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Abstract

Tumor necrosis factor-α (TNF-α) was first isolated two decades ago as a macrophage- 
produced protein that can effectively kill tumor cells. TNF-α is also an essential component 
of the immune system and is required for hematopoiesis, for protection from bacterial 

infection and for immune cell-mediated cytotoxicity. Extensive research, however, has revealed 
that TNF-α is one of the major players in tumor initiation, proliferation, invasion, angiogenesis 
and metastasis. The proinflammatory activities link TNF-α with a wide variety of autoimmune 
diseases, including psoriasis, inflammatory bowel disease, rheumatoid arthritis, systemic sclerosis, 
systemic lupus erythematosus, multiple sclerosis, diabetes and ankylosing spondylitis. Systemic 
inhibitors of TNF such as etanercept (Enbrel) (a soluble TNF receptor) and infliximab (Remicade) 
and adalimumab (Humira) (anti-TNF antibodies) have been approved for the treatment inflam-
matory bowel disease, psoriasis and rheumatoid arthritis. These drugs, however, exhibit severe 
side effects and are expensive. Hence orally active blockers of TNF-α that are safe, efficacious 
and inexpensive are urgently needed. Numerous products from fruits, vegetable and traditional 
medicinal plants have been described which can suppress TNF expression and TNF signaling but 
their clinical potential is yet uncertain.

Discovery of TNF
Tumor necrosis factor (TNF), an activity in the serum of endotoxin-injected animals, was first 

identified in 1944, rediscovered in the mid-1970s and chemically isolated from macrophage-con-
ditioned medium as a cytokine that kills tumor cells in culture in 1984.1,2 Two distinct factors were 
identified in macrophages and lymphocytes: TNF-α and TNF-β, respectively. The identification 
of their primary amino acid sequences led to the cloning of their genes and the availability of large 
amounts of pure cytokines for preclinical and clinical evaluation. Intravenous administration of 
TNF to cancer patients produced numerous toxic reactions including fever.3 In animal studies, 
TNF-α has been shown to mediate endotoxin-mediated septic shock.4 Several reports over the 
past years have indicated that dysregulation of TNF-α synthesis mediates a wide variety of auto-
immune diseases and cancer.2

Signaling Mechanism(s) by TNF-α
TNF-α mediates its effects through two different receptors: TNF receptor I (also known as p55 

or p60) and TNF receptor II (also known as p75 or p80). Whereas TNF receptor I is expressed 
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on all cell types in the body, TNF receptor II is expressed selectively on endothelial cells and on 
cells of the immune system.2,5 The cytoplasmic domain of the TNF receptor I has a death domain, 
which has been shown to sequentially recruit TNF receptor-associated death domain (TRADD), 
Fas-associated death domain (FADD) and FADD-like ICE (FLICE) (also called caspase-8) lead 
to caspase-3 activation, which in turn induces apoptosis by inducing degradation of multiple 
proteins.6 TRADD also recruits TNF receptor-associated factor (TRAF2), which through 
receptor-interacting protein (RIP) activates IκBα kinase (IKK) leading to IκBα phosphorylation, 
ubiquitination and degradation, which finally leads to NF-κB activation. Through recruitment of 
TRAF2, TNF also activates various mitogen-activated protein kinases (MAPK), including the 
c-jun N-terminal kinases ( JNK) p38 MAPK and p42/p44 MAPK. TRAF2 is also essential for the 
TNF-induced activation of AKT, another cell-survival signaling pathway. Thus TNFRI activates 
both apoptosis and cell survival signaling pathways simultaneously.7-9

Gene-deletion studies have shown that TNFR2 can also activate NF-κB, JNK, p38 MAPK and 
p42/p44 MAPK.10 TNFR2 can also mediate TNF-induced apoptosis.11 Because TNFR2 cannot 
recruit TRADD-FADD-FLICE, how TNFR2 mediates apoptosis is not understood. However, 
the true physiological role of TNF, its receptors and associated proteins has been explored through 
gene-deletion experiments. It was found that animals with homologous gene deletion are fully viable 
but are more susceptible to infection12-24 (Table 1). Overall the deletion of TNF, its receptors and 
associated proteins indicates the critical role of this cytokine in protection from microorganisms, 
the formation of lymph nodes and the development of the immune system.

