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Summary. In this chapter we give an overview of the theory of scalar equilibrium
problems. To emphasize the importance of this problem in nonlinear analysis and
in several applied fields we first present its most important particular cases as op-
timization, Kirszbraun’s problem, saddlepoint (minimax) problems, and variational
inequalities. Then, some classical and new results together with their proofs con-
cerning existence of solutions of equilibrium problems are exposed. The existence of
approximate solutions via Ekeland’s variational principle – extended to equilibrium
problems – is treated within the last part of the chapter.
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1 Introduction

One of the most important problems in nonlinear analysis is the so-called
equilibrium problem, which can be formulated as follows. Let A and B be two
nonempty sets and f : A×B → R a given function. The problem consists in
finding an element a ∈ A such that

f(a, b) ≥ 0 ∀b ∈ B. (EP)

(EP) has been extensively studied in recent years (e.g. [6–10, 17–19, 22] and
the references therein). One of the reasons is that it has among its particular
cases, optimization problems, saddlepoint (minimax) problems, variational
inequalities (monotone or otherwise), Nash equilibrium problems, and other
problems of interest in many applications (see [10] for a survey).

As far as we know the term “equilibrium problem” was attributed in [10],
but the problem itself has been investigated more than 20 years before in
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a paper of Ky Fan [15] in connection with the so-called intersection theo-
rems (i.e., results stating the nonemptiness of a certain family of sets). Ky
Fan considered (EP) in the special case A = B a compact convex subset
of a Hausdorff topological vector space and termed it “minimax inequality.”
Within short time (in the same year) Brézis, Nirenberg, and Stampacchia
[11] improved Ky Fan’s result, extending it to a not necessarily compact set,
but assuming instead a so-called coercivity condition, which is automatically
satisfied when the set is compact.

Recent result on (EP) emphasizing existence of solutions can be found
in [6–8, 28], and many other papers. New necessary (and in some cases also
sufficient) conditions for existence of solutions in infinite dimensional spaces
were proposed in [18], and later on simplified and further analyzed in [17].

Looking on the proofs given for existence results, one may detect two fun-
damental methods: fixed point methods (intersection theorems mostly based
on Brouwer’s fixed point theorem) and separation methods (Hahn–Banach
type theorems). It is an old conjecture whether Brouwer’s fixed point theo-
rem can be proved using (only) separation results.

The aim of this chapter is to provide an overlook on (EP) by emphasizing
its most important particular cases, to expose some classical and recent exis-
tence results of it, and to deal with approximate solutions, which, in case the
exact solution does not exist, may have an important role.

The chapter is divided into four sections (including Introduction). In Sec-
tion 2, the most important particular cases of (EP) such as the minimum prob-
lem, Kirszbraun’s problem, saddlepoint problem (in connection with game
theory, duality in optimization, etc.), and variational inequalities are pre-
sented. The next section is devoted to several existence results on (EP). First
we focus on results which use fixed point tools and show that these results
form an equivalent chain which includes Brouwer’s and Schauder’s fixed point
theorems, Knaster–Kuratowski–Mazurkiewitz and Ky Fan’s intersection the-
orems, Ky Fan’s minimax inequality theorem. Then we expose some recent
results on (EP) using separation tools. Finally, in Section 4 (EP) and its more
general case, the system of equilibrium problems (abbreviated (SEP)), are
discussed in connection with the famous Ekeland’s variational principle. The
latter has been established for optimization problems and guarantees the ex-
istence of the so-called approximate minimum points. Based on recent results
of the author, the extensions of Ekeland’s variational principle for (EP) and
(SEP) are given under suitable conditions. These results are useful tools in
obtaining new existence results for (EP) and (SEP) without any convexity
assumptions on the sets and functions involved.

2 The Equilibrium Problem and Its Important
Particular Cases

To underline the importance of (EP) we present in this section some of its
various particular cases which have been extensively studied in the literature.
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The most of them are important models of real-life problems originated from
mechanics, economy, biology, etc.

2.1 The Minimum Problem

For A = B and F : A→ R, let f(a, b) := F (b)− F (a). Then each solution of
(EP) is a minimum point of F and vice versa.

2.2 The Kirszbraun’s Problem

Let m and n be two positive integers and consider two systems of closed balls
in R

n: (Bi) and (B′
i), i ∈ {1, 2, . . . ,m}. Denote by r(Bi) and d(Bi, Bj) the

radius of Bi and the distance between the centers of Bi and Bj , respectively.
The following result is known in the literature as Kirszbraun’s theorem (see
[24]).

Theorem 1. Suppose that

(a) ∩mi=1Bi �= ∅;
(b) r(Bi) = r(B′

i), for all i ∈ {1, 2, . . . ,m};
(c) d(B′

i, B
′
j) ≤ d(Bi, Bj), for all i, j ∈ {1, 2, . . . ,m}.

Then ∩mi=1B
′
i �= ∅.

To relate this result to (EP), let A := R
n, B := {(xi, yi)| i ∈ {1, 2, . . . ,m}}

⊆ R
n × R

n such that

‖yi − yj‖ ≤ ‖xi − xj‖ ∀i, j ∈ {1, 2, . . . ,m}. (1)

Choose an arbitrary element x ∈ R
n and put

f(y, bi) := ‖x− xi‖2 − ‖y − yi‖2 (2)

for each y ∈ R
n and bi = (xi, yi) ∈ B. Then y ∈ R

n is a solution of (EP) if
and only if

‖y − yi‖ ≤ ‖x− xi‖ ∀i ∈ {1, 2, . . . ,m}. (3)

It is easy to see by Theorem 1 that the equilibrium problem given by the
function f defined in (2) has a solution. Indeed, let x ∈ R

n be fixed and put
ri := ‖x− xi‖ for i := 1, 2, . . . ,m. Take Bi the closed ball centered at xi with
radius ri and B′

i the closed ball centered at yi with radius ri. Obviously, by
(1), the assumptions of Theorem 1 are satisfied, hence there exists an element
y ∈ R

n which satisfies (3).
Observe that, by compactness (i.e., the closed balls in R

n are compact
sets), Theorem 1 of Kirszbraun remains valid for an arbitrary family of balls.
More precisely, instead of the finite set {1, 2, . . . ,m}, one can take an arbitrary
set I of indices. Using this observation, it is easy to derive the following result
concerning the extensibility of an arbitrary nonexpansive function to the whole
space. Let D ⊆ R

n, D �= R
n, and f : D → R

n a given nonexpansive fun-
ction, i.e.,
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‖f(x)− f(y)‖ ≤ ‖x− y‖ ∀x, y ∈ D.
Then there exists a nonexpansive function f̄ : R

n → R
n such that f̄(x) =

f(x), for each x ∈ D. Indeed, let z ∈ R
n \ D and take for each x ∈ D the

number rx := ‖z − x‖. Let Bx be the closed ball centered at x with radius rx
and let B′

x be the closed ball centered at f(x) with radius rx. Then we obtain
that the set ∩x∈DB′

x is nonempty. Now for f̄(z) ∈ ∩x∈DB′
x, the conclusion

follows.

2.3 The Saddlepoint (Minimax Theorems)

Next we turn to show a situation where the solution of the equilibrium problem
reduces to a saddlepoint of a bifunction. Let X,Y be two nonempty sets and
h : X × Y → R be a given function. The pair (x0, y0) ∈ X × Y is called a
saddlepoint of h on the set X × Y if

h(x, y0) ≤ h(x0, y0) ≤ h(x0, y) ∀(x, y) ∈ X × Y. (4)

Let A = B = X × Y and let f : A×B → R defined by

f(a, b) := h(x, v)− h(u, y) ∀a = (x, y), b = (u, v). (5)

Then each solution of the equilibrium problem (EP) is a saddlepoint of h and
vice versa.

