Chapter 7

Debugging and Testing of Multi-Agent
Systems using Design Artefacts

David Poutakidis*, Michael Winikoff', Lin Padgham, and Zhiyong Zhang

Abstract Agents are a promising technology for dealing with increasingly com-
plex system development. An agent may have many ways of achieving a given
task, and it selects the most appropriate way of dealing with a given task based
on the context. Although this makes agents flexible and robust, it makes testing
and debugging of agent systems challenging. This chapter presents two tools: one
for generating test cases for unit testing agent systems, and one for debugging
agent systems by monitoring a running system. Both tools are based on the thesis
that design artefacts can be valuable resonrces in testing and debugging. An empirical
evaluation that was performed with the debugging tool showed that the debug-
ging tool was useful to developers, providing a significant improvement in the
number of bugs that were fixed, and in the amount of time taken.
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7.1 Introduction

“As soon as we started programming, we found to our surprise that it wasn’t as easy to get
programs right as we had thought. Debugging had to be discovered. I can remember the exact
instant when [ realized that a large part of my life from then on was going to be spent in
finding mistakes in my own programs.” — Maurice Wilkes

Agents are seen as a promising technology for dealing with increasingly com-
plex system development, with a range of agent-based solutions having now been
developed in a range of domains [4, 44]. Agents provide a flexible and robust
approach to task achievement making them ideal for deployment in challenging
environments. Agents can be equipped with multiple ways of achieving tasks, and
depending on the task and the context in which the task should be completed, can
select the most appropriate way for dealing with it.

To support the development of agent systems a new field of software engineering,
commonly referred to as agent-oriented software engineering, has emerged, in
which the agent is proposed as the central design metaphor. A vital and time
consuming part of any software engineering process is testing and debugging.
However, the autonomous and distributed nature of agent systems, while modular
and powerful, is notoriously difficult to test and debug [27].

It has been argued that multi-agent systems merely represent a specific form of
distributed systems [51]. Several methods have been developed to assist in the de-
bugging of distributed systems: recording a history of execution for analysis or
replay [36]; animating the execution of a system at run-time by providing a visual
representation of the program [8], and race detection algorithms to facilitate the
detection of simultaneous access to shared resources [65, 47]. However, although
debugging techniques developed for distributed systems can be used to facilitate
the debugging of multi-agent systems to some extent, there are characteristics of
agent systems that require specific attention. Traditional distributed systems sup-
port distributed information and algorithms whereas multi-agent systems address
distributed tasks achieved by coarse grained agents. The individual agents within
a multi-agent system are autonomous and they can act in complicated and so-
phisticated ways. Furthermore, the interactions between agents are complex and
often unexpected. These issues and others need to be addressed for a multi-agent
debugging approach.

During testing and debugging the aim is to reconcile any differences between the
actual program behaviour and the expected behaviour in order to uncover and
resolve bugs. Current techniques fail to take advantage of the underlying design
of systems to support the debugging task. This problem is best summed up by
Hailpern & Santhanam [29]:

There is a clear need for a stronger (automatic) link between the software design (what
the code is intended to do) ...and test execution (what is actually tested) in order to
minimize the difficulty in identifying the offending code. ..

Our central thesis is that the design documents and system models developed when
Jollowing an agent based software engineering methodology will be valuable resources
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during the testing and debugging process and should facilitate the antomatic or semi-
auntomatic detection of errors.

This chapter describes two tools that follow this central thesis and use design
artefacts to assist in the testing and debugging process:

1. A testing tool [71] that uses design artefacts to generate test cases; and

2. A debugging tool [55, 59, 60, 61] that uses artefacts to monitor a system, and
alerts the developer should the system deviate from the behaviour specified by
the design artefacts.

