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Conquering the world on horseback is easy; it is dismounting and
governing that is hard.

– Chinggis Khan

Translation adapted from The Gigantic Book of Horse Wisdom
(2007) by Thomas Meagher and Buck Brannaman.



Preface

Optimization and optimal control are the main tools in decision making. In
optimization we often deal with problems in finite-dimensional spaces. On
the other hand, in optimal control we solve problems in infinite-dimensional
spaces. Many problems in engineering, physics, economics and other fields can
be formulated as optimization and optimal control problems.

This book brings together recent developments in optimization and opti-
mal control as well as recent applications of these results to a wide range of
real-world problems. The book consists of 24 chapters contributed by experts
around the world who work with optimization and optimal control either at a
theoretical level or at the level of using these tools in practice. Each chapter
is not only of expository but also of scholarly nature.

The first 12 chapters focus on optimization theory and equilibrium prob-
lems. The chapter by A. Antipin studies optimization problems generated by
sensitivity functions for convex programming problems. Methods for these
problems are proposed and properties of the sensitivity functions are ana-
lyzed. The chapter by M.A. Goberna gives an overview of the state of the art
in sensitivity and satiability analysis in linear semi-infinite programming. In
the chapter by G. Kassay, scalar equilibrium problems are considered. Appli-
cations of these problems in nonlinear analysis are discussed and some new
results concerning the existence of exact and approximate solutions are pre-
sented. The chapter by G. Isac presents the concept of scalarly compactness
in nonlinear analysis. Applications of the concept to the study of variational
inequalities and complementarities problems are discussed. The chapter by
N.X. Tan and L.J. Lin formulates Blum–Oettli type quasi-equilibrium prob-
lems and establishes sufficient conditions for the existence of their solutions.
The chapter by R. Enkhbat and Ya. Bazarsad formulated the response sur-
face problems as quadratic programming problems. Solution approaches for
these quadratic programming problems based on global optimality conditions
are proposed. The chapter by D.Y. Gao et al. proposes a canonical dual ap-
proach for solving a fixed cost mixed-integer quadratic programming problem.
It is shown that, using so-called canonical duality theory, the problem can be
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reduced to canonical convex dual problem with zero gap which can be tack-
led by many efficient local search methods. The chapter by B. Luderer and
B. Wagner considers the problem of finding the intersection of the convex
hulls of two sets containing finitely many points each. An algorithm for the
problem is proposed based on the equivalent quasi-differentiable optimiza-
tion problem. The chapter by M.-A. Majig et al. proposes an evolutionary
search algorithm for solving the global optimization problem with box con-
straint. The algorithm finds as many solutions of the problem as possible or all
solutions in some cases. The evolutionary search also employs a local search
procedure. The chapter by L. Altangerel and G. Wanka deals with the pertur-
bation approach in the conjugate duality for vector optimization on the basis
of weak ordering. New gap functions for vector optimization are proposed and
their properties are studied. The chapter by D. Li et al. gives an overview of
six polynomially solvable classes of binary quadratic programming problems
and provides examples and geometric illustrations to give intuitive insights
of the problems. The chapter by B. Jadamba et al. deals with an ill-posed
multi-valued quasi-variational inequality problem. A parameter identification
problem that gives a stable approximation procedure for the ill-posed prob-
lem is formulated and generalizations of this approach to other problems are
discussed.

The next five chapters are concerned with optimal control theory and
algorithms. The chapter by Z.G. Feng and K.L. Teo considers a class of op-
timal feedback control problems where its dynamical system is described by
stochastic linear systems subject to Poisson processes and with state jumps.
They show that the problem is equivalent to a deterministic impulsive optimal
parameter selection problem with fixed jump times and provide an efficient
computational method for the later problem. In the chapter by V. Maksimov,
controlled differential inclusions involving subdifferentials of convex functions
are considered. In particular, the three problems, the problem of prescribed
motion realization, the problem of robust control, and the problem of input dy-
namical reconstruction, are suited. Stable feedback control-based algorithms
for solving the problems are presented. The chapter by B.D.O. Anderson et al.
proposes a new algorithm for solving Riccati equations and certain Hamilton-
Jacobi-Bellman-Isaacs equations arising in H∞ control. In the chapter by D.
Vrabie and F. Lewis, a new online direct adaptive scheme is constructed in
order to find an approximate solution to the state feedback, infinite-horizon,
optimal control problem. In the chapter by A.S. Buldaev, iterative perturba-
tion methods for nonlinear optimal control problems which are polynomial
with respect to the state are proposed.

The remaining seven chapters are largely devoted to applications of op-
timization and optimal control. The chapter by H.P. Geering et al. explains
how stochastic optimal control theory can be applied to optimal asset alloca-
tion problems under consideration of risk aversion. Two types of problems are
studied and corresponding solution techniques are presented. The chapter by
F.D. Fagundez et al. considers scheduling problems in the process industry.



Preface IX

A nonlinear dynamic programming model for the process scheduling is pro-
posed and the results are compared with those of different mixed integer
nonlinear programming models. The chapter by D. Fortin is concerned with
quantum computing and Grothendieck’s constant. A non-cooperative quan-
tum game is presented and it is also shown that for many instances of rank-
deficient correlation matrices Grothendieck’s constants go beyond

√
2 for suf-

ficiently large size. The chapter by H. Damba et al. considers a problem of
identifying a pasture region where the grass mass in the region is maximized.
The chapter by W.-J. Hwang et al. considers the rate control problem in
wired-cum-wireless networks. It is shown that there is a unique solution for
end-to-end session rates and infinitely many corresponding optimal values for
wireless link transmission rates of the optimization problems, where the opti-
mization variables are both end-to-end session rates and wireless link trans-
mission rates. The chapter by N. Fan et al. explores the relationship between
biclustering and graph partitioning. Several integer programming formulations
for the different cuts including ratio cut and normalized cut are presented. In
the chapter by M. Tamaki and Q. Wang, a best choice problem in queue theory
is considered. The problem is to find a procedure to select the best applicant
by selecting or rejecting the applicants. They give the explicit rule for the best
choice problem where the number of applicants is uniformly distributed.

We would like to take this opportunity to thank the authors of the chap-
ters, the anonymous referees, and Springer for making the publication of this
book possible.

London, UK A. Chinchuluun
Gainesville, FL, USA P.M. Pardalos
Ulaanbaatar, Mongolia R. Enkhbat
Versailles, France I. Tseveendorj
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Sensibility Function as Convolution of System
of Optimization Problems

Anatoly Antipin

Computing Center of Russian Academy of Sciences, Vavilov str., 40, 119333
Moscow, Russia
antipin@ccas.ru

Summary. The sensibility function generated by a convex programming problem is
viewed as an element of a complex system of optimization problems. Its role in this
system is clarified. The optimization problems generated by the sensibility function
are considered. Methods for their solution are proposed.

Key words: sensibility function, system of optimization problems, extraprox-
imal method

1 Introduction

The sensibility function has been intensively studied since the first publica-
tions on this subject [1, 2]. A complete bibliography can be found in [3],
where the directional differentiability of the sensibility function was defined
and its properties were examined. Issues concerning perturbation theory and
the associated properties of the sensibility function in convex programming
problems were discussed in [4]. The convexity of the sensibility function gen-
erated by a convex programming problem was proved in [5, 6]. In [7] the rela-
tionship between the sensibility function and the set of Pareto solutions of a
multicriteria optimization problem was established in the case when the prob-
lem’s vector criterion is formed of the objective function and of the functional
constraints in the nonlinear programming problem. For convex programming
problems, the sensibility function can be treated as a parametrization of the
subset of Pareto solutions that are in the positive orthant, since the graph
of the sensibility function coincides with this subset. Methods for computing
multicriteria solutions for a nonconvex Pareto manifold were proposed in [8].
In [9] the sensibility function was treated as a usual element of the space of
differentiable functions.

In this chapter the sensibility function is viewed as an element of a system
of optimization problems, i.e., in fact, of game problems with a Nash equi-
librium. In the framework of this system, the sensibility function itself forms

A. Chinchuluun et al. (eds.), Optimization and Optimal Control,
Springer Optimization and Its Applications 39, DOI 10.1007/978-0-387-89496-6 1,
c© Springer Science+Business Media, LLC 2010



2 A. Antipin

an optimization problem whose solution solves the original system. Moreover,
the optimization problem generated by the sensibility function can be treated
as a convolution or scalarization of the original system. Accordingly, meth-
ods for solving systems of optimization problems are those for optimizing the
sensibility function on different sets for different systems.

Let us first review the properties of the sensibility function. In contrast
to the traditional approach, we give new definitions of the convexity and
subdifferentiability of the function that are based on a saddle point of the
Lagrangian for a convex programming problem.

The sensibility function is generated by the following parametric convex
programming problem with the right-hand side column vector of functional
constraints y ∈ Rm

+ used as a parameter:

ϕ(y) = min{f(w) | g(w) ≤ y, w ∈W0}, y ∈ Rm
+ . (1)

Here, the objective function f(w) and each component of the vector function
g(w) are convex scalar functions, W0 ⊂ Rn is a convex closed set, and y ∈ Rm

+ .
In the general case, ϕ(y) is defined on the entire space Rm (if the feasible set
of the problem is empty for some y, then by definition ϕ(y) = +∞), but in
this chapter we restrict ourselves to the case of Rm

+ .
Recall some properties of the sensibility function.

Property 1. The sensibility function is monotonically decreasing.

Indeed, if y1 ≤ y2 (in the sense of a partial order), then the feasible set
corresponding to y2 includes that corresponding to y1. On a larger set, the
objective function value can be only smaller than on the original feasible set
corresponding to y1. Therefore, ϕ(y1) ≥ ϕ(y2).

Recall that, by definition, we have (1). Assume also that this problem is
regular (e.g., the Slater condition holds) for any y ∈ Rm

+ . This in turn means
that the system of inequalities

f(wy) + 〈p, g(wy)− y〉 ≤ f(wy) + 〈py, g(wy)− y〉 ≤ f(w) + 〈py, g(w)− y〉 (2)

holds for all w ∈ W0, p ≥ 0. Here, wy ∈ W0, py ≥ 0 is a saddle point of
L(p, w, y) = f(w) + 〈p, g(w)− y〉 for a fixed parameter value y ≥ 0.

Given arbitrary convex f(w), g(w), and arbitrary y, the function L(p, w, y)
usually has several saddle points. However, since L(p, w, y) is a continuous and
convex function of its variables [10], its saddle points form a convex closed set.
If, additionally, problem (2) is regular, then the set of saddle points is bounded
with respect to p ≥ 0. Indeed, setting w = w0 in the right inequality in (2),
where w0 is a Slater point, i.e., a point satisfying gi(w0) < 0, i = 1, 2, . . . ,m,
we obtain

0 ≤ 〈py, g(w0)− y〉 ≤ f(w0)− f(wy).

Now, assuming that a certain component of py is infinitely large, we obtain a
contradiction to the estimate.
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It is useful to rewrite system (2) in the equivalent form

wy ∈ Argmin{f(w) + 〈p, g(w)− y〉 | w ∈W0}, (3)
〈p− py, g(wy)− y〉 ≤ 0, p ≥ 0. (4)

Since the variational inequality of this system is defined on the positive or-
thant, it splits into two relations that form a complementarity problem. To
show this, it suffices to set p = 0 and, then, p = 2py in this inequality. Then
we obtain

〈py, g(wy)− y〉 = 0, g(wy)− y ≤ 0. (5)

In view of (5), we can see that system (3), (4) is equivalent to

wy ∈ Argmin{f(w) | g(w) ≤ y, w ∈W0}, (6)
〈p− py, g(wy)− y〉 ≤ 0, p ≥ 0, (7)

where (6) coincides with (1). Let us show that ϕ(y) is convex and subdiffer-
entiable.

Property 2. The sensibility function ϕ(y) of a regular convex programming
problem is convex and subdifferentiable.

Definition 1. The function ϕ(y) is said to be convex and subdifferentiable if
for any y from its domain there exists a subdifferential ∇ϕ(y) (a convex closed
bounded set) and ϕ(y) satisfies the system of inequalities

〈∇ϕ(y0), y − y0〉 ≤ ϕ(y)− ϕ(y0) ≤ 〈∇ϕ(y), y − y0〉 (8)

for all y ≥ 0 and y0 ≥ 0.

For illustrative purposes, we rewrite system (2) for a fixed parameter value
y = y0:

f(wy0)+〈p, g(wy0)−y0〉 ≤ f(wy0)+〈py0 , g(wy0)−y0〉 ≤ f(w)+〈py0 , g(w)−y0〉
(9)

for all w ∈ W0, p ≥ 0. According to (5), the left variational inequality of this
system

〈p− py0 , g(wy0)− y0〉 ≤ 0, p ≥ 0 (10)

is equivalent to the complementarity problem

〈py0 , g(wy0)− y0〉 = 0, g(wy0)− y0 ≤ 0. (11)

Specifically, when p = py, relation (10), combined with (11), yields

〈py, g(wy0)− y0〉 ≤ 〈py0 , g(wy0)− y0〉 = 0. (12)

Similarly, when p = py0 , from (4) in view of (5), we have

〈py0 , g(wy)− y〉 ≤ 〈py, g(wy)− y〉 = 0. (13)
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When w = wy, the right inequality in (9) in view of (11) yields

〈py0 , y0 − g(wy)〉 ≤ f(wy)− f(wy0).

Using condition (13), we rearrange this inequality into

〈py0 , y0 − y〉 ≤ f(wy)− f(wy0). (14)

Accordingly, the right inequality in (2) with w = wy0 yields

〈py, y − g(wy0)〉 ≤ f(wy0)− f(wy). (15)

In view of (12), we obtain

〈py, y − y0〉 ≤ f(wy0)− f(wy). (16)

From (1), (2), and (9), it is easy to see that f(wy) = ϕ(y), f(wy0) = ϕ(y0).
In view of these relations, (14) and (16) can be rewritten as

〈−py0 , y − y0〉 ≤ ϕ(y)− ϕ(y0) ≤ 〈−py, y − y0〉. (17)

Here, py and py0 are any Lagrange multiplier vectors of problem (1) that
satisfy system (2) or (9). As was mentioned above, the collection of such
vectors corresponding to any parameter value y ≥ 0 is a convex closed bounded
set.

Introducing the notation ∇ϕ(y) = −py and ∇ϕ(y0) = −py0 , we call any
of these vectors a subgradient of ϕ(y) at y ∈ Rm. The set of all subgradients
at y is called a subdifferential; moreover,

∇ϕ(y) ∈ ∂ϕ(y)
∂y

, ∇ϕ(y0) ∈ ∂ϕ(y)
∂y

|y=y0 .

By using the notation introduced, (17) can be rewritten in the form of (8).

Property 3. The sensibility function ϕ(y) is convex in the sense of Jensen’s
inequality [10].

Let y(α) = αy + (1− α)y0. Then (8) implies

〈∇ϕ(y(α)), y − y(α)〉 ≤ ϕ(y)− ϕ(y(α)),
〈∇ϕ(y(α), y0 − y(α)〉 ≤ ϕ(y0)− ϕ(y(α)).

Multiplying the first inequality by α and the second by (1−α) and summing
them up, we obtain

0 = 〈∇f(y(α)), y(α)− y(α) ≤ αf(y) + (1− α)f(y0)− f(y(α)).

This yields

f(αy + (1− α)y0) ≤ αf(y) + (1− α)f(y0), y ≥ 0, y0 ≥ 0. (18)
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Property 4. The subdifferential of the sensibility function is a monotone set-
valued mapping.

System (8) is represented in the form

〈∇ϕ(y0), y − y0〉 ≤ ϕ(y)− ϕ(y0), ϕ(y)− ϕ(y0) ≤ 〈∇ϕ(y), y − y0〉.
Summing up both inequalities gives

〈∇ϕ(y)−∇ϕ(y0), y − y0〉 ≥ 0 (19)

for all y ≥ 0 and y0 ≥ 0.

Property 5. The epigraph of the sensibility function is a convex closed set.

Let epiϕ = {(y, μ) | y ∈ domϕ, μ ≥ ϕ(y)} be the epigraph of ϕ(y), y ≥ 0. If
the points μ0, y0 and μ1, y1 belong to epiϕ, then μ0 ≥ ϕ(y0), y0 ∈ domϕ and
μ1 ≥ ϕ(y1), y1 ∈ domϕ at these points. Multiplying the first condition by α
and the second by (1−α) and summing them up, we obtain αμ0+(1−α)μ1 ≥
αϕ(w0) + (1− α)ϕ(w1) ≥ ϕ(αw0 + (1− α)w1), αy0 + (1− α)y1. Thus, if the
points μ0, y0 and μ1, y1 belong to the epigraph of ϕ(y), then the entire segment
joining them belongs to the epigraph as well. This means that the epigraph
of ϕ(y) is a convex set.

Property 6. The graph of the sensibility function coincides with the subset of
positive-orthant Pareto solutions to the multicriteria optimization problem
generated by the objective function and the functional constraints.

Define the vector function F (w) = (f(w), g(w)) and consider the vector
optimization problem

F (w∗) = min{F (w) | w ∈W0}. (20)

The solution set of this problem is a large set of Pareto optimal, or Pareto
effective, points. All of them are determined by the following formal condition:
F (w∗) is called a Pareto optimal point if there is no vector v such that

F (v) ≤ F (w∗) and F (v) �= F (w∗),

i.e., the negative (closed) orthant K(F (w∗)) with its vertex at F (w∗) contains
no points of the set F = {F (w), w ∈W0} other than F (w∗). Stated differently,
any point of F (w∗) is such that the intersection of the set F (which is the
image of W0 under the mapping F (w)) andK(F (w∗)) with its vertex at F (w∗)
contains the single point F (w∗).

Recall that the Kuhn–Tucker theorem in the regular case implies that every
y ≥ 0 in problem (1) is associated with a vector of Lagrange multipliers py ≥ 0.
According to property 2, every Lagrange multiplier vector is a subgradient
∇ϕ(y) = py of sensibility function (1) (see (8)). Moreover, every y ≥ 0 is
associated with a vector (f(wy), g(wy)) such that
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f(wy) + 〈py, g(wy)〉 ≤ f(w) + 〈py, g(w)〉, w ∈W0,

〈p, g(wy)− y〉 ≤ 〈py, g(wy)− y〉, p ≥ 0. (21)

The first inequality in this system implies that (f(wy), g(wy)) is a Pareto op-
timal point, while (1, py) is the normal vector to its linear support functional.
Note that the domain of the mapping ∇ϕ(y) = py depends substantially on
f(w) and g(w): This domain can include the entire positive orthant Y = Rm

+ ,
its proper subset of lower dimension, or the origin Y = 0. The last case is
possible if the minimizer in the convex programming problem satisfies the
Slater condition. Then the domain of the sensibility function for this problem
shrinks to a point (to the origin) and the image of ∇ϕ(y) = py is also the
origin. If the minimizer of the problem coincides with the intersection point of
m functional constraints, i.e., the minimizer solves a system of m equations,
then the domain of the sensibility function is the entire orthant Y = Rm

+ , and,
if the minimizer is an interior point for some constraints, then the domain is
an orthant of lower dimension.

Accordingly, the range of ∇ϕ(y) = py has a similar structure: It can be the
entire orthant, its proper subset, or the origin. Indeed, given a vector p ≥ 0
with nonzero components such that all the components of g(wy) in the first
inequality in (21) are strictly negative. Then the linear functional in the second
inequality in (21) has a normal vector all of whose components are negative
(for any y ≥ 0, which can always be assumed to be zero). However, a linear
functional with strictly negative normal components can reach a maximum on
the positive orthant only at the origin. Thus, assuming that all the components
of p are initially nonzero, we obtain a contradiction. This means that some
points of the positive orthant are not the images of ∇ϕ(y) = py.

Let us return to the second inequality in (21). We see that the linear
functional is bounded above by a constant. This is possible if its normal is
zero (i.e., g(wy) − y = 0, which gives g(wy) = y) or if some components of
the normal are strictly negative, in which case the corresponding components
of p (Lagrange multipliers) are zero and the first inequality in (21) holds as
well. Thus, we have

g(wy)− y = 0.

Here, if some of the components of g(wy) are negative, then the correspond-
ing components of y are also zero and this equality holds on a subspace of a
lower dimension than m. Note that this subspace contains the graph of the
sensibility function, which coincides with the set of Pareto optimal solutions
to problem (20). Thus, taking into account ϕ(y) = f(wy) and g(wy) = y, we
conclude that the point (ϕ(y), y) on the graph of the sensibility function cor-
responds to the Pareto optimal point (f(wy), g(wy)), which is in the positive
orthant.

The converse is also true. Pareto optimal points in the positive orthant lie
on the graph of the sensibility function. It was shown above that the image of
∇ϕ(y) = py is not the entire positive orthant but rather a subset of it. Denote
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this image by P0 = Rn
+ and consider the inverse mapping ∇ψ(p) : P0 → Rn.

Given a fixed weight vector p ∈ P0, it has at least one nonzero component
and satisfies the inequality

f(wp) + 〈p, g(wp)〉 ≤ f(w) + 〈p, g(w)〉, w ∈W0. (22)

Here, f(wp), g(wp) is a Pareto optimal point as a minimizer of a linear function
on the image of the vector criterion (f(w), g(w)). To each vector p ∈ P0, we
assign the vector ∇ψ(p) = y according to the following rule: yi = gi(wp) if
gi(wp) ≥ 0 and yi = 0 if gi(wp) < 0, where i = 1, 2, . . . ,m. This rule can be
written as the relations

〈p, g(wp)− y〉 = 0, g(wp)− y ≤ 0, (23)

which are equivalent to the variational inequality

〈p′ − p∗, g(wp)− y〉 ≤ 0, p′ ≥ 0. (24)

Combining (22) and (24), we formulate the convex programming problem

f(wp) + 〈p, g(wp)〉 ≤ f(w) + 〈p, g(w)〉, w ∈W0, (25)
〈p′ − p, g(wp)− y〉 ≤ 0, p′ ≥ 0. (26)

These inequalities are equivalent to the problem

wp ∈ Argmin{f(w) | g(w) ≤ y, w ∈W0}. (27)

Here, some of the components of y are zero if they correspond to zero Lagrange
multipliers. Thus, each Pareto optimal point in the vector optimization prob-
lem (20) is associated with a point lying on the graph of the sensibility
function (1).

2 Optimization Problems for the Sensibility Function

Problem (6), (7) or its equivalent (3), (4) is a system of two optimization
problems with no additional constraints imposed on the variable y ≥ 0. How-
ever, in mathematical (more exactly, economic) simulation, such constraints
are needed to describe the interaction between two agents, of which one offers
a vector of resources, while the other sets the price to purchase them. Mod-
ification (6), (7) leads to a problem that can be viewed as a model of this
situation:

w∗ ∈ Argmin{f(w) | g(w) ≤ y∗, w ∈W0}, (28)
〈p− p∗, g(w∗)− y∗〉 ≤ 0, p ≥ 0, (29)
y∗ ∈ Argmin{〈p∗, y〉 | y ∈ Y }. (30)
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Here, the goal is to choose a right-hand side vector of functional constraints
y = y∗ and the corresponding Lagrange multiplier vector p = p∗ such that
the linear function 〈p∗, y〉, y ∈ Y reaches its minimal value on Y at the point
y∗. The first two components of the vector p∗, w∗, y∗ are called the primal
and dual solutions to problem (28), (29) and comprise a saddle point of the
Lagrangian

L(p, w, y∗) = f(w) + 〈p, g(w)− y∗〉, p ≥ 0, w ∈W0. (31)

This point satisfies the system of inequalities

f(w∗) + 〈p, g(w∗)− y∗〉 ≤ f(w∗) + 〈p∗, g(w∗)− y∗〉 ≤ f(w) + 〈p∗, g(w)− y∗〉,
(32)

where p ≥ 0, w ∈W0, and y = y∗ is a fixed parameter.
However, in this work we consider a problem more complicated than (28),

(29), and (30), namely, [11, 12]

w∗ ∈ Argmin{f1(w) | g(w) ≤ h(y∗), w ∈W0}, (33)
〈p− p∗, g(w∗)− h(y∗)〉 ≤ 0, p ≥ 0, (34)

y∗ ∈ Argmin{f2(y)− 〈p∗, h(y)〉 | y ∈ Y }. (35)

Here, f1(w) and f2(y) are scalar convex functions; g(w) and h(y) are vector
functions all of whose components are convex and concave functions, respec-
tively; p ∈ Rm

+ is the positive orthant; and W0 ⊂ Rn and Y ⊂ Rm
+ are convex

closed sets (specifically, Y can be a bounded polyhedral set).
In (33), (34), the goal is to choose a right-hand side vector of functional

constraints y = y∗ such that the dual solution to this problem, i.e., the vector
p = p∗, generates optimization problem (35) whose objective function reaches
a minimum on Y at the point y∗ ∈ Y and, additionally, h(y∗) coincides
with the right-hand side vector of functional constraints in problem (33). As
is customary, the vectors p∗ ≥ 0 and w∗ ∈ W0 are called dual and primal
solutions to the convex programming problem (33), (34). This means that
this pair is a saddle point of this problem’s Lagrangian

L(p, w, y∗) = f1(w) + 〈p, g(w)− h(y∗)〉, p ≥ 0, w ∈W0, (36)

where the variable y ∈ Y , which takes the value y = y∗ ∈ Y in (36), is a
parameter in problem (33), (34). The term “saddle point” always means that

f1(w∗) + 〈p, g(w∗)− h(y∗)〉 ≤ f1(w∗) + 〈p∗, g(w∗)− h(y∗)〉 ≤ f1(w)+
+〈p∗, g(w)− h(y∗)〉, (37)

where p ≥ 0, w ∈W0, and y = y∗ is a fixed parameter.
Using (37), we rewrite (33), (34), and (35) in a different form, namely, as a

system consisting of two optimization problems and a variational inequality:

w∗ ∈ Argmin{f1(w) + 〈p∗, g(w)〉 | w ∈W0},



Sensibility Function as Convolution of System of Optimization Problems 9

〈p− p∗, g(w∗)− h(y∗)〉 ≤ 0, p ≥ 0,
y∗ ∈ Argmin{f2(y)− 〈p∗, h(y)〉 | y ∈ Y }. (38)

Since the variational inequality is defined on the positive orthant, it splits
into two relations that make up a complementarity problem. To see this, it
suffices to set p = 0 and, then, p = 2p∗ in the inequality. Then

〈p∗, g(w∗)− h(y∗)〉 = 0, g(w∗)− h(y∗) ≤ 0. (39)

Using conditions (39), we can rewrite (38) in the form of (33), (34), and
(35). The first two conditions in (38) correspond to (33) and (34). Thus, the
equivalence of (38) to (33), (34), and (35) is obvious.

The variational inequality in (38) can also be written as a linear optimiza-
tion problem. Then this system can be represented as a three-person game
with a Nash equilibrium:

w∗ ∈ Argmin{f1(w) + 〈p∗, g(w)〉 | w ∈W0},
w∗ ∈ Argmax{〈p, g(w∗)− h(y∗)〉 | p ≥ 0},
y∗ ∈ Argmin{f2(y)− 〈p∗, h(y)〉 | y ∈ Y }. (40)

It is easy to see that the first and third problems in this system can be rep-
resented as a single optimization problem with a separable objective function
with respect to w ∈W0, y ∈ Y . Then system (40) becomes

w∗, y∗ ∈ Argmin{f1(w) + f2(y) + 〈p∗, g(w)− h(y)〉 | w ∈W0, y ∈ Y },
w∗ ∈ Argmax{〈p, g(w∗)− h(y∗)〉 | p ≥ 0}. (41)

In turn, system (41) is a zero-sum two-person game, which is equivalent to
finding a saddle point of the function

L(w, y, p) = f1(w) + f2(y) + 〈p, g(w)− h(y)〉, w ∈W0, y ∈ Y, p ≥ 0,

where the saddle point satisfies the system of inequalities

f1(w∗) + f2(y∗) + 〈p, g(w∗)− h(y∗)〉 ≤ f1(w∗) + f2(y∗)+
+〈p∗, g(w∗)− h(y∗)〉 ≤ f1(w) + f2(y) + 〈p∗, g(w)− h(y)〉 (42)

for all w ∈ W0, y ∈ Y, p ≥ 0. Thus, we have shown that the original problem
(33), (34), and (35) is reduced to saddle-point problem (42) or (41).

Conversely, if (42) holds, then the left inequality in this system yields

〈p− p∗, g(w∗)− h(y∗)〉 ≤ 0, p ≥ 0,

which implies (39). From the right inequality in (42), we have

f1(w∗) + f2(y∗) ≤ f1(w) + f2(y) + 〈p∗, g(w)− h(y)〉.
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If w ∈ W0 and y ∈ Y satisfy the constraint 〈p∗, g(w) − h(y)〉 ≤ 0, then the
above inequality is reduced to the optimization of f1(w) + f2(y) on the set
W0 × Y with a single scalar constraint, i.e.,

f1(w∗) + f2(y∗) ≤ f1(w) + f2(y), 〈p∗, g(w)− h(y)〉 ≤ 0, w ∈W0, y ∈ Y.
Taking into account (39), we reduce this problem to

f1(w∗) + f2(y∗) ≤ f1(w) + f2(y), g(w)− h(y) ≤ 0, w ∈W0, y ∈ Y.
Specifically, if y = y∗, we obtain (33), (34), and

f1(w∗) ≤ f1(w), g(w) ≤ h(y∗), w ∈W0.

Now, setting w = w∗ in (42), we obtain (35) and

f2(y∗)− 〈p∗, h(y∗)〉 ≤ f2(y)− 〈p∗, h(y)〉, y ∈ Y.
Thus, we have proved the following result.

Theorem 1. Let f1(w), f2(y), g(w) be convex functions; h(y) be concave; and
W0, Y be closed and convex sets. Then the systems of problems (33), (34),
(35), (38), (41), and (42) are equivalent.

Note that problem (28), (29), and (30) is a special case of (38). That is
why the role of the sensibility function in (38) is especially clearly seen in this
problem. According to (17), p∗ in (30) is a subgradient of the sensibility func-
tion (1). Therefore, problem (30), which is given by the variational inequality
〈p∗, y − y∗〉 ≥ 0, y ∈ Y , is a necessary and sufficient condition for the sensi-
bility function ϕ(y) to have a minimum on Y . This means that complicated
system (28), (29), and (30) (and, accordingly, (38)) is reduced to the simple
problem of minimizing a convex sensibility function on the simple set Y . In
fact, the sensibility function is a scalarization or convolution of the compli-
cated problem and a reduction of the latter to a simple clear form. From an
economic point of view, systems (28), (29), and (30) and (38) can be inter-
preted as follows. In the general case, they describe the interaction between
two agents in various economic situations. Specifically, the logic of these sys-
tems can be traced in the well-known Arrow–Debreu model [13] in the case
when the consumer and the producer are both represented by a single agent.
These constructions can be independently viewed as mathematical models for
describing demand-equal-to-supply balance interrelations for consumers and
producers at different levels [12]. On the other hand, (28), (29), and (30) and
(38) can be treated as a type of inverse optimization problems [14].

Now we discuss one interpretation of model (28), (29), and (30) in more
detail. Let it be treated as a wholesale market model consisting of two agents,
each seeking a maximum profit. In this case, all the partial problems in system
(28), (29), and (30) are reduced to the maximization of concave functions, and
the system as a whole becomes
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w∗ ∈ Argmax{f1(w) | g(w) ≤ y∗, w ∈W0}, (43)
〈p− p∗, g(w∗)− y∗〉 ≥ 0, p ≤ 0, (44)
y∗ ∈ Argmax{〈p∗, y〉 | y ∈ Y }. (45)

The first agent (45) provides the second one (43), (44) with the resource
vector y = y∗ ∈ Y , while the second, as a commodity producer, sets the price
vector p = p∗ ≥ 0 (i.e., a Lagrange multiplier vector). The prices play the
role of feedback. If the optimum w∗ ∈ W0 in (43) is strongly restricted by
the ith constraint y∗i , then the ith Lagrange multiplier pi is sufficiently large,
which means that the resource is in short supply and, therefore, is significantly
needed. The first agent’s profit 〈p∗, y〉 then grows substantially at the expense
of y∗i , because its weight coefficient is sufficiently large. In other words, the
production of the scarcest commodities is automatically stimulated in system
(43), (44), and (45), since a resource deficit (shortage) leads to an increase in
the supplier’s possible profit. A similar logic lies behind the more complicated
problem (38). Here, the objective function of the first agent can be treated
as the Lagrangian of a convex programming problem used as a model of a
resource vector producer for the second agent.

3 Primal Extraproximal Method

Now we discuss methods for solving general system (33), (34), and (35). It was
shown in the previous section that this problem is reduced to the computation
of a saddle point of system (41) or (42). For illustrative purposes, we write
this system once again:

w∗, y∗ ∈ Argmin{f1(w) + f2(y) + 〈p∗, g(w)− h(y)〉 | w ∈W0, y ∈ Y },
〈p− p∗, g(w∗)− h(y∗)〉 ≤ 0, p ≥ 0. (46)

The objective function of the first problem is separable. Consequently, it
splits into two independent subproblems (see (40) and (41)):

f1(w∗) + 〈p∗, g(w∗)〉 ≤ f1(w) + 〈p∗, g(w)〉, w ∈W0,

f2(y∗)− 〈p∗, h(y∗)〉 ≤ f2(y)− 〈p∗, h(y)〉, y ∈ Y. (47)

Taking into account this decomposition and the fact that the variational
inequality in this problem can be equivalently represented as an operator
equation, we rewrite system (46) in the form

w∗ ∈ Argmin{f1(w) + 〈p∗, g(w)〉 | w ∈W0},
y∗ ∈ Argmin{f2(y)− 〈p∗, h(y)〉 | y ∈ Y },

p∗ = π+(p∗ + α(g(w∗)− h(y∗))),

where π+(· · · ) is the projector of a vector onto the positive orthant. For
the extremal mappings of this system to be nonexpansive operators in their
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domains, we represent them in an equivalent form of proximal operators. Then
the system becomes

w∗ ∈ Argmin
{

1
2
|w − w∗|2 + α(f1(w) + 〈p∗, g(w)〉) | w ∈W0

}
,

y∗ ∈ Argmin
{

1
2
|y − y∗|2 + α(f2(y)− 〈p∗, h(y)〉) | y ∈ Y

}
,

p∗ = π+(p∗ + α(g(w∗)− h(y∗))). (48)

The simple iteration method is a natural approach to solving this system:

wn+1 ∈ Argmin
{

1
2
|w − wn|2 + α(f1(w) + 〈pn, g(w)〉) | w ∈W0

}
,

yn+1 ∈ Argmin
{

1
2
|y − yn|2 + α(f2(y)− 〈pn, h(y)〉) | y ∈ Y

}
,

pn+1 = π+(pn + α(g(wn)− h(yn))).

However, in contrast to optimization problems, in equilibrium problems this
method does not converge to the solution of the original system. For this
reason, the solution is computed by the extraproximal methods described in
[15, 16]. They can be treated as simple iteration methods with feedback [17].

3.1 Primal method

w̄n ∈ Argmin
{

1
2
|w − wn|2 + α(f1(w) + 〈pn, g(w)〉) | w ∈W0

}
,

ȳn ∈ Argmin
{

1
2
|y − yn|2 + α(f2(y)− 〈pn, h(y)〉) | y ∈ Y

}
,

pn+1 = π+(pn + α(g(w̄n)− h(ȳn))),

wn+1 ∈ Argmin
{

1
2
|w − wn|2 + α(f1(w) + 〈pn+1, g(w)〉) | w ∈W0

}
,

yn+1 ∈ Argmin
{

1
2
|y − yn|2 + α(f2(y)− 〈pn+1, h(y)〉) | y ∈ Y

}
. (49)

For simplicity, the parameter 0 < α < α0 is chosen from a fixed interval. In
the general case, the right-hand boundary of the interval can be estimated in
the course of the iteration by using the technique described in [18].

To prove the convergence of process (49), it is equivalently represented
in the form of inequalities that are convenient for deriving various estimates.
Specifically, we use the inequality

1
2
|z∗ − x|2 + αnf(z∗) ≤ 1

2
|z − x|2 + αnf(z)− 1

2
|z − z∗|2 ∀z ∈ Z, (50)
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which is satisfied by any function of the form 1
2 |z − x|2 + αnf(z). Here, f(z)

is a convex not necessarily differentiable function defined on the convex set
Z, where z ∈ Z and z∗ is a minimizer of ϕ(z) = 1

2 |z − x|2 + αnf(z) on Z for
any x [18].

Since the objective functions in process (49) have the structure of function
(50), this process can be written in the equivalent form

|w̄n − wn|2 + 2α(f1(w̄n) + 〈pn, g(w̄n)〉) ≤
≤ |w − wn|2 + 2α(f1(w) + 〈pn, g(w)〉)− |w − w̄n|2,

|ȳn − yn|2 + 2α(f2(ȳn)− 〈pn, h(ȳn)〉) ≤
≤ |y − yn|2 + 2α(f2(y)− 〈pn, h(y)〉)− |y − ȳn|2 (51)

and

|wn+1 − wn|2 + 2α(f1(wn+1) + 〈pn+1, g(wn+1)〉) ≤
≤ |w − wn|2 + 2α(f1(w) + 〈pn+1, g(w)〉)− |w − wn+1|2,
|yn+1 − yn|2 + 2α(f2(yn+1)− 〈pn+1, h(yn+1)〉) ≤

≤ |y − yn|2 + 2α(f2(y)− 〈pn+1, h(y)〉)− |y − yn+1|2. (52)

According to [10], the operator equation in (49) is represented as the varia-
tional inequality

〈pn+1 − pn − α(g(w̄n)− h(ȳn)), p− pn+1〉 ≥ 0, p ≥ 0. (53)

To prove the convergence of the processes, we use the following Lipschitz
conditions for the vector functions g(w), h(y):

|g(w + k)− g(w)| ≤ |g||k|, |h(y + k)− h(y)| ≤ |h||k| (54)

for all w + k ∈W0, y + k ∈ Y , k ∈ Rn, where |g|, |h| are Lipschitz constants.
To estimate the deviation of the vectors w̄n, wn+1, ȳn, and yn+1 at every

step in (49), we set w = wn+1, w = w̄n and y = yn+1, y = ȳn in (51) and
(52), respectively. Then

|w̄n − wn|2 + 2α(f1(w̄n) + 〈pn, g(w̄n)〉) ≤
≤ |wn+1 − wn|2 + 2α(f1(wn+1) + 〈pn, g(wn+1)〉)− |wn+1 − w̄n|2,

|ȳn − yn|2 + 2α(f2(ȳn)− 〈pn, h(ȳn)〉) ≤
≤ |yn+1 − yn|2 + 2α(f2(yn+1)− 〈pn, h(yn+1)〉)− |yn+1 − ȳn|2

and

|wn+1 − wn|2 + 2α(f1(wn+1) + 〈pn+1, g(wn+1)〉) ≤
≤ |w̄n − wn|2 + 2α(f1(w̄n) + 〈pn+1, g(w̄n)〉)− |w̄n − wn+1|2,

|yn+1 − yn|2 + 2α(f2(yn+1)− 〈pn+1, h(yn+1)〉) ≤
≤ |ȳn − yn|2 + 2α(f2(ȳn)− 〈pn+1, h(ȳn)〉)− |ȳn − yn+1|2.
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Summing up the resulting inequalities yields

|w̄n − wn+1|2 ≤ α〈pn+1 − pn, g(w̄n)− g(wn+1)〉,
|ȳn − yn+1|2 ≤ α〈pn+1 − pn, h(yn+1)− h(ȳn)〉.

In view of (54), we finally obtain

|w̄n − wn+1| ≤ α|g||pn+1 − pn|, |ȳn − yn+1| ≤ α|h||pn+1 − pn|. (55)

Let us prove the following convergence theorem for method (49).

Theorem 2. If equilibrium problem (33), (34), and (35) has a solution,
f1(w), f2(y), g(w) are convex functions, h(y) is a concave function, the vec-
tor functions satisfy Lipschitz conditions (54), and W0 and Y are convex
closed sets, then the sequence pn, wn, yn generated by the primal extraproximal
method (49) with α satisfying 0 < α < 1/

√
2(|g|2 + |h|2) converges monoton-

ically in norm to one of the solutions of the problem.

Proof. The iterations of process (49) with respect to w and y have an iden-
tical structure and form. Therefore, any transformation of the formulas with
respect to w gives a similar result to that with respect to y. Below are some
transformations of (51) and (52) with respect to w. Setting w = w∗ in (52)
and w = wn+1 in (51) yields

|wn+1 − wn|2 + 2α(f1(wn+1) + 〈pn+1, g(wn+1)〉) ≤
≤ |w∗ − wn|2 + 2α(f1(w∗) + 〈pn+1, g(w∗)〉)− |wn+1 − w∗|2

and

|w̄n − wn|2 + 2α(f1(w̄n) + 〈pn, g(w̄n)〉) ≤
≤ |wn+1 − wn|2 + 2α(f1(wn+1) + 〈pn, g(wn+1)〉)− |w̄n − wn+1|2.

Adding the relation

〈pn+1, g(w̄n)〉 − 〈pn+1, g(w̄n)〉 = 0

to both inequalities and summing them up, we obtain

|wn+1 − w∗|2 + |wn+1 − w̄n|2 + |w̄n − wn|2+
+2α(〈pn, g(w̄n)〉 − 〈pn+1, g(w̄n)〉 − 〈pn, g(wn+1)〉+ 〈pn+1, g(wn+1)〉)+

+2α(f1(w̄n)− f1(w∗)) + 2α(〈pn+1, g(w̄n)〉 − 〈pn+1, g(w∗)〉) ≤ |wn − w∗|2

or

|wn+1 − w∗|2+ |wn+1− w̄n|2+ |w̄n − wn|2+ 2α〈pn − pn+1, g(w̄n)− g(wn+1)〉+
+2α(f1(w̄n)− f1(w∗)) + 2α(〈pn+1, g(w̄n)〉 − 〈pn+1, g(w∗)〉) ≤ |wn − w∗|2.

(56)
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The same argument applied to the inequalities in (51) and (52) with re-
spect to y gives a similar estimate

|yn+1 − y∗|2 + |yn+1 − ȳn|2 + |ȳn − yn|2 − 2α〈pn − pn+1, h(ȳn)− h(yn+1)〉+
+2α(f2(ȳn)− f2(y∗))− 2α(〈pn+1, h(ȳn)〉 − 〈pn+1, h(y∗)〉) ≤ |yn − y∗|2.

(57)

Setting w = w̄n in (47) gives

f1(w∗) + 〈p∗, g(w∗)〉 ≤ f1(w̄n) + 〈p∗, g(w̄n)〉.
Adding this inequality to (56),

|wn+1 − w∗|2 + |wn+1 − w̄n|2 + |w̄n − wn|2 + 2α〈pn − pn+1, g(w̄n)−
−g(wn+1)〉+ 2α〈pn+1 − p∗, g(w̄n)− g(w∗)〉 ≤ |wn − w∗|2. (58)

In view of (54), the fourth term in (58) is estimated as

|wn+1 − w∗|2 + |wn+1 − w̄n|2 + |w̄n − wn|2−
−2(α|g|)2|pn − pn+1|2 + 2α〈pn+1 − p∗, g(w̄n)− g(w∗)〉 ≤ |wn − w∗|2. (59)

Returning to estimate (57), we repeat similar manipulations. Specifically,
setting y = ȳn in (47) produces

f2(y∗)− 〈p∗, h(y∗)〉 ≤ f2(ȳn)− 〈p∗, h(ȳn)〉.
Adding this inequality to (57), we obtain

|yn+1 − y∗|2 + |yn+1 − ȳn|2 + |ȳn − yn|2 − 2α〈pn − pn+1, h(ȳn)− h(yn+1)〉−
−2α〈pn+1 − p∗, h(ȳn)− h(y∗)〉 ≤ |yn − y∗|2. (60)

In view of (54), the fourth term in (60) is estimated as

|yn+1 − y∗|2 + |yn+1 − ȳn|2 + |ȳn − yn|2 − 2(α|h|)2|pn − pn+1|2−
−2α〈pn+1 − p∗, h(ȳn)− h(y∗)〉 ≤ |yn − y∗|2. (61)

Adding (59) and (61) gives

|wn+1 − w∗|2 + |wn+1 − w̄n|2 + |w̄n − wn|2 − 2(α|g|)2|pn − pn+1|2+
+|yn+1 − y∗|2 + |yn+1 − ȳn|2 + |ȳn − yn|2 − 2(α|h|)2|pn − pn+1|2+

+2α〈pn+1 − p∗, g(ȳn)− g(y∗)− h(ȳn) + h(y∗)〉 ≤ |wn − w∗|2 + |yn − y∗|2.
(62)

A similar estimate is derived for the iteration with respect to p ≥ 0 in
(49). Specifically, setting p = p∗ in (53) and p = pn+1 in (46) and summing
the resulting inequalities, we obtain

〈pn+1 − pn, p∗ − pn+1〉 − α〈g(w̄n)− h(ȳn), p∗ − pn+1〉+ α〈g(w∗)−
−h(y∗), p∗ − pn+1〉 ≥ 0
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or

−2〈pn+1 − pn, p∗ − pn+1〉 − 2α〈g(w∗)− g(w̄n), p∗ − pn+1〉−
−2α〈h(ȳn)− h(y∗), p∗ − pn+1〉 ≤ 0. (63)

Adding (62) and (63),

|wn+1 − w∗|2 + |wn+1 − w̄n|2 + |w̄n − wn|2 − 2(α|g|)2|pn − pn+1|2+
+|yn+1 − y∗|2 + |yn+1 − ȳn|2 + |ȳn − yn|2 − 2(α|h|)2|pn − pn+1|2+

−2〈pn+1 − pn, p∗ − pn+1〉 ≤ |wn − w∗|2 + |yn − y∗|2. (64)

Next, using the identity

|x1 − x3|2 = |x1 − x2|2 + 2〈x1 − x2, x2 − x3〉+ |x2 − x3|2, (65)

we rearrange the scalar product into the sum of squares

|wn+1 − w∗|2 + |wn+1 − w̄n|2 + |w̄n − wn|2 − 2(α|g|)2|pn − pn+1|2+
+|yn+1 − y∗|2 + |yn+1 − ȳn|2 + |ȳn − yn|2 − 2(α|h|)2|pn − pn+1|2+

|pn+1 − p∗|2 + |pn+1 − pn|2 ≤ |wn − w∗|2 + |yn − y∗|2 + |pn − p∗|2. (66)

Therefore,

|wn+1−w∗|2+ |yn+1− y∗|2+ |pn+1 − p∗|2+ (1− 2α2(|g|2+ |h|2))|pn+1− pn|2+
+|wn+1 − w̄n|2 + |w̄n − wn|2 + |yn+1 − ȳn|2 + |ȳn − yn|2 ≤

≤ |wn − w∗|2 + |yn − y∗|2 + |pn − p∗|2. (67)

Summing up this inequality from n = 0 to n = N gives

|wN+1 − w∗|2 + |yN+1 − y∗|2 + |pN+1 − p∗|2 + d

k=N∑
k=0

|pk+1 − pk|2+

+
k=N∑
k=0

(|wk+1 − w̄k|2 + |w̄k − wk|2 + |yk+1 − ȳk|2 + |ȳk − yk|2) ≤

≤ |w0 − w∗|2 + |y0 − y∗|2 + |p0 − p∗|2,

where d = 1− 2α2(|g|2 + |h|2) > 0. The resulting inequality implies that the
trajectory is bounded, i.e.,

|wN+1−w∗|2+ |yN+1−y∗|2+ |pN+1−p∗|2 ≤ |w0−w∗|2+ |y0−y∗|2+ |p0−p∗|2,

and it also implies the convergence of the series:
∑∞

k=0 |pk+1 − pk|2 <
∞,

∑∞
k=0 |wk+1 − w̄k|2 < ∞,

∑∞
k=0 |w̄k − wk|2 < ∞,

∑∞
k=0 |yk+1 − ȳk|2 <

∞,
∑∞

k=0 |ȳk − yk|2 <∞. Therefore,
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|pn+1 − pn|2 → 0, |wn+1 − w̄n|2 → 0, |w̄n − wn|2 → 0,

|yn+1 − ȳn|2 → 0, |ȳn − yn|2 → 0, n→∞.

Since the sequence pn, wn, yn is bounded, there exists an element p′, w′, y′

such that pni → p′, wni → w′, yni → y′ as ni →∞. Moreover,

|pni+1 − pni |2 → 0, |wni+1 − w̄ni |2 → 0, |w̄ni − wni |2 → 0,

|yni+1 − ȳni |2 → 0, ȳni − yni |2 → 0.

Passage to the limit as ni →∞ in (51), (52), and (53) yields

f1(w′) + 〈p′, g(w′)〉 ≤ f1(w) + 〈p′, g(w)〉,
f2(y′) + 〈p′, g(w′)〉 ≤ f2(y) + 〈p′, g(y)〉,

〈g(w′)− h(y′), p− p′〉 ≥ 0

for all w ∈ Ω, y ∈ Y , p ≥ 0.
Since these relations are equivalent to (46), we conclude that w′ = w∗ ∈

Ω∗, p′ = p∗ ≥ 0, and y′ = y∗ ∈ Y , i.e., any limit point of the sequence
pn, wn, yn is a solution to the problem. Since |wn − w∗| + |pn − p∗| + |yn −
y∗| decreases monotonically, the limit point is unique; i.e., pn → p∗, wn →
w∗, yn → y∗ as n→∞. The theorem is proved.

4 Dual Extraproximal Method

Along with the primal method considered in the previous section, the dual
extraproximal approach [15, 16] can be used to solve system (33), (34), and
(35). Its formulas are as follows.

4.1 Dual Method

p̄n = π+(pn + α(g(wn)− h(yn))),

wn+1 ∈ argmin
{

1
2
|w − wn|2 + α(f1(w) + 〈p̄n, g(w)〉) | w ∈W0

}
,

yn+1 ∈ argmin
{

1
2
|y − yn|2 + α(f2(y)− 〈p̄n, h(y)〉) | y ∈ Y

}
,

pn+1 = π+(pn + α(g(wn+1)− h(yn+1))). (68)

If the vector y∗ ∈ Y in original problem (33), (34), and (35) is a constant,
i.e., Y is a singleton, then there are no iterative formulas with respect to y.
In this case, we have formulas for computing a saddle point of (33), (34). On
the contrary, if the convex programming problem degenerates and is absent,
then (68) contains the formulas only with respect to y, and this subprocess
converges to a solution of problem (30), i.e., to a boundary point of Y that
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is a support point for the linear functional 〈p∗, y〉, y ∈ Y , where p∗ is an a
priori given vector.

Process (48) can be represented in the form of the inequalities

〈p̄n − pn − α(g(wn)− h(yn)), p− p̄n〉 ≥ 0, p ≥ 0, (69)

|wn+1 − wn|2 + 2α(f1(wn+1) + 〈p̄n, g(wn+1)〉) ≤
≤ |w − wn|2 + 2α(f1(w) + 〈p̄n, g(w)〉)− |w − wn+1|2, w ∈W0, (70)

|yn+1 − yn|2 + 2α(f2(yn+1)− 〈p̄n, h(yn+1)〉) ≤
≤ |y − yn|2 + 2α(f2(y)− 〈p̄n, h(y)〉)− |y − yn+1|2, y ∈ Y, (71)

〈pn+1 − pn − α(g(wn+1)− h(yn+1)), p− pn+1〉 ≥ 0, p ≥ 0. (72)

To estimate the deviations of p̄n from pn+1, we compare the first and last
equations in (68) to obtain

|p̄n − pn+1| ≤ α|g(wn)− h(yn)− g(wn+1) + h(yn+1)|. (73)

Let us prove a convergence theorem for method (68).

Theorem 3. If equilibrium problem (33), (34), and (35) has a solution,
f1(w), f2(y), g(w) are convex functions, h(y) is a concave function, the vector
functions satisfy Lipschitz condition (73), and W0 and Y are convex closed
sets, then the sequence pn, wn, yn generated by the dual extraproximal method
(68) with α satisfying 0 < α < min{1/(2|g|), 1/(2|h|)} converges monotoni-
cally in norm to one of the solutions of the problem.

Proof. To estimate the deviations of the residuals at the point w∗, y∗, we set
w = w∗ in (70) and y = y∗ in (71). Then

|wn+1 − wn|2 + 2α(f1(wn+1) + 〈p̄n, g(wn+1)〉) ≤
≤ |w∗ − wn|2 + 2α(f1(w∗) + 〈p̄n, g(w∗)〉)− |w∗ − wn+1|2

and

|yn+1 − yn|2 + 2α(f2(yn+1)− 〈p̄n, h(yn+1)〉) ≤
≤ |y∗ − yn|2 + 2α(f2(y∗)− 〈p̄n, h(y∗)〉)− |y∗ − yn+1|2.

Summing both inequalities gives

|w∗ − wn+1|2 + |y∗ − yn+1|2 + |wn+1 − wn|2 + |yn+1 − yn|2+
+2α(f1(wn+1) + f2(yn+1) + 〈p̄n, g(wn+1)− h(yn+1)〉) ≤

≤ |w∗ − wn|2 + |y∗ − yn|2 + 2α(f1(w∗) + f2(y∗) + 〈p̄n, g(w∗)− h(y∗)〉).

A similar estimate of the deviation can be obtained at the point wn+1, yn+1.
For this purpose, we set w = wn+1 and y = yn=1 in the right inequality in
(42). Then
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f1(w∗) + f2(y∗) + 〈p∗, g(w∗)− h(y∗)〉 ≤
≥ f1(wn+1) + f2(yn+1) + 〈p∗, g(wn+1)− h(yn+1)〉.

Summing the last two inequalities, we obtain

|w∗ − wn+1|2 + |y∗ − yn+1|2 + |wn+1 − wn|2 + |yn+1 − yn|2+
+2α(〈p̄n − p∗, g(wn+1)− h(yn+1)− g(w∗) + h(y∗)〉) ≤

≤ |w∗ − wn|2 + |y∗ − yn|2. (74)

Now we consider the inequalities with respect to p. Setting p = p∗ in (72)
and p = pn+1 in (69) yields

〈pn+1 − pn − α(g(wn+1)− h(yn+1)), p∗ − pn+1〉 ≥ 0,

〈p̄n − pn − α(g(wn)− h(yn)), pn+1 − p̄n〉 ≥ 0.

Summing these inequalities, we have

〈pn+1 − pn, p∗ − pn+1〉+ 〈p̄n − pn, pn+1 − p̄n〉 − α〈g(wn+1)− h(yn+1), p∗−
−pn+1〉+ α〈g(wn+1)− g(wn)− h(yn+1) + h(yn), pn+1 − p̄n〉−

−α〈g(wn+1)− h(yn+1), pn+1 − p̄n〉 ≥ 0.

The third term is added to the fifth one, while the fourth is estimated with
the help of (73) to obtain

〈pn+1 − pn, p∗ − pn+1〉+ 〈p̄n − pn, pn+1 − p̄n〉−
−α〈g(wn+1)− h(yn+1), p∗ − p̄n〉+ α2|g(wn+1)− g(wn)− h(yn+1)+

+h(yn)|2 ≥ 0.

Setting p = p̄n in (34),

−〈p̄n − p∗, g(w∗)− h(y∗)〉 ≥ 0.

Summing the last two inequalities gives

2〈pn+1 − pn, p∗ − pn+1〉+ 2〈p̄n − pn, pn+1 − p̄n〉+
+2α2|g(wn+1)− g(wn)− h(yn+1) + h(yn)|2 − 2α〈g(wn+1)− h(yn+1)−

−g(w∗) + h(y∗), p∗ − p̄n〉 ≥ 0. (75)

Finally, adding (74) to (75), we obtain

|wn+1 − w∗|2 + |wn+1 − wn|2 + |yn+1 − y∗|2 + |yn+1 − yn|2+
−2〈pn+1 − pn, p∗ − pn+1〉 − 2〈p̄n − pn, pn+1 − p̄n〉−

−2α2|g(wn+1)− g(wn)− h(yn+1) + h(yn)|2 ≤ |wn − w∗|2 + |yn − y∗|2.
(76)
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By using identity (65), the fifth and sixth terms are rearranged into

|wn+1 − w∗|2 + |yn+1 − y∗|2 + |wn+1 − wn|2 + |yn+1 − yn|2 + |pn+1 − p∗|2,
|pn+1 − p̄n|2 + |p̄n − pn|2 − 2α2|g(wn+1)− g(wn)− h(yn+1) + h(yn)|2 ≤

≤ |wn − w∗|2 + |pn − p∗|2 + |yn − y∗|2. (77)

The last term on the left-hand side of inequality (77) is estimated using
2〈x, y〉 ≤ |x|2 + |y|2 and (55):

|g(wn+1)− g(wn)− h(yn+1) + h(yn)|2 = |g(wn+1)− g(wn)|2−
−2〈g(wn+1)− g(wn), h(yn+1)− h(yn)〉+ |h(yn)− h(yn+1)|2.

Rewriting (77) once again and using this estimate, we have

|wn+1 − w∗|2 + |yn+1 − y∗|2 + |pn+1 − p∗|2 + d1|wn+1 − wn|2+
+d2|yn+1 − yn|2 + |pn+1 − p̄n|2 + |p̄n − pn|2 ≤ |wn − w∗|2 + |pn − p∗|2+

+|yn − y∗|2, (78)

where d1 = 1−4α2|g|2 > 0, d2 = 1−4α2|h|2 > 0. Both conditions are satisfied
if 0 < α < min{1/(2|g|), 1/(2|h|)}. All the terms on the left-hand side of (78)
are then positive, and the resulting inequality is similar to (67). The rest of
the proof is analogous to that of Theorem 1.

5 Conclusions

In this chapter we investigated the properties of sensitivity function for convex
programming problem more detailed, proposed a new view to this function as
a natural convolution for system of optimization problems. For solving this
system it is offered primal and dual solution methods. The convergence of
them is proved.
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Summary. Linear semi-infinite programming (LSIP) deals with linear optimiza-
tion problems in which either the dimension of the decision space or the number
of constraints (but not both) is infinite. In most applications of LSIP to statistics,
electronics, telecommunications, and other fields, all the data (or at least part of
them) are uncertain. Post-optimal analysis provides answer to questions about the
quantitative impact on the optimal value of small perturbations of the data (sensi-
tivity analysis) and also about the continuity properties of the optimal value, the
optimal set, and the feasible set (stability analysis) around the nominal problem.
This chapter surveys the state of the art in sensitivity and stability analysis in LSIP.
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1 Introduction

Let T be an infinite set, a : T �→ Rn, b : T �→ R, and c ∈ Rn. Then

P : min
x∈Rn

c′x :=
n∑

i=1

cixi

s.t. a′tx ≥ bt, t ∈ T,
(1)

is called a (primal) linear semi-infinite programming (LSIP in brief) problem
because the number of variables is finite whereas the set of constraints is
infinite. The mappings a and b are called left- and right-hand side (LHS and
RHS) functions whereas c is called cost vector. We denote by σ, F , and F ∗ the
constraint system, the feasible set, and the optimal set of P, respectively. By
definition, the optimal value of P is v (P ) = +∞ when F = ∅ (in which case
σ and P are called inconsistent). P is solvable when F ∗ �= ∅ and it is bounded
if v (P ) ∈ R. P is said to be continuous when T is a compact Hausdorff
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topological space, a ∈ C (T )n and b ∈ C (T ) . A classical application of LSIP
consists in the best approximation of a given function f ∈ C([α, β]) from the
linear hull of a finite family {v1, . . . , vn} ⊂ C([α, β]), this linear space being
equipped with either the L1 or the L∞ norm.

Example 1. Let us consider the L1 approximation of f from above. Taking
into account the constraint f(t) ≤∑n

i=1 vi(t)xi for all t ∈ [α, β],∥∥∥∥f − n∑
i=1

xivi

∥∥∥∥
1

=
β∫
α

[
n∑

i=1

vi(t)xi − f(t)
]
dt

=
n∑

i=1

(
β∫
α

vi(t)dt

)
xi −

β∫
α

f(t)dt.

Let ci :=
∫ β

α
vi(t)dt, i = 1, . . . , n. A best L1 approximation to f from above

is given by
∑n

i=1 xivi, where x is an optimal solution of the continuous
LSIP problem

P : Min
x∈Rn

c′x

s.t.
n∑

i=1

vi(t)xi ≥ f(t), t ∈ [α, β].

Example 2. A best uniform approximation to f is obtained by minimizing the
uniform error for the linear combinations of {v1, . . . , vn}, i.e., solving

P : Min
(x,y)∈Rn+1

y

s.t. −y ≤ f(s)−
n∑

i=1

vi(s)xi ≤ y, s ∈ [α, β] .

Since P can be written in the form of (1), with T := [α, β] × {1, 2} compact
Hausdorff in R2 and the functions a(s,j) :=

(
(−1)j

v1 (s) , . . . , (−1)j
vn (s) , 1

)
and b(s,j) := (−1)j

f(s), (s, j) ∈ T, continuous on T, P turns out to be a
continuous LSIP problem.

Getting stopping rules before optimality requires the availability of some
dual problem maximizing lower bounds for c′x , x ∈ F. The easiest way to do
that consists of considering the space of generalized finite sequences

R(T ) :=
{
λ ∈ RT | |suppλ| <∞}

,

where
suppλ := {t ∈ T | λt �= 0}

denotes the supporting set of λ. We represent by R
(T )
+ the positive cone in

R(T ). Given λ ∈ R
(T )
+ such that c =

∑
tεT λtat, multiplying both members of

this equation by x ∈ F we get
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c′x =
∑
tεT

λta
′
tx ≥

∑
tεT

λtbt.

The Haar’s dual problem of P is then

D : max
λ∈R

(T )
+

∑
t∈T

λtbt

s.t.
∑
tεT

λtat = c,

with feasible and optimal sets Λ and Λ∗, respectively, and optimal value
v (D) = −∞ when Λ = ∅. In contrast to ordinary linear programming (LP),
even though both problems of the pair P −D are bounded, the duality gap is
possibly non-zero, i.e.,

δ (P,D) := v (P )− v (D) ≥ 0.

It can be shown that D is equivalent to other well-known dual problems as
the Lagrange and the Rockafellar ones (which are the result of aggregating to
Λ dominated solutions). If P is continuous, then another dual problem, called
continuous dual, can be obtained by replacing, in D, λ ∈ R

(T )
+ with μ ∈ C′+ (T )

(the cone of non-negative regular Borel measures on T ) and
∑

tεT with
∫

T
:

D0 : max
μ∈C′

+(T )

∫
T

bt dμ (t)

s.t.
∫
T

atdμ (t) = c.

Because the elements of R
(T )
+ such that |suppλ| = 1 can be interpreted as

atomic measures, 0 ≤ δ (P,D0) ≤ δ (P,D) .We could have δ (P,D0) < δ (P,D)
for some particular problem but all the known duality theorems guarantee-
ing the existence of a zero duality gap have the same hypotheses for both
dual problems, D0 and D. Thus the LSIP problems D0 and D (observe that
they have finitely many constraints and infinitely many variables) are also
equivalent in practice.

The first LSIP problem (a dual one) was formulated by George Dantzig,
in 1939, in order to solve a problem related with the Neyman–Pearson lemma
(for details, see [50]). Dantzig understood that Λ is polyhedral-like and con-
ceived the way (his famous geometry of columns) to improve the objective
functional by jumping from one of its extreme points to an adjacent one.
Dantzig re-started his research in 1945, when he was asked to mechanize the
planning of the postwar Pentagon activities. In 1947 he discussed his simplex
method (inspired in the geometry of columns) and the duality theory with
von Neumann in Princeton and 1 year later he presented the new ideas to the
mathematical community in the meeting of the Econometric Society held in
Wisconsin, 1948 (the so-called MP0 conference). Although with some prece-
dents such as Haar’s seminal works on the constraint system of P published
in Hungarian in the 1920s, the research carried out by Dantzig on D, and the
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optimality conditions of John for differentiable nonlinear SIP [76], the first
papers on LSIP, conceived as a natural extension of LP, are due to Charnes,
Cooper, and Kortanek. In [30–32] these authors coined the term LSIP and
gave the first duality theorem. The development of LSIP during the 1960s is
described in detail in [80].

Concerning the numerical treatment of LSIP problems, with the precedent
of Remez method for the Chebyshev approximation problem of Example 2,
the first numerical methods were proposed by Gustafson and Kortanek dur-
ing the 1970s [65, 66, 68]. According to the literature (see [50] and references
therein), the most efficient numerical approach to LSIP combines a discretiza-
tion method (phase 1) with the reduction of P to a nonlinear ordinary system
by using the KKT conditions for LSIP problems (phase 2). Discretization con-
sists of solving a sequence of finite subproblems (replacing the index set T in
(1) by a finite subset at each iteration) and terminates at some approximate
(generally infeasible) optimal solution which is sufficient in many engineering
applications that do not require an accurate optimal solution. The subsets of
T either can be the terms of some predetermined sequence of grids (e.g., reg-
ular grids) or can be obtained by adding a new cutting plane at each step (a
constraint violated by the optimal solution of the current LP subproblem) and
eliminating constraints detected as irrelevant. At the moment, the most effi-
cient method for phase 1 seems to be the LSIP version of Elzinga–Moore LP
method proposed in [6], where the current iterate is the center of the greatest
ball contained in the current polytope (which includes some level set of P ).
Discretization methods converge fast when P has a strongly unique optimal
solution, i.e., there exists x∗ ∈ F and α > 0 such that c′x ≥ c′x∗+α ‖x− x∗‖
for all x ∈ F. A common hypothesis of the convergence theorems for dis-
cretization methods is the continuity of P (without this assumption phase 1
can be performed with simplex-like methods whose convergence is dubious).
Reduction requires strong assumptions, e.g., the existence of a suitable repre-
sentation of T (in many real applications, T is a box in some finite dimensional
Euclidean space) and the continuity of the coefficients of the constraints with
respect to the index t. The nonlinear system arising in phase 2 is usually solved
by means of some Newton-like method with quadratic or at least superlin-
ear convergence starting from the approximate optimal solution computed in
phase 1 [67].

LSIP methods have been successfully applied during the last years in order
to solve LSIP (generally primal continuous) problems arising in statistics [40],
machine learning [3, 74, 86, 95], optimal design [73, 101, 102], functional ap-
proximation [36, 37, 103], spectrometry [33], control problems [75], variational
problems [39], semi-definite programming [82, 83], combinatorial optimization
[84], environmental sciences [72, 100], different types of ordinary optimization
problems with uncertain data [4, 63, 85, 89], and finance [99]. Authors work-
ing in the last field have also numerically solved LSIP dual problems [87, 88].
This chapter is motivated by the observation that, although in most of the



Post-optimal Analysis of Linear Semi-infinite Programs 27

mentioned applications all the data (or at least part of them) are uncertain,
no paper has taken this fact into account. Thus the primary purpose of this
chapter is to fill the existing gap between the theoretical works on uncertain
LSIP problems (most of them about stability theory) and LSIP applications.

Optimization problems with uncertain data can be handled from differ-
ent perspectives: post-optimal analysis (which deals with the behavior of the
optimal value, the optimal set, and the feasible set when some of the data
in the nominal problem P are the object of small perturbations), robust op-
timization (which provides risk-averse decisions; see, e.g., [5]), stochastic op-
timization (where the perturbable data are interpreted as random variables;
see, e.g., [94], and references therein), fuzzy optimization (which interprets
such perturbable data as fuzzy numbers; see, e.g., [91], and interval optimiza-
tion (which considers that the perturbable data could take arbitrary values
on given intervals; see, e.g., [69]). The viability of these and other alternative
approaches depends on the tractability of the auxiliary problems to be solved.
Although we are primarily interested in the post-optimal approach, we discuss
here the tractability of certain robust, stochastic, fuzzy, and interval models
for the LSIP problem P in (1), when the source of uncertainty is the cost
vector c ∈ Rn, the constraint system {a′tx ≥ bt, t ∈ T}, and both:

� If c ∈ C ⊂ Rn whereas the constraints remain fixed, the robust counter-
part of P consists of minimizing the worst possible value of c′x, i.e.,

Min
x∈Rn

max
c∈C

c′x

s.t. a′tx ≥ bt, t ∈ T,
or, equivalently, embedding the problem in higher dimension,

min
(x,y)∈Rn+1

y

s.t. y − c′x ≥ 0, c ∈ C,
a′tx ≥ bt, t ∈ T.

(2)

Thus, if P is continuous (for any c ∈ C) and C is a compact subset of Rn,
then the robust counterpart of P is also a continuous LSIP problem.

In the interval optimization approach, the uncertain set is C =
∏n

i=1

[li, ui] , with li < ui, i = 1, . . . , n, and the problem consists of determining the
range of the optimal value for all the instances of the uncertain problem P. In
other words, we have to solve both the optimistic and pessimistic counterparts
of P. Because C is the convex hull of its extreme points, {y − c′x ≥ 0, c ∈ C}
can be replaced, in the pessimistic counterpart (2), by a subsystem of 2n linear
constraints whereas the optimistic counterpart of P reads

min
x∈F,z∈C

z′x,

which can be reformulated as the non-convex quadratic SIP problem
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min
(x,z)∈R2n

z′x

s.t. li ≤ zi ≤ ui, i = 1, . . . , n,
a′tx ≥ bt, t ∈ T.

The natural stochastic interpretation of P is the uncertain LSIP problem

min
x∈Rn

γ′x

s.t. a′tx ≥ bt, t ∈ T, (3)

where γ = (γ1, . . . , γn) is a random vector taking values on C with a given
probability P. Then each realization of γ (usually generated via simulation)
provides a different LSIP problem called scenario which is continuous when-
ever the nominal problem is continuous. Solving a large number of these sce-
nario programs it is possible to get an empirical probabilistic distribution of
the optimal value of P.

In the fuzzy perspective it is again assumed that C =
∏n

i=1 [li, ui], with
li < ui, i = 1, . . . , n; moreover, the random variables γi in (3) are assumed to
have special types of distributions on [li, ui] called fuzzy numbers (e.g., either
trapezoidal or triangular distributions). So, the fuzzy counterpart of P can be
seen as a particular class of stochastic counterpart.

�If (at, bt) ∈ St ⊂ Rn+1 for all t ∈ T, whereas c is fixed, the robust
approach requires to guarantee the feasibility of the selected decision under
any conceivable circumstance, i.e., the robust counterpart of P is now the
LSIP problem

min
x∈Rn

c′x

s.t. a′x ≥ b, (a, b) ∈ ⋃
t∈T

St,
(4)

whose index set is, in general, non-compact even though P is continuous and
each set St is compact in Rn+1. This is the case in the interval approach,
where each St is assumed to be a box in Rn+1.

� From the stochastic perspective the robust counterpart (4) can be in-
terpreted as the uncertain LSIP problem

min
x∈Rn

c′x

s.t. δ′
(

x
−1

)
≥ 0, δ ∈ Δ,

where δ is a random vector taking values on Δ =
⋃

t∈T St ⊂ Rn+1 with
probability P. Taking N values of δ at random on Δ with probability P, say
δ(1), . . . , δ(N), we get the scenario program

min
x∈Rn

c′x

s.t. δ′(i)

(
x
−1

)
≥ 0, i = 1, . . . , N,
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which is an ordinary LP problem (obviously, each scenario program can be
seen as a discretization of the robust counterpart of P, (4), generated at ran-
dom instead of by using grids or cutting planes). In general, the optimal
solution, x∗N , of a scenario program is not necessarily a feasible solution of
(4). Let

V (x∗N ) = P

{
δ ∈ Δ | δ′

(
x∗N
−1

)
< 0

}
be the violation probability of x∗N . According to Theorem 1 in [9], the
inequality

P {V (x∗N ) > ε} ≤
n−1∑
i=0

(
N
i

)
εi (1− ε)N−i (5)

holds for any ε > 0 (this admissible violation probability is selected by the
decision maker). Moreover, Campi and Garatti [9] also show that (5) holds
with equality under mild conditions.

� Finally in this discussion, if c ∈ C ⊂ Rn and (at, bt) ∈ St ⊂ Rn+1 for all
t ∈ T, combining the previous ideas, the robust counterpart of P is the LSIP
problem

min
(y,x)∈R1+n

y

s.t. y − c′x ≥ 0, c ∈ C,
a′x ≥ b, (a, b) ∈ ⋃

t∈T

St,
(6)

which does not retain the desirable continuity property of P. Program (6) can
be interpreted as the uncertain LSIP problem

min
(y,x)∈R1+n

(
1
0n

)′(
y
x

)
s.t. δ′

⎛⎝ y
x
−1

⎞⎠ ≥ 0, δ ∈ Δ,

where δ is a random vector taking values on

Δ = [{1} × (−C)× {0}] ∪
[
{0} ×

(⋃
t∈T

St

)]

with probability P. Taking N values of δ at random on Δ with probability P,
we get the corresponding scenario program and, maintaining the notation of
the previous case, we have, again by [9], the tight bound

P {V (x∗N ) > ε} ≤
n∑

i=0

(
Ni

)
εi (1− ε)N−i

,

for any given ε > 0 and for any x∗N optimal solution of the scenario program.
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� From now on we focus on the main purpose of this chapter, which is
intended to survey the state of the art in post-optimal analysis (stability and
sensitivity) of LSIP problems arising in practice. Frequently a proper subset of
the triple (a, b, c) can be perturbed due to either measurement errors or round-
ing errors occurring during the computation process. The practitioner should
identify the sources of uncertainty and then apply the known results for the
corresponding model. For instance, let us analyze the possible sources of uncer-
tainty of problem P in Example 1, where T = [α, β], at = (v1(t), . . . , vn(t)) ,
bt = f(t), and ci =

∫ β

α
vi(t)dt, i = 1, . . . , n, in the notation of (1). If v1, . . . , vn

are polynomials and α and β are integer numbers, then the only source of
uncertainty is f , i.e., the RHS function b. If f is also polynomial but α and
β are irrational numbers, then the source of uncertainty is the cost vector c
(whose components are computed with quadrature rules). Most commonly, if
all the involved functions are non-polynomial, all the data in P can be per-
turbed, so that the perturbations could affect all the elements of the triple
(a, b, c). Analogously, the uncertainty in the LSIP problem of Example 2 can
be caused by the LHS function a, by the RHS function b, or by the pair (a, b).
Nevertheless, in this example the perturbations are linked, e.g., concerning b
we must have b(s,1) + b(s,2) = 0 for all s ∈ [α, β].

Sensitivity analysis allows the prediction (or at least the estimation) of
the quantitative impact on the optimal value of small perturbations of the
data. Stability analysis informs about the continuity properties of the opti-
mal value, the optimal set, and the feasible set as functions of the data. The
works on parametric LSIP published during the 1980s ([8, 41, 96, 97], etc.)
dealt with the continuity properties of the primal optimal value, the optimal
set, and the feasible set in continuous LSIP. The first extension of these results
to general LSIP was obtained in the mid-1990s. These results have been com-
pleted during the 2000s. The recent research in this area is mostly focussed
on the obtainment of quantitative information related with computational is-
sues (well posedness and error bounds), developing stability analysis of special
LSIP models arising in practice and extending sensitivity analysis tools from
LP to LSIP.

The main aim of this survey is to convince the practitioners that it is
desirable (and frequently possible) to include post-optimal analysis in real
applications of LSIP involving uncertain data and the secondary aim to en-
courage the theoretical research in this area of optimization.

The chapter is organized as follows. Section 2 introduces the necessary no-
tation and a relatively exhaustive list of concepts about LSIP, extended func-
tions, and set-valued mappings allowing the understanding of the survey by
non-specialists. In Sections 3–6 we suppose that the admissible perturbations
preserve the structure of the nominal problem, i.e., that they provide LSIP
problems posed in the same space of variables Rn and having the same index
set T. Moreover, we also assume that, if the nominal problem P is continu-
ous, then the admissible perturbations also provide continuous problems (in
each section we consider first results on general LSIP and then the continuous



Post-optimal Analysis of Linear Semi-infinite Programs 31

counterparts). We only consider the four perturbation models correspond-
ing to the types of admissible perturbations more frequently encountered in
practice: perturbations of all the data (Section 3), simultaneous perturbations
of the RHS function and the cost vector (Section 4), and separate perturba-
tions of the RHS function and the cost vector (Sections 5 and 6, respectively).
Finally, Section 7 contains a list of open problems, a sketch of other models,
and the conclusions.

2 Preliminaries

First we introduce some notation. 0n and 0T denote the null vectors in Rn and
R(T ), respectively. The Euclidean, the l∞ (or Chebyshev), and the l1 norms
in Rn are represented by ‖·‖, ‖·‖∞, and ‖·‖1, respectively, with associated
distances d, d∞, and d1. |X| denotes the cardinality of a set X. Given X �= ∅
contained in a real linear space, by aff X, spanX, and convX we denote
the affine hull, the linear hull, and the convex hull of X, respectively. The
conical convex hull of X ∪ {0n} is represented by coneX. Moreover, if X
is convex, dimX and extrX denote the dimension and the set of extreme
points of X, respectively. From the topological side, if X is a subset of some
topological space, intX, cl X, and bdX represent the interior, the closure,
and the boundary of X, respectively. If X �= ∅ is a subset of some topological
vector space, rintX denotes the relative interior of X (i.e., the interior of X in
the topology induced on aff X) and X∞ :=

{
limk μkx

k | {xk
} ⊂ X, {μk} ↓ 0

}
its asymptotic cone. Finally, if (X, ‖·‖) is a normed space, the dual norm on
its topological dual X∗ is ‖u‖∗ = sup‖x‖≤1 |u (x)| .

2.1 Basic Concepts on Sets and Mappings

Let {Xr} be a sequence of non-empty sets in Rn. We denote by lim infr Xr

(lim supr Xr) the set formed by all the possible limits (cluster points, respec-
tively) of sequences {xr} such that xr ∈ Xr for all r ∈ N. When these two
limit sets are non-empty and coincide, then it is said that {Xr} converges in
the Painlevé–Kuratowski sense to the set

lim
r
Xr := lim inf

r
Xr = lim sup

r
Xr.

Let X be a topological space and let f : X �→ R := R∪{±∞} . The domain
of f is dom f := {x ∈ X | f (x) ∈ R} . f is called lower semicontinuous (lsc)
at x0 ∈ X if for each scalar γ < f (x0) there exists an open set V ⊂ X,
containing x0, such that γ < f (x) for each x ∈ V. f is upper semicontinuous
(usc) at x0 ∈ X if −f is lsc at x0.

The directional derivative of f at x0 ∈ X (linear space) in the direction
v ∈ X is
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f ′ (x0; v) := lim
ε↘0

f (x0 + εv)− f (x0)
ε

.

The (convex) subdifferential of f : X �→ R at x0 ∈ X (a topological vector
space) such that f (x0) ∈ R is

∂f (x0) := {u ∈ X∗ | f (x) ≥ f (x0) + u (y − x0) ∀x ∈ X} ,
where X can be replaced by dom f.

The subdifferential of a concave function f is the (convex) subdifferential
of −f.

Now consider a given set-valued mappingM : X ⇒ Y , where X and Y are
pseudometric spaces equipped with pseudometrics dX and dY , respectively.
The domain of M is domM := {x ∈ X | M (x) �= ∅}.
M : X ⇒ Y is lower semicontinuous at x0 ∈ X in the Berge–Kuratowski

sense (lsc in brief) if, for each open setW ⊂ Y such thatW∩M(x0) �= ∅, there
exists an open set V ⊂ X, containing x0, such that W ∩M(x) �= ∅ for each
x ∈ V. The intuitive meaning is that M does not implode in the proximity of
x0.
M is upper semicontinuous at x0 ∈ X in the Berge–Kuratowski sense

(usc) if, for each open set W ⊂ Y such that M(x0) ⊂W , there exists an open
set V ⊂ X, containing x0, such that M(x) ⊂ W for each x ∈ V . This means
that M does not burst in the proximity of x0.
M is closed at x0 ∈ domM if for all sequences {xr}∞r=1 ⊂ X and

{yr}∞r=1 ⊂ Y satisfying yr ∈ M(xr) for all r ∈ N, limr→∞ xr = x0 and
limr→∞ yr = y0 and one has y0 ∈M(x0).
M is lsc (usc, closed) if it is lsc (usc, closed) at x for all x ∈ X. Obviously,

M is closed if and only if its graph

gphM := {(x, y) ∈ X × Y | y ∈M (x)}
is a closed set.
M is metrically regular (or pseudo-Lipschitz ) at (x0, y0) ∈ gphM if there

exists L > 0 and two open sets V and W such that x0 ∈ V ⊂ X and
y0 ∈W ⊂ Y, and

dX

(
x,M−1 (y)

) ≤ LdY (y,M (x)) (7)

for all x ∈ V, y ∈W. This means thatM−1 (y) does not change abruptly when
y changes slightly in the proximity of y0. For this reason, in that case, M−1 is
said to be Aubin continuous at (y0, x0) . The smallest L satisfying (7) is called
the regularity modulus of M at (x0, y0) , represented by regM (x0 | y0) .

2.2 Basic Concepts and Results on LSIP

We associate with problem P in (1) (actually with its constraint system σ)
its set of coefficients
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C := {(at, bt) , t ∈ T} ⊂ Rn+1,

its characteristic cone

K := cone {C ∪ {(0n,−1)}} ,

and its first moment cone

M := cone {at, t ∈ T}

(which is the orthogonal projection of K on the hyperplane xn+1 = 0).
x ∈ Rn is a strong Slater (SS in brief) element for P if there exists ε > 0

such that a′tx ≥ bt + ε for all t ∈ T. If P is continuous, then x ∈ Rn is an SS
element for P if and only if it is a Slater element (i.e., a′tx > bt for all t ∈ T ).
P satisfies the Slater (SS) condition if there exists some Slater (SS) element.
P satisfies the SS condition if and only if v (PSS) > 0, where

PSS : max
(x,y)∈Rn+1

y

s.t. a′tx ≥ bt + y, t ∈ T,

so that we can conclude that v (PSS) > 0 from any feasible solution of PSS

such that y > 0 (i.e., it is not necessary to solve the associated LSIP problem
PSS until optimality). Observe that PSS is continuous if and only if P is
continuous.

The following results are well known (see, e.g., [50]): σ is inconsistent if and
only if (0n, 1) ∈ clK and it contains a finite inconsistent subsystem if and only
if (0n, 1) ∈ K. The non-homogeneous Farkas lemma establishes that a linear
inequality w′x ≥ γ is a consequence of a consistent system σ (i.e., w′x ≥ γ
for all x ∈ F ) if and only if (w, γ) ∈ clK. If P is continuous and satisfies
the Slater condition then K is closed. The first duality theorem establishes
that, if P is consistent and K is closed, then δ (P,D) = 0 and D is solvable
whereas the second one asserts that, if c ∈ rintM, then δ (P,D) = 0 and P is
solvable.

The classical approach to sensitivity analysis for LP problems, based on
the computation of optimal basis by means of some variant of the simplex
method, allows to predict the optimal value under separate perturbations of
the cost and the RHS vectors, and its extension to LSIP is possible by using
the duality theorems. The modern approach is based on the computation
of optimal partitions by means of interior point methods, and it allows to
predict the optimal value under simultaneous perturbations of the costs and
the RHS vectors. Its generalization to LSIP requires suitable extensions of the
concept of optimal and maximal partitions from LP to LSIP [56]. A couple
(x, λ) ∈ F × Λ is called a complementary solution of P − D if x ∈ F ∗,
λ ∈ Λ∗, and δ (P,D) = 0, i.e., if suppx ∩ suppλ = ∅, where suppx :=
{t ∈ T | a′tx > bt} is the supporting set of x ∈ F. Consequently, given a point
x ∈ F, there exists λ ∈ Λ such that

(
x, λ

)
is a complementary solution of
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P − D if and only if x is an optimal solution for some finite subproblem
of P.

A triple (B,N,Z) ∈ (
2T

)3 is called an optimal partition if there exists a
complementary solution (x, λ) such that B = suppx, N = suppλ, and Z =
T� (B ∪N). Obviously, the non-empty elements of the tripartition (B,N,Z)
give a partition of T . We say that a tripartition

(
B,N,Z

)
is maximal if

B =
⋃

x∈F∗
suppx, N =

⋃
λ∈Λ∗

suppλ, and Z = T \ (B ∪N).

The uniqueness of the maximal partition is a straightforward consequence of
the definition. If there exists an optimal solution pair

(
x, λ

)∈ F ∗ × Λ∗ such
that supp x = B and supp λ = N , then the maximal partition is called
the maximal optimal partition. If

(
B,N,Z

)
is an optimal partition such that

Z = ∅, then it is a maximal optimal partition. Assuming the existence of a
complementary solution (i.e., that δ (P,D) = 0 and F ∗ �= ∅ �= Λ∗), then there
exists a maximal optimal partition if and only if the sets of extreme points
and extreme directions of Λ∗ are finite.

2.3 Perturbed LSIP Problems

The stability analysis of the nominal problem P, identified with the nom-
inal data π := (a, b, c) , requires the embedding of π in some space of all
admissible perturbations (called parameters), Π , and to equip it with some
topology. Since the 1980s, there is a consensus about the convenience of equip-
ping Π with the topology of the uniform convergence, corresponding to the
following pseudodistance on Π: given two parameters, π1 =

(
a1, b1, c1

)
and

π2 =
(
a2, b2, c2

)
, the pseudodistance between π1 and π2 is

d∞ (π1, π2) := max
{∥∥c1 − c2

∥∥
∞ , sup

t∈T

∥∥∥∥(
a1

t

b1t

)
−

(
a2

t

b2t

)∥∥∥∥
∞

}
.

Observe that we can have d∞ (π1, π2) = +∞. From now on the parameters
and the corresponding primal and dual problems will be distinguished with
the same index (e.g., the problems associated with π1 are P1 and D1).

In particular, if all the data are uncertain (as in Section 3), Π = (Rn × R)T×
Rn in the general case and Π = C (T )n× C (T ) × Rn in the continuous case.
If only b and c are variable (Section 4), Π = RT ×Rn in the general case and
Π = C (T )× Rn in the continuous case. If only b is variable (Section 5), then
Π = RT in the general case and Π = C (T ) in the continuous case. Finally, if
only c is variable (Section 6), then Π = Rn (in this model there is no distinc-
tion between the general and the continuous cases). In general LSIP Π is a
linear space equipped with the pseudometric d∞ whereas it is a Banach space
in the continuous case.
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Important subspaces of Π are those formed by the consistent (inconsistent,
solvable, bounded, unbounded) primal problems, which are denoted by ΠP

C

(ΠP
I , Π

P
S , Π

P
B, Π

P
U, respectively). Similarly, the sets of consistent (inconsistent,

solvable, bounded, unbounded) dual problems are denoted by ΠD
C (ΠD

I , ΠD
S ,

ΠD
B , ΠD

U, respectively). A desirable property is generic on one of these sets
when it holds on some open dense subset. In other words, if the nominal
parameter belongs to the first set, then there exist arbitrary close parameters
satisfying the corresponding property stably (i.e., in some neighborhood).

An optimization problem is ill-posed relative to certain desirable property
when sufficiently small perturbations of the data provide problems enjoying
this property and others, where the property fails. In some fields of mathemat-
ical programming as LP or conic programming, the distance to ill-posedness
(the supremum of the size of the perturbations preserving certain property as
consistency or solvability) is related with measures of conditioning, complex-
ity analysis of numerical algorithms, and metric regularity (see, e.g., [38, 92]).
The following sets of ill-posed problems have been considered in the literature
on LSIP: bd ΠP

C is the set of ill-posed problems in the feasibility sense, bd ΠP
SI

(where ΠP
SI denotes the set of problems which have a finite inconsistent sub-

problem) is the set of generalized ill-posed problems in the feasibility sense,
and bd ΠP

S = bd ΠP
B is the set of ill-posed problems in the optimality sense

(other sets of ill-posed problems in LSIP are discussed in [58]). The distance
from the nominal problem π to a set of ill-posed parameters can be interpreted
as a measure of well-posedness.

We associate with each π1 ∈ Π the primal problem P1 and its dual problem
D1. The primal and dual optimal value mappings are ϑP, ϑD : Π �→ R such
that ϑP (π1) = v (P1) and ϑD (π1) = v (D1). The relevant set-valued mappings
are the primal feasible set and the primal optimal set mappings, F , F∗ : Π ⇒
Rn such that F (π1) and F∗ (π1) are the feasible and the optimal sets of P1,
respectively, and their dual counterparts, L, L∗ : Π ⇒ R(T ) such that L (π1)
and L∗ (π1) are the feasible and the optimal sets of D1. The inconvenience
with L and L∗ is the non-intrinsic character of the topologies on R(T ). The
few papers dealing with the stability of the dual mappings consider the L1

and the L∞ norms because they provide results that are symmetric to those
of the primal mappings F and F∗.

� From (7), F is Aubin continuous at (π, x) if and only if there exists
L > 0 and two open sets V and W such that x ∈ V ⊂ Rn and π ∈W ⊂ Π,

d∞ (x1,F (π1)) ≤ Ld∞
(
π1,F−1 (x1)

)
(where F−1 (x) = {π1 ∈ Π | x ∈ F (π1)}) for all x1 ∈ V and π1 ∈W.

The following definition of well-posedness orientated toward the stability
of the primal optimal value function ϑP : {xr} ⊂ Rn is an asymptotically
minimizing sequence for π ∈ ΠP

C associated with {πr} ⊂ ΠP
B if xr ∈ F (πr)

for all r, limr πr = π, and limr

[
(cr)′ xr − ϑP (πr)

]
= 0. In particular, π ∈ ΠP

S

is Hadamard well-posed (Hwp in brief) if for every x∗ ∈ F ∗ and for every
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{πr} ⊂ ΠP
B such that limr πr = π there exists an asymptotically minimizing

sequence converging to x∗.
Obviously, if we fix successive elements of the triple (a, b, c), the sufficient

conditions for the stability properties of F , F∗, L, or L∗ at the nominal data
are still sufficient. For instance, if F is lsc at π = (a, b, c) under arbitrary
perturbations of all the data, the same is true for perturbations limited to
the RHS function and/or the cost vector. In particular, if we fix a and b (a
and c), F (L, respectively) is constant and, so, it is trivially lsc, usc, and
closed. Conversely, any necessary condition for one of the above mappings
to be lsc at π under perturbations of a part of the data is also necessary
for the lsc property of the corresponding set-valued mapping under arbitrary
perturbations of all the data.

3 Perturbing All the Data

This model is the most frequently encountered in the recent literature on sta-
bility in LSIP. One of the reasons is that the characterizations of different
stability properties in this model become sufficient conditions for the remain-
ing models and sometimes these conditions are also necessary. Analogously,
the formulae providing the distance to ill-posedness are at least upper bounds
in other models whereas the error bound is still valid (although they could
be improved). Few sensitivity analysis results have been published on this
model (it is difficult to predict the behavior of the optimal value under per-
turbations of the LHS function even in ordinary LP). Recall that F (π) = F
is the feasible set of the nominal problem and F∗ (π) = F ∗ is its optimal
set.

3.1 Stability of the Feasible Set

It is easy to prove that F is closed everywhere whereas the lsc and the usc
properties are satisfied or not at π = (a, b, c) ∈ ΠP

C depending on the nominal
data a and b.

The basic result on stability analysis in LSIP is the following (non-
exhaustive) list of characterizations of the lower semicontinuity of F [49–
51, 61]:

� F is lsc at π ∈ domF = ΠP
C

⇔ π ∈ int ΠP
C (stable consistency)

⇔ the SS condition holds
⇔0n+1 /∈ cl convC
⇔∀{πr} ⊂ Π such that limr πr = π ∃r0 ∈ N such that limr≥r0 F (πr) =
F (π)

⇔∃ an open set V , π ∈ V ⊂ Π, such that dimF (π1) = dimF ∀π1 ∈ V
⇔∃ an open set V , π ∈ V ⊂ Π, such that aff F (π1) = aff F ∀π1 ∈ V
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In the case that 0n /∈ bd conv {at, t ∈ T} , the following condition is also
equivalent to the lower semicontinuity of F at π: ∃ an open set V , π ∈ V ⊂ Π
such that F (π1) is homeomorphic to F for all π1 ∈ V.

It has also been proved [23] that, if F is lsc at π ∈ ΠP
C, then F−1 is

metrically regular at (x, π) for all x ∈ F. The converse is not true.
The characterization of the usc property of F at π ∈ ΠP

C in [18] (refining
previous results in [52]) requires some additional notation. Let KR be the
characteristic cone of the linear system

σR := {a′x ≥ b, (a, b) ∈ (convC)∞} . (8)

Observe that any inequality a′x ≥ b in (8) is a consequence of σ because(
a
b

) ∈ clKR. If F is bounded, then F is usc at π. Otherwise two cases are
possible:

� If F contains at least one line, then F is usc at π if and only ifKR = clK.
� Otherwise (i.e., if dim span {at, t ∈ T} = n), selecting some vector w

that is the sum of some basis of Rn contained in {at, t ∈ T}, F is usc at
π if and only if there exists β ∈ R such that

cone
(
KR ∪ {(w, β)}) = cone (clK ∪ {(w, β)}) .

The stability properties of F are closely related with those corresponding
to the boundary and the extreme point set mappings: B, E : Π ⇒ Rn such that
B (π1) := bdF (π1) and E (π1) := extrF (π1) for all π1 ∈ Π. The transmission
of stability properties between F , B, and E [45, 46, 55] has been used in order
to provide a sufficient condition for the stable containment of solution sets of
LSISs of two [44] in the following sense: let π and τ be two given two LSISs
with associated feasible sets F and G; F is said to be contained in G stably at
(π, τ) if F (π1) ⊂ G (τ1) for π1 and τ1 close enough to π and τ , respectively.
Analogously, we say that F intersects G stably at (π, τ) if F (π1)∩G (τ1) �= ∅
for π1 and τ1 close enough to π and τ , respectively. The stability of the
containment of the feasible set of a given linear (convex) system in the feasible
set of a similar system [62] and the stability of their intersection [47] have been
analyzed.

Concerning the stability of the dual feasible set mapping L, each of the
following conditions is equivalent to the lsc property of L at π ∈ ΠD

C [53]: π ∈
int ΠD

C, c ∈ intM , and dual consistency under sufficiently small perturbations
of c (among others). There, it is also shown that L is closed or not depending
on the norm considered on the image space R(T ) (it is closed for L1 but not
for L∞).

We finish this section considering the continuous case. Concerning the
stability of F , in the early 1980s it was proved that F is lsc at π ∈ ΠP

C if and
only if π satisfies the Slater condition and that F is usc at π ∈ ΠP

C if and only
if F is either the whole space Rn or a compact set [3, 41]. In [53] it is also
shown that π ∈ (

int ΠP
C

) ∩ (
int ΠD

C

)
if and only if F ∗ and Λ∗ are non-empty

bounded sets if and only if π ∈ int
(
ΠP

S ∩ΠD
S

)
. This result extends Robinson’s

theorem from LP to LSIP [93].
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Most characterizations of the lsc property of F are valid for convex and
some particular classes of non-convex systems posed in locally convex topo-
logical vector spaces (see [34]).

3.2 Stability of the Optimal Set

In [22] (see also [50]) it is proved that, if π ∈ ΠP
S , then the following statements

hold:

� F∗ is closed at π ⇔ either F is lsc at π or F = F ∗.
� F∗ is lsc at π ⇔ F is lsc at π and |F ∗| = 1 (uniqueness).
� If F∗ is usc at π, then F∗ is closed at π (and the converse is true if F ∗ is

bounded).

Exploiting a suitable concept of extended active constraint, it has been
shown in [54] that the strong uniqueness is a generic property on the inter-
section of ΠP

S with the (open and closed) classes of those elements of Π which
have bounded LHS function.

The continuous versions of the above characterizations of the semiconti-
nuity and closedness of F∗ appeared in [8, 41]. Concerning the mentioned
generic result for general LSIP, it is an extension of a generic result in [96]
for continuous LSIP (where any problem has bounded LHS function). Always
in the continuous case, Todorov [97] proved that the majority (in the Baire
sense) of the elements of ΠP

S have an associated Lagrange function with a
unique saddle point.

3.3 Stability of the Optimal Value and Well-Posedness

The following statements are proved in [22] (see also [50]):

� If F ∗ is a non-empty compact set, then ϑP is lsc at π. The converse
statement holds if π ∈ ΠP

B.
� ϑP is usc at π ⇔ F is lsc at π.
� If π is Hwp, then the restriction of ϑP to ΠP

Bis continuous.
� If F ∗ is bounded, then π is Hwp ⇔ either F is lsc at π or |F | = 1.
� If F ∗ is unbounded and π is Hwp, then F is lsc at π.

A similar analysis has been carried out in [22] with other Hwp concepts.
In the particular case that π ∈ int ΠP

S , Cánovas et al. [25] provide an
expression for α (called Lipschitz constant), in terms of the data, such that∣∣∣ϑP (π1)− ϑP (π2)

∣∣∣ ≤ αd∞ (π1, π2)

for all π1, π2 in some neighborhood of π. The Lipschitz inequality∣∣∣ϑP (π1)− ϑP (π)
∣∣∣ ≤ αd∞ (π1, π)
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for π1 in some neighborhood of π provides bounds for the variation of ϑP

in the proximity of π, i.e., this inequality can be seen as sensitivity analysis
result.

3.4 Distance to Ill-Posedness

The following formulae [22, 24, 27] reduce the calculus of pseudodistances
from π to the sets of ill-posed problems to the calculus of distances from the
origin to a suitable set in certain Euclidean space:

� d∞
(
π,bd ΠP

C

)
=

∣∣∣∣ sup
x∈Rn

inf
t∈T

a′tx− bt
‖(x,−1)‖∗∞

∣∣∣∣ .
� If π ∈ ΠP

C and H := convC + cone {(0n,−1)}, then

d∞
(
π,bd ΠP

SI

)
= d∞ (0n+1,bdH) .

� If π ∈ (cl ΠP
S ) ∩ (int ΠP

C) and Z− := conv{at, t ∈ T ;−c}, then

d∞(π,bd ΠP
S ) = min{d∞(0n+1,bdH), d∞(0n,bdZ−)}.

� If π ∈ (cl ΠP
S ) ∩ (bd ΠP

C) and Z+ := conv{at, t ∈ T ; c}, then

d∞(π,bd ΠP
S ) ≥ min{d∞(0n+1,bdH), d∞(0n,bdZ+)}.

In [28] a subclass of
(
bd ΠP

C

)∩ (
bd ΠP

S

)
, called set of totally ill-posed prob-

lems (problems that are simultaneously ill posed in both feasibility and opti-
mality senses), was identified. The totally ill-posed problems have been char-
acterized, initially (in [26]) in terms of a set of parameters whose definition
does not involve the data (so that it is hard to be checked) and recently (in
[70]) in terms of the data.

3.5 Error Bounds

The residual function is r : Rn ×Π �→ R such that

r (x, π1) := sup
t∈T

(
b1t −

(
a1

t

)′
x
)+

,

where α+ := max {α, 0}. Obviously, x ∈ F (π1) if and only if r (x, π1) = 0.
The scalar 0 ≤ β < +∞ is a global error bound for π1 ∈ ΠP

C if

d (x,F (π1)) ≤ βr (x, π1) for all x ∈ Rn.

If there exists such a β, then the condition number of π1 is

0 ≤ τ (π1) := sup
x∈Rn\F

d (x,F (π1))
r (x, π1)

< +∞.
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An estimation of τ (π) when F is bounded can be found in [29].
The following statements provide global error bounds for the parameters

in some neighborhood of π, under the only assumption that C (the set of
coefficient vectors) is bounded [71]:

� Assume that F is bounded and π = (a, b, c) ∈ int ΠP
C, and let ρ, x0, and

ε > 0 be such that ‖x‖ ≤ ρ for all x ∈ F and a′tx
0 ≥ bt + ε for all t ∈ T . Let

0 ≤ γ < 1. Then, if d (π1, π) <
εγ

2ρ
√
n

, we have

τ (π1) ≤ 2ρ
ε

[
1 + γ

(1− γ)2

]
.

� Assume that F is unbounded and (a, 0, c) ∈ int ΠP
C, and let u and η > 0

such that a′tu ≥ η for all t ∈ T , ‖u‖ = 1. Let 0 < δ < n−1/2η. Then, if
d (π1, π) < δ, we have

τ (π1) ≤
(
η − δn1/2

)−1

.

Improved error bounds for arbitrary π have been given in [23].

3.6 Primal–Dual Stability

In the same way that int ΠP
C is interpreted as the set of primal stable consistent

parameters (in the sense that sufficiently small perturbations provide primal
consistent problems), the topological interior of the main subsets of Π can
be seen as the sets of stable parameters in the corresponding sense. Some of
these interiors have been characterized in the continuous case [57, 59], e.g.,
those corresponding to the primal partition

{
ΠP

I ,Π
P
B,Π

P
U

}
, the dual partition{

ΠD
I ,Π

D
B ,Π

D
U

}
, and their non-empty intersections (the so-called primal–dual

partition):

� π ∈ int ΠP
C ⇔ π satisfies the Slater condition.

� π ∈ int ΠD
C ⇔ c ∈ intM.

� π ∈ int ΠP
B ⇔ π ∈ int

(
ΠP

B ∩ΠD
B

) ⇔ π ∈ int ΠD
B ⇔ π satisfies the Slater

condition and c ∈ intM.
� π ∈ int ΠP

I ⇔ π ∈ int
(
ΠP

I ∩ΠD
U

)⇔ π ∈ int ΠD
U ⇔ (0n, 1) ∈ intK.

� π ∈ int ΠD
I ⇔ π ∈ int

(
ΠP

U ∩ΠD
I

) ⇔ π ∈ int ΠP
U ⇔ ∃y ∈ Rn such that

c′y < 0 and a′ty > 0 for all t ∈ T.
Moreover,

int
(
ΠP

I ∩ΠD
I

)
= int

(
ΠP

B ∩ΠD
I

)
= int

(
ΠP

I ∩ΠD
B

)
= ∅.

The above results have been extended [60] to the refined primal-dual parti-
tions obtained by splitting the sets of parameters having bounded problems in
the primal and the dual partitions, ΠP

B and ΠD
B , into those which have compact

optimal sets and those where this desirable property fails. The above charac-
terizations of thetopological interiors of the main subsets of Π have been used
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in order to prove that most parameters having either primal or dual bounded
associated problems have primal and dual compact optimal sets [60]. This
generic property does not hold in general LSIP despite almost all the charac-
terizations of the topological interior of above subsets of Π being still valid in
general LSIP [24, 26, 53].

4 Perturbing the Cost Vector and the RHS Function

In this section the parameter space is Π = RT × Rn (general case) or the
Banach space Π = C (T ) × Rn (continuous case). This model is the most
general one for which some sensitivity analysis with exact formulae can be
performed at the moment of writing this chapter. Because the admissible
perturbations of π are of the form π1 = (a,w, z) , w ∈ RT , and z ∈ Rn, we
can identify π1 with (z, w) (called rim data in the LP literature).

4.1 Stability Analysis

Because F is closed under perturbations of all the data, F is also closed under
perturbations of some data.

According to [50], the characterizations of the lower semicontinuity of F
at π in Section 3 remain valid for any model (in both general and continuous
LSIP) allowing arbitrary perturbations of the RHS function.

The characterization of the upper semicontinuity of F at π also remains
valid because the argument given for arbitrary perturbations of all the data
in [18] only involves perturbations of the RHS function.

Concerning the stability of F∗ and well-posedness, the proofs given in
[22, 50] used perturbations of the LHS function, so that all can be asserted at
present is that

� if F ∗ is a non-empty compact set, then ϑP is lsc at π;
� if F is lsc at π, then ϑP is usc at π; and
� if F ∗ is bounded and either F is lsc at π or |F | = 1, then π is Hwp.

Characterizing the stability properties of ϑP and F and the well-posedness
in this model are open problems.

In the continuous case, it has been proved [12] that, given (π, x) ∈ gphF∗,
(F∗)−1 is metrically regular at x if and only if F∗ is single-valued in some
neighborhood of π. In that case, F∗ is also Lipschitz continuous on that
neighborhood of π and reg (F∗)−1 (x, π) can be calculated under a mild con-
dition that always holds if n ≤ 3. The latter results have been extended
to CSIP under linear perturbations of the objective functions in [16], which
give conditions for the metric regularity of (F∗)−1, and [13–15], which pro-
vide lower and upper bounds for reg (F∗)−1 in terms of the problem’s data;
in LSIP the upper bound (or exact modulus) adopts a notably simplified
expression.
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4.2 Sensitivity Analysis

Consider the parametric problem

P (z, w) : min
x∈Rn

z′x

s.t. a′tx ≥ wt, t ∈ T
and its corresponding dual

D (z, w) : max
λ∈R

(T )
+

∑
t∈T

λtwt

s.t.
∑
t∈T

λtat = z.

Observe that P (z, w) is continuous when P is continuous (recall that, in that
case, we take w ∈ C (T )).

In order to describe the behavior of the optimal value functions ϑP and ϑD

we define a class of functions after giving a brief motivation. Let V be a linear
space and let ϕ : V 2 �→ R be a bilinear form on V . Let X = conv {vi, i ∈ I} ⊂
V and let qij := ϕ (vi, vj), (i, j) ∈ I2. Then any v ∈ X can be expressed as

v =
∑
i∈I

μivi,
∑
i∈I

μi = 1, μ ∈ R
(I)
+ . (9)

Then we have

ϕ (v, v) =
∑
i,j∈I

μiμjqij . (10)

Accordingly, given q : X �→ R, where X = conv {vi, i ∈ I} ⊂ V, we say
that q is quadratic on X if there exist real numbers qij , i, j ∈ I, such that
q (v) satisfies (10) for all v ∈ X satisfying (9). The following result is proved
in [56]:

� Let
{(
ci, bi

)
, i ∈ I} ⊂ Rn × RT be such that there exists a common

optimal partition for the family of problems
{
P

(
ci, bi

)
, i ∈ I} . Then P (z, w)

and D (z, w) are solvable and ϑP (z, w) = ϑD (z, w) on conv
{
ci, i ∈ I} ×

conv
{
bi, i ∈ I} and ϑP is quadratic on conv

{(
ci, bi

)
, i ∈ I} . Moreover, if

(c, b) ∈ conv
{
ci, i ∈ I}× conv

{
bi, i ∈ I}, then ϑP (·, b) and ϑP (c, ·) are affine

on conv
{
ci, i ∈ I} and conv

{
bi, i ∈ I}, respectively.

Obviously, if (c, b) ∈ int conv
{(
ci, bi

)
, i ∈ I}, then ϑP and ϑD coincide

and are quadratic on a neighborhood of (c, b). In particular, if the problems
P (z, w) have a common optimal partition when (z, w) ranges on a certain
neighborhood of (c, b), then we can assert that P has a strongly unique solution
(and D has a unique solution).
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5 Perturbing the RHS Function

We consider here that a and c are fixed whereas the RHS function b can be
perturbed. For simplicity we use the variable w instead of b1. Thus, we write
ϑP (w) instead of ϑP (π1) .

5.1 Stability Analysis

As in the previous section, F is closed and the characterizations of the lower
and upper semicontinuities of F are the same as in Section 3 due to the same
reasons. The condition π ∈ int ΠP

C means now that the consistency of the
problem is preserved by sufficiently small perturbations of the RHS function.
This property was called regularity by Robinson [93].

In the continuous case, the following formula for the regularity modulus
of F−1 at (π, x) ∈ gphF−1 has been obtained appealing to the distance to
ill-posedness in feasibility sense [10]:

regF−1 (x | π) = sup
{(‖u‖∗∞)−1 | (u, u′x) ∈ convC

}
.

Concerning the stability of the primal optimal value function ϑP, according
to [35] (which deals with convex infinite programs), if π ∈ ΠP

B and K is
closed, then ϑP is lsc at π, there exists an affine minorant of the directional

derivative of ϑP at b (i.e., there exists λ ∈ R(T ) such that
(
ϑP

)′
(b;w) ≥

λ(w − b)∀w ∈ RT ), and ϑP is subdifferentiable at b (i.e., ∂ϑP(b) �= ∅). The
first two properties are called inf-stability and inf–dif-stability in Laurent’s
sense, whereas the third one is equivalent to calmness in Clarke’s sense [7].

A Lipschitz constant for ϑD at π in terms of the data has been given
recently in [98, Theorem 1] under the assumption that π ∈ ΠD

C ∩
(
int ΠP

C

)
.

The open problems enumerated in Section 4.1 are also open problems for
this model.

5.2 Sensitivity Analysis

Here we consider the parametric problems

P (w) : min
x∈Rn

c′x

s.t. a′tx ≥ wt, t ∈ T
and

D (w) : max
λ∈R

(T )
+

∑
t∈T

λtwt

s.t.
∑
tεT

λtat = c,
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with respective optimal values ϑP (w) and ϑD (w) (observe that P (w) is con-
tinuous when P is continuous). Obviously, the optimal values of the nominal
problem P and its dual D are ϑP (b) = v (P ) and ϑD (b) = v (D), respectively.

The following sensitivity results have been shown:
� If ϑP is affine on a certain neighborhood of b, then D has at most

one optimal solution and the converse is true under strong assumptions
[43].

� ϑP is affine on a segment emanating from b in the direction of a bounded
function d ∈ RT \ {0T } if P and D are solvable with the same optimal value,
the problem

Pd : min
(x,y)∈Rn+1

c′x + ϑP (b) y

s.t. a′tx+ bty ≥ dt, t ∈ T

is also solvable and has zero duality gap, and Pd satisfies certain additional
condition [43]. Once again, observe that Pd is continuous when P is continuous
(provided d ∈ C (T )).

� Let conv
{
bii ∈ I} be such that all the problems P

(
bi

)
, i ∈ I, have

a common optimal partition. Then ϑP and ϑD coincide and are affine on
conv

{
bi, i ∈ I} [56]. This result can be seen as the LSIP version of the optimal

partition perspective of LP (see [64]).
Cánovas et al. [29] provide a lower bound for ϑD under the only assumption
that ϑP is lsc.

6 Perturbing the Cost Vector

Now we consider a and b given (fixed) functions whereas c can be perturbed,
i.e., the elements of Π are the triples π1 =

(
a, b, c1

)
, with c1 ∈ Rn. The

theoretical advantage of this model is that the space of parameters is finite
dimensional. For the sake of simplicity we write z instead of c1.

6.1 Stability Analysis

The following result describes the local behavior of the optimal value functions
ϑP and ϑD (which is related to the viability of the discretization approach in
LSIP):

� ϑD is a proper concave function and ϑP is its closure, whose hypograph is
clK [48, 50], and its domain satisfies rintM ⊂ domϑP ⊂ clM. Thus, ϑP is
positively homogeneous (i.e., ϑP (λz) = λϑP (z) for all λ ≥ 0) and ϑP and ϑD

are continuous on rintM.
Concerning the stability, the following statements are true (the proofs in

[8], on continuous LSIP, remain valid in general LSIP):
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� F∗ is closed.
� If F∗ is lsc at c and F ∗ contains an exposed point of F , then |F ∗| = 1.
� If F ∗ is bounded, then F∗ is usc at c.

The characterization of the lsc and the characterization of the usc proper-
ties of F∗ are open problems, whereas its metric regularity has been analyzed
in [17], in the more general framework of convex semi-infinite programming.
The stability of the dual problem has not been analyzed, except the lsc prop-
erty of L at π ∈ ΠD

C, which is equivalent to c ∈ intM.
In the particular case that π ∈ ΠP

C ∩
(
int ΠD

C

)
, [98, Theorem 2] provides a

Lipschitz constant for ϑP at π in terms of the data.

6.2 Sensitivity Analysis

The perturbed problems of P and D to be considered in this section are

P (z) : min
x∈Rn

z′x

s.t. a′tx ≥ bt, t ∈ T
and

D (z) : max
λ∈R

(T )
+

∑
t∈T

λtbt

s.t.
∑
tεT

λtat = z,

with optimal values ϑP (z) and ϑD (z), respectively (observe that P (z) is
continuous when P is continuous). With this notation, the effective domain
of ϑD is the first moment cone, M , and the optimal values of the nominal
problem P and its dual D are ϑP (c) and ϑD (c), respectively.

The next three results can be seen as the extension to LSIP of classical
results on sensitivity analysis in LP.

� If c ∈ rintM , then the subdifferential of ϑP at c is ∂ϑP (c) = F ∗ �= ∅. In
particular, if c ∈ intM, i.e., F ∗ is compact, the directional derivative of ϑP at
c in the direction of d ∈ Rn\ {0n} is

(ϑP)′ (c; d) = max
x∈F∗

d′x,

and ϑP turns out to be differentiable at c if and only if |F ∗| = 1 (i.e., P has a
unique optimal solution). Then, ∇ϑP (c) = x∗ if F ∗ = {x∗} [50].
� ϑP is linear in a neighborhood of c if and only if P has a strongly unique

solution. In such a case, if F ∗ = {x∗}, then ϑP (z) = (x∗)′ z for z ranging on
some open convex cone containing c [43].
� Let P and d ∈ Rn be such that P and D are solvable, ϑD (c) = ϑP (c) and

D (d) : max
λ∈R

(T )
+

∑
t∈T

λtbt + μϑP (c)

s.t.
∑
tεT

λtat + μc = d
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is also solvable and has zero duality gap. Then there exists ε > 0 such that

ϑP (c+ ρd) = ϑP (c) + ρmin {d′x | x ∈ F ∗} if 0 ≤ ρ < ε.

Consequently, ϑP is linear on cone [c, c+ εd] ([43], extending Gauvin’s
formula in [42] to LSIP).
� Let

{
ci, i ∈ I} ⊂ Rn be such that there exists a common optimal partition

for the family of problems
{
P

(
ci

)
, i ∈ I} . Then ϑP and ϑD coincide and are

affine on conv
{
ci, i ∈ I} [56].

7 Conclusions

We have shown in Section 1 that post-optimal analysis is a sensible way to
deal with LSIP problems with uncertain data (the other one is robust opti-
mization, but only in the case that the unique uncertain data are the cost
coefficients).
The following concerns the post-optimal models surveyed in Sections 3–6:

� The stability analysis of F and ϑP is almost complete in all cases (except
for the Aubin continuity) whereas the analysis corresponding to F∗ is only
complete for perturbations of all the data.
� The Hadamard well-posedness has not been characterized (although some

necessary and some sufficient conditions are known).
� The distance to ill-posedness is only computable for perturbations of all the

data (the formulae in Section 3.3 only give lower bounds in the remaining
models).
� The condition number of an arbitrary LSIP problem cannot be computed

(although upper bounds can be obtained).
� No generic result is available for general LSIP (the existing literature

requires the LHS function to be bounded).
� No sensitivity analysis with exact formulae can be carried out when
perturbations of all the data are admissible although some quantitative
information is available, e.g., Lipschitz constants in terms of the data for
certain types of stable problems.
� Almost nothing is known about the dual problem (only the stability of the

feasible set mapping L has been studied in detail up to now), although this
type of problem seldom arises in the real applications of LSIP.

For the sake of simplicity, we have assumed in this chapter (as in most
of the published works) that the perturbable data are non-empty subsets
of {a, b, c} (e.g., that we can perturb the whole cost vector c but not just
an individual coefficient ci, i = 1, . . . , n, all the constraints but not a part
of them). There is an active research in progress about models containing
linked inequalities to be preserved by any admissible perturbation [1, 2, 11],
where each equation can be interpreted as two zero-sum inequalities), models



Post-optimal Analysis of Linear Semi-infinite Programs 47

including imperturbable constraints (e.g., the physical constraints xi ≥ 0,
i = 1, . . . , n), or both [1, 2].

We have also precluded from this survey models involving a parametriza-
tion mapping describing either the coefficients, the index set [81], or both
[19, 20]. Three of these alternative approaches are compared in [21]: free per-
turbation of all the data, perturbations of the data depending on a given
parameter (in both cases maintaining the structure of the problem), and per-
turbations preserving the space of primal variables and the linearity of the
system. Under suitable smoothness assumptions on the parametrization map-
ping it is possible to guarantee strong topological properties of the feasible set
and the optimal set mappings or to describe the geometry of the trajectory
described by the optimal solution, if it is unique (see, e.g., [77, 78]. For more
information on perturbation analysis in more general contexts, the reader is
referred to [7, 79] and references therein.

All the previous models assume that the perturbations preserve the struc-
ture of the nominal problem, i.e., that the perturbed problems are linear
programs with the same number of variables and constraints as the nominal
one. Even more, in the papers dealing with continuous problems, it is also
assumed that the coefficients of the constraints of the perturbed problems are
continuous functions of the parameter. Other approaches are possible but very
unusual in the literature. For instance, because each triple π = (a, b, c) could
be identified with a couple (X, c) ∈ 2R

n+1 × Rn, where X is some set associ-
ated with the constraints, it is possible to consider a subset of 2R

n+1 × Rn as
space of parameters equipped with the product topology of a suitable one on
the family of sets representing the systems by the usual topology on Rn. The
Hausdorff topology on the space of compact sets in Rn+1 is a good choice if
these sets are compact (as clK ∩ clB (0n+1; 1) in [90], paper devoted to the
stability of the feasible set mapping), whereas hypertopologies could be prefer-
able in the case that the sets are closed cones (as clK). Nevertheless, almost
all the specialists prefer to use the topology of the uniform convergence on
the parameter space Π introduced in Section 2 for two reasons: first, because
this topology makes sense in practice and second because the representation
of π in 2R

n+1 × Rn affects the dual problem, i.e., the alternative approach is
only suitable for the stability analysis of the primal problem.

In conclusion, post-optimal analysis in LSIP is an active research field
which includes different perturbation models covering a variety of structures
arising in practice and possible sources of uncertainty.

Acknowledgment The author wishes to thank M.J. Cánovas, M.D. Fa-
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28. Cánovas, M.J., López, M.A., Parra, J., Toledo, F.J.: Sufficient conditions for
total ill-posedness in linear semi-infinite optimization. Eur. J. Oper. Res. 181,
1126–1136 (2007)
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43. Goberna, M.A., Gómez, S., Guerra, F., Todorov, M.I.: Sensitivity analysis in
linear semi-infinite programming: perturbing cost and right-hand-side coeffi-
cients. Eur. J. Oper. Res. 181, 1069–1085 (2007)

44. Goberna, M.A., Jeyakumar, V., Dinh, N.: Dual characterizations of set con-
tainments with strict inequalities. J. Global Optim. 34, 33–54 (2006)

45. Goberna, M.A., Larriqueta, M., Vera de Serio, V.N.: On the stability of
the boundary of the feasible set in linear optimization. Set-Valued Anal. 11,
203–223 (2003)

46. Goberna, M.A., Larriqueta, M., Vera de Serio, V.N.: On the stability of the
extreme point set in linear optimization. SIAM J. Optim. 15, 1155–1169 (2005)

47. Goberna, M.A., Larriqueta, M., Vera de Serio, V.N.: Stability of the inter-
section of solution sets of semi-infinite systems, J. Comput. Appl. Math. 217,
420–431 (2008)
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Summary. In this chapter we give an overview of the theory of scalar equilibrium
problems. To emphasize the importance of this problem in nonlinear analysis and
in several applied fields we first present its most important particular cases as op-
timization, Kirszbraun’s problem, saddlepoint (minimax) problems, and variational
inequalities. Then, some classical and new results together with their proofs con-
cerning existence of solutions of equilibrium problems are exposed. The existence of
approximate solutions via Ekeland’s variational principle – extended to equilibrium
problems – is treated within the last part of the chapter.

Key words: equilibrium problem, saddlepoint, variational inequality, inter-
section theorems, Ekeland’s variational principle, approximate solutions

1 Introduction

One of the most important problems in nonlinear analysis is the so-called
equilibrium problem, which can be formulated as follows. Let A and B be two
nonempty sets and f : A×B → R a given function. The problem consists in
finding an element a ∈ A such that

f(a, b) ≥ 0 ∀b ∈ B. (EP)

(EP) has been extensively studied in recent years (e.g. [6–10, 17–19, 22] and
the references therein). One of the reasons is that it has among its particular
cases, optimization problems, saddlepoint (minimax) problems, variational
inequalities (monotone or otherwise), Nash equilibrium problems, and other
problems of interest in many applications (see [10] for a survey).

As far as we know the term “equilibrium problem” was attributed in [10],
but the problem itself has been investigated more than 20 years before in
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a paper of Ky Fan [15] in connection with the so-called intersection theo-
rems (i.e., results stating the nonemptiness of a certain family of sets). Ky
Fan considered (EP) in the special case A = B a compact convex subset
of a Hausdorff topological vector space and termed it “minimax inequality.”
Within short time (in the same year) Brézis, Nirenberg, and Stampacchia
[11] improved Ky Fan’s result, extending it to a not necessarily compact set,
but assuming instead a so-called coercivity condition, which is automatically
satisfied when the set is compact.

Recent result on (EP) emphasizing existence of solutions can be found
in [6–8, 28], and many other papers. New necessary (and in some cases also
sufficient) conditions for existence of solutions in infinite dimensional spaces
were proposed in [18], and later on simplified and further analyzed in [17].

Looking on the proofs given for existence results, one may detect two fun-
damental methods: fixed point methods (intersection theorems mostly based
on Brouwer’s fixed point theorem) and separation methods (Hahn–Banach
type theorems). It is an old conjecture whether Brouwer’s fixed point theo-
rem can be proved using (only) separation results.

The aim of this chapter is to provide an overlook on (EP) by emphasizing
its most important particular cases, to expose some classical and recent exis-
tence results of it, and to deal with approximate solutions, which, in case the
exact solution does not exist, may have an important role.

The chapter is divided into four sections (including Introduction). In Sec-
tion 2, the most important particular cases of (EP) such as the minimum prob-
lem, Kirszbraun’s problem, saddlepoint problem (in connection with game
theory, duality in optimization, etc.), and variational inequalities are pre-
sented. The next section is devoted to several existence results on (EP). First
we focus on results which use fixed point tools and show that these results
form an equivalent chain which includes Brouwer’s and Schauder’s fixed point
theorems, Knaster–Kuratowski–Mazurkiewitz and Ky Fan’s intersection the-
orems, Ky Fan’s minimax inequality theorem. Then we expose some recent
results on (EP) using separation tools. Finally, in Section 4 (EP) and its more
general case, the system of equilibrium problems (abbreviated (SEP)), are
discussed in connection with the famous Ekeland’s variational principle. The
latter has been established for optimization problems and guarantees the ex-
istence of the so-called approximate minimum points. Based on recent results
of the author, the extensions of Ekeland’s variational principle for (EP) and
(SEP) are given under suitable conditions. These results are useful tools in
obtaining new existence results for (EP) and (SEP) without any convexity
assumptions on the sets and functions involved.

2 The Equilibrium Problem and Its Important
Particular Cases

To underline the importance of (EP) we present in this section some of its
various particular cases which have been extensively studied in the literature.
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The most of them are important models of real-life problems originated from
mechanics, economy, biology, etc.

2.1 The Minimum Problem

For A = B and F : A→ R, let f(a, b) := F (b)− F (a). Then each solution of
(EP) is a minimum point of F and vice versa.

2.2 The Kirszbraun’s Problem

Let m and n be two positive integers and consider two systems of closed balls
in Rn: (Bi) and (B′i), i ∈ {1, 2, . . . ,m}. Denote by r(Bi) and d(Bi, Bj) the
radius of Bi and the distance between the centers of Bi and Bj , respectively.
The following result is known in the literature as Kirszbraun’s theorem (see
[24]).

Theorem 1. Suppose that

(a) ∩m
i=1Bi �= ∅;

(b) r(Bi) = r(B′i), for all i ∈ {1, 2, . . . ,m};
(c) d(B′i, B

′
j) ≤ d(Bi, Bj), for all i, j ∈ {1, 2, . . . ,m}.

Then ∩m
i=1B

′
i �= ∅.

To relate this result to (EP), let A := Rn, B := {(xi, yi)| i ∈ {1, 2, . . . ,m}}
⊆ Rn × Rn such that

‖yi − yj‖ ≤ ‖xi − xj‖ ∀i, j ∈ {1, 2, . . . ,m}. (1)

Choose an arbitrary element x ∈ Rn and put

f(y, bi) := ‖x− xi‖2 − ‖y − yi‖2 (2)

for each y ∈ Rn and bi = (xi, yi) ∈ B. Then y ∈ Rn is a solution of (EP) if
and only if

‖y − yi‖ ≤ ‖x− xi‖ ∀i ∈ {1, 2, . . . ,m}. (3)

It is easy to see by Theorem 1 that the equilibrium problem given by the
function f defined in (2) has a solution. Indeed, let x ∈ Rn be fixed and put
ri := ‖x− xi‖ for i := 1, 2, . . . ,m. Take Bi the closed ball centered at xi with
radius ri and B′i the closed ball centered at yi with radius ri. Obviously, by
(1), the assumptions of Theorem 1 are satisfied, hence there exists an element
y ∈ Rn which satisfies (3).

Observe that, by compactness (i.e., the closed balls in Rn are compact
sets), Theorem 1 of Kirszbraun remains valid for an arbitrary family of balls.
More precisely, instead of the finite set {1, 2, . . . ,m}, one can take an arbitrary
set I of indices. Using this observation, it is easy to derive the following result
concerning the extensibility of an arbitrary nonexpansive function to the whole
space. Let D ⊆ Rn, D �= Rn, and f : D → Rn a given nonexpansive fun-
ction, i.e.,
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‖f(x)− f(y)‖ ≤ ‖x− y‖ ∀x, y ∈ D.
Then there exists a nonexpansive function f̄ : Rn → Rn such that f̄(x) =
f(x), for each x ∈ D. Indeed, let z ∈ Rn \ D and take for each x ∈ D the
number rx := ‖z − x‖. Let Bx be the closed ball centered at x with radius rx

and let B′x be the closed ball centered at f(x) with radius rx. Then we obtain
that the set ∩x∈DB

′
x is nonempty. Now for f̄(z) ∈ ∩x∈DB

′
x, the conclusion

follows.

2.3 The Saddlepoint (Minimax Theorems)

Next we turn to show a situation where the solution of the equilibrium problem
reduces to a saddlepoint of a bifunction. Let X,Y be two nonempty sets and
h : X × Y → R be a given function. The pair (x0, y0) ∈ X × Y is called a
saddlepoint of h on the set X × Y if

h(x, y0) ≤ h(x0, y0) ≤ h(x0, y) ∀(x, y) ∈ X × Y. (4)

Let A = B = X × Y and let f : A×B → R defined by

f(a, b) := h(x, v)− h(u, y) ∀a = (x, y), b = (u, v). (5)

Then each solution of the equilibrium problem (EP) is a saddlepoint of h and
vice versa.

The saddlepoint can be characterized as follows. Suppose that for each x ∈
X there exists miny∈Y h(x, y) and for each y ∈ Y there exists maxx∈X h(x, y).
Then we have the following result.

Proposition 1. f admits a saddlepoint on X × Y if and only if there exist
maxx∈X miny∈Y f(x, y) and miny∈Y maxx∈X f(x, y) and they are
equal.

Proof. Suppose first that h admits a saddlepoint (x0, y0) ∈ X × Y . Then by
relation (4) one obtains

min
y∈Y

h(x, y) ≤ h(x, y0) ≤ h(x0, y0) = min
y∈Y

h(x0, y) ∀x ∈ X

and
max
x∈X

h(x, y) ≥ h(x0, y) ≥ h(x0, y0) = max
x∈X

h(x, y0) ∀y ∈ Y.

Therefore,
min
y∈Y

h(x0, y) = max
x∈X

min
y∈Y

h(x, y)

and
max
x∈X

h(x, y0) = min
y∈Y

max
x∈X

h(x, y),
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and both equal to h(x0, y0). For the reverse implication take x0 ∈ X such that

min
y∈Y

h(x0, y) = max
x∈X

min
y∈Y

h(x, y)

and y0 ∈ Y such that

max
x∈X

h(x, y0) = min
y∈Y

max
x∈X

h(x, y).

Then by our assumption we obtain

min
y∈Y

h(x0, y) = max
x∈X

h(x, y0);

therefore, in the obvious relations

min
y∈Y

h(x0, y) ≤ h(x0, y0) ≤ max
x∈X

h(x, y0)

one obtains equality in both sides. This completes the proof. ��
Remark 1. Observe that, for arbitrary nonempty sets X,Y and function h :
X × Y → R, the inequality

sup
x∈X

inf
y∈Y

h(x, y) ≤ inf
y∈Y

sup
x∈X

h(x, y)

always holds. Therefore,

max
x∈X

min
y∈Y

h(x, y) ≤ min
y∈Y

max
x∈X

h(x, y)

holds either, provided these two values exist.