The saddlepoint can be characterized as follows. Suppose that for each x ∈
X there exists miny∈Y h(x, y) and for each y ∈ Y there exists maxx∈X h(x, y).
Then we have the following result.

Proposition 1. f admits a saddlepoint on X × Y if and only if there exist
maxx∈X miny∈Y f(x, y) and miny∈Y maxx∈X f(x, y) and they are
equal.

Proof. Suppose first that h admits a saddlepoint (x0, y0) ∈ X × Y . Then by
relation (4) one obtains

min
y∈Y

h(x, y) ≤ h(x, y0) ≤ h(x0, y0) = min
y∈Y

h(x0, y) ∀x ∈ X

and
max
x∈X

h(x, y) ≥ h(x0, y) ≥ h(x0, y0) = max
x∈X

h(x, y0) ∀y ∈ Y.

Therefore,
min
y∈Y

h(x0, y) = max
x∈X

min
y∈Y

h(x, y)

and
max
x∈X

h(x, y0) = min
y∈Y

max
x∈X

h(x, y),
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and both equal to h(x0, y0). For the reverse implication take x0 ∈ X such that

min
y∈Y

h(x0, y) = max
x∈X

min
y∈Y

h(x, y)

and y0 ∈ Y such that

max
x∈X

h(x, y0) = min
y∈Y

max
x∈X

h(x, y).

Then by our assumption we obtain

min
y∈Y

h(x0, y) = max
x∈X

h(x, y0);

therefore, in the obvious relations

min
y∈Y

h(x0, y) ≤ h(x0, y0) ≤ max
x∈X

h(x, y0)

one obtains equality in both sides. This completes the proof. ��

Remark 1. Observe that, for arbitrary nonempty sets X,Y and function h :
X × Y → R, the inequality

sup
x∈X

inf
y∈Y

h(x, y) ≤ inf
y∈Y

sup
x∈X

h(x, y)

always holds. Therefore,

max
x∈X

min
y∈Y

h(x, y) ≤ min
y∈Y

max
x∈X

h(x, y)

holds either, provided these two values exist.

One of the main issues in minimax theory is to find sufficient and/or necessary
conditions for the sets X,Y and function h, such that the reverse inequality
in the above relations also holds. Such results are called minimax theorems.

Minimax theorems or, in particular, the existence of a saddlepoint, is im-
portant in many applied fields of mathematics. One of them is the game
theory.

2.3.1 Two-Player Zero-Sum Games

To introduce a static two-player zero-sum (noncooperative) game (for more
details and examples, see [2, 3, 20, 26, 27, 32]) and its relation to a minimax
theorem we consider two players called 1 and 2 and assume that the set of
pure strategies (also called actions) of player 1 is given by some nonempty set
X, while the set of pure strategies of player 2 is given by a nonempty set Y.
If player 1 chooses the pure strategy x ∈ X and player 2 chooses the pure
strategy y ∈ Y, then player 2 has to pay player 1 an amount h(x, y) with
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h : A×B → R a given function. This function is called the payoff function of
player 1. Since the gain of player 1 is the loss of player 2 (this is a so-called
zero-sum game) the payoff function of player 2 is −h. Clearly player 1 likes
to gain as much profit as possible. However, at the moment he does not know
how to achieve this and so he first decides to compute a lower bound on his
profit. To compute this lower bound player 1 argues as follows: if he decides to
choose action x ∈ X, then it follows that his profit is at least infy∈Y h(x, y),
irrespective of the action of player 2. Therefore a lower bound on the profit
for player 1 is given by

r∗ := sup
x∈X

inf
y∈Y

h(x, y). (6)

Similarly player 2 likes to minimize his losses but since he does not know how
to achieve this he also decides to compute first an upper bound on his losses.
To do so, player 2 argues as follows. If he decides to choose action y ∈ Y, it
follows that he loses at most supx∈X h(x, y) and this is independent of the
action of player 1. Therefore an upper bound on his losses is given by

r∗ := inf
y∈Y

sup
x∈X

h(x, y). (7)

Since the profit of player 1 is at least r∗ and the losses of player 2 are at most
r∗ and the losses of player 2 are the profits of player 1, it follows directly that
r∗ ≤ r∗. In general r∗ < r∗, but under some properties on the pure strategy
sets and payoff function one can show that r∗ = r∗. If this equality holds
and in relations (6) and (7) the suprema and infima are attained, an optimal
strategy for both players is obvious. By the interpretation of r∗ for player 1
and the interpretation of r∗ for player 2 and r∗ = r∗ := v both players will
choose an action which achieves the value v and so player 1 will choose that
action x0 ∈ X satisfying

inf
y∈Y

h(x0, y) = max
x∈X

inf
y∈Y

h(x, y).

Moreover, player 2 will choose that strategy y0 ∈ Y satisfying

sup
x∈X

h(x, y0) = min
y∈Y

sup
x∈X

h(x, y).

Another field, where the concept of saddlepoint plays an important role,
is the so-called duality in optimization.

2.3.2 Duality in Optimization

Let X be a nonempty subset of R
n. A subset K of R

m is called cone if, for
each y ∈ K and λ > 0, it follows that λy ∈ K. The set K is called convex
cone, if K is a cone and additionally, a convex set. Let F : R

n → R and
G : R

n → R
m be given functions. For K, a nonempty convex cone of R

m,
define the following optimization problem:
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v(P ) := inf{F (x)|G(x) ∈ −K, x ∈ X}. (8)

This (general) problem has many important particular cases.

The Optimization Problem with Inequality and Equality Con-
straints. Let X := R

n, K := R
p
+ × {0Rm−p}, where 1 ≤ p < m, and 0Rm−p

denotes the origin of the space R
m−p. Then problem (8) reduces to the clas-

sical optimization problem with inequality and equality constraints

inf{F (x)|Gi(x) ≤ 0, i = 1, 2, . . . , p, Gj(x) = 0, j = p+ 1, . . . ,m}.

The Linear Programming Problem. Let

X := R
n
+, K := {0Rm}, F (x) := cTx, G(x) := Ax− b,

where A is a matrix withm rows and n columns (with all entries real numbers),
c ∈ R

n and b ∈ R
m are given elements. Then (8) reduces to the following linear

programming problem:

inf{cTx|Ax = b, x ≥ 0}.

The Conical Programming Problem. Let K ⊆ R
n be a nonempty

convex cone, let X := b+L ⊆ R
n, where L is a linear subspace of R

n, and let
F (x) := cTx, G(x) := x. Then we obtain the so-called conical programming
problem

inf{cTx|x ∈ b+ L, x ∈ −K}.
Denote by F the feasible set of problem (8), i.e., the set

{x ∈ X|G(x) ∈ −K}. The problem

v(R) := inf{FR(x)|x ∈ FR}

is called a relaxation of the initial problem (8), if F ⊆ FR and FR(x) ≤ F (x)
for each x ∈ F . It is obvious that v(R) ≤ v(P ). Next we show a natural
way to construct a relaxation of problem (8). Let λ ∈ R

m and consider the
problem

inf{F (x) + λTG(x)|x ∈ X}.