Although both tools use design artefacts, and focus on detecting errors, there are
significant differences between them. Firstly, the testing tool does #nit testing
of entities within a single agent (e.g. plans, events, beliefs), whereas the debugging
tool detects errors in a complete running system. Secondly, the testing tool detects
certain domain-independent error conditions such as a plan never being used,
whereas the debugging tool detects domain-specific error conditions relating to
interaction protocols not being followed correctly!. Thirdly, the debugging tool
observes the system in action, leaving it up to the user to adequately exercise
the system’s functionality. By contrast, the testing tool systematically generates a
wide range of test cases.

Thus the two tools are complementary: we envision that the testing tool would
be used initially to do unit testing, and then, once the system is integrated, the
debugging tool would be used to monitor the whole system.

Both tools have been implemented, and the implementations were used for eval-
uation. The debugging tool is not yet integrated and documented in a manner
suitable for public release, but is available from David Poutakidis on request. The
testing tool is under further development and is not yet available.

The remainder of this chapter is structured as follows. Section 7.2 reviews relevant
background material, including previous work on testing and on debugging, and a
review of the design artefacts that we use. Sections 7.3 and 7.4 respectively describe
the testing and the debugging tools. We have chosen to have two “tool” sections,
since we are describing two separate tools. Our evaluation is covered in section
7.5, and we conclude in section 7.6.

7.2 Background

This section begins by reviewing model based testing (section 7.2.1), then briefly
reviews related work on testing and on debugging (sections 7.2.2 and 7.2.3). We
then (section 7.2.4) introduce the design artefacts that we use in the remainder of
the chapter.

! However, there is some overlap in functionality, in that both tools detect errors relating to
coverage and overlap (see section 7.2.4.3).
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7.2.1 Model Based Testing

Model Based Testing ([1, 25]) proposes that testing be in some way based on mod-
els of the system, which are abstractions of the actual system, and can be used for
automated generation of test cases. Automated test case generation is attractive
because it has the potential to reduce the time required for testing, but perhaps
more importantly it is likely to lead to far more testing being done, and hopefully
therefore more robust systems.

Design models which are developed as part of the process of developing the sys-
tem are one kind of model which can readily be used for model based testing.
They specify aspects of expected/designed system behaviour which can be sys-
tematically checked under a broad range of situations. Different approaches to
model based testing have focussed on different kinds of models, which are then
used to generate certain kinds of test cases. For example Apfelbaum and Doyle [1]
describe model based testing focussing on use scenarios defined by sequences of
actions and paths through the code, which are then used to generate the test cases.
This kind of testing is similar to integration testing or acceptance testing. Others
(e.g. [17]) focus on models that specify correct input and output data, but these
are not so appropriate for testing of complex behaviour models.

In current software development, some level of design modelling is almost always
used. These design models specify certain aspects of the system, and can there-
fore be used as a basis against which to check runtime behaviour under a range
of conditions. Substantial work has been done using UML models as the basis
for model based testing approaches. Binder [5] summarised the elements of UML
diagrams, exploring how these elements can be used for test design and how to
develop UML models with sufficient information to produce test cases. He devel-
oped a range of testability extensions for each kind of UML diagram where such
is needed for test generation.

There are a number of agent system development methodologies, such as Tro-
pos [46], Prometheus [53], MaSE [18] and others, which have well developed struc-
tured models that are potentially suitable as a basis for model based testing, in a
similar way to the use of UML. The design artefacts representing aspects of these
models are potentially well suited to use in guiding testing.

7.2.2 Testing Agent Systems

There has been increasing work on testing of agent systems in recent years, with
several systems using design models for some level of assistance in generation of
test cases.

One approach is to use existing design models to derive test cases. For instance, the
eCAT system associated with Tropos [49] uses the goal hierarchy created during
system specification in order to generate test suite skeletons, which must be com-
pleted by the developer/tester, and which are then run automatically. There has
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also been work on generating test cases based on application domain ontologies
[50]. The eCAT system also uses continuous testing of the system under develop-
ment, an approach that could be used with our own testing tool as well.
Another instance of deriving test cases from existing information is the work of
Low et al. [38] which derives test cases for BDI systems based on the structure
of plans. Their work investigates a range of criteria for test-case generation, and
assesses the relationships between the different criteria, specifically which criteria
subsume which other criteria.