Role of TNF-α in Cancer
TNF-α, initially discovered as a result of its antitumor activity, has now been shown to mediate 

all steps involved in tumorigenesis, including cellular transformation, promotion, survival, prolifera-
tion, invasion, angiogenesis and metastasis25 (Fig. 1). These are discussed in detail as follows.

TNF-α Can Induce Tumor Initiation and Promotion
A number of reports indicate that TNF-α induces tumor initiation and tumor promotion5,26,27 

Komori’s group reported that human TNF-α is 1000 times more effective than the chemical tumor 
promoters okadaic acid and 12-O-tetradecanoylphorbol-13-acetate in inducing cancer. Once 
initiated with these chemical carcinogens and exposed for 2 weeks to TNF-α, BALB/3T3 cells 
underwent transformation and yielded tumors in nude mice.28 The essential role of TNF-α in tumor 
promotion has also been demonstrated using TNF-α-deficient mice. Specifically, okadaic acid did 
not show any tumor-promoting activity in TNF-/- mice after up to 19 weeks of tumor promotion, 
whereas okadaic acid induced strong tumor-promoting activity in TNF+/+ mice. Tumor develop-
ment in TPA-treated TNF-/- mice was delayed and both the average number of tumors per mouse 
and the tumor size were dramatically reduced compared with results for TNF+/+ CD-1 mice.29 
Similarly, in a model of chemically induced liver cancer, TNF-α production by hepatocytes was 
implicated in tumor development.30 All these reports establish that TNF-α plays a critical role 
in tumor promotion.

Tumor Cells Produce TNF-α and Mediate Proliferation
TNF-α is also produced by a wide variety of tumor cells, including B-cell lymphoma,31,32 cu-

taneous T-cell lymphoma,33 megakaryoblastic leukemia,34 adult T-cell leukemia,35 CLL,36 ALL,37 
breast carcinoma,38 lung carcinoma,39 pancreatic cancer,40 ovarian carcinoma,41 cervical epithelial 
cancer,42 glioblastoma43 and neuroblastoma.44 In most of these cells, TNF-α acts as an autocrine 
growth factor; however; in some cell types TNF-α induces the expression of other growth factors 
that mediate proliferation of tumors. For instance, in cervical cells TNF-α induces amphiregulin, 
which induces the proliferation of cells,42 whereas in pancreatic cells TNF-α induces the expression 
of epidermal growth factor receptor (EGFR) and transforming growth factor (TGF-α), which 
mediate proliferation.40
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Table 1. Phenotype of mice with gene deletion for TNF, TNF receptor  
and receptor-associated proteins
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TNF-α Can Induce Invasion and Angiogenesis of Tumor Cells
That TNF-α can induce invasion and angiogenesis of tumor cells is well documented. TNF-α 

has been shown to confer an invasive, transformed phenotype on mammary epithelial cells.38 TNF-α 
has been reported to induce angiogenic factor upregulation in malignant glioma cells.45 This up-
regulation in turn promotes angiogenesis and tumor progression. TNF-α also stimulates epithelial 
tumor cell motility, which is a critical function in embryonic development, tissue repair and tumor 
invasion.46 TNF-α has been even reported to mediate macrophage-induced angiogenesis.47

Role of TNF-α in Tumor Metastasis
TNF-α also plays a role in the metastasis of cancer cells. In a model of experimental lung 

metastasis of colon adenocarcinoma, injection of LPS into mice enhanced the development of 
metastatic lesions. The increased metastasis was dependent on TNF-α production by host he-
matopoietic cells. This TNF-α activated NF-κB in the tumor cells, increasing their proliferation 
and survival.48 Moreover, endogenous and exogenous TNF-α administration enhanced metastasis 
in an experimental fibrosarcoma metastasis model.49 Mice injected with fibrosarcoma cells showed 
enhanced metastasis to the lungs in the presence of exogenous TNF. Neutralization of endogenous 
tumor-induced TNF led to a significant decrease of the number of pulmonary metastases. An es-
sential role of TNFR p55 has been found in liver metastases following intrasplenic administration 
of colon 26 cells.50 Malik et al described found that overexpression of TNF-α conferred invasive 
properties on xenograft tumors.51 Neutralization of endogenous TNF-α reversed the hepatic 
metastases and prolonged survival in mouse models.52