Clearly F ⊆ X and F (x) + λTG(x) ≤ F (x) for each x ∈ F if and only
if λTG(x) ≤ 0 for each x ∈ F . Let K∗ := {y ∈ R

m| yTx ≥ 0 ∀x ∈ K}
be the dual cone of K. Now it is clear that λ ∈ K∗ implies λTG(x) ≤ 0,
for each x ∈ F . Define the (Lagrangian) function L : X × K∗ → R by
L(x, λ) := F (x) + λTG(x) and consider the problem

θ(λ) := inf{L(x, λ)|x ∈ X}. (9)
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Clearly θ(λ) ≤ v(P ) for each λ ∈ K∗, and therefore we also have

sup
λ∈K∗

θ(λ) ≤ v(P ),

hence
sup
λ∈K∗

inf
x∈X

L(x, λ) ≤ inf
x∈F

F (x). (10)

By this relation it follows that the optimal objective value v(D) of the
dual problem

v(D) := sup{θ(λ)|λ ∈ K∗}
approximates from below the optimal objective value v(P ) of the primal prob-
lem (8). From both theoretical and practical points of view, an important issue
is to establish sufficient conditions in order to have equality between the opti-
mal objective values of the primal and dual problems. In this respect, observe
that for each x ∈ F one has

sup
λ∈K∗

L(x, λ) = sup
λ∈K∗

(F (x) + λTG(x)) = F (x).

Therefore,

inf
x∈F

F (x) = inf
x∈F

sup
λ∈K∗

L(x, λ) = inf
x∈X

sup
λ∈K∗

L(x, λ).

Indeed, if x ∈ X \ F , then G(x) /∈ −K. By the bipolar theorem [29] we have
K = K∗∗, hence it follows that there exists λ∗ ∈ K∗ such that λ∗TG(x) > 0.
Since tλ∗ ∈ K for each t > 0, then

sup
λ∈K∗

L(x, λ) =∞ ∀x ∈ X \ F .

Combining the latter with relation (10) and taking into account that the
“supinf” is always less or equal than the “infsup,” one obtains

v(D) = sup
λ∈K∗

inf
x∈X

L(x, λ) ≤ inf
x∈X

sup
λ∈K∗

L(x, λ) = v(P ). (11)

Hence we obtain that v(D) = v(P ), if a saddlepoint (x̄, λ̄) of the Lagrangian
L exists. This situation is called perfect duality. In this case x̄ is the optimal
solution of the primal, while λ̄ is the optimal solution of the dual problem.

2.4 Variational Inequalities

Let E be a real topological vector space and E∗ be the dual space of E. Let
K ⊆ E be a nonempty convex set and T : K → E∗ a given operator. For
x ∈ E and x∗ ∈ E∗, the duality pairing between these two elements will be
denoted by 〈x, x∗〉. If A = B := K and f(x, y) := 〈T (x), y − x〉, for each
x, y ∈ K, then each solution of the equilibrium problem (EP) is a solution of
the variational inequality
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〈T (x), y − x〉 ≥ 0 ∀y ∈ K, (12)

and vice versa.
Variational inequalities have shown to be important mathematical models

in the study of many real problems, in particular in network equilibrium mod-
els ranging from spatial price equilibrium problems and imperfect competitive
oligopolistic market equilibrium problems to general financial or traffic equi-
librium problems.

An important particular case of the variational inequality (12) is the fol-
lowing. Let E := H be a real Hilbert space with inner product 〈 , 〉. It is well
known that in this case the dual space E∗ can be identified with H. Consider
the bilinear and continuous function a : H×H → R, the linear and continuous
function L : H → R, and formulate the problem: find an element x ∈ K ⊆ H
such that

a(x, y − x) ≥ L(y − x) ∀y ∈ K. (13)

By the hypothesis, for each x ∈ H the function a(x, ·) : H → R is linear and
continuous. Therefore, by the Riesz representation theorem in Hilbert spaces
(see, for instance, [30]) there exists a unique element A(x) ∈ H such that
a(x, y) = 〈A(x), y〉 for each y ∈ H. It is easy to see that A : H → H is a linear
and continuous operator. Moreover, since L is also linear and continuous,
again by the Riesz theorem, there exists a unique element l ∈ H such that
L(x) = 〈l, x〉 for each x ∈ H. Now for T (x) := A(x)− l, problem (13) reduces
to (12).

In optimization theory, those variational inequalities in which the operator
T is a gradient map (i.e., is the gradient of a certain differentiable function)
are of special interest since their solutions are (in some cases) the minimum
points of the function itself. Suppose that X ⊆ R

n is an open set, K ⊆ X is
a convex set, and the function F : X → R is differentiable on X. Then each
minimum point of F on the set K is a solution of the variational inequality
(12), with T := ∇F . Indeed, let x0 ∈ K be a minimum point of F on K and
y ∈ K be an arbitrary element. Then we have

F (x0) ≤ F (λy + (1− λ)x0) ∀λ ∈ [0, 1].

Therefore,

1
λ

(F (x0 + λ(y − x0))− F (x0)) ≥ 0 ∀λ ∈ (0, 1].

Now letting λ→ 0 we obtain 〈∇F (x0), y − x0〉 ≥ 0, as claimed.
If we suppose further that F is a convex function on the convex set X, then

we obtain the reverse implication as well, i.e., each solution of the variational
inequality (12), with T := ∇F , is a minimum point of F on the set K. Indeed,
let x0 ∈ K be a solution of (12) and y ∈ K be an arbitrary element. Then by
convexity

F (x0 + λ(y − x0)) ≤ (1− λ)F (x0) + λF (y) ∀λ ∈ [0, 1],
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which yields

1
λ

(F (x0 + λ(y − x0))− F (x0)) ≤ F (y)− F (x0) ∀λ ∈ (0, 1].

By letting λ→ 0 one obtains from the latter that

〈∇F (x0), y − x0〉 ≤ F (y)− F (x0),

which yields the desired implication.
The particular cases presented above shows the importance of the equilib-

rium problem (EP). Therefore, one of the main issues is to know in advance
whether (EP) admits a solution. In the next section we give sufficient condi-
tions for the existence of a solution of this problem.

3 Some Existence Results on Equilibrium Problem

There are many results concerning the existence of solutions of (EP) known
in the literature. Usually, regarding their proofs, they can be divided into two
classes: results that uses fixed point tools and results using separation tools.
There are, however, some results (usually consequences of more general state-
ments) that belong to both classes. The aim of this section is to present two
classical results from the first class due to Ky Fan [15] and Brézis, Nirenberg,
Stampacchia [11], and a more recent result belonging to the second class due
to Kassay and Kolumbán [23].

3.1 Results Based on Fixed Point Theorems

To start, let us first recall the celebrated Brouwer’s fixed point theorem.

Theorem 2. Let C ⊆ R
n be a convex, compact set and h : C → C be a

continuous function. Then h admits at least one fixed point.

Since the appearance of this theorem, many different proofs of it have been
published. It is still an open question whether there exists an elementary proof
of Brouwer’s fixed point theorem in case n ≥ 2, using separation arguments
only.

By Theorem 2 one can prove some of the so-called intersection theorems,
which are useful tools regarding existence results for the equilibrium prob-
lem. The first important intersection theorem has been published in 1929: the
celebrated Knaster–Kuratowski–Mazurkiewicz’s theorem [25] (called in the lit-
erature KKM lemma). This result has been extended by Ky Fan [14] in 1961
to infinite dimensional spaces. We will formulate these results later in this
section as particular cases of a recent result obtained by Chang and Zhang
[12]. In order to present the latter we first need the following definitions. Let
E and E′ be two topological vector spaces and let X be a nonempty subset
of E.
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Definition 1. The set-valued mapping F : X → 2E is called KKM map-
ping, if co{x1, . . . , xn} ⊆ ∪ni=1F (xi) for each finite subset {x1, . . . , xn} of
X.