Another approach is to introduce new design artefacts that contain additional
details which are used in testing. For instance, the work of Caire ez al. [11] derives
test cases from (additional) detailed design artefacts called “Multi-Agent Zoomable
Behaviour Descriptions” (MAZBDs), which are based on UML activity diagrams.
However, user intervention is required to derive test cases from the MAZBDs.

A number of other agent development systems also have testing support subsys-
tems, such as SUNIT [24] for SEAGENT, the JAT testing framework [13], and
the testing framework of INGENTIAS [28]. Testing is also discussed by Knublauch
[35] and by Rouff [64]. However, all of these approaches require manual develop-
ment of test cases, which may then be run automatically.

To our knowledge, our testing tool is the only agent testing system which (a) fo-
cusses on unit testing, and (b) fully automates the generation of test cases as well
as the running of them.

7.2.3 Debugging

Although there is some speculation as to where the term bug was first used [14, 33]
it is widely accepted that the term is used to describe a mistake, malfunction
or error associated with a computer program. Most commonly we are able to
identify that such a bug exists because some observed execution of a program (or
observation of the recorded output of a program) does not conform with what is
expected. From this we can define debugging in the following way: Debugging is
the process of locating, analysing and correcting suspected errors [42].

To aid the debugging process debugging tools have been developed to help with
all three of these activities. Fault localisation, which is defined by Hall et al. as
tracing a bug to its cause [30], is seen by some as the most difficult part in de-
bugging [34, 23, 68]. Indeed, most of the debugging support provided by debug-
ging tools focusses on the process of localising a discovered fault. Such tools are
typically tailored to a specific target programming language for which they have
been designed. However, there are a number of features that one may come to ex-
pect from a debugging tool. Namely, tracing the execution of a program, defining
breakpoints, and variable or memory display and manipulation. In the context
of agents, a number of platforms (e.g. [48, 10, 58]) provide traditional debugging
support, 1.e. breakpoints, stepping through code, and an ability to display agent
specific properties, such as goals and tasks.
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Program tracing allows one to follow the executable program as lines in the source
code are executed. This can be useful for understanding the flow of control within
a program. Although, in a large search space or when long iteration sequences are
being followed this can become difficult. Breakpoints are a special instruction
that can be inserted into a program such that the program will halt when the
instruction is reached. This is an efficient way of allowing a program to run to
a specific location and then halt to allow some other debugging activity to occur
from that point, for example, tracing from the breakpoint onwards, or inspecting
the state of a variable and possibly changing it before continuing execution.

For effective debugging sufficient understanding and comprehension of both the
implemented system and the design that the system is based on are required. It
is necessary to gain sufficient understanding of these two closely related parts of
system development for the purposes of identifying and resolving behaviour that
is not consistent with the design specification. Developing the necessary under-
standing of the implemented system can, to some degree, be accomplished by
performing code walkthroughs, or more formally code inspections [26]. Code in-
spections are incrementally applied to parts of the source code to develop the
necessary understanding of the system to uncover code defects. The utility of
this process has also been shown to be effective [22, 40]. However, observing the
behaviour of the system as it executes is still an extremely useful and common
exercise that is employed by developers to obtain a more complete understanding
of the behaviour of the implemented system. One issue is that, often, there is too
much information available, and it can be hard for a developer to know what to
focus on when debugging.

An interesting approach to helping users understand the complex behaviours and
interdependencies in applications is proposed in the Whyline framework where
users are able to ask ‘why?’ or ‘why not?’ questions about observations they make
while interacting with a system [45]. These questions, which are automatically
derived, are typically of the form “why does property p of object o have value
v?”. The Whyline system recursively traverses through the operations that cause
properties to take on their values and provides an answer to the question. In a user
study the Whyline approach was found to be very effective in improving under-
standing in computer programs. However, it is not clear how generally applicable
the approach is.

