1 log2N 

Radix-2 Modular Pipeline 2(log4 N-1) 4 log4N N - 6 

+ 2*sqrt(N) 
log2N 

Switch-Based Pipeline M*2(log4 N-1) M*4 log4N 2*N*  

(1+log2 N) 

M* log2N 

VII. CONCLUSION AND FUTURE WORK 

This chapter extends results from [21]. It presents a switch-based architecture for 

FFT engine implementation. It also presents an algorithm to predict and resolve 

memory contentions. As a result the pipeline speedup is M*log2N, where N is the 

number of points and M is the number of processing elements. An implementation of 

a 64-point FFT machine using the proposed architecture is presented. The architecture 

compares favorably to other FFT pipelines. Future research should focus on reducing 

power consumption of the FFT pipeline. 
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Abstract. Design complexity is rapidly becoming a limiting factor in
the design of modern high-performance digital systems. The increasing
levels of design effort required to improve and implement critical proces-
sor and system structures have led to staggering design costs.
As we design ever larger and more complex systems, it is becoming in-
creasingly difficult to estimate how much time it takes to design and
verify them. Novel quantitative and optimization approaches are needed
to understand and deal with the limiting effects induced by design com-
plexity, which remain for the most part hidden from the architect. To
address part of these shortcomings, this work introduces µComplexity

and µPCBComplexity , a set of methodologies to measure and estimate
design effort for modern processor and PCB (printed circuit board) de-
signs.

1 Introduction

While the ability to fabricate ever larger and denser circuits is still increasing
as predicted by Moore’s Law, the semiconductor industry is facing several seri-
ous challenges. One of them is the cost of new processor development. Current
development costs for top of the line designs are staggering, and are doubling
every 4 years [10]. Another challenge is the growing difficulty to correctly de-
sign and verify the circuits — which has been called the Design and Verification
Gaps [1]. As a result, according to the ITRS 2002 update [1], “the increasing
level of risk that design cost and design quality present to the continuation of
the semiconductor industry” is of serious concern. The design effort of modern
digital systems is further compounded by the need to meet aggressive design
constraints such as rising clock frequencies, thermal and power issues, reduced
area, increasing number of layers, mixed signal devices, and the ever increasing
component count and density.

All of these factors combined have made it increasingly difficult to estimate
how much time would be required to design and verify these modern high-
performance systems. Ironically, for such a resource-intensive endeavor, there
is little systematic work (at least in the public domain) on measuring, under-
standing, and estimating the effort required by each step in the design of high-
performance digital systems. If effort estimates were available early in the design
process, they would help identify the critical paths in the whole design process,
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thus allowing resources to be more effectively allocated and procured. This is
essential to keep design costs down and to increase the competitiveness of a
company, as architects can access new quantitative approaches to make bet-
ter design trade off decisions. This work focuses on two of the main areas of
complexity in modern systems; circuit boards and processors.

Design effort is defined as the time required, in person-hours, to design and
implement a given system. Design effort is equivalent to design time when the
project has a single developer. For a given effort requirement, it is possible
to reduce the design time by increasing the number of workers. However, as
several studies in software metrics and business models have shown, increasing
the number of workers may lead to decreases in overall productivity per worker.
Since the conversion between design effort and design time can be approximated,
the remainder of this work focuses only on design effort.

Different designs have different constraints, leading to specific challenges;
typical design constraints are power, area, frequency, and manufacturing cost.
For example, having area being a primary design constraint, may lead to a
requirement for additional layers, more expensive package types, and/or more
complex placement and routing. A design constrained by cost, on the other hand,
may require a balance between number of layers, area, drill density, types of
packages and possibly the number of different drill sizes. Having clear constraints
is necessary in estimating layout effort as it can drastically affect complexity.

This work describes a set of methodologies for measuring and estimating
the design effort for modern digital systems. These methodologies are based
on the study and analysis of the correlation between multiple design statistics
and the overall design effort required to implement these designs. Metrics or
combinations there of with good correlation characteristics with overall design
time are expected to be good design effort estimators.

This work estimates the design effort for a modern processor as being equiv-
alent to the effort in person-months required to implement and verify the RTL
(register transfer level) description of its design. This processor design estima-
tion is based on the µComplexity methodology [2], which consists of three parts:
a procedure to account for the contributions of the different components of the
design, accurate statistical regression of experimental measures using a nonlinear
mixed-effects model, and a productivity adjustment to account for the differen-
tial in skills and productivity levels across different design teams.

In order to address some of the concerns related to PCB design time estima-
tion, this work follows a similar approach taken in [2] as the principles that are
applicable to microprocessors are also applicable to PCBs. In this work, design
effort corresponds to the number of engineering-hours required for implementa-
tion (layout) of a PCB or microprocessor design.

To isolate good design metrics for PCB design effort, we explore statistics
such as area, component count, pin count and device types and sizes for many
PCBs. We analyze several of these statistics, and propose a metric, obtained
after applying nonlinear regression over the different statistics, which we call
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µPCBComplexity . In addition, we provide insights on the correlation between
several statistics and the design effort for many systems with known layout times.

The evaluation shows that a simple statistics like PCB area size and number
of components yield some correlation with design effort. With a 90% confidence,
pins has a (0.47, 2.09) confidence interval. This means that roughly by looking at
the number of pins, the typical design time error is half/double with a 90% confi-
dence. Much better results can be achieved with the proposed µPCBComplexity

metric. In that case the confidence interval for a 90% confidence is (0.58, 1.72).
This roughly means that less than 40% estimation error is achieved with a 90%
confidence.

On the processor side, our data shows that any one of number of statements
(Stmts), lines of code (LoC) or the fan in of logic cones (FanInLC) is a good
single-metric estimator of design effort. Interestingly, this shows some similarity
between hardware and software design efforts. On the other hand, it appears that
the hardware estimators used elsewhere such as number of cells and transistor
count used by the SIA Roadmap and Sematech are not so effective. Most of
the other synthesis tools metrics such as area, power and frequency are not
well correlated with design effort either. Further evaluation shows that the best
estimator is a combination of the two most accurate, which we call Design Effort
Estimator 1 (DEE1).

2 Overall Design Flow

The goal of this work is to develop a quantitative approach to estimate design
effort based on several easily gathered statistics. This is important because be-
ing able to estimate/measure design effort is advantageous in helping to reduce
design costs. In order to build a design complexity model, we analyze and gather
data from several commercial PCB and processor designs. The layout times for
the PCBs and the design times for the processors were well documented, which
was a requirement for this analysis.

µComplexity and µPCBComplexity are methodologies to measure and es-
timate the design effort required for a processor design or PCB layout. They
comprise three components. The first one is an accounting procedure whereby
the design is partitioned into disjoint modules that can be measured individu-
ally. A quantification for the entire processor/PCB is obtained by aggregating
all the module measurements. The second component is the application of sta-
tistical regression to these design measures to obtain an unscaled estimate of the
design effort. The final component involves the multiplication of the unscaled
effort estimation by a productivity factor, this is done to obtain the estimation
of the design effort for a given design team.

In the following subsections, we first review a typical design flow and define
the design effort that we are trying to estimate. Next, we discuss the three-
component µComplexity and µPCBComplexity methodologies in detail. Finally,
we examine some concerns about the methodologies.
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2.1 Design Effort Defined

The system development timeline can be broken down into several overlapping
stages as shown in Figure 1. Note that the duration of the different stages is
not drawn to scale. The figure also shows an approximation of the size of the
engineering team working on the processor portion of the project during each
stage. For PCB design it is still fairly typical to have only small teams of 1 or 2
engineers working on the layout stage of the design, which is what we focus on
in our PCB analysis.

High-Level Design

RTL Implementation

RTL Verification

Place and Route

Timing Closure

PCB Implementation

Initial RTL

(start using µComplexity)

Time

Schematic Complete

(start using µPCBComplexity)

End of RTL

verification

1 to 2 years

RTL Design Phase

1st Silicon

Sign-off

Engineering team size

Fig. 1. System development timeline with the size of the IC engineering team.
Note that the timeline is not drawn to scale.

In the High-Level Design stage, architects perform functional simulation and
power estimation of multiple candidate designs. Based on that, they select one
microarchitecture and produce a complete functional and interface description of
each of its components. Examples of such components are the branch predictor,
load-store queue, or floating-point unit. These components are then assigned to
engineering teams for implementation. In the case of an ASIC, or if the processor
is being designed for an embedded system, the PCB is also be planned during
this stage. A Product Requirement Document (PRD) is produced which details
the goals of the processor/ASIC and the system board (PCB).

In the RTL Implementation stage, engineering teams implement their as-
signed components in an HDL such as VHDL or Verilog. They continue refining
the description until they reach an RTL-level implementation, which can be au-
tomatically translated to a gate-level netlist. Functional bugs are fixed as the
verification teams discover them. Synthesis is performed to ensure that the tim-
ing, area, and power goals are being met.

In the RTL Verification stage, engineers create test cases to verify the func-
tionality of individual components and of the whole chip. They perform cycle-
accurate simulations and compare the results with the expected values. At this
point, the verification team is only concerned with the functional correctness of
the design — whether it produces correct answers in a logic-level simulation.
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Circuit-level verification, in which electrical and timing parameters are verified,
comes later. RTL verification is complete when the number of outstanding bugs
reaches zero and stays there for a pre-agreed amount of time.

In the Place and Route stage, the synthesized netlist is physically placed
within the chip-defined core area based on timing constraints. During the place-
ment phase, gates are resized and some additional logical optimization may be
performed. After the initial placement, the routing phase occurs and, if needed,
minor placement changes are made. Once the design is successfully placed and
routed, clock tree synthesis happens, whereby the clocks in the design have their
buffer trees placed and routed.

In the PCB Implementation stage, engineers design the schematic and start
the layout for the system board onto which the processor/ASIC resides. As chip
interfaces become defined and stabilized the requirements for a system board
design is gathered. This would include traces and foot prints for any IOs such
as PCI, USB, or Ethernet. It would also include the memory system, either a
bridge chip with memories, or possible just the memories if the processor/ASIC
has a memory controller integrated on chip. A schematic is created and a BOM
(bill of materials) is produced. These are then passed on to the layout person or
team for implementation of a PCB design.

Finally, in the Timing Closure stage, engineers perform timing analysis of the
gate-level implementation to determine the maximum clock speed of the design
and to identify critical paths. A redesign may be required which could involve
RTL or placement–and–route changes. A refine–test–refine loop exists between
the Place-and-Route and Timing Closure stages.

As shown in Figure 1, the focus of this part of the work is the period that
includes both the RTL Implementation and the RTL Verification stages. We
define Design Effort as the number of person-months spent implementing the
description of the processor in a hardware design language such as VHDL or
Verilog, refining it to an RTL description, and verifying the latter for functional
correctness. We exclude any additional time required to revise the design later,
during the Timing Closure process. While the period considered excludes some
design time, we believe that it includes the bulk of it.

In the following sections we describe the accounting procedure we use for the
PCB and processor evaluations. In 2.2 we look at the accounting procedure stage
of µComplexity, whereby the design is partitioned into disjoint modules that can
be measured individually. In 2.3 we discuss the critical design parameters of a
PCB and how the accounting for µPCBComplexity is developed from them. A
quantification for the entire processor is obtained by aggregating all the module
measurements. In 2.4 we discuss the use of a productivity adjustment.

2.2 Approach to µComplexity

This assumes a processor design to represented as a collection of hardware de-
scription language (HDL) statements, thus ignoring certain design issues in-
troduced to processor components implemented using custom layout and not
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standard cell designs. As described in Section 1 the design effort for a mod-
ern processor is directly proportional person-months required to implement and
verify the RTL description of its design.

To measure overall design effort, estimates of the effort for each processor
component must be obtained, and then added into a compounded index. How-
ever, components may be instantiated several times through any given design.
Some components may also be parameterized, and different-sized instances could
be generated. Parameters could be the width of the input or output buses, queue
depth, or pipeline depth. To address these cases, we use the following two rules.

Account for a single instance of each component. When a design reuses
a component (e.g., an ALU), we only count the design effort of one instance of
it. The rationale is that, in accordance with the principles of modular design, the
effort required to design and verify the component is a one-time cost. Once the
component is designed and verified, it can be re-used elsewhere with negligible
effort.

Minimize the value of component parameters. To estimate the design
effort of a parameterized component, we set each parameter to the minimal
value that does not result in a degenerate case. We refer to this minimization
of parameters as scaling. The rationale is that, while different parameter values
can drastically change the size of the component instance (in terms of chip area
or number of gates), it is not much harder to write parameterized code than it
is to write code for the smallest nontrivial instance.

More formally, consider a VHDL description where the parameterized com-
ponent is implemented with GENERATE loops. We select for each parameter the
smallest value that does not cause any loops or conditional statements in the
RTL description to be optimized away by traditional program analysis tech-
niques such as constant propagation and dead code elimination. The process for
Verilog is more difficult to formalize because Verilog did not have an equivalent
of the GENERATE construct until Verilog-2001 was introduced. However, the de-
termination of what constitutes the minimal non-degenerate parameterization is
conceptually the same.

Design Effort Estimator There are multiple metrics that may be related to
design effort. Examples include the number of logic gates or the number of HDL
lines in the design description. Consequently, for each component in the design
(subject to the constraints of Section 2.2), we measure these metrics. Then, we
select a single metric or a set of metrics (e.g., the number of gates and the number
of HDL lines) and use statistical regression [11] to find how well they correlate
with the person-months design effort reported by the processor designers. For
each set of metrics m1, m2, . . .mn, we find the best values for the coefficients
w1, w2, . . .wn in Equation 1. The result is a Design Effort Estimator (eff):

eff =
1

ρ
×

n
∑

k=1

(wk × mk) (1)
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The regression model used is described in Section 3. In the equation, ρ is the
productivity factor for the design team. It allows the same set of coefficients wk

to be used in different projects. The rationale for ρ is discussed next.

2.3 Approach to µPCBComplexity

Printed circuit board (PCB) design effort keeps growing due to such constraints
as rising clock frequencies, thermal issues, reduced area, increasing number of lay-
ers, mixed signal devices, and the ever increasing component count and density.
All of these factors combined have led to a steady rate of increase in development
costs for current systems. As we design ever larger, denser and more complex
systems, it is becoming increasingly difficult to estimate how much time would
be required to design and verify them. To compound this problem, PCB design
effort estimation still does not have a quantitative approach.

The lists of critical components of PCB designs is determined by [4]. These
parameters contribute to the complexity of a design, and hence the time re-
quired to do layout. Some design parameters are dependent on other factors.
For example, the size of the board is defined by the number of embedded and
discrete passive components and total wiring requirements. However, the total
wiring requirements are governed by the number of embedded and discrete pas-
sive components in the PCB. And furthermore, the total number of layers in the
PCB depends on the size of the board, the number of embedded and discrete
resistors and bypass capacitors [4].