Role of TNF-α in the Immune System
TNF-α is a critical component of effective immune surveillance and is required for proper 

proliferation and function of natural killer cells (NK-cells), T-cells, B-cells, macrophages and 
dendritic cells.5 TNF-α can influence inflammation and innate immunity, lymphoid organization 
and activation of APCs and can provide direct signals to T-cells.2,53-55 TNFR2 can augment T-cell 
proliferation and thus may also provide a costimulatory signal for T-cells.56 Mice strains in which 
the TNF-α gene or its p55 receptor has been deleted (TNF-KO or TNFR1-KO mice) have severe 
defects in lymph node follicle and germinal center formation.57-59 TNF-α acting through TNF 

diseases. 
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receptor p55 is involved in the development/maturation of dendritic cells (DCs) in bone marrow 
progenitor cultures.60 Moreover, the microenvironment in peripheral lymphoid organs is associated 
with TNF-α signaling and chemokine production is critical for recruitment efficiency of DCs.60 
Follicular DCs are specialized mesenchymal cells that collect antigens in draining lymph nodes, 
interact with clonally expanding B-cells and form networks in the follicle under the influence of 
TNF-α and TNF-β.53

TNFR1 is a costimulator of T-cell activation and is expressed by activated T-cells. The initia-
tion of an immune response by dendritic cells originating in epithelial barriers and stimulating 
naive T-cells in draining lymph nodes involves active involvement of TNF/TNFR1. Moreover, 
TNF-α regulates the expansion and survival of CD4+ and CD8+ T-cells.53,54 T-cell-derived TNF-α 
is important for protection against high bacterial load, whereas mastcell-derived TNF-α is a critical 
and early component of the allergic response.61

TNF-α also plays a central role in initiating the inflammatory reactions of the innate immune 
system. Bacterial pathogens and several other proinflammatory and environmental stimuli induce 
TNF-α and NF-κB signaling cascade via Toll-like receptors and also enhance its translational effi-
ciency.62 Early production of TNF-α is prominent in the subsequent initiation of a highly complex 
biological cascade involving chemokines, cytokines and endothelial adhesions that recruits and 
activates neutrophils, macrophages and lymphocytes at the sites of infections. Release of preformed 
TNF-α acts as a positive autocrine feedback signal to activate NF-κB and to induce further TNF-α 
and other cytokines such as granulocte-monocyte colony-stimulating factor (GM-CSF) and IL-8.61 
Thus TNF-α exerts a global regulatory effect on the immune system.

Role of TNF-α in Autoimmune Diseases
Dysregulation of TNF-α has been implicated in a wide variety of autoimmune diseases, includ-

ing rheumatoid arthritis, Crohn’s disease, multiple sclerosis, psoriasis, scleroderma, systemic lupus 
erythromatosus, ankylosing spondylitis and diabetes (Fig. 1). How TNF-α mediates disease-causing 
effects is incompletely understood. The induction of proinflammatory genes by TNF-α has been 
linked to most diseases. The proinflammatory effects of TNF-α are primarily due to its ability 
to activate NF-κB.63 Almost all cell types, when exposed to TNF-α, activate NF-κB, leading to 
the expression of inflammatory genes. The role of TNF-α in some of the autoimmune diseases is 
discussed in detail below.

Psoriasis
Psoriasis is a chronic inflammatory disease of the skin, affecting 2-3% of the world’s population. 