Another attempt at focusing the debugging task takes the approach of abstrac-
tions over the target program. This is especially important in domains such as
distributed programming where the data, especially event data, can be overwhelm-
ing. By using the abstractions appropriate to developing distributed software Bates
[2] has shown that a debugging system, consisting of a model builder, event mod-
els and an event recogniser can greatly reduce the amount of event information
being propagated to the developer. Primitive event instances need to be defined
such that they can be automatically identified in a program. Once identified the
program needs to be modified to announce the event to an external component
(such as the event recogniser). Models are built using an Event Description Lan-
guage (EDL), as defined in [2]. With such a language one can build expressions
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and further abstractions over the primitive events. Instead of being informed of
the primitive event data, the developer is instead alerted to the meta events de-
fined in the models. The benefit of such an approach is a greatly reduced amount
of event information. One of the major limitations of this approach is that one
needs to learn the EDL and also manually define the models used for compari-
son. The model is built on the users’ interpretation of how the system should
behave, based on such things as their interpretation of potentially informal design
documents. This leads to another concern that the abstractions that have been
applied should not filter out any information required for a particular diagnosis.
In addition the diagnosis can only be successful if the model developed is a correct
representation of expected behaviour.

Other noteworthy approaches to debugging include techniques such as program
slicing [69, 6], algorithmic debugging [66] and model based diagnosis [12, 41, 70]
which each provide support for automating, or partially automating, the debug-
ging process.

7.2.4 Design Artefacts

Both tools follow our central thesis, using design artefacts to assist in testing and
debugging. This section briefly introduces the specific design artefacts that the
tools use.

The testing tool is a generic framework that can be applied to any agent based
system with appropriate models available. The models against which it analy-
ses test output are primarily design artefacts that describe the detailed structure
within each agent: how plans, events, and data are connected. In the context of
Prometheus this information can be found in Agent and Capability Overview
Diagrams (see section 7.2.4.2), as well as information regarding coverage and over-
lap, extracted from message descriptors (section 7.2.4.3), which is also used by the
debugging tool.

In addition important information is extracted from the descriptor forms of be-
liefs, events and plans, regarding variables relevant to the entity, their types and
value ranges, as well as potential relationships between them. For example a de-
sign descriptor of a plan to make a savings deposit, may state that there are two
relevant variables: income and expenses. The relationship is that income > ex-
penses (this is the context condition for this plan, which deposits the surplus to a
savings account). Each are of type money with value range 0 to cc.

In addition to the information obtained from design descriptors, some additional
information is added specifically for the purpose of testing. This includes links
between design variables and their implementation counterparts, or some other
method to allow assignment of values for the different test cases. It can also include
application initialisation processes necessary before testing can commence, as well
as such things as stubs for other system agents necessary for testing a particular
unit.
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The debugging framework we present is generic, and can be applied to a wide
range of design artefacts. However, the rool that we have developed (and evaluated)
exploits two particular design artefact types: interaction protocols (see section
7.2.4.1), and the coverage and overlap information mentioned above.

Note that although our work has been done in the context of the Prometheus
methodology [53], the approach is generic. Furthermore, the artefacts that we
have chosen are ones that are common to many methodologies. Interaction pro-
tocols are used in many methodologies, and indeed, due to the adoption of Agent
UML [3] by a number of methodologies, the same notation is widely used. Some
form of structural diagram is used in all of the major methodologies, including
Prometheus [53], MaSE [20], and Tropos [7]. On the other hand, coverage and
overlap are specific details about the intent of event handling (in BDI? systems)
that are specified in the Prometheus methodology.

In this chapter we are concerned more with using design artefacts, and less with
how they are developed. We do note that methodological guidance is important,
and that good tool support is invaluable in creating and, more importantly, main-
taining designs. Fortunately, many methodologies provide mature tool support
(e.g. [19, 43, 52]).

We now discuss each of these design artefacts in turn.

7.2.4.1 Interaction Protocols

Interaction protocols can be defined in a number of ways: as state machines [21,
page 110], in which the states might express the concept of waiting for a message,
and the transitions express the concept of sending/receiving a message [67]; as
statecharts backed by a program logic with formal semantics [57]; as Petri nets
where Petri net places specify protocol state and Petri net transitions encode mes-
sage types [16, 62]; as standard UML [37], or more commonly with an extension
to UML in the form of the Agent UML (AUML) notation [3].