These critical design parameters are focused towards manufacturability, not
design effort estimation. We used them as a starting point in determining what
parameters or metrics to analyze and include for correlation with design effort.
None of the boards in our study have embedded passive components; instead we
focus on the total number of all components (passive and discrete) and the pin
count for them. These are easily obtainable values.

Since the routing data is not easily obtainable, the number of pins for all
the components in the design is taken into account instead. While this is not
an ideal metric since not all pins are used or have very short traces (VDD or
GND), it is readily obtainable and does not hamper the focus of this paper,
namely effort prediction starting from higher level design descriptions, such as
a bill of materials (BOM) or schematics.

In order to find a metric highly correlated with design effort, several statistics
were gathered from the existing designs. For each isolated board with a known
design effort, we look at several statistics and apply nonlinear regression to find
a highly correlated metric.

We present our design effort model as the aggregate of a set of statistics (Si).
Each of which has a specific constant (wi), associated with it, which assigns a
weight to the importance of every statistic used as input in the model. The ag-
gregate of the statistics is inversely proportional to the productivity of a specific
design team which is represented by a constant (ρ). The model is presented in
Equation 2. In order to find suitable values for each of the data weights (wi) we
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perform mixed nonlinear regressions on this equation. The design team produc-
tivity factor (ρ) is constant per design group, and it needs to be adjusted on a
per company or design team basis. If the ρ is unknown, then the absolute design
effort is invalid and only the breakdown inside the project is correct. Obtaining
the value of ρ is simple; all that is needed is to have the design effort for a single
project. Alternatively, it is possible to develop a productivity benchmark suite
that calibrates ρ for a given company.

Design Effort =
1

ρ
×

n
∑

k=1

(wk × Sk) (2)

In order to determine the weights that give a generalized solution to Equa-
tion 2, [2] proposes to use a mixed nonlinear regression model. If there are
no productivity adjustments, it is possible to use a simpler nonlinear regression
model. While the sum of a large number of random variables is distributed nor-
mally, the product of a number of random variables is distributed lognormally

— a distribution where the logarithm of the variable is normally distributed [5].
Therefore, since the random variables have a log normal distribution an even
simpler linear regression model can not be used.

To evaluate the accuracy of the model (Section 4.2), we use σ as a measure of
error associated with the fit. Consequently, it is important to understand what
different values of σ tell us about the quality of the estimate. For a given σ, we can
find a confidence interval for the estimated effort. The x% confidence interval
for a metric is defined to be the range of efforts (Estimatelow, Estimatehigh)
such that P (Estimatelow < metric prediction < Estimatehigh) = x/100. For
example, the 90% confidence interval gives us two values a and b such that
there is a 90% chance that the actual effort is between metric prediction×a and
metric prediction × b.

2.4 Productivity Adjustments

In software development projects, it is well known that different development
teams have different productivities. For example, it has been shown that the
productivity difference between teams can be up to an order of magnitude [8]. We
believe that a similar effect occurs between PCB and processor design teams. The
productivity differences may be due to multiple factors, including the average
experience of the designers in the team and the tools used. In our model, ρ
captures this effect.

The designs under study in this analysis were produced either by a single
manufacturer, or a just one design from a specific manufacturer was provided.
Therefore the use of a productivity factor was not necessary as we did not ob-
tained competing designs from multiple manufacturers of from multiple compet-
ing teams among a single manufacturer.

A Model Without Productivity Adjustments For the processor analysis,
we can eliminate productivity adjustments by setting ρi = 1 for all i simplifies the
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statistical model. Instead of using the nonlinear mixed-effects model described in
Section 3.1 to fit the weights, we can use a simpler multiple regression technique.
Unfortunately, as we show in Section 4.1, the model without productivity factors
fits the data poorly. We present it only for comparison with the recommended
nonlinear mixed-effects model of Section 3.1.

A model without productivity adjustments may be acceptable for industrial
practitioners with a very large single project, perhaps representing thousands
of person-months of effort. In this case, they can set ρ = 1, since there is only
one project and therefore no need to account for productivity differences across
projects.

2.5 Issues

Ideally, we would like to use design effort estimators as soon as possible in the
system design timeline. The earlier the estimations can be made, the more useful
they are likely to be. After adjusting the coefficients wi shown in Equation 1,
early estimation presents a clear challenge: how to ensure that the values of the
early metrics remain relevant (and valid) at later stages of the design.

To address this, we use metrics whose value changes little from initial stages
of the design until completion of the RTL implementation and verification in the
case of the processor, or pins and components, in the case of a PCB. Specifically,
the metrics analyzed in this work can be measured once a module has been
designed and before it starts to be verified. This corresponds to the point shown
with an arrow in Figure 1, which is often 1 to 2 years before completing the RTL
verification. The values of the metrics remain largely unchanged until the end
of RTL/PCB verification. The exception is if the verification finds substantial
bugs that require a major re-design.

One potential objection to the accounting procedure described is that count-
ing each component only once regardless of its number of instances may not be
appropriate. For example, at a very low level, we could consider that the entire
processor is made out of logic gates, and that there are only a dozen or so types
of gates. The analysis would clearly be inaccurate. However, at the high level of
the functional components that we are discussing, the count-only-one heuristic
is appropriate. Regardless, any given component is likely to have fewer than ten
instances. At this level, scaling the effort estimate linearly with the number of
instances does not seem appropriate.

In our discussion of parameter scaling in section 2.2, we argued that writing
code for a parameterized component is no more difficult than writing code for
the smallest nontrivial instance of it. In practice, however, the parameter values
chosen for a given instance may affect the number of test vectors required for
verification and, therefore, the verification time. For example, model checking
and automatic theorem-proving tools may require more time to run with larger
parameter values, since the size of the state space may be larger. However, this
issue could be addressed, at least conceptually, by allocating more computational
resources to the verification budget — not more engineer-hours.
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The parameter scaling rule has another undesirable consequence. Specifically,
varying the value of certain parameters may have implications on the difficulty
of timing closure and, therefore, on the number of RTL redesign iterations. An
example is the degree of associativity of a time-critical structure: higher asso-
ciativity may make it hard to perform timing closure and may induce several
redesigns. This issue suggests the need for future design effort estimators that
are aware of back-end physical design and timing concerns.

Finally, our analysis has implicitly assumed that each component in the de-
sign is implemented from scratch. In practice, components are sometimes reused
from older designs, often with little modifications. Integrating a reused compo-
nent incurs some design effort, even if it requires no modification at all. The
software engineering literature has discussed effort estimation for reused com-
ponents [3]. We regard the study of reuse in hardware as a subject for future
work.

Productivity Adjustments The volatility of ρ may make it difficult to use
the model to make extrapolations across different projects. Once RTL coding is
completed, all of the metrics are available, but it is still difficult to determine the
productivity factor until after at least some of the components are completely
verified. One option is to estimate ρ using data from a very recent project or to
extrapolate the current value of ρ given a time series of previous values.

Unfortunately, we have no means of evaluating this approach. A second op-
tion is to assume ρ = 1 and use the model to make relative estimations only.
Even without knowing ρ, we can still say that a component with an estimated
design effort of e = x is likely to take half as much effort to design as one with
e = 2x. These relative estimates may be useful when allocating engineers to veri-
fication teams. They may also allow an early determination of which components
are likely to delay project completion.

3 Regression Model

As indicated in Section 2.2, given a set of metrics m1, m2, . . .mn, the goal of
the regression procedure is to find the w1, w2, . . . wn values for Equation 1 that
provide the best fit for the person-months design effort reported by the designers.
Each component in the design for which we know the design effort (e.g., fetch
unit or load-store queue), is a data point consisting of the reported design effort
and the measured metrics. The more data points we have, the more precise the
determination of wk is.

The data points for this work come from several small projects implemented
by unrelated design teams at different times. Consequently, in addition to the
usual statistical variation across data points, there is variation across teams. In
statistical terms, this forces us to introduce a per-project random effect (rep-
resented by the productivity ρ). Therefore, we use a nonlinear mixed-effects

model [15], which is able to deal with both fixed and random effects better than
more conventional linear methods [7, 11].
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In the following section, we describe the mixed-effects model that we use and
then consider what would happen if we attempted to fit a simpler model without
productivity adjustments.

3.1 A Nonlinear Mixed-Effects Model

When we use Equation 1 with data from multiple projects, we have one data
point for each component j designed in project i. The estimated design effort
effij is given by Equation 3. Note that for each component j from project i,
we have a set of n metrics mijk. There is a productivity factor ρi specific to
each project. However, the coefficients wk are assumed invariant across all data
points. In reality, of course, the fit is not perfect and the actual (reported by
designers) design efforts Effij are different from the estimated ones effij (Equa-
tion 4). The difference is accommodated by the ǫij error term, which we assume
is multiplicative.

effij =
1

ρi
×

n
∑

k=1

(wk × mijk) (3)

Effij = effij × ǫij (4)

To fit the mixed-effects model and determine the wk, we need to treat ρ
and ǫ as independent random variables. As such, we must provide a probability
distribution for each. From software engineering, we know that productivity is
determined by the product of a collection of variables (e.g., team cohesiveness,
tool quality or process maturity) [3]. Since the sum of a large number of random
variables is distributed normally, the product of a number of random variables is
distributed lognormally — a distribution where the logarithm of the variable is
normally distributed [5]. Similarly, software engineering studies tell us that the
multiplicative error ǫ is also lognormally distributed [16]. Consequently, we use
a lognormal distribution for both ρ and ǫ.

The lognormal distribution is described by two parameters: µ and σ. They
represent, respectively, the mean and standard deviation of the log of the vari-
able. For the ρ and ǫ distributions, we choose to set µ = 0, and then let the
fitting procedure determine the standard deviations σρ and σǫ. The result of
setting µ = 0 in both cases is that the median of the distributions is 1. Intu-
itively, this means that half of the projects have ρ > 1 and half have ρ < 1.
Similarly, half of the estimations have ǫ > 1 and half have ǫ < 1. Figure 2 shows
a lognormal distribution with µ = 0, showing the difference between mean, me-
dian, and mode.

Our choice also means that the resulting estimated effort eff that we obtain
is the median design effort. To determine the estimated mean design effort eff
rather than the estimated median design effort, we would apply Equation 5.

eff = eff × e(σ2
ǫ+σ2

ρ)/2 (5)

In Section 4.1, we use σǫ as a measure of goodness of fit. Consequently, it is
important to understand what different values of σǫ tell us about the quality of
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Fig. 2. Example of a lognormal distribution with µ = 0.

the estimate. Specifically, we say that σǫ determines a confidence interval for the
estimated effort. The x% confidence interval for effij is defined to be the range
of efforts (elij , ehij) such that P (elij < Effij < ehij) = x/100. For example, the
90% confidence interval gives us two values a and b such that there is a 90%
chance that the actual effort is between a and b. Figure 3 plots the 68% and 90%
confidence intervals for a range of σǫ. To compute the confidence interval for a
given σǫ and effij , find the value yh corresponding to the top of the interval and
the yl corresponding to the bottom of the interval. The confidence interval is
then (yl × effij , yh × effij). For example, if σǫ = 0.45 then yh ≈ 2.1 and yl ≈ 0.5.
Therefore, the 90% confidence interval for Effij is (0.5 × effij , 2.1 × effij).
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Fig. 3. 68% and 90% confidence intervals corresponding to 0 ≤ σ
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figure demonstrates finding the multiplicative factors y
h

and y
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for the 90%
confidence interval corresponding to σ

ǫ
= 0.45.

We perform model fitting computation using the NLMIXED procedure from
SAS [15], although we could also use the nlme package from R [19]. Equation 6
shows an alternative method for approximating rhoi given the wk.

∑

j ēij
∑

j Eij
= 1
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ρi ≈
exp

(

σ2
ǫ /4

)
∑

j

∑n
k=1 (wk × mijk)

∑

j Eij
(6)

4 Evaluation of Processor Designs

The evaluation of this work examines how accurately each of the software and
synthesis metrics correlate with design effort. This section is divided into two
parts, Section 4.1 shows processor design metrics and Section 4.2 shows PCB
design metrics. For both cases, we also examine a few combinations of metrics.

4.1 Processor Designs

In our processor design analysis, we compare against some of the design ef-
fort estimators currently being used. Specifically, Sematech [10] and the SIA
Roadmap [1] which use the number of cells and the number of transistors, re-
spectively, to estimate effort. We also analyze other synthesis statistics which
are often used to make effort estimations.

As indicated in Section 3.1, to assess the accuracy of an estimator, we report
the standard deviation of its error (σǫ). Lower values of σǫ are better, and zero
is the minimum possible value. Given a σǫ, we can compute the interval for,
say, 90% confidence for the true value. For the lognormal distribution used, the
mapping between σǫ and the 90% confidence interval.

In the following analysis, we first measure the accuracy of the different design
effort estimators using our model. Then, we repeat the process without the
productivity adjustment or without the µComplexity accounting procedure.

Accuracy of Design Effort Estimators Table 1 shows the accuracy of var-
ious design effort estimators. First, Column 2 lists the reported design effort
in person-months for each component of each design. Then, each of remaining
columns shows data for one design effort estimator. Most of the estimators are
simply the individual software or synthesis metrics. The only exception is the
DEE1 estimator, which is the linear combination of two metrics — we analyze
DEE1 in Section 4.1. For a given estimator, the column shows its value for each
component of each design and, in the penultimate row, its σǫ.

From Table 1, we see that there are a group of estimators that have a rela-
tive high accuracy (i.e., low σǫ). They include Stmts, FanInLC, and Nets. For
example, Stmts and FanInLC have σǫ equal to 0.50 and 0.55, respectively, which,
correspond to a 90% confidence interval of (0.44,2.28) and (0.40,2.47), respec-
tively. Really, within the margin of error of our study, any one of Stmts or
FanInLC has the same accuracy. The other estimators, namely Freq, Power,
AreaL, AreaS , Cells, and FFs, have lower accuracy. For example, AreaL has
σǫ equal to 1.23, which corresponds to a 90% confidence interval of (0.13,7.56).
None of these metrics is a reasonable estimator.
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Module Effort DEE1 Stmts FanInLC Nets Freq AreaL Power AreaS Cells FFs
Name (Months) (MHz) (µm2) (mW ) (µm2)

Leon3-Pipeline 24 12.8 2070 10502 4299 56 50199 80 68411 3586 1062
Leon3-Cache 6 7.3 1172 6325 1980 94 37456 57 12556 3 210
Leon3-MMU 6 4.4 721 3149 1130 84 60136 23 112765 246 699
Leon3-MemCtrl 6 5.4 938 2692 853 138 7394 5 11938 704 275
PUMA-Fetch 3 2.2 586 5192 1292 68 147096 226 555168 1809 1786
PUMA-Decode 4 6.2 1998 4724 5662 65 78076 11 47604 5189 464
PUMA-ROB 4 2.2 503 6965 9840 41 82527 733 1022 9709 922
PUMA-Execute 12 12.6 3762 18260 10681 49 92473 44 119746 10867 1725
PUMA-Memory 1 3.3 976 5034 1089 60 43418 80 115841 4337 1549
IVM-Fetch 10 8 1432 15726 4914 71 212663 8 135074 1859 1661
IVM-Decode 2 1.7 391 1044 504 104 2022 2 73 2 0
IVM-Rename 4 2.7 566 3307 1134 159 70146 1 26740 121 510
IVM-Issue 4 3.6 624 8063 4603 60 90388 2 68667 3414 2729
IVM-Execute 3 5.4 961 11045 4476 91 619561 5 154655 940 0
IVM-Memory 10 11.6 2240 19021 23247 54 267753 73 625952 12050 2510
IVM-Retire 5 5 1021 6635 3357 71 36100 2 50375 1923 924
RAT-Standard 0.6 0.7 64 3889 2905 137 34254 4 17603 2596 288
RAT-Sliding 1 1 78 5586 4936 119 52210 10 60713 4507 612

σǫ – 0.46 0.50 0.55 0.67 0.94 1.23 1.34 2.07 2.09 2.14
σǫ (ρi = 1) – 0.53 0.60 0.82 1.08 1.12 1.35 1.82 2.07 2.55 2.18

Table 1. Accuracy of various design effort estimators.

