
Chapter 4
Programming Rational Agents in GOAL

Koen V. Hindriks

Abstract The agent programming language GOAL is a high-level programming
language to program rational agents that derive their choice of action from their
beliefs and goals. The language provides the basic building blocks to design and
implement rational agents by means of a set of programming constructs. These
programming constructs allow and facilitate the manipulation of an agent’s beliefs
and goals and to structure its decision-making. GOAL agents are called rational be-
cause they satisfy a number of basic rationality constraints and because they decide
to perform actions to further their goals based upon a reasoning scheme derived
from practical reasoning. The programming concepts of belief and goal incorpo-
rated into GOAL provide the basis for this form of reasoning and are similar to
their common sense counterparts used everyday to explain the actions that we
perform. In addition, GOAL provides the means for agents to focus their attention
on specific goals and to communicate at the knowledge level. This provides an intu-
itive basis for writing high-level agent programs. At the same time these concepts
and programming constructs have a well-defined, formal semantics. The formal
semantics provides the basis for defining a verification framework for GOAL for
verifying and reasoning about GOAL agents which is similar to some of the well-
known agent logics introduced in the literature.

4.1 Motivation

The concept of a goal lies at the basis of our understanding of why we perform
actions. It is common sense to explain the things we do in terms of beliefs and
goals. I started writing this chapter with the goal of explaining the programming
language GOAL. The reasons for performing actions are derived from our moti-
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vations and the notion of rational behaviour is typically explained in terms of
actions that are produced in order to further our goals [5, 14, 16]. A researcher
that has a goal to have finished a book chapter but is going on a holiday instead
is not considered to behave rationally because holidays do not further the goal of
writing a book chapter.
The idea to use common sense notions to build programs can be traced back to the
beginnings of Artificial Intelligence. Shoham, who was one of the first to propose
a new programming paradigm that he called agent-oriented programming, cites
McCarthy about the usefulness of ascribing such notions to machines [29, 39].
One of the first papers on Artificial Intelligence, also written by McCarthy, is
called Programs with Common Sense [28]. It has been realized that in order to have
machines compute with such notions it is imperative to precisely specify their
meaning [39]. To this end, various logical accounts have been proposed, mainly
using modal logic, to clarify the core common sense meaning of these notions
[10, 25, 34]. These accounts have aimed to precisely capture the essence of a con-
ceptual scheme based on common sense that may also be useful and applicable in
specifying rational agent programs. The first challenge thus is to provide a well-
defined semantics for the notions of belief, goal and action which can also provide
a computational interpretation of these notions useful for programming agents.
One of the differences between our approach and earlier attempts to put com-
mon sense concepts to good use in Artificial Intelligence is that we take a definite
engineering stance (contrast [28] and [39]). The concepts are used to introduce a
new agent programming language that provides useful programming constructs
to develop agent programs. The second challenge is to provide agent program-
ming language that is practical, transparent, and useful. It must be practical in the
sense of being easy to use, transparent in the sense of being easy to understand,
and useful in the sense of providing a language that can solve real problems.

4.1.1 The GOAL Agent Programming Language

The agent programming language GOAL that we will introduce and discuss meets
both of the challenges identified above [3, 22]. The distinguishing feature of the
language GOAL is its notion of declarative goals and the way agents derive their
choice of actions from such goals.1 The beliefs and goals of a GOAL agent are called
its mental state. Various constraints are placed on the mental state of an agent,
which roughly correspond to constraints on their common sense counterparts.
On top of the mental attitudes a GOAL agent also has so-called action rules to
guide the action selection mechanism.

1 GOAL is an acronym for Goal-Oriented Agent Language.
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The main features of GOAL include:

• Declarative beliefs: Agents use a symbolic, logical language to represent the in-
formation they have, and their beliefs or knowledge about the environment
they act upon in order to achieve their goals. This knowledge representation
language is not fixed by GOAL but, in principle, may be varied according to the
needs of the programmer.

• Declarative goals: Agents may have multiple goals that specify what the agent
wants to achieve at some moment in the near or distant future. Declarative
goals specify a state of the environment that the agent wants to establish, they
do not specify actions or procedures how to achieve such states.

• Blind commitment strategy: Agents commit to their goals and drop goals only
when they have been achieved. This commitment strategy, called a blind com-
mitment strategy in the literature [34], is the default strategy used by GOAL
agents. Rational agents thus do not have goals that they believe are already
achieved, a constraint which has been built into GOAL agents.

• Rule-based action selection: Agents use so-called action rules to select actions,
given their beliefs and goals. Such rules may underspecify the choice of action
in the sense that multiple actions may be performed at any time given the
action rules of the agent. In that case, a GOAL agent will select an arbitrary
action for execution.

• Policy-based intention modules: Agents may focus their attention and put all
their efforts on achieving a subset of their goals, using a subset of their ac-
tions, using only knowledge relevant to achieving those goals. GOAL provides
modules to structure action rules and knowledge dedicated to achieving spe-
cific goals. Informally, modules can be viewed as policy-based intentions in the
sense of [6].

• Communication at the knowledge level [31]: Agents may communicate with
each other to exchange information, and to coordinate their actions. GOAL
agents communicate using the knowledge representation language that is also
used to represent their beliefs and goals.