In this chapter we focus on Petri nets: since they are simple and precisely defined
they serve well as a lingua franca for other notations. Indeed, we have defined
translations from the older version of AUML [3] into Petri nets [60], and also
from the more recent version of AUML [32] into Petri nets [59, Chapter 4]. Addi-
tionally, we classify places as either message places, which correspond to a message
in the protocol and do not have incoming transitions, or state places.

Petri nets are a model of procedures that support the flow of information, in par-
ticular the concurrent flow of information. A Petri net (named after Carl Adam
Petri) consists of places (depicted graphically as circles) and transitions (depicted
graphically as rectangles). Places and transitions are linked by arcs which indi-
cate the relation between the elements in the net. This relation is called the flow-
relation, and the flow-relation may only connect places to transitions and transi-
tions to places [63].

2 Belief-Desire-Intention
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Fig. 7.1 Example of a Petri net firing

Additionally, places may contain tokens. The placement of tokens on a net is its
marking, and executing (“firing”) a Petri net consists of moving tokens around
according to a simple rule; the places, transitions, and the links between them
remain unchanged. A transition in a Petri net is enabled if each incoming place (i.e.
a place with an arrow going to the transition) has at least one token. An enabled
transition can be fired by removing a token from each incoming place and placing
a token on each outgoing place (i.e. each place with an arrow from the transition
to it). For example, figure 7.1 shows a very simple Petri net, the transition in this
Petri net is enabled because both state P and state A are marked. The transition
fires by removing a token from state A and from state P and placing a token on
state Q).

In this chapter we present most of our discussions on Petri nets using this graphi-
cal notation. A formal definition is not required for this chapter, and can be found
elsewhere [59].

7.2.4.2 Overview Diagrams

Prometheus captures the static structure of the system being designed using a
range of overview diagrams. Specifically, there is a single System Overview Dia-
gram which captures the overall structure of the whole system; there is an Agent
Overview Diagram for each agent type in the system; and there is a Capability
Overview Diagram for each capability.

These overview diagrams use a common notation where nodes represent entities
in the design — with a different icon being used to distinguish between different
entity type (e.g. agent, plan, protocol) — and relationships between entities are
depicted using arrows between entities (optionally labelled with the nature of
the relationship, where this isn’t clear from context) [54]. Figure 7.2 shows the
notation used, and figure 7.3 depicts an example System Overview Diagram for a
conference management system.
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7.2.4.3 Descriptors

The overview diagrams (system, agent, and capability) provide a graphical visual-
isation of the static structure of the system. As their names suggest, they are well-
suited to giving a high-level overview, but they are not intended for capturing the
details of entities. Instead, in Prometheus, the details of entities are captured using
descriptors.

Each entity type has its own descriptor form, which is filled out for each instance
of that type. For example, each agent (type) has its own agent descriptor form,
which captures such information as how many instances of the agent type will
exist at run-time, when these agent instances are created and destroyed, and what
needs to be done to initialise an agent instance. For the unit testing currently
covered by the testing tool, belief, plan and event descriptors are used. Much of
the information from the overview diagrams is also available in the descriptor as
it is automatically propagated.

Both the debugging and testing tool use information relating to coverage and over-
lap (defined below) which is extracted from message® descriptor forms.

In BDI agent systems such as JACK [10], JAM [31], and Jadex [58] in which agents
select an appropriate pre-defined plan from a plan library, one common cause of
errors is incorrectly specifying when a plan should be selected by the agent for
execution. This often results in one of two situations: either there is no plan suit-
able to respond to a given goal or event, resulting in the goal not being attempted
or the event not being reacted to; or alternatively there may be multiple suitable
plans, and the one chosen is not the one intended*.