Freq has a 90% confidence interval as large as (0.21,4.69). While increasing
processor frequency requires additional design effort, other metrics like Nets
or FanInLC have higher correlation with design effort. The reason is that, to
increase frequency, it is necessary to add extra pipeline stages or more complex
logic. This increased effort is better measured by Nets and FanInLC.

Perhaps unsurprisingly, AreaS and FFs are not well correlated with design
effort. Their 90% confidence intervals are (0.03,30.11) and (0.03,33.78), respec-
tively. The reason is that storage structures such as RAM banks are relatively
simple to design. Similarly, AreaL and Cells are not well correlated because sim-
ple to implement structures can occupy a lot of area and have large numbers of
logic cells. Moreover, neither dynamic nor static power is well correlated with
design effort as their confidence intervals are (0.11,9.06) and (0.09,10.68) respec-
tively. Larger designs probably require more power, but are not necessarily more
complicated to design.

Overall, our data shows that any one of Stmts or FanInLC is a good single-
metric estimator of design effort. Interestingly, this shows some similarity be-
tween hardware and software design efforts. On the other hand, it appears that
the hardware estimators used elsewhere such as Cells and transistors used by
the SIA Roadmap and Sematech are not so effective. Most of the other synthesis
tools metrics such as area, power and frequency are not well correlated with
design effort either.

Design Effort Estimator 1 (DEE1) We have also analyzed the accuracy of esti-
mators generated with the linear combination of groups of two metrics. As usual,
we use Equation 1 from Section 2.2. We find that two-metric combinations that
include Stmts, FanInLC, and Nets tend to have slightly more accuracy than
those with a single metric. The ones that are the most accurate are Stmts plus
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Nets, and Stmts plus FanInLC. They have the same accuracy, but we prefer
the Stmts plus FanInLC estimator because, individually, the metrics are more
accurate. We call the resulting estimator Design Effort Estimator 1 (DEE1).

As shown in Table 1, DEE1 has the lowest σǫ, namely 0.46. This corresponds
to a 90% confidence interval of (0.47,2.13). The slightly higher accuracy of DEE1
comes from the fact that its two component metrics measure slightly different
underlying factors in the design.

To see the correlation between DEE1 and the reported design effort better,
Figure 4 shows a scatter plot of DEE1 estimations versus reported design effort.
The Figure has one data point per component and design. From the figure, we
see that most of the DEE1 estimations are very close to the reported design
effort. The exception is the data point for the Leon3 pipeline, where the DEE1
estimation is 12.8 months, and the reported effort is 24 months. In practice, most
of the estimators in Table 1 underestimate the effort for the Leon3 pipeline. The
reason is that this pipeline is more sophisticated than the other components
and designs. Indeed, while IVM and PUMA only execute a subset of Alpha
and PowerPC, respectively, Leon3 is a full SPARC V8 compliant processor. In
addition, Leon3 is highly configurable, for example the user can select different
processor and cache parameters.
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Fig. 4. Scatter plot of DEE1 estimations versus reported design effort.

Accuracy without the Productivity Adjustment The last row of Table 1
shows the σǫ values that would be obtained if no productivity factor was used
– in other words, if ρi was 1 for the Leon3, PUMA, IVM, and RAT teams. This
approach was mentioned in Section 2.4.

From the values of σǫ, we can see that practically all the estimators lose
a significant amount of accuracy. For example, the σǫ for Stmts and FanInLC
becomes 0.60 and 0.82, respectively, which correspond to 90% confidence inter-
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vals of (0.37,2.68) and (0.26,3.85), respectively. Similarly, DEE1 expands its 90%
confidence interval to (0.41,2.39).

The loss of accuracy for Stmts is due to several factors. Specifically, while
Leon3 uses VHDL, the other designs use Verilog. Moreover, while RAT uses the
more compact Verilog-2001, PUMA and IVM use the more verbose Verilog-95.
Additionally, different coding styles add much noise to any correlation without
productivity adjustment. To compound the problem, it is known from software
projects that productivity across teams can vary by an order or magnitude [8].

The FanInLC and Nets estimators lose accuracy because each processor was
designed under a different set of constraints and a different set of tools. For
example, since Leon3 was designed for an area-constrained environment (FP-
GAs), a substantial effort was needed to reduce area and interconnections. On
the other hand, PUMA’s target was a high frequency CGaAs process. All these
effects again add noise to any correlation.

Overall, we conclude that, to have good processor design estimation accuracy
productivity adjustments are required.

4.2 Evaluation of PCB Designs

We analyze 12 different printed circuit boards from two separate companies.
Table 2 shows the main results and characteristics for each of these. The first
column corresponds to each of the statistics or metrics measured. Columns B1
to B12 correspond to each of the boards. The last column corresponds to the
σ between the row and design effort. Since the boards either were designed by
the same team, or we only had one board from a particular company, we do
not evaluate the productivity factor (ρ). This simplifies the analysis, and we can
use nonlinear regression instead of the mixed-effects nonlinear regression model.
With σ we can compute the confidence interval. For the lognormal distribu-
tion used, the mapping between σ and the 90% confidence interval is shown in
Figure 3. We use this chart to compare the accuracy of different estimators.

The design effort values were obtained by interviewing the original designers.
Obviously, there is perfect correlation with itself so σ = 0. A zero σ results in
a perfect (1, 1) confidence interval. We now proceed to analyze easily available
statistics like number of components and pin count. These two sets of statistics
are easily available before the PCB design starts. They are part of the PCB
specification.

From the boards analyzed, we observe that it is best to use the total number
of components to estimate design effort (σ = 0.53). Although traces for analog
components and digital components are more difficult than traces for passive
components, the low amount of digital and/or analog components on several of
the boards make it difficult to use them as a method to estimate effort. Using
Figure 3 and a σ = 0.53, the intersection between the components line and
the confidence interval line is (0.41, 2.39). This means that using the number of
components on the specification, we have a 90% confidence that the design effort
would be between 0.41 and 2.39 times the prediction.
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B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 σ

Design Effort 68 35 43 21 48 48 24 40 32 24 12 400 –

Components
# Passive 213 165 101 80 108 222 116 86 83 19 47 2643 0.56
# Digital 15 0 17 0 8 2 0 11 8 4 4 94 1.79
# Analog 35 24 8 10 24 53 28 4 16 1 11 91 1.18
Total # 263 189 126 90 140 277 144 101 107 24 62 2828 0.53
Total Area 6214 9053 6964 2719 9144 6579 8104 12193 12296 777 5430 38611 0.75

Pins
Passive 563 429 365 182 414 578 414 194 188 39 109 5843 0.62
Digital 154 0 518 0 107 32 0 175 173 88 32 6889 1.88
Analog 360 208 216 98 72 448 150 25 53 14 65 924 1.10
Total 1077 637 1099 280 593 1058 564 394 414 141 206 13647 0.45

PCB Size 221 221 221 162 387 204 221 109 109 12 254 726 0.93
# of Sides 1 1 1 1 1 1 1 2 2 2 1 2 0.81
# of R. Layers 2 2 3 2 2 2 3 2 2 4 2 6 0.66
# of Layers 4 4 6 4 4 4 4 2 2 4 2 8 0.67

Comp. Density 70 50 33 33 21 80 38 27 29 55 14 115 0.60
Pin Density 54 32 55 19 17 57 28 40 42 122 9 207 0.64
µPCBComplexity 60 38 37 18 30 61 25 36 37 25 12 543 0.24

Table 2. Statistics, design effort, and correlation results of study boards.

Statistics about the pins are as easily available as components even before
the design starts. The number of pins is a better predictor (σ = 0.45) than the
number of components. The resulting 90% confidence interval for the number
of pins is (0.47, 2.09). This means that just by using the pins, we have a 90%
confidence that the prediction is around half or double the expected design effort.
Not shown in the table is the result of combining the number of pins and the
components to predict design effort. The results did not improve because there
is a high correlation between pins and components.

Area is not such an effective metric. Even assuming a perfect knowledge if the
final dimension of the board, we can just estimate design effort with a (0.21, 4.61)
confidence interval. Table 2 also shows other statistics such as number of sides
used, routing layers, and number of layers. Those statistics are not so useful by
themselves because they are highly quantized, and this makes them difficult to
use to predict effort.

To obtain the proposed µPCBComplexity metric shown in Table 2, we ana-
lyzed multiple combinations of parameters and followed suggestions from expe-
rienced board designers. The best results were achieved when using the following
equation:

Effort = w1 * # Components + w2 * Comp. Density + w3 * Pin Density (7)

To capture component and pin density, we define them with equation 8 and
equation 9 respectively.

Component Density =
# Components

PCB Area × # Sides w/ components
(8)

Pin Density =
# Pins

(PCB Area)
(9)
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To obtain the factors on equation 7, we perform nonlinear regression as ex-
plained in Section 2.3. Although neither pin nor component density can achieve
better predictions than the number of pins, when integrated together in the
µPCBComplexity metric we achieve a 0.24 σ. As Figure 3 shows, this represents
a (0.58, 1.72) confidence interval. This roughly means that by using the proposed
µPCBComplexity metrics, with a 90% confidence designers can predict design
effort with less than 40% error.
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Fig. 5. Scatter-gather plot of design effort vs. PCB metric

Each point corresponds to a different board. The plot does not include the B12
board to zoom on the area where most of the boards are located. This plot is
an intuitive way to see that there is a high correlation between design effort and
the metric proposed.

µPCBComplexity works well because PCB design complexity increases as
the component and pin density increases. Designers can increase the number of
layers on the PCB to decrease the pin density or increase the area to reduce
both densities. The problem is that both approaches require more costly boards.
As a result, designers tradeoff between time to market and density.

5 Related Work

The work most related to ours in processor analysis is done by Numetrics, a com-
pany specializing in enterprise software and services product development [18].
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They propose a “complexity unit” to measure the level of project difficulty and
to quantify the development team’s output. Patent 6,823,294 describes a method
to estimate design effort. If we apply the method to our data, the result is consid-
erably less accurate than DEE1. After discussions with Numetrics, they informed
us that the patent represented preliminary work, and that their current mod-
els are more advanced. Unfortunately, little detail is available on these models
because it is considered a technological advantage for their company.

Kahng [12] identifies the need for standards or infrastructures for measuring
and recording the semiconductor design process. The author proposes improv-
ing design technology, time-to-market, and quality-of-result by addressing the
Design Productivity Gap and the Design ”Technology” Productivity Gap. How-
ever, this previous work focused mostly on the problems associated with the
infrastructure and design tools related to the physical implementation of semi-
conductor designs, while the focus of this work is layout effort associated with
PCB designs and design effort for processor flows.

In [17] introduces a weighting approach similar to the productivity factor
described in our work. They use the “process productivity parameter” to tune the
estimating process for software projects. They contend that if you know the size,
time, and the process productivity parameter you can use it to make estimates
for a new project. So long as the environment, tools, methods, practices, and
skills of the people have not changed dramatically from one project to the next.

In [4] the issue of embedded passive components is discussed as a necessity
to the smaller electronic devices requiring ever smaller PCBs. They note that
board area is becoming so critical that to keep pace with the size constraints
new techniques are required. Our goal would be to eventually develop a set of
metrics and a model that estimates design effort by also taking into account
manufacturing times.

Recently, some research has focused on reducing the number of RTL redesigns
during the timing closure process. To streamline timing closure, new methods
have been developed to predict logic criticality [13] and wire congestion [14] early
in the RTL design phase. With these predictors, logic designers can focus their
attention on the critical logic during the initial implementation, reducing the
number of redesign cycles.

As process technology has improved, the major source of signal propagation
delay has shifted from gates to wires. In [6] a new metric for evaluating intercon-
nect architectures is proposed. The metric is computed by looking for an optimal
assignment of wires from a given wire length distribution. This information is
used to generate an interconnect architecture. That metric compares impacts of
geometric parameters as well as process and material technology advances on
designs.

Fornaciary et al. [9] propose a methodology to predict the final size of a
VHDL project on the basis of a high-level description. With this, they seek some
indication of development effort by estimating the number of lines of code from
starting specifications. While their method is shown to be accurate in predicting
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lines of code, it dies not address design effort aspects, such as the number of
engineering person-months required for the project.

6 Conclusions

Design complexity is rapidly becoming a limiting factor in the design of modern,
high-performance microprocessors and systems. This work addresses the lack of
quantitative approaches to estimate the design effort for modern systems and
processors by making three major contributions:

First, we use the µComplexity methodology to measure and estimate proces-
sor design effort. µComplexity consists of three main parts, namely a procedure
to account for the contributions of the different components, accurate statistical
regression using a nonlinear mixed-effects model, and a productivity adjustment
to account for the productivities of different teams.

Second, we apply µComplexity to four designs and evaluating a series of
estimators based on synthesis and software metrics. The evaluation uncovered a
few simple, good design effort estimators, namely the number of lines of HDL
code (or HDL statements) and the sum of the fan-ins of all the logic cones.
A slightly more accurate estimator is DEE1, which is the linear combination of
HDL statements and fan-ins of all the logic cones. We recommend this estimator,
but using estimators that combine a larger number of metrics may make sense
for a practitioner that has access to more data.

Third, we introduce a procedure, µPCBComplexity , to estimate PCB design
effort. PCB design effort is estimated by correlating some easily obtained metrics
from the design of a PCB, and the design time required during the layout stage
of development.

The evaluation section reveals how multiple metrics, traditionally used by the
design community to estimate design effort, are fairly uncorrelated with actual
design time. These include dynamic or static power, logic or storage area, fre-
quency, number of flip-flops and, somewhat surprisingly, the number of standard
cells. The number of cells and transistors are two popular design effort estima-
tors used by Sematech and the SIA roadmap. Finally, the evaluation shows that
both the productivity adjustment and the µComplexity accounting procedure
are necessary to produce accurate estimators.