A slightly more general concept was introduced by Chang and Zhang [12]:

Definition 2. The mapping F : X → 2E
′

is called generalized KKM
mapping, if for any finite set {x1, . . . , xn} ⊆ X, there exists a finite set
{y1, . . . , yn} ⊆ E′, such that for any subset {yi1 , . . . , yik} ⊆ {y1, . . . , yn}, we
have

co{yi1 , . . . , yik} ⊆
k
∪
j=1

F (xij ). (14)

In case E = E′ it is clear that every KKM mapping is a generalized KKM
mapping too. The converse of this implication is not true, as the following
example shows.

Example 1. (Chang and Zhang [12]). Let E := R, X := [−2, 2] and F : X →
2E be defined by

F (x) := [−(1 + x2/5), 1 + x2/5].

Since ∪x∈XF (x) = [−9/5, 9/5], we have

x /∈ F (x) ∀x ∈ [−2,−9/5) ∪ (9/5, 1].

This shows that F is not a KKM mapping. On the other hand, for any
finite subset {x1, . . . , xn} ⊆ X, take {y1, . . . , yn} ⊆ [−1, 1]. Then for any
{yi1 , . . . , yik} ⊆ {y1, . . . , yn} we have

co{yi1 , . . . , yik} ⊆ [−1, 1] = ∩
x∈X

F (x) ⊆
k
∪
j=1

F (xij ),

i.e., F is a generalized KKM mapping.

Theorem 3. (Chang and Zhang [12]). Suppose that E is a Hausdorff topo-
logical vector space, X ⊆ E is nonempty, and F : X → 2E is a mapping
such that for each x ∈ X the set F (x) is finitely closed (i.e., for every finite
dimensional subspace L of E, F (x) ∩ L is closed in the Euclidean topology
in L). Then F is a generalized KKM mapping if and only if for every finite
subset I ⊆ X the intersection of the subfamily {F (x)|x ∈ I} is nonempty.

Proof. Suppose first that for arbitrary finite set I = {x1, . . . , xn} ⊆ X one
has

n
∩
i=1

F (xi) �= ∅.

Take x∗ ∈ ∩ni=1F (xi) and put yi := x∗, for each i ∈ {1, . . . , n}. Then for every
{yi1 , . . . , yik} ⊆ {y1, . . . , yn} we have

co{yi1 , . . . , yik} = {x∗} ⊆
n
∩
i=1

F (xi) ⊆
k
∩
j=1

F (xij ).

This implies that F is a generalized KKM mapping.
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To show the reverse implication, let F : X → 2E be a generalized KKM
mapping. Supposing the contrary, there exists some finite set {x1, . . . , xn} ⊆
X such that ∩ni=1F (xi‘) = ∅. By the assumption, there exists a set {y1, . . . , yn}
⊆ E such that for any {yi1 , . . . , yik} ⊆ {y1, . . . , yn}, relation (14) holds. In
particular, we have

co{y1, . . . , yn} ⊆
n
∪
i=1

F (xi).

Let S := co{y1, . . . , yn} and L := span{y1, . . . , yn}. Since for each x ∈ X, F (x)
is finitely closed, then the sets F (xi) ∩ L are closed. Let d be the Euclidean
metric on L. It is easy to verify that

d(x, F (xi) ∩ L) > 0 if and only if x /∈ F (xi) ∩ L. (15)

Define now the function g : S → R by

g(c) :=
n∑
i=1

d(c, F (xi) ∩ L), c ∈ S.

It follows by (15) and ∩ni=1F (xi) = ∅ that for each c ∈ S, g(c) > 0. Let

h(c) :=
n∑
i=1

1
g(c)

d(c, F (xi) ∩ L)yi.

Then h is a continuous function from S to S. By the Brouwer’s fixed point
theorem (Theorem 2), there exists an element c∗ ∈ S such that

c∗ = h(c∗) =
n∑
i=1

1
g(c∗)

d(c∗, F (xi) ∩ L)yi. (16)

Denote
I := {i ∈ {1, . . . , n}| d(c∗, F (xi) ∩ L) > 0}. (17)

Then for each i ∈ I, c∗ /∈ F (xi) ∩ L. Since c∗ ∈ L, then c∗ /∈ F (xi) for each
i ∈ I, or, in other words,

c∗ /∈ ∪
i∈I

F (xi). (18)

By (16) and (17) we have

c∗ =
n∑
i=1

1
g(c∗)

d(c∗, F (xi) ∩ L)yi ∈ co{yi| i ∈ I}.

Since F is a generalized KKM mapping, this leads to

c∗ ∈ ∪
i∈I

F (xi),

which contradicts (18). This completes the proof. ��

By the above theorem one can easily deduce the following result.
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Theorem 4. (Chang and Zhang [12]) Suppose that F : X → 2E is a set-
valued mapping such that for each x ∈ X, the set F (x) is closed. If there
exists an element x0 ∈ X such that F (x0) is compact, then ∩x∈XF (x) �= ∅ if
and only if F is a generalized KKM mapping.

The proof of this theorem is an easy consequence of Theorem 3.
As we mentioned in the first part of this section, a particular case of

Theorem 3 is the intersection theorem due to Ky Fan, known in the literature
as Ky Fan’s lemma.

Theorem 5. (Ky Fan [14]) Let E be a Hausdorff topological vector space,
X ⊆ E and for each x ∈ X, let F (x) be a closed subset of E, such that

(a) there exists x0 ∈ X, such that the set F (x0) is compact;
(b) for each x1, x2, . . . , xn ∈ X, co{x1, x2, . . . , xn} ⊆ ∪ni=1F (xi).

Then
∩
x∈X

F (x) �= ∅.

To conclude our presentation concerning intersection theorems, let us men-
tion the famous result of Knaster, Kuratowski, and Mazurkiewitz (known as
KKM lemma).

Theorem 6. (KKM [25]) Let Ei ⊆ R
n be closed sets and ei ∈ Ei, i =

1, . . . ,m. Suppose that for each J ⊆ {1, . . . ,m} we have co{ej | j ∈ J} ⊆
∪j∈JEj. Then

m
∩
i=1

Ei �= ∅.

Now let us turn back to the equilibrium problem (EP). In what follows we
need some further definitions.

Definition 3. Let X be a convex subset of a certain vector space and let
h : X → R be some function. Then h is said to be quasiconvex if for every
x1, x2 ∈ X and 0 < λ < 1

h(λx1 + (1− λ)x2) ≤ max{h(x1), h(x2)}.

We say that h is quasiconcave if −h is quasiconvex.

It is easy to check that h is quasiconvex if and only if the lower level
sets {x ∈ X|h(x) ≤ a} are convex for each a ∈ R. Similarly, h is qua-
siconcave if and only if the upper level sets {x ∈ X|h(x) ≥ a} are con-
vex for each a ∈ R. It is also easy to see that in the statements above,
relations ≤ (≥) can be replaced with < (>) and the assertions remain
valid.

Definition 4. Let X be a topological space and let h : X → R be some func-
tion. Then h is said to be lower semicontinuous (lsc in short) on X if
the lower level sets {x ∈ X|h(x) ≤ a} are closed for each a ∈ R. h is said to
be upper semicontinuous (usc in short) on X if −h is lsc on X, that is,
its upper level sets are all closed.
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By means of Ky Fan’s theorem (Theorem 5) one can prove the following
existence result for (EP), due also to Ky Fan. This is known in the literature
as Ky Fan’s minimax inequality theorem.

Theorem 7. (Ky Fan [15]) Let A be a nonempty, convex, compact sub-
set of a Hausdorff topological vector space and let f : A × A → R, such
that

∀b ∈ A, f(·, b) : A→ R is usc, (19)
∀a ∈ A, f(a, ·) : A→ R is quasiconvex (20)

and
∀a ∈ A, f(a, a) ≥ 0. (21)

Then (EP) admits a solution.