One of the main issues in minimax theory is to find sufficient and/or necessary
conditions for the sets X,Y and function h, such that the reverse inequality
in the above relations also holds. Such results are called minimax theorems.

Minimax theorems or, in particular, the existence of a saddlepoint, is im-
portant in many applied fields of mathematics. One of them is the game
theory.

2.3.1 Two-Player Zero-Sum Games

To introduce a static two-player zero-sum (noncooperative) game (for more
details and examples, see [2, 3, 20, 26, 27, 32]) and its relation to a minimax
theorem we consider two players called 1 and 2 and assume that the set of
pure strategies (also called actions) of player 1 is given by some nonempty set
X, while the set of pure strategies of player 2 is given by a nonempty set Y.
If player 1 chooses the pure strategy x ∈ X and player 2 chooses the pure
strategy y ∈ Y, then player 2 has to pay player 1 an amount h(x, y) with
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h : A×B → R a given function. This function is called the payoff function of
player 1. Since the gain of player 1 is the loss of player 2 (this is a so-called
zero-sum game) the payoff function of player 2 is −h. Clearly player 1 likes
to gain as much profit as possible. However, at the moment he does not know
how to achieve this and so he first decides to compute a lower bound on his
profit. To compute this lower bound player 1 argues as follows: if he decides to
choose action x ∈ X, then it follows that his profit is at least infy∈Y h(x, y),
irrespective of the action of player 2. Therefore a lower bound on the profit
for player 1 is given by

r∗ := sup
x∈X

inf
y∈Y

h(x, y). (6)

Similarly player 2 likes to minimize his losses but since he does not know how
to achieve this he also decides to compute first an upper bound on his losses.
To do so, player 2 argues as follows. If he decides to choose action y ∈ Y, it
follows that he loses at most supx∈X h(x, y) and this is independent of the
action of player 1. Therefore an upper bound on his losses is given by

r∗ := inf
y∈Y

sup
x∈X

h(x, y). (7)

Since the profit of player 1 is at least r∗ and the losses of player 2 are at most
r∗ and the losses of player 2 are the profits of player 1, it follows directly that
r∗ ≤ r∗. In general r∗ < r∗, but under some properties on the pure strategy
sets and payoff function one can show that r∗ = r∗. If this equality holds
and in relations (6) and (7) the suprema and infima are attained, an optimal
strategy for both players is obvious. By the interpretation of r∗ for player 1
and the interpretation of r∗ for player 2 and r∗ = r∗ := v both players will
choose an action which achieves the value v and so player 1 will choose that
action x0 ∈ X satisfying

inf
y∈Y

h(x0, y) = max
x∈X

inf
y∈Y

h(x, y).

Moreover, player 2 will choose that strategy y0 ∈ Y satisfying

sup
x∈X

h(x, y0) = min
y∈Y

sup
x∈X

h(x, y).

Another field, where the concept of saddlepoint plays an important role,
is the so-called duality in optimization.

2.3.2 Duality in Optimization

Let X be a nonempty subset of Rn. A subset K of Rm is called cone if, for
each y ∈ K and λ > 0, it follows that λy ∈ K. The set K is called convex
cone, if K is a cone and additionally, a convex set. Let F : Rn → R and
G : Rn → Rm be given functions. For K, a nonempty convex cone of Rm,
define the following optimization problem:
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v(P ) := inf{F (x)|G(x) ∈ −K, x ∈ X}. (8)

This (general) problem has many important particular cases.

The Optimization Problem with Inequality and Equality Con-
straints. Let X := Rn, K := R

p
+ × {0Rm−p}, where 1 ≤ p < m, and 0Rm−p

denotes the origin of the space Rm−p. Then problem (8) reduces to the clas-
sical optimization problem with inequality and equality constraints

inf{F (x)|Gi(x) ≤ 0, i = 1, 2, . . . , p, Gj(x) = 0, j = p+ 1, . . . ,m}.

The Linear Programming Problem. Let

X := Rn
+, K := {0Rm}, F (x) := cTx, G(x) := Ax− b,

where A is a matrix withm rows and n columns (with all entries real numbers),
c ∈ Rn and b ∈ Rm are given elements. Then (8) reduces to the following linear
programming problem:

inf{cTx|Ax = b, x ≥ 0}.

The Conical Programming Problem. Let K ⊆ Rn be a nonempty
convex cone, let X := b+L ⊆ Rn, where L is a linear subspace of Rn, and let
F (x) := cTx, G(x) := x. Then we obtain the so-called conical programming
problem

inf{cTx|x ∈ b+ L, x ∈ −K}.
Denote by F the feasible set of problem (8), i.e., the set

{x ∈ X|G(x) ∈ −K}. The problem

v(R) := inf{FR(x)|x ∈ FR}
is called a relaxation of the initial problem (8), if F ⊆ FR and FR(x) ≤ F (x)
for each x ∈ F . It is obvious that v(R) ≤ v(P ). Next we show a natural
way to construct a relaxation of problem (8). Let λ ∈ Rm and consider the
problem

inf{F (x) + λTG(x)|x ∈ X}.

Clearly F ⊆ X and F (x) + λTG(x) ≤ F (x) for each x ∈ F if and only
if λTG(x) ≤ 0 for each x ∈ F . Let K∗ := {y ∈ Rm| yTx ≥ 0 ∀x ∈ K}
be the dual cone of K. Now it is clear that λ ∈ K∗ implies λTG(x) ≤ 0,
for each x ∈ F . Define the (Lagrangian) function L : X × K∗ → R by
L(x, λ) := F (x) + λTG(x) and consider the problem

θ(λ) := inf{L(x, λ)|x ∈ X}. (9)
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Clearly θ(λ) ≤ v(P ) for each λ ∈ K∗, and therefore we also have

sup
λ∈K∗

θ(λ) ≤ v(P ),

hence
sup

λ∈K∗
inf

x∈X
L(x, λ) ≤ inf

x∈F
F (x). (10)

By this relation it follows that the optimal objective value v(D) of the
dual problem

v(D) := sup{θ(λ)|λ ∈ K∗}
approximates from below the optimal objective value v(P ) of the primal prob-
lem (8). From both theoretical and practical points of view, an important issue
is to establish sufficient conditions in order to have equality between the opti-
mal objective values of the primal and dual problems. In this respect, observe
that for each x ∈ F one has

sup
λ∈K∗

L(x, λ) = sup
λ∈K∗

(F (x) + λTG(x)) = F (x).

Therefore,

inf
x∈F

F (x) = inf
x∈F

sup
λ∈K∗

L(x, λ) = inf
x∈X

sup
λ∈K∗

L(x, λ).

Indeed, if x ∈ X \ F , then G(x) /∈ −K. By the bipolar theorem [29] we have
K = K∗∗, hence it follows that there exists λ∗ ∈ K∗ such that λ∗TG(x) > 0.
Since tλ∗ ∈ K for each t > 0, then

sup
λ∈K∗

L(x, λ) =∞ ∀x ∈ X \ F .

Combining the latter with relation (10) and taking into account that the
“supinf” is always less or equal than the “infsup,” one obtains

v(D) = sup
λ∈K∗

inf
x∈X

L(x, λ) ≤ inf
x∈X

sup
λ∈K∗

L(x, λ) = v(P ). (11)

Hence we obtain that v(D) = v(P ), if a saddlepoint (x̄, λ̄) of the Lagrangian
L exists. This situation is called perfect duality. In this case x̄ is the optimal
solution of the primal, while λ̄ is the optimal solution of the dual problem.

2.4 Variational Inequalities

Let E be a real topological vector space and E∗ be the dual space of E. Let
K ⊆ E be a nonempty convex set and T : K → E∗ a given operator. For
x ∈ E and x∗ ∈ E∗, the duality pairing between these two elements will be
denoted by 〈x, x∗〉. If A = B := K and f(x, y) := 〈T (x), y − x〉, for each
x, y ∈ K, then each solution of the equilibrium problem (EP) is a solution of
the variational inequality
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〈T (x), y − x〉 ≥ 0 ∀y ∈ K, (12)

and vice versa.
Variational inequalities have shown to be important mathematical models

in the study of many real problems, in particular in network equilibrium mod-
els ranging from spatial price equilibrium problems and imperfect competitive
oligopolistic market equilibrium problems to general financial or traffic equi-
librium problems.

An important particular case of the variational inequality (12) is the fol-
lowing. Let E := H be a real Hilbert space with inner product 〈 , 〉. It is well
known that in this case the dual space E∗ can be identified with H. Consider
the bilinear and continuous function a : H×H → R, the linear and continuous
function L : H → R, and formulate the problem: find an element x ∈ K ⊆ H
such that

a(x, y − x) ≥ L(y − x) ∀y ∈ K. (13)

By the hypothesis, for each x ∈ H the function a(x, ·) : H → R is linear and
continuous. Therefore, by the Riesz representation theorem in Hilbert spaces
(see, for instance, [30]) there exists a unique element A(x) ∈ H such that
a(x, y) = 〈A(x), y〉 for each y ∈ H. It is easy to see that A : H → H is a linear
and continuous operator. Moreover, since L is also linear and continuous,
again by the Riesz theorem, there exists a unique element l ∈ H such that
L(x) = 〈l, x〉 for each x ∈ H. Now for T (x) := A(x)− l, problem (13) reduces
to (12).

In optimization theory, those variational inequalities in which the operator
T is a gradient map (i.e., is the gradient of a certain differentiable function)
are of special interest since their solutions are (in some cases) the minimum
points of the function itself. Suppose that X ⊆ Rn is an open set, K ⊆ X is
a convex set, and the function F : X → R is differentiable on X. Then each
minimum point of F on the set K is a solution of the variational inequality
(12), with T := ∇F . Indeed, let x0 ∈ K be a minimum point of F on K and
y ∈ K be an arbitrary element. Then we have

F (x0) ≤ F (λy + (1− λ)x0) ∀λ ∈ [0, 1].

Therefore,

1
λ

(F (x0 + λ(y − x0))− F (x0)) ≥ 0 ∀λ ∈ (0, 1].

Now letting λ→ 0 we obtain 〈∇F (x0), y − x0〉 ≥ 0, as claimed.
If we suppose further that F is a convex function on the convex set X, then

we obtain the reverse implication as well, i.e., each solution of the variational
inequality (12), with T := ∇F , is a minimum point of F on the set K. Indeed,
let x0 ∈ K be a solution of (12) and y ∈ K be an arbitrary element. Then by
convexity

F (x0 + λ(y − x0)) ≤ (1− λ)F (x0) + λF (y) ∀λ ∈ [0, 1],
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which yields

1
λ

(F (x0 + λ(y − x0))− F (x0)) ≤ F (y)− F (x0) ∀λ ∈ (0, 1].

By letting λ→ 0 one obtains from the latter that

〈∇F (x0), y − x0〉 ≤ F (y)− F (x0),

which yields the desired implication.
The particular cases presented above shows the importance of the equilib-

rium problem (EP). Therefore, one of the main issues is to know in advance
whether (EP) admits a solution. In the next section we give sufficient condi-
tions for the existence of a solution of this problem.

3 Some Existence Results on Equilibrium Problem

There are many results concerning the existence of solutions of (EP) known
in the literature. Usually, regarding their proofs, they can be divided into two
classes: results that uses fixed point tools and results using separation tools.
There are, however, some results (usually consequences of more general state-
ments) that belong to both classes. The aim of this section is to present two
classical results from the first class due to Ky Fan [15] and Brézis, Nirenberg,
Stampacchia [11], and a more recent result belonging to the second class due
to Kassay and Kolumbán [23].

3.1 Results Based on Fixed Point Theorems

To start, let us first recall the celebrated Brouwer’s fixed point theorem.

Theorem 2. Let C ⊆ Rn be a convex, compact set and h : C → C be a
continuous function. Then h admits at least one fixed point.

Since the appearance of this theorem, many different proofs of it have been
published. It is still an open question whether there exists an elementary proof
of Brouwer’s fixed point theorem in case n ≥ 2, using separation arguments
only.

By Theorem 2 one can prove some of the so-called intersection theorems,
which are useful tools regarding existence results for the equilibrium prob-
lem. The first important intersection theorem has been published in 1929: the
celebrated Knaster–Kuratowski–Mazurkiewicz’s theorem [25] (called in the lit-
erature KKM lemma). This result has been extended by Ky Fan [14] in 1961
to infinite dimensional spaces. We will formulate these results later in this
section as particular cases of a recent result obtained by Chang and Zhang
[12]. In order to present the latter we first need the following definitions. Let
E and E′ be two topological vector spaces and let X be a nonempty subset
of E.
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Definition 1. The set-valued mapping F : X → 2E is called KKM map-
ping, if co{x1, . . . , xn} ⊆ ∪n

i=1F (xi) for each finite subset {x1, . . . , xn} of
X.

A slightly more general concept was introduced by Chang and Zhang [12]:

Definition 2. The mapping F : X → 2E′
is called generalized KKM

mapping, if for any finite set {x1, . . . , xn} ⊆ X, there exists a finite set
{y1, . . . , yn} ⊆ E′, such that for any subset {yi1 , . . . , yik

} ⊆ {y1, . . . , yn}, we
have

co{yi1 , . . . , yik
} ⊆ k∪

j=1
F (xij

). (14)

In case E = E′ it is clear that every KKM mapping is a generalized KKM
mapping too. The converse of this implication is not true, as the following
example shows.

Example 1. (Chang and Zhang [12]). Let E := R, X := [−2, 2] and F : X →
2E be defined by

F (x) := [−(1 + x2/5), 1 + x2/5].

Since ∪x∈XF (x) = [−9/5, 9/5], we have

x /∈ F (x) ∀x ∈ [−2,−9/5) ∪ (9/5, 1].

This shows that F is not a KKM mapping. On the other hand, for any
finite subset {x1, . . . , xn} ⊆ X, take {y1, . . . , yn} ⊆ [−1, 1]. Then for any
{yi1 , . . . , yik

} ⊆ {y1, . . . , yn} we have

co{yi1 , . . . , yik
} ⊆ [−1, 1] = ∩

x∈X
F (x) ⊆ k∪

j=1
F (xij

),

i.e., F is a generalized KKM mapping.

Theorem 3. (Chang and Zhang [12]). Suppose that E is a Hausdorff topo-
logical vector space, X ⊆ E is nonempty, and F : X → 2E is a mapping
such that for each x ∈ X the set F (x) is finitely closed (i.e., for every finite
dimensional subspace L of E, F (x) ∩ L is closed in the Euclidean topology
in L). Then F is a generalized KKM mapping if and only if for every finite
subset I ⊆ X the intersection of the subfamily {F (x)|x ∈ I} is nonempty.

Proof. Suppose first that for arbitrary finite set I = {x1, . . . , xn} ⊆ X one
has

n∩
i=1

F (xi) �= ∅.
Take x∗ ∈ ∩n

i=1F (xi) and put yi := x∗, for each i ∈ {1, . . . , n}. Then for every
{yi1 , . . . , yik

} ⊆ {y1, . . . , yn} we have

co{yi1 , . . . , yik
} = {x∗} ⊆

n∩
i=1

F (xi) ⊆
k∩

j=1
F (xij

).

This implies that F is a generalized KKM mapping.
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To show the reverse implication, let F : X → 2E be a generalized KKM
mapping. Supposing the contrary, there exists some finite set {x1, . . . , xn} ⊆
X such that ∩n

i=1F (xi‘) = ∅. By the assumption, there exists a set {y1, . . . , yn}
⊆ E such that for any {yi1 , . . . , yik

} ⊆ {y1, . . . , yn}, relation (14) holds. In
particular, we have

co{y1, . . . , yn} ⊆
n∪

i=1
F (xi).

Let S := co{y1, . . . , yn} and L := span{y1, . . . , yn}. Since for each x ∈ X, F (x)
is finitely closed, then the sets F (xi) ∩ L are closed. Let d be the Euclidean
metric on L. It is easy to verify that

d(x, F (xi) ∩ L) > 0 if and only if x /∈ F (xi) ∩ L. (15)

Define now the function g : S → R by

g(c) :=
n∑

i=1

d(c, F (xi) ∩ L), c ∈ S.

It follows by (15) and ∩n
i=1F (xi) = ∅ that for each c ∈ S, g(c) > 0. Let

h(c) :=
n∑

i=1

1
g(c)

d(c, F (xi) ∩ L)yi.

Then h is a continuous function from S to S. By the Brouwer’s fixed point
theorem (Theorem 2), there exists an element c∗ ∈ S such that

c∗ = h(c∗) =
n∑

i=1

1
g(c∗)

d(c∗, F (xi) ∩ L)yi. (16)

Denote
I := {i ∈ {1, . . . , n}| d(c∗, F (xi) ∩ L) > 0}. (17)

Then for each i ∈ I, c∗ /∈ F (xi) ∩ L. Since c∗ ∈ L, then c∗ /∈ F (xi) for each
i ∈ I, or, in other words,

c∗ /∈ ∪
i∈I

F (xi). (18)

By (16) and (17) we have

c∗ =
n∑

i=1

1
g(c∗)

d(c∗, F (xi) ∩ L)yi ∈ co{yi| i ∈ I}.

Since F is a generalized KKM mapping, this leads to

c∗ ∈ ∪
i∈I

F (xi),

which contradicts (18). This completes the proof. ��
By the above theorem one can easily deduce the following result.
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Theorem 4. (Chang and Zhang [12]) Suppose that F : X → 2E is a set-
valued mapping such that for each x ∈ X, the set F (x) is closed. If there
exists an element x0 ∈ X such that F (x0) is compact, then ∩x∈XF (x) �= ∅ if
and only if F is a generalized KKM mapping.

The proof of this theorem is an easy consequence of Theorem 3.
As we mentioned in the first part of this section, a particular case of

Theorem 3 is the intersection theorem due to Ky Fan, known in the literature
as Ky Fan’s lemma.

Theorem 5. (Ky Fan [14]) Let E be a Hausdorff topological vector space,
X ⊆ E and for each x ∈ X, let F (x) be a closed subset of E, such that

(a) there exists x0 ∈ X, such that the set F (x0) is compact;
(b) for each x1, x2, . . . , xn ∈ X, co{x1, x2, . . . , xn} ⊆ ∪n

i=1F (xi).

Then
∩

x∈X
F (x) �= ∅.

To conclude our presentation concerning intersection theorems, let us men-
tion the famous result of Knaster, Kuratowski, and Mazurkiewitz (known as
KKM lemma).

Theorem 6. (KKM [25]) Let Ei ⊆ Rn be closed sets and ei ∈ Ei, i =
1, . . . ,m. Suppose that for each J ⊆ {1, . . . ,m} we have co{ej | j ∈ J} ⊆
∪j∈JEj. Then

m∩
i=1

Ei �= ∅.

Now let us turn back to the equilibrium problem (EP). In what follows we
need some further definitions.

Definition 3. Let X be a convex subset of a certain vector space and let
h : X → R be some function. Then h is said to be quasiconvex if for every
x1, x2 ∈ X and 0 < λ < 1

h(λx1 + (1− λ)x2) ≤ max{h(x1), h(x2)}.
We say that h is quasiconcave if −h is quasiconvex.

It is easy to check that h is quasiconvex if and only if the lower level
sets {x ∈ X|h(x) ≤ a} are convex for each a ∈ R. Similarly, h is qua-
siconcave if and only if the upper level sets {x ∈ X|h(x) ≥ a} are con-
vex for each a ∈ R. It is also easy to see that in the statements above,
relations ≤ (≥) can be replaced with < (>) and the assertions remain
valid.

Definition 4. Let X be a topological space and let h : X → R be some func-
tion. Then h is said to be lower semicontinuous (lsc in short) on X if
the lower level sets {x ∈ X|h(x) ≤ a} are closed for each a ∈ R. h is said to
be upper semicontinuous (usc in short) on X if −h is lsc on X, that is,
its upper level sets are all closed.
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By means of Ky Fan’s theorem (Theorem 5) one can prove the following
existence result for (EP), due also to Ky Fan. This is known in the literature
as Ky Fan’s minimax inequality theorem.

Theorem 7. (Ky Fan [15]) Let A be a nonempty, convex, compact sub-
set of a Hausdorff topological vector space and let f : A × A → R, such
that

∀b ∈ A, f(·, b) : A→ R is usc, (19)
∀a ∈ A, f(a, ·) : A→ R is quasiconvex (20)

and
∀a ∈ A, f(a, a) ≥ 0. (21)

Then (EP) admits a solution.

Proof. For each b ∈ A, consider the set F (b) := {a ∈ A| f(a, b) ≥ 0}. By (19),
these sets are closed, and since A is compact, they are compact too. It is easy
to see that the conclusion of the theorem is equivalent to

∩
b∈A

F (b) �= ∅. (22)

In order to prove relation (22), let b1, b2, . . . , bn ∈ A. We shall show that

co{bi| i ∈ {1, 2, . . . , n}} ⊆
n∪

i=1
F (bi). (23)

Indeed, suppose by contradiction that there exist λ1, λ2, . . . , λn ≥ 0,∑n
j=1 λj = 1, such that

n∑
j=1

λjbj /∈
n∪

j=1
F (bj).

By definition, the latter means

f

⎛⎝ n∑
j=1

λjbj , bi

⎞⎠ < 0 ∀i ∈ {1, 2, . . . , n}.

By (20) (quasiconvexity), one obtains

f

⎛⎝ n∑
j=1

λjbj ,
n∑

j=1

λjbj

⎞⎠ < 0,

which contradicts (21). This shows that (23) holds. Now applying Theorem 5,
we obtain (22), which completes the proof. ��
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As we have seen, the basic tool in the proof of Theorem 3 (and 4) of Chang
and Zhang was the Brouwer’s fixed point theorem (Theorem 2). Moreover, Ky
Fan’s intersection (and consequently his minimax inequality theorems (Theo-
rems 5 and 7)), follow by Theorem 4. On the other hand, as we show next, by
Theorem 7 one can easily reobtain the Brouwer’s fixed point theorem, which
means that all these mentioned results are equivalent. To do this, we first
state the following result.

Theorem 8. Let E be a normed space, X ⊆ E be a compact convex set, and
g, h : X → E be continuous functions such that

‖x− g(x)‖ ≥ ‖x− h(x)‖ ∀x ∈ X. (24)

Then there exists an element x0 ∈ X, such that

‖y − g(x0)‖ ≥ ‖x0 − h(x0)‖ ∀y ∈ X.
Proof. Let f : X × X → R defined by f(x, y) := ‖y − g(x)‖ − ‖x − h(x)‖.
It is clear that this function satisfies the hypothesis of Theorem 7; thus there
exists an element x0 ∈ X such that

‖x0 − h(x0)‖ ≤ ‖y − g(x0)‖ ∀y ∈ X. (25)

This completes the proof. ��
Observe, in case g(X) ⊆ X, we can put y := g(x0) in (25); in this way we
obtain that x0 is a fixed point of f . Now it is immediate the well-known
Schauder’s fixed point theorem:

Theorem 9. (Schauder [31]) Let X be a convex compact subset of a real
normed space and h : X → X a continuous function. Then h has a fixed
point.

Proof. Taking h = g in the previous theorem, we obtain this result by (25),
with y := h(x0). ��

Clearly, Brouwer’s fixed point theorem (Theorem 2) is a particular case of
Theorem 9.

3.2 Results Based on Separation Theorems

As announced at the beginning of this section, we present now some existence
results on (EP) which uses separation tools in their proofs.

The result below is a particular case of a theorem due to Kassay and
Kolumbán [23].

Theorem 10. Let A be a nonempty, compact, convex subset of a certain topo-
logical vector space, let B be a nonempty convex subset of a certain vector
space, and let f : A×B → R be a given function.
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Suppose that the following assertions are satisfied:

(a) f is usc and concave in its first variable;
(b) f is convex in its second variable;
(c) supa∈A f(a, b) ≥ 0, for each b ∈ B.

Then the equilibrium problem (EP) has a solution.

Remark 2. Condition (c) in the previous theorem is satisfied if, for instance,
B ⊆ A and f(a, a) ≥ 0 for each a ∈ B. This condition arises naturally in most
of the particular cases presented above.

A similar, but more general existence result for the problem (EP) has been
established by Kassay and Kolumbán also in [23], where instead of the convex-
ity (concavity) assumptions upon the function f , certain kind of generalized
convexity (concavity) assumptions are supposed.

Theorem 11. Let A be a compact topological space, let B be a nonempty set,
and let f : A×B → R be a given function such that

(a) for each b ∈ B, the function f(·, b) : A→ R is usc;
(b) for each a1, . . . , am ∈ A, b1, . . . , bk ∈ B, λ1, . . . , λm ≥ 0 with∑m

i=1 λi = 1, the inequality

min
1≤j≤k

m∑
i=1

λif(ai, bj) ≤ sup
a∈A

min
1≤j≤k

f(a, bj)

holds;
(c) For each b1, . . . , bk ∈ B, μ1, . . . , μk ≥ 0 with

∑k
j=1 μj = 1, one has

sup
a∈A

k∑
j=1

μjf(a, bj) ≥ 0.

Then the equilibrium problem (EP) admits a solution.

Proof. Suppose by contradiction that (EP) has no solution, i.e., for each a ∈ A
there exists b ∈ B such that f(a, b) < 0 or, equivalently, for each a ∈ A there
exists b ∈ B and c > 0 such that f(a, b) + c < 0. Denote by Ub,c the set
{a ∈ A| f(a, b) + c < 0} where b ∈ B and c > 0. By (a) and our assumption,
the family of these sets is an open covering of the compact set A. Therefore,
one can select a finite subfamily which covers the same set A, i.e., there exist
b1, . . . , bk ∈ B and c1, . . . , ck > 0 such that

A =
k∪

j=1
Ubj ,cj

. (26)

Let c := min{c1, . . . , ck} > 0 and define the vector-valued function H :
A→ Rk by
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H(a) := (f(a, b1) + c, . . . , f(a, bk) + c).

We show that
coH(A)∩ intRk

+ = ∅, (27)

where coH(A) denotes the convex hull of the set H(A) and intRk
+ denotes

the interior of the positive orthant Rk
+. Indeed, supposing the contrary, there

exist a1, . . . , am ∈ A and λ1, . . . , λm ≥ 0 with
∑m

i=1 λi = 1, such that

m∑
i=1

λiH(ai) ∈ intRk
+

or, equivalently,

m∑
i=1

λi(f(ai, bj) + c) > 0 ∀j ∈ {1, . . . , k}. (28)

By (b), (28) implies
sup
a∈A

min
1≤j≤k

f(a, bj) > −c. (29)

Now using (26), for each a ∈ A there exists j ∈ {1, . . . , k} such that
f(a, bj) + cj < 0. Thus, for each a ∈ A we have

min
1≤j≤k

f(a, bj) < −c,

which contradicts (29). This shows that relation (27) is true. By the well-
known separation theorem of two disjoint convex sets in finite dimensional
spaces (see, for instance, [29]), the sets coH(A) and intRk

+ can be separated
by a hyperplane, i.e., there exist μ1, . . . , μk ≥ 0 such that

∑k
j=1 μj = 1 and

k∑
j=1

μj(f(a, bj) + c) ≤ 0 ∀a ∈ A,

or, equivalently
k∑

j=1

μjf(a, bj) ≤ −c ∀a ∈ A. (30)

Observe, the latter relation contradicts assumption (c) of the theorem.
Thus the proof is complete. ��

4 The Equilibrium Problem and the Ekeland’s Principle

Due to its important applications, the problem of solving an equilibrium prob-
lem is an important task. However, it often happens, an equilibrium problem
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may not have solution even in case when the problem arises from practice.
Therefore, it is important to find approximate solutions in some sense or to
show their existence in case of an equilibrium problem.

The Ekeland’s variational principle (see, for instance, [13]) has been widely
used in nonlinear analysis since it entails the existence of approximate solu-
tions of a minimization problem for lower semicontinuous functions on a com-
plete metric space. Since, as we have seen in Section 2, minimization problems
are particular cases of equilibrium problems, one is interested in extending
Ekeland’s theorem to the setting of an equilibrium problem.

Recently, inspired by the study of systems of vector variational inequal-
ities, Ansari, Schaible, and Yao [1] introduced and investigated systems of
equilibrium problems, which are defined as follows. Let m be a positive in-
teger. By a system of equilibrium problems we understand the problem of
finding x̄ = (x̄1, . . . , x̄m) ∈ A such that

fi(x̄, yi) ≥ 0 ∀i ∈ I, ∀yi ∈ Ai, (SEP)

where fi : A×Ai → R, A =
∏m

1 Ai, with Ai some given sets.
The aim of this section is to present some recent results concerning ex-

istence of approximate equilibria for (EP) and (SEP). We find a suitable
set of conditions on the functions that do not involve convexity and lead to
an Ekeland’s variational principle for equilibrium and system of equilibrium
problems. Via the existence of approximate solutions, we are able to show
the existence of equilibria on general closed sets. Our setting is an Euclidean
space, even if the results could be extended to reflexive Banach spaces, by
adapting the assumptions in a standard way.

4.1 The Ekeland’s Principle for (EP) and (SEP)

To start, let us recall the celebrated Ekeland’s variational principle established
within the framework of minimization problems for lower semicontinuous func-
tions on complete metric spaces.

Theorem 12. (Ekeland [13]) Let (X, d) be a complete metric space and F :
X → R a lower bounded, lower semicontinuous function. Then for every ε > 0
and x0 ∈ X there exists x̄ ∈ X such that{

εd(x0, x̄) ≤ F (x0)− F (x̄)
F (x̄) < F (x) + εd(x̄, x) ∀x ∈ X, x �= x0.

(31)

Remark 3. If X = R with the Euclidean norm, then (31) can be written as{
ε|x0 − x̄| ≤ F (x0)− F (x̄)
F (x̄) < F (x) + ε|x̄− x| ∀x ∈ X, x �= x0,

and this relation has a clear geometric interpretation.
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Starting from Theorem 12, in a most recent paper [5] the authors estab-
lished the following general result which we present here in detail.

Theorem 13. Let A be a closed set of Rn and f : A× A → R. Assume that
the following conditions are satisfied:

(a) f(x, ·) is lower bounded and lower semicontinuous, for every x ∈ A;
(b) f(t, t) = 0, for every t ∈ A;
(c) f(z, x) ≤ f(z, y) + f(y, x), for every x, y, z ∈ A.
Then, for every ε > 0 and for every x0 ∈ A, there exists x ∈ A such that{

f(x0, x) + ε‖x0 − x‖ ≤ 0
f(x, x) + ε‖x− x‖ > 0 ∀x ∈ A, x �= x.

(32)

Proof. Without loss of generality, we can restrict the proof to the case ε = 1.
Denote by F(x) the set

F(x) := {y ∈ A : f(x, y) + ‖y − x‖ ≤ 0}.
By (a), F(x) is closed, for every x ∈ A; by (b), x ∈ F(x), hence F(x) is
nonempty for every x ∈ A. Assume y ∈ F(x), i.e., f(x, y) + ‖y − x‖ ≤ 0, and
let z ∈ F(y) (i.e., f(y, z)+‖y−z‖ ≤ 0). Adding both sides of the inequalities,
we get, by (c),

0 ≥ f(x, y) + ‖y − x‖+ f(y, z) + ‖y − z‖ ≥ f(x, z) + ‖z − x‖,
that is, z ∈ F(x). Therefore y ∈ F(x) implies F(y) ⊆ F(x).

Define
v(x) := inf

z∈F(x)
f(x, z).

For every z ∈ F(x),

‖x− z‖ ≤ −f(x, z) ≤ sup
z∈F(x)

(−f(x, z)) = − inf
z∈F(x)

f(x, z) = −v(x)

that is,
‖x− z‖ ≤ −v(x) ∀z ∈ F(x).

In particular, if x1, x2 ∈ F(x),

‖x1 − x2‖ ≤ ‖x− x1‖+ ‖x− x2‖ ≤ −v(x)− v(x) = −2v(x),

implying that
diam(F(x)) ≤ −2v(x) ∀x ∈ A.

Fix x0 ∈ A; x1 ∈ F(x0) exists such that

f(x0, x1) ≤ v(x0) + 2−1.
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Denote by x2 any point in F(x1) such that

f(x1, x2) ≤ v(x1) + 2−2.

Proceeding in this way, we define a sequence {xn} of points of A such that
xn+1 ∈ F(xn) and

f(xn, xn+1) ≤ v(xn) + 2−(n+1).

Notice that

v(xn+1) = inf
y∈F(xn+1)

f(xn+1, y) ≥ inf
y∈F(xn)

f(xn+1, y)

≥ inf
y∈F(xn)

(f(xn, y)− f(xn, xn+1))
(

inf
y∈F(xn)

f(xn, y)
)
− f(xn, xn+1)

= v(xn)− f(xn, xn+1).

Therefore,
v(xn+1) ≥ v(xn)− f(xn, xn+1)

and

−v(xn) ≤ −f(xn, xn+1) + 2−(n+1) ≤ (v(xn+1)− v(xn)) + 2−(n+1),

that entails
0 ≤ v(xn+1) + 2−(n+1).

It follows that

diam(F(xn)) ≤ −2v(xn) ≤ 2 · 2−n → 0, n→∞.

The sets {F(xn)} being closed and F(xn+1) ⊆ F(xn), we have that⋂
n

F(xn) = {x}.

Since x ∈ F(x0), then

f(x0, x) + ‖x− x0‖ ≤ 0.

Moreover, x belongs to all F(xn), and, since F(x) ⊆ F(xn), for every n, we
get that

F(x) = {x}.
It follows that x /∈ F(x) whenever x �= x, implying that

f(x, x) + ‖x− x‖ > 0.

This completes the proof. ��
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Remark 4. It is easy to see that any function f(x, y) = g(y) − g(x) trivially
satisfies (c) (actually with equality). One might wonder whether a bifunction f
satisfying all the assumptions of Theorem 13 should be of the form g(y)−g(x),
and as such reducing the result above to the classical Ekeland’s principle. It
is not the case, as the example below shows: let the function f : R2 → R be
defined by

f(x, y) =

{
e−‖x−y‖ + 1 + g(y)− g(x) x �= y

0 x = y
,

where g is a lower bounded and lower semicontinuous function. Then all the
assumptions of Theorem 13 are satisfied, but clearly f cannot be represented
in the above-mentioned form.

Next we shall extend the result above for a system of equilibrium problems.
Let m be a positive integer and I = {1, 2, . . . ,m}. Consider the functions
fi : A × Ai → R, i ∈ I, where A =

∏
i∈I Ai, and Ai ⊆ Xi is a closed

subset of the Euclidean space Xi. An element of the set Ai =
∏

j �=i Aj will be
represented by xi; therefore, x ∈ A can be written as x = (xi, xi) ∈ Ai × Ai.
If x ∈ ∏

Xi, the symbol |||x||| will denote the Tchebiseff norm of x, i.e.,
|||x||| = maxi ||xi||i and we shall consider the Euclidean space

∏
Xi endowed

with this norm.

Theorem 14. (Bianchi et al. [5]) Assume that

(a) fi(x, ·) : Ai → R is lower bounded and lower semicontinuous for every
i ∈ I;

(b) fi(x, xi) = 0 for every i ∈ I and every x = (x1, . . . , xm) ∈ A;
(c) fi(z, xi) ≤ fi(z, yi) + fi(y, xi), for every x, y, z ∈ A, where y = (yi, yi),

and for every i ∈ I.
Then for every ε > 0 and for every x0 = (x0

1, . . . , x
0
m) ∈ A there exists

x̄ = (x̄1, . . . , x̄m) ∈ A such that for each i ∈ I one has

fi(x0, x̄i) + ε‖x0
i − x̄i‖i ≤ 0 (33)

and
fi(x̄, xi) + ε‖x̄i − xi‖i > 0 ∀xi ∈ Di, xi �= x̄i. (34)

Proof. As before, we restrict the proof to the case ε = 1. Let i ∈ I be arbi-
trarily fixed. Denote for every x ∈ A

Fi(x) := {yi ∈ Ai : fi(x, yi) + ‖xi − yi‖i ≤ 0}.

These sets are closed and nonempty (for every x = (x1, . . . , xm) ∈ A we have
xi ∈ Fi(x)). Define for each x ∈ A

vi(x) := inf
zi∈Fi(x)

fi(x, zi).
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In a similar way as in the proof of Theorem 13 one can show that diam(Fi(x)) ≤
−2vi(x) for every x ∈ A and i ∈ I.

Fix now x0 ∈ A and select for each i ∈ I an element x1
i ∈ Fi(x0) such that

fi(x0, x1
i ) ≤ vi(x0) + 2−1.

Put x1 := (x1
1, . . . , x

1
m) ∈ A and select for each i ∈ I an element x2

i ∈ Fi(x1)
such that

fi(x1, x2
i ) ≤ vi(x1) + 2−2.

Put x2 := (x2
1, . . . , x

2
m) ∈ A. Continuing this process we define a sequence

{xn} in A such that xn+1
i ∈ Fi(xn) for each i ∈ I and n ∈ N and

fi(xn, xn+1
i ) ≤ vi(xn) + 2−(n+1).

Using a same argument as in the proof of Theorem 13 one can show that

diam(Fi(xn)) ≤ −2vi(xn) ≤ 2 · 2−n → 0, n→∞,

for each i ∈ I.
Now define for each x ∈ A the sets

F(x) := F1(x)× · · · × Fm(x) ⊆ A.

The sets F(x) are closed and using (c) it is immediate to check that for each
y ∈ F(x) it follows that F(y) ⊆ F(x). Therefore, we also have F(xn+1) ⊆
F(xn) for each n ∈ {0, 1, . . .}. On the other hand, for each y, z ∈ F(xn) we
have

|||y − z||| = max
i∈I

‖yi − zi‖i ≤ max
i∈I

diamFi(xn)) → 0,

thus, diam(F(xn)) → 0 as n→∞. In conclusion we have

∞∩
n=0

F(xn) = {x̄}, x̄ ∈ A.

Since x̄ ∈ F(x0), i.e., x̄i ∈ Fi(x0) (i ∈ I) we obtain

fi(x0, x̄i) + ‖x0
i − x̄i‖i ≤ 0 ∀i ∈ I,

and so, (33) holds. Moreover, x̄ ∈ F(xn) implies F(x̄) ⊆ F(xn) for all n =
0, 1, . . ., therefore,

F(x̄) = {x̄}
implying

Fi(x̄) = {x̄i} ∀i ∈ I.
Now for every xi ∈ Ai with xi �= x̄i we have by the previous relation that
xi /∈ Fi(x̄) and so

fi(x̄, xi) + ‖x̄i − xi‖i > 0.

Thus (34) holds too, and this completes the proof. ��
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4.2 New Existence Results for Equilibria on Compact Sets

As shown by the literature, the existence results of equilibrium problems usu-
ally require some convexity (or generalized convexity) assumptions on at least
one of the variables of the function involved. In this section, using Theorems
13 and 14, we show the nonemptiness of the solution set of (EP) and (SEP),
without any convexity requirement. To this purpose, we recall the definition
of approximate equilibrium point, for both cases (see [5, 21]). We start our
analysis with (EP).

Definition 5. Given f : A × A → R and ε > 0, x ∈ A is said to be an
ε-equilibrium point of f if

f(x, y) ≥ −ε‖x− y‖ ∀y ∈ A (35)

The ε-equilibrium point is strict, if in (35) the inequality is strict for all y �= x.

Notice that the second relation of (31) gives the existence of a strict ε-
equilibrium point, for every ε > 0. Moreover, by (b) and (c) of Theorem 12 it
follows by the first relation of (31) that

f(x, x0) ≥ ε‖x− x0‖,
“localizing,” in a certain sense, the position of x.

Theorem 12 leads to a set of conditions that are sufficient for the nonempti-
ness of the solution set of (EP).

Proposition 2. (Bianchi et al. [5]) Let A be a compact (not necessarily con-
vex) subset of an Euclidean space and f : A×A→ R be a function satisfying
the assumptions:

(a) f(x, ·) is lower bounded and lower semicontinuous, for every x ∈ A;
(b) f(t, t) = 0, for every t ∈ A;
(c) f(z, x) ≤ f(z, y) + f(y, x), for every x, y, z ∈ A;
(d) f(·, y) is upper semicontinuous, for every y ∈ A.
Then, the set of solutions of EP is nonempty.

Proof. For each n ∈ N, let xn ∈ A a 1/n-equilibrium point (such point exists
by Theorem 12), i.e.,

f(xn, y) ≥ − 1
n
‖xn − y‖ ∀y ∈ A.

Since A is compact, we can choose a subsequence {xnk
} of {xn} such that

xnk
→ x as n→∞. Then, by (d),

f(x, y) ≥ lim sup
k→∞

(
f(xnk

, y) +
1
nk
‖xnk

− y‖
)

∀y ∈ A,

thereby proving that x is a solution of EP. ��
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Let us now consider the following definition of ε-equilibrium point for
systems of equilibrium problems. As before, the index set I consists of the
finite set {1, 2, . . . ,m}.
Definition 6. Let Ai, i ∈ I be subsets of certain Euclidean spaces and put
A =

∏
i∈I Ai. Given fi : A × Ai → R, i ∈ I, and ε > 0, the point x ∈ A is

said to be an ε-equilibrium point of {f1, f2, . . . , fm} if

fi(x, yi) ≥ −ε‖xi − yi‖i ∀yi ∈ Ai, ∀i ∈ I.
The following result is an extension of Proposition 2, and it can be proved in
a similar way.

Proposition 3. (Bianchi et al. [5]) Assume that, for every i ∈ I, Ai is com-
pact and fi : A×Ai → R is a function satisfying the assumptions:

(a) fi(x, ·) is lower bounded and lower semicontinuous, for every x ∈ A;
(b) fi(x, xi) = 0, for every x = (xi, xi) ∈ A;
(c) fi(z, xi) ≤ fi(z, yi) + fi(y, xi), for every x, y, z ∈ A, where y = (yi, yi);
(d) fi(·, yi) is upper semicontinuous, for every yi ∈ Ai.

Then, the set of solutions of (SEP) is nonempty.

4.3 Equilibria on Noncompact Sets

The study of the existence of solutions of the equilibrium problems on un-
bounded domains usually involves the same sufficient assumptions as for
bounded domains together with a coercivity condition. Bianchi and Pini [7]
found coercivity conditions as weak as possible, exploiting the generalized
monotonicity properties of the function f defining the equilibrium problem.

Let A be a closed subset of X, not necessarily convex, not necessarily
compact, and f : A×A→ R be a given function.

Consider the following coercivity condition (see [7]):

∃r > 0 : ∀x ∈ A \Kr, ∃y ∈ A, ‖y‖ < ‖x‖ : f(x, y) ≤ 0, (36)

where Kr := {x ∈ A : ‖x‖ ≤ r}.
We now show that within the framework of Proposition 2 condition (36)

guarantees the existence of solutions of (EP) without supposing compactness
of A.

Theorem 15. (Bianchi et al. [5]) Suppose that

(a) f(x, ·) is lower bounded and lower semicontinuous, for every x ∈ A;
(b) f(t, t) = 0, for every t ∈ A;
(c) f(z, x) ≤ f(z, y) + f(y, x), for every x, y, z ∈ A;
(d) f(·, y) is upper semicontinuous, for every y ∈ A.
If (36) holds, then (EP) admits a solution.
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Proof. We may suppose without loss of generality that Kr is nonempty. For
each x ∈ A consider the nonempty set

S(x) := {y ∈ A : ‖y‖ ≤ ‖x‖ : f(x, y) ≤ 0}.

Observe that for every x, y ∈ A, y ∈ S(x) implies S(y) ⊆ S(x). Indeed, for
z ∈ S(y) we have ‖z‖ ≤ ‖y‖ ≤ ‖x‖ and by (c) f(x, z) ≤ f(x, y) + f(y, z) ≤ 0.
On the other hand, since K‖x‖ is compact, by (a) we obtain that S(x) ⊆ K‖x‖
is a compact set for every x ∈ A. Furthermore, by Proposition 2, there exists
an element xr ∈ Kr such that

f(xr, y) ≥ 0 ∀y ∈ Kr. (37)

Suppose that there exists x ∈ A with f(xr, x) < 0 and put

a := min
y∈S(x)

‖y‖

(the minimum is taken since S(x) is nonempty, compact and the norm is
continuous). We distinguish two cases.

Case 1: a ≤ r. Let y0 ∈ S(x) such that ‖y0‖ = a ≤ r. Then we have
f(x, y0) ≤ 0. Since f(xr, x) < 0, it follows by (c) that

f(xr, y0) ≤ f(xr, x) + f(x, y0) < 0,

contradicting (37).
Case 2: a > r. Let again y0 ∈ S(x) such that ‖y0‖ = a > r. Then,

by (36) we can choose an element y1 ∈ A with ‖y1‖ < ‖y0‖ = a such that
f(y0, y1) ≤ 0. Thus, y1 ∈ S(y0) ⊆ S(x) contradicting

‖y1‖ < a = min
y∈S(x)

‖y‖.

Therefore, there is no x ∈ A such that f(xr, x) < 0, i.e., xr is a solution of
(EP) (on A). This completes the proof. ��

Next we consider (SEP) for noncompact setting. Let us consider the fol-
lowing coercivity condition:

∃r > 0 : ∀x ∈ A such that ‖xi‖i > r for some i ∈ I,
∃yi ∈ Ai, ‖yi‖i < ‖xi‖i and fi(x, yi) ≤ 0. (38)

We conclude this section with the following result which guarantees the
existence of solutions for (SEP).

Theorem 16. (Bianchi et al. [5]) Suppose that, for every i ∈ I,
(a) fi(x, ·) is lower bounded and lower semicontinuous, for every x ∈ A;
(b) fi(x, xi) = 0, for every x = (xi, xi) ∈ A;
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(c) fi(z, xi) ≤ fi(z, yi) + fi(y, xi), for every x, y, z ∈ A, where y = (yi, yi);
(d) fi(·, yi) is upper semicontinuous, for every yi ∈ Ai.

If (38) holds, then (SEP) admits a solution.

Proof. For each x ∈ A and every i ∈ I consider the set

Si(x) := {yi ∈ Ai, ‖yi‖i ≤ ‖xi‖i, fi(x, yi) ≤ 0}.

Observe that, by (c), for every x and y = (yi, yi) ∈ A, yi ∈ Si(x) implies
Si(y) ⊆ Si(x). On the other hand, since the set {yi ∈ Ai : ‖yi‖i ≤ r} = Ki(r)
is a compact subset of Ai, by (a) we obtain that Si(x) is a nonempty compact
set for every x ∈ A. Furthermore, by Proposition 3, there exists an element
xr ∈

∏
i Ki(r) (observe, we may suppose that Ki(r) �= ∅ for all i ∈ I) such

that
fi(xr, yi) ≥ 0 ∀yi ∈ Ki(r), ∀i ∈ I. (39)

Suppose that xr is not a solution of (SEP). In this case, there exists j ∈ I and
zj ∈ Aj with fj(xr, zj) < 0. Let zj ∈ Aj be arbitrary and put z = (zj , zj) ∈ A.
Define

aj := min
yj∈Sj(z)

‖yj‖j .

We distinguish two cases.
Case 1: aj ≤ r. Let yj(z) ∈ Sj(z) such that ‖yj(z)‖j = aj ≤ r. Then we

have fj(z, yj(z)) ≤ 0. Since fj(xr, zj) < 0, it follows by (c) that

fj(xr, yj(z)) ≤ f(xr, zj) + f(z, yj(z)) < 0,

contradicting (39).
Case 1: aj > r. Let again yj(z) ∈ Sj(z) such that ‖yj(z)‖j = aj > r.

Let yj ∈ Aj be arbitrary and put y(z) = (yj , yj(z)) ∈ A. Then, by (38)
we can choose an element yj ∈ Aj with ‖yj‖j < ‖yj(z)‖j = aj such that
fj(y(z), yj) ≤ 0. Clearly, yj ∈ Sj(y(z)) ⊆ Sj(z), a contradiction since yj(z)
has minimal norm in Sj(z). This completes the proof. ��

5 Conclusions

Finally, let us recall the most important issues discussed in this chapter. As
emphasized in Introduction, our purpose was to give an overlook on equilib-
rium problem (abbreviated (EP)) underlining its importance and usefulness
from both theoretical and practical points of view.

In the second section we have presented the most important particu-
lar cases of (EP). One of them is the optimization problem (minimiza-
tion/maximization of a real-valued function over a so-called feasible set). As
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well known, optimization problems appear as mathematical models of many
problems of practical interest. Another particular case of (EP) presented here
is the so-called Kirszbraun’s problem, which can be successfully applied in ex-
tending nonexpansive functions (these functions are important among others,
in fixed point theory). The saddlepoint (or minimax) problems have shown
to be also particular instances of (EP). We have pointed out the applicabil-
ity of these problems in game theory on one hand and in duality theory in
optimization, on the other hand. We have concluded the presentation of the
particular cases of (EP) with variational inequalities, which constitute models
of various problems arising from mechanics and economy.

Section 3 has been devoted to the exposition of some classical and recent
results concerning existence of solutions of (EP). We have underlined that
in general these results can be deduced in two ways: either using fixed point
tools or separation (Hahn–Banach) tools. For the reader’s convenience, the
most important results of this section have been presented together with their
proofs. Moreover, we have tried to keep these proofs as simple as possible.

When dealing with (EP), one frequently encounters the situation when
the set of solutions is empty. In these situations it is important to study
the existence of approximate solutions in some sense. Since (EP) contains, in
particular, optimization problems, and the celebrated Ekeland’s variational
principle provides the existence of approximate optimal solutions, it comes
natural to investigate whether this principle can be extended to (EP). Based
on recent results of the author, we have presented in the last section some of
these possible extensions both for (EP) and a more general situation: system
of equilibrium problems (SEP).

Throughout this chapter we have limited ourselves to the scalar case, i.e.,
when the functions involved in (EP) or (SEP) are real-valued. In the last
decade the vector-valued case has also been studied (see, for instance, [1, 4,
16]). We think that a possible research for the future could be to investigate
whether the results presented here for the scalar case can be extended also for
the vector case.
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Summary. We present in this chapter the notion of scalarly compactness which
is related to condition (S)+, well known in nonlinear analysis. Some applications
to the study of variational inequalities and to complementarity problems are also
presented.
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1 Introduction

The main goal of this chapter is to present a topological method applicable
to the study of solvability of variational inequalities and of complementarity
problems in reflexive Banach spaces.

Our topological method is based on scalarly compactness and on (S)+-
type conditions. The notions of scalarly compact operator is strongly related
to condition (S)+, defined and used by Browder [3–6].

We note that condition (S)+ is an important mathematical tool used in
nonlinear analysis. There exists also a topological degree defined for mapping
which satisfies condition (S)+ [28].

The notion of scalarly compact operator was defined by Isac [21]. Now
we present in this chapter several examples of scalarly compact operators
and we will conclude that this is a remarkable class of nonlinear operators.
We will use also the notion of scalar asymptotic derivative. Our main results
are solvability theorems for variational inequalities and for complementarity
problems, considered in reflexive Banach spaces and defined by a difference of
two operators. The first operator is supposed to satisfy an (S)+-type condition
and the second is supposed to be a scalarly compact operator.
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The variational inequalities have many applications in physics, engineer-
ing, and in other domains of applied mathematics [1, 24].

Complementarity problems are generally related to the equilibrium as it
is considered in physics, engineering, and economics [12–14, 19, 22, 23]. Also,
complementarity theory has interesting applications to optimization.

In Hilbert spaces, variational inequalities and complementarity problems
have been studied by KKM -type theorems or by the fixed point theory. A
variational inequality or a nonlinear complementarity problem in a Hilbert
space can be transformed into a fixed point problem using the projection
operator onto a closed convex set [12–18]. We note that the fixed point method
cannot be used in Banach spaces, and therefore the method presented now in
this chapter may be considered as a new direction in the study of variational
inequalities and of complementarity problems.

2 Preliminaries

Let (E, ‖ · ‖) be a Banach space and let K ⊂ E be a closed convex cone, i.e.,
K is a closed set satisfying the following properties:

k1) K + K ⊆ K,
k2) λK ⊆ K for any λ ∈ R+,
k3) K ∩ (−K) = {0}.

If E∗ is the topological dual of E, we denote by 〈E,E∗〉 a duality (pairing)
between E and E∗, where 〈·, ·〉 is the canonical bilinear form of this duality.
We denote by K∗ the dual cone of K, that is, K = {y ∈ E∗ | 〈x, y, 〉 ≥
0 for any x ∈ K}. Given a mapping f : E → E∗, the general nonlinear
complementarity problem associated with f and K is

NCP(f,K) :
{

find x0 ∈ K such that
f(x0) ∈ K∗ and 〈x0, f(x0)〉 = 0.

If D is a non-empty closed convex subset in E, the variational inequality
associated with f and D is

VI(f,D) :
{

find x0 ∈ D such that
〈x− x0, f(x0)〉 ≥ 0 for any x ∈ D.

We recall that a mapping f : E → E∗ is completely continuous if f is con-
tinuous and for any bounded set B ⊂ E, f(B) is relatively compact, and we
say that f is demicontinuous if for any sequence {xn}n∈N ⊂ E, convergent in
norm to an element x∗ we have that {f(xn)}n∈N is weakly (∗)-convergent to
f(x∗). We say that f is bounded if, for any bounded set B, f(B) is bounded.
We say that a Banach space (E, ‖ · ‖) is a Kadeç space if for each sequence
{xn}n∈N ⊂ E which converges weakly to x∗ with limn→∞ ‖xn‖ = ‖x∗‖ we
have that, limn→∞ ‖xn − x∗‖ = 0. Any space, Lp(Ω, μ), (1 < p < ∞), any
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uniformly convex space, and any locally uniformly convex Banach space are
Kadeç spaces.

We recall that a Banach space E is said to be strictly convex if for every
x, y ∈ E with x �= y, ‖x‖ = ‖y‖ we have that ‖λx + (1 − λ)y‖ < 1 for
every λ ∈]0, 1[. Equivalently, a Banach space E is strictly convex if, x, y ∈ E,
‖x‖ = ‖y‖ = 1 and x �= y imply ‖x+ y‖ < 2 [8, 29].

We say that a Banach space E, ‖ · ‖ is uniformly convex if for any ε ∈]0, 2],
there exists δ > 0 depending only on ε > 0 such that ‖x+ y‖ ≤ 2(1− δ), for
any x, y ∈ E with ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε. More general, we say that
a Banach space (E, ‖ · ‖) is locally uniformly convex if for any ε > 0 and any
x with ‖x‖ = 1 there exists δ(ε, x) > 0 such that the inequality ‖x − y‖ ≥ ε
implies ‖x+ y‖ ≤ 2(1− δ(ε, x)) for any y ∈ E with ‖y‖ = 1.

Obviously, every uniformly convex Banach space is locally uniformly con-
vex and reflexive. Every locally uniformly convex Banach space is strictly
convex. Any Hilbert space is strictly convex and uniformly convex. Finally we
recall the following form of the classical Eberlein–Šmulian theorem.

Theorem 1. Let (E, ‖ · ‖) be a reflexive Banach space, A a bounded subset
of E, and x0 a point in the weak closure of A. Then there exists an infinite
sequence {xn}n∈N in A converging weakly to x0 in E.

About the form of Theorem 1 the reader is referred to [5].

3 (S)+-Type Conditions

We present in this section some (S)+-type conditions based on the classical
conditions (S), (S)+, and (S)0 defined by Browder and used in several papers
[3–6]. We note that (S)+ is a fundamental condition used in nonlinear analysis
[2, 30]. Generally this condition is used when in some problems related to
functional equations the compactness is absent.

In the classical conditions (S), (S)+, and (S)0 the general scheme is the
following: If a sequence {xn}n∈N is weakly convergent to an element x∗ and
some special conditions are satisfied then the sequence {xn}n∈N is convergent
in norm to x∗.

In the conditions introduced in this section we will use a conclusion as
in the compactness case, that is, the sequence {xn}n∈N has a subsequence
convergent in norm to x∗. This modification is useful in some situations.

Let (E, ‖ ·‖) be a Banach space, E∗ the topological dual of E, and 〈E,E∗〉
a duality (pairing) between E and E∗. Let D ⊆ E be a non-empty subset.

Definition 1. A mapping f : E → E∗ is said to satisfy condition (S)+ with
respect to D if any sequence {xn}n∈N ⊂ D weakly convergent to an element
x∗ ∈ E and satisfying the property lim supn→∞〈xn − x∗, f(xn)〉 ≤ 0 has a
subsequence {xnk

}k∈N convergent in norm to x∗.
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Definition 2. We say that a mapping f : E → E∗ satisfies condition (S) with
respect to D if any sequence {xn}n∈N ⊂ D weakly convergent to an element
x∗ ∈ E and such that limn→∞〈xn − x∗, f(xn)− f(x∗)〉 = 0 has a subsequence
{xnk

}k ∈ N convergent in norm to x∗.

Proposition 1. If a mapping f : E → E∗ satisfies condition (S)+ with re-
spect to a subset D ⊂ E, then f satisfies condition (S).

Proof. Let {xn}n∈N ⊂ D be a sequence weakly convergent to an ele-
ment x∗ ∈ E and such that, limn→∞〈xn − x∗, f(xn) − f(x∗)〉 = 0. We
have

〈xn − x∗, f(xn)〉 = 〈xn − x∗, f(xn)− f(x∗)〉+ 〈xn − x∗, f(x∗)〉,
which implies

lim sup
n→∞

〈xn − x∗, f(xn)〉 ≤ lim
n→∞〈xn − x∗, f(xn)− f(x∗)〉

+ lim
n→∞〈xn − x∗, f(x∗)〉 = 0.

Because f satisfies condition (S)+ we obtain that the sequence {xn}n∈N has
a subsequence {xnk

}k∈N convergent in norm to x∗. Therefore, f satisfies
condition (S).

A variant of condition (S) is the condition defined by the following
definition.

Definition 3. We say that a mapping f : E → E∗ satisfies condition (S) with
respect to D if any sequence {xn}n∈N ⊂ D weakly convergent to an element
x∗ ∈ E and such that limn→∞〈xn − x∗, f(xn)− f(x∗)〉 ≤ 0 has a subsequence
{xnk

}k∈N convergent in norm to x∗.

We have the following result.

Proposition 2. If a mapping f : E → E∗ satisfies condition (S)+ with re-
spect to a subset D ⊂ E, then f satisfies condition (S).

Proof. The proof is similar to the proof of Proposition 1.
Indeed, if {xn}n∈N ⊂ D is a sequence weakly convergent to an ele-

ment x∗ ∈ E and lim supn→∞〈xn − x∗, f(xn) − f(x∗)〉 ≤ 0 then we
have

lim sup
n→∞

〈xn − x∗, f(xn)〉 ≤ lim sup
n→∞

〈xn − x∗, f(xn)− f(x∗)〉
+ lim sup

n→∞
〈xn − x∗, f(xn)〉 ≤ 0.

Because f satisfies condition (S)+ we have that {xn}n∈N has a subsequence
convergent in norm to x∗.

The following condition is due to Isac and it was introduced in [20].
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Definition 4. We say that a mapping f : E → E∗ satisfies condition (S)1+
with respect to D if any sequence {xn}n∈N ∈ D weakly convergent to an ele-
ment x∗ ∈ E and such that {f(xn)}n∈N is weakly (∗)-convergent to an element
u ∈ E∗ and lim supn→∞〈xn, f(xn)〉 ≤ 〈x∗, u〉 has a subsequence convergent in
norm to x∗.

Several examples of mappings satisfying condition (S)1+ are given in [20].
It is known that any mapping which satisfies condition (S)+ satisfies also
condition (S)1+.

Now we recall the notion of duality mapping between E and E∗.
We say that a continuous and strictly increasing function φ : R+ → R+ is

a weight if φ(0) = 0 and limr→+∞ φ(r) = +∞.
We recall that, given a weight φ a duality mapping on E associated with

φ is a mapping J : E → 2E∗
such that, J(x) = {x∗ ∈ E∗ | 〈x, x∗〉 =

‖x‖‖x∗‖ and ‖x∗‖∗ = φ(‖x‖)}. We recall also that a Banach space (E, ‖ · ‖)
is strictly convex if for two elements x, y ∈ E which are linearly independent
we have ‖x+ y‖ < ‖x‖+ ‖y‖ (see [29]).

The following results are known [8, 29]. A duality mapping is a monotone
operator and it is strictly monotone if E is strictly convex. If (E, ‖ · ‖) is a
reflexive Banach space with (E∗, ‖ · ‖∗) strictly convex then a duality map-
ping associated with a weight function φ is a demicontinuous point-to-point
mapping.

If (E, ‖·‖) is a Banach space which is a Kadeç space such that E∗ is strictly
convex, then any duality mapping J : E → E∗ associated with a weight φ
satisfies condition (S)1+. A proof of this result is in [20].

We note that the class of operators satisfying condition (S)1+ is invari-
ant under completely continuous perturbations, i.e., if f1 : E → E∗ sat-
isfies (S)+ and f2 : E → E∗ is completely continuous then f1 + f2 sat-
isfies (S)+. When E is a Hilbert space any completely continuous vector
field, i.e., a mapping of the form f = I − g, where I is the identity
mapping and g : E → E is completely continuous, satisfies condition
(S)+.

Also any strongly ρ-monotone mapping f : E → E∗ satisfies condition
(S)+ (see [20]). The reader can find other examples of mappings satisfying
condition (S)+ in [4–6, 15]. Conditions (S) and (S)+ have many applications
in nonlinear analysis [2–6, 15, 28, 30]. We note that there exists a topolog-
ical degree for mappings of class (S)+ [28]. Condition (S)1+ has interesting
applications to the complementarity theory and to the study of variational
inequalities [7, 9–11, 17, 20]. We note that condition (S)1+ can be defined also
for multivalued mappings [10].

Definition 5. We say that a mapping f : E → E∗ satisfies condition (S)0
with respect to D if any sequence {xn}n∈N ⊂ D weakly convergent to an
element x∗ ∈ E and such that {f(xn)}n∈N is weakly (∗)-convergent to an ele-
ment u ∈ E∗ and limn→∞〈xn, f(xn)〉 = 〈x∗, u〈 has a subsequence convergent
in norm to x∗.
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From Definition 5 we have the following result.

Proposition 3. If a mapping f : E → E∗ satisfies condition (S)1+ with re-
spect to D ⊂ E, then f satisfies condition (S)0.

Definition 6. We say that a mapping f : E → E∗ satisfies condition (M)
with respect to E if any sequence {xn}n∈N weakly convergent to an element
x∗ such that {f(xn)}n∈N is weakly (∗)-convergent to an element u ∈ E∗ and
limn→∞ sup〈xn, f(xn)〉 ≤ 〈x∗, u〉, we have that f(x∗) = u.

We note that condition (M) is very much used in the study of solvability
of nonlinear equations [27]. Examples of mappings satisfying condition (M)
are given in [27].

It is easy to prove that if f is continuous and satisfies condition (S)1+ then
f satisfies condition (M).

Using Lemma 1 of [3] we can prove that if f : E → E∗ is continuous and
satisfies condition (S)1+, then for any bounded closed set B ⊂ E, we have that
f(B) is a closed set in E∗.

Finally, let (H, 〈·, ·〉) be a Hilbert space and h : H → H a mapping.
We recall that h is a φ-contraction (in Boyd and Wong’s sense) if there is a
mapping satisfying

(i) ‖h(x)− h(y)‖ ≤ φ(‖x− y‖), for any x, y ∈ H,
(ii) φ(t) < t, for any t ∈ R+ \ {0}.
It is known that if h is a φ-contraction then the mapping f = I − h satisfies
condition (S)1+ [15].

4 Scalar Asymptotic Derivatives

Let (E, ‖ · ‖) be a Banach space and E∗ the topological dual of E. Let 〈·, ·〉
be a duality (pairing) between E and E∗, that is, 〈·, ·〉 is a separable bilinear
mapping from E × E∗ into R. Let L(E,E∗) be the Banach space of linear
continuous mappings from E into E∗. Let K ⊂ E be an unbounded closed
convex set. We suppose that 0 ∈ K. The set K can be in particular a closed
convex cone.

Definition 7. We say that is a scalar asymptotic derivative of a mapping
f : E → E∗ along the set K if

lim
‖x‖ → ∞
x ∈ K

sup
〈x, f(x)− T (x)〉

‖x‖2 ≤ 0.

In this case we denote the linear mapping T by f∞s .
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The notion of scalar asymptotic derivative is due to Isac [16]. The origin of
the name of this kind of derivative is its relation with the notion of scalar
derivative due to Németh (see [21]). The following notion is a classical notion
due to Krasnoselskii [25, 26], and it is an important tool in nonlinear analysis.

Definition 8. We say that T ∈ L(E,E∗) is an asymptotic derivative of a
mapping f : E → E∗ along the set K if

lim
‖x‖ → ∞
x ∈ K

‖f(x)− T (x)‖
‖x‖ = 0.

About the applications of this notion in nonlinear analysis the reader is re-
ferred to [21, 25, 26]. Some methods for computation of asymptotic derivatives
are given certainly in [25, 26] and also in [21]. We note that if K is a closed
convex cone and E = K − K we have that the asymptotic derivative (when
this derivative exists) is unique. It is easy to show that if f has an asymptotic
derivative T along K, then T is also a scalar asymptotic derivative of f along
the same set K.

5 Scalar Compactness

Let (E, ‖ · ‖) be a Banach space, E∗ the topological dual of E, and 〈E,E∗〉
a pairing between E and E∗. We denote by J the duality mapping between
E and E∗, that is, for any x ∈ E, J(x) = {f ∈ E∗ | 〈x, f〉 = ‖x‖2 = ‖f‖}. It
is known that if E∗ is strictly convex, then J(x) is a singleton for any x ∈ E
[8]. In this case we have 〈x, J(x)〉 = ‖x‖2 for any x ∈ E and J is a monotone
mapping, i.e.,

〈x− y, J(x)− J(y)〉 ≥ 0, for any x, y ∈ E.
We can consider more general a duality mapping J associated with a weight
φ [8].

Proposition 4. If {xn}n∈N ⊂ E and {yn}n∈N ⊂ E∗ are two sequences such
that {xn}n∈N is weakly convergent to an element x∗ ∈ E and {yn}n∈N is
convergent in norm to an element y∗ ∈ E, then limn→∞〈xn, yn〉 = 〈x∗, y∗〉.
Proof. We have

〈xn, yn〉 − 〈x∗, y∗〉 = 〈xn − x∗, yn − y∗〉+ 〈x∗, yn〉+ 〈xn, y∗〉 − 2〈x∗, y∗〉,
which implies

|〈xn, yn〉 − 〈x∗ − y∗〉| ≤ |〈xn − x∗, yn − y∗〉|+ |〈x∗, yn〉+ 〈x∗, yn〉+ 〈xn, y∗〉
−2〈x∗, y∗〉| ≤ ‖xn − x∗‖‖yn − y∗‖+ |〈x∗, yn − y∗〉+ 〈xn − x∗, y∗〉|.
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Because the sequence {xn−x∗}n∈N is weakly convergent, there exists M > 0
such that ‖xn − x∗‖ ≤ M and because {yn}n∈N is convergent in norm to y∗
it is weakly (∗)-convergent to y∗. Therefore we have that, limn→∞ |〈xn, yn〉|−
〈x∗, y∗〉 = 0, that is, limn→∞〈xn, yn〉 = 〈x∗, y∗〉.
Similarly, we have also the following result.

Proposition 5. If {xn}n∈N ⊂ E and {yn}n∈N ⊂ E∗ are two sequences such
that {xn}n∈N is convergent in norm to an element x∗ ∈ E and {yn}n∈N is
weakly (∗)-convergent to an element y∗ ∈ E∗, then limn→∞〈xn, yn〉 = 〈x∗, y∗〉.
Proof. As in the proof of Proposition 4 we have

{xn, yn} − 〈x∗, y∗〉 = 〈xn − x∗, yn − y∗〉+ 〈x∗, yn〉+ 〈xn, y∗〉 − 2〈x∗, y∗〉,
which implies that there exists M > 0 such that

|〈xn, yn〉 − 〈x∗, y∗〉| ≤M‖xn − x∗‖+ ‖y∗‖‖xn − x∗‖+ |〈x∗, yn − y∗〉|,
and computing the limit we obtain that

lim
n→∞〈xn, yn〉 = 〈x∗, y∗〉.

The following definition is inspired by condition (S)+.
In condition (S)+ we have that if {xn}n∈N ⊂ E ⊆ E is weakly convergent

to an element x∗ ∈ E and limn→∞ sup〈xn−x∗, f(xn)〉 ≤ 0, then the sequence
is convergent in norm to x∗. Related to this condition a natural question is,
Under what conditions about the mapping f we have that if {xn}n∈N is weakly
convergent to x∗ ∈ E do we have that {xn} has a subsequence {xnk

}k∈K such
that limn→∞ sup〈xnk

− x∗, f(xnk
)〉 ≤ 0.?

We introduce the following notion. Let D ⊂ E be a non-empty subset.

Definition 9. We say that a mapping f : D → E∗ is scalarly compact if
for any sequence {xn}n∈N ⊂ D, weakly convergent to an element x∗ ∈ D
there exists a subsequence {xnk

}k∈N of the sequence {xn}n∈N such that,
limn→∞ sup〈xnk

− x∗, f(xnk
)〉 ≤ 0.

In the next propositions we present several examples of scalarly compact op-
erators.

Proposition 6. If f : E → E∗ is completely continuous, then f is scalarly
compact.

Proof. Let {xn}n∈N ⊂ E be a sequence weakly convergent to an element x∗ ∈
E. Then {xnk

}k∈N is bounded. Because f is completely continuous there exists
a subsequence {xnk

}kinN of the sequence {xn}n∈N such that {f(xnk
)}k∈N is

convergent in norm in E∗ to an element y∗ ∈ E∗. By Proposition 4 we have
limn→∞〈xnk

− x∗, f(xnk
)〉 = 0, and hence limk→∞ sup〈xnk

− x∗, f(xnk
)〉 = 0.
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In the next results we will see that there exist mappings which are scalarly
compact but not completely continuous.

Proposition 7. If f : E → E∗ has a decomposition of the form f = h − g,
where h : E → E∗ is completely continuous and g : E → E∗ is monotone,
then f is scalarly compact.

Proof. Let {xn}n∈N ⊂ E be a sequence weakly convergent to an element
x∗ ∈ E. Then {xn}n∈N is bounded and because h is completely continu-
ous, there exists a subsequence {xnk

}k∈N of the sequence {xn}n∈N such that
{h(xnk

)}k∈N is convergent in norm to an element y∗ ∈ E∗. We have

〈xnk
− x∗, f(xnk

)〉 = 〈xnk
− x∗, h(xnk

)− g(xnk
)〉

= 〈xnk
− x∗, h(xnk

)〉 − 〈xnk
− x∗, g(xnk

)〉
= 〈xnk

− x∗, h(xnk
)〉 − [〈xnk

− x∗, g(xnk
)− g(x∗)〉+ 〈xnk

− x∗, g(x∗)〉]
= 〈xnk

− x∗, h(xnk
)〉 − 〈xnk

− x∗, g(xnk
− g(x∗))〉+ 〈xnk

− x∗, g(x∗)〉
≤ 〈xnk

− x∗, h(xnk
)〉+ 〈xnk

− x∗, g(x∗)〉.
Consider Proposition 4 and computing lim sup we obtain

lim
k→∞

sup〈xnk
− x∗, h(xnk

)− g(xnk
)〉 ≤ 0.

Corollary 1. If (E, ‖ · ‖) is a Banach space such that a duality mapping
J : E → E∗ is at any x ∈ E a singleton and h : E → E∗ is a completely con-
tinuous mapping, then the mapping f = h− J is a scalarly compact mapping.

Proof. Because the mapping J is monotone, we apply Proposition 7.

Corollary 2. If (H, 〈·, ·〉) is a Hilbert space and h : H → H is a completely
continuous mapping, then the mapping f(x) = h(x) − x, for any x ∈ H, is
scalarly compact, but not completely continuous.

We say that a mapping f : E → E∗ is antimonotone if for any x, y ∈ E we
have 〈x− y, f(x)− f(y)〉 ≤ 0.

We recall that a mapping h : E → E∗ is strongly monotone if 〈x−y, h(x)−
h(y)〉 ≥ ρ‖x− y‖2 for any x, y ∈ E, where ρ > 0.

Let E be a Hilbert space. If it is strongly monotone then the mapping
f(x) = ρx− h(x) is antimonotone. If (E, ‖ · ‖) is a Banach space, J : E → E∗

is a duality mapping and f : E → E∗ is such that 〈x − y, f(x) − f(y)〉 ≥
〈x−y, J(x)−J(y)〉 for any x, y ∈ E, then the mapping J−f is antimonotone.

More general if f1, f2 : E → E∗ are two mappings such that

〈x− y, f1(x)− f1(y)〉 ≥ 〈x− y, f2(x)− f2(y)〉 for any x, y ∈ E,
then the mapping f2 − f1 is antimonotone.

Proposition 8. If f : E → E∗ is an antimonotone mapping then f is scalarly
compact.
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Proof. Let {xn}n∈N ⊂ E be a sequence weakly convergent to an element
x∗ ∈ E. Then we have

〈xn − x∗, f(xn)〉 = 〈xn − x∗, f(xn)− f(x∗) + f(x∗)〉
= 〈xn − x∗, f(xn)− f(x∗)〉+ 〈xn − x∗, f(x∗)〉 ≤ 〈xn − x∗, f(x∗)〉.

Computing the limit sup we have

lim
n→∞ sup〈xn − x∗, f(xn)〉 ≤ 0.

The scalarly compactness is a property which is invariant with respect to
compact perturbations. In this sense we have the following result.

Proposition 9. If h : E → E∗ is a scalarly compact mapping and g : E → E∗

is a completely continuous mapping then the mapping f = h + g is scalarly
compact.

Proof. Let {xn}n∈N ⊂ E be a sequence weakly convergent to an element
x∗ ∈ E. Because h is scalarly compact and g is completely continuous,
we can select a subsequence {xnk

}k∈N of the sequence {xn}n∈N such that
limk→∞ sup〈xnk

− x∗, h(xnk
)〉 ≤ 0 and {g(xnk

)}k∈N is convergent in norm to
an element w ∈ E. Using also Proposition 4, we have

lim
k→∞

sup〈xnk
− x∗, f(xnk

)〉 ≤ lim
k→∞

sup〈xnk
− x∗, h(xnk

)〉
+ lim

k→∞
sup〈xnk

− x∗, g(xnk
)〉 ≤ 0 + 〈0, w〉 = 0.

Proposition 10. If h and g are scalarly compact mappings from E into E∗,
then for any positive real numbers a and b the mapping f = ah+bg is scalarly
compact.

Proof. The proposition is a consequence of definition of scalar compactness.

Corollary 1. If f : E → E∗ is scalarly compact and g : E → E∗ is anti-
monotone then the mapping f = h+ g is scalarly compact.

Proposition 11. Let D ⊆ E be a closed convex non-empty subset and
f, g : D → E∗ two mappings. If there exist two real numbers α, β such that
〈x− y, f(x)− f(y)〉 ≤ α and 〈x− y, g(x)− g(y)〉 ≤ β for any x, y ∈ D and
α+ β ≤ 0, then the mapping f + g is scalarly compact.

Proof. Indeed, if {xn} ⊂ D is a sequence weakly convergent to an element
x∗ ∈ D, then we have

lim sup
n→∞

〈xn − x∗, f(xn) + g(xn)〉 ≤ lim sup
n→∞

〈xn − x∗, f(x∗)〉+

+ lim sup
n→∞

〈xn − x∗, f(xn)− f(x∗)〉+ lim sup
n→∞

〈xn − x∗, g(xn)〉+

+ lim sup
n→∞

〈xn − x∗, g(xn)− g(x∗)〉 ≤ α+ β ≤ 0.
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Proposition 12. Let D ⊆ E be a closed convex, non-empty subset. Let h :
D → E∗ be a scalarly compact mapping, g : D → E∗ a monotone mapping,
and ρ : D → R+ a sequentially weakly continuous mapping. Then the mapping
f(x) = h(x)− ρ(x)g(x), for any x ∈ D is scalarly compact.

Proof. Let {xn}n∈N ⊂ D be a sequence, weakly convergent to an element
x∗ ∈ D. Because h is scalarly compact, there exists a subsequence {xnk

}k ∈
N of the sequence {xn}n∈N such that lim sup

n→∞
〈xnk

− x∗, h(xnk
)〉 ≤ 0.

We have

〈xnk
− x∗, f(xnk

)〉 = 〈xnk
− x∗, h(xnk

)− ρ(xnk
)g(xnk

)〉 =
= 〈xnk

− x∗, h(xnk
)〉 − 〈xnk

− x∗, ρ(xnk
)g(xnk

)〉 =
= 〈xnk

− x∗, h(xnk
)〉 − ρ(xnk

) 〈xnk
− x∗, g(xnk

)〉 =
= 〈xnk

− x∗, h(xnk
)〉 − ρ(xnk

) 〈xnk
− x∗, g(xnk

)− g(x∗)〉−
−ρ(xnk

) 〈xnk
− x∗, g(x∗)〉 ≤

≤ 〈xnk
− x∗, h(xnk

)〉 − ρ(xnk
) 〈xnk

− x∗, g(x∗)〉 ,

which implies
lim sup

n→∞
〈xnk

− x∗, f(xnk
)〉 ≤ 0.

Remark 1. In Proposition 12 the set D can be a closed convex cone K ⊂ E
and ρ ∈ K∗.
Proposition 13. Let D ⊂ E be a closed convex, non-empty subset and f :
D → E∗ a mapping. If there exists a completely continuous mapping h :
D → E∗ such that 〈y, f(x)〉 ≤ 〈y, h(x)〉 for any x, y ∈ D, then f is scalarly
compact.

Proof. Indeed, let {xn}n∈N ⊂ D be a sequence, weakly convergent to an
element x∗ ∈ D. Because h is completely continuous there exists a subsequence
{xnk

}k∈N of the sequence {xn}n∈N such that {h(xnk
)}k∈N is convergent in

norm to an element w ∈ E∗. We have

〈xnk
− x∗, f(xnk

)〉 ≤ ‖ 〈xnk
− x∗, h(xnk

)〉 ‖

which implies,
lim sup

k→∞
〈xnk

− x∗, f(xnk
)〉 ≤ 0.

The following definition is inspired by condition (S)′.
We say that a mapping f : E → E∗ is lim sup-antimonotone if for any

sequence {xn}n∈N ⊂ E, weakly convergent to an element x∗, there exists a
subsequence {xnk

}k∈N such that

lim sup
k→∞

〈xnk
− x∗, f(xnk

)− f(x∗)〉 ≤ 0.
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Proposition 14. Any limsup-antimonotone mapping f : E → E∗ is scalarly
compact.

Proof. Indeed, let {xn}n∈N ⊂ E be a sequence weakly convergent to an ele-
ment x∗ ∈ E. From our assumption, there exists a subsequence {xnk

}k∈N of
the sequence {xn}n∈N such that

〈xnk
− x∗, f(xnk

)〉 = 〈xnk
− x∗, f(xnk

)− f(x∗)〉+ 〈xnk
− x∗, f(x∗)〉 ,

which implies

lim sup
k→∞

〈xnk
− x∗, f(xnk

)〉 ≤ lim sup
k→∞

〈xnk
− x∗, f(xnk

)− f(x∗)〉+

+ lim sup
k→∞

〈xnk
− x∗, f(x∗)〉

The following results are consequences of the scalarly compactness.

Proposition 15. If f1, f2 : E → E∗ are two mappings such that

(i) f1 satisfies condition (S)+,
(ii) f2 is scalarly compact,

then f1 − f2 satisfies condition (S)+.

Proof. Let {xn}n∈N ⊂ E be a sequence weakly convergent to an element
x∗ ∈ E, such that lim supk→∞ 〈xn − x∗, f1(xn)− f2(xn)〉 ≤ 0. Because f2

is scalarly compact there exists a subsequence {xnk
}k∈N of the sequence

{xn}n∈N such that lim supk→∞ 〈xnk
− x∗, f2(xnk

)〉 ≤ 0. We can show that

lim sup
k→∞

〈xnk
− x∗, f1(xnk

)− f2(xnk
)〉 ≤ 0.

We have

lim sup
k→∞

〈xnk
− x∗, f1(xnk

)〉 ≤ lim sup
k→∞

〈xnk
− x∗, f1(xnk

)− f2(xnk
)〉

+ lim sup
k→∞

〈xnk
− x∗, f2(xnk

)〉 ≤ 0.

Using the fact that f1 is scalarly compact we obtain that the subsequence
{xnk

}k∈N has another subsequence {xnj
}j∈N convergent in norm to x∗.

Therefore f1 − f2 satisfies condition (S)+.

Corollary 3. If f1, f2 : E → E∗ are two mappings such that:

(i) f1 satisfies condition (S)+,
(ii) −f2 is scalarly compact,

then f1 + f2 satisfies condition (S)+.

From Corollary 3 we also deduce the following interesting result.
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Corollary 4. If f1, f2 : E → E∗ are two mappings such that

(i) f1 satisfies condition (S)+,
(ii) f2 is monotone,

then f1 + f2 satisfies condition (S)+.

Proof. Because f2 is monotone, we have that −f2 is antimonotone, and hence
−f2 is scalarly compact and we can apply Corollary 3.

We recall the following definition due to Browder ([6], Definition 2). We
say that a mapping f : E → E∗ is pseudo-monotone if for any sequence
{xn}n∈N ⊂ E weakly convergent to an element x∗ ∈ E and satisfying the
property

lim sup
n→∞

〈xn − x∗, f(xn)〉 ≤ 0

we have that lim supn→∞ 〈xn − x∗, f(xn)〉 = 0 is weakly convergent to f(x∗).
From this definition we deduce immediately the following result.

Proposition 16. Let (E, ‖ · ‖) be a reflexive Banach space. If f : E → E∗ is
pseudo-monotone (in Browder’s sense) and scalarly compact, then f has the
following property: for any bounded sequence {xn}n∈N ⊂ E, there exists a sub-
sequence {xnk

}k∈N of the sequence, such that {f(xnk
)} is weakly convergent,

i.e., f is sequentially weakly compact.

6 Existence Theorems for Variational Inequalities and
Complementarity Problems

We present in this section some existence theorems for variational inequalities
and complementarity problems.

Theorem 2. Let (E, ‖ · ‖) be a reflexive Banach space and T1, T2 : E → E∗

two demicontinuous mappings. If the following assumptions are satisfied:

1. T1 is bounded and satisfies condition (S1
+),

2. T2 is scalarly compact,

then for every non-empty bounded convex set D ⊂ E the problem VI(T1 −
T2, D) has a solution.

Proof. Let Λ be the family of all finite dimensional subspaces F of E such
that F ∩D is non-empty. Denote by

h(x) = T1(x)− T2(x) for all x ∈ D and D(F ) = D ∩ F for each F ∈ Λ.

For each F ∈ Λ we set

AF = {y ∈ D | 〈x− y, h(y)〉 ≥ 0 for all x ∈ D(F )}.
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For each F ∈ Λ the set AF is non-empty.
Indeed, the solution set of the problem VI(h,D(F )) is a subset of AF . The

solution set of the problem VI(h,D(F )) is non-empty because of the following
reason. Let j : F → E denote the inclusion and j∗ : E∗ → F ∗ the adjoint of
j∗.

By our assumptions we have that j∗ ◦h◦ j : D(F ) → F ∗ is continuous and

〈x− y, (j∗ ◦ h ◦ j)(y)〉 = 〈j(x− y), (h ◦ j)(y)〉 = 〈(x− y), h(y)〉

for all x, y ∈ D(F ). Applying the classical Hartman–Stampacchia theorem
[13] to the mapping j∗ ◦ h ◦ j and the set D(F ) we obtain that the problem
VI(h,D(F )) has a solution. Denote by Āσ

F the weak closure of AF . We have
that ∩F∈ΛĀ

σ
F is non-empty. Indeed, let Āσ

F1
, Āσ

F2
, . . . , Āσ

Fn
be a finite subfam-

ily of the family {Āσ
F }F∈Λ. Let F0 be the finite dimensional subspace of E

generated by F1, F2, . . . , Fn. Because Fk ⊂ F0 for all k = 1, 2, . . . , n, we have
that D(Fk) ⊆ D(F0) for all k = 1, 2, . . . , n. We have AF0 ⊆ AFk

, which implies
Āσ

F0
⊆ Āσ

Fk
for k = 1, 2, . . . , n, and finally we have, that is, ∩n

k=1Ā
σ
F non-empty.

Since D is a weakly compact set, we conclude that ∩F∈ΛĀ
σ
F is non-empty. Let

y∗ ∈ ∩F∈ΛĀ
σ
F , i.e., for every F ∈ Λ we have y∗ ∈ Āσ

F . Let x ∈ D be an arbi-
trary element. There exists some F ∈ Λ such that x, y∗ ∈ F . Since y∗ ∈ Āσ

F ,
by Eberlein–Smulian theorem there exists a sequence {yn}n∈N ⊂ AF weakly
convergent to y∗. We have ⎧⎨⎩

〈y∗ − yn, h(yn)〉 ≥ 0
and
〈x− yn, h(yn)〉 ≥ 0

or
〈y∗ − yn, T1(yn)〉 ≤ 〈y∗ − yn, T2(yn)〉 (1)

and
〈y∗ − yn, T1(yn)〉 ≤ 〈y∗ − yn, T2(yn)〉 . (2)

Using (1) and the fact that T2 is scalarly compact we have that {yn}n∈N has
a subsequence, denoted again by {yn}n∈N such that

lim sup
n→∞

〈yn − y∗, T1(yn)〉 ≤ 0. (3)

Because T1 is bounded, we can suppose (taking eventually a subsequence of
{yn}n∈N ) that {T1(yn)}n∈N is weakly (∗)-convergent to an element v0 ∈ E∗.
Because

〈yn, T1(yn)〉 = 〈yn − y∗ + y∗, T1(yn)〉 = 〈yn − y∗, T1(yn)〉+ 〈y∗, T1(yn)〉

and considering formula (3) we obtain

lim sup
n→∞

〈yn, T1(yn)〉 ≤ 〈y∗, ν0〉 .
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Hence, by condition (S)1+ (we obtain that the sequence {yn}n∈N has a sub-
sequence denoted again by {yn}n∈N convergent in norm to y∗. Then the se-
quence {x− yn}n∈N is convergent in norm to x− y∗. Considering Proposition
5 and formula (2) we obtain

〈x− y∗, T1(y∗)− T2(y∗)〉 ≥ 0

for any x ∈ D and the proof is complete. ��
From Theorem 2 we deduce the following result.

Corollary 5. Let (E, ‖ · ‖) be a reflexive Banach space and T1, T2 : E → E∗

two demicontinuous mappings. If the following assumptions are satisfied:

1. T1 is bounded and satisfies condition (S)1+,
2. T2 is monotone,

then for every non-empty bounded closed convex set D ⊂ E the problem VI
(T1 + T2, D) has a solution.

Remark 2. If (E, ‖ · ‖) is a reflexive Banach space, then for any mapping f :
E → E∗ which is a perturbation of demicontinuous monotone mapping by
a bounded demicontinuous mapping which satisfies condition (S)1+ (i.e., f =
T1 − T2, where T1 and T2 are as in Corollary 5) then the problem VI (f,D)
has a solution.

As application of Theorem 2 we have the following existence theorem for
variational inequalities.

Theorem 3. Let (E, ‖ · ‖) be a reflexive Banach space, K ⊂ E an unbounded
closed convex set such that 0 ∈ K. Let T1, T2 : E → E∗ be two demicontinuous
mappings. If the following assumptions are satisfied:

1. T1 is bounded and satisfies condition (S)1+,
2. T2 is scalarly compact,
3. there exist r > 0 and c > 0 such that c‖x‖ ≤ 〈x, T1(x)〉 for all x ∈ K, with
‖x‖ > r,

4. T2 has a scalar asymptotic derivative T∞2,s, such that ‖T∞2,s‖ < c,

then the problem VI (T1 − T2,K) has a solution.

Proof. For every n ∈ N we denote by

K = {x ∈ K | ‖x‖ ≤ n}.
Obviously, K = ∪∞n=1Kn and we observe that for each n ∈ N , Kn is a bounded
closed convex set. By Theorem 2 the problem VI(T1 − T2,Kn) has a solution
yn ∈ Kn for every n ∈ N . Hence, we have

〈x− yn, (T1 − T2)(yn)〉 ≥ 0 for allx ∈ Kn. (4)
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If in (4) we put x = 0 we obtain

〈yn, T1(yn)〉 ≤ 〈yn, T2(yn)〉 . (5)

The sequence {yn}n∈N is bounded. Indeed, if we suppose that ‖yn‖ → +∞ as
n→∞, then by assumptions (3) and (4) we have (supposing that ‖yn‖ �= 0,
for all n ∈ N) that ‖yn‖ > r, for all n ∈ N , and

c ≤ 〈yn, T1(yn)〉
‖yn‖2 ≤ 〈yn, T1(yn)〉

‖yn‖2 =

〈
yn, T2(yn)− T∞2,s(yn)

〉
‖yn‖2 +

〈
yn, T

∞
2,s(yn)

〉
‖yn‖2 ,

which implies

lim sup
n→∞

〈yn, T1(yn)〉
‖yn‖2 ≤ lim sup

n→∞

〈
yn, T

∞
2,s(yn)

〉
‖yn‖2 ≤ T∞2,s(yn) < c,

which is a contradiction. Hence the sequence {yn}n∈N is bounded. By the re-
flexivity of E, by the fact that K is a weakly closed set and using the Eberlein–
S̆mulian theorem, there exists a subsequence of the sequence {yn}n∈N , de-
noted again by {yn}n∈N weakly convergent to an element y∗ ∈ K. Since T1

is bounded and considering eventually again a subsequence (and Eberlein–
S̆mulian theorem) we can suppose that {T1(yn)}n∈N is weakly (∗)-convergent
in E∗ to an element u ∈ E∗. Let x ∈ K be an arbitrary element. There exists
n0 ∈ N such that {y∗, x} ⊂ Kn0 and obviously {y∗, x} ⊂ Kn, for any n ≥ n0.
Considering formula (4) we deduce

〈y∗ − yn, (T1 − T2)(yn)〉 ≥ 0

or
〈yn − y∗, (T1 − T2)(yn)〉 ≤ 0 (6)

and
〈x− yn, (T1 − T2)(yn)〉 ≤ 0. (7)

From (6) we deduce

〈yn − y∗, T1(yn)〉 ≤ 〈yn − y∗, T2(yn)〉

and using the fact that T2 is scalarly compact, we deduce that there exists a
subsequence {ynk

}k∈N of {yn}n∈N such that

lim sup
k→∞

〈ynk
− y∗, T1(ynk

)〉 ≤ 0.

From this inequality and the following equality

〈ynk
, T1(ynk

)〉 = 〈ynk
− y∗, T1(ynk

)〉+ 〈y∗, T1(ynk
)〉

we deduce
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lim sup
k→∞

〈ynk
, T1(ynk

)〉 ≤ 〈y∗, u〉 .

Using the fact that T1 satisfies condition (S)1+ we obtain that {ynk
}k∈N con-

tains a subsequence denoted again by {ynk
}k∈N convergent in norm to an

element which must be y∗. Now computing the limit in (7) (using the demi-
continuity of T1 and T2 and Proposition 5) we obtain

〈x− y∗, (T1 − T2)(y∗)〉 ≥ 0

for all x ∈ K and the proof is complete.

Corollary 2. Let (E, ‖ · ‖) be a reflexive Banach space, K ⊂ E an unbounded
closed convex set such that 0 ⊂ K. Let T1, T2 : E → E∗ be two demicontinuous
mappings. If the following assumptions are satisfied:

1. T1 is bounded and satisfies condition (S)1+,
2. T2 is monotone,
3. there exist r > 0 and c > 0 such that, c‖x‖2 ≤ 〈x, T1(x)〉 for all x ∈ K

with ‖x‖ > r,
4. −T2 has a scalar asymptotic derivative (−T2)

∞
s such that ‖ (−T2)

∞
s ‖ < c,

then the problem has a solution.

Corollary 3. Let (E, ‖·‖) be a reflexive Banach space, K ⊂ E a closed convex
cone. Let T1, T2 : E → E∗ be two demicontinuous mappings. If the following
assumptions are satisfied:

1. T1 is bounded and satisfies condition (S)1+,
2. T2 is scalarly compact,
3. there exist r > 0 and c > 0 such that with c‖x‖2 ≤ 〈x, T1(x)〉 for all x ∈ K

with ‖x‖ > r,
4. T2 has a scalar asymptotic derivative T∞2,s such that, ‖T∞2,s‖ < c,

then the problem NCP (T1 − T2,K) has a solution.

Definition 10. We say that the mapping T2 : E → E∗ satisfies Altmans
condition on the set K ⊂ E with respect to the mapping T1 : E → E∗ if there
exists r > 0 such that 〈x, T2(x)〉 ≤ 〈x, T1(x)〉 for any x ∈ K with ‖x‖ = r.
(The set K is as in Theorem 2.)

We have the following result.

Theorem 4. Let (E, ‖·‖) be a reflexive Banach space, K ⊂ E a closed convex
cone, and T1, T2 : E → E∗ be two demicontinuous mappings. If the following
assumptions are satisfied:

1. T1 is bounded and satisfies condition (S)1+,
2. T2 is scalarly compact,
3. T2 satisfies Altmans condition with respect to T1 for some r > 0, then the

problem NCP (T1 − T2,K) has a solution.
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Proof. Consider the set Kr = {x ∈ K|‖x‖ ≤ r}, where r is given by assump-
tion (3). Obviously, Kr is a bounded closed convex set in E. By Theorem 2
we obtain an element x∗ ∈ Kr such that

〈x− x∗, (T1 − T2)(x∗)〉 ≥ 0 for all x ∈ Kr. (8)

Taking in (8) x = 0 we have

〈x∗, T1(x∗)〉 ≤ 〈x∗, T2(x∗)〉 . (9)

Now, we prove the following inequality:

〈x∗, T1(x∗)〉 ≥ 〈x∗, T2(x∗)〉 . (10)

We have only two possibilities:

(I) ‖x∗‖ = r. In this case (10) is true by assumption (3) (Altmans condition).
(II) ‖x∗‖ < r. In this case there exists λ∗ > 1 such that x = λ∗x∗ ∈ Kr.

Taking x = λ∗x∗ in (8) we obtain that (10) is true. Hence, let x ∈ K be
an arbitrary element. There exists λ > 0 such that λx ∈ Kr and from (8)
we have

〈λx− x∗, (T1 − T2)(x∗)〉 ≥ 0,

which implies

0 ≤ 〈λx− x∗, (T1 − T2)(x∗)〉 = 〈λx− [λx∗ + (1− λ)x∗], (T1 − T2)(x∗)〉
= λ 〈x− x∗, (T1 − T2)(x∗)〉 .

Therefore, for all x ∈ K we have

〈x− x∗, (T1 − T2)(x∗)〉 ≥ 0 for all x ∈ K,

which implies that the problem NCP(T1 − T2,K) has a solution.

As an application of Theorem 4 we consider the problem NCP (T1 − λT2,K),
where λ is a positive real number. This is a complementarity problem
with eigenvalues. To study this problem we need to introduce the following
condition.

Definition 11. We say that the mapping T1, T2 satisfy condition (C) if there
exists r > 0 such that

inf{〈x, T1(x)〉 |x ∈ K and ‖x‖ = r} = ρ1 > 0

and
sup{〈x, T1(x)〉 |x ∈ K and ‖x‖ = r} = ρ2 > 0.

We have the following result.
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Theorem 5. Let (E, ‖·‖) be a reflexive Banach space, K ⊂ E a closed pointed
convex cone, and T1, T2 : E → E∗ two demicontinuous mappings. If the
following assumptions are satisfied:

1. T1 is bounded and satisfies condition (S)1+,
2. T2 is scalarly compact,
3. T1, T2 satisfy condition (C),

then for any λ such that 0 < λ < ρ1/ρ2 the problem NCP (T1 − λT2,K) has
a solution which is not the trivial solution if T1(0)− T2(0) �∈ K∗.

Proof. We observe that the assumptions of Theorem 4 are satisfied.

7 Comments

We presented in this chapter the notion of scalarly compact mapping. We
introduced this notion analyzing the condition (S)+, well known in nonlinear
analysis. The main results presented in this chapter are strongly based on
the notion of scalarly compact mapping. New developments of the results
presented in this chapter are possible.
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Summary. The quasi-equilibrium inclusion problems of Blum–Oettli type are for-
mulated and sufficient conditions on the existence of solutions are shown. As spe-
cial cases, we obtain several results on the existence of solutions of general vector
ideal (resp. proper, Pareto, weak) quasi-optimization problems, of quasivariational
inequalities, and of quasivariational inclusion problems.

Key words: upper and lower quasivariational inclusions, inclusions, α-quasi-
optimization problems, vector optimization problem, quasi-equilibrium prob-
lems, upper and lower C-quasiconvex multivalued mappings, upper and lower
C-continuous multivalued mappings

1 Introduction

Let Y be a topological vector space and let C ⊂ Y be a cone. We put l(C) =
C ∩ (−C). If l(C) = {0}, then C is said to be a pointed cone. For a given
subset A ⊂ Y, one can define efficient points of A with respect to C in different
senses as ideal, Pareto, proper, weak, etc. (see [6]). The set of these efficient
points is denoted by αMin(A/C) with α = I, α = P, α = Pr, α = w, etc., for
the case of ideal, Pareto, proper, weak efficient points, respectively. Let D be
a subset of another topological vector space X. By 2D we denote the family
of all subsets in D. For a given multivalued mapping f : D → 2Y , we consider
the problem of finding x̄ ∈ D such that

f(x̄) ∩ αMin(f(D)/C) �= ∅. (GV OP )α

This is called a general vector α optimization problem corresponding to D, f ,
and C. The set of such points x̄ is said to be a solution set of (GV OP )α. The
elements of αMin(f(D)/C) are called α optimal values of (GV OP )α.

Now, let X,Y , and Z be topological vector spaces; let D ⊂ X,K ⊂ Z be
nonempty subsets; and let C ⊂ Y be a cone. Given the following multivalued
mappings

A. Chinchuluun et al. (eds.), Optimization and Optimal Control,
Springer Optimization and Its Applications 39, DOI 10.1007/978-0-387-89496-6 5,
c© Springer Science+Business Media, LLC 2010
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S : D → 2D,

P : D → 2K , T : D ×D → 2K ,

F : K ×D ×D → 2Y ,

we are interested in the problem of finding x̄ ∈ D such that

x̄ ∈ S(x̄) and
F (y, x̄, x̄) ∩ αMin(F (y, x̄, S(x̄))/C) �= ∅ for all y ∈ P (x̄).

This is called a general vector α quasi-optimization problem depending on
a parameter (α is, respectively, one of qualifications: ideal, Pareto, proper,
weak). Such a point x̄ is said to be a solution of (GV QOP )α. The above
multivalued mappings S, P, and F are said to be, respectively, a constraint, a
parameter potential, and an utility mapping. These problems also play a cen-
tral role in the vector optimization theory concerning multivalued mappings
and have many relations to the following problems:

(UIQEP), upper ideal quasi-equilibrium problem. Find x̄ ∈ D such that

x̄ ∈ S(x̄) and
F (y, x̄, x) ⊂ C for all x ∈ S(x̄), y ∈ T (x̄, x).

(LIQEP), lower ideal quasi-equilibrium problem. Find x̄ ∈ D such that

x̄ ∈ S(x̄) and
F (y, x̄, x) ∩ C �= ∅ for all x ∈ S(x̄), y ∈ T (x̄, x).

(UPQEP), upper Pareto quasi-equilibrium problem. Find x̄ ∈ D such that

x̄ ∈ S(x̄) and
F (y, x̄, x) �⊂ −(C \ l(C)) for all x ∈ S(x̄), y ∈ T (x̄, x).

(LPQEP), lower Pareto quasi-equilibrium problem. Find x̄ ∈ D such that

x̄ ∈ S(x̄) and
F (y, x̄, x) ∩ −(C \ l(C)) = ∅ for all x ∈ S(x̄), y ∈ T (x̄, x).

(UWQEP), upper weakly quasi-equilibrium problem. Find x̄ ∈ D such that

x̄ ∈ S(x̄) and
F (y, x̄, x) �⊂ −int(C) for all x ∈ S(x̄), y ∈ T (x̄, x).

(LWQEP), lower weakly quasi-equilibrium problem. Find x̄ ∈ D such that

x̄ ∈ S(x̄) and
F (y, x̄, x) ∩ -int(C) = ∅ for all x ∈ S(x̄), y ∈ T (x̄, x).
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In general, we call the above problems by γ quasi-equilibrium problems
involving D,K, S, T, F with respect to C, where γ is one of the following qual-
ifications: upper ideal, lower ideal, upper Pareto, lower Pareto, upper weakly,
lower weakly. These problems generalize many well-known problems in the
optimization theory as quasi-equilibrium problems, quasivariational inequali-
ties, fixed point problems, complementarity problems, saddle point problems,
minimax problems, as well as different others which have been studied by
many authors, for example, Park [11], Chan and Pang [2], Parida and Sen
[10], Gurraggio and Tan [4] for quasi-equilibrium problems and quasivaria-
tional problems, Blum and Oettli [1], Lin, Yu, and Kassay [5], Tan [12], Minh
and Tan [8], Fan [3] for equilibrium and variational inequality problems and
by some others in the references therein. One can easily see that the above
problems also have many relations with the following quasivariational inclu-
sion problems which have been considered in Tan [12], Luc and Tan [7], and
Minh and Tan [8].

(UQVIP), upper quasivariational inclusion problem. Find x̄ ∈ D such that

x̄ ∈ S(x̄) and
F (y, x̄, x) ⊂ F (y, x̄, x̄) + C for all x ∈ S(x̄), y ∈ T (x̄, x).

(LQVIP), lower quasivariational inclusion problem. Find x̄ ∈ D such that

x̄ ∈ S(x̄) and
F (y, x̄, x̄) ⊂ F (y, x̄, x)− C for all x ∈ S(x̄), y ∈ T (x̄, x).

The purpose of this chapter is to give some sufficient conditions on the
existence of solutions to the above γ quasi-equilibrium problems involving
D,K, S, T, F with respect to (−C), where F is of the form F (y, x, x′) =
G(y, x′, x) − H(y, x, x′) with G,H : K × D × D → 2Y being two different
multivalued mappings. We also call them quasi-equilibrium problems of the
Blum–Oettli type.

2 Preliminaries and definitions

Throughout this chapter, we denote by X,Y , and Z real Hausdorff topological
vector spaces. The space of real numbers is denoted by R. Given a subset
D ⊂ X, we consider a multivalued mapping F : D → 2Y . The effective
domain of F is denoted by

domF = {x ∈ D/F (x) �= ∅} .

Further, let Y be a topological vector space with a cone C. We introduce new
definitions of C-continuities.
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Definition 1. Let F : D → 2Y be a multivalued mapping.

(i) F is said to be upper (resp. lower) C-continuous at x̄ ∈ dom F if for any
neighborhood V of the origin in Y there is a neighborhood U of x̄ such
that

F (x) ⊂ F (x̄) + V + C

(F (x̄) ⊂ F (x) + V − C, respectively)

holds for all x ∈ U ∩ domF.
(ii) If F is simultaneously upper C-continuous and lower C-continuous at x̄,

then we say that it is C-continuous at x̄.
(iii) If F is upper, lower,. . . , C-continuous at any point of domF, we say that

it is upper, lower,. . . , C-continuous on D.
(iv) In the case C = {0} in Y , we shall only say F is upper, lower continuous

instead of upper, lower 0-continuous. The mapping F is continuous if it
is simultaneously upper and lower continuous.

Definition 2. Let F : D×D → 2Y be a multivalued mapping with nonempty
values. We say that

(i) F is upper C-monotone if

F (x, y) ⊂ −F (y, x)− C

holds for all x, y ∈ D.
(ii) F is lower C-monotone if for any x, y ∈ D we have

(F (x, y) + F (y, x)) ∩ (−C) �= ∅.
Definition 3. Let F : K × D × D → 2Y , T : D × D → 2K be multivalued
mappings with nonempty values. We say that

(i) F is diagonally upper (T,C)-quasiconvex in the third variable on D if for
any finite xi ∈ D, ti ∈ [0, 1], i = 1, ..., n,

∑n
i=1ti = 1, xt =

∑n
i=1tixi, there

exists j=1,2,. . . ,n such that

F (y, xt, xj) ⊂ F (y, xt, xt) + C for all y ∈ T (xt, xj).

(ii) F is diagonally lower (T,C)-quasiconvex in the third variable on D if for
any finite xi ∈ D, ti ∈ [0, 1], i = 1, ..., n,

∑n
i=1ti = 1, xt =

∑n
i=1tixi, there

exists j=1,2,. . . ,n such that

F (y, xt, xt) ⊂ F (y, xt, xj)− C for all y ∈ T (xt, xj).

To prove the main results we shall need the following theorem:

Theorem 1. Let D be a nonempty convex compact subset of X and F : D →
2D be a multivalued mapping satisfying the following conditions:

1. for all x ∈ D,x /∈ F (x) and F (x) is convex;
2. for all y ∈ D,F−1(y) is open in D.

Then there exists x̄ ∈ D such that F (x̄) = ∅.



Quasi-equilibrium Problems 109

3 Main Results

Let D ⊂ X, K ⊂ Z be nonempty convex compact subsets, C ⊂ Y be a
convex closed pointed cone. We assume implicitly that multivalued mappings
S, T and G,H are as in Introduction. In the sequel, we always suppose that
the multivalued mapping S has nonempty convex values and S−1(x) is open
for any x ∈ D. We have

Theorem 2. Assume that

1. for any x′ ∈ D, the set

A1(x′) = {x ∈ D| (G(y, x, x′)−H(y, x′, x)) �⊂ −C for some y ∈ T (x, x′)}

is open in D;
2. the multivalued mapping G+H is diagonally upper (T,C)-quasiconvex in

the third variable;
3. for any fixed y ∈ K, the multivalued mapping G(y, ., .) : D ×D → 2Y is

upper C-monotone;
4. (G(y, x, x) +H(y, x, x)) ⊂ C for all (y, x) ∈ K ×D.

Then there exists x̄ ∈ D such that

x̄ ∈ S(x̄) and
(G(y, x, x̄)−H(y, x̄, x)) ⊂ −C for all x ∈ S(x̄), y ∈ T (x̄, x).

Proof. We define the multivalued mapping M1 : D → 2D by

M1(x) = {x′ ∈ D| (G(y, x′, x)−H(y, x, x′)) �⊂ −C for some y ∈ T (x, x′)}.

Observe that if for some x̄ ∈ D, x̄ ∈ S(x̄), one has M1(x̄) ∩ S(x̄) = ∅, then

(G(y, x, x̄)−H(y, x̄, x)) ⊂ −C for all x ∈ S(x̄), y ∈ T (x̄, x)

and hence the proof is completed. Thus, our aim is to show the existence
of such a point x̄. Consider the multivalued mapping Q from D to itself
defined by

Q(x) =
{

coM1(x) ∩ S(x) if x ∈ S(x),
S(x) otherwise,

where the multivalued mapping coM1 : D → 2D is defined by coM1(x) =
co(M1(x)) with co(B) denoting the convex hull of the set B. We now show
that Q satisfies all conditions in step 4 of Theorem 2. It is easy to see that for
any x ∈ D,Q(x) is convex and

Q−1(x) = [(coM1)−1(x) ∩ S−1(x)] ∪ [S−1(x) \ {x}]
= [coA1(x) ∩ S−1(x)] ∪ [S−1(x) \ {x}]

is open in D.
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Further, we claim that x /∈ Q(x) for all x ∈ D. Indeed, suppose to the
contrary that there exists a point x̄ ∈ D such that x̄ ∈ Q(x̄) = coM1(x̄)∩S(x̄).
In particular, x̄ ∈ coM1(x̄), we then conclude that there exist x1, ..., xn ∈
M1(x̄) such that x̄ =

∑n
i=1tixi, xi ∈ M1(x̄), ti ≥ 0,

∑n
i=1ti = 1. By the

definition of M1 we can see that

(G(yi, xi, x̄)−H(yi, x̄, xi)) �⊂−C for some yi ∈ T (x̄, xi) and for all i=1, . . . , n.
(1)

Since the multivalued mapping G+H is diagonally upper (T,C)-quasiconvex
in the third variable, there exists j ∈ {1, ..., n} such that

G(y, x̄, xj)+H(y, x̄, xj) ⊂ C+G(y, x̄, x̄)+H(y, x̄, x̄) ⊂ C for all y ∈ T (x̄, xj).
(2)

Since G is upper C-monotone, we deduce

G(y, xj , x̄) ⊂ (−C −G(y, x̄, xj)) for y ∈ T (x̄, xj). (3)

A combination of (2) and (3) gives

(G(y, xj , x̄)−H(y, x̄, xj)) ⊂ (−C − {G(y, x̄, xj) +H(y, x̄, xj)})
⊂ −C − C = −C for all y ∈ T (x̄, xj).

This contradicts (1). Applying step 4 of Theorem 2, we conclude that there
exists a point x̄ ∈ D with Q(x̄) = ∅. If x̄ /∈ S(x̄), then Q(x̄) = S(x̄) = ∅, which
is impossible. Therefore, we deduce x̄ ∈ S(x̄) andQ(x̄) = coM1(x̄))∩S(x̄) = ∅.
This implies M1(x̄) ∩ S(x̄) = ∅ and hence

x̄ ∈ S(x̄),
(G(y, x, x̄)−H(y, x̄, x)) ⊂ −C for all x ∈ S(x̄), y ∈ T (x̄, x).

The proof is complete.

Theorem 3. Assume that

1. for any x′ ∈ D, the set

A2(x′) = {x ∈ D| (G(y, x, x′)−H(y, x′, x)) ∩ (−C) �= ∅
for some y ∈ T (x, x′)}

is open in D;
2. the multivalued mapping G+H is diagonally lower (T,C)-quasiconvex in

the third variable;
3. for any fixed y ∈ K, the multivalued mapping G(y, ·, ·) : D ×D → 2Y is

upper C-monotone;
4. (G(y, x, x) +H(y, x, x)) ⊂ C for all (y, x) ∈ K ×D.

Then there exists x̄ ∈ D such that
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x̄ ∈ S(x̄) and
(G(y, x, x̄)−H(y, x̄, x)) ∩ (−C) �= ∅ for all x ∈ S(x̄), y ∈ T (x̄, x).

Proof. The proof proceeds exactly as the one in step 1 of Theorem 3 with M1

replaced by

M2(x) = {x′ ∈ D| (G(y, x′, x)−H(y, x, x′))∩(−C) = ∅ for some y ∈ T (x, x′)}.
Similarly, as in (1) we obtain

(G(yi, xi, x̄)−H(yi, x̄, xi))∩(−C) = ∅ for i = 1, ..., n, yi ∈ T (x̄, xi). (4)

Since the multivalued mapping G+H is diagonally lower (T,C)-quasiconvex
in the third variable, there exists j ∈ {1, ..., n} such that

(G(y, x̄, xj) +H(y, x̄, xj)) ∩ C �= ∅ for all y ∈ T (x̄, xj).

Since G is upper C-monotone, we deduce

(G(y, xj , x̄)) ⊂ (−C −G(y, x̄, xj)) for y ∈ T (x̄, xj).

Therefore, we have

G(y, x̄, xj) +H(y, x̄, xj) ⊂ (−C − {G(y, xj , x̄)−H(y, x̄, xj)})
and then

∅ �= (G(y, x̄, xj)+H(y, x̄, xj))∩C ⊂ C ∩ (−C−{(G(y, xj , x̄)−H(y, x̄, xj))}).
This implies

(G(y, xj , x̄)−H(y, x̄, xj)) ∩ (−C) �= ∅ for all y ∈ T (x̄, xj).

This contradicts (4). Further, we can argue as in the proof as in step 1 of
Theorem 3.

Theorem 4. Assume that

1. for any x′ ∈ D, the set

A3(x′) = {x ∈ D| (G(y, x, x′)−H(y, x′, x)) ⊂ (C \ {0})
for some y ∈ T (x, x′)}

is open in D;
2. the multivalued mapping G+H is diagonally lower (T,C)-quasiconvex in

the third variable;
3. for any fixed y ∈ K, the multivalued mapping G(y, ·, ·) : D ×D → 2Y is

upper C-monotone;
4. (G(y, x, x) +H(y, x, x)) ∩ (−C \ {0}) = ∅ for all (y, x) ∈ K ×D.
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Then there exists x̄ ∈ D such that

x̄ ∈ S(x̄) and
(G(y, x, x̄)−H(y, x̄, x)) �⊂ (C \ {0}) for all x ∈ S(x̄), y ∈ T (x̄, x).

Proof. The proof proceeds exactly as the one in step 1 of Theorem 3 with M1

replaced by

M3(x) = {x′ ∈ D| (G(y, x′, x)−H(y, x, x′)) ⊂ C\{0} for some y ∈ T (x, x′)}.
Similarly, as in (1) we obtain

(G(yi, xi, x̄)−H(yi, x̄, xi)) ⊂ C \ {0} for i = 1, ..., n, yi ∈ T (x̄, xi). (5)

Since the multivalued mapping G+H is diagonally lower (T,C)-quasiconvex
in the third variable, there exists j ∈ {1, ..., n} such that

(G(y, x̄, xj)+H(y, x̄, xj))∩(C+G(y, x̄, x̄)+H(y, x̄, x̄)) �= ∅ for all y ∈ T (x̄, xj).

Since G is upper C-monotone, we then have

(G(y, x̄, xj) +H(y, x̄, xj)) ⊂ (−C − {G(y, xj , x̄)−H(y, x̄, xj)})
for all y ∈ T (x̄, xj).

This implies

(C +G(y, x̄, x̄) +H(y, x̄, x̄)) ∩ (−C − {G(y, xj , x̄)−H(y, x̄, xj)}) �= ∅
for all y ∈ T (x̄, xj).

Together with (5) we get

(G(yj , x̄, x̄) +H(yj , x̄, x̄)) ∩ −(C \ {0}) �= ∅,
which is impossible by Assumption 4.
The rest of the proof can be done as in proving step 1 of Theorem 3.

Theorem 5. Assume that

1. for any x′ ∈ D, the set

A4(x′) = {x ∈ D| (G(y, x, x′)−H(y, x′, x)) ∩ (C \ {0}) �= ∅
for some y ∈ T (x, x′)}

is open in D;
2. the multivalued mapping G+H is diagonally upper (T,C)-quasiconvex in

the third variable with G(y, x, x)+H(y, x, x) ⊂ C, for any (y, x) ∈ D×K;
3. for any fixed y ∈ K, the multivalued mapping G(y, ·, ·.) : D ×D → 2Y is

upper C-monotone;
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4. (G(y, x, x) +H(y, x, x)) ∩ (−C \ {0}) = ∅ for all (y, x) ∈ K ×D.

Then there exists x̄ ∈ D such that

x̄ ∈ S(x̄) and
(G(y, x, x̄)−H(y, x̄, x)) ∩ (C \ {0}) = ∅ for all x ∈ S(x̄), y ∈ T (x̄, x).

Proof. The proof proceeds exactly as the one in step 1 of Theorem 3 with M1

replaced by

M4(x) = {x′ ∈ D| (G(y, x′, x)−H(y, x, x′)) ∩ (C \ {0}) �= ∅
for some y ∈ T (x, x′)}.

Similarly, as in (1) we obtain

(G(yi, xi, x̄)−H(yi, x̄, xi)) ∩ (C \ {0}) �= ∅ for i = 1, ..., n, yi ∈ T (x̄, xi).
(6)

Since the multivalued mapping G+H is diagonally upper (T,C)-quasiconvex
in the third variable, there exists j ∈ {1, ..., n} such that

G(y, x̄, xj) +H(y, x̄, xj) ⊂ C +G(y, x̄, x̄) +H(y, x̄, x̄) for all y ∈ T (x̄, xj).
(7)

Since G is upper C-monotone,

(G(y, xj , x̄)−H(y, x̄, xj)) ⊂ (−C − {G(y, x̄, xj) +H(y, x̄, xj)})
for all y ∈ T (x̄, xj)

and then together with (7), we deduce

(G(y, xj , x̄)−H(y, x̄, xj)) ⊂ (−C − {G(y, x̄, x̄) +H(y, x̄, x̄)}) (8)
for all y ∈ T (x̄, xj).

A combination of (6) and (8) gives

(C \ {0}) ∩ (−C − {G(yj , x̄, x̄) +H(yj , x̄, x̄)}) �= ∅.

It follows that

(G(yj , x̄, x̄) +H(yj , x̄, x̄)) ∩ −(C \ {0}) �= ∅.

This is impossible by Assumption 4.
Further, we continue the proof as in step 1 of Theorem 3.

Theorem 6. Assume that

1. for any x′ ∈ D, the set
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A5(x′) = {x ∈ D| (G(y, x, x′)−H(y, x′, x)) ⊂ int C
for some y ∈ T (x, x′)}

is open in D;
2. the multivalued mapping G+H is diagonally lower (T,C)-quasiconvex in

the third variable with G(y, x, x)+H(y, x, x) ⊂ C, for any (y, x) ∈ D×K;
3. for any fixed y ∈ K, the multivalued mapping G(y, ·, ·) : D ×D → 2Y is

upper C-monotone.
4. (G(y, x, x) +H(y, x, x)) ∩ −int C = ∅ for all (y, x) ∈ K ×D.

Then there exists x̄ ∈ D such that

x̄ ∈ S(x̄) and
(G(y, x, x̄)−H(y, x̄, x)) �⊂ int C for all x ∈ S(x̄), y ∈ T (x̄, x).

Proof. The proof proceeds exactly as the one in step 1 of Theorem 3 with M1

replaced by

M5(x) = {x′ ∈ D| (G(y, x′, x)−H(y, x, x′)) ⊂ int C
for some y ∈ T (x, x′)}.

Similarly, as in (1) we obtain

(G(yi, xi, x̄)−H(yi, x̄, xi)) ⊂ int C for i = 1, ..., n, yi ∈ T (x̄, xi). (9)

Since the multivalued mapping G+H is diagonally lower (T,C)-quasiconvex
in the third variable, there exists j ∈ {1, ..., n} such that

G(y, x̄, xj) +H(y, x̄, xj) ∩ (C +G(y, x̄, x̄) +H(y, x̄, x̄)) �= ∅
for all y ∈ T (x̄, xj).

Since G is upper C-monotone, we then have

G(y, x̄, xj) +H(y, x̄, xj) ⊂ (−C − {G(y, xj , x̄)−H(y, x̄, xj)})
⊂ (−C − int C) = −int C for all y ∈ T (x̄, xj).

Together with (9), we conclude

(C +G(yi, x̄, x̄) +H(yi, x̄, x̄)) ∩ −int C �= ∅.
It is impossible by Assumption 4.
Further, we continue the proof as in step 1 of Theorem 3.

Theorem 7. Assume that

1. for any x′ ∈ D, the set

A6(x′) = {x ∈ D| (G(y, x, x′)−H(y, x′, x)) ∩ int C �= ∅
for some y ∈ T (x, x′)}

is open in D;
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2. the multivalued mapping G+H is diagonally upper (T,C)-quasiconvex in
the third variable;

3. for any fixed y ∈ K, the multivalued mapping G(y, ·, ·) : D ×D → 2Y is
upper C-monotone.

4. (G(y, x, x) +H(y, x, x)) ⊂ C for all (y, x) ∈ K ×D.

Then there exists x̄ ∈ D such that

x̄ ∈ S(x̄) and
(G(y, x, x̄)−H(y, x̄, x)) ∩ int C = ∅ for all x ∈ S(x̄), y ∈ T (x̄, x).

Proof. The proof proceeds exactly as the one in step 1 of Theorem 3 with M1

replaced by

M6(x) = {x′ ∈ D| (G(y, x′, x)−H(y, x, x′)) ∩ int C �= ∅
for some y ∈ T (x, x′)}.

Similarly, as in (1) we obtain

(G(yi, xi, x̄)−H(yi, x̄, xi))∩ int C �= ∅ for i = 1, ..., n, yi ∈ T (x̄, xi). (10)

Since the multivalued mapping G+H is diagonally upper (T,C)-quasiconvex
in the third variable, there exists j ∈ {1, ..., n} such that

(G(y, x̄, xj)+H(y, x̄, xj)) ⊂ (C+G(y, x̄, x̄)+H(y, x̄, x̄)) for all y ∈ T (x̄, xj).

Remarking that
(G(y, x̄, x̄) +H(y, x̄, x̄)) ⊂ C,

we obtain

(G(y, x̄, xj) +H(y, x̄, xj)) ⊂ C for all y ∈ T (x̄, xj). (11)

Since G is upper C-monotone, we then have

(G (y, xj , x̄)−H(y, x̄, xj)) ⊂ (−C − {G(y, x̄, xj) +H(y, x̄, xj)})
for all y ∈ T (x̄, xj).

Taking account of (11), we conclude that

(G(y, xj , x̄)−H(y, x̄, xj)) ⊂ −C for all y ∈ T (x̄, xj).

A combination of (10) and (11) gives

int C ∩ (−C) �= ∅.
It is impossible, since C is a pointed cone.
Further, we continue the proof as in step 1 of Theorem 3.
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Remark 1.

1. In the case G(y, x, x′) = {0} (resp. H(y, x, x′) = {0}) for all (y, x, x′) ∈
K ×D ×D, the above theorems show the existence of solutions of quasi-
equilibrium inclusion problems of the Ky Fan (of the Browder–Minty,
respectively) type. These also generalize the results obtained by Luc and
Tan [7], Minh and Tan [8, 9], and many other well-known results for
vector optimization problems, variational inequalities, equilibrium, quasi-
equilibrium problems concerning scalar and vector functions optimization,
etc.

2. If G and H are single-valued mappings, then we can see that step 1
of Theorem 3 coincides with step 2 of Theorem 3, step 3 of Theorem
3 with step 4 of Theorem 3, and step 5 of Theorem 3 with step 6 of
Theorem 3.

Further, the following propositions give sufficient conditions putting on the
multivalued mappings T and F such that conditions 1 of the earlier theorems
are satisfied.

Theorem 8. Let F : K×D → 2Y be a lower C-continuous multivalued map-
ping with nonempty values and T : D → 2K be a lower continuous multivalued
mapping with nonempty values. Then the set

A1 = {x ∈ D| F (T (x), x) �⊂ −C}
is open in D.

Proof. Let x̄ ∈ A1 be arbitrary. We have F (T (x̄), x̄) �⊂ −C. Therefore, there
exists ȳ ∈ T (x̄) such that F (ȳ, x̄) �⊂ −C. Since F is lower C-continuous at
(ȳ, x̄) ∈ K ×D, then for any neighborhood V of the origin in Y one can find
neighborhoods U of x̄,W of ȳ such that

F (ȳ, x̄) ⊂ F (y, x) + V − C for all (y, x) ∈W × U.

Since T is lower continuous at x̄, one can find a neighborhood U0 ⊂ U of x̄
such that

T (x) ∩W �= ∅ for all x ∈ U0 ∩D.
Hence, for any x ∈ U0 ∩D there is y ∈ T (x) ∩W , such that

F (ȳ, x̄) ⊂ F (y, x) + V − C.

If there is some x ∈ U0 ∩ D, y ∈ T (x), F (y, x) ⊂ −C, then we have
F (ȳ, x̄) ⊂ V −C for any V . It then follows that F (ȳ, x̄) ⊂ −C and we have a
contradiction. So, we have shown that

F (T (x), x) �⊂ −C for all x ∈ U0 ∩D.
This means that U0 ∩D ⊂ A1 and then A1 is open in D.
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Theorem 9. Let F : K×D → 2Y be an upper C-continuous multivalued map-
ping with nonempty values and T : D → 2K be a lower continuous multivalued
mapping with nonempty closed values. Then the set

A2 = {x ∈ D| F (y, x) ∩ (−C) = ∅ for some y ∈ T (x)}

is open in D.

Proof. Let x̄ ∈ A2 be arbitrary, F (ȳ, x̄)∩ (−C) = ∅, for some ȳ ∈ T (x̄). Since
F is upper C-continuous at (ȳ, x̄) ∈ K ×D, then for any neighborhood V of
the origin in Y one can find neighborhoods U of x̄,Wof ȳ such that

F (y, x) ⊂ F (ȳ, x̄) + V + C for all (y, x) ∈W × U.

Since T is lower continuous at x̄, one can find a neighborhood U0 of x̄ such
that

T (x) ∩W �= ∅ for all x ∈ U0 ∩D.
Therefore, for any x ∈ U0 ∩D there is y ∈ T (x) ∩W, we have

F (y, x) ⊂ F (ȳ, x̄0) + V + C.

If there is some x ∈ U0 ∩ D, y ∈ T (x), F (y, x) ∩ (−C) �= ∅, then we have
(F (ȳ, x̄)+V +C)∩(−C) �= ∅ for any V . It then follows that F (ȳ, x̄)∩(−C) �= ∅
and we have a contradiction. So, we have shown that

F (T (x), x) ∩ (−C) =� ∅ for all x ∈ U0 ∩D.

This means that U0 ∩D ⊂ A2 and then A2 is open in D.

Analogously, we can prove the following propositions.

Proposition 1. Let F : K × D → 2Y be an upper C-continuous multival-
ued mapping with nonempty values and T : D → 2K be a lower continuous
multivalued mapping with nonempty values. Then the set

A3 = {x ∈ D| F (y, x) ⊂ int C for some y ∈ T (x)}

is open in D.

Proposition 2. Let F : K × D → 2Y be a lower C-continuous multivalued
mapping with nonempty values and T : D → 2K be a lower continuous multi-
valued mapping with nonempty values. Then the set

A4 = {x ∈ D| F (y, x) ∩ int C �= ∅ for some y ∈ T (x)}

is open in D.
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Remark 2.

1. Assume that the multivalued mappings T,G, and H are given as in step
1–6 of Theorem 3 with nonempty values. In addition, suppose that T
is a lower continuous multivalued mapping. For any fixed x ∈ D if the
multivalued mapping F : K ×D → D defined by

F (y, x′) = G(y, x, x′)−H(y, x′, x), (y, x′) ∈ K ×D,

is lower, upper, upper, and lower C-continuous, then condition 1 of steps
1,2,5, and 6 of Theorem 3 is satisfied, respectively.

2. Assume that there exists a cone C̃ ⊂ Y such that C̃ is not whole space
Y and (C \ {0}) ⊂ int C̃ and the mapping T is lower continuous, the
mapping F defined as above is upper (resp. lower) C-continuous, then
step 3 of Theorem 3 (resp. step 4 of Theorem 3) is also true without
condition 1 (apply steps 5 and 6 of Theorem 3 with C replaced by C̃).

To conclude this section, we consider the simple case when G and H are
real functions. We can see that steps 1–6 of Theorem 3–are extensions of a
result by Blum and Oettli to vector and multivalued problems. We have

Theorem 10. Let D,K, S, T be as above with T lower continuous. Let G,H :
K ×D ×D → R be real functions satisfying the following conditions:

1. for any fixed (y, x) ∈ K ×D the function F : D → R defined by F (x′) =
G(y, x, x′) −H(y, x′, x) is lower semi-continuous in the usual sense. For
any fixed, y ∈ K,x1, x2 ∈ D, the function g : [0, 1] → R defined by
g(t) = G(y, tx1 + (1 − t)x2, x2) is upper semi-continuous in the usual
sense.

2. for any fixed (y, x) ∈ K ×D,G(y, x, ·),H(y, x, ·) are convex functions.
3. for any fixed y ∈ K the function G(y, ·, ·) is monotone (i.e., G(y, x, x′) +
G(y, x′x) ≤ 0 for all x, x′ ∈ D).

4. G(y, x, x) = H(y, x, x) = 0 for all (y, x) ∈ K ×D.

Then there exists x̄ ∈ D such that x̄ ∈ S(x̄) and

G(y, x̄, x) +H(y, x̄, x) ≥ 0 for all x ∈ S(x̄), y ∈ T (x̄, x).

Proof. Take Y = R,C = R+, we can see that all assumptions in steps 1–6
of Theorem 3 are satisfied. Applying any of the theorems, we conclude that
there exists x̄ ∈ D with x̄ ∈ S(x̄) such that

G(y, x, x̄)−H(y, x̄, x) ≤ 0 for all x ∈ S(x̄), y ∈ T (x̄, x).

This is equivalent to

G(y, x̄, x) +H(y, x̄, x) ≥ 0 for all x ∈ S(x̄), y ∈ T (x̄, x)

(see the proof in [1]).
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Summary. In this chapter, we consider the response surface problems that are for-
mulated as the general quadratic programming. The general quadratic programming
is split into convex quadratic maximization, convex quadratic minimization, and in-
definite quadratic programming. Based on optimality conditions, we propose finite
algorithms for solving those problems. As application, some real practical problems
arising in the response surface, one of the main part of design of experiment, have
been solved numerically by the algorithms.