The PCB evaluation shows how simple statistics like the area size and number
of components yield some correlation with design effort. With a 90% confidence,
pins has a (0.47, 2.09) confidence interval. This means that roughly by looking at
the number of pins, the typical design time error is half/double with a 90% confi-
dence. Much better results can be achieved with the proposed µPCBComplexity

metric. In that case the confidence interval for a 90% confidence is (0.58, 1.72).
This roughly means that less than 40% estimation error is done with a 90%
confidence.
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Abstract. Although transistor scaling keeps following Moore`s law, and more 
area is available for designers, the clock frequency and ILP rate do not present 
the same level of growth anymore. This way, new architectural alternatives are 
necessary. Reconfigurable fabric appears to be one emerging possibility: 
besides exploiting the parallelism among instructions, it can also accelerate 
sequences of data dependent ones. However, reconfiguration wide spread usage 
is still withheld by the need of special tools and compilers, which clearly do not 
sustain the reuse of legacy code without any kind of modification. Based on all 
these facts, this work proposes a new Binary Translation algorithm, 
implemented in hardware and working in parallel to the processor, responsible 
for transforming sequences of instructions at run-time to be executed on a 
dynamic coarse-grain reconfigurable array, tightly coupled to a traditional RISC 
machine. Therefore, we can take advantage of using pure combinational logic to 
optimize even control-flow oriented code in a totally transparent process, 
without any modification in the source code or binary. Using the Simplescalar 
Toolset together with the MIBench embedded benchmark suite, we show 
performance improvements and area evaluation when comparing against a 
traditional superscalar architecture. 

Introduction 

The possibility of increasing the number of transistors inside an integrated circuit with 
the passing years, following Moore´s Law, has been pushing performance at the same 
level of growth. However, high performance architectures as the diffused superscalar 
machines are now challenging well known limits of the ILP [1]: considering the 
Intel’s family of processors, the IPC rate has not increased since the Pentium Pro [2]. 
This way, recent speed-ups in performance occurred mainly thanks to boosts in clock 
frequency through the employment of deeper pipelines. Even this approach, though, is 
reaching a limit. For example, the clock frequency of Intel’s Pentium 4 processor only 
increased from 3.06 to 3.8 GHz between 2002 and 2006 [3].  

Because of these reasons, companies are migrating to chip multiprocessors to take 
advantage of the extra area available, even though there is still a huge potential to 
speed up a single thread software. Hence, new architectural alternatives that can take 
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advantage of the integration possibilities and that can address the performance issues 
stated before become necessary. 

Reconfigurable fabric appears to be a serious candidate to be one of these 
solutions. By translating a sequence of operations into a combinational circuit 
performing the same computation, one could gain performance and reduce energy 
consumption at the price of extra area [4][5]. Furthermore, at the same time that 
reconfigurable computing can explore the ILP of the applications, it also speeds up 
sequence of data dependent instructions, which is its main advantage when comparing 
to traditional architectures. Dataflow architectures put this concept to the edge, 
achieving huge speed-ups [11]. 

Another advantage of reconfigurable architectures is their regularity: it is common 
sense that as the more the technology shrinks, the more important regularity becomes 
– since this will affect the reliability of printing the geometries employed today in 65 
nanometers and below [6]. Besides being more predictable, regular circuits are also 
low cost, since as more customizable the circuit is, more expensive it becomes. This 
way, reconfigurable architectures based on regular fabric could solve the mask cost 
and many other issues such as printability, power integrity and other aspects of the 
near future technologies. 

However, even with all these positive aspects cited before, reconfigurable 
architectures are still not largely used. The major problem precluding their usage is 
the necessity of special tools and compilers, modifying in somehow the source or 
binary code. As the old X86 ISA has been showing, keeping legacy binary code reuse 
and traditional programming paradigms are key factors to reduce the design cycle, 
allowing one to deploy the product as soon as possible on the market. 

Based on all these facts, our work proposes the use of a technique called Dynamic 
Instruction Merging, which is a new binary translation approach implemented in 
hardware, used to detect and transform sequences of instructions at run time to be 
executed on a reconfigurable array, in a totally transparent process: there is no 
necessity of changing the code before its execution at all.  

The employed array is coarse-grained and tightly coupled to the processor, 
composed of simple functional units and multiplexers. Therefore, it is not limited to 
the complexity of fine-grain configurations, making possible its implementation in 
any future technology, not just in FPGAs. Consequently, we can take all the 
advantages of the reconfigurable systems cited before, maintaining independence of 
technology and binary code reuse. 

In this work we show some results concerning the potential of using such 
technique, demonstrating the binary translation algorithm, the structure of the 
reconfigurable hardware and how they interact with each other. Besides presenting 
the performance improvements and area overhead, we also compare our technique 
against a superscalar processor based on MIPS R10000.  

This paper is organized as follows. Section 2 shows a review of the existing 
reconfigurable processors, some other approaches regarding dynamic translation of 
instructions and what is our contribution considering the whole context. Section 3 
demonstrates the system, looking at the structure of the reconfigurable array and the 
algorithm itself. Section 4 presents the simulation environment and results. Finally, 
the last section draws conclusions and introduces future work. 
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Related Work 

Reconfigurable Architectures 

The well known ASIP circuits have specialized hardware that accelerates the 
execution of the applications they were designed for. A system with reconfigurable 
capabilities would have almost the same benefit without having to commit the 
hardware into silicon. A reconfigurable processor can be adapted after design, in the 
same way programmable processors can adapt to application changes. That is why 
reconfigurable systems have already shown to be very effective, implementing some 
parts of the software in a hardware reconfigurable logic, as shown in Figure 1. Huge 
software speedups [4] as well as a reduction in system energy have been achieved [5].  
 

 
 
 
 

 
 

Fig. 1. An example of a reconfigurable system 

Reconfigurable systems can be classified in different ways and aspects, 
considering coupling, granularity and instructions type [7]. A large range of systems 
with reconfigurable logic has already been proposed. For instance, processors like 
Chimaera [8], have a tightly coupled reconfigurable array in the processor core. The 
array is, in fact, an additional functional unit in the processor pipeline, sharing the 
same resources of the other units.  

Reconfigurable fabric has also been applied in other levels of the architecture, 
imposing radical changes to the programming paradigm, involving the development 
of new compilers and tools. Putting this concept to the edge, an example of total 
dataflow architecture is the Wavescalar processor [11]. 

Binary Translation 

The concept of binary translation (BT), illustrated in Figure 2, [12] is very ample and 
can be applied in various levels. BT is based on a system, which can be implemented 
in hardware or software, responsible for monitoring the running program. After the 
analysis, some transformation is done in the code, with the purpose of adapt an 
existing binary to be executed in a specific ISA, to provide means to enhance the 
performance or even both. 
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Fig. 2. The Binary Translation (BT) process 

Existing optimizations include dynamic recompilation and caching of previous 
binary translation results. For instance, the Daisy architecture is based on a VLIW 
processor that uses binary translation at runtime to better exploit the ILP of the 
application [13]. One of the advantages of using this technique is that this process is 
transparent, since there is no need for any modifications in the binary code. 
Consequently, it requires no extra designer effort and causes no disruption to the 
standard tool flow used during the software development.  

Reuse of Instructions 

The idea of trace reuse is based on the principle of instruction repetition [14]. This 
principle relies on the idea that instructions with the same operands will be repeated a 
large number of times during the execution of a program. Hence, instead of executing 
the instruction again using an ordinary functional unit, the result of this instruction is 
fetched from a special memory.  

Trace reuse is based on an input and an output context. For a given sequence of 
instructions, the context of the first instruction of this sequence is saved. The output 
context, in turn, is the set of results of all last instruction of this sequence. A context is 
composed by the program counter, registers and memory addresses. Each time that an 
instruction with the same input context previously found is executed again, the 
processor state is updated with the output context, avoiding the execution of all 
instructions that compose that trace. A special memory, called Reuse Trace Memory 
(RTM), is used for storing the values. Figure 3 summarizes this process. 

 
 
 
 
 
 
 
 
 
 

Fig. 3. The trace reuse technique 

However, the context and trace sizes usually become huge, limiting the field of 
action of such approach, and increasing the complexity of the reuse detection 
algorithm. Good results are achieved just when using very optimistic assumptions, 
such as one cycle per trace reuse and the use of huge Reuse Trace Memories, not 
feasible even in future technologies because of power issues. The memory size grows 
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too fast mainly because identical sequences of instructions, but with different contexts 
(as different input operands), must occupy different slots in this special memory. 

Dynamic Detection and Reconfiguration 

Trying to unify some of these ideas, Stitt et al. [15] presented the first studies about 
the benefits and feasibility of dynamic partitioning using reconfigurable logic, 
producing good results for a number of popular embedded system benchmarks. The 
structure of this approach, called warp processing, is a SOC. It is composed by a 
microprocessor to execute the software, another microprocessor where the CAD 
algorithm runs, a dedicated memory and an FPGA. Firstly, the microprocessor 
executes the binary, and a profiler monitors the instructions in order to detect critical 
regions. After that, the CAD software decompiles it to a control data flow graph, 
make the synthesis and maps the circuit onto a simplified FPGA structure. 

However, although the CAD system is very simplified comparing to conventional 
ones, it remains complex: it does decompilation, CFG analysis, place and route etc, 
and, according to the work, 8 MB of memory are necessary for its execution, which is 
still huge for nowadays on-die memories. Another issue is the use of the FPGA itself: 
besides area consuming, it is also power inefficient because of the excessive switches 
and the considerable amount of static power. As a consequence, this technique is just 
limited to critical parts of the software, working well just in very particular programs, 
such as the ones based on filters. 

In [16] it is also presented a very similar reconfigurable structure used in this work: 
a coarse-grain array, composed by very simple functional units, tightly coupled to an 
ARM processor. This array is called CCA. However, in the same way of the 
technique above, it relies on complex graph analysis, which is performed statically 
with compiler help. Moreover, it does not support memory operations or shifts, and 
has a very small number of input and outputs allowed, limiting its field of application. 

Our Approach 

Our work is based on a special hardware (Dynamic Instruction Merging Machine), 
designed in order to detect and transform sequences of instructions to be executed on 
the reconfigurable hardware. This is done concurrently while the main processor 
fetches valid instructions. When this unit realizes that there is a certain number of 
instructions that are worth being executed in the array, a binary translation is applied 
to this sequence. This translation transforms the original sequence of instructions to a 
configuration of the array, which performs exactly the same function. After that, this 
configuration is saved in a special cache, indexed by the PC register. 

The next time the saved sequence is found, the dependence analysis is no longer 
necessary: the processor just needs to load the configuration from the special cache 
and the operands from the register bank, setting the reconfigurable hardware as active 
functional unit. Then, the array executes the configuration with that context and 
writes back the results, instead of executing everything in the normal flow of the 
processor. Finally, the PC is updated, in order to continue the normal operation.  
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Depending on the size of the special cache used to keep these configurations, the 
increase in performance can be extended to the whole software, not being limited to 
loop centered applications. By transforming any sequence of opcodes into a single 
combinational instruction in the array one can achieve great gains, since less access to 
program memory and less iterations on the datapath are required. 

In a certain way, the approach saves the dependence information of the sequences 
of instructions, avoiding performing the same job for the same sequence of 
instructions as superscalar processors do. It is interesting to point out that almost half 
of the number of pipeline stages of the Pentium IV processor is related to dependence 
analysis [3]; and half of the power consumed by the core of the Alplha 21264 
processor is also related to extraction of dependence information among instructions 
[17]. Moreover, both the DIM machine as the reconfigurable array work in parallel to 
the processor, bringing no delay overhead or increasing the critical path of the 
pipeline structure. 

Comparing to the techniques cited before, our approach also takes advantage of a 
reconfigurable system, but a coarse grain one, so it can be implemented in any 
technology, not just FPGAs. Together with that, we use binary translation to avoid the 
need for code recompilation or the utilization of extra tools, making the optimization 
process totally transparent to the programmer. The algorithm for the detection and 
transformation of binary code is very simple, in the sense that it takes advantage of 
the hierarchal structure of the reconfigurable array. Hence, the use of complex on-
chip CAD software or graph analyzers is not necessary, which usually makes use of 
another processor in the system just to perform this task. 

Moreover, the proposed technique relies on the same basic idea of trace reuse, 
where sequences of instructions are repeated. However, it presents the advantage that 
just one entry in the special memory is needed for the same sequence of instructions, 
even when they have different contexts. This takes the pressure off from the cache 
system, making possible its implementation with a small memory footprint, with 
realistic assumptions concerning execution and accesses times, even for present days 
technologies. Figure 4 summarizes the technique and its similarities with the previous 
ones. 

 
 
 
 
 
 
 
 
 
 

 

Fig. 4. The proposed approach 

 

  1st time

Running program 

Processor 

BT

Save

PC = 0x50 PC = 0x50 PC = 0x50 PC = 0x50

Next times

Rec. Cache 

Load 
configuration

Reconfigurable
Array 

Execute

Load  
operands 

Write  
Back 

 

Antonio Carlos Schneider Beck, Luigi Carro 276



Reconfigurable Accelerator with Binary Compatibility for General Purpose 

 
In the follow subsections we explain the architecture of the array, how it works 

together with the main processor, the detection and translation algorithm process and 
how the loading and execution of instructions inside the reconfigurable array are 
performed. 

THE RECONFIGURABLE SYSTEM 

Architecture of the Array 

The reconfigurable unit is a dynamic coarse-grain array tightly coupled to the 
processor, working as another functional unit in the execution stage, using the same 
approach of Chimaera [8]. This way, no external accesses to the array are necessary 
(which in turn could increase the delay and power consumption). Furthermore, this 
makes the control logic simpler, diminishing the overhead required in the 
communication between the reconfigurable array and the rest of the system. The array 
is two dimensional, composed by rows and columns, where an intersection between 
one row and one column is represented by ordinary functional units (ALU, shifter, 
multiplier, etc), where each instruction is allocated. If two instructions do not have 
data dependence, they can be executed in parallel, in the same row.  

A column is homogeneous, having always the same kind of functional unit. It is 
divided in groups, where each group takes a determined number of cycles to be 
executed, depending on the delay of each functional unit. The delay can vary 
depending on the technology and the way the functional unit was implemented. The 
detection algorithm can be adapted to different delays. For instance, according to the 
critical path of the processor, more sequential ALUs can be put together to be 
executed at the same cycle. 

An overview of the general structure of the array is shown in Figure 5. Basically, 
there is a set of buses that receive the values from the registers. These buses will be 
connected to each functional unit, and a multiplexer is responsible for choosing which 
value will be used (Figure 5a). As can be observed, there are two multiplexers that 
will make the choice of which operand will be issued to the functional unit. We call 
them as input multiplexers. After that, there is a multiplexer for each bus line that will 
choose what result will continue through that line. These are the output multiplexers 
(Figure 5b). As some of the values of the input context or previous results generated 
by previous operations can be used by other functional units after it was already used, 
the first input of each output multiplexer is the previous result of that bus.  