Proof. For each b ∈ A, consider the set F (b) := {a ∈ A| f(a, b) ≥ 0}. By (19),
these sets are closed, and since A is compact, they are compact too. It is easy
to see that the conclusion of the theorem is equivalent to

∩
b∈A

F (b) �= ∅. (22)

In order to prove relation (22), let b1, b2, . . . , bn ∈ A. We shall show that

co{bi| i ∈ {1, 2, . . . , n}} ⊆
n
∪
i=1

F (bi). (23)

Indeed, suppose by contradiction that there exist λ1, λ2, . . . , λn ≥ 0,∑n
j=1 λj = 1, such that

n∑
j=1

λjbj /∈
n
∪
j=1

F (bj).

By definition, the latter means

f

⎛
⎝ n∑
j=1

λjbj , bi

⎞
⎠ < 0 ∀i ∈ {1, 2, . . . , n}.

By (20) (quasiconvexity), one obtains

f

⎛
⎝ n∑
j=1

λjbj ,
n∑
j=1

λjbj

⎞
⎠ < 0,

which contradicts (21). This shows that (23) holds. Now applying Theorem 5,
we obtain (22), which completes the proof. ��
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As we have seen, the basic tool in the proof of Theorem 3 (and 4) of Chang
and Zhang was the Brouwer’s fixed point theorem (Theorem 2). Moreover, Ky
Fan’s intersection (and consequently his minimax inequality theorems (Theo-
rems 5 and 7)), follow by Theorem 4. On the other hand, as we show next, by
Theorem 7 one can easily reobtain the Brouwer’s fixed point theorem, which
means that all these mentioned results are equivalent. To do this, we first
state the following result.

Theorem 8. Let E be a normed space, X ⊆ E be a compact convex set, and
g, h : X → E be continuous functions such that

‖x− g(x)‖ ≥ ‖x− h(x)‖ ∀x ∈ X. (24)

Then there exists an element x0 ∈ X, such that

‖y − g(x0)‖ ≥ ‖x0 − h(x0)‖ ∀y ∈ X.

Proof. Let f : X × X → R defined by f(x, y) := ‖y − g(x)‖ − ‖x − h(x)‖.
It is clear that this function satisfies the hypothesis of Theorem 7; thus there
exists an element x0 ∈ X such that

‖x0 − h(x0)‖ ≤ ‖y − g(x0)‖ ∀y ∈ X. (25)

This completes the proof. ��

Observe, in case g(X) ⊆ X, we can put y := g(x0) in (25); in this way we
obtain that x0 is a fixed point of f . Now it is immediate the well-known
Schauder’s fixed point theorem:

Theorem 9. (Schauder [31]) Let X be a convex compact subset of a real
normed space and h : X → X a continuous function. Then h has a fixed
point.

Proof. Taking h = g in the previous theorem, we obtain this result by (25),
with y := h(x0). ��

Clearly, Brouwer’s fixed point theorem (Theorem 2) is a particular case of
Theorem 9.

3.2 Results Based on Separation Theorems

As announced at the beginning of this section, we present now some existence
results on (EP) which uses separation tools in their proofs.

The result below is a particular case of a theorem due to Kassay and
Kolumbán [23].

Theorem 10. Let A be a nonempty, compact, convex subset of a certain topo-
logical vector space, let B be a nonempty convex subset of a certain vector
space, and let f : A×B → R be a given function.
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Suppose that the following assertions are satisfied:

(a) f is usc and concave in its first variable;
(b) f is convex in its second variable;
(c) supa∈A f(a, b) ≥ 0, for each b ∈ B.

Then the equilibrium problem (EP) has a solution.

Remark 2. Condition (c) in the previous theorem is satisfied if, for instance,
B ⊆ A and f(a, a) ≥ 0 for each a ∈ B. This condition arises naturally in most
of the particular cases presented above.

A similar, but more general existence result for the problem (EP) has been
established by Kassay and Kolumbán also in [23], where instead of the convex-
ity (concavity) assumptions upon the function f , certain kind of generalized
convexity (concavity) assumptions are supposed.

Theorem 11. Let A be a compact topological space, let B be a nonempty set,
and let f : A×B → R be a given function such that

(a) for each b ∈ B, the function f(·, b) : A→ R is usc;
(b) for each a1, . . . , am ∈ A, b1, . . . , bk ∈ B, λ1, . . . , λm ≥ 0 with∑m

i=1 λi = 1, the inequality

min
1≤j≤k

m∑
i=1

λif(ai, bj) ≤ sup
a∈A

min
1≤j≤k

f(a, bj)

holds;
(c) For each b1, . . . , bk ∈ B, μ1, . . . , μk ≥ 0 with

∑k
j=1 μj = 1, one has

sup
a∈A

k∑
j=1

μjf(a, bj) ≥ 0.

Then the equilibrium problem (EP) admits a solution.

Proof. Suppose by contradiction that (EP) has no solution, i.e., for each a ∈ A
there exists b ∈ B such that f(a, b) < 0 or, equivalently, for each a ∈ A there
exists b ∈ B and c > 0 such that f(a, b) + c < 0. Denote by Ub,c the set
{a ∈ A| f(a, b) + c < 0} where b ∈ B and c > 0. By (a) and our assumption,
the family of these sets is an open covering of the compact set A. Therefore,
one can select a finite subfamily which covers the same set A, i.e., there exist
b1, . . . , bk ∈ B and c1, . . . , ck > 0 such that

A =
k
∪
j=1

Ubj ,cj
. (26)

Let c := min{c1, . . . , ck} > 0 and define the vector-valued function H :
A→ R

k by
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H(a) := (f(a, b1) + c, . . . , f(a, bk) + c).

We show that
coH(A)∩ intRk+ = ∅, (27)

where coH(A) denotes the convex hull of the set H(A) and intRk+ denotes
the interior of the positive orthant R

k
+. Indeed, supposing the contrary, there

exist a1, . . . , am ∈ A and λ1, . . . , λm ≥ 0 with
∑m
i=1 λi = 1, such that

m∑
i=1

λiH(ai) ∈ intRk+

or, equivalently,

m∑
i=1

λi(f(ai, bj) + c) > 0 ∀j ∈ {1, . . . , k}. (28)

By (b), (28) implies
sup
a∈A

min
1≤j≤k

f(a, bj) > −c. (29)

Now using (26), for each a ∈ A there exists j ∈ {1, . . . , k} such that
f(a, bj) + cj < 0. Thus, for each a ∈ A we have

min
1≤j≤k

f(a, bj) < −c,

which contradicts (29). This shows that relation (27) is true. By the well-
known separation theorem of two disjoint convex sets in finite dimensional
spaces (see, for instance, [29]), the sets coH(A) and intRk+ can be separated
by a hyperplane, i.e., there exist μ1, . . . , μk ≥ 0 such that

∑k
j=1 μj = 1 and

k∑
j=1

μj(f(a, bj) + c) ≤ 0 ∀a ∈ A,

or, equivalently
k∑
j=1

μjf(a, bj) ≤ −c ∀a ∈ A. (30)

Observe, the latter relation contradicts assumption (c) of the theorem.
Thus the proof is complete. ��

4 The Equilibrium Problem and the Ekeland’s Principle

Due to its important applications, the problem of solving an equilibrium prob-
lem is an important task. However, it often happens, an equilibrium problem
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may not have solution even in case when the problem arises from practice.
Therefore, it is important to find approximate solutions in some sense or to
show their existence in case of an equilibrium problem.