Key words: concave programming, quadratic programming, global opti-
mization, response surface problems

1 Introduction

The mathematical theory of experimental design is divided into two parts: de-
sign of extremal experiments and response surface problems. The main prin-
ciple of extremal experiment is to obtain the maximum information about
investigated process for a given number of experiments and reduce the num-
ber of experiments for a given precision for the model expressed by nonlinear
regression functions. Meanwhile, the response surface deals with optimization
problems defined over a given criteria of experiment and experimental region.
In general, in design of experiment there are three types of optimization prob-
lems. First type requires to choose some design of experiments, in other words
ways of construction of experimental data related to the model of the process,
satisfying certain properties called optimality criteria. For example, there are
A, D, E, and G optimality criteria. Such optimization problems arising in
design of extremal experiments are usually deterministic and multiextremum.
The second type of optimization is to solve identification problems or to find
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unknown parameters of the regression models for a fixed design of experiment
and data.

The last is the response surface optimization problem. It is assumed that
the experimenter is concerned with a technological process involving some re-
sponse f which depends on the input variables x1, x2, . . . , xn from a given ex-
perimental region. The standard assumptions on f are that f is twice differen-
tiable on the experimental region and the independent variables x1, x2, . . . , xn

are controlled in the experimental process and measured with negligible error.
The experimental region of variables can be even nonconvex set but in most
cases, for simplicity, the experimenter restrict usually himself to spherical or
box type of regions.

As an example, consider a situation where a chemist or chemical engineer
is interested in the yield (output), f , of chemical reaction. The output depends
on the reaction temperature (x1), reaction pressure (x2), concentration of one
of the reactants (x2), etc. In general, one has f = f(x1, x2, x3). The success
of the response surface analysis depends on the approximation of f in its
experimental region of variables by some polynomial, the so-called response
surface model. For example, if the approximating function is linear, then we
write f = d0 + d1x1 + · · · + dnxn. The response surface analysis for this
linear model was studied in [2]. It is also natural that for the experimenter
to consider second-order model as a generalized model of the linear model if
he does not feel the latter good in terms of adequacy. On the other hand,
the experimenter knows that the second-order model applied in the response
surface adequately represents many scientific phenomena. Assume that the
experimenter has the following second-order response surface model which is
an adequate representation of the experimental data:

f =
n∑

i=1

n∑
j=1

aijxixj +
n∑

j=1

djxj + q,

where coefficients aij , dj , q, i = 1, 2, . . . , n are assumed to be found by solving
an identification problem for a chosen design of experiment, for example,
orthogonal central composite design [17]. Note that xixj mean interactions
between two factors xi and xj .

Then response surface optimization problem is to find global extremum
of response surface models over an experimental region. In other words, to
obtain maximum (minimum) output on the experimental region is a goal of
the experimenter in the response surface problem. Main methods for solving
the response surface problems in the literature [1, 2, 4–6, 8, 13–18, 20, 23] are
local search algorithms based on descent methods.

This chapter is mainly motivated by the response surface analysis which
requires to solve the general quadratic programming problem globally. This
chapter is organized as follows. In Section 2, we describe the response surface
methodology. In Section 3, we consider the quadratic maximization problem
and propose an algorithm for its solution. In Sections 4 and 5, we consider
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the quadratic minimization and the indefinite quadratic programming, respec-
tively. In the last section, we deal with the response surface problems taken
from real engineering applications and give their numerical solutions obtained
by the proposed algorithms.

2 Response Surface Methodology

The actual plan of experimental levels in the x’s is called the experimental
design. Experimental designs for fitting a second-order response surface must
involve at least three levels of each variable so that the coefficients in the model
can be estimated. Obviously, the design that is automatically suggested by the
model requirements is the 3n factorial, a factorial experiment with each factor
at three levels. In general case, the coefficients of the second-order model can
be estimated by the least-squares method based on the following experimental
observation data:

x1 x2 . . . xn f
x11 x12 . . . x1n f1

x21 x22 . . . x2n f2

. . . . . . . . . . . . . . .
xm1 xm2 . . . xmn fm

Then according to the least-squares method, in order to find coefficients
A = {aij} and dj , i, j = 1, 2, . . . , n, we need to solve the following uncon-
strained minimization problem:

F (A, d) =
m∑

k=1

⎛⎝ n∑
i=1

n∑
j=1

aijxkixkj +
n∑

j=1

djxkj + q − fk

⎞⎠2

→ min .

Now a model which was assumed by the experimenter can be written as

fk =
n∑

i=1

n∑
j=1

aijxkixkj +
n∑

j=1

djxkj + q + εk, k = 1, 2, . . . ,m,

where εk is a random variable with zero mean and variance σ2.
In practice it is convenient to use the orthogonal central composite design

[20] which provides easy computations of the coefficients for the second-order
model. On the other hand, the most useful and versatile class of experimental
designs for fitting second-order models is the central composite design. This
design serves as a natural alternative to the 3n factorial design due to its
requirement of fewer experimental observations and its flexibility. The central
composite design is the 2n factorial or fractional factorial (the levels of each
variable coded to the usual −1, +1) augmented by the following.
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x1 x2 x3 . . . xn

0 0 0 . . . 0
−α 0 0 . . . 0
α 0 0 . . . 0
0 −α 0 . . . 0
0 α 0 . . . 0
0 0 −α . . . 0
0 0 α . . . 0
... . . . . . .

...
...

0 0 0 . . . −α
0 0 0 . . . α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

One can construct the central composite design by choosing the appropriate
value for α, the quantity which specifies the axial points. That is why, the
central composite design with respect to 3n-factorial provides a certain flexi-
bility for the experimenter. Values for α for an orthogonal central composite
design are given in the following table [20]:

n 2 3 4 5 6 7 8
α 1.00 1.216 1.414 1.596 1.761 1.910 2.045

The designs that are considered in the table contain a single center point.
In general case, α and the regression coefficients are computed by the formulas

α =
√

2(n/2−1)(
√
m− 2n/2), q =

∑m
k=1 fk

m
, dj =

∑m
j=1 xjifj

2n + 2α2
,

aik =

∑m
j=1 xjixjkfj

2n
, i, k = 1, 2, . . . , n, i �= k, aii =

∑m
j=1 x̃

2
jifj

d
,

d = 2n − (2n + 2α2)2

m
+ 2α4, x̃2

i = x2
i − x̄2

i , x̄
2
i =

1
m

m∑
j=1

x2
ji.

When we deal with first- and second-order models based on the complete
factorial experiment 2n, it is convenient to “code” the independent variables,
with (−1) representing the low level of a variable and (+1) the high level.
This, of course, corresponds to the transformation

xi = 2
(

yi − ȳi

xmax
i − xmin

i

)
, i = 1, 2, . . . , n,

where yi is the actual reading in the original units and ȳi = (xmax
i +xmin

i )
2 .

The scalars xmin
i and xmax

i are the corresponding low and high levels of the
variable yi.
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Assuming that the experimental region is box type, we can reformulate
the response surface problem as the general quadratic programming with box
constraints:

f(x) =
n∑

i=1

n∑
j=1

aijxixj +
n∑

j=1

djxj + q −→ min(max), x ∈ D, (1)

D = {x ∈ Rn | ai ≤ xi ≤ bi, i = 1, 2, . . . , n}.
Note that maximization or minimization of the response f depends on the
goal of the experimenter. For example, a chemical manufacturer is interested
in their products with maximum concentration of primary component. And
metallurgy researcher might be interested in the percentage of certain alloys
which result in minimum corrosion.

Now we can treat problem (1) as the quadratic convex maximization, the
quadratic convex minimization, and the indefinite quadratic programming
problems, respectively, depending on the matrix A = (aij), i, j = 1, 2, . . . , n.

3 Quadratic Convex Maximization Problem

Consider the quadratic maximization problem:

f(x) = 〈Cx, x〉+ 〈d, x〉+ q −→ max, x ∈ D, (2)

where C is a positive semidefinite (n× n) matrix and D ⊂ Rn is a nonempty
arbitrary subset of Rn. A vector d ∈ Rn and a number q ∈ R are given. Then
the optimality conditions for problem (2) are stated as follows.

Theorem 1 (Enkhbat [10]). Let z ∈ D be such that f ′(z) �= 0. Then z is
a solution of problem (2) if and only if

〈f ′(y), x− y〉 ≤ 0 for all y ∈ Ef(z)(f) and x ∈ D, (3)

where Ec(f) = {y ∈ Rn | f(y) = c}.
Now introduce the definitions.

Definition 1. The set Ef(z)(f) defined by

Ef(z)(f) = {y ∈ Rn | f(y) = f(z)}
is called the level set of f at z.

Definition 2. The set Am
z defined by

Am
z = {y1, y2, . . . , ym | yi ∈ Ef(z)(f), i = 1, 2, . . . ,m} (4)

is called the approximation set to the level set Ef(z)(f) at the point z.
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For further purpose, consider the following quadratic maximization prob-
lem over a box constraint:

f(x) = 〈Cx, x〉+ 〈d, x〉+ q −→ max, x ∈ D ⊂ Rn, (5)
D = {x ∈ Rn | ai ≤ xi ≤ bi, i = 1, 2, . . . , n},

where C is a symmetric positive semidefinite n × n matrix and the vectors
a, b, d ∈ Rn and a number q ∈ R are given.

Let z = (z1, z2, . . . , zn) be a local maximizer of problem (5). Then due to
[21], zi = ai ∨ bi, i = 1, 2, . . . , n. In order to construct an approximation set
Am

z take the following steps.
Define points v1, v2, . . . , vn+1 by formulas

vk
i =

⎧⎨⎩
zi if i �= k,
ak if zk = bk,
bk if zk = ak, i, k = 1, 2, . . . , n

(6)

and

vn+1
i =

{
ai if zi = bi,
bi if zi = ai, i = 1, 2, . . . , n. (7)

Clearly,

‖vn+1 − z‖ > ‖vk − z‖, k = 1, 2, . . . , n,
n∑

i=1

(ai − bi)2 = ‖vn+1 − z‖2.

Denote by hi vectors hi = vi − z, i = 1, 2, . . . , n + 1. Note that 〈hk, hj〉 =
0, k �= j, k, j = 1, 2, . . . , n. Define the approximation set An+1

z by

An+1
z = {y1, y2, . . . , yn+1 | yi ∈ Ef(z)(f), yi = z−αih

i, i = 1, . . . , n+1}, (8)

where αi = 〈2Cz+d,hi〉
〈Chi,hi〉 , i = 1, 2, . . . , n+ 1.

Then, an algorithm for solving (5) is described in the following.

Algorithm 1

Input: A convex quadratic function f and a box set D.
Output: An approximate solution x to problem (5); i.e., an approximate
global maximizer of f over D.
Step 1. Choose a point x0 ∈ D. Set k := 0.
Step 2. Find a local maximizer zk ∈ D by the projected gradient method
starting with an initial approximation point xk.
Step 3. Construct an approximation set An+1

zk at the point zk by formulas
(6), (7), and (8).
Step 4. For each yi ∈ An+1

zk , i = 1, 2, . . . , n+ 1 solve the problems
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〈f ′(yi), x〉 −→ max, x ∈ D,
which have analytical solutions ui, i = 1, 2, . . . , n+ 1 found as

ui
s =

{
as if (2Cyi + d)s ≤ 0,
bs if (2Cyi + d)s > 0,

where i = 1, 2, . . . , n+ 1 and s = 1, 2, . . . , n.
Step 5. Find a number j ∈ {1, 2, . . . , n+ 1} such that

θk
n+1 = 〈f ′(yj), uj − yj〉 = max

i=1,2,...,n+1
〈f ′(yi), ui − yi〉.

Step 6. If θk
n+1 > 0 then xk+1 := uj , k := k + 1 and go to step 1.

Step 7. Find y ∈ Ef(zk)(f) such that

y = zk − 〈2Czk + d, uj − zk〉
〈C(uj − zk), uj − zk〉 (u

j − zk).

Step 8. Solve the problem 〈f ′(y), x〉 −→ max, x ∈ D.
Let v be the solution, i.e., 〈f ′(y), v〉 = max

x∈D
〈f ′(y), x〉. Compute θk = 〈f ′(y),

v − y〉.
Step 9. If θk > 0 then xk+1 := v, k := k+ 1 and go to step 1. Otherwise, zk

is an approximate maximizer and terminate.

4 Indefinite Quadratic Programming

Consider the general quadratic programming problem of the form.

f(x) = 〈Cx, x〉+ 〈d, x〉+ q −→ min, x ∈ D, (9)

where D = {x ∈ Rn | ai ≤ xi ≤ bi, i = 1, 2, . . . , n} is a box set, C is a
symmetric indefinite n× n matrix, and a, b, d ∈ Rn, q ∈ R.

We use the fact that a symmetric quadratic matrix can be presented as
a difference of a two positive semidefinite matrices [19]. Let C ′ and C ′′ be
positive semidefinite matrices such that C = C ′ − C ′.

Define the convex functions ϕ(x) and ψ(x) as follows:

ϕ(x) = 〈C ′x, x〉+ 〈d, x〉+ q,

ψ(x) = 〈C ′′x, x〉.
Then, problem (9) reduces to its equivalent so-called a d.c. programming
problem:

f(x) = ϕ(x)− ψ(x) −→ min, x ∈ D. (10)

Moreover, it can be shown that the latter is equivalent to the following convex
maximization problem:
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g(x, xn+1) = ψ(x)− xn+1 −→ max, (11)

subject to ϕ(x)− xn+1 ≤ 0, x ∈ D.
Clearly, if (z, zn+1) is a solution to problem (11) then z is a solution to

(10) with ϕ(z) = zn+1. Denote by D̄ and Ēg(z,zn+1)(g) the following sets:

D̄ = {(x, xn+1) ∈ D ×R | ϕ(x)− xn+1 ≤ 0},
Ēg(z,zn+1)(g) = {(y, yn+1) ∈ Rn+1 | g(y, yn+1) = g(z, zn+1)}.

Then optimality conditions for problem (11) are given by the following theo-
rem.

Theorem 2. A point (z, zn+1) ∈ D̄ is a solution of problem (11) if and only
if

〈ψ′(y), x− y〉 − xn+1 + yn+1 ≤ 0 (12)

hold for all (y, yn+1) ∈ Ēg(z,zn+1)(g) and (x, xn+1) ∈ D̄.

The proof is immediate from Theorem 1.
An algorithm for solving problem (11) is constructed similar to Algorithm

1, but we need to specify a way of constructing approximation set to the level
set Ē and choose an appropriate method for solving the problem

〈g′(yk, yk
n+1), (x, xn+1)〉 −→ max, (x, xn+1) ∈ D̄ (13)

at kth iteration.
Let zk, zk

n+1 be a stationary point or a local maximizer of problem (11)
found by applying one of the gradient methods. Suppose that we have an
approximation set Am

zk to the level set Eψ(zk)(ψ) of function ψ(x) at a point
zk. Define points yi

n+1, i = 1, 2, . . . ,m as yi
n+1 = −g(zk, zk

n+1) + ψ(yi). Then
an approximation set to the level set Ē is as follows:

Ām
(zk,zk

n+1)
= {(y1, y1

n+1), . . . , (y
m, ym

n+1) | (yi, yi
n+1) ∈ Ēg(zk,zk

n+1)
(g),

i = 1, 2, . . . ,m}. (14)

Note that problem (13) can be written in the form

〈ψ′(yk), x〉 − xn+1 −→ max, ϕ(x)− xn+1 ≤ 0, x ∈ D.
We can easily reduce this to its equivalent problem

ϕ(x)− 〈ψ′(yk), x〉 −→ min, x ∈ D,
which is convex (quadratic) minimization problem due to the positive semidef-
inite matrix C ′. If xk is a solution of the latter then (xk, xk

n+1) is a solution
to problem (13) with xk

n+1 = ϕ(xk).
Now based on the above results and Algorithm 1, we can describe Al-

gorithm 2 for solving problem (9) or its equivalent convex maximization
problem (11).
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Algorithm 2
Input: A quadratic function f and a box set D. The positive semidefinite
matrices C ′ and C ′′ be such that C = C ′ − C ′′.
Output: An approximate solution x to problem (9); i.e., an approximate
global minimizer of f over D.
Step 1. Choose a point (x0, x0

n+1) ∈ D̄ = {(x, xn+1) ∈ Rn × R | 〈C ′x, x〉 +
〈d, x〉+ q − xn+1 ≤ 0, x ∈ D}. Set k := 0.
Step 2. Let zk, zk

n+1 be a stationary point or a local maximizer of the problem

g(x, xn+1) = 〈C ′′x, x〉 − xn+1 −→ max, x ∈ D̄

found by one of the gradient methods starting with the initial approximation
point (xk, xk

n+1).
Step 3. Construct an approximation set An+1

zk at the point zk by formulas (6),
(7), and (8). Then construct Ān+1

(zk,zk
n+1)

by (14) with yi
n+1 = −g(zk, zk

n+1) +

〈C ′′yi, yi〉, i = 1, 2, . . . , n+ 1.
Step 4. For each yi ∈ An+1

zk , i = 1, 2, . . . , n+ 1 solve the problems

〈C ′x, x〉+ 〈d− 2C ′′yi, x〉+ q −→ min, x ∈ D,

by the projection gradient method. Let ui, i = 1, 2, . . . , n + 1 be solutions.
Then set ui

n+1 = 〈C ′ui, ui〉+ 〈d, ui〉+ q, i = 1, 2, . . . , n+ 1.
Step 5. Find a number j ∈ {1, 2, . . . , n+ 1} such that

θk
n+1 = 〈2C ′′yj , uj − yj〉 − uj

n+1 + yj
n+1

= max
i=1,2,...,n+1

(〈2C ′′yi, ui − yi〉 − ui
n+1 + yi

n+1).

Step 6. If θk
n+1 > 0 then xk+1 := uj , xk+1

n+1 = uj
n+1, k := k + 1 and go to

step 1.
Step 7. Find a (y, yn+1) ∈ Ēg(zk,zk

n+1)
(g) such that

y = zk − 〈2C ′′zk, uj − zk〉
〈C ′′(uj − zk), uj − zk〉 (u

j − zk),

yn+1 = −g(zk, zk
n+1) + 〈C ′′y, y〉.

Step 8. Solve the minimization problem

〈C ′x, x〉+ 〈d− 2C ′′y, x〉+ q −→ min, x ∈ D,

by the projection gradient method. Let v be solution of this problem. Then
set vn+1 = 〈C ′v, v〉+ 〈d, v〉+ q.
Step 9. If 〈2C ′′y, v−y〉−vn+1 +yn+1 > 0 then xk+1 := v, xk+1

n+1 = vn+1, k :=
k+1 and go to step 1. Otherwise, zk is an approximate minimizer of problem
(9) and terminate.
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5 Quadratic Convex Minimization Problem

Consider the quadratic minimization problem

f(x) = 〈Cx, x〉+ 〈d, x〉+ q −→ min, x ∈ D, (15)

where D = {x ∈ Rn | ai ≤ xi ≤ bi, i = 1, 2, . . . , n} is a box set, C is a
symmetric positive semidefinite n× n matrix, and a, b, d ∈ Rn, q ∈ R.

Then the well-known optimality condition for problem (15) is in Rockafel-
lar [21]:

Theorem 3. Let z ∈ D. Then z is a solution of problem (15) if and only if

〈f ′(z), x− z〉 ≥ 0 for allx ∈ D. (16)

Introduce the index set

I(x) = { i | xi = ai ∨ bi, i = 1, 2, . . . , n}

at a point x ∈ D.
Then the optimality condition (16) for problem (15) is transformed into

the following condition in terms of the index set.

Theorem 4. z ∈ D is a solution to problem (15) if and only if⎧⎨⎩
2(Cz)j + dj = 0 ifj /∈ I(z),
2(Cz)j + dj ≥ 0 ifj ∈ I(z) : zj = aj ,
2(Cz)j + dj ≤ 0 ifj ∈ I(z) : zj = bj , i = 1, 2, . . . , n.

(17)

An algorithm for solving problem (15) based on Theorem 4 is given in [12].
Before describing this algorithm denote by PD(y) a projection of a point
y ∈ Rn on the box set D which is a solution to the following quadratic
programming problem:

‖x− y‖2 −→ min, x ∈ D.

We can solve this problem analytically to obtain its solution as follows [25]:

(PD(y))i =

⎧⎨⎩
ai if yi ≤ ai,
yi if ai < yi < bi,
bi if yi ≥ bi, i = 1, 2, . . . , n.

(18)

Algorithm 3
Input: A quadratic convex function f and a box set D.
Output: A solution x to problem (15).
Step 1. Choose a parameter γ ∈ (0, 1), a point y ∈ Rn and find a x0 = PD(y)
by (18). Set k := 0 and m := 0.
Step 2. Construct the index set
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I(xk) = { i | xk
i = ai ∨ bi, i = 1, 2, . . . , n}

at a point xk ∈ D.
Step 3. Let uk be a solution of the problem

f(x) = 〈Cx, x〉+ 〈d, x〉+ q −→ min, xi = ai ∨ bi, i ∈ I(xk)

solved by the conjugate gradient method.
Step 4. If uk /∈ D then construct xk+1 = xk + λk(uk − xk), where

λk = min

{
min
j∈Jk

bj − xk
j

uk
j − xk

j

; min
j /∈Jk

xk
j − aj

xk
j − uk

j

}
Jk = {i | uk

i − xk
j > 0, i /∈ I(xk), 1 ≤ i ≤ n},

and set k := k + 1, and return to step 2.
Step 5. Check optimality condition (17) at the point uk by⎧⎨⎩

2(Cuk)j + dj = 0 if j /∈ I(uk),
2(Cuk)j + dj ≥ 0 if j ∈ I(uk) : uk

j = aj ,
2(Cuk)j + dj ≤ 0 if j ∈ I(uk) : uk

j = bj , i = 1, 2, . . . , n.

If this condition hold then uk is a solution and terminate. Otherwise go to the
next step.
Step 6. Construct the point v = PD(uk − αf ′(uk) with α := γm.
Step 7. If f(v) < f(uk) then go to step 2 with xk := v. Otherwise set
m := m+ 1 and go to step 6.

The convergence of this algorithm is given by the following theorem in [12].

Theorem 5. The sequence {uk}, (k = 0, 1, . . .) generated by Algorithm 3 con-
verges to the solution of problem (15) in a finite number of steps.

5.1 Response Surface Practical Problems

The following problems, from [3, 7, 9, 11, 20, 22, 23], arisen in actual industrial
technological process have been considered. First those problems have been
classified into convex and nonconvex and then solved numerically by Algo-
rithms 1–3 on IBM PC/586 in Pascal. For the sake of simplicity, we omitted
units of measure of all variables (factors) in some problems. Consider the list
of these problems. Note that some of these problems were considered in their
coded variables in the interval [−1, 1].

Problem 1 (Myers [20]). Consider a chemical process in which 1,2-prepra-
ndial is being converted to 2,5-dimethylpiperazine. The object is to examine
the effect of several factors on the course of the reaction and to determine
the conditions which give rise to maximum conversion. The following four
variables were studied:



132 R. Enkhbat and Y. Bazarsad

NH3: amount of ammonia, grams
T : temperature, ◦C
H2O: amount of water, grams
P : hydrogen pressure, psi
The variables are coded in the following way:

x1 =
NH3 − 102

51
, x2 =

T − 250
20

, x3 =
H2O− 300

200
, x4 =

P − 850
350

.

Using the central composite design, a second-order model was obtained as
follows:

f = 40.198− 1.511x1 + 1.284x2 − 8.739x3 + 4.955x4 − 6.332x2
1 − 4.292x2

2

+0.020x2
3 − 2.506x2

4 + 2.194x1x2 − 0.144x1x3 + 1.581x1x4 + 8.006x2x3

+2.806x2x4 + 0.294x3x4.

This problem is an indefinite program and solved by Algorithm 2 providing
solutions:
x1 = −0.403, x2 = −0.9899, x3 = −0.995 with the improved result of
f = 47.9742 against f = 43.53 in [20, p. 86].

Problem 2 (Myers [20]). It is of interest to know the relationship between
the yield of mercaptobenzothiazole (MBT) and the independent variables,
time and temperature. A fitted second-order response surface was found to be

f = 82.17− 1.01x1 − 8.61x2 + 1.40x2
1 − 8.76x2

2 − 7.20x1x2,

where

x1 =
time (h)− 12

8
, x2 =

temp. (◦C)− 250
30

.

The experimenter is interested in maximum yield. The problem is an indefinite
programming problem with the solutions x1 = 0.996, x2 = −0.8999 and the
improved result f = 89.66 against f = 85.602 in [20, p. 105].

Problem 3 (Myers [20]). Data are presented in Table 1 from an experiment
designed for estimating optimum conditions for storing bovine semen to retain
maximum survival. The variables under study are the % sodium citrate (x1),
% glycerol (x2), and the equilibration time in hours (x3). The important
response measured was % survival of motile spermatozoa (f). Table 1 gives
the experimental data for a three-dimensional central composite design with
α = 2.0.

The coded factor levels are given by

−2 −1 0 1 2
x1 1.6 2.3 3.0 3.7 4.4
x2 2.0 5.0 8.0 11.0 14.0
x3 4.0 10.0 16.0 22.0 28.0
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Table 1. Treatment combination and survival

Treatment % Sodium % Glycerol Equilibration % Survival
combination citrate time, h

1 −1 −1 −1 57
2 1 −1 −1 40
3 −1 1 −1 19
4 1 1 −1 40
5 −1 −1 1 54
6 1 −1 1 41
7 −1 1 1 21
8 1 1 1 43
9 0 0 0 63

10 −2 0 0 28
11 2 0 0 11
12 0 −2 0 2
13 0 2 0 18
14 0 0 −2 56

p15 0 0 2 46

The response function was estimated by the usual techniques and found
to be

f = 66.3889− 1.4400x1 − 2.2812x2 − 1.0950x3 − 11.3561x2
1 − 13.6798x2

2

−3.4972x2
3 + 9.1000x1x2 + 0.6075x1x3 + 0.8125x2x3

in terms of the coded independent variables. This problem is a convex mini-
mization (concave maximization) and solution was found by Algorithm 3. The
result is given by

x1 = −0.1198, x2 = −0.1286, x3 = −0.1819.

These values correspond to the uncoded x levels of 2.9% sodium citrate, 7.6%
glycerol, and 14.9 h equilibration time. The estimated response at the maxi-
mum point is f = 66.72% survival.

Problem 4 (Myers [20]). In a process designed to purify an antibiotic
product (Lind, Goldin, and Hickman), it was decided that a response surface
study should be employed in the solvent extraction operation in the process.
The yield of the product at this stage of the process and the cost of the
operation represent very critical responses. The operation involved extracting
the antibiotic into an organic solvent. Certain chemicals, called reagents A and
B, were added to form material which is soluble in the solvent. Concentration
of the two reagents and the pH in the extraction environment were chosen as
the independent variables to be studied. These variables are coded as follows:

x1 =
%A− 0.5

0.5
, x2 =

%B − 0.5
0.5

, x3 =
pH− 5.0

0.5
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and then the second-order model was

f = 65.05 + 1.63x1 + 3.28x2 + 0.93x3 − 2.93x2
1 − 2.02x2

2

−1.07x2
3 − 0.53x1x2 − 0.68x1x3 − 1.44x2x3.

This problem is a convex minimization (or concave maximization) problem
and its solution is x1 = 0.2256, x2 = 0.8589, x3 = −0.2150. These correspond
to %A = 0.6128,%B = 0.9294,pH = 4.8925.

Problem 5 (Sebostyanov and Sebostyanov [23]). f(x) = −0.31x2
1 −

0.125x2
2 + 0.09x1x2 + 187x1 + 9x2 − 29700 −→ max, x ∈ D,

D = {x ∈ R2 | 316 ≤ x1 ≤ 334, 130 ≤ x2 ≤ 170}, where f is the strength
against washing, x2 the tension of strings, x1 some angle.

This is a quadratic convex minimization problem and its solution is x1 =
323.74, x2 = 152.436.

Problem 6 (Anderson and Mclean [3]). f(x) = 8.300x1x2+8.076x1x3−
6.625x1x4 + 3.213x2x3 − 16.998x2x4 − 17.127x3x4 − 1.558x1 − 2.351x2 −
2.426x3 +14.372x4 −→ max, x ∈ D, D = {x ∈ R4 | 0.40 ≤ x1 ≤ 0.60, 0.10 ≤
x2 ≤ 0.50, 0.10 ≤ x3 ≤ 0.50, 0.03 ≤ x4 ≤ 0.08}, where f is the amount of
illumination (measured in 1000 candles), x1 magnesium, x2 sodium nitrate,
x3 strontium nitrate, x4 binder.

This is an indefinite program and its solution is x1 = 0.5233, x2 =
0.2299, x3 = 0.1668, x4 = 0.080.

Problem 7 (Sebostyanov and Sebostyanov [23]). f(x) = 0.438x2
1 +

0.423x2
2 + 0.313x2

3 − 0.145x1x2 + 0.385x1x3 − 0.08x2x3 + 0.687x1 + 0.193x2 +
0.736x3 + 15.39 −→ max, x ∈ D, D = {x ∈ R3 | − 1 ≤ x1 ≤ 1,−1 ≤ x2 ≤
1,−1 ≤ x3 ≤ 1}, where f is the thickness of string, x1 the tension of strings,
x2 some angle, x3 the density of strings.

This is a quadratic convex maximization problem and its solution in coded
variables is x1 = 1, x2 = −1, x3 = 1.

Problem 8 (Sebostyanov and Sebostyanov [23]). f(x) = 0.52x2
1 −

0.25x2
2− 0.93x2

3− 0.23x1x2− 0.22x1x3− 0.02x2x3 +2.02x1 +0.7x2− 0.52x3 +
17.8 −→ min, x ∈ D, D = {x ∈ R3 | − 1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1,−1 ≤
x3 ≤ 1}, where f is the pressure on one string, x1 the tension of strings, x2

the some angle, x3 the thickness.
This is an indefinite programming problem and its solution in coded vari-

ables is x1 = −1, x2 = 1, x3 = 1.

Problem 9 (Bazarsad, Enkhtuya and Enkhbat [7]). f(x) = 0.4x2
1 −

0.16x2
2 +0.11x2

3−0.26x1x2−0.14x1x3 +0.01x2x3 +0.38x1 +1.02x2 +0.49x3 +
37.3 −→ max, x ∈ D,
D = {x ∈ R3 | − 1.682 ≤ x1 ≤ 1.682,−1.682 ≤ x2 ≤ 1.682,−1.682 ≤
x3 ≤ 1.682}, where f is the average diameter of wool strings, x1 the distance
between two spinning wheels, x2 speed, x3 moisture.
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This is an indefinite programming problem and its solution in coded vari-
ables is x1 = −1.682, x2 = 1.682, x3 = 1.682.

Problem 10 (Bazarsad, Enkhtuya, and Enkhbat [7]). f(x) = 0.66x2
1 +

2.14x2
2 + 0.87x2

3 − 0.2x1x3 + 0.28x2x3 + 1.39x1 − 3.21x2 − 1.5x3 + 23.16 −→
min, x ∈ D,
D = {x ∈ R3 | − 1.682 ≤ x1 ≤ 1.682,−1.682 ≤ x2 ≤ 1.682,−1.682 ≤
x3 ≤ 1.682}, where f is the quantity of defective wool strings, x1 the distance
between two spinning wheels, x2 speed, x3 moisture.

This is a convex minimization problem and its solution in coded variables
is x1 = −0.95, x2 = −0.70, x3 = 0.63.

Problem 11 (Ruvinshtein and Bolkova [22]). f(x) = 5.92x2
4−17.71x2

5+
3.323x1x2 + 1.42x1x3 + 2.433x1x4 + 2.793x1x5 + 1.55x1x6 + 1.916x2x5 −
3.356x3x4−2.159x3x6−1.713x4x5−1.906x4x6−2.489x1+1.759x3+1.626x4+
1.139x6 + 72.496 −→ max, x ∈ D,
D = {x ∈ R6 | −1 ≤ xi ≤ 1, i = 1, 2, . . . , 6}, where f is the efficiency against
dustiness, x1 the moisture of coal, x2 the elasticity of coal, x3 the quantity of
air, x4 amplitude, x5 frequency, x6 first category of 1 mm.

This is an indefinite programming problem and its solution in coded vari-
ables is x1 = 1, x2 = 1, x3 = −1, x4 = 1, x5 = 0.08, x6 = 1.

Problem 12 (Enkhbat and Chuluunhuyag [11]). f(x) = −0.34x2
1 +

7.64x2
2 − 0.061x2

3 − 12.7x1x2 − 1.5x1x3 − 1.04x2x3 −→ min, x ∈ D,
D = {x ∈ R3 | 1.25 ≤ x1 ≤ 2, 0.8 ≤ x2 ≤ 1.2, 5 ≤ x3 ≤ 14}, where f is the
refinement of water, x1 the diameter of filtration, x2 the height of filtration,
x3 the speed of filtration.

This is an indefinite programming problem and its solution is x1 = 2, x2 =
1.2, x3 = 14.

Problem 13 (Chimedochir and Enkhbat [9]). f(x) = 7.33x2
1−5.451x2

2−
0.621x2

3 +7.454x1x2−5.573x1x3 +0.807x2x3 +64.366x1 +5.593x2 +4.296x3 +
23.16 −→ max, x ∈ D,
D = {x ∈ R3 | 4 ≤ x1 ≤ 21, 0.001 ≤ x2 ≤ 0.005, 35 ≤ x3 ≤ 55}, where f is the
quantity of carotenoid in the fruit “chazargan,” x1 the frequency of apparat,
x2 the amplitude of apparat, x3 the temperature of diffusion process.

This is an indefinite programming problem and its solution is x1 = 4, x2 =
0.005, x3 = 35.

Problem 14 (Tsetgee [24]). f(x) = −2.35x2
1−0.56x2

2−6.84x2
3+0.29x1x2+

0.16x1x3 + 0.15x2x3 − 1.45x1 − 0.43x2 − 1.66x3 + 23.24 −→ min, x ∈ D,
D = {x ∈ R3 | 135 ≤ x1 ≤ 175, 5 ≤ x2 ≤ 15, 24 ≤ x3 ≤ 30}, where f is the
absorbency of oil in cookies, x1 the frying temperature, x2 the frying time,
x3-moisture.

This is formulated as a convex maximization problem and its solution is
x1 = 175, x2 = 5, x3 = 30.
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Problem 15 (Ruvinshtein and Balkova [22]). f(x) = −0.7x2
1−0.17x2

2−
1.38x2

3 + 0.38x2
4 + 0.25x2

5 − 0.26x1x2 + 0.57x1x3 + 0.19x1x4 + 1.95x1x5 +
0.16x2x3 + 0.89x2x4 + 0.86x2x5 + 1.3x3x4 + 1.4x3x5 + 0.55x4x5 − 0.61x1 +
0.03x2 + 0.23x3 − 0.85x4 − 0.48x5 + 86.17 −→ max, x ∈ D,
D = {x ∈ R5 | − 2 ≤ xi ≤ 2, i = 1, 2, . . . , 5}, where f is the concentration,
x1 the duration of powdering process, x2 the amount of butylic xanthogenate,
x3 the duration of flotation, x4 the amount of sodium sulfite, x5 pH pulti.

This is an indefinite programming problem and its solution in coded vari-
ables is x1 = 2, x2 = 2, x3 = 2, x4 = 2, x5 = 2.

6 Conclusion

We carried out the analysis of the response surface problems using the general
quadratic programming. The proposed algorithms converge to a global solu-
tion in a finite number of steps and were numerically tested on real response
surface engineering problems.
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Summary. This chapter presents a canonical dual approach for solving a mixed-
integer quadratic minimization problem with fixed cost terms. We show that this
well-known NP-hard problem in R

2n can be transformed into a continuous concave
maximization dual problem over a convex feasible subset of R

n with zero duality
gap. The resulting canonical dual problem can be solved easily, under certain condi-
tions, by traditional convex programming methods. Both existence and uniqueness
of global optimal solutions are discussed. Application to a decoupled mixed-integer
problem is illustrated and analytic solutions for both a global minimizer and a
global maximizer are obtained. Examples for both decoupled and general nonconvex
problems are presented. Furthermore, we discuss connections between the proposed
canonical duality theory approach and the classical Lagrangian duality approach.
An open problem is proposed for future study.

Key words: canonical duality, Lagrangian duality, global optimization,
mixed-integer programming, fixed-charge objective function

1 Primal Problem and Motivation

In this chapter, we address the following quadratic, mixed-integer fixed-charge
problem:

(P	) : min
{
P (x,v) =

1
2
xTAx + cT x− fT v | (x,v) ∈ Xv

}
, (1)

where A = AT ∈ Rn×n is a given (generally indefinite) matrix, c, f ∈ Rn

are given vectors, the binary variable vector v ∈ {0, 1}n represents fixed cost
variables, and the feasible space Xv is defined by

A. Chinchuluun et al. (eds.), Optimization and Optimal Control,
Springer Optimization and Its Applications 39, DOI 10.1007/978-0-387-89496-6 7,
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Xv = {(x,v) ∈ Rn × {0, 1}n | − v ≤ x ≤ v}. (2)

Problem (P	) arises in mathematical economics, facility location, and lot-
sizing application contexts [1, 5, 32], where the constraints of the form x ∈
[−v,v] with v ∈ {0, 1}n are referred to as fixed-charge constraints [39]. These
types of constraints have received a great deal of attention in the integer
programming literature and many different types of valid inequalities have
been developed to deal with this structure (see, for instance, [4, 34, 39]).
Since we do not assume that the matrix A is positive semidefinite, the problem
remains NP-hard, even with all the fixed cost variables vi (i = 1, . . . , n) fixed
to one [36, 38, 40, 41]. In order to numerically solve the latter continuous, box-
constrained quadratic program, many effective methods have been developed
[2, 3, 6, 9–12, 18, 22, 33, 35, 42–44]. Naturally, the problem becomes even
more challenging with the addition of the fixed-charge feature.

Canonical duality theory, as developed in [15–17], is a potentially powerful
tool for solving general continuous and discrete problems in nonconvex and
global optimization. This theory is also called the pure complementary varia-
tional principle in continuum mechanics and physics [37], where it was orig-
inally proposed by Gao and Strang for nonlinear variational/boundary value
problems in 1989 [30]. Recently, by using this theory, perfect dual problems
(with zero duality gap) have been formulated for a class of nonconvex polyno-
mial minimization problems with box and integer constraints [7, 19, 21, 27].
These results exhibit how such nonconvex and discrete minimization prob-
lems can be converted into continuous concave maximization dual problems.
Under certain conditions, these canonical dual problems can be solved easily
to obtain global minimizers of the underlying primal problems.

The main purpose of this chapter is to present a canonical duality approach
for solving the fixed-charged problem (1). The chapter is organized as follows.
In Section 2, a canonical dual problem is presented, which is equivalent to
the primal problem in the sense that they have the same set of KKT points,
where these KKT points for the discrete problem are defined with respect to a
derived equivalent continuous problem. Connections of the derived dual with
the Lagrangian dual under similar transformations are also discussed. The ex-
tremality conditions of these KKT solutions are explicitly specified in Section
3. Both existence and uniqueness of solutions are discussed in Section 4 and
an illustrative example is presented in Section 5. Finally, certain concluding
remarks and open problems are given in Section 6.

2 Canonical Dual Problem

In order to formulate a canonical dual problem for (1) that exhibits a zero
duality gap, the key step is to rewrite the box constraints −v ≤ x ≤ v, v ∈
{0, 1}n in the (relaxed) quadratic form [7, 21]:

x ◦ x ≤ v, v ◦ (v − e) ≤ 0, (3)
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where e = {1}n is an n-vector of all ones and the notation x ◦ v := (x1v1,
x2v2,. . ., xnvn) denotes the Hadamard product for any two vectors x,v ∈
Rn. Accordingly, consider the following (relaxed) reformulation of the primal
problem (P	):

(Pr) : min
{
P (x,v) =

1
2
xTAx + cT x− fT v : x ◦ x ≤ v,v ◦ (v − e) ≤ 0

}
.

(4)

Introducing a nonlinear transformation (i.e., the so-called geometrical
mapping):

y = Λ(x,v) =
(

ε(x)
ξ(x)

)
=

(
x ◦ x− v
v ◦ v − v

)
∈ R2n,

the constraints (3) can be replaced identically by Λ(x,v) ≤ 0. Let

V (y) =
{

0 if y ≤ 0 ∈ R2n

+∞ otherwise

and let y∗ =
(

σ
τ

)
∈ R2n be the vector of dual variables associated with the

corresponding restrictions y ≤ 0. The sup-Fenchel conjugate of V (y) can be
defined by

V 
(y∗) = sup
y∈R2n

{〈y,y∗〉 − V (y)}

= sup
ε∈Rn

sup
ξ∈Rn

{εT σ + ξT τ − V (y)}

=
{

0 if σ ≥ 0 ∈ Rn, τ ≥ 0 ∈ Rn,
+∞ otherwise.

By the theory of convex analysis, the following extended canonical duality
relations holds:

y∗ ∈ ∂V (y) ⇔ y ∈ ∂V 
(y∗) ⇔ V (y) + V 
(y∗) = yT y∗, (5)

or equivalently

ε ≤ 0 ⇔ σ ≥ 0 ⇔ εT σ = 0, (6)
ξ ≤ 0 ⇔ τ ≥ 0 ⇔ ξT τ = 0. (7)

Observe that the complementarity condition ξT τ = τT (v ◦ v − v) = 0 in (7)
leads to the integrality condition v ◦ v − v = 0 ∀τ > 0.

Letting U(x) = − 1
2x

TAx − cT x + fT v, the relaxed primal problem (Pr)
can be written in the following unconstrained canonical form [17]:

(Pc) : min {Π(x,v) = V (Λ(x,v))− U(x,v) | x ∈ Rn, v ∈ Rn} . (8)
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Following the original idea of Gao and Strang [30], we replace V (Λ(x,v)) in (8)
by the Fenchel–Young equality V (Λ(x,v)) = Λ(x,v)T y∗ − V 
(y∗). Then the
total complementary function Ξ(x,v,σ, τ ) : Rn×Rn×Rn×Rn → R∪{−∞}
associated with the problem (Pc) can be defined as below:

Ξ(x,v,σ, τ ) = Λ(x,v)T y∗ − V 
(y∗)− U(x,v)

=
1
2
xTG(σ)x + cT x + vT Diag (τ )v − (f + σ + τ )T v (9)

−V 
(y∗),

where
G(σ) = A+ 2Diag(σ), (10)

and where the notation Diag(σ) stands for a diagonal matrix with σi,
i = 1, ..., n, being its diagonal elements. By this complementary function,
the canonical dual function Πd : Rn × Rn → R ∪ {−∞} can be obtained by

Πd(σ, τ ) = sta{Ξ(x,v,σ, τ ) | x ∈ Rn,v ∈ Rn} = UΛ(σ, τ )−V 
(σ, τ ), (11)

where UΛ(σ, τ ) is the Λ-conjugate transformation defined by

UΛ(σ, τ ) = sta{Λ(x,v)T y∗ − U(x,v)| x ∈ Rn,v ∈ Rn}. (12)

Accordingly, introducing a dual feasible space

S
 = {(σ, τ ) ∈ Rn × Rn| σ ≥ 0, τ > 0, c ∈ Col(G(σ))}, (13)

where Col(G) denotes the column space of G (i.e., a vector space spanned by
the columns of the matrixG), the canonical dual function can be formulated as

Πd(σ, τ ) = UΛ(σ, τ ) = −1
2
cTG+(σ)c− 1

4

n∑
i=1

1
τ i

(fi +σi + τ i)2 ∀(σ, τ ) ∈ S
,

(14)
where G+ denotes the Moore–Penrose generalized inverse of G. Denoting

P d(σ, τ ) = −1
2
cTG+(σ)c− 1

4

n∑
i=1

1
τ i

(fi + σi + τ i)2 : S
 → R, (15)

the dual to (P	) can then be stated as the following:

(P
) : max
{
P d(σ, τ ) = −1

2
cTG+(σ)c− 1

4

n∑
i=1

1
τ i

(fi + σi + τ i)2 |

(σ, τ ) ∈ S


}
. (16)

For any given n-vectors t = {ti}n and s = {si}n, we denote t� s = {ti/si}n.
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Theorem 1 (Complementary Dual Principle). Problem (P
) is canonically
(i.e., perfectly) dual to the primal problem (P	) in the sense that if (σ̄, τ̄ ) ∈ S


is a KKT point of (P
), then the vector (x̄, v̄) defined by

x̄ = −G+(σ̄)c, (17)

v̄ =
1
2
(f + σ̄ + τ̄ )� τ̄ (18)

is feasible to the primal problem (P	), and

P (x̄, v̄) = Ξ(x̄, v̄, σ̄, τ̄ ) = P d(σ̄, τ̄ ). (19)

Proof. By introducing Lagrange multipliers (ε, ξ) ∈ Rn
− × Rn

− (where Rn
− is

the nonpositive orthant of Rn) associated with the respective inequalities in
(13), the Lagrangian Θ : S
 × Rn

− × Rn
− → R for problem (P
) is given by

Θ(σ, τ , ε, ξ) = P d(σ, τ )− εT σ − ξT τ . (20)

It is easy to prove that the criticality conditions

∇σΘ(σ̄, τ̄ , ε, ξ) = 0, ∇τΘ(σ̄, τ̄ , ε, ξ) = 0

lead to

ε = ∇σP
d(σ̄, τ̄ ) = x̄(σ̄) ◦ x̄(σ̄)− v̄(σ̄, τ̄ ), (21)

ξ = ∇τP
d(σ̄, τ̄ ) = v̄(σ̄, τ̄ ) ◦ v̄(σ̄, τ̄ )− v̄(σ̄, τ̄ ), (22)

and the accompanying KKT conditions include

0 ≤ σ̄ ⊥ ε ≤ 0, (23)
0 < τ̄ ⊥ ξ ≤ 0, (24)

where x̄(σ̄) = −G+(σ̄)c and v̄(σ̄, τ̄ ) = 1
2 (f + σ̄ + τ̄ ) � τ̄ . By the strictly

inequality condition τ̄ > 0, the complementarity condition τ̄T (v̄ ◦ v̄− v̄) = 0
in (24) leads to the integrality condition (v̄ ◦ v̄ − v̄) = 0. This shows that
if (σ̄, τ̄ ) is a KKT point of the problem (P
), then (x̄, v̄) is feasible to the
discrete primal problem (P	), and moreover, by

Using (17) and (18), we have

P d(σ̄, τ̄ ) =
1
2
cTG+(σ̄)c− cTG+(σ̄)c− 2v̄T Diag (τ̄ )v̄ + v̄T Diag (τ̄ )v̄

=
1
2
x̄TAx̄ + x̄T Diag (σ̄)x̄ + cT x̄− v̄T (σ̄ + τ̄ + f) + τ̄T (v̄ ◦ v̄)

= Ξ(x̄, v̄, σ̄, τ̄ ) = P (x̄, v̄) + σ̄T (x̄ ◦ x̄− v̄) + τ̄T (v̄ ◦ v̄ − v̄)
= P (x̄, v̄)

due to the complementarity conditions (23) and (24). This proves the
theorem. �
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In order to understand the canonical duality theory and its relation to the
nonlinear Lagrangian duality theory, we have the following remark.

Remark 1 (Connections with Lagrangian duality). Note that by replacing
the linear inequality constraints and the integer constraints in Xv with the
quadratic forms in (3), where the second set of inequalities is written as equal-
ity restrictions, the primal problem (P	) can be equivalently reformulated as
the continuous programming problem:

(Pb) : min
{
P (x,v) =

1
2
xTAx+ cT x− fT v : x ◦ x ≤ v, v ◦ (v− e) = 0

}
.

(25)

Introducing the Lagrange multipliers σ ≥ 0 and τ ∈ Rn to relax the inequality
constraint v− x ◦ x ≥ 0 and the equality constraint v ◦ e− v ◦ v = 0 in (25),
respectively, the Lagrangian associated with the reformulated problem (25)
can be defined as follows:

L(x,v,σ, τ ) = P (x,v) +
n∑

i=1

[σi(x2
i − vi) + τ i(v2

i − vi)]. (26)

The corresponding Lagrangian dual function is given by

P ∗(σ, τ ) = inf
{
L(x,v,σ, τ ) : (x,v) ∈ R2n

}
. (27)

Now, observe that when τ i ≤ 0 for any i = {1, . . . , n}, the separable min-
imization over v in (27) leads to P ∗(σ, τ ) = −∞. Hence, since we wish to
maximize P ∗(σ, τ ) in the Lagrangian dual problem, we can restrict τ > 0.
Consequently, we obtain the following criticality conditions for (27):

∇xL(x,v,σ, τ ) = Ax + c + 2[Diag (σ)]x = 0, (28)
∇vL(x,v,σ, τ ) = −f − σ − τ + 2[Diag (τ )]v = 0. (29)

Defining G(σ) as in (10), we have from (28) that so long as c ∈ Col(G(σ)),
we get

x(σ) = −G+(σ)c. (30)

Furthermore, under the foregoing restriction τ > 0, we get from (29) that

v(σ) =
1
2
(f + σ + τ )� τ . (31)

Therefore, defining S
 as in (13), and substituting (30) and (31) into (26), the
Lagrangian dual function (27) can be reformulated as follows, where P d(σ, τ )
is given by (15), identically as for the the canonical dual derivation:

P ∗(σ, τ ) = inf
(x,v)∈R2n

L(x,v,σ, τ ) =
{
P d(σ, τ ) if (σ, τ ) ∈ S
,
−∞ otherwise.
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Therefore, the reformulated Lagrangian dual problem is given precisely by the
canonical dual problem (P
) stated in (16).

The key to achieving this equivalence is the appropriate transformation
(geometrical mapping) of the constraints into the quadratic form (3), or as
in (25), and the canonical duality relations (5), which is prompted by the
canonical duality approach. A detailed study on the geometrical mapping and
the canonical duality relations, i.e., the so-called constitutive laws, appears in
[15].

Remark 2. Theorem 1 shows that by the canonical duality theory, the NP-
hard discrete primal problem (P	) is actually equivalent to a continuous dual
problem (P
) with zero duality gap. In many applications, ifG(σ̄) is invertible,
then the KKT point (σ̄, τ̄ ) of the canonical dual problem (P
) is a critical
point of the canonical dual function P d(σ, τ ). If we want to find all extrema
(both local minima and maxima) of the nonconvex function P (x,v) on Xv,
the constraints in S
 can be ignored (the inequalities σ ≥ 0 and τ > 0 are
constraints only for the minimization problem (P	)), i.e., for each critical point
(σ̄, τ̄ ) of the canonical dual function P d(σ, τ ), the vector (x̄, v̄) defined by
(17) and (18) is a local extremum of the nonconvex function P (x,v) on Xv.
Particularly, for the following co-primal problem

(P
) : max{P (x,v)| (x,v) ∈ Xv} (32)

the associated canonical dual problem is

(P	) : min{P d(σ, τ )| (σ, τ ) ∈ S	}, (33)

where

S	 = {(σ, τ ) ∈ Rn × Rn| σ ≤ 0, τ < 0, c ∈ Col(G(σ))}. (34)

Parallel to Theorem 1, we have similar canonical duality results for problems
(P
) and (P	).

The extremality conditions will be studied in the next section.

3 Global Optimality Criteria

In this section, we present certain global optimality conditions for the non-
convex problem (P	). We first introduce some useful feasible spaces:

S+

 = {(σ, τ ) ∈ Rn × Rn | σ ≥ 0, τ > 0, G(σ) � 0}, (35)

S−	 = {(σ, τ ) ∈ Rn × Rn | σ ≤ 0, τ < 0, G(σ) ≺ 0}. (36)

By the triality theory developed in [15], we have the following results, where
y∗ = (σ, τ ).
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Theorem 2. Suppose that the vector ȳ∗ = (σ̄, τ̄ ) ∈ S+

 ∪S−	 is a critical point

of the dual function P d(σ, τ ). Let (x̄, v̄) =
(−G−1(σ̄)c, 1

2 (f + σ̄ + τ̄ )� τ̄
)
.

If ȳ∗ ∈ S+

 , then ȳ∗ is a global maximizer of P d on S+


 , the vector (x̄, v̄)
is a global minimizer of P on Xv, and

P (x̄, v̄) = min
(x,v)∈Xv

P (x,v) = max
(σ,τ )∈S+

�

P d(σ, τ ) = P d(σ̄, τ̄ ). (37)

If ȳ∗ ∈ S−	 , then ȳ∗ is a global minimizer of P d on S−	 , the vector (x̄, v̄)
is a global maximizer of P on Xv, and

P (x̄, v̄) = max
(x,v)∈Xv

P (x,v) = min
(σ,τ )∈S−

�

P d(σ, τ ) = P d(σ̄, τ̄ ). (38)

Proof. By Theorem 1 and the general results developed in [15] we know that if
the vector ȳ∗ is a critical point of problem (P
), then the vector (x̄, v̄) defined
by (17) and (18) is a feasible solution to problem (P	), and

P (x̄, v̄) = Ξ(x̄, v̄, σ̄, τ̄ ) = P d(σ̄, τ̄ ).

By the fact that the canonical dual function P d(y∗) is concave on S+

 , the

critical point ȳ∗ ∈ S+

 is a global maximizer of P d(y∗) over S+


 , and (x̄, v̄, ȳ∗)
is a saddle point of the total complementary function Ξ(x,v,y∗) on R2n×S+


 ,
i.e., Ξ is convex in (x,v) ∈ R2n = Rn×Rn and concave in y∗ ∈ S+


 . Thus, by
the (right) saddle min–max duality theory (see [15]), we have

P d(ȳ∗) = max
y∗∈S+

�

P d(y∗)= max
y∗∈S+

�

min
(x,v)∈R2n

Ξ(x,v,y∗)

= min
(x,v)∈R2n

max
y∗∈S+

�

Ξ(x,v,y∗)

= min
(x,v)∈R2n

{
P (x,v) + max

(σ,τ )∈S+
�

{
(x ◦ x− v)T σ + (v ◦ v − v)T τ

}}

= min
(x,v)∈R2n

{
P (x,v) + max

(σ,τ )∈S+
�

{
Λ(x,v)T y∗(σ, τ )− V 
(y∗(σ, τ ))

}}
= min

(x,v)∈Xv

P (x,v) = P (x̄, v̄)

due to the fact that

V (Λ(x,v)) = sup
y∗∈S+

�

{Λ(x,v)T y∗(σ, τ )− V 
(y∗(σ, τ ))}

=
{

0 if (x,v) ∈ Xv,
+∞ otherwise.

This proves statement (37).
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In order to prove statement (38), we introduce the Fenchel inf-conjugate

V 	(y∗) = inf
y∈R2n

{yT y∗ + V (y)} =
{

0 if y∗ ≤ 0,
−∞ otherwise. (39)

Therefore, the total complementary function associated with the co-primal
problem (P
) is

Ξ	(x,v,y∗) = Λ(x,v)T y∗ − V 	(y∗)− U(x,v), (40)

which is a left saddle function (see [15, Section 1.6]) on R2n × S−	 , i.e.,
Ξ	(x,v,y∗) is concave in (x,v) ∈ R2n and convex in S−	 . Thus, by the left
saddle min–max duality theory (see [15]), we have

P d(ȳ∗) = min
y∗∈S−

�

P d(y∗) = min
y∗∈S−

�

max
(x,v)∈R2n

Ξ(x,v,y∗)

= max
(x,v)∈R2n

min
y∗∈S−

�

Ξ(x,v,y∗)

= max
(x,v)∈R2n

{
P (x,v) + min

(σ,τ )∈S−
�

{
(x ◦ x− v)T σ + (v ◦ v − v)T τ

}}
= max

(x,v)∈R2n
{P (x,v) + V (Λ(x,v))}

= max
(x,v)∈Xv

P (x,v) = P (x̄, v̄)

due to the fact that

V (Λ(x,v)) = inf
y∗∈S−

�

{Λ(x,v)T y∗ + V 	(y∗)}

=
{

0 if (x,v) ∈ Xv,
−∞ otherwise.

This proves statement (38) and the theorem. �

Theorem 2 shows that the nonconvex quadratic mixed-integer minimiza-
tion problem (P	) is canonically dual to the following concave maximization
problem:

(P

+) : max

{
P d(σ, τ ) : (σ, τ ) ∈ S+




}
. (41)

Since P d(σ, τ ) is a continuous concave function over a convex feasible space
S+


 , if (σ̄, τ̄ ) ∈ S+

 is a critical point of P d(σ, τ ), it must be a global maximizer

of problem (P

+), and the vector (x̄, v̄) =

(−G−1(σ̄)c, 1
2 (f + σ̄ + τ̄ )� τ̄

)
is

a global minimizer of problem (P	). Particularly, for a fixed σ, let

P g(σ) = max
τ>0

P d(σ, τ ) = −1
2
cTG−1(σ)c−

n∑
i=1

(fi + σi)+, σ ∈ S+
σ , (42)
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where (ti)+ = max{ti, 0} and

S+
σ = {σ ∈ Rn| σ ≥ 0, σ �= −f , G(σ) � 0}. (43)

Furthermore, we denote δ(t)+ = {δi(ti)+}n ∈ Rn, where

δi(ti)+ =
{

1 if ti > 0,
0 if ti < 0, i = 1, . . . , n. (44)

Then the canonical dual problem (P

+) can be written in the following simple

form:
(Pg

+) : max
{
P g(σ) : σ ∈ S+

σ

}
. (45)

Theorem 3 (Analytic solution to (P	)). For the given A ∈ Rn×n and c,
f ∈ Rn, if σ̄ ∈ S+

σ is a critical point of P g(σ), then the vector

(x̄, v̄) = (−G−1(σ̄)c, δ(f + σ̄)+) (46)

is a global minimizer of (P	).

This theorem can be proved easily by using Theorem 2. Similar results
on analytic solution to nonconvex variational/boundary value problems were
originally obtained in [13, 14, 25]. In the next section we will study certain
existence and uniqueness conditions for the canonical dual problem to have a
critical point in S+

σ .

4 Existence and Uniqueness Criteria

Let
∂S+

σ = {σ ∈ S+
σ | detG(σ) = 0}. (47)

Based on the recent results given in [27, 28], we have the following theorem:

Theorem 4 (Existence and uniqueness criteria). For a given matrix A ∈
Rn×n and vectors c, f ∈ Rn, if for any given σ ∈ S+

σ ,

lim
α→0+

cT [G(σo + ασ)]+c = ∞ and lim
α→∞ cT [G(σo + ασ)]+c ≥ 0 ∀σo ∈ ∂S+

σ ,

(48)
then the canonical dual problem (Pg

+) has at least one critical point σ̄ ∈ S+
σ

and the vector
(x̄, v̄) =

(−G−1(σ̄)c, δ(f + σ̄)+
)

is a global optimizer of the primal problem (P	). Moreover, if

ci �= 0 σ̄i + fi �= 0 ∀i = 1, . . . , n, (49)

then the vector (x̄, v̄) is a unique global minimizer of (P	).
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Proof. By the fact that, on S+
σ , we have

∂G−1(σ)
∂σk

= −G−1(σ)
∂G(σ)
∂σk

G−1(σ),

the Hessian of the quadratic form − 1
2c

TG−1(σ)c is

H1σ2(σ) =
{−4xi(σ)G−1

ij (σ)xj(σ)
}
, (50)

where x(σ) = −G−1(σ)c. Therefore, the Hessian matrix of the dual objective
function P d is

H(σ, τ ) = ∇2P d(σ, τ ) =
(
H1σ2 +H2σ2 Hστ

Hτσ Hτ2

)
,

where

H2σ2 = Diag
{
− 1

2τ i

}
,

Hστ = Hτσ = Diag
{

(σi + fi)
2τ2

i

}
,

Hτ2 = Diag
{
− (σi + fi)2

2τ3
i

}
.

It is clear that

H1σ2(σ)  0, H2σ2(τ ) ≺ 0, Hτ2(σ, τ )  0 ∀(σ, τ ) ∈ S+

 , (51)

H1σ2(σ) ! 0, H2σ2(τ ) � 0, Hτ2(σ, τ ) ! 0 ∀(σ, τ ) ∈ S−	 . (52)

For any given non-zero vector w = (s, t) ∈ R2n, we have

wTH(σ, τ )w = sTH1σ2(σ)s +
n∑

i=1

− 1
2τ i

(
si − ti

σi + fi

τ i

)2

. (53)

Thus

∇2P d(σ, τ )  0 if (σ, τ ) ∈ S+

 ,

∇2P d(σ, τ ) ! 0 if (σ, τ ) ∈ S−	 .

Therefore, P d(σ, τ ) is concave on S+

 , convex on S−	 , and P g(σ) is concave

on S+
σ . From the conditions in (48), we have for any σ0 ∈ ∂S+

σ that

lim
α→0+

P g(σo + ασ) = −∞ ∀σ ∈ S+
σ (54)

and
lim

α→∞P g(σo + ασ) = −∞ ∀σ ∈ S+
σ . (55)
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This shows that the canonical dual function P g(σ) is concave and coercive on
the open set S+

σ . Therefore, by the theory of convex analysis, we know that
the canonical dual problem (Pg

+) has at least one critical point σ̄ ∈ S+
σ , which

is a global maximizer of P g(σ) over S+
σ . By Theorem 2, the corresponding

vector (x̄, v̄) is a global optimizer of the primal problem (P	). Moreover, if
the conditions in (49) hold, then H1σ2(σ) ≺ 0; Hτ2(σ, τ ) ≺ 0 ∀(σ, τ ) ∈ S+


 ,
and the Hessian ∇2P d(σ, τ ) ≺ 0, i.e., P d(σ, τ ) is strictly concave on S+


 .
Therefore, (P
) has a unique critical point in S+


 , which implies (Pg
+) has

a unique critical point in S+
σ and the primal problem has a unique global

minimizer. �

5 Application to Decoupled Problem

We now apply the theory presented in this chapter to a decoupled system. For
simplicity, let A = Diag (a) be a diagonal matrix with a = {ai} ∈ Rn being
its diagonal elements and consider the following extremal problem:

min /max

{
P (x,v) =

n∑
i=1

(
1
2
aix

2
i + cixi − fivi

)}
(56)

s.t. −vi ≤ xi ≤ vi, vi ∈ {0, 1}, i = 1, . . . , n. (57)

The notation min/maxP stands for finding both minima and maxima of P .
For this decoupled problem, the canonical dual function has a simple form
given by

P d(σ, τ ) = −1
2

n∑
i=1

(
c2i

ai + 2σi
+

(fi + σi + τ i)2

2τ i

)
. (58)

From the criticality condition ∇P d(σ, τ ) = 0, the critical points of P d(σ, τ )
can be obtained analytically as (with corresponding components)

σi ∈
{
−1

2
(ai ± ci),−fi

}
, τ i ∈

{
fi − 1

2
(ai ± ci), 0

}
∀i = 1, . . . , n. (59)

By Theorem 1, the corresponding primal solution is (for τ i > 0 ∀i):

(xi, vi) =
(
− ci
ai + 2σi

,
fi + σi + τ i

2τ i

)
, ∀i = 1, 2, . . . , n. (60)

Since each component of (σ, τ ) ∈ R2n has two possible corresponding solu-
tions according to (60), the canonical dual function P d has 2n critical points!
By Theorem 2, the global extrema of the primal problem can be determined
by the following theorem:
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Theorem 5. For any given a, c, f ∈ Rn, if ci �= 0, ∀i, and if

max
{
−1

2
(ai ± ci)

}
> 0 and max

{
fi − 1

2
(ai ± ci)

}
> 0 ∀i = 1, . . . , n,

(61)
the canonical dual function P d has a unique critical point

(σ
, τ 
) =
(

max
{
−1

2
(ai ± ci)

}
∀i,max

{
fi − 1

2
(ai ± ci)

}
∀i

)
∈ S+


 , (62)

which is a global maximizer of P d(σ, τ ) on S+

 , and

(x
,v
) =
({
− ci
|ci|

}
, e

)
(63)

is a global minimizer of P (x,v) on Xv.
On the other hand, if ci �= 0, ∀i, and if

min
{
−1

2
(ai ± ci)

}
< 0 and min

{
fi − 1

2
(ai ± ci)

}
< 0 ∀i = 1, . . . , n, (64)

the canonical dual function P d has a unique critical point

(σ	, τ 	) =
(

min
{
−1

2
(ai ± ci)

}
∀i,min

{
fi − 1

2
(ai ± ci)

}
∀i

)
∈ S−	 , (65)

which is a global minimizer of P d(σ, τ ) on S−	 and

(x	,v	) =
({

ci
|ci|

}
, e

)
(66)

is a global maximizer of P (x,v) on Xv �

6 Examples

6.1 Two-Dimensional Decoupled Problem

Let a1 = −3, a2 = 2, c1 = 5, c2 = −8, f1 = −2, and f2 = 2. The canonical
dual function P d has a total of nine critical points (σ, τ )k, k = 1, . . . , 9, and
the corresponding results are listed below:

(σ, τ )1 = (4, 3, 2, 5), (x,v)1 = (−1, 1, 1, 1), P d
1 = −13.5;

(σ, τ )2 = (2, 3, 0, 5), (x,v)2 = (0, 1, 0, 1), P d
2 = −9.0;

(σ, τ )3 = (4,−2, 2, 0), (x,v)3 = (−1, 0, 1, 0), P d
3 = −4.5;

(σ, τ )4 = (−1, 3,−3, 5), (x,v)4 = (1, 1, 1, 1), P d
4 = −3.5;

(σ, τ )5 = (2,−2, 0, 0), (x,v)5 = (0, 0, 0, 0), P d
5 = 0;

(σ, τ )6 = (4,−5, 2,−3), (x,v)6 = (−1,−1, 1, 1), P d
6 = 2.5;

(σ, τ )7 = (−1,−2,−3, 0), (x,v)7 = (1, 0, 1, 0), P d
7 = 5.5;

(σ, τ )8 = (2,−5, 0,−3), (x,v)8 = (0,−1, 0, 1), P d
8 = 7;

(σ, τ )9 = (−1,−5,−3,−3), (x,v)9 = (1,−1, 1, 1), P d
9 = 12.5.
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By the fact that (σ, τ )1 ∈ S+

 and (σ, τ )9 ∈ S−	 , Theorem 5 tells us that

(x,v)1 is a global minimizer and (x,v)9 is a global maximizer of P (x,v).

6.2 General Nonconvex Problem

We let n = 10 and randomly choose c, f , and A, where

c = {16,−13,−12,−18,−11, 7, 11, 16,−4, 18}T ,

f = {11, 5, 13, 18, 6, 4,−16, 16,−20,−3}T ,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 9 9 9 1 9 4 1 5 9
2 5 7 3 2 10 7 2 8 2
7 2 6 6 2 2 6 1 7 5
5 5 2 9 6 3 9 5 7 8
2 9 1 9 8 10 9 4 4 5
8 2 1 9 7 3 7 3 1 4
4 2 8 2 2 6 6 2 4 2
4 7 7 10 2 5 7 5 6 3
3 6 9 10 1 8 6 5 9 5
7 7 2 7 7 3 7 7 8 6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By solving the canonical dual problem (Pg
+), we obtain the global maximizer

σ̄ = {7.7, 7.3, 6.3, 9.8, 4.3, 3.6, 11.9, 9.3, 7.8, 8.5}T

and
τ̄ = {18.7, 12.3, 19.3, 27.8, 10.3, 7.6, 4.1, 25.3, 12.2, 5.5}T .

The global minimizer of the primal problem (P) is then

x̄ = {−1.0, 1.0, 1.0, 1.0, 1.0,−1.0, 0,−1.0, 0,−1.0}T

v̄ = {1, 1, 1, 1, 1, 1, 0, 1, 0, 1}T ,

and P d(σ̄, τ̄ ) = −181 = P (x̄, v̄).

7 Concluding Remarks and Open Problems

We have studied in this chapter an application of canonical duality the-
ory to solve the mixed-integer quadratic optimization problem (P	) and its
co-problem (P
). Using an appropriate quadratic measure y = Λ(x,v) =
(x ◦x−v, v ◦v−v), the given nonconvex mixed-integer primal problem was
converted into a canonical dual problem in continuous space and its relation-
ship with the classical Lagrangian duality under a similar transformation was
revealed. As a special application of the triality theory developed in [15], The-
orem 2 shows that the canonical dual problem (P
) is a concave maximization
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over the convex dual feasible space S+

 and the co-dual (P	) is a convex min-

imization problem on S−	 . Therefore, both problems can be solved via convex
programming optimization methods under the stated conditions. Theorem 3
shows that the mixed-integer programming problem in R2n is canonically dual
to a concave maximization problem (Pg

+) over a convex feasible set S+
σ ⊂ Rn,

which can be solved efficiently via well-developed convex minimization tech-
niques. Certain existence and uniqueness conditions related to critical points
belonging to a derived dual feasible space for yielding a zero duality gap were
established in Theorem 4. An illustrative example using a decoupled prob-
lem was presented and analytic solutions to both problems (P	) and (P
)
were obtained. A detailed study on more general mixed-integer programming
problems along with semi-analytic solutions is forthcoming.

The canonical duality theory developed in [15] is composed mainly of (1)
a canonical dual transformation methodology, (2) a complementary dual prin-
ciple, and (3) an associated triality theory. The canonical dual transforma-
tion can be used to formulate perfect dual problems without a duality gap.
The complementary dual principle shows that the nonsmooth/discrete pri-
mal problems are equivalent to continuous dual problems and a wide class
of constrained nonconvex primal problems in Rn can be transformed to un-
constrained canonical dual problems (with zero duality gap) on convex dual
feasible spaces in Rm with m" n (see [17, 19, 29]). The triality theory can be
used to identify both global and local extrema and to develop powerful canon-
ical dual algorithms for solving general nonconvex/nonsmooth problems in
complex systems. As mentioned in many applications of the canonical duality
theory (see [7, 15, 17, 19, 21, 28, 45]), the geometrical nonlinear (quadratic)
operator y = Λ(x,v) plays a key role in the canonical duality theory. For
general optimization problems in finite dimensional spaces, this quadratic op-
erator can be viewed as an Euclidian distance type measure. For nonconvex
variational problems in infinite dimensional spaces, this geometrical measure
can be viewed as a Cauchy–Riemann metric tensor (see [15]), while the canon-
ical duality relations (5) are controlled by certain constitutive laws [15]. The
complementary dual principle was an open problem in nonconvex mechanics
for more than 40 years (see [37]). This problem was solved partially by Gao
and Strang in 1989 [30] when a complementary gap function was discovered in
nonconvex variational problems. This gap function provides a sufficient condi-
tion for global optimality. The pure complementary dual principle for general
nonconvex systems was finally proposed in 1998 [13] and the triality theory
reveals the intrinsic duality pattern in complex systems. Generally speaking,
for any given primal problem, so long as the geometrical operator Λ is chosen
properly, the canonical dual problem can be formulated in a standard fash-
ion, and the triality theory can then be used to identify both global and local
extrema and to develop powerful algorithms.

The results presented in this chapter can be generalized for solving
more complicated problems in global optimization (cf. [21, 28]). Recently,
the canonical duality theory has been used successfully for solving a class
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of nonconvex problems in both finite and infinite dimensional spaces, in-
cluding integer programming [7, 45], fractional programming [8], nonconvex
polynomial-exponential minimization [20, 26], nonconvex minimization with
general nonconvex constraints [28], and nonconvex variational/boundary value
problems in mathematical physics and material science [13, 14, 24, 25, 31].

By the fact that the canonical duality is a precise theory (no duality gap), if
the canonical dual function P g(σ) for the fixed cost quadratic programming
problem has a critical point σ̄ ∈ S+

σ , then the primal problem (P	) has a
unique global minimizer

(x̄, v̄) =
(−G+(σ̄)c, δ(f + σ̄)+

)
. (67)

However, if problem (Pg
+) has no critical point in S+

σ , primal problem (P	)
could be difficult to solve. In this case the canonical dual problem is given by

(Pg) : min sta{P g(σ) : σ ∈ Sa}, (68)

where
Sa = {σ ∈ Rn

+| f + σ �= 0, c ∈ Col(G(σ))}. (69)

By the canonical duality theory, if σ̄ ∈ Sa is a solution of (Pg), the cor-
responding vector (x̄, v̄) given by (67) is a global minimizer of the primal
problem (P	). Since the canonical dual function P g(σ) is nonconvex on Sa,
to solve the minimal stationary problem (Pg) could be a challenging task and
many related theoretical issues remain open.
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Summary. An algorithm for finding the intersection of the convex hulls of two
sets consisting of finitely many points each is proposed. The problem is modelled by
means of a quasidifferentiable (in the sense of Demyanov and Rubinov) optimization
problem, which is solved by a descent method for quasidifferentiable functions.

Key words: quasidifferential calculus, separation of point sets, intersection
of sets, hausdorff distance, numerical methods

1 Introduction

The following problem is considered: Given two sets A and B, it is required to
separate these sets. Due to the general setting, the intersection A∩B may be
nonempty. In this case it is required to assign the points of the sets A and B
to the difference sets A\B or B \A or to establish that they belong to A∩B.
This task has to be done in the best way. The best result we can obtain is a
complete assignment to one of the three sets.

Problems of such a type are of great practical importance. They arise,
e. g. in medical or technical diagnosis, in pattern recognition, classification. Of
course, different approaches towards a solution are possible. Here we describe
a way of solving the original setting by means of a nondifferentiable, or more
exactly, a quasidifferentiable optimization problem. The first stimulus for such
a treatment of the problem was given in the papers of Demyanov [2] and
Demyanov et al. [3]. This special nonconvex problem will then be solved by
means of an algorithm developed for the minimization of quasidifferentiable
functions due to Bagirov [1]. Especially, we search for the intersection of the
convex hulls of two sets consisting of finitely many points each.

This chapter is organized as follows. After introducing some notions needed
in the following we explain basic definitions and properties of quasidifferentials
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c© Springer Science+Business Media, LLC 2010
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as well as most important rules of quasidifferential calculus due to Demyanov
and Rubinov [4–6]. The next section deals with a numerical algorithm for min-
imizing some quasidifferentiable function. This algorithm has been proposed
by Bagirov [1] and is closely related to algorithms used in Luderer and Weigelt
[9] as well as Herklotz and Luderer [7]. After describing and discussing the
principal method, a numerical algorithm and some preliminary test results
are presented.

2 Basic Notions

In the following, all sets and vectors belong to the finite-dimensional space
Rn, although some extensions to more general spaces are possible.

Definition 1. Given two sets M , N , the Hausdorff distance �(M,N) between
them is defined as

�(M,N) = max
{

max
n∈N

min
m∈M

||m− n||, max
m∈M

min
n∈N

||m− n||
}
.

Note that later on the Hausdorff distance is used as a stop criterion.

Definition 2. By
dC

y = |max
c∈C

〈c, y〉 −min
c∈C

〈c, y〉|
we denote the extension of a set C in direction y.

Let two sets A, B, as well as a vector y be given.

Definition 3. Under the directional difference DDAB
y of two sets A and B

with respect to the direction y we understand the number

DDAB
y = |max

a∈A
〈a, y〉 −max

b∈B
〈b, y〉|.

This notion will serve as a basis for finding some cutting hyperplane.

Definition 4. The directional derivative of a function f at point x in direction
r is defined as

f ′(x; r) = lim
t↓0

f(x+ tr)− f(x)
t

.

3 Quasidifferential Calculus

This calculus has been developed and proposed by Demyanov and Rubinov
(see, e. g. [4, 5]). It is designed for a large class of nondifferentiable, nonconvex
functions. Quasidifferential calculus generalizes both differential calculus and
convex analysis.
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Definition 5. The function f is said to be quasidifferentiable at x ∈ Rn if
f is directionally differentiable and there exists a pair of convex compact sets
Df(x) = [∂(x), ∂(x)] such that

f ′(x; r) = max
v∈∂(x)

〈v, r〉+ min
w∈∂(x)

〈w, r〉, (1)

where ∂(x) is the subdifferential and ∂(x) is the superdifferential.

Let us note that the pair of sets constituting the quasidifferential to a
function at a certain point is not unique, because if Df(x) = [∂(x), ∂(x)]
is a quasidifferential, then for any convex compact set W , the pair of sets
[∂(x) +W,∂(x)−W ] is also a quasidifferential.

If in the class of quasidifferentials there is one of the formDf(x) = [∂(x),0]
(Df(x) = [0, ∂(x)], resp.), then the function f is called subdifferentiable (su-
perdifferentiable, resp.) at the point x.

Remark 1. In the case of a convex function the subdifferential ∂(x) in the
sense of Demyanov and Rubinov coincides with the subdifferential ∂f(x) in
the sense of convex analysis, and from (1) we get the well-known relation
f ′(x : r) = maxv∈∂f(x)〈v, r〉. On the other hand, if f is differentiable at
the point x, then ∂(x) (or ∂(x)) consists of only one element, the derivative
∇f(x), so that Df(x) = [∇f(x),0] or, equivalently, Df(x) = [0,∇f(x)]. Thus
f ′(x; r) = 〈∇f(x), r〉.
For deriving rules of calculation for quasidifferentials, we need the following
two rules of set algebra:

• Addition of a pair of sets Ui, Vi ⊂ Rn, i = 1, 2:

[U1, V1] + [U2, V2] = [U1 + U2, V1 + V2].

• Multiplication of [U, V ], U, V ⊂ Rn, by a scalar λ ∈ R:

λ · [U, V ] =

{
[λU, λV ], λ ≥ 0,

[λV, λU ], λ < 0.

Using these operations, we are able to describe the following rules for
operations with quasidifferentiable sets (note that the family of quasidifferen-
tiable functions is closed with respect to addition, multiplication by a scalar,
maximization, minimization, etc.):

Let the functions fi, i = 1, . . . ,m, be quasidifferentiable at x and let
λ ∈ R. Then the functions f1 + f2, λf , ϕ(x) = maxi=1,...,n fi(x), ξ(x) =
mini=1,...,n fi(x) are also quasidifferentiable at x, where

D(f1 + f2)(x) = Df1(x) +Df2(x),
D(λf)(x) = λDf(x),

Dϕ(x) = [∂ϕ(x), ∂ϕ(x)], Dξ(x) = [∂ξ(x), ∂ξ(x)]
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with

∂ϕ(x) = co
⋃

k∈R(x)

(
∂fk(x)−

∑
i∈R(x)
i �= k

∂fi(x)
)
, ∂ϕ(x) =

∑
k∈R(x)

∂fk(x),

∂ξ(x) =
∑

k∈Q(x)

∂fk(x), ∂ξ(x) = co
⋃

k∈Q(x)

(
∂fk(x)−

∑
i∈Q(x)
i �= k

∂fi(x)
)
,

where [∂fk(x), ∂fk(x)] are quasidifferentials of f at x, R(x) = {i | fi(x) =
ϕ(x)}, Q(x) = {i | fi(x) = ξ(x)}.
3.1 Necessary Optimality Conditions

Consider the unconstrained problem

f(x) → min
x∈Rn

.

Theorem 1. (Necessary optimality condition) Let f : Rn → R be quasidif-
ferentiable and let x∗ be a local minimizer of f . Then the following inclusion
holds:

− ∂f(x∗) ⊂ ∂f(x∗). (2)

For the proof, see, e.g. [5].
Points satisfying (2) are called inf-stationary points. Later on we also need

the weakened notion of ε-inf-stationary points, satisfying the relation

−∂f(x) ⊂ ∂εf(x),

where ∂εf(x) is some enlargement of the set ∂f(x).
It is an advantage of quasidifferential calculus that we are able to dis-

tinguish between inf-stationary and sup-stationary points. In case x is not
inf-stationary, one can indicate a direction of descent and even compute the
(possibly non-unique) direction of steepest descent.

Theorem 2. (Direction of steepest descent) If x0 is not inf-stationary, then

the vector r0 = − v0 + w0

||v0 + w0|| is the direction of steepest descent of f at x0,

where
||v0 + w0|| = max

w∈∂f(x0)
min

v∈∂f(x0)
||v + w||.

For the proof, see, e.g. [5].

4 Principal Algorithm of Finding the Intersection
of Two Sets

Let there be given two sets A and B consisting of a finite number of points
each: A = {aj | j ∈ J1}, B = {bj | j ∈ J2}. Set A = coA, B = coB. The task
consists in finding (or approximating) the intersection A ∩ B.
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Principal algorithm

• Step 1. Set k = 1, Ak = {aj | j ∈ Jk1}, Bk = {bj | j ∈ Jk2}.
• Step 2. If �(A,B) < ε, then stop: Ak ∪ Bk ≈ A ∩ B.
• Step 3. Find a direction yk with DDAkBk

yk
> 0. Evaluate the scalar

c = min
{

maxaj∈Ak
〈aj , yk〉;maxbj∈Bk

〈bj , yk〉
}

. Determine ck ∈ Ak ∪ Bk

satisfying the relation 〈ck, yk〉 = c.
• Step 4. Set dk = 〈ck, yk〉 and find the cutting hyperplane hk(yk, dk).
• Step 5. If ck ∈ Ak, then set Ak+1 = Ak, Bk+1 = Bk \ {bj ∈ Bk|〈bj , yk〉 >

dk}∪N , where N ⊂ {bj ∈ Bk|〈bj , yk〉 = dk}. Analogously for ck ∈ Bk. Set
k := k + 1, go to step 2.

Proposition 1. The hyperplane hk(yk, dk) occurring in step 4 is supporting
to the set Ak (Bk, resp.) if ck ∈ Ak (Bk, resp.).

Proof. Let us consider, e.g. the case ck ∈ Ak. For hk being a supporting
hyperplane of Ak at ck, we have to show that

〈yk, a〉 ≤ dk ∀a ∈ Ak, 〈yk, ck〉 = dk. (3)

Since Ak = co Ak, the inequality in (3) can be restricted to points of Ak, i. e.

〈yk, a〉 ≤ dk ∀a ∈ Ak. (4)

Let a∗k ∈ Ak satisfy the relation 〈yk, a
∗
k〉 > dk. Due to the second relation

in (3) which is fulfilled by definition of dk and ck ∈ Ak we get a contradiction
to step 3 of the principal algorithm. �

The algorithm INTERSEC described in the next section aims at finding
a vector yk which is the normal vector of a cutting hyperplane to Ak or Bk

such that the number of points z satisfying 〈yk, z〉 > dk and being removed
in the kth iteration is as large as possible.

Proposition 2. Instead of Ak, Bk it suffices to consider the sets Ak, Bk

consisting of a finite number of points each.

Proof. We show that there is always an element a∗ ∈ Ak with a∗ ∈ argmax
{〈a, yk〉 | a ∈ Ak} (cases Bk and Bk can be dealt with analogously). Indeed,
consider some ā ∈ Ak, ā /∈ Ak. Then there exist scalars λj ≥ 0,

∑Nk1
j=1 λj = 1

as well as vectors aj ∈ Ak, j = 1, . . . , Nk1, such that ā =
∑Nk

j=1 λjaj . Let
a∗ ∈ Ak be such an element that 〈a∗, yk〉 = maxj∈Jk1〈aj , yk〉. Then

〈ā, yk〉 =
Nk1∑
j=1

λj〈aj , yk〉 ≤
Nk1∑
j=1

λj〈a∗, yk〉 = 〈a∗, yk〉. �
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In order to realize the task of finding a “good” cutting hyperplane, the
following optimization problem is formed:

F (yk) = |max
a∈Ak

〈a, yk〉 − max
b∈Bk

〈b, yk〉| → max
yk∈S

S = {yk ∈ Rn : ||yk|| = 1}. (5)

Note that in [2, 3] a different objective function is used:

F̃ (y) = |max
a∈A

〈a, y〉 − |max
b∈B

〈b, y〉|+ |min
a∈A

〈a, y〉 − |min
b∈B
〈b, y〉| = dA∪By − dA∩By .

It describes the difference of the extension of the sets A ∪ B and A ∩ B.
As will be explained later on, the function F is quasidifferentiable and its

quasidifferential can be computed in a relatively easy way. For solving problem
(5) we will use an algorithm due to Bagirov [1] which is similar to algorithms
used in [7, 9].

5 A Minimization Method Due to Bagirov

In [1] Bagirov describes a minimization method for the unconstrained problem

H(y) = G(y, ϕ1(y), . . . , ϕm(y)) → min
y∈Rn

, (6)

where G is continuously differentiable on Rn+m, ϕi : Rn → R are semismooth
with upper semicontinuous directional derivatives ϕi(·; r) ∀ r ∈ Rn. Since in
this algorithm the quasidifferential of H plays an important role, we first need
a description of the quasidifferential DH(y) = [∂H(y), ∂H(y)]:

∂H(y) = co

⎧⎨⎩v ∈ Rn | v = ∇yG+
∑

i∈I+(y)

ci(y)vi, vi ∈ ∂Clϕi(y)

⎫⎬⎭ ,

∂H(y) = co

⎧⎨⎩w ∈ Rn |w =
∑

i∈I−(y)

ci(y)wi, wi ∈ ∂Clϕi(y)

⎫⎬⎭ .

Here ci(y) = ∂G
∂ϕi

(y), and the index sets I+ and I− are defined as follows:
I+ = {i|ci(y) > 0}, I− = {i|ci(y) < 0}. Moreover, ∂Cl denotes the Clarke
subdifferential.

The algorithm from [1] will now be applied to the function F from (5).
Thus, we consider the special case

F (y) = |ϕ1(y)− ϕ2(y)| (7)

with ϕi(y) = maxj∈Ji
, fij(y), i = 1, 2, and f1j(y) = 〈aj , y〉, f1j(y) = 〈aj , y〉.
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We observe that all assumptions ofH from (6) are fulfilled for F . Moreover,

∂ϕ1(y)=co
⋃

k∈R1(y)

∂f1k(y)=co {ak | k ∈ R1(y)}, ∂ϕ1(y)=0,

∂ϕ2(y)=co
⋃

k∈R2(y)

∂f2k(y)=co {bk | k ∈ R2(y)}, ∂ϕ2(y)=0,

Ri(y) = {j ∈ Ji | fij(y) = ϕi(y)}, ϕi(y) = max
j∈Ji

fij(y), i = 1, 2,

f1j(y) = 〈aj , y〉, j ∈ J1, f2j(y) = 〈bj , y〉, j ∈ J2.

Because in problem (5) the function F is to be maximized, we consider
the problem

(−F )(y) → min

and describe the quasidifferential D(−F )(y). To this aim, we have to distin-
guish the following two cases.

Case 1. Assume ϕ1(y) ≥ ϕ2(y). Then

∂(−F )(y)=co{bj | j∈R2(y)}, ∂(−F )(y)=co{−ai | i∈R1(y)}.

Case 2. Assume ϕ1(y) < ϕ2(y). Then

∂(−F )(y)=co{ai | i∈R1(y)}, ∂(−F )(y)=co{−bj | j∈R2(y)}.

For solving problem (6) in [1] Bagirov proposes some method using exact line
search and finding the so-called ε-inf-stationary points satisfying −∂f(y∗) ⊂
∂εf(y∗). For this reason, instead of the sub- and the superdifferential of the
function H he uses some enlargements of these sets (cf. a similar algorithm
by Luderer and Weigelt [9]). At the same time, the functions ϕi(y), i = 1, 2,
occurring in H are assumed to be the maximum of continuously differentiable
functions (cf. (7)).

We need the following sets (ε,μ > 0):

Riε(y) = {j ∈ Ji | fij(y) ≥ ϕi(y)− ε}, i = 1, 2,

∂εf(y)=co

⎧⎨⎩v∈Rn | v=∇yG(y) +
∑

i∈I+(y)

ci(y)∇fij(y), j∈Riε(y)

⎫⎬⎭ ,

Bμ(y) =

⎧⎨⎩w ∈ Rn |w =
∑

i∈I−(y)

ci(y)∇fij(y), j ∈ Riμ(y)

⎫⎬⎭ .

Using these sets, the following algorithm is described in [1]:
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Descent algorithm with exact line search

• Step 1. Choose any y0 ∈ Rn, set k := 0.
• Step 2. If −∂f(yk) ⊂ ∂εf(yk), then stop: yk is ε-inf-stationary.
• Step 3. Find for any w ∈ Bμ(yk) a vector vk(w) with

||w + vk(w)|| = min
v∈∂εf(yk)

||w + v||.

• Step 4. If w + vk(w) �= 0, then set gk(w) = − w + vk(w)
||w + vk(w)|| .

• Step 5. Evaluate the step size αk(w) ≥ 0 with

f(yk + αk(w)gk(w) = inf
α≥0

f(yk + αgk(w)).

If w + vk(w) = 0, then set αk(w)gk(w) = 0.
• Step 6. Find wk such that

f(yk + αk(wk)gk(wk)) = min
w∈Bμ(yk)

f(yk + αk(w)gk(w)).

Go to step 2.

Remark 2.

1. The description of the quasidifferential of (−F ) given above has to be
adapted in an obvious way. This is omitted here.

2. Bagirov’s algorithm is designed for unconstrained minimization. However,
(5) is a constrained optimization problem with “simple” constraints. Thus,
projection onto S can be easily and explicitly carried out:

PS(y) =
{
y, y ∈ S,
y/||y||, y /∈ S.

Using this projection, Rosens’s gradient projection method (see [10]) will
be applied to (5).

3. As a method of line search (for finding a suitable step size) we use quadratic
interpolation.

4. Other algorithms suitable for solving (6) and (5), resp., are, e.g. the method
of codifferential descent (see [1]) and Kiewiel’s linearization method [8].

5. Let us emphasize that in the cutting process (by means of supporting hyper-
planes to Ak and Bk, resp.), some points of the positive half-space drop out,
whereas some other points lying on the hyperplane hk have to be added for
correct construction of the next convex hull in the iteration process. These
points are generated in the following way (the procedure is described for set
Ak; concerning Bk the method works analogously): Consider all points of
Ak lying on one side of hk and all points lying on the other. Connect them
by straight lines and take the intersection with hk. All points constructed
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in this way have to be added to Ak. Unfortunately, as a consequence the
number of points belonging to Ak grows up considerably. If we succeed in
finding the extreme points on hk, then only these extreme points should be
added to Ak. In this way, we have to perform the following manipulation
with Ak (let hk be a supporting hyperplane to Bk):

– Set c = min {maxj∈Jk1〈aj , yk〉,maxj∈Jk2〈bj , yk〉, } (since hk is supporting
to Bk, we have c = maxj∈Jk2〈bj , yk〉). Find the sets

PA,out = {aj ∈ Ak | 〈aj , yk〉 > c}, PA,int = {aj ∈ Ak | 〈aj , yk〉 < c}.
– Define, for all am ∈ PA,out and an ∈ PA,int, the quantities amn(α) =
αam + (1− α)an and find numbers αmn ∈ (0, 1) as well as the set

PA,bd = {amn(αmn) | 〈amn(αmn), yk〉 = c}.
– Set Ak+1 = (Ak \ PA,out) ∪ PA,bd.

6 Algorithm INTERSEC

Now we are prepared to describe an algorithm for finding the intersection of
two convex hulls:

Algorithm INTERSEC

1. Set k = 1, Ak = A, Bk = B and choose ε > 0.
2. If �(Ak,Bk) < ε, then stop: Ak ∪ Bk is an approximation of Ak ∩ Bk.
3. Find a direction yk as a solution of problem (1).
4. If max

j∈Jk1
〈aj , yk〉 < max

j∈Jk2
〈bj , yk〉, then cut Bk and set

Ak+1 = Ak, Bk+1 = Bk \ PB,out ∩ PB,bd,

otherwise cut Ak and set

Bk+1 = Bk, Ak+1 = Ak \ PA,out ∩ PA,bd.

5. Set k := k + 1 and go to step 2.

Remark 3. In the section process only the sets Ak+1, Bk+1 are changed. After
that the new convex hulls Ak+1, Bk+1 are formed.

Due to the inclusion

Theorem 3. For the Hausdorff distance

�k = �((Ak ∪ Bk), (A ∩ B)) = �(Ak,Bk)

we have ∀ ε > 0 ∃k > 0: �k < ε.
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Proof. We have Ak+1 ⊆ Ak, Bk+1 ⊆ Bk, where at least one inclusion is
proper. Let us assume that there exists an ε0 > 0 such that �k > ε ∀ k.
According to the method described above, for every k there exists a value
ck = {argmaxak∈Ak

〈ak, yk〉, argmaxbk∈Bk
〈bk, yk〉} with �(ck,Ak+1 ∪ Bk+1) ≥

ε0. From the above inclusions it follows that �(ck,As∪Bs) ≥ ε0 ∀s ≥ k. Since
ck ∈ Ak∪Bk, from the last inequality we get �(ck, cs) ≥ ε0 ∀ s ≥ k. But {ck}
is a bounded sequence, because A ∪ B is bounded. Choosing a convergent
subsequence {cki

} for i, j sufficiently large, we obtain ||ckj
− cki

|| < ε0, a
contradiction. �

7 Preliminary Numerical Results

Using the Matlab system, preliminary tests have been carried out. The main
experiences are the following:

If we use in the section process only extreme points (which can be easily
done for dimensions n = 2, n = 3), then we get quite satisfactory results
in approaching the intersection of two sets. In doing this, in most cases the
method of codifferentiable descent (with Armijo step size; see [1]) is the best
one, followed by the above-described descent method with exact line search
(and quadratic interpolation for step size determination), whereas Kiwiel’s
linearization method (see [8]) is inferior.

The choice of initial direction vectors is very important. We tried the
following approaches: begin with the last vector of the previous iteration (this
is unfavourable), use a special deterministic grid (this led to good results),
and find the initial vectors in a stochastic way.

For n ≥ 4 the computing time is strongly growing. The reason is that in
the cutting process we now consider all points of PA,bd and PB,bd, respectively,
instead of only the extreme points. Thus the number of points in Ak, Bk grows
rapidly. Only if we succeed in identifying the sets Ak, Bk by a smaller number
of points, then the method described above seems to be promising. Thus,
further research has to be done in numerical respect.

Finally, let us note that for finding points c ∈ A∪B being located in A∩B
another algorithm, which is based on Wolfe’s algorithm (see [11]), works very
satisfactory even for higher dimensions.
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Summary. In this work, we propose a method for finding as many as possible,
hopefully all, solutions of the global optimization problem. For this purpose, we
hybridize an evolutionary search algorithm with a fitness function modification pro-
cedure. Moreover, to make the method more effective, we employ some local search
method and a special procedure to detect unpromising trial solutions. Numerical re-
sults for some well-known global optimization test problems show the method works
well in practice.
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1 Introduction

Consider the global optimization problem

min f(x) s.t. x ∈ D, (1)

where f is a real-valued function and the set D is defined as D := {x ∈ Rn| l ≤
x ≤ u}. Here l, u ∈ (R∪{±∞})n are, possibly infinite, lower and upper bounds
on the variable. This problem is a fundamental problem of optimization and
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has a large number of important applications. Many algorithms have been
proposed for solving it [1–5, 7–10], but most of them are intended to find
just a solution of this problem. However, in practice, it is appealing to have
a method designed for finding all, or as many as possible, solutions of the
problem.

The purpose of this chapter is to develop a method of finding as many as
possible, hopefully all, solutions of the global optimization problem. We pro-
pose a hybrid evolutionary algorithm (HEA) with the fitness function mod-
ification procedure. An evolutionary algorithm gives us the opportunity to
search multiple solutions simultaneously. But when we use an evolutionary
algorithm in a simple manner, the searching process is very likely to wander
around already detected solutions in vain. So we employ a fitness function
modification procedure which is designed to prevent the search process from
returning back to the already detected solutions. We use mainly two types of
modifications, namely tunneling function and hump-tunneling function mod-
ifications.

Tunneling function method for solving global optimization problem was
first proposed by Levy and Montalvo [9, 10] in 1985. The idea of tunnel-
ing is that once the iteration is entrapped in a local solution, the method
constructs a new objective function which is expected to have no local so-
lution around the point of trap and hopefully no basin around it. The next
iteration point will be chosen from a neighborhood of this point and the it-
eration will continue with the new objective function. In our method we will
use not only the tunneling function but also more importantly the hump-
tunneling function in order to overcome some drawbacks of the tunneling
function.

An evolutionary algorithm with similar tunneling and hump-tunneling
function modifications has been proposed to solve the general variational
inequality problem (VIP) by the authors [11], where the VIP is reformu-
lated as an optimization problem whose global minima with zero objective
value coincide with the solutions of the original VIP. The algorithm of [11]
fully exploits the special property of the problem that the minimum objec-
tive value is known to be zero at any solution. Therefore, it cannot be ap-
plied to the general optimization problem (1) directly. The algorithm pro-
posed in this chapter incorporates additional devices to cope with the general
situation where the global minimum value of the problem is not known in
advance.

The organization of this chapter is as follows: In Section 2, we first give
a brief review of the evolutionary algorithm and main procedures used in it.
In Section 3, we describe our HEA and its elements in detail. The fitness
function modification procedures as well as classification of the modification
points will be explained there. We then present numerical results in Section
4 and conclude chapter in Section 5.
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2 Evolutionary Algorithm

2.1 Basic Schemes

An evolutionary algorithm is based on the idea of imitating the evolutionary
process observed in nature. Encouraged by the roles of reproduction, muta-
tion, and survival in the evolution of living things, an evolutionary algorithm
tries to combine and change elements of existing solutions in order to create a
new solution with some of the features of parents and selects next candidate
solutions among them [3, 4, 12].

An evolutionary algorithm for optimization is different from classical op-
timization methods in several aspects. First of all, it depends on random
sampling, i.e., the method is non-deterministic. So there is no theoretical
guarantee for the method to find an optimal solution.

Second, an evolutionary algorithm works with a population of candidate
solutions, meanwhile classical optimization methods usually maintain a single
best solution found so far. The use of population sets helps the evolutionary
algorithm avoid being trapped at a local solution.

Moreover, we will never know whether we have found a true global mini-
mizer or not unless we already knew the global minimum value of the problem
beforehand. So, in general, in order to terminate the evolutionary algorithm
we usually use the upper limit on the number of function evaluations. Once
the number of function evaluations hits this upper limit, the algorithm stops,
and the best solution found so far is regarded as a global minimum.

Basic scheme of an evolutionary algorithm is given in Fig. 1. It relies
on procedures like parents selection, crossover and mutation, and survival
selection [3, 4]. Next we will discuss these procedures in detail.

POPULATION

PARENTS

OFFSPRING

Parent Selection

Crossover

Mutation

Survivor Selection

Initialization

Termination

Fig. 1. Basic scheme of an evolutionary algorithm
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2.2 Procedures Used in Evolutionary Algorithm

Now we elaborate the procedures shown in Fig. 1.

Initialization. We choose the parameters, the fitness function and an initial
population set. To generate the initial population set, we use either a random
distribution or a controlled random distribution. For example, the following
procedure gives us a good diverse population set.

Diversification Generation Method : The purpose of the diversification gen-
eration [7, 8] is to generate a well-distributed set of trial solutions. The basic
diversification generation method uses controlled randomization and fre-
quency memory to generate a set of diverse solutions. This can be accom-
plished by dividing the range [li, ui] of each variable into four subranges of
equal size. Then, a solution is constructed in two steps. First, a subrange is
randomly selected. The probability of selecting a subrange is determined to
be inversely proportional to its frequency count. Then a value is randomly
generated within the selected subrange.

Crossover and Mutation. The purpose of crossover is to produce children
who are expected to possess better properties than their parents. Good results
can be obtained with a random matching of the individuals [3, 4]. Moreover,
random changes or mutations are made periodically for some members of the
current population, thereby yielding a new candidate solution. Some well-
known crossovers are the following [6].

Single-point crossover : One crossover position (coordinate) in the vec-
tor of variables (genes) is randomly selected and the variables situated
after this point are exchanged between individuals, thus producing two
offsprings.

Multi-point crossover : Some crossover positions are chosen, and then the
variables between successive crossover points are exchanged among the two
parents to produce new offsprings.

Intermediate recombination: The values of the offspring variables are cho-
sen from the values of the parents variables according to some rule.

Survival Selection. An evolutionary algorithm performs a selection process
in which the most fit members of the population survive and the least fit
members are eliminated. This process is done with the help of the fitness
function and leads the population toward ever-better solutions.

3 Hybrid Evolutionary Algorithm

Now we describe our hybrid evolutionary algorithm HEA for global optimiza-
tion. First, we will discuss the features of our algorithm that distinguish it
from ordinary evolutionary algorithms.
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If we use an evolutionary algorithm directly to search for multiple global
solutions, it is very likely that the iteration process wanders around the already
detected solutions without further advance. Since we are searching for all
possible solutions, we need to prevent this kind of hindrance and go further for
other solutions. To this end we propose here the fitness function modification
procedure, which gives us an opportunity to go after the other solutions. The
modification utilizes the tunneling function technique [1, 5, 9, 10] so that, once
a local or global solution is detected during the computation, a new function
is constructed to escape from the region of this solution in the further search.
The new function has hopefully no solution near the point of tunneling and no
basin around it. In our algorithm we use not only the tunneling function idea
but also more importantly the hump-tunneling function technique [11] which
is designed to overcome some drawbacks of the previous function. Details
of these modifications are described in Section 3.1. Moreover, to make the
method more effective, we apply a local optimization method starting from the
best points in the population set. Local optimization will always be applied to
the original objective function, since it will not affect the local search process
even if the fitness function has been modified to a complicated function. Also,
using local search will help us to detect solutions in the population set which
are useless in the further search.

Another idea we use in our algorithm is intended to keep diversity of
the population set. In ordinary evolutionary algorithms, a newly produced
trial solution is usually accepted to survive and replace some solution in the
population set, if it is better in values of the fitness function [3, 4]. Because
of this selection rule, most evolutionary algorithms have the tendency that
population sets eventually cluster around only a few solutions. Although some
algorithms such as scatter search method [7, 8] try to keep diversity, the
number of different good candidate points in the population set is still small,
and the remaining points are usually just diversity points. The HEA uses the
Population Update Rules (see Section 3.2), which are new types of criteria
for accepting new trial solutions to survive in the population set, and tries
to keep diversity while searching for promising points. The main idea is to
utilize the distances between newly produced points and former members of
the population set.

In an ordinary evolutionary algorithm, the upper limit on the number of
function evaluations is used to terminate it [3, 4, 8]. Our HEA uses the upper
limit not only for the number of function evaluations but also for the number
of global solutions to be detected. Otherwise, since the problem may have in-
finitely many solutions, it is hardly possible to enumerate them in such a case.

3.1 Modification of the Fitness Function

First, let us consider the following two types of functions.
Tunneling function. Let f be our objective function and x̄ be a point around
which f is to be modified. Define
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ft(x, x̄) := (f(x)− f(x̄)) · exp

⎛⎜⎜⎝ 1

εt +
1
ρ2
t

‖x− x̄‖2

⎞⎟⎟⎠ , (2)

where εt and ρt are positive parameters that control the degree and the range
of modification. This function is called a tunneling function because of its
behavior around the point x̄ [1, 9, 10].

If x̄ is not a global minimum of the function f , then ft(x̄, x̄) = 0, and
there must be at least one point on which the modified function ft(x, x̄) has
a negative value.

Now let x̄ be an isolated global minimum of f . If x̄ is an exact global
solution, then the function ft(x, x̄) has now the zero global minimum value.
But, if x̄ is just an approximation of a global solution x̄∗, as one may expect
in practice, then it may not be appropriate to use the tunneling function
modification ft(x, x̄), because we cannot fully escape from the point x̄ in the
next search (see Fig. 2).

xx∗
1 x∗

2 x∗
3

f(x)

O

y

xx̄1 x∗
2 x∗

3

f
t
(x, x̄1)

O

y

(a) (b)

Fig. 2. (a) The original function and (b) its tunneling modification at an approxi-
mate solution x̄1.

We propose the following approach to overcome the above-mentioned draw-
back of the tunneling modification.
Hump-tunneling function. We first choose a positive scalar ρh and define a
hump function fh(x, x̄) as follows:

fh(x, x̄) := f(x)− f(x̄) + αhmax
{

0, 1− 1
ρ2
h

‖x− x̄‖2
}
, (3)

where αh > 0 is some parameter. Although this modification yields a non-
differentiable function even when the original function is differentiable, it
will not affect our local search procedure. Then we construct the following
function:
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f̄ht(x, x̄) : = fh(x, x̄) · exp

(
1

εt + 1
ρ2
t
‖x− x̄‖2

)

=
(
f(x)− f(x̄) + αh max

{
0, 1− 1

ρ2
h

‖x− x̄‖2
})

· (4)

exp

(
1

εt + 1
ρ2
t
‖x− x̄‖2

)
.

We call this function the hump-tunneling function and global minimizers of
this function coincide with those of the function f(x) except for those min-
imizers in B(x̄, ρh). An improper choice for the humping parameter ρh may
result in the loss of some other global solutions near x̄ (see Fig. 3a). By choos-
ing ρh small enough in the hump-tunneling function, we can avoid this kind
of difficulty (see Fig. 3b).

xx∗
1 x̄2 x∗
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f
h
(x, x̄2)

(a)
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xx∗
1 x̄2 x∗

3

f̄
ht
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O

y

Fig. 3. (a) An unappropriate hump function of the function of Fig. 2a and (b)
an appropriate hump-tunneling function constructed through modification at an
approximate solution x̄2

In our HEA, we will mainly use these two modifications. Now we will
discuss when and how we employ these modifications.

Modification and classification of modification points. The HEA collects the
detected global or local solutions or unpromising trial points in the set S of
modification points. Once one of those points is detected, the HEA adds it
to S and modifies the objective function around this point in order to avoid
returning to it in the further search. Let fc(x) be the current fitness function
used in the HEA and S be a set of modification points. Let x̄ be a point
around which the function fc(x) is to be modified. Depending on the type of
point x̄, we use different modifications.

Definition 1. If after a certain number of evolutionary generations and local
searches, the best candidate solution in the population set P has not been
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improved, then we say the point is a semi-global solution. Moreover, a semi-
global solution who has the lowest known fitness function value will be classified
as an incumbent solution.

Incumbent solutions are the best points detected up to date. If we cannot
find better solutions than these after a certain amount of explorations, they
will be regarded as global solutions of the problem. We will also collect the
incumbent solutions in the set Sinc and it will play an important role in the
algorithm. Now we consider the modifications.

1. If x̄ is an incumbent solution, then we set

S : = S ∪ {x̄}, Sinc := Sinc ∪ {x̄},

fc(x) : =

⎛⎝f(x)− f(x̄) + αh

∑
xg∈Sinc

max
{

0, 1− 1
ρ̄2
h

‖x− xg‖2
}⎞⎠ ·

exp

( ∑
xm∈S

1
εt + 1

ρ2
t
‖x− xm‖2

)
.

After this modification, the new fitness function will have non-negative
values at points no better than the incumbent solutions.

2. Suppose Sinc �= ∅ and fc(x̄) < 0. Note that Sinc �= ∅means we already have
an incumbent solution and have modified the original fitness function. As
mentioned above the new fitness function has non-negative values at points
worse than the incumbent solutions. But since fc(x̄) < 0, x̄ is better than
the current incumbent solutions and hence those incumbent solutions are
not global minimizers. So setting

Sinc := ∅, fc(x) := f(x),

and including the point x̄ in the population set, we try to find a new
incumbent solution better than the previous incumbent solution with the
new fitness function. Note that the set of modification points S remains
the same and will be on effect after an incumbent solution is detected.

Before considering the last type of modification, let us introduce the concept
of unpromising trial points.

Definition 2. Let f(x) and fc(x) be the original and the current objective
functions, respectively, and x̄ be a trial point. Suppose a local search is executed
on the original objective function f with the starting point x̄. If the current
fitness function value increases, then we say that x̄ is an unpromising trial
point.

Figure 4 illustrates an unpromising trial point. Let x̄1 be an incumbent solu-
tion and x̂1 be obtained by local search applied to the original function from
the starting point x̄1. Then since the modified function value increases after
the local search, x̄1 is unpromising.
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Fig. 4. (a) The original objective function and (b) a modified function on the global
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3. Suppose x̄ is just a semi-global point and it is not an incumbent solution.
Then it is quite likely that the point is a local solution. Since it may still
attract the population set, we need to modify the function around this
point. A similar observation applies when x̄ is an unpromising trial point,
and we also modify the function. In either case, we set

S := S ∪ {x̄}, fc(x) := fc(x) · exp

(
1

εt + 1
ρ2
t
‖x− x̄‖2

)
.

After the modification in the fitness function, the population set P may still
have some elements in a neighborhood of the point of modification. So by
updating the population set P with some randomly generated points in the
search space, we may remove the points lying around the point of modification.
Specifically, we double the population set by adding some randomly generated
points and redefine the population set by choosing the best half elements of
it according to the new fitness function values.

Collecting all the procedures given in this section, we denote by MOF
(fc, x̄, S, Sinc, P ) the fitness function modification procedure. This procedure
yields a new fitness function, which is a modification of the former fitness
function fc on x̄, with the corresponding changes in the sets S, Sinc, and P .

3.2 Population Update Rules

As mentioned earlier, most evolutionary algorithms have the property that
the population set tends to cluster around only a few global solutions. Here
we propose two different techniques to update the population set, which are
aimed to keep diversity while searching for global solutions. The first one
is heuristic and depends on the structure of the population set. The second
one makes use of some tolerance parameter for the distance between trial
points.
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Population Update 1. Consider a set of points X = {x1, x2, . . . , xM} sorted
according to their objective function values so that fc(x1) ≤ fc(x2) ≤ · · · ≤
fc(xM ). Let x be a trial solution used to update the population set.

1. If f(x) ≥ f(xM ), i.e., x is worse than the worst element in X, then
discard x.

2. If f(x) ≤ f(x1), i.e., x is better than the best element in X, then add x to
X and delete the closest point to x in X.

3. If f(xi) ≤ f(x) < f(xi+1), then let

k := argmin
1≤j≤i

‖x− xj‖, l := argmin
i+1≤j≤M

‖x− xj‖,

namely, xk is the closest point to x among those points inX whose objective
function values are smaller than f(x), while xl is the closest point to x
among those points in X whose objective function values are greater than
f(x).

If ‖x− xk‖ ≤ ‖xk − xl‖, then discard x.
If ‖x − xk‖ > ‖xk − xl‖ and ‖x − xl‖ ≤ ‖xk − xl‖, then delete xl from X
and add x to X in the (i+1)th position. Otherwise, delete xM from X and
add x to X in the (i+ 1)th position.

Population Update 2. Let X = {x1, x2, . . . , xM} be a set of points sorted
according to their function values as above, and εD > 0 be a fixed tolerance
for the distance. Let x be a trial solution. Define

B(x, ε) := {y ∈ Rn| ‖x− y‖ < ε}, k(i) := argmin
1≤j≤i

‖x− xj‖.

1. If f(x) ≤ f(x1), then add x to the set X and delete from X all the points xj

satisfying xj ∈ B(x, εD). If there is no such element in X, then delete xM

from X. If there are many, add new trial solutions generated by using the
diversification generation method [7] to X to keep the size of the population
set P equal to M .

2. If f(xi) < f(x) ≤ f(xi+1), then do the following:
If x ∈ B(xk(i), εD), then discard x. Otherwise, add the point x to X, and
delete all the elements xj , j = i+ 1, . . . ,M of X satisfying xj ∈ B(x, εD).
If there is no such element in X, then delete xM from X. If there are many,
then add new trial solutions generated using the diversification generation
method to X to keep the size of the population set P equal to M .

If εD = 0, then the Population Update Rule 2 will coincide with the ordinary
update rule used in the genetic algorithm that accepts a child to survive if it
is better than an element in the population. We denote by Population Update
Rule [X,x′, x′′, ...] the procedure of updating the population set by one of the
above two rules, where X is the new set obtained by the update using the
points x′, x′′, etc . As we see in the updating process, it always keeps the order
of points in the population set.



A Hybrid Evolutionary Algorithm for Global Optimization 179

3.3 HEA Algorithm

We first discuss parameters and procedures that will be used in the algorithm.
M – number of elements in the population set,
m – number of best points to which local search is applied,
ls – maximum number of steps per local search,
N̄ , β – parameters used to determine semi-global solutions,
Crossover[(p1, p2)]+mutation – the mating procedure for the pair (p1, p2)

and possible mutation for the resulted children pair,
Local search (f(x), x̄, ls) – a local search process for the function f(x) start-

ing from the point x̄ with the number of steps ls.

To check whether a point is semi-global or not, we use N̄ evolutionary gener-
ations and a local search step. Here we use a set B whose elements represent
the historical data of the best points in the population set during the last N̄
generations.

To terminate the HEA, we use the following three different criteria.

S1. The number of function evaluations exceeds the pre-determined upper
limit,

S2. The number of detected global solutions exceeds the pre-determined
number,

S3. Let Ns be a pre-specified positive integer. If the most recently added
Ns elements of the set S of modification points were not new global solutions.
If one of those criteria is satisfied, then we terminate the main algorithm. The
main loop of the proposed algorithm is stated as follows.

1. Initialization Choose parameters M,m, ls, N̄ , and β ∈ (0, 1). Generate the
population set P by using the diversity generation method. Let the set of
modification points and the set of incumbent solutions be S := ∅ and Sinc := ∅,
respectively. Define the current fitness function as

fc(x) := f(x).

Sort the elements in P in ascending order of their current fitness function
values, i.e.,

fc(x1) ≤ fc(x2) ≤ · · · ≤ fc(xM ).

Set the generation counters t := 1 and s := 1.
2. Parents Pool Generation Generate a parents pool

P ′ := {(xi, xj)|xi, xj ∈ P, xi �= xj}.
3. Crossover and Mutation Select a pair (p1, p2) ∈ P ′ and generate a pair as

(c1, c2) ←− Crossover[(p1, p2)] + mutation.
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4. Population Update Update the population set by

P ←− Population Update Rule [P, c1, c2], P ′ := P ′\{(p1, p2)}.
If P ′ = ∅, then let

N := min{s, N̄}, B := {b1, b2, . . . , bN} ← {x1, b1, . . . , b(N−1)}, s := s+ 1

and go to Step 5; otherwise go to Step 3.
5. Intensification If, during the last N̄ generations of evolution, the fitness
function has not been modified and the best point in the population set has
not been improved enough, i.e.,

s ≥ N̄ and
∣∣∣fc(bN̄ )− fc(b1)

∣∣∣ ≤ β
(
1 + |fc(b1)|

)
,

then choose x1, x2, ..., xm ∈ P and for each xi, i = 1, 2, ...,m perform the
following procedure:

x̄i ←− Local search (f(x), xi, ls).

If xi is an unpromising trial point, then construct a new fitness function by

fc(x) := MOF(fc, x
i, S, Sinc, P ).

Otherwise, P := P\{xi} and P ←− Population Update Rule[P, x̄i]. If the
fitness function is modified at least once during the above procedure, then set
s := 1. Go to Step 6.
6. Semi-global Solutions and Modification If x1 ∈ P is a semi- global solution,
i.e.,

s ≥ N̄ and
∣∣∣fc(bN̄ )− fc(x1)

∣∣∣ ≤ β
(
1 + |fc(x1)|

)
,

then construct a new fitness function by

fc(x) := MOF(fc, x̄, S, Sinc, P ) and set s := 1.

Otherwise, let B := {b1, b2, . . . , bN̄} ← {x1, b1, . . . , b(N̄−1)}. Proceed to Step
7 with (fc(x), P ).
7. Stopping Condition If one of the stopping conditions holds, then terminate
the algorithm and refine the global solutions in Sinc by some local search
method. Otherwise, set t := t+ 1 and go to Step 2.

4 Numerical Experiments

The performance of the HEA was tested on a number of well-known global
optimization test problems, most of which have multiple solutions. For each
problem we made 20 trials with different initial populations. The programming
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code for the algorithm was written in MATLAB and run on a computer with
Pentium 4 Microprocessor.

For local search in the HEA, we employ MATLAB’s command fmincon.
Unless we provide the gradient or Jacobian of the function, this command
performs some derivative-free search. In general, it is difficult to determine
universally suitable values of HEA parameters for every problem, because they
are highly problem dependent. Nevertheless, through testing many times on
various test problems, we suggest possible choices of the parameters as shown
in Table 1.

Table 1. Parameter settings

Parameters definition Value

M Number of elements in the population set min{2n + 5, 20}
m Number of best points for which local search is used 2
ls Maximum number of steps per local search min{2n, 20}
N, β Parameters controlling local search in HEA 3, 0.001
Nmax Maximum number of ineffective local

transformations
10

Ng max Maximum number of global solutions to be found 20
NFmax Maximum number of function evaluations 5n104

εD Distance tolerance used in Population Update
Rule 2

n/5

εt, ρt Tunneling parameters used in (2) and (5) 0.1, 2
αh, ρh Humping parameters used in (3) and (5) 1, 0.3

We have two versions of the HEA; HEA1 and HEA2 that use Population
Update Rule 1 and Rule 2, respectively. We ran the HEA versions for all the
chosen test problems with the general parameter settings given in Table 1 and
obtained the numerical results shown in Tables 2 and 3. The columns in these
tables have the following meanings:

Problem: name of the test problem,
n: dimension of the test problem,
Kmin,Kav,Kmax: minimum, average, maximum numbers of solutions

found by the algorithm,
Ngen: average number of generations,
Nloc: average number of local steps taken,
NF : average number of function evaluations,
Nf : average number of function evaluations when the last

global solution is obtained.

The results reported in Tables 2 and 3 indicate that the HEA is promising.
For most of the test problems, the average numbers of obtained global solu-
tions (Kav) are close to the maximum numbers of obtained global solutions
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(Kmax), and this implies that the HEA versions are capable of finding mul-
tiple solutions. Moreover, the average numbers of generations are reasonable
compared with the problem dimensions and the numbers of obtained global
solutions. We observe in both tables that the HEA versions find global solu-
tions in a relatively small number of function evaluations (Nf), and after that,
the algorithms were still running in order to check whether or not there re-
mains any other solution undiscovered, until one of the termination conditions
is met.

Table 2. Numerical results for the HEA with Population Update Rule 1

Problem n Kmin Kav Kmax Ngen Nloc NF Nf

Ackley 5 0 0.7 1 74 336 31,361 10,246
Branin 2 3 3 3 29 48 3,081 1,116
Dixon & price 2 2 2 2 54 139 6,163 1,460
Dixon & price 10 0 1.4 2 103 968 74,387 36,964
Hump 2 2 2 2 46 80 4,918 951
Levy 10 0 0.8 1 149 1312 99,450 23,830
Perm 2 2 2 2 34 81 3,790 1,263
Rosenbrock 10 1 1 1 74 230 47,336 5,987
Shubert 2 14 16.9 18 212 552 24,690 17,796
Trid 6 1 1 1 53 201 12,852 1,665

Table 3. Numerical results for the HEA with Population Update Rule 2

Problem n Kmin Kav Kmax Ngen Nloc NF Nf

Ackley 5 1 1 1 40 140 32,771 21,136
Branin 2 3 3 3 30 49 5,946 2,157
Dixon & price 2 2 2 2 40 70 7,638 3,170
Dixon & price 10 0 1.6 2 70 688 98,166 46,840
Hump 2 2 2 2 45 72 9,216 2,127
Levy 10 1 1 1 96 288 124,414 58,753
Perm 2 2 2 2 20 47 3,552 1,530
Rosenbrock 10 1 1 1 42 152 46,751 9,208
Shubert 2 17 17.8 18 213 524 37,646 25,761
Trid 6 1 1 1 63 168 29,134 15,974

Finally, we make some remarks on the comparison between the results
shown in Tables 2 and 3 in terms of the numbers of obtained global solutions
and computational costs. Generally, the HEA1 outperforms its counterpart
in the number of function evaluations, while the HEA2 shows better results
than the other in the average number of detected global solutions. For prob-
lems with only one solution, the HEA1 works much better than the HEA2 for
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detecting the global solution, and we can see this fact, for example, by com-
paring the last columns of the two tables. It is due to the fact that for those
problems the whole population set tends to converge to the only solution of
the problem after a certain number of generations. However, since the HEA is
designed for locating multiple solutions, it tries to keep diversity and removes
many points around the solution from the population set. This phenomenon
happens repeatedly, and it makes the HEA2 require more function evalua-
tions. As for HEA1 the process of keeping diversity works differently, and it
depends on the structure of the population set. Moreover, this fact shows that
the HEA2 better fits to problems with multiple solutions. As for locating all
solutions of the problem, the HEA2 is a little more reliable than the HEA1 as
shown in the Kav columns of the both tables. Moreover, the HEA2 requires
fewer generations than the HEA1 in 6 problems out of 10 and requires almost
the same amounts for other two problems. For the problem trid, the HEA1

works better than HEA2 in every aspect, especially in the number of function
evaluations. For the problem levy, HEA2 requires fewer generations, but more
local searches and function evaluations than the HEA1. Thus we conclude
that HEA1 and HEA2 have their own advantages.

5 Conclusions

In this chapter, we have presented a population-based method that aims at
finding as many as possible solutions of the global optimization problem. By
controlling appropriately the sets of incumbent and modification points, the
algorithm is designed to avoid searching in a region around a global solution
that has already been obtained. Numerical results for some well-known test
problems show that the method can detect multiple global solutions success-
fully in an acceptable number of function evaluations.
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Summary. This chapter deals with the so-called perturbation approach in the con-
jugate duality for vector optimization on the basis of weak orderings. As applications,
we investigate some new set-valued gap functions for vector equilibrium problems.
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1 Introduction

Tanino and Sawaragi [12] (see also [9]) developed conjugate duality for vector
optimization by introducing new concepts of conjugate maps and set-valued
subgradients based on Pareto efficiency. Furthermore, by using the concept
of the supremum of a set on the basis of weak orderings, the conjugate du-
ality theory was extended to a partially ordered topological vector space by
Tanino [14] and to set-valued vector optimization problems by Song [10, 11],
respectively.

Dealing with conjugacy notions in the framework of set-valued optimiza-
tion, the so-called perturbation approach in the conjugate duality (see [15])
has been extended to the constrained vector optimization problems (cf. [2]).
As applications, rewriting the vector variational inequality in the form of a
vector optimization problem, new set-valued gap functions for the vector vari-
ational inequality have been introduced.

By using a special perturbation function, the Fenchel-type dual problem
for vector optimization has been obtained and based on this investigation
some set-valued mappings have been introduced in order to apply them to
variational principles for vector equilibrium problems (see [3]). Notice that
variational principles for vector equilibrium problems have been investigated
first in [4] and [5]. Some related results in the scalar case can be found in [1]
and [6].
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In this chapter we consider two additional perturbation functions implying
the Lagrange and Fenchel–Lagrange type dual problems, respectively.

This chapter is organized as follows. In Section 2 we give some prelimi-
nary results dealing with conjugate duality for vector optimization and stabil-
ity criteria. On the basis of two special perturbation functions different dual
problems are introduced in Section 3. In order to state the strong duality, we
use in Section 3 general results due to Song. Finally, as applications some new
gap functions for vector equilibrium problems related to conjugate duality are
introduced in Section 4.

2 Mathematical Preliminaries

Let Y be a real topological vector space partially ordered by a pointed closed
convex cone C with a nonempty interior int C in Y. For any ξ, μ ∈ Y, we use
the following ordering relations:

ξ ≤ μ⇔ μ− ξ ∈ C;
ξ < μ⇔ μ− ξ ∈ int C;
ξ ≮ μ⇔ μ− ξ /∈ int C.

The relations≥, >, and ≯ are defined similarly. Let us now introduce the weak
maximum and weak supremum of a set Z in the space Y induced by adding
to Y two imaginary points +∞ and −∞. We suppose that −∞ < y < +∞
for y ∈ Y. Moreover, we use the following conventions

(±∞) + y = y + (±∞) = ±∞ for all y ∈ Y, (±∞) + (±∞) = ±∞,

λ(±∞) = ±∞ for λ > 0, and λ(±∞) = ∓∞ for λ < 0.

The sum +∞+ (−∞) is not considered, since we can avoid it.
For a given set Z ⊆ Y , we define the set A(Z) of all points above Z and

the set B(Z) of all points below Z by

A(Z) =
{
y ∈ Y | y > y′ for some y′ ∈ Z}

and
B(Z) =

{
y ∈ Y | y < y′ for some y′ ∈ Z}

,

respectively. Clearly A(Z) ⊆ Y ∪ {+∞} and B(Z) ⊆ Y ∪ {−∞}.
Definition 2.1
(i) A point ŷ ∈ Y is said to be a weak maximal point of Z ⊆ Y if ŷ ∈ Z and

ŷ /∈ B(Z), that is, if ŷ ∈ Z and there is no y′ ∈ Z such that ŷ < y′.
(ii) A point ŷ ∈ Y is said to be a weak supremal point of Z ⊆ Y if ŷ /∈ B(Z)

and B({ŷ}) ⊆ B(Z), that is, if there is no y ∈ Z such that ŷ < y and if
the relation y′ < ŷ implies the existence of some y ∈ Z such that y′ < y.
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Weak minimal and weak infimal points can be defined analogously. The
set of all weak maximal (minimal) and weak supremal (infimal) points of Z
is denoted by WMaxZ (WMinZ) and WSupZ (WInf Z), respectively. Re-
mark that WMaxZ = Z ∩WSupZ. Moreover, −WMax(−Z) = WMinZ and
−WSup(−Z) = WInf Z hold. For more properties of these sets we refer to
[13] and [14].

Now we give some definitions of the conjugate mapping and the subgra-
dient of a set-valued mapping based on the weak supremum and the weak
maximum of a set. Let X be another real topological vector space and let
L(X,Y) be the space of all linear continuous operators from X to Y. For
x ∈ X and l ∈ L(X,Y), 〈l, x〉 denotes the value of l at x.

Definition 2.2 (Tanino [14]). Let G : X ⇒ Y be a set-valued mapping.

(i) A set-valued mapping G∗ : L(X,Y) ⇒ Y defined by

G∗(T ) = WSup
⋃

x∈X

[〈T, x〉 −G(x)] , for T ∈ L(X,Y)

is called the conjugate mapping of G.
(ii) A set-valued mapping G∗∗ : X ⇒ Y defined by

G∗∗(x) = WSup
⋃

T∈L(X,Y)

[〈T, x〉 −G∗(T )] , for x ∈ X

is called the biconjugate mapping of G.
(iii) T ∈ L(X,Y) is said to be a subgradient of the set-valued mapping G at

(x0; y0) if y0 ∈ G(x0) and

〈T, x0〉 − y0 ∈WMax
⋃

x∈X

[〈T, x〉 −G(x)] .

The set of all subgradients of G at (x0; y0) is called the subdifferential
of G at (x0; y0) and is denoted by ∂G(x0; y0). If ∂G(x0; y0) �= ∅ for every
y0 ∈ G(x0), then G is said to be subdifferentiable at x0.

Let X and Y be real topological vector spaces. Assume that Y is the
extended space of Y and h : X → Y ∪{+∞} is a given function. We consider
the vector optimization problem

(P ) WInf{h(x)|x ∈ X}.
Based on a perturbation approach (see [14]), a dual problem to (P ) can be
defined as follows:

(D) WSup
⋃

Λ∈L(U,Y )

[−Φ∗(0, Λ)] ,
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where Φ : X × U → Y ∪ {+∞} is called a perturbation function having the
property that

Φ(x, 0) = h(x) ∀x ∈ X.
Here, U is another real topological vector space. Moreover, the conjugate
mapping of Φ is

Φ∗(T,Λ) = WSup
{〈T, x〉+ 〈Λ, u〉 − Φ(x, u)| x ∈ X, u ∈ U}

for T ∈ L(X,Y) and Λ ∈ L(U,Y) .

Proposition 2.1 (Tanino [14] ) (Weak duality)
For any x ∈ X and Λ ∈ L(U,Y) it holds

Φ(x, 0) /∈ B (−Φ∗(0, Λ)) .

Definition 2.3 (Tanino [14]). The primal problem (P ) is said to be stable
with respect to Φ if the value mapping Ψ : U ⇒ Y defined by

Ψ(u) = WInf {Φ(x, u)| x ∈ X}
is subdifferentiable at 0.

Theorem 2.1 (Tanino [14], Song [10]). If the problem (P ) is stable with
respect to Φ, then

WInf(P ) = WSup(D) = WMax(D).

Let us now mention some definitions and assertions related to the stability.
For a given set-valued mapping G : X ⇒ Y ∪ {+∞}, we have

– effective domain of G: dom G = {x ∈ X| G(x) �= ∅, G(x) �= {+∞}},
– epigraph of G: epi G = {(x, y) ∈ X × Y | y ∈ G(x) + C}.
In particular, if g : X → Y ∪ {+∞} is a vector-valued function, then its
effective domain and epigraph are defined as

epi g = {(x, y) ∈ X × Y | g(x) ≤ y},
dom g = {x ∈ X| g(x) �= +∞},

respectively. The function g is said to be proper if g(x) ∈ X ∪ {+∞} and
g /≡ +∞.