Note that in the simple example used in Figure 5, the first group supports up to two 
loads to be executed in parallel, while in the second group three simple 
logic/arithmetic operations are allowed. The reconfigurable array can not afford any 
kind of floating point operation. 
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Reconfiguration and Execution 

As the detection for the address that will be used in the reconfiguration is done in the 
first stage of the pipeline, and the reconfigurable array is in the fifth stage, there are 4 
cycles available between the detection and the use of the array. As one cycle is 
necessary to find the cache line that has the array configuration, three cycles are 
available for the reconfiguration, which involves the load of the values of all registers 
that will be used by that configuration, the load of immediate values, the 
configuration for the multiplexers and functional units and so on. 

During the execution of the operations in the array, one issue is the load 
instructions. They stay in a different group in the array as shown in figure 5, and the 
number of columns of this group depends on the number of read ports available in the 
memory (which means the number of loads that can occur simultaneously). 
Operations that depend on the result of a load have already been allocated in the array 
during the detection phase, considering a cache hit as the total load delay. If a miss 
occurs, the whole array stops until it is resolved.  

Finally, the results that need to be written back either in the memory or in the local 
registers are allocated in a buffer. The values will be allowed to be written back just 
when they are not used anymore for that configuration of the array. For instance, if 
there are two writes in the same register in a determined configuration, just the last 
one will be performed, since the first one was already consumed inside the array by 
other instructions. 

 
 

 
 
 
 
 
 
 
 
 

Fig. 5. The structure of the Reconfigurable Array 

The Binary Translation Algorithm 

Data structure 
Some tables are necessary in order to perform the routing of the operands inside the 
reconfigurable array as well as the configuration of the functional units. Other 
intermediate tables are also needed, however, they are just used during the detection 
phase. These tables are: 

Dependence table: Saves information of data dependence of each row. This table is 
in fact a small bitmap of 32 bits. It informs what registers in that row will be written. 

(a) 

(b)
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Note that it is not necessary to store this information for each instruction. 
Summarizing the information in a bitmap for each row one can reduce the hardware 
necessary to check true data dependencies (RAW – read after write). 

Resource Table: Stores what function each functional unit must perform.  
Read Table: Informs what operand from the input context must be read. This table 

has two inputs, since there are two source operands for each functional unit. It is 
important to point out that the input context is basically an indirect table. In other 
words, not necessarily the first slot needs to store the value of the register R1.  

Write table: This table informs what value each context slot will receive. This table 
is different when comparing to the read one. In the previous table the multiplexers 
were responsible for choosing what values from the context slots would be issued to 
each functional unit. This table informs what values from the whole set of the 
functional units that compose each row will continue in each slot of the context bus.  

Context table: This table has two lines, the first one representing the input context, 
and will be used in the reconfiguration phase, and the second one called current table, 
that will be used during the detection phase. Its final state represents what values will 
be written when the execution of the array finishes.  

How it works 
To better explain the algorithm, we will start with its simplest version, considering 
that the array is composed just by adders. The following steps represent pipeline 
stages when considering the implementation in hardware. 

Considering that 
inst op_w, op_r1, op_r2  

where inst is the current instruction and op_w, op_r1 and op_r2 are the 
target and the source operands, respectively, the follow steps are necessary. 

 
1st) Decode the instruction, returning the target and source registers of the current 

instruction; 
2nd) In the write table, for each row from 0 to N, verify if op_r1 and op_r2 exist. 

If any one of them or both exist in the line S, line O equals to S + 1. Considering a 
bottom-up search, the line s is the last one where op_r1 or op_r2 appears, since 
they may be found in more than one line. If nor op_r1 neither op_r2 exist in any 
line of this table, line O equals to 0.  

3rd) In the resource table, search in the columns of row O, from left to right, if there 
is a resource available for use. If there exists, we call this free column as C, and row R 
equals to O. If there is no resource available in row O, increment the value of O in 1 
and repeat the same operation, until finding the resource. This way, line R equals to O 
+ N, where N was the number of increments necessary until finding an available 
resource. This resource table is also represented by a bitmap. 
4th)   
• Update the bitmap write table in line R with the value of op_w 
• Update column C in row R of the resource table as busy 
• Search in the current context table if there are op_r1, op_r2 and op_w. For 

each one of these, if they exist, point L1, L2 and W to op_r1, op_r2 and op_w 
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respectively, and disable the correspondent write signals. If one of them does not 
exist in the table, the correspondent signal of write is set and the correspondent 
pointer is set to the next free column available. 

5th)  
• Depending on the step 4c, the current context table is updated. 
• The initial context table is also updated, if one of the write signals concerning 
op_r1 and op_r2 are set. 

• In the write table, write the value of C in the row R, column W.  
• In the read table, write the values of L1 and L2 in line R, column C (it is 

important to remember that each column of this table has two slots, as explained 
earlier) 

 
Summarizing the algorithm, for each incoming instruction, the first task is the 

verification of RAW (read after write) dependences. The source operands are 
compared to a bitmap of target registers of each row. If the current row and all above 
do not have that target register equal to any of the source operands of the current 
instruction, this instruction can be allocated in that row, in a column as left as 
possible, depending on the group, as explained before.  

When this is instruction is allocated in that row, the bitmap of target registers is 
updated. This way, for each instruction just one bitmap per line is necessary to be 
analyzed. Indirectly, such technique increases the size of the window of instructions, 
which is one of major limiting factors of ILP, exactly due to the number of 
comparators that is necessary [19]. For each row there is also the information about 
what registers can be written back or saved to the memory. This way, it is possible to 
write results back that will not be used anymore in the array in parallel to the 
execution of other operations. Figure 6 demonstrates an example of a sequence of 
instructions allocated in the reconfigurable array. 

The complete version of the algorithm supports functional units with different 
delays and functions, and the use of immediate values in the input context; handles 
with false data dependencies among instructions; and performs speculative execution. 
For the speculative execution, each operand that will be written back has a flag 
indicating its depth concerning speculation. When the branch is taken, it triggers the 
writes of these correspondent operands.  

The speculative policy is one of the simplest ones, based on bimodal branch 
predictor. For each level of the tree of basic blocks, the counter must achieve the 
maximum or minimum value (indicating the way of the branch). When the counter 
equals to this value, the instructions corresponding to this basic block are added to 
that configuration of the array. The configuration is always indexed by the first PC of 
the whole tree. If miss speculation occurs a determined number of times, achieving 
the opposite value of the respective counter, that entire configuration is flushed out 
and another one begins, starting everything again. 

 
 
 
 
 

Antonio Carlos Schneider Beck, Luigi Carro 280



Reconfigurable Accelerator with Binary Compatibility for General Purpose 

 
Fig. 6. An example of how a sequence of instructions is allocated inside the array 

RESULTS 

Performance 

The Simplescalar toolset was employed for our experiments. We used the PISA 
instruction set, which is based on the MIPS IV ISA. Although the out-of-order 
simulator has some differences when comparing to the MIPS R10000 processor, we 
configured it to behave as close as possible to this processor. The configuration is 
summarized in Table 1a.  

In Table 1b, we show three different configurations for the array that we used in 
the experiments. The last configuration was used in order to try to figure out what is 
the real potential of our technique. For each array configuration we also vary the size 
of the reconfiguration cache: 2 to 512 slots. Moreover, for each one of these 
configurations we evaluate the impact of doing speculation, up to three basic blocks 
ahead. Furthermore, we increased the cache memory in order to achieve almost no 
cache misses, so we can evaluate our results without the influence of it. 

Table 1. Configurations 

 

 

 

Out of Order 

Fetch, decode and commit = up to 4 instructions 
Register Update Unit = 16 Entries 
Load/Store Queue = 16 entries 
Functional Units = 2 Integer ALU, 1 multiplier, 2 memory ports 
Branch Predictor = Bimodal/512 entries 

 

 Reconfigurable Array 
C #1 C #2 C #3 

#Lines 27 54 99 
#Columns 11 16 30 
#ALU /  line 8 8 11 
#Multipliers / line 1 2 3 
#Ld/st / line 2 6 8 

(a) (b)
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Table 2a shows the IPC of the out-of-order processor cited before. This table can 

be used to compare the IPC of this processor against the IPC of the instructions that 
are executed inside the array, in different configurations. For each configuration, we 
vary the speculation: no speculation, 1 and 2 basic blocks ahead. We also change the 
number of slots available in the reconfigurable cache (4, 16, 64, 128 and 512). We are 
using a subset of the MIBENCH set [10].  

Table 2. IPC in the Out-of-Order and average Basic Block size 

 

 

 

 

 

 

As it is shown in Figure 7, we can achieve a higher IPC when executing 
instructions in the reconfigurable array in comparison to the out-of-order superscalar 
processor in almost all variations. However, the overall optimization when using our 
technique depends on how many instructions are executed in the reconfigurable logic 
instead of using the normal flow of the processor. Table 3 shows the overall speedup 
obtained when coupling the reconfigurable array to the out-of-order processor against 
the out-of-order without it. 

The four benchmarks were chosen because they represent a very control-oriented 
algorithm, a dataflow one and a midterm between both, plus the CRC, which is the 
biggest benchmark in the set. In Table 2b the benchmarks are classified according to 
the average number of branches per instructions. It is important to notice that 
reconfigurable systems in general can just show improvements when the programs are 
very dataflow oriented. The proposed technique, on the other hand, can optimize 
control and data oriented programs, as it can be observed by the results. 

 
 
 
 
 
 
 
 
 
 

Algorithm IPC - Out-of-Order  BB size 
Basicmath 1.43  5.8751 
CRC 2.13  7.9954 
dijkstra 1.76  5.6011 
Jpeg decode 1.86  6.2554 
patricia 1.40  4.4255 
qsort 1.79  4.6243 
sha 1.94  7.9381 
stringsearch 1.60  4.8709 
Susan Smoothing 1.64  15.8098 
Susan Corners 1.83  13.4952 
tiff2bw 1.90  22.5567 
tiff2rgba 1.92  13.4952 
tiffdither 1.56  18.9188 
tiffmedian 1.91  30.686 

 
(a) (b)
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Fig. 7. IPC rate in the reconfigurable array considering different configurations and cache sizes. 

Table 3. Speedups using the reconfigurable array coupled to the out-of-order processor 

 

 

 

 
 
 
 
 
 
 
 
 
 

Algorithm #Cycles in the 
Out-Of-Order  

% of Speed Up - Out-of-Order coupled to array with configuration 1 
No Speculation Speculation 2 Speculation 3 

4 64 256 4 64 256 4 64 256 
Basicmath 111169924 5.03 13.75 17.85 3.52 14.49 21.79 3.40 15.22 23.31 
CRC 399531928 -16.01 -16.03 -16.03 -5.20 -5.21 -5.21 9.03 9.03 9.03 
dijkstra 31094638 -22.29 -24.31 -24.33 1.30 1.25 1.25 8.45 8.46 8.46 
Jpeg decode 3942226 -9.15 -9.72 -9.77 4.63 3.24 3.29 7.11 7.45 7.61 
patricia 95927575 4.41 13.30 13.72 3.99 14.42 21.52 3.26 14.22 21.96 
qsort 23435690 -8.76 -11.69 -11.69 -0.58 4.18 4.18 0.37 -30.41 -30.21 
sha 6800950 11.56 13.07 13.07 27.22 33.45 33.45 26.30 31.29 31.29 
stringsearch 115917 16.32 20.16 21.23 28.95 35.20 35.24 28.50 35.39 35.38 
S. Smoothing 15628090 -0.94 -3.22 -3.22 0.31 -0.99 -1.00 2.13 1.59 1.59 
S. Corners 533870 2.16 1.79 1.79 4.40 4.29 4.28 1.13 4.29 4.28 
tiff2bw 27391803 -4.24 -4.38 -4.42 0.88 0.82 0.82 -0.20 -0.20 -0.20 
tiff2rgba 23796384 -10.94 -11.39 -11.40 -1.53 -1.75 -1.75 -1.19 -1.39 -1.40 
tiffdither 188757828 1.48 8.88 8.92 6.65 9.34 9.41 4.47 -21.46 -23.52 
tiffmedian 93254386 3.95 3.74 3.73 12.91 12.82 12.82 7.42 7.38 7.38 

 

Algorithm #Cycles in the 
Out-Of-Order  

% of Speed Up - Out-of-Order coupled to array with configuration 3 
No Speculation Speculation 2 Speculation 3 

4 64 256 4 64 256 4 64 256 
Basicmath 111169924 5.76 19.27 26.40 4.63 19.83 30.33 4.86 20.52 32.14 
CRC 399531928 3.97 3.97 3.97 8.12 8.14 8.14 20.75 20.77 20.77 
dijkstra 31094638 -21.96 -20.08 -20.04 1.00 4.34 4.36 4.13 7.65 7.67 
Jpeg decode 3942226 9.76 11.92 12.05 16.55 18.94 19.06 16.77 19.51 19.68 
patricia 95927575 5.06 17.97 18.89 5.25 18.80 29.07 4.57 18.58 29.80 
qsort 23435690 24.29 38.95 38.95 16.79 43.74 43.74 16.44 40.72 40.72 
sha 6800950 22.57 25.48 25.48 39.91 48.66 48.66 41.27 50.28 50.28 
stringsearch 115917 21.02 27.05 30.57 31.25 41.02 41.17 31.04 42.61 42.63 
S. Smoothing 15628090 25.35 35.66 35.69 26.87 37.95 37.96 23.73 32.05 32.04 
S. Corners 533870 32.69 41.44 41.44 37.53 41.44 41.45 33.89 37.13 37.12 
tiff2bw 27391803 -5.65 -5.42 -5.39 19.08 19.60 19.60 24.41 25.22 25.22 
tiff2rgba 23796384 57.19 57.83 57.83 58.29 59.69 59.69 47.30 48.87 48.87 
tiffdither 188757828 4.33 18.15 18.30 10.73 19.33 19.57 7.95 14.31 14.60 
tiffmedian 93254386 14.13 14.11 14.13 27.23 27.43 27.43 27.36 27.72 27.72 
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Area Evaluation 

In order to give an idea of the area overhead, we implemented the hardware detection 
and the reconfigurable array in VHDL. The tool used was the Mentor Leonardo 
Spectrum [9], with the library TSMC 0.18u. As we do not have available any 
implementation of a superscalar processor in any Hardware Description Language, we 
took the data about its number of transistors from [18] and other measurements from 
[19]. Although this comparison will not give us exactly values, it will present realistic 
measurements about the implementation of our approach. 

Table 4a shows how many functional units and multiplexers would be necessary to 
implement the configuration #1 of table 1, and what are the number of gates they take. 
In this same table one can also observe the number of gates taken by the Dynamic 
Instruction Merging hardware. In table 4b it is shown the number of bits necessary to 
keep one configuration in the reconfigurable cache. Note that, although 256 bits are 
necessary for the Write Bitmap Table, they are not counted in the final total. This 
table is temporary and is used just during detection. This way, there is no need to save 
its values in the special cache. Finally, in table 4c, the number of Bytes needed for 
different cache sizes is presented, depending on how much configurations they can 
store. 