The Prometheus methodology prompts the developer to consider how many
plans are expected to be suitable for each event type in all possible situations.
For each event the developer is asked to specify whether it is ever expected that
either multiple plans will be applicable®, or that no plans will be applicable. Two
concepts are introduced within Prometheus in order to facilitate this considera-
tion. They are coverage and overlap. Having full coverage specifies that the event
is expected to have at least one applicable plan found under all circumstances.
Overlap specifies that it is possible, although not required, that multiple plans are
applicable at the time the event occurs.

Full coverage means that the context conditions of the plans that are relevant for
the event must not have any “holes”. An example of an unintended hole that can
occur is if two plans are specified for an event, one with context temperature <
0° and the other with context temperature > 0°. Temperature = 0° is then a
“hole” and if that is the situation when the event occurs, no plan will be applica-
ble. If at design time the developer specifies that an event type has full coverage,
and yet at run-time a situation occurs when there is no applicable plan for an
event of that type, then an error can be reported.

3 Prometheus views events as being “internal messages”.

* Both these situations may occur legitimately, however, they are sometimes an indication of a
problem.

> A plan is applicable if its context condition is true at the current time.
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For an event to have 7o overlap requires that the context conditions of plans rel-
evant for that event are mutually exclusive. If overlap is intended, the developer
is prompted to specify whether plans should be tried in a particular order, and if
so how that will be accomplished. Overlap can occur when multiple plan types
are applicable or when a single plan can result in multiple versions of itself based
on the variable assignments that may occur during plan initialisation. For exam-
ple, in JACK if there is more than one way to satisfy a context method’s logical
expression, there will be multiple instances of the plan that are applicable. One
applicable instance will be generated for each set of bindings that satisfy the con-
text condition. The developer is also prompted at design time to specify which of
these situations is expected if overlap is possible.

7.3 Testing Tool Description

The testing tool that we have developed does automated generation and execution
of test cases. Test cases cover the internals of agents. In order to do so we need
to make some assumptions about how the agents are structured internally, and
we assume that agents are designed and implemented in terms of the BDI archi-
tecture, that is that agents consist internally of event-triggered plans and beliefs
(as well as capabilities [9], a modularisation construct introduced by JACK). In
terms of design artefacts, we use the Prometheus structural overview diagrams
and descriptor forms, but the information that we require could also be extracted
from the sorts of information provided by other methodologies, or from the code
itself.

The approach followed aims to support a “test as you go” approach to unit testing
of the building blocks within an individual agent, as the developer moves from
design to code. There are of necessity some constraints in that it does not make
sense to test units which have dependencies on other units, before those units
themselves have been tested. Consequently ordering of testing of units is an im-
portant part of the tool, and units which are depended on must be tested (and
therefore developed) before those depending on them, or at least, they must be
appropriately stubbed.

As was indicated in section 7.2.4 the basic units being tested are beliefs, plans and
events. There are some nuances, as discussed in [71], but the dependencies are
essentially that:

e a plan is dependent on beliefs that it accesses, on subgoals/events/messages
that it posts, and on anything on which these subgoals/events/messages are
dependent;

® an event/subgoal/message is dependent on plans that it triggers and all that
these plans are dependent on;

¢ beliefs are independent of other units;

¢ cycles must be treated as a unit, as described in [71].
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If testing all units within something such as a capability, or an agent (or any
collection of units), an initial step is to generate the appropriate testing order for
these units. Following this each unit is tested individually, by running a suite of
automatically generated (or user defined) test cases. If a sufficiently serious error
is encountered, no further testing will be attempted for units which depend on
the unit for which an error was detected.

The focus of the testing tool is to auntomatically generate and run a sufficiently
comprehensive set of tests for each unit. However, there are cases where develop-
ers want, or need, to specify specific test cases, and this is also supported. User
defined test cases are stored, and combined with system generated test cases each
time testing is done.

The overview of the testing process, using our tool, is as follows:

1. The user selects a set of units for test (often all units within a particular capa-
bility or agent).

2. Using the information available in the capability and agent overview models,
the testing tool determines test case order.

3. Following the