A set-valued mapping G : X ⇒ Y ∪ {+∞} is said to be C-convex if
its epigraph is convex. A given set-valued mapping G : X ⇒ Y ∪ {+∞} is
C-convex if and only if for all λ ∈ [0, 1] and x1, x2 ∈ X

λG(x1) ∩ Y + (1− λ)G(x2) ∩ Y ⊆ G(λx1 + (1− λ)x2) ∩ Y + C.

In particular, if g : X → Y ∪ {+∞} is a proper vector-valued function, then
g is C-convex if and only if for all λ ∈ (0, 1) and x1, x2 ∈ X, x1 �= x2

λg(x1) + (1− λ)g(x2) ∈ g(λx1 + (1− λ)x2) + C.
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Proposition 2.2 (Song [10]). Let G : X ⇒ Y ∪ {+∞} be a C-convex set-
valued mapping with int(epi G) �= ∅. If x0 ∈ int(dom G) and G(x0) ⊆
WInf G(x0), then G is subdifferentiable at x0.

Definition 2.4

(i) A set-valued mapping G : X ⇒ Y ∪{+∞} is said to be C-Hausdorff lower
continuous at x0 ∈ X if for every neighborhood V of zero in Y there exists
a neighborhood U of zero in X such that

G(x0) ⊆ G(x) + V + C ∀x ∈ (x0 + U) ∩ dom G.

(ii) A set-valued mapping G : X ⇒ Y ∪ {+∞} is said to be weakly C-upper
bounded on a set A ⊆ X if there exists a point b ∈ Y such that (x, b) ∈
epi G, ∀x ∈ A.

Let us remark that G is weakly C-upper bounded on a set A ⊆ X if and only
if there exists a point b ∈ Y such that G(x) ∩ (b− C) �= ∅ ∀x ∈ A.
Proposition 2.3 (Song [10]). Let G : X ⇒ Y ∪ {+∞} be a set-valued map-
ping.

1. Then the following assertions are equivalent.
(i) int(epi G) �= ∅.
(ii) ∃x0 ∈ int(dom G) such that G is weakly C-upper bounded on some

neighborhood of x0.
2. If G is C-Hausdorff lower continuous on int(dom G), then (i) and (ii)

hold.

Proposition 2.4 (Tanino [14]). If the perturbation function Φ : X × U →
Y ∪ {+∞} is C-convex, then the value mapping Ψ is a C-convex set-valued
mapping.

Proposition 2.5 (Song [11]). Let Φ : X × U → Y ∪ {+∞} be a C-convex
vector-valued function and the value mapping Ψ be weakly C-upper bounded
on a neighborhood of zero in U. Then the problem (P ) is stable with respect
to Φ.

Remark 1. Proposition 2.5 was proved in [11] in the more general case when
Φ : X × U → Y ∪ {+∞} is a set-valued mapping.

3 The Constrained Vector Optimization Problem

3.1 Different Dual Problems

Assume that h : X → Y ∪{+∞} is a given function and G ⊆ X. We consider
the constrained vector optimization problem
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(Pc) WInf{h(x)|x ∈ G}.
By using the perturbation function ΦF : X ×X → Y ∪ {+∞} defined by

ΦF(x, u) =
{
h(x+ u), if x ∈ G,
+∞, otherwise,

the Fenchel dual problem to (Pc) has been stated as follows (cf. [3]):

(DF) WSup
⋃

T∈L(X,Y)

WInf {−h∗(T ) + {〈T, x〉| x ∈ G}} .

Proposition 3.1 (Weak duality)
For any x ∈ G and T ∈ L(X,Y) it holds

h(x) /∈ B (−Φ∗F(0, T )) .

Let U be a real topological vector space, D ⊆ U be a pointed closed convex
cone, M ⊆ X, and g : X → U ∪ {+∞}. If the feasible set G is given by

G = {x ∈M | g(x) ∈ −D},
then one can consider the following two perturbation functions (cf. [2] and
[15])

ΦL : X × U → Y ∪ {+∞}, ΦL(x, u) =
{
h(x), x ∈M, g(x) ∈ −D + u,
+∞, otherwise,

and

ΦFL : X ×X × U → Y ∪{+∞},
ΦFL(x, v, u) =

{
h(x+ v), x ∈M, g(x) ∈ −D + u,
+∞, otherwise.

In analogy to Proposition 3.3 and Proposition 3.11 in [2], the following asser-
tion can be shown easily.

Proposition 3.2 Let Λ ∈ L(U,Y) and T ∈ L(X,Y) . Then

(i) Φ∗L(0, Λ) = WSup {{〈Λ, u〉| u ∈ D}+ {〈Λ, g(x)〉 − h(x)| x ∈M}} .
(ii) Φ∗FL(0, T, Λ) = WSup {{〈Λ, u〉| u ∈ D}

+ {〈T, v〉 − h(v)| v ∈ X}+ {〈Λ, g(x)〉 − 〈T, x〉| x ∈M}} .
Remark 2. According to Proposition 2.6 in [14], we can use for Φ∗L(0, Λ) and
Φ∗FL(0, T, Λ) some equivalent formulations. For instance, for Φ∗FL(0, T, Λ) we
have

Φ∗FL(0, T, Λ) = WSup {{〈Λ, u〉| u ∈ D}
+ {〈T, v〉 − h(v)| v ∈ X}+ {〈Λ, g(x)〉 − 〈T, x〉| x ∈M}}

= WSup {WSup{〈Λ, u〉| u ∈ D}
+ h∗(T ) + {〈Λ, g(x)〉 − 〈T, x〉| x ∈M}} .
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As a consequence of Proposition 3.2 can be stated the Lagrange dual problem
to (Pc)

(DL) WSup
⋃

Λ∈L(U,Y)

[−Φ∗L(0, Λ)]

= WSup
⋃

Λ∈L(U,Y)

WInf {{−〈Λ, u〉| u ∈ D}+ {h(x)− 〈Λ, g(x)〉| x ∈M}}

and the Fenchel–Lagrange dual problem

(DFL) WSup
⋃

(T,Λ)∈L(X,Y)×L(U,Y)

[−Φ∗FL(0, T, Λ)]

= WSup
⋃

(T,Λ)∈L(X,Y)×L(U,Y)

WInf {{h(v)− 〈T, v〉| v ∈ X}

+ {−〈Λ, u〉| u ∈ D}+ {〈T, x〉 − 〈Λ, g(x)〉| x ∈M}} ,

respectively.

Proposition 3.3 (Weak duality)

(i) For any x ∈ G and T ∈ L(X,Y) it holds

h(x) /∈ B (−Φ∗L(0, Λ)) .

(ii) For any x ∈ G and (T,Λ) ∈ L(X,Y)×L(U,Y) it holds

h(x) /∈ B (−Φ∗FL(0, T, Λ)) .

3.2 Stability and Strong Duality

This section deals with some stability assertions associated with the presented
perturbation functions as special cases of general results due to Song [10] and
[11]. In order to investigate stability criteria, let us notice that the value
mappings with respect to ΦF, ΦL, and ΦFL turn out to be

ΨL : U ⇒ Y , ΨL(u) = WInf {ΦL(x, u)| x ∈ X}
= WInf {h(x)| x ∈M, g(x) ∈ −D + u} ,

ΨF : X ⇒ Y , ΨF(v) = WInf {ΦF(x, v)| x ∈ X}
= WInf {h(x+ v)| x ∈ G} ,

ΨFL : X × U ⇒ Y , ΨFL(v, u) = WInf {ΦFL(x, v, u)| x ∈ X}
= WInf {h(x+ v)| x ∈M, g(x) ∈ −D + u} ,

respectively.
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Proposition 3.4 Let M ⊆ X be a convex set and h : X → Y ∪ {+∞}, g :
X → U be C- and D-convex functions, respectively. Then the value mappings
ΨL, ΨF, and ΨFL are convex.

Proof. Under the stated assumptions of convexity one can easily verify that
the perturbation functions ΦL, ΦF, and ΦFL are convex. Then the desired
assertions follow from Proposition 2.4. �

Theorem 3.1 Let M ⊆ X be a convex set and h : X → Y ∪{+∞}, g : X →
U be C- and D-convex functions, respectively. Suppose that the value mapping
ΨF (resp. ΨL and ΨFL) is weakly C-upper bounded on a neighborhood of zero
in X. Then the problem (Pc) is stable with respect to ΦF (resp. ΦL and ΦFL).

Proof. By Proposition 3.4 the value mapping ΨF (resp. ΨL and ΨFL) is con-
vex. Then the stability of the problem (Pc) follows from Proposition 2.5. �

Proposition 3.5 If there exists some x0 ∈ dom h ∩ G such that the func-
tion h is weakly C-upper bounded on some neighborhood of x0, then the value
mapping ΨF is weakly C-upper bounded on some neighborhood of zero in X.

Proof. Since h is weakly C-upper bounded on some neighborhood of x0 ∈
dom h∩G, there exists a neighborhood V0 ⊆ X of zero and ∃b ∈ Y such that

(x0 + v, b) ∈ epi h ∀v ∈ V0,

or, equivalently,
h(x0 + v) ≤ b ∀v ∈ V0.

Hence h(x0 + v) ∈ b− C, ∀v ∈ V0.
On the other hand, by Corollary 2.1 in [14], we obtain that for any v ∈ V0

{h(x+ v)| x ∈ G} ⊆ ΨF(v) ∪A(ΨF(v)).

In particular, h(x0 + v) ∈ ΨF(v) ∪A(ΨF(v)) ∀v ∈ V0 holds.

a. If h(x0 + v) ∈ ΨF(v), then (b− C) ∩ΨF(v) �= ∅ ∀v ∈ V0.
b. If h(x0 + v) ∈ A(ΨF(v)), then ∃ȳ ∈ ΨF(v) such that h(x0 + v) > ȳ.

Therefore,

ȳ ∈ h(x0 + v)− int C ⊆ h(x0 + v)− C ⊆ b− C − C ⊆ b− C,

which means that also (b − C) ∩ ΨF(v) �= ∅ ∀v ∈ V0. The proof is
completed. �

Proposition 3.6 If there exists some x0 ∈ dom h ∩ M such that 0 ∈
int(g(x0) + D), then the value mapping ΨL is weakly C-upper bounded on
some neighborhood of zero in X.
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Proof. As 0 ∈ int(g(x0) + D), there exists a neighborhood U0 of zero such
that u ∈ g(x0) +D, ∀u ∈ U0 ⊆ U. This means that g(x0) ∈ −D+ u ∀u ∈ U0.
Let us notice that because h(x0) �= +∞, ∃b ∈ Y such that h(x0) ≤ b.
By Corollary 2.1 in [14], for any u ∈ U0 one has

{h(x)| x ∈M, g(x) ∈ −D + u} ⊆ ΨL(u) ∪A(ΨL(u)).

In particular, it holds h(x0) ∈ ΨL(u) ∪A(ΨL(u)) ∀u ∈ U0.

a. If h(x0) ∈ ΨL(u), then (b− C) ∩ΨL(u) �= ∅ ∀u ∈ U0.
b. If h(x0) ∈ A(ΨL(u)), then ∃ȳ ∈ ΨL(u) such that h(x0) > ȳ. Therefore,

ȳ ∈ h(x0)− int C ⊆ b− C − int C ⊆ b− C,

which means that also (b− C) ∩ΨL(u) �= ∅ ∀u ∈ U0.

�

Combining the assumptions of Propositions 3.5 and 3.6, we easily show
the following assertion.

Proposition 3.7 If there exists some x0 ∈ dom h ∩ M such that 0 ∈
int(g(x0) +D) and the function h is weakly C-upper bounded on some neigh-
borhood of x0, then the value mapping ΨFL is weakly C-upper bounded on
some neighborhood of zero in X.

Theorem 3.2 Let M ⊆ X be a convex set and h : X → Y ∪{+∞}, g : X →
U be C- and D-convex functions, respectively.

(i) If there exists some x0 ∈ dom h ∩ G such that the function h is weakly
C-upper bounded on some neighborhood of x0, then

WInf(Pc) = WSup(DF ) = WMax(DF ).

(ii) If there exists some x0 ∈ dom h ∩M such that 0 ∈ int(g(x0) +D), then

WInf(Pc) = WSup(DL) = WMax(DL).

(iii) If there exists some x0 ∈ dom h ∩M such that 0 ∈ int(g(x0) + D) and
the function h is weakly C-upper bounded on some neighborhood of x0,
then

WInf(Pc) = WSup(DF) = WSup(DL) = WSup(DFL)
= WMax(DF) = WMax(DL) = WMax(DFL).

Proof. Under the assumptions and by Theorem 3.1 the problem (Pc) is stable
with respect to ΦF (resp. ΦL and ΦFL). Therefore, according to Theorem 2.1
one obtains the desired assertions. �
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4 Gap Functions for Vector Equilibrium Problems

Let X and Y be real topological vector spaces. Assume that K is a nonempty
convex set in X and f : K × K → Y is a bifunction such that f(x, x) =
0 ∀x ∈ K. We consider the vector equilibrium problem which consists in
finding x ∈ K such that

(V EP ) f(x, y) ≮ 0 ∀y ∈ K.

By Kp we denote the solution set of (V EP ). In analogy to the vector varia-
tional inequality, we can give the definition of a gap function for
(V EP ).

Definition 4.1 (Chen et al. [7] and Goh and Yang [8]) A set-valued mapping
γ : K ⇒ Y ∪ {+∞} is said to be a gap function for (V EP ) if it satisfies the
following conditions:

(i) 0 ∈ γ(x) if and only if x ∈ K solves the problem (V EP );
(ii) 0 ≯ γ(y) ∀y ∈ K.
According to [3], let us remark that x̄ ∈ K is a solution to (V EP ) if and
only if 0 is a weak minimal point of the set {f(x̄, y)| y ∈ K}. Rewriting the
problem (V EP ) into the vector optimization problem

(PV EP ;x) WInf {f(x, y)| y ∈ K} ,

where x ∈ X is fixed, and using the Fenchel dual problem to (PV EP ;x), let
us introduce the following mapping

γV EP
F (x) :=

⋃
T∈L(X,Y)

Φ̃∗F(0, T ;x),

where Φ̃∗F(0, T ;x) = WSup {{〈T, y〉 − f(x, y)| y ∈ K}+ {−〈T, y〉| y ∈ K}} ,
that is,

γV EP
F (x) =

⋃
T∈L(X,Y)

WSup {{〈T, y〉 − f(x, y)| y ∈ K}+ {−〈T, y〉| y ∈ K}} .

Theorem 4.1 Let f(x, ·) : K → Y be a convex function for all x ∈ K.
Assume that for all x ∈ Kp there exists some y0 ∈ K such that the function
f(x, ·) is weakly C-upper bounded on some neighborhood of y0. Then γV EP

F is
a gap function for (V EP ).

Proof. Under the assumptions it is clear that the problem (PV EP ;x) is stable.
Consequently, the desired assertion follows from Lemma 1 and Theorem 1(i)
in [3]. �
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Let the ground set K be nonempty and given by

K = {x ∈ X| g(x) ∈ −D}, (1)

where D ⊆ U is a pointed closed convex cone, U is a real topological vector
space and g : X → U ∪ {+∞}. Let x ∈ X be fixed. Taking f(x, ·) instead of
h in (DL) and (DFL), respectively, the Lagrange and the Fenchel–Lagrange
dual problems can be written as follows:

(DV EP
L ;x) WSup

⋃
Λ∈L(U,Y)

[
−Φ̃∗L(0, Λ;x)

]
(DV EP

FL ;x) WSup
⋃

(T,Λ)∈L(X,Y)×L(U,Y)

[
−Φ̃∗FL(0, T, Λ;x)

]
,

where

Φ̃∗L(0, Λ;x) := WSup {{〈Λ, u〉| u ∈ D}+ {〈Λ, g(y)〉 − f(x, y)| y ∈ X}} , (2)

and

Φ̃∗FL(0, T, Λ;x) : = WSup {{〈T, y〉 − f(x, y)| y ∈ X}
+ {〈Λ, u〉| u ∈ D}+ {〈Λ, g(y)〉 − 〈T, y〉| y ∈ X}} . (3)

Consequently, we can introduce two set-valued mappings

γV EP
L (x) :=

⋃
Λ∈L(U,Y)

Φ̃∗L(0, Λ;x)

and
γV EP
FL (x) :=

⋃
(T,Λ)∈L(X,Y)×L(U,Y)

Φ̃∗FL(0, T, Λ;x).

Theorem 4.2 Let the functions f(x, ·) : K → Y, x ∈ K and g : X → Y be
convex. Assume that there exists y0 ∈ K such that 0 ∈ int(g(y0) + D). Then
γV EP
L is a gap function for (V EP ).

Proof. (i) Let x̄ ∈ K be a solution to (V EP ), then by Theorem 3.2(ii), one
has

0 ∈WInf(PV EP ; x̄) = WMax
(
DV EP

L ; x̄
)
.

Consequently,
0 ∈WMax[−γV EP

L (x̄)].

Whence 0 ∈ γV EP
L (x̄). Conversely, let

0 ∈ γV EP
L (x̄) =

⋃
Λ∈L(U,Y)

WSup {{〈Λ, u〉| u ∈ D} + {〈Λ, g(y)〉

− f(x̄, y)| y ∈ X}} .
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Then ∃Λ ∈ L(U,Y) such that

0 ∈WSup
{{〈Λ, u〉| u ∈ D}+ {〈Λ, g(y)〉 − f(x̄, y)| y ∈ X}} ,

or, equivalently,

0 ∈ WInf
{{−〈Λ, u〉| u ∈ D}+ {f(x̄, y)− 〈Λ, g(y)〉| y ∈ X}} . (4)

Assume that 0 /∈ WMin{f(x̄, y)| y ∈ K}. This means that ∃ȳ ∈ K such
that f(x̄, ȳ) < 0. In other words, we have

f(x̄, ȳ)− 〈Λ, g(ȳ)〉+ 〈Λ, g(ȳ)〉 < 0,

which contradicts (4) since g(ȳ) ∈ −D.
(ii) Let x ∈ K be fixed and z ∈ γV EP

L (x). Then ∃Λ ∈ L(U,Y) such that

z ∈WSup
{{〈Λ, u〉| u ∈ D}+ {〈Λ, g(y)〉 − f(x, y)| y ∈ X}} .

Choosing y := x and u := −g(x) ∈ D, we obtain that

〈Λ,−g(x)〉+ 〈Λ, g(x)〉 − f(x, x) = 0

is an element of the set defined within the outer braces. Therefore z as an
element of the set of the weak supremal points of this set cannot be less
than zero with respect to the partial ordering given by the cone C, i.e.,
z ≮ 0. Consequently, one has γV EP

L (x) ≮ 0 ∀x ∈ K. �

Analogously, we can verify the following assertion concerning γV EP
FL .

Theorem 4.3 Let the functions f(x, ·) : K → Y, x ∈ K and g : X → Y be
convex. Assume that there exists some y0 ∈ K such that 0 ∈ int(g(y0) + D)
and the function f(x, y) is weakly C-upper bounded with respect to y on some
neighborhood of y0. Then γV EP

FL is a gap function for (V EP ).

5 Conclusions

In this chapter we have proposed some new gap functions by using conjugate
duality theory for vector optimization (see [14]) and the perturbation ap-
proach for conjugate duality in scalar and vector optimization (cf. [2, 15]). In
order to prove the properties of a gap function, recent results related to vari-
ational principles for vector equilibrium problems (see [1]) have been used.
Moreover, some stability criteria due to special perturbation functions are
given.

Notice that the presented approach can be extended to set-valued prob-
lems. Moreover, one can investigate more weaker assumptions for stability
criteria in the future.
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1 Introduction

We consider in this chapter the following unconstrained 0–1 quadratic pro-
gramming or binary quadratic programming problem:

(0–1QP ) min
x∈{0,1}n

xTQx+ cTx,

where Q = (qij)n×n is symmetric and c ∈ Rn. Termed also as the pseudo-
Boolean programming, problem (0–1QP ) is a classical combinatorial optimiza-
tion problem and is well known to be NP-hard (see [15]).

There exist many real-world applications of 0–1 quadratic programming,
including financial analysis [24], molecular conformation problem [27], and
cellular radio channel assignment [10]. Many combinatorial optimization prob-
lems, such as the max-cut problem (see e.g., [12, 16]), are special cases of the
0–1 quadratic programming problems. Various exact solution methods of a
branch-and-bound framework for solving (0–1QP ) and its variants have been
proposed in the literature (see, e.g., [4, 7, 10, 21–23, 26, 29] and references
therein).

We focus in this chapter on the polynomially solvable cases of the quadratic
binary programming problems. Identifying polynomially solvable subclasses of
binary quadratic programming problems not only offers theoretical insight into
the complicated nature of the problem but also provides useful information for
designing efficient algorithms for finding optimal solution to (0–1QP ). More
specifically, the properties of the polynomially solvable subclasses of (0–1QP )
provide hints and facilitate the derivation of efficient relaxations for the gen-
eral form of (0–1QP ). Polynomially solvable binary quadratic programs even
play an important role in devising exact methods for linearly constrained
quadratic 0–1 programming. For example, the Lagrangian relaxation of the
quadratic 0–1 knapsack problem, which is a special case of (0–1QP ), turns out
to be polynomially solvable and thus makes it possible to efficiently compute
the Lagrangian bounds in a branch-and-bound method for the quadratic 0–1
knapsack problem.

It is sometimes more convenient to consider some equivalent forms of
(0–1QP ). Since x2

i = xi for xi ∈ {0, 1}, (0–1QP ) can be reduced to the
following homogenous form (0–1QPh) without the linear term, using the sub-
stitution Q := Q + diag(c), where diag(c) is the diagonal matrix formed by
vector c,

(0–1QPh) min
x∈{0,1}n

xTQx.

In many binary quadratic programming models arising from combinatorial
optimization, the decision variables take values −1 or 1. The resulting binary
quadratic programs take the following form:

(BQP ) min
x∈{−1,1}n

xTQx+ cTx.
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It can be seen that (0–1QP ) with 0–1 variables (in x-space) can be reduced
to a form of (BQP ) with (−1, 1) variables (in y-space) using transformation
xi = 1

2 (yi + 1).
As x2

i = 1, for both xi = 1 and −1, we can assume, without loss of
generality, that all diagonal elements of Q in (BQP ) are zero. Thus, we can
write the objective function in (BQP ) as

∑
1≤i<j≤n

2qijxixj +
n∑

i=0

cixi.

By introducing an artificial variable x0 = 1, we further have

f(x) =
∑

0≤i<j≤n

2qijxixj ,

where q0i = 1
2ci, i = 1, . . ., n. Since for any x ∈ {−1, 1}n+1, f(x) = f(−x),

we can relax the domain of x0 to {−1, 1} and (BQP ) now takes the following
equivalent homogenous form:

(BQPh) min
x∈{−1,1}n+1

xTQx,

where Q :=
(

0 1
2c

T

1
2c Q

)
.

The well-known max-cut problem, which has being attracting remarkable
attentions in recent years in combinatorial optimization, can be expressed
in the form of (BQPh). Consider a graph G = (E, V ) with vertex set V =
{1, . . . , n} and edge set E = {ij | 1 ≤ i < j ≤ n}. For every edge ij ∈ E, there
is an associated weight wij . For a given set S ⊆ V , a cut δ(S) is the set of all
edges with one end point in S and the other in V \S, and the weight of cut δ(S)
is then given by

∑
ij∈δ(S) wij . The max-cut problem is to find a cut δ(S) with

the maximum weight. Note that each x ∈ {−1, 1}n corresponds to a partition
that divides V into S = {i ∈ V | xi = 1} and V \ S = {i ∈ V | xi = −1}.
We can now express the max-cut problem as the following binary quadratic
problem,

(Max-cut) max
1
2

∑
1≤i<j≤n

wij(1− xixj)

s.t. x ∈ {−1, 1}n.

While all the weights in the conventional definition for the max-cut problem
considered in graph theory are assumed to be nonnegative, we consider here
a more general setting of the max-cut problem without confining the weights
to be nonnegative.

This chapter aims to give a systematic survey of the polynomially solvable
subclasses of (0–1QP ) and its variants studied in the literature and to report
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some recent progress in this subject. Our goal is to present a self-contained
writing and to provide step-by-step examples and geometric illustrations in
an effort to capture the essence of the polynomial solvability of certain sub-
classes of binary quadratic programming problems. In Section 2, we discuss
the problem (0–1QP ) with all off-diagonal elements of Q being non-positive.
This subclass of problems has been known for long time to be polynomially
solvable due to the total unimodularity of the constraint matrix in its linear
integer programming reformulation. Its relation to the maximum flow problem
is also discussed. In Section 3, we analyze the polynomial solvability of prob-
lem (0–1QPh) with a fixed rank Q using the properties of zonotope in discrete
geometry. The relationship between zonotope and hyperplane arrangement is
exploited to derive an efficient procedure to enumerate all extreme points of a
zonotope. In Section 4, we show that the problem (0–1QP ) with a tridiagonal
matrix Q can be solved by the basic algorithm in polynomial time. Sections
5 and 6 devote to problems defined by a special graph or a logic circuit. Re-
lations between the polynomial solvability and the special properties of the
series-parallel graph and logic circuit are studied. We investigate in Section 7
a possible zero duality gap between problem (BQP ) and its SDP relaxation.
A sufficient condition for the polynomial solvability of (BQP ) via the SDP
relaxation is presented. We conclude this chapter in Section 8 with a brief
summary.

2 Problem (0–1QP ) with All Off-Diagonal Elements
of Q Being Non-positive

Consider a subclass of problem (0–1QP ) where all off-diagonal elements of Q
are non-positive. It is easy to see that xixj = min(xi, xj) when xi, xj ∈ {0, 1}.
Since x2

i = xi, we can assume, without of loss of generality, qii = 0, i = 1, . . .,
n. Let zij = xixj . If qij ≤ 0 for 1 ≤ i < j ≤ n, then (0–1QP ) is equivalent to
the following linear integer programming problem:

min
n∑

i=1

cixi + 2
∑

1≤i<j≤n

qijzij (1)

s.t. zij ≤ xi, 1 ≤ i < j ≤ n, (2)

zij ≤ xj , 1 ≤ i < j ≤ n, (3)

xi, xj , zij ∈ {0, 1}, 1 ≤ i < j ≤ n. (4)

Consider the linear programming relaxation of the above problem by replacing
constraint (4) with

xi, xj , zij ∈ [0, 1], 1 ≤ i < j ≤ n. (5)
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Recall that a matrix A = (aij) is called totally unimodular (TU) if every
square sub-matrix of A has determinant +1, −1, or 0. It is well known that
a linear programming problem with a totally unimodular constraint matrix
and an integral right-hand side has an integral optimal solution. Recall also
that a matrix A is TU if (i) aij ∈ {+1,−1, 0} for all i, j; (ii) each column
contains at most two non-zero coefficients (

∑m
i=1 |aij | ≤ 2); and (iii) there

exists a partition (M1,M2) of the set M consisting of the rows of A such
that each column j contains two non-zero coefficients satisfying

∑
i∈M1

aij −∑
i∈M2

aij = 0.
Note that the constraint matrix in the linear programming relaxation prob-

lem (1), (2), (3), and (5) is of the form
(
C
I

)
where C comes from these in-

equalities of zij ≤ xi and zij ≤ xj . It suffices to show C is TU as a matrix A
is TU iff (AT , I)T is TU. Recall that a matrix A is TU iff AT is TU. Note that
there is one 1 and one −1 in each row of C and the third sufficient condition
mentioned above can be satisfied by selecting M1 = C and M2 = ∅.

In conclusion, (0–1QP ) with all off-diagonal elements of Q being non-
positive can be reduced to a linear programming problem and thus can be
solved in polynomial time [18, 30].

The polynomial solvability of this subclass of (0–1QP ) can be also shown
by associating the problem with a graph and reducing the problem to
a maximum flow problem. Consider a directed graph G = (V,E) with
V = (s, 1, 2, . . . , n, t), where s denotes the source and t the sink, and with
E = Es ∪ EQ ∪ Et, where

Es = {sj | j = 1, . . . , n},
EQ = {ij | qij < 0, 1 ≤ i < j ≤ n},
Et = {jt | j = 1, . . . , n}.

The capacities of the arcs in E are defined as follows:

esj = max

⎧⎨⎩0,−2
n∑

i=j+1

qji − cj

⎫⎬⎭ , sj ∈ Es, (6)

eij = −2qij , ij ∈ EQ, (7)

ejt = max

⎛⎝0, 2
n∑

i=j+1

qji + cj

⎞⎠ , jt ∈ Et. (8)

Let (U,U) be a partition of G with s ∈ U and t ∈ U . The set of arcs
δ+(U) = {ij | i ∈ U, j ∈ U} is called an s − t cut. The capacity of
δ+(U) is

∑
ij∈δ+(U) eij . The minimum-cut problem is to find a cut with the

minimum capacity. Let Ψ be the capacity of the minimum-cut of G. Then
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Ψ = minU

∑
ij∈δ+(U) eij . Associate each cut δ+(U) of G with a 0–1 vector

(1, x1, . . . , xn, 0) satisfying xi = 1 if i ∈ U and xi = 0 otherwise. Similar to
the proof for Property 6 in [8], we prove the following result which is also
stated in [28].

Theorem 1. Problem (0–1QP ) with all off-diagonal elements of Q being non-
positive can be reduced to the minimum-cut problem of the graph G = (V,E)
via the following relation:

min
x∈{0,1}n

{xTQx+ cTx} = Ψ−
n∑

j=1

esj .

Proof. By (6), (7) and (8), we have

Ψ = min
x∈{0,1}n

⎧⎨⎩
n∑

j=1

esj(1− xj) +
∑

1≤i<j≤n

eijxi(1− xj) +
n∑

j=1

ejtxj

⎫⎬⎭
=

n∑
j=1

esj + min
x∈{0,1}n

⎧⎨⎩
n∑

j=1

min(0, 2
n∑

i=j+1

qji + cj)xj − 2
n−1∑
i=1

n∑
j=i+1

qijxi

+2
∑

1≤i<j≤n

qijxixj +
n∑

j=1

max(0, 2
n∑

i=j+1

qji + cj)xj

⎫⎬⎭
=

n∑
j=1

esj + min
x∈{0,1}n

⎧⎨⎩
n∑

j=1

⎛⎝2
n∑

i=j+1

qji + cj

⎞⎠xj

−2
n−1∑
i=1

n∑
j=i+1

qijxi + 2
∑

1≤i<j≤n

qijxixj

⎫⎬⎭
=

n∑
j=1

esj + min
x∈{0,1}n

⎧⎨⎩
n∑

j=1

cjxj + 2
∑

1≤i<j≤n

qijxixj

⎫⎬⎭
=

n∑
j=1

esj + min
x∈{0,1}n

{
xTQx+ cTx

}
.

This proves the theorem. ��
It is well known that the minimum-cut problem is equivalent to the maximum-
flow problem that can be solved in polynomial time (see [25]). Therefore,
problem (0–1QP ) with all off-diagonal elements of Q being non-positive can
be solved by computing the maximum flow of a graph with n+2 vertices and
2n+n(n− 1)/2 arcs. Algorithms with different complexity bounds have been
proposed for finding a maximum flow in G (see [14, 17, 25]), for example, an
O(n3) maximum-flow algorithm proposed in [14] or [17].
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3 Problem (0–1QPh) with Fixed Rank Q

We consider now a subclass of problem (0–1QPh) where Q is negative semidef-
inite and rank(Q) = d. Let G = −Q. In this situation, there exists a row full
rank d× n matrix, V , such that G = V TV , where the rows of V are suitably
scaled eigenvectors of G. Problem (0–1QPh) can be thus expressed as

(BQPfr) max
x∈{0,1}n

xTGx = xTV TV x =
d∑

i=1

(vix)2,

where vi is the ith row of matrix V .
If d is equal to 1, i.e., the matrix G is of rank one with G = vT

1 v1, the
solution to (BQPfr) can be easily found by inspection. More specifically, we
only need to select x such that the absolute value of v1x is maximized on
{0, 1}n.

In general cases with rank(G) = d > 1, we consider a linear map Φ:
x ∈ Rn → z = V x ∈ Rd, in which Φ maps the hypercube [0, 1]n into a convex
polytope Z(V ) = Φ([0, 1]n) = {z ∈ Rd | z = V x, x ∈ [0, 1]n}, known as a
zonotope. Note that

max
x∈{0,1}n

xTGx = max
x∈{0,1}n

d∑
i=1

(vix)2 = max
z∈Z(V )

d∑
i=1

z2
i = max

z∈Z(V )
‖z‖2,

where the second equality is due to that the maximization of a convex func-
tion over a convex set is always achieved at the vertices. Based on the same
argument, the convex function ‖z‖2 achieves its maximum over the convex
set Z(V ) at some extreme point z̃. Thus, (BQPfr) reduces to a problem of
finding the maximum norm in a zonotope.

Theorem 2. For any extreme point z̃ of the zonotope Z(V ), there is a point
x̃ ∈ {0, 1}n such that z̃ = V x̃.

Proof. Since V is row full rank, we can assume that V = (V̂ , V1), where V̂ is

a d× d nonsingular matrix. Let x =
(
x̂
x̄

)
, where x̂ is a d-dimensional vector

corresponding to the columns of V̂ . Letting x̄ = 0 in the equation z̃ = V x, we

obtain z̃ = V̂ x̂. Then x̃ =
(
V̂ −1z̃

0

)
satisfies z̃ = V x̃ and is an extreme point

of [0, 1]n. Indeed, suppose that there exist x̃1 and x̃2 with x̃1 �= x̃2 such that

x̃ = λx̃1 +(1−λ)x̃2 for some λ ∈ (0, 1). Then x̃1 =
(
x̂1

0

)
and x̃2 =

(
x̂2

0

)
for

some x̂1, x̂2 ∈ [0, 1]d with x̂1 �= x̂2. Thus, z̃ = λV̂ x̂1 + (1− λ)V̂ x̂2. Since V̂ is
nonsingular and x̂1 �= x̂2, we deduce that V̂ x̂1, V̂ x̂2 ∈ Z(V ) and V̂ x̂1 �= V̂ x̂2,
which in turns implies that z̃ is not an extreme point of Z(V ), a contradiction.
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The following is a classical result in discrete geometry (see, e.g., [34]) which
gives a polynomial upper bound of the number of extreme points of Z(V ) for
fixed d.

Theorem 3. Let Nep(Z) denote the number of extreme points of the zonotope
Z(V ). Then Nep(Z) = O(nd−1).

An immediate implication of Theorems 2 and 3 is that problem (0–1QPh)
with fixed rank Q is polynomially solvable.

We now discuss how to enumerate all the extreme points of the zonotope
Z(V ). Let vj denote the jth column vector of V . Assume that the regularity
condition is satisfied for the zonotope Z(V ), i.e., each column of V is non-zero
and vi �= kvj for any i �= j and k �= 0. Associated with Z(V ), we define a set
of hyperplanes in Rd with vj (j = 1, . . . , n) being normal vectors:

A(V ) = {hj | j = 1, . . . , n},

where hj = {y ∈ Rd | (vj)T y = 0} for j = 1, . . . , n. The set A(V ) is called
central arrangement of V . Denote h+

j = {y ∈ Rd | (vj)T y > 0} and h−j = {y ∈
Rd | (vj)T y < 0}. For any c ∈ Rd, define the location vector γ(c) ∈ {+, 0,−}n

by

γ(c)j =

⎧⎨⎩
+, if c ∈ h+

j ,

0, if c ∈ hj ,
−, if c ∈ h−j .

Let c ∈ Rd be such that γ(c)j �= 0 for j = 1, . . . , n. A cell of the arrangement
A(V ) is defined as the following d-dimensional subset:

Cc = {y ∈ Rd | γ(y) = γ(c)}. (9)

Obviously, Cc is invariant for any y ∈ Cc. Thus, a cell can be represented by
its sign vector. Denote by C(V ) the set of all cells of the arrangement A(V ),
i.e.,

C(V ) = {Cc | c ∈ Rd}.
For any cell Cc ∈ C(V ), denote γ+(c) = {j | γ(c)j = +} and γ−(c) = {j |
γ(c)j = −}.
Theorem 4. There is a one-to-one correspondence between the extreme points
of Z(V ) and the cells of A(V ).

Proof. For each cell Cc ∈ C(V ), define xc by

(xc)j =
{

1, if j ∈ γ+(c)
0, if j ∈ γ−(c). (10)

Let zc = V xc, then cT zc =
∑

j∈γ+(c) c
T vj . Since cT vj > 0 for j ∈ γ+(c)

and cT vj < 0 for j ∈ γ−(c), zc is the unique optimal solution to the linear
program maxz∈Z(V ) c

T z. Thus zc is an extreme point of the polytope Z(V ).
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Conversely, for any extreme point z̃ of Z(V ), there is a c ∈ Rd such that z̃
is the unique optimal solution to the linear program maxz∈Z(V ) c

T z. Notice
that

max
z∈Z(V )

cT z = max
x∈[0,1]n

n∑
j=1

xj(cT vj).

So z̃ must be of the form V xc with xc being defined in (10). There must
be no j such that cT vj = 0, i.e., γ(c)j �= 0 for any j, since otherwise the
optimal solution to the linear program maxz∈Z(V ) c

T z is not unique. The cell
Cc defined in (9) is then the cell in C(V ) corresponding to z̃. The one-to-one
property of the above correspondence can be easily established by noting that
V is row full rank.

Theorem 4 implies that enumeration of all the extreme points of the zono-
tope Z(V ) is equivalent to the enumeration of all the cells of the arrangement
A(V ) for which various procedures have been proposed (see [1, 2, 13, 32]).

Note that the central arrangement A(V ) satisfies ∩n
j=1hj = {0} and the

cells of A(V ) are symmetric to the origin. We thus only need to generate
half of the cells or the corresponding sign vectors. Consider a shift of the last
hyperplane h = {x ∈ Rd | (vn)T y = b}, where b �= 0. The intersection of A(V )
and h is a general arrangement of n− 1 hyperplanes in Rd−1. It can be seen
that the sign vectors (cells) of A′(V ) = A(V ) ∩ h corresponds to the half of
the sign vectors of A(V ) with the last element being + or −.

Now, consider a general arrangement A = {hj | j = 1, . . . ,m}, where
hj = {y ∈ Rd | aT

j y = bj , j = 1, . . . ,m}. The sign vector of a cell in a
general arrangement can be defined similarly as for the central arrangement.
A root cell is the cell with all + elements in the sign vector. A root cell can
be found by selecting any cell and reversing the orientation of some of the
hyperplanes if necessary. Two cells are called neighbors if only one of the
hyperplanes separates them, i.e., the sign vectors differ only in exactly one
element. A parent cell of c is a unique neighbor of c which contains one more
+ in its sign vector. Any cell with c being its parent is called a child of c. If a
unique parent of each cell (except for the root cell) is assigned, then a directed
tree structure can be obtained for the cells and the reverse search algorithm
can be used to traverse this tree backward, enumerating all the cells exactly
once. A procedure to search all the adjacent cells of a cell c is needed in the
reverse search algorithm. The procedure of cell enumeration can be described
as follows.

Procedure 1 (Cell Enumeration)

Input: a cell c represented by its sign vector, and the hyperplanes represented
by (A, b)

Output: a set C(A) containing all the cells of the arrangement (rooted
at c)
begin

(i) output c to C(A).
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(ii) call a subroutine to list all adjacent cells of c
(iii) for each cell e of c do

if c is the unique parent of e then
recurse the procedure with e as the input cell

endif
endfor

end

The above recursive procedure starts from the root cell and terminates
when all the cells are enumerated. The details of the procedures for finding
all neighbors of a cell and searching for the unique parent of a cell can be
found in [2, 32]. To illustrate the cell enumeration procedure, letus consider
an instance of (0–1QPh) where Q = −V TV and

V =

⎛⎝−1 −1 0 1 0
−1 0 1 −1 0
0 0 0 −1 1

⎞⎠ .

Using the parallel translation of the last hyperplane of the arrangement y3 =
1, the reduced general arrangement contains four hyperplanes in R2 and is
represented by

A =
(−1 −1 0 1
−1 0 1 −1

)
, b =

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠ .

Figure 1 illustrates the cell enumerating process of the arrangement (A, b),
where each cell is represented by its sign vector and the number indicates the
order of the cell enumeration process in Procedure 1.

h1

h2

h3

h4

+ + ++

− + +++ + +−

+ + −+

+ + −−

− + +−

− − +−

− − ++

+ − −+

− − −+

1

2

3

4
5

6

7

8

10

9

Fig. 1. Illustration for cell enumeration process
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As there are 10 cells in the reduced general arrangement, there are 20 cells
in the original central arrangement. Thus, the zonotope Z(V ) has 20 extreme
points among which zc = V xc, where xc = (1, 1, 0, 1, 0)T , is the optimal solu-
tion to maxz∈Z(V ) ‖z‖2. Therefore, xc = (1, 1, 0, 1, 0)T is the optimal solution
to the original problem (0–1QPh) with optimal value 6.

4 Problem (0–1QP ) with Q Being a Tridiagonal Matrix

We first consider problem (0–1QP ) in its general form in this section. Denote
by Δi(x) the ith derivative of f(x) = xTQx+ cTx at x,

Δi(x) =
∂f

∂xi

= f(x1, . . . , xi−1, 1, xi+1, . . . , xn)− f(x1, . . . , xi−1, 0, xi+1, . . . , xn).

Denote by Θi(x) the ith residual

Θi(x) = f(x1, . . . , xi−1, 0, xi+1, . . . , xn)
= f(x)− xiΔi(x).

Both Δi(x) and Θi(x) are, in general, linear functions of x1, . . . , xi−1, xi+1, . . . ,
xn. Moreover, f can be expressed as

f(x) = xiΔi(x) + Θi(x). (11)

It is clear that a point x ∈ {0, 1}n is a solution to (0–1QP ) only if for all
i = 1, . . . , n,

xi =
{

1, if Δi(x) < 0,
0, otherwise. (12)

The basic algorithm [11, 19] is developed based on the above necessary
optimality condition. We first express f(x) in (0–1QP ) as

f(x) = xnΔn(x1, . . . , xn−1) + Θn(x1, . . . , xn−1). (13)

From the optimal condition (12), the global minimizer of f satisfies

xn =
{

1, if Δn(x1, . . . , xn−1) < 0,
0, otherwise. (14)

Therefore, if we can express xn defined in (14) as a polynomial of x1, . . . ,
xn−1, φn(x1, . . . , xn−1), then we can eliminate xn from the expression of f(x)
in (13),

fn−1(x1, . . . , xn−1) = φn(x1, . . . , xn−1)Δn(x1, . . . , xn−1) + Θn(x1, . . . , xn−1).

Note that, in general cases, fn−1(x1, . . . , xn−1) may not be a quadratic func-
tion, as φn(x1, . . . , xn−1), in general, is not a linear function. Performing the
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same elimination process for fn−1, we will get a function fn−2 of x1, . . . , xn−2

and this process continues recursively until we obtain f1(x1). Let x∗ denote the
optimal solution of (0–1QP ). Notice that x∗1 = 1 if f1(1) < f1(0) and x∗1 = 0
otherwise. Then x∗2, . . . , x

∗
n can be obtained by using x∗i+1 = φi+1(x∗1, . . . , x

∗
i )

recursively for i = 1, . . . , n− 1.
The basic algorithm [11, 19] can then be described as follows.

Algorithm 4.1 (Basic Algorithm for (0–1QP )).

Step 0. Set fn(x) = f(x) and k = n.
Step 1. Calculate

Δk(x1, . . . , xk−1) =
∂fk

∂xk
,

Θk(x1, . . . , xk−1) = fk(x1, . . . , xk−1, 0).

Determine the polynomial expression of φk defined by

φk(x1, . . . , xk−1) =
{

1, if Δk(x1, . . . , xk−1) < 0,
0, otherwise. (15)

Step 2. Compute

fk−1(x1, . . . , xk−1) = φk(x1, . . . , xk−1)Δk(x1, . . . , xk−1)+Θk(x1, . . . , xk−1).

Step 3. If k > 1, then set k := k − 1 and go to Step 1. Otherwise, set x∗1 = 1
if f1(1) < f1(0) and x∗1 = 0 if f1(1) ≥ f1(0). Calculate x∗k by x∗k =
φk(x∗1, . . . , x

∗
k−1) for k = 2, . . . , n.

It is proved in [19] that the basic algorithm produces an optimal solution
x∗ to (0–1QP ). The following small-size example illustrates the algorithm.

Example 1.
max

x∈{0,1}3
f(x) = 4x1x2 − x1x3 + 2x2x3.

By the algorithm, we have Δ3(x1, x2) = −x1 + 2x2 and thus

φ3(x1, x2) =
{

1, if Δ3(x1, x2) < 0
0, otherwise

}
= x1(1− x2).

Hence we get

f2(x1, x2) = φ3(x1, x2)Δ3(x1, x2) + Θ3(x1, x2)
= x1(1− x2)(−x1 + 2x2) + 4x1x2

= 5x1x2 − x1.
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Since Δ2(x1) = 5x1, we get

φ2(x1) =
{

1, if g2(x1) < 0,
0, otherwise

}
= 0.

Thus,
f1(x1) = φ2(x1)Δ2(x1) + Θ2(x1) = −x1.

Therefore, x∗1 = 1, x∗2 = φ2(x∗1) = 0, and x∗3 = φ3(x∗1, x
∗
2) = 1. The optimal

solution to the example is x∗ = (1, 0, 1)T with f(x∗) = −1.
The key task in performing the basic algorithm is how to identify the poly-

nomial expression of φk defined in (15). Techniques to obtain the polynomial
expression φk are discussed in [11, 20]. In principle, φk can be always con-
structed systematically. Let us consider the following instance Δ4(x1, x2, x3)
= 4x1 − x2 − 5x3. The first step is to find the mapping from all possible com-
binations of x1, x2, and x3 to the value of Δ4 which is given in the following
table.

Table 1. Illustrative example of mapping Δk

x1 x2 x3 Δ4(x1, x2, x3)

0 0 0 0
1 0 0 4
0 1 0 −1
0 0 1 −5
1 1 0 3
1 0 1 −1
0 1 1 −6
1 1 1 −2

Using Boolean algebra and noticing that all possible combinations of x1,
x2 and x3 are mutually exclusive, we can get

φ4(x1, x2, x3) = (1− x1)x2(1− x3) + (1− x1)(1− x2)x3 + x1(1− x2)x3

+(1− x1)x2x3 + x1x2x3

= x2 − x3 − x1x2 − x2x3 + x1x2x3.

Note that if Δk involves s variables, then we need to examine 2s combina-
tions. In the worst case, if Δn involves n− 1 variables, calculating φn is more
than enumerating 2n−1 possible solutions. The basic algorithm could become
very powerful for (0–1QP ) when interactions among variables are weak, for
example, when matrix Q in (0–1QP ) is tridiagonal.

We consider now a special case of problem (0–1QP ) where Q is a tridiag-
onal symmetric matrix with zero diagonal elements,
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Q =

⎛⎜⎜⎜⎜⎜⎜⎝
0 q12 0 . . . 0 0
q12 0 q23 . . . 0 0
0 q23 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 qn−1,n

0 0 0 . . . qn−1,n 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

In this special case, it can be verified that both functions Δk and φk are
linear functions of a single variable xk−1. Thus, fk remains a quadratic form
all the way through the iteration. The basic algorithm becomes polynomial in
such a special case.

Algorithm 4.2 (Exact Algorithm for (0–1QP ) with Q Being Tridiagonal).

Step 0. Set fn(x) = f(x) and k = n.
Step 1. Calculate

Δk(xk−1) =
∂fk

∂xk
= 2qk−1,kxk−1 + ck,

Θk(x1, . . . , xk−1) = fk(x1, . . . , xk−1, 0).

Determine the polynomial expression of φk defined by

φk(xk−1) =

⎧⎪⎪⎨⎪⎪⎩
1 if 2qk−1,k + ck < 0 and ck < 0,
0 if 2qk−1,k + ck ≥ 0 and ck ≥ 0,
xk−1 if 2qk−1,k + ck < 0 and ck ≥ 0,
1− xk−1 if 2qk−1,k + ck ≥ 0 and ck < 0.

(16)

Step 2. Compute

fk−1(x1, . . . , xk−1) = φk(xk−1)Δk(xk−1) + Θk(x1, . . . , xk−1),

and simplify the expression using x2
k−1 = xk−1.

Step 3. If k > 1, then set k := k−1 and go to Step 1. Otherwise, set x∗1 = 1 if
f1(1) < f1(0) and x∗1 = 0 if f1(1) ≥ f1(0). Calculate x∗k by x∗k = φk(x∗k−1)
for k = 2, . . . , n.

5 Problem (BQP ) Defined by a Series-Parallel Graph

We consider graph G = (E, V ). Given a subset of vertex T ⊂ V , we use G[T ]
to denote an induced subgraph of G, where it consists of T and all edges
whose end points are contained in T . For any node v ∈ V , the degree of v is
the cardinality of cut δ({v}), denoted as deg(v).

Given two edge sets E1 ⊂ E and E2 ⊂ E in graph G such that E1∩E2 = ∅,
we use β(E1, E2, G) to denote the weight of a cut δ(U) such that E1 ⊂ δ(U)
and E2 ∩ δ(U) = ∅ and the weight of such a cut, w(δ(U)), is maximized in
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G. Therefore, β(E1, E2, G) can be interpreted as a constrained max-cut that
must include all edges in E1 and does not include any edge in E2. Furthermore,
β(∅, ∅, G), for short β(G), actually is the weight of the max-cut of graph G.
Note w(δ(∅)) = 0.

We use Kn to denote the complete graph with n vertices, where all n
vertices are pairwise adjacent. A graph G is a contractible to G′, if G′ can be
obtained from G by a sequence of elementary contractions, in which edge ij
is replaced by a single vertex whose incident edges are the edges other than ij
that were incident to i or j. The multiple edges arising from the contraction
are merged into a single edge in such a procedure. A graph is called series-
parallel if it is not contractible to K4. Graph (A) in Fig. 2 is series-parallel
and (B) is not.

Fig. 2. Examples of series-parallel and non-series-parallel graphs

We consider problem (BQP ) and reduce it first to a max-cut problem.
Define a graph G(Q) := {V,E} for problem (BQP ), which is associated to
Q = {qij}n×n, as follows:

V = {1, 2, · · · , n},
ij ∈ E ⇔ qij �= 0,
wij = 2qij ,

where wij is the weight assigned to edge ij. We then construct a new graph
G(Q, c) by adding a universal vertex {0} which is connected to each vertex
of G(Q) and assign weight w0j = cj to edge 0j, for j = 1, . . ., n. Clearly,
G(Q) = G(Q, c) \ {0}. Then, solving (BQP ) is equivalent to finding the max-
cut of graph G(Q, c):

max
n−1∑
i=0

n∑
j=i+1

{wij |yi = −yj}

s.t. y2
i = 1, for i = 0, · · · , n.

Consider an instance of (BQP ) with
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Q =

⎛⎜⎜⎝
0 1 0 −1.5
1 0 0 0
0 0 0 −0.5

−1.5 0 −0.5 0

⎞⎟⎟⎠ , c =

⎛⎜⎜⎝
2.5
−2
3

1.5

⎞⎟⎟⎠ .

The correspondent graph of this example problem is given in Fig. 3(a). It is
easy to check that graph G(Q) in this example is series-parallel.

(a) Original graph G (b) Reduced graph G2

(c) Reduced graph G
3

Fig. 3. The original graph and the reduced graphs of the example instance

If graph G(Q) is series-parallel, then graph G(Q, c) is not contractible to
K5. Recall the facts [3] that any subgraph of a series-parallel graph is still
series-parallel and there always exists a vertex in a series-parallel graph that
has degree not greater than 2. The main result in [3] is that if graph G(Q)
is series-parallel, the corresponding max-cut problem of graph G(Q, c) can be
solved by a linear-time algorithm which we are presenting below.

If graph G(Q, q) is of three vertices or less, the max-cut problem can be
solved by enumeration. Otherwise, for every vertex i in G(Q), we compute
its degree di and place all vertices with degree not greater than 2 into a list
L, which can be achieved in linear time O(n). In each iteration, we choose a
vertex j from L and perform a reduction. We need to consider the following
three different situations.

Case 1. If deg(j) = 2, let k and l be the vertices adjacent to j in G(Q).
We assume that G(Q, q) contains all three edges 0k, 0l, and kl. Otherwise,
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we can add the missing edge with weight 0. Let W be the subgraph of
G(Q, q) induced by {0, j, k, l} with edge weights the same as in G(G, q).
See the left subgraph of Fig. 4 for graphical presentation of subgraph W .
Note that any cut of W contains either two edges of 0k, 0l, and kl or none
of them.

Fig. 4. The graph of {j, k, l, 0}

The max-cut problem is solved by recursively generating G′ := G(Q, q) \
{j}. All the edge weights in G(Q, q)\{j} are the same as in G(Q, q), except
for these edges in subgraph W , 0k, kl, and 0l, which need to be modified.
For the reduced graph W ′ = W \ {j} depicted in the right subgraph of
Fig. 4, there are only three possible cuts, {0k, lk}, {0l, lk}, and {0k, 0l}.
All of such cuts have to satisfy the following balance equations,

w̄0l + w̄0k = β({0l, 0k}, ∅,W )− β(∅, {0k, kl, 0l},W ),
w̄0k + w̄lk = β({0k, kl}, ∅,W )− β(∅, {0k, kl, 0l},W ),
w̄0l + w̄lk = β({0l, kl}, ∅,W )− β(∅, {0k, kl, 0l},W ).

The meaning of the above equations is clear. For example, the weight of
the cut {0k, kl} in the reduced graph W ′ should be equal to that of the
max-cut involving {0k, kl} in the original graph W , while taking away
the contribution of the edges leading to node j, β(∅, {0k, kl, 0l},W ). The
solution to the above system of linear equations is

w̄0l := 0.5[β({0l, kl}, ∅,W ) + β({0l, 0k}, ∅,W )
−β({0k, kl}, ∅,W )− β(∅, {0k, kl, 0l},W )],

w̄0k := 0.5[β({0k, kl}, ∅,W ) + β({0l, 0k}, ∅,W )
−β({0l, kl}, ∅,W )− β(∅, {0k, kl, 0l},W )],

w̄lk := 0.5[β({0l, kl}, ∅,W ) + β({0k, kl}, ∅,W )
−β({0k, 0l}, ∅,W )− β(∅, {0k, kl, 0l},W )].
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It is evident that β(G(Q, q)) = β(G′) + β(∅, {0k, kl, 0l},W ). The optimal
cut in G′ is extended to an optimal cut in G(Q, q) by taking the appro-
priate cut in W . Set then deg(l) = deg(l)− 1 and deg(k) = deg(k)− 1. If
deg(l) ≤ 2 or deg(k) ≤ 2, add l or k to L.

Case 2. If deg(j) = 1, let k be the vertex adjacent to j in G(Q). Let W
be the subgraph of G(Q, q) induced by {0, j, k}, in which the weights are
the same as in G(Q, q). In G′ := G(Q, q) \ {j}, we only need to modify
the weight of edge 0k to

w̄0k := β({0k}, ∅,W )− β(∅, {0k},W ).

It is clear β(G(Q, q)) = β(G′) + β(∅, {0k},W ). Set deg(k) = deg(k) − 1.
If deg(k) ≤ 2, we include k in L.

Case 3. If deg(j) = 0, the problem can be solved in G′ := G(Q, q) \ {j}
and in the subgraph induced by {j, 0}, separately.

In any of the above three cases, we reduce the nodes of the graph by one
in each iteration. If the size of G(Q, q) is n, the computational effort needed
by this algorithm is bounded by O(n).

We now illustrate the above solution scheme for the example given in
Fig. 3(a).

Step 1 The initial list is given by L := {a, b, c, d}. As deg(a) = 2, we
consider a reduced graph G2 = G\{a} given in Fig. 3(b). Let subgraph W1

be induced by vertices {a, b, d, 0}. We calculate β({0b, 0d}, ∅,W1) based
on its definition. Consider two possible cuts in W1 that include edges 0b,
0d in subgraph H, {ab, ad, 0b, 0d} and {0a, 0b, 0d}. Thus,

β({0b, 0d}, ∅,W1) = max{(2− 3− 2 + 1.5), (2.5− 2 + 1.5)} = 2.

Similarly, we can get β({0b, bd}, ∅,W1) = 0, β({0d, bd}, ∅,W1) = 6, and
β(∅, {0b, bd, 0d},W1) = 1.5. Furthermore, the modified weights for 0b, bd,
and 0d are given as

w̄0b = 0.5[β({0b, bd}, ∅,W1) + β({0b, 0d}, ∅,W1)− β({0d, bd}, ∅,W1)
−β(∅, {0b, bd, 0d},W1)] = −2.75,

w̄bd = 0.5[β({0b, bd}, ∅,W1) + β({0d, bd}, ∅,W1)− β({0b, 0d}, ∅,W1)
−β(∅, {0b, bd, 0d},W1)] = 1.25,

w̄0d = 0.5[β({0d, bd}, ∅,W1) + β({0d, 0b}, ∅,W1)− β({0b, bd}, ∅,W1)
−β(∅, {0b, bd, 0d},W1)] = 3.25.

We also have

β(G) = β(G1) + β(∅, {0b, bd, 0d},W1).

After deleting a, the node list is updated to L := {b, d, c}.
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Step 2 As deg(b) = 1 in graph G2, we consider a reduced graph G3 =
G2\{b} given in Fig. 3(c). Let subgraphW2 be induced by vertices {b, d, 0}.
We have

β({0d}, ∅,W2) = 4.5, β(∅, {0d},W2) = w(δ(∅)) = 0,
w̄0d = β({0d}, ∅,W2)− β(∅, {0d},W2) = 4.5.

It is clear that β(G2) = β(G3) + β(∅, {0d},W2).
Step 3 There are only three vertices in G3. Comparing all possible cuts
yields β(G3) = 7.5 with max-cut {0c, 0d}. Tracing back gives rise to

β(G2) = β(G3) + β(∅, {0d},W2) = 7.5 + 0 = 7.5,
β(G) = β(G2) + β(∅, {0b, bd, 0d},W1) = 7.5 + 1.5 = 9.

The remaining problem is how to identify the optimal solution to the pri-
mal problem. The max-cut in G3 gives rise an optimal division as ({c, d}, {0}).
Comparing two possible “expanding” divisions of nodes in G2, ({d, c}, {b, 0})
and ({d, c, b}, {0}) yields the optimal division in G2, ({d, c}, {b, 0}). Finally,
comparing two possible “expanding” divisions of nodes in G, ({a, d, c}, {b, 0})
and ({d, c}, {a, b, 0}) identifies the optimal division of the entire problem,
({a, d, c}, {b, 0}).

We indicate here that the solution process dictated by the above graphical
method can be also produced by the basic algorithm which is also applicable
to binary situations with x ∈ {−1, 1}n. Expressing f(x) as

f4(x1, x2, x3, x4) = 2x1x2 − 3x1x4 − x3x4 + 2.5x1 − 2x2 + 3x3 + 1.5x4

= x1Δ4(x2, x3, x4) + Θ4(x2, x3, x4),

where Δ4 = 2x2 − 3x4 + 2.5 and Θ4 = −x3x4 − 2x2 + 3x3 + 1.5x4, we have

φ4(x2, x3, x4) =
1
2
(1− x2)(1 + x4)− 1,

which leads to a reduced form of the objective function

f3(x2, x3, x4) = φ4(x2, x3, x4)Δ4(x2, x3, x4) + θ4(x2, x3x4)
= 1.25x2x4 − x3x4 − 2.75x2 + 3x3 + 3.25x4 − 3.75.

Note that the graphical representation of the max-cut problem corresponding
to f3(x2, x3, x4) is exactly Fig. 3(b). We further write f3 in the following form,

f3(x2, x3, x4) = x2Δ3(x3, x4) + Θ3(x3, x4),

with Δ3 = 1.25x4−2.75 and Θ3 = −x3x4 +3x3 +3.25x4−3.75. We can derive
φ3(x3, x4) = 1 which yields

f2(x3, x4) = 3x3 + 4.5x4 − x3x4 − 6.5,
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whose graphical representation is exactly Fig. 3(c). Minimizing f2(x3, x4)
yields x∗3 = −1 and x∗4 = −1. We can then determine x∗2 = φ3(x3, x4) = 1 and
x∗1 = φ4(x2, x3, x4) = −1.

When the corresponding graph of problem (BQP ) is serial-parallel, there
are at least one row and one column in Q that have no more than two non-zero
elements. This pattern remains unchanged during the reduction process. As
φk is at most a quadratic function, fk remains to be a quadratic function. In
essence, if the structure of (BQP ) is governed by a serial-parallel graph, the
coupling among xi’s is low, and the problem can be solved efficiently by the
basic algorithm.

6 Problem (0–1QP ) Defined by a Logic Circuit

Let wij = −2qij , Ii = −ci for i, j = 1, 2 . . . , n. The objective function f(x) =
xTQx+ cTx in (0–1QP ) can be expressed as the following form:

E(x) = −
∑

1≤i<j≤n

wijxixj −
n∑

i=1

Iixi,

which can be viewed as the energy function of a neural network where wij ∈ R

is the weight associated with the connection between neurons j and i, xi ∈
{0, 1} is the activation value of neuron i, and Ii ∈ R is the threshold of neuron
i. For example, the following objective function

f = −[−6x1x2 + 5x1x3 − 7x1x4 + 5x2x3 − 7x2x4 − 2x3x4 − 3x3x5 − 3x4x5]
−[5x1 + 6x2 − 5x3 + 6x4 + 2x5]

can be expressed as the energy function of the neural network in Fig. 5(a).
It can be verified easily from the example in Fig. 5(a) that for any value

of x3 and x4, we should assign x5 at ¯x3 ∨ x4 = 1−max{x3, x4}, i.e., optimal
x5 which minimizes the energy function should be the output of a NOR logic
gate if we assign x3 and x4 to be the inputs of the gate. This conclusion can
be also derived from our earlier discussion of the basic algorithm.

Let xj and xk be the inputs to a logic gate. Then xi is the output of an
AND logic gate if xi = xj ∧ xk = min{xj , xk}, the output of an OR logic
gate if xi = xj ∨ xk = max{xj , xk}, the output of a NAND logic gate if xi

= ¯xj ∧ xk = 1 − min{xj , xk}, and the output of a NOR logic gate if xi =
¯xj ∨ xk = 1 −max{xj , xk}. We can now relate the following special form of

the three-variable energy function,

E(xi, xj , xk) = −[w(xixj + xixk) + wjkxjxk]− [Ixi + Ijxj + Ikxk] +K,
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Fig. 5. The original and reduced neural networks of the example problem

with these four different logic gates. Using the basic algorithm, we can identify
eight cases of different combinations of w and I and their corresponding logic
gates, which are given in the following table. Figure 6 offers details in figuring
out these eight cases. For example, both conditions of w < 0 and −w − I <
0 < −2w − I give rise to case 6.

xj xk −w(xj+
xk)− I

Cases 1
& 5

Case 2 Case 3 Cases 4
& 8

Case 6 Case 7

0 0 −I < 0 ≥ 0 ≥ 0 ≥ 0 < 0 < 0
0 1 −w − I < 0 < 0 ≥ 0 ≥ 0 < 0 ≥ 0
1 0 −w − I < 0 < 0 ≥ 0 ≥ 0 < 0 ≥ 0
1 1 −2w − I < 0 < 0 < 0 ≥ 0 ≥ 0 ≥ 0

Logic
Gate

OR AND NAND NOR

φ(xj , xk) 1 xj + xk

−xjxk

xjxk 0 1− xjxk (1−xj)
(1−xk)
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w > 0

case 1case 2case 3

0

case 4

0 0 0

- 2w - I

- 2w - I

- w - I

- w - I

- I

- I

w < 0

case 5case 6case 7

0

case 8

0 0 0

Fig. 6. Eight cases of different combinations of w and I

Replacing xi by φ(xj , xk) in the four cases associated with different digital
logic gates yields a reduced form for the energy function,

Ē(xj , xk) = −w̄jkxjxk − [Ījxj + Īkxk] + K̄,

where the calculation of w̄jk, Īj , and Īk is summarized in the following table:

AND Īj = Ij , Īk = Ik and w̄jk = wjk + 2w + I

OR Īj = Ij + w + I, Īk = Ik + w + I and w̄jk = wjk − I

NAND Īj = Ij + w, Īk = Ik + w and w̄jk = wjk − 2w − I

NOR Īj = Ij − I, Īk = Ik − I and w̄jk = wjk + I

Based on the above recognition between problem (0–1QP ) and logic cir-
cuits, Chakradhar and Bushnell have designed an iterative method [9] to check
whether or not a neural network corresponding to (0–1QP ) can be converted
into a logic circuit. If we are able to construct a logic circuit such that all
the consistent input/output values together minimize the energy function of
the neural network, then the original problem (0–1QP ) can be solved by a
linear-time algorithm.

The assumptions to ensure that the quadratic function f can be trans-
formed into a combinational logic circuit are as follows: (i) the neural network
corresponding to the energy function and all the reduced neural networks gen-
erated during the iteration have at least one vertex of degree one or two and
(ii) both edges incident to the vertex with degree two have equal weights.

A satisfaction of the above assumptions will enable us, in each iteration,
to identify a vertex with degree one or two by uniquely determining the cor-
responding logic gate.
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Let us now apply this solution scheme to the example problem in Fig. 5(a).
As the terms involving x5 satisfy the condition of NOR logic gate with x3 and
x4 being the inputs and x5 being the output: w35 = w45 = w = −3 < 0,
wl5 = 0, for l �= 3 and 4, −I = −2 < 0 < −w − I = 1, we express x5 as
(1− x3)(1− x4), resulting in the reduced neural network given in Fig. 5(b).

We find in Fig. 5(b) that x1, x2, and x3 satisfy the condition of AND logic
gate with x1 and x2 being the inputs and x3 being the output: w13 = w23 =
w = −5 > 0, w34 = 0, and −2w− I = −3 < 0 < −w− I = 2. Expressing x3

as x1x2 results in the reduced neural network given in Fig. 5(c).
From Fig. 5(d), we can figure out that x1, x2, and x4 satisfy the condition

of NOR logic gate with x1 and x2 being the inputs and x4 being the output:
w14 = w24 = w = −7 < 0, −I = −4 < 0 < −w − I = 3. Expressing x4 as
(1− x1)(1− x2) results in the reduced neural network given in Fig. 5(d).

Solving the reduced binary quadratic minimization problem,

min−x1x2 − x1 − 2x2,

yields x∗1 = 1 and x∗2 = 1. Further calculation gives x∗3 = x∗1x
∗
2 = 1, x∗4 =

(1− x∗1)(1− x∗2) = 0, and x∗5 = (1− x∗3)(1− x∗4) = 0.
The condition to define problem (0–1QP ) by a logic circuit is very strict,

especially the requirement of the same weights of the edges incident to the
vertex of degree two which is to be removed. If problem (0–1QP ) can be
defined by a logic circuit, matrix Q and its reduced forms generated during
the process all have, at least, one row and one column that have no more than
two non-zero elements, and when there are two, these two elements are the
same. These conditions are stronger than the conditions for problems defined
by the series-parallel graph.

7 SDP Representation of Lagrangian Dual
and Polynomial Solvability

Based on our recent finding in [33], we discuss in this section how to identify a
polynomially solvable subclass of (BQP ) using Lagrangian dual. Notice that
(P ) can be rewritten as

(BQPc) min f(x) = xTQx+ cTx

s.t. x2
i − 1 = 0, i = 1, . . . , n.

Dualizing each x2
i −1 = 0 by a multiplier λi, we get the Lagrangian relaxation

problem (Lλ):

d(λ) = inf
x∈Rn

L(x, λ) := f(x) +
n∑

i=1

λi(x2
i − 1)

= inf
x∈Rn

{
xT (Q+ diag(λ))x+ cTx− eTλ

}
, (17)
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where e = (1, . . . , 1)T and diag(λ) denotes the diagonal matrix with λi being
its ith diagonal element. Obviously, the weak duality holds

d(λ) ≤ f(x), for anyx ∈ {−1, 1}n.

The dual problem of (Pc) (or (BQP )) is

(D) max
λ∈Rn

d(λ).

Notice that the dual problem (D) can be rewritten as

v(D) = max
λ∈Rn

d(λ) = max
λ∈Rn

inf
x∈Rn

{
xT [Q+ diag(λ)]x+ cTx− eTλ

}
,

which has an equivalent form:

v(D) = max
(λ,τ)∈Rn+1

−τ (18)

s.t. xT [Q+ diag(λ)]x+ cTx− eTλ ≥ −τ , x ∈ Rn.

Let function g(x) be the constraint in problem (18),

g(x) = xT [Q+ diag(λ)]x+ cTx− eTλ+ τ .

Using homogeneous quadratic form (see [31] and Section 3.4 in [6]), we show
below that g(x) ≥ 0, ∀ x ∈ Rn, the satisfaction of the constraint in problem
(18), is equivalent to

G(x, t) = (xT , t)
(
Q+ diag(λ) 1

2c
1
2c

T τ − eTλ

)(
x
t

)
≥ 0 ∀ (x, t) ∈ Rn+1,

which holds true if and only if(
Q+ diag(λ) 1

2c
1
2c

T τ − eTλ

)
! 0.

Since g(x) = G(x, 1), G(x, t) ≥ 0 for all (x, t) ∈ Rn+1 implies g(x) ≥ 0 for all
x ∈ Rn. Now, suppose that g(x) ≥ 0 for all x ∈ Rn. Then, g(t−1x) ≥ 0 for all
x ∈ Rn and t �= 0, which implies

t−2xT [Q+ diag(λ)]x+ t−1cTx− eTλ+ τ ≥ 0 ∀x ∈ Rn, t �= 0,

or, equivalently,

G(x, t) = xT [Q+ diag(λ)]x+ cTxt+ (τ − eTλ)t2 ≥ 0 ∀x ∈ Rn, t �= 0.

By continuity, we have

G(x, t) = xT [Q+ diag(λ)]x+ cTxt+ (τ − eTλ)t2 ≥ 0 ∀ (x, t) ∈ Rn+1.
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Thus, the dual problem (D) can be expressed by the following equivalent
semidefinite programming formulation,

(DSDP) max
(λ,τ)∈Rn+1

−τ (19)

s.t.
(
Q+ diag(λ) 1

2c
1
2c

T τ − eTλ

)
! 0.

Since (DSDP) is a semidefinite programming problem, it is polynomially
solvable. The above discussion implies that if there is no duality gap between
(BQP ) and (DSDP), i.e., v(BQP ) = v(D) = v(DSDP), then v(BQP ) is poly-
nomially computable.

The following theorem further gives a sufficient condition for the polyno-
mial solvability of (BQP ).

Theorem 5. Assume that the optimal solution λ∗ to (DSDP) satisfies
Q∗ = Q+diag(λ∗) � 0. Then x∗ = − 1

2 (Q∗)−1c is the unique optimal solution
to (BQP ) and v(BQP ) = v(D) = v(DSDP). Moreover, (BQP ) is polynomi-
ally solvable.

Proof. From [5], we know that, for any λ ∈ Rn, d(λ) > −∞ with x solving
(Lλ) if and only if

(i) Q+ diag(λ) ! 0;
(ii) (Q+ diag(λ))x = − 1

2c.

Since the optimal solution λ∗ to (DSDP) satisfies Q∗ � 0, we can verify
that (D) or (DSDP ) is equivalent to the following problem:

(D1) sup Φ(λ) = −1
4
cT (Q+ diag(λ))−1c− eTλ (20)

s.t. Q+ diag(λ) � 0.

Thus, λ∗, an interior point of the feasible region of (D1), also solves (D1).
By KKT theorem, we must have ∇Φ(λ∗) = 0, where Φ is defined in (20).
Calculating the gradient of Φ at λ∗ and setting it at zero yield the following:

1
4
cT (Q∗)−1diag(ei)(Q∗)−1c = 1, i = 1, . . . , n. (21)

This is to say (x∗i )
2 = 1, for all i = 1, . . . , n. Thus x∗ ∈ {−1, 1}n. AsQ∗ � 0, x∗

is the unique optimal solution to (BQP ) and v(BQP ) = v(D) = v(DSDP) =
v(D1). Moreover, since λ∗ is polynomially computable and x∗ = − 1

2 (Q +
diag(λ∗))−1c, we deduce that (BQP ) is polynomially solvable.

8 Conclusions

We have summarized the state of the art of polynomially solvable cases for
binary quadratic programming problems. Separating certain easy subclasses
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from a general NP-hard class facilitates identification schemes to peel off
hard covers of some seemingly intractable, but actually manageable, binary
quadratic programming problems. Furthermore, investigation of this subject
not only helps us better understand inherent nature of the problem but also
stimulates innovative thinking for development of solution schemes for general
binary quadratic programming problems.
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Summary. An ill-posed quasi-variational inequality with multi-valued maps can
be conveniently formulated as a parameter identification problem on the graph
of a variational selection. Using elliptic regularization for parametric variational
inequalities, it is possible to pose another parameter identification problem that
gives a stable approximation procedure for the ill-posed problem. The results are
quite general and are applicable to ill-posed variational inequalities, inverse prob-
lems, split-feasibility problem, among others.

Key words: quasi-variational inequalities, parameter identification, regular-
ization, ill-posed, multi-valued monotone maps, inverse problems

1 Introduction

Let B be a uniformly convex Banach space with a strictly convex topological
dual B ∗ . We specify the duality pairing between B and B∗ by 〈·, ·〉, whereas
‖ · ‖ stands for the norm in B as well as in B∗. Let C be a nonempty, closed,
and convex subset of B, and let K : C ⇒ 2C be a set-valued map such that for
every v ∈ C, the set K(v) is nonempty, closed, and convex. Let F : B ⇒ 2B

∗

be a given multi-valued map, and let f ∈ B∗. The effective domain and the
graph of any map A : B ⇒ 2B

∗
are denoted by D(A) and G(A), respectively.

The strong convergence and the weak convergence in B as well as in B∗ are
specified by → and ⇀, respectively.

A. Chinchuluun et al. (eds.), Optimization and Optimal Control,
Springer Optimization and Its Applications 39, DOI 10.1007/978-0-387-89496-6 12,
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The present study is focused on the following multi-valued quasi-variational
inequality (QVI): find x ∈ C such that x ∈ K(x), and there exists w ∈ F(x)
satisfying the variational inequality

〈w − f, z − x〉 ≥ 0 for every z ∈ K(x). (1)

The above QVI includes many important problems of interest as particular
cases. For example, if F is single valued, then (1) recovers the following QVI:
find x ∈ C such that x ∈ K(x) and

〈F(x)− f, z − x〉 ≥ 0 for every z ∈ K(x). (2)

The above problem was introduced by Bensoussan and Lions [3] in connection
with a problem of impulse control. A general treatment of (2) was made by
Mosco [27]. If additionally K(x) = C for every x ∈ C, then (1) recovers the
following variational inequality: find x ∈ C such that

〈F(x)− f, z − x〉 ≥ 0 for every z ∈ C. (3)

Variational inequality (3) appears as a necessary optimality condition for the
output least-squares formulation in the inverse problem of identifying coeffi-
cients in partial differential equations (see [13]). Furthermore, (3) also emerges
as a necessary and sufficient optimality condition for the same inverse problem
through the modified output least-squares (see [14, 15]) and the equation-error
approach (see [16]). Recently, Noor [28] proved the equivalence between the
split-feasibility problem and (3). In recent years, the split-feasibility problem
has attracted much attention due to its interesting applications in image pro-
cessing and inverse problems (see [7, 8, 30]). Some regularization methods for
variational inequalities are available in [10, 17, 20, 22, 25], among others.

Notice that if for every x ∈ C, K(x) is a closed and convex cone with its
apex at the origin and f = 0, then (1) collapses to the generalized comple-
mentarity problem: find x ∈ C such that

x ∈ K(x), w ∈ F(x) ∩ K∗(x), 〈w, x〉 = 0, (4)

where K∗(x) denotes the positive polar of K(x). If additionally K(x) ≡ C, then
(4) recovers the classical complementarity problem (see [18]). For a detailed
study of complementarity problems we refer the reader to Isac et al. [19]. The
equivalence between (1) and (4) is given by Giannessi [11].

In recent years the theory of variational and quasi-variational inequalities
has emerged as one of the most promising branches of pure, applied, and in-
dustrial mathematics. This theory provides us with a convenient mathematical
apparatus for studying a wide range of problems arising in diverse fields such
as structural mechanics, elasticity, economics, optimization, optimal control,
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inverse problems, financial mathematics (see [2, 21]). The existence theory for
quasi-variational inequalities is challenging and it requires that a variational
inequality and a fixed point problem should be solved simultaneously. Conse-
quently many solution techniques which are available for variational inequal-
ities have not been extended for quasi-variational inequalities. For example,
regularization and penalization methods for monotone variational inequal-
ities have almost reached a saturation point. However, for quasi-variational
inequalities these approaches have not been fully explored and there are many
questions to be answered.

In this chapter, our objective is to develop a regularization theory for ill-
posed quasi-variational inequalities involving multi-valued maps. The basic
idea is to cast (1) as a parameter identification problem defined on the graph
of a variational selection. To explain this idea, we fix an element v ∈ C and
consider the following parametric variational inequality (PVI) with v as the
parameter: find x ∈ K(v) such that there exists w ∈ F(x) satisfying the
variational inequality

〈w − f, z − x〉 ≥ 0 for every z ∈ K(v). (5)

We define the variational selection S : C ⇒ 2C by the condition that for any
v ∈ C, the set S(v) is the set of all solutions of the PVI with parameter v.

Consider the following parameter identification problem (PIP): find (x, u) ∈
G(S) such that

‖x− u‖2 ≤ ‖y − v‖2 for every (y, v) ∈ G(S). (6)

An element x ∈ C will be referred to as a generalized solution of QVI (1) if
(x, u) is a solution to the above parameter identification problem.

Evidently, x ∈ C is a solution of (1) if and only if x is a fixed point of S.
Moreover

• If (6) is solvable, and ‖x − u‖ = 0 where (x, u) is a solution, then (1) is
solvable.

• If (1) is solvable, then (6) is also solvable, and their solution sets coincide.

To exploit the advantages of a minimization formulation many researchers
have focused on (6) rather than on (1). Although the above technique has its
origin in the original work of Mosco [27], we would like to acknowledge the
contribution of Bruckner who systematically explored the connection between
(1) and (6) (see [4, 5]).

Quasi-variational inequality (1) and many of its particular cases mentioned
above are in general ill-posed. That is, a small noise in the data can lead to
uncontrollable errors in its solution. One of our main objectives is to develop
a stable approximation scheme for (1) when instead of the exact data (F , f)
only the noisy data are available. The key idea is to approximate (6) by a
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regularized PIP. For this, we consider the following regularized parametric
variational inequality (RPVI) for a fixed parameter v ∈ C: find xε ∈ K(v)
such that there exists wε ∈ F(xε) satisfying

〈wε + εJ(xε − v)− f, z − xε〉 ≥ 0 for every z ∈ K(v), (7)

where ε > 0 and J is the normalized duality map. (The general case of noisy
data will be studied in Section 2.) We define the variational selection Sε :
C ⇒ 2C by the condition that for any v ∈ C, the set Sε(v) is the set of all
solutions of (7).

The regularized parameter identification problem (RPIP) then seeks (x, u)
∈ G(Sε) such that

‖x− u‖2 ≤ ‖y − v‖2 for every (y, v) ∈ G(Sε). (8)

We will show that, under suitable conditions, a sequence of solutions of
(8) converges to a solution of (6). Moreover, by making full use of the recent
developments in the theory of multi-valued maps (see [1]), we present a general
regularization theory for quasi-variational inequalities. Some of our results
are new even for quasi-variational inequalities with single-valued monotone
maps.

We conclude this introduction by stating an existence result for (6). A
proof of this result (based on the classical Weierstrass theorem) can be found
in Bruckner [4] where the focus is on the elliptic regularization of quasi-
variational inequalities with single-valued monotone maps in the framework
of parameter identification problems.

Lemma 1. Assume that there exists (x0, u0) ∈ G(S) such that the set

Φ = {(y, v) ∈ G(S)| ‖y − v‖ ≤ ‖x0 − u0‖} (9)

is weakly compact. Then (6) has a nonempty solution set.

2 Main Results

We first focus on the solvability of (6) by using Lemma 1. To prove that the
set Φ in (9) is weakly closed, it suffices to show that G(S) is weakly closed. For
this we recall the notion of Mosco convergence (see [26]). The map K : C ⇒ 2C

is said to be M -continuous if it satisfies the following:

(M1) For every sequence (xn) with xn ⇀ x, and for each y ∈ K(x), there
exists a sequence (yn), with yn ∈ K(xn) and yn → y.

(M2) For yn ∈ K(xn) with xn ⇀ x and yn ⇀ y, we have y ∈ K(x).
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Lemma 2. Assume that F is bounded and satisfies the following condi-
tion (GM): If (xn, wn) ∈ G(F), with xn ⇀ x and wn ⇀ w, satisfies
lim supn→∞〈wn, xn − x〉 ≤ 0, then w ∈ F(x) and 〈wn, xn〉 → 〈w, x〉. As-
sume that K is M -continuous. Then the graph of the variational selection S
is weakly closed.

Proof. Let (yn, vn) ∈ G(S) be such that yn ⇀ y and vn ⇀ v. We will show
that (y, v) ∈ G(S). The set C being convex and closed is also weakly closed and
hence v ∈ C. From the containment (yn, vn) ∈ G(S), we infer that yn ∈ K(vn)
and that there exists wn ∈ F(yn) such that

〈wn − f, z − yn〉 ≥ 0 for every z ∈ K(vn). (10)

Notice that yn ∈ K(vn), in view of (M2), implies that y ∈ K(v). Moreover, due
to (M1), there exists zn ∈ K(vn) such that zn → y. By substituting z = zn in
(10), rearranging the terms, and using the boundedness of F , we obtain

lim sup
n→∞

〈wn, yn − y〉 ≤ lim sup
n→∞

〈wn, yn − zn〉+ lim sup
n→∞

〈wn, zn − y〉,
≤ lim sup

n→∞
{〈f, yn − zn〉},

≤ 0.

In view of (GM), for a subsequence (wn) such that wn ⇀ w and satisfying
the above inequality, we have w ∈ F(y) and limn→∞〈wn, yn〉 = 〈w, y〉. We
claim that

〈w − f, z − y〉 ≥ 0 for every z ∈ K(v).

Let z ∈ K(v) be arbitrary. In view of (M1) there exists a sequence (zn) such
that zn ∈ K(vn), and zn → z. Therefore

〈w, y − z〉 = lim inf
n→∞ 〈wn, yn − zn〉,

≤ lim sup
n→∞

〈f, yn − zn〉,
≤ 〈f, y − z〉.

Since z ∈ K(v) is arbitrary, we deduce that (y, v) ∈ G(S). The proof is
complete.

Evidently, we only require that F is bounded on the solutions of PVIs. If
F is monotone and contains C in the interior of its domain, then we do not
need the boundedness assumption on F . Moreover, if F is maximal monotone,
with D(F) = B, then it satisfies (GM) condition (see [6]).

The following result gives conditions ensuring that the set Φ is bounded.

Lemma 3. Assume that for v ∈ C, there are m(v) ∈ K(v), and positive con-
stants a and b such that ‖m(v)‖ ≤ a‖v‖ + b. Assume that for y ∈ S(v), with
‖y − v‖ ≤ a1 <∞, we have
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lim
‖y‖→∞

〈w, y −m(v)〉
‖y‖ = ∞ for every w ∈ F(y). (11)

Then the set Φ is bounded.

Proof. Let (y, v) ∈ G(S) be arbitrary with ‖y−v‖ ≤ ‖y0−x0‖. Since y ∈ S(v),
there exists w ∈ F(y) such that

〈w − f, z − y〉 ≥ 0 for every z ∈ K(v).

We set z = m(v) in the above inequality and rearrange the terms to get a
constant c such that

〈w, y −m(v)〉
‖y‖ ≤ c.

If ‖y‖ → ∞, then the above inequality contradicts (11), confirming that the
set Φ is bounded.

To ensure that S(v) = ∅, for every v ∈ C, we need to discuss the solvability
of the following variational inequality: find x ∈ C ⊂ B such that for some
w ∈ F(x), we have

〈w − f, z − x〉 ≥ 0 for every z ∈ C. (12)

In the following we recall a few notions and auxiliary results concern-
ing (12).

Definition 1. Let F : B ⇒ 2B
∗

be a set-valued map and let (x, x∗), (y, y∗) ∈
G(F) be arbitrary. The map F is said to be

(a) monotone, if 〈x∗ − y∗, x− y〉 ≥ 0;
(b) m-monotone, if 〈x∗ − y∗, x− y〉 ≥ m‖x− y‖2;
(c) m-relaxed monotone, if 〈x∗ − y∗, x− y〉 ≥ −m‖x− y‖2;
(d) maximal monotone, if the graph of F is not included in the graph of any

other monotone operator with the same domain.

The following result is a Minty formulation for multi-valued variational
inequalities (12).

Lemma 4. Let F : B ⇒ 2B
∗

be a maximal monotone map, let C be a nonempty
closed convex subset of int(dom(F)), and let f ∈ B∗. Then x ∈ C is a solution
of (12) if and only if it solves the following Minty variational inequality: find
x ∈ C such that

〈w∗ − f, z − x〉 ≥ 0 for every z ∈ C, for every w∗ ∈ F(z). (13)

Proof. See [1] or [12].
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The following existence result can be proved by standard monotonicity
arguments (see [29]).

Lemma 5. Let F , C, and f be as in Lemma 4, and let J be the normalized
duality map. Then there exists a unique x ∈ C and some w ∈ F(x) such that

〈w + εJ(x), y − x〉 ≥ 0 for every y ∈ C. (14)

We would also need the following interesting result (see [1]).

Lemma 6. Let A : B ⇒ 2B be monotone. If x̄ ∈ int(D(A)), then there exists
a real number r = r(x̄) > 0 such that for every (x,w) ∈ G(A), we have

〈w, x− x̄〉 ≥ r‖w‖ − (‖x− x̄‖+ r)c,

where c := sup{‖w‖| ‖x− x̄‖ ≤ r, and w ∈ A(x)} <∞.

We now prepare for the regularization theory. We begin with by connecting
the exact data (F , f) to the noisy data (Fn, fn) by the following hypothesis:

(A0) For each n ∈ N, the map Fn and the map F are maximal monotone
and satisfy C ⊂ int(D(F)) ∩ int(D(Fn)). The map K is M -continuous.

(A1) For any x ∈ B and for any w ∈ F(x) (resp. wn ∈ Fn(x)) there exist
wn ∈ Fn(x) (resp. w ∈ F(x)) and κ : R+ → R+ which is bounded on
bounded sets, such that

‖wn − w‖ ≤ αnκ(‖x‖), αn > 0.

(A2) For each n ∈ N, fn ∈ B∗ and satisfies ‖fn − f‖ ≤ βn, where βn > 0.

(A3)
{
αn, βn,

αn

εn
,
βn

εn

}
→ 0, as n→ 0.

For a fixed v ∈ C, we consider the following regularized parametric varia-
tional inequality (RPVI): find xn ∈ K(v) such that there exists wn ∈ Fn(xn)
satisfying the variational inequality

〈wn + εnJ(xn − v)− fn, z − xn〉 ≥ 0 for every z ∈ K(v), εn > 0. (15)

We define the regularized variational selection Sn : C ⇒ 2C by the condition
that for some v ∈ C, Sn(v) is the unique solution of (15).

Finally we pose the following regularized parameter identification problem
(RPIP): find (xn, un) ∈ G(Sn) such that

‖xn − un‖2 ≤ ‖y − v‖2 for every (y, v) ∈ G(Sn). (16)

In our next result we will only focus on conditions that ensure that a
solution of (6) can be approximated by solutions of (16). These conditions
turn out to be slightly weaker than the ones that are needed to ensure the
solvability of (6) and (16).
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Theorem 1. Assume that (6) and (16) have nonempty solution sets. Assume
that for Sn : C ⇒ 2C , the set Sn(C) is bounded. Assume that the assumptions
(A0) through (A3) hold. Then each weak cluster point of the solution sequence
{(xn, yn)} of (16) is a solution of (6).

Proof. Assume that (x, u) ∈ G(S) is a solution of (6). For this fixed u, consider
the following RPVI: find xu

n ∈ K(u) such that there exists wu
n ∈ Fn(xu

n)
satisfying the variational inequality:

〈wu
n + εnJ(xu

n − u)− fn, z − xu
n〉 ≥ 0 for every z ∈ K(u). (17)

We will show that (xu
n) is bounded. Let xu ∈ S(u) be arbitrary. Then

xu ∈ K(u) and there exists wu ∈ F(xu), such that

〈wu − f, z − xu〉 ≥ 0 for every z ∈ K(u). (18)

In view of (A1), there exists w̄u
n ∈ Fn(xu) such that ‖w̄u

n−wu‖ ≤ αnκ(‖xu‖).
Therefore,

〈wu − wu
n, x

u
n − xu〉 = 〈wu − w̄u

n, x
u
n − xu〉 − 〈w̄u

n − wu
n, x

u − xu
n〉

≤ αnκ(‖xu‖)‖xu
n − xu‖.

By setting z = xu in (17), z = xu
n in (18), and rearranging the two resulting

inequalities, we obtain

εn〈J(xu
n − u), xu

n − xu〉 ≤ 〈wu − wu
n, x

u
n − xu〉+ 〈f − fn, x

u − xu
n〉

≤ (αnκ(‖xu‖) + βn) ‖xu
n − xu‖.

In view of the properties of the duality map J (see [29]), we have

εn(‖xu
n − u‖ − ‖xu − u‖)2 ≤ εn〈J(xu

n − u), xu
n − xu〉 − εn〈J(xu − u), xu

n − xu〉
≤ (αnκ(‖xu‖) + βn + εn‖xu − u‖) ‖xu

n − xu‖,

from which the boundedness of (xu
n) ensues. Since B is reflexive, there ex-

ists a subsequence (xu
n) that converges weakly to some x̄u ∈ K(u). Minty’s

formulation of (17) (cf. (13)) reads as follows:

〈w̃+ εnJ(z−u)− fn, z−xu
n〉 ≥ 0 for every z ∈ K(u), for every w̃ ∈ Fn(z),

(19)

which after some rearrangements of the terms yields

0 ≤ 〈w̄ − f, z − xu
n〉+ βn‖xu

n − z‖+ εn〈J(z − u), xu
n − z〉,

where w̄ ∈ F(z) satisfies ‖w̄ − w̃‖ ≤ αnκ(‖z‖). The above inequality under
limit n→∞ gives
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〈w̄ − f, z − x̄u〉 ≥ 0 for every z ∈ K(u), for every w̄ ∈ F(z).

Using Minty’s formulation once again, we ensure the existence of wu ∈ F(x̄u)
such that

〈wu − f, z − x̄u〉 ≥ 0 for every z ∈ K(u),

confirming that x̄u ∈ S(u). Let x̃ ∈ S(u) be arbitrary. Therefore, x̃ ∈ K(u),
and there exists w̃0 ∈ F(x̃) such that

〈w̃0 − f, z − x̃〉 ≥ 0 for every z ∈ K(u).

In particular,

αnκ(‖x̃‖)‖xu
n − x̃‖+ 〈w̃n − f, xu

n − x̃〉 ≥ 0,

where w̃n ∈ Fn(x̃) is such that ‖w̃n − w̃0‖ ≤ ακ(‖x̃‖). By setting z = x̃ in
(17), combining the resulting inequality with the above, we obtain

εn〈J(x̃− u), xu
n − x̃〉 ≤ εn〈J(xu

n − u), xu
n − x̃〉 ≤ [αnκ(‖x̃‖) + βn] ‖xu

n − x̃‖.

By using the fact that
{
αn

εn
,
βn

εn

}
→ 0 as n→∞, we obtain 〈J(x̃− u), x̄u −

x̃〉 ≤ 0, implying

〈J(x̄u − u), x̃− x̄u〉 ≥ 0 for every x̃ ∈ S(u). (20)

Since x̄u is the unique solution of (20), the whole sequence (xu
n) converges

weakly to x̄u. Furthermore, the properties of the duality map (20) also confirm
that (xu

n) converges strongly to x̄u.
On the other hand, since (x, u) is a solution of (6), we have

‖x− u‖2 ≤ ‖y − u‖2 for every y ∈ S(u).

Since S(u) is closed and convex, the above inequality is equivalent to (20) and
x is its unique solution. Therefore, x̄u = x, conforming that (xu

n) converges
strongly to x.

Let (x̃n, ũn) be a solution of (16). Then x̃n ∈ Sn(ũn) and

‖x̃n − ũn‖2 ≤ ‖y − v‖2 for every (y, v) ∈ G(Sn).

We set (y, v) = (xu
n, u) in the above inequality and use the boundedness of

(xu
n) to ensure that ‖x̃n − ũn‖ remains bounded. Since Sn(C) is assumed to

be bounded, ũn is bounded as well. Therefore, there are subsequences (x̃n)
and (ũn) such that x̃n ⇀ x̃ and ũn ⇀ ũ. We claim that x̃ ∈ S(ũ). Since
(x̃n, ũn) ∈ G(Sn), we have x̃n ∈ K(ũn), and there exists w̃n ∈ Fn(x̃n) such
that

〈w̃n + εnJ(x̃n − ũn)− fn, z − x̃n〉 ≥ 0 for every z ∈ K(ũn).
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We will first show that {w̃n} is bounded. Let x̄ ∈ K(ũ) be arbitrary. Then,
there exists zn ∈ K(ũn) such that zn → x̄. By setting z = zn in the above
inequality, we obtain

〈w̃n + εnJ(x̃n − ũn)− fn, zn − x̃n〉 ≥ 0.

Due to (A1), there exists wn ∈ F(x̃n) satisfying ‖w̃n − wn‖ ≤ αnκ(‖x̃n‖).
Some rearrangements of the terms and Lemma 6 (with A(x) = F(x) − f)
ensure that for sufficiently large n, we have

‖wn − f‖ ≤ k <∞,

where k is a constant, confirming {wn} is bounded. This further ensures that
{w̃n} is bounded too.

We continue the pursuit of the containment x̃ ∈ S(ũ). Let z ∈ K(ũ) be
arbitrary. Then there exists a sequence (zn) with zn ∈ K(ũn) converging
strongly to z such that for some w̄n ∈ Fn(x̃n) the following inequality holds:

〈w̄n − fn + εnJ(x̃n − ũn), zn − x̃n〉 ≥ 0.

Let wn ∈ F(x̃n) be such that ‖wn − w̄n‖ ≤ αnκ(‖x̃n‖). Then the above
inequality, after some rearrangements of the terms yields

〈wz, x̃n − z〉 ≤ 〈εnJ(x̃n − ũn), zn − x̃n〉+ 〈f − fn, zn − x̃n〉 − 〈f, zn − z〉
−〈f, z − x̃n〉+ 〈w̄n − wn, zn − x̃n〉+ 〈wn, zn − z〉+ 〈w̄n − wz, z − x̃n〉,

where wz ∈ F(z). The above inequality, under the limit, implies that

〈wz, x̃− z〉 ≤ 〈f, x̃− z〉.
In view of the Minty formulation for the above, there exists w ∈ F(x̃) such
that

〈w − f, z − x̃〉 ≥ 0 for every z ∈ K(ũ).
Consequently, x̃ ∈ S(ũ). Furthermore,

‖x̃− ũ‖2 ≤ lim inf
n→∞ ‖x̃n − ũn‖2

≤ lim sup
n→∞

‖xu
n − u‖2

= ‖x− u‖2,
confirming that (x̃, ũ) is a solution of (6). The proof is complete.

We conclude this section by a result ensuring the boundedness of Sn(C).
Proposition 1. Assume that (xn, un) ∈ G(Sn) is such that {‖xn − un‖} is
bounded. Assume that there are elements zn ∈ K(un) such that ‖zn‖ ≤ k1.
Then (xn) is bounded provided that for any sequence (wn, xn) ∈ G(Fn), the
following holds:

lim
‖xn‖→∞

〈wn, xn − zn〉
‖xn‖ = ∞

Proof. The proof is very similar to that of Lemma 3 and hence omitted.
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3 Applications

3.1 Quasi-hemivariational Inequalities

Let B be a uniformly convex Banach space with a strictly convex topological
dual B∗. Let C be a nonempty, closed, and convex subset of B, and let K :
C ⇒ 2C be a set-valued map such that for every v ∈ C, the set K(v) is
nonempty, closed, and convex. Let F : B ⇒ 2B

∗
be a given multi-valued map,

let h : B → R be a locally Lipschitz functional, and let f ∈ B∗.
A genuine class of multi-valued variational and quasi-variational inequali-

ties consists of subdifferential maps. Of particular relevance to this discussion
is the Clarke’s subgradient (see [9]). Given h : B → R, locally Lipschitz near
some x ∈ B, the generalized derivative of h at x in direction y ∈ B, denoted
by h0(x, y), is defined by

h0(x, y) = lim sup
z→x,λ→0

λ−1[h(z + λy)− h(z)],

where z ∈ B, and λ is a positive scalar. Then the Clarke’s subgradient of h at
x, denoted by ∂h(x), is given by

∂h(x) = {w ∈ B∗| h0(x, y) ≥ 〈w, y〉 ∀ y ∈ B}.
Let us now consider the following quasi-hemivariational inequality: find

x ∈ C such that x ∈ K(x), and there exist w ∈ F(x) and u ∈ ∂h(x) satisfying
the inequality

〈w + u− f, z − x〉 ≥ 0 for every z ∈ K(x). (21)

If F is m-strongly monotone and ∂h is m-relaxed monotone, then the map
F + ∂h is monotone, and our general theory can be applied to (21). A similar
hemivariational inequality was studied in [23] with a single-valued F (see also
[24]).

3.2 Inverse Problems

Assume that V is Hilbert space, B is a reflexive Banach space, and assume
that A ⊂ B is convex and closed. We assume that T : B × V × V → R is
a continuous and coercive trilinear form T (a, u, v). Assume that T (a, u, v) is
symmetric in u, v. Finally, we assume that m is a bounded linear functional
on V . Then, for any a ∈ A, it follows from the Riesz representation theorem
that the following variational equation has a unique solution u ∈ V :

T (a, u, v) = m(v) for all v ∈ V. (22)

We focus on the inverse problem associated with the direct problem (22)
which is the following: Given some measurement of u, say z, estimate the
coefficient a which together with u makes (22) true.
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By the Riesz representation theorem, there is an isomorphism E : V → V ∗

defined by
(Eu)(v) = 〈u, v〉V for all v ∈ V.

For each (a, u) ∈ A × V, T (a, u, ·) −m(·) ∈ V ∗. We define e(a, u) to be the
pre-image under E of this element:

〈e(a, u), v〉V = T (a, u, v)−m(v) for all v ∈ V.

For a fixed z ∈ V, we consider the following minimization problem. Find
a∗ ∈ A by solving

min
a∈A

J(a) = ‖e(a, z)‖2V . (23)

The functional J being convex, a necessary and sufficient optimality con-
dition for (23) is a variational inequality involving the Fréchet derivative
of J(·), defined by 〈J ′(a), b〉 = 2〈e(a, z), e1(a, z)〉V , where e1 is given by
〈e1(a, z), v〉 = T (a, z, v) for all v ∈ V.

Since J is convex, the map J ′ is monotone, and hence our general theory
can be applied to a perturbed analogue of the equation error approach (see
[16]).

4 Concluding Remarks

In this chapter, we developed an approximation scheme for the generalized
solutions of a quasi-variational inequality involving multi-valued monotone
maps. The generalized solutions are defined through a parameter identification
problem and they coincide with the classical solutions if the quasi-variational
inequality is solvable. We have shown that the generalized solutions of a multi-
valued ill-posed quasi-variational inequality are the weak cluster points of a
sequence of regularized generalized solutions. As noticed, the existence criteria
for the generalized solutions are quite mild, and hence a natural extension of
our results would be to investigate quasi-variational inequalities with pseudo-
monotone or generalized pseudo-monotone maps.
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Summary. This chapter considers a class of optimal feedback control problems,
where its dynamical system is described by stochastic linear systems subject to
Poisson processes and with state jumps. We show that this stochastic impulsive
optimal parameter selection problem is equivalent to a deterministic impulsive op-
timal parameter selection problem, where the times at which the jumps occurred
as well as their heights are decision variables. Then, by introducing a time scaling
transform, we show that this deterministic impulsive optimal parameter selection
problem is transformed into an equivalent deterministic impulsive optimal param-
eter selection problem with fixed jump times. For the numerical computation, we
derive the gradient formulae of the cost function and the constraint functions. On
this basis, an efficient computational method is developed and an example is solved
for illustration.

Key words: stochastic impulsive optimal parameter selection problem, Pois-
son process, time scaling transformation

1 Introduction

A stochastic differential equation is a differential equation of which at least
one term is a stochastic process so that the solution of a stochastic differential
equation is also a stochastic process. It is a powerful mathematical tool which
can be applied to many real-life problems in nature, science, and engineering.
The theory of Ito stochastic differential equations driven by Wiener processes
and Poisson processes and their many important applications (such as filter-
ing problems) can be found in [3–8], [11] and [13–15]. In [3–7], some sensor
scheduling problems are considered, where the underlying dynamic system is
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governed by a system of linear Ito stochastic differential equations driven by
Wiener processes. In [8, 11, 14], a class of stochastic optimal control problems
is considered, where the dynamical systems are described by Ito stochastic
differential equations driven by Wiener processes. In [13, 15], a class of opti-
mal control problems described by linear Ito stochastic differential equations
driven by Poisson processes is considered and studied. It is shown that this
class of stochastic optimal control problems is equivalent to a class of de-
terministic optimal control problems. However, numerical solution methods
available in the literature for solving such deterministic optimal control prob-
lems are only applicable to cases with low dimension.

The optimal parameter selection problems occur in many dynamical op-
timization models where the controls are restricted to be constant func-
tions of time. It plays a fundamental role in the numerical computation of
optimal control problems. To be more specific, after the application of the
control parameterization (see [16]) or control parametrization time scaling
technique (see [12]), all optimal control problems are essentially reduced to
optimal parameter selection problems. Thus, the solvability of optimal pa-
rameter selection problem is crucially important for generating numerical so-
lution methods to many complex optimal control problems. In [1] and [14],
respective necessary conditions for optimality are derived for deterministic
and stochastic optimal parameter selection problems. Computational methods
for solving deterministic optimal parameter selection problems are reported
in [2].

Stochastic model generally assumes smoothness and continuity of the phe-
nomena of interest. However, some phenomena may experience sudden or
sharp changes. Many natural and man-made systems do exhibit the phe-
nomenon of jumps occurring at various time points along their trajectories.
Examples include drug administration in cancer chemotherapy, insulin in-
jection, and native forest ecosystems management, just to name a few. In
this chapter, we consider an optimal feedback control problem, where the
system dynamics are described by linear Ito stochastic differential equations
driven by Poisson process, and the state jumps are to occur at various time
points.

The rest of the chapter is organized as follows. In Section 2, we formulate
the optimal feedback control problem as a stochastic impulsive optimal param-
eter selection problem. In Section 3, we show that this problem is equivalent
to a deterministic impulsive optimal parameter selection problem. In Section
4, a time scaling transform is applied to map the variable jump times into
pre-fixed jump times in a new timescale. In Section 5, we derive the gra-
dient formulae of the cost function and the constraint functions. With the
information on these gradients, the problem can be solved as an optimization
problem by using a gradient-based algorithm. For illustration, an example is
solved using the proposed method in Section 6.
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2 Problem Statement

Consider a system governed by the following Ito stochastic differential equa-
tion over a finite time interval (0, T ]:

dx(t) = A(t)x(t)dt+ B(t)du(t) + D(t)dN(t) (1a)

x(0) = x0 (1b)

x(τ+
i ) = J ix(τ−i ) + Δi + γi, i = 1, . . . ,m, (1c)

where x(t) ∈ Rn, A(t) ∈ Rn×n, B(t) ∈ Rn×r, while u(t) ∈ Rr is a control
function which is of bounded variation and hence du(t) is a measure, D(t) ∈
Rn×d, and the noise N(t) ∈ Rd is a d-dimensional Poisson process with mean
intensity λ(t). The initial condition x0 ∈ Rn is either a deterministic or a
Gaussian vector. In the case when x0 is a Gaussian vector, let x̄0 and P 0

be its mean and covariance, respectively. Equation (1c) is condition on the
state jumps, where J i ∈ Rn×n, i = 1, . . . ,m are given coefficient matrices,
τ1, . . . , τm, are the time points at which the state jumps are occurred, Δi,
i = 1, . . . ,m, are Gaussian vectors with mean 0 and covariance matrices P i,
i = 1, . . . ,m, and γi = [γi

1, . . . , γ
i
n]ᵀ, i = 1, . . . ,m, are the magnitude vectors

of the jumps. Let τ = [τ1, . . . , τm]ᵀ.
Along with (1a, 1b, 1c), suppose that we have an observation system de-

scribed by

dy(t) = G(t)x(t) dt+ D0(t)(dN0(t)− λ0(t) dt), (2a)
y(0) = 0, (2b)

where y(t) ∈ Rp, G(t) ∈ Rp×n, D0(t) ∈ Rp×q, while N0(t) ∈ Rq is a q-
dimensional Poisson process with mean intensity λ0(t). The initial condition
(2b) means that no information is available at t = 0.

We assume that the following conditions are satisfied.

(i) A(t) ∈ Rn×n, B(t) ∈ Rn×r, and D(t) ∈ Rn×d are continuous on [0, T ].
(ii) The Poisson processes N(t), N0(t) and the random vectors x0, Δi,

i = 1, . . . ,m, are mutually independent.
(iii) All the components of the mean intensities, λ(t) and λ0(t), are nonnega-

tive and bounded measurable functions.

Suppose that the control function u is such that the corresponding measure
du(t) is of the form as given below:

du(t) = Ky(t) dt+ K̂dy(t)−C(t)D(t)λ(t) dt, (3)

where K, K̂ ∈ Rr×p are constant matrices yet to be determined, and

B(t)C(t)D(t)λ(t) = D(t)λ(t) (4)

provided such a matrix C(t) exists. In fact, if B(t) has rank n and n ≤ r,
then C(t) is just the right inverse of B(t).
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Substituting (3) and (2) into (1a), we obtain

dx(t) =(A(t) + B(t)K̂G(t))x(t) dt+ B(t)Ky(t) dt

+ B(t)K̂D0(t)(dN0(t)− λ0(t) dt) + D(t)(dN(t)− λ(t) dt). (5)

Define

ξ(t) =
[

x(t)
y(t)

]
.

Then, the system dynamics (5) together with the observation dynamics (2)
can be jointly written as

dξ(t) = Ã(t,κ)ξ(t) dt+ D̃(t,κ)dM̃(t), (6a)

ξ(0) = ξ0 (6b)

ξ(τ+
i ) = J̃

i
ξ(τ−i ) + Δ̃i + γ̃i, i = 1, . . . ,m, (6c)

where the vector κ ∈ R2rp is defined by

κ = [K11, . . . ,K1p, . . . ,Kr1, . . . ,Krp, K̂11, . . . , K̂1p, . . . , K̂r1, . . . , K̂rp]ᵀ,

Ã(t,κ) =
[

A(t) + B(t)K̂G(t) B(t)K
G(t) 0

]
, D̃(t,κ) =

[
D(t) B(t)K̂D0(t)

0 D0(t)

]
,

dM̃(t) =
[
dN(t)− λ(t)dt
dN0(t)− λ0(t)dt

]
, ξ0 =

[
x0 0

]ᵀ
, J̃

i
=

[
J i 0
0 Ip×p

]
,

Δ̃i =
[
Δi 0

]ᵀ
, γ̃i =

[
γi 0

]ᵀ
.

Note that M̃ is a vector of zero-mean martingales.
We assume the vector κ is to be chosen from the set K defined by

K = {κ = [κ1, . . . , κ2rp]ᵀ ∈ R2rp : β ≤ κ ≤ β}
= {κ = [κ1, . . . , κ2rp]ᵀ ∈ R2rp : β

i
≤ κi ≤ βi, i = 1, . . . , 2rp}, (7)

where β and β are given vectors in R2rp.
For the jump time vector τ = [τ1, ..., τm]ᵀ, it is assumed, without loss of

generality, that
0 < τ1 < · · · < τm < T. (8)

Let T be the set of all those τ = [τ1, . . . , τm]ᵀ which satisfy (4). For brevity
in notation, we denote τ0 = 0 and τm+1 = T .

Let Γ be the set of all those magnitude vectors γ = [(γ1)ᵀ, . . . , (γm)ᵀ]ᵀ

such that
γi

j
≤ γi

j ≤ γi
j , i = 1, . . . ,m; j = 1, . . . , n. (9)
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The cost function to be minimized is given by

g0(δ) = ψ(γ) + E{(ξ(T ))ᵀQ5(δ)ξ(T ) + (Q4(δ))ᵀξ(T ) + Q3(δ)

+
m+1∑
i=1

τ i∫
τ i−1

[(ξ(t))ᵀQ2(t, δ)ξ(t) + (Q1(t, δ))ᵀξ(t) + Q0(t, δ)] dt},

(10)

where δ = (κ, τ ,γ), ψ(γ) is a penalty term to prevent high jumps, and
Q5(δ) ∈ Rn×n and Q2(t, δ) ∈ Rn×n are positive semi-definite matrices which
are continuously differentiable with respect to their respective arguments,
while Q4(δ) and Q1(t, δ) (respectively, Q3(δ) and Q0(t, δ)) are n-dimensional
vector-valued functions (respectively, real-valued functions) which are also
continuously differentiable with respect to their respective arguments.

Then, we formulate the problem as

Problem 1. Given the system (1), the observation channel (2), and the pro-
posed control dynamics of the form (3), find a feasible parameter vector
δ ∈ K × T × Γ such that the cost function (10) is minimized, subject to
the constraints

gi(δ) =E{(ξ(T ))ᵀSi5(δ)ξ(T ) + (Si4(δ))ᵀξ(T ) + Si3(δ)

+
m+1∑
j=1

τj∫
τj−1

[(ξ(t))ᵀSi2(t, δ)ξ(t) + (Si1(t, δ))ᵀξ(t) + Si0(t, δ)] dt}

≤0, (11)

for i = 1, . . . , n0, where, for each i, Si5(δ) ∈ Rn×n and Si2(t, δ) ∈ Rn×n

are positive semi-definite matrices which are continuously differentiable with
respect to their respective arguments, while Si4(δ) and Si1(t, δ) (respectively,
Si3(δ) and Si0(t, δ)) are n-dimensional vector-valued functions (respectively,
real-valued functions) which are also continuously differentiable with respect
to their respective arguments.

Problem 1 is a stochastic impulsive optimal parameter selection problem.
We shall show that it is equivalent to a deterministic optimal parameter selec-
tion problem, and then a numerical computational method will be developed
for solving this problem.

3 Deterministic Transformation

For each δ, it is clear from (6a) that the solution of system (6) is given, for
t ∈ (τ i−1, τ i) with i = 1, . . . ,m, by
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ξ(t | δ) = Φ̃(t, τ i | κ)ξ(τ+
i−1 | δ) +

t∫
τ i−1

Φ̃(t, s | κ)D̃(s,κ)dM̃(s), (12)

where Φ̃(t, s | κ) ∈ R(n+p)×(n+p) is the principal solution matrix of the homo-
geneous system

∂Φ̃(t, s)
∂t

= Ã(t,κ)Φ̃(t, s), 0 ≤ s ≤ t <∞ (12a)

Φ̃(t, t) = I(n+p)×(n+p), (12b)

where I(n+p)×(n+p) denotes the identity matrix.
Define the mean of the process ξ as

μ(t | δ) = E{ξ(t | δ)}.
It is given in the following theorem.

Theorem 1. For each δ, the mean behavior of the corresponding solution of
the coupled system (6) is determined by

dμ(t)
dt

= Ã(t,κ)μ(t) (13a)

μ(0) = [x̄0,0]ᵀ = μ0 (13b)

μ(τ+
i ) = J̃

i
μ(τ−i ) + γ̃i, i = 1, . . . ,m. (13c)

Proof. Equation (13a) is derived by taking the expectation of (12) and apply-
ing (12a, 12b). (13b) and (13c) are derived by taking the expectation of (6b)
and (6c), respectively.

Define the (n+ p)× (n+ p) covariance matrix of the process ξ as

Ψ(t | δ) = E{(ξ(t | δ)− μ(t | δ))(ξ(t | δ)− μ(t | δ)ᵀ}.
Then, we have

Theorem 2. For each δ, the covariance matrix of the corresponding solution
of the coupled system (6) is determined by

dΨ (t)
dt

= Ã(t,κ)Ψ (t) + Ψ (t)[Ã(t,κ)]ᵀ + D̃(t,κ)Λ̃(t)[D̃(t,κ)]ᵀ (14a)

Ψ (0) = Ψ0 (14b)

Ψ(τ+
i ) = J̃

i
Ψ(τ−i )(J̃

i
)ᵀ + P̃

i
, i = 1, . . . ,m, (14c)

where

Λ̃(t) =
[

Λ(t) 0
0 Λ0(t)

]
, Ψ0 =

[
P 0 0
0 0

]
, P̃

i
=

[
P i 0
0 0

]
,

with Λ(t) = diag (λ1(t), . . . , λd(t)) and Λ0(t) = diag (λ0
1(t), . . . , λ

0
q(t)).
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Proof. From (12), it follows that for each t ∈ [τ i−1, τ i],

ξ(t | δ)− μ(t | δ)

=Φ̃(t, τ i−1 | κ)(ξ(τ i−1)− μ(τ i−1)) +

t∫
τ i−1

Φ̃(t, s | κ)D̃(s,κ)dM̃(s), (15)

where the second term on the right-hand side, which is a stochastic integral
with respect to the martingale M̃ , is itself a martingale. Now, for any ϕ ∈
Rn+p , define

ϕᵀΨ(t | δ)ϕ = E
{

[ϕᵀ(ξ(t | δ)− μ(t | δ))]2
}
. (16)

From (15), it follows that

[ϕᵀ(ξ(t | δ)− μ(t | δ))]2 =
[
ϕᵀΦ̃(t, τ i−1 | κ)(ξ(τ i−1)− μ(τ i−1))

+

t∫
τ i−1

ϕᵀΦ̃(t, s | κ)D̃(s,κ)dM̃(s)
]2

. (17)

Taking the expectation of both sides and then using the quadratic variation
of the martingale M̃ given by

E
⎧⎨⎩

t∫
τ i−1

aᵀdM̃(s)

⎫⎬⎭
2

=

t∫
τ i−1

aᵀΛ̃ads, a ∈ Rd+q,

we obtain

ϕᵀΨ(t | δ)ϕ = ϕᵀΦ̃(t, τ i−1 | κ)Ψ(τ i−1 | δ)(Φ̃(t, τ i−1 | κ))ᵀϕ

+
∫ t

τi−1

ϕᵀΦ̃(t, s | κ)D̃(s,κ)Λ̃(s)(D̃(s,κ))ᵀ(Φ̃(t, s | κ))ᵀϕds.

(18)

Since (18) is valid for any ϕ ∈ Rn+p, it follows that for each t ∈ [τ i−1, τ i],

Ψ (t | δ) =Φ̃(t, τ i−1 | κ)Ψ (τ i−1 | δ)(Φ̃(t, τ i−1 | κ))ᵀ

+

t∫
τi−1

Φ̃(t, s | κ)D̃(s,κ)Λ̃(s)(D̃(s,κ))ᵀ(Φ̃(t, s | κ))ᵀds. (19)

From (6b), it follows that

Ψ (0) = Ψ0. (20)

From (6c), it follows that for each i = 1, . . . ,m,
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Ψ(τ+
i | δ) = E{[ξ(τ+

i | δ)− μ(τ+
i | δ)][ξ(τ+

i | δ)− μ(τ+
i | δ)]ᵀ}

=E{[J̃ i
ξ(τ−i | δ)− J̃

i
μ(τ−i | δ) + Δ̃i][J̃

i
ξ(τ−i | δ)− J̃

i
μ(t−i | δ) + Δ̃i]ᵀ}

=E{[J̃ i
ξ(τ−i | δ)− J̃

i
μ(τ−i | δ)][J̃

i
ξ(τ−i | δ)− J̃

i
μ(τ−i | δ)]ᵀ}+ E{Δ̃iΔ̃

ᵀ
i }

=J̃
i
Ψ (τ−i | δ)(J̃

i
)ᵀ + P̃

i
. (21)

Now, by differentiating (19) and then using (20) and (21), we obtain (14a),
(14b), (14c). Thus, the proof is complete. ��

Consider the cost function (10). Since E{ξ(t)ξᵀ(t)} = Ψ(t) + μ(t)(μ(t))ᵀ

and

E{ξᵀ(t)Q(t)ξ(t)} = E{trace(ξᵀ(t)Q(t)ξ(t))} = E{trace(Q(t)ξ(t)ξᵀ(t))}
= trace{Q(t)(Ψ (t) + μ(t)(μ(t))ᵀ)},

it follows that (10) is equivalent to

g0(δ) =ψ(γ) + trace{Q5(δ)(Ψ (T ) + μ(T )(μ(T ))ᵀ)}+ (Q4(δ))ᵀμ(T )

+ Q3(δ) +
m+1∑
i=1

τ i∫
τ i−1

[trace{Q2(t, δ)(Ψ (t) + μ(t)(μ(t))ᵀ)}

+(Q1(t, δ))ᵀμ(t) + Q0(t, δ)] dt. (22)

By the same token, we can show that, for each i = 1, . . . , n0, the constraint
(11) is equivalent to

gi(δ) = trace{Si5(δ)(Ψ (T ) + μ(T )(μ(T ))ᵀ}+ (Si4(δ))ᵀμ(T ) + Si3(δ)

+
m+1∑
j=1

τj∫
τj−1

[trace{Si2(t, δ)(Ψ (t) + μ(t)(μ(t))ᵀ}

+(Si1(t, δ))ᵀμ(t) + Si0(t, δ)] dt ≤ 0. (23)

Now, we have transformed the stochastic optimal parameter selection
problem into a deterministic optimal parameter selection problem defined as
follows.

Problem 2. Given the dynamical system (13a), (13b), (13c) and (14a), (14b),
(14c), find a parameter δ ∈ K × T × Γ , such that the cost function (22) is
minimized, subject to the constraints (23).

We now summarize the results obtained so far below as a theorem.

Theorem 3. Problem 1 is equivalent to Problem 2.



Optimal Feedback Control for Stochastic Impulsive Linear Systems 249

4 Time Scaling Transformation

Problem 2 is a deterministic impulsive optimal parameter selection problem,
where the jump times are decision variables to be determined optimally. This
will encounter difficulty in numerical calculation when solving the impulsive
dynamical system with varying jump times. In this section, we will use a time
scaling transform reported in [12] to map these variables jump times into fixed
knots in a new timescale.

We consider a new time variable s which varies from 0 to m + 1. We
re-scale t ∈ [0, T ] into s ∈ [0,m + 1]. The transformation from t ∈ [0, T ] to
s ∈ [0,m+ 1] is defined by the differential equation

dt(s)/ds = υ(s) =
m+1∑
i=1

υiχ[i−1,i](s) (24a)

t(0) = 0, (24b)

where υi = τ i−τ i−1. Let Υ be the set of all those υ = [υ1, . . . , υm+1]ᵀ ∈ Rm+1

such that

υi ≥ 0, i = 1, . . . ,m+ 1.

Obviously, the following constraint must also be satisfied:

m+1∑
i=1

υi = T. (25)

Denote μ̂(s) = μ(t(s)) and Ψ̂(s) = Ψ(t(s)). Then, (13a), (13b), (13c) and
(14a), (14b), (14c) are transformed into

dμ̂(s)/ds = υ(s)[Ã(t(s),κ)μ̂(s)] (26a)
μ̂(0) = μ0 (26b)

μ̂(i+) = J̃
i
μ̂(i−) + γ̃i, i = 1, . . . ,m, (26c)

and

dΨ̂(s)/ds = υ(s)[Ã(t(s),κ)Ψ̂ (s) + Ψ̂
ᵀ
(s)Ã(t(s),κ)

+ D̃(t(s),κ)Λ̃(t(s))[D̃(t(s),κ)]ᵀ] (27a)
Ψ̂(0) = Ψ0 (27b)

Ψ̂(i+) = J̃
i
Ψ̂ (i−)(J̃

i
)ᵀ + P̃

i
, i = 1, . . . ,m. (27c)

Denote δ̃ = (κ,υ,γ). The cost function (22) is transformed into

ĝ0(δ̃) = Φ̂0(μ̂(m+ 1), Ψ̂ (m+ 1), δ̃)

+
m+1∑
i=1

i∫
i−1

L̂0(t(s), μ̂(s), Ψ̂ (s), δ̃)ds, (28)
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where

Φ̂0(μ̂(m+ 1), Ψ̂ (m+ 1), δ̃) = ψ(γ) + Qᵀ
4(δ)μ̂(m+ 1) + Q3(δ)

+ trace{Q5(δ)[Ψ̂ (m+ 1) + μ̂(m+ 1)(μ̂(m+ 1))ᵀ]}
and

L̂0(t(s), μ̂(s), Ψ̂ (s), δ̃) = υi{trace[Q2(t(s), δ)(Ψ̂ (s) + μ̂(s)(μ̂(s))ᵀ)]

+ Q1(t(s), δ)ᵀμ̂(s) + Q0(t(s), δ)}.
The constraints (23) are transformed into

ĝi(δ̃) =Φ̂0(μ̂(m+ 1), Ψ̂ (m+ 1), δ̃) +
m+1∑
j=1

j∫
j−1

L̂0(t(s), μ̂(s), Ψ̂ (s), δ̃)ds

≤0, (29)

where

Φ̂i(μ̂(m+ 1), Ψ̂ (m+ 1), δ̃) = Sᵀ
i4(δ)μ̂(m+ 1) + Si3(δ)

+ trace{Si5(δ)[Ψ̂ (m+ 1)

+ μ̂(m+ 1)(μ̂(m+ 1))ᵀ]}
and

L̂i(t(s), μ̂(s), Ψ̂ (s), δ̃) = υi{trace[Q2(t(s), δ)(Ψ̂ (s) + μ̂(s)(μ̂(s))ᵀ)]

+ Q1(t(s), δ)ᵀμ̂(s) + Q0(t(s), δ)}.
Then, after this time scaling transformation, Problem 2 is equivalent to

Problem 3. Given the dynamical system (24), (25) and (27), find a feasible
parameter δ̃ ∈ K×Υ×Γ such that the cost function (28) is minimized subject
to the constraints (26, 29).

Remark 1. Note that our formulation also holds for time varying control matri-
ces K = K(t), K̂ = K̂(t), t > 0. In this case, Problems 3 and 2 corresponding
to Problem 1, as described above, are to be considered as deterministic opti-
mal control problems with controls K(t) and K̂(t) rather than deterministic
optimal parameter selection problems with constant matrices K and K̂.

5 Gradient Formulae

Problem 3 is a constrained optimal parameter selection problem, where the
state covariance matrix is not a vector. To solve this problem via the optimal
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control software MISER3.3, we need to rewrite the dynamical system with
the state in the form of vector.

Let z(s) be a vector consisting of t(s), μ̂(s) and the independent compo-
nents of Ψ̂(s). That is,

z(s) = [t(s), μ̂ᵀ(s),Ψ̂11(s), . . . , Ψ̂1,n+p(s),

Ψ̂22(s), . . . , Ψ̂2,n+p(s), . . . , Ψ̂n+p,n+p(s)]ᵀ. (30)

Let f be the corresponding vector obtained from the right-hand sides of (24a),
(26a) and (27a). Furthermore, let Φi, Li, i = 1, . . . , n0, be obtained from Φ̂i,
L̂i, k = 1, . . . , n0, respectively, with t(s), μ̂(s) and Ψ̂(s) replaced appropriately
by z(s).

Then, Problem 3 is equivalent to

Problem 4. Given the dynamical system

dz(s)
ds

= f(s,z(s), δ̃), (31a)

z(0) = z0, (31b)

z(i+) = φi(z(i−), δ̃), i = 1, . . . ,m, (31c)

where z0 and φi are obtained from (24b), (26b), (27b) and (26c), (27c),
respectively, find a feasible parameter δ̃ ∈ K × Υ × Γ , such that the cost
function

ĝ0(δ̃) = Φ0(z(m+ 1 | δ̃), δ̃) +
m+1∑
k=1

k∫
k−1

L0(s,z(s | δ̃), δ̃)ds (32)

is minimized subject to the constraints (4.3) and

ĝi(δ̃) = Φi(z(m+ 1 | δ̃), δ̃) +
m+1∑
j=1

j∫
j−1

Li(s,z(s | δ̃), δ̃)ds ≤ 0,

i = 1, . . . , n0. (33)

To solve Problem 4 as a mathematical programming problem, we need
the gradients of the cost function and the constraint functions. They can be
obtained by using similar idea as that given for Theorem 5.2.1 of [16]. Details
of these gradients are presented below in the following theorem.

Theorem 4. The gradient of the cost function (32) and the constraints (33)
with respect to δ̃ are given by

∇δ̃ ĝi(δ̃) =
∂Φi(z(m+ 1), δ̃)

∂δ̃
+

m∑
j=1

(ηi(j+))ᵀ ∂φi(z(j−), δ̃)
∂δ̃

+
m+1∑
j=1

j∫
j−1

∂Hi(s,z,ηi, δ̃)
∂δ̃

ds, i = 0, 1, . . . , n0, (34)
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where the Hamiltonian Hi is defined by

Hi(s,z,η, δ̃) = Li(s,z(s), δ̃) + (η(s))ᵀf(s,z(s), δ̃) (35)

and ηi(s) is the co-state determined by the following differential equations:

dη(s)
ds

= −
[
∂Hi(s,z(s),η(s), δ̃)

∂z

]ᵀ

, (36a)

with terminal condition

η(m+ 1) =

[
∂Φi(z(m+ 1), δ̃)

∂z

]ᵀ

(36b)

and jump conditions

η(j−) =

[
∂φi(z(j−), δ̃)

∂z

]ᵀ

η(j+). (36c)

Then, we use the following algorithm to calculate the gradients of the cost
function and the constraint functions.

Algorithm 1

1. For each given δ̃ ∈ K× Υ × Γ , compute the solution z(·|δ̃) of the system
(31a), (31b), (31c) by solving the differential equation (31a) forward in
time from s = 0 to s = m + 1 with the initial condition (31b) and jump
conditions (31c).

2. Compute the co-state solution η(·|δ̃) by solving the co-state differential
equation (36a) backward in time from s = m+1 to s = 0 with the terminal
condition (36b) and jump conditions (36c).

3. Apply Theorem 4 to compute the gradients of the cost function and the
constraint functions.

With the gradient given in Algorithm 1, we can apply a gradient-based
method to solve Problem 4. In this chapter, we use the optimal control soft-
ware package MISER3.3 (see [9]), which is based on sequential quadratic pro-
gramming (SQP) routine, to solve Problem 4.

6 Example

In this section, we will give an example to find a vector δ ∈ K× T × Γ such
that the process x(t) of the dynamical system (1a), (1b), (1c) is closest to a
given deterministic trajectory x̂(t) while the uncertainty of the corresponding
dynamical system is within a given acceptable limit. The cost function is given
by
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g0(δ) = ψ(γ) + E
⎧⎨⎩

T∫
0

[x(t | δ)− x̂(t)]ᵀ[x(t | δ)− x̂(t)]dt

⎫⎬⎭ . (37)

It can be simplified as

g0(δ) = ψ(γ) +

T∫
0

E{(x(t | δ))ᵀx(t | δ)− 2(x̂(t))ᵀx(t | δ) + (x̂(t))ᵀx̂(t)}dt

= ψ(γ) +

T∫
0

E{(ξ(t | δ))ᵀMξ(t | δ)− 2(ξ̂(t))ᵀξ(t | δ) + (x̂(t))ᵀx̂(t)}dt

= ψ(γ) +
∫ T

0

{trace[M(Ψ (t | δ) + (μ(t | δ))ᵀμ(t | δ))]

− 2(ξ̂(t))ᵀμ(t | δ) + (x̂(t))ᵀx̂(t)}dt, (38)

where ξ̂(t) = [x̂(t) 0]ᵀ and M ∈ R(n+p)×(n+p) is given by

M =
[

In×n 0
0 0

]
and In×n is the identity matrix in Rn×n.