Table 4. Area evaluation 

 
 
 
 
 
 
 
 
 
Finally, Figure 8a represents the MIPS layout with the reconfigurable array. 

According to [18], the total number of transistors of core in the MIPS R10000 is 2.4 
million. As presented in table 4a, the array together with the hardware detection 
occupies 735,223 gates. We are considering that one gate (result given by the 
synthesis tool) is equivalent to 4 transistors, which would be the amount necessary to 
implement a NAND or NOR gates. This way, the reconfigurable array and DIM 
hardware would take 2,940,892 transistors. The area overhead is represented in Figure 
6b. In this figure is also presented the area overhead concerning the reconfigurable 
cache, in number of different configurations supported. 

 
 
 
 
 
 
 
 
 

(c) (b)(a) 

Unit # Gates 
ALU 216 337,824 
LD/ST 36 5,904 
Multiplier 6 20,067 
Input  510 327,420 
Output  216 66,096 
DIM Hardware 1,024 
Total 735,223 

Table #bits 
Write Bitmap Table 256 
Resource Table 903 
Reads Table 1,896 
Writes Table 648 
Context Start 40 
Context Current 40 
Immediate Table 128 
Total 3655 

#Slots #Bytes 
2 7,566 
4 14,620 
8 30,143 
16 58,480 
32 118,856 
64 233,920 

128 468,488 
256 935,680 
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Fig. 8. Area overhead presented by the reconfigurable array and its special cache 

CONCLUSIONS AND FUTURE WORK 

Although there are some improvements concerning the algorithm and the structure of 
the reconfigurable array, this work demonstrated that it is possible to keep advantage 
of a reconfigurable architecture to speed up the system, in a totally transparent 
process and with a feasible area overhead. Using speculation in the array, we have 
obtained a mean speedup of up to 30% in the IPC using configuration 3, when 
comparing against a MIPS R10000 based superscalar processor. Now, we are working 
on finding the best shape for the reconfigurable array.  

Another future work will be the measurement of the energy consumption of the 
system. Similar techniques applied to an embedded processor have already shown that 
such structures bring a huge energy saving [20] since, besides the fact that this 
technique trades sequential logic for combinational one to execute instructions, less 
accesses to the instruction memory are required, as well as less dependence analysis 
between instructions are necessary. 
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FIRST ORDER, QUASI-STATIC, SOI CHARGE 
CONSERVING POWER DISSIPATION MODEL 

Sameer Sharma and L G. Johnson  
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Abstract. Conventional MOS models for circuit simulation assume that the 
channel capacitances do not contribute to net power dissipation. Numerical 
integration of channel currents and instantaneous terminal voltages however 
shows the existence of higher order dissipating terms. To overcome these 
limitations, we present a self-consistent, first order, quasi-static power 
dissipation model that is able to predict dissipative (transport) and conserved 
(charging) current components. Charge conservation is insured by using the 
current continuity equation. An analytical expression for energy stored in the 
channel is derived by separating out current components that contribute to net 
power dissipation. The power dissipation estimation is made computationally 
efficient by leaving out energy conserving terms. 

1. INTRODUCTION 

Modeling is a process of accurately representing the behavior of a device to be used in a 
circuit simulator. Designers need these reliable and accurate device models for circuit 
development. With the growth of CMOS technology, MOSFET modeling has become 
increasingly important. The accurate modeling of the MOSFET channel capacitance has been 
an ongoing effort for many decades. First, Meyer’s [1] reciprocal capacitive model, then 
Ward’s [2] charge-based non-reciprocal capacitance model have been used. Many papers have 
been written on the comparison of these models. Some [3-5] claim that Meyer’s model fails due 
to charge non-conservation which justifies the usage of charge-based models, while others 
claim [6-7] that the charge non-conservation is mainly due to the incorrect mathematical 
modeling of non-linear capacitance by the simulation software. Recent papers on field-
dependent mobility [8] and laterally asymmetrical doping [9] have now shown inconsistencies 
in Ward’s model, which artificially partitions the channel charge into source and drain 
components. As pointed out by Fossum [10], it is not clear whether we have explored all other 
possibilities; we may be able to achieve a better result with a different channel partition or may 
be with no partition at all.  

 
Many models have also been put forward to analyze the charging and the trans-capacitive 

current components. One of such models by Lim and Fossum [11] has a first order transient 
transport current and suggests the difference between non-reciprocal capacitive elements to be 
responsible for this current. We show that this model is correct for transistor current 
computation; however it is inconsistent and has some drawbacks when used to predict power 
consumption. These drawbacks are: 
• Lim-Fossum’s equations use Ward’s channel charge partition model. 
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• The MOS capacitors dissipate power and the trans-capacitive term used in the charge model 
includes both dissipating as well as conserved components which are not separated.  
 
The charge partition model puts a constraint only on charge conservation. Even though the 

model predicts the channel charge correctly to first order, the device power is only predicted to 
zero order. The model may not include complete first order trans-capacitive currents due to the 
redistribution of the charges in the channel. This could cause the actual output waveform and 
delay to deviate from the simulation results [12]. In reality, the MOS channel is not purely an 
energy storage device [13]. Thus, it is not appropriate to leave out higher order dissipating 
terms due to charge redistribution as they become significant at higher frequencies. 

 
Though many papers/chapters [3-5, 14-17] have been written on the transient transport 

current, no one has found a solution to separate the transport and charging current components. 
This makes our model and the closed form expressions for the dissipative and conserved 
currents significant. We have developed a self consistent, quasi-static, charge conserving, first 
order power dissipation model. It analyzes the first order power dissipation and computes the 
energy function for the conserved component of the charge storage. The existence of the energy 
function makes it possible to exclude energy conserving terms that do not contribute to power 
dissipation, making the total power estimation computationally efficient.  

 
The rest of the paper is organized as follows. In the second section, we have used a one 

dimensional MOSFET transistor model with the current continuity equation to compute the 
channel currents and the channel charges as well as the currents at the source and the drain 
ends. In the third section, we have computed the power by integrating the power density over 
the entire channel. This leads to the derivation of an energy function in section four. In section 
five, we discuss the first order dynamic power dissipation model. Using the conserved power 
components, we have separated the conserved and dissipative current components in section 
six. Finally, we have developed an equivalent circuit by following the method used by Lim-
Fossum and verified the results for current and charge. Even though they used a charge 
partition instead of solving exactly as we have, both models predict the same source and drain 
currents, and hence the same terminal capacitances. However, we are able to separate out these 
capacitances into conserved and dissipative components.  

 

2. CHARGE DISTRIBUTION CALCULATION 

 
Fig. 1. SOI MOSFET Structure 

In order to obtain an analytical solution, the current flow is considered in one dimension 
parallel to the surface of the device. It is assumed that the region under the channel is 
completely depleted of mobile charges. This fully depleted assumption for SOI MOSFET’s 
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helps us to make use of a linear relationship between the body and the surface potential to 
compute the stored energy function without partitioning the channel charge. The linear relation 
also provides a simplified charge model and terminal currents. It should be noted that solving 
these equations involves complicated algebraic calculations that are practically impossible 
without modern mathematics tools like “Mathematica” [18].  
 

 
Fig. 1 shows NMOS SOI transistor. The charge per unit length ( qc ) at a position x along the 

channel is given by 
 ( ) ( ( ) ( ) / )q x c v v v x q x cc ox gb fb cb b oxφ= − − − − +  (1) 

Similarly, the body charge (back gate) per unit length ( qb ) at x can be written as 

( ) ( ( ))1q x c k v xb ox cbα= − +    (2) 

where v fb
, vgb

 and vcb  are the flat band, gate and channel voltages with respect to the body. 

1k  and α  are body effect coefficients. ( / )c W c Aox ox= is the oxide capacitance per unit 

length, where W is the channel width. Charge conservation is insured by defining the gate 
charge per unit length qg

as 

( )q q qg b c= − +   (3) 

It will be convenient to define the channel charge per unit length at the source ( 0)x qs= and the 

drain ( )x L qd=  and their time derivatives as 

q c vs ox gst= −    (4) 

where v v v vgst gb t sb= − −   

d dq c vs ox gstdt dt
= −   (5) 

In equation (4), vt is the threshold voltage. The body effect requires including the dependence of 
the threshold voltage on source terminal voltage and the substrate charge parameter [22]. 

 ( ) 0v v v vt sb t sbα= +    (6) 

where 
0 1v v kt fb φ= + + is the threshold voltage at zero vsb, andφ is the fermi potential. At the 

drain end, 
q c vd ox gdt= −   (7) 

where (1 ) ( )v v v v v vgdt gb t sb db sbα= − − − + −  

d dq c vd ox gdtdt dt
= −   (8) 

It is assumed that positive current flows into the drain and velocity saturation effects can be 
neglected. Assuming strong inversion, diffusion current in the channel is small. Drift current at 
a distance x along the channel can be written as 

( , ) ( , ) ( )di x t q x t v xc c cbdx
μ=   (9) 

where μ is the charge carrier mobility in the channel. Charge conservation is assured using 
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the one dimensional continuity equation 

( , ) ( , )d di x t q x tc cdx dt
= −         (10) 

Using (9) in (10) gives 

[ ( , ) ( )] ( , )d d dq x t v x q x tc cb cdx dx dt
μ = −   (11) 

Taking the spatial derivatives of charge per unit length as a linear function of potential along 
the channel as in equation (1) and (2) gives 

( , ) (1 ) ( )d dq x t c v xc ox cbdx dx
α= +   (12) 

Substituting ( )d v xcbdx
 in (11) and rearranging terms gives 

(1 )[ ( , ) ( , )] ( , )d d dq x t q x t c q x tc c ox cdx dx dt
α
μ
+

= −   (13) 

In the quasi-static approximation, equation (13) can be solved iteratively to compute the current 
and the charge in the channel by expanding ....0 1q q qc c c= + +  where 0qc  is a function of 

terminal voltages only and 1qc  is a linear function of first order time derivatives of terminal 

voltages. In terms of the steady state (zero order) charge per unit length at any position x along 
the channel, equation (13) reduces to 

( ) 00 0
d dq qc cdx dx

=   (14) 

Performing integration from the source ( 0)x = to the drain ( )x L= , the zero order charge along 
the channel becomes 

2 2( (1 / ) /0q q x L q x Lc s d= − − +   (15) 

and the steady state drift current component of equation (9) simplifies to 

0 0 0(1 )
dI q qc c cc dxox

μ
α

=
+

  (16) 

Equation (16) gives the usual equation for steady current neglecting velocity saturation, which 
is shown in Table I. The first order current and charge can be found by keeping terms of first 
order in time derivatives in equation (13) 

(1 )( )0 1 1 0 0
d d d dq q q q c qc c c c ox cdx dx dx dt

α
μ
+

+ = −   (17) 

Rearranging the terms, equation for the first order channel charge simplifies to  
(1 ) 1 ( [ ] ) )1 0

0

dq c q x dx dxc ox cq dtc

α
μ
+

= − ∫ ∫   (18) 

and the first order current reduces to 

( )1 0 1 1 0(1 )
d di q q q qc c c c cc dx dxox

μ
α

= +
+

  (19) 

Finally, equation (19) can be solved to compute the first order channel current at the source 
( 0)1 1i i xs c= =  and the drain ( )1 1i i x Ld c= − = ends in all regions of operation. We have 

assumed pinch-off saturation which occurs when 0qd =  for
( )

(1 )

v vgs tvds α

−
≥

+
. In cut-off, it is 
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assumed that both 0qd = and 0qs = . Table 1 summarizes the charge and current in all 

regions of operations.  

2.1.  Derivation of First Order Channel Charge and Channel Current  

The equations for first order channel charge and first order currents were used in the 
previous section, however, the derivations were not shown, which is given in this section. 
These derivations are one of the most important findings of our research.  

 
The first order channel charge allows calculating the first order channel current without the 

charge partition, which can be used to calculate the first order drain and source currents. The 
first order channel current also makes it possible to derive the conserved and dissipative power 
components.   

 
Taking charge density as a function of potential along the channel, and keeping terms of first 

order in time derivatives, current continuity equation (17) can be rearranged to be written in 
terms of first order channel charge per unit length as  

(1 ) 1 [ ] 1 01 0
0

c doxq q x dxdx c x cc cq dtc

α

μ

+
= − + +∫ ∫

   

(20) 

where 0qc  is the zero order channel charge density and is given by equation (15). 
 
c1 and c0 

are constants of integration and can be calculated using the boundary condition 01qc =  at 

0x = and x L=   
(1 )

0 [ ]0
0

c doxc q x dxdxcdt
x

α

μ

+
= ∫ ∫

→  

 

2 2(4 5 )(1 )4 20 2 2 315 ( )

d d dq q q q q q qc d s d d s s sox dt dt dtc L qs q qd s

α

μ

− ++
=

− +
 

(21) 

(1 )
1 [ ]0

c doxc q x dxdxcdt
x L

α

μ

+
= ∫ ∫

→
 

(1 )41
15

5 3 2 5 5 2 3 5( ( 5 4 ) (4 5 ) )

2 2 3( )

coxc L

d dq q q q q q q q q q q qd d d d s s s d d s s sdt dt
q qd s

α

μ

+
=

− − + − − +

− +
 

(22) 

Substituting the values of c0, c1 and 0qc in (20), the first order charge at any point x along 

the channel then becomes 
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4 2 2(4 5 )1 {4 (1 2 2 32 2 ( )( )
15

5 5 3 2 2 3(( 4 ( ) 4 ( )

4 4 2 3(4 ) ( 4 )) ) /( ) ( ) )

d d dL q q q q q q q qs d s d d s s sdt dt dtq C Lc c q qq L x q x d ss d
L

d d d d d dq q q q q q q q q q q qd d s s d s d s d s d sdt dt dt dt dt dt
d d d dq q q q q q q q x q q q qd s d s d s d s d s d sdt dt dt dt

μ

− +
= − +

− +− +

− + − + + − + −

+ + + − +

3/ 22 2( )1 2 2( (4 5 )2 2 3( )

( )( )( ) )))

q L x q x d d ds d Lq q q q q q q qs d s d d s s sL dt dt dtq qd s
d dq q q q q q q q xd s d s d d s sdt dt

−

⎛ ⎞− +⎜ ⎟ − + −⎜ ⎟⎜ ⎟− ⎝ ⎠

− + −

 

The first order channel current at any position x along the channel can now be estimated 
using equation (19).