The Ekeland’s variational principle (see, for instance, [13]) has been widely
used in nonlinear analysis since it entails the existence of approximate solu-
tions of a minimization problem for lower semicontinuous functions on a com-
plete metric space. Since, as we have seen in Section 2, minimization problems
are particular cases of equilibrium problems, one is interested in extending
Ekeland’s theorem to the setting of an equilibrium problem.

Recently, inspired by the study of systems of vector variational inequal-
ities, Ansari, Schaible, and Yao [1] introduced and investigated systems of
equilibrium problems, which are defined as follows. Let m be a positive in-
teger. By a system of equilibrium problems we understand the problem of
finding x̄ = (x̄1, . . . , x̄m) ∈ A such that

fi(x̄, yi) ≥ 0 ∀i ∈ I, ∀yi ∈ Ai, (SEP)

where fi : A×Ai → R, A =
∏m

1 Ai, with Ai some given sets.
The aim of this section is to present some recent results concerning ex-

istence of approximate equilibria for (EP) and (SEP). We find a suitable
set of conditions on the functions that do not involve convexity and lead to
an Ekeland’s variational principle for equilibrium and system of equilibrium
problems. Via the existence of approximate solutions, we are able to show
the existence of equilibria on general closed sets. Our setting is an Euclidean
space, even if the results could be extended to reflexive Banach spaces, by
adapting the assumptions in a standard way.

4.1 The Ekeland’s Principle for (EP) and (SEP)

To start, let us recall the celebrated Ekeland’s variational principle established
within the framework of minimization problems for lower semicontinuous func-
tions on complete metric spaces.

Theorem 12. (Ekeland [13]) Let (X, d) be a complete metric space and F :
X → R a lower bounded, lower semicontinuous function. Then for every ε > 0
and x0 ∈ X there exists x̄ ∈ X such that{

εd(x0, x̄) ≤ F (x0)− F (x̄)
F (x̄) < F (x) + εd(x̄, x) ∀x ∈ X, x �= x0.

(31)

Remark 3. If X = R with the Euclidean norm, then (31) can be written as
{
ε|x0 − x̄| ≤ F (x0)− F (x̄)
F (x̄) < F (x) + ε|x̄− x| ∀x ∈ X, x �= x0,

and this relation has a clear geometric interpretation.
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Starting from Theorem 12, in a most recent paper [5] the authors estab-
lished the following general result which we present here in detail.

Theorem 13. Let A be a closed set of R
n and f : A× A → R. Assume that

the following conditions are satisfied:

(a) f(x, ·) is lower bounded and lower semicontinuous, for every x ∈ A;
(b) f(t, t) = 0, for every t ∈ A;
(c) f(z, x) ≤ f(z, y) + f(y, x), for every x, y, z ∈ A.
Then, for every ε > 0 and for every x0 ∈ A, there exists x ∈ A such that

{
f(x0, x) + ε‖x0 − x‖ ≤ 0
f(x, x) + ε‖x− x‖ > 0 ∀x ∈ A, x �= x.

(32)

Proof. Without loss of generality, we can restrict the proof to the case ε = 1.
Denote by F(x) the set

F(x) := {y ∈ A : f(x, y) + ‖y − x‖ ≤ 0}.

By (a), F(x) is closed, for every x ∈ A; by (b), x ∈ F(x), hence F(x) is
nonempty for every x ∈ A. Assume y ∈ F(x), i.e., f(x, y) + ‖y − x‖ ≤ 0, and
let z ∈ F(y) (i.e., f(y, z)+‖y−z‖ ≤ 0). Adding both sides of the inequalities,
we get, by (c),

0 ≥ f(x, y) + ‖y − x‖+ f(y, z) + ‖y − z‖ ≥ f(x, z) + ‖z − x‖,

that is, z ∈ F(x). Therefore y ∈ F(x) implies F(y) ⊆ F(x).
Define

v(x) := inf
z∈F(x)

f(x, z).

For every z ∈ F(x),

‖x− z‖ ≤ −f(x, z) ≤ sup
z∈F(x)

(−f(x, z)) = − inf
z∈F(x)

f(x, z) = −v(x)

that is,
‖x− z‖ ≤ −v(x) ∀z ∈ F(x).

In particular, if x1, x2 ∈ F(x),

‖x1 − x2‖ ≤ ‖x− x1‖+ ‖x− x2‖ ≤ −v(x)− v(x) = −2v(x),

implying that
diam(F(x)) ≤ −2v(x) ∀x ∈ A.

Fix x0 ∈ A; x1 ∈ F(x0) exists such that

f(x0, x1) ≤ v(x0) + 2−1.
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Denote by x2 any point in F(x1) such that

f(x1, x2) ≤ v(x1) + 2−2.

Proceeding in this way, we define a sequence {xn} of points of A such that
xn+1 ∈ F(xn) and

f(xn, xn+1) ≤ v(xn) + 2−(n+1).

Notice that

v(xn+1) = inf
y∈F(xn+1)

f(xn+1, y) ≥ inf
y∈F(xn)

f(xn+1, y)

≥ inf
y∈F(xn)

(f(xn, y)− f(xn, xn+1))
(

inf
y∈F(xn)

f(xn, y)
)
− f(xn, xn+1)

= v(xn)− f(xn, xn+1).

Therefore,
v(xn+1) ≥ v(xn)− f(xn, xn+1)

and

−v(xn) ≤ −f(xn, xn+1) + 2−(n+1) ≤ (v(xn+1)− v(xn)) + 2−(n+1),

that entails
0 ≤ v(xn+1) + 2−(n+1).

It follows that

diam(F(xn)) ≤ −2v(xn) ≤ 2 · 2−n → 0, n→∞.

The sets {F(xn)} being closed and F(xn+1) ⊆ F(xn), we have that
⋂
n

F(xn) = {x}.

Since x ∈ F(x0), then

f(x0, x) + ‖x− x0‖ ≤ 0.

Moreover, x belongs to all F(xn), and, since F(x) ⊆ F(xn), for every n, we
get that

F(x) = {x}.
It follows that x /∈ F(x) whenever x �= x, implying that

f(x, x) + ‖x− x‖ > 0.

This completes the proof. ��
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Remark 4. It is easy to see that any function f(x, y) = g(y) − g(x) trivially
satisfies (c) (actually with equality). One might wonder whether a bifunction f
satisfying all the assumptions of Theorem 13 should be of the form g(y)−g(x),
and as such reducing the result above to the classical Ekeland’s principle. It
is not the case, as the example below shows: let the function f : R

2 → R be
defined by

f(x, y) =

{
e−‖x−y‖ + 1 + g(y)− g(x) x �= y

0 x = y
,

where g is a lower bounded and lower semicontinuous function. Then all the
assumptions of Theorem 13 are satisfied, but clearly f cannot be represented
in the above-mentioned form.

Next we shall extend the result above for a system of equilibrium problems.
Let m be a positive integer and I = {1, 2, . . . ,m}. Consider the functions
fi : A × Ai → R, i ∈ I, where A =

∏
i∈I Ai, and Ai ⊆ Xi is a closed

subset of the Euclidean space Xi. An element of the set Ai =
∏
j �=iAj will be

represented by xi; therefore, x ∈ A can be written as x = (xi, xi) ∈ Ai × Ai.
If x ∈

∏
Xi, the symbol |||x||| will denote the Tchebiseff norm of x, i.e.,

|||x||| = maxi ||xi||i and we shall consider the Euclidean space
∏
Xi endowed

with this norm.