Let x̄(t | δ) = E {x(t | δ)}. The constraint is given by

g1(δ) = E
⎧⎨⎩

T∫
0

(x(t | δ)− x̄(t | δ))ᵀ (x(t | δ)− x̄(t | δ)) dt

⎫⎬⎭− ε ≤ 0, (39)

where ε is a positive constant corresponding to some acceptable level of
uncertainty. Similar to (37), (39) can be simplified as

g1(δ) =

T∫
0

trace{MΨ(t | δ)}dt− ε

=

T∫
0

trace{Ψ11(t | δ) + Ψ22(t | δ)}dt− ε ≤ 0. (40)

We consider the dynamic system (1a), (1b), (1c) defined on (0, 1] with the
coefficients given by

A(t) =
(

0.8 0.5
0.2 −0.6

)
, B(t) =

(
1.2 −0.8
0.8 −1.2

)
, D(t) =

(
0.5 0
0 0.5

)
.

The mean and the covariance matrix of the initial state are, respectively,
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x̄0 =
(

1.0
1.0

)
, P 0 =

(
0.16 0
0 0.16

)
.

Suppose that there are two switchings and the coefficients of the two jump
functions are

J i =
(

0.2 0
0 0.2

)
, P i =

(
0.04 0
0 0.04

)
, ∀i = 1, 2.

The coefficients of the observation system (2a), (2b) are given by

G(t) =
(
1 1.2

)
, D0(t) = 0.5

and the feedback control is given by (3) with C(t) = (B(t))−1.
The system and observation system are subject to constant-sized random

shocks N(t) and N0(t), with their mean intensity given by

λ1(t) = λ2(t) = λ0(t) = 1.

The vectors κ and γ are constrained by

K = {κ = [K1,K2, K̂1, K̂2]ᵀ ∈ R4 : −5 ≤ Ki, K̂i ≤ 5, i = 1, 2},
Γ = {γ = [γ1

1, γ
1
2, γ

2
1, γ

2
2]

ᵀ ∈ R4 : −5 ≤ γi
j ≤ 5, i, j = 1, 2}.

The cost function is given by (37) with the target trajectory given by
x̂(t) = 1 and the penalty function given by

ψ(γ) =
2∑

i=1

1
2
(γi)ᵀγi

and the constraint is given by (39) with ε = 0.25.
We apply the optimal control software package MISER3.3 ([9]) to solve

this problem. The optimal solutions obtained are

K∗ = (−0.26791 − 1.18258)ᵀ
,

K̂
∗

= (−0.33051 0.03585)ᵀ
,

τ ∗ = (0.19023 0.65155)ᵀ
,

γ1∗ = (0.36662 0.38707)ᵀ
,

γ2∗ = (0.28008 0.27691)ᵀ
.

The minimum objective value is g∗0 = 0.68380.
For simulation, we have obtained 100 sample paths of ξ in Matlab. The

results are illustrated in Figs. 1, 2, and 3. These sample paths are computed
from equations (6) using the optimal parameters. Each sample path has a
stochastic jump at time τ1 and τ2. Since the system is driven by Poisson
processes, one would expect discontinuities in the sample paths for the state



Optimal Feedback Control for Stochastic Impulsive Linear Systems 255

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

2.5

3

Fig. 1. * line: μ1(t); dotted line: 100 sample paths of x1(t)
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Fig. 2. * line: μ2(t); dotted line: 100 sample paths of x2(t)
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Fig. 4. Ψ11(t) + Ψ22(t), t ∈ [0, 1]
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variables. In fact, besides at time τ1 and τ2, the sharp corners in Figs. 1,
2, and 3, correspond to the time points at which the Poisson jumps take
place.

From Figs. 1 and 2, we see the deviation of x(t) to the target trajectory
x̂(t) = 1. This is because the constraint (40) must be satisfied. To see how this
works, we plot the figure of Ψ11(t) + Ψ22(t), which is the function integrated
in (40), in Fig. 4. We can see from this figure that the occurrence of each
jump tends to reduce the fluctuation, aiming to ensure the satisfaction of the
constraint.

7 Conclusion

In this chapter, a class of optimal feedback control problems involving a
stochastic impulsive dynamical system is considered. We have shown that
this stochastic optimal impulsive parameter selection problem is equivalent to
a deterministic impulsive optimal parameter selection problem. A numerical
method was developed for solving this equivalent constrained deterministic
impulsive optimal parameter selection problem. From the numerical study
through solving a numerical example, we see that the solution method is ef-
fective.
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Analysis of Differential Inclusions: Feedback
Control Method
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Summary. In this chapter, controlled differential inclusions in a Hilbert space
containing subdifferentials of convex functions are considered. The following three
problems are studied: the problem of prescribed motion realization, the problem of
robust control, and the problem of input dynamical reconstruction. Solution algo-
rithms that are stable with respect to informational noises and computational errors
are presented. The algorithms are based on the method of feedback control. They
adaptively take into account inaccurate measurements of phase trajectories and are
regularized in the following sense: the more precise is incoming information, the
better is the algorithm’s output.

Key words: differential inclusions, feedback control, reconstruction

1 Introduction

In the recent time, a part of mathematical control theory, namely, the theory
of control of distributed systems, has been intensively developed. To a consid-
erable degree, this is stimulated by the fact that a rather wide set of problems
of mathematical physics and mechanics are described by distributed systems.
At present, there exists a number of monographs devoted to control problems
for dynamical systems in Hilbert or Banach spaces [1, 2, 9].

In all these works, the emphasis is on problems of program control in
the case when all system’s parameters are precisely specified and not sub-
ject to changes. However, investigation of control problems for systems with
uncontrollable disturbances (problems of robust control) is also natural. Sim-
ilar problems are poorly investigated. This is connected with the fact that
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the well-known maximum principle is not applicable to solving them. In the
early 1970s, N.N. Krasovskii suggested an effective approach to solving robust
(guaranteed) control problems. This approach is based on the formalism of
positional strategies. Its essence consists in reduction of the robust control
problem to two problems:

(i) the problem of choosing an auxiliary-controlled system M (hereinafter, it
is called a model);

(ii) the problem of choosing some rule for synchronous controlling of both
model and real systems.

The systematic description of the theory of guaranteed positional control
for dynamical systems described by ordinary differential equations is given
in [6, 7]. This theory for systems with distributed parameters is presented in
[10, 12].

Then it was revealed that the approach developed in [6, 7] is useful for
solving dynamical inverse problems (problems of dynamical reconstruction),
see, for example, [4, 5, 8, 11, 13, 14] (here we mention only monographs and
reviews). The goal of the present work is to illustrate possibilities of the ap-
proach in question for investigating some control and reconstruction problems
for systems described by differential inclusions containing subdifferentials of
convex functions. These systems have been rather actively studied in the re-
sent years [1, 3]; this is caused, in particular, by the fact that variational
inequalities are often reduced to inclusions of similar kind.

Let a dynamical system be described by the parabolic inclusion:

ẋ(t) + ∂ϕ(x(t)) � Bu(t)− Cv(t) + f(t), t ∈ T = [t0, ϑ]. (1)

Here H = H∗ is a real Hilbert space with a norm | · |H and a scalar prod-
uct (·; ·)H , f(·) ∈ L2(T ;H) is a given function, ϕ : H → R = {r ∈ R :
−∞ < r ≤ +∞} is a lower semicontinuous convex function, ∂ϕ is the sub-
differential of ϕ. Let x(t0) = x0 ∈ D(ϕ) = {x ∈ H : ϕ(x) < +∞} be an
initial state. Let (U, | · |U ) and (V, | · |V ) be uniformly convex Banach spaces;
B ∈ L(U ;H), C ∈ L(V ;H) be linear continuous operators. It is known that
there exists (for any {u(·), v(·)} ∈ L2(T ;U) × L2(T ;V )) a unique solution
x(·) = x(·; t0, x0, u(·), v(·)) of inclusion (1) with the following properties [1, 3]:

x(·) ∈W (T ), x(t) ∈ D(ϕ) ∀t ∈ T, t→ ϕ(x(t)) ∈ AC(T ).

Here AC(T ) is the set of absolutely continuous functions z(·): T → R, W (T ) =
{z(·) ∈ L2(T ;H): ż(·) ∈ L2(T ;H)}; the derivative ż(·) is understood in the
sense of distributions.

The chapter is devoted to three problems: the problem of prescribed mo-
tion realization (Problem 1), the problem of robust control (Problem 2), and
the problem of input dynamical reconstruction (Problem 3). Let us give the
contensive formulation of these problems and describe the approach to their
solution.
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Let a uniform net

Δ = {τ i}m
i=0, τ i = τ i−1 + δ, τ0 = t0, τm = ϑ

with a diameter δ = δ(Δ) = τ i − τ i−1 be fixed on a given time interval T .
Let a solution of inclusion (1), namely x(·), be unknown. At moments τ i ∈ Δ
the phase states x(τ i) are inaccurately measured. Results of measurements
ξh

i ∈ H, i ∈ [0 : m− 1], satisfy the inequalities

|ξh
i − x(τ i)|H ≤ h. (2)

Here, h ∈ (0, 1) is a level of informational noise.
Let us consider the following problem.

Problem 1. Assume that v = v(t) ≡ 0, t ∈ T , in the right-hand part of
inclusion (1). A number ε > 0 is given. There is some prescribed motion
x∗(·); it is a solution of the inclusion

ẋ∗(t) + ∂ϕ(x∗(t)) = Bu∗(t) + f(t), t ∈ T, (3)
x∗(t0) = x0.

Both the solution x∗(·) and the function u∗(·) are unknown. It is only known
that u∗(t) ∈ D∗ for a. a. (almost all) t ∈ T , where D∗ ⊂ U is a given bounded
and closed set. At the moments τ i ∈ Δ the states x∗(τ i) as well as x(τ i)
are (inaccurately) measured. Results of measurements, elements ψh

i ∈ H,
i ∈ [0 : m− 1], satisfy the inequalities

|ψh
i − x∗(τ i)|H ≤ h.

The problem of prescribed motion realization consists in designing an al-
gorithm forming (by the feedback principle) a control u = u(τ i, ξ

h
i , ψ

h
i ),

t ∈ δi = [τ i, τ i+1), i ∈ [0 : m − 1], such that the solution of inclusion (1)
remains within the ε-neighborhood of the solution x∗(·) of inclusion (3) for
all t ∈ T , i.e.,

sup
t∈T

|x(t)− x∗(t)|H ≤ ε.

Let the following quality criterion be given:

I(x(·), u(·)) = σ(x(ϑ)) +

ϑ∫
t0

χ(t, x(t), u(t)) dt,

where σ : H → R and χ : T ×H × U → R are given functions satisfying the
local Lipschitz conditions. A prescribed value of the criterion, number I∗, is
fixed.

The next consists in the following.
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Problem 2. It is required to construct an algorithm of feedback control
u = u(τ i, ξ

h
i ), t ∈ δi = [τ i, τ i+1), i ∈ [0 : m− 1], of inclusion (1) providing ful-

fillment of the following condition. Whatever a value ε > 0 and a disturbance
v(·) (v(t) ∈ Q, t ∈ T ) may be, one can indicate (explicitly) numbers h∗ > 0
and δ∗ > 0 such that the inequality |I(x(·), u(·))− I∗| ≤ ε is fulfilled.

Problem 3 is as follows.
Problem 3. Let the control u = u(t), t ∈ T, is equal to zero in inclusion (1).
It is required to design a dynamical algorithm of reconstruction of an unknown
input v = v(·) in the “real-time” mode.

The scheme of an algorithm for solving the problem of robust control is
given in the figure below [6, 7].

M

U e (1)

u∗(·)w(·)

uh(·) = u(·;ξh,w)

v(·)

ξh(·)

In the beginning, an auxiliary system M (called a model) is introduced.
The model has an input u∗(·) and an output w(·). The process of synchronous
feedback control of inclusion (1) and M is organized on the interval T . This
process is decomposed into (m − 1) identical steps. At the ith step carried
out during the time interval δi = [τ i, τ i+1), the following actions are fulfilled.
First, at the time moment τ i, according to some chosen rule Ue, the element

ui = Ue(τ i, pi)

is calculated. Here the symbol pi denotes some value called a position which
includes a pair (ξh

i , wi), wi = w(τ i). Then (till the moment τ i+1) the control
u(t) = ui, τ i ≤ t < τ i+1, is fed to the input of inclusion (1). The values ξh

i+1

and wi+1 = w(τ i+1) are treated as algorithm’s output at the ith step.
An analogous scheme is applicable to solving the problem of prescribed

motion realization. In this case, inclusion (3) plays the role of the model.
The scheme of algorithm for solving the problem of reconstruction is shown

in the following figure [8, 11, 13].
In this case, an auxiliary system M (a model) is also introduced. The

model has an input uh(·) and an output wh(·). The problem of reconstruction
is replaced by the problem of designing an algorithm of feedback control of
the model. This algorithm is identified with some function U which is chosen
in such a way that the control uh(·) approximates the unknown disturbance
v(·): uh(t) = uh

i = U(τ i, pi), t ∈ δi, where pi = (ξh
i , w

h(τ i)).
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M

(1)
v(·) ξh(·)

U

uh(·) = u(·;ξh,wh)

wh(·)

2 Statement of the Problems

Before we present rigorous formulations of the problems in question, let us give
some definitions. Thereinafter, we denote by ua,b(·) a function u(t), t ∈ [a, b],
considered as a whole. Any strongly measurable functions u(·) : T → P and
v(·) : T → Q are called an open-loop control and a disturbance, respectively.
The sets of all open-loop controls and disturbances are denoted by the symbols
PT (·) and QT (·). The symbol Pa,b(·) stands for restriction of the set PT (·) onto
the segment [a, b] ⊂ T . A unique solution of inclusion (1) with the properties
x(t∗) = x∗, x(·) = x(·; t∗, x∗, ut∗,ϑ(·), vt∗,ϑ(·)) ∈ W ([t∗, ϑ]), x(t) ∈ D(ϕ) ∀t ∈
[t∗, ϑ], t→ ϕ(x(t)) ∈ AC([t∗, ϑ]) is called a motion of system (1) starting from
a position (t∗, x∗) ∈ T ×D(ϕ) and corresponding to a control ut,ϑ(·) ∈ Pt,ϑ(·)
and a disturbance vt,ϑ(·) ∈ Qt,ϑ(·). If u(t) = 0 for t ∈ [t∗, ϑ] (or v(t) = 0 for t ∈
[t∗, ϑ]), then we write x(·) = x(·; t∗, x∗, vt∗,ϑ(·)) (or x(·) = x(·; t∗, x∗, ut∗,ϑ(·))).

The symbol P denotes some set called the set of “positions.” Each problem
has its own set of positions. The sense of P will be clarified for each specific
problem. Any possible function (multifunction)

U : T × P → P (4)

is said to be a feedback strategy. Feedback strategies correct controls at dis-
crete time moments given by some partition of the interval T .

Hereinafter, denote a phase trajectory of a model M by the symbol w(·)
(or wh(·)).

Consider the problem of prescribed motion realization (Problem 1). In this
case, the model M is described by inclusion (3), i.e.,

w(·) = x∗(·; t0, x0, u
∗
t0,ϑ(·)).

The set of positions P is H × H, i.e., pi = (ξh
i , ψ

h
i ), |ξh

i − x(τ i)|H ≤ h,
|ψh

i − x∗(τ i)|H ≤ h. A solution x(·) of inclusion (1) starting from an initial
state (t∗, x∗) and corresponding to a piecewise constant control uh(·) (

formed
by the feedback principle

uh(t) = uh
i ∈ U(τ i, pi) ∈ U, t ∈ [τ i, τ i+1), i ∈ [i(t∗) : m− 1], pi ∈ P, (5)

i(t∗) = min{i : τ i > t∗}, uh(t) = uh
∗ ∈ U(t∗, x∗, x∗) for t ∈ [t∗, τ i(t∗))

)
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and to a disturbance vt∗,ϑ(·) ∈ Qt∗,ϑ(·) is called an (h,Δ, w)-motion xh
Δ,w(·;

t∗, x∗,U) generated by the positional strategy U on partition Δ. Thus,
when we write xh

Δ,w(·), we mean a solution of inclusion (1) constructed
by the feedback principle. The set of all (h,Δ, w)-motions is denoted by
Xh(t∗, x∗,U ,Δ, w). Problem 1 consists in constructing a feedback strategy
U (4) with the following properties: whatever a value ε > 0 may be, one can
specify (explicitly) numbers h∗ > 0 and δ∗ > 0 such that the inequalities

ρ(xh
Δ,w(·), x∗(·)) ≤ ε ∀xh

Δ,w(·) ∈ Xh(t0, x0,U ,Δ, w) (6)

are fulfilled uniformly with respect to all measurements ξh
i with properties

(2), if h ≤ h∗ and δ = δ(Δ) ≤ δ∗.
Here ρ(x(·), x∗(·)) = supt∈T |x(t)− x∗(t)|H .
Let us pass to the problem of robust control (Problem 2). Consider the

following ordinary differential equation:

ġ(t) = χ(t, x(t), u(t)), g(t0) = 0. (7)

Introducing this new variable g, we reduce the robust control problem of
Bolza type to a control problem with a terminal quality criterion of the form
I = σ(x(ϑ)) + g(ϑ). In this case, the controlled system consists of inclusion
(1) in the Hilbert space H and ordinary differential equation (7).

Let a model be described by the inclusion

ẇ1(t) + ∂ϕ(w1(t)) � u1(t) + f(t), w1(t) ∈ H, w1(t0) = x0, (8)

and the ordinary differential equation

ẇ2(t) = u2(t), w2(t) ∈ R, w2(t0) = 0. (9)

The model is, in essence, a “copy” of system (1), (7): inclusion (8) and equation
(9) correspond to inclusion (1) and equation (7), respectively. However, in
contrast to “real” system (1), (7), the model does not contain a disturbance.

In this case, the phase state of the model at some moment t is the pair
w(t) = {w1(t), w2(t)} ∈ H × R. The set of positions P is (H × R)2. A pair
{x(·), g(·)}, where x(·) is a solution of inclusion (1) starting from an initial
state (t∗, x∗) and g(·) is a solution of (7) starting from an initial state (t∗, g∗)
corresponding to a piecewise constant control uh(·) (formed by the feedback
principle)

uh(t) = ui ∈ Ue(τ i, pi), t ∈ [τ i, τ i+1), i ∈ [i(t∗) : m− 1], (10)

pi = (ξh
i , ψ̃

h

i , w(τ i)), |ξh
i − x(τ i)|H ≤ h, |ψ̃h

i − g(τ i)| ≤ h,

i(t∗) = min{i : τ i > t∗}, uh(t) = u∗ ∈ Ue(t∗, x∗, g∗, x∗, g∗)
for t ∈ [t∗, τ i(t∗)))

and to a disturbance vt∗,ϑ(·) ∈ Qt∗,ϑ(·) is called an (h,Δ, χ)-motion
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zh
Δ(·) = {xh

Δ(·; t∗, x∗,Ue, vt∗,ϑ(·)), gh
Δ(·; t∗, g∗,Ue, vt∗,ϑ(·))}

generated by the positional strategy Ue: T ×P → P on the partition Δ. The
set of all (h,Δ, χ)-motions is denoted by Zχ

h (t∗, x∗, g∗,Ue,Δ). It is clear that
the set Zϕ

h (t∗, x∗, g∗,Ue,Δ) is not empty for (t∗, x∗, g∗) ∈ T ×D(ϕ)× R.
Problem 2 consists in the following. A prescribed value of the criterion,

number I∗, is fixed. It is necessary to construct a positional strategy Ue :
T × P → P with the following properties: whatever a value ε > 0 and a
disturbance vT (·) ∈ QT (·) may be, one can indicate (explicitly) numbers h∗ >
0 and δ∗ > 0 such that the inequalities

|I(xh
ΔT (·), uh

T (·))− I∗| ≤ ε (11)

are fulfilled uniformly with respect to all measurements ξh
i with properties

(2) and measurements ψ̃i with properties |ψ̃i − gh
Δ(τ i)| ≤ h, if h ≤ h∗

and δ = δ(Δ) ≤ δ∗. Here {xh
Δ(·), gh

Δ(·)} ∈ Zχ
h (t0, x0, 0,Ue,Δ), xh

Δ(·) =
x(·; t0, x0,Ue(·), vT (·)), gh

Δ(·) = p(·; t0, 0,Ue(·), vT (·)), the control uh(·) is de-
fined by (10).

Let us turn to the problem of reconstruction. In this case, a disturbance
v(·) to be reconstructed is an element of the space L2(T ;V ). Inclusion (1) has
the form

ẋ(t) + ∂ϕ(x(t)) � −Cv(t) + f(t), t ∈ T. (12)

Its solution generated by a disturbance v(·) ∈ L2(T ;V ) is denoted by the
symbol x(·) = x(·; t0, x0, v(·)). A model M is described by the inclusion

ẇh(t) + ∂ϕ(wh(t)) � −Cuh(t) + f(t), t ∈ T, wh(t0) = x0. (13)

A control in model (13) is defined by the rule

uh(t) = uh
i = U(τ i, pi) ∈ V, t ∈ δi = [τ i, τ i+1), (14)

where P = H ×H, pi = (ξh
i , w

h(τ i)). The element ξh
i , being a result of mea-

suring the phase state of inclusion (12) at the moment τ i, satisfies inequality
(2). Thus, the control uh(·) in model (14) is formed by the feedback principle.
This means that at each moment t ∈ δi (i ∈ [0 : m − 1]) the element uh

i is
calculated by the position pi. Then the constant control of the form (14) is
fed to the input of the model during the time interval δi. The procedure for
forming the control uh(·) stops at the moment ϑ.

Let v∗(·) = v∗(·;x(·)) be a minimal L2(T ;V )-norm element of the set
V∗(x(·)) of all functions v(·) ∈ L2(T ;V ) generating a solution x(·):
V∗(x(·)) = {ṽ(·) ∈ L2(T ;V ): x(·) = x(·; t0, x0, ṽ(·))}.

The problem of dynamical reconstruction (Problem 3) consists in con-
structing a feedback strategy U : T × P → V such that the control uh(·)
defined by (14) possesses the property

uh(·) → v∗(·;x(·)) in L2(T ;V ) as h→ 0.
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The sequence of actions (the solving algorithm), which are necessary for
reconstruction of the function v∗(·), is described in Section 5. Note that the
reconstruction procedure is performed synchronously with the operation of
system (12). Namely, before an arbitrary moment t ∈ [t0, ϑ), the trajectory
x(τ), τ ∈ [t0, t], is realized. Up to the same moment, the control uh(τ), τ ∈
[t0, t) being an approximation to v∗(τ), τ ∈ [t0, t), is calculated. Up to any
subsequent moment t1 ∈ (t, ϑ], the new “part” of the control uh(τ), τ ∈ [t, t1)
is calculated.

3 The Algorithm for Solving Problem 1

Let us describe the procedure of forming an (h,Δ, w)-motion xh
Δ,w(·; t0, x0,U)

generated by a fixed partition Δ and a strategy U of the form

U(t, x, w) = arg min{(x− w,Bu)H : u ∈ P}, (15)

i.e., we describe the algorithm for solving Problem 1.
We take an arbitrary element uh

0 ∈ P on the interval [t0, τ1). The (h,Δ, w)-
motion {xh

Δ,w(·; t0, x0, u
h
0 )}t0,τ1 is realized under the action of the control

u(t) = uh
0 , t ∈ [t0, τ1). At the moment t = τ1 we determine uh

1 from the
condition

uh
1 ∈ U(τ1, p1), p1 = (ξh

1 , ψ
h
1 ), |ξh

1 − xh
Δ,w(τ1)|H ≤ h, |ψh

1 − x∗(τ1)|H ≤ h.

Then we compute the realization of the (h,Δ, w)-motion {xh
Δ,w(·; τ1, x

h
Δ,w(τ1),

uh
1 )}τ1,τ2 . Let the (h,Δ, w)-motion xh

Δ,w(·) be defined on the interval [t0, τ i]
(τ i = τ i,h). At the moment t = τ i we choose

uh
i ∈ U(τ1, pi), pi = (ξh

i , ψ
h
i ), |ξh

i − xh
Δ,w(τ i)|H ≤ h, |ψh

i − x∗(τ i)|H ≤ h.

As the result of the action of the control uh(t) = uh
i , t ∈ [τ i, τ i+1), i ∈

[0 : m− 1], the (h,Δ, w)-motion of system (1) {xh
Δ,w(·; τ i, x

h
Δ,w(τ i), uh

i )}τ i,τ i+1

is realized on the interval [τ i, τ i+1]. The described above procedure of forming
the (h,Δ, w)-motion stops at the moment ϑ.

Theorem 1. Let D∗ = P . Then the positional strategy U defined by (15)
solves Problem 1.

The proof of Theorem 1 is performed by the scheme of the proof of Theo-
rem 2 from the next section.

4 The Algorithm for Solving Problem 2

To solve Problem 2, we use ideas from [6, 7], namely, the method of a priori
stable sets. In our case, this method consists in the following. At first, a
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trajectory of model (8), (9), w(·) = {w1(·), w2(·)}, possessing the property
σ(w1(ϑ)) + w2(ϑ) = I∗ is constructed in a special way. Then a feedback
strategy U = Ue providing tracing the prescribed trajectory of the model
by the trajectory of real system (1), (7) is constructed. This means that the
(h,Δ, χ)-motion zh

Δ(·) = {xh
Δ(·), gh

Δ(·)} formed by the feedback principle (see
(10)) by means of the strategy above remains at a “small” neighborhood of
the trajectory w(·) during the whole interval T . This property of the (h,Δ, χ)-
motion allows us to conclude that the chosen strategy solves the robust control
problem. Let us pass to the realization of this scheme.

Let

Φ(t, x, u, v) = {Bu− Cv, χ(t, x, u)},
Φu(t, x, v) =

⋃
u∈P

Φ(t, x, u, v), H∗(t;x) =
⋂

v∈Q

Φu(t, x, v),

H∗(·;x) = {u(·) ∈ L2(T ;H × R) : u(t) ∈ H∗(t;x) for a. a. t ∈ T}.
The following condition is fulfilled.

Condition 1. There exists an open-loop control u∗(·) = {u1(·), u2(·)}, u∗(t) ∈
H∗(t;w1(t)) for a.a. t ∈ T , such that I∗ = σ(w1(ϑ)) + w2(ϑ).

Let, for example, a closed set D ⊂ H be such that BP = CQ + D and
χ = χ(t, u). Here we use the following notation: BP = {Bu: u ∈ P}, CQ =
{Cv: v ∈ Q}, CQ+D = {u: u = u1 + u2, u1 ∈ CQ, u2 ∈ D}. Then

H∗(t;x) = H∗(t) = D ×
{ ⋃

u∈P

χ(t, u)

}
⊂ H × R.

Let us describe the procedure of forming the (h,Δ, χ)-motion zh
Δ(·) =

{xh
Δ(·), gh

Δ(·)} corresponding to a fixed partition Δ and a strategy Ue of the
form:

Ue(t, x, p, w) = {ue ∈ P : (x− w1(t), Bue)H + (p− w2(t))χ(t, x, ue)
≤ inf

u∈P
[(x− w1(t), Bu)H + (p− w2(t))χ(t, x, u)] + h}. (16)

The algorithm for solving Problem 2 is as follows. Before the start of algo-
rithm’s work, we fix a value h ∈ (0, 1) and a partition Δ = {τ i}m

i=0 with a
diameter δ = δ(Δ). The work of the algorithm is decomposed into m − 1
identical steps. We assume that

uh(t) = u0 ∈ Ue(t0, x, p, w(t0)) = P

on the interval [t0, τ1). Under the action of this control as well as of an
unknown disturbance vt0,τ1(·), the (h,Δ, χ)-motion {zh

Δ(·)}t0,τ1 = {xh
Δ(·;

t0, x0,Ue, vt0,τ1(·)), gh
Δ(·, t0, 0,Ue, vt0,τt

(·))}t0,τ1 is realized. At the moment
t = τ1 we determine u1 from the condition
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u1 ∈ Ue(τ1, ξ
h
1 , ψ̃

h

1 , w(τ i)), |ξh
1 − xh

Δ(τ1)|H ≤ h, |ψ̃h

1 − gh
Δ(τ1)| ≤ h,

i.e., uh(t) = u1 for t ∈ [τ1, τ2). Then we calculate the realization of the
(h,Δ, χ)-motion

{zh
Δ(·)}τ1,τ2 ={xh

Δ(·; τ1, x
h
Δ(τ1),U , vτ1,τ2(·)),gh

Δ(·; τ1, g
h
Δ(τ1),U , vτ1,τ2(·))}τ1,τ2 .

Let the (h,Δ, χ)-motion zh
Δ(·) be defined in the interval [t0, τ i]. At the moment

t = τ i we assume that

ui ∈ Ue(τ i, ξ
h
i , ψ̃

h

i , w(τ i)), |ξh
i − xh

Δ(τ i)|H ≤ h, |ψ̃h

i − gh
Δ(τ i)| ≤ h,

i.e., uh(t) = ui for t ∈ [τ i, τ i+1). As the result of the action of this control and
of an unknown disturbance vτi,τ i+1(·), the (h,Δ, χ)-motion

{zh
Δ(·)}τ i,τ i+1

= {xh
Δ(·; τ i, x

h
Δ(τ i),U , vτ i,τ i+1(·)), gh

Δ(·; τ i, g
h
Δ(τ i),

U , vτ i,τ i+1(·))}τ i,τ i+1

is realized on the interval [τ i, τ i+1]. The described above procedure of forming
the (h,Δ, χ)-motion stops at the moment ϑ.

Theorem 2. Let condition 1 be fulfilled. Then the strategy Ue(t, x, p, w) of the
form (16) solves Problem 2.

Proof. We can give the following scheme of the proof. Let a partition Δ =
{τ i}m

i=0 of the interval T with a diameter δ(Δ) = δ and a value of the level of
informational noise h be fixed. We estimate the evolution of the function

μ(t) =
1
2
|xh

Δ(t)− w1(t)|2H +
1
2
|gh

Δ(t)− w2(t)|2.

Introduce the functional l(y(·)) : W (T ) → R,

l(y(·)) = |y(·)|C(T ;H) + |ẏ(·)|L2(T ;H).

One can prove in a standard way [1, 3] that there exists a number K∗
such that, for any x0 ∈ D(ϕ), uT (·) ∈ PT (·), vT (·) ∈ QT (·), x(·) =
x(·; t0, x0, uT (·), vT (·)), the inequality

l(x(·)) ≤ K∗(1 + ϕ1/2(x0) + |u(·)|L2(T ;U) + |v(·)|L2(T ;V )) (17)

is true. It is easily seen that for a. a. t ∈ [τ i, τ i+1), i ≥ 1, the inequality

d

dt
μ(t) ≤ (Bui − Cv(t)− u1(t), xh

Δ(t)− w1(t))H

+ (χ(t, xh
Δ(t), ui)− u2(t))(gh

Δ(t)− w2(t)) (18)

holds. Here
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ui ∈ Ue(τ i, ξ
h
i , ψ̃

h

i , w(τ i)), |ξh
i −xh

Δ(τ i)|H ≤ h, |ψ̃h

i −gh
Δ(τ i)| ≤ h, (19)

vτi,τ i+1(·) is an unknown realization of disturbance, the strategy Ue is dete-
rmined from (16). It follows from (17),(18), and (19) and the local Lipschitz
property of the function χ(·) that

d

dt
μ(t) ≤ (Bui − Cv(t)− u1(t), ξh

i − w1(τ i))H

+ (χ(τ i, ξ
h
i , ui)− u2(t))(ψ̃

h

i − w2(τ i)) (20)

+ k1

⎛⎝h+

t∫
τ i

{|ẋh
Δ(τ)|H + |ẇ1(τ)|H + |ġh

Δ(τ)|+ |ẇ2(τ)|} dτ
⎞⎠ ,

t ∈ δi = [τ i, τ i+1),

and constant k1 can be explicitly written. Let

si = {ξh
i − w1(τ i), ψ̃

h

i − w2(τ i)}.
Then the sum of the two first terms in the right-hand part of inequality (20)
can be written in the form of the scalar product(

si,Φ(τ i, ξ
h
i , ui, v(t))− u∗(t)

)
H×R

,

where

Φ(τ i, ξ
h
i , ui, v(t)) = {Bui − Cv(t), χ(τ i, ξ

h
i , ui)}, u∗ = {u1, u2}.

The symbol (·, ·)H×R denotes the scalar product in space H×R. Let us define
elements ve

i from the conditions

inf
u∈P

(si,Φ(τ i, ξ
h
i , u, v

e
i ))H×R ≥ sup

v∈Q
inf
u∈P

(si,Φ(τ i, ξ
h
i , u, v))H×R − h. (21)

It is obvious (see Condition 1) that

u∗(t) ∈ H(t, w1(t)) ⊂
⋃

u∈P

Φ(t, u, w1(t), ve
i ) for a. a. t ∈ [τ i, τ i+1).

Then there exists a control u(1)(t) ∈ P , t ∈ δi, such that

Φ(t, w1(t), u(1)(t), ve
i ) = u∗(t) for a. a. t ∈ [τ i, τ i+1]. (22)

Using the rule of definition of the strategy Ue, we deduce that

(si,Φ(τ i, ξ
h
i , ui, v(t)))H×R ≤ sup

v∈Q
(si,Φ(τ i, ξ

h
i , ui, v))H×R

≤ inf
u∈P

sup
v∈Q

(si,Φ(τ i, ξ
h
i , u, v))H×R + h. (23)
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In turn, from (21) we have

sup
v∈Q

inf
u∈P

(si,Φ(τ i, ξ
h
i , u, v))H×R ≤ inf

u∈P
(si,Φ(τ i, ξ

h
i , u, v

e
i ))H×R + h. (24)

Moreover, it is evident that the equality

inf
u∈P

sup
v∈Q

(si,Φ(τ i, ξ
h
i , u, v))H×R = sup

v∈Q
inf
u∈P

(si,Φ(τ i, ξ
h
i , u, v))H×R (25)

is valid. From (23), (24), and (25) we have

(si,Φ(τ i, ξ
h
i , ui, v(t)))H×R ≤ inf

u∈P
(si,Φ(τ i, ξ

h
i , u, v

e
i ))H×R + 2h (26)

≤ (si,Φ(t, ξh
i , u

(1)(t), ve
i ))H×R + 2h+ L(t− τ i).

Here L is a Lipschitz constant of the function χ(·). In this case, it follows from
(22), (26) that for t ∈ δi

(s∗i ,Φ(τ i, ξ
h
i , ui, v(t))− u∗(t))H×R ≤ 2h+ L(t− τ i) + L|ξh

i − w1(t)|H . (27)

We derive from inequalities (20), (27)

μ(t) ≤ μ(τ i) + k2δ

⎛⎝h+ δ +

τ i+1∫
τi

⎧⎨⎩ |ẋh
Δ(τ)|H + |ġh

Δ(τ)| (28)

+ |ẇ1(τ)|H + |ẇ2(τ)|+ |xh
Δ(τ)− w1(τ)|H

⎫⎬⎭ dτ

⎞⎠ , t ∈ δi.

Since

μ(t0) = 0, μ(τ1) ≤ k2(h+ δ1/2),
τi+1∫
τ i

|xh
Δ(τ)− w1(τ)|H dτ ≤ 0, 5

⎛⎝δ +

τ i+1∫
τ i

|xh(τ)− w1(τ)|2H dτ

⎞⎠ ,

by (28) we have

μ(t) ≤ k2(h + δ1/2)

+k3δ

⎛⎝1 + h(ϑ − t0)/δ +

t∫
t0

{|ẋh
Δ(τ)|H + |ẇ1(τ)|H + |ġh

Δ(τ)| + |ẇ2(τ)|} dτ

⎞⎠
+k4δ

t∫
t0

|xh
Δ(τ) − w1(τ)|2H dτ, t ∈ T.

Here constants kj , j = 1, . . . , 4, do not depend on h, δ and can be explicitly
written. From (17) and the last inequality it follows that for any γ > 0 one
can find numbers h1 > 0 and δ1 > 0 such that inequality μ(t) ≤ γ is fulfilled
for all h ∈ (0, h1) and δ ∈ (0, δ1). The conclusion of the theorem follows from
this inequality. The theorem is proved.
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5 The Algorithm for Solving Problem 3

In this section, we consider inclusion (12) with some unknown v(·). We assume
that U = V is a Hilbert space with a scalar product (·, ·)U and a norm
| · |U . Constructions described below are based on the approach developed in
[4, 5, 8, 11, 13, 14].

Let a family of partitions

Δh = {τ i,h}mh

i,h=0, τ i,h = τ i−1,h + δ, τ0,h = t0, τmh,h = ϑ, (29)

and a function α(h) : (0, 1) → R+ be fixed. Let the following condition be
fulfilled:

α(h) → 0, δ(h) → 0, hδ−1(h) ≤ const, (30)

(δ1/2(h) + h)α−1(h) → 0 as h→ 0.

A positional strategy U : T ×H ×H → V is defined by the rule

U(τ i, pi) = α−1(h)C∗(ξh
i − wh(τ i)), (31)

where pi = (ξh
i , w

h(τ i)) is a position for t ∈ δi = [τ i, τ i+1), τ i = τ i,h, wh(·) is
a solution of inclusion (13) with uh(·) defined by (14), (31).

Let us describe the algorithm for solving Problem 3. The work of the
algorithm corresponds to the following scheme. First, before the moment t0, a
partition Δ = Δh = {τ i}m

i=0, τ i = τ i,h, of the interval T is chosen and fixed.
The work of the algorithm is decomposed into m − 1 identical steps. At the
ith step carried out during the time interval [τ i, τ i+1), the following sequence
of actions is fulfilled. The output x(τ i) is inaccurately measured, i.e., some
value ξh

i ∈ H with properties (2) is calculated. Then the model control is
determined by (14), (31) and after that we form the new part of the model
trajectory wh(t), t ∈ (τ i, τ i+1] instead of wh

t0,τ i
(·) (memory correction). The

procedure stops at the time moment ϑ.
As it follows from results of the works cited above (see, for example, [11,

Theorem 1.2.1]), the convergence uh(·) → v∗(·) in L2(T ;V ) as h → 0 takes
place if the model control uh(·) possesses the following properties:

sup
t∈T

|x(t)− wh(t)|H ≤ μ1(h),

|uh(·)|2L2(T ;U) ≤ |v∗(·)|L2(T ;U) + μ2(h),

where μ1(h) → 0+, μ2(h) → 0+ as h → 0+. From the proof of Theorem 3
(see (42), (43)) we conclude that the control uh(·) formed by the strategy U
(31) possesses these properties.

Theorem 3. Let condition (30) be fulfilled. Then the positional strategy U of
the form (14), (31) solves Problem 3.
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Proof. Let us estimate the variation of the Lyapunov functional

εh(t) = |μh(t)|2H + α(h)

t∫
t0

{|uh(τ)|2U − |v∗(τ)|2U} dτ ,

where μh(t) = wh(t)− x(t), wh(·) is the solution of inclusion (13). It is easily
seen that

ε̇h(t) = (μh(t), μ̇h(t))H + α(h){|uh(t)|U − |v∗(t)|U}
≤ (

μh(t), C(v∗(t)− uh(t))
)
H

+ α(h){|uh(t)|U − |v∗(t)|U}.
In virtue of (2), we have

(C(v∗(t)− uh(t)), μh(t))H ≤ (C(v∗(t)− uh(t)), ξh
i − wh(τ i))H (32)

+ c1{|v∗(t)|U + |uh(t)|U}
⎛⎝h+

t∫
τ i

{|ẋ(τ)|H + |ẇh(τ)|H} dτ
⎞⎠ , t ∈ δi.

Note (see (14), (31)) that

uh(t) = arg min{α|u|2U − 2(C∗(ξh
i − wh(τ i)), u)U : u ∈ U}, t ∈ δi. (33)

Therefore, by (33), we obtain for t ∈ δi

εh(t) ≤ εh(τ i) (34)

+ c2

⎛⎝h2 + δ

t∫
τ i

(|v∗(τ)|2U + |uh(τ)|2U + |ẋ(τ)|2H + |ẇh(τ)|H
)
dτ

⎞⎠ .

Similarly to (17) we have

ϑ∫
t0

|ẇh(τ)|2H dτ ≤ K1(1 + ϕ(x0) + |uh(·)|2L2(T ;U)). (35)

By summing the right-hand and left-hand parts of inequality (34) over i, we
have

εh(t) ≤ εh(t0) + c4h
2δ−1 + c3δ

⎛⎝1 +

t∫
t0

{|v∗(τ)|2U + |uh(τ)|2U}dτ
⎞⎠ , (36)

≤ εh(t0) + c4h
2δ−1 + c5δ + c3δ

2

i(t)∑
j=0

|uh
j |2U ,

where the symbol i(t) denotes the integer part of a number t. Besides, by the
rule of definition of uh

i (see (14), (31)), we have
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|uh
i |2U ≤ 2b2(μh

i + h2)α−2(h), (37)

where b = |C∗|L(U ;H), μh
i = |μh(τ i)|2H . From (36), (37) and the inequality

hδ−1(h) ≤ const, we derive the estimate

μh
i ≤ εh(t0) + c4h

2δ−1 + c5δ + α|v∗(·)|2L2(T ;U) + c3δ
2

i−1∑
j=0

2b2(μh
j + h2)α−2

≤ c6(h+ δ + α) + c7δ
2α−2

i−1∑
j=0

μh
j .

Taking into account the Gronwall inequality and the inequality

δ(h)α−2(h) ≤ C, (38)

we conclude that

μh
i ≤ c6(h+ δ + α) exp{c7(ϑ− t0)δα−2} ≤ c8(h+ δ + α). (39)

Summing the left-hand part of inequality (37) over i, we obtain from (39)

δ2
mh−1∑
j=0

|uh
j |2U ≤ 2δ2b2

mh−1∑
j=0

(μh
i + h2)α−2 ≤ c9δα

−2(α+ h+ δ). (40)

Using (36) and (40), we can derive the estimation

εh(t) ≤ c10(h+ δ + δα−1 + δ2α−2 + hδα−2) ≤ c11(h+ δα−1). (41)

Therefore,

|uh(·)|2L2(T ;U) ≤ |v∗(·)|2L2(T ;U) + c11(h+ δ1/2)α−1, (42)

|μh(t)|2H ≤ c12(h+ δα−1 + α). (43)

The validity of the theorem follows from (42), (43) and Theorem 2.1 [11].

Let us adduce an estimate of the algorithm’s convergence rate. Let the
following condition be fulfilled.

Condition 2. The function ϕ is differentiable and operator Φx = gradφ(x):
H → H is Lipshitz.

Then the following theorem takes place.

Theorem 4. Let U = H, C be the identity operator and v∗(·) be a function
of bounded variation. Then the estimate

|v∗(·)− uh(·)|L2(T ;H) ≤ K{[h+ δ(h)α−1(h) +α(h)]1/2 +α−1(h)(h+ δ1/2(h))}
is valid.
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Proof. In this case, inclusion (1) can be rewritten in the form of parabolic
equation :

ẋ(t) + Φx(t) = −Cv(t) + f(t).

Due to the Lipschitz property of mapping Φ, we have∣∣∣∣∣∣
t2∫

t1

C(v∗(t)− uh(t)) dt

∣∣∣∣∣∣
H

≤ |μh(t2)− μh(t1)|H +K1

t2∫
t1

|μh(τ)|H dτ for any t1, t2 ∈ [t0, ϑ], t1 < t2.

From this inequality and estimation (43), we get∣∣∣∣∣∣
t2∫

t1

C(v∗(t)− uh(t)) dt

∣∣∣∣∣∣
H

≤ K2{h+ δ(h)α−1(h) + α(h)}1/2. (44)

The following lemma is known.

Lemma 1. (Osipov and Kryazhimskii [13] and Maksimov [11]) Let (X, | · |X)
be a Hilbert space, u(·) ∈ L∞(T ; X), v(·) be a function of bounded variation,∣∣∣∣∣∣

t∫
t0

u(τ)dτ

∣∣∣∣∣∣
X

≤ ε, |v(t)|X ≤ K ∀t ∈ T.

Then ∣∣∣∣∣∣
t∫

t0

(u(τ), v(τ))X dτ

∣∣∣∣∣∣ ≤ ε(K + varX(T ; v(·))).

Here symbol varX(T ; v(·)) means the total variation of function t→ v(t) ∈ X
over the interval T . Taking into account this lemma, from (42, 44), we can
conclude that

|v∗(·)− uh(·)|2L2(T ;H)

≤ 2|v∗(·)|2L2(T ;H) − 2

ϑ∫
t0

(v∗(t), uh(t))H dt+K3α
−1(h)(h+ δ1/2(h))

≤ K4{h+ δ(h)α−1(h) + α(h)}1/2 +K3α
−1(h)(h+ δ1/2(h)).

The theorem is proved.
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6 Conclusion

In this chapter, differential inclusions containing subdifferentials of convex
functions are investigated. The method of auxiliary models controlled by the
feedback principle is developed for such inclusions. On the base of this method,
algorithms for solving some reconstruction and control problems are designed.
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Summary. In this chapter, we propose a new algorithm to solve Riccati equa-
tions and certain Hamilton–Jacobi–Bellman–Isaacs (HJBI) equations arising in H∞
control. The need for the algorithm is motivated by the existence of H∞ prob-
lems for which standard Riccati solvers break down, but which can be handled
by the algorithm. By using our algorithm, we replace the problem of solving H∞
Riccati equations or HJBI equations by the problem of solving a sequence of H2

Riccati equations or Hamilton–Jacobi–Bellman (HJB) equations. The algorithms
have some advantages such as a simple initialization, local quadratic rate of conver-
gence, and a natural game theoretic interpretation. Some numerical examples are
given to demonstrate advantages of our algorithm.
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1 Introduction

This chapter addresses computational issues in H∞ control, in particular ad-
vancing algorithms for solving H∞ Riccati equations and their generalization
and Hamilton–Jacobi–Bellman–Isaacs (HJBI) equations. Though algorithms
are not especially well developed for HJBI equation solution, there are cer-
tainly standard software packages allowing H∞ Riccati equation solution, e.g.,
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RICPACK (see [5]) and MATLAB, and it is natural to ask why another algori-
thm should be needed, at least for this class of equation. Therefore, we spend
some time describing the motivation for this work.

The motivation actually goes back to the problem of solving H2 Riccati
equations. Again, well-established software tools exist, for example, LAPACK
and BLAS (see [4]). However, there exist examples of H2 Riccati equations
where these tools break down, as we review later. One technique which can re-
main viable in such situations is the recursive algorithm of Kleinman (see [24]).
The Kleinman algorithm replaces the task of solving the Riccati equation di-
rectly by the task of solving a recursive sequence of Lyapunov equations. Now
just as there exist examples where standard H2 Riccati solvers break down,
so is this true with standard H∞ Riccati solvers. It is natural then to ask,
Can the problem be fixed by the extension of the algorithm of Kleinman to
this situation? The immediate answer is no (see Example 2 in the Appendix
of [27] for a demonstration of this). However, as this chapter sets out, there
is a fix, motivated by the Kleinman algorithm and in some ways constituting
a significant extension of the Kleinman algorithm. The relevant ideas were
originally presented in [26, 27].

To the extent that an H2 Riccati equation is effectively a particular ex-
ample of a Hamilton–Jacobi–Bellman (HJB) equation, and an H∞ Riccati
equation a particular example of a HJBI equation, it is natural to seek gen-
eralizations of the Riccati algorithms. Such generalizations may not just be
useful in a few situations where numerical problems arise, but might be gener-
ally useful, given the limited development to this point of standard packages
for solving HJB and HJBI equations. Indeed, there is an old generalization of
the Kleinman algorithm, which replaces solution of the HJB nonlinear partial
differential equation by the recursive solution of a sequence of linear partial
differential equations (see [29]). There is, however, no corresponding algo-
rithm for HJBI equations, and this chapter’s second main contribution is to
offer such an algorithm.

Apart from the ability of the algorithms we present to solve problems that
may defeat conventional solvers, we note their following specific advantages:
(1) a simple initialization; (2) local quadratic rate of convergence; (3) a natural
game theoretic interpretation; (4) high numerical stability and reliability.

We shall now provide a high-level description of the algorithms. First, we
replace the problem of solving an H∞ Riccati equation by the problem of solv-
ing a sequence of H2 Riccati equations. By using our algorithm, we transfer
an H∞ problem into a sequence of optimal control problems; by doing so, we
indeed transfer a difficult problem into a sequence of less difficult problems.
Since any single H2 Riccati equation can be solved using the Kleinman algo-
rithm, i.e., by solving an iterative sequence of Lyapunov equations, it is also
apparent that an H∞ equation can, if desired, be solved by using a nested
double iteration of Lyapunov equations.

Second, and by way of generalization, we replace the problem of solving
an HJBI equation by the problem of solving a sequence of Hamilton–Jacobi–



Game Theoretic Algorithm 279

Bellman (HJB) equations. As for the Riccati case, an HJBI equation can be
solved using a nested double iteration of linear partial differential equations.
Whether one uses the single or double iteration is of course optional.

We shall now present more details on the approach for Riccati equations.
Consider the following algebraic Riccati equation (ARE) in the variable P :

0 = ATP + PA+ PRP +Q, (1)

where A,Q,R are real n × n matrices with Q and R symmetric. Here, (·)T

denotes the transpose of (·). Associated with this Riccati equation is a 2n×2n
Hamiltonian matrix

H :=
(

A R
−Q −AT

)
.

Generally speaking, existing methods to solve AREs can be divided into
two categories:

1. Direct: solutions of ARE (1) can be constructed via computation of an
n- dimensional invariant subspace of the Hamiltonian matrix H (for
example, using the Schur algorithm in [28]).

2. Iterative: a sequence of matrices which converge to the unique stabilizing
solution of special classes of the ARE (1) is constructed (for example,
using the Kleinman algorithm in [24]).

Several different direct methods to solve the ARE (1) are given in [1, 5,
11, 15, 25, 28, 31, 33, 35]. However, compared with iterative methods to solve
ARE (1), direct methods present computational disadvantages in some situa-
tions. For example, in Example 6 in [28], the solution to an H2 ARE obtained
by the Schur algorithm in [28] is inaccurate but the iterative solution obtained
by the Kleinman algorithm in [24] is accurate to 13 digits in just two iterations.

Traditionally, in H2 control, one needs to solve AREs with Q ≥ 0 and
R ≤ 0. In H∞ control, one needs to solve AREs with positive semidefinite
Q and sign indefinite R. Although the Kleinman algorithm in [24] has been
shown to have many advantages such as convergence for any suitable initial
condition and a local quadratic rate of convergence [24], these advantages
are strictly restricted to AREs arising in H2 control where R in (1) must be
negative semidefinite. It is not difficult to adjust the Kleinman method (which
is effectively an implementation of an equation solver using Newton’s method)
to also handle the separate case where R ≥ 0, but still sign-indefinite R cannot
be handled. So the question naturally arises, “Can one extend the Kleinman
algorithm in [24] to solve AREs with a sign indefinite quadratic term, as those
that arise in H∞ control?” The answer is that an iterative algorithm with very
simple initialization to solve such a class of AREs will be given in this chapter,
but the algorithm cannot be obtained by simply permitting indefinite R to
occur in the Kleinman algorithm.

In the Kleinman algorithm, when a suitable initial condition is chosen
and some necessary assumptions hold, it is proved that a series of Lyapunov
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equations can be recursively constructed at each iteration, and positive
semidefinite solutions of these Lyapunov equations converge to the stabilizing
solution of the corresponding H2 ARE. In our proposed algorithm, an ARE
with a sign indefinite quadratic term is replaced by a sequence of H2 AREs
(each of which could be solved by the Kleinman algorithm if desired, though
this need not happen), and the solution of the original ARE with a sign in-
definite quadratic term is obtained by recursively solving these H2 AREs.

Besides the Kleinman algorithm, there are some other iterative methods to
solve AREs [1–3, 11–16, 22, 25, 32, 33, 35], some of which exhibit quadratic
convergence. Among iterative methods to solve the ARE (1), Newton-type
algorithms are typical and widely used [1, 11–16, 25, 33, 35]. In fact, Newton’s
method can be used to solve more than just symmetric AREs like (1). It
can also be used to solve non-symmetric AREs where Q and R in (1) are
not necessarily symmetric [20, 21]. However, besides Newton-type algorithms,
there are other iterative algorithms again to solve AREs with a sign indefinite
quadratic term, for example, the matrix sign function method (see [15, 33, 35]).
However, there are also disadvantages when the matrix sign function method is
used to solve AREs, for example, when the eigenvalues of the corresponding
Hamiltonian matrix of a given ARE are close to the imaginary axis, this
method will perform poorly or even fail.

As noted above, in the work presented in this chapter, we reduce the
problem of solving a generic Riccati equation with a sign indefinite quadratic
term to one of generating successive iterations of solutions of conventional
H2 AREs with a negative semidefinite quadratic term (each of which is then
amenable to the Kleinman algorithm). Consequently, we are reducing a Riccati
equation that has no straightforwardly initialized iterative scheme for its so-
lution to a number of successive iterations of Riccati equations, each of which
can (if desired) be solved by an existing iterative scheme (e.g., the Kleinman
algorithm).

Although linear optimal control theory, as well as linearH∞ control theory,
has been well developed in the past decades, matters become more compli-
cated when a nonlinear control system is considered. For example, in nonlinear
optimal control, HJB equations may need to be solved to obtain an optimal
control law. However, HJB equations are first-order, nonlinear partial differ-
ential equations that have been proven to be impossible to solve in general
and are often very difficult to solve even for specific nonlinear systems. Since
these equations are difficult to solve analytically, there has been much research
directed toward approximating their solutions. For example, the technique of
successive approximation in policy space [8–10] can be used to approximate
the solutions of HJB equations iteratively. In fact, it can be shown (see [29])
that the technique of policy space iteration can be used to replace a nonlinear
HJB partial differential equation by a sequence of linear partial differential
equations. Also, in some sense, the iterative procedure to solve HJB equa-
tions in [29] is a generalization of the Kleinman algorithm in [24], since both
of them obtain solutions by constructing a sequence of monotonic functions
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or matrices while the algorithm in [29] can be used in more general cases than
just the LQ problem.

In nonlinearH∞ control, given a disturbance attenuation level γ > 0, in or-
der to solve the H∞ suboptimal control problem, one needs to solve Hamilton–
Jacobi–Bellman–Isaacs (HJBI) equations. It is clear that HJBI equations are
generally more difficult to solve than HJB equations, since the disturbance
inputs are additionally reflected in HJBI equations. Recall that the Riccati
equation algorithm to be presented will reduce an ARE with an indefinite
quadratic term to a sequence of AREs with a negative semidefinite quadratic
term, which are more easily solved by an existing algorithm (e.g., the Klein-
man algorithm). If we regard HJB equations as the general version of AREs
with a negative semidefinite quadratic term and HJBI equations as the gen-
eral version of AREs with an indefinite quadratic term, then the question
arising here is, “Can we approximate the solution of an HJBI equation by
obtaining the solutions of a sequence of HJB equations and thereby extend
the recursive H∞ Riccati algorithm to nonlinear control systems?” In this
chapter, we will answer this question to some degree, that is, we extend the
Riccati algorithm for a specific class of nonlinear control systems and develop
an iterative procedure to solve a broad class of HJBI equations associated with
the nonlinear H∞ control problem. It is important to note that others have
made a direct attack on HJBI equations using single and double iterations,
but their methods do not allow a simple initialization of the algorithms, which
is a severe disadvantage (see [36] and [7]). To implement the algorithms in [36]
and [7], one has to choose a stabilizing control law achieving the prescribed
attenuation level, which is not always straightforward to obtain.

Besides the advantages mentioned above, our algorithm can be expected
to have a higher accuracy and numerical stability than existing algorithms
to solve HJBI equations since our algorithm in the linear time-invariant case
(i.e., solving H∞ algebraic Riccati equations) has shown higher accuracy and
numerical reliability, see Example 2 in Section 3.5 for a demonstration of this.

The notation is as follows: R denotes the set of the real numbers; R+

denotes the set of the nonnegative numbers; (·)T denotes the transpose of a
vector or a matrix; σ(·) denotes the maximum singular value of a matrix; Z

denotes the set of integers with Z≥a denoting the set of integers greater or
equal to a ∈ R; Rn denotes an n-dimensional Euclidean space; Sn×n denotes
the set of n-dimensional real symmetric matrices. Let X ∈ Rn×n be a real
matrix, then X ≥ 0 means that X is positive semidefinite; Let X, Y ∈ Rn×n

be two positive semidefinite matrices, then X ≥ Y means that the matrix
X − Y is positive semidefinite (i.e., X − Y ≥ 0). Let Pk ∈ Rn×n be a matrix
sequence for k ∈ Z≥0, if Pk ≥ 0 and Pk+1 ≥ Pk for all k ∈ Z≥0, then the
sequence Pk is called monotonically non-decreasing.

For a given control system, denote the state space by X ⊆ Rn, the set
of control input values by U ⊆ Rm, the set of disturbance input values by
W ⊆ Rq, and the set of output values by Y ⊆ Rp. Moreover, define X0 as a
neighborhood of the origin in Rn, U0 as a neighborhood of the origin in Rm,
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W0 as a neighborhood of the origin in Rq, and Y0 as a neighborhood of the
origin in Rp. Define the function space X0 as follows:

X0 =
{
x : R+ → X0

∣∣∣∣ ∫ t1

t0

‖x(t)‖2dt <∞ ∀t0, t1 ∈ R+

}
.

Function spaces U0, W0, and Y0 are defined similarly as X0.
A matrix is said to be Hurwitz if all of its eigenvalues have negative real

parts.

2 Solving the LQ Problem by the Kleinman Algorithm

As noted in the previous section, for the linear time-invariant case of our al-
gorithm, we replace the problem of solving an H∞ Riccati equation by the
problem of solving a sequence of H2 Riccati equations; then each of these H2

Riccati equations can be solved by the Kleinman algorithm. The Kleinman
algorithm, originally used to solve the LQ problem, will be reviewed in this
section. By using the Kleinman algorithm, we can replace the problem of solv-
ing an H2 Riccati equation by the problem of solving a sequence of Lyapunov
equations; then each Lyapunov equation can be solved by existing numeri-
cal algorithms. By doing so, we transfer a nonlinear matrix equation (an H2

Riccati equation) into a sequence of linear equations (Lyapunov equations).
Consider a continuous-time linear system described by

ẋ = Ax+Bu

y = Cx

with a cost functional defined as

J =
∫ ∞

0

(
xTCTCx+ uTu

)
dt.

In the LQ problem, it is well known that the feedback control law that mini-
mizes the value of the cost J is

u = −BTKx,

with K solving
0 = ATK +KA−KBBTK + CTC. (2)

If (A, B) is stabilizable and (C, A) is detectable, it can be shown that (2) has
a unique stabilizing solution. In such a situation, the Kleinman algorithm can
be used to solve (2). The Kleinman algorithm to solve (2) is given as follows:

1. choose an initial stabilizing state feedback gain L0;
2. A0 := A−BL0;
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3. obtain V0 by solving the Lyapunov equation

0 = AT
0 V0 + V0A0 + LT

0 L0 + CTC;

4. Lk := BTVk−1, k = 1, 2, . . .;
5. Ak := A−BLk, k = 1, 2, . . .;
6. obtain Vk by solving the following Lyapunov equation:

0 = AT
k Vk + VkAk + LT

k Lk + CTC, k = 1, 2, . . . .

It can be proved that the sequence Vk is monotonically non-increasing and
converges to the stabilizing solution K of (2).

In H2 control, typically, the Kleinman algorithm for solving H2-type AREs
with a negative semidefinite quadratic term is well suited as a “second iter-
ative stage” refinement to achieve the prescribed accuracy for the stabilizing
solution of the ARE. For example, if an approximate stabilizing solution is
known (e.g., one observes using the Schur method), and this is stabilizing, then
one to two iterations are sufficient to achieve the limiting accuracy (because of
the guaranteed final quadratic rate of convergence of a typical Newton algo-
rithm). Now as noted, the Kleinman algorithm reduces a quadratic (Riccati)
equation (with a negative semidefinite quadratic term) to several successive
iterations of linear (Lyapunov) equations; the complexity of solving algebraic
Lyapunov and Riccati equations with sound numerical methods (e.g., Schur
form-based reductions) is O(n3) for both. When Schur form-based reductions
are used to solve Lyapunov equations, the computation for such (Schur form-
based) reductions needs about 25n3 flops (see [18]), where 1 flop equals 1
addition/subtraction or 1 multiplication/division. About 7n3 flops are neces-
sary to solve the reduced equation and to compute the solution. The basic
method is described in [6]. For the solutions of AREs, the Schur approach
of Laub [28] requires 240n3 flops of which 25(2n)3 flops are required to re-
duce a 2n× 2n Hamiltonian matrix to real Schur form and the rest accounts
for the computation of the eigenvalues and solving a linear equation of order
n (i.e., 5

3n
3 flops). Consequently, both Riccati and Lyapunov equations re-

quire O(n3) computations. Hence the advantage of iterative schemes such as
the Kleinman algorithm (which will require several Lyapunov equations to be
solved, typically) is not always the speed of computation, but rather it is the
numerical reliability of the computations to reach the prescribed accuracy of
a solution.

3 Solving H∞ Riccati Equations

This section includes five subsections: (1) the summarizing theorem; (2) an
algorithm to solve H∞ Riccati equations; (3) an examination of the rate of
convergence of the algorithm; (4) a game theoretic interpretation of the algo-
rithm, (5) numerical examples.
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3.1 The Summarizing Theorem

In this subsection, we will restrict attention to the unique stabilizing solution
Π for the following ARE:

0 = ΠA+AT Π−Π(B2B
T
2 −B1B

T
1 )Π + CTC, (3)

where A,B1, B2, C are real matrices with compatible dimensions. Note that
stabilizing solutions to AREs are always unique (see [37]) when they exist, but
for AREs with a sign indefinite quadratic term, the unique stabilizing solution
Π may not always be positive semidefinite. Since our interest arises from AREs
used for H∞ control, in this case, in order to obtain an H∞ controller, we
need to solve AREs with a sign indefinite quadratic term and the stabilizing
solutions of these AREs are also required to be positive semidefinite if such
an H∞ controller exists. So we focus on a unique stabilizing solution to (3)
that happens to be also positive semidefinite when this exists. The algorithm
we will propose in Section 3.2 has two aspects: (1). Check the existence of the
unique stabilizing solution, which is also positive semidefinite, of (3) and (2).
Construct the unique stabilizing solution, which is also positive semidefinite,
of (3) if such a solution exists.

Motivated by the right-hand side of (3), we define a function F which will
be used in our summarizing theorem:

F : Rn×n −→ Rn×n (4)

P �−→ PA+ATP − P (B2B
T
2 −B1B

T
1 )P + CTC.

In this section, we set up the summarizing theorem by constructing two
positive semidefinite matrix series Pk and Zk, and we also prove that the series
Pk is monotonically non-decreasing and converges to the unique stabilizing
solution Π (which is also positive semidefinite) of ARE (3) if such a solution
exists.

Theorem 1. (The summarizing theorem) Let A,B1, B2, C be real matrices
with compatible dimensions. Suppose that (C,A) has no unobservable modes
on the jω-axis and (A,B2) is stabilizable, define F : Rn×n −→ Rn×n as
in (4). Suppose there exists a stabilizing solution Π, which is also positive
semidefinite, of ARE (3).
Then

(I) two square matrix series Zk and Pk can be defined for all k ∈ Z≥0 recur-
sively as follows:

P0 = 0, (5)

Ak = A+B1B
T
1 Pk −B2B

T
2 Pk, (6)

Zk ≥ 0 is the unique stabilizing solution of

0 = ZkAk +AT
k Zk − ZkB2B

T
2 Zk + F (Pk), (7)

Pk+1 = Pk + Zk; (8)
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(II) the two series Pk and Zk in part (I) have the following properties:
(1) (A+B1B

T
1 Pk, B2) is stabilizable ∀k ∈ Z≥0.

(2) F (Pk+1) = ZkB1B
T
1 Zk ∀k ∈ Z≥0.

(3) A+B1B
T
1 Pk −B2B

T
2 Pk+1 is Hurwitz ∀k ∈ Z≥0.

(4) Π ≥ Pk+1 ≥ Pk ≥ 0 ∀k ∈ Z≥0;
(III) the limit

P∞ := lim
k→∞

Pk

exists with P∞ ≥ 0. Furthermore, P∞ = Π is the unique stabilizing
solution of ARE (3), which is also positive semidefinite.

Proof. See [26, 27]. ��
The following corollary gives a condition under which there does not exist

a stabilizing solution Π ≥ 0 to F (Π) = 0. This is useful for terminating the
recursion in finite iterations. If there does not exist a stabilizing solution Π ≥ 0
to (3), there are two possible situations in Theorem 1: (1) The stabilizability
condition (II1) fails at some iteration; and (2) The sequence Pk in Theorem 1
diverges to infinity.

Corollary 1. Let A,B1, B2, C be real matrices with compatible dimensions.
Suppose that (C,A) has no unobservable modes on the jω-axis and (A,B2) is
stabilizable, and let {Pk} and F : Rn×n −→ Rn×n be defined as in Theorem 1.
If ∃k ∈ Z≥0 such that (A + B1B

T
1 Pk, B2) is not stabilizable, then there does

not exist a stabilizing solution Π ≥ 0 to F (Π) = 0.

Proof. Restatement of Theorem 1, implication (II1). ��

3.2 Algorithm

Let A,B1, B2, C be real matrices with compatible dimensions and Δ > 0 be
a specified tolerance. Suppose that (C,A) has no unobservable modes on the
jω-axis and (A,B2) is stabilizable. Then an iterative algorithm for finding
the positive semidefinite stabilizing solution of (3), when it exists, is given as
follows:

1. Let P0 = 0 and k = 0.
2. Set Ak = A+B1B

T
1 Pk −B2B

T
2 Pk.

3. Construct (for example, using the Kleinman algorithm in [24], though this
is not necessary) the unique real symmetric stabilizing solution Zk ≥ 0
which satisfies

0 = ZkAk +AT
k Zk − ZkB2B

T
2 Zk + F (Pk), (9)

where F : Rn×n −→ Rn×n is defined in (4).
4. Set Pk+1 = Pk + Zk.
5. If σ(BT

1 Zk)2 < Δ, then set Π = Pk+1 and exit. Otherwise, go to step 6.
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6. If (A+B1B
T
1 Pk+1, B2) is stabilizable, then increment k by 1 and go back to

step 2. Otherwise, exit as there does not exist a real symmetric stabilizing
solution Π ≥ 0 satisfying F (Π) = 0.

From Corollary 1 we see that if the stabilizability condition in step 6 fails
at some k ∈ Z≥0, then there does not exist a stabilizing solution Π ≥ 0 to
F (Π) = 0 and the algorithm should terminate (as required by step 6). But
when this stabilizability condition is satisfied ∀k ∈ Z≥0, construction of the
series Pk and Zk is always possible and either Pk converges to Π (which is
captured by step 5) or Pk just diverges to infinity, which again means that
there does not exist a stabilizing solution Π≥ 0 to F (Π) = 0.

Remark 1. It is worth pointing out that when the Kleinman algorithm is used
to solve (9), how to stop the Kleinman iteration can be an important issue.
In fact, a simple criterion to stop the Kleinman iteration is to compute the
residue of (9). When the residue of the right-hand side terms of (9) is small
enough, the Kleinman iteration should be stopped.

Remark 2. For a numerical method to check the stabilizability of a matrix
pair in step 6, one can refer to the staircase algorithm in [34]. In the staircase
algorithm, some SVDs are performed to formulate a staircase form of the
matrix pair, then the stabilizability of the matrix pair is checked based on the
staircase form. Since the computational complexity of SVD is O(n3) (see [18]),
the computational complexity of the staircase algorithm is also O(n3).

3.3 Rate of Convergence

The following theorem states that the local rate of convergence of the algo-
rithm given in Section 3.2 is quadratic.

Theorem 2. Given the suppositions of Theorem 1, and two series Pk, Zk as
defined in Theorem 1 Part I, then there exists a θ > 0 such that the rate of
convergence of the series Pk is quadratic in the region ‖Pk −Π‖ < θ.

Proof. We prove the rate of convergence of Pk by proving the rate of conver-
gence of Zk. Let Ák = A + B1B

T
1 Pk − B2B

T
2 Pk+1 and Ã = A + B1B

T
1 Π −

B2B
T
2 Π. Note that Ák is Hurwitz (see Theorem 1 Part II) and Ã is Hur-

witz since Π is the stabilizing solution of (3) (see [39]), and let Ỹ and Ýk be
uniquely defined by

0 = Ỹ Ã+ ÃT Ỹ + I, (10)
0 = ÝkÁk + ÁT

k Ýk + I, (11)

where I is the identity matrix with appropriate dimensions. The matrices Ỹ
and Ýk are positive definite because of the stability properties of Ák and Ã.
Since Ỹ and Ýk are uniquely defined and limk→∞ Ák = Ã, then limk→∞ Ýk =
Ỹ , and thus for any small γ > 0, ∃K1 ∈ Z≥0 such that



Game Theoretic Algorithm 287

σ(Ýk − Ỹ ) ≤ γ ∀k ≥ K1.

This implies that
σ(Ýk) ≤ σ(Ỹ ) + γ ∀k ≥ K1. (12)

Now, define a monotonically non-increasing sequence εk by

εk = sup
m≥k

σ(Zm).

From (7) and Theorem 1, we have ∀k ∈ Z≥1:

0 = ZkAk +AT
kZk − ZkB2B

T
2 Zk + Zk−1B1B

T
1 Zk−1, (13)

which can be equivalently rewritten as follows:

0 = ZkÁk + ÁT
kZk + ZkB2B

T
2 Zk + Zk−1B1B

T
1 Zk−1. (14)

Now, there exists η > 0 (e.g., η = 4max{σ(B1)2, σ(B2)2}), independent of k,
such that

ZkB2B
T
2 Zk + Zk−1B1B

T
1 Zk−1 ≤ ηε2k−1I ∀k ∈ Z≥1. (15)

Multiplying (ηε2k−1) on each side of (11), we obtain

0 = (ηε2k−1)ÝkÁk + (ηε2k−1)Á
T
k Ýk + (ηε2k−1)I. (16)

Then subtracting (14) from (16), we obtain

0 = (ηε2k−1Ýk − Zk)Ák + Ák(ηε2k−1Ýk − Zk) + ηε2k−1I

− (ZkB2B
T
2 Zk + Zk−1B1B

T
1 Zk−1). (17)

Now note that Ák is Hurwitz and the inequality (15) holds, then by (17) we
have (see Lemma 3.18 in [39])

ηε2k−1Ýk ≥ Zk. (18)

Since (18) holds, σ(Zk) ≤ ηε2k−1σ(Ýk) (see [18]). Hence ∀k ≥ K1 ≥ 1,

εk = sup
m≥k

σ(Zm) ≤ sup
m≥k

[
ηε2m−1σ(Ým)

]
≤ η(σ(Ỹ ) + γ) sup

m≥k
ε2m−1 = η(σ(Ỹ ) + γ)ε2k−1.

Now let M := η(σ(Ỹ ) + γ) and define δk := M
c εk for 0 < c < 1, then

δk =
M

c
εk ≤ M2

c
ε2k−1 = c

M2

c2
ε2k−1 = cδ2k−1.

Thus, ∀k ≥ K1 ≥ 1 such that δk−1 < 1, we obtain a quadratic rate of
convergence, which concludes the proof. ��
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3.4 Game Theoretic Interpretation of the Algorithm

In this subsection, for the purpose of motivation, interpretation, and further
research, a game theoretic interpretation of the algorithm will be given. At
the same time, we will also note that this interpretation is closely linked to an
optimal control concept of approximation in policy space [8–10]. In this sec-
tion, we will show that a game theory performance index can be approximated
by a series of successive optimal control cost functions. At each iteration, the
optimal policy is found to minimize the corresponding cost functions. With
the increment of each iteration, the optimal policies approach the final opti-
mum and the saddle point of the cost functions approaches the saddle point
of the game theory performance index. In fact, it can be shown (see [29])
that the technique of policy space iteration can be used to replace nonlinear
Hamilton–Jacobi partial differential equations by a sequence of linear partial
differential equations (even when the approximations and the optimal feed-
back law are nonlinear functions of the state). This is important because it
is difficult [29] to solve Hamilton–Jacobi equations directly to obtain optimal
feedback control in many cases.

Consider the dynamical system

ẋ = Ax+B1w +B2u (19)

with the game theory performance index

J(x0, u, w) =
∫ ∞

0

(
uTu+ xTCTCx− wTw

)
dt, (20)

where x0 denotes the initial state of the system, x is the state vector, u de-
notes the control input, w denotes the disturbance input, and A,B1, B2, C
are given real matrices with compatible dimensions and appropriate stabiliz-
ability/detectability conditions. In this game, u minimizes the cost function
J while w maximizes it. It is well known [19] that the optimal control law and
the worst case disturbance (a saddle point of J(x0, u, w)) are given by

uoptimal = −BT
2 Πx, (21)

wworst = BT
1 Πx, (22)

where Π ≥ 0 is the unique stabilizing solution to (3). See [19] for more details
on such game theory problems.

Let us now propose a heuristic induction which gives a game theoretic
interpretation to our proposed algorithm. Suppose that at iteration k we have
a trial control law uk = −BT

2 Pkx with Pk defined as in Theorem 1 Part I. Then
we set wk = BT

1 Pkx. Note that this is NOT the worst case wk corresponding
to uk = −BT

2 Pkx (unless Pk = Π), but it is a strategy we wish to impose since
it will connect the heuristic ideas of this section to the earlier algorithm. The
choice is also motivated by what happens at the optimum, as Pk −→ Π when
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k −→ ∞. With this choice of w fixed, we now wish to find a new optimal
control, i.e., u now has to minimize the following LQ cost function:

Jk(x0, u) =
∫ ∞

0

(
uTu+ xTCTCx− xTPkB1B

T
1 Pkx

)
dt, (23)

subject to
ẋ = (A+B1B

T
1 Pk)x+B2u, (24)

where wk = BT
1 Pkx has been substituted in (19) and (20) to yield the above

problem. We first consider the following equation:

0 = WkAk +AT
kWk −WkB2B

T
2 Wk + F (Pk), (25)

where Ak = A+B1B
T
1 Pk−B2B

T
2 Pk. Since this is the same equation as (9), we

conclude that Wk satisfies the same equation as Zk. Now let Λk+1 = Pk +Wk,
then existence of Wk is equivalent to existence of Λk+1. Necessary and suf-
ficient conditions for the existence of Wk are the following: (Ak, B2) is sta-
bilizable and (F (Pk), Ak) has no unobservable modes on the jw-axis. These
conditions were analyzed in the proof of Theorem 1 and were shown to be
fulfilled via the existence of the stabilizing solution Π ≥ 0 to (3). Under ap-
propriate conditions, the LQ problem defined by (23) and (24) has an optimal
solution for u given by

uk+1 = −BT
2 Λk+1x,

where Λk+1 is the unique stabilizing solution to

0 =Λk+1(A+B1B
T
1 Pk) + (A+B1B

T
1 Pk)T Λk+1

− Λk+1B2B
T
2 Λk+1 + (CTC − PkB1B

T
1 Pk). (26)

We will now show that Λk+1 actually equals Pk+1 as defined in Theorem 1
Part I. To do this, we will equivalently show that Λk+1−Pk equals Zk. Using
Λk+1 = Pk +Wk in (26), we have

0 =Pk(A+B1B
T
1 Pk) +Wk(A+B1B

T
1 Pk)

+ (A+B1B
T
1 Pk)TPk + (A+B1B

T
1 Pk)TWk

− PkB2B
T
2 Pk −WkB2B

T
2 Pk − PkB2B

T
2 Wk

−WkB2B
T
2 Wk + CTC − PkB1B

T
1 Pk. (27)

The terms above independent of Wk are

PkA+ATPk + Pk(B1B
T
1 −B2B

T
2 )Pk + CTC,

which are equal to F (Pk). Then (27) reduces to (25). Now note that Λk+1 =
Pk + Wk is a stabilizing solution to (26), meaning that A + B1B

T
1 Pk −

B2B
T
2 (Wk + Pk) is Hurwitz. But A + B1B

T
1 Pk − B2B

T
2 (Wk + Pk) = (Ak −

B2B
T
2 Wk). Hence Wk also makes Ak − B2B

T
2 Wk Hurwitz. Since Zk is the
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unique stabilizing solution to (9) and since Wk satisfies the same equation and
is also stabilizing, we conclude that Wk = Zk (see [37]), thereby in turn giving
Λk+1 = Pk+1. Since the optimal control law that minimizes cost function (23)
subject to constraint (24) is uk+1 = −BT

2 Pk+1x, we now set (according to our
game plan) wk+1 = BT

1 Pk+1x and proceed in this manner as outlined in the
following chart:

Let k = 0, and w0 = 0.

Solve the LQ problem

min
u

J(x0,u,wk) subject to

ẋ = Ax+B1wk +B2u for an

optimal control law uk+1.

The solution of this problem

is uk+1 = −BT
2 Pk+1x, where

Pk+1 is the stabilizing

solution to equation (26) with
Λk+1 replaced by Pk+1.

Set wk+1 = BT
1 Pk+1x.

Increment k by 1.

This heuristic game plan converges to the optimal control (21) and the
worst case disturbance (22), thereby giving a game theoretic interpretation to
the proposed algorithm.

3.5 Numerical Examples

In this subsection, three examples are given. Example 1 provides a random test
to compare our algorithm with the MATLAB command CARE and shows that
our algorithm has good efficiency and accuracy when compared with CARE.
Example 2 shows that our algorithm still works well when some other ap-
proaches (such as the MATLAB command CARE, the Schur method of [28],
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and the matrix sign function method of [33]) do not work. Example 3 demon-
strates that there in fact does not exist a stabilizing solution Π ≥ 0 to (3)
when the stabilizability condition in step 6 of the algorithm is not satisfied,
and the sequence Pk diverges quadratically in such a situation.

Example 1

In this example, to show the efficiency and accuracy of our algorithm compared
with the MATLAB command CARE, we have a random test including 200
samples (100 examples for the specified tolerance Δ = 0.1 and 100 examples
for the specified tolerance Δ = 0.01). Note that the MATLAB command
CARE always works well in this example (i.e., the residue for the solutions of
AREs obtained by using CARE is always small).

The test procedure is as follows:

1. consider a state-space representation for a dynamic system

ẋ = Ax+Bu,

y = Cx+Du,

where A ∈ Rn×n, B ∈ Rn×(p+r), C ∈ Rm×n, and u, x, y are input, state,
output, respectively;

2. set the example number i = 0;
3. choose n,m, p, r randomly and uniformly among the integers from 1 to

100;
4. generate a random system by using MATLAB command sysrand with

n,m, p, r obtained in step 3 and obtain A,B,C,D by MATLAB command
unpck;

5. partition the matrix B = [B1 B2], where B1 ∈ Rn×p and B2 ∈ Rn×r;
6. try MATLAB command CARE to solve the corresponding ARE with

E = In, S = 0, B = [B1 B2], Q = CTC,R =
(−Ip 0

0 Ir

)
, where In, Ip,

and Ir are identity matrices with dimensions n, p, r, respectively. If there
does not exist a stabilizing solution to the ARE, go back to step 3;

7. use our algorithm to solve this ARE. For our algorithm, the iteration will
be stopped when σ(BT

1 Zk)2 < Δ = 0.1, where Zk is the matrix sequence
defined in Theorem 1 Part I;

8. let the solution of this ARE obtained by our algorithm be X1 and the
solution of this ARE obtained by the MATLAB command CARE be X2;

9. set i = i+ 1, and let Ti = ‖X1−X2‖
‖X2‖ ;

10. repeat steps 3–9 until i = 100;
11. replace Δ = 0.1 in step 7 by Δ = 0.01, set i = 0, and repeat steps 3–10.

For each random example in Tables 1 and 2, “Iterations” indicates the number
of necessary iterations to obtain the specified tolerance Δ in step 7; “O(Ti)”
is the order of magnitude of Ti (defined in step 9) or the order of magnitude
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of the normalized comparison error between the stabilizing solutions obtained
by our algorithm and the stabilizing solutions obtained by the MATLAB com-
mand CARE; “Number of examples” means the number of random examples
that required “Iterations” number to converge. From Tables 1 and 2, we can
conclude that our proposed algorithm works well in most cases with good
efficiency (only three to five iterations in most examples) and accuracy when
compared with the MATLAB command CARE.

Table 1. Illustration of iteration count of our algorithm and accuracy comparison
with CARE for 100 random examples (σ(BT

1 Zk)2 < Δ = 0.1)

O(T1)

Iterations

2 3 4 5 6 7 8

10−4 1 5 4 1 1
10−5 7 6 7 1 2 3
10−6 13 10 3 2
10−7 5 3 3 1 1
10−8 1 4 7
10−9 4 3
10−10 2
10−11

10−12

10−13

Number of 1 35 32 20 5 4 3
examples

A summary of the results in Tables 1 and 2 is as follows:

1. In both Tables 1 and 2, our proposed algorithm converges in ONLY three
to five iterations in most examples.

2. When the prescribed tolerance is Δ = 0.1, we have Ti < 10−3 for each
random example in Table 1; when the prescribed tolerance is Δ = 0.01,
we have Ti < 10−5 for each random example in Table 2.

Example 2

The following example illustrates that the proposed algorithm works well when
other traditional methods fail. This example is a slight modification of Exam-
ple 6 in [28]. Choose the matrices A ∈ R21×21, B1 ∈ R21×1, B2 ∈ R21×1, C ∈
R21×21 in (3) as follows:

A =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 · · · 0

. . .
. . . ©

.

.

.

.

.

.
. . .

. . . 0

©
. . . 1

0 · · · 0

⎞⎟⎟⎟⎟⎟⎠ , B1 =

⎛⎜⎜⎝
0

.

.

.
0
δ
0

⎞⎟⎟⎠ , B2 =

⎛⎜⎜⎝
0

.

.

.
0
0
1

⎞⎟⎟⎠ ,
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Table 2. Illustration of iteration count of our algorithm and accuracy comparison
with CARE for 100 random examples (σ(BT

1 Zk)2 < Δ = 0.01)

O(T1)

Iterations

2 3 4 5 6 7 8 9 10 11

10−4

10−5

10−6 1 2 1 2 1
10−7 1 6 7 5 2 1 1 2 1
10−8 1 6 2 4 1 1 2 1
10−9 2 11 1 1 1
10−10 1 5 2 1 2 1
10−11 1 4 1 2 1 1
10−12 3 1
10−13 4 1 2
Number of 2 16 35 18 11 8 4 2 2 2
examples

C = diag{1, 0, · · · , 0},
where δ = 10−2 is the introduced modification. In this example, the Schur
method in [28] does not produce an accurate result, similarly to the MATLAB
command CARE. The algorithm proposed by Kleinman in [24] cannot be used
because the term (B2B

T
2 −B1B

T
1 ) in the Riccati equation (3) is not positive

semidefinite. However, the algorithm proposed in Section 3.2 easily gives the
solution with the specified accuracy as will be shown next.

First we attempt the Schur method in [28] with this example. Let F be
defined as in (4), and S1 be the solution to (3) by using this Schur method. We
evaluate the accuracy of the solution S1 by calculating ρ[F (S1)]. The smaller
ρ[F (S1)] is, the closer S1 is to the correct solution. After calculation, we obtain
ρ[F (S1)] = 1.9802 × 103 which is far too large. Thus, we can conclude that
the Schur method in [28] fails to give an accurate solution in this example.
Similarly, let S2 be the solution obtained by the MATLAB command CARE.
For this solution, we can obtain ρ[F (S2)] = 1.9811 × 103 which again is too
large. So we conclude that MATLAB command CARE also fails to give a
solution in this example. If we were to try to refine the very coarse solution
obtained by the Schur method in [28] using Kleinman’s method in [24], this too
fails as this algorithm diverges with each iteration (as expected). This can be
shown as follows: let Xk with k ∈ Z≥1 denote the iterative series produced by
the Kleinman algorithm, then we obtain ρ[F (X1)] = 5.7083×102, ρ[F (X2)] =
5.9959× 102, . . . , ρ[F (X20)] = 8.2965× 107, . . . , ρ[F (X100)] = 6.6206× 109.
If we use the matrix sign function method in [33] to solve this ARE and let
Q be the corresponding solution, we obtain ρ[F (Q)] = 1.235 × 108 which is
again far too large.



294 B.D.O. Anderson et al.

However, when we use our proposed algorithm, we note that a unique
stabilizing solution P4 > 0 to (3) can be found with limiting accuracy after
only four iterations with ρ[F (P4)] = σ(BT

1 Z3)2 = 2.9205× 10−5.

Example 3

The following example shows that if (A+B1B
T
1 Pk+1, B2) is not stabilizable in

step 5 of the algorithm, then there does not exist a stabilizing solution Π ≥ 0
to (3). Choose

A =
(

1 100
1 0

)
, B1 =

(
10
0

)
, B2 =

(
0
1

)
, C =

(
1 0

)
.

We note that (C,A) has no unobservable modes on the jω-axis and (A,B2)
is stabilizable. When we run our algorithm, we find that (A + B1B

T
1 P1, B2)

is not stabilizable after one iteration since

P1 =
(

0.3517 2.6442
2.6442 22.9964

)
.

This is consistent with the fact that there does not exist a stabilizing solution
Π ≥ 0 to (3). In fact, we can find the unique stabilizing solution

Π =
(−0.5744 −4.9147
−4.9147 −37.8481

)
,

which is clearly not positive semidefinite. Meanwhile, we find that the sequence
Pk diverges quadratically on noting that ρ[F (P1)] = 7.1156×102, ρ[F (P2)] =
5.9180× 103, . . . , ρ[F (P16)] = 4.7489× 1015.

4 Solving an HJB Equation by a Sequence
of Linear PDEs

As we indicated in the introduction section, for our algorithm in the nonlin-
ear case, we replace the problem of solving HJBI equations by the problem of
solving a sequence of HJB equations. However, HJB equations are first-order,
generally nonlinear partial differential equations and difficult to solve in gen-
eral. In this section, we review the technique of [29]. By using the technique
of [29], we can replace the problem of solving an HJB equation by the prob-
lem of solving a sequence of linear PDEs; by doing so, we transfer a difficult
problem into a sequence of less difficult problems.

Consider a dynamical system represented by

ẋ = f(x, u, t), x(t0) = x0, (28)
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where the n-vector x is the plant state, f is a continuously differentiable n-
vector function, and u(x, t) ∈ Rn×R is an r-vector function defined on Rn×R.
The solution of (28) is denoted as φu(t) = φu(t;x0, t0).

Let G be a closed subset of Rn×R to which all motions of the system (28)
are restricted. Let the target set S be a closed subset of G. In this section,
the function u is called an admissible feedback control law if

(1) it is continuously differentiable with values u(x, t) belonging to a locally
compact set U0 ∈ Rr for all t;

(2) it has the property that when substituted into (28), any motion beginning
in G − S reaches S, or approaches S, in a uniform asymptotic manner
without leaving G.

The class of functions satisfying the above properties is denoted by U1. The
terminal time t1 = t1(x0, t0) is defined to be the time when the motion
(φu(t), t) becomes a member of S, or, in the asymptotic case, t1 = ∞. Note
that in the finite time case, S itself might be simply Rn× t1. (Indeed, we shall
focus in what follows on this possibility).

In the following, we first consider the situation when t1 is finite, then
consider the situation when t1 is infinite.

4.1 t1 Is Finite

The system performance is evaluated by the functional

J(x0, t0, t1;u) = λ[φu(t1), t1] +
∫ t1

t0

L[φu(α), u(φu(α), α), α]dα, (29)

where L and λ are nonnegative scalar, continuously differentiable functions.
It is assumed that L is strictly convex in u.

We define
V 0(x0, t0, t1) = inf

u∈U1
J(x0, t0, t1;u). (30)

Let H be defined as

H(x, p, t, u) = 〈f(x, u, t), p〉+ L(x, u, t), (31)

where p is an n-vector, u is an r-vector, and <,> denotes the inner product.
Assume that H has a unique absolute minimum for each x, p, and t with
respect to the values u ∈ U0, and let the associated location of minimum be
denoted as c(x, p, t). Assuming that c is a continuously differentiable function
of x, p, and t, we define the Hamiltonian as

H0(x, p, t) = H(x, p, t, c(x, p, t)) = min
u∈U0

H(x, p, t, u). (32)

The HJB equation we consider is

0 = Vt +H0(x, Vx, t) (33)
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subject to the boundary condition

V (x, t1) = λ(x, t1),

where V (x, t) is a scalar function defined on Rn×R, Vt = ∂V
∂t , and Vx = ∂V

∂x . It
can be shown [23] that if V (x, t) is twice continuously differentiable in all argu-
ments, if it satisfies (33) in G and the boundary condition V (x, t1) = λ(x, t1)
on S, and in addition if the function u0(x, t) = c(x, Vx, t) is admissible, then
V (x, t) = V 0(x, t). It is shown in [29] that for any optimal control problem
described by (28), (29), and (30), we have

dJ

dt
(φu(t;x0, t0), t;u) = −L[φu(t;x0, t0), u(φu(t;x0, t0), t), t], (34)

with V (x, t) = λ(x, t) or, denoting φu(t;x0, t0) by x, we have

J̇(x, t;u) = −L(x, u, t), (35)

with V (x, t) = λ(x, t). Given any optimal feedback control described by (28),
(29) and (30), we define V as the set of all continuously differentiable functions
V : Rn × R → R such that V (x, t1) = λ(x, t1) on S. Let V0 be the subset of
V such that if u(x, t) = c(x, Vx, t) then u is admissible.

The following theorem comes from [29], and it constructs a monotone non-
increasing function sequence which converges to the solution of (33). Mean-
while, it provides a technique of transferring an HJB equation into a sequence
of linear PDEs.

Theorem 3. [29] Define a mapping T : V0 → V for V ∈ V0 and T (V ) =
J(x, t;u) with u(x, t) = c(x, Vx, t). Suppose T (V n) ∈ V0 for n = 1, 2, 3, . . . . If
V 1 ∈ V0 and V n+1 = T (V n), n = 1, 2, 3, . . . , then

V (x, t) ≤ V n+1(x, t) ≤ V n(x, t) ≤ V 1(x, t), (36)

where V is the solution of (33). For every sequence V n, there exists a function
V ∗ such that V n(x, t) ↓ V ∗(x, t) pointwise on G. If G is bounded, the conver-
gence is uniform. If T is continuous in V0 ⊂ V and V ∗ ∈ V0, then V ∗ = V .
Furthermore, suppose V 1 is given, then the sequence V n can be recursively
obtained by solving the following sequence of linear PDEs:

0 =
〈
V n+1

x , f(x, c(x, V n
x , t), t)

〉
+ V n+1

t + L(x, c(x, V n
x , t), t),

with the boundary condition V n(x, t1) = λ(x, t1).

Proof. See [29]. ��

4.2 t1 Is Infinite

In this subsection, we assume that there exists a solution of HJB equation (33)
which minimizes the cost function (29) when t1 is infinite. In such a situation,
it is clear that the scalar function L in (29) approaches zero when t1 →∞.
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Evidently, for infinite time problems, key interest centers around stabiliz-
ing control laws. This motivates us to make the following assumption, which
generalizes controllability/stabilizability and observability/detectability as-
sumptions commonly made for H2 problems.

Assumption A1 There exists a feedback law for (28) ensuring that the
closed-loop system is uniformly asymptotically stable with associated finite
performance index, and if a feedback control law ensures that the achieved
performance with t1 =∞ and an arbitrary x(t0) is finite, then the associated
closed-loop system is uniformly asymptotically stable.

The following theorem gives an infinite time version of Theorem 3.

Theorem 4. Let the mapping T : V0 → V be as defined in Theorem 3
and suppose V is a solution of (33) with infinite terminal time t1. Sup-
pose T (V n) ∈ V0 for n = 1, 2, 3, . . . . If V 1 ∈ V0 and V n+1 = T (V n),
n = 1, 2, 3, . . . , then

V (x, t) ≤ V n+1(x, t) ≤ V n(x, t) ≤ V 1(x, t), (37)

where V is the solution of (33). For every sequence V n, there exists a func-
tion V ∗ such that V n(x, t) ↓ V ∗(x, t) pointwise on G. If T is continuous
in V0 ⊂ V and V ∗ ∈ V0, then V ∗ = V . Furthermore, suppose a bounded V 1

is chosen such that the system ẋ = f(x, c(x, V 1
x , t), t) is uniformly asymptot-

ically stable, then the sequence V n can be recursively obtained by solving the
following sequence of linear PDEs:

0 =
〈
V n+1

x , f(x, c(x, V n
x , t), t)

〉
+ V n+1

t + L(x, c(x, V n
x , t), t),

with the boundary condition

lim
t1→∞

V n(x, t1) = lim
t1→∞

λ(x, t1),

and the closed-loop system ẋ = f(x, c(x, V n
x , t), t) is uniformly asymptotically

stable for n = 1, 2, . . . .

Proof. To show the algorithm in [29] holds for infinite time t1, we can first
show that (35) holds for infinite t1 by using the argument in [29]. Then by
using similar argument in Lemma 2, Theorem 2, and Theorem 5 of [29], we
can construct the sequence V n satisfying (37). The convergence of V n can
be proved by using the argument in Lemma 3 and Theorem 7 in [29]. We
now use an inductive argument to prove the uniform asymptotical stability
of the closed-loop system ẋ = f(x, c(x, V n

x , t), t). It is clear that the closed-
loop system ẋ = f(x, c(x, V 1

x , t), t) is uniformly asymptotically stable. Now
we assume that the closed-loop system ẋ = f(x, c(x, V n

x , t), t) is uniformly
asymptotically stable for n = k, then we need to show that the closed-loop
system ẋ = f(x, c(x, V n

x , t), t) is uniformly asymptotically stable for n = k+1.
Note that V 1(x, t) is finite, then by (37), V k(x, t) and V k+1(x, t) are both
finite. Then by Assumption A1, we conclude that the closed-loop system ẋ =
f(x, c(x, V k+1

x , t), t) is also uniformly asymptotically stable, which completes
the proof. ��
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Based on the observations of the Kleinman algorithm and the algorithm in
Theorems 3 and 4, we can find there are some similarities between them: both
these two algorithms are used to solve equations arising in optimal control;
in both these two algorithms, monotone non-increasing sequences are con-
structed to approximate the solutions of the desired equations (i.e., Riccati
equations or HJB equations). In view of these similarities, we can reasonably
suppose that the algorithm in [29] is a generalization of the Kleinman algo-
rithm, and that it will have some similar features to those of the Kleinman
algorithm, for example, a local quadratic rate of convergence. The second
point is now under consideration and should be resolved in the near future.

5 Solving an HJBI Equation by a Sequence
of HJB Equations

As we indicated in the introduction section, HJBI equations arise in nonlin-
ear H∞ control and they are first-order nonlinear partial differential equations
and more difficult to solve than HJB equations. In this section, we present
the recursive algorithm to solve HJBI equations. By using our algorithm, we
replace the problem of solving an HJBI equation by the problem of solving
a sequence of HJB equations; then by using the technique in Section 4, we
can, if we wish, transfer each of these HJB equations to a sequence of linear
PDEs. There are of course existing methods to solve HJBI equations, such as
the method in [36] and the Galerkin approximation method in [7]. However,
as we indicated in Section 1, there are some clear disadvantages for these al-
gorithms. For example, when the methods in [36] and [7] are used to solve
HJBI equations, it is difficult to choose an initial condition. Compared with
the methods in [36] and [7], our algorithm has a very simple initial condition,
viz, V0 = 0. There are five subsections in this section: (1) preliminaries and
definitions; (2) the summarizing theorem; (3) the algorithm; (4) rate of con-
vergence and game theoretic interpretation of our algorithm; (5) a numerical
example.

5.1 Preliminaries and Definitions

We work with the nonlinear control system Γ : U0 ×W0 → Y0 given by the
following equations:

x(0) = x0, (38)
ẋ(t) = f(x) + g1(x)w(t) + g2(x)u(t), (39)
y(t) = h(x), (40)

where x ∈ X0 is the state; x0 ∈ X0 is the initial state; u ∈ U0 is the input; w ∈
W0 is the disturbance; y ∈ Y0 is the output. f : X0 → Rn, g1 : X0 → Rn×q,
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g2 : X0 → Rn×m, and h : X0 → Rp are smooth functions with f(0) = 0 and
h(0) = 0. It is assumed further that f, g1, g2 are such that (39) has a unique
solution for any u ∈ U0, w ∈ W0, and x0 ∈ X0. Throughout Section 5, it is
further assumed that the functions f, g1, g2, h defined in the system Γ can be
represented in the following form:

f(x) = Ax+ fr(x), (41)
g1(x) = B1 + g1r(x), (42)
g2(x) = B2 + g2r(x), (43)
h(x) = Cx+ hr(x), (44)

where x := x(t), A,B1, B2, C are real constant matrices with suitable dimen-
sions and fr(x), g1r(x), g2r(x), hr(x) are higher order remainder terms in
power expansions.

The steady-state HJBI equation associated with the system Γ we treat in
Section 5 is

0 = 2
(
∂Π(x)
∂x

)T

f(x) +
(
∂Π(x)
∂x

)T (
g1(x)gT

1 (x)

−g2(x)gT
2 (x)

) (
∂Π(x)
∂x

)
+ hT (x)h(x), (45)

Π(0) = 0

where f, g1, g2, h are real functions in the system Γ, x ∈ X0 is the state
vector of the system Γ, and Π : X0 → R+ is the unique local nonnegative
stabilizing solution we seek. Here, a solution of (45) is called a local stabilizing
solution if this solution is such that the closed loop of the system Γ is locally
exponentially stable under the feedback inputs u∗ = −gT

2 (x)∂Π(x)
∂x and w∗ =

gT
1 (x)∂Π(x)

∂x . In such a situation, the vector field

f̃(x) = f(x) + g1(x)gT
1 (x)

∂Π(x)
∂x

− g2(x)gT
2 (x)

∂Π(x)
∂x

(46)

is locally exponentially stable at the equilibrium point x∗ = 0.
In the remainder of this subsection, we give some definitions which will be

useful in our summarizing theorem.
We now define linear stabilizability of a matrix function pair by the sta-

bilizability of the linear parts of this matrix function pair.

Definition 1. [30] Let f, g2 be the real functions defined in the system Γ and
suppose (41) and (43) hold. The pair (f, g2) is called linearly1 stabilizable if
there exists a matrix D̂ such that (A+B2D̂) is a Hurwitz matrix.
1 There exists nonlinear systems which cannot be stabilized by linear controllers, for

example, the nonlinear system ẋ =
√

x+u. This is the reason for the term linearly
stabilizable, as opposite to “stabilizable.”
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Next, we define a function Θ, motivated by the right-hand side of the HJBI
equation (45) that will be useful throughout Section 5.

Definition 2. Let f, g1, g2, h be the real vector functions defined in the sys-
tem Γ, and x ∈ X0 be the state value of Γ. Let T be the set which includes all
smooth mappings from X0 to R and define Θ : T → T as

(Θ(V ))(x) = 2
(
∂V (x)
∂x

)T

f(x) +
(
∂V (x)
∂x

)T (
g1(x)gT

1 (x)

−g2(x)gT
2 (x)

) (
∂V (x)
∂x

)
+ hT (x)h(x) (47)

for all V ∈ T, x ∈ X0.

We define two functions f̂V and f̄V which will be used to simplify the ex-
pressions in our main results and the HJB equations in our proposed algorithm
(see (51) for example).

Definition 3. Let f, g1, g2, h be the real vector functions defined in the sys-
tem Γ. Let T,Θ be defined as in Definition 2. Suppose there exists a local
nonnegative stabilizing solution Π ∈ T to (45). Let V ∈ T, let f̂V : X0 → R be
defined as

f̂V (x) = f(x) + g1(x)gT
1 (x)

∂V (x)
∂x

− g2(x)gT
2 (x)

∂V (x)
∂x

for all x ∈ X0, and let f̄V : X0 → R be defined as

f̄V (x) = f(x) + g1(x)gT
1 (x)

∂V (x)
∂x

− g2(x)gT
2 (x)

∂Π(x)
∂x

for all x ∈ X0.

5.2 The Summarizing Theorem

In this subsection, we set up the summarizing theorem by constructing two
nonnegative function series Zk(x) and Vk(x), and we also prove that Vk(x)
is monotonically increasing and converges to the unique local nonnegative
stabilizing solution Π(x) of (45) if such a solution exists.

Theorem 5. Consider the system Γ, and let A,B1, B2, C be the real matrices
appearing in (41), (42), (43), and (44), respectively. Let x ∈ X0 be the state
of the system Γ. Define Θ : T → T as in (47). Suppose (C,A) is detectable,
(A,B2) is stabilizable and there exists a stabilizing solution Π ≥ 0 to (3). Let
Ak, Zk, and Pk be the matrix sequences appearing in Theorem 1. Then

(I) there exists a unique local nonnegative stabilizing solution Π(x) to (45);
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(II) two unique real function sequences Zk(x) and Vk(x) for all k ∈ Z≥0 can
be defined recursively as follows:

V0(x) = 0 ∀x ∈ X0, (48)

Zk(x) is the unique local nonnegative stabilizing solution of

0 = 2f̂T
Vk

(x)
∂Zk(x)
∂x

−
(
∂Zk(x)
∂x

)T

g2(x)gT
2 (x)

∂Zk(x)
∂x

+

+ (Θ(Vk)) (x) ∀x ∈ X0 (49)

with 0 = Zk(0), 0 = ∂Zk(x)
∂x

∣∣∣
x=0

, and then

Vk+1 = Vk + Zk; (50)

(III) the two series Vk(x) and Zk(x) in part (II) have the following properties:
(1) (f(x)+g1(x)gT

1 (x)∂Vk(x)
∂x , g2(x)) is linearly stabilizable ∀k ∈ Z≥0 ∀x ∈

X0,

(2) (Θ(Vk+1))(x) =
(

∂Zk(x)
∂x

)T

g1(x)gT
1 (x)∂Zk(x)

∂x ∀k ∈ Z≥0 ∀x ∈ X0,

(3) f(x) + g1(x)gT
1 (x)∂Vk(x)

∂x − g2(x)gT
2 (x)∂Vk+1(x)

∂x is locally exponentially
stable at the origin ∀k ∈ Z≥0 ∀x ∈ X0,

(4) Π(x) ≥ Vk+1(x) ≥ Vk(x) ≥ 0 ∀k ∈ Z≥0 ∀x ∈ X0,
(5) Zk(x) = 1

2x
TZkx+O0(x) ∀k ∈ Z≥0 ∀x ∈ X0,

Vk(x) = 1
2x

TPkx+O1(x) ∀k ∈ Z≥0 ∀x ∈ X0,

where Zk and Pk are the matrix sequences appearing in Theorem 1
and O0(x) and O1(x) are terms of higher order than quadratic.

(IV). For all x ∈ X0, the limit

V∞(x) := lim
k→∞

Vk(x)

exists with V∞(x) ≥ 0. Furthermore, V∞ = Π is the unique local non-
negative stabilizing solution to (45).

Proof. See [17]. ��
From Theorem 5 (I) and (III1), we know that if there exists a local nonneg-

ative stabilizing solution of (45), then (III1) holds. However, by Definition 1,
we can check the linear stabilizability of a matrix function pair by checking
its linear part. Hence we have the following corollary which gives a condi-
tion under which there does not exist a local stabilizing solution Π(x) ≥ 0 to
Θ(Π) = 0. This is useful for terminating the recursion after a finite number
of iterations.

Corollary 2. Let A,B1, B2, C be the real matrices appearing in (41), (42),
(43), and (44). Let Pk be the matrix sequence appearing in Theorem 1. Suppose
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that (C,A) is detectable and (A,B2) is stabilizable. Let x ∈ X0 be the state
of the system Γ. Define Θ : T → T as in Definition 2. If ∃k ∈ Z≥0 such
that (A + B1B

T
1 Pk, B2) is not stabilizable, then there does not exist a local

nonnegative stabilizing solution to Θ(Π) = 0.

Proof. See [17]. ��
Remark 3. It is worth pointing out that the sequence of HJB equations (49)
is associated with a sequence of nonlinear optimal control problems; hence by
using our algorithm, we have transferred a nonlinear H∞ control problem into
a sequence of nonlinear optimal control problems.

5.3 Algorithm

Let f, g1, g2, h be the real functions defined in the system Γ and suppose (41),
(42), (43), and (44) hold. Let Pk be the matrix sequence appearing in Theo-
rem 1. Let f̂V be defined in Definition 3. Suppose (A,B2) is stabilizable and
(C,A) is detectable; an iterative algorithm for finding the local nonnegative
stabilizing solution of (45) is given as follows:

1. Let V0 = 0 and k = 0.
2. Construct (for example, using the algorithm in Theorem 4, though this

is not necessary) the unique local nonnegative stabilizing solution Zk(x)
which satisfies

0 = 2f̂T
Vk

(x)
∂Zk(x)
∂x

−
(
∂Zk(x)
∂x

)T

g2(x)gT
2 (x)

∂Zk(x)
∂x

+(Θ(Vk)) (x), (51)

with 0 = Zk(0), 0 = ∂Zk(x)
∂x

∣∣∣
x=0

, where Θ is defined in Definition 2 and f̂

is defined in Definition 3.
3. Set Vk+1(x) = Vk(x) + Zk(x).
4. Rewrite Zk(x) = 1

2x
TZkx+O0(x) (note that this is always possible from

Theorem 5 if Zk(x) exists), where O0(x) are terms of higher order than
quadratic and Zk ≥ 0 is the matrix sequence appearing in Theorem 1.

5. If σ(Zk) < μ where μ is a specified accuracy, then set Π(x) = Vk+1(x)
and exit. Otherwise, go to step 6.

6. If (A + B1B
T
1 Pk, B2) is stabilizable, then increment k by 1 and go back

to step 2. Otherwise, exit as there does not exist a local nonnegative
stabilizing solution Π satisfying Θ(Π) = 0.

From Corollary 2 we see that if the stabilizability condition in step 6 fails
for some k ∈ Z≥0, then there does not exist a local nonnegative stabilizing
solution Π to Θ(Π) = 0 and the algorithm should terminate (as required by
step 5). But when this stabilizability condition is satisfied ∀ k ∈ Z≥0, con-
struction of the series Vk(x) and Zk(x) is always possible and either Vk(x)
converges to Π(x) (which is captured by step 5) or Vk(x) just diverges to
infinity, which again means that there does not exist a stabilizing solution
Π(x) ≥ 0 to (45).
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5.4 Rate of Convergence and Game Theoretic Interpretation

It can be shown that our algorithm to solve HJBI equations has a local
quadratic rate of convergence and a game theoretic interpretation. Due to
space restrictions, we omit the two parts here, please see [17] for more details.

5.5 A Numerical Example

In this subsection, a numerical example will be given. The example provides a
numerical comparison between the method of characteristics [38] and our al-
gorithm to solve an HJBI equation arising in nonlinear systems, and it shows
that our proposed algorithm converges faster than the method of characteris-
tics for this particular example.

Example 1. In [38], the method of characteristics is used to solve HJBI equa-
tions recursively. The following example comes from [36], and it illustrates the
proposed algorithm outperforming the method of characteristics in [38] when
solving HJBI equations. The comparison is possible because in this particular
case, we are able to obtain the exact solution of the HJBI equation. The scalar
system is given by

ẋ(t) = u(t) + xw(t) (52)

with output y(t) = x. For this example, we have f(x) = 0, g1(x) = x, g2(x) =
1, h(x) = 1, A = 0, B1 = 0, B2 = 1, C = 1 and it is clear that (A,B2)
is stabilizable and (C,A) is detectable. Now the steady-state HJBI equation
becomes

x2 −
(
∂Π(x)
∂x

)2

(1− x2) = 0, (53)

with Π(0) = 0. We have (without any approximation)

∂Π(x)
∂x

= ± x√
1− x2

∀x ∈ (−1, 1), Π(0) = 0. (54)

a. Exact solution
Since Π(0) = 0 and we seek the solution for which Π(x) ≥ 0 in a neigh-
borhood of the origin, we have

∂Π(x)
∂x

=
x√

1− x2
(55)

for −1 < x < 1. Now the closed-loop saddle point solution for the sys-
tem (52) is u∗(x) = − x√

1−x2 , w
∗(x) = x2√

1−x2 and the closed loop of the
system (52) under the saddle point inputs u∗ and w∗ is

ẋ = −x
√

1− x2 (56)
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for −1 < x < 1. Then it is clear that x∗ = 0 is a local stable equilibrium
point for the system (56). We approximate the value of Π(x) by approx-
imating the value of ∂Π(x)

∂x . From (55), we know that the value of Π(x)
is symmetric about the origin. In view of this, we only approximate the
value of ∂Π(x)

∂x for 0 ≤ x < 1 in the following. The exact solution of ∂Π(x)
∂x

in (53) can be approximated by both our algorithm and the method of
characteristics in [38].

b. Our algorithm
To approximate ∂Π(x)

∂x in (53), we carry out our proposed algorithm from
Section 5.3. For convenience, we denote (·)k,x = ∂(·)k

∂x in the following
for k = 0, 1, 2, 3. After a straightforward computation, we obtain the first
three approximations V1,x, V2,x, V3,x of ∂Π(x)

∂x in (53) as follows:

V1,x = Z0,x = x,

Z1,x = x3 − x+ x
√
x4 − x2 + 1,

V2,x = x3 + x
√
x4 − x2 + 1,

Z2,x = f2 +
√
f2
2 + x2Z2

1,x,

V3,x = x5 + x3
√
x4 − x2 + 1 +

√
f2
2 + x2Z2

1,x,

where f2 = x5 − x3 + (x3 − x)
√
x4 − x2 + 1.

c. Algorithm of characteristics
If we use the method in [38] to approximate the local nonnegative stabiliz-
ing solution Π(x) to the HJBI equation (5), the first three approximations
V 1,x, V 2,x, V 3,x of ∂Π(x)

∂x in (53) are

V 1,x = x,

V 2,x = x+
1
2
x3,

V 3,x = x+
1
2
x3 +

7
16
x5 +

9
80
x7 +

437
53760

x9.

We plot these approximations together in Fig. 1 (we ignore the first ap-
proximations for both algorithms since they are identical) to compare
their convergence to the “exact solution,” which is given by (55).

From Fig. 1, we can see that our algorithm has better accuracy than the
method of characteristics in [38], noting in particular the following points:

1. For both the second approximation and the third approximation, our al-
gorithm is more accurate than the method in [38].

2. The second approximation (dotted line) of our algorithm is very close to
the third approximation (dashed line) of the method in [38].

3. The third approximation of our algorithm (thin solid line) is very close to
the exact solution (thick solid line).
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Fig. 1. Demonstration and comparison of algorithm

6 Conclusions

There have been two main thrusts in this chapter. First, motivated by the
knowledge that standard Riccati equation solvers can encounter numerical
problems on occasions, which can often be fixed for H2 Riccati equations us-
ing a Kleinman algorithm, we developed a new algorithm to solve H∞ Riccati
equations. The algorithm is recursive, with each recursive step requiring solu-
tion of an H2 Riccati equation (itself amenable to solution via the Kleinman
algorithm). The algorithm has the following advantages: (1) a simple initial-
ization; (2) local quadratic rate of convergence; (3) a natural game theoretic
interpretation; (4) high numerical stability and reliability. Under some suit-
able assumptions, we can compute nonnegative stabilizing solutions of Riccati
equations and HJBI equations recursively.

Second, motivated as much by the sparsity of solution methods for HJBI
equations as by numerical problems arising from time to time in known solu-
tion procedures, we have illustrated how, for a class of HJBI equations, one
can replace the problem of solving a single such equation by the problem of
solving a sequence of HJB equations, each of which can be tackled using a
sequence of linear partial differential equations.
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The ideas presented may be valid in much broader game theoretic con-
texts than those considered here. One recent extension we have achieved is
to the solution of H∞ periodic Riccati differential equations (see [4]), and it
is possible that our algorithm can be extended to solve H∞ periodic HJBI
equations.
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Summary. In this chapter a new online direct adaptive scheme is presented which
converges to the optimal state feedback control solution for affine in the inputs
nonlinear systems. The optimal control solution is obtained in a direct fashion,
without system identification. The optimal adaptive control algorithm is derived
in a continuous-time framework. The algorithm is an online approach to policy
iterations based on an adaptive critic structure to find an approximate solution to
the state feedback, infinite-horizon, optimal control problem.

Key words: adaptive control, optimal control, dual control, dynamic
programming

1 Introduction

Adaptive control names the class of techniques developed with the purpose
of maintaining prescribed control performances for systems with slowly time-
varying or uncertain parameters [21]. The controller is defined as a parameter-
ized mapping, also addressed as control policy, between the system states (i.e.,
measured information from the system) and the control output signal. The
adaptive mechanism is concerned with changing the parameters and/or para-
metric structure of the controller such that the closed-loop system maintains-
certain prescribed performances. From this perspective an adaptive control
system is constructed based on a learning mechanism which takes place at
the level of the controller. In the following we shall restrict the discussion to
the case in which the structure of the controller is fixed and adaptation is
obtained based on the variation of the controller parameters only.

Depending on whether information on the system dynamics is available
and used in the learning process, adaptive controllers can be classified as

A. Chinchuluun et al. (eds.), Optimization and Optimal Control,
Springer Optimization and Its Applications 39, DOI 10.1007/978-0-387-89496-6 16,
c© Springer Science+Business Media, LLC 2010
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1. indirect, the adaptive mechanism makes use of a model of the system to
be controlled, and

2. direct, the adaptation process does not require a model of the system.

In the case of indirect adaptive controllers the parameter adaptation is based
on the information which encodes a model of the system’s behavior. In this
case, a secondary learning process takes place having as result a parametric
description of the system to be controlled, i.e., a mapping between the con-
trol action and the system states. Following the system model identification
step, the indirect adaptive controllers make use of the model, under the cer-
tainty equivalence assumption, to determine the controller parameters that
will satisfy the specified performances. An important class of indirect adap-
tive controllers emerges from the dual control theory [7]. Dual controllers have
a twofold objective when computing the control signal: it must satisfy the con-
trol performance goal while at the same time must sufficiently excite the plant
to improve system parameters estimation.

Direct adaptive controllers learn the mapping between the system states
and the action signal, i.e., the control policy parameters, only based on an
error signal which encodes the difference between the system’s performance
with the present control policy and the specified desired performances. In this
case identification of a model of the system dynamics is not required, the
learning taking place only at the controller level.

At the same time, one can differentiate between adaptive controllers based
on the way in which the desired performances are specified. From this per-
spective the measure of performance can be given by a formal cost function
of the sort encountered in the optimal control problem specification or as a
tracking error-based cost in which case the performance is prescribed in terms
of a desired closed-loop trajectory. In the first case the control problem can
be referred to as an optimal adaptive control problem. Stabilizing adaptive
controllers that are inverse optimal, with respect to some relevant cost not
specified by the designer, have also been derived [16].

It is well known that solving the optimal control problem is generally
difficult even in the presence of complete and correct knowledge of the sys-
tem dynamics, as Bellman’s dynamic programming approach suffers from
the so-called curse of dimensionality [15]. Also, developing controllers which
would satisfy optimality performances, while making use of an approximate
model of the system, will have as result suboptimal solutions; and this is an
even more important issue when dealing with plants that have slowly time-
varying or uncertain dynamics. This problem motivated several advances in
solving the optimal control problem using dual adaptive control techniques,
surveyed in [8, 28] which would simultaneously improve the estimated system
model parameters and improve on the suboptimal controller. Nonetheless the
curse of dimensionality appeared also in this case together with another dif-
ficulty, posed by dual control theory, known as the exploration–exploitation
dilemma. The dilemma consists in the conflict which appears at the level
of the controller when action signals must be computed such that to fa-
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vor the system identification process while at the same time to ensure the
prescribed performances.

In order to adaptively solve optimal control problems a new methodology,
namely reinforcement learning (RL), was developed in the computational in-
telligence community and then gradually adapted to fit the control engineering
requirements. Reinforcement learning means finding a control policy, i.e.,
learning the parameters of a controller mapping between the system states
and the control signal, such that to maximize a numerical reward signal [22].
It is important to note that the integral over time of the reward signal can
be viewed as the value/cost function to be maximized/minimized in an op-
timal control framework. Reinforcement learning is defined by characterizing
a learning problem which is in fact the adaptive optimal control problem.
Thus, from a control engineering perspective, RL algorithms can be viewed as
a class of adaptive controllers which solve the optimal control problem based
on reward information which gives information on the performance of a given
controller. Considering whether the system model is or is not required by a
certain reinforcement learning algorithm one can classify the RL algorithms
as direct or indirect.

In this chapter we will focus our attention on a class of reinforcement learn-
ing algorithms, namely policy iteration. The goal of the chapter is to present a
new policy iteration algorithm which, without making use of complete knowl-
edge of a system’s dynamics, will learn to approximate, in an online fashion
and with arbitrary small accuracy, the optimal control solution for a general
nonlinear affine in the input continuous-time system.

Generally the solution of the optimal control problem can be obtained
by directly solving the Hamilton–Jacobi–Bellman (HJB) equation [15] for the
optimal cost and then using the result to calculate the optimal control policy
(i.e., the feedback gain for linear systems). This approach has a great dis-
advantage given by the difficulty of solving the HJB equation. In order to
solve the optimal control problem, the policy iteration method starts with
the evaluation of the cost associated with an initial stabilizing control policy
and then uses this information to obtain a new policy which will result in
improved control performances.

Policy iteration algorithms are built on a two-step iteration: policy eval-
uation and policy improvement. The two steps are repeated until the policy
improvement step no longer changes the actual policy, thus the optimal con-
trol policy is obtained. The algorithm can be viewed as a directed search
for the optimal controller in the space of admissible control policies. Policy
iteration algorithm was first formulated in [12]. For continuous state lin-
ear systems, policy iteration algorithms were developed in [5, 18, 24] to
find the optimal linear quadratic regulator (LQR) [15]. Convergence guar-
antees were given in [10, 13, 14]. Even more, in [5] the policy iteration algo-
rithm, formulated to solve the discrete-time LQR problem, used the so-called
Q-functions [25, 26], and this resulted in the model-free feature of the algo-
rithm. As the Q-function-based formulation has not been yet considered in a
continuous-time framework, in [18] the model-free quality of the approach
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was achieved either by evaluating online the infinite horizon cost associ-
ated with an admissible control policy or by using measurements of the
state derivatives. The policy iteration algorithm developed in [24] is an on-
line technique which solves the LQR problem along a single-state trajectory,
using only partial knowledge about the system dynamics and without requir-
ing measurements of the state derivative. The mathematical formulation of
the policy iteration in [13] shows that the algorithm is in fact a two-step New-
ton method for which the policy evaluation step is equivalent with solving a
Lyapunov equation. In the case of linear systems the Lyapunov equation can
be solved exactly based on data collected online along a single, sufficiently
exciting, state trajectory [24].

When the optimal control problem is formulated for continuous-time non-
linear systems the policy iteration approach to solve this problem is in fact
the method of successive approximations developed in [14, 20]. This method
iterates on a sequence of Lyapunov equations, also addressed as generalized
HJB equations, which are somewhat easier to solve than the HJB equation.
In [2, 3] the solution for these Lyapunov equations was obtained using the
Galerkin spectral approximation method and in [1] they were solved, in the
presence of saturation restrictions on the control input, using neural network
approximator structures. Neural network-based structures for learning the op-
timal control solution via the HJB equation, namely adaptive critics, were first
proposed in [17]. The use of neural network-type learning elements in control
structures was motivated by the capability of such elements to approximate
nonlinear maps and by the fact that in the past decades there have been
developed a variety of algorithms which allow the online adaptation of such
structures based on data acquired from a not completely known environment.
Neural network-based adaptive critics and training algorithms were presented
both in discrete-time [19] and continuous-time [9] frameworks.

It is now important to mention that the policy iteration methods devel-
oped in [1–3] as well as the inverse optimal controller in [16] are generally
applied offline as they require complete knowledge on the dynamics of the
system to be controlled. Due to their offline character imposed by the system
model requirement these methods are not sensitive to changes in the system
dynamics. The algorithm that we present in this chapter is a policy iteration
algorithm which uses the Bellman optimality equation as a consistence rela-
tion when solving for the value associated with a given policy and not the
regular, Hamiltonian-based, Lyapunov equation. The fact that in Bellman’s
equation the system dynamics does not explicitly appear is the major advan-
tage which results in the model-free property of the proposed algorithm and
grants its online implementation capability.

In the next section we briefly review the formulation of the continuous-
time optimal control problem for nonlinear systems. The new online policy
iteration algorithm is then presented followed by its neural network-based
online implementation on an actor–critic structure. A numerical example is
then given, followed by concluding remarks.
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2 The Continuous-Time Optimal Control Problem

Consider the time-invariant affine in the input dynamical system given by

ẋ(t) = f(x(t)) + g(x(t))u(x(t)); x(0) = x0, (1)

with x(t) ∈ Rn, f(x(t)) ∈ Rn, g(x(t)) ∈ Rn×m, and the input u(t) ∈ U ⊂ Rm.
We assume that the system is such that f(0) = 0, f(x) + g(x)u is Lipschitz
continuous on a set Ω ⊆ Rn that contains the origin, and that the dynamical
system is stabilizable on Ω, i.e., there exists a continuous control function
u(t) ∈ U such that the system is asymptotically stable on Ω.

Define the infinite horizon integral cost

V (x0) =
∫ ∞

0

r(x(τ), u(τ))dτ , (2)

where r(x, u) = Q(x)+uTRu with Q(x) positive definite, i.e., ∀x �= 0, Q(x) >
0 and x = 0 ⇒ Q(x) = 0, and R ∈ Rm×m is a positive definite matrix.

Definition 1 (Admissible policy). A control policy μ(x) is defined as ad-
missible with respect to (2) on Ω, denoted by μ ∈ Ψ(Ω), if μ(x) is continuous
on Ω, μ(0) = 0, μ(x) stabilizes (1) on Ω and V (x0) is finite ∀x0 ∈ Ω.

For any admissible control policy μ ∈ Ψ(Ω) if the associated cost function

V μ(x0) =
∫ ∞

0

r(x(τ), μ(x(τ)))dτ (3)

is C1, then a infinitesimal version of (3) is

0 = r(x, μ(x)) + V μT
x (f(x) + g(x)μ(x)), V μ(0) = 0, (4)

where V μ
x denotes the partial derivative of the value function V μ with respect

to x, as the value function does not depend explicitly on time. Equation
(4) is a Lyapunov equation for nonlinear systems which, given the controller
μ(x) ∈ Ψ(Ω), can be solved for the value function V μ(x) associated with it.
Given that μ(x) is an admissible control policy, if V μ(x) satisfies (4), with
r(x, μ(x)) ≥ 0, then V μ(x) is a Lyapunov function for the system (1) with
control policy μ(x).

The optimal control problem can now be formulated: Given the continuous-
time system (1), the set u ∈ Ψ(Ω) of admissible control policies, and the in-
finite horizon cost functional (2), find an admissible control policy such that
the cost index (2) associated with the system (1) is minimized.

Defining the Hamiltonian of the problem

H(x, u, V ∗x ) = r(x(t), u(t)) + V ∗Tx (f(x(t)) + g(x(t))u(t)), (5)

the optimal cost function V ∗(x) satisfies the HJB equation
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0 = min
u∈Ψ(Ω)

[H(x, u, V ∗x )]. (6)

Assuming that the minimum on the right-hand side of equation (6) exists and
is unique then the optimal control function for the given problem is

u∗(x) = −R−1gT (x)V ∗x (x). (7)

Inserting this optimal control in the Hamiltonian we obtain the HJB equation
in terms of V ∗x

0 = Q(x) + V ∗Tx (x)f(x)− 1
4
V T

x∗(x)g(x)R−1gT (x)V ∗x (x); V ∗(0) = 0. (8)

This is a necessary and sufficient condition for the optimal value function
[15]. For the linear system case, considering a quadratic cost functional, the
equivalent of this HJB equation is the well-known Riccati equation.

In order to find the optimal control solution for the problem, one only
needs to solve the HJB equation (8) for the value function and then substi-
tute the solution in (7) to obtain the optimal control. However, solving the
HJB equation is generally difficult as it is a nonlinear differential equation,
quadratic in the cost function. Even if a solution of this equation would be
readily available, in order to obtain it one needs to have complete knowledge
of the system dynamics, i.e., the system dynamics described by the functions
f(x), g(x) need to be known.

3 The Policy Iteration Algorithm

In order to solve the optimal control problem, instead of directly solving the
HJB equation (8) for the optimal cost and then finding the optimal control
policy given by (7), the policy iteration method starts by evaluating the cost
of a given initial admissible policy and then makes use of this information
to improve the control policy. The two steps are repeated until the policy
improvement step no longer changes the actual policy. The following online
reinforcement learning algorithm will solve the infinite horizon optimal control
problem without using knowledge regarding the system internal dynamics
(i.e., the system function f(x)).

First note that given an admissible policy for (1), μ(x), such that the
closed-loop system is asymptotically stable on Ω, then the infinite horizon
cost for any x(t) ∈ Ω is given by (3) and V μ(x(t)) serves as a Lyapunov
function for (1). The cost function (3) can thus be written as

V μ(x(t)) =
∫ t+T

t

r(x(τ), μ(x(τ)))dτ + V μ(x(t+ T )). (9)

Based on (9) and (6), considering an initial admissible control policy μ(0)(x),
the following policy iteration scheme can be derived:
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1. Solve for V μ(i)
(x) using

V μ(i)
(x(t)) =

∫ t+T

t

r(x(τ), μ(i)(x(τ)))dτ +V μ(i)
(x(t+T )), V μ(i)

(0) = 0.

(10)
2. Update the control policy using

μ(i+1)(x) = arg min
μ

{H(x, μ, V μ(i)

x )}, (11)

which in this case is

μ(i+1)(x) = −R−1gT (x)V μ(i)

x (x). (12)

Equations (10) and (12) formulate a new policy iteration algorithm to solve
for the optimal control without making use of any knowledge of the system
internal dynamics f(x). The online implementation of the algorithm will be
discussed in Section 4. This algorithm is an online version of the offline al-
gorithms proposed in [1–3] inspired by the online adaptive critic techniques
proposed by computational intelligence researchers in [4, 19, 27]. The conver-
gence of the algorithm is now discussed.

Lemma 1. Solving for V μ(i)
in (10) is equivalent to finding the solution of

the Lyapunov equation

0 = r(x, μ(i)(x)) + V μ(i)T
x (f(x) + g(x)μ(i)(x)), V μ(i)

(0) = 0. (13)

Proof. See [23]. Note that although the same solution is obtained whether
solving (10) or (13), solving (10) does not require any knowledge on the system
dynamics f(x). It thus follows that the algorithm (10) and (12) is equivalent
to iterating between (13) and (12), without using knowledge of the system
internal dynamics.

Theorem 1 (convergence). The policy iteration algorithm (10) and (12)
converges to the optimal control solution on the trajectories having initial state
x0 ∈ Ω.

Proof. In [1–3] it was shown that using policy iteration conditioned by an
initial admissible policy μ(0)(x), all the subsequent control policies will be ad-
missible and the iteration between (13) and (12) will converge to the solution
of the HJB equation. Based on the proven equivalence between (10) and (13)
we can conclude that the proposed adaptive optimal control algorithm will
converge to the solution of the optimal control problem with infinite horizon
cost (2) without using knowledge on the internal dynamics of the controlled
system (1).
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4 Online Adaptive Optimal Control Solution Using
Neural Network Elements in an Actor–Critic Structure

In order to solve for the cost function V μ(i)
(x) in (10) we will use a neural

network, which has the universal approximation property [11], to obtain an
expression for the value function for any initial state x ∈ Ω. The cost function
V μ(i)

(x(t)) will be approximated by

V μ(i)
(x) =

L∑
j=1

wμ(i)

j φj(x) =
(
wμ(i)

L

)T

φL(x), (14)

a neural network with L neurons on the hidden layer, where wμ(i)

j denote the
weights of the neural network and φj(x) ∈ C1(Ω), φj(0) = 0 denote the acti-
vation functions. In a compact representation, φL is the vector of activation
functions and wμ(i)

L is the weight vector. In the following we assume that the
neural network structure can result in an exact description of the cost func-
tion. Using the neural network description for the value function, (14), (10)
can be written as

wμ(i)T
L φL(x(t)) =

∫ t+T

t

r(x, μ(i)(x))dτ + wμ(i)T
L φL(x(t+ T )). (15)

As the cost function was replaced with the neural network approximation,
(15) will have the residual error

δi
L(x(t)) =

∫ t+T

t

r(x, μ(i)(x))dτ + wμ(i)T
L [φL(x(t+ T ))− φL(x(t))]. (16)

From the perspective of temporal difference learning methods, e.g., [6], this
error can be viewed as temporal difference residual error. To determine the
parameters of the neural network approximating the cost function, in the
least squares sense, we use the method of weighted residuals. Thus we seek to
minimize the objective

S =
∫

Ωμ(i)

{x0}n

δi
L(x, T )δi

L(x, T )dx (17)

where Ωμ(i)

{x0}n
denotes a set of trajectories generated by the policy μ(i) starting

from the initial conditions {x0}n ⊂ Ω. Using the inner product notation for
the Lebesgue integral the minimization of the objective function (17) amounts
to 〈

dδi
L(x, T )

dwμ(i)

L

, δi
L(x, T )

〉
Ωμ(i)

{x0}n

= 0. (18)
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Conditioned by Φ =
〈
[φL(x(t+ T ))− φL(x(t))], [φL(x(t+ T ))− φL(x(t))]T

〉
being invertible, then we obtain the solution

wμ(i)

L = −Φ−1

〈
[φL(x(t+ T ))− φL(x(t))],

∫ t+T

t

r(x(s), μ(i)(x(s)))ds

〉
.