Histopathologically, psoriasis is characterized by hyperproliferation of epidermal keratinocytes 
and hyperkeratosis, as well as infiltration of immunocytes along with angiogenesis.64 T-cells play 
a major role in the initiation of psoriatic lesions. Activated T-cells in the region of the dermal 
epidermal junction promote the hyperplastic proliferative response through increased produc-
tion of Th1 cytokines, among which TNF-α is the major player.65 In psoriatic lesions, levels of 
TNF-α-induced genes, such as IL-1β, IL-8 and IL-6, are greatly increased.66-68 Furthermore, in 
psoriatic plaques, there is a significant upregulation of activated phosphorylated NF-κB compared 
with normal epidermis and uninvolved epidermis from psoriasis patients.69 TNF blockers have 
been shown to reverse the epidermal hyperplasia and cutaneous inflammation characteristic of 
psoriatic plaques.70 All these findings together suggest a major role for TNF-α in both initiation 
and progression of psoriasis.

Inflammatory Bowel Disease
Inflammatory bowel disease (IBD) is characterized by a chronic relapsing inflammation of 

the gastrointestinal tract and is divided into two primary forms: Crohn’s disease and ulcerative 
colitis.71 IBD is associated with the activation of local intestinal and systemic immune responses 
and is caused by the loss of tolerance against intestinal antigens.72 TNF-α levels are elevated in the 
serum, mucosa and stool of IBD patients and TNF-/- mice show a marked reduction in chemically 
induced intestinal inflammation.73-76 Increased nuclear translocation of NF-κB has also been shown 
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in lamina propria mononuclear cells derived from IBD patients.77 Hence TNF-α is considered to 
be an attractive target for the treatment of IBD and several antiTNF reagents have been developed, 
but most of them have not proven safe and efficacious in the treatment of IBD.

Arthritis
As a proinflammatory cytokine, TNF-α has perhaps the most dominant role in the etiology of 

rheumatoid arthritis.78 Patients with rheumatoid arthritis have high concentrations of TNF-α in 
the synovial fluid and at the cartilage-pannus junction, which leads to the erosion of bone.79,80 In 
cultures of synovial cells from patients with rheumatoid arthritis, blocking TNF-α with antibodies 
significantly reduced the production of IL-1β, IL-6, IL-8 and GM-CSF.81 Hence, the inhibition of 
TNF-α has a more global effect on inflammation than the suppression of other cytokines present 
in high concentrations in synovial fluids, such as IL-1β. The results of studies in animals provide 
further evidence of the importance of TNF-α in rheumatoid arthritis. In transgenic mice that ex-
pressed a deregulated human TNF-α gene, an inflammatory and destructive polyarthritis similar 
to rheumatoid arthritis spontaneously developed.82 AntiTNF-α therapies are being used for the 
treatment of rheumatoid arthritis, but these agents are associated with side effects, some of them 
quite serious.83 Hence novel agents are needed for the management of rheumatoid arthritis.

Systemic Sclerosis (Scleroderma)
Systemic sclerosis (scleroderma) is a generalized connective tissue disorder, characterized by a 

wide spectrum of microvascular and immunological abnormalities, leading to progressive thick-
ening and fibrosis of the skin and other visceral organs, such as the lungs, gastrointestinal tract, 
heart and kidneys.84,85 Compelling evidence indicates that the increased production of TNF-α is 
involved in the pathogenesis of scleroderma.86 Patients with systemic sclerosis exhibit a systemic 
and local rise in TNF-α levels that leads to pulmonary fibrosis.87 The serum levels of TNFR1 are 
directly correlated to the severity of the disease.88 TNF-α gene polymorphism is also associated with 
scleroderma.89 Thus dysregulation of TNF-α plays a critical role in the development of systemic 
sclerosis in normal human subjects.

Systemic Lupus Erythematosus
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease characterized by 

the breakdown of self-tolerance, B-cell hyperactivity, autoantibody production, aberrant forma-
tion of immune complexes and inflammation of multiple organs.90 The TNF-α level is increased 
and seems to be bioactive in the serum of patients with active SLE. The levels of TNF-α have been 
shown to correlate with SLE disease activity.91,92 Various antiTNF-α agents are currently being 
used for the treatment of SLE.