Theorem 14. (Bianchi et al. [5]) Assume that

(a) fi(x, ·) : Ai → R is lower bounded and lower semicontinuous for every
i ∈ I;

(b) fi(x, xi) = 0 for every i ∈ I and every x = (x1, . . . , xm) ∈ A;
(c) fi(z, xi) ≤ fi(z, yi) + fi(y, xi), for every x, y, z ∈ A, where y = (yi, yi),

and for every i ∈ I.
Then for every ε > 0 and for every x0 = (x0

1, . . . , x
0
m) ∈ A there exists

x̄ = (x̄1, . . . , x̄m) ∈ A such that for each i ∈ I one has

fi(x0, x̄i) + ε‖x0
i − x̄i‖i ≤ 0 (33)

and
fi(x̄, xi) + ε‖x̄i − xi‖i > 0 ∀xi ∈ Di, xi �= x̄i. (34)

Proof. As before, we restrict the proof to the case ε = 1. Let i ∈ I be arbi-
trarily fixed. Denote for every x ∈ A

Fi(x) := {yi ∈ Ai : fi(x, yi) + ‖xi − yi‖i ≤ 0}.

These sets are closed and nonempty (for every x = (x1, . . . , xm) ∈ A we have
xi ∈ Fi(x)). Define for each x ∈ A

vi(x) := inf
zi∈Fi(x)

fi(x, zi).
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In a similar way as in the proof of Theorem 13 one can show that diam(Fi(x)) ≤
−2vi(x) for every x ∈ A and i ∈ I.

Fix now x0 ∈ A and select for each i ∈ I an element x1
i ∈ Fi(x0) such that

fi(x0, x1
i ) ≤ vi(x0) + 2−1.

Put x1 := (x1
1, . . . , x

1
m) ∈ A and select for each i ∈ I an element x2

i ∈ Fi(x1)
such that

fi(x1, x2
i ) ≤ vi(x1) + 2−2.

Put x2 := (x2
1, . . . , x

2
m) ∈ A. Continuing this process we define a sequence

{xn} in A such that xn+1
i ∈ Fi(xn) for each i ∈ I and n ∈ N and

fi(xn, xn+1
i ) ≤ vi(xn) + 2−(n+1).

Using a same argument as in the proof of Theorem 13 one can show that

diam(Fi(xn)) ≤ −2vi(xn) ≤ 2 · 2−n → 0, n→∞,

for each i ∈ I.
Now define for each x ∈ A the sets

F(x) := F1(x)× · · · × Fm(x) ⊆ A.

The sets F(x) are closed and using (c) it is immediate to check that for each
y ∈ F(x) it follows that F(y) ⊆ F(x). Therefore, we also have F(xn+1) ⊆
F(xn) for each n ∈ {0, 1, . . .}. On the other hand, for each y, z ∈ F(xn) we
have

|||y − z||| = max
i∈I

‖yi − zi‖i ≤ max
i∈I

diamFi(xn)) → 0,

thus, diam(F(xn)) → 0 as n→∞. In conclusion we have

∞
∩
n=0

F(xn) = {x̄}, x̄ ∈ A.

Since x̄ ∈ F(x0), i.e., x̄i ∈ Fi(x0) (i ∈ I) we obtain

fi(x0, x̄i) + ‖x0
i − x̄i‖i ≤ 0 ∀i ∈ I,

and so, (33) holds. Moreover, x̄ ∈ F(xn) implies F(x̄) ⊆ F(xn) for all n =
0, 1, . . ., therefore,

F(x̄) = {x̄}
implying

Fi(x̄) = {x̄i} ∀i ∈ I.
Now for every xi ∈ Ai with xi �= x̄i we have by the previous relation that
xi /∈ Fi(x̄) and so

fi(x̄, xi) + ‖x̄i − xi‖i > 0.

Thus (34) holds too, and this completes the proof. ��
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4.2 New Existence Results for Equilibria on Compact Sets

As shown by the literature, the existence results of equilibrium problems usu-
ally require some convexity (or generalized convexity) assumptions on at least
one of the variables of the function involved. In this section, using Theorems
13 and 14, we show the nonemptiness of the solution set of (EP) and (SEP),
without any convexity requirement. To this purpose, we recall the definition
of approximate equilibrium point, for both cases (see [5, 21]). We start our
analysis with (EP).

Definition 5. Given f : A × A → R and ε > 0, x ∈ A is said to be an
ε-equilibrium point of f if

f(x, y) ≥ −ε‖x− y‖ ∀y ∈ A (35)

The ε-equilibrium point is strict, if in (35) the inequality is strict for all y �= x.

Notice that the second relation of (31) gives the existence of a strict ε-
equilibrium point, for every ε > 0. Moreover, by (b) and (c) of Theorem 12 it
follows by the first relation of (31) that

f(x, x0) ≥ ε‖x− x0‖,

“localizing,” in a certain sense, the position of x.
Theorem 12 leads to a set of conditions that are sufficient for the nonempti-

ness of the solution set of (EP).

Proposition 2. (Bianchi et al. [5]) Let A be a compact (not necessarily con-
vex) subset of an Euclidean space and f : A×A→ R be a function satisfying
the assumptions:

(a) f(x, ·) is lower bounded and lower semicontinuous, for every x ∈ A;
(b) f(t, t) = 0, for every t ∈ A;
(c) f(z, x) ≤ f(z, y) + f(y, x), for every x, y, z ∈ A;
(d) f(·, y) is upper semicontinuous, for every y ∈ A.
Then, the set of solutions of EP is nonempty.

Proof. For each n ∈ N, let xn ∈ A a 1/n-equilibrium point (such point exists
by Theorem 12), i.e.,

f(xn, y) ≥ −
1
n
‖xn − y‖ ∀y ∈ A.

Since A is compact, we can choose a subsequence {xnk
} of {xn} such that

xnk
→ x as n→∞. Then, by (d),

f(x, y) ≥ lim sup
k→∞

(
f(xnk

, y) +
1
nk
‖xnk

− y‖
)

∀y ∈ A,

thereby proving that x is a solution of EP. ��
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Let us now consider the following definition of ε-equilibrium point for
systems of equilibrium problems. As before, the index set I consists of the
finite set {1, 2, . . . ,m}.

Definition 6. Let Ai, i ∈ I be subsets of certain Euclidean spaces and put
A =

∏
i∈I Ai. Given fi : A × Ai → R, i ∈ I, and ε > 0, the point x ∈ A is

said to be an ε-equilibrium point of {f1, f2, . . . , fm} if

fi(x, yi) ≥ −ε‖xi − yi‖i ∀yi ∈ Ai, ∀i ∈ I.

The following result is an extension of Proposition 2, and it can be proved in
a similar way.

Proposition 3. (Bianchi et al. [5]) Assume that, for every i ∈ I, Ai is com-
pact and fi : A×Ai → R is a function satisfying the assumptions:

(a) fi(x, ·) is lower bounded and lower semicontinuous, for every x ∈ A;
(b) fi(x, xi) = 0, for every x = (xi, xi) ∈ A;
(c) fi(z, xi) ≤ fi(z, yi) + fi(y, xi), for every x, y, z ∈ A, where y = (yi, yi);
(d) fi(·, yi) is upper semicontinuous, for every yi ∈ Ai.
Then, the set of solutions of (SEP) is nonempty.

4.3 Equilibria on Noncompact Sets

The study of the existence of solutions of the equilibrium problems on un-
bounded domains usually involves the same sufficient assumptions as for
bounded domains together with a coercivity condition. Bianchi and Pini [7]
found coercivity conditions as weak as possible, exploiting the generalized
monotonicity properties of the function f defining the equilibrium problem.

Let A be a closed subset of X, not necessarily convex, not necessarily
compact, and f : A×A→ R be a given function.