 

Taking derivatives of qc0 and qc1, and substituting the corresponding 
values, equation (19) expands to

 4 3 2 2 3 4{4( ( 4 4 4 )1 2 315( ) ( )

4 3 2 2 3 4 2 2(4 4 4 )} 10( )( (1 )

2 2 2 2{ (2 (3 ) ) ( )( ) }

L di q q q q q q q q q qc d d d d s d s d s sdtq q q qd s d s
d x xq q q q q q q q q q q q q qd s d d s d s d s s d s s ddt L L

d d d dq q q q q q q q q q q q q xs d d s d s s d s d d s sdt dt dt dt

= + − − − +
− +

+ + − − − + − +

− − − − −

  

As mentioned above, this is one of the most important findings of our research and can be 
solved to find the first order drain ( , )1 1i i x Lc d− = →  and source ( , 0)1 1i i xc s= →  current 

components, which are shown in Table 1. These results obtained without partitioning the 
channel charge are in agreement with previous results by Lim and Fossum, which were 
obtained using Ward’s partition. Therefore we have verified that Ward’s partition is correct 
when the body charge has a linearly dependence on channel potential.  

3. CALCULATION OF MOSFET POWER 

This section describes the detailed derivations of MOS power components. To not to 
confuse with the general definition of the static and dynamic power terms, channel power 
components are defined as the zero and the first order powers. It should be pointed out that the 
zero order power is different than the static power. In general, static power is defined as being 
independent of time (time invariant). However, the zero order power that has been used in this 
study is time variant. Although there is no explicit dependence, it depends on the terminal 
voltages that change in time. In fact it includes exactly the dynamic powers terms that are 
proportional or are the functions of the terminal voltages, and ignore the explicit terms 
proportional to dv/dt. The first order power on the other hand, depends on the time derivatives 
of the terminal voltages, while the dynamic power that has been used in the literature depends 
on energy stored in external capacitances which includes zero order and some of the first order 
power dissipated in the transistor. 
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The steady state current is usually used to determine power dissipation for MOS transistors. 

Charge redistribution in the channel causes additional power dissipation. In the quasi-static 
model, charge redistribution is assumed to happen instantaneously with no propagation delays. 
However, the channel charge density still changes as an indirect function of time through the 
dependence on time varying terminal voltages. This allows the use of the quasi-static model to 
predict the charge redistribution and the associated power dissipation.  

 
The conventional charge model is based on the assumption that the MOSFET capacitors do 

not contribute any net power dissipation in the channel. But, the channel capacitances are not 
energy conserving [13]. They do have some higher order power dissipative terms due to the 
charge redistribution in the channel. These dissipative terms become significant at higher 
frequencies, which make it essential to include their effects for accurate power dissipation 
prediction. 

 
Fig. 2 shows a MOS device. Considering a slice of thickness xΔ , MOS channel can be 

thought of having two power components:  
• Dissipative component (Fig. 2a): The current ( )i x flowing through the slice of thickness 

xΔ having a potential vΔ which looks like a series resistance and results in the power 
dissipation of i vΔ .  

• Conserved component (Fig. 2b): The rate of change of charge that is building in the slice 
due to the difference in current iΔ . This power change v iΔ  is the energy stored in the 
charge at the potential ( )v x   

 

Fig. 2: MOS Channel Power Calculation 

The instantaneous total power going into the transistor channel Pc  can be estimated by 

integrating the power density over the channel length: 

( ( ) ( ) )
0

( )( ( )) ( )( ( ))
0 0

L dP i x v x dxc c cbdx

L Ld dv x i x dx i x v x dxcb c c cbdx dx

= ∫

= +∫ ∫

   (23) 

where the first integral represents change in stored energy and second term represents power 
dissipation. Keeping non-zero terms to first order in time derivatives, equation (20) can be 
expanded as:  

0 1, 1,P P P Pc c c diss c cons= + +    (24) 
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where 

( ( )) ( )0 0 0 00

L dP I v x dx I v vc c cb c db sbdx
= = −∫    (25) 

( ( ))1, 1 00

L dP i v x dxc diss c cbdx
= ∫    (26) 

( )1, 0 10

L dP v i dxc cons cb cdx
= ∫    (27) 

The total instantaneous power P into the transistor is the sum of channel power Pc  and gate 

power
1,Pg cons

.  

1,P P Pc g cons= +  

   (28) 
where the gate power is  

1, 1P i vg cons g gb=    (29) 

Equation (25) represents the zero order power dissipation. Equation (26) represents the first 
order power dissipation due to the trans-capacitive transient current components and equation 
(27) represents the first order conserved power in the channel.  Table 2 summarizes the power 
components.  

4. ENERGY STORED IN THE CHANNEL 

For the stored energy derivation, we have assumed that there is no charge leakage from the 
gate to the channel. However, energy is still supplied from the gate to drive the channel 
charges. It becomes necessary to add the conserved power contribution from the gate together 
with the channel conserved power. It is then possible to derive a closed form analytical solution 
for an energy function from the total conserved power.  

4.1. Energy function validation for the channel 

Clairaut’s theorem states that, “If two second order partials are continuous, they will be 
equal”. The same theorem can be used to check the equality of second order partial and verify 
the existence of the energy function.   

 
Using equation (29), the conserved gate power can be written in terms of energy as 

1,

E dv E Edv dvE dv g gb g gdb sbPg cons v dt v dt v dt v dtgb db sb

∂ ∂ ∂∂
= = + +
∂ ∂ ∂ ∂

 

(30) 

where Eg is the gate energy. Comparing (29) and (30), 'E s
v

∂
∂

 can be derived from the 

coefficients of 
dv jb

dt
as  
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2 (2 )

23( )

E c Lv v v vg ox gbt gst gdt gst
v v vsb gdt gst

∂ − +
=

∂ +
  (31) 

2 ( 2 )

23( )

E c Lv v v vg ox gbt gdt gdt gst
v v vdb gdt gst

∂ − +
=

∂ +
  (32) 

22( )1 (6 )26 ( )

E v vg gdt gstc Lvox gbtv K v vgb gdt gst

∂ −
= −

∂ +
  (33) 

As mentioned earlier, energy function exists if and only if the second order partials are 
equal. Taking partials and comparing equations (31-33), it is found that the second order 
partials are not equal. Hence, energy function does not exist for the gate.  

4.2. Energy function validation for the channel 

Taking similar approach, 'E s
v

∂
∂

 are calculated from the coefficients of 
dv jb

dt
in 1,Pc cons  in 

(27) as  
2(3( ) 4 (2 )

26( )

c Lv v v v v vE ox gst gdt gst gbt gdt gstc
v v vsb gdt gst

− + − +∂
=

∂ +
(34) 

2(3( ) 4 ( 2 )

26( )

c Lv v v v v vE ox gdt gdt gst gbt gdt gstc
v v vdb gdt gst

− + − +∂
=

∂ +
 (35) 

3 2 2(3( ) 4 ( 4 )

26 ( )

c L v v v v v v vE ox gdt gst gbt gdt gdt gst gstc
v K v vgb gdt gst

+ − + +∂
=

∂ +

 

(36) 
where Ec is the channel energy. It can again be shown that the second order partials are not 

equal and the channel also has no energy function from all of its conserved components. 

4.3. Energy function validation for combination of the gate and the channel 

Combining the conserved gate and channel power components, the first order conserved 
power can be written as 

( ) ( ) ( )
E dv E EE E dv E dvg gb g gc c db c sbPcons v v dt v v dt v v dtgb gb db db sb sb

∂ ∂ ∂∂ ∂ ∂
= + + + + +

∂ ∂ ∂ ∂ ∂ ∂

 

(37) 
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which can again be solved to get 'E s
v

∂
∂

 from the coefficients of 
dv jb

dt
as 

2(3( ) 4 (2 )

26( )

2 (2 )

23( )

c Lv v v v v vE ox gst gdt gst gbt gdt gst
v v vsb gdt gst

c Lv v v vox gbt gst gdt gst

v vgdt gst

− + − +∂
=

∂ +

− +
+

+
(38) 

2(3( ) 4 ( 2 )

26( )

2 ( 2 )

23( )

c Lv v v v v vE ox gdt gdt gst gbt gdt gst
v v vdb gdt gst

c Lv v v vox gbt gdt gdt gst

v vgdt gst

− + − +∂
=

∂ +

− +
+

+
 (39) 

22( )1 (6 )26 (1 )( )

3 2 2(3( ) 4 ( 4 )

26(1 )( )

v vE gdt gstc Lvox gbtv v vgb gdt gst

c L v v v v v v vox gdt gst gbt gdt gdt gst gst

v vgdt gst

α

α

−∂
= −

∂ + +

+ − + +
+

+ +

 

(40) 
   

In this case, second order partials are equal. It confirms that an energy function exists from 
all of the conserved components of the gate and the channel. 

4.4. Energy Function Equation 

The existence of an energy function was validated in previous section. In this section an 
energy function equation is derived solving the partial differentials using  

( , , ) ; , ,
EEE gcv v v j g s dgb sb dbv v vjb jb jb

∂∂∂
= + =

∂ ∂ ∂
   (41) 

This method however, is cumbersome as it involves lots of algebra. A simple solution is 
possible by separating the gate power into two components. 

1, 1 1 0 1 0P i v i v i vg cons g gb g gbt g t= = +
  (42) 

where 0 0v v vgbt gb t= − and 1 0i vg t is the threshold power. In terms of energy, the gate power 

becomes 
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0 0 0( ) ( ) ( )1,

dE dv dE dEdE dE dv dE dvgbt gb gbt gbtt t db t sbPg cons dv dv dt dv dv dt dv dv dtgb gb db db sb sb
= + + + + +

 (43) 
where 0Et and is the threshold energy function and Egbt is the energy function from the 

remaining gate terms. Equation (41) now can be rewritten as 

0( , , ) ; , ,
EE EE gbtc tv v v j g s dgb sb dbv v v vjb jb jb jb

∂∂ ∂∂
= + + =

∂ ∂ ∂ ∂
 (44) 

Though the total E
v

∂
∂

is same, the separation of the threshold component makes it possible to 

derive two simple energy functions, one from the combination of 
EE gbtc

v vjb jb

∂∂
+

∂ ∂
, and the other 

from 0Et
v jb

∂

∂
. These two energy functions can then be combined to find the total energy 

function.  

4.4.1. Threshold Energy Function (Et0) Calculation 
 

From (42) and (43), the threshold power can be written as 

0 0 0
1 0

vE E v E vgbt t db t sbi vg t v t v t v tgb db sb

∂∂ ∂ ∂ ∂ ∂
= + +
∂ ∂ ∂ ∂ ∂ ∂

 (45) 

where 1ig is the gate current. Since 0vt is constant, the threshold energy function can be 

estimated using  

( )0 1 0 0
dE i v Q vt g t g tdt

= =  (46) 

where Qg is the gate charge and is given in Table III. 
 

4.4.2. Ecgbt Calculation 
 

Leaving out the threshold terms, equation (44) reduces to  

( , , ) ; , ,
E EEcgbt gbtcv v v j g s dgb sb dbv v vjb jb jb

∂ ∂∂
= + =

∂ ∂ ∂
 

(47) 

which can be solved to find E
v

∂
∂

’s as 

1 (2 )
2

Ecgbt c L v v vox gbt db sbvgb

∂
= − −

∂
 (48) 
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1 ((1 ) )
2

Ecgbt c L v vox sb gbtvsb
α

∂
= + −

∂
 (49) 

1 ((1 ) )
2

Ecgbt c L v vox db gbtvdb
α

∂
= + −

∂
 (50) 

The second order partials of equations (48-50) are equal. It shows that an energy function 
also exist for the sum of remaining gate and channel components. This energy function 
Ecgbt can then be calculated solving the partial differentials with three independent voltage 

variables , ,v v vgb sb db  respectively. 

Solving with respect to the gate potential 

1 2( , ) ( ) ( , )1 0 0 0 12

EcgbtE dv E v v c L v v v v v E v vcgbt gb sb db ox gbt gbt db gbt sb sb dbvgb

∂
= + = − − +∫

∂

Solving with respect to the drain potential 

1 12( , ) (1 ) ( , )2 24 2

EcgbtE dv E v v c L v c Lv v E v vcgbt db gb sb ox db ox gbt db gb dbvdb
α

∂
= + = + − +∫

∂
  

Solving with respect to the source potential 

1 12( , ) (1 ) ( , )3 0 34 2

EcgbtE dv E v v c L v c Lv v E v vcgbt sb gb db ox sb ox gbt sb gb dbvsb
α

∂
= + = + − +∫

∂
  

Comparing and combining equations for Ecgbt , the energy function reduces to 

1 2 2 2 2(( ( ) ( ) ( ) )0 04
E c L v v v v v vcgbt ox db sb gbt db gbt sbα= + + − + −

 
(51)  

 
 
The total energy function E  can now be estimated using (46) and (51) as 

0E E Ecgbt t= +   

and is shown in Table 3. 

5. DYNAMIC POWER DISSIPATION MODEL 

The basic idea of dynamic power estimation is that power dissipation comes from trapping 
the energy stored on a load capacitor by turning off a transistor very quickly. However, it does 
not make any sense as the first order dynamic power in those cases would be infinite. Also, the 
energy stored in the switching transistor should be included. In section 4, it was shown that an 
energy function was possible only from the combination of the gate and the channel conserved 
power components, which makes it very difficult to know the exact dissipation during the 
transients using the energy model alone. This is because the conserved components of channel 
currents are flowing in and out of the source and drain terminals during the transition. When the 
gate turns off, some of the energy supplied from the gate flows back to the supply through the 
source terminal while some of the energy gets dissipated from the drain terminal, and there is 
no way of telling what fraction goes to where without solving for the voltages and currents.  
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Charge based dynamic power estimation is an attractive alternate technique.  Even though 

we do not know how much of the stored energy flows out the source and drain, we can always 
find the total drain charge, Qd, and source charge, Qs, from Ward’s partition [2]. Qs and Qd are 
not physically separate but act as pseudo-charges, the sum of which constitutes the total 
channel charge. All they do is give a way to find the currents by taking their time derivatives. 
Even though there is no physical channel charge partition, it turns out that the current equations 
act as if they are the time derivatives of the charges. If currents are integrated over a time 
interval to get the total charges going in or out, it is exactly the same as the changes in Qs and 
Qd. Hence, we can figure out the total charge injected by a transistor without knowing the 
details of the waveform. All we need to know is the beginning and ending voltage of the 
transistor terminals and we can figure out ΔQ for each terminal. This ΔQ then gets added to the 
charge on the load capacitor and eventually all gets dissipated. 

 
The total power dissipation is the sum of dynamic power and short circuit power.  In 

contrast with dynamic power, short circuit power cannot be determined without an exact 
solution to the current and voltage waveforms.  Short circuit power comes from the zero order 
component of the drain current from the turned off transistor.  This current component is 
assumed to be zero in the following derivation.  