(19)

Results showing that matrix Φ is invertible, conditioned by an excitation
requirement related to the selection of the sample time T, are available in [23].
The parameters wμ(i)

L of the cost function can be calculated using only online
measurements of the state vector and the integrated reward over a finite time
interval [t, t+T ]. The solution given by (19) can be obtained in real time after
a sufficient number of data points are collected along a finite number of state
trajectories in Ω. In practice, the inversion of matrix Φ is not performed; the
solution given by (19) is obtained using algorithms that involve techniques
such as Gaussian elimination, back-substitution, and Householder reflections.

The flowchart of the online algorithm is presented in Fig. 1. The itera-
tions will be stopped (i.e., the critic will stop updating the control policy)
when the error between the system performance evaluated at two consecutive
steps will cross below a designer-specified threshold ε. Also, when this error
becomes bigger than the above-mentioned threshold the critic will take again
the decision to start tuning the actor parameters.

It has to be emphasized that, in order to successfully apply the algorithm,
enough excitation must be present in the system. Thus, if the system state
reached the equilibrium point (this is often the case since the algorithm iter-
ates only on stabilizing controllers) the data measured from the system can
no longer be used in the adaptive algorithm; in this case the system must

Fig. 1. Flowchart of the online algorithm
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Fig. 2. Structure of the system with adaptive controller

be again excited to a nonzero initial state and a new experiment needs to
be conducted having as starting point the last policy obtained in the previ-
ous experiment. Figure 2 presents the structure of the system with optimal
adaptive controller.

The proposed optimal adaptive procedure requires only measurements of
the states at discrete moments in time (measured using a sample time T ), as
well as knowledge of the observed cost over several time intervals of size T .
The control policy remains unchanged until a sufficient number of measure-
ments (say N ) have been taken, such that the solution given by (19) becomes
feasible. After the parameters of a new policy have been determined, the con-
trol policy is updated and it will be used for controlling the system during
several time intervals starting with the time t + NT ; thus the algorithm is
suitable for online implementation from the control theory point of view. One
also observes that the dynamics of the system has been augmented with an
additional state V (t), with dynamics given by V̇ = Q(x) + uT Ru. Measuring
this state at discrete moments in time is equivalent with extracting the reward
information regarding the cost associated with the given policy. Thus, having
little information about the system states, x, and the augmented system state,
V, measured from the system only at discrete moments in time, the critic is
able to evaluate the performance of the system associated with a given control
policy; this is then followed by policy improvement.

It is observed that the update of both the actor and the critic is per-
formed at discrete moments in time. However, the control action is a full-
fledged continuous-time control, with its constant gain updated at discrete mo-
ments in time. Moreover, the critic update is based on the observations of the
continuous-time cost over a finite sample interval. As a result, the algorithm
converges to the solution of the continuous-time optimal control problem.

It is important to note that no knowledge of the system internal dynamics
is required in either of the two steps of the policy iteration algorithm. The
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information regarding the system f(x) matrix is in fact embedded in the states
x(t) and x(t + T ) which are sampled online; nevertheless no identification
procedure needs to be performed. The g(x) matrix is though required in the
second step of the policy iteration algorithm as it appears explicitly in (13) for
the update of the control policy, and this makes the online tuning algorithm
partially model free. However, in practice the knowledge requirement on the
input to state dynamics is not a real issue as the function g(x) is related to
the, regularly known, actuator dynamics.

Looking at the actor–critic structure of the adaptive system one notes that
even if no system model is identified, nor required, in fact the algorithm implies
an identification procedure at the level of the critic, i.e., the cost function
associated with a given control policy must be identified. It would thus seem
that this direct adaptive optimal controller would not have any advantage
compared to the indirect adaptive optimal control methods. For this reason
we will now bring a couple of reasons as to why this identification procedure
is relatively affordable in comparison with a system model identification.

In order to identify a system model, data must be collected such that it
contains information related to all the system natural modes and in the case
in which the plant to be controlled has unstable dynamics such a procedure
could lead to destabilizing the system. When the identification is performed
in closed loop, excitation signals must be either injected through the reference
of the closed-loop system or added over the controller output signal. In the
first case, the presence of a supervisor external to the adaptive control system
is required to prescribe the excitatory reference signal. In the second situa-
tion, it appears again the exploitation–exploration dilemma characterizing the
dual optimal controllers. When a model of the performance of a closed-loop
system is identified, one only needs to use data sampled during the normal,
stable operation of the control system when that specific policy is used. The
exploration requirement is thus removed from the controller level while suffi-
cient excitation required for cost function learning can be obtained based on
measurements taken on different state trajectories in Ω.

5 Simulation Results

We now illustrate the results of the adaptive optimal control algorithm con-
sidering the nonlinear system given by the equations

ẋ1 = −x3
2 − x2

ẋ2 = x1 + x2 + u.
(20)

We first consider a linear version of the system (20), not including the cubic
term in the dynamics of the first state. The simulation was conducted using
data measured from the system at a sample rate of T = 0.09 s. The required
initial stabilizing controller was taken as



320 D. Vrabie and F. Lewis

μ(0)(x) = [0.4142 − 2.35]x. (21)

The cost function parameters, namely the Q and R matrices, were chosen to
be identity matrices of appropriate dimensions. The following smooth function
with 15 unknown parameters was used to approximate the cost function of
the system

V (x1, x2) = w1x
2
1 + w2x1x2 + w3x

2
2+w4x

4
1 + w5x

3
1x2+

+ w6x2
1x

2
2+w7x1x3

2 + w8x
4
2 + w9x

6
1+w10x

5
1x2+w11x

4
1x

2
2+

+ w12x3
1x

3
2 + w13x

2
1x

4
2+w14x1x

5
2+w15x

6
2. (22)

In order to solve online for the neural network weights wi, i = 1, 15 which
parameterize the cost function, before each iteration step one needs to set up
a least squares problem with the solution given by (19). As the considered
neural network has 15 weights we can set up a solvable least squares problem
by measuring the cost function associated with a given control policy over 15
time intervals, together with the initial state and the final state at each time
interval. The result of applying the algorithm is presented in Fig. 3. The cost
function converged to

V (x1, x2) = 3.3784x2
1 − 0.8284x1x2 + 2.6818x2

2, (23)

the last 12 parameters being close to zero. The resulting control policy is

μ5(x) = 0.4142x1−2.6818x2. (24)

This result is consistent with the solution of the Riccati equation underlying
the optimal control problem in the linear case.

From Fig. 3 it is clear that the parameters of the cost function, and implic-
itly the parameters of the control policy, converged after two iteration steps
were performed. In other words, after two iteration steps the system will be
controlled in an optimal fashion; the parameters of the controller have been
obtained online without using knowledge of the system’s internal dynamics.

The adaptive optimal control algorithm was then used to determine the
optimal controller for the nonlinear system (20). The required initial stabiliz-
ing controller for this system was (21). The cost function was approximated as
in (22). The evolution of the cost function parameters is presented in Fig. 4.
The obtained optimal controller is

μ5(x) = 0.4142x1−2.6849x2 − 0.1924x3
1 + 1.3401x2

1x2+

+ 0.8078x1x
2
2 − 0.3481x3

2 + 0.2038x5
1 − 1.018x4

1x2+

+ 0.8618x3
1x

2
2 − 1.6026x2

1x
3
2 + 0.122x1x

4
.2 − 0.5628x5

2. (25)

Another experiment considering a cost function having terms up to the power
8 was also performed. The result, i.e., the weights corresponding to the high-
order terms were close to zero, indicates that the sixth-order polynomial (22)
provides a good approximation for the cost function.
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Fig. 3. Parameters of the cost function converging to the optimal values

Fig. 4. Parameters of the cost function converging to the optimal values

6 Conclusions

We have presented a new adaptive controller based on a reinforcement learn-
ing algorithm, namely policy iteration, to solve online the continuous-time
optimal control problem without using knowledge about the system’s inter-
nal dynamics. Convergence of the proposed algorithm, under the condition
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of initial stabilizing controller, to the solution of the optimal control problem
has been established. Simulation results support the effectiveness of the online
adaptive optimal controller.
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Summary. We propose a new numerical approach for polynomial and other
nonlinear optimal control problems including problems with time delays. The ap-
proach is based on the procedure of perturbation of the conditions of nonlocal
improvement and the conditions of control’s optimality. The suggested iterative
perturbation methods possess characteristic nonlocal improvements of control, do
not require parametric search of the improving approximations on each iteration,
and have possibility for strong improvement of non-optimal controls satisfied to
Pontryagin’s maximum principle.

Key words: control system, improvement of control, condition for improve-
ment, perturbation method

1 Introduction

The current variety of optimal control methods is caused by continuously
arising demands of applications in many fields of science, techniques, and eco-
nomics. Applied problems differ from one another by such distinct peculiarities
as dimension of state spaces, types of nonlinearities, structure of restrictions,
multi-extremality, singularity. It is hard to expect a universal calculating pro-
cedure sufficiently effective for solving various control problems appearing.
That is why it is actual and justified to elaborate specialized optimal con-
trol methods, directed to consideration of peculiarities of applied problem
classes.

Historically, the development of calculating methods in optimal control
problems is closely connected with theory of necessary and sufficient optimal-
ity conditions. This development is also connected with obtaining different
constructions and approximations of target functionals. The following basic
directions can be extracted from existing approaches in this field:
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1. improvement methods in control space, characterized by operation of weak
or needle-shaped control variation (gradient procedures, maximum prin-
ciple methods, extension principle methods);

2. variation methods of a controlled process in space of variables in state
and control, to which methods for solving boundary-value problem of the
maximum principle, quasigradient procedures, procedures and methods of
phase approximation of functional can be referred;

3. finite-difference approximation methods on the basis of partial or full dig-
itization of control, and state problem with reduction to technology of
mathematical programming.

These directions were developed by A.V. Arguchintsev, V.A. Baturin,
O.V. Vasil’yev, F.P. Vasil’yev, R. Gabasov, V.I. Gurman, Yu.M. Danilin,
V.F. Dem’yanov, V.V. Dikusar, Yu.G. Evtushenko, Yu.M. Ermol’yev, F.M.
Kirillova, N.E. Kirin, V.F. Krotov, I.A. Krylov, A.A. Lyubushin, A.A. Mi-
lyutin, N.N. Moiseev, A.I.Moskalenko, D.A. Ovsyannikov, B.N. Pshenichniy,
A.M. Rubinov, V.A. Srochko, R.P. Fedorenko, F.L. Chernous’ko, D. Mayne,
E. Polak, K.L. Teo, L.T. Yeo, and many other researchers.

As for alternative directions, let us note the following:

• group of nonclassical methods of search for programmed and positional
optimal controls for linear and other system classes. These methods are
offered in works by R. Gabasov and F.M. Kirillova;

• methods for solving problems with impulse controls and discontinuous
trajectories (V.I. Gurman, V.A. Dykhta, S.T. Zavalishchin, B.M. Miller,
A.N. Sesekin, and others);

• global optimization methods in nonconvex problems with special structure,
constructed in works by A.S. Strekalovskiy;

• variation methods for solving certain problem classes of mathematical
physics, represented as optimal control problems for initial boundary con-
ditions (V.I. Agoshkov, ZH.-L. Lions, G.I. Marchuk, V.P. Shutyaev, and
others).

Algorithmic and program software of optimal control methods together with
numerical solving of test and model problems were considered in works by
Yu.G. Evtushenko, A.I. Tyatyuchkin, R.P. Fedorenko, and others.

In recent years the methods for nonlocal control improvement in systems,
linear with respect to state, were developed in works by V.A. Srochko and his
disciples. These methods are based on nonstandard formulas for the increment
of the functional without remainder term (exact formulas). The complexity of
nonlocal improvement is determined at the cost of solving two Cauchy prob-
lems. Absence of operation of parametric control variation on each iteration
along with possibility of extremum controls improvement stipulates increased
efficiency of constructed methods. It is actual and perspective to develop this
direction on the way of constructing nonlocal improvement methods for class
of optimal control problems that are quadratic and total polynomial with
respect to state.
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2 The Perturbation Methods in Optimal Control
Problems That Are Polynomial with Respect to State

The perturbation methods are developed and modified for optimal control
problems that are polynomial with respect to state. These methods are widely
used for solving nonlinear problems of mathematical physics. The perturbation
methods are considered in the context of a problem that is quadratic with
respect to state. The following objects of perturbations are proposed to use:

• boundary-value problems of nonlocal improvement;
• conditions which are equivalent to boundary-value improvement problems

in control space.

The proposed approach easily generalizes to problems polynomial in state,
including problems with time delay.

2.1 The Optimal Control Problem That Is Polynomial
with Respect to State

We consider that optimal control problem

Φ(u) = ϕ(x(t1)) +
∫

T

F (x(t), u(t), t)dt→ min
u∈V

, (1)

ẋ(t) = f(x(t), u(t), t), x(t0) = x0, u(t) ∈ U, t ∈ T = [t0, t1], (2)

where x(t) = (x1(t), ..., xn(t)) is the state vector, u(t) = (u1(t), ..., um(t))
is the control vector. The vector-valued function f(x, u, t) and the function
F (x, u, t) are polynomial of degree of integer k ≥ 1 with respect to variable x
with coefficients continuously depending on u, t, on the set Rn × U × T , the
function ϕ(x) is polynomial of degree k in Rn. For admissible controls u(t),
t ∈ T , the set V of piecewise continuous functions with values in the compact
set U ⊂ Rm is considered. The initial state x0 and the control interval T are
given.

We use the following notations: qx, qu, qxx, quu, qxu are the first and
the second partial derivatives of function q with respect to corresponding
arguments; 〈x, y〉 =

∑n
i=1 xiyi is a scalar product of vectors x, y in Euclidean

space En; ‖x‖ is a norm of the vector x in Euclidean space; AT is the transpose
of the matrix A.

Let us introduce the Pontryagin’s function

H(ψ, x, u, t) = 〈ψ, f(x, u, t)〉 − F (x, u, t),

withψ ∈ Rn being the adjoint variable and standard adjoint vector system

ψ̇(t) = −Hx(ψ(t), x(t), u(t), t), t ∈ T. (3)
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For admissible control v ∈ V , by x(t, v), t ∈ T , we denote a solution of
the system (2) as u(t) = v(t), x(t0, v) = x0; by ψ(t, v), t ∈ T , we denote a
solution of the system (3) as u(t) = v(t), x(t) = x(t, v), ψ(t1, v) = ϕx(x(t1, v)).
Introduce a mapping u∗ using the following relation:

u∗(ψ, x, t) = arg max
w∈U

H(ψ, x,w, t), ψ ∈ Rn, x ∈ Rn, t ∈ T. (4)

Suppose by analogy with [1], the formula (4) defines the vector-valued function
u∗(ψ, x, t). This vector-valued function is piecewise continuous on Rn×Rn×T ,
i.e. this function has a finite number of discontinuity surfaces. Each discon-
tinuity surface is prescribed by the following equation s(ψ, x, t) = 0, where
s(ψ, x, t) is differentiable in arguments ψ, x and continuous with respect to t
on Rn × Rn × T . Assume that in the considered problem class operation for
the maximum (4) admits an analytical solving, i.e., the control u∗(ψ, x, t) has
the explicit form of the corresponding formula.

The known necessary optimality control condition for u ∈ V in the form
of maximum principle [2], using mapping (4), may be represented as

u(t) = u∗(ψ(t, u), x(t, u), t), t ∈ T. (5)

Here and in what follows, equalities on the set T for admissible controls
are interpreted accurate to sets of zero measure.

Let us extract the subclass of problems which are linear with respect to
control. This subclass is important for applications described in

Φ(u) = ϕ(x(t1)) +
∫

T

(〈a(x(t), t), u(t)〉+ d(x(t), t))dt→ min
u∈V

, (6)

ẋ(t) = A(x(t), t)u(t) + b(x(t), t), x(t0) = x0, u(t) ∈ U, t ∈ T. (7)

The matrix function A(x, t), vector-valued functions b(x, t) and a(x, t), and
functions ϕ(x), d(x, t) are polynomial with respect to x and continuous with
respect to t on the set Rn × T . U ⊂ Rm is a convex compact set.

In the problem (6) and (7) the Pontryagin’s function has the following
structure:

H(ψ, x, u, t) = H0(ψ, x, t) + 〈H1(ψ, x, t), u〉 ,
H0(ψ, x, t) = 〈ψ, b(x, t)〉 − d(x, t), H1(ψ, x, t) = AT (x, t)ψ − a(x, t).

The mapping u∗ is represented in the following form:

u∗(ψ, x, t) = arg max
w∈U

〈H1(ψ, x, t), w〉 .

In particular, for scalar control (m = 1) with the domain U = [u−, u+] (bilat-
eral constraints), we have

u∗(ψ, x, t) =

⎧⎨⎩
u−, H1(ψ, x, t) < 0,
u+, H1(ψ, x, t) > 0,
w ∈ U, H1(ψ, x, t) = 0.
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Here, if U = [−l, l], then the mapping u∗ can be represented in the form
u∗(ψ, x, t) = l · sign(H1(ψ, x, t)).

The maximum principle (5) for the control u ∈ V in the problem (6) and
(7) can be written in the form

〈H1(ψ(t, u), x(t, u), t), w − u(t)〉 ≤ 0, w ∈ U, t ∈ T. (8)

Let PU be a projection operator on the set U in Euclidean norm:

PU (z) = arg min
w∈U

(‖w − z‖), z ∈ Rm.

By the analogy with [1], for admissible control u ∈ V , let us form the vector-
valued function uα with the parameter α > 0 using the relation

uα (ψ, x, t) = PU (u(t) + αH1(ψ, x, t)) , x ∈ Rn, ψ ∈ Rn, t ∈ T. (9)

In view of fulfillment of the Lipschitz condition for the operator PU , the func-
tion uα is continuous in (ψ, x) ∈ Rn × Rn and piecewise continuous with
respect to t ∈ T . According to the known projection property, the following
inequality exists:

〈H1(ψ, x, t), uα(ψ, x, t)− u(t)〉 ≥ 1
α
‖uα(ψ, x, t)− u(t)‖2 . (10)

The function uα has equivalent representation

uα (ψ, x, t) = arg max
w∈U

(
H(ψ, x,w, t)− 1

2α
‖w − u(t)‖2

)
. (11)

Using the function uα the maximum principle (8) for the control u ∈ V in the
problem (6) and (7) can be written in the following form:

u(t) = uα(ψ(t, u), x(t, u), t), t ∈ T. (12)

Note that, to fulfill the maximum principle (8), it is sufficient to examine the
condition (12), at least for one α > 0. Conversely, from the condition (8), it
follows that the condition (12) is fulfilled for any α > 0.

Let us introduce a modified adjoint vector system

ṗ(t) = −Hx − 1
2!
〈Hx, z〉x − · · · − 1

k!
〈· · · 〈〈Hx, z〉x, z〉x · · · , z〉x. (13)

For admissible controls u, v designate by p(t, u, v), t ∈ T – a solution of
system (13), for ψ = p(t), x = x(t, u), u = u(t), z = x(t, v)−x(t, u) satisfying
the boundary condition

p(t1, u, v) = −ϕx −
1
2!
〈ϕx, z〉x − · · · −

1
k!
〈· · · 〈〈ϕx, z〉x, z〉x · · · , z〉x,

where partial derivatives with respect to x are calculated as x = x(t1, u) and
z = x(t1, v)− x(t1, u). It is evident that p(t, u, u) = ψ(t, u), t ∈ T .
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Using modification of adjoint system in the problem (1) and (2), symmetric
formulas for the increment of the functional without remainder term of the
Taylor series expansion can be obtained [3, 4]:

ΔvΦ(u) = −
∫

T

Δv(t)H(p(t, u, v), x(t, v), u(t), t)dt,

ΔvΦ(u) = −
∫

T

Δv(t)H(p(t, v, u), x(t, u), u(t), t)dt.

These formulas are the basis for construction of nonlocal improvement
methods.

2.2 Perturbation Method for Boundary-Value Improvement
Problem

Let us set the improvement control problem for u0 ∈ V with respect to func-
tional (1): to find a control v ∈ V satisfying the condition Φ(v) ≤ Φ(u0).

As it is shown in works [3, 4], nonlocal control improvement can be pro-
vided at the cost of solving of special double-point boundary-value problem
for system of ordinary differential equations. This problem is much easier
than boundary-value problem of maximum principle. As a rule application of
standard methods for numerical solving of boundary-value improvement prob-
lems (shooting method, linearization method, finite-difference method) leads
to computational instability. This instability is caused by presence of positive
real eigenvalues of Jacobi matrix and possible discontinuity of right-hand sides
of the problem.

The perturbation methods are illustrated for the quadratic state optimal
control problem (1) and (2). In this case the boundary-value improvement
problem based on the map u� has the following form [3]:

ẋ(t) = f(x(t), u∗(p(t), x(t), t), t), x(t0) = x0, (14)
ṗ(t) = −Hx(p(t), x(t, u0), u0(t), t)−

−1
2
Hxx(p(t), x(t, u0), u0(t), t)(x(t)− x(t, u0)),

p(t1) = −ϕx(x(t1, u0))− 1
2
ϕxx(x(t1, u0))(x(t1)− x(t1, u0)). (15)

Assume that the solution (x(t), p(t)), t ∈ T , of the boundary-value
problem (14) and (15) (probably, not unique) exists on the interval T and
formed control v(t) = u∗(p(t), x(t), t), t ∈ T is piecewise continuous. Then
ΔvΦ(u0) ≤ 0. Note nonlocal character of improvement: parameter, character-
izing a proximity of improving and being improved control is absent.

For the problem, linear with respect to state (1) and (2) (functions
f(x, u, t), F (x, u, t), ϕ(x) are linear with respect to x), the boundary-value
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problem (14) and (15) split in to two independent Cauchy problems for ad-
joint and phase systems of variables. Here the solution of the adjoint system
coincides with the solution of standard adjoint system ψ(t, u0), t ∈ T . Let
ps(t) = ψ(t, u0), t ∈ T .

In this case for the phase system we obtain Cauchy problem that is dis-
continuous with respect to state.

ẋ(t) = f(x(t), u∗(ψ(t, u0), x(t), t), t), x(t0) = x0, t ∈ T. (16)

Assume that the problem (16) has (probably, not unique) the solution
xs(t), t ∈ T .

We will now consider a nonlinear, quadratic with respect to state, problem
(1) and (2). Designate by C(T ) a space of vector-valued functions discontin-
uous on T with the norm ‖x‖C = maxt∈T ‖x(t)‖.

Assume that for continuous function p(t), t ∈ T , belonging to a certain
ball B(ps, l) = {p ∈ C(T ) : ‖p− ps‖C ≤ l} of radius l > 0 in the space C(T )
centered at a point ps, there is a solution x∗(t, p), t ∈ T , of the phase system

ẋ(t) = f(x(t), u∗(p(t), x(t), t), t), x(t0) = x0, t ∈ T.

Assume that the corresponding operator X∗, defined by the relation

X∗(p) = x∗, p ∈ C(T ), x∗(t) = x∗(t, p), t ∈ T,

satisfies the Lipschitz condition in the ball B(ps, l) with a constant M =
M(ps, l) > 0

‖X∗(p)−X∗(q)‖C ≤M ‖p− q‖C , p ∈ B(ps, l), q ∈ B(ps, l).

The Lipschitz condition guarantees the uniqueness of the solution x∗(t, p),
t ∈ T of the phase system for p ∈ B(ps, l).

The operator X∗ induces the corresponding operator p → x∗(t1, p). It is
evident that this operator also satisfies the Lipschitz condition in the ball
B(ps, l) with a constant M = M(ps, l) > 0

‖x(t1, p)− x(t1, q)‖ ≤M ‖p− q‖C , p ∈ B(ps, l), q ∈ B(ps, l).

Using the operator X∗ the boundary-value problem (14) and (16) in pair
neighborhood (xs, ps) amount to Cauchy problem for the adjoint system with
the right-hand side continuously dependent on adjoint variables

ṗ(t) = −Hx(p(t), x(t, u0), u0(t), t)−
−1

2
Hxx(p(t), x(t, u0), u0(t), t)(x∗(t, p)− x(t, u0)), (17)

p(t1) = −ϕx(x(t1, u0))− 1
2
ϕxx(x(t1, u0))(x∗(t1, p)− x(t1, u0)). (18)
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Represent the problem (17) and (18) in the form of evolutionary problem with
analogy to [5–7],

ṗ(t) +A(t)p(t) + G(p)|t = h(t), t ∈ T, (19)

p(t1) +D(p) = d, (20)

A(t) = fT
x (x(t, u0), u0(t), t), h(t) = Fxx(x(t, u0), u0(t), t),

G(p)|t =
1
2
Hxx(p(t), x(t, u0), u0(t), t)(x∗(t, p)− x(t, u0)),

D(p) =
1
2
ϕxx(x(t1, u0))(x∗(t1, p)− x(t1, u0)), d = −ϕx(x(t1, u0)).

On the strength of made assumptions, nonlinear operatorsG and D satisfy the
Lipschitz condition in the ball B(ps, l) with certain constant M0 = M0(ps, l) >
0

‖G(p)−G(q)‖C ≤M0 ‖p− q‖C ,

‖D(p)−D(q)‖ ≤M0 ‖p− q‖C , p, q ∈ B(ps, l). (21)

Let us introduce a perturbed evolutionary problem with parameter ε ∈ [0, 1].

ṗ(t) +A(t)p(t) + εG(p)|t = h(t), t ∈ T, (22)

p(t1) + εD(p) = d. (23)

The perturbed boundary-value improvement problem

ẋ(t) = f(x(t), u∗(p(t), x(t), t), t), x(t0) = x0,

ṗ(t) = −Hx(p(t), x(t, u0), u0(t), t)−

−ε1
2
Hxx(p(t), x(t, u0), u0(t), t)(x(t)− x(t, u0)),

p(t1) = −ϕx(x(t1, u0))− ε
1
2
ϕxx(x(t1, u0))(x(t1)− x(t1, u0)).

corresponds to the problem (22) and (23).
The unperturbed evolutionary problem is resulting from (22) and (23) as

ε = 0 and has the following form:

ṗ(t) +A(t)p(t) = h(t), t ∈ T, (24)

p(t1) = d. (25)

The corresponding unperturbed boundary-value improvement problem is ob-
tained from the perturbed boundary-value problem as ε = 0.
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It is clear that a solution of the unperturbed problem (24) and (25) coin-
cides with the solution ps(t) = ψ(t, u0), t ∈ T . For the problem (24) and (25)
the following decidability statement [5–7], formulated as lemma, is correct.

Lemma 1. For any continuous functions A(t), h(t), t ∈ T and any vector d
of the problem (24) and (25) a unique continuous solution p(t), t ∈ T , exists.
For this solution the estimate exists

‖p‖C ≤ C0(‖h‖C + ‖d‖), C0 = const > 0. (26)

Using this statement, the theorem of perturbed problem decidability (22)
and (23) and convergence method of successive approximations for problem
solution can be proved [4].

Theorem 1. Let operators G and D in the perturbed problem (22) and (23)
satisfy the Lipschitz condition (21) in the ball B(ps, l) of radius l in the space
C(T ) centered at ps, where ps is the unperturbed solution and (‖G(ps)‖C +
‖D(ps)‖) �= 0.

Then as ε ≤ ε̄ =
[
C0(2M0 + 1

l (‖G(ps)‖C + ‖D(ps)‖))]−1, where a con-
stant C0 > 0 is defined by the condition (26),

(1) the perturbed problem (22) and (23) has a unique solution p̄ ∈ B(ps, l);
(2) approximations pk of the iterative process

ṗk+1(t) +A(t)pk+1 = − εG(pk)
∣∣
t
, t ∈ T, (27)

pk+1(t1) = −εD(pk) (28)

with initial p0 ∈ B(ps, l) do not fall outside the limits of the ball B(ps, l) and
converge to p̄ in the norm ‖·‖C ;

(3) the estimate of iterative process convergence occurs

∥∥p̄− pk
∥∥

C
≤ ∥∥pk − pk−1

∥∥
C

εC0(2M0)
1− εC0(2M0)

. (29)

As an initial approximation p0 of the iterative process (27) and (28) under
the condition ‖G(ps)‖C+‖D(ps)‖ �= 0, it is possible to choose the unperturbed
solution ps.

Remark 1. Let simultaneously G(ps) = 0 and D(ps) = 0, i.e., the unper-
turbed solution ps is a solution of the perturbed problem (22) and (23) for
any admissible ε ∈ [0, 1]. Then the statement of Theorem 1 is fulfilled for
ε < ε̄ = [C0(2M0)]

−1. In this case there are no solutions of perturbed problem
besides ps in the ball B(ps, l) and for any initial approximation p0 ∈ B(ps, l)
the succession pk converges to ps.



334 A.S. Buldaev

If constant M0 in (21) does not depend on radius l, i.e., the Lipschitz con-
dition (21) is fulfilled on the whole set of admissible functions, then repeating
our arguments similar to Theorem 1, we obtain the following statement [4].

Theorem 2. Let operators G and D in the perturbed problem (22) and (23)
satisfy the Lipschitz condition (21) on the whole set of admissible functions
C(T ) and ‖G(ps)‖C + ‖D(ps)‖ �= 0. Then as ε ≤ ε̄ = [C0(2M0)]

−1, where
constant C0 > 0 is defined by the condition (26),

(1) the perturbed problem (22) and (23) has a unique solution p̄ ∈ C(T )
and in this case the estimate is correct ‖p̄− ps‖C ≤ 1

2M0
(‖G(ps)‖C+‖D(ps)‖);

(2) the iterative process (27) and (28) for any admissible initial approxi-
mation p0 converges in the norm ‖·‖C to the solution p̄;

(3) the estimate (29) of iterative process convergence occurs.

Using proof of Theorem 1, we can obtain the statement of perturbed prob-
lem decidability with (22) and (23) and as ε = 1 [4].

Theorem 3. Let operators G and D in the perturbed problem (22) and (23)
satisfy the Lipschitz condition (21) in the ball B(ps, l) for any radius l with
a constant dependent on l (M0 = M0(ps, l)) and ‖G(ps)‖C + ‖D(ps)‖ �= 0.
Besides, additional conditions are fulfilled: (1) G(0) = 0, F (0) = 0; (2) as
l = ‖ps‖C the inequality is fulfilled C0(2M0) < 1

2 , where constant C0 > 0 is
defined by the condition (26). Then

(1) the perturbed problem (22) and (23) as ε = 1 has a unique solution
p̄ ∈ B(ps, l), and in this case the estimate ‖p̄‖C ≤ 2C0(‖h‖C +‖d‖) is correct;

(2) the iterative process (27) and (28) as ε = 1 with any admissible initial
approximation converges in the norm ‖·‖C to the solution p̄;

(3) the estimate (29) of iterative process convergence occurs.

Actually, if G(0) = 0, F (0) = 0, then from the Lipschitz condition (21)
it follows that ‖G(ps)‖C ≤ M0 ‖ps‖C , ‖D(ps)‖ ≤ M0 ‖ps‖C . Therefore, for
proof of Theorem 1 as ε̄ it is possible to accept ε̄ =

[
C0(2M0)(1 + 1

l ‖ps‖C)
]−1.

From here, as l = ‖ps‖C , we obtain ε̄ = [C0(4M0)]
−1

> 1. So, as ε = 1 the
statement of theorem 1 is correct. In this case the estimate for p̄ is obtained
from the condition (26) and from the estimate ‖p̄− ps‖C ≤ l.

Let us apply the perturbation method for boundary-value improvement
problem based on the map uα in problem quadratic in state (6) and (7)

ẋ(t) = f(x(t), uα(p(t), x(t), t), t), x(t0) = x0, (30)

ṗ(t) = −Hx(p(t), x(t, u0), u0(t), t)−

−1
2
Hxx(p(t), x(t, u0), u0(t), t)(x(t)− x(t, u0)),

p(t1) = −ϕx(x(t1, u0))− 1
2
ϕxx(x(t1, u0))(x(t1)− x(t1, u0)). (31)
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Let xα(t) = x(t, vα), pα(t) = p(t, u0, vα), t ∈ T , be a solution of this problem.
Then the output control vα(t) = uα(pα(t), xα(t), t), t ∈ T , provides lack of
increase of target functional with the estimate

Φ(vα)− Φ(u0) ≤ − 1
α

∫
T

∥∥vα(t)− u0(t)
∥∥2
dt. (32)

The perturbed boundary-value improvement problem with perturbation pa-
rameter ε ∈ (0, 1] looks as follows:

ẋ(t) = f(x(t), uα(p(t), x(t), t), t), x(t0) = x0, (33)

ṗ(t) = −Hx(p(t), x(t, u0), u0(t), t)−

−ε1
2
Hxx(p(t), x(t, u0), u0(t), t)(x(t)− x(t, u0)),

p(t) = −ϕxx(x(t1, u0))− ε
1
2
ϕxx(x(t1, u0))(x(t1)− x(t1, u0)). (34)

Here the unperturbed solution as ε = 0 is the pair (xα
0 (t), pα

0 (t)), t ∈ T , where
pα
0 (t) = ψ(t, u0), t ∈ T and xα

0 (t), t ∈ T solutions are of the phase system

ẋ(t) = f(x(t), uα(ψ(t, u0), x(t), t), t), x(t0) = x0.

Note that on the strength of projection operator properties the unperturbed
solution xα

0 (t), t ∈ T , exists and is unique. Similar to this, for arbitrary con-
tinuous function p(t), t ∈ T , there exists a unique solution xα(t, p), t ∈ T ,
of the system

ẋ(t) = f(x(t), uα(p(t), x(t), t), t), x(t0) = x0.

Introduce corresponding operator Xα applying the relation

Xα(p) = xα, p ∈ C(T ), xα(t) = xα(t, p), t ∈ T.

Iterative method for solving the perturbed problem (33) and (34) has the
form

ẋk+1(t) = f(xk+1(t), uα(pk+1(t), xk+1(t), t), t), xk+1(t0) = x0, (35)

ṗk+1(t) = −Hx(pk+1(t), x(t, u0), u0(t), t)−

−ε1
2
Hxx(pk(t), x(t, u0), u0(t), t)(xk(t)− x(t, u0)),

pk+1(t1) = −ϕx(x(t1, u0))−

−ε1
2
ϕxx(x(t1, u0))(xk(t1)− x(t1, u0)). (36)
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The initial approximation x0 ∈ C(T ), p0 ∈ C(T ) is defined. It is clear that
xk(t) = xα(t, pk), t ∈ T , k > 0.

As the initial approximation of iterative process (35) and (36) for improve-
ment of control u0 ∈ V , not satisfying the maximum principle, it is possible
to choose the unperturbed solution (xα

0 (t),pα
0 (t)), t ∈ T .

Let us analyze the process convergence (35) and (36) in assumption about
boundedness of the family of phase system trajectories (7)

x(t, u) ∈ X, t ∈ T, u ∈ V,

where X ⊂ Rn is a convex compact set.
In this case, since function f(x, u, t) is quadratic with respect to x, the

Lipschitz condition is fulfilled

‖f(x, u, t)− f(y, u, t)‖ ≤M1 ‖x− y‖ , x, y ∈ X, u ∈ U, t ∈ T,

where M1 = const > 0. Using the Gronwall–Bellman lemma [8, 9], it is easy
to obtain the estimate

‖x(t, u)− x(t, v)‖ ≤M2

∫
T

‖u(t)− v(t)‖ dt, t ∈ T, u ∈ V, v ∈ V,

where M2 = const > 0.
For the control u0 ∈ V and given α > 0 introduce operator V α using the

relation
V α(p, x) = vα, p ∈ C(T ), x ∈ C(T ),

vα(t) = PU (u0(t) + αH1(p(t), x(t), t)), t ∈ T.
Then the equality occurs

Xα(p) = V α(p,Xα(p)), p ∈ C(T ).

Hence on the basis of the Lipschitz condition for the projection operator PU

we obtain

‖xα(t, p)− xα(t, q)‖ = ‖x(t, V α(p,Xα(p)))− x(t, V α(q,Xα(q)))‖ ≤

≤M2

∫
T

‖V α(p,Xα(p))|t − V α(q,Xα(q))|t‖ dt ≤

≤ αM3

∫
T

‖H1(p(t), xα(t, p), t)−H1(q(t), xα(t, q), t)‖ dt ≤

≤ αM0(‖p− q‖C + ‖xα(t, p)− xα(t, q)‖C), t ∈ T, p ∈ C(T ), q ∈ C(T ),

where M3 = const > 0, M0 = const > 0. Therefore, at sufficiently low α > 0
we obtain
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‖xα(t, p)− xα(t, q)‖C ≤
αM0

1− αM0
‖p− q‖C ,

‖xα(t1, p)− xα(t1, q)‖ ≤ αM0

1− αM0
‖p− q‖C ,

where 0 < αM0 < 1. So at a sufficiently small α > 0 the operator Xα

and the corresponding operator p → xα(t1, p) satisfy the Lipschitz con-
dition in the space C(T ). Hence, similarly to Theorem 2, we obtain the
statement [4].

Theorem 4. Assume that in the problem (6) and (7) the boundedness con-
dition for phase trajectories x(t, u) ∈ X, t ∈ T , u ∈ V, is fulfilled, where
X ⊂ Rn is a convex compact set. Then for sufficiently small α > 0 as
0 < ε < ε̄ = C0

1−αM0
2αM0

, C0 = const > 0, M0 = const > 0
(1) the perturbed boundary value problem (33) and (34) has a unique so-

lution x̄α ∈ C(T ), p̄α ∈ C(T );
(2) the iterative process (35) and (36) converges in the norm ‖·‖C to the

solution (x̄α, p̄α) of the perturbed problem (33) and (34) for any initial ap-
proximation x0 ∈ C(T ), p0 ∈ C(T ).

From the theorem it follows that for the control u0, that is satisfying the
maximum principle, by virtue of uniqueness, the perturbed solution at small
α > 0 coincides with the unperturbed one.

Corollary 1. Under conditions of theorem 4 at sufficiently small α > 0
(1) the perturbed problem (33) and (34) as ε = 1 has a unique solution

x̄α ∈ C(T ), p̄α ∈ C(T );
(2) the iterative process (35) and (36) as ε = 1 with any initial admissible

approximation x0 ∈ C(T ), p0 ∈ C(T ) converges in the norm ‖·‖C to the
solution (x̄α, p̄α).

Similarly, it is possible to put and solve a perturbed boundary-value prob-
lem in modified methods of nonlocal improvement [3, 4] on the basis of oper-
ation for the maximum u∗.

On the whole, we note that iterative process convergence to solution of
the perturbed problem is guaranteed only at sufficiently small perturbation
parameters.

Perturbation methods admit a sequential conversion procedure of per-
turbed problems, those solutions under certain conditions can converge to
solution of desired problem.

2.3 Transformation Method for Perturbed Boundary-Value
Improvement Problems

In practice, it is difficult to estimate a priori a domain of convergence with
respect to perturbation parameter ε ∈ [0, 1] for iterative solution process of
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the perturbed problem (22) and (23). That is why, if unperturbed state of the
problem essentially differs from the correct one, then in case of divergence for
perturbation parameter ε = 1, it is possible to construct convergent process
only for sufficiently small ε > 0. This means the application of the small per-
turbation theory. Obtained solution p1 �= ps as 0 < ε1 < 1 can be considered
only as the first approximation to correct solution for ε = 1.

The way of approximation refining by means of the perturbation method
is based on the assumption that obtained perturbed solution is possible more
close to true solution than the unperturbed one. This is the transformation
of the input problem (19) and (20), thus that obtained perturbed solution
becomes unperturbed in the transformed problem. Let us transform the input
problem (19) and (20) so, that obtained approximation p1 as ε1 < 1 becomes
unperturbed in the problem. From (19), (20) and (22), (23) we obtain the
problem that is equivalent to (19) and (20)

ṗ(t) +A(t)p(t) + (G(p)|t − ε1G(p1)|t) = ṗ1(t) +A(t)p1(t), (37)

p(t1) + (D(p)− ε1D(p1)) = p1(t1). (38)

Let us transform the corresponding unperturbed and perturbed problem with
parameter ε > 0

ṗ(t) +A(t)p(t) = ṗ1(t) +A(t)p1(t), t ∈ T, (39)

p(t1) = p1(t1). (40)

ṗ(t) +A(t)p(t) + ε(G(p)|t − ε1 G(p1)|t) = ṗ1(t) +A(t)p1(t), (41)

p(t1) + ε(D(p)− ε1D(p1)) = p1(t1). (42)

It is clear that p1 is the unique solution of the unperturbed problem (39) and
(40). If there is no convergence as ε = 1 in (41) and (42), then we continue
transformation process of the input problem (19) and (20).

Let p2 be a solution of the perturbed problem (41) and (42) at certain
ε2 < 1. Then from (37), (38) and (41), (42) we obtain the problem that is
equivalent to the input problem (19) and (20)

ṗ(t) +A(t)p(t) + (G(p)|t − ε2G(p2)|t−
−ε1(1− ε2) G(p1)|t) = ṗ2(t) +A(t)p2(t),

(43)

p(t1) + (D(p)− ε2D(p2)− ε1(1− ε2)D(p1)) = p2(t1). (44)

The unperturbed and perturbed problems that are corresponding to (43) and
(44), with parameter ε > 0, have the following form:

ṗ(t) +A(t)p(t) = ṗ2t) +A(t)p2(t), t ∈ T, (45)

p(t1) = p2(t1), (46)

ṗ(t) +A(t)p(t) + ε (G(p)|t − ε2G(p2)|t −
−ε1(1− ε2) G(p1)|t) = ṗ2(t) +A(t)p2(t), (47)
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p(t1) + ε(D(p)− ε2D(p2)− ε1(1− ε2)D(p1)) = p2(t1), (48)

where p2 is a solution of the unperturbed problem (45) and (46).
Similarly, on the basis of the solution p3 for the perturbed problem (47),

(48), as ε3 < 1 let us construct the perturbed problem

ṗ(t) +A(t)p(t) + ε (G(p)|t − ε3G(p3)|t − ε2(1− ε3) G(p2)|t−
− ε1(1− ε2)(1− ε3)G(p1)|t) = ṗ3(t) +A(t)p3(t),

p(t1) + ε(D(p)− ε3D(p3)− ε2(1− ε3)D(p2)−
−ε1(1− ε2)(1− ε3)D(p1)) = p3(t1).

This problem has the unperturbed solution p3, etc. If there exists a perturba-
tion parameter εk = 1 at certain k ≥ 1 that provides convergence, then the
corresponding solution pk is a solution of the input problem (19) and (20).

We will now show that under certain conditions a sequence of perturba-
tion parameters εk > 0, providing convergence of the corresponding iterative
process in kth perturbed problem, k ≥ 1, can be chosen, so that the solution
pk of the perturbed problem tends to the solution of the input problem (19)
and (20). Note that in this case it is possible to interpret the convergence as
a convergence of the unperturbed solutions for transformed problems to true
solution.

Consider the case of fulfillment of the Lipschitz condition (21) with one
constant M0 > 0 on the whole set of admissible functions p. According to
Theorem 2, existence of solution and convergence to solution in sequence of
perturbed transformed problems are guaranteed at perturbation parameter
value that is satisfying the condition

0 < ε < ε̄ = [C0(2M0)]
−1

,

where constant C0 > 0 is defined by the condition (26).
If ε̄ > 1 then the perturbed solution p1 that is corresponding to parameter

ε1 = 1, is a solution of the input problem.
Let ε̄ ≤ 1. In kth perturbed problem if the perturbation parameter ε = 1

does not provide convergence of the iterative process we set

0 < ε0 ≤ εk < ε̄, ε0 ≥ ε̄(1− δ), (49)

where 1 > δ > 0 is fixed.
According to Theorem 2 we have the following estimates for solutions of

perturbed problems pk:

‖p1 − ps‖C ≤
1

2M0
(‖G(ps)‖C + ‖D(ps)‖),

‖p2 − p1‖C ≤
(1− ε1)

2M0
(‖G(p1)‖C + ‖D(p1)‖),
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‖p3 − p2‖C ≤
(1− ε2)

2M0
(‖G(p2)− ε1G(p1)‖C + ‖D(p2)− ε1D(p1)‖),

‖p4 − p3‖C ≤ (1−ε3)
2M0

(‖G(p3)− ε2G(p2)− ε1(1− ε2)G(p1)‖C +
+ ‖D(p3)− ε2D(p2)− ε1(1− ε2)D(p1)‖), ... .

It is convenient to introduce the following notation:

p0 = ps, αk = ‖pk − pk−1‖C , b0 = (‖G(ps)‖C + ‖D(ps)‖),

b1 = (‖G(p1)‖C + ‖D(p1)‖),
b2 = (‖G(p2)− ε1G(p1)‖C + ‖D(p2)− ε1D(p1)‖),
b3 = (‖G(p3)− ε2G(p2)− ε1(1− ε2)G(p1)‖C +
+ ‖D(p3)− ε2D(p2)− ε1(1− ε2)D(p1)‖),

etc. Using the Lipschitz condition we obtain

a1 ≤ b0
2M0

, a2 ≤ (1− ε1)
b1

2M0
,

a3 ≤ (1− ε2)
b2

2M0
, a4 ≤ (1− ε3)

b3
2M0

, ...,

b1 ≤ 2M0a1 + b0 ≤ 2b0 ⇒ a2 ≤ 2(1− ε1)
b0

2M0
,

b2 ≤ 2M0a2 + (1− ε1)b1 ≤ 2(1− ε1)b1 ⇒ a3 ≤ 4(1− ε2)(1− ε1)
b0

2M0
,

etc. Total estimate as k ≥ 0 has the following form:

ak+1 ≤ 2k(1− εk)(1− εk−1) · · · (1− ε1)
b0

2M0
≤ 2k(1− ε0)k b0

2M0
. (50)

From the obtained estimate (50) it follows that at ε0 > 2−1 the sequence pk

is fundamental and converges to p̄ ∈ C(T ). So, for 1 ≥ ε̄ > 2−1 at choice εk

according to the rule (49), where δ > 0 is sufficiently small integer, sequence
convergence of solutions pk for perturbed problems to certain p̄ ∈ C(T ).

Performed analysis, using the upper estimate (50), illustrates the possibil-
ity of convergence of solutions pk for perturbed problems when using the rule
(49). Assume that the convergence condition of solutions pk for perturbed
problems is fulfilled at a choice of the rule (49).

The perturbed solution pk is defined by the conditions

ṗk(t) +A(t)pk(t) + εk(G(pk)|t − εk−1G(pk−1)|t−
−εk−2 (1− εk−1)G(pk−2)|t−
−εk−3(1− εk−2)(1− εk−1) G(pk−3)|t − · · ·−
−ε1(1− ε2) · · · (1− εk−1) G(p1)|t) =
= ṗk−1(t) +A(t)pk−1(t),
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pk(t1) + εk(D(pk)− εk−1D(pk−1)− εk−2(1− εk−1)D(pk−2)−
−εk−3(1− εk−2)(1− εk−1)D(pk−3)− · · ·−
−ε1(1− ε2) · · · (1− εk−1)D(p1)) = pk−1(t1).

Hence, it follows that using assumption about sequence convergence pk and
the condition (49) we obtain as k →∞

gk = (G(pk)− εk−1G(pk−1)− εk−2(1− εk−1)G(pk−2)− · · ·−
−ε1(1− ε2) · · · (1− εk−1)G(p1)) → 0,

dk = (D(pk)− εk−1D(pk−1)− εk−2(1− εk−1)D(pk−2)− · · ·−
−ε1(1− ε2)...(1− εk−1)D(p1)) → 0.

On the basis of obtained pk let us consider the next(k+1) transformed problem
that is equivalent to the input problem (19) and (20)

ṗ(t) + A(t)p(t) + G(p)|t − εkG(pk)|t −
− εk−1(1− εk)G(pk−1)|t − (51)
− εk−2(1− εk−1)(1− εk)G(pk−2)|t − · · · −
− ε1(1− ε2) · · · (1− εk)G(p1)|t =
= ṗk(t) +A(t)pk(t),

p(t1) + D(p)− εkD(pk)− εk−1(1− εk)D(pk−1)− (52)
− εk−2(1− εk−1)(1− εk)D(pk−2)− · · · −
− ε1(1− ε2) · · · (1− εk)D(p1) = pk(t1).

Let us set the following notation:

yk = εkG(pk) + εk−1(1− εk)G(pk−1) +
+εk−2(1− εk−1)(1− εk)G(pk−2) + · · ·+ ε1(1− ε2) · · · (1− εk)G(p1),

zk = εkD(pk) + εk−1(1− εk)D(pk−1) +
+εk−2(1− εk−1)(1− εk)D(pk−2) + · · ·+ ε1(1− ε2) · · · (1− εk)D(p1).

It is obvious, that the following relations are fulfilled:

yk = εkG(pk) + (1− εk)(G(pk)− gk) = G(pk)− gk(1− εk),

zk = εkD(pk) + (1− εk)(D(pk)− dk) = D(pk)− dk(1− εk).

Hence, we obtain a convergence in the corresponding norms

yk → G(pk), zk → D(pk), k →∞. (53)

Since the input problem (19) and (20) is equivalent to transformed problem
(51) and (52) we have
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ṗk +A(t)pk + yk = h,

pk(t1) + zk = d.

Hence from (53), as k →∞, it follows that

ṗk +A(t)pk +G(pk) → h,

pk(t1) +D(pk) → d.

Therefore, p̄ is a solution of the input problem.
So, by assumption of sequence convergence of solutions pk for transformed

perturbed problems under the condition of choice of perturbation parameters
according the rule (49), it is possible to find solution of the input problem
with arbitrarily high precision.

In real calculations we can use various rules of successive decrease of per-
turbation parameter from ε = 1 to a value, whereby, convergence of the iter-
ative process occurs. Here it is possible to calculate the perturbed boundary-
value problem till first input control improvement occurs.

2.4 Perturbation Method for Improvement Condition in Control
Space

The optimal control problem, that is quadratic with respect to state (1) and
(2) is considered. Define improvement condition in control space that is equiv-
alent to the nonlocal boundary-value improvement problem (14) and (15) in
state space.

Let (x(t), p(t)), t ∈ T , be a solution of the boundary-value problem (14)
and (15) in state space. Then the admissible control v(t) = u∗(p(t), x(t), t),
t ∈ T , satisfies the condition

v(t) = u∗(p(t, u0, v), x(t, v), t), t ∈ T, (54)

in control space. On the contrary, if v(t), t ∈ T , is an admissible control that is
satisfying the relation (54), then pair (x(t, v), p(t, u0, v)), as t ∈ T , satisfies the
boundary-value problem (14) and (15). So, the boundary-value improvement
problem (14) and (15) in state space reduces to the condition (54) on the set
of admissible controls V .

In the problem, linear with respect to state (1) and (2) for solving the
improvement control problem u0 ∈ V it is sufficient to solve two Cauchy
problems in state space. These problems are received from decomposition of
the boundary-value improvement problem. Note that here the condition (54)
has the following form

v(t) = u∗(ψ(t, u0), x(t, v), t), t ∈ T. (55)

In the problem, nonlinear with respect to state (1) and (2) for improvement
u0 it is possible to use method for solving the relation (54) on the set of
admissible controls.
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The difficulties in realization of the condition (54) are analogous to diffi-
culties in solving the corresponding boundary-value improvement problem. In
common case these difficulties are connected with possible multi-valuedness
and discontinuity of the mapping u∗.

In this section perturbation method for the condition (54) is justified. To
solve the perturbed condition the method of successive approximations is used.
On each iteration of this method the problem as complicated as unperturbed
one is solved. As the unperturbed condition the relation of type (55) is defined.
To solve this relation it is sufficient to solve two Cauchy problems. Let us
isolate the linear part with respect to state from the nonlinear problem (1)
and (2) and represent the problem in the form

Φ(u) = 〈c0, x(t1)〉+ ϕ1(x(t1)) +
∫

T

(〈a0(u(t), t), x(t)〉+ (56)

+d0(u(t), t) + F1(x(t), u(t), t))dt→ min
u∈V

,

ẋ(t) = A0(u(t), t)x(t) + b0(u(t), t) + f1(x(t), u(t), t), x(t0) = x0,

u(t) ∈ U, t ∈ T = [t0, t1], (57)

where the vector-valued function f1(x, u, t) and the function F1(x, u, t) are
quadratic with respect to variable x and discontinuous in the variables u, t on
the set Rn×U×T ; the function ϕ1(x) is quadratic on Rn, the matrix function
A0(u, t), the vector-valued functions a0(u, t), b0(u, t), the function d0(u, t) are
continuous in the variables u, t on the set U × T , c0 is a constant vector.

The Pontryagin function and modified adjoint system in the problem (56)
and (57) take the form

H(ψ, x, u, t) = 〈ψ,A0(u, t)x+ b0(u, t) + f1(x, u, t)〉 −
− 〈a0(u, t), x〉 − d0(u, t)− F1(x, u, t),

ṗ(t) = − AT
0 (u(t), t)p(t) + a0(u, t)− fT

1x(x(t), u(t), t)p(t) +
+ F1x(x(t), u(t), t)−
− 1

2
[fT

1x(x(t), u(t), t)p(t)− F1x(x(t), u(t), t)]xy(t), t ∈ T,

p(t1) = −c0 − ϕ1x(x(t1))− 1
2
ϕ1xx(x(t1))y(t1).

Let us define the perturbed improvement condition with a perturbation pa-
rameter ε ∈ [0, 1]

v(t) = u∗ε(pε(t, u0, v), xε(t, v), t), t ∈ T, (58)

where xε(t, v), t ∈ T , is a solution of the perturbed phase system

ẋ(t) = A0(u(t), t)x(t) + b0(u(t), t) + εf1(x(t), u(t), t), x(t0) = x0,

as u(t) = v(t); and pε(t, u0, v), t ∈ T , is a solution of the perturbed adjoint
system
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ṗ(t) = −AT
0 (u(t), t)p(t) + a0(u(t), t)− ε(fT

1x(x(t), u(t), t)p(t)−
−F1x(x(t), u(t), t) +

1
2
[fT

1x(x(t), u(t), t)p(t)−
−F1x(x(t), u(t), t)]xy(t)), t ∈ T,

p(t1) = −c0 − ε(ϕ1x(x(t1)) +
1
2
ϕ1xx(x(t1))y(t1))

as u(t) = u0(t), x(t) = x(t, u0), y(t) = x(t, v) − x(t, u0). The perturbed
mapping u∗ε is formed by the perturbed Pontryagin function.

Hε(ψ, x, u, t) = 〈ψ,A0(u, t)x+ b0(u, t)〉 − 〈a0(u, t), x〉 − d0(u, t)+

+ε(〈ψ, f1(x, u, t)〉 − F1(x, u, t)),

using the formula

u∗ε(ψ, x, t) = arg max
w∈U

Hε(ψ, x,w, t), ψ ∈ Rn, x ∈ Rn, t ∈ T.

So, the perturbed condition (58) is an improvement condition for the per-
turbed optimal control problem

Φε(u) = 〈c0, x(t1)〉+ εϕ1(x(t1)) +

+
∫

T

(〈a0(u(t), t), x(t)〉+
+d0(u(t), t) + εF1(x(t), u(t), t))dt→ min

u∈V
, (59)

ẋ(t) = A0(u(t), t)x(t) + b0(u, t) + εf1(x(t), u(t), t), x(t0) = x0,

u(t) ∈ U, t ∈ T = [t0, t1]. (60)

The input optimal control problem (56) and (57) corresponds to the perturbed
problem (59) and (60) for ε = 1.

Unperturbed improvement condition is obtained from the perturbed one
(58) as ε = 0, and has the form

v(t) = u∗0(p0(t, u0), x0(t, v), t), t ∈ T, (61)

where x0(t, v), t ∈ T , is a solution of the unperturbed phase system

ẋ(t) = A0(u(t), t)x(t) + b0(u(t), t), x(t0) = x0, t ∈ T,

as u(t) = v(t); and p0(t, u0), t ∈ T , is a solution of the unperturbed adjoint
system

ṗ(t) = −AT
0 (u(t), t)p(t) + a0(u(t), t), t ∈ T, p(t1) = −c0

as u(t) = u0(t). The unperturbed mapping u∗0 is formed by the unperturbed
Pontryagin function.
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H0(ψ, x, u, t) = 〈ψ,A0(u, t)x+ b0(u, t)〉 − 〈a0(u, t), x〉 − d0(u, t)

and is defined by the formula

u∗0(ψ, x, t) = arg max
w∈U

H0(ψ, x,w, t), ψ ∈ Rn, x ∈ Rn, t ∈ T.

The unperturbed Pontryagin function, phase and adjoint systems are obtained
from the corresponding perturbed ones as ε = 0.

So, the unperturbed improvement condition (61) corresponds to improve-
ment condition in the unperturbed optimal control problem that has the fol-
lowing form

Φ0(u) = 〈c0, x(t1)〉+
+

∫
T

(〈a0(u(t), t), x(t)〉+ d0(u(t), t))dt→ min
u∈V

, (62)

ẋ(t) = A0(u(t), t)x(t) + b0(u(t), t), x(t0) = x0, t ∈ T = [t0, t1]. (63)

Obviously, the unperturbed problem (62) and (63) is obtained from the per-
turbed optimal control problem (59) and (60) as ε = 0.

Complexity of solving the unperturbed relation (61) is defined by Cauchy
problem for the unperturbed adjoint system and by Cauchy problem for the
phase system

ẋ(t) = A0(u∗0(p̄0(t), x(t), t), t)x(t) + b0(u∗0(p̄0(t), x(t), t), t),
x(t0) = x0,

(64)

where p̄0(t) = p(t, u0), t ∈ T .
Let x̄0(t), t ∈ T , be a solution of the Cauchy problem (64) (probably,

not unique), moreover, the output control v̄0(t) = u∗0(p̄0(t), x̄0(t), t), t ∈ T ,
is admissible. Then x̄0(t) = x0(t, v̄0), t ∈ T , and, therefore, v̄0(t), t ∈ T , is a
solution of the unperturbed condition (61).

Iterative solution process for the perturbed relation (58) with a pertur-
bation parameter ε ∈ [0, 1] consists in solving the problem as difficult as the
unperturbed condition (61) on each iteration and has the form

vk+1(t) = u∗ε(pε(t, u0, vk), xε(t, vk+1), t), t ∈ T, k ≥ 0. (65)

The initial approximation v0 ∈ V is given.
In the context of the phase and adjoint system of variables the iterative

process (65) corresponds to the process

ẋk+1
ε (t) = A0(u∗ε(p

k
ε(t), xk+1

ε (t), t), t)xk+1
ε (t) + b0(u∗ε(p

k
ε(t), xk+1

ε (t), t), t)+

+εf1(xk+1
ε (t), u∗ε(p

k
ε(t), xk+1

ε (t), t), t), xk+1
ε (t0) = x0,

ṗk
ε(t) = −AT

0 (u0(t), t)pk
ε(t) + a0(u0(t), t)− ε(fT

1x(x(t, u0), u0(t), t)pk
ε(t)−

−F1x(x(t, u0), u0(t), t) +
1
2
[fT

1x(x(t, u0), u0(t), t)pk
ε(t)−
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−F1x(x(t, u0), u0(t), t)]x(xk
ε(t)− x(t, u0)), t ∈ T,

pk
ε(t1) = −c0 − ε(ϕ1x(x(t1, u0)) +

1
2
ϕ1xx(x(t1, u0))(xk

ε(t1)− x(t1, u0))),

where xk
ε(t) = xε(t, vk), pk

ε(t) = pε(t, u0, vk), t ∈ T . Transition k → k + 1 is
realized by successive solving of two Cauchy problems and formation of the
control vk+1(t) = u∗ε(p

k
ε(t), xk+1

ε (t), t), t ∈ T .
In case of nonuniqueness for recurrent vk+1, it is possible to choose a

solution that provides the greatest decrease in target functional of the input
problem. In practice, the iteration process is performed till first improvement
of the input control u0 occurs. For the initial approximation v0 ∈ V it is
possible to choose solution v̄0 of the unperturbed problem (61).

Under certain assumptions it is possible to justify the iterative process
convergence (65).

Let us represent the iterative process in the form

vk+1 = Gε(vk), k ≥ 0, (66)

where operator Gε is a superposition of three operators.
The first operator Pε is defined on the basis of the perturbed adjoint system

using the relation

Pε(v) = pε, v ∈ V, pε(t) = pε(t, u0, v), t ∈ T.
The second operator X∗ε is defined by solution x∗ε(t, p), t ∈ T , of the perturbed
Cauchy problem

ẋ(t) = A0(u∗ε(p(t), x(t), t), t)x(t) + b0(u∗ε(p(t), x(t), t), t)+
+εf1(x(t), u∗ε(p(t), x(t), t), t), x(t0) = x0, t ∈ T = [t0, t1]

(67)

on the basis of the relation

X∗ε (p) = x∗ε, p ∈ C(T ), x∗ε(t) = x∗ε(t, p), t ∈ T.
The third operator V ∗ε has the following form:

V ∗ε (p, x) = v∗ε , p ∈ C(T ), x ∈ C(T ), v∗ε (t) = u∗ε(p(t), x(t), t), t ∈ T.
Finally, Gε is represented in the form of composition

Gε(v) = V ∗ε (Pε(v), X∗ε (Pε(v))).

Let us introduce an operator on the basis of the solution xε(t, v), t ∈ T for
the perturbed phase system (60)

Xε(v) = xε, v ∈ V, xε(t) = xε(t, v), t ∈ T.
Then the mapping X∗ε satisfies the relation
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X∗ε (p) = Xε(V ∗ε (p,X∗ε (p))).

Hence, we obtain the condition X∗ε (Pε(vk)) = Xε(vk+1), i.e. the iterative
process (65) can be represented in the implicit form

vk+1 = V ∗ε (Pε(vk), Xε(vk+1)), k ≥ 0.

Consider the operator equation

v = Gε(v), v ∈ V. (68)

Let v ∈ V be a solution of the perturbed problem (58). Then xε(t, v), t ∈ T
satisfies the problem (67) as p(t) = pε(t, u0, v), t ∈ T . Therefore, xε(t, v) =
x∗ε(t, pε), t ∈ T , where pε(t) = pε(t, u0, v), t ∈ T . So v is a solution of the
problem (68). In contrary, if v ∈ V is a solution (68) then x∗ε(t, pε) = xε(t, v),
t ∈ T , i.e. v satisfies the condition (58).

So, the perturbed problem (58) with parameter ε ∈ [0, 1] is equivalent to
the perturbed operator equation (68).

The input problem (55) is written by using the operator Gε at parameter’s
value ε = 1 and has the form

v = G1(v), v ∈ V.

The following unperturbed operator equation

v = G0(v), v ∈ V,

corresponds to the unperturbed problem (61). This unperturbed operator
equation is obtained from the perturbed equation (68) as ε = 0. Operator
G0 is defined by using the corresponding operators P0, X∗0 , V ∗0 , X0. In this
case P0(v) = p̄0 ∈ C(T ), v ∈ V , X∗0 (p0) = x̄0 ∈ C(T ), V ∗0 (p̄0, x̄0) = v̄0 ∈ V is
a solution of (61).

The iterative process (66) has a form of standard simple iteration method
for solving the operator Equation (68). Conditions of convergence of simple
iteration method can be defined on the basis of the known principle of con-
traction mappings. Let us formulate an analog of the known theorem [10].

Consider the operator G : V → V , acting on the set V in completed
normalized space of functions, that are defined on the set T with values in
the compact set U ⊂ Rm, with the norm ‖·‖V .

For solving the operator equation

v = G(v), v ∈ V (69)

the simple iteration method is considered

vk+1 = G(vk), k ≥ 0. (70)
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Theorem 5. Let the operator G satisfies the Lipschitz condition in the ball
B(v0, l) = {v ∈ V : ‖v − v0‖V ≤ l, v0 ∈ V, l > 0} with a constant 0 < M =
M(v0, l) < 1

‖G(v)−G(u)‖V ≤M ‖v − u‖V , v ∈ B(v0, l), u ∈ B(v0, l), (71)

moreover, the following condition is fulfilled

‖G(v0)− v0‖V ≤ (1−M)l. (72)

Then the Equation (69) has a unique solution v̄ ∈ B(v0, l) and the simple
iteration method (70) converges to v̄ in the norm ‖·‖V at any initial approxi-
mation v0 ∈ B(v0, l). The following estimate is correct for method error:∥∥vk − v̄

∥∥
V
≤Mk

∥∥v0 − v̄
∥∥

V
, k ≥ 0.

The theorem proof is similar to the proof illustrated in the work [10].
Note that the condition (72) is introduced in order that the iterative pro-

cess approximations (70) fall outside the limits of the set B(v0, l), where the
Lipschitz condition (71) is fulfilled.

Let us use Theorem 5 to justify convergence of the iterative process (66)
on the set

V = {u ∈ L∞(T ) : u(t) ∈ U, t ∈ T}
of essentially restricted functions measurable on T with values in the convex
compact set U ⊂ Rm with the norm ‖·‖∞.

The necessity of imbedding of piecewise continuous admissible controls
on T into space L∞(T ) is connected with using properties of convergence of
fundamental element sequence in complete normalized space.

Assume that the family of phase trajectories of perturbed system (60) at
sufficiently small ε > 0 is bounded

xε(t, u) ∈ X, t ∈ T, u ∈ V, (73)

where X ⊂ Rn is a convex compact set, and the function fε(x, u, t) =
A0(u, t)x + b0(u, t) + εf1(x, u, t) satisfies the Lipschitz condition with a con-
stant M > 0

‖fε(x, u, t)− fε(x, v, t)‖ ≤M ‖u− v‖ , u, v ∈ U, x ∈ X, t ∈ T.

Note that the sufficient boundedness condition (73) is fulfillment of the known
estimate [1, 8, 11]

‖fε(x, u, t)‖ ≤ C(‖x‖+ 1), x ∈ Rn, u ∈ U, t ∈ T. (74)

Since the function fε(x, u, t) is quadratic with respect to x, the Lipschitz
condition is fulfilled
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‖fε(x, u, t)− fε(y, u, t)‖ ≤M1 ‖x− y‖ , x ∈ X, y ∈ X, u ∈ U, t ∈ T.
where M1 = const > 0.

Hence, using the Gronwall–Bellman lemma [8, 9], it is possible to show
that the operator Xε : u→ xε(t, u), t ∈ T , satisfies the Lipschitz condition

‖Xε(u)−Xε(v)‖C ≤M2 ‖u− v‖∞ , u ∈ V, v ∈ V, (75)

where M2 = const > 0.
Note that by virtue of linearity of the adjoint system the boundedness

condition for the family of adjoint trajectories at small ε > 0 is fulfilled on
the basis of the sufficient condition (74)

pε(t, u0, u) ∈ P, t ∈ T, u ∈ V,
where P ⊂ Rn is a convex compact set.

The difference qε(t, u0, v, u) = pε(t, u0, v)− pε(t, u0, u), t ∈ T , satisfies the
linear problem

q̇(t) = −AT
0 (u0(t), t)q(t)− ε(fT

1x(x(t, u0), u0(t), t)q(t) +

+
1
2
([fT

1x(x(t, u0), u0(t), t)pε(t, u0, v)]xxε(t, v)−

−[fT
1x(x(t, u0), u0(t), t)pε(t, u0, u)]xxε(t, u)−

−[fT
1x(x(t, u0), u0(t), t)q(t)]xx(t, u0)−

−F1xx(x(t, u0), u0(t), t)(xε(t, v)− xε(t, u)))),

q(t1) = −ε1
2
ϕ1xx(x(t1, u0))(xε(t1, v)− xε(t1, u)), t ∈ T.

Hence, taking into account lemma 1 and the Lipschitz condition (75), it is
easy to obtain the following estimate for the function qε(t, u0, v, u), t ∈ T :

‖qε‖C ≤ εC1 ‖v − u‖∞ , v ∈ V, u ∈ V,
where C1 = const > 0. So, the operator Pε satisfies the Lipschitz condition
with a constant of order ε > 0

‖Pε(v)− Pε(u)‖C ≤ εC1 ‖v − u‖∞ , v ∈ V, u ∈ V. (76)

Note that as ε = 0 we have P0(v) = p̄0, v ∈ V , and therefore, the Lipschitz
condition (76) is correct as ε = 0.

Assume that operators X∗ε and V ∗ε at sufficiently small ε ≥ 0 satisfy the
Lipschitz condition with respect to variables p ∈ C(T ), x ∈ C(T ) in the
corresponding balls B1(p̄0, l1) and B2(p̄0, x̄0, l2) of radii l1 > 0 and l2 > 0 cen-
tered at points p̄0 and (p̄0, x̄0), where p̄0 and x̄0 = X∗0 (p̄0) are corresponding
solutions of unperturbed phase and adjoint systems,
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‖X∗ε (p)−X∗ε (q)‖C ≤ C2 ‖p− q‖C , p ∈ B1(p̄0, l1), q ∈ B1(p̄0, l1),

‖V ∗ε (p, x)− V ∗ε (q, y)‖2 ≤ C3(‖p− q‖C + ‖x− y‖C),

(p, x) ∈ B2(p̄0, x̄0, l2), (p, x) ∈ B2(p̄0, x̄0, l2),

where C2 = C2(p̄0, l1) > 0, C3 = C3(p̄0, x̄0, l2) > 0 do not depend on ε.
Then the operator Gε at small ε ≥ 0 satisfies the Lipschitz condition in

certain ball B(v̄0, l) of radius l > 0 with the Lipschitz constant of order ε

‖Gε(v)−Gε(u)‖∞ ≤ εC ‖v − u‖∞ ,
v ∈ B(v̄0, l), u ∈ B(v̄0, l),

(77)

where v̄0 = V ∗0 (p̄0, x̄0) is a solution of the unperturbed problem (61), C =
C(v̄0, l) > 0.

Note that there is single-valuedness of mappings X∗ε , V ∗ε , and Gε in ac-
cepted assumptions at sufficiently small ε ≥ 0 in view of fulfillment of Lip-
schitz conditions. From single-valuedness of mappings X∗0 and V ∗0 it follows
that solutions p̄0 and v̄0 are unique.

Assume that there is a continuity of the operator Gε with respect to pa-
rameter ε at small ε ≥ 0 in the ball B(v̄0, l). Then the operator Gε is close to
G0 at small ε > 0 and, therefore, the condition (72) of Theorem 5 is realized
for the operator Gε at sufficiently small ε > 0 in the ball B(v̄0, l).

As a result, by Theorem 5 and taking into account the estimate (77),
the iterative process (66) at small ε > 0 converges in the norm ‖·‖∞ to
unique solution v̄ ∈ B(v̄0, l) of the perturbed problem (68) for any initial
approximation v0 ∈ B(v̄0, l).

Formulated conditions can be useful for analysis of proof scheme for itera-
tive process convergence, but usually it is difficult to verify them in practice.

Let us apply the perturbation method for realizing the projection improve-
ment condition in the problem linear in control and quadratic in state (6) and
(7) with the convex compact set U .

The boundary-value improvement problem for control u0 ∈ V on the ba-
sis of projection operation with a given parameter α > 0 (30) and (31) is
equivalent to projective condition on the set of admissible controls

v(t) = uα(p(t, u0, v), x(t, v), t), t ∈ T. (78)

Represent the problem (6) and (7) in the form (56) and (57), where the cor-
responding functions a0(u, t), d0(u, t), F1(x, u, t), A0(u, t), b0(u, t), f1(x, u, t)
are linear with respect to control. Let us form the perturbed optimal con-
trol problem (59) and (60) with perturbation parameter ε ∈ [0, 1] and the
unperturbed optimal control problem (62) and (63) (ε = 0).

The perturbed improvement condition with parameter ε ∈ [0, 1] is defined
as corresponding projective improvement condition in the perturbed problem
(59) and (60) and has the following form:

v(t) = uα
ε (pε(t, u0, v), xε(t, v), t), t ∈ T. (79)
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In this case the mapping uα
ε is introduced by using the perturbed Pon-

tryagin function in the form

Hε(ψ, x, u, t) = 〈Hε1(ψ, x, t), u〉+Hε0(ψ, x, t)

by the relation

uα
ε (ψ, x, t) = PU (u0(t) + αHε1(ψ, x, t)), ψ ∈ Rn, x ∈ Rn, t ∈ T.

The condition (78) is obtained from (79) as ε = 1.
Represent the perturbed condition (79) in the operator form

v = Gα
ε (v), v ∈ V,

where the operator Gα
ε is a superposition of three operators.

The first operator Pε : v → pε(t, u0, v), t ∈ T , is introduced on the basis
of the perturbed adjoint system. The second operator Xα

ε is defined by the
solution xα

ε (t, p), t ∈ T , for the continuous perturbed Cauchy problem

ẋ(t) = A0(uα
ε (p(t), x(t), t), t)x(t) + b0(uα

ε (p(t), x(t), t), t) +
+εf1(x(t), uα

ε (p(t), x(t), t), t), x(t0) = x0, t ∈ T = [t0, t1],

using the relation

Xα
ε (p) = xα

ε , p ∈ C(T ), xα
ε (t) = xα

ε (t, p), t ∈ T.
The third operator is defined by the formula

V α
ε (p, x) = vα

ε , p ∈ C(T ), x ∈ C(T ), vα
ε (t) = uα

ε (p(t), x(t), t), t ∈ T.
On the whole, Gα

ε is formed in the composition

Gα
ε (v) = V α

ε (Pε(v), Xα
ε (Pε(v))).

Using the defined operator Xε : v → xε(t, v), t ∈ T , on the basis of solution
for the perturbed phase system (60), the mapping Xα

ε is represented in the
form

Xα
ε (p) = Xε(V α

ε (p,Xα
ε (p))).

To solve the perturbed problem (79) the iterative process is considered

vk+1(t) = uα
ε (pε(t, u0, vk), xε(t, vk+1), t), t ∈ T, k ≥ 0; (80)

this has the operator form

vk+1 = Gα
ε (vk), k ≥ 0.

Note that, since the conditionXα
ε (Pε(vk)) = Xε(vk+1) is fulfilled, the iterative

process (80) can be represented in the implicit operator form
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vk+1 = V α
ε (Pε(vk), Xε(vk+1)), k ≥ 0.

Let us analyze convergence of the method (80) on the set of admissible controls

V = {v ∈ C(T ) : v(t) ∈ U, t ∈ T}
using the operator representation and Theorem 5.

Assume that the boundedness condition (73) at all ε ∈ [0, 1] is fulfilled.
Hence on the basis of fulfillment of the Lipschitz condition for projection

operator PU we obtain

‖xα
ε (t, p)xα

ε (t, q)‖ = ‖xε(t, V α
ε (p,Xα

ε (p)))− xε(t, V α
ε (q,Xα

ε (q)))‖ ≤
≤M3

∫
T

‖V α
ε (p,Xα

ε (p))− V α
ε (q,Xα

ε (q))‖ dt ≤

≤ αM4

∫
T

‖Hε1(p(t), xα
ε (t, p), t)−Hε1(q(t), xα

ε (t, q), t)‖ dt ≤

≤ αM0(‖p− q‖C + ‖xα
ε (t, p)− xα

ε (t, q)‖C), t ∈ T, p ∈ C(T ), q ∈ C(T ),

where M3 = const > 0, M4 = const > 0, M0 = const > 0. Therefore, at
sufficiently small α > 0 the operator Xα

ε satisfies the Lipschitz condition in
the space C(T )

‖Xα
ε (p)−Xα

ε (q)‖C ≤
αM0

1− αM0
‖p− q‖C ,

where 0 < αM0 < 1.
For operator V α

ε we have

‖uα
ε (p(t), x(t), t)− uα

ε (q(t), y(t), t)‖ =
= α ‖Hε1(p(t), x(t), t)−Hε1(q(t), y(t), t)‖ ≤
≤ αC4(‖p− q‖C + ‖x− y‖C), t ∈ T, p, x, q, y ∈ C(T ),

where C4 = const > 0. Therefore

‖V α
ε (p, q)− V α

ε (q, y)‖C ≤ αC4(‖p− q‖C + ‖x− y‖C), p, x, q, y ∈ C(T ).

So, the operator V α
ε satisfies the Lipschitz condition in the variables with a

constant proportional to parameter α > 0.
In view of fulfillment of the Lipschitz condition (76) for the operator Pε

with a constant proportional to ε > 0, finally, we obtain the Lipschitz condi-
tion for the operator Gα

ε at all ε ∈ [0, 1] in the form

‖Gα
ε (v)−Gα

ε (u)‖C ≤ ε
αC0

1− αM0
‖v − u‖C , v ∈ V, u ∈ V,

where C0 = const > 0.
On the whole, by Theorem 5 we obtain the following statement concerning

decidability of the perturbed problem (79) and the process convergence (80).
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Theorem 6. Let the family of perturbed phase trajectories of system (60) in
the problem (6) and (7) with the convex compact set U be bounded: xε(t, u) ∈
X, t ∈ T , u ∈ V , ε ∈ [0, 1], where X ⊂ Rn is a convex compact set. Then for
given sufficiently small projection parameter α > 0 as 0 < ε < ε̄ = 1−αM0

αC0
,

C0 = const > 0, M0 = const > 0

(1) The perturbed condition (79) has a unique solution v̄α ∈ V ;
(2) The iterative process (80) converges in the norm ‖·‖C to the solution v̄α

for any initial approximation v0 ∈ V .

Corollary 2. Under conditions of Theorem 6 at sufficiently small α > 0

(1) The perturbed relation (79) as ε = 1 has a unique solution v̄α ∈ V ;
(2) The iterative process (80) as ε = 1 with any admissible initial approxima-

tion v0 ∈ V converges in the norm ‖·‖C to the solution v̄α.

2.5 Projective Perturbation Method for Improvement Condition

The problem linear in control and quadratic in state (6) and (7) is considered.
For given control u0 ∈ V and fixed α > 0 let us represent the improvement

condition (78) in control space in the form

v(t) = PU (u0(t) + αH1(p(t, u0, v), x(t, v), t)), t ∈ T. (81)

Let us consider a projection parameter α > 0 as a perturbation parameter and
call the condition (81) perturbed. The unperturbed condition is obtained from
the perturbed one (1.5.1) as α = 0, and has the obvious solution v(t) = u0(t),
t ∈ T .

The iterative process for solving the perturbed relation (81) has the form

vk+1(t) = PU (u0(t) + αH1(p(t, u0, vk), x(t, vk), t)), t ∈ T. (82)

The other iterative process for the problem (81) has the implicit form

vk+1(t) = PU (u0(t) + αH1(p(t, u0, vk), x(t, vk+1), t)), t ∈ T. (83)

An initial approximation v0 ∈ V is prescribed on the initial (zero) iteration.
Note that the process (83) coincides with the solving process (80) for

the perturbed problem (79) as ε = 1, that corresponds to the input prob-
lem (81). Therefore, Corollary 2 defines the condition for process convergence
(83).

Let us formulate conditions for process convergence (82) using Theorem 5
on the set V = {v ∈ C(T ) : v(t) ∈ U, t ∈ T}. For this purpose we will describe
the perturbed problem (81) with respect to parameter α > 0 and the process
(82) for solving this problem in the operator form

v = Gα(v), v ∈ V, (84)

vk+1 = Gα(vk), k ≥ 0. (85)
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The operator Gα can be represented in the form of superposition of operators
Pε, V α

ε , Xε introduced in Section 2.4 as ε = 1

Gα(v) = V α
1 (P1(v), X1(v)), v ∈ V.

In view of properties of the projection operator PU the mapping Gα, α > 0
is a single valued.

The unperturbed problem

v = G0(v), v ∈ V,

is defined by the operator G0 : v → u0, v ∈ V . Therefore, u0 is a unique
solution of the unperturbed problem. In this case G0 is obtained from Gα, if
assume α = 0.

Assume that the family of phase trajectories is bounded on the set V :
x(t, v) ∈ X, t ∈ T , v ∈ V , where X ⊂ Rn is a convex compact set.

Then similarly to (75) and (76) we obtain that operators P1 and X1 satisfy
the Lipschitz condition with a constant C1 > 0

‖X1(v)−X1(u)‖C ≤ C1 ‖v − u‖C , v ∈ V, u ∈ V, (86)

‖P1(v)− P1(u)‖C ≤ C1 ‖v − u‖C , v ∈ V, u ∈ V. (87)

On the basis of the Lipschitz condition for the projection operator PU we
obtain

‖uα(p(t), x(t), t)− uα(q(t), y(t), t)‖
= α ‖H1(p(t), x(t), t)−H1(q(t), y(t), t)‖
≤ αC2(‖p− q‖C + ‖x− y‖C), t ∈ T, p, x, q, y ∈ C(T ),

where C2 = const > 0. Therefore,

‖V α
1 (p, q)− V α

1 (q, y)‖C ≤ αC2(‖p− q‖C + ‖x− y‖C),
p, x, q, y ∈ C(T ). (88)

So, the operator V α
1 satisfies the Lipschitz condition with a constant, propor-

tional to parameter α > 0. From conditions (86), (87), and (88) it follows that
the operator Gα satisfies the Lipschitz condition with a constant, proportional
to α > 0

‖Gα(v)−Gα(u)‖C ≤ α2C1C2 ‖v − u‖C , v ∈ V, u ∈ V.

On the whole, by Theorem 5, the iterative process (85) at small α > 0 con-
verges to a unique solution of the perturbed problem (84) for any initial
approximation v0 ∈ V .

So, the following convergence theorem is proved.
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Theorem 7. Let the family of phase trajectories in the problem linear with
respect to control and quadratic with respect to state (6) and (7) with the
convex compact set U ⊂ Rm be bounded: x(t, u) ∈ X, t ∈ T , u ∈ V , where X ⊂
Rn is a convex compact set. Then for a sufficient small projection parameter
α > 0

(1) the problem (81) has a unique solution v̄α ∈ V ;
(2) the iterative process (82) converges in the norm ‖·‖C to a solution v̄α

for any initial approximation v0 ∈ V .

Note that under conditions of Theorem 7 the solution of the perturbed
problem (81) for control u0 ∈ V , satisfying the maximum principle, coincides
with u0 since its uniqueness.

For initial approximation of iterative processes (82) and (83) in solving the
perturbed problem (81) for control u0 ∈ V that is not satisfying the maximum
principle, it is possible to choose the initial approximation v0 = u0. In this
case for sufficiently small α > 0, according to Theorem 7, Corollary 2 and the
improvement estimate (32), the strict improvement of control u0 of iterative
processes is guaranteed.

The perturbation method of projective improvement condition in control
space without crucial variations generalizes to optimal control problems, which
are polynomial with respect to state, including problems with time delay.

Note that projective perturbation method is advantageously different from
perturbation methods with artificial perturbation parameter ε ∈ [0, 1] . In
projective perturbation method the control u0 ∈ V is being improved by
solving the perturbed problem (81) for any projective parameter α > 0. In
common case solving perturbed problems with a parameter 0 < ε < 1 does
not guarantee improvement of the control u0.

In conclusion let us extract the primary properties of developed perturba-
tion methods.

1. The absence of operation of parametric search for the improving control.
2. Nonlocal character of improvement that is caused by fixity of perturbation

parameter.
3. Possibility for improvement of controls, satisfying the maximum principle.

3 Perturbation Methods in the Main Optimal Control
Problem

The known approach to solving optimal control problem is reduction to a
double-point boundary-value problem for ordinary differential equations on
the basis of necessary optimality condition with consequent solving of the
obtained boundary-value problem by numerical method. In common case the
difficulties in solving a boundary-value problem in state space are connected
with presence of positive real parts of eigenvalues for Jacobi matrix. It is also
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connected with possible discontinuity of the right-hand side of boundary-value
problem with respect to phase variables.

Methods of maximum principle provide a convergence of residual of the
boundary-value problem for maximum principle to zero on improving con-
trol approximations. So, these methods permit one to solve a boundary-value
problem in control space. The advantages of these methods are computational
stability of phase and adjoint subsystems for a boundary-value problem, and
relaxation on target functional on each iteration of methods. The relaxation
is provided with respect to small parameter that regulates a domain of weak
or needle-shaped control variation. This parametric search is the most labor-
consuming part of the iterative process. Moreover, the operation of control
variation can form a calculated control which is hard to realize in practice.
The small deviation of this control leads to inadmissible change of target
functional in comparison with the calculated value.

In this chapter the iterative methods for calculation of extremum con-
trols (which are satisfying the maximum principle) are considered. Considered
methods do not contain an operation of parametric search for the improv-
ing control. Proposed methods are applied for solving necessary optimality
conditions in the main optimal control problem. In design the methods are
similar to perturbation methods, that were developed in the previous chap-
ter in order to solve improvement conditions in polynomial optimal control
problems.

3.1 The Main Optimal Control Problem

The main optimal control problem is considered

Φ(u) = ϕ(x(t1)) +
∫

T

F (x(t), u(t), t)dt→ min
u∈V

, (89)

ẋ(t) = f(x(t), u(t), t), x(t0) = x0, u(t) ∈ U, t ∈ T = [t0, t1], (90)

where x(t) = (x1(t), ..., xn(t)) is a state vector, u(t) = (u1(t), ..., um(t)) is a
control vector. As admissible controls the set V of functions piecewise contin-
uous on T with values in the convex compact set U ⊂ Rm is considered. The
initial state x0 and the control interval T are given.

Introduce the following set of assumptions for the problem (89) and (90)
(DMP conditions):

1. function ϕ(x) is continuously differentiable on Rn, vector-valued func-
tion F (x, u, t), vector function f(x, u, t), and its derivatives Fx(x, u, t),
Fu(x, u, t), fx(x, u, t), fu(x, u, t) are continuous in the arguments (x, u, t)
on the set Rn × U × T ;

2. function f(x, u, t) satisfies the Lipschitz condition with respect to x in
Rn × U × T with a constant L > 0
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‖f(x, u, t)− f(y, u, t)‖ ≤ L ‖x− y‖ .
DMP conditions guarantee [11] existence and uniqueness of solution x(t, v),
t ∈ T , for the system (90) for any admissible control v(t), t ∈ T .

Let us form the Pontryagin function with adjoint variable ψ ∈ Rn

H(ψ, x, u, t) = 〈f(x, u, t), ψ〉 − F (x, u, t).

For admissible control v ∈ V designate by ψ(t, v), t ∈ T , a solution of the
standard adjoint system

ψ̇(t) = −Hx(ψ(t), x(t), u(t), t), t ∈ T, ψ(t1) = −ϕx(x(t1)), (91)

as u(t) = v(t), x(t) = x(t, v).
Using mapping u∗, introduced in Chapter 2, the maximum principle for

control u ∈ V is represented in the form

u(t) = u∗(ψ(t, u), x(t, u), t), t ∈ T. (92)

The boundary-value problem of maximum principle has the following form:

ẋ(t) = f(x(t), u∗(ψ(t), x(t), t), t), x(t0) = x0, (93)

ψ̇(t) = −Hx(ψ(t), x(t), u∗(ψ(t), x(t), t), t), ψ(t1) = −ϕx(x(t1)). (94)

The boundary-value problem (93) and (94) in state space reduces to the point-
wise relation (92) on the set of admissible controls. In common case, right-hand
sides of the boundary-value problem are discontinuous with respect to phase
variables x, ψ.

In DMP conditions the differential maximum principle follows from the
maximum principle (92)

〈Hu(ψ(t, u), x(t, u), u(t), t), w − u(t)〉 ≤ 0, w ∈ U, t ∈ T. (95)

Define mapping wα, α > 0 using the relation

wα(ψ, x, u, t) = PU (u+ αHu(ψ, x, u, t)),
ψ ∈ Rn, x ∈ Rn, u ∈ U, t ∈ T, (96)

where PU is a projection operator to set U in Euclidean form.
On the basis of the Lipschitz condition for operator PU function wα is

continuous in the variables (ψ, x, u) ∈ Rn×Rn×U and piecewise continuous
with respect to t ∈ T . In this case the inequality takes place

〈Hu(ψ, x, u, t), wα(ψ, x, u, t)− u〉 ≥ 1
α
‖wα(ψ, x, u, t)− u‖2 . (97)

The estimate (97) is caused by properties of the operation of projection.
The differential maximum principle (95) for control u ∈ V using the map-

ping (96) is represented in the form
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u(t) = wα(ψ(t, u), x(t, u), u(t), t), t ∈ T, α > 0. (98)

Note that to fulfill (95) it is sufficient to examine the condition (98) at least for
one α > 0. Conversely, from the condition (95) it follows that (98) is fulfilled
for all α > 0.

In the problem, linear with respect to control (89) and (90) (functions
f(x, u, t), F (x, u, t) are linear with respect to u) the differential maximum
principle (98) is equivalent to the maximum principle (92).

Perturbation methods are proposed to use for solving the relation of the
maximum principle (92) and sufficient optimality condition (98).

3.2 Perturbation Method for Maximum Principle

Introduce a perturbation parameter ε ∈ [0, 1] into the condition of maximum
principle (92), considered in the form

v(t) = u∗(ψ(t, v), x(t, v), t), t ∈ T. (99)

To do this let us isolate from the problem (89) and (90) a special part, linear
in state, with variables separated in state and control. Represent this isolated
part in the form

Φ(u) = 〈c0, x(t1)〉+ ϕ1(x(t1)) +

+
∫

T

(〈a0(t), x(t)〉+ d0(u(t), t) + F1(x(t), u(t), t))dt→ min
u∈V

, (100)

ẋ(t) = A0(t)x(t) + b0(u(t), t) + f1(x(t), u(t), t), x(t0) = x0,

u(t) ∈ U, t ∈ T = [t0, t1], (101)

where matrix function A0(t) and vector function a0(t) are continuous on T ,
vector function b0(u, t) and function d0(u, t) are continuous in the variables
u, t on the set U × T , c0 is a constant vector.

Note that matrix function A0(t) and vector function a0(t) do not depend
on control, contrary to presentation of the polynomial problem in the form
(56) and (57)

Introduce a perturbed optimal control problem with a perturbation pa-
rameter ε ∈ [0, 1]

Φε(u) = 〈c0, x(t1)〉+ εϕ1(x(t1)) +

+
∫

T

(〈a0(t), x(t)〉+ d0(u(t), t) + εF1(x(t), u(t), t))dt→ min
u∈V

, (102)

ẋ(t) = A0(t)x(t) + b0(u(t), t) + εf1(x(t), u(t), t), x(t0) = x0,

u(t) ∈ U, t ∈ T = [t0, t1]. (103)
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The problem (102) and (103) is matched by the perturbed Pontryagin
function

Hε(ψ, x, u, t) = 〈ψ,A0(t)x+ b0(u, t)〉 − 〈a0(t), x〉 − d0(u, t)+

+ε(〈ψ, f1(x, u, t)〉 − F1(x, u, t)),

the perturbed mapping

u∗ε(ψ, x, t) = arg max
w∈U

Hε(ψ, x,w, t), ψ ∈ Rn, x ∈ Rn, t ∈ T,

and the perturbed adjoint system

ψ̇(t) = −AT
0 (t)ψ(t) + a0(t)− ε(fT

1x(x(t), u(t), t)ψ(t)− F1x(x(t), u(t), t)),

ψ(t1) = −c0 − εϕ1x(x(t1)), t ∈ T. (104)

Designate by xε(t, v), t ∈ T , a solution of the perturbed phase system (103)
as u(t) = v(t); by ψε(t, v), t ∈ T , a solution of the perturbed adjoint system
(104) as u(t) = v(t), x(t) = xε(t, v).

We will determine the maximum principle condition for the perturbed
problem (102) and (103)

v(t) = u∗ε(ψε(t, v), xε(t, v), t), t ∈ T, (105)

as a perturbed condition of maximum principle with a parameter ε ∈ [0, 1].
The input problem in the form (100) and (101), Pontryagin function H,

mapping u∗, the adjoint system (91), and the maximum principle condition
(99) are obtained, respectively, from the perturbed problem (102) and (103),
perturbed Pontryagin function Hε, perturbed mapping u∗ε, the perturbed ad-
joint system (104), and the perturbed condition (105) as ε = 1.

The unperturbed condition of maximum principle corresponds to the
unperturbed optimal control problem

Φ0(u) = 〈c0, x(t1)〉+
∫

T

(〈a0(t), x(t)〉+ d0(u(t), t))dt→ min
u∈V

, (106)

ẋ(t) = A0(t)x(t) + b0(u(t), t), x(t0) = x0, t ∈ T = [t0, t1], (107)

with the unperturbed Pontryagin function

H0(ψ, x, u, t) = 〈ψ,A0(t)x+ b0(u, t)〉 − 〈a0(t), x〉 − d0(u, t),

with the unperturbed mapping

u∗0(ψ, x, t) = arg max
w∈U

H0(ψ, x,w, t), ψ ∈ Rn, x ∈ Rn, t ∈ T,

with the unperturbed adjoint system
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ψ̇(t) = −AT
0 (t)ψ(t) + a0(t), t ∈ T, p(t1) = −c0. (108)

For v ∈ V designate by x0(t, v), t ∈ T , a solution of the unperturbed phase
system (107); by ψ̄0(t), t ∈ T , a solution of the unperturbed adjoint system
(108). The unperturbed maximum principle condition is obtained from (105)
as ε = 0 and has the form

v(t) = u∗0(ψ̄0(t), x0(t, v), t), t ∈ T. (109)

Unperturbed phase and adjoint systems, Pontryagin function H0, mapping u∗0
are obtained from corresponding perturbed ones as ε = 0.

Note that the unperturbed problem (106) and (107) is linearly convex,
for this the maximum principle (109) is necessary and sufficient condition of
control optimality [8, 9].

Complexity of solving the unperturbed relation (109) is defined by solving
the Cauchy problem for the adjoint system (108) and solving the Cauchy
problem for the phase system

ẋ(t) = A0(t)x(t) + b0(u∗0(ψ̄0(t), x(t), t), t), x(t0) = x0, t ∈ T. (110)

Let x̄0(t), t ∈ T , be a solution of the problem (110), and also the output
control v̄0(t) = u∗0(ψ̄0(t), x̄0(t), t), t ∈ T , is admissible. Then x̄0(t) = x0(t, v̄0),
t ∈ T , and, therefore, v̄0(t), t ∈ T , is a solution of the unperturbed system
(109).

The iterative process of solving the perturbed condition (105) with fixed
perturbation parameter ε ∈ (0, 1] consists in solving problem, similar to the
unperturbed condition (109) on each iteration, and has the form

vk+1(t) = u∗ε(ψε(t, v
k), xε(t, vk+1), t), t ∈ T, k ≥ 0. (111)

The initial approximation v0 ∈ V is given.
Function ψε(t, vk), t ∈ T , is a solution of the adjoint Cauchy problem

ψ̇(t) = −AT
0 (t)ψ(t) + a0(t)− ε(fT

1x(xε(t, vk), vk(t), t)ψ(t)−
−F1x(xε(t, vk), vk(t), t)), t ∈ T, ψ(t1) = −c0 − εϕ1x(xε(t1, vk)).

Let xε(t), t ∈ T , be a solution (probably, not unique) of the phase Cauchy
problem

ẋ(t) = A0(t)x(t) + b0(u∗ε(ψε(t, v
k), x(t), t), t) +

+εf1(x(t), u∗ε(ψε(t, v
k), x(t), t), t), x(t0) = x0.

Let us form the output control vk+1(t) = u∗ε(ψε(t, vk), xε(t), t), t ∈ T . It is
clear that xε(t) = xε(t, vk+1), t ∈ T , and, therefore vk+1(t), t ∈ T , satisfies
the process (111).

In case of nonuniqueness, a solution of the system (111), providing the least
value of residual for the maximum principle, can be chosen as a recurrent
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approximation vk+1. Achievement of given small value of residual for the
maximum principle can be a practical criterion for stopping of the iterative
process (111).

On initial (zero) iteration the unperturbed solution v̄0 can be chosen as
initial approximation v0 ∈ V of the process (111).

Under certain assumptions it is possible to justify convergence of the iter-
ative process (111).

Represent the perturbed condition (105) with a parameter ε ∈ [0, 1] in the
operator form

v = Gε(v), v ∈ V, (112)

where operator Gε is a superposition of three operators.
The first operator Ψε is defined on the basis of solution ψε(t, v), t ∈ T , of

the perturbed adjoint system (104) using the relation

Ψε(v) = ψε, v ∈ V, ψε(t) = ψε(t, v), t ∈ T.

The second operator X∗ε is defined by solution x∗ε(t, p), t ∈ T , of the discon-
tinuous perturbed Cauchy problem

ẋ(t) = A0(t)x(t) + b0(u∗ε(p(t), x(t), t), t) +
+εf1(x(t), u∗ε(p(t), x(t), t), t), x(t0) = x0, t ∈ T = [t0, t1],

on the basis of the relation

X∗ε (p) = x∗ε, p ∈ C(T ), x∗ε(t) = x∗ε(t, p), t ∈ T,

where C(T ) is a space of functions continuous on T .
The third operator V ∗ε is defined by the formula

V ∗ε (p, x) = v∗ε , p, x ∈ C(T ), v∗ε (t) = u∗ε(p(t), x(t), t), t ∈ T.

As a result, Gε is represented in the form of composition

Gε(v) = V ∗ε (Ψε(v), X∗ε (Ψε(v))).

Introduce operatorXε on the basis of solution xε(t, v), t ∈ T , for the perturbed
phase system (103)

Xε(v) = xε, v ∈ V, xε(t) = xε(t, v), t ∈ T.

Then mapping X∗ε can be represented as the relation

X∗ε (p) = Xε(V ∗ε (p,X∗ε (p))).

The input condition (99) is written using operator Gε as ε = 1 and has the
form

v = G1(v), v ∈ V.
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The unperturbed condition (109) takes the form

v = G0(v), v ∈ V
and is obtained from the perturbed one (112) as ε = 0. Here operator G0

is defined on the basis of corresponding operators Ψ0, X∗0 , V ∗0 , X0. We have
Ψ0(v) = ψ̄0 ∈ C(T ), v ∈ V , X∗0 (ψ̄0) = x̄0 ∈ C(T ), V ∗0 (ψ̄0, x̄0) = v̄0 ∈ V .

The iterative process (111) using operator Gε is written in the explicit
form

vk+1 = Gε(vk), k ≥ 0. (113)

Note that the condition X∗ε (Ψε(vk)) = Xε(vk+1) is fulfilled, i.e., the iterative
process (111) is represented in the implicit operator form

vk+1 = V ∗ε (Ψε(vk), Xε(vk+1)), k ≥ 0.

Convergence of the process (113) can be justified using Theorem 5 on the set
of admissible controls V = {u ∈ L∞(T ) : u(t) ∈ U, t ∈ T}.

Let us formulate the conditions such that operator Gε, at a sufficiently
small ε > 0, satisfies the conditions of the stated theorem.

Assume that a family of phase trajectories for the perturbed system (103)
is bounded at a sufficiently small ε > 0

xε(t, u) ∈ X, t ∈ T, u ∈ V, (114)

where X ⊂ Rn is a convex compact set. In this case, taking into consideration
DMP conditions and linearity of the adjoint system on the basis of sufficient
condition (74), we obtain the boundedness condition for the family of adjoint
trajectories for the system (104) at small ε > 0

ψε(t, u) ∈ P, t ∈ T, u ∈ V, (115)

where P ⊂ Rn is a convex compact set.
Taking into account fulfillment of the Lipschitz condition with respect to

x ∈ X for the function

fε(x, u, t) = A0(t)x+ b0(u, t) + εf1(x, u, t), ε ∈ [0, 1]

and using the Gronwall–Bellman lemma [8, 9], it is possible to show that
operator Xε : u → xε(t, u), t ∈ T , satisfies the Lipschitz condition at small
ε > 0

‖Xε(u)−Xε(v)‖C ≤M2 ‖u− v‖∞ , u ∈ V, v ∈ V, (116)

where M2 = const > 0.
Difference qε(t, v, u) = ψε(t, v)−ψε(t, u), t ∈ T , satisfies the linear problem

q̇(t) = −AT
0 (t)q(t)− ε(fT

1x(xε(t, v), v(t), t)ψε(t, v)−
−fT

1x(xε(t, u), u(t), t)ψε(t, u)−
−F1x(xε(t, v), v(t), t) + F1x(xε(t, u), u(t), t)),

q(t1) = −ε(ϕ1x(xε(t1, v))− ϕ1x(xε(t1, u))), t ∈ T.
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In addition to DMP conditions, assume that functions f(x, u, t), F (x, u, t),
ϕ(x) are twice continuously differentiable in the variables x, u, t on the set
Rn×U ×T . Then under fulfillment of the boundedness condition (114), func-
tions f(x, u, t), F (x, u, t), ϕ(x), and their derivatives with respect to x, u sat-
isfy the Lipschitz condition in the variables x ∈ X, u ∈ U with one Lipschitz
constant M1 > 0.

Hence, taking into account Lemma 1, the boundedness condition (115)
and the Lipschitz condition (116), for function qε(t, v, u), t ∈ T , we obtain the
estimate at small ε > 0:

‖qε‖C ≤ εC1 ‖v − u‖∞ , v ∈ V, u ∈ V,
where C1 = const > 0. So, operator Ψε satisfies the Lipschitz condition with
a constant of order ε > 0

‖Ψε(v)− Ψε(u)‖C ≤ εC1 ‖v − u‖∞ , v ∈ V, u ∈ V. (117)

As ε = 0, we have Ψ0(v) = ψ̄0, v ∈ V, and therefore, the Lipschitz condition
(117) is also fulfilled as ε = 0.

Assume that operators X∗ε , V ∗ε , at sufficiently small ε ≥ 0, satisfy the
Lipschitz condition with respect to variables p ∈ C2(T ), x ∈ C2(T ) in corre-
sponding balls B1(ψ̄0, l1) and B2(ψ̄0, x̄0, l2) of radii l1 > 0 and l2 > 0, centered
at points ψ̄0 and (ψ̄0, x̄0), where ψ̄0, x̄0 = X∗0 (ψ̄0) are corresponding solutions
of the unperturbed adjoint system (108) and the phase system (107),

‖X∗ε (p)−X∗ε (q)‖C ≤ C2 ‖p− q‖C ,

‖V ∗ε (p, x)− V ∗ε (q, y)‖2 ≤ C3(‖p− q‖C + ‖x− y‖C),

where C2 = C2(ψ̄0, l1) > 0, C3 = C3(ψ̄0, x̄0, l2) > 0 do not depend on ε.
Then at small ε ≥ 0, operator Gε satisfies the Lipschitz condition in a

certain ball B(v̄0, l) of radius l > 0 with the Lipschitz constant of order ε

‖Gε(v)−Gε(u)‖∞ ≤ εC0 ‖v − u‖∞ ,
v ∈ B(v̄0, l), u ∈ B(v̄0, l),

(118)

where v̄0 = V ∗0 (ψ̄0, x̄0) is a solution of the unperturbed problem (109), C0 =
C0(v̄0, l) > 0.

In this case note single valuedness of mappings X∗ε , V ∗ε , and Gε for suffi-
ciently small ε ≥ 0 in view of fulfillment of Lipschitz conditions. Uniqueness
of solutions ψ̄0 and v̄0 follows from single valuedness of mappings X∗0 , V ∗0 .

Assume that operator Gε is continuous with respect to parameter ε at
small ε ≥ 0 in the ball B(v̄0, l). Therefore, the condition (72) of Theorem 8 is
fulfilled for operator Gε at small ε > 0 in the ball B(v̄0, l).

As a result, according to Theorem 5, in view of the estimate (118) the
iterative process (113) at small ε > 0 converges in the norm ‖·‖∞ to a unique
solution v̄ ∈ B(v̄0, l) of the perturbed problem (112) for any initial approxi-
mation v0 ∈ B(v̄0, l).
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Having obtained convergence at certain ε < 1, we will increase ε, by taking
the perturbed solution at previous value ε as an initial approximation for the
iterative process. In case of convergence as ε = 1 we obtain a solution of the
input relation (99).

With the aim of comparison of proposed perturbation method for solving
the maximum principle (99) let us represent the known methods in notation
used.

The simplest method of successive approximations [12] for solving (99) can
be written in the form

vk+1(t) = u∗1(ψ1(t, v
k), x1(t, vk), t), t ∈ T.

Modification of the simplest method of successive approximations (algorithm
M1) [13] in the main problem (89) and (90) with ϕ(x) = 〈c, x〉 is obtained
under formation of the perturbed optimal control problem with a parameter
ε ∈ [0, 1] like (102) and (103) with A0(t) ≡ 0, b0(t) ≡ 0, a0(t) ≡ 0, d0(t) ≡ 0
and using the iterative process

vk+1(t) = u∗ε(ψε(t, v
k), xε(t, vk), t), t ∈ T.

Standard conditional gradient method [8, 9] for solving (99) is described by
the relations

v̄k(t) = u∗1(ψ1(t, v
k), x1(t, vk), t), t ∈ T,

vk
λ(t) = vk(t) + λ(v̄k(t)− vk(t)), t ∈ T,

λ ∈ [0, 1] : Φ(vk
λ) ≤ Φ(vk) ⇒ vk+1(t) = vk

λ(t), t ∈ T.
The needle-shaped linearization method [1] for solving (99) is characterized
by the relations

v̄k(t) = u∗1(ψ1(t, v
k), x1(t, vk), t), t ∈ T,

gk(t) = Δv̄kH(ψ1(t, v
k), x1(t, vk), vk(t), t), t ∈ T,

λmin = inf
t∈T

gk(t), λmax = sup
t∈T

gk(t),

vk
λ(t) =

{
vk(t), gk(t) ≤ λ,
v̄k(t), gk(t) > λ,

λ ∈ [λmin, λmax], t ∈ T,

λ ∈ [λmin, λmax] : Φ(vk
λ) ≤ Φ(vk) ⇒ vk+1(t) = vk

λ(t), t ∈ T.
The proposed perturbation method does not possess the property of compul-
sory relaxation on target functional on each iteration in contrast to gradient
methods and methods of maximum principle. Compensation of relaxation
property is the absence of operation of parametric search for the improv-
ing control and obtaining the output controls, acceptable in practice on each
iteration.
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Note that perturbation method of maximum principle generalizes to the
problems with delay in an obvious way.

3.3 Projective Perturbation Method for Optimality Condition

Let us consider the optimality condition (98) in the main problem (89) and
(90), represented in the form

v(t) = PU (v(t) + αHu(ψ(t, v), x(t, v), v, t)), t ∈ T, α > 0. (119)

We will consider a projection parameter α > 0 as a perturbation parameter,
we will call the condition (119) as perturbed condition. The unperturbed
condition is obtained from (119) as α = 0. Any admissible control v(t), t ∈ T ,
satisfies this condition.

Explicit iterative process of solving the perturbed condition (119) is rep-
resented in the form

vk+1(t) = PU (vk(t) + αHu(ψ(t, vk), x(t, vk), vk(t), t)), t ∈ T. (120)

Implicit iterative process for solving the system (119) has the form

vk+1(t) = PU (vk(t) + αHu(ψ(t, vk), x(t, vk+1), vk(t), t)), t ∈ T. (121)

On initial (zero) iteration the initial approximation v0 ∈ V is given.
For a fixed α > 0 let us formulate convergence conditions of processes

(120) and (121) on the basis of theorem 5. For this let us describe processes
(120) and (121) in the operator form

vk+1 = Uα(vk), v ∈ V, (122)

vk+1 = Gα(vk), v ∈ V. (123)

Define auxiliary operator V α by the relation

V α(ψ, x, v) = vα, v ∈ V, ψ ∈ C(T ), x ∈ C(T ),

vα(t) = PU (v(t) + αHu(ψ(t), x(t), v(t), t)), t ∈ T.
Define operator Xα as

Xα(p, v) = xα, p ∈ C(T ), v ∈ V, xα(t) = xα(t, p, v), t ∈ T,

where xα(t, p, v), t ∈ T , is a solution of Cauchy problem

ẋ(t) = f(x(t), wα(p(t), x(t), v(t), t), t), x(t0) = x0, t ∈ T = [t0, t1].
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By using above considered mappings Ψ : u → ψ(t, u), t ∈ T , and X : u →
x(t, u), t ∈ T , operators Uα, Gα are represented in the form

Uα(v) = V α(Ψ(v), X(v), v), v ∈ V,
Gα(v) = V α(Ψ(v), Xα(Ψ(v), v), v), v ∈ V.

Note fulfillment of the relation

Xα(p, v) = X(V α(p,Xα(p, v), v)), p ∈ C(T ), v ∈ V.
Hence, we obtain

Xα(Ψ(vk), vk) = X(vk+1),

i.e., process (121) can be represented in the implicit operator form

vk+1 = V α(Ψ(vk), X(vk+1), vk).

In view of properties of projection operator PU , operators Uα, Gα, α > 0 are
single valued.

The perturbed problem (119) is equivalent to each of the problems

v = Uα(v), v ∈ V, (124)

v = Gα(v), v ∈ V. (125)

An unperturbed problem is obtained from perturbed problem (124) and (125)
as α = 0. In this case we have U0 : v → v, v ∈ V and G0 : v → v, v ∈ V .

Convergence of processes (122) and (123) can be justified by using Theo-
rem 5 on the set of admissible controls V = {v ∈ C(T ) : v(t) ∈ U, t ∈ T}.

Assume that a family of phase trajectories for the system (90) is bounded
on the set V :

x(t, v) ∈ X, t ∈ T, v ∈ V, (126)

where X ⊂ Rn is a convex compact set. Then taking into consideration DMP
conditions and linearity of the adjoint system (91), on the basis of sufficient
condition (74), we obtain boundedness condition of a family of adjoint trajec-
tories

ψ(t, v) ∈ P, t ∈ T, v ∈ V, (127)

where P ⊂ Rn is a convex compact set.
In addition to DMP conditions, we assume that functions f(x, u, t),

F (x, u, t), ϕ(x) are twice continuously differentiable in the variables x, u,
t on the set Rn × U × T .

In made assumptions operators X, Ψ satisfy the Lipschitz condition with
a constant C1 > 0

‖X(v)−X(u)‖C ≤ C1 ‖v − u‖C , v ∈ V, u ∈ V,
‖Ψ(v)− Ψ(u)‖C ≤ C1 ‖v − u‖C , v ∈ V, u ∈ V.
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On the basis of fulfillment of the Lipschitz condition for projection operator
PU and boundedness conditions (126) and (127) we have

‖xα(t, p, u)− xα(t, q, v)‖
= ‖x(t, V α(p,Xα(p, u), u))− x(t, V α(q,Xα(q, v), v))‖
≤M3

∫
T

‖V α(p,Xα(p, u))|t − V α(q,Xα(q, v))|t‖ dt
≤M4

∫
T

‖u(t)− v(t)‖ dt+
+αM4

∫
T

‖Hu(p(t), xα(t, p, u), u(t), t)−Hu(q(t), xα(t, q, v), v(t), t)‖ dt,

where t ∈ T , p, q, u, v ∈ C(T ), M3 = const > 0, M4 = const > 0. Hence, at a
sufficiently small α > 0 it is easy to obtain the estimate

‖Xα(Ψ(u), u)−Xα(Ψ(v), v)‖C ≤
(1 + α)M1

(1− αM2)
‖u− v‖C ,

where u ∈ V , v ∈ V , M1 = const > 0, M2 = const > 0.
On the basis of the Lipschitz condition for projection operator PU we have

‖wα(p, x, u, t)− wα(q, y, v, t)‖2 ≤
≤ ‖(u− v) + α(Hu(p, x, u, t)−Hu(q, y, v, t))‖2
≤ ‖u− v‖2 + 2α 〈u− v,Hu(p, x, u, t)−Hu(q, y, v, t)〉
+α2 ‖Hu(p, x, u, t)−Hu(q, y, v, t)‖2 ,

u, v ∈ U, p, q ∈ P, x, y ∈ X, t ∈ T.
Assume that for vector-valued function Hu(ψ, x, u, t) the following condition
is fulfilled:

〈u− v,Hu(p, x, u, t)−Hu(q, y, v, t)〉 ≤ −K ‖u− v‖2 , (128)

u, v ∈ U, p, q ∈ P, x, y ∈ X, t ∈ T,
where K = const > 0.

As a result, on the basis of (128) at sufficiently small α > 0, we obtain the
estimates

‖V α(Ψ(u), X(u), u)− V (Ψ(v), X(v), v)‖C ≤ (1− 2αK + α2M)
1
2 ‖u− v‖C ,

‖V α(Ψ(u), Xα(Ψ(u), u), u)− V (Ψ(v), Xα(Ψ(v), v), v)‖C ≤
≤ (1− 2αK + α2M)

1
2 ‖u− v‖C , u ∈ V, v ∈ V,

where M = const > 0.
So, in made assumptions, operators Uα, Gα satisfy the Lipschitz condition

with a constant less than 1 at a sufficiently small α > 0. Note that at α = 0
operators U0, G0 of unperturbed problems satisfy the Lipschitz condition with
a constant, equal to 1; this is in agreement with estimates obtained.

As a result, on the basis of Theorem 5 we obtain the following statement
for convergence of processes (122) and (123).



368 A.S. Buldaev

Theorem 8. Let

(1) a family of phase trajectories in the main problem (129) and (130) be
bounded: x(t, u) ∈ X, t ∈ T , u ∈ V , where X ⊂ Rn is a convex compact
set;

(2) vector-valued function f(x, u, t), functions F (x, u, t), ϕ(x) be twice con-
tinuously differentiable in the variables x, u, t on the set Rn × U × T ;

(3) for vector-valued function Hu(ψ, x, u, t) the condition be fulfilled

〈u− v,Hu(p, x, u, t)−Hu(q, y, v, t)〉 ≤ −K ‖u− v‖2 ,
u, v ∈ U, p, q ∈ P, x, y ∈ X, t ∈ T,

where K = const > 0, P ⊂ Rn is a convex compact set that bounds the family
of adjoint trajectories: ψ(t, u) ∈ P , t ∈ T , u ∈ V .

Then for a sufficiently small projection parameter α > 0
(1) the relation (119) has a unique solution v̄α ∈ V ;
(2) iterative processes (120) and (121) converge in the norm ‖·‖C to the

solution v̄α for any initial approximation v0 ∈ V .

Note that the projective perturbation method is characterized by the ex-
tremum control, determined by the condition (119), at any perturbation pa-
rameter α > 0.

Projective perturbation method easily generalizes to systems with time
delay.

With the aim of comparison of developed projective perturbation method
let us represent the standard gradient projection method in the notation
used [9]

v̄k(t) = w1(ψ(t, vk), x(t, vk), vk(t), t), t ∈ T,
vk

λ(t) = vk(t) + λ(v̄k(t)− vk(t)), t ∈ T,
λ ∈ [0, 1] : Φ(vk

λ) ≤ Φ(vk) ⇒ vk+1 = vk
λ.

Modification of standard gradient projection method with α > 0 is described
by relations

v̄k(t) = wα(ψ(t, vk), x(t, vk), vk(t), t), t ∈ T,

vk
λ(t) = vk(t) + λ(v̄k(t)− vk(t)), t ∈ T,

λ ∈ [0, 1] : Φ(vk
λ) ≤ Φ(vk) ⇒ vk+1 = vk

λ.

The main distinction of constructed projective perturbation method for opti-
mality condition from standard projective methods, and its modifications [1]
consists in that the projection parameter α > 0 is fixed in iterative process
of successive approximations. In gradient projection methods this parameter
varies on each iteration in order to provide improvement of control.

On a whole, developed perturbation methods do not guarantee relaxation
on target functional in contrast to conditional gradient methods, gradient
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projection methods, and their modifications. But the relaxation property is
compensated by absence of parametric search of operation for the improving
approximations and obtaining controls that are realizable in practice. The
above properties are important factors for rise of computational efficiency for
solving optimal control problems.

3.4 Numerical Solution for Test Case

Numerical calculations of test problems by applying proposed perturbation
methods have illustrated the possibility of considerable decrease of complexity
and improvement of solving realizability in comparison with standard methods
(conditional gradient, gradient projection, needle-shaped linearization).

For instance, let us show comparative results of solving the known optimal
control problem for step electric motor [14]

Φ(u) =
∫

T

(x2
1 + k1u1 + k2u2 + k3u3)dt→ min, (129)

ẋ1 = x2, x1(0) = π/3, (130)

ẋ2 = −ax2 − b(u1 sin(2x1) + u2 sin(2x1 +
2π
3

) + u3 sin(2x1 − 2π
3

)), x2(0) = 0,

ui = ui(t) ∈ [0, 16], i = 1, 2, 3, t ∈ T = [0, 0.05].

Here x1 is a motor shaft position, x2 is the velocity, components of control u1,
u2, u3 correspond to squares of winding current. Performance criterion (129)
is determined by requirement for shaft position reduction to zero at minimal
energy costs. The values of parameters are ki = 0.001, i = 1, 2, 3, a = 50,
b = 1, 000.

In [14] the problem (129) and (130) is solved by conditional gradient
method (CGM), the first and the second conditional quasigradient methods
(CQM-1 and CQM-2) [1].

Here this problem was solved by projective perturbation method (120) for
optimality condition (PPMOC).

The problem was computed on PC Celeron 700. Phase and adjoint Cauchy
problems were solved numerically by Runge–Kutta–Felberg method of vari-
able (5–6) order and step [15], realized on Fortran PowerStation 4.0. The
ratio error for computation of phase and adjoint Cauchy problems was given
at 10−10. During computation process values of computed controlled, phase
and adjoint variables were stored in uniform grid nodes Ω with discretization
step 0.00025 on interval T . In the intervals among neighboring grid nodes
value of control was taken to be constant and equal to value of control in the
left node.

For an initial approximation of the iterative process (120) a control iden-
tically zero was chosen. For a condition of computation stop the following
inequality was chosen:
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|Φ(uk+1)− Φ(uk)| ≤ |Φ(uk)| · 10−4.

The known results of solving problem by methods CGM, CQM-1, CQM-2 [14]
and method PPMOC at perturbation parameter α = 102 are listed in Table 1
(Φ∗ is the best calculated value of functional, N is a total number of solved
Cauchy problems).

Table 1. Comparative results of numerical calculations

Method Φ∗ N

CGM 0.00817 617
CQM-1 0.00988 410
CQM-2 0.00792 287
PPMOC 0.00779 309

Figures 1, 2, 3, and 4 shows total control and phase trajectories of solving
problem at a scale of a figure, mentioned in [14]. The total component of
calculated control u2 ≡ 0 is not shown in the figure.

Fig. 1. u1

According to [5] the controls, obtained by other compared methods, con-
tain oscillatory segments of frequent switchings. This makes the controls un-
satisfactory in terms of practical realization. In this case calculated phase
trajectories coincide with those shown in Figs. 3 and 4 in a qualitative sense
(up to correspondence of figures).

In the context of considered problem, method PPMOC, in contrast to
compared methods, permits one to obtain control that is realizable in practice
(without oscillatory segments) with the best value of functional. In addition,
the iterative process has non-relaxational character.

If perturbation parameter decreases to α = 50, the method realizes the
same total control in a qualitative sense with u2 ≡ 0 with a precision
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Fig. 2. u3

Fig. 3. x1

Fig. 4. x2

acceptable value of functional Φ(u) = 0.007830 at complexity N = 593. If
perturbation parameter increases to α = 200 the iterative process (120) does
not converge.
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4 Conclusion

The methods, wherein the nonlocal nature of the improvement is provided
in quadratic optimal control problem and achieved at the cost of solving
boundary-value problem for ordinary differential equations were first devel-
oped in the author’s works. Such a boundary-value improvement problem
is considerably easier than the boundary-value problem of maximum prin-
ciple, and is reduced to two Cauchy problems in linear case. The proposed
approach to nonlocal improvement on the basis of solving boundary-value
problem proved possible to generalize to optimal control problem class, that
is polynomial with respect to state, including problems with time delay.

The structure of proposed boundary-value problem for nonlocal improve-
ment allows evident isolation of a part linear, with respect to a state that
is solved by applying two Cauchy problems and coincides with boundary-
value problem in linear case. This property makes it possible to use and prove
the perturbation method, known in computational mathematics, in order to
solve the problem efficiently. The considered approach does not contain an
operation of parametric search for successive approximations and generally
forms new perturbation methods for nonlocal improvement in optimal control
problems.

The core of the proposed methods consists in entering a parameter into
the considered problem, so, that the problem, called as unperturbed, has a
simple or evident solution at a certain value of the parameter. As a rule, an
unperturbed problem corresponds to zero perturbation parameter. In order to
solve perturbed problems at fixed nonzero perturbation parameter iterative
algorithms are constructed wherein problem, as difficult as unperturbed prob-
lem, is solved on each iteration. In this case a solution of perturbed problem
obtained at a smaller value of perturbation parameter is used as an initial
approximation of the iterative process.

Constructed perturbation methods do not guarantee relaxation on target
functional on each iteration. But this is compensated by absence of opera-
tion of parametric search for the improving control, by obtaining solutions
admissible on practice, and by simplicity of realization and adjustment to a
concrete problem. These properties are essential factors of efficiency upgrading
for solving nonlinear optimal control problems.

On the whole, numerical experiments illustrated better quantitative in-
dexes (a number of solved Cauchy problems, value of target functional) and
qualitative indexes (realizability of control, approximation of optimal control)
for calculating test and model problems by constructed perturbation methods
compared to standard methods for local improvement.

The conducted analysis opens new possibilities for efficient use of per-
turbation method within the framework of optimal control problems, when
boundary-value problem of improvement and necessary optimality conditions
are proposed to use as parameterization objects.
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Summary. In this chapter, it is shown how stochastic optimal control theory can
be used in order to solve problems of optimal asset allocation under consideration
of risk aversion. Two types of problems are presented: a problem type with a power
utility function with a constant relative risk aversion coefficient and a problem type
with an exponential utility function with a constant absolute risk aversion coeffi-
cient. The problems can be solved analytically in the unconstrained cases. In order
to keep this chapter reasonably self-contained, short introductions to determinis-
tic optimal control theory, stochastic processes, stochastic dynamic systems, and
stochastic optimal control theory are given.

Key words: stochastic optimal control, asset management, multi-period
portfolio optimization

1 Introduction

The notion “strategic asset allocation” was introduced in Brennan et al. [5]
to describe the portfolio optimization problem with time-varying returns and
long-term investor objectives. In general, the problem of long-term invest-
ments is a well-established research field introduced by Samuelson and Merton
[40] and [31–33], respectively. Since then, it is well understood that a short-
term portfolio optimization can be very different from long-term portfolio
optimization.

In this chapter, continuous-time modeling along the lines of [33] is pursued.
Using stochastic optimal control theory, Merton was able to establish impor-
tant financial economic principles, but due to his very general model formu-
lation, he did not give explicit results for portfolio choice problems. Merton’s
paper [33] highlights the difficulties in solving complex cases of asset dynamics
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with stochastic factors, because one has to solve a high-dimensional nonlinear
partial differential equation. Until recently, few authors worked on problems
similar to [33].

Advances in numerical techniques and the growth of computing power led
to the development of numerical solutions to multi-period portfolio optimiza-
tion problems, which are solved by a discrete state approximation. Examples
of this line of research are given in [2, 5, 6, 30]. The use of numerical dynamic
programming is very often restricted to few factors, due to the fact that the
algorithms use excessive computation time and become numerically unreliable
for high dimensions.

Closed-form solutions of the Merton model in continuous time with a single
stochastic factor are given in [10, 11, 22, 28, 29]. For closed-form solutions of
problems involving two or three stochastic factors, see [7, 34].

In [3], Bielecki et al. present a closed-form solution of the portfolio opti-
mization problem in continuous time for multiple assets and multiple fac-
tors with an infinite time horizon. Under the assumption of uncorrelated
residuals of the asset prices and the factors, they find the optimal portfo-
lio allocation decision for many assets and many factors. This is an impor-
tant development for a practical and tractable large-scale asset allocation
approach.

Many authors of empirical studies have found evidence that macroeco-
nomic and financial variables, such as long-term interest rates or the dividend-
price ratio, are suitable return predictors. Among the identified factors are the
short-term interest rate [16, 20], the dividend-price ratio [8, 17], and the yield
spread between long-term and short-term bonds [9, 18]. A systematic study
to analyze the robustness and the economic significance of return predictors
is presented in [37], where 1-month treasury bill rates, 12-month treasury bill
rates, the inflation rate, the change in industrial production, and the mone-
tary growth rate were used as factors to explain the US stock returns. Testing
a simple allocation strategy, the authors concluded that investors could have
exploited the predictability of returns during the volatile markets of the 1970s.
In [36], evidence is shown for the predictability of US excess stock returns,
based on five monetary policy factors as well as on interest rate spreads and
1-month real interest rates. In [26], it is empirically shown that the excess re-
turns of long-term T-bonds are predictable with factors such as term spread
or momentum factors. Furthermore, in [41] the spread between long-term and
short-term interest rates and price-earnings ratios were used to predict fu-
ture up- or downturns of the S&P 500 index. Additional studies on return
predictability are cited in the bibliographies of these papers.

These and other studies provide evidence that a dynamic asset allocation
strategy provides significant portfolio improvements for investors. None of
these studies, however, developed a systematic allocation strategy but rather
relied on ad hoc portfolio allocation methods.

In this chapter, a systematic method for dynamic optimal asset allocation
is presented which has been proposed by the authors in [23, 25]:
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• A utility function is chosen, which is a function of the wealth W of the
portfolio at the chosen final time t1. Furthermore, the utility function
involves a parameter γ, which controls the risk aversion of the investment
strategy.

• The dynamics of the values of the n risky investment opportunities and
of the risk-free money market account are Brownian motions. The drift
terms in the dynamics of the risky components and of the return rate of
the risk-free account are functions of m economic influence factors. These
factors are Brownian motions, too. Moreover, as has been observed in
the above-mentioned empirical studies, the increments of the Brownian
motions driving the prices and those driving the factors are correlated.

• The rules of asset allocation may allow short selling and hedging for the
risky investment opportunities and borrowing money from the risk-free
account.

• The solution of an optimal dynamic asset allocation is found using the
stochastic optimal control theory. This involves solving the so-called
stochastic Hamilton-Jacobi-Bellman partial differential equation and leads
to an optimal feedback solution at all times t in the investment horizon
t0 ≤ t ≤ t1.

As discussed above, the correlation between the increments of the Brownian
motions driving the prices and those of driving the economic factors can be
exploited by using dynamic optimal asset allocation.

Conversely, in the uncorrelated case, the stochastic dynamic optimal con-
trol problem degenerates to a static stochastic optimization problem. Hence,
the resulting optimal investment strategy is “myopic” in this case.

This chapter is structured as follows: In order for this chapter to be fairly
self-contained, short introductions into deterministic optimal control theory
and to stochastic optimal control theory are given in Sections 2 and 3, re-
spectively. The general formulation of a stochastic optimal control problem
for dynamic asset allocation is given in Sections 4.1, 4.2, and 4.3.

In Section 4.4, two problems with the power utility function 1
γW

γ(t1) are
solved. This utility function has a constant coefficient of relative risk aversion.1

Problem 1 with an unconstrained control set U = Rn admits an analytic so-
lution of the Hamilton-Jacobi-Bellman partial differential equation and of the
optimal state feedback control law. In Problem 2, the control constraint set is
required to be closed and bounded; more specifically, in this problem, no short
selling and no borrowing of money are allowed (see (142) and (143)). Unfor-
tunately, this problem cannot be solved analytically, i.e., numerical methods
are needed.

In Section 4.5, two problems with the exponential utility function
− 1

γ e
−γW (t1) are solved. This utility function has a constant coefficient of ab-

solute risk aversion.2 Problem 3 with an unconstrained control set U = Rn

1 CRRA: constant relative risk aversion.
2 CARA: constant absolute risk aversion.
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also admits an analytic solution. In Problem 4, the control constraint set is re-
quired to be closed and bounded. Unfortunately, this problem must be solved
with numerical methods.