Consider the following coercivity condition (see [7]):

∃r > 0 : ∀x ∈ A \Kr, ∃y ∈ A, ‖y‖ < ‖x‖ : f(x, y) ≤ 0, (36)

where Kr := {x ∈ A : ‖x‖ ≤ r}.
We now show that within the framework of Proposition 2 condition (36)

guarantees the existence of solutions of (EP) without supposing compactness
of A.

Theorem 15. (Bianchi et al. [5]) Suppose that

(a) f(x, ·) is lower bounded and lower semicontinuous, for every x ∈ A;
(b) f(t, t) = 0, for every t ∈ A;
(c) f(z, x) ≤ f(z, y) + f(y, x), for every x, y, z ∈ A;
(d) f(·, y) is upper semicontinuous, for every y ∈ A.
If (36) holds, then (EP) admits a solution.
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Proof. We may suppose without loss of generality that Kr is nonempty. For
each x ∈ A consider the nonempty set

S(x) := {y ∈ A : ‖y‖ ≤ ‖x‖ : f(x, y) ≤ 0}.

Observe that for every x, y ∈ A, y ∈ S(x) implies S(y) ⊆ S(x). Indeed, for
z ∈ S(y) we have ‖z‖ ≤ ‖y‖ ≤ ‖x‖ and by (c) f(x, z) ≤ f(x, y) + f(y, z) ≤ 0.
On the other hand, since K‖x‖ is compact, by (a) we obtain that S(x) ⊆ K‖x‖
is a compact set for every x ∈ A. Furthermore, by Proposition 2, there exists
an element xr ∈ Kr such that

f(xr, y) ≥ 0 ∀y ∈ Kr. (37)

Suppose that there exists x ∈ A with f(xr, x) < 0 and put

a := min
y∈S(x)

‖y‖

(the minimum is taken since S(x) is nonempty, compact and the norm is
continuous). We distinguish two cases.

Case 1: a ≤ r. Let y0 ∈ S(x) such that ‖y0‖ = a ≤ r. Then we have
f(x, y0) ≤ 0. Since f(xr, x) < 0, it follows by (c) that

f(xr, y0) ≤ f(xr, x) + f(x, y0) < 0,

contradicting (37).
Case 2: a > r. Let again y0 ∈ S(x) such that ‖y0‖ = a > r. Then,

by (36) we can choose an element y1 ∈ A with ‖y1‖ < ‖y0‖ = a such that
f(y0, y1) ≤ 0. Thus, y1 ∈ S(y0) ⊆ S(x) contradicting

‖y1‖ < a = min
y∈S(x)

‖y‖.

Therefore, there is no x ∈ A such that f(xr, x) < 0, i.e., xr is a solution of
(EP) (on A). This completes the proof. ��

Next we consider (SEP) for noncompact setting. Let us consider the fol-
lowing coercivity condition:

∃r > 0 : ∀x ∈ A such that ‖xi‖i > r for some i ∈ I,
∃yi ∈ Ai, ‖yi‖i < ‖xi‖i and fi(x, yi) ≤ 0. (38)

We conclude this section with the following result which guarantees the
existence of solutions for (SEP).

Theorem 16. (Bianchi et al. [5]) Suppose that, for every i ∈ I,
(a) fi(x, ·) is lower bounded and lower semicontinuous, for every x ∈ A;
(b) fi(x, xi) = 0, for every x = (xi, xi) ∈ A;
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(c) fi(z, xi) ≤ fi(z, yi) + fi(y, xi), for every x, y, z ∈ A, where y = (yi, yi);
(d) fi(·, yi) is upper semicontinuous, for every yi ∈ Ai.
If (38) holds, then (SEP) admits a solution.

Proof. For each x ∈ A and every i ∈ I consider the set

Si(x) := {yi ∈ Ai, ‖yi‖i ≤ ‖xi‖i, fi(x, yi) ≤ 0}.

Observe that, by (c), for every x and y = (yi, yi) ∈ A, yi ∈ Si(x) implies
Si(y) ⊆ Si(x). On the other hand, since the set {yi ∈ Ai : ‖yi‖i ≤ r} = Ki(r)
is a compact subset of Ai, by (a) we obtain that Si(x) is a nonempty compact
set for every x ∈ A. Furthermore, by Proposition 3, there exists an element
xr ∈

∏
iKi(r) (observe, we may suppose that Ki(r) �= ∅ for all i ∈ I) such

that
fi(xr, yi) ≥ 0 ∀yi ∈ Ki(r), ∀i ∈ I. (39)

Suppose that xr is not a solution of (SEP). In this case, there exists j ∈ I and
zj ∈ Aj with fj(xr, zj) < 0. Let zj ∈ Aj be arbitrary and put z = (zj , zj) ∈ A.
Define

aj := min
yj∈Sj(z)

‖yj‖j .

We distinguish two cases.
Case 1: aj ≤ r. Let yj(z) ∈ Sj(z) such that ‖yj(z)‖j = aj ≤ r. Then we

have fj(z, yj(z)) ≤ 0. Since fj(xr, zj) < 0, it follows by (c) that

fj(xr, yj(z)) ≤ f(xr, zj) + f(z, yj(z)) < 0,

contradicting (39).
Case 1: aj > r. Let again yj(z) ∈ Sj(z) such that ‖yj(z)‖j = aj > r.

Let yj ∈ Aj be arbitrary and put y(z) = (yj , yj(z)) ∈ A. Then, by (38)
we can choose an element yj ∈ Aj with ‖yj‖j < ‖yj(z)‖j = aj such that
fj(y(z), yj) ≤ 0. Clearly, yj ∈ Sj(y(z)) ⊆ Sj(z), a contradiction since yj(z)
has minimal norm in Sj(z). This completes the proof. ��

5 Conclusions

Finally, let us recall the most important issues discussed in this chapter. As
emphasized in Introduction, our purpose was to give an overlook on equilib-
rium problem (abbreviated (EP)) underlining its importance and usefulness
from both theoretical and practical points of view.

In the second section we have presented the most important particu-
lar cases of (EP). One of them is the optimization problem (minimiza-
tion/maximization of a real-valued function over a so-called feasible set). As
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well known, optimization problems appear as mathematical models of many
problems of practical interest. Another particular case of (EP) presented here
is the so-called Kirszbraun’s problem, which can be successfully applied in ex-
tending nonexpansive functions (these functions are important among others,
in fixed point theory). The saddlepoint (or minimax) problems have shown
to be also particular instances of (EP). We have pointed out the applicabil-
ity of these problems in game theory on one hand and in duality theory in
optimization, on the other hand. We have concluded the presentation of the
particular cases of (EP) with variational inequalities, which constitute models
of various problems arising from mechanics and economy.

Section 3 has been devoted to the exposition of some classical and recent
results concerning existence of solutions of (EP). We have underlined that
in general these results can be deduced in two ways: either using fixed point
tools or separation (Hahn–Banach) tools. For the reader’s convenience, the
most important results of this section have been presented together with their
proofs. Moreover, we have tried to keep these proofs as simple as possible.

When dealing with (EP), one frequently encounters the situation when
the set of solutions is empty. In these situations it is important to study
the existence of approximate solutions in some sense. Since (EP) contains, in
particular, optimization problems, and the celebrated Ekeland’s variational
principle provides the existence of approximate optimal solutions, it comes
natural to investigate whether this principle can be extended to (EP). Based
on recent results of the author, we have presented in the last section some of
these possible extensions both for (EP) and a more general situation: system
of equilibrium problems (SEP).

Throughout this chapter we have limited ourselves to the scalar case, i.e.,
when the functions involved in (EP) or (SEP) are real-valued. In the last
decade the vector-valued case has also been studied (see, for instance, [1, 4,
16]). We think that a possible research for the future could be to investigate
whether the results presented here for the scalar case can be extended also for
the vector case.
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