 

CL

ic

 
Fig. 3. Charge Based Dynamic Power Model 

 
Fig. 3 shows the charge based dynamic power model. If we define the drain current as 

positive going in, then the total charge coming out is negative of the integral of the drain 
current. The zero order turn on current ( )0i on

 
going from the source to the drain terminal can 

then be estimated using  
( )0i on dt Q Q QDP DN L− = −Δ − Δ − Δ∫

 
(52)  

where QLΔ gives the charge going into the load capacitance. QDPΔ  and QDNΔ are defined 

as the drain charges at the PFET and the NFET respectively and can be estimated from [11] as 
3 5 5( 1) ( 1)2 2(1 ) 23 2 1 5 (2 1)

u u up p pQ Lc vDP oxp p ds u up p

α

⎛ ⎞− − −⎜ ⎟
= − + − +⎜ ⎟− −⎜ ⎟

⎝ ⎠
  

(53)
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3 5 5( 1) ( 1)2 2(1 ) 23 2 1 5 (2 1)

u u un n nQ Lc vDN oxn n ds u un n

α
⎛ ⎞− − −⎜ ⎟= − + − +⎜ ⎟− −⎜ ⎟
⎝ ⎠

  
(54)

 where 
(1 )

v vgs tpu p vp dsα

−
=

+
, 

(1 )

v vgs tnun vn dsα

−
=

+
, coxp and coxn are the oxide capacitance per unit 

lengths, pα and nα are the bulk charge coefficients and vtp and vtn are threshold voltages of 

PFET and NFET respectively. The change in charge at the ground or the supply can then be 
estimated using 

( )0Q i on dt Q QS BΔ = − − Δ − Δ∫
 

(55)
 

where QSΔ and QBΔ are defined as the changes in source and the substrate charges. Using this 

approach, the difference in charge at ground due to a falling transient can be estimate using 
Q Q Q Q Q Qf DPf DNf Lf SNf BNfΔ = −Δ − Δ − Δ − Δ − Δ

 
(56)

 
and the difference in charge at ground due to the rising transient becomes 

Q Q Q Q Qr SNr BNr SNf BNfΔ = −Δ − Δ = Δ + Δ
 

(57)
 

which is correct if the short circuit power is zero. For a rising transient, as mentioned above, 
zero order components are assumed to be zero. Hence we only get the reverse changes in 

QSΔ and QBΔ . The difference in charge QΔ  can then be rewritten as 

Q Q Q Q Q Qr f DPf DNf LfΔ = Δ + Δ = −Δ − Δ −Δ
 

(58)
 

In equation (58), the last term represents the normal component present in the conventional 
dynamic power model, while our model adds two extra terms responsible for the first order 
power dissipation from charge stored in the channel. The dynamic power dissipation is then 
given by 

( )( ) ( ) ( ) ( )P Q V f Q final Q initial Q final Q initial V fdd r r f f dd
⎛ ⎞= Δ = Δ − Δ + Δ − Δ⎜ ⎟
⎝ ⎠  

(59)
 

which can be solved for a falling transient as
  

For the PFET: 

( ) 0
0

Q initial QDP DP Vgs
= =

→  
(60)

 

1( ) ( )
2, 0

Q final Q c V VDP DP oxp dd tpV V Vgs dd ds
= = +

→ − →  
(61)

 

From (60) and (61) 
1 ( )
2

Q c V VDP oxp dd tpΔ = +
 

(62)
 

 
For the NFET: 

1( ) ( )
2, 0

Q initial Q c V VDN DN oxn dd tnV V Vgs dd ds
= = − −

→ →  
(63)
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( ) 0
0

Q final QDN DN Vgs
= =

→  
(64)

 

From (63) and (64) 
1 ( )
2

Q c V VDN oxn dd tnΔ = −
 

(65)
 

 
For the load: 

( ) 0
0

Q initial C VL L db Vdb
= =

→  
(66)

 

( )Q final C V C VL L db L ddV vdb dd
= =

→  
(67)

 

From (66) and (67) 
Q C VL L ddΔ =

 
(68)

 
From (62), (65) and (68)  

1 1( ) ( )
2 2

Q C V c V V c V VL dd oxn dd tn oxp dd tpΔ = + − + +
 

(69)
 

Substituting QΔ  in (59), the dynamic power equation reduces to 
1 12 ( ) ( )
2 2

P C V f c V V V c V V V fL dd oxn dd tn dd oxp dd tp dd
⎛ ⎞= + − + +⎜ ⎟
⎝ ⎠  

(70)
 

Equation (70) shows the presence of extra dynamic power component to the conventional 
dynamic power equation. 
  

6. FIRST ORDER CURRENT COMPONENTS 

 

 
Fig. 4: First order dissipative and conserved current components 

 
As seen from Table I, first order current is a function of terminal voltages and their time 

derivatives, and as mentioned above, the coefficient of /dv dt instead of representing purely 
storage capacitance, is also responsible for some of the power dissipation in the channel. This 
suggests that the first order drain and the source currents consist of two separate components, 
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one that contributes to power dissipation in the channel, and another that is responsible for the 
energy storage. Taking this approach, id1 and is1 can be expanded as 

1 1, 1,i i id d cons d diss= +    (71) 

1 1, 1,i i is s cons s diss= +   (72) 

 
Fig. 4 shows this concept where first order currents id1 and is1 are separated into two 

components. Since the gate and the substrate currents are non-dissipative in the absence of 
leakage, there is no need to separate them. 

 
The dissipative current components in equations (71) and (72) are due to the first order 

power dissipation in the channel from the charge redistribution and is computed by dividing the 
power dissipated in the channel by the drain to source potential 

1,
1, , 1,

Pc dissi i id diss tt diss s dissvds
= = = −   (73)  

,itt diss
 in equation (73) is the trans-capacitive transport current that is responsible for the 

extra power dissipation in the channel, and is defined as positive going into the drain. The 
conserved drift component can now be computed by subtracting the dissipated component from 
the total first order current.  

1, 1 ,i i id cons d tt diss= −   (74) 

1, 1 ,i i is cons s tt diss= +   (75) 

 
Separation of currents into conserved and dissipative terms helps to compute the true energy 

conserving capacitances. True in the sense that these capacitances are estimated simply from 
the conserved components of current using equations (74) and (75).  

( ) ; , , , , .1, ,
i C v C v i j g d s bi cons cii t ib cij t jbj i b

= ∂ − ∂ =∑
≠

  (76) 

where ,C Ccii cij
are the conserved components of the capacitor. In equation (76) and all the 

subsequent equations, the subscript notation ‘c’ or ‘d’ is used for conserved or dissipative 
components. Table 4 and 5 summarize the conserved and dissipative components of currents 
and capacitances.  

7. EQUIVALENT CIRCUIT 

In this section, we develop an equivalent circuit by following the method used by Lim-
Fossum [11]. Table IV showed that the capacitances were not reciprocal, which makes the 
capacitance representation using two terminal reciprocal capacitances impossible if these 
capacitances are made to represent the total first order drain current. However, equation (74) 
can be rewritten with reciprocal capacitors as 

1, ,i C v C v id cons gd t dg bd t db tt cons= ∂ + ∂ +   (77) 

where  
( ) ( ),i C C v C C v C vtt cons gd cdg t gb csd cds t sb csd t ds= − ∂ + − ∂ + ∂   (78) 
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The dissipative component of current from equation (73) can also be written in terms of 
dissipative capacitances as 

1,i C v Cd diss ddd t db ddg t= ∂ − ∂   (79) 

 

Cgs

CbdCbs

Cgd
itt,cons

itt,diss

Ic0

DrainSource

Gate

Substrate

is

ig

id

ib

CgbMOSFET

ig
is

ib
id

 
Fig. 5: Equivalent Circuit for a four terminal SOI MOSFET 

 
Fig. 5 shows an equivalent circuit of a four terminal MOSFET. The model is equivalent to 

Lim-Fossum [11], but we have separated the trans-capacitive transport current, itt into 
conserved and dissipative components.  There are three current components flowing from the 
drain to the source terminal. The current component responsible for the first order power 
dissipation in the channel is represented by itt,diss the conserved current component is 
represented by itt,cons. Ic0 represents the steady state zero order current. The two terminal 
reciprocal capacitances Cgd, Cgs, Cbd, Cbs and Cgb represents the conserved gate to drain, gate to 
source, substrate to source, substrate to drain and gate to substrate capacitances respectively. 
The two terminal capacitances do not conserve energy by themselves; the conserved 
component of itt must be included. Cddd, Cddg, Cdds in equation (79) represents the dissipative 
drain to drain, drain to gate and drain to source capacitances respectively. 

8. MODEL VALIDATION AND COMPARISON 

 

 

Fig. 6: (a) Pass transistor logic (b) Voltage Waveforms 

In this section, we have shown that the gate is leakage free and does not contribute any net 
charge to the channel. We have also validated the fact that our first order power dissipation 
model is indeed a charge conserving, as the total charge over a complete cycle is conserved. 
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Fig. 6 shows the idealized voltage waveforms for the drain, gate and the source terminals 

used to pass the logic through the NFET. The drain terminal is assumed to be high during the 
entire simulation, while the gate and the source potentials goes through many transitions. In the 
first transition (t0 to t1), the gate terminal goes from low at t0 to high at t1, while the source 
potential remains low. The transistor enters the saturation as soon as the gate to source potential 
becomes greater than the threshold voltage vt . The extra gate charge 1QgΔ , is then given by   

1

1 2 ( )0 01 31 3

Q c v c vg gg gb gg gbcutoff saturation

c v c v vox t ox dd t
α α
α α

⎛ ⎞ ⎛ ⎞Δ = Δ + Δ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= + + −⎜ ⎟+ +⎝ ⎠

  (80)  

During the second transition (t1 to t2), the gate terminal stays high ( vdd ) and the pass 

transistor remains in the saturation. The source terminal on the other hand, goes from low (0) to 

high (
1

v vdd t
α

−

+
) and the extra gate charge 2QgΔ becomes   

2 0
2 3 1

v vdd tQ c v cg gs sb oxsaturation α

−⎛ ⎞Δ = − Δ = −⎜ ⎟
+⎝ ⎠

  (81) 

The transistor now enters the cutoff (at t2) and remains there even though the gate and 
source terminals come back to its original states at t4 and t5. The extra gate charge during these 
transitions are given by 

3 1
Q c v c vg gg gb ox ddcutoff

α
α

⎛ ⎞Δ = Δ = −⎜ ⎟
+⎝ ⎠

  
(82) 

The total gate charge QgΔ is then calculated by adding the extra gate contributions as 

3

1
0

i
Q Qg gi

=

Δ = Δ =∑
  

(83) 

For a complete cycle, charge is conserved and there is no extra non-zero contribution from 
the gate. Fig. 7 shows this concept using a two dimensional profile, where /(1 )0v vsb gbt α= +  

sets a boundary between the cutoff and saturation regions. Simulation is started at some point 
A, and goes through transitions B, C and D, before settling back to its initial state at A.  
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Fig. 7 : Charge Profile    Fig. 8: Capacitance Plots vs. vds 
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Our model also verifies that Ward’s method of charge partitioning works correctly as long 
as the body charge has a linear dependence on the channel potential. It predicts the same source 
and the drain currents, and hence the same terminal capacitances. However, we are able to 
partition these capacitances into conserved and dissipative components, as shown in Fig. 8. The 
partitioning approach to capacitances offers several advantages over conventional trans-
capacitances. 
• The energy stored in the conserved capacitances can be predicted.  
• They can be made to agree with Meyer’s capacitances [1] if the body effect and body bias 

are ignored.  
 
Our other significant contribution has been in the power estimation. Our models have 

improved the device power measurements by implementing two important concepts: 
• First order terms have to be included for power dissipation estimation as they become 

significant at higher frequencies. 
• Stored components can be ignored for computationally efficient power dissipation 

estimation. 
The average device power, P , is then possible by taking dissipative current times voltage 

and integrating them over time. A simple simulation can be used to show the importance of first 
order power.  

 
Fig. 9: vgb and vdb waveforms 

 
Fig. 9 shows the idealized voltage waveforms for the drain and the gate terminals used for 

simulation of turning a transistor on then off. The average first order dissipative power from the 
first transition (vds=vdd) when vgb goes from low at t0 to high at t1 is computed by 

1 1 ( )( ) 1, 1,0 1 ( ) 01 0

t
P i v i v dtt t t d diss db s diss sbt t

= +→ ∫
−

     (84) 

If we assume the source and the substrate are at the same potential (vsb=0), equation (84) 
can be rewritten as 

1 1 ( )( ) 1,0 1 ( ) 01 0

t
P i v dtt t t d diss dbt t

=→ ∫
−

  (85) 

In the second power dissipating transition, when the gate terminal is high, the drain swings 
from high at t1 to low at t2. The dissipative power equation (84) reduces to 

21
( ) 1,1 2 ( )2 2 1

t
P i v dtt t d diss dbt t t

=→ ∫
−

     (86) 
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During the interval t2 to t4, there is no power dissipation in the channel (vds=0). The final 
power transition occurs when the drain waveform swings from low at t4 to high at t5. As the 
gate voltage has already reached a steady low value, the power equation becomes 

51
( ) 1,4 5 ( )5 4 4

t
P i v dtt t d diss dbt t t

=→ ∫
−

    (87) 

The total dissipative power for a complete cycle is computed taking the sum of all these 
powers as 

( ) ( ) ( )0 1 1 2 4 5
P P P Pt t t t t t= + +→ → →   (88) 

For a complete cycle, energy is conserved. This allows us to leave out the conserved 
component from the power equation for computationally efficient power dissipation predictions 
[13]. Nonetheless, the total dissipative power includes the first order terms as predicted by 
equation (88). These first order dissipative components become significant at higher 
frequencies and modify the total power dissipated in the channel as shown in Fig. 10. The total 
power is no longer constant, and at high frequencies becomes dependent on the switching 
frequencies.  
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Fig. 10: Dissipative Power vs. Frequency Fig. 11: Conserved Power vs. Frequency 
 
The result also shows that we need to be extra careful while doing the power measurements. 

It is not appropriate to look only at the channel dissipation; the first order power dissipation 
does have contributions from the gate. If the power dissipation is estimated by just considering 
the total channel power, there would be an extra negative component from the conserved 
energy. In that case, the channel could act as an energy generator. In reality, that is not the case. 
Power is pumped from the gate to the channel and when the contribution from the gate is 
added, the conserved terms cancel out (Fig. 11).  

 

8. CONCLUSIONS 

The development of a self consistent, quasi-static, first order power dissipation model for a 
fully depleted SOI MOSFET has been described. The Lim-Fossum current and charge model 
has been verified as correct to first order even though the Ward partition of source and drain 
charge was used. The transient current is separated into conserved and dissipative components. 
Significance of higher order power dissipation at higher frequencies is discussed. The existence 
of energy function also is validated to make the power dissipation estimation computationally 
efficient. 
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Table 1: Charge and Current Equations for NMOS 

 Linear Saturation Cut-Off 
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Table 2: Power Equations 

 Linear Saturation Cut-Off 
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Table 3: Energy Function 

 Linear Saturation Cut-Off 
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Table 4: Conserved and Dissipative Current Components 

 Linear Saturation Cut-Off 
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Table 5: Conserved and Dissipative Capacitances 

 Linear Saturation Cut-Off 
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