In Section 5, the potential of the stochastic optimal control approach to
asset management is highlighted and open problems for further research are
outlined.

The reader is encouraged to consult Appendix A, which contains a com-
pendium of some of the notations used throughout this chapter. In particular,
note that for a function f : R→ Rn, the row vector of its partial derivatives is
denoted by fx (Jacobian), whereas the column vector of its partial derivatives
is denoted by ∇xf (gradient).

2 Deterministic Optimal Control

In this section, the following deterministic optimal control problem is consid-
ered for a dynamic system with the state vector x(t) ∈ Rn and the admissible
control vector u(t) ∈ U ⊆ Rm (where U is a time-invariant, convex, and closed
subset of Rm).

Problem: For the dynamic system described by the differential equation

ẋ(t) = f(x(t), u(t)) (1)

with the given initial state x0 at the fixed initial time t0

x(t0) = x0 , (2)

find a piecewise continuous control vector u(t) ∈ U for all times t in the fixed
time interval [t0, t1], such that the objective functional

J = K(x(t1)) +

t1∫
t0

L(x(t), u(t)) dt (3)

is maximized.
In order to solve this optimal control problem, it is useful to introduce the

so-called Hamilton function or Hamiltonian

H(x(t), u(t), λ(t)) = L(x(t), u(t)) + λT (t)f(x(t), u(t)) , (4)

where λ(t) is an unspecified n-vector function (at this time).

2.1 Theory

In order to find an open-loop optimal solution for this problem, the following
necessary conditions (generally called Pontryagin’s maximum principle) can
be exploited.
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Pontryagin’s maximum principle: If the control trajectory uo(·) generating
the state trajectory xo(·) is optimal, the following equations are satisfied:

ẋo(t) = f(xo(t), uo(t)), (5)
xo(t0) = x0, (6)
uo(t) ∈ U for all t ∈ [t0, t1], (7)

λ̇
o
(t) = −∇xH(xo(t), uo(t), λo(t)), (8)

λo(t1) = ∇xK(xo(t1)), (9)
H(xo(t), uo(t), λo(t)) ≥ H(xo(t), u, λo(t))

for all u ∈ U and all t ∈ [t0, t1] . (10)

Proof. A proof based on geometrical ideas can be found in the seminal paper
[21] and in [1]. A proof based on the calculus of variations can be found in
[19] and many other publications.

Often, it is possible to transform the optimal open-loop solution into the
preferred closed-loop solution in the form of a state feedback control law.
In some cases, the closed-loop solution can directly be obtained using the
sufficient conditions of the Hamilton-Jacobi-Bellman theory.

Hamilton-Jacobi-Bellman Theorem: If the Hamiltonian H has a unique ad-
missible H-maximizing control ũ(x, λ), i.e., if the inequality

H(x, ũ(x, λ), λ) ≥ H(x, u, λ) (11)

is satisfied for all u ∈ U , all x ∈ Rn, and all λ ∈ Rn, and if the following partial
differential equation for the so-called optimal cost-to-go function J (x, t)

− ∂J (x, t)
∂t

= H (x, ũ(x,∇xJ (x, t)),∇xJ (x, t)) (12)

with the boundary condition

J (x, t1) = K(x) (13)

admits a unique solution, the optimal state feedback control is

uo(t) = ũ (xo(t),∇xJ (xo(t), t)) . (14)

Proof. A proof can be found in [1].

Remark 1. So far, optimal control problems have been considered, where
the objective functional is to be maximized. For optimal control problems,
where the objective functional is to be minimized, the Hamiltonian H must
be minimized (Pontryagin’s minimum principle) and we are looking for an
H-minimizing control ũ(x, λ) in the Hamilton-Jacobi-Bellman theorem.
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2.2 Example: An LQ Optimal Control Problem

Problem: For the linear, completely controllable3 system

ẋ(t) = A(t)x(t) +B(t)u(t) + b(t) (15)

with the initial state
x(t0) = x0, (16)

find the unconstrained optimal control u (i.e., U = Rm), such that the objec-
tive functional

J =
1
2
xT (t1)Fx(t1) + gTx(t1)

+
1
2

t1∫
t0

(
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

+xT (t)S(t)u(t) + uT (t)ST (t)x(t)
)
dt (17)

with
F � 0 (18)

and [
Q(t) S(t)
ST (t) R(t)

]
� 0 for all t ∈ [t0, t1] (19)

with
R(t) � 0 for all t ∈ [t0, t1] (20)

is minimized.

For this optimal control problem, the Hamiltonian is

H =
1
2

(
xTQx+ uTRu+ xTSu+ uTSTx

)
+ λT (Ax+Bu+ b) . (21)

The H-minimizing control is

u = −R−1(BTλ+ STx) . (22)

Therefore, exploiting Pontryagin’s minimum principle leads to the following
two-point boundary value problem:

ẋ = (A−BR−1ST )x−BR−1BTλ+ b, (23)
x(t0) = x0, (24)

λ̇ = − (Q− SR−1ST )x− (A−BR−1ST )Tλ, (25)
λ(t1) = Fx(t1) + g . (26)

3 For some background material about controllability, the reader is referred to
Appendix B.
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Solving this two-point boundary value problem yields the optimal trajectories
xo(·) and λo(·) and hence the open-loop optimal control law

uo(t) = −R−1(t)
(
BT (t)λo(t) + ST (t)xo(t)

)
. (27)

In order to convert this open-loop optimal control law into a theoretically
equivalent (but preferable) closed-loop control law, the following ansatz is
useful:

λ(t) = K(t)x(t) + k(t) , (28)

where K(·) is an n by n matrix function and k(·) an n-vector function which
remains to be found.

Combining its differentiated form

λ̇(t) = K̇(t)x(t) +K(t)ẋ(t) + k̇(t) (29)

with the differential equations of the two-point boundary value problem yields
the equation [

K̇ +K(A−BR−1ST ) + (A−BR−1ST )TK

−KBR−1BTK +Q− SR−1ST
]
x

= −Kb− k̇ − (A−BR−1BTK −BR−1ST )T k . (30)

This equation must hold for an arbitrary vector x(t) ∈ Rn since the initial
state x0 is an arbitrary vector in Rn. In other words, both the brackets on the
left-hand side and the right-hand side of this equation vanish. This yields the
following differential equations for the matrix function K(t) and the vector
function k(t):

K̇ = −K(A−BR−1ST )− (A−BR−1ST )TK

+KBR−1BTK −Q+ SR−1ST, (31)
k̇ = − (A−BR−1BTK −BR−1ST )T k −Kb, (32)

with the boundary conditions

K(t1) = F, (33)
k(t1) = g . (34)

Of course, the resulting optimal feedback control law

u(t) = −R−1(t)
(
BT (t)K(t) + ST (t)

)
x(t)−R−1(t)k(t) (35)

can directly be determined using the Hamilton-Jacobi-Bellman theory. This is
left to the reader as an exercise, because the stochastic version of this problem
is treated in Section 3.5 in detail.
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3 Stochastic Optimal Control

3.1 Stochastic Processes

Definition 1. Brownian motion [4]
A stochastic process W(t) is called Brownian motion if it satisfies the following
conditions:

1. Independence: W (t+Δt)−W (t) is independent of {W (τ)} for all τ ≤ t.
2. Stationarity: The distribution of W (t+Δt)−W (t) does not depend on t.

3. Continuity: lim
Δt↓0

P (|W (t+Δt)−W (t)| ≥ δ)
Δt

= 0 for all δ > 0 .

Please note that the third assumption is expressed with probabilities: dis-
continuities in sample functions can only occur with probability zero. Hence,
there is a version of the Brownian motion with all sample functions continu-
ous. (This technicality is not of any practical importance.)

This definition induces the distribution of the process W (t).

Theorem 1. (Normally distributed increments of Brownian motion)
If W (t) is a Brownian motion, then W (t)−W (0) is a normal random variable
with mean μt and variance σ2t, where μ and σ are constant real numbers.

As a result of this theorem, we have the following density function of a
Brownian motion:

fW (t)(x) =
1√

2πσ2t
e−

(x−μt)2

2σ2t . (36)

An irritating property of Brownian motion is that its sample paths are not
differentiable. This is easily verified in the mean-square sense:

E

[(
W (t+Δt)−W (t)

Δt

)2
]

=
E[(W (t+Δt)−W (t))2]

Δt2
=

σ2

Δt
. (37)

This diverges for Δt→ 0 and therefore W (·) is not differentiable in L2.
The Brownian motion W (·) (starting at W (0) = 0) has many more bizarre

and intriguing properties. Some of them are listed below:

• Autocovariance function: E{(W (t)− μt)(W (τ)− μτ)} = σ2 min(t, τ)

• Var
{
W (t)
t

}
=
σ2

t

• lim
t→∞

W (t)−μt
t = 0 with probability 1

• The total variation of the Brownian motion over a finite interval [0, T ] is
infinite!

• The “sum of squares” of a drift-free Brownian motion is deterministic:

lim
N→∞

N∑
k=1

(
W

(
k T

N

)−W
(
(k−1) T

N

))2
= σ2T .

Important consequence: Whenever the term dW 2 appears in a stochastic
differential equation, it should be replaced by σ2dt.
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• Zero-crossings: In a finite interval [0, T ], every sample of a drift-free
Brownian motion has infinitely many zero-crossings. The set of zero-
crossings is dense in [0, T ], i.e., no sample path has isolated zero-crossings!

Definition 2. Standard Brownian motion
A Brownian motion is called standard if

W (0) = 0, (38)
E[W (t)] = 0 (μ = 0), (39)
E[W 2(t)] = t (σ2 = 1). (40)

In the sequel, a Brownian motion is assumed to be a standard
Brownian motion unless explicitly stated otherwise. In most cases, we use
the differential form

dW (t) = lim
τ↓0

W (t+ τ) (41)

with E[dW (t)] = 0 and the sum-of-squares property E[dW 2(t)] = dt.
The generalization of a Brownian motion from the scalar case to the vector

case is straightforward: The scalar drift parameter μ becomes a vector; and the
“volatility parameter” σ and the “intensity parameter” σ2 become symmetric,
positive-definite matrices. The notation in the vector case will be Σ instead
of σ2 and Σ1/2 instead of σ.

In the case of a vector-valued standard Brownian motion, it will be as-
sumed that the component processes of the vector are mutually independent.

3.2 Stochastic Differential Equations

A non-standard Brownian motion X(·) satisfies the stochastic differential
equation

dX(t) = μdt+ σdW (t), (42)
X(0) = 0 , (43)

where W (·) is a standard Brownian motion.
In financial engineering, the following stochastic processes are also of

interest:
The geometric Brownian motion X(·) is described by the differential equa-

tion
dX(t) = μX(t)dt+ σX(t)dW (t) . (44)

It is popular for modeling stock prices.
A mean reverting stochastic process X(·) can be modeled by the differen-

tial equation
dX(t) = κ[μ−X(t)]dt+ σdW (t) (45)

with κ > 0. It is popular for modeling interest rates.
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In the most general nonlinear case, the stochastic differential equation for
a stochastic process can be written as follows:

dX(t) = f(t,X(t))dt+ g(t,X(t))dW (t) . (46)

3.3 Stochastic Calculus

Due to the “sum-of-squares” property of the Brownian motion, the rules of
differentiation in the stochastic case differ from those in the deterministic case.

Consider the following problem: Given a stochastic differential equation
for the process X(·)

dX(t) = f(t,X(t))dt+ g(t,X(t))dW (t), (47)
X(t0) = X0 , (48)

find the differential equation for the process Y (t) which is a function of X(t),

Y (t) = φ(t,X(t)) , (49)

where the function φ(t,X) is continuously differentiable in t and twice con-
tinuously differentiable in X.

Let us do a Taylor series expansion of (49) up to second-order terms:

dY (t) = φt(t,X)dt+ φx(t,X)dX(t) +
1
2
φtt(t,X)dt2

+
1
2
φxx(t,X)(dX(t))2 + φxt(t,X)dX(t)dt+ higher order terms

= φt(t,X)dt+ φx(t,X)[f(t,X(t))dt+ g(t,X(t))dW (t)]

+
1
2
φtt(t,X)dt2 +

1
2
φxx(t,X)[f(t,X(t))dt+ g(t,X(t))dW (t)]2

+φxt(t,X)[f(t,X(t))dt+ g(t,X(t))dW (t)]dt+ h.o.t. (50)

Notice that the term dW 2(t) appears when the square factor of φxx is ex-
panded. Replacing it by dt and retaining only the terms of first order yield
the following result:

dY (t) =
[
φt(t,X) + φx(t,X)f(t,X(t)) +

1
2
φxx(t,X)g2(t,X(t))

]
dt

+φx(t,X)g(t,X(t))dW (t), (51)
Y (t0) = φ(t0, X0) . (52)

The term 1
2φxxg

2dt is called “Itô correction term.”
In the more general case where the stochastic process X(t) ∈ Rn and the

standard Brownian motion W (t) ∈ Rm are vectors but where the function φ
is still scalar-valued, the generalized form of (51) is
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dY (t) = f̃(t,X(t))dt+ g̃(t,X(t))dW (t) (53)

with

f̃(t,X(t)) = φt(t,X(t)) + φx(t,X(t))f(t,X(t))

+
1
2
tr

(
φxx(t,X(t))g(t,X(t))gT (t,X(t))

)
(54)

and
g̃(t,X(t)) = φx(t,X(t))g(t,X(t)) , (55)

where “tr” denotes the trace operator.
Due to the properties of the trace operator for square matrices, the Itô

correction term can be written in the following three equivalent forms:

1
2
tr

(
φxx(t,X(t))g(t,X(t))gT (t,X(t))

)
=

1
2
tr

(
g(t,X(t))gT (t,X(t))φxx(t,X(t))

)
=

1
2
tr

(
gT (t,X(t))φxx(t,X(t))g(t,X(t))

)
. (56)

Besides its aesthetic symmetric form, the last version has the advantage that
the trace operator is not needed in the case of a scalar Brownian motion W (·),
i.e., for m = 1.

For more information on stochastic calculus, the reader is referred to [15,
35, 42].

3.4 Stochastic Optimal Control Theory

In this section, the following stochastic optimal control problem is considered
for a dynamic system with the state vector x(t) ∈ Rn, the admissible control
vector u(t) ∈ U ⊆ Rm (where U is a time-invariant, convex, and closed subset
of Rm), and the standard vector Brownian motion W (t) ∈ Rk.
Problem: For the dynamic system described by the stochastic differential
equation

dx(t) = f(x(t), u(t))dt+ g(x(t), u(t))dW (t) (57)

with the given deterministic initial state x0 at the fixed initial time t0,

x(t0) = x0 , (58)

find a piecewise continuous control vector u(t) ∈ U for all times t in the fixed
time interval [t0, t1], such that the objective functional

J = E

⎡⎣K(x(t1)) +

t1∫
t0

L(x(t), u(t)) dt

⎤⎦ (59)

is maximized.
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Pontryagin’s maximum principle

It is possible to postulate a Pontryagin’s maximum principle for the considered
stochastic optimal control problem. Of course, the rules of stochastic differ-
entiation have to be considered in order to arrive at its correct formulation.

However, this is not of interest here because solving the two-point bound-
ary value problem is not practical in the stochastic case.

Hamilton-Jacobi-Bellman Theory:

Theorem 2. Stochastic Hamilton-Jacobi-Bellman Theorem
If the partial differential equation

− Jt(x, t) = max
u∈U

{
L(x, u) + Jx(x, t)f(x, u) +

1
2
tr

(Jxx(x, t)g(x, u)gT (x, u)
)}

(60)
with the boundary condition

J (x, t1) = K(x) (61)

admits a unique solution, the globally optimal state feedback control law is

u(x) = arg max
u∈U

{
L(x, u) + Jx(x, t)f(x, u)

+
1
2
tr

(Jxx(x, t)g(x, u)gT (x, u)
)}

. (62)

Proof. A rigorous proof of this theorem can be found in [44].
Of course, J (x0, t0) is the optimal value of the objective functional. And

again, for stochastic optimal control problems, where the objective functional
(59) is to be minimized, the max operator appearing in (60) and (62) must
be replaced by the min operator.

In practice (when the problem cannot be solved analytically), the following
iterative procedure is applied:

1. For a given function J (x, t), find u(x,Jx,Jxx, t) satisfying (62), with x(t)
replaced by x.

2. Solve the Hamilton-Jacobi-Bellman partial differential equation (60), elim-
inating the max operator and plugging in the control u(x,Jx,Jxx, t) found
in step 1.

3. Return to step 1.

Under suitable convexity assumptions for K(x) and L(x, u) (for the existence
of a unique optimal control), this procedure converges, see [24, 38].

3.5 Example: An LQ Optimal Control Problem

In this section, a stochastic version of the deterministic optimal control prob-
lem of Section 2.2 is analyzed.
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Problem: For the linear, completely controllable, stochastic system

dx(t) = [A(t)x(t) +B(t)u(t) + b(t)]dt+ [C(t)x(t) + σ(t)]dW (t) (63)

with the deterministic initial state

x(t0) = x0, (64)

find the unconstrained optimal control u, such that the objective functional

J = E

[
1
2
xT (t1)Fx(T ) + gTx(t1)

+
1
2

T∫
0

(
x(t)TQ(t)x(t) + x(t)TS(t)u(t)

+ u(t)TST (t)x(t) + u(t)TR(t)u(t)
)
dt

]
(65)

with
F ≥ 0 (66)

and [
Q(t) S(t)
ST (t) R(t)

]
≥ 0 for all t ∈ [t0, t1] (67)

with
R(t) > 0 for all t ∈ [t0, t1] (68)

is minimized.
For a yet unknown cost-to-go function J (x, t), (62) yields

u(x,Jx,Jxx, t) = −R−1(t)
(
BT (t)J T

x (x, t) + ST (t)x
)
. (69)

With this optimal control law, the Hamilton-Jacobi-Bellman partial differen-
tial equation (60) has the following form (using simplified notation):

0 = Jt +
1
2

{
xTQx− xTSR−1STx− JxBR

−1BTJ T
x

+xT (A−BR−1ST )TJ T
x + Jx(A−BR−1ST )x

+xTCTJxxCx+ σTJxxσ + xTCTJxxσ

+σTJxxCx+ bTJ T
x + Jxb

}
. (70)

Since the objective functional (65) is quadratic and the side constraints
(63) and (64) are linear, a quadratic ansatz for the cost-to-go function J (x, t)
of the form

J(x, t) =
1
2
xTK(t)x+ kT (t)x+ c(t) (71)
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with

Jx(x, t) = K(t)x+ k(t) (72)
Jxx(x, t) = K(t) (73)

should be successful, where K(·) is a symmetric matrix function.
Combining (65, 70, 72, and 73) and taking into account that x ∈ Rn is an

arbitrary vector lead to the following equations defining the coefficients K(t),
k(t), and c(t) of the ansatz (71):

K̇ = −K(A−BR−1ST )− (A−BR−1ST )TK
+KBR−1BTK −Q+ SR−1ST − CTKC,

(74)

K(t1) = F, (75)
k̇ = − (A−BR−1BTK −BR−1ST )T k −Kb− CTKσ, (76)

k(t1) = g, (77)

ċ = − 1
2
σTKσ +

1
2
kTBR−1BTk − bT k, (78)

c(t1) = 0 . (79)

4 Applications in Financial Engineering

4.1 Introduction

In this section, several stochastic optimal control problems in financial engi-
neering in the area of optimal asset allocation are stated and solved.

In Section 4.2, two viable objective functionals are presented. It is shown
that the exponential utility function has a constant absolute risk aversion
(CARA) coefficient, whereas the power utility function has a constant relative
risk aversion (CRRA) coefficient.

In Section 4.3, the dynamics of a portfolio are given which consists of
investments in a risk-free money market account and in n risky investments
in stock market indices or even shares of individual companies. The return
rate of the risk-free account and both the drift term and the volatility term
in the differential equations of the risky assets are allowed to be functions
of m economic influence factors x1(t), . . . , xm(t). These economic factors are
assumed to be stochastic as well. The increments of the Brownian motions
dZp(t) driving the prices P (t) of the risky assets and dZq(t) driving the eco-
nomic factors x(t) are allowed to be correlated.

In Sections 4.4 and 4.5, some problems of optimal asset management are
solved. It is shown that these continuous-time problems can analytically be
solved as long as short selling and borrowing money are unlimited. In the
restricted cases, the relevant equations have to be solved numerically.
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4.2 Utility Functions

Utility Functions

In financial engineering, the objective functional for the stochastic optimal
control problem for asset allocation is taken as the expected value E[V ] of the
so-called utility function V (W (t1)). In such a problem, the simplest utility
function would be maximizing the wealth W (t1) or value of the considered
portfolio at the considered final time t1:

V = W (t1) . (80)

Unfortunately, this is not a good utility function as it has experimentally
been shown in the first decade of the twenty-first century (resulting in trillions
of US dollars of losses to investors and even tax payers). Why? Because we
are living on a sample path rather than on the mean (or expected) path of an
optimally (or sub-optimally) controlled stochastic (and often poorly modeled)
process and, therefore, we do not accept maximal risk (as measured by the
variance of W (t1)).

Therefore, in practice, some measure of risk aversion has to be built into
the utility function of a considered optimal asset allocation problem.

In order for the utility function V (W (t1)) to admit a unique optimal value,
it must be strictly concave in W (t1).

The following two utility functions are rather popular in financial engi-
neering in risk-averting optimal asset allocation problems:

Exponential utility function:

V = − 1
γ
e−γW (t1) for γ > 0 , (81)

Power utility function:

V =
1
γ
W γ(t1) for γ < 1, γ �= 0 . (82)

Risk Aversion Coefficients

For measuring the risk aversion, the so-called Arrow-Pratt risk aversion coef-
ficients have been defined [39]:

Absolute risk aversion coefficient:

a(W ) = −
∂2V
dW 2

∂V
∂W

. (83)

Relative risk aversion coefficient:

r(W ) = −W
∂2V
dW 2

∂V
∂W

. (84)
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For the exponential utility function (81),

a(W ) = γ and r(W ) = γW (γ > 0) (85)

and for the power utility function (82),

a(W ) =
1− γ

W
and r(W ) = 1− γ (γ < 1, γ �= 0) (86)

are obtained, respectively.

4.3 Wealth Dynamics

4.3.1 Risk-Free Money Market Account

The value P0(t) invested in a risk-free money market account evolves according
to the following differential equation:

dP0(t) = r(x(t))P0(t)dt, (87)
P0(t0) = P00 . (88)

4.3.2 Risky Investments

The value P (t) ∈ Rn of the vector of risky investments evolves according to
the following stochastic differential equation:

dP (t) = diag[P (t)]
[
μ(x(t))dt+ Σ1/2

p (x(t))dZp(t)
]
, (89)

P (t0) = P0 . (90)

Here, μ ∈ Rn is the drift vector and Σ1/2
p ∈ Rn×n the positive-definite volatil-

ity matrix. Both of them are functions of the measurable, instantaneous vector
x of economic influence factors. And dZp ∈ Rn is the increment of a (normal-
ized) Brownian motion.

4.3.3 Economic Influence Factors

The value x(t) ∈ Rm of the economic influence vector is modeled to evolve
according to the following differential equation:

dx(t) = [Ax(t)+a] dt+ Σ1/2
q dZq(t), (91)

x(t0) = x0, (92)

with A ∈ Rm×m, a ∈ Rm, Σ1/2
q > 0 ∈ Rm×m, and the (normalized) Brownian

motion dZq(t) ∈ Rm. Often, A is postulated to be a diagonal matrix.
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In some of the problems, the Brownian motions Zp and Zq are allowed to
be correlated, i.e.,

Cov
([

dZp(t)
dZq(t)

])
=

[
I ρ
ρT I

]
dt > 0 (93)

with a suitable correlation matrix ρ ∈ Rn×m.
The economic influence factors xi(t) may include the following: at the

macroeconomic level: GDP growth rate, long-term interest rate, inflation rate,
etc.; at the industry-specific level: sector growth rate, industry rate of returns,
etc.; and at the company-specific level: dividends, cash flow, etc.

4.3.4 Wealth Dynamics

At all times, we are fully invested in risky investments and/or the risk-free
money market account. The relative levels of investment are u1(t), . . . , un(t)
for the risky investments and u0(t) for the risk-free investment.

Being fully invested at all times means

n∑
i=0

ui(t) ≡ 1 . (94)

In classical investment practice, the inequalities

ui(t) ≥ 0 fori = 0, . . . , n (95)

apply. However, if unlimited borrowing and unlimited short selling are per-
missible, these inequalities do not apply (provided the savings rate and the
borrowing rate on the risk-free account are identical).

The wealth W (t), i.e., the value of the portfolio, satisfies the following
stochastic differential equation:

dW (t) = W (t)u0(t)r(x(t))dt+ h(x(t), t)dt

+W (t)uT (t)
[
μ(x(t))dt+ Σ1/2

p (x(t))dZp(t)
]
, (96)

where u = [u1, . . . , un]T ∈ Rn is the vector of the relative investments in the
n risky investment opportunities and h is an additional inflow4 (for h > 0) or
outflow (or consumption term for h < 0). If h(x(t), t) ≡ 0 for all t ∈ [t0, t1],
the portfolio is called self-financing.

Of course, the restriction (94) applies in (96). The extra degree of freedom
u0 can be removed in the following way:

u0(t) = 1−
n∑

i=1

ui(t) = 1− eTu(t) , (97)

4 Mnemonic: “h” as in “help”.



392 H.P. Geering et al.

where

e =

⎡⎢⎣1
...
1

⎤⎥⎦ ∈ Rn . (98)

Thus, the intermediate form of the wealth dynamics is

dW (t) = W (t)r(x(t))dt+ h(x(t), t)dt

+W (t)uT (t)
[
[μ(x(t))− er(x(t))] dt+ Σ1/2

p (x(t))dZp(t)
]
. (99)

So far, the drift terms r(x(t)) ∈ R and μ(x(t)) ∈ Rn and the volatility
matrix Σ1/2

p (x(t)) ∈ Rn×n have been allowed to be arbitrary functions of the
vector x(t) ∈ Rm of stochastic economic influence factors.

In order to keep the applications in the subsequent sections sufficiently
simple, the drift terms are assumed to be affine in x(t):

r(x(t)) = rT
1 x(t) + r0, (100)

μ(x(t)) = μ1(t) + μ0, (101)

with r1 ∈ Rm, r0 ∈ R, μ1 ∈ Rn×m, and μ0 ∈ Rn. Furthermore, the volatility
matrix Σ1/2

p is assumed to be constant.
Thus, the final form of the wealth dynamics is

dW (t) = W (t)
[
rT
1 x(t)+r0

]
dt+ h(x(t), t)dt

+W (t)uT (t)
[[
μ1x(t)+μ0−e

[
rT
1 x(t)+r0

]]
dt+ Σ1/2

p dZp(t)
]
, (102)

W (t0) = W0 . (103)

4.4 CRRA Problems

In the first problem of this section, a self-financing portfolio with uncon-
strained controls is considered, i.e., where unlimited borrowing and unlimited
short selling are allowed. The goal is maximizing the power utility function
which has a constant relative risk aversion coefficient. In the second problem,
the first problem is reconsidered with constrained control variables.

Problem 1. For the self-financing portfolio

dW (t) = W (t)
[
rT
1 x(t)+r0

]
dt

+W (t)uT (t)
[[
μ1x(t)+μ0−e

[
rT
1 x(t)+r0

]]
dt+ Σ1/2

p dZp(t)
]
, (104)

W (t0) = W0, (105)

with the stochastic economic influence factors
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dx(t) = [Ax(t)+a]dt+ Σ1/2
q dZq(t), (106)

x(t0) = x0 , (107)

where the Brownian motions Zp and Zq are correlated according to (93), find
the unconstrained optimal asset allocation vector u : [t0, t1] → Rn, such that
the expected value of the power utility function

J =
1
γ
E[W γ(t1)] (108)

is maximized for a chosen value γ ∈ (−∞, 1) with γ �= 0.

Remark 2. In order to prevent potential confusion, please note that the state
x, the increment dW of the normalized Brownian motion, the drift term f ,
and the volatility term g in Section 3.4 correspond to the following structured
quantities in Problem 1:

x −→
[
W
x

]
∈ R1+m, (109)

dW −→
[
dZp

dZq

]
∈ Rn+m, (110)

f −→
[
W

{
rT
1 x+r0 + uT

(
μ1x+μ0−e

[
rT
1 x+r0

])}
Ax+ a

]
, (111)

g −→
[
WuT Σ

1/2
p 0

0 Σ
1/2
x

]
. (112)

Furthermore

K −→ 1
γ
W γ , (113)

L −→ 0, (114)
Jx −→

[
Jw Jx

] ∈ R1×(1+m), (115)

Jxx −→
[
Jww Jwx

JT
wx Jxx

]
=

[
Jww Jwx

∇xJw Jxx

]
∈ R(1+m)×(1+m) . (116)

Finally, the Itô correction factor ggT in the Hamilton-Jacobi-Bellman equation
(60) turns into5

ggT −→
[
W 2uT Σpu WuT Σ

1/2
p ρΣ

T/2
q

W Σ
1/2
q ρT Σ

T/2
p u Σq

]
(117)

since dZp and dZq are correlated according to (93).

5 Remember, this factor stems from the sum-of-squares property of a normalized
Brownian motion: g dWdW TgT = ggT dt. For a non-normalized Brownian motion,
dWdW T = Mdt with M such as in (93) for example.
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Plugging (152), (153), (154), (155), (156), (157), (158), (159), and (160)
into (60) yields the Hamilton-Jacobi-Bellman partial differential equation

− Jt = max
u

{
JwW

{
rT
1 x+r0 + uT

(
μ1x+μ0−e

[
rT
1 x+r0

])}
+Jx(Ax+ a) +

1
2
JwwW

2uT Σpu

+
1
2

tr[JxxΣq] +WuT Σ1/2
p ρΣT/2

q ∇xJw

}
(118)

with the boundary condition

J(W,x, t1) =
1
γ
W γ(t1) . (119)

Provided, Jww < 0, the unique maximizing control is

u = − 1
JwwW

Σ−1
p

{
Jw

(
μ1x+μ0−e

[
rT
1 x+r0

])
+ Σ1/2

p ρΣT/2
q ∇xJw

}
.

(120)
At first glance, the set of equations (118), (119), and (120) looks rather

impressive, indeed. However, the authors have found the following successful
separation ansatz for the cost-to-go function J(W,x, t):

J(W,x, t) =
1
γ
W γ · #(x, t) (121)

with

#(x, t) = exp
{
c(t) + kT (t)x+

1
2
xTK(t)x

}
. (122)

Since the exponent in (122) must vanish for all x ∈ Rn at the final time t = t1
in order for #(x, t1) ≡ 1 to be satisfied, the following boundary conditions are
obtained immediately:

c(t1) = 0 ∈ R, (123)
k(t1) = 0 ∈ Rn, (124)
K(t1) = 0 ∈ Rn×n . (125)

The objective functional defined in (121) and (122) has the following rel-
evant partial derivatives:

Jt =
1
γ
W γ#(x, t)

[
ċ(t) + k̇T (t)x+

1
2
xT K̇(t)x

]
, (126)

Jw = W γ−1#(x, t), (127)

Jx =
1
γ
W γ#(x, t)

[
kT (t) + xTK(t)

]
, (128)

Jww = (γ − 1)W γ−2#(x, t), (129)
Jwx = W γ−1#(x, t)

[
kT (t) + xTK(t)

]
, (130)

Jxx =
1
γ
W γ#(x, t)

[
[k(t)+K(t)x]

[
kT (t)+xTK(t)

]
+K(t)

]
. (131)
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Notice that Jww < 0 for all of the admissible values of the risk aversion
parameter γ < 1 (with γ �= 0). Therefore, the optimal control u in (120) is
indeed maximizing in (118).

Combining (120), (121), (122), (123), (124), (125), (126), (127), (128),
(129), (130), and (131) yields the following affine state feedback control law:

u(x(t)) =
1

γ − 1 Σ−1
p

{[
μ1 − erT

1 + Σ1/2
p ρΣT/2

q K(t)
]
x(t)

+μ0 − er0 + Σ1/2
p ρΣT/2

q k(t)
}
, (132)

where the symmetric matrix K(t) ∈ Rn×n and the vector function k(t) ∈ Rn

remain to be found for t ∈ [t0, t1].
The optimal control consists of a myopic part and a look-ahead part, the

latter of which exploits the fact that the future increments dZp and dZq are
correlated.

Plugging the optimal feedback control law (132), the ansatz (121) and
(122) for the cost-to-go function W , and its derivatives (126), (127), (128),
(129), (130), and (131) into the Hamilton-Jacobi-Bellman partial differential
equation (118), results in a very long expression. However, all of the many
terms are either quadratic in x, or linear in x, or scalars. Since x ∈ Rn

is an arbitrary vector argument, the differential equations for the unknown
functions c(·), k(·), and K(·) can be obtained by comparing the coefficients in
each of the three classes of terms, separately.

Rather tedious algebraic manipulations yield the following unilaterally
coupled differential equations forK(·), k(·), and c(·), respectively:

− K̇(t) = ATK(t) +K(t)A−K(t)SK(t) +Q, (133)

with

A = A+
γ

1−γ Σ1/2
q ρT Σ−1/2

p

(
μ1−erT

1

)
, (134)

S = − γ

1−γ Σ1/2
q ρTρΣT/2

q −Σq, (135)

Q =
γ

1−γ
(
μ1−erT

1

)T

Σ−1
p

(
μ1−erT

1

)
, (136)

−k̇(t) =
(
AT +K(t)

{
Σq+

γ

1−γ Σ1/2
q ρTρΣT/2

q

})
k(t)

+K(t)
{
a+

γ

1−γ Σ1/2
q ρT Σ−1/2

p (μ0−er0)
}

+
γ

1−γ
(
μ1−erT

1

)T

Σ−1
p (μ0−er0) + γr1, (137)
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− ċ(t) = γ r0 +
γ

2(1−γ)
(μ0−er0)T Σ−1

p (μ0−er0)

+ kT (t)
{
a+

γ

1−γ Σ1/2
q ρT Σ−1/2

p (μ0−er0)
}

+
1
2
kT (t)

{
Σq +

γ

1−γ Σ1/2
q ρTρΣT/2

q

}
k(t)

+
1
2

tr [K(t)Σq] . (138)

For the boundary conditions for c(t1), k(t1), and K(t1), see (123), (124), and
(125).

Notice that in Problem 1, the differential equation (138), (123) for c(·)
need not be solved, because the value J(W,x, t) and its derivatives are not
needed in the closed-form state feedback control law (132) and because the
instantaneous value of the economic influence vector x(t) can be measured at
all times.

The differential equation (133) and (125) is of the type of the so-called
matrix Riccati differential equation which is well known in control theory be-
cause it appears in the popular LQ regulator problem [43]. Here, the situation
is a trifle more intricate. Suffice it to say that for 0 < γ < 1, the symmetric
matrix K(t) will be positive-definite for t < t1, whereas for γ < 0, K(t) will
be negatives-definite for t < t1.

The summary of the analysis of Problem 1 is as follows:

Solution of Problem 1

The optimal CRRA investment strategy u(t), u0(t) for t ∈ [t0, t1] is given
by the state feedback control law (132) and (97), where K(t) and k(t) are
the solutions of the differential equations (133) and (137) with the boundary
conditions (125) and (124), respectively, which can be computed off-line in
advance.

Remark 3. The optimal control consists of two parts. The first part is myopic,
i.e., independent of the remaining time horizon [t, t1]:

umyopic(x(t), t) =
1

γ − 1 Σ−1
p

{[
μ1 − erT

1

]
x(t) + μ0 − er0

}
. (139)

The second part is of the “look-ahead” type, which makes the best out of the
fact that the future increments dZp and dZq will be correlated:

ulook−ahead(x(t), t) =
1

γ − 1 Σ−1
p Σ1/2

p ρΣT/2
q [K(t)x(t) + k(t)] . (140)

Its influence decreases as the time t approaches the final time t1 due to the
boundary conditions K(t1) = 0 and k(t1) = 0.
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Problem 2. The statement of Problem 2 is identical to the statement of
Problem 1, except for the additional control constraint

u(t) ∈ U ⊂ Rn , (141)

where U is a closed, bounded, and convex subset of Rn.
In a typical example, where no borrowing of money and no short selling

of risky investment opportunities are allowed, the constraint set U can be
described as follows:

0 ≤ ui(t) ≤ ci ≤ 1 for i = 1, . . . , n, (142)
n∑

i=1

ui(t) ≤ 1 . (143)

Proceeding in the analysis of Problem 2 along the same lines as for Prob-
lem 1 leads to the following equations determining the optimal solution:

Solution of Problem 2

− Jt = max
u∈U

{
JwW

{
rT
1 x+r0 + uT

(
μ1x+μ0−e

[
rT
1 x+r0

])}
+ Jx(Ax+ a) +

1
2
JwwW

2uT Σpu

+
1
2

tr[JxxΣq] +WuT Σ1/2
p ρΣT/2

q ∇xJw

}
(144)

with the boundary condition

J(W,x, t1) =
1
γ
W γ(t1) . (145)

Unfortunately, in the restricted case with U �= Rn, there is no analytical
solution. Therefore, these equations have to be solved numerically for the
cost-to-go function J(W,x, t) and its derivatives, in order to find the optimal
control

u(t) = arg max
u∈U

{
JwW

{
rT
1 x+r0 + uT

(
μ1x+μ0−e

[
rT
1 x+r0

])}
+Jx(Ax+ a) +

1
2
JwwW

2uT Σpu

+
1
2

tr[JxxΣq] +WuT Σ1/2
p ρΣT/2

q ∇xJw

}
(146)

and u0(t) according to (97) at any time t, where W (t) and x(t) will be the
measured values of the instantaneous wealth and the vector of economic in-
fluence factors, respectively, at this time t.

Fortunately, solving the stochastic Hamilton-Jacobi-Bellman partial differ-
ential equation poses less numerical problems than solving its deterministic
counterpart. For more details, consult [24, 38].
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Remark 4. As has been noted in Section 1, in the uncorrelated case with ρ = 0
in (93), the dynamic stochastic optimal control problem degenerates to a static
or myopic optimization problem. Mathematically, this should now become
obvious by inspecting (118) and (120) in Problem 1 and (183) and (185) in
Problem 2, respectively.

4.5 CARA Problems

As in Section 4.4, the problem of investing part of the wealth W (t) in n risky
assets and the balance of the wealth in a risk-free money market account is
considered. However, the portfolio is no longer considered as self-financing.
Rather, an inflow is allowed which may depend upon the vector x(t) of eco-
nomic influence factors. (Think of an entrepreneur or a pension fund [13, 14],
for instance.) Furthermore, the return of the risk-free money market account
is assumed to be independent of the economic influence factors (i.e., r1 = 0
in (100)).

Here, the exponential utility function (81) is used. It has a constant coef-
ficient of absolute risk aversion (85).

In Problem 3, unlimited borrowing and unlimited short selling are allowed.
In Problem 4, the control variables constrained.

Problem 3. For the portfolio

dW (t) = r0W (t)dt+ [Hx(t)+h(t)]dt

+W (t)uT (t)
[
[μ1x(t)+μ0−er0] dt+ Σ1/2

p dZp(t)
]
, (147)

W (t0) = W0, (148)

with the stochastic economic influence factors

dx(t) = [Ax(t)+a] dt+ Σ1/2
q dZq(t), (149)

x(t0) = x0 , (150)

where the Brownian motions Zp and Zq are correlated according to (93), find
the unconstrained optimal asset allocation vector u : [t0, t1] → Rn, such that
the expected value of the exponential utility function

J = − 1
γ
E[e−γW (t1)] (151)

is maximized for a chosen value γ > 0.

Remark 5. In order to prevent potential confusion, please note that the state
x, the increment dW of the normalized Brownian motion, the drift term f ,
and the volatility term g in Section 3.4 correspond to the following structured
quantities in Problem 3:
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x −→
[
W
x

]
∈ R1+m, (152)

dW −→
[
dZp

dZq

]
∈ Rn+m, (153)

f −→
[
W

{
r0 + uT (μ1x+μ0−er0)

}
+Hx+ h

Ax+ a

]
, (154)

g −→
[
WuT Σ

1/2
p 0

0 Σ
1/2
x

]
. (155)

Furthermore

K −→ − 1
γ
e−γW , (156)

L −→ 0, (157)
Jx −→

[
Jw Jx

] ∈ R1×(1+m), (158)

Jxx −→
[
Jww Jwx

JT
wx Jxx

] [
Jww Jwx

∇xJw Jxx

]
∈ R(1+m)×(1+m) . (159)

Finally, the Itô correction factor ggT in the Hamilton-Jacobi-Bellman
equation (60) turns into

ggT −→
[
W 2uT Σpu WuT Σ

1/2
p ρΣ

T/2
q

W Σ
1/2
q ρT Σ

T/2
p u Σq

]
(160)

since dZp and dZq are correlated according to (93).
Plugging (152), (153), (154), (155), (156), (157), (158), (159), and (160)

into (60) yields the Hamilton-Jacobi-Bellman partial differential equation

− Jt = max
u

{
Jw

[
W

{
r0 + uT (μ1x+μ0−er0)

}
+Hx+ h

]
+Jx(Ax+ a) +

1
2
JwwW

2uT Σpu

+
1
2

tr[JxxΣq] +WuT Σ1/2
p ρΣT/2

q ∇xJw

}
(161)

with the boundary condition

J(W,x, t1) = − 1
γ
e−γW (t1) . (162)

Provided, Jww < 0, the unique maximizing control is

u = − 1
JwwW

Σ−1
p

{
Jw (μ1x+μ0−er0) + Σ1/2

p ρΣT/2
q ∇xJw

}
. (163)
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The following ansatz for the cost-to-go function J(W,x, t) turns out to be
successful here:

J(W,x, t) = − 1
γ

exp
{
c(t) + cw(t)W + kT (t)x+

1
2
xTK(t)x

}
(164)

with the following obvious boundary conditions at the final time t = t1:

c(t1) = 0 ∈ R, (165)
cw(t1) = −γ ∈ R, (166)
k(t1) = 0 ∈ Rn, (167)
K(t1) = 0 ∈ Rn×n . (168)

The objective functional defined in (164) has the following relevant partial
derivatives:

Jt = J(W,x, t)
[
ċ(t) + ċw(t)W + k̇T (t)x+

1
2
xT K̇(t)x

]
, (169)

Jw = J(W,x, t)cw(t), (170)
Jx = J(W,x, t)

[
kT (t) + xTK(t)

]
, (171)

Jww = J(W,x, t)c2w(t), (172)
Jwx = J(W,x, t)cw(t)

[
kT (t) + xTK(t)

]
, (173)

Jxx = J(W,x, t)
[
[k(t)+K(t)x]

[
kT (t)+xTK(t)

]
+K(t)

]
. (174)

Notice that Jww < 0 for all of the admissible values of the risk aversion
parameter γ > 0, since the value of J is negative by definition. Therefore, the
optimal control u in (163) is indeed maximizing in (161).

Combining (163), (164), (165), (166) (167), (168), (169), (170), (171),
(172), (173), and (174) yields the following affine state feedback control law:

u(x(t)) = − 1
cwW

Σ−1
p

{[
μ1 + Σ1/2

p ρΣT/2
q K(t)

]
x(t)

+μ0 − er0 + Σ1/2
p ρΣT/2

q k(t)
}
, (175)

where the symmetric matrix K(t) ∈ Rn×n and the vector function k(t) ∈ Rn

remain to be found for t ∈ [t0, t1].
As in Problem 1, the optimal control consists of a myopic part and a look-

ahead part, the latter of which exploits the fact that the future increments
dZp and dZq are correlated. Notice, that the “courage” to invest into risky
assets decreases with increasing wealth (CARA).

Plugging the optimal feedback control law (175), the ansatz (164) for the
cost-to-go function W , and its derivatives (169), (170), (171), (172), (173), and
(174) into the Hamilton-Jacobi-Bellman partial differential equation (161),
results in a very long expression. However, all of the many terms are either
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quadratic in x, or linear in x, or scalars. Since x ∈ Rn is an arbitrary vector
argument, the differential equations for the unknown functions c(·), cw(·), k(·),
and K(·) can be obtained by comparing the coefficients in each of the three
classes of terms, separately.

Rather tedious algebraic manipulations yield the following unilaterally
coupled differential equations for K(·), k(·), cw(·), and c(·), respectively:

− K̇(t) = ATK(t) +K(t)A−K(t)SK(t) +Q (176)

with

A = A− Σ1/2
q ρT Σ−1/2

p μ1, (177)

S = Σ1/2
q ρT ρΣT/2

q −Σq, (178)

Q = − μT
1 Σ−1

p μ1, (179)

− k̇(t) =
[AT−K(t)S]

k(t) + cwH
T +K(t)a

−
[
μT

1 Σ−1
p +K(t)Σ1/2

q ρT Σ−1/2
p

]
(μo−ero), (180)

− ċw(t) = r0cw(t), (181)

− ċ(t) = hcw(t) + aTk(t) +
1
2
kT(t)Σqk(t) +

1
2
tr[K(t)Σq]

− 1
2
(μ0−er0)T Σ−1

p (μ0−er0)−
1
2
kT(t)Σ1/2

q ρρT ΣT/2
q k(t)

− (μ0−er0)T Σ−T/2
p ρΣ1/2

q k(t) . (182)

For the boundary conditions for c(t1), cw(t1), k(t1), and K(t1), see (165),
(166), (167), and (168).

Notice that in Problem 3, the differential equations (181) and (182) for
cw(·) and c(·), respectively, need not be solved, because the value J(W,x, t)
and its derivatives are not needed in the closed-form state feedback control law
(175) and because the instantaneous value of the economic influence vector
x(t) can be measured at all times.

The summary of the analysis of Problem 3 is as follows:

Solution of Problem 3

The optimal CARA investment strategy u(t), u0(t) for t ∈ [t0, t1] is given
by the state feedback control law (175) and (97), where K(t) and k(t) are
the solutions of the differential equations (176) and (180) with the boundary
conditions (168) and (167), respectively, which can be computed off-line in
advance.

Problem 4. The statement of Problem 4 is identical to the statement of
Problem 3, except for the additional control constraint u(t) ∈ U ⊂ Rn, where
U is a closed, bounded, and convex subset of Rn (see Problem 2).
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Solution of Problem 4

− Jt = max
u∈U

{
JwW

{
r0 + uT (μ1x+μ0−er0)

}
+Jx(Ax+ a) +

1
2
JwwW

2uT Σpu

+
1
2

tr[JxxΣq] +WuT Σ1/2
p ρΣT/2

q ∇xJw

}
(183)

with the boundary condition

J(W,x, t1) = − 1
γ
e−γW (t1) . (184)

Unfortunately, in the restricted case with U �= Rn, there is no analytical
solution. Therefore, these equations have to be solved numerically for the
cost-to-go function J(W,x, t) and its derivatives, in order to find the optimal
control

u(t) = arg max
u∈U

{
JwW

{
r0 + uT (μ1x+μ0−er0)

}
+Jx(Ax+ a) +

1
2
JwwW

2uT Σpu

+
1
2

tr[JxxΣq] +WuT Σ1/2
p ρΣT/2

q ∇xJw

}
(185)

and u0(t) according to (97) at any time t, where W (t) and x(t) will be the
measured values of the instantaneous wealth and the vector of economic in-
fluence factors, respectively, at this time t.

5 Conclusions

In this chapter, it has been shown how the stochastic model-predictive opti-
mal control theory can be used in order to solve problems of optimal asset
allocation with sector rotation, under consideration of risk aversion. In the
two types of problems (CRRA and CARA) with unlimited controls,6 analytic
feedback solutions of the continuous-time stochastic optimal control problems
have been found. In the more realistic versions of the two problems with
limited controls, the optimal feedback control must be found with numerical
methods.

These methods were successfully tested in several exhaustive Monte Carlo
simulation studies at the Measurement and Control Laboratory of ETH Zurich
under the supervision of the authors.
6 i.e., unlimited investing into an investment opportunity, unlimited short selling,

and unlimited borrowing from the money market account
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In the next phase, the validity of these methods was established in several
studies using real data from reliable data banks (such as Bloomberg Finance)
for the relevant market data and the relevant economic influence factors at
SwissQuant Group AG.7 This led to several proprietary software products of
SwissQuant Group AG to be used in the ALM industry.

Areas for future research: Below some open research problems are sketched.

• In addition to the increments dZ of Brownian motions, allow for increments
dQ of Poisson processes (creating jump discontinuities in the market data
and/or the economic factors). This is relevant for modeling “crashes” (i.e.,
extraordinarily large changes within a single period of observation) of stock
markets.

• Develop monitoring tools for safely detecting and possibly even predicting
such extraordinary events.

• Generalize the presented model-predictive stochastic optimal control meth-
ods to adaptive control. The possibilities for adaptation include the fol-
lowing: dynamically changing the coefficient γ of risk aversion and/or dy-
namically changing the length T of the prediction interval and/or even
temporarily switching from the CRRA strategy to the CARA strategy in
the situation of such an event.

• Exploit the “cyclic nature” of economics in the modeling of the economic
influence factors. In this case, the matrix A in (91) cannot be diagonal
because it needs at least one pair of conjugate-complex eigenvalues.

• Generalize the presented stochastic optimal control methods to the prob-
lem of optimal stock picking. In this case, the economic influence factors
used so far need to be complemented by several company-specific influ-
ence factors, including the quality of its management, its markets, and
more common factors which are generally used in valuation [12].
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Appendix A: Notation

In order to improve the readability of this chapter, some operator notation is
collected in this appendix.
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Linear Algebra

Transposing a matrix:

The transpose of the matrix A =

⎡⎣a11 a12

a21 a22

a31 a32

⎤⎦ is AT =
[
a11 a21 a31

a12 a22 a32

]
.

In particular, the transpose of a column vector is a row vector and vice
versa.

The operator diag:

The operator diag maps the vector

⎡⎣a1

a2

a3

⎤⎦ or its transpose
[
a1 a2 a3

]
into

the diagonal matrix

⎡⎣a1 0 0
0 a2 0
0 0 a3

⎤⎦.
The trace operator:

The trace operator produces the sum of the diagonal terms of a square matrix:

tr

⎡⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎦ = a11 + a22 + a33.

For matrices A and B of suitable dimensions, the trace operator has the
following property: tr(AB) = tr(BA) = tr(ATBT ) = tr(BTAT ). In the special
case of two column two-vectors a and b:

tr(abT ) = tr
[
a1b1 a1b2
a2b1 a2b2

]
= tr(bTa) = bTa = a1b1 + a2b2 .

The square root of a symmetric, positive-definite matrix:

For a symmetric, n by n, positive-definite matrix Σ, its square root is an
n by n matrix denoted by Σ1/2 such that the relation Σ = Σ1/2ΣT/2 holds
(where the second factor is the transpose of the first). The square root is not
unique, unless it is required to be a symmetric matrix as well. Throughout
this chapter, terms of the form Σ1/2 appear in stochastic differential equations
as volatility parameters.

Differential Calculus

The Jacobian:

The differentiable function f : R3 → R2 has the following Jacobian matrix
(of partial derivatives):
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fx =
∂f

∂x
=

[ ∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

]
.

If the function f is scalar-valued, its Jacobian fx is a row vector.

The gradient:

The differentiable function f : R3 → R has the gradient

∇xf =

⎡⎢⎢⎣
∂f
∂x1

∂f
∂x2

∂f
∂x3

⎤⎥⎥⎦= fT
x .

The Hessian:

The Hessian of a twice differentiable function f : R2 → R is the symmetric
matrix

Jxx =

⎡⎣ ∂2f
∂x2

1

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x2

2

⎤⎦ .

Stochastics

The expected value of a random quantity x is denoted by E[x].

Appendix B: Controllability

Consider the function f : Rn ×Rm ×R→ Rn which is continuously differen-
tiable with respect to its first and second arguments and piecewise continuous
with respect to its last argument.

Definition 3. Controllability [1, 27]
The nonlinear dynamic system

ẋ(t) = f(x(t), u(t), t)

with the state vector x(t) ∈ Rn and the control vector u(t) ∈ Rm is completely
controllable over the finite time interval [t0, t1] ⊂ R, if for arbitrary vectors
x0 ∈ Rn and x1 ∈ Rn, there exists a piecewise continuous control u(., x0, x1) :
[t0, t1] → Rm, such that the state vector x is transferred from the initial state

x(t0) = x0

to the final state
x(t1) = x1 .

Consider the special case f(x, u, t) = A(t)x+B(t)u .
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Theorem 3. Controllability of a linear time− varying system [27].
The linear time-varying dynamic system

ẋ(t) = A(t)x(t) +B(t)u(t)

is completely controllable over the finite time interval [t0, t1] ⊂ R, if and only
if the control Gramian matrix W (t0, t1) ∈ Rn×n is positive-definite:

W (t0, t1) =
∫ t1

t0

Φ(t1, t)B(t)BT(t)Φ(t1, σ) dt � 0 .

Here, Φ(., .) ∈ Rn×n is the transition matrix of the dynamics matrix A(·)
satisfying the differential equation

d

dt
Φ(t, τ) = A(t)Φ(t, τ)

with the boundary condition

Φ(τ , τ) = I

at an arbitrary time τ ∈ [t0, t1].

Corollary 1. Controllability of a linear time− invariant system [1], [27]
For constant matrices A ∈ Rn×n and B ∈ Rn×m, we have

rank{W (t0, t1)} = rank{[B,AB,A2B, . . . , An−1B]} ,

i.e., the linear time-invariant system

ẋ(t) = Ax(t) +Bu(t)

is completely controllable over every finite time interval [t0, t1] if and only if
the controllability matrix U = [B,AB,A2B, . . . , An−1B] ∈ Rn×n·m has full
rank n.
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Summary. Scheduling problems in the process industry feature combinatorial and
nonlinear aspects arising from task sequencing and product blending. In this chap-
ter, we present an optimal control approach, recognizing that process scheduling
problems can be modeled as dynamic systems, where flows are control variables and
volumes and composition are state variables. This approach yields a nonlinear opti-
mal control model with continuous state and control variables, bounded by lower and
upper limits, avoiding the use of discrete variables. In this optimal control model,
mixed-integer constraints are replaced by complementarity constraints. Moreover,
we present a hybrid procedure which combines mixed-integer and nonlinear mod-
els. Numerical test instances are presented and solved by well-known optimization
solvers.

Key words: optimal control, nonlinear programming, mixed-integer pro-
gramming, scheduling

1 Introduction

Scheduling problems can be modeled as discrete optimization problems, as
they feature two general types of constraints: discrete constraints and contin-
uous constraints. The first group relates to enumerative or logical decisions
like “choose source A to send cargo B to destination C at time t,” whereas
the second relates to more general limitations like “the maximum storage ca-
pacity of store A is 30,000 m3.” Constraints on discrete variables stand for
assignment and sequencing decisions, and continuous equations model mass,
volume, energy, or component balances.

Floudas and Lin [5] recently presented a survey on process scheduling,
where they emphasize the importance of mixed-integer linear programming
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(MILP) in this field. The guarantee of global optimality is considered as the
highlight of this approach. However, due to scheduling’s NP-completeness,
such models suffer from the curse of dimensionality (the number of variables
is exponential to number of time periods), and MILP solving procedures reach
unacceptable computational times to find a solution for a real-world problem.
Therefore, the research community has been constantly working on formula-
tions to reduce models’ dimensions, particularly within nonuniform timedis-
cretization frameworks (see [4] for a thorough discussion on this subject).
Moreover, nonlinear phenomena are dealt with linear approximations, relaxed
or removed from the models. In this chapter, a nonlinear programming (NLP)
formulation based on continuous variables is proposed, trying to achieve rea-
sonably small models and to converge to local optimal solutions in affordable
computing time.

The main idea herein discussed is to reduce the problem’s dimensions by
avoiding discrete variables. The proposed formulation employs complemen-
tarity constraints to handle assignment and sequence decisions, applied on
continuous variables. A NLP feasible point is equivalent to a MILP feasible
point and vice versa. Therefore, a NLP local solution is equivalent to an inte-
gral MILP feasible point, defining an upper bound (if solving a minimization
problem) on the correspondent MILP, which can improve the pruning in a
branch-and-bound procedure. In fact, the NLP solution is a valid solution
for the scheduling problem, and may be kept as the solution in a real-world
situation or may be used as an incumbent solution for the MILP.

In addition to the complementarity approach, we can also consider schedul-
ing as dynamic systems, where one action (decision) at a given instant impacts
the future states of the system. Dynamic systems are classically made up of
control variables (the decisions one can take), state variables (the system fea-
tures one can measure), and state equations (how a state is affected by past
states and decisions). In industries such as the oil and gas industry and the
water and wastewater industry, control systems are built upon optimal control
dynamic models, where one tries to maintain the system operating safely and
efficiently. An optimal control problem features a highly separable Jacobian
matrix of the constraints, with a block-diagonal structure, which may result
in convergence with lower computational costs [3]. Common NLP solvers can
take advantage of this particular structure, as a discrete optimal control prob-
lem is equivalent to a NLP problem [1]. In particular, a scheduling problem
can be exactly described with this approach: the transfer operations are rep-
resented by control variables, while inventories are mapped to state variables.
The state at a given time instant is computed from previous state and control
variables, by means of the state equations.

In this chapter, we combine both nonlinear approaches: namely, comple-
mentarity and optimal control to avoid mixed-integer formulations. We use
the scheduling of crude oil and derivatives in ports as an example for the pro-
posed nonlinear optimal control model. The chapter is organized as follows:
Section 2 discusses the crude oil problem and its models; Section 3 presents
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some numerical examples; and Section 4 closes this work with our final
remarks.

2 Crude Oil Scheduling Models

The scheduling of crude oil and derivatives in ports is the problem to de-
termine (i) ship allocation within the port; (ii) transfer operations between
ships, tanks, process units, and pipelines; (iii) sequence of pipeline parcels
(end products and crude oil), in such a manner that an objective cost func-
tion is minimized and operational constraints are respected. It is a complex
task, featuring nonlinear (due to crude blending) and combinatorial (due to
assignment and sequencing) aspects.

The logistic system can be divided into three main subsystems (Fig. 1):
port, distribution center, and refinery, all of them connected by pipelines [9].
It is also possible to consider a single system, when the port tanks are di-
rectly connected to refinery charging tanks [10, 12]. In addition to these three
systems, one may possibly consider a fourth system: the tanker fleet, whose
schedule updates the estimated times of arrival (ETA) for each ship. Accord-
ing to Shah [12], a reasonable approach is to solve the systems hierarchically.
We follow this approach in this chapter, considering two systems: the port
(tankers, jetties, tanks, and pipelines) and the refinery crude area (pipelines,
tanks, and distillation crude unit). However, it is important to mention that
the equations presented herein could be employed in other arrangements as
well.

Portside tanks serve as a buffer to keep the pipelines in continuous op-
eration, even when tankers are late. In general, a (refinery or portside) tank
stores a certain class of crude (e.g., heavy oil tanks cannot store light oil).
Ideally, a good schedule will use a small number of tanks, but it is important
to notice that inventory costs are secondary when compared to the cost of not

Fig. 1. Logistic subsystems
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meeting the refinery production plan or delaying the ships. The refinery’s de-
mand for crude oil (as well as derivatives production) must be met by the port
scheduling. Jetties can be restrictive on what tankers and cargoes to handle,
to according to their dimensions (draught and length) and pumping capacity.
A ship must berth, unload, and leave the port within a time window defined
by contract, otherwise the oil company will pay heavy demurrage fees. For
instance, Brazilian demurrage costs amounted to USD 1.5 billion in 2006 [2].

Therefore, the port schedule’s main objective is to minimize demurrage
costs, while keeping the refinery plan. A jetty is available for berthing only
after the previous ship had enough time to leave the port. In the refinery
side, the crude distillation unit operates continuously, around an operational
feed flow. Blending is not allowed in the lines, i.e., each transfer operation
has only one source equipment and one destination equipment at a given
time. Running tanks are not allowed either, i.e., a tank cannot receive and
send crude simultaneously. In fact, a tank can make a delivery to another
equipment (e.g., pipeline or crude distillation unit) only if the necessary “idle
time” has been observed (e.g., to separate brine from crude oil or to assure a
lab analysis).

In the recent literature, Shah [12] proposed a MILP formulation for crude
oil scheduling from tanker vessels to CDUs, based on two models: (i) a refin-
ery problem (called the downstream problem) and (ii) a port model (called
the upstream problem), constrained by the pipeline parcels defined by the
solution of the first problem. Magalhães and Shah [10] revisited the prob-
lem, extending Shah’s original MILP formulation to consider a real-world
port–pipeline–refinery infrastructure and additional operational constraints.
The authors pointed out that some optimal solutions of the MILP model,
if applied to a real-world schedule, could be considered by a human sched-
uler as non-optimal, or even unfeasible, because certain real-world decisions
are sometimes very hard to be mathematically modeled. Más and Pinto
[9] modeled another real-world infrastructure, dividing the crude oil logis-
tic system into three subsystems: (1) port, (2) distribution centers (interme-
diate storage), and (3) refineries. They also presented an exponential equa-
tion to calculate an upper bound of binary variables with the number of
time intervals in order to illustrate that real-world instances are hard to be
solved.

2.1 Modeling the Transfer Operation

The fundamental scheduling activity is the transfer operation, which is made
up of a pair of equipments (source–destination) connected by an arc and a
flow from the source to the destination. The control vector u(ti) is the vector
where each entry uj(ti) stands for a nonnegative flow on arc j at time ti. The
optimization problem is to define a feasible sequence of u(ti), for all instants
ti, which minimizes the objective function J . All control variables uj(ti) are
bounded.
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The infrastructure of a logistic system can be seen as a graph, defined dur-
ing the problem’s formulation, featuring equipments as nodes, connected by
flow arcs. A system graph is built by checking which equipments are connected
by pump lines and which are compatible in terms of crude oil and physical
dimensions. Figure 2 illustrates a port infrastructure with three jetties, five
tanks (three for end products, two for crude oils), two pipelines connecting
the port to a refinery (one to receive end products, the other to send crude
oil), and three tankers that must be scheduled. In this example, tanker N3
can berth on jetties P3 and P2, but cannot berth on jetty P1. Moreover, N3’s
cargo is a crude oil that can be pumped to tank T5. Therefore, there is a flow
arc (represented by the lower traced line) between tanker N3 and tank T5,
through jetty P3.

Fig. 2. System as a graph

In summary, the schedule is basically to define a nonnegative flow uj(ti) for
each arc j at each time instant ti. If uj(ti) = 0, there is no transfer operation
at arc j at time ti, otherwise, a transfer operation is occurring at this arc.

Operational constraints, such as “one equipment N cannot be the desti-
nation of two transfer operations at the same time ti, in order to avoid inline
blending” can be modeled by different manners. For instance, let us examine
the case of a certain tank N which is being fed by other equipments: it can
be the destination of at most one transfer operation at a certain time ti, as
inline blending is forbidden. We present two different modeling possibilities
(Table 1), with AN as the set of indexes for all arcs whose destination is N :

(a) an MILP formulation, as commonly found in the literature [9, 12] and
(b) the novel NLP formulation proposed here.

The volume of tank N is calculated by a volumetric balance equation,
which is equal in both models. The models differ on how to enforce the up-
per bounds on the flows and how to guarantee that only one source will be
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Table 1. Modeling possibilities for transfer operations

Model Equations

(a) MILP volN (ti) = volN (ti−1) +
∑

j∈AN
uj(ti)Δt∑

j∈AN
bj(ti) <= 1

0 <= uj(ti) <= bj(ti) ∗uMAX
j (ti), j ∈ AN

bj(ti) is binary, uj(ti) ∈ R
(b) NLP volN (ti) = volN (ti−1) +

∑
j∈AN

uj(ti)Δt∑
j∈AN

∑
k>j∈AN

uj(ti) ∗uk(ti) = 0

0 <= uj(ti) <= uMAX
j (ti), j ∈ AN

uj(ti) ∈ R

employed to feed the tank. Notice that, as N can participate in at most one
transfer operation at time ti, either all flows in the AN arcs are zero at ti (no
transfer happens with destination N at time ti) or only one flow is greater
than zero at ti (N is the destination of only one transfer operation at time
ti). Both formulations enforce this behavior.

Model (a) requires an additional control vector b(ti) of binary variables,
where entry bj(ti) is associated with the uj(ti) entry. If bj(ti) is set to 1,
then a positive flow is allowed on arc j; otherwise (if set to zero), no flow is
allowed on arc j. This is assured by the manipulation of the bounds on uj(ti):
if bj(ti) = 1, the bounds are preserved; otherwise, they are set to zero. The
summation constraint on the binary constraints guarantees that at most one
bj(ti) can be evaluated as 1 at ti, j ∈ AN . All other binary variables associated
with AN must be evaluated as zero.

Model (b) relies on the control vector u(ti) only. There is no need for
additional binary variables. The summation of the products of all AN flows
two by two is equal to zero if and only if all flows are equal to zero or only one
flow is greater than zero, making N as the destination of at most one transfer
operation, as required. The main disadvantage of this formulation is that it
defines a nonconvex model. In the next sections, “idle time” and “berthing”
constraints are formulated in a similar fashion.

2.2 Optimal Control Nonlinear Model

In the previous section, we have implictly defined the schedule as a dynamic
model within the optimal control framework. An optimal control problem is
defined mathematically as the following mathematical programming problem.

min J = f(u, x, t)
s.t. uMIN <= u(ti) <= uMAX, t0 <= ti < tF

xMIN <= x(ti) <= xMAX, t0 <= ti <= tF

x(ti) = g(x(ti−1), u(ti−1)), t0 < ti <= tF

x ∈ Rn, u ∈ Rm.
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The control variables are u, the state variables are x, and the time horizon
spreads from t0 to tF .

The transfer operation is composed of two equipments–source and
destination–and a flow uj from the source to the destination (through arc j).
A storage is filled by flows from other equipments, changing its state (volume
and composition), and this equipment may later perform an outlet transfer
operation performing changes on other equipments. We modeled flow rates as
control variables, bounded by upper and lower bounds: each entry of the con-
trol vector u(ti) stands for a flow in an arc between two equipments during the
interval [ti, ti + Δt]. The control’s upper bounds may not be the same for all
intervals, depending on port unavailability because of tides, limited operation
of some equipments during certain periods of the day, scheduled maintenance,
and the fact that a ship can only berth after its ETA (estimated time of ar-
rival). However, it is important to note that all flow bounds are known a priori
during the problem formulation phase.

The proposed nonlinear optimal control model features the flow rates u
as control variables (2), and volumes v and qualities p as subsets of the state
variables x (3), all bounded by upper and lower limits. The state equations
are developed from volume balance (4) and product blending in storage equip-
ments (5). The objective function (1) is a summation of different costs, which
can be prioritized with the use of weights (wcost)

min J =
∑
cost

wcost ∗ Ccost, (1)

s.t. umin <= u(ti) <= umax(ti), (2)

xmin <= x(ti) = [v(ti)p(ti)]T <= xmax, (3)

v(ti) = v(ti−1) + Uu(ti−1)Δt (4)

pN,q(ti) = (vN (ti−1)∗pN,q(ti−1)+
∑

j∈AN

uj(ti−1)∗pj,q(ti−1))/vN (ti) : (5)

Equation (4) features U as an incidence square matrix with entries in
0, 1, −1. Equation (5) calculates density, sulfur concentration, and product
composition: each uj(ti−1) is an inlet flow at N at time ti−1 and pj,q(ti−1) is
the value of this inlet flow’s property q. The complementarity equations will
force that at most one source equipment is actually feeding N , i.e., at most
one uj(ti−1) will be greater than zero.

The following equations model scheduling decisions: unique definition of
source and destination in a transfer operation (6), idle time to segregate im-
purities (7), berthing time (8), and constant flow constraints (9), and all of
them must equal to zero. We define new state variables rN , zN , sN , and qN

for all equipments N , each one referring to a complementarity equation. In
the next section, these variables will be employed to relax and penalize the
problem.
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rN (ti) =
∑

j∈AN

∑
k>j∈AN

uj(ti−1)uk(ti−1) = 0, (6)

zN (ti) =
ti−1∑

t′=ti−1−ΔtIDLE
N

∑
j∈AN

∑
k∈AOUTLET

N

uj(t′)uk(ti−1) = 0, (7)

sN (ti) =
ti−1∑

t′=ti−1−ΔtBERTH
N

∑
j∈AN

∑
k∈AK<>N

uj(t′)uk(ti−1) = 0, (8)

qN (ti) = uN,0 −
∑

j∈AN

uj(ti) = 0. (9)

Equation (6) enforces that only one flow can feed N at time ti−1, there-
fore, any transfer operation has only one source and only one destination
at time ti−1. Equation (7) enforces that N will be able to feed another
equipment only after its idle time ΔtIDLE

N was respected. Equation (8) enfor-
ces the necessary berthing time ΔtBERTH

N for ships. Equation (9) forces a
constant flow uN,0 feeding a given equipment (usually a process unit or a
pipeline) N–this constraint can be easily changed to force a variable flow, if
needed.

In the case of crude oil scheduling, we considered the following costs: de-
murrage (10–12), unattained demand (13), and inventory (14):

Cunload
demurrage =

∑
N∈Shipsunload

∑
ti>tdepart

N

cdemur
N vN (ti), (10)

C load
demurrage =

∑
N∈Shipsload

∑
ti>tdepart

N

cdemur
N (CargoN − vN (ti)), (11)

Cdemurrage = C load
demurrage + Cunload

demurrage, (12)

Cdemand =
∑
ti

∑
N∈Pipelines

∑
P∈Products

cdemand
N vN,P (ti), (13)

Cinventory =
∑
ti

∑
N∈Storages

cinv
N vN (ti). (14)

Equations (10), (11), and (12) deal with demurrage cost: here we do not
employ the classic demurrage formulation, but one that is also proportional to
the remaining volume to be transferred that is delayed. Notice that demurrage
costs are accounted for ship N only if it has departured after the maximum
acceptable time of departure (tdepart

N ). If ship N is to be loaded, its volume
at the departure time must be CargoN . If N is to be unloaded, its volume at
the departure time must be zero.

In all cost equations, ccost is a different arbitrary unitary cost.
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2.3 Solving the Problem

The model is solved as follows: the nonlinear constraints 6, 7, and 8 are re-
laxed and added to the objective function as penalties, creating the merit
function J ′ (15). This merit function will be minimized instead of the original
objective function J . This approach removes most of the difficult constraints,
generating a broader search region for nonlinear optimization methods, with
fewer constraints. In addition, if only linear state equations are present, the
search region becomes a polyhedra. Within the feasible region of the original
formulation, all penalties are cancelled. The parameter μ can be determined
iteratively by solving successive relaxations of the original problems or fixed
a priori as a large enough number.

J ′ = J + μ
∑

t

eT r(t) + eT s(t) + eT z(t), (15)

where e is the unitary vector.
Trivial points are points where the control vector u is zero for all time

intervals. These points are very easy to be constructed, but they are not
feasible for the original problem formulation. At trivial points, the demurrage
and demand costs are maximal. The norms of the additional states are ||z|| =
||r|| = ||s|| = 0 and ||q|| >> 0. However, such points are feasible in the relaxed
formulation and define a descent direction that leads to the minimization of
the penalties–moving the points to the feasible region. Therefore, we use these
points as starting points.

2.4 Mixed-Integer Linear Model

In order to compare the NLP approach with the MILP approach, we present
a MILP model following the crude oil scheduling literature [9, 12]. Equations
(2), (6), (7), and (8) from the NLP model are replaced by (16, 17, 18, 19).
The blending equation (5) is dropped, as it is nonlinear. Complementarity
constraints are replaced by mixed-integer constraints, with the addition of
the binary variables vector (bj):

0 <= uN (ti) <= Diag(bj∈AN
(ti))uMAX

N (ti), (16)∑
j∈AN

bj(ti) <= 1, (17)

∑
j∈AOUTLET

N

bj(ti) +
ti∑

t′=ti−ΔtBERTH

∑
j∈AN

bj(t′) <= 1, N ∈ Ships, (18)

∑
j∈AOUTLET

N

bj(ti) +
ti∑

t′=ti−ΔtIDLE

∑
j∈AN

bj(t′) <= 1, N ∈ Storages. (19)
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Equation (16) features a diagonal matrix Diag(bj(ti)), composed of the
binary variables bj , which are added to the model in the MILP formulation.
These variables represent scheduling decisions: there is no flow uj at time
ti if bj = 0 at time ti, and there is a flow uj if bj = 1. The consecutive
equations represent the following constraints: only one flow can be used by
an equipment N at time ti−1, idle time and berthing time must be respected
before any outlet transfer.

The MILP can be solved with usual mixed-integer procedures and is larger
than the NLP model, as shown in the next section.

3 Results

The NLP and MILP models were compared in five preliminary test instances
(Tables 2 and 3), coded in AMPL [6], and solved with standard commercial
solvers: CPLEX (v. 10.1.0) [8], SNOPT (v. 6.1) [7], and MINOS (v. 5.5) [11].
Case 1 is composed of an infrastructure with two crude tanks and one pipeline
connected to a refinery, whose crude demand has to be fulfilled. Case 1 has
two configurations: (A) allows the pipeline to be idle in certain periods and
(B) keeps the pipeline with a constant flow during the entire schedule. The
MINOS run converged to a local minimum in (B) configuration. Case 2 has
two crude tanks, one jetty, and two tankers, whose cargo had to be unloaded.
Case 3 has three crude tanks, one jetty three tankers, whose cargo had to be
unloaded, and one pipeline, whose demand has to be fulfilled. Case 3 has two
configurations: (A) allows the pipeline to be idle in certain periods and (B)
keeps the pipeline with a constant flow. The SNOPT run converged to a local
minimum with demurrag costs in (B) configuration. The number of variables
is shown as determined after AMPL’s presolve procedure. As both MILP and
NLP models have linear objective functions, it is possible to compare them in
regard to the global optimality of their solutions. All cases were solved in a
workstation with the following configuration: Intel Core Duo T2250 1.73 GHz,
RAM 1 GB, Linux OpenSUSE 10.1. The running times were around 1 s.

As the complementarity model is nonconvex, a nonlinear programming
method, such as MINOS and SNOPT, may converge to local optima, dif-
ferently from what happens with the mixed-integer model when solved by
a typical branch-and-bound method, such as CPLEX. On the other hand,
the complementarity model is more compact, featuring less variables and con-
straints than the MILP one. Noticing that one NLP solution is equivalent to an
MILP feasible point, we propose a hybrid scheme: Solve the continuous NLP
problem and then transform its solution into an initial point for the MILP. If
needed, call NLP runs at some difficult nodes of the MILP branch-and-bound
tree. This scheme may be able to reduce the total number of branches and
simplex iterations in the MILP optimization, as the NLP point is an inte-
gral MILP good solution. At the current state of our research, we employed
the NLP solutions to initialize the MILP previous examples and compared
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Table 2. Dimensions of the test cases

Model Case Binary variables Continuous variables Constraints

NLP 1(A) 0 31 25
1(B) 0 31 30

2 0 111 87
3(A) 0 169 103
3(B) 0 135 97

MILP 1(A) 12 25 31
1(B) 12 25 36

2 34 82 111
3(A) 93 158 265
3(B) 93 158 275

Table 3. Results

Model Case Solution Iterations Global optimum

NLP (SNOPT) 1(A) 1460 51 Yes
1(B) 1600 13 Yes

2 0.33 12 Yes
3(A) 0 812 Yes
3(B) 18.27 544 No

NLP (MINOS) 1(A) 1460 17 Yes
1(B) 1625 5 No

2 0.33 191 Yes
3(A) 0 411 Yes
3(B) 0 472 Yes

MILP (CPLEX) 1(A) 1460 14 Yes
1(B) 1600 13 Yes

2 0.33 63 Yes
3(A) 0 324 (8 BB nodes) Yes
3(B) 0 397 (25 BB nodes) Yes

the number of iterations and branched nodes. A substantial reduction in the
number of iterations in the MILP optimization run is detected (Table 4). All
cases had similar CPU times of approximately 1 s.

Table 4 shows the MILP iterations when the NLP solutions were employed
as initial incumbent solutions to the MILP formulation. A solution computed
by the NLP formulation is transformed into a MILP point by simply adding
the binary variables and replacing the complementarity constraints by the
mixed-integer ones. For each positive flow, the corresponding binary variable
is set to 1 (one), while for each null flow, the corresponding binary variable is
set to 0 (zero). The number of branch-and-bound iterations and visited nodes
is significantly reduced, even for these preliminary test cases.
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Table 4. MILP results with different initializations

Case Initial point (x, u) Iterations

1(A) (x0, 0) 14
(x, u)SNOPT 13
(x, u)MINOS 13

1(B) (x0, 0) 13
(x, u)SNOPT 4
(x, u)MINOS 4

2 (x0, 0) 63
(x, u)SNOPT 47
(x, u)MINOS 40

3(A) (x0, 0) 324 (8 BB nodes)
(x, u)SNOPT 215
(x, u)MINOS 215

3(B) (x0, 0) 397 (25 BB nodes)
(x, u)SNOPT 265 (6 BB nodes)
(x, u)MINOS 215

4 Conclusion

A nonlinear optimal control model for process scheduling–based on flow
variables–was introduced. This way all constraints are modeled without dis-
crete variables, achieving continuous models that are smaller than their MILP
counterparts. Although being able to generate efficient solutions, the NLP for-
mulation is nonconvex in general. The NLP can be employed as an auxiliary
problem to traditional MILP formulations. In fact preliminary numerical re-
sults showed a significative reduction of MILP iterations when initialized by
a NLP solution.
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Summary. In this chapter, we start by a non-cooperative quantum game model for
multiknapsack to give a flavor of quantum computing strength. Then, we show that
many rank-deficient correlation matrices have Grothendieck’s constant that goes
beyond

√
2 for sufficiently large size. It suggests that cooperative quantum games

relate powerset entanglement with Grothendieck’s constant.

Key words: non-cooperative quantum game, multiknapsack, entanglement,
grothendieck’s constant

1 Introduction

For a long time, quantum computing has been concerning physicists and the
experimental refutation of Bell’s inequalities [1, 10, 38]. Since the polynomial
time prime factorization on a quantum computer [36], it intrudes on many
different fields in applied mathematics and inspires heuristics to tackle real-
life applications in optimization. It is widely believed that quantum computing
breakthrough comes from entanglement: in classical computing, states are well
separated while in quantum computing all the states are combined at the same
time in a possibly non-separable way (entanglement). However, the objectives
widely differ among fields, e.g., theoretical physicists aim at a taxonomy of
states when they try to distillate pure entangled states, while combinatorists
use q-analogue as a tool to prove many old and new identities [25]. Here,
we narrow the scope back to Bell’s inequalities violation and entanglement
modeling in combinatorial optimization problems.

In Section 2 we recall quantum issues on entanglement and narrow the
focus to amplitude amplification that promises faster results by quantum com-
puter offspring, as well as to the relationship between classical and quantum
correlation matrices. In Section 3, we address a multiplayer quantum game
model for the multiknapsack problem and show its limitations in sections that

A. Chinchuluun et al. (eds.), Optimization and Optimal Control,
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follow. In Section 6, we revisit the scaling factor between classical and quan-
tum correlation matrices for Hadamard’s matrices and extend the question to
almost Hadamard’s matrices.

Even under these very strong restrictions, we will see that difficulties re-
main tough.

2 Quantum Background

2.1 Computational State Space

Definition 1. A binary quantum digit or qubit is a binary quantum sys-
tem over the Hilbert space whose canonical basis is denoted {| 0〉, | 1〉} ≡{
e0 =

[
1
0

]
, e1 =

[
0
1

]}
.

This definition extends to ternary qutrit, ... and v-ary quvit quantum digits

Definition 2. A v-valued quantum digit or quvit is a v-adic quantum system
over the Hilbert space whose canonical basis is denoted {|0〉, |1〉, . . . , |v〉} ≡
{e0, e1, . . . , ev}.
Definition 3. A quantum computational state is a complex-valued combina-
tion of quantum basis {|ψ〉 =

∑
αi |i〉 normalized under

∑ |αi |2 = 1.

It stands for a probabilistic combination of basic states where pi = |αi |2
is the probability to observe state |i〉.
Definition 4. A quantum register of size n is an array of n quvits which can
be in any of the individual states of its quvits at any instant or at all of the
states (in probabilistic sense) at the same time, e.g., r = {|1032〉 =|1〉⊗ |0〉⊗ |
3〉⊗ |2〉, where quantum notations actually shrink notations from Rv×n to a
string of length n along with separators.

It is customary in quantum usage to introduce notations 〈ψ |=|ψ〉† for
transposed conjugate, 〈φ | ψ〉 = 〈|φ〉, |ψ〉〉 =| ψ〉† | φ〉 for inner product, or
〈φ| A |ψ〉 = 〈|φ〉, A |ψ〉〉 for quadratic form.

2.2 Entanglement

Computational state above extends to computational register state as a combi-
nation |r〉 =

∑
αi1...in

|x1 . . . xn〉, and according to the principles of quantum
mechanics, the register state is in either separable or entangled state.

Definition 5 (entanglement vs separability). A quantum register state
is separable if

∑
αi1...in

|x1 . . . xn〉 =
∑

βi1 |x1〉⊗. . .
∑

βin
|xn〉, otherwise,

the state is entangled.
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For instance, the ternary state |02〉+ |10〉 = (0, 0, 1, 1, 0, 0, 0, 0, 0)t is entangled

while
∑2

i=0

∑2

j=0
| ij〉 =

∑2

i=0
| i〉 ⊗

∑2

j=0
|j〉 is separable. Maximally

(unnormalized) entangled state | 0〉+ | 1〉 is related to Hadamard’s matrix

H =
[

1 1
1− 1

]
by |0〉+ |1〉 = H |0〉. In fact, quantum register computing acts

on a vector of complex variables x1 . . . xn so that register states are better
seen as labeled structures where a computation is nothing but a generating
function where the probability to observe a given register state is associated

with the coefficient of x
i1
1 ...xin

n

i1!...in! in the expansion of the generating function.
Notice that labeled structures impose an exponential generating function since
we are interested in counting states under relabeling. Another striking feature
of the exponential generating function viewpoint lies in the non-homogeneous
character since each register bit could have its own set of values while we
restrict the above, as most authors do, to the homogeneous case where each
bit is v-valued. But the main feature of exponential generating function lies
in the ability to capture entanglement.

Definition 6 (powerset entanglement). Given an operator A then the
labeled powerset of A is P(A) = ∅ +A + A2

2! + . . . + Ak

k! + . . . = expA for all
k-products formed from A up to relabeling.

Starting from any state |r〉, clearly expA |r〉 is maximally entangled w.r.t.
powerset; for that reason, it is customary to weight this entanglement as expγA

where γ smoothly evolves from 1 (maximally entangled case) to 0 identity
(separable case).

Definition 7 (sequence entanglement). Given an operator A then the
labeled sequence of A is Σ(A) = ∅+A+A2+. . .+Ak+. . . = I

I−A = (I−A)−1.

Definition 8 (cycle entanglement). Given an operator A then the labeled
cycle of A is C(A) = ∪k≥0C(A, k) = log I

I−A = − log(I − A), the union of

sequences taken up to circular shifts of their elements where C(A, k) = Ak

k
denotes number of k-sequences under all possible circular shifts.

However, whenever 1 is eigenvalue of A both sequence and cycle entangle-
ments run into troubles associated with singularity. This will ever be the case
for big n.

Definition 9 (braid entanglement). Given a SU(2) presentation of Artin
braid’s group R, links entanglement is written as a braid word in I,R,R−1.

For instance, B = (R⊗ I ⊗R−1)(I ⊗ I ⊗R⊗ I)(I ⊗R−1 ⊗ I ⊗ I)(R⊗R⊗ I)
is unitary operator associated with five strands of Fig. 1. See Kaufmann and
Lomonaco’s articles [27, 28] for a neat and complete presentation of topological
versus quantum entanglement.
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Fig. 1. A braid on five strands from left to right

2.3 Observable State Space

Due to normalization requirement 3, computations are operators preserving
norm. We require further causality, i.e, norm is unitary similarity invariant:
‖UAU∗‖=‖A‖ for any state A and unitary U . Unitary invariance through
‖UAV ∗‖=‖A‖ for any state A and unitary U, V does not provide reversibility
of computation; therefore, it is discarded from the computation model.

Last, quantum computing is supposed to be safe; as pointed out in [36], if

it were unitary transform, reducible (having a shape
[
AB
0C

]
, equivalently whose

supporting graph is strongly connected) then observation of states may col-
lapse since states could remain in a single connected component. It is custom-
ary, once more, to deal with the special unitary group (det = ±1) instead of
unitary group (det = expiθ) to remove phase blurring effects. To summarize,
irreducible causal quantum register systems mainly deal with

SU(v)× · · · × SU(v)︸ ︷︷ ︸
n

,

the direct product of n times the special unitary group over v-values; unless,
the system is closed, any operator in this set is in order.

Let commuting subalgebras Ai be extracted from the algebra of quan-
tum observables, then the classical/quantum correspondence as illustrated by
Khalfin and Tsirelson [29] follows a kind of arithmetic–geometric mean on
correlations. Let us denote correlations as standard inner products; for two
subsystems A1,A2 with commuting observables A1i, A2j , then 〈A1〉2+〈A2〉2

2 −
〈A1, UA2〉 where entries of U belongs to {−1, 0, 1} leads to so-called Bell-
type inequalities where scaling of right-hand side depends on which clas-
sical/quantum case applies. For two observables, Pauli’s matrices P1 =[
0 1
1 0

]
, P2 =

[
0− i
i 0

]
, P3 =

[
1 0

0− 1

]
are the stubs for the original Bell’s inequali-

ties through
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l
〈A1〉2 + 〈A2〉2

2
− 〈A1, iP2A2〉 =

1

2

(
A

2
11 + A

2
12 + A

2
21 + A

2
22

)
− A11A22 + A12A21

=
1

2
(A11 − A22)2 +

1

2
(A11 + A21)2 ≥ 0

〈A1〉2 + 〈A2〉2

2
− 〈A1, (P1 + P3)A2〉 =

1

2
(A11 − (A21 + A22))2 −

1

2
(A21 + A22)2 +

1

2
(A12 − (A21 − A22))2

−
1

2
(A21 − A22)2 +

1

2

(
A

2
21 + A

2
22

)
≥ 0

since all non-commuting terms A21A22, A22A21 cancel. From A2
ij = 1 in last

inequality, we retrieve CHSH generic inequality

|A11(A21 +A22) +A12(A21 −A22) | ≤ 2; (CHSH)

in quantum case, Hadamard’s matrix H = (P1 +P3) has to be unitary, hence
the well-known scaling by

√
2. For two observables related by a group struc-

ture, we have in the same way:

• braid group: use R = I ⊗ I + P1 ⊗ iP2 as a presentation of the group
[14] 〈A1, RA2〉 ≤ 2 since 〈A1〉2 = 〈A2〉2 = 2 with a scaling factor

√
2 in

quantum case (RRt = 2I).
• quaternion group: use Q = I ⊗ I + iP2 ⊗ P3 + I ⊗ iP2 + iP2 ⊗ P1 as a

presentation [15] 〈A1, QA2〉 ≤ 6 with a scaling factor 2 in quantum case
(QQt = 4I).

It is easily verified that in both cases, G = R,Q; first, the 0 mean is
preserved in classical case (observables look like [±1, 0,±1, 0], [±1, 0, 0,±1],
[0,±1,±1, 0], [0,±1, 0,±1]), and second, non-commuting terms cancel in ex-
pansion of 〈A1〉2+〈A2〉2

2 −〈A1, GA2〉. While braiding remains tight (like CHSH)
in passing to unitary case, quaternion could not be tight due to the scaling
factor 2; we say that the former is facet defining and the latter only defines a
valid inequality.

2.4 SU(v) Representation

Fact 1 (SU(2) representation). If all the special unitary groups over binary
values apply then we can use the matrix representation

U2(θ, α, β) =
[
eiα cos( θ

2 ) ieiβ sin( θ
2 )

ie−iβ sin( θ
2 ) e−iα cos( θ

2 )

]
, (1)

where ranges are in [−π, π],

with I = U2(0, 0, 0) and F = U2(π, 0, 0) =
[
0 i
i 0

]
since F |0〉 = i |1〉, F |1〉 = i |

0〉. Notice U2(π/2, π/2, 0) is Hadamard’s matrix scaled by i to get once more
a positive determinant.

For higher dimensional valued system instead of binary, we have to face
with the problem of representation of SU(v) w.r.t. entanglement issue men-
tioned above.
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The challenge in quantized problem formulation remains to select the kind
of entanglement and to restrict the set of applicable operators; most problems
from physics have a clear understanding of both issues as sketched below,
but for combinatorial problems, it could be premature to conclude in favor of
quantum version over classical one without weighing these issues.

2.5 Amplitude Amplification

Since Grover’s algorithm [21] for accelerating search in unstructured data, the
notion of amplifying first estimate of successful retrieval has been developed
along the following framework [5]. Let H be decomposed into good subspace
and bad subspace, meaning that every pure state |x0, ...xn〉 is a direct sum of
good states and bad states; let a quantum (unitary) algorithm A starting from
initial state |0, ...0〉 such that probability of getting a good answer at first step
is given by a where ψ = A |0, ...0〉. H decomposes into Hψ +H⊥ψ , the subspace
spanned by first answer and its orthogonal complement. Define Q = HψHψ0

as the product of Householder’s reflections through |ψ〉 and its projection on
bad subspace |ψ0〉 so that |ψ〉 =|ψ1〉+ |ψ0〉. If a = 1 then nothing has to be
done since we get a positive answer at first trial.

Lemma 1. Let ψ = A |0, ...0〉 =|ψ1〉+ |ψ0〉 and Q = HψHψ0
, then Q acts as

the identity on orthogonal complement H⊥ψ .

Proof.

Hψ = I − 2 |ψ〉〈ψ|, Hψ0
= I − 2

〈ψ0|ψ0〉
|ψ0〉〈ψ0| .

Notice that if a = 0 then Hψ = Hψ0
is 1-D and the result is trivial from

idempotence of reflection. Let |φ〉 ∈ H⊥ψ , i.e., 〈ψ0|φ〉 = 0, 〈ψ1|φ〉 = 0, 〈ψ|φ〉 = 0.

HψHψ0
|φ〉 = Hψ

(
|φ〉 − 2

〈ψ0|ψ0〉
〈ψ0|φ〉 |ψ0〉

)
=|φ〉− 2〈ψ|φ〉 |ψ〉 =|φ〉. ��

Lemma 2. If 0 < a = 〈ψ1|ψ1〉 < 1, then let us define sin(θa) =
√〈ψ1|ψ1〉,

cos(θa) =
√〈ψ0|ψ0〉, then

|ψ±〉 =
1√

2 sin θa

|ψ1〉 ±
i√

2 cos θa

|ψ0〉

are unit eigenvectors of Q in Hψ associated with eigenvalues e±i2θa .

Proof. Straightforward computations give

|ψ0〉 =
−i cos θa√

2

(|ψ+〉− |ψ−〉
)
, 〈ψ0|=

i cos θa√
2

(〈ψ+| −〈ψ−|
)

|ψ〉 =
−i√

2

(
eiθa |ψ+〉 − e−iθa |ψ−〉

)
, 〈ψ|= i√

2

(
e−iθa〈ψ+| −eiθa〈ψ−|

)
Hψ0 = I − (|ψ+〉− |ψ−〉)(〈ψ+| −〈ψ−|)
Hψ = I − (eiθa |ψ+〉 − e−iθa |ψ−〉)(e−iθa〈ψ+| −eiθa〈ψ−|)

Hψ0 |ψ±〉 = |ψ∓〉, Hψ |ψ±〉 = e∓i2θa |ψ∓〉, Q |ψ±〉 = e±i2θa |ψ±〉,
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the result follows from two dimensionality of Hψ when 0 < a < 1. ��
Using the decomposition of |ψ〉 in above eigenvector basis, we get

Corollary 1.

Qj |ψ〉 =
−i√

2

(
ei(2j+1)θa |ψ+〉 − e−i(2j+1)θa |ψ−〉

)
=

sin(2j + 1)θa

sin θa
|ψ1〉+

cos(2j + 1)θa

cos θa
|ψ0〉.

While initial amplitude could be amplified in any case, Fig. 2 shows that
uncertainty in its knowledge prevents to compute how many diffusion loops
have to be done before measurement could take place. A more reliable am-
plification has been proposed by [42] to partly spread information among
qubits. Grover et al. [20] notice that diffusion operator used for searching in a
database might be improved by using phase Householder’s reflections instead
Q = (I − (1 − ei π

3 ) |ψ〉〈ψ |)(I − 1−ei π
3

〈ψ0 |ψ0〉 |ψ0〉〈ψ0 |); compared with standard
reflections (phase equal to π), it prevents overshooting target state and Li
et al. [32] extend it to different phases. Finally, [7] improves ordered search
by recoursing to semidefinite programming.
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Fig. 2. Amplitude amplification: sin2(2j + 1)θa, j = 1 . . . 50, θa = 0 . . . 0.2

2.6 Correlation Matrices

Let Cn (resp. Qn) denotes the set of classical (resp. quantum) correlation
matrices; Tsirelson introduced a Grothendieck’s constant Kn to characterize
the inclusion
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Qn ⊆ KnCn,

see [9] for a detailed presentation. Both sets are centrally symmetric, but
the former is a polytope while the latter is smooth, justifying a discrepancy
between classical facet defining inequalities and quantum tangent hyperplanes.
This gives rise to the discussion about Bell’s inequalities and

√
2 scaling in

quantum case. In their article, Fishburn and Reeds [16] describe an instance
where Kn increases above

√
2 and they report how difficult it could be to

exhibit more such instances; in combinatorial optimization, it would mean
that the smooth quantum correlation set could be far enough from the classical
polytope so that hard problems would be amenable to simple quantum solvers
while classical approach fails to escape from a local optimum.

3 The Multiknapsack Multiplayer Game Model

In this section, we carry the prisoner’s dilemma quantum game [13] model-
ing approach over the multiknapsack case. Under multiknapsack constraints,
I, F gates model the tendency for an item to keep or revert its status w.r.t.
knapsack capacity according to a sequence of trials; therefore, in a maxi-
mal diversification approach, each item would try the status opposite to the
previous trial to improve the overall profit, so powerset entanglement is the
2n × 2n matrix E = exp(γF⊗n) having non-null entries on main diagonal
while antidiagonal depends on the number of items (see (1)). It is unitary iff
n ≡ ±1 mod 4 so that we have to recourse to phase powerset entanglement
E = exp(iγJ⊗n) to deal with an even number of items. Furthermore, it affords
to treat even and odd numbers of items the same way, i.e., phase powerset
entanglement where 0 ≤ γ ≤ π

2 . Let us denote by Jm the m× n matrix filled
with 1’s on antidiagonal, where subscript is omitted if no confusion arises;
then E = cos(γ)I⊗n ± i sin(γ)J⊗n and E |0 . . . 0〉 = cos(γ)e0 ± i sin(γ)e2n−1.

Table 1. Powerset entanglement for flipping operator

Powerset Phase powerset
n diagonal antidiagonal diagonal antidiagonal

4p cosh(γ) sinh(γ) cos(γ) i sin(γ)
4p + 1 cos(γ) i sin(γ) cos(γ) i sin(γ)
4p + 2 cosh(γ) − sinh(γ) cos(γ) −i sin(γ)
4p + 3 cos(γ) −i sin(γ) cos(γ) −i sin(γ)

In actual quantum computation, all SU(2) are possible instead; so, let
us consider two opponent items, say first two items, with mixed strategies
A = U2(θ, a, b) and B = U2(φ, u, v) while each player assumep the remaining
items will not change their statuses (identity interaction assumption). Then,
starting from an entangled state a quantum computation gives
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E∗
(
A⊗ I⊗(n−1

)
E = cos2(γ)

(
A⊗ I⊗(n−1)

)
+ sin2(γ)

(
JAJ ⊗ I⊗(n−1)

)
±i cos(γ) sin(γ)

(
JA⊗ J⊗(n−1) −AJ ⊗ J⊗(p−1)

)
E∗

(
I ⊗B ⊗ I⊗(n−2)

)
E = cos2(γ)

(
I ⊗B ⊗ I⊗(n−2)

)
+ sin2(γ)

(
I ⊗ JBJ ⊗ I⊗(n−2)

)
±i cos(γ) sin(γ)

(
J ⊗ JB ⊗ J⊗(n−2) − J ⊗BJ ⊗ J⊗(n−2)

)
with respective measured states

|AI〉 = cos

(
θ

2

)
(cos(a) + i sin(a) cos(2γ))e0 ± i sin

(
θ

2

)
sin(b) sin(2γ)e2n−1−1

+i sin

(
θ

2

)
(cos(b)− i sin(b) cos(2γ))e2n−1 ∓ cos

(
θ

2

)
sin(a) sin(2γ)e2n−1

|IB〉 = cos

(
φ

2

)
(cos(u) + i sin(u) cos(2γ))e0 + i sin

(
φ

2

)
(cos(v)

−i sin(v) cos(2γ))e2n−2 ± i sin

(
φ

2

)
sin(v) sin(2γ)e32n−2−1

∓ cos

(
φ

2

)
sin(u) sin(2γ)e2n−1,

which involve |011 . . . 1〉, |111 . . . 1〉, |101 . . . 1〉 that almost surely violate knap-
sack constraints, |100 . . . 0〉, |010 . . . 0〉 that trivially fulfill the constraints, and
|110 . . . 0〉 we could assume to satisfy the constraints too. Precisely, expected
profit of this pair of mixed strategies are

c(|AI〉) = c|000...0〉 cos2
(

θ

2

)
(cos2(a) + sin2(a) cos2(2γ))

+c|011...1〉 sin2

(
θ

2

)
sin2(b) sin2(2γ) + c|110...0〉 sin2

(
θ

2

)
(cos2(b)

+ sin2(b) cos2(2γ)) + c|111...1〉 cos2
(

θ

2

)
sin2(a) sin2(2γ)

c(|IB〉) = c|000...0〉 cos2
(

φ

2

)
(cos2(u) + sin2(u) cos2(2γ))

+c|010...0〉 sin2

(
φ

2

)
(cos2(v) + sin2(v) cos2(2γ))

+c|101...1〉 sin2

(
φ

2

)
sin2(v) sin2(2γ) + c|111...1〉 cos2

(
φ

2

)
sin2(u) sin2(2γ).

In a similar way, if we consider flipping interaction of remaining items, our
two opponent items mixed strategies lead to

E∗
(
A⊗ J⊗(n−1

)
E = cos2(γ)

(
A⊗ J⊗(n−1)

)
+ sin2(γ)

(
JAJ ⊗ J⊗(n−1)

)
±i cos(γ) sin(γ)

(
AJ ⊗ I⊗(n−1) − JA⊗ I⊗(n−1)

)
E∗

(
J ⊗B ⊗ J⊗(n−2)

)
E = cos2(γ)

(
J ⊗B ⊗ J⊗(n−2)

)
+ sin2(γ)

(
J ⊗ JBJ ⊗ J⊗(n−2)

)
±i cos(γ) sin(γ)

(
I ⊗BJ ⊗ I⊗(n−2) − I ⊗ JB ⊗ I⊗(n−2)

)
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with measured states

|AJ〉 = ∓i sin

(
θ

2

)
sin(b) sin(2γ)e0 cos

(
θ

2

)
(cos(a) + i sin(a) cos(2γ))e2n−1−1

± cos

(
θ

2

)
sin(a) sin(2γ)e2n−1 + i sin

(
θ

2

)
(cos(b)− i sin(b) cos(2γ))e2n−1

|JB〉 = ∓i sin

(
φ

2

)
sin(v) sin(2γ)e0 ± cos

(
φ

2

)
sin(u) sin(2γ)e2n−2

+cos

(
φ

2

)
(cos(u) + i sin(u) cos(2γ))e32n−2−1

+i sin

(
φ

2

)
(cos(v)− i sin(v) cos(2γ))e2n−1

and expected cost functions

c(|AJ〉) = c|000...0〉 sin2

(
θ

2

)
sin2(b) sin2(2γ) + c|011...1〉 cos2

(
θ

2

)
(cos2(a)

+ sin2(a) cos2(2γ)) + c|100...0〉 cos2
(

θ

2

)
sin2(a) sin2(2γ)

+c|111...1〉 sin2

(
θ

2

)
(cos2(b) + sin2(b) cos2(2γ))

c(|JB〉) = c|000...0〉 sin2

(
φ

2

)
sin2(v) sin2(2γ) + c|010...0〉 cos2

(
φ

2

)
sin2(u) sin2(2γ)

+c|101...1〉 cos2
(

φ

2

)
(cos2(u) + sin2(u) cos2(2γ))

+c|111...1〉 sin2

(
φ

2

)
(cos2(v) + sin2(v) cos2(2γ)).

Neglecting costs of very unlikely feasible states, then Pr(x = 1|AI) =
sin2( θ

2 )(cos2(b)+sin2(b) cos2(2γ)) and Pr(x = 1|AJ) = cos2( θ
2 ) sin2(a) sin2(2γ).

Furthermore, Pr(x = 1|IB) = sin2(φ
2 )(cos2(v) + sin2(v) cos2(2γ)) and Pr(x =

1|JB) = cos2(φ
2 ) sin2(u) sin2(2γ) show it does not change by location inter-

change. Using rotation gates a = 0, b = Π
2 as in [23], there is no way to make

invariant Pr(x = 1|AI) = Pr(x = 1|AJ) under either identity or flipping
strategies, for the rest of items. On the contrary, for a = b = 0, we keep
invariance for θ = 4γ ∈ [0, π] and the gate

Q(θ) =
[

cos( θ
2 ) i sin( θ

2 )
i sin( θ

2 ) cos( θ
2 )

]
is referred to Q-rotation.

4 The Multiknapsack Quantum Simulation

Of course, we could not aim at simulating a quantum computer since it is
intractable to store all 2n complex coefficients associated to a quantum state;
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we could only expect to simulate unentangled states as
⊗

n

(αn |0〉 + βn |1〉).
On the other hand, given an unentangled state with α’s and β’s, there is
no numerical difficulties in rotating a single qbit as in the (non-cooperative)
game entanglement model from unitary property, but for braiding entangle-
ment the presentation matrix could give rise to the well-known expression
swell for coefficients obtained by multiplying αi, βj for qbits i, j; the same is
true for amplitude amplification, so we have to scale α’s and β’s and what
else apart from

∑
n
|αn |2 + |βn |2 associated to simple unentangled states?

As a consequence, using necessary and sufficient condition for a state to be
unentangled (5) [26] coefficient of non-trivial combination of items is, almost
surely, 0 and trivial combination (item n) may lead to |αn |2 + |βn |2 quite
small so that its probability to be 0 or 1 is undetermined 0/0. By no means, we
could beat classical heuristics, but a comparison between game and braiding
entanglement as well as diffusion benefits could be studied under the quan-
tum scheme shown in Fig. 3 where each module is selected according to the
comparison purpose.

Braid

Q

Q

QPreparation DiffusionOracle

Fig. 3. Multiknapsack quantum simulation

In classical case, Sethi’s greedy algorithm is known to perform well for
singleknapsack; it simply orders the ratio profit/weight of items to provide a
good starting solution for two or more exchange heuristics. This decreasing
ordering of items is the basis for a braiding of the associated strands; yet,
braiding beyond the capacity constraint does not make sense since those items
could not fit the constraint.

In the same way, given the Pr(xi = 1) for each qubit, a greedy oracle con-
sists in assigning items along decreasing Pr(xi = 1) while capacity constraints
are fulfilled. Furthermore, this assignment splits items into good and bad
components which allows amplitude amplification as described in Section 2.5.

We carry this structural property of single knapsack over the multiknap-
sack case, braiding each capacity constraint in turn to give one (among many)
topological description of the combinatorial problem. To summarize the over-
all scheme of multiknapsack quantum simulation is drawn in Fig. 3 where
Q’s, which depend on phase powerset angle θ, play the role of adversary Flip-
ping game strategy as shown in Fig. 3. Notice that braiding and oracle differs
only by the comparison between two items, the former relies on the ratios
profit/weight and the latter on the probabilities for qubit to be 1.
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Preparation may be parameterized in two ways; first, maximally entangled
case assumes |0〉+ |1〉 and second average probabilities: use Sethi’s greedy
algorithm for each constraint to assign items until all capacities are maxi-
mally satisfied and take the average (number of times assigned to 1/number
of constraints) for the initial Pr(xi = 1)2 for item i. Finally, diffusion equal
to HψHψ0

relies on what good component does mean; in fact, Householder’s
reflection reduces a subset of components to its most significant contribution,
so diffusion tends to spread the most significant contribution to the objective.
In this respect, if the number of items in an optimal solution is less than half
the number of items then Hψ0

should reflect the components assigned to 1 in
a counterintuitive fashion to Grover’s algorithm.

A simulation lasts for a given number of oracles and a given number of
angle ticks θ = [π/2, 0] in place of counting down entanglement parameter γ
of 3.

5 The Multiknapsack Entanglement Issues

Different simulations on the basis of Fig. 3 have been made on standard bench-
marks for multiknapsack and are available from the author. Despite, all of
them are far worse than classical heuristics on the problem, what are the is-
sues of studying entanglement for given combinatorial problems? This case
study was primarily intended to fight against the pervasive idea that clas-
sical evolutionary algorithms might be successfully inspired by the quantum
computing paradigm [23]. To this purpose, we put further shed on the role of
rotation in entanglement simulation and show that Q-rotation is underlied by
a non-cooperative game entanglement modeling. We also observe in our sim-
ulations that amplitude amplification effect is rather unlikely unless a global
definition for good and bad components remains invariant; under this circum-
stance, it gives an interpretation of its efficiency in terms of non-cooperative
game entanglement by means of Q-rotations. Braiding entanglement simula-
tions are more efficient than non-cooperative game modeling and there are
rational arguments for such behavior: from the one hand, it is tightly related
to greedy algorithm on single knapsack and from the other hand a presentation
of the braiding group is likely to induce facet defining inequalities. However,
using quaternion group instead leads to very close objective values, albeit
solutions are completely different. Therefore, it is not strong evidence that
actual quantum computers would prove effectiveness of one model over the
other; this case study suggests new questions about entanglement: Is oddity an
artefact we have to workaround? with phase powerset entanglement as we did
above or with any specific trick as in [7] with unitary

⎡⎣I 0 I

0
√

20
J 0 J

⎤⎦ for odd cases. We

argue that in combinatorial optimization problems, powerset entanglement
could not render the combinatorial explosion underlied by the constraints
structure that imposes a cooperative interaction on the contrary to previous
model. Let us sketch how to deal with cooperation for the multiknapsack; the
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best classical heuristics known, work around the number of items in a feasi-
ble solution; it is easy to bound this number by an interval [kl, ku]; and for
each value to specialize search space by adding a constraint 〈e, x〉= k fixing
this number. Despite combinations are still blowing up, it opens up tracks for
modeling entanglement at a cooperative level. Let A1

k be a non-cooperative
game/braiding modeling for a combination of k items then exp(A1

k) stands
for powerset entanglement of this coalition as we have done along Fig. 3.
Applying it to all such combinations i ∈

(
n
k

)
we get a cooperative game

entanglement
∏

i
exp(Ai

k) = exp
(∑

i
Ai

k

)
. Summing over all k ∈ [kl, ku]

we arrive at a Dirichlet series D(A, s) =
∑ku

kl

exp
(∑

i
Ai

k

)
ks

. For instance,

with two items we directly get D(A, s) = I + 1
2s

[
cos γ i sin γ)
i sin γ cos γ

]
; unitary con-

dition implies cos γ = −2s−1 for s < 1, bounding γ within [π/2, π]. But, to
deal with only three items, we have to add identity with (phase) powerset
entanglement of

• 2-coalitions

a12 =

⎡⎢⎢⎢⎢⎢⎣
cos γ 0 0 i sin γ 0 0
0 cos γ i sin γ 0 0 0
0 i sin γ cos γ 0 0 0
i sin γ 0 0 cos γ 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ , a13 =

⎡⎢⎢⎢⎢⎢⎣
cos γ 0 0 0 0 i sin γ
0 cos γ 0 0 i sin γ 0
0 0 1 0 0 0
0 0 0 1 0 0
0 i sin γ 0 0 cos γ 0
i sin γ 0 0 0 0 cos γ

⎤⎥⎥⎥⎥⎥⎦

a23 =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 cos γ 0 0 i sin γ
0 0 0 cos γ i sin γ 0
0 0 0 i sin γ cos γ 0
0 0 i sin γ 0 0 cos γ

⎤⎥⎥⎥⎥⎥⎦

• 3-coalitions

a123 =

⎡⎢⎢⎢⎢⎢⎣
cos γ 0 0 0 0 i sin γ
0 cos γ 0 0 i sin γ 0
0 0 cos γ i sin γ 0 0
0 ı sin γ cos γ 0 0 0
0 i sin γ 0 0 cos γ 0
i sin γ 0 0 0 0 cos γ

⎤⎥⎥⎥⎥⎥⎦

scaled by 1, 1/2s, 1/3s, respectively, so that
(
I + a12+a13+a23

2s + a123
3s

)
is uni-

tary.
Though feasible in principle, cooperative game entanglement will remain

intractable for real-life problems we are addressing in combinatorial optimiza-
tion. Moreover, braiding entanglement whose relevance to multiknapsack is
sound does not directly enter this Dirichlet approach.

6 Hadamard Matrices and Fishburn and Reeds
Formulation

The key to understand Fishburn and Reeds’ elegant work comes after noticing
the relationship between their formulation and quantum states; given a qbit
in state αi | 0〉 + βi | 1〉 interesting cases in regard to Kn arise for highly
degenerate interaction between 2 qbits i, j:
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1 0 1 0
0 0 0 0
1 0 −1 0
0 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
αi

βi

αj

βj

⎤⎥⎥⎦ .
Discarding meaningless rows and columns of 0s, we recognize the 2 × 2
Hadamard matrix H2. It plays a prominent role in quantum computing from
its unitary similar property up to normalization (H2H

t
2 = 2I). Let us define

vij
1 , v

ij
2 as the column vectors of interaction between i, j (understanding, no

interaction with the remaining qbits), then Fishburn and Reeds’ sample is
nothing else than F = H

(n
2

)
for all combinations of 2 among n qbits. De-

noting column vectors in F by superscripts and components of vectors by
subscripts, we get the formulation for computing the Grothendieck-like con-
stant, in concise notations

K
(n
2

)
=
N

(n
2

)
D

(n
2

) =

max
‖ηj ‖=1

n(n−1)/2∑
i=1

∥∥∥∥∥∥
n(n−1)/2∑

j=1

〈
f̄ i, f̄ j

〉
ηj

∥∥∥∥∥∥
max

εj∈{−1,+1}

n(n−1)/2∑
i=1

n(n−1)/2∑
j=1

〈
f i, f j

〉
εiεj

,

where f̄ i = ε̄if
i stands for solution values of maximized denominator.

The numerator happens to be a convex maximization under the sphere
of unit vectors in some dimensional space Rp while the denominator is a
convex maximization on the non-convex box domain since in matrix notations
it amounts to maxε 〈F tFε, ε〉 for ε in box. As for the numerator, from the
positivity of norm, the maximum is achieved at the same point as squared
norms instead of norms, i.e.,

N ′
(n
2

)
=

n(n−1)/2∑
i=1

〈
n(n−1)/2∑

j=1

〈
f̄ i, f̄ j

〉
ηj ,

n(n−1)/2∑
k=1

〈
f̄ i, f̄k

〉
ηk

〉

=
n(n−1)/2∑

i=1

n(n−1)/2∑
j=1

n(n−1)/2∑
k=1

〈
f̄ i, f̄ j

〉〈
f̄ i, f̄k

〉〈
ηj , ηk

〉
.

Fishburn and Reeds’ trick consists in using Cauchy–Schwarz inequality for
bounding the value together with the knowledge that the maximum is achieved

when vectors are colinear; it applies to p = 2n and vectors ηj =
[
f̄ j

−f̄ j

]
, say

colinear to original vectors by abuse of language, and it yields the maximum

value 1√
2

∑n(n−1)/2

i=1

∥∥∥∥∑n(n−1)/2

j=1
ε̄i

〈
f i, f j

〉
f j

∥∥∥∥ after canceling the two factors

from p dimension.
In other words, all the difficulty comes from maximizing the denominator

in a general setting. In the special case with Hadamard’s matrices H2
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Theorem 1 ([16]).

K
(n
2

) ≥ 3n− 3
2n− 1

Fishburn and Reeds introduce another improvement from the flat spectrum
of Hadamard matrices. Clearly (F tF − λI) remains semidefinite positive for
any 0 ≤ λ ≤ 2 , so let us consider

〈
f i, f j

〉
λ =

〈
f i, f j

〉
for all j �= i and〈

f i, f i
〉
λ =

〈
f i, f j

〉− λ then maxε 〈(F tF − λI)ε, ε〉= maxε 〈F tFε, ε〉− λ
(n
2

)
is

attained at the same point. The numerator is shifted accordingly as

Nλ

(n
2

)
=

n(n−1)/2∑
i=1

∥∥∥∥∥∥
n(n−1)/2∑

j=1

〈
f̄ i, f̄ j

〉
λη

j

∥∥∥∥∥∥
=

n(n−1)/2∑
i=1

n(n−1)/2∑
j=1

∥∥∥∥∥∥
n(n−1)/2∑

j=1

〈
f̄ i, f̄ j

〉
ηj − ληi

∥∥∥∥∥∥
≥ N

(n
2

)− λ

n(n−1)/2∑
i=1

‖ηi‖

= N
(n
2

)− λ
(n
2

)
.

Whence an improved lower bound

Kλ

(n
2

) ≥ N
(n
2

)− λ
(n
2

)
D

(n
2

)− λ
(n
2

) .
For instance, K

(
10
2

)
= 1.4210,K

(
8
4

)
= 1.4064 lower bounds surround

√
2

in Table 3 without deploying much effort compared to Fishburn and Reeds’
refined analysis used to extract a better constant for λ = 4/3 and

(
5
2

)
.

Fishburn and Reeds’ sample of increasing Grothendieck’s constant relies on
the rank deficiency of unitary similar matrix transform on pairs of 2 qbits; in
this sense, the rank deficiency is maximally propagated to all combinations of
two among n qbits. Therefore, we could ask for the constant under maximally
rank-deficient Hadamard matrices of size m ≡ 0 mod 4 and all combinations
(n
m). Nothing is changed for maximizing the numerator but the scaling; ηj =[
f̄ j

−f̄ j

]
, colinear to original vectors yields the maximum value at

N (n
m) =

1√
2m

n∑
i=1

∥∥∥∥∥∥
n∑

j=1

2ε̄i
〈
f i, f j

〉
f j

∥∥∥∥∥∥
=

1√
m

n∑
i=1

∥∥∥∥∥∥
n∑

j=1

ε̄i
〈
f i, f j

〉
f j

∥∥∥∥∥∥ .
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Table 2. Hadamard representatives of size 4

⎡⎢⎢⎣
−1 1 1 1

1 −1 1 1
1 1 −1 1
1 1 1 −1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 −1 1 1
1 1 −1 1
1 1 1 −1
1 −1 −1 −1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 1 1 1
−1 1 1 −1

1 −1 1 −1
1 1 −1 −1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1

⎤⎥⎥⎦

Unfortunately, as could be seen in Table 3, the largest the combinations,
the hardest the maximization problems to solve so that we are not able to
produce in practice so many instances overtaking

√
2; the trends confirm Fish-

burn and Reed’s instance as the easiest one. The technique used to solve the
maximization of the denominator is beyond the scope of this chapter, and we
could not prove optimality was reached since we abort enumeration of Branch
and Bound tree and we could wonder whether a rational form in n exists for
all Hadamard matrices as Fishburn and Reeds found for H2. However, we
conjecture that for all Hadamard matrices, there exists sufficiently large n
such that Grothendieck constant K (n

m) >
√

2.

Table 3. Grothendieck’s constant K (n
m) for Hadamard matrices

m K

(
m+1

m

)
K

(
m+2

m

)
K

(
m+3

m

)
2 1.2000 1.2857 1.3333
4 1.1765 1.2821 1.3540
8 1.1077 1.1903 1.2563
12 1.0759 1.1395
16 1.0584
20 1.0474
24 1.0399

7 Lehman Matrices and Grothendieck’s Constant

A pair of n × n square 0, 1 matrices (A,B) such that ABt = E + kI where
E, I are respectively the all 1’s and identity matrices is called Lehman and B
is called the dual of A. Matrices can be thought as vertex–vertex adjacency
matrix of graphs, then it is known.

Theorem 2 (Bridges and Ryser). Let (A,B) be a Lehman pair. Then there
exist integers r ≥ 2, s ≥ 2 such that A graph is r-regular, B graph is s-regular,
and rs = n+ k; moreover (At, Bt) is a Lehman pair too.

Normalizing by 1/
√
k, a Lehman pair 1

kAB
t = I + 1

kE acts as a mini-
mally perturbed unitary invariant operator, in the sense that perturbation
has rank 1. Clearly, applying transformation A �→ 2A − E, we get un-
der ±1 domain, (2A − E)(2Bt − E) = 4(E + kI) − 2AE − 2EBt + nE =
(rs− 2(r+ s) + 4− k)E + 4kI; by abuse of language we call the transformed
pair a Lehman pair too. In other words, Lehman pairs provide the minimally
perturbed unitary invariant operators. In [11], Cornuéjols et al. fully char-
acterize level one Lehman pairs, those which fulfill ABt = E + I, as well
as nearly self-dual Lehman pairs (A,A+ I) while it is known that point-line
incidence matrices A of finite projective planes of order k define self-dual pairs
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AAt = E + kI. In Fano plane (order 2) we arrive at a unitary similar nearly
invariant operator 1

8F7F
t
7 = I + 1

8E. On the contrary to Cornuéjols et al. we
do not focus on the global interaction between n qbits (Lehman pairs whose
entries belong to 0,±1) but highly degenerated cases like Fishburn and Reeds
did, i.e., we study homogeneous (fixed size) coalitions of qbits that interact
among themselves with high rank deficiency unitary-based operator while all
coalitions are dumped in a total of n qbits.

In Tables 4 and 5 our maximization program seems to retrieve a global
solution for smallest m (even though Branch and Bound tree is too large to
be completely enumerated) and simply a local solution for next m.

Table 4. Grothendieck’s constant K (n
m) for projective planes of order k

k m K

(
m+1

m

)
K

(
m+2

m

)
K

(
m+3

m

)
2 7 1.1634 1.3224 1.3249
3 13 0.5820

Table 5. Grothendieck’s constant K (n
m) for conference matrices

m K

(
m+1

m

)
K

(
m+2

m

)
K

(
m+3

m

)
6 0.9748 1.01404 1.0416

10 0.7389 1.3805

Self-dual pairs clearly follow Fishburn and Reeds’ formulation since, let
F [Hm] (n

m) be the sample generated from a self-dual Lehman pair (Hm,Hm)
and Rm, Cm be any permutation matrices acting on rows and columns of Hm

then
F [RmHmCm] (n

m) = R (n
m)F [Hm] (n

m)C (n
m)

for some row and column permutations R (n
m) , C (n

m) acting on the whole sam-
ple. Clearly, the denominator is unchanged under row or column permutations
since 〈CtF tRtRFCε, ε〉amounts to permute the columns (and components of
ε accordingly) for any F .

However, general Lehman pairs (A,B) lead to the formulation

K
(n
2

)
=
N

(n
2

)
D

(n
2

) =

max
‖ηj ‖=1

n(n−1)/2∑
i=1

∥∥∥∥∥∥
n(n−1)/2∑

j=1

〈
āi, b̄j

〉
ηj

∥∥∥∥∥∥
max

εj∈{−1,+1}

n(n−1)/2∑
i=1

n(n−1)/2∑
j=1

〈
ai, bj

〉
εiεj

,
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where āi = ε̄ia
i, b̄i = ε̄ib

i stand for solution values of maximized denominator.
Denominator is no longer convex and no Cauchy–Schwarz inequality may

relate optimal solution of the numerator to optimal solution of the denomina-
tor even though positivity of norm guarantees the same solution for squared
norm

N ′
(n
2

)
=

n(n−1)/2∑
i=1

〈
n(n−1)/2∑

j=1

〈
āi, b̄j

〉
ηj ,

n(n−1)/2∑
k=1

〈
āi, b̄k

〉
ηk

〉

=
n(n−1)/2∑

i=1

n(n−1)/2∑
j=1

n(n−1)/2∑
k=1

〈
āi, b̄j

〉〈
āi, b̄k

〉〈
ηj , ηk

〉
.

As in Hadamard case, the
√

2 looks feasible for many different instances
of self-dual Lehman pairs while general pairs are much more difficult to deal
with.

8 Grothendieck’s Constant and Root 2 Issues

8.1 2 − (v, k, λ)2 Designs

Lehman’s matrices suggest that many new classes of matrices are good can-
didates for

√
2 violation.

Definition 10 (t-design). Given a v-set V (called points), a t − (v, k, λ)-
design Tt,v,k,λ = (V,B) (resp. packing Pt,v,k,λ, covering Ct,v,k,λ) is a collection
B of k-subsets (called blocks) of V such that every t-subset of V is contained
in exactly (resp. at most, at least) λ blocks.

Let b =| B |, then each point belongs to r = bk
v blocks. Existence of design is

known for very long.

Theorem 3 (Fisher’s inequality). Let 0 < t ≤ k ≤ v − t; if Tt,v,k,λ =

(V,B) is a t− (v, k, λ)-design then |B |≥
(

v
�t/2�

)
.

Theorem 4 (Wilson). Let 0 < t ≤ k ≤ v, there exists some λ0 such that
for any λ > λ0 some Tt,v,k,λ = (V,B) admissible exists (possibly with repeated
blocks).

An incidence matrix T v
t,k of size

(v
t

) × (
v
k

)
is defined between t-subsets and

k-subsets such that T v
t,k[T,K] = 1 iff T ⊆ K. Then t-design, maximum t-

packing, and minimum t-covering are solutions of

• set partitioning T v
t,kx = λe

• set packing max 〈e, x〉, s.t. T v
t,kx ≤ λe

• set covering min 〈e, x〉, s.t. T v
t,kx ≥ λe
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for x ∈ {0, 1}(v
k) and where e is the all 1’s vector. A constructive proof of

designs is therefore tightly connected to assignment problems in combinatorial
optimization. Among all designs, those with t = 2 are, once more, closest to
unitary 0/1 matrices in the sense of rank deficiency, since

Theorem 5 (2− (v, k, λ) design). let X be the point-block incidence matrix
of a 2− (v, k, λ) design

XXt = (r − λ)Iv + λEv

EvX = kEvb

under admissibility conditions b = λ
(v
2

)
/
(

k
2

)
, r = bk/v = λ(v − 1)/(k − 1),

where Iv, Ev, Evb denote the identity matrix of size v, the all 1’s square matrix
of size v and the all 1’s matrix of size v × b, respectively.

A design is symmetric (square) if b = v and two designs arise in self-dual
pairs (X,Xt) through their point-block incidence matrices.

This opens a wide range of non-convex maximization problems to compute
the denominator in Grothendieck’s constant fraction after the variable change
X �→ 2X − Ev and (n

v) combinations; on the contrary to Lehman’s case, the
transform does not necessarily keep the rank-deficiency property, so the

√
2

violation is likely to be harder to find.
Apart from the challenging task to solve these maximization problems for

themselves, we stress, in next sections, that entanglement and Grothendieck’s
constant computation are tightly coupled.

8.2 Classical/Quantum Metaheuristics Issues

It is known that most efficient metaheuristics [19, 34] for combinatorial op-
timization, play with adaptive memory (to prevent examination of the same
subspace repeatedly) and variable neighborhood search (to intensify/diversify
search). The key point is that neither the input nor the output sample in basic
steps of such methods are required feasible; it is even observed that zigzaging
around the borderline between feasible and non-feasible solution sets, e.g.,
taking convex combinations of samples in either set, provides very good so-
lutions at end. On the other hand, quantum-inspired evolutionary algorithms
claim they could improve classical metaheuristics by generating complex sam-
ples through Q-rotation gate whose legitimacy in multiknapsack case suffers
from oddity restrictions. Instead of mimicking quantum computers by classical
ones, we would ask whether classical metaheuristics are able to approximate
a Grothendieck’s constant as some distance between feasible and non-feasible
sets? After all, a non-feasible sample in classical case is related to a measured
probability of a larger set of solutions in complex space, what else? Unless a
realistic model with unitary complex gates is runnable on an actual quantum
computer, classical simulation of quantum computing is certainly not viable.

Grothendieck’s constant has been settled for the
√

2 violation issue, whence
the minimal rank (almost unitary) matrices and the uniform combinations of
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coalitions among quantum bits; however, hypergraphs with hyperedges labeled
with dedicated almost unitary matrices are Grothendieck’s constant defining
(on a very speculative level).

8.3 Quantum Oddities

In Fig. 4, braiding entanglement was claimed to take into account the topolog-
ical constraints within items; a major difficulty arises with the ordering in the
rigid representation of the corresponding braid so that, even on a quantum
computer, there is no unique program to get a solution with corresponding
R-gates. It lacks of parallelism in links entanglement; it is provided by invari-
ance under Reidemeister moves in R3 and so-called

Fig. 4. Oriented representation of link crossings: Wi, i = 1 . . . 4

Definition 11 (four-weight spin model). A 4-tuple (W1,W2,W3,W4) of
n×n complex matrices is a four-weight spin model iff the following conditions
are satisfied:

W1(i, j)W3(j, i) = 1, W2(i, j)W4(j, i) = 1, for all i, j = 1, n∑
r

W1(i, r)W3(r, j) = nδ(i, j),
∑

r

W2(i, r)W4(r, j) = nδ(i, j),

for all i, j = 1, n∑
r W2(i, r)W2(j, r)W4(r, k) =

√
nW1(j, i)W3(i, k)W3(k, j),
for all i, j, k = 1, n∑

r W2(r, i)W2(r, j)W4(k, r) =
√
nW1(i, j)W3(k, i)W3(j, k),
for all i, j, k = 1, n,

where first two equations are associated with Reidemeister moves of type II
(Fig. 5) and last two with Reidemeister moves of type III (Fig. 6) [3, 24]. No-
tice, for type III, the symmetric role is played by i, j so that all handsides are
equal. Setting j = k in type III equations and using type II equations, it im-
plies

∑
r W2(i, r) =

∑
r W2(r, i) =

√
nW3(j, j),

∑
r W4(i, r) =

∑
r W4(r, i) =√

nW1(j, j) for all i, j, whence existence of a complex modulus μ ∈ C of the
spin model and W1(i, i) = μ, W3(i, i) = 1/μ; these last equations provide in-
variance under Reidemeister move of type I. All equations could be written in
concise form in the algebra of standard matrix product, matrix transpose, and
Hadamard product ◦ (matrix entrywise product). In particular, W1W3 = nI,
W2W4 = nI enlarge the candidates for Grothendieck constants in the spirit of
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Fig. 5. Oriented Reidemeister moves of type II

Fig. 6. Oriented Reidemeister move of type III

Hadamard, Lehman, design incidence of previous constructions. Notice also
that orientation generalizes the Yang–Baxter equation

(R⊗ I)(I ⊗R)(R⊗ I) = (I ⊗R)(R⊗ I)(I ⊗R) (Y ang−Baxter)

used to find a presentation of the braiding group in direct entanglement mod-
eling.

Definition 12 (quasi design). A 2-design is quasi-2 (resp. quasi-3) if the
intersection of any 2 (resp. 3) blocks could take only two values.

Quasi-2 is referred to quasi for short. In a similar way,

Definition 13 (quasi-3 Hadamard). An Hadamard matrix is quasi-3 if
for any three distinct rows, the number of columns where all three rows have
−1 takes only two values.

Definition 14 (row/column regularity). A matrix A is row (resp. col-
umn) k-regular iff rows (resp columns) sum to k, i.e., Ae = k (resp. Ate = k).

Four-weight spin models are connected to quasi-3 designs by

Theorem 6 (Bannai-Sawano [3]). Let W2 = (α − β)A + βE for complex
numbers α, β and 0-1 matrix A row and column k-regular with 2 ≤ k ≤ n− 2,
then W2 defines a four-weight spin model if and only if A is the incidence
matrix of quasi-3 symmetric design 2−(n, k, λ) where the intersection of three
distinct blocks takes the values (kλ− (k − λ)± (k − λ)3/2)/n.