Ankylosing Spondylitis
Ankylosing spondylitis (AS) is an autoimmune disease characterized by prominent inflamma-

tion of the spinal joints and adjacent structures leading to progressive bony fusion of the spine.93 
Pathophysiologically, TNF-α appears to play a role in promoting the inflammatory pattern 
associated with AS. Increased TNF-α protein is found in the sacroiliac joints94 and peripheral 
synovium95,96 as well as the serum97,98 of patients with active AS. While disease activity cannot be 
predicted from levels of TNF-α, blockade of this protein has been shown to have benefits in animal 
models and human studies of AS. Considering the critical role of TNF-α in the pathogenesis of 
AS, the molecules targeted at blocking the effects of TNF-α are likely to play a crucial role in the 
management of this disease.

Diabetes Mellitus
Autoimmune diabetes, or insulin-dependent diabetes mellitus (IDDM), is characterized by 

selective destruction of insulin-producing cells.99 The role of TNF-α in the pathogenesis of autoim-
mune diabetes has received increasing attention recently.100 It was shown that TNF-α in combina-
tion with IFN-γ could induce the aberrant expression of class II major histocompatibility complex 
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(MHC) molecules on pancreatic beta cells, suggesting a role for these cytokines in the induction of 
the autoimmune process in diabetes.101 A different group of investigators has suggested that IL-1β 
is toxic to pancreatic beta cells and that TNF-α significantly enhances this toxicity.102 Transgenic 
mice, expressing constitutively active IKK-β, a kinase required for activation of NF-κB, exhibited 
type 2 diabetes phenotype and increased hepatic production of TNF-α. Hepatic expression of the 
IκBα super repressor reversed this diabetic phenotype in transgenic mice as well as wild-type mice 
fed a high-fat diet.103 These findings indicate that lipid accumulation in the liver leads to subacute 
hepatic ‘inflammation’ through NF-κB activation and downstream cytokine production. This causes 
insulin resistance both locally in liver and systemically. Thus novel blockers of TNF-α have significant 
implications for future new therapeutic strategies for insulin-dependent diabetes mellitus.

Multiple Sclerosis
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system character-

ized by localized areas of demyelination.104 TNF-α plays an important role in the pathogenesis 
of MS and its animal model, experimental autoimmune encephalomyelitis.105,106 TNF-α has been 
detected in MS plaques107,108 and circulating levels of TNF-α and its receptor have been found in 
cerebro-spinal fluid of MS patients.109,110 All these findings support an enormous role for TNF-α 
inhibitors in the treatment of multiple sclerosis.

TNF Inhibitors
On the basis of the above descriptions, TNF blockers have tremendous potential for the treat-

ment of various cancers and autoimmune diseases. Several classes of TNF-α inhibitors are available 
and these are discussed below.

TNF Antibodies
The best studied of the monoclonal TNF-α antibodies is infliximab (Remicade), originally 

referred to as cA2. Infliximab binds with high specificity and affinity to free and membrane-bound 
TNF-α, which is expressed at the cell surface by activated T-cells and macrophages.111 Adalimumab 
(Humira) is a human monoclonal IgG1 antibody containing only human peptide sequences. It 
binds with high specificity and affinity to soluble and membrane-bound TNF-α and blocks its 
interaction with the p55 and p75 cell surface TNF receptors, thereby neutralizing the biological 
activities of this cytokine.112 However, these antibodies have demonstrated several potentially seri-
ous adverse effects that include greater predisposition towards infection, congestive heart failure, 
neurologic changes (e.g., demyelination), lymphomas, re-exacerbation of latent tuberculosis and 
problems related to autoimmunity, for example lupus-like syndrome.113

Soluble TNF Receptors
In the second approach to TNF-α inhibition, soluble TNF receptors have been engineered as 

fusion proteins in which the extracellular ligand-binding portion of TNFRI or TNFR2 is coupled 
to a human immunoglobulin-like molecule. Etanercept (Enbrel) is a recombinant human fusion 
protein that consists of two soluble p75 TNF receptors and the Fc portion of human IgG1.

114 
Etanercept possesses a dimeric structure with high affinity to TNF-α and the linkage to the Fc 
portion of human IgG produces a longer half-life. Etanercept is better at neutralizing TNF-α than 
is the monomeric soluble p75 receptor. The various side effects observed include lymphomas, 
re-exacerbation of latent tuberculosis and problems related to autoimmunity.113 Recent studies 
indicate that administration of TNF-α inhibitors can even lead to psoriasis115 and contribute to 
the severity of the disease in paracoccidioidomycosis.116

Besides p75, TNF has been shown to bind to p55 receptor with an affinity either equal or even 
greater than p75.117 Although soluble p75 receptors clearly can sequester TNF, very little is known 
about the ability of the soluble form of the p55 receptor to sequester TNF in vivo.
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Inhibitors of TNF Expression
Several compounds that can inhibit both TNF-α expression and synthesis are also available. 

These include thalidomide ([ + ]-alpha-phthalimidoglutarimide), which is currently being used 
for treatment of multiple myeloma118,119 and pentoxifylline, used to treat leg pain caused by poor 
blood circulation.120 Thus these agents may be useful for the treatment of various cancers and 
autoimmune diseases mediated by TNF.

Inhibitors of TNF Oligomerization
Some inhibitors that can suppress oligomerization of TNF are also known. Steed and cowork-

ers121 designed a novel dominant-negative variant TNF protein that rapidly forms heterotrimers 
with native TNF to give complexes that neither bind to nor stimulate signaling through TNF 
receptors and thus inactivate TNF by sequestration. He et al122 identified another small-molecule 
inhibitor that promotes subunit disassembly of trimeric TNF. This compound inhibited TNF 
activity in biochemical and cell-based assays, with median inhibitory concentrations of 22 and 
4.6 micromolar, respectively. Formation of an intermediate complex between the compound and 
the intact trimer resulted in a 600-fold accelerated subunit dissociation rate that led to trimer 
dissociation.

Inhibitors of TNF-α-Induced Signaling Pathways
TNF-α activates cell survival signaling pathways, i.e., NF-κB, Akt and MAPK pathways, as well 

as apoptotic pathways such as JNK, p38 and AP-1. Hence, inhibitors that target these pathways 
also have potential against various proinflammatory conditions mediated by TNF-α. For example, 
TNF-α activates NF-κB, which in turn regulates TNF-α production. Hence various NF-κB block-
ers (both synthetic and natural) are currently available on the market and effective against a wide 
variety of inflammatory conditions.

Natural Products as Inhibitors of TNF
Numerous plant-derived products have been identified that can suppress TNF-α expression 

from macrophages activated by numerous inflammatory stimuli (129-165, see Table 2). These 
include curcumin, resveratrol, emodin, silymarin and others. Thus these products are likely to be 
useful for the treatment of cancer and autoimmune diseases mediated by TNF.

Table 2. A list of natural products that inhibit the expression of TNF

Lonicera japonica143

144

Allium sativum 145

Aloe vera
Aloe barbadensis 147

Asparagus cochinchinensis
Phlebodium decumanum

130 Phyllanthus amarus150

131 151

134 153

β 135 Tanacetum microphyllum154

Taraxacum officinale155

137 Δ
Theobroma cacao157

140, 141 Uncaria guianensis
Zostera japonica
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Conclusion
TNF clearly plays a major role in cancer and in autoimmune diseases. Because TNF is also 

needed for the proper functioning of the immune system, complete suppression of TNF over a long 
period is likely to prove harmful. The potential of TNF inhibitors in the treatment of autoimmune 
diseases as employed currently is just “the tip of the iceberg.” Any chronic inflammatory condition, 
linked to majority of the inflammatory diseases, could be a potential target for antiTNF therapy. 
Thus the development of inhibitors that are orally active, safe and inexpensive would have major 
potential. Because of long-term safety and cost, nutraceuticals derived from fruits and vegetables, 
that can suppress TNF expression and TNF signaling, should be explored clinically for efficacy.
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