Since, a row regular Hadamard matrix H of size 4u2 maps to an incidence
matrix (E −H)/2 of a symmetric 2− (4u2, 2u2 − u, u2 − u) design, the quasi
designs are in turn connected to Hadamard matrices.
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• Theorem 7 (Bracken-MacGuire-Ward [4]). Let u be an even posi-
tive number. Suppose there exists a 2u × 2u Hadamard matrix and u − 2
(resp. u− 1) mutually orthogonal 2u× 2u Latin squares, then there exists
a quasi-2 symmetric 2 − (2u2 − u, u2 − u, u2 − u − 1) (resp. 2 − (2u2 +
u, u2, u2 − u)) design with double intersection sizes u(u− 1)/2, u(u− 2)/2
(resp. u2/2, u(u− 1)/2).
Notice the hidden oddity in this result that reminds the difficulty we faced
on direct entanglement modeling.

• Theorem 8 (Broughton-MacGuire [6]). Let H,K be quasi-3 regular
Hadamard matrices with respective sizes 4u2, 4w2 and triple intersection
sizes u(u−1)/1, u(u−2)/2, w(w−1)/1, w(w−2)/2, then H⊗K is a quasi-
3 regular matrix of size 4(2uw)2 and triple intersection sizes uw(2uw −
1), 2uw(uw − 1).
In Table 2, leftmost matrix is row regular quasi-3, so that ⊗mH are too.

On the contrary to Fishburn and Reeds’ thinking, the spectrum of candi-
dates for

√
2 violation seems quite large, even though proving the violation

becomes harder and harder as the sizes increase.

9 Concluding Remarks

The aim of this study is twofold: first, we give an operational, although non-
cooperative, quantum game model for binary programming; second, we argue
for many instances of rank-deficient correlation matrices whose Grothendieck’s
constant go beyond

√
2 for sufficiently large size. However, combinatorial op-

timization highly involves cooperative interaction with subsets of variables;
simple tracks to move in this direction reveals major difficulties:

• Dirichlet’s entanglement in place of (unconstrained) powerset entangle-
ment becomes intractable beyond very small sizes;

• braiding entanglement could handle specific (with non-negative coeffi-
cients) constraints but it lacks of parallelism within the many possible
representations affordable;

• Grothendieck’s constant computation is NP-hard unless we discover an-
alytical solutions (as Fishburn and Reeds did) for the different classes
related to Hadamard’s matrices.

Within the spectrum of cooperative quantum games, powerset entanglement
and Grothendieck’s constant appear as extreme cases since the former as-
sumes independent interaction and the latter fixed-size interaction among
binary variables. Braiding entanglement intends to enrich the first with, in-
direct, partial ordering and on the other hand Grothendieck’s constant could
be defined on non-uniform hypergraphs of interaction. Notice that for multik-
napsack, fixing the number of items in optimal cooperative interaction makes
sense in regards with efficient heuristics known; second, it is also known that
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most efficient heuristics travel around the borderline between feasible and
non-feasible sets, the constant answers the question how far from feasible a
candidate has to be considered?

Somehow, both our attempts drastically lack of theoretical foundation for
constrained binary programs; it suggests to address for future study, sim-
pler binary programs, like assignments, in the spirit of covering coalitions
and quantum calculus [17, 25] to put further shed on quantum constrained
modeling.
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Summary. In this chapter we consider the so-called pasture territory problem,
its basic elements, and some related extremal problems. We describe the pasture
territory as a graph of a piecewise smooth and continuous function f(x, y) defined
on a closed, connected domain of a plane. Considering extremal problems is related
with finding the location of the nomadic residence, when the exploiting pasture
territory has maximum grass mass, and finding the bound of the territory, when the
place of the residence is fixed [1, 2, 5].

Key words: pasture territory, herbage density, piecewise smoothness, non-
negative measure, watering place, closure of a set, upper semi-continuity,
convexity

1 Main Concepts and the Problem Definition

Let K ⊆ �2 be a closure of an open and connected set with a piecewise
smooth boundary. Suppose that K consists of a union of a finite number of
domains Ki with piecewise smooth boundaries. Then the pasture surface is
defined as a graph of a continuous function f : K → R such that f(x, y) is
twice differentiable on the interior of Ki for any i.

We define the watering place for the herd as a closure of a set W ⊆ f(K)
with an empty interior. That means pasture surface does not contain the
interior of the water resource [1, 2].

We denote a closed set Q ⊆ f(K) as the possible locations for the nomadic
residence.

Theorem 1. Between any two points in f(K), there exists a curve of minimal
length (minimal curve) in f(K) connecting them.
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Proof. Suppose O1, O2 ∈ f(K), O1 �= O2. Since the connectedness of K, it
follows that the points f−1(O1) and f−1(O2) can be connected by a rectifiable
planar curve l. Then f(l) is also a rectifiable surface curve with a length d. Let
us construct a planar disk B(f−1(O1), d) := {z ∈ �2| ‖z − f−1(O1)‖2 ≤ d}
with a center f−1(O1) and a radius d. Then the graph f(B(f−1(O1), d)∩K) is
a complete metric space with a surface metric. This space, evidently, contains
the curve f(l) and the point O2. Hence, by Theorem 3 (p. 112) of [3], there
exists a minimal surface curve connecting O1 and O2.

If the nomadic residence is located at the point O ∈ Q, we define the maximal
possible exploiting areaAr(O,W ) ⊆ f(K) as the union of all pointsM ∈ f(K)
such that there exists a loop l ⊆ f(K) of length no more than 2r passing
through the points M,O and some point N ∈W . This means, for a day, while
grazing and watering one’s livestock, the herdsman must pass the distance no
more than 2r. The r > 0 is called the radius of grazing. It is clear that
Ar(O,W ) is a connected compact set[1, 2].

Pasture surface f(K) is a complete metric space, where the distance
ρ1(M,N) for the points M,N ∈ f(K) is equal to the length of a minimal
curve connecting them. This metric ρ1 is called a surface metric. Any minimal
curve consists of possible pieces of the boundary ∂f(K) and some geodesics.

Surface ellipse Er(O1, O2) with focuses O1, O2 ∈ f(K) is a compact set
satisfying

ρ1(O1,M) + ρ1(O1, O2) + ρ1(M,O2) ≤ 2r, ∀M ∈ Er(O1, O2).

Each shoot of the boundary ∂Er(O1, O2) is a closed curve.

When ρ1(O1, O2) = r, int Er(O1, O2) = ∅.
When ρ1(O1, O2) < r, int Er(O1, O2) �= ∅.

We denote by Wr(O) the subset of W such that

Wr(O) := {N ∈W | ρ1(O,N) ≤ r}.

Assume that ρ1(O,N) < r for any N ∈Wr(O). Then the next theorem holds.

Theorem 2. The boundary ∂(int Ar(O,W )) is a union of a finite number of
closed, rectifiable curves.

Proof. Since
Ar(O,W ) =

⋃
N∈Wr(O)

Er(O,N),

the boundary ξ(0) = ∂Ar(O,W ) consists of ∂(int Ar(O,W )) and some pos-
sible shoots. It is clear that int Ar(O,W ) is a union of a family of ellipses
Er(O,N), N ∈Wr(O), where int Er(O,N) = Er(O,N). Since int Ar(O,W )
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is a compact set, we can choose some ellipses Er(O,N1), ..., Er(O,Nk) cover-
ing int Ar(O,W ) in union. As each ∂Er(O,Ni), i = 1, k is a union of a finite
number of closed and rectifiable curves, ∂(int Ar(O,W )) also is a union of a
finite number of closed and rectifiable curves.

Corollary 1. When there exists only a finite number of points Ni ∈ Wr(O)
satisfying ρ1(O,Ni) = r and total length of the shoots of ∂Ar(O,W ) is finite,
the boundary ξ(O) = ∂Ar(O,W ) has a finite length.

Herbage density is a non-negative measure μ(K) such that for any compact
set M ⊆ K,

μ(M) <∞
and the charge Z(A) generated by bounded function g(x, y) =

√
1 + f2

x + f2
y :

Z(A) =
∫
A

√
1 + f2

x + f2
y dμ

is absolutely continuous, where A ⊆ K is any measurable subset with respect
to μ [3](p. 331).

The main maximization problem for nomads is to find the best place for
the residence, i.e.,

G(O) =
∫

f−1(Ar(O,W̄ ))

√
1 + f2

x + f2
y dμ =

∫
Ar(O,W̄ )

dμ→ max; O ∈ Q. (1)

This problem is considered very difficult because of defining the boundary of
Ar(O,W ).

Suppose that ξ and η are any two continuous curves on f(K). Let us
construct a metric space Ξ of all continuous curves on f(K) by defining the
distance as

ρ(ξ, η) = inf ρ(f1, f2).

Here, the lower bound is taken by all admissible pairs of parametric represen-
tations for ξ and η which are continuous functions f1(t) and f2(t) (0 ≤ t ≤ 1),
and the distance between functions f1 and f2 is defined as

ρ(f1, f2) = sup
0≤t≤1

ρ(f1(t), f2(t)).

Lemma 1. Suppose that ξ =
k⋃

i=1

ξi, where each ξk is a closed and continuous

curve on f(K), and Πξ is a side view of the surface piece defined by ξ. Then
the function

S(ξ) =
∫

Πξ

√
1 + f2

x + f2
y dμ

is upper semi-continuous in Ξk.
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Proof. Consider a sequence ξn =
k⋃

i=1

ξi
n, where each sequence ξi

n converges to

ξi with respect to the above metric in Ξ. If we denote

S(ηn) = sup
i≥n

S(ξi) with inf
ξj∈

⋃
i≥n

ξi

ρmax(ηn, ξj) = 0,

ρmax(ξ1, ξ2) = max
1≤i≤k

ρ(ξi
1, ξ

i
2),

then we have

S(ηn) = S(ξ)+
∫

Πηn\(Πηn∩Πξ)

√
1 + f2

x + f2
y dμ−

∫
Πξ\(Πξ0∩Πξ)

√
1 + f2

x + f2
y dμ.

The first integral tends to zero, but the second integral tends to -μ(ξ0), where
ξ0 is a piece of the curve ξ. Therefore, S(ξ) ≥ limn→∞S(ξn) and the lemma
is proved.

For any O ∈ f(K), we introduce a notation Op = f−1(O).

Theorem 3. Function G(O) (G(Op)) given in (1) is upper semi-continuous
on f(K) (K).

Proof. Let a sequence Op
n → Op in K. Then the sequence On = f(Op

n) also
tends to O in f(K). Suppose that ξn is a boundary of Ar(On) consisting of k
closed continuous curves. It is clear that On → O (Op

n → Op) implies ξn → ξ.
By previous lemma, the function G(O) (G(Op)) is also upper semi-continuous.

Corollary 2. If Q(f−1(Q)) is compact, then problem (1) has a solution on
Q(f−1(Q)).

In the next two parts of this chapter, we assume that f is a linear function.

2 On the Forms of Exploiting Pasture Territories
in Simple Cases

At first, we assume that the pasture territory is �2 \B(O1, R), whereB(O1, R)
is a disk generated by circle C(O1, R) presenting the watering place W . Our
goal is to define the exploiting area Ar(O, W̄ ) in cases of R = 0 (a well),
R = ∞ (a straight bank of a river or a straight brook ), and 0 < R < ∞ (a
bank of a deep lake). In all cases we assume that the nomadic residence is
located at distance k < r from the watering place [5].
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We study each case, separately.

1. Suppose R = 0. In this case, W consists of unique point. Let this point be
O1(0,−k

2 ) and the nomadic residence is located at the point O(0, k
2 ) (Fig. 1a).

The pasture territory is the whole plane. It is clear that the maximal exploiting
area Ar(O, W̄ ) is an ellipse given by the inequality

O

F

y

x

O O

O′

x x

yy

O′

D D

O

1

Fig. 1. Pasture territories when R=0

√
x2 +

(
k

2
− y

)2

+

√
x2 +

(
k

2
+ y

)2

≤ 2r − k.

2 Suppose R =∞. Let us consider two cases.
a. A bank of a river. In this case, the pasture territory is a half plane, where
the livestock cannot cross the river and the maximal exploiting area Ar(O, W̄ )
is a semi-ellipse bounded by a straight bank of a river. In fact, if we assume
that the nomadic residence is located at the point O(0, k), D(0, 0) is the origin
of coordinates (Fig. 1b), and denote O′(0,−k), then for any point F (x, y) of
the curve ∂Ar(O, W̄ ) the following equality holds:

ρ(O,F ) + ρ(O′, F ) = 2r.

Hence, we have the following inequalities for the exploiting area Ar(O, W̄ ):√
x2 + (k − y)2 +

√
x2 + (k + y)2 ≤ 2r, y ≥ 0 .

b. A brook. In this case, the livestock can cross the brook and the pasture
territory is the whole plane. The part of the maximal exploiting areaAr(O, W̄ )
on the other side of the brook is a segment of a disk with a center O(0, k) and
a radius r (Fig. 1c). Therefore, Ar(O, W̄ ) is defined as follows:{√

x2 + (k − y)2 +
√
x2 + (k + y)2 ≤ 2r, y ≥ 0,

x2 + (k − y)2 ≤ r2, y < 0 .
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3. Suppose 0 < R < ∞. In this case, the pasture territory is the closure
R2 \B(O1, R) of the complement of the disk B(O1, R) on the plane. We sup-
pose that B(O1, R) is a deep like. Without losing generality, we assume that
R = 1 and O1 is the origin of coordinates. Then the nomadic residence O(0,m)
is located at distance m = k+1 from the origin of coordinates (Fig. 2). Clearly,
the boundary curve ξ(O) of the maximal exploiting area Ar(O, W̄ ) is closed
and symmetric with respect to the ordinate. Depending on values of m and
r, the boundary curve ξ(O) has different forms.

Theorem 4. i. If r ≤ √m2 − 1, then the lower part of ξ(O) is an arc F1F2

and its upper part is an envelope Γ of the family of ellipses with focuses O
and E:

ρ(O,E) + ρ(O,M) + ρ(E,M) = 2r, (2)

where E is a point on the arc F1F2 (OF1 = OF2 = r) and M is a point on
the envelope (Fig. 2a).
ii. If

√
m2 − 1 + (π

2 + arcsin 1
m ) ≥ r >

√
m2 − 1, then the upper part of ξ(O)

is the same as the previous envelope Γ generated by (2). The lower part of
ξ(O) is an arc C1B1BC, where B and B1 are the contact points of tangents
from O to C(O1, 1). But the middle two parts of ξ(O) are generated by the
endpoints of minimal curves of length r starting from O and without passing
the interior of disk B(O1, 1) (Fig. 2b).
iii. If r >

√
m2 − 1 + π

2 + arcsin 1
m , then the upper part of ξ(O) is the same

envelope Γ generated by (2). But the lower part of ξ(O) is generated by the
endpoints of minimal curves of length r as in the previous case (Fig. 2c).

O
M

E
FF1

O1

O

O1

B

P

D

B1

P1

O

B
B1

PP1

O1
2

C1 C

Fig. 2. Pasture territories when 0 < R < ∞

Proof. The length of tangents OB and OB1 is equal to
√
m2 − 1. When r ≤√

m2 − 1, the boundary curve ξ(O) of the exploiting area Ar(O, W̄ ) must
contain any point M satisfying (2). Therefore, the upper part of ξ(O) must
be an envelope Γ , and for any point M(x, y) of Γ , the segments OE and ME
have the same reflection angle to the circle C(O1, 1) at the point E.
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Denote ∠OO1E = α. Then after some simple calculations we have the follow-
ing parametric system for the envelope Γ (Fig. 2a):

⎧⎨⎩
(x cosα− y sinα)(m cosα− 1)− (x sinα+ y cosα− 1)m sinα = 0,
(1 + x

mctgα− y
m )
√

1 +m2 − 2m cosα− 2r−
−

√
x2 + y2 + 1− 2y cosα− 2x sinα = 0.

(3)

The endpoints of envelope Γ are the points F1 and F2 of arc BB1 such
that OF1 = OF2 = r. The first part of the theorem is proved.
The curve consisting of tangent OB (OB1) and arc BD (B1D) has a length
of √

m2 − 1 +
π

2
+ arcsin

1
m
.

Therefore, when √
m2 − 1 +

π

2
+ arcsin

1
m
≥ r >

√
m2 − 1 ,

the system (3) expresses only the top part of the boundary curve ξ(O). The
endpoints of this part coincide with the ends of tangent OP and OP1(Fig. 2b).
But the lower ends of the boundary curve ξ(O) are located at points C and
C1 of the circle C(O1, O), where the sum of lengths of arc BC (B1C1) and
tangent OB (OB1) is equal to r. Thus, any point of the boundary curve ξ(O)
locating between C (C1) and P (P1) is defined by the endpoints of the minimal
curve of length r. For constructing such curves, we use Cruggs’s theorem on
the shortest curves with barriers [4]. This theorem claims that the shortest
path consists from tangents and geodesics on barrier sets. By this theorem
the minimal curve consists of two tangents and an arc. A simple calculation
shows that the coordinates of the endpoint satisfy

√
m2 − 1 +

√
x2 + y2 − 1 + π − arccos 1

m − arcsin
√

x2+y2−1
x2+y2

− arcsin
√

x2

x2+y2 = r
. (4)

The second part of the theorem is proved.
When

r >
√
m2 − 1 +

π

2
+ arcsin

1
m
,

the boundary curve ξ(O) consists of an inner part which is the circle C(O1, 1)
(Fig. 2c) and an outer part of which any point satisfies either (3) or (4).

Now let us consider the case where the pasture territory is the upper half
plane with a half-disk of radius R (R ≤ r). Assume that the nomadic residence
is located at the origin of coordinates O (Fig. 3). We also assume that the
boundary curve of the pasture territory is the watering place.
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Fig. 3. Pasture territories as the upper half plane with a half-disk of radius R(R≤ r)

When R = r, the maximal exploiting area Ar(O,W ) is a half-disk:

x2 + y2 ≤ R2, y ≤ 0.

Our goal is to find the useful pasture territory, namely its boundary curve,
when r > R.

Proposition 1. Let O1 and O2 be the two points of circle C(O,R) on the
abscissa. Then for r > R the upper bound of the maximal exploiting area
Ar(O, W̄ ) is defined as a union of the upper bounds of ellipses Er(O,Oi):

| OOi | + | OM | + |MOi |≤ 2r, M ∈ �2
+, i = 1, 2.

But the lower bound consists of two sections O1A1, O2A2 and the semicircle
O1DO2, where | OA1 |=| OA2 |= r.

Proof. It is clear that the ellipse Er(O,Oi) contains the ellipse Er(O,O′i),
whereO′i is an arbitrary point onAiOi satisfying |AiO

′
i|< |AiOi|, i = 1, 2. Also,

the set (Er(O,O1) ∪ Er(O,O2)) ∩ Ar(O, W̄) contains Er(O,N) ∩ Ar(O, W̄ )
for any point N of the arc O1DO2 of circle C(O,R). Hence, the upper part
of ∂(Er(O,O1) ∪ Er(O,O2)) is also the upper part of ξ(O). The proposition
is proved.

3 Some Solution Properties of the Main Maximization
Problem on the Plane

We suppose that f(K) = Q = W = �2 and the herbage density μ(�2)
has a positive Lebesgue measure only for some closed and connected set
M ⊆ �2 (or μ(�2 \M) = 0) satisfying int M = M . In this case, evidently,
Ar(O,W ) = B(O, r). Let Q∗r be the set of solutions of the problem (1). It
is required to define the set Q∗r ⊆ Q as the area S(M ∩ B(O, r)) is max-
imal for any O ∈ Q∗r . Denote rM by the maximal radius of the inscribed
circles contained in M and Rr by the minimal radius of the described circles
containing M .
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Lemma 2. Suppose that M is a closed and convex set and O1O2 is a closed
interval. Then for any r > 0 and for any O ∈ O1O2, the following inequality
holds [2]:

S(B(O, r) ∩M) ≥ min(S(B(O1, r) ∩M), S(B(O2, r) ∩M)),

where we denote S as the area of a domain.

Proof. Since O ∈ O1O2, there exists a number α ∈ [0, 1] such that

O = αO1 + (1− α)O2 and B(O, r) = αB(O1, r) + (1− α)B(O2, r).

By convexity of M , we have

(αB(O1, r) ∩M) + ((1− α)B(O2, r) ∩M) ⊆ B(O, r),
(αB(O1, r) ∩M) + ((1− α)B(O2, r) ∩M) ⊆M,

and this implies

(αB(O1, r) ∩M) + ((1− α)B(O2, r) ∩M) ⊆ (B(O, r) ∩M).

Using the Brunn–Minkowski inequality [6], we have√
S(B(O, r) ∩M) ≥ √

S(αB(O1, r) ∩M + (1− α)B(O2, r) ∩M)
≥ α

√
S(B(O1, r) ∩M) + (1− α)

√
S(B(O2, r) ∩M)

≥ min
(√

S(B(O1, r) ∩M),
√
S(B(O2, r) ∩M)

)
and the lemma is proved.

Theorem 5. Following statements hold

1a. If r < rM or r > RM , then int Q∗r �= ∅.
1b. If r = rM or r = RM , then int Q∗r = ∅ and Q∗r consists of unique point.
2. If r > RM or M is convex, then Q∗r is convex and compact.
3. If M is a simply connected set, then int Q∗r = ∅ for rM < r < RM .

Proof. Statements 1a, 1b and statement 2 in case r > RM are evident. State-
ment 2 follows from Lemma 2 when M is convex.
Now we consider statement 3. We have

πr2M < S(B(O, r) ∩M) < πR2
M ,

for any O ∈ Q∗r . On the contrary, we assume that int Q∗r �= ∅. Then there exists
a small scalar ε > 0 for every point O ∈ int Q∗r such that S(B(O′, r) ∩M) is
constant for any O′ ∈ B(O, ε).
Hence, it follows that either the ring (B(O, r + ε) \ B(O, r − ε)) consists of
points of M or M∩(B(O, r+ε)\B(O, r−ε)) = ∅. In first case, from the simply
connectedness of M it follows that r < rM which contradicts to r > rM . In
second case, from the connectedness of M it follows that r > RM which
contradicts to r < RM . The theorem is proved [1].
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Note that for statement 3, the simply connectedness of M is necessary. In fact,
if M is a ring B(O,R) \ (int B(O,R1)), where R > R1 and R+R1

2 < r − R,
then Q∗r contains B(O,R− r) so that int Q∗r �= ∅.

Now we consider some primary propositions which may be useful. It is
clear that the function

g(r) = max
O∈R2

S(B(O, r) ∩M)

is strongly increasing on the interval [rM , RM ].

Proposition 2. If M is convex, then Q∗r ⊆M for any r ∈ [0, RM ].

Proof. The statement of proposition in case of r ∈ [0, rM ] is evident. We
consider the case when r ∈ (rM , RM ]. Suppose O ∈ Q∗r and O /∈ M. Then
there exists O1 ∈ Q∗r such that ρ(O,O1) = min

A∈M
ρ(O,A). Passing through O1,

we can construct a line separating M and O and perpendicular to the straight
line OO1. It is clear that B(O, r)∩M is included in int B(O1, r). Then, there
exists ε > 0 such that (B(O, r) ∩M) ⊆ B(O1, r − ε). Therefore,

g(r − ε) ≥ S(B(O1, r − ε) ∩M) ≥ S(B(O, r) ∩M) = g(r),

which contradicts to the strongly monotonicity of g(r).

When r ≥ RM , then the nomadic residence must be located at the point O
which is the center of the minimal circle describing M .

Proposition 3. O is either the center of the describing circle of an acute
triangle �ABC, where A,B,C ∈ C(O,RM ) ∩M , or the middle point of the
diameter of M .

Proof. If C(O,RM )∩M contains some acute triangle, then O indeed coincides
with the center of the describing circle of this triangle. Otherwise, there exists
a half-disk including C(O,RM ) ∩M . If the both ends of the diameter of this
half-disk do not belong toM , then by moving O slightly we can obtain another
circle B(O1, R1) (R1 < RM ) containing M . This contradicts to the fact that
RM is the radius of the minimal circle describing M .

Now we assume that the possible location Q for the nomadic residence is a
line l and RM ≤ r. Let O be the center of the describing circle C(O,RM,l)
(RM,l ≥ RM ) of M . We consider a line η which is perpendicular to l
and passes through O. This line η separates C(O,RM,l) into two parts:
C+(O,RM,l) and C−(O,RM,l), none of which contain an end of the separating
diameter.

Proposition 4. Either there exist two points A ∈ C+(O,RM,l)∩M and B ∈
C−(O,RM,l) ∩M or there exists a point C ∈M ∩ η ∩ C(O,RM,l).
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Proof. If neither A and B nor C exists, then all points of the set C(O,RM,l)∩
M are located on either C+(O,RM,l) or C−(O,RM,l). Therefore, by moving
O to O1 ∈ l slightly, we can construct a disk B(O1, R1) satisfying M ⊆
B(O1, R1), R1 < RM,l. This contradicts to the fact that RM,l is the radius of
the minimal describing circle of M with a center belonging to l.

Now, again we assume that Q = �2, rM ≤ r ≤ RM .

Theorem 6. Let O ∈ Q∗r and M be a triangle or a diagonally symmetric
convex quadrangle or any regular convex polygon. Then there exists a number
rmax ≤ RM such that for any r, rM < r < rmax the ratio of the chord
generated by C(O, r)∩M and the length of the corresponding side is constant.

Proof. The statement of the theorem for regular convex polygon is evident
because O ∈ Q∗r is the center of polygon, where rmax = RM .

Let M be a triangle. Assume that a triangle �ABC with edges a, b, and
c is given, and its largest angle is ∠ABC. Let a circle with radius r is given.

A

rc
O

C

B

b

c a
ra

rb

Fig. 4. Pasture territories where M is a triangle

We denote by ra, rb, and rc distances measured from the center O of
the circle to edges a, b, and c of the triangle, respectively, where r ≤
min{OB,OA,OC} (Fig. 4). We construct the following Lagrange function:

L(ra, rb, rc, λ) = r2 arccos
ra

r
+ r2 arccos

rb

r
+ r2

rc

r
−

√
r2 − r2ara

−
√
r2 − r2brb −

√
r2 − r2crc + λ(raa+ rbb+ rcc− a− b− c)

and consider the maximization problem

L(ra, rb, rc, λ) → max,
0 < ra, 0 < rb, 0 < rc.

By Lagrange rule, the partial derivatives of the Lagrange function are equal
to zero, we obtain
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2
√
r2 − r2a
a

=
2
√
r2 − r2b
b

=
2
√
r2 − r2c
c

= λ.

If ∠ABC ≤ π
2 , then rmax = RM , otherwise rmax < RM and rmax = OB.

Now, let us consider a diagonally symmetric quadrangle ABCD with edges
AB = AD = a, BC = DC = b. Clearly, the center O of the maximal circle
with radius r always lies on the axis of symmetry AC, and the Lagrange
function for this circle has the following form:

L(ra, rb, λ) = 2r
(
arccos

ra

r
+ arccos

rb

r

)
− 2

√
r2 − r2a · ra − 2

√
r2 − r2b · rb + 2λ(ara + brb − a− b).

Corresponding Lagrange problem is

L(ra, rb, λ) → max,
ra > 0, rb > 0.

By Lagrange rule, the partial derivatives of the Lagrange function are
equal to zero, we obtain

2
√
r2 − r2a
a

=
2
√
r2 − r2b
b

= λ.

If BD < AC, then rmax = OB. But, if BD ≥ AC, then

rmax =
{

OC, if∠BAD ≤ ∠BCD,
OA, if∠BAD > ∠BCD .

The proof is completed.

4 Conclusion

Nowadays, the world civilization is divided into two forms: settled and no-
madic. The nomadic civilization is closely connected with the nature, and
ecological and economical problems of nomads are regulated simultaneously.
Therefore, research activities in this field are increasing more and more, and
many international conferences are being organized every year.

Mongolia is one of the few countries where the nomadic civilization still
exists in classical form. Fifty percent of the population is involved somehow
in stock nomadic breeding. Since Mongolian has extreme climate, it is very
important for nomads to determine optimal choices for roaming places, i.e.,
the location for the nomadic residence depending on the seasons. While the
settled civilization is well studied and modeled mathematically, the study of
the nomadic civilization is practically ignored and less. Therefore, our work
may be regarded as new in mathematical modeling.
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In this work, we consider extremal problems on pasture surface, define its
basic elements, present and solve the problem of determining optimal locations
for the nomadic residence, and prove some related and existence theorems.
This research is realized within the Russia–Mongolian joint grant “Economic
and geometry extremal problems on equipped surfaces.”

We have used mathematical apparatus such as geometry, functional anal-
ysis, and theory of extremal problems in our study.
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Summary. In a wired-cum-wireless network, the rate control problem is a difficult
optimization problem. This chapter addresses the solvability of the optimization
problem, where the optimization variables are both end-to-end session rates and
wireless link transmission rates. The convergence of all algorithms on solving the
rate control problem in wireless or wired-cum-wireless networks has been shown
in [2, 5, 8–11]. But existence of a unique solution in the problem has not been
studied so far. Although the problem is a nonconvex optimization problem, the
unique solvability of the end-to-end session rates of the problem has been shown.
In addition, we also prove that there exist infinitely many corresponding values of
the wireless link transmission rates which are optimal solutions of the rate control
problem. Simulation results are provided to illustrate our approach.

Key words: wired-cum-wireless networks, rate control problems, convex
optimization problems, nonconvex optimization problems, convex functions,
concave functions

1 Introduction

We consider the wired-cum-wireless networks with CSMA/CA-based wireless
LANs, which extend a wired backbone and provide access to mobile users.
Wireless LANs provide sufficient bandwidth for office applications with rel-
atively limited mobility, and typically the users may roam inside a building
or campus. Wireless LANs help extend wired networks when it is impractical
or expensive to use cabling. In a wired-cum-wireless network, mobile hosts
(MHs) can roam in a wireless network, called basic service sets (BSSs), which
are attached at the periphery of a wired backbone. The wired infrastructure
can be an IEEE 802 style Ethernet LAN or some other IP-based network. The
wired and wireless networks are interconnected via access points (APs), which
A. Chinchuluun et al. (eds.), Optimization and Optimal Control,
Springer Optimization and Its Applications 39, DOI 10.1007/978-0-387-89496-6 22,
c© Springer Science+Business Media, LLC 2010
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are actually fixed base stations that provide interfaces between the wired and
wireless parts of the network and control each BSS. For example, a typical
wired-cum-wireless network is shown in Fig. 1.

Fig. 1. Architecture of wired-cum-wireless network

Congestion control in the network is an extensively researched topic. The
objective of rate control is to provide proportional fairness among the end-to-
end sessions in the network. The problem of rate control has been extensively
studied, e.g., in [2–7, 9–11]. It is well known that in wired networks [3, 4, 7],
based on convex programming, globally fair rates are unique and attainable
via distributed approaches.

In wireless networks, the capacity is not a fixed quantity. For example, in
code-division multiple-access wireless networks, transmit powers can be con-
trolled to induce different signal-to-interference ratios on the links, changing
the attainable throughput on each link [2]. Unlike [2], in [9], authors have for-
mulated the rate control problem in multi-hop wireless networks with random
access, where the attainable throughput on each link depends on the attempt
probabilities on all links. The rate control problems in [2, 9] are nonconvex
optimization problems.

In wired-cum-wireless networks [5, 6, 10, 11], similar in wireless networks,
the capacity of a wireless link is not a fixed quantity and depends on wireless
link transmission rates. End-to-end session rates are also attainable by solving
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a nonlinear programming using the dual-based (DB) or the primal–dual
interior-point (PDIP) algorithms. However, both papers [5, 10] have only ad-
dressed optimal end-to-end session rates while optimal wireless link transmis-
sion rates were not their concern. Recently, in [11], the optimal wireless link
transmission rates were examined.

Note that, the solvability of the rate control problems in both wireless net-
works [2, 9] and wired-cum-wireless networks [5, 10, 11] has not been studied.
There exist only global convergent algorithms for the problem. This chap-
ter has been motivated by the papers [10, 11]. In this chapter, we focus on
the solvability of the rate control problem introduced in [10, 11] in a wired-
cum-wireless network. We show that there is a unique optimal solution for
the end-to-end session rates, but there may be many corresponding optimal
values of the wireless link transmission rates.

This chapter is organized as follows. In Section 2, we survey recent results
on the rate control problems in the wired-cum-wireless networks. In Section
3, we discuss the rate control problem as optimization problem. Section 4 is
devoted to the solvability of the rate control problem. In Section 5, we illus-
trate our theoretical results through a discussion of some numerical examples.
Finally, all necessary proofs are presented in the Appendix.

2 Related Works

There were several existing works which addressed the problem of rate con-
trol in wired, wireless, and wired-cum-wireless networks. In [4, 7], the rate
control problem in wired networks was formulated as a convex optimization
problem with a rate vector as optimization variable and the constraints are
the source rates and fixed link capacities. Under some assumptions on the ob-
jective function, their results showed that the problem has a unique optimal
solution. Kelly et al. [4] have decomposed the problem into a user sub-problem
and a network sub-problem. Furthermore, they have proposed two classes of
decentralized algorithm to implement solution to relaxations of the problems,
which are network sub-problem and dual of the network sub-problem. In [7],
authors have also presented different flow control algorithms to solve the same
optimization problem. Kelly [3] has shown that the problem has a unique op-
timal rate vector, but there may be corresponding values of the flow rates
which are optimal solutions.

Recently in [2, 5, 6, 9–11], the rate control problem in a wireless network
and in a wired-cum-wireless network has been studied as a nonconvex op-
timization problem. Chiang [2] studied the rate control problem in wireless
multi-hop networks. He considered the problem with elastic link capacities de-
pending on transmit powers and proposed a jointly optimal congestion control
for solving a nonlinear programming problem. In [9], Wang et al. discussed
the rate control problem in multi-hop wireless networks with random access,
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but unlike [2], they examined whether the attainable throughput of wire-
less links depends only on transmission probabilities and have proposed both
penalty-based and dual-based algorithms to find an optimal solution of the
rate control problem. In [10, 11], authors have formulated the rate control
problem in a wired-cum-wireless network from end-to-end session rates, wire-
less link transmission rates, and capacities of both wired and wireless links,
where capacity of wireless links is elastic and depends on the wireless link
transmission rates. The proportional fair rate in the wired-cum-wireless net-
work can be obtained by solving an equivalent convex optimization problem
using the DB-distributed algorithm [10, 11] or PDIP algorithm [5]. In order
to solve the rate control problem in wired-cum-wireless networks, we need to
find both scheduling rates for the wireless links and end-to-end session rates
for the wired links. The papers [5, 10, 11] proposed algorithms which con-
verge to global solutions. However, simulation results in [5, 10] only showed
the optimal end-to-end session rates for the wired links, but did not show the
scheduling rates on the wireless links (see [5, 10] and the references therein).
In [11], which is an extended version of [10], both optimal end-to-end session
rates and optimal wireless link transmission rates on the wireless links were
shown with a unique optimal wireless link transmission rate.

3 The Rate Control Problem

In this section, we introduce briefly the rate control problem in the wired-
cum-wireless network (see [10, 11] and the references therein for more details).
Consider the wired-cum-wireless network that consists of a set M of all MHs,
a set W of CSMA/CA-based BSSs, a set N of fixed nodes in a wired backbone,
and a set L of unidirectional links which connect the fixed nodes in the wired
backbone. We assume that each MH belongs to one and only one BSS, and
each BSS has one and only one AP denoted as A(s). In BSS w, let us denote
Nw, Ew, and Aw as a set of nodes, a set of directed edges in that particular
BSS w, and an AP for BSS w, respectively. For any node s ∈ Nw, we denote
the set of s’s out-neighbors Ds = {t : (s, t) ∈ Ew}, which represents the set of
neighbors to which s is sending traffic and s’s in-neighbors Js = {t : (t, s) ∈
Ew}, which represents the set of neighbors from which s is receiving traffic. In
our network model, we assume that each node has a single transceiver. A node
cannot transmit and receive simultaneously and cannot receive more than one
frame at a time. For ease of exposition, we assume that all end-to-end sessions
originate and terminate in MHs, and the source and destination MHs of any
session belong to different BSSs. Since end-to-end sessions within a BSS are
not allowed according to the assumption, an immediate consequence is that
all links in a BSS w are between its MHs and the AP Aw. The transmission
rate for a wireless link (s, t) ∈ Ew is denoted as ρs,t and let ρ := (ρs,t :

(s, t) ∈ Ew, w ∈ W ) ∈ R
|M |
+ be a vector of transmission rates for all wireless

links, where |M | denotes its cardinality. As shown in [8], the capacity of link
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(s, t) ∈ Ew in BSS w, in which either s or t must be the AP Aw is given as

cs,t(ρ) =
ρs,t

1 +
∑

k∈DAw
ρAw,k +

∑
k∈JAw

ρk,Aw

. (1)

Note that, the second and the third terms in the denominator of formula
(1) are the sum of transmission rates on all downlinks and uplinks, respec-
tively, in BSS w.

The wired backbone connects all the APs using the set L of unidirectional
wired links whose capacity is cl, l ∈ L, where cl is fixed for all l ∈ L. We
denote L(Aw, Av) as a set of wired links that are used for the communication
from Aw to Av and let S(l) := {(Aw, Av) : w, v ∈ W, l ∈ L(Aw, Av)} be a set
of communication pairs consisting of APs that use link l ∈ L.

The wired-cum-wireless network is shared by a set S of end-to-end sessions.
Each session in S can be expressed as (i, j), where MHs i and j are source and
sink of the session, respectively. Let yij be a session rate for session (i, j) ∈ S.
We denote a vector of the end-to-end session rates by y := (yij : (i, j) ∈
S) ∈ R

|S|
+ . Due to our assumptions the set M of all MHs and the set S of all

end-to-end sessions must satisfy |M | = 2|S|.
Now we specify the following rate control problem in the wired-cum-

wireless network [5, 10, 11]:

maximize
∑

(i,j)∈S

log(yij),

subject to yij ≤ ci,A(i)(ρ) ∀(i, j) ∈ S,
yij ≤ cA(j),j(ρ) ∀(i, j) ∈ S,∑
(A(i),A(j))∈S(l)

yij ≤ cl ∀l ∈ L,

yij ≥ 0 ∀(i, j) ∈ S,
ρs,t ≥ 0 ∀(s, t) ∈ Ew, ∀w ∈W, (2)

where optimization variables are both vector of end-to-end session rates
y := (yij : (i, j) ∈ S) and vector of wireless link transmission rates
ρ := (ρs,t : (s, t) ∈ Ew, w ∈ W ), and the capacities of wireless links ci,A(i)(ρ)
and cA(j),j(ρ) are given by formula (1). Each session in the network model
runs across both wired links which have fixed link capacities and wireless links
whose capacities are elastic and depend on the wireless link transmission rate
of MHs in that particular BSS. Therefore, the first and the second sets of
constraints of problem (2) ensure that the session rates cannot exceed the
attainable throughputs of the two wireless links that are traversed. The third
set of constraints states that the total session rates on a wired link cannot
exceed the capacity of that link. The fourth and the last sets of constraints
ensure, respectively, that all the end-to-end session rates and all the wireless
link transmission rates are non-negative.
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The capacities of the wireless links are not concave functions of the trans-
mission rates ρ. Thus problem (2) is a nonconvex optimization problem. In
order to solve it, we can use the DB-distributed algorithm [10, 11] or the PDIP
algorithm [5]. In Section 4, we will address a solvability of the rate control
problem (2).

4 Solvability of the Rate Control Problem

We begin this section by a useful lemma. First, we define zij , rs,t, and dl as the
logarithmic values of the end-to-end session rate yij , wireless link transmission
rate ρs,t, and wired link capacity cl, respectively. It can be easily shown that
problem (2) reduces a convex optimization problem by the following lemma.

Lemma 1. Problem (2) is equivalent to the following convex optimization
problem:

minimize −
∑

(i,j)∈S

zij

subject to zij + log

⎛⎝1 +
∑

k∈DA(i)

erA(i),k +
∑

k∈JA(i)

erk,A(i)

⎞⎠− ri,A(i) ≤ 0

∀(i, j) ∈ S,

zij + log

⎛⎝1 +
∑

k∈DA(j)

erA(j),k +
∑

k∈JA(j)

erk,A(j)

⎞⎠− rA(j),j ≤ 0

∀(i, j) ∈ S,

log

⎛⎝ ∑
(A(i),A(j))∈S(l)

ezij

⎞⎠− dl ≤ 0 ∀l ∈ L.

(3)

Based on Lemma 1, we can conclude that the vectors

y := (yij : (i, j) ∈ S) ∈ R
|S|
+

and
ρ :=

(
ρs,t : (s, t) ∈ Ew, w ∈W

) ∈ R
|M |
+

are optimal solutions of problem (2), if and only if the vectors

z := (zij : (i, j) ∈ S) ∈ R|S|

and
r := (rs,t : (s, t) ∈ Ew, w ∈W ) ∈ R|M |
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are optimal solutions of problem (3). Therefore, we will study the solvability
of the original problem (2) via its equivalent problem (3). For ease of ex-
position, we denote functions f(z, r), g(1)

ij (z, r), g(2)
ij (z, r) ((i, j) ∈ S), and

hl(z, r) (l ∈ L) as

f(z, r) := −
∑

(i,j)∈S

zij ,

g
(1)
ij (z, r) := zij + log

⎛⎝1 +
∑

k∈DA(i)

erA(i),k +
∑

k∈JA(i)

erk,A(i)

⎞⎠− ri,A(i),

g
(2)
ij (z, r) := zij + log

⎛⎝1 +
∑

k∈DA(j)

erA(j),k +
∑

k∈JA(j)

erk,A(j)

⎞⎠− rA(j),j ,

hl(z, r) := log

⎛⎝ ∑
(A(i),A(j))∈S(l)

ezij

⎞⎠− dl,

and gradients of these functions are denoted as∇f(z, r),∇g(1)
ij (z, r),∇g(2)

ij (z, r)
((i, j) ∈ S), and ∇hl(z, r) (l ∈ L), respectively.

In order to study the solvability of problem (3), we assume that there exist
vectors z̄ ∈ R|S| and r̄ ∈ R|M | such that g(1)

ij (z̄, r̄) < 0, g(2)
ij (z̄, r̄) < 0, for all

(i, j) ∈ S and hl(z̄, r̄) < 0 for all l ∈ L, i.e., Slater’s condition of problem (3)
holds (see [1, p. 226]). Furthermore, according to Lemma 1, the problem (3) is
convex, and it leads to the conclusion that the Karush–Kuhn–Tucker (KKT)
conditions provide necessary and sufficient conditions for optimality (see [1,
p. 244]). Thus, (z∗, r∗) ∈ R|S|+|M | is an optimal solution of problem (3) if
and only if there is a dual optimal solution (λ(1)∗

ij , λ
(2)∗

ij , γ∗l ) ∈ R2|S|+|L| that,
together with (z∗, r∗), satisfies the KKT conditions, see [1, p. 243] as follows:

g
(1)
ij (z∗, r∗) ≤ 0 ∀(i, j) ∈ S,
g
(2)
ij (z∗, r∗) ≤ 0 ∀(i, j) ∈ S,
hl(z∗, r∗) ≤ 0 ∀l ∈ L;

(4)

λ
(1)∗

ij ≥ 0 ∀(i, j) ∈ S,
λ

(2)∗

ij ≥ 0 ∀(i, j) ∈ S,
γ∗l ≥ 0 ∀l ∈ L;

(5)

λ
(1)∗

ij g
(1)
ij (z∗, r∗) = 0 ∀(i, j) ∈ S,

λ
(2)∗

ij g
(2)
ij (z∗, r∗) = 0 ∀(i, j) ∈ S,

γ∗l hl(z∗, r∗) = 0 ∀l ∈ L;

(6)
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∇f(z∗, r∗) +
∑

(i,j)∈S

λ
(1)∗

ij ∇g(1)
ij (z∗, r∗)

+
∑

(i,j)∈S

λ
(2)∗

ij ∇g(2)
ij (z∗, r∗) +

∑
l∈L

γ∗l∇hl(z∗, r∗) = 0. (7)

It is worth noting that, in BSS w ∈ W , each wireless link (s, t) ∈ Ew

capacity depends on the wireless link transmission rates ρk,m,∀(k,m) ∈ Ew.
Furthermore, each session (i, j) ∈ S originates from one wireless network and
ends at another such as MHs i and j, respectively, where (i, A(i)) ∈ Ew,
(A(j), j) ∈ Ev w, v ∈ W , and w �= v. Notice that in our network model,
we have

∑
w∈W |Ew| = |M | and |M | = 2|S|. Then, in each BSS w ∈ W ,

we can restore an index of variables rk,m,∀(k,m) ∈ Ew as r
(w)
1 , . . . , r

(w)
|Ew|

and variables λ(1)
ij or λ(2)

ij such that sessions (i, j) travel across wireless links

(k,m), respectively, as λ(w)
1 , . . . , λ

(w)
|Ew|. Note that system (7) consists of |S|+

|M | equations and 3|S| + |M | + |L| unknowns. In particular, there are |S|
unknowns z∗ij , |M | unknowns r∗s,t, |S| unknowns λ(1)∗

ij , |S| unknowns λ(2)∗

ij , and
|L| unknowns γ∗l . On the other hand, since the functions f(z, r) and hl(z, r)
do not depend on variables rs,t, we obtain a subsystem equation that consists
of |M | equations and |M | unknowns r∗s,t, 2|S| unknowns λ(1)∗

ij , λ(2)∗

ij ; and this

subsystem only depends on the functions g(1)
ij (z, r) and g

(2)
ij (z, r). Now, in the

subsystem, we only consider λ(1)∗

ij , λ(2)∗

ij as unknowns. Due to |M | = 2|S|,
the subsystem is a square linear system equation. The square linear system
equation can be separated into |W | square subsystems. We can calculate the
gradients∇g(1)

ij (z, r) and∇g(2)
ij (z, r), and as mentioned above, for each w ∈W

from the system equation (7), we get the square linear subsystem equations
as follows:

A(w)λ(w)∗ = 0, w ∈W, (8)

where λ(w)∗ :=
(
λ

(w)∗

1 , . . . , λ
(w)∗

|Ew|
)
∈ R|Ew| and

A(w) :=

⎛⎜⎜⎜⎜⎜⎜⎝
er

(w)∗
1

d(w) − 1 er
(w)∗
1

d(w) · · · er
(w)∗
1

d(w)

er
(w)∗
2

d(w)
er

(w)∗
2

d(w) − 1 · · · er
(w)∗
2

d(w)

...
...

. . .
...

e
r
(w)∗
|Ew|

d(w)
e

r
(w)∗
|Ew|

d(w) · · · e
r
(w)∗
|Ew|

d(w) − 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Here, we denote d(w) := 1 +
∑|Ew|

j=1 er
(w)∗
j .

Theorem 1. The linear system equations (8) always have a unique solution
λ(w)∗ = 0 for any given vectors r(w)∗ :=

(
r
(w)∗

1 , . . . , r
(w)∗

|Ew|
)
∈ R|Ew| and for

all w ∈W .
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Theorem 2. The rate control problem (2) always has a unique optimal so-
lution for the end-to-end session rates y∗ :=

(
y∗ij : (i, j) ∈ S)

and has in-
finitely many optimal solutions for the wireless link transmission rates ρ∗ :=(
ρ∗s,t : (s, t) ∈ Ew, w ∈W

)
.

If we take into account that the functions f(z, r) and hl(z, r) do not depend
on variable r, the system of equations (7) can be rewritten as follows:

∇f(z∗) +
∑
l∈L

γ∗l∇hl(z∗) = 0. (9)

This is a system of nonlinear equations which consists of |S| equations
and |S| variables z∗ij ((i, j) ∈ S) and |L| variables γ∗l (l ∈ L). If we view
the variables γ∗l (l ∈ L) as parameters, the system of nonlinear equations (9)
has only |S| unknowns z∗ij (i, j) ∈ S and |S| equations. As a consequence of
Theorem 2, we state the following result.

Corollary 1. The system of nonlinear equations (9) always has a unique so-
lution z∗ for any given vector γ∗ = (r∗l : l ∈ L) ∈ R|L| provided that γ∗l ≥ 0
∀l ∈ L and

∑
l∈L γ

∗
l > 0.

5 Numerical Example

In this section, we investigate a numerical example, which is taken from [5,
10, 11], to illustrate our theoretical results in Section 4. Consider the network
which is illustrated in Fig. 2.

The network is composed of four APs which are denoted as 0, 1, 2, and
3 and eight MHs which are labeled as A, B, C, D, E, F , G, and H. There
are a total of eight wireless links which are denoted as a, b, c, d, e, f , g, and
h. The wired backbone of the network connects the APs through four wired
links, denoted as 0, 1, 2, and 3. The capacities of the wired links are 0.5, 0.2,
0.6, and 0.8, respectively. Four end-to-end sessions, namely, f0, f1, f2, and f3

are set up in this network. The source, the destination, and the path of the
four sessions are shown in Table 1.

Table 1. The source, sink, and path of the sessions

Session Source node Sink node Link on the path

f0 E A e, 0, a
f1 B G b, 0, 2, g
f2 C F c, 3, 2, f
f3 H D h, 2, 1, d
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Fig. 2. A wired-cum-wireless network example

We found optimal solutions of the rate control problem for this network by
using both the DB-distributed algorithm in [10, 11] and the PDIP algorithm
in [1, 5]. Our computations were done using Matlab 7.0 on a machine with 3.00
GHz Pentium processor and 1.00 GB of RAM. In this example, we denote four
end-to-end session rates of sessions by f0, f1, f2, and f3, and eight wireless
link transmission rates of wireless links by a, b, c, d, e, f , g, and h as y0, y1,
y2, and y3 and ρi (i = 1, 8), respectively.

Dual-based algorithm [5, 10, 11]: In [10, 11], the DB algorithm has been
proposed to solve the rate control problem (2) iteratively. This algorithm has
been reviewed in [5] when we compare one with the PDIP algorithm to find a
solution of problem (2). In DB algorithm, there are inner and outer iterations.
We compute iteratively the link prices and the end-to-end session rates while
the wireless link transmission rates are fixed by inner loop. The wireless link
transmission rates are updated by using outer loop.

In this simulation, the step sizes, i.e., step size β and step size δ, for
the inner and outer loops are set to β = δ = 0.15 and β = 0.15, δ = 5 ×
10−4. Both inner and outer loops terminate when the norm of the difference
of two successive iterative end-to-end session rates, and transmission rates,
respectively, is smaller than ε = 10−8.

The convergence of the DB algorithm ensures that a numerical solution is
only one optimal solution. The problem may have other optimal solutions. As
shown in Section 4, problem (2) has a unique optimal solution for the end-
to-end session rates and has infinitely many optimal solutions for the wireless
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link transmission rates, i.e., problem (2) for this network has many optimal
solutions. From experiments, we can see that the optimal solution obtained
by the DB algorithm does not depend on an initial value of the link prices λ
and γ and the step size β (see [5, 10, 11]). This can be interpreted that a dual
problem of problem (2) has a unique optimal solution. Thus, we choose an
initial value for the link price vectors λ(0) = e ∈ R8 and γ(0) = e ∈ R4 where e
denotes the vector of all ones whose dimension is determined by the context.
However, the optimal solution depends on an initial value of the wireless link
transmission rates and the step-size δ. Tables 2 and 3 show dependence of the
optimal solution on the initial transmission rate vectors ρ(0) in three cases
with δ = 0.15 and δ = 5× 10−4, respectively.

Primal–dual interior–point algorithm [1, 5]: In this simulation, in-
stead of solving problem (2) for this network example directly, we will solve
the equivalent problem (3) using the PDIP algorithm in [5]. Similar in DB
algorithm, through this simulation example, it can be seen that the optimal
numerical solution given by the PDIP algorithm also depends on the choice of
initial values of vectors z(0) ∈ R4 and r(0) ∈ R8, which are logarithms of the
end-to-end session rates and the wireless link transmission rates, respectively,
and the backtracking parameters α and β in the PDIP algorithm. From Tables
4 and 5, the initial vector λ(0) ∈ R12 is chosen as λ(0)

i = −1/ci(z(0), r(0)), 1, 12
where ci(z, r) are the constrained functions g(1)

ij (z, r), g(2)
ij (z, r), ∀(i, j) ∈ S

and hl(z, r), l ∈ L in problem (3). We consider two cases α = 0.01, β = 0.5
and α = 0.1, β = 0.8 corresponding to Tables 4 and 5. Other parameter val-
ues that we used for the PDIP algorithm (see [5] for details) are ε = 10−8,
μ = 10.

From Tables 2, 3, 4, and 5, it can be seen that the rate control problem
(2) or the equivalent problem (3) for this network example has a unique opti-
mal solution for the end-to-end session rates. However, it has infinitely many
optimal solutions for the wireless link transmission rates.

6 Conclusion

We have discussed the solvability of the rate control problem in wired-cum-
wireless networks. The rate control problem is a nonconvex optimization prob-
lem. In general, finding an optimal solution for the rate control problem in
wired-cum-wireless networks is more difficult than its wired network counter-
part. In this chapter, using linear algebra and convex optimization techniques,
we have proved existence of a unique solution in the end-to-end session rates.
We have also shown that there may exist infinitely many of optimal solu-
tions for the wireless link transmission rates in the rate control problem for
the wired-cum-wireless network. Numerical examples have been provided to
support our obtained results.
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Table 2. The optimal solutions given by the DB algorithm with δ = 0.15

Initial wireless link
transmission rates

Optimal end-to-end
session rates

Optimal wireless link
transmission rates

ρ
(0)
1 = 1 y∗

0 = 0.35275514 ρ∗
1 = 1.07019867

ρ
(0)
2 = 1 y∗

1 = 0.14724746 ρ∗
2 = 0.96361791

ρ
(0)
3 = 1 y∗

2 = 0.25275111 ρ∗
3 = 1.00000000

ρ
(0)
4 = 1 y∗

3 = 0.20000074 ρ∗
4 = 1.00000000

ρ
(0)
5 = 1 ρ∗

5 = 1.07019867

ρ
(0)
6 = 1 ρ∗

6 = 0.96361791

ρ
(0)
7 = 1 ρ∗

7 = 1.00000000

ρ
(0)
8 = 1 ρ∗

8 = 1.00000000

ρ
(0)
1 = 0.5 y∗

0 = 0.35275212 ρ∗
1 = 0.77061752

ρ
(0)
2 = 0.5 y∗

1 = 0.14724775 ρ∗
2 = 0.39055502

ρ
(0)
3 = 0.5 y∗

2 = 0.25275355 ρ∗
3 = 0.50749777

ρ
(0)
4 = 0.5 y∗

3 = 0.19999966 ρ∗
4 = 0.49750074

ρ
(0)
5 = 0.5 ρ∗

5 = 0.89419835

ρ
(0)
6 = 0.5 ρ∗

6 = 0.64071231

ρ
(0)
7 = 0.5 ρ∗

7 = 0.50000000

ρ
(0)
8 = 0.5 ρ∗

8 = 0.500000007

ρ
(0)
1 = 0.1 y∗

0 = 0.35275319 ρ∗
1 = 0.89667809

ρ
(0)
2 = 0.1 y∗

1 = 0.14724726 ρ∗
2 = 0.64524173

ρ
(0)
3 = 0.1 y∗

2 = 0.25275155 ρ∗
3 = 0.72498237

ρ
(0)
4 = 0.1 y∗

3 = 0.20000071 ρ∗
4 = 0.72498103

ρ
(0)
5 = 0.1 ρ∗

5 = 0.89668243

ρ
(0)
6 = 0.1 ρ∗

6 = 0.64523699

ρ
(0)
7 = 0.1 ρ∗

7 = 0.72498198

ρ
(0)
8 = 0.1 ρ∗

8 = 0.72498106

Appendix

A. Proof of Theorem 1

In order to prove that the linear system equations (8) have a unique solution
λ(w)∗ = 0 ∈ R|Ew|, it is sufficient to show det

(
A(w)

) �= 0 for any given vectors

r(w)∗ =
(
r
(w)∗

1 , . . . , r
(w)∗

|Ew|
)
∈ R|Ew| and for all w ∈W . First, by the properties

of the determinant, adding all |Ew| − 1 the last rows of the matrix A(w) to
its first row, and then after multiplying the first column by −1 we add it to
each column from the second column to the last column of the matrix A(w),
it follows that
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Table 3. The optimal solutions given by the DB algorithm with δ = 5× 10−4

Initial wireless link
transmission rates

Optimal end-to-end
session rates

Optimal wireless link
transmission rates

ρ
(0)
1 = 1 y∗

0 = 0.35275255 ρ∗
1 = 1.07006794

ρ
(0)
2 = 1 y∗

1 = 0.14724911 ρ∗
2 = 0.96340464

ρ
(0)
3 = 1 y∗

2 = 0.25274991 ρ∗
3 = 1.00000000

ρ
(0)
4 = 1 y∗

3 = 0.20000051 ρ∗
4 = 1.00000000

ρ
(0)
5 = 1 ρ∗

5 = 1.07006794

ρ
(0)
6 = 1 ρ∗

6 = 0.96340464

ρ
(0)
7 = 1 ρ∗

7 = 1.00000000

ρ
(0)
8 = 1 ρ∗

8 = 1.00000000

ρ
(0)
1 = 0.5 y∗

0 = 0.35275052 ρ∗
1 = 0.75665540

ρ
(0)
2 = 0.5 y∗

1 = 0.14724950 ρ∗
2 = 0.38835639

ρ
(0)
3 = 0.5 y∗

2 = 0.25275109 ρ∗
3 = 0.50661377

ρ
(0)
4 = 0.5 y∗

3 = 0.19999973 ρ∗
4 = 0.49777919

ρ
(0)
5 = 0.5 ρ∗

5 = 0.89417477

ρ
(0)
6 = 0.5 ρ∗

6 = 0.64068918

ρ
(0)
7 = 0.5 ρ∗

7 = 0.50000000

ρ
(0)
8 = 0.5 ρ∗

8 = 0.500000007

ρ
(0)
1 = 0.1 y∗

0 = 0.35274934 ρ∗
1 = 0.73135710

ρ
(0)
2 = 0.1 y∗

1 = 0.14725034 ρ∗
2 = 0.34194240

ρ
(0)
3 = 0.1 y∗

2 = 0.25275094 ρ∗
3 = 0.46185889

ρ
(0)
4 = 0.1 y∗

3 = 0.19999944 ρ∗
4 = 0.36546383

ρ
(0)
5 = 0.1 ρ∗

5 = 0.89416777

ρ
(0)
6 = 0.1 ρ∗

6 = 0.64068733

ρ
(0)
7 = 0.1 ρ∗

7 = 0.34225203

ρ
(0)
8 = 0.1 ρ∗

8 = 0.34130752

det
(
A(w)

)
=

∣∣∣∣∣∣∣∣∣∣∣

− 1
d(w) 0 · · · 0

er
(w)∗
2

d(w) −1 · · · 0
...

...
. . .

...

e
r
(w)∗
|Ew|

d(w) 0 · · · −1

∣∣∣∣∣∣∣∣∣∣∣
.

Note that the right-hand side of the above equality is a determinant of an
|Ew| by |Ew| lower triangular matrix. Thus, we obtain that

det
(
A(w)

)
=

(−1)|Ew|

d(w)
�= 0,

for any given vectors r(w)∗ =
(
r
(w)∗

1 , . . . , r
(w)∗

|Ew|
)
∈ R|Ew|, and for all w ∈

W . Q.E.D.
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Table 4. The optimal solutions given by the PDIP algorithm with α = 0.01, β = 0.5

Initial wireless link trans-
mission rates

Optimal end-to-end
session rates

Optimal wireless link
transmission rates

z
(0)
0 = −2, r

(0)
1 = −1 y∗

0 = 0.35275252 ρ∗
1 = 2.98323299

z
(0)
1 = −2, r

(0)
2 = −1 y∗

1 = 0.14724748 ρ∗
2 = 1.65669132

z
(0)
2 = −2, r

(0)
3 = −1 y∗

2 = 0.25275252 ρ∗
3 = 2.24011428

z
(0)
3 = −2, r

(0)
4 = −1 y∗

3 = 0.20000000 ρ∗
4 = 1.91004133

r
(0)
5 = −1 ρ∗

5 = 3.54833077

r
(0)
6 = −1 ρ∗

6 = 2.76138572

r
(0)
7 = −1 ρ∗

7 = 1.42793561

r
(0)
8 = −1 ρ∗

8 = 1.71710508

z
(0)
0 = −3, r

(0)
1 = −2 y∗

0 = 0.35275252 ρ∗
1 = 3.18691351

z
(0)
1 = −3, r

(0)
2 = −2 y∗

1 = 0.14724748 ρ∗
2 = 1.76955508

z
(0)
2 = −3, r

(0)
3 = −2 y∗

2 = 0.25275252 ρ∗
3 = 2.36056534

z
(0)
3 = −3, r

(0)
4 = −2 y∗

3 = 0.20000000 ρ∗
4 = 2.01155550

r
(0)
5 = −2 ρ∗

5 = 3.83139094

r
(0)
6 = −2 ρ∗

6 = 3.00129934

r
(0)
7 = −2 ρ∗

7 = 1.48032082

r
(0)
8 = −2 ρ∗

8 = 1.77862488

z
(0)
0 = −5, r

(0)
1 = −0.5 y∗

0 = 0.35275252 ρ∗
1 = 16.71211859

z
(0)
1 = −5, r

(0)
2 = −0.5 y∗

1 = 0.14724748 ρ∗
2 = 10.13139616

z
(0)
2 = −5, r

(0)
3 = −0.5 y∗

2 = 0.25275252 ρ∗
3 = 12.72947321

z
(0)
3 = −5, r

(0)
4 = −0.5 y∗

3 = 0.20000000 ρ∗
4 = 11.32254620

r
(0)
5 = −0.5 ρ∗

5 = 19.99732265

r
(0)
6 = −0.5 ρ∗

6 = 16.18876216

r
(0)
7 = −0.5 ρ∗

7 = 8.53671165

r
(0)
8 = −0.5 ρ∗

8 = 10.13066345

B. Proof of Theorem 2

In problem (2), the objective function∑
(i,j)∈S

log(yij)

is differentiable and strictly concave, and its feasible region is compact, hence
a maximizing value of (y∗, ρ∗) exists. Moreover, since the objective function is
a strictly concave function in y, it implies that there exists a unique optimal
solution for the end-to-end session rates vector y.

Applying Lemma 1, we can conclude that the equivalent convex prob-
lem (3) has an optimal solution (z∗, r∗) with unique z∗. Thus, there ex-
ists a dual optimal solution

(
λ

(1)∗

ij , λ
(2)∗

ij , γ∗l
)
∈ R2|S|+|L| that, together with
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Table 5. The optimal solutions given by the PDIP algorithm with α = 0.1, β = 0.8

Initial wireless link
transmission rates

Optimal end-end ses-
sion rates

Optimal wireless link
transmission rates

z
(0)
0 = −2, r

(0)
1 = −1 y∗

0 = 0.35275252 ρ∗
1 = 2.36844983

z
(0)
1 = −2, r

(0)
2 = −1 y∗

1 = 0.14724748 ρ∗
2 = 1.29607831

z
(0)
2 = −2, r

(0)
3 = −1 y∗

2 = 0.25275252 ρ∗
3 = 1.80564383

z
(0)
3 = −2, r

(0)
4 = −1 y∗

3 = 0.20000000 ρ∗
4 = 1.52644375

r
(0)
5 = −1 ρ∗

5 = 2.76882804

r
(0)
6 = −1 ρ∗

6 = 2.14179347

r
(0)
7 = −1 ρ∗

7 = 1.16910744

r
(0)
8 = −1 ρ∗

8 = 1.41303270

z
(0)
0 = −3, r

(0)
1 = −2 y∗

0 = 0.35275252 ρ∗
1 = 2.63438605

z
(0)
1 = −3, r

(0)
2 = −2 y∗

1 = 0.14724748 ρ∗
2 = 1.45111659

z
(0)
2 = −3, r

(0)
3 = −2 y∗

2 = 0.25275252 ρ∗
3 = 1.95895545

z
(0)
3 = −3, r

(0)
4 = −2 y∗

3 = 0.20000000 ρ∗
4 = 1.65426526

r
(0)
5 = −2 ρ∗

5 = 3.13373673

r
(0)
6 = −2 ρ∗

6 = 2.43738586

r
(0)
7 = −2 ρ∗

7 = 1.22790485

r
(0)
8 = −2 ρ∗

8 = 1.47099894

z
(0)
0 = −5, r

(0)
1 = −0.5 y∗

0 = 0.35275252 ρ∗
1 = 10.55114238

z
(0)
1 = −5, r

(0)
2 = −0.5 y∗

1 = 0.14724748 ρ∗
2 = 6.54517622

z
(0)
2 = −5, r

(0)
3 = −0.5 y∗

2 = 0.25275252 ρ∗
3 = 8.91290134

z
(0)
3 = −5, r

(0)
4 = −0.5 y∗

3 = 0.20000000 ρ∗
4 = 8.02515194

r
(0)
5 = −0.5 ρ∗

5 = 12.71012289

r
(0)
6 = −0.5 ρ∗

6 = 10.63664631

r
(0)
7 = −0.5 ρ∗

7 = 5.90488864

r
(0)
8 = −0.5 ρ∗

8 = 7.20092715

(z∗, r∗), satisfies the KKT conditions (4), (5), (6), and (7). According to The-
orem (1), the KKT conditions (4), (5), (6), and (7) have a unique solution(
λ

(1)∗

ij , λ
(2)∗

ij

)
= 0 ∈ R2|S| for variable λ. Note that the functions f(z, r) and

hl(z, r), ∀l ∈ L do not consist of variable r. Therefore, the KKT conditions
(4), (5), (6), and (7) are reduced to the system (9), (10), (11), and (12), where
the system (10), (11), and (12) is given by

g
(1)
ij (z∗, r∗) ≤ 0, ∀(i, j) ∈ S,
g
(2)
ij (z∗, r∗) ≤ 0, ∀(i, j) ∈ S,

hl(z∗) ≤ 0, ∀l ∈ L,
(10)

γ∗l ≥ 0, ∀l ∈ L, (11)
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γ∗l hl(z∗) = 0, ∀l ∈ L. (12)

Due to the unique existence of vector z∗ ∈ R|S| and the inequality constraint
functions g(1)

ij (z, r) and g
(2)
ij (z, r), ∀(i, j) ∈ S, we arrive at the conclusion that

there exist infinitely many solutions of vectors r∗ ∈ R|M | which satisfy relation
(10). Thus there is a unique value of z∗ ∈ R|S| and there are many correspond-
ing values of r∗ ∈ R|M | such that (z∗, r∗) ∈ R|S|+|M | satisfies the KKT condi-
tions (9), (10), (11), and (12). Therefore, we proved that the convex optimiza-
tion problem (3) always has a unique optimal solution z∗ =

(
z∗ij : (i, j) ∈ S)

and infinitely many optimal solutions of r∗ =
(
r∗s,t : (s, t) ∈ Ew, w ∈W

)
.

Q.E.D.
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Summary. In this chapter, biclustering is studied in a mathematical prospective,
including bipartite graphs and optimization models via integer programming. A
correspondence between biclustering and graph partitioning is established. In the
optimization models, different cuts are used and the integer programming models
are presented. We prove that the spectral biclustering for Ratio cut and Normalized
cut are the relaxation forms of these integer programming models, and also the
Minmax cut for biclustering is equivalent to Normalized cut for biclustering.
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1 Introduction

With large amounts of data collected from different areas, finding the rele-
vant information among them appears to be very important. Data mining is
a process of doing this and one hot research area is data clustering, which
deals with techniques to classify data into different groups. Many algorithms
were designed to face the challenges in data clustering, and a survey of algo-
rithms can be found in [15] while several applications in biological networks
are discussed in [2].

In data clustering, data points are grouped with respect to the relations
between each other, but the attributes of these data are not classified. Biclus-
tering (co-clustering, two-mode clustering) model was introduced in [12] and
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recently used in gene expression analysis [4]. Different from clustering, biclus-
tering can simultaneously group both data and their attributes. For example,
for the data of gene expression microarray, all gene samples together form the
data, while each gene has different functions (called features). Biclustering
techniques will group gene samples and features while each group of genes is
corresponding to a specific function. Mathematically, this kind of data will be
stored in a matrix with numerical entries.

Many algorithms were designed to solve the biclustering problem, and
surveys of these methods can be found in [1, 11] and recent algorithms in
[7]. To measure the differences between biclusters, two mostly used are the
Ratio cut [8] and the Normalized cut [14]. There are also many other different
measurements of difference [5, 9, 13, 16], but the authors always used many
different kinds of approach to model the problem. In this chapter, a more
general approach will be introduced based on bipartite graph.

This chapter is organized as follows: In Section 2, mathematical represen-
tations of biclustering are presented. In Section 3, correspondence between
graph partitioning and biclustering is established. In Section 4, the integer
programming models for Ratio cut, Normalized cut, Minmax cut, and ICA
cut are introduced with relaxation forms. Section 5 concludes the chapter.

2 Biclustering Models

As mentioned above, data for biclustering usually is stored in a rectangular
matrix. Using the example of data from gene expression microarray with n
samples and m features of genes, let A = (aij)n×m be the data matrix where
each row of A corresponds to a sample, each column to a kind of feature, and
each entry aij denotes the expression level (or called weight) of a gene sample
i with a specific feature j.

In [1], Busygin, Prokopyev, and Pardalos presented a mathematical defini-
tion of biclustering. Before giving the definition of biclustering, the partition
of a matrix is defined first.

Definition 1. Given a data matrix A = (aij)n×m, its partition is defined as
a collection of subsets S1,S2, . . . ,Sk of its rows such that

Si ⊆ {1, . . . , n}(i = 1, . . . , k),
S1 ∪ S2 ∪ . . . ∪ Sk = {1, . . . , n},
Si ∩ Sj = ∅, i, j = 1, . . . , k, i �= j,

and a corresponding collection of subsets F1,F2, . . . ,Fk of its columns such
that

Fi ⊆ {1, . . . ,m}(i = 1, . . . , k),
F1 ∪ F2 ∪ . . . ∪ Fk = {1, . . . ,m},
Fi ∩ Fj = ∅, i, j = 1, . . . , k, i �= j,

where k(1 ≤ k ≤ min{n,m}) is the number of parts it partitions to.
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In a mathematical point of view, both the rows and the columns of the
matrix are partitioned into k parts. The pairs (Si,Fi) are submatrices in the
diagonal of the matrix after properly rearranging the rows and columns of A.

The biclustering is expressed in the form of a partition of the data matrix
A and a bicluster is a submatrix of A with a pair of groups (Si,Fi) of both
samples and features. The data matrix A used is kind of “sample–feature”
one, which is different from the matrix usually used in clustering as “sample–
sample” type. For the biclusters (Si,Fi), i = 1, . . . , k, this does not mean that
the samples in Si cannot have features outside Fi. In some cases, some sample
may have high expression level outside its corresponding feature group. Gen-
erally, a bicluster reflects the features of samples in groups, not individually.

For biclustering, the objectives are to maximize intra similarity of sam-
ples according to features in a bicluster and minimize the inter similarity of
samples from different biclusters with respect to features. In order to achieve
these objectives, many different objective functions are defined to measure
the similarity or dissimilarity as discussed below.

3 General Approach to Biclustering

3.1 Graph Partitioning

Since different objective functions are defined to measure the similarity or
dissimilarity among parts, many approaches are used in different papers to
transform the biclustering problem into optimization models. Here, based on
graph theory, a general approach is discussed. Before discussing transforma-
tions, several concepts used in graph theory are defined.

Definition 2. An (undirected) graph G = (V,E) consists of a set of vertices
V = {v1, v2, . . . , v|V |} and a set of edges E = {(i, j) : edge between vi and vj ,
i, j ≤ |V |}, where |V | is the number of vertices. A bipartite graph is defined as
a graph G = (U, V,E), where U, V are two disjoint sets of vertices, and E is
the set of edges between vertices from U and V while no edge appears between
any vertices from U or V .

For an edge (i, j) ∈ E of the bipartite graph G = (U, V,E), let w(i, j)
be the associated weight of edge (i, j). For the cases we considered in this
chapter, the edges (i, j) and (j, i) are the same and w(i, j) = w(j, i). Based on
the weights of edges, there are some useful matrices defined in the following.

Definition 3. Several weighted matrices of the graph G = (V,E) are defined
as follows:

(1) The adjacency weighted matrix W = (wij)|V |×|V | of the graph is defined
as

wij =

{
w(i, j), if the edge (i, j) exists,
0, otherwise.
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(2) The weighted degree di of vertex vi is defined as

di =
∑

j:(i,j)∈E

w(i, j),

and the degree matrix D = (dij)|V |×|V | of the graph is a diagonal matrix
as

dij =

{
di, if i=j,
0, otherwise.

(3) The Laplacian matrix L = (lij)|V |×|V | of a graph is a symmetric matrix
with one row and column for each vertex such that

lij =

⎧⎪⎨⎪⎩
di, if i = j,

−w(i, j), if the edge (i, j) exists,
0, otherwise.

Clearly, from the definitions, Laplacian matrix satisfies L = D−W . Besides
this property, there are many propositions of this matrix. In [5, 13] the authors
gave some ones, the properties of this matrix-related biclustering will be listed
in Proposition 1. Before that the definitions of partitions and cut on graph
G = (V,E) are defined.

Definition 4. A bipartition of graph for G = (V,E) is defined as two subsets
V1, V2 of V such that V1 ∪ V2 = V, V1 ∩ V2 = ∅.

More generally, a k-partition of graph is the collection of k subsets
V1, V2, . . . , Vk such that V1 ∪ . . . ∪ Vk = V, Vi ∩ Vj = ∅ for i, j ∈ {1, 2, . . . , k}
and i �= j.

In addition, a balanced graph partitioning is defined as a graph partition-
ing with the size difference between any two parts at most 1 (almost equal size
for all parts).

For a bipartite graph G = (U, V,E), the graph partitioning will perform
on both vertex set U, V , i.e., U = U1 ∪ U2, V = V1 ∪ V2 where U1 ∩ U2 =
∅, V1 ∩ V2 = ∅. Similarly, for k-partition of a bipartite graph, both U and V
are partitioned into k disjoint parts.

The balanced graph partitioning is to divide the vertex set into the same
size or at most 1 difference in size. So for a k-partition of a graph with n
vertices, each part has the size �n/k� or �n/k�+1, where �n/k� is the biggest
integer less than or equal to n/k. For a weighted graph, both vertices and
edges can be weighted. The balanced graph partitioning is a partition of V
into k disjoint parts such that the parts have approximately equal weight
(total weight of all vertices within one part).

Definition 5. Suppose the vertex set V of a graph is partitioned into two
disjoint subsets V1, V2, the corresponding graph cut is defined as
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cut(V1, V2) =
∑

(i,j)∈E,i∈V1,j∈V2

wij .

For the case of k-partition, the k-cut is

cut(V1, V2, . . . , Vk) =
∑

1≤i<j≤k

cut(Vi, Vj).

An edge with two ends belonging to two different parts is called a cut
edge. The fact that cut(V1, V2) = cut(V2, V1) can be easily drawn from that
weighted matrix is symmetric.

In the following, the notation cut(Va, Vb) is used as the total weight of
edges with one end in Va and another in Vb, whether Va and Vb are disjoint
or not (the two vertex set can be the same, or one is a subset of another). For
example, the notation cut(V1, V1) is the sum of weights of edges with two ends
in vertex set V1 and cut(V1, V ) = cut(V1, V1∪V2) = 2cut(V1, V1)+cut(V1, V2).

3.2 Bipartite Partitioning and Biclustering

Now, bipartite graph is used to model biclustering. Given the “sample–
feature” type matrix A = (aij)n×m with n samples and m features, where
aij is the expression level of feature j in sample i, we construct the corre-
sponding bipartite graph G = (U, V,E) in the following steps:

• The vertex set U represents n samples, and each vertex ui in U corresponds
to a sample i, 1 ≤ i ≤ n;

• The vertex set V represents m features, and each vertex vj in V corre-
sponds to a feature j, 1 ≤ j ≤ m;

• An edge (i, j) ∈ E with weight wij = aij is between a vertex ui ∈ U and
a vertex vj ∈ V, 1 ≤ i ≤ n, 1 ≤ j ≤ m if aij �= 0.

The corresponding adjacency weighted matrix of the bipartite graph G =
(U, V,E) is expressed in the form of data matrix A as

W = (wij)(n+m)×(n+m) =
(

0 A
AT 0

)
(1)

and the degree matrix of the bipartite graph G = (U, V,E) is

D =
(
DU 0
0 DV

)
, (2)

where the diagonal elements of DU and DV are weighted degree of vertices
belonging to U and V , and all other elements are 0.

Thus, the Laplacian matrix of the bipartite graph G = (U, V,E) for data
set A is

L = D −W =
(
DU −A
−AT DV

)
. (3)
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In this section, we always consider the case of bipartition {(U1∪V1), (U2∪
V2)} of the bipartite graph G = (U, V,E), that is, a biclustering of gene
expression data divides the samples and features into two pairs (S1,F1) and
(S2,F2). Here, the vertices in Ui correspond to rows of Si(i = 1, 2) and vertices
in Vi correspond to columns of Fi(i = 1, 2). In this way, a partition of the
matrix data A for biclustering is transformed into a bipartition of bipartite
graph G = (U, V,E) with weighted matrix W .

4 Integer Programming of Partitioning

In order to classify which part the vertex belongs to, the decision indicator
variable is defined as follows.

Definition 6. The indicator variable on G = (U, V,E) to classify the vertices’
part belongings is defined as a vector

p =
(
pU

pV

)
, (4)

where pU = (p1, p2, . . . , pn)T and pV = (pn+1, . . . , pn+m)T are used to classify
vertex set U and V , respectively, and

pi =

{
1, i ∈ U1

−1, i ∈ U2

and pj =

{
1, j ∈ V1

−1, j ∈ V2

.

The indicator variable is a decision variable, that is, we want to obtain
such variable after our computation to decide the partitioning of graph. Here
we define another useful vector e = (1, 1, . . . , 1)T with all elements being 1
(the dimension of this vector we use below will conform with other vectors or
matrices).

Proposition 1. The Laplacian Matrix L in (3) has these propositions:

(1) L is symmetric positive semidefinite.
(2) 0 is an eigenvalue of L and e is the corresponding eigenvector.
(3) If the graph G has c connected components, then L has c eigenvalues that

equal 0.
(4) For any vector x, xTLx =

∑
(i,j)∈E wij(xi − xj)2, and additionally, for

any scalars α, β,

(αx+ βe)TL(αx+ βe) = α2xTLx.

(5) Rayleigh Quotient of L is

pTLp

pT p
=

1
n+m

· 4cut(V1, V2).
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(6) Let λ2 be the second smallest eigenvalue of L,

λ2 = min
xTLx

xTx
, xT e = 0, x �= 0.

For the proof of the first five properties, we refer to [5, 13]. For the last
property, there is a proof with many generalized forms in spectral graph
theory [3].

As shown above, the objectives of biclustering are to maximize intra simi-
larity and minimize the inter similarity. Additionally, “to avoid unnatural bias
for partitioning out small sets of points” [14], balanced biclusters are consid-
ered with respect to different objective functions. Therefore, correspondingly
on a graph, the purpose is to find a balanced partitioning such that the corre-
sponding data items in each part are highly related and the weight of cut edges
is minimized. Here first the intra and inter bicluster similarities are expressed
in the forms of matrices in (1), (2), and (3) and indicator variable (4).

Theorem 1. For a bipartition {(U1 ∪ V1), (U2 ∪ V2)} of the bipartite graph
G = (U, V,E), we have the following results:

(1) The intra similarity is

cut(U1, V1) + cut(U2, V2) =
∑

i∈U1,j∈V1,(i,j)∈E

wij +
∑

i∈U2,j∈V2,(i,j)∈E

wij (5)

=
1
4
pT (D +W )p.

(2) The inter similarity is

cut(U1 ∪ V1, U2 ∪ V2) = cut(U1, V2) + cut(U2, V1) (6)

=
∑

i ∈ U1, j ∈ V2, (i, j) ∈ E
and i ∈ U2, j ∈ V1, (i, j) ∈ E

wij

=
1
4
pT (D −W )p =

1
4
pTLp.

Proof. The identity (5) refers to the similarities in two groups U1 ∪ V1 and
U2 ∪ V2, and it is the total weight of edges within each group. For decision
indicator (4), it has four sub-vectors pU1 , pV1 , pU2 , pV2 Where first two have
all elements 1 and the other all −1. Similarly, for matrices DU , DV , A, we
decompose them into corresponding submatrices with respect to p by properly
rearranging the matrices, i.e.,

D +W =
(
DU A
AT DV

)
=

⎛⎜⎜⎝
DU1 0 AU1,V1 AU1,V2

0 DU2 AU2,V1 AU2,V2

AV1,U1 AV1,U2 DV1 0
AV2,U1 AV2,U2 0 DV2

⎞⎟⎟⎠ .
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Therefore, using these forms,

1
4
pT (D +W )p

=
1
4
(pT

U1
, pT

U2
, pT

V1
, pT

V2
)

⎛⎜⎜⎝
DU1 0 AU1,V1 AU1,V2

0 DU2 AU2,V1 AU2,V2

AV1,U1 AV1,U2 DV1 0
AV2,U1 AV2,U2 0 DV2

⎞⎟⎟⎠
⎛⎜⎜⎝
pU1

pU2

pV1

pV2

⎞⎟⎟⎠

=
1
4
(eT ,−eT , eT ,−eT )

⎛⎜⎜⎝
DU1 0 AU1,V1 AU1,V2

0 DU2 AU2,V1 AU2,V2

AV1,U1 AV1,U2 DV1 0
AV2,U1 AV2,U2 0 DV2

⎞⎟⎟⎠
⎛⎜⎜⎝

e
−e
e
−e

⎞⎟⎟⎠
=

1
4

(
eTDU1e+ eTDV1e+ eTDU2e+ eTDV2e

+eTAU1,V1e− eTAU1,V2e− eTAU2,V1e+ eTAU2,V2e

+eTAV1,U1e− eTAV1,U2e− eTAV2,U1e+ eTAV2,U2e
)

=
1
4

⎛⎝∑
i∈U1

di +
∑
j∈V1

dj +
∑
i∈U2

di +
∑
j∈V2

dj

+
∑

i∈U1,j∈V1

aij −
∑

i∈U1,j∈V2

aij −
∑

i∈U2,j∈V1

aij +
∑

i∈U2,j∈V2

aij

+
∑

j∈V1,i∈U1

aij −
∑

j∈V1,i∈U2

aij −
∑

j∈V2,i∈U1

aij +
∑

j∈V2,i∈U2

aij

⎞⎠
=

1
4

⎛⎝ ∑
i∈U1,j∈V1∪V2

aij +
∑

j∈V1,i∈U1∪U2

aij +
∑

i∈U2,j∈V1∪V2

aij +
∑

j∈V2,i∈U1∪U2

aij

+2

⎛⎝ ∑
i∈U1,j∈V1

aij −
∑

i∈U1,j∈V2

aij −
∑

i∈U2,j∈V1

aij +
∑

i∈U2,j∈V2

aij

⎞⎠⎞⎠
=

1
4
· 4

⎛⎝ ∑
i∈U1,j∈V1

aij +
∑

i∈U2,j∈V2

aij

⎞⎠
=

∑
i∈U1,j∈V1

aij +
∑

i∈U2,j∈V2

aij ,

which finishes the proof by the relation of wij = aij if (i, j) ∈ E, aij �= 0.
Analogically, the identity of (6) refers to inter similarities between two

groups U1 ∪ V1 and U2 ∪ V2, and it is the total weight of edges between two
groups. The notation of inter similarity is cut(U1, V2)+cut(U2, V1) = cut(U1∪
V1, U2 ∪V2) from the fact cut(U1, U2) = cut(V1, V2) = 0. By Proposition 1 (5)
where pT p = n+m is a constant, this inter similarity is obtained in the form
of p and L. And also we can also use the proof of intra similarity to decompose
matrices into submatrices. ��
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Obviously, the biclustering requires that

max
1
4
pT (D +W )p and min

1
4
pTLp

from Theorem 1. However, the objective max 1
4p

T (D+W )p produces “tight”
biclusters while min 1

4p
TLp may produce quite unequal biclusters and isolated

vertices. Both are not satisfying the balanced partitioning requirement. Thus,
the cut 1

4p
TLp between two parts is called general cut in order to distinguish

it from other cuts used in biclustering.
In addition, for a given data matrix A, minimizing the inter similarity

1
4p

TLp is equivalent to maximizing the intra similarity 1
4p

T (D + W )p from
the fact

1
4
pTLp+

1
4
pT (D+W )p=

1
4
pT (D−W )p+

1
4
pT (D+W )p=

1
2
pTDp=

1
2

∑
i∈U∪V

di,

a constant related to A as shown in Theorem 1. Thus, the classic minimiz-
ing cut(s − t cut) problem can be written by L as the integer programming
formulation

min
1
4
pTLp

s.t. p = (p1, . . . , pn+m)T , pi ∈ {−1, 1}.
Many previous research used quite a lot of different objective functions to

obtain the balance between “tight” and “quite unequal” biclusters. Among
them, two famous cuts have been introduced: Ratio cut and Normalized cut,
which are both based on the inter similarity. Besides, some other functions
are also reviewed in the following.

Definition 7. For a bipartition {(U1 ∪ V1), (U2 ∪ V2)} of the bipartite graph
G = (U, V,E), the Ratio cut is defined as

R((U1 ∪V1), (U2 ∪V2)) =
cut(U1 ∪ V1, U2 ∪ V2)

|U1 ∪ V1| +
cut(U2 ∪ V2, U1 ∪ V1)

|U2 ∪ V2| , (7)

and the Normalized cut is defined as

N((U1∪V1), (U2∪V2)) =
cut(U1 ∪ V1, U2 ∪ V2)

dP1

+
cut(U2 ∪ V2, U1 ∪ V1)

dP2

, (8)

where dP1 =
∑

i∈(U1∪V1)
di, dP2 =

∑
j∈(U2∪V2)

dj.

In the above definitions of Ratio cut and Normalized cut, cut (U1∪V1, U2∪
V2) is the inter similarity between the bipartitions {(U1 ∪V1), (U2 ∪V2)}, and
either |Ui ∪ Vi| or dPi

can be viewed as the total degree of vertices of group
Ui ∪ Vi. The first one assumes every vertex has weight as 1 and second one
chooses weight as the vertex’s weighted degree. In addition,
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dP1 =
∑

i∈(U1∪V1)

di

= cut(U1, V ) + cut(U, V1)
= cut(U1, V1 ∪ V2) + cut(U1 ∪ U2, V1)
= cut(U1, V1) + cut(U1, V2) + cut(U1, V1) + cut(U2, V1)
= 2cut(U1, V1) + cut(U1, V2) + cut(U2, V1),

and similarly dP2 = 2cut(U2, V2) + cut(U1, V2) + cut(U2, V1).
In biclustering, both (3) and (8) cuts have to be minimized since they are

both generalized forms of cut in Definition 5. Furthermore, for Normalized
cut, it can be transformed into an equivalent maximum problem.

Theorem 2. To minimize the Normalized cut (8) is equivalent to maximize

cut(U1, V1)
dP1

+
cut(U2, V2)

dP2

. (9)

Proof. From the facts that dP1 = 2cut(U1, V1)+ cut(U1, V2)+ cut(U2, V1) and
dP2 = 2cut(U2, V2) + cut(U1, V2) + cut(U2, V1),

2
(

cut(U1, V1)
dP1

+
cut(U2, V2)

dP2

)
=

2cut(U1, V1)
2cut(U1, V1) + cut(U1, V2) + cut(U2, V1)

+

+
2cut(U2, V2)

2cut(U2, V2) + cut(U1, V2) + cut(U2, V1)

= 1− cut(U1, V2) + cut(U2, V1)
2cut(U1, V1) + cut(U1, V2) + cut(U2, V1)

+

+1− cut(U1, V2) + cut(U2, V1)
2cut(U2, V2) + cut(U1, V2) + cut(U2, V1)

= 2− cut(U1 ∪ V1, U2 ∪ V2)
dP1

− cut(U2 ∪ V2, U1 ∪ V1)
dP2

= 2−N((U1 ∪ V1), (U2 ∪ V2)).

Thus to minimize N(V1, V2) is equivalent to maximize cut(U1,V1)
dP1

+ cut(U2,V2)
dP2

.
��

The cuts cut(U1, V1), cut(U2, V2) in Theorem 2 are intra similarity of two
parts U1 ∪ V1, U2 ∪ V2 of the bipartition, respectively, and from this theorem,
a cut based on inter similarity has been transformed into one based on in-
tra similarity. This theorem also indicates that Normalized cut is similar to
general cut that both have the property of minimizing inter similarity being
equivalent to maximize intra similarity.
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4.1 Ratio Cut

Now we are beginning to use the defined cuts for bipartition on bipartite
graph G = (U, V,E) and obtain its corresponding biclusters of data matrix A.
Assume that |U1| = n1, |U2| = n2 with n1 + n2 = n and |V1| = m1, |V2| = m2

with m1 +m2 = m.

Theorem 3. Defined the indicator vector y = (yu, yv) as

yi =

{√
(n2 +m2)/((n1 +m1)(n+m)), i ∈ U1 ∪ V1

−√
(n1 +m1)/((n2 +m2)(n+m)), i ∈ U2 ∪ V2

where yu is the vector of elements of yi with i ∈ U1 ∪ U2 and yv is the vector
of elements of yi with i ∈ V1 ∪ V2, the Ratio cut of {(U1 ∪ V1), (U2 ∪ V2)} of
the bipartite graph G = (U, V,E) can be expressed as yTLy.

Proof. Since the Ratio cut R((U1 ∪ V1), (U2 ∪ V2)) can be expressed as

R((U1 ∪ V1), (U2 ∪ V2)) =
cut(U1 ∪ V1, U2 ∪ V2)

n1 +m1
+

cut(U2 ∪ V2, U1 ∪ V1)
n2 +m2

=
cut(U1 ∪ V1, U2 ∪ V2)× ((n1 +m1) + (n2 +m2))

(n1 +m1)(n2 +m2)

= cut(U1 ∪ V1, U2 ∪ V2)× (n+m)
(n1 +m1)(n2 +m2)

,

and by Theorem 1(2), the Ratio cut is

R((U1 ∪ V1), (U2 ∪ V2)) =
1
4
pTLp× (n+m)

(n1 +m1)(n2 +m2)
,

where p is the indicator variable from Definition 4 and L is Laplacian matrix.
The vector y can be written as

y =
n+m

2
√

(n1 +m1)(n2 +m2)(n+m)
p+

n2 +m2 − n1 −m1

2
√

(n1 +m1)(n2 +m2)(n+m)
e,

and by Proposition 1 (4) of Laplacian matrix L,

yTLy =

(
n+m

2
√

(n1 +m1)(n2 +m2)(n+m)

)2

pTLp

=
(n+m)

4(n1 +m1)(n2 +m2)
pTLp.

Therefore, the Ratio cut can be expressed by y and L as

R((U1 ∪ V1), (U2 ∪ V2)) = yTLy.

��
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Formally, to minimize Ratio cut for biclustering can be modeled as the
following mixed binary integer program:

min yTLy (10)

s.t. y =
n+m

2
√

(n1 +m1)(n2 +m2)(n+m)
p

+
n2 +m2 − n1 −m1

2
√

(n1 +m1)(n2 +m2)(n+m)
e,

p = (p1, . . . , pn, pn+1, . . . , pn+m)T ,

n1 +m1 =
∑

i

(pi + 1)/2,

n2 +m2 =
∑

i

(1− pi)/2,

n1 + n2 = n,m1 +m2 = m

pi ∈ {−1, 1}, i = 1, . . . , n+m.

As in Theorem 3, the elements of vector y can be either positive or negative
which indicates the part belongings of each vertex, and y has the property
that yT y = 1, yT e = 0 implying from the constraints. These properties of y
are summarized in the following theorem.

Theorem 4. The nonzero vector y defined in Theorem 3 satisfies the identi-
ties yT y = 1 and yT e = 0.

Proof. The property of y is formulated by the following steps:

yT y =

n+m∑
i=1

(
n + m

2
√

(n1 + m1)(n2 + m2)(n + m)
pi +

n2 + m2 − n1 − m1

2
√

(n1 + m1)(n2 + m2)(n + m)

)2

=

n+m∑
i=1

(
(n + m)2

4(n1 + m1)(n2 + m2)(n + m)
p2

i +
(n2 + m2 − n1 − m1)2

4(n1 + m2)(n2 + m2)(n + m)
+

+
(n + m)(n2 + m2 − n1 − m1)

2(n1 + m1)(n2 + m2)(n + m)
pi

)
=

(n + m)2

4(n1 + m1)(n2 + m2)
+

(n2 + m2 − n1 − m1)2

4(n1 + m2)(n2 + m2)
+

+
(n1 + m1 − n2 − m2)(n2 + m2 − n1 − m1)

2(n1 + m1)(n2 + m2)

=
(n + m)2 − (n2 + m2 − n1 − m1)2

4(n1 + m1)(n2 + m2)

=
(n + m + n2 + m2 − n1 − m1)(n + m − n2 − m2 + n1 + m1)

4(n1 + m1)(n2 + m2)

=
(2n2 + 2m2)(2n1 + 2m1)

4(n1 + m1)(n2 + m2)

= 1,
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and for the identity yT e = 0,

yT e =

n+m∑
i=1

(
n + m

2
√

(n1 + m1)(n2 + m2)(n + m)
pi +

n2 + m2 − n1 − m1

2
√

(n1 + m1)(n2 + m2)(n + m)

)

=
n + m

2
√

(n1 + m1)(n2 + m2)(n + m)

n+m∑
i=1

pi +
n2 + m2 − n1 − m1

2
√

(n1 + m1)(n2 + m2)(n + m)
(n + m)

=
n + m

2
√

(n1 + m1)(n2 + m2)(n + m)
[(n1 + m1 − n2 − m2) + (n2 + m2 − n1 − m1)]

= 0.

��
Therefore, a relaxation of this formulation can be solved for bipartition

based on this property of y, and the relaxation program is

min yTLy

s.t. yT y = 1, yT e = 0, y �= 0,

where y is any real number. In addition, from Proposition 1 (6) and the fact
yT y = 1, a constant, the above formulation can be written as

min
yTLy

yT y
(11)

s.t. yT e = 0, y �= 0,

with solution of objective value as second smallest eigenvalue and y as cor-
responding eigenvector. This gives the reason in [5, 8, 16] why they can
use formulation (11) to do biclustering. The sign of elements of y, either
positive or negative, is used to classify the two groups as pi = 1 and
pi = −1.

Another easier but equivalent form of formulation (10) is given by the
following binary integer program

min
n+m

4(n1 +m1)(n2 +m2)
pTLp (12)

s.t. p = (p1, . . . , pn, pn+1, . . . , pn+m)T ,

n1 +m1 =
∑

i

(pi + 1)/2,

n2 +m2 =
∑

i

(1− pi)/2,

n1 + n2 = n,m1 +m2 = m

pi ∈ {−1, 1}, i = 1, . . . , n+m.
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4.2 Normalized Cut and Minmax Cut

For Normalized cut, define the indicator variable

yi =

{√
dP2/(dP1d), i ∈ U1 ∪ V1,

−√
dP1/(dP2d), i ∈ U2 ∪ V2,

=
dP1 + dP2

2
√
dP1dP2d

pi +
dP2 − dP1

2
√
dP1dP2d

ei, (13)

where dP1 =
∑

i∈U1∪V1
di, dP2 =

∑
j∈U2∪V2

dj , d = dP1 + dP2 , and
(p1, · · · , pn+m) = p is decision indicator variable defined in Definition 4.

The Normalized cut of bipartition {(U1 ∪ V1), (U2 ∪ V2)} of the bipartite
graph G = (U, V,E) can also be expressed as yTLy, which can be proved with
the similar methods in Theorem 3. We present it as a theorem without proof
in the following.

Theorem 5. With the y defined in (13), the Normalized cut (8) can be ex-
pressed as

N((U1 ∪ V1), (U2 ∪ V2)) = yTLy.

Thus, by this relation of Normalized cut, the problem of minimizing Nor-
malized cut is the following mixed binary integer program

min yTLy (14)

s.t. y =
dP1 + dP2

2
√
dP1dP2d

p+
dP2 − dP1

2
√
dP1dP2d

e,

p = (p1, . . . , pn, pn+1, . . . , pn+m)T ,

pi ∈ {−1, 1}, i = 1, . . . , n+m,

dP1 =
∑

i:pi=1

di,

dP2 =
∑

j:pj=−1

dj ,

d = dP1 + dP2 .

Now, the constraints within the above formulation have the properties
yTDy = 1, yTDe = 0, which is different from those in Ratio cut.

Theorem 6. The nonzero vector y defined in formulation (14) satisfies the
identities yTDy = 1 and yTDe = 0.

Proof. Since D is a diagonal matrix with nonzero elements d1, . . . , dn+m on
its diagonal, and from dP1 =

∑
i:pi=1 di, dP2 =

∑
j:pj=−1 dj , d = dP1 + dP2 ,
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yTDy =
n+m∑
i=1

diy
2
i

=
n+m∑
i=1

di

(
dP1 + dP2

2
√
dP1dP2d

pi +
dP2 − dP1

2
√
dP1dP2d

ei

)2

=
∑
pi=1

di

(
dP1 + dP2

2
√
dP1dP2d

+
dP2 − dP1

2
√
dP1dP2d

)2

+

+
∑

pi=−1

di

(
− dP1 + dP2

2
√
dP1dP2d

+
dP2 − dP1

2
√
dP1dP2d

)2

= dP1

(
dP1 + dP2

2
√
dP1dP2d

+
dP2 − dP1

2
√
dP1dP2d

)2

+

+dP2

(
− dP1 + dP2

2
√
dP1dP2d

+
dP2 − dP1

2
√
dP1dP2d

)2

= dP1

d2 + 2(d2
P2
− d2

P1
) + (dP2 − dP1)

2

4dP1dP2d
+

+dP2

d2 − 2(d2
P2
− d2

P1
) + (dP2 − dP1)

2

4dP1dP2d

=
d3 + d(dP2 − dP1)

2 + 2(dP1 − dP2)(d
2
P2
− d2

P1
)

4dP1dP2d

=
d3 + d(dP2 − dP1)

2 − 2d(dP2 − dP1)
2

4dP1dP2d

=
d2 − (dP2 − dP1)

2

4dP1dP2

=
(d+ dP2 − dP1)(d− dP2 + dP1)

4dP1dP2

= 1,

and for another identity,

yT De =

n+m∑
i=1

diyi

=

n+m∑
i=1

di

(
dP1 + dP2

2
√

dP1dP2d
pi +

dP2 − dP1

2
√

dP1dP2d
ei

)

= dP1

(
dP1 + dP2

2
√

dP1dP2d
+

dP2 − dP1

2
√

dP1dP2d

)
+ dP2

(
− dP1 + dP2

2
√

dP1dP2d
+

dP2 − dP1

2
√

dP1dP2d

)
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= (dP1 − dP2)
dP1 + dP2

2
√

dP1dP2d
+ (dP1 + dP2)

dP2 − dP1

2
√

dP1dP2d

=
(dP1 + dP2)(dP1 − dP2) − (dP1 + dP2)(dP1 − dP2)

2
√

dP1dP2d

= 0.

��
Thus by the properties of y, the above formulation is relaxing to

min
yTLy

yTDy
(15)

s.t. yTDe = 0, y �= 0,

and by Proposition 1, the solution of this problem is to find the second smallest
eigenvalue and corresponding eigenvector of generalized eigenvalue problem
Ly = λDy. This also gives a proof that the Normalized cut can be solved by
generalized eigenvalue problem in [5, 14].

Similarly as Ratio cut, the equivalent binary integer program for Normal-
ized cut in formulation (14) is

min
d

4dP1dP2

pTLp (16)

s.t. p = (p1, . . . , pn, pn+1, . . . , pn+m)T ,

pi ∈ {−1, 1}, i = 1, . . . , n+m,

dP1 =
∑

i:pi=1

di,

dP2 =
∑

j:pj=−1

dj ,

d = dP1 + dP2 .

For the two constraints dP1 =
∑

i:pi=1 di and dP2 =
∑

j:pj=−1 dj , they can be
written as dP1 =

∑n
i=1

pi+1
2 di and dP2 =

∑n
i=1

1−pi

2 di.
For the equivalent form of maximizing as shown in Theorem 2, we first

show that the form of intra similarity of Normalized cut can be expressed as
1
2y

T (D +W )y, i.e.,

cut(U1, V1)
dP1

+
cut(U2, V2)

dP2

=
1
2
yT (D +W )y.

In fact, from the proof of Theorem 2 and yTDy = 1 from Theorem 6, we have
the identities
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2
(

cut(U1, V1)
dP1

+
cut(U2, V2)

dP2

)
= 2−N((U1 ∪ V1), (U2 ∪ V2))

= 2yTDy − yTLy

= 2yTDy − yT (D −W )y
= yT (D +W )y.

From Theorem 1(1), this is the intra similarity, which should be maximized
in biclustering. The relaxation program for this is

max
yT (D +W )y

2
s.t yTDy = 1, yTDe = 0, y �= 0,

or in the form of

max
yT (D +W )y

2yTDy
=

1
2

+
yTWy

2yTDy
(17)

s.t. yTDe = 0, y �= 0,

In [6], Ding et al. defined a Minmax cut of bipartition {(U1∪V1), (U2∪V2)}
of G = (U, V,E) as

Minmax Cut =
cut(U1 ∪ V1, U2 ∪ V2)
cut(U1 ∪ V1, U1 ∪ V1)

+
cut(U2 ∪ V2, U1 ∪ V1)
cut(U2 ∪ V2, U2 ∪ V2)

and used the indicator vector as in (13). Then they proved that minimizing
Minmax cut is equivalent to max yT Wy

yT Dy
with constraints yTDe = 0, y �= 0. As

we have shown above, this kind of Minmax cut is equivalent to Normalized
cut for biclustering.

To solve the formulation (17), the method is same as formulation (15) with
the solution y as the eigenvector corresponding to second smallest eigenvalue
of generalized eigenvalue problem Ly = λDy.

4.3 ICA Cut

In [13], they defined a cut called ICA (Isoperimetric co-clustering) cut of
bipartition {(U1 ∪ V1), (U2 ∪ V2)} of G = (U, V,E) as

cut(U1 ∪ V1, U2 ∪ V2)
dP1

and let the indicator vector be

yi =

{
1/

√
dP1 , i ∈ U1 ∪ V1,

0, i ∈ U2 ∪ V2.
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This kind of ICA cut can be expressed as yTLy = 1
4dP1

pTLp, and the mixed
integer program with ICA cut as objective function is

min yTLy (18)

s.t. y =
1

2
√
dP1

(p+ e),

p = (p1, . . . , pn, pn+1, . . . , pn+m)T ,

pi ∈ {−1, 1}, i = 1, . . . , n+m,

dP1 =
∑

i:pi=1

di.

The decision variable y has the property yTDe =
∑n+m

i=1 diyi = dP1
1√
dP1

=√
dP1 . If the volume dP1 of U1 ∪ V1 is fixed as a constant c2, where 0 < c2 <∑
i di, yTDe = c. A relaxation form of the above formulation can be stated

as

min yTLy (19)
s.t. yTDe = c, y �= 0.

In [13], the Lagrange multiplier is used to solve it as

d(yTLy − λ(yTDe− c))
dy

= 2Ly − λDe,

and assuming it to be zero and ignoring the λ, 2, they solve Ly = De to obtain
y. The integer programming form for this problem is

min
1

4dP1

pTLp (20)

s.t. p = (p1, · · · , pn, pn+1, . . . , pn+m)T ,

pi ∈ {−1, 1}, i = 1, . . . , n+m,

dP1 =
∑

i:pi=1

di.

Whether what kind of objective functions or cuts are used, the above
models all divide both samples and features into two groups. In [5], Dhillon
used other models to obtain k groups based on above optimization models
instead of hierarchical method. The idea is to use k-means algorithm on the
obtained eigenvector to obtain the desired k parts of biclustering.

In the above of using Ratio cut, Normalized cut or others, the general
steps of doing biclustering are

• Choosing or defining objective function with respect to cut and weights of
vertices or edges;
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• Defining indicator vector y and finding the relation with p, e;
• Using the Propositions of L to rewrite the objective function and find the

constraints; and
• Designing algorithms to solve the optimization models.

4.4 Spectral and Integer Programming Biclustering

Since the Laplacian matrix of a graph is widely studied in graph theory, called
spectral graph theory [3], this method of biclustering for solving problems
(11), (15), (17) is used as the term of spectral biclustering [1]. In the book [3],
Chung has demonstrated the spectral graph theory and its application for the
isoperimetric problem. In spectral biclustering, the problem is to concentrate
on computing the eigenvalues and eigenvectors. However, for large-scale data
matrix, this is still computationally difficult.

For integer programming for biclustering in (12), (16), (20), these are all
nonlinear integer programming models. The methods for solving nonlinear
programming can be found in [10] and also some methods from mixed (non-
linear) integer programming such as Outer Approximation methods, Branch-
and-Bound, Extended Cutting Plane methods, and Generalized Benders De-
composition.

5 Conclusion

In this chapter, different measurements of cut are transformed into optimiza-
tion models after properly choosing the indicator variables. This gave a gen-
eral approach to use optimization models based on Laplacian matrix from
data matrix for biclustering. How to solve these optimization models more
efficiently is still under future considerations.

The Ratio cut, Normalized cut, and Minmax cut all have the relaxation
forms that can be solved by computing the eigenvalues and eigenvectors of
matrices. In addition, we show that Minmax cut is equivalent to Normalized
cut for biclustering.
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A Random Arrival Time Best-Choice Problem
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Summary. Suppose that a random number N of rankable applicants appear and
their arrival times are i.i.d. random variables having a known distribution function.
A method of choosing the best applicant is investigated when a prior on N is uniform
on {1, 2, . . . , n}. An exact form of the optimal selection rule is derived. Stewart first
studied this problem, but examined only the case of the non-informative prior, i.e.,
the limiting case of n → ∞, so our result can be considered as a generalization of
Stewart’s result.

Key words: secretary problem, optimal stopping, bayesian updating, OLA
rule, e−1-rule, relative rank

1 Introduction

We first review some well-known results for the classical best-choice problem
and its variation. A known number n of applicants appear one by one in ran-
dom order with all n! permutations equally likely. As each applicant appears,
we rank the applicant relative to those preceding him and decide to either
select or reject the current applicant with the objective of maximizing the
probability of success, i.e., choosing the very best. An applicant once rejected
cannot be recalled later. For convenience we call an applicant a candidate if
he is better than all his predecessors. Clearly we never stop with an applicant
who is not a candidate. It is well known that, in this classical best-choice
problem, the optimal rule is of the threshold type with value s1(n) described
as follows : Let s1(n) − 1 applicants go by, and select the first candidate, if
any, from time s1(n) onward, where s1(n) is computed as

s1(n) = min

⎧⎨⎩k ≥ 1 :
n∑

j=k+1

1
j − 1

≤ 1

⎫⎬⎭ . (1)
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Evidently s1(n)/n→ e−1 as n→∞. The values of s1(n) are given in [10].
Reference [11] is the first to introduce the uncertainty about the number N

of available applicants. A prior distribution of N , i.e., pm = P{N = m},m ≥
1, is given and, conditional on N = m, m! arrival orders are assumed to
be equally likely. They studied the best-choice problem with such priors as
uniform, Poisson, and geometric. In the uniform case having a prior

pm =
1
n
, 1 ≤ m ≤ n, (2)

for a known n, they found that the optimal rule is also of the threshold type
with value s2(n), defined as

s2(n) = min

⎧⎨⎩k ≥ 1 :
n∑

i=k

1
i

⎛⎝1−
i∑

j=k+1

1
j − 1

⎞⎠ ≥ 0

⎫⎬⎭ , (3)

where the vacuous sum is assumed to be zero. It can be shown that s2(n) ≤
s1(n) and s2(n)/n→ e−2 as n→∞.

Instead of having the applicants appear in discrete time, we may have
them appear in continuous time. As such one, the random arrival time best-
choice problem can be described as follows : Let X1, X2, . . . , XN be continuous
i.i.d. random variables with values in [0, T ] possibly infinite and common c.d.f.
F , where N is an integer-valued random variable independent of Xk’s. Xk is
thought of as the arrival time of the kth best applicant and N represents
the total number of applicants. The objective is to maximize the probability
of success. F is assumed to be uniform on [0, 1] without loss of generality,
because a change of time Zk = F (Xk), 1 ≤ k ≤ N makes Zk uniform on [0, 1].

In this chapter we consider a random arrival time best-choice problem
having the uniform prior given by (2). Reference [15] first studied this problem,
but examined only the case of the non-informative prior, i.e., the limiting case
of n → ∞ in the prior. He showed that the optimal rule has the following
simple form, called e−1-rule by [2] later: Reject all the applicants that appear
before time e−1 and then select the first candidate if any (Stewart took F
to be exponential, so the statement is here adjusted to the uniform). We will
review this in the Remark of Section 2. However, when n is finite, the optimal
rule becomes complicated because it then depends not only on the arrival time
of the candidate but also on the number of arrivals observed up to that time.
Our main result can be summarized as follows. This proof is given in Section 2.

Theorem 1. Define, for n ≥ 2,

s3(n) = min

⎧⎨⎩k ≥ 1 :
n∑

j=k+1

1
j
≤ 1

⎫⎬⎭ . (4)

Then there exists a non-decreasing sequence {t∗k(n): 1 ≤ k < s3(n)} such that
the optimal rule chooses the kth applicant (i.e., kth arrival) if and only if
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he is a candidate and appears at time later than 1 − t∗k(n), where t∗k(n) is a
unique solution t ∈ (0, 1) to the equation

n−k∑
i=0

(i+ k − 1)!
i!

ti =
n−k∑
i=1

(i+ k − 1)!
i!

⎛⎝ i∑
j=1

1
j + k − 1

⎞⎠ ti, (5)

while, if no stoppage has occurred on the first s3(n)− 1 arrivals, the optimal
rule chooses any candidate if any, irrespective of his arrival time. Moreover
we have s3(n) = s1(n) or s1(n)−1 in addition to the obvious relation s3(n) =
s1(n+ 1)− 1.

Table 1 presents the numerical values of s3(n) and {t∗k(n)} for specified
values of n. We observe that, for a given k, t∗k(n) is decreasing in n and
approaches the value 0.6321 = 1− e−1 very quickly. From this table and the
fact that the optimality of the e−1-rule for the non-informative case, it is easily
conjectured that, as n tends to infinity, t∗k(n) converges to 1− e−1 for each k.
This can be confirmed by Lemma 6.

Table 1. s3(n) and {t∗k(n)} for several values of n

n s3(n) t∗1(n) t∗2(n) t∗3(n) t∗4(n) t∗5(n) t∗6(n) t∗7(n) t∗8(n) t∗9(n)

2 1
3 1
4 2 0.8957
5 2 0.7561
6 2 0.6987
7 3 0.6704 0.8572
8 3 0.6551 0.7554
9 3 0.6462 0.7057
10 4 0.6409 0.6782 0.8300
11 4 0.6377 0.6619 0.7499
12 5 0.6357 0.6517 0.7069 0.9432
13 5 0.6344 0.6451 0.6815 0.8088
14 5 0.6336 0.6408 0.6655 0.7432
15 6 0.6331 0.6380 0.6550 0.7058 0.8961
16 6 0.6327 0.6361 0.6480 0.6826 0.7914
17 6 0.6325 0.6348 0.6432 0.6674 0.7365
18 7 0.6324 0.6339 0.6399 0.6571 0.7037 0.8612
19 7 0.6323 0.6333 0.6376 0.6500 0.6825 0.7770
20 8 0.6322 0.6329 0.6359 0.6449 0.6683 0.7302 0.9770
30 11 0.6321 0.6321 0.6322 0.6326 0.6338 0.6369 0.6441 0.6594 0.6931
40 15 0.6321 0.6321 0.6321 0.6321 0.6322 0.6324 0.6329 0.6341 0.6369
50 19 0.6321 0.6321 0.6321 0.6321 0.6321 0.6321 0.6322 0.6322 0.6325

Let n = 100. Then s3(100) = 37 and the values of t∗k = t∗k(100) for some
selected values of k are given in Table 2.
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Table 2. t∗k = t∗k(100) for several values of k

k 1–20 25 30 31 32 33 34 35 36

t∗k 0.6321 0.6329 0.6417 0.6469 0.6548 0.6673 0.6883 0.7287 0.8370

A random arrival time best-choice problem with Poisson prior, which is
equivalent to the best-choice problem with a Poisson arrival process, was stud-
ied by [8] and [3]. As for the same problem with geometric prior, see [5] and
[6]. We are so far concerned with the form of the optimal rule and not with the
success probability. Reference [2] recognized the importance of the e−1-rule
in the sense that the e−1-rule achieves the success probability greater than
e−1, the asymptotic success probability of the classical best-choice problem,
whatever the prior distribution of N might be, and [4] generalized this result
to the problem with general loss function by embedding the process in the
so-called infinite secretary problem defined by [9].

2 Proof of Theorem 1

Let {N(t), 0 ≤ t ≤ 1} be a counting process defined as

N(t) = '{Zk : Zk ≤ t}

with N(1) = N and focus our attention on the posterior distribution P{N =
m | Ft} where Ft denotes the σ-algebra generated by {N(s) : s ≤ t}. The
posterior distribution depends on the prior {pm}∞m=1, parameter t, and the
observation N(t) because of the i.i.d. assumption of the arrival times. Thus
the straightforward application of Bayes formulae yields (see, e.g., [6])

P{N = m | Ft} =

(
m

N(t)

)
tN(t)(1− t)m−N(t)pm∑∞

k=N(t)

(
k

N(t)

)
tN(t)(1− t)k−N(t)pk

,

=

(
m

N(t)

)
(1− t)mpm∑∞

k=N(t)

(
k

N(t)

)
(1− t)kpk

. (6)

Let (k, t) denote the state in which we are facing the kth applicant at time
1− t who is a candidate (note that t is not an elapsed time but represents the
remaining time). Now that the prior distribution is given by (2), the posterior
distribution just after observing state (k, t) is given by

p(m | k, t) =

(
m
k

)
tm

C(k, t)
(7)

from (6), where C(k, t) =
∑n

j=k

(
j
k

)
tj .
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Suppose that we are in state (k, t). Then we have to decide to either select
or reject the current candidate. Let P (k, t) be the probability of success by
selecting the current candidate. We can compute P (k, t) by conditioning on
N . It is easy to see that, conditional on N = m, m! arrival orders of these
applicants are equally likely, and hence the conditional success probability is
given by k/m. Thus unconditioning on N yields

P (k, t) =
n∑

m=k

k

m
p(m | k, t),

=
1

C(k, t)

n∑
m=k

(
m− 1
k − 1

)
tm. (8)

On the other hand, let Q(k, t) be the success probability when we reject the
current candidate and then select, if any, the first candidate that appears.
Q(k, t) can also be computed by conditioning on N . The success probability
conditional on N = m is known to be (k/m)

∑m
j=k+1(j − 1)−1 for m > k.

Thus we have

Q(k, t) =
n∑

m=k+1

⎛⎝ k

m

m∑
j=k+1

1
j − 1

⎞⎠ p(m | k, t),

=
1

C(k, t)

n∑
m=k+1

⎛⎝ m∑
j=k+1

1
j − 1

⎞⎠ (
m− 1
k − 1

)
tm. (9)

Now, for a given n (though implicit), let

G = {(k, t) : P (k, t) ≥ Q(k, t)} . (10)

G represents the set of states for which stopping immediately is at least as
good as continuing for exactly one more transition and then stopping. The
rule that stops the first time the process enters a state in G is called the OLA
(one-stage look-ahead) stopping rule. It is well known that if G is closed in a
sense that once (k, t) ∈ G, then (k + j, s) ∈ G for j ≥ 1, s ≤ t, then the OLA
stopping rule is optimal (see [12]). Reference [7] called this case monotone
case. From (8) and (9), P (k, t) ≥ Q(k, t) is equivalent to

n∑
m=k

(
m− 1
k − 1

)
tm ≥

n∑
m=k+1

⎛⎝ m∑
j=k+1

1
j − 1

⎞⎠ (
m− 1
k − 1

)
tm. (11)

Remark 1. Let n tend to infinity in (11) and then apply a well-known identity

∞∑
m=k

(
m− 1
k − 1

)
tm =

(
t

1− t

)k

, k ≥ 1
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and another identity shown by [15] and then [3]

∞∑
m=k+1

⎛⎝ m∑
j=k+1

1
j − 1

⎞⎠ (
m− 1
k − 1

)
(1− t)ktm−k = − log(1− t), k ≥ 1.

Then (11) can be greatly simplified to

1 ≥ − log(1− t)

or equivalently
t ≤ 1− e−1

implying that

G =
{
(k, t) : t ≤ 1− e−1, irrespective of k

}
.

Since G is closed, G gives an optimal stopping region. This is just the result
Stewart obtained.

We now return to finite n. Let bk,m =
∑m

j=k+1(j − 1)−1, 1 ≤ k < m with
bk,k = 0 corresponding to the vacuous sum and define, for k ≤ m ≤ n and
0 ≤ t ≤ 1,

φk,m(t) = (1− bk,m)
(
m− 1
k − 1

)
tm−k, (12)

and also, for 1 ≤ k ≤ n,

Φk(t) =
n∑

m=k

φk,m(t). (13)

Then the inequality (11) is written as

Φk(t) ≥ 0. (14)

The following result is concerned with the form of Gk = {t : Φk(t) ≥ 0, 0 ≤
t ≤ 1}, i.e., the set of t which satisfies the inequality (14).

Lemma 1. Let n be fixed. Then, for a given k, there exists a value t∗k(n) ∈
[0, 1] such that

Gk = {t : 0 ≤ t ≤ t∗k(n)}, 1 ≤ k ≤ n. (15)

Proof. This proof is similar to that of Lemma 3 in [8]. Two cases are distin-
guished according to the value of k.

Case 1 : s1(n) ≤ k ≤ n. Since 1 − bk,m ≥ 0 for k ≤ m ≤ n from
the definition of s1(n), Φk(t) is non-decreasing in t with Φk(0) = 1, and so
Φk(t) ≥ 1, 0 ≤ t ≤ 1. If we define t∗k(n) = 1, Gk is written as (15).

Case 2 : 1 ≤ k < s1(n). It is noted that bk,m is increasing in m, so there
exists an integer c = c(k) such that 1 − bk,m ≥ 0, k ≤ m < c and 1 − bk,m
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< 0, c ≤ m ≤ n. Denote by Φ(r)
k (t) be the rth derivative of Φk(t) (Φ(0)

k (t) =
Φk(t)). Then we have from (13)

Φ(r)
k (t) =

1
(k − 1)!

n∑
m=k+r

(1− bk,m)
(m− 1)!

(m− k − r)!
tm−(k+r). (16)

Observe that, from the definition of c, Φ(c−k)
k (t) < 0, 0 ≤ t ≤ 1, and Φ(r)

k (0) ≥
0, r ≤ c− k − 1. We show that if we define Gk,r = {t : Φ(r)

k (t) ≥ 0, 0 ≤ t ≤
1}, 0 ≤ r < c− k, then Gk,r can be written as

Gk,r = {t : 0 ≤ t ≤ v∗r} (17)

for some value v∗r ∈ [0, 1]. Since Φ(c−k−1)
k (0) ≥ 0 and Φ(c−k−1)

k (t) is decreas-
ing in t, we obviously have expression (17) for r = c − k − 1 by defining
v∗c−k−1(< 1) as a unique solution t ∈ [0, 1) to the equation Φ(c−k−1)

k (t) = 0
if Φ(c−k−1)

k (1) < 0, otherwise by defining v∗c−k−1 = 1. For r = c − k − 2, two
cases are considered depending on v∗c−k−1 = 1 or v∗c−k−1 < 1. If v∗c−k−1 = 1,
then since Φ(c−k−2)

k (0) ≥ 0 and Φ(c−k−2)
k (t) is increasing in t, we imme-

diately have the form (17) by defining v∗c−k−2 = 1. If v∗c−k−1 < 1, then
Φ(c−k−2)

k (t) achieves its maximum at t = v∗c−k−1, because we have known
Φ(c−k−1)

k (v∗c−k−1) = 0 and Φ(c−k)
k (v∗c−k−1) < 0. Since Φ(c−k−2)

k (0) ≥ 0, then
also Φ(c−k−2)

k (v∗c−k−1) ≥ 0. Thus we have expression (17) for r = c − k − 2
by defining v∗c−k−2(< 1) as a unique solution t ∈ [v∗c−k−1, 1) to the equation
Φ(c−k−2)

k (t) = 0 if Φ(c−k−2)
k (1) < 0, otherwise by defining v∗c−k−2 = 1. This ar-

gument is repeated to yield Gk,0 = {t : 0 ≤ t ≤ v∗0} for some value v∗0 ∈ [0, 1].
Since Gk,0 = Gk, we establish (15) if we define t∗k(n) = v∗0 .

Now that the set Gk is shown to have the form (15) to prove that the set
G is closed, it suffices to show that G1 ⊆ G2 ⊆ · · · ⊆ Gn, or equivalently,
t∗1(n) ≤ t∗2(n) ≤ · · · ≤ t∗n(n). We need the following lemma.

Lemma 2. We have, for 2 ≤ k ≤ n,

Φk(t)− Φk−1(t) = tΦk(t)− {φk−1,n(t) + tφk,n(t)}. (18)

Proof. We have, from (13),

Φk(t)− Φk−1(t) =
n∑

m=k

{φk,m(t)− φk−1,m−1(t)} − φk−1,n(t). (19)

However, from (12),

φk,m(t)− φk−1,m−1(t)

=
[{(

m− 1
k − 1

)
−

(
m− 2
k − 2

)}
−

{(
m− 1
k − 1

)
bk,m

−
(
m− 2
k − 2

)
bk−1,m−1

}]
tm−k.
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Applying to this the following easily verifiable identities (see p. 139 of [15] for
the second identity) (

m− 1
k − 1

)
−

(
m− 2
k − 2

)
=

(
m− 2
k − 1

)
(
m− 1
k − 1

)
bk,m −

(
m− 2
k − 2

)
bk−1,m−1 =

(
m− 2
k − 1

)
bk,m−1,

we have, for k ≤ m ≤ n,

φk,m(t)− φk−1,m−1(t) = (1− bk,m−1)
(
m− 2
k − 1

)
tm−k,

= tφk,m−1(t), (20)

where φk,k−1(t) is interpreted as 0. Substituting (20) into (19) yields

Φk(t)− Φk−1(t) = t
n∑

m=k

φk,m−1(t)− φk−1,n(t),

= t{
n∑

m=k

φk,m(t)− φk,n(t)} − φk−1,n(t),

= tΦk(t)− {tφk,n(t) + φk−1,n(t)},

which is the desired result.

Lemma 3. The sequence {t∗k(n) : 1 ≤ k ≤ n} is non-decreasing in k, that is,

t∗1(n) ≤ t∗2(n) ≤ · · · ≤ t∗n(n).

Proof. We have already found t∗k(n) = 1 for s1(n) ≤ k (see Case 1 in the proof
of Lemma 1), so we have only to show that t∗k−1(n) ≤ t∗k(n) for k ≤ s1(n)− 1.
Since φk−1,n(t) ≤ 0 and φk,n(t) ≤ 0, we obtain, from (18),

Φk(t)− Φk−1(t) ≥ tΦk(t),

implying that Φk(t) ≥ Φk−1(t) for t such that Φk(t) ≥ 0. Thus, considering
that Φk(0) = Φk−1(0) = 1 and Gk and Gk−1 are given in the form of (15), we
can immediately conclude that t∗k−1(n) ≤ t∗k(n).

From Lemma 1 and the continuity of Φk(t), t∗k(n) is computed, if t∗k(n) < 1,
as a unique root t of the equation Φk(t) = 0, or equivalently a unique root t
of (5) via (13). The followig lemma gives the minimum number k for which
t∗k(n) = 1.

Lemma 4.
t∗k(n) = 1⇐⇒ s3(n) ≤ k ≤ n.
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Proof. From the preceding argument, t∗k(n) = 1 corresponds to Φk(1) ≥ 0.
Thus we can define

s̃3(n) = min {k ≥ 1 : Φk(1) ≥ 0} (21)

as the minimum number k for which t∗k(n) = 1. We show s̃3(n) = s3(n) by
proving

Φk(1) =
(
n

k

) ⎡⎣1−
n∑

j=k+1

1
j

⎤⎦ . (22)

We have, from (12) and (13),

Φk(1) =
n∑

m=k

φk,m(1),

=
n∑

m=k

⎛⎝1−
m∑

j=k+1

1
j − 1

⎞⎠ (
m− 1
k − 1

)
,

=
n∑

m=k

(
m− 1
k − 1

)
−

n−1∑
j=k

1
j

n∑
m=j+1

(
m− 1
k − 1

)
.

Using the well-known identity

n∑
m=j+1

(
m− 1
k − 1

)
=

(
n

k

)
−

(
j

k

)
, k ≤ j + 1 ≤ n, (23)

where
(

j
k

)
is interpreted as 0 when j = k − 1, the preceding gives

Φk(1) =
(
n

k

)
−

n−1∑
j=k

1
j

[(
n

k

)
−

(
j

k

)]
,

=
(
n

k

) ⎡⎣1−
n−1∑
j=k

1
j

⎤⎦ +
n−1∑
j=k

1
j

(
j

k

)
. (24)

However,

n−1∑
j=k

1
j

(
j

k

)
=

1
k

n−1∑
j=k

(
j − 1
k − 1

)
,

=
1
k

(
n− 1
k

)
, (again from (23))

=
(
n

k

)(
1
k
− 1
n

)
. (25)
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Applying (25) to (24) yields

Φk(1) =
(
n

k

) ⎡⎣1−
n−1∑
j=k

1
j

+
1
k
− 1
n

⎤⎦ ,
and hence proves (22).

The followng result shows that the difference between s1(n) and s3(n) is
at most one.

Lemma 5. For n ≥ 2,

s3(n) ≤ s1(n) ≤ s3(n) + 1.

Proof. To show the first inequality s3(n) ≤ s1(n), it is sufficient to show that

bs1(n)+1,n+1 ≤ 1, (26)

because bs+1,n+1 ≤ 1 for s ≥ s3(n) from the definition of s3(n). The inequality
(26) is verified because we have bs1(n)+1,n+1 < bs1(n),n and also bs1(n),n ≤ 1
from the definition of s1(n). To show the second inequality s1(n) ≤ s3(n)+1,
it is sufficient to show that

bs3(n)+1,n ≤ 1, (27)

because bs,n ≤ 1 for s ≥ s1(n) from the definition of s1(n). The inequal-
ity (27) can be verified because we have bs3(n)+1,n < bs3(n)+1,n+1 and also
bs3(n)+1,n+1 ≤ 1 from the definition of s3(n).

The above lemmas can now be combined to yield Theorem 1. The following
result shows that for each k, t∗k(n) converges to the same value 1− e−1, which
is consistent with the e−1-rule for the non-informative case.

Lemma 6. For fixed k ≥ 1,

lim
n→∞ t∗k(n) = 1− e−1.

Proof. Remember that (5) is equivalent to

n∑
m=k

(
m− 1
k − 1

)
tm =

n∑
m=k+1

⎛⎝ m∑
j=k+1

1
j − 1

⎞⎠ (
m− 1
k − 1

)
tm,

so t∗k(n) is also a solution to this equation. Thus the limiting value of t∗k(n)
must satisfy the equation

∞∑
m=k

(
m− 1
k − 1

)
tm =

∞∑
m=k+1

⎛⎝ m∑
j=k+1

1
j − 1

⎞⎠ (
m− 1
k − 1

)
tm.

We have already seen in the Remark that this equation has a unique root
1− e−1 for any k. Thus the proof is complete.
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3 Concluding Remark

In this chapter, we have derived the explicit expression of the optimal selec-
tion rule for the best-choice problem with N uniform on {1, 2, . . . , n} for a
given n and have shown that our rule coincides with that of [15] asymptoti-
cally. In contrast to the above no-information random arrival time best-choice
problem where the observations are the relative ranks of the applicants, the
full-information analogue is the problem where the observations are the true
values of N applicants X1, X2, . . . , XN , assumed to be i.i.d. random variables
from a known continuous distribution taken without loss of generality to be
the uniform distribution on the interval [0, 1]. To the best of our knowledge,
this full-information version has been studied only when N is Poisson (see [13]
and [1]. See also [14]). The case in which N is uniform or geometric remains
unsolved.
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