This brief but comprehensive overview of the GOAL language illustrates the range
of concepts that are available to program rational agents. GOAL is a high-level and
expressive language that facilitates programming agents that derive their choice
of action from their beliefs and goals. Arguably, as the reader may convince his
or herself by means of the examples provided below, the language is easy to un-
derstand, which is achieved by a careful balance between the rich common sense
intuitions associated with these concepts and their formal counterparts that have
been incorporated into GOAL. Moreover, transparency is achieved since the pro-
gramming contructs available do not aim at capturing all the subtle nuances of
the rich common sense concepts but only their core meaning.
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4.2 Language

In Section 4.2.1, the GOAL language is firstly introduced by means of a number
of examples that illustrate what a GOAL agent program looks like. A classical and
well-known domain called the Blocks World has been used for this purpose. We
like to think of the Blocks World as the "hello world" example of agent program-
ming (see also [40]). It is both simple and rich enough to demonstrate various of
the available programming constructs in GOAL. In Section 4.2.2 the operational
semantics of GOAL is introduced as well as a program logic to verify properties of
GOAL agents.

4.2.1 Syntactical Aspects

A GOAL agent decides which action to perform next based on its beliefs and goals.
In a Blocks World the decision amounts to where to move a block, in a robotics
domain it might be where to move to or whether to pick up something with
a gripper or not. Such a decision typically depends on the current state of the
agent’s environment as well as general knowledge about this environment. In the
Blocks World an agent needs to know what the current configuration of blocks
is and needs to have basic knowledge about such configurations (e.g. when is a
block part of a tower) to make a good decision. The former type of knowledge is
typically dynamic and changes over time, whereas the latter typically is static and
does not change over time. In line with this distinction, two types of knowledge of
an agent are distinguished: conceptual or domain knowledge stored in a knowledge
base and beliefs about the current state of the environment stored in a belief base.
A decision to act will usually also depend on the goals of the agent. In the Blocks
World a decision to move a block on top of an existing tower of blocks would
be made, for example, if it is a goal of the agent to have the block on top of
that tower. In a robotics domain it might be that the robot has a goal to bring a
package somewhere and therefore picks it up. Goals of an agent are stored in a goal
base. The goals of an agent may change over time, for example, when the agent
adopts a new goal or drops one of its goals. As a rational agent should not pursue
goals that it already believes to be achieved, such goals need to be removed. GOAL
provides a built-in mechanism for doing so based on a so-called blind commitment
strategy. We will discuss this built-in goal update mechanism in more detail below.
Together, the knowledge, beliefs and goals of an agent make up its mental state.
A GOAL agent inspects and modifies this state at runtime analogously as a Java
method operates on the state of an object. Agent programming in GOAL therefore
can also be viewed as programming with mental states.
To select an action a GOAL agent needs to be able to inspect its knowledge, beliefs
and goals. An action may or may not be selected if certain things follow from
an agent’s mental state. For example, if a block is misplaced, that is, the current
position of the block does not correspond with the agent’s goals, the agent may
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decide to move it to the table. A GOAL programmer needs to write special con-
ditions called mental state conditions in order to verify whether the appropriate
conditions for selecting an action are met. In essence, writing such conditions
means specifying a strategy for action selection that will be used by the GOAL
agent. Such a strategy is coded in GOAL by means of action rules which define
when an action may or may not be selected. After selecting an action, an agent
needs to perform the action. Performing an action in GOAL means changing the
agent’s mental state. An action to move a block, for example, will change the
agent’s beliefs about the current position of the block. The effects of an action on
the mental state of an agent need to be specified explicitly in a GOAL agent pro-
gram by the programmer except for a few built-in actions. Whether or not a real
(or simulated) block will also be moved in an (simulated) environment depends on
whether the GOAL agent has been adequately connected to such an environment.
Although there are many interesting things to say about this connection (related
to e.g. failure of actions and percepts obtained through sensors), in this chapter
we will not discuss this in any detail.
We are now ready to define more precisely what a GOAL agent is. A basic GOAL
agent program consists of five sections: (1) a set of domain rules, which is optional,
collectively called the knowledge base of the agent, (2) a set of beliefs, collectively
called the belief base, (3) a set of goals, called the goal base, (4) a program section
which consists of a set of action rules, and (5) an action specification that consists
of a specification of the pre- and post-conditions of the actions available to the
agent. To avoid confusion of the program section with the agent program itself,
from now on, the agent program will simply be called agent. The term agent will
be used both to refer to the program text itself as well as to the execution of such a
program. It should be clear from the context which of the two senses is intended.
An Extended Backus-Naur Form syntax definition (cf. [38]) of a GOAL program is
provided in Table 4.1.2 The syntax specification of GOAL also contains references
to modules. Modules are discussed in Section 4.2.1.2.

4.2.1.1 A GOAL Blocks World Agent

In order to explain how a GOAL agent works, we will design an agent that is able
to effectively solve Blocks World problems. To this end, we now briefly introduce
the Blocks World domain. The Blocks World is a simple environment that consists
of a finite number of blocks that are stacked into towers on a table of unlimited
size. It is assumed that each block has a unique label or name a, b, c, .... Labelling

2 Here, boldface is used to indicate terminal symbols, i.e. symbols that are part of an actual
program. Italic is used to indicate nonterminal symbols. [...] is used to indicate that ... is optional,
| is used to indicate a choice, and ∗ and + denote zero or more repetitions or one or more
repetitions of a symbol, respectively. The nonterminal clause refers to arbitrary Prolog clauses,
which is dependent on the Prolog system used. The current implementation of GOAL uses SWI-
Prolog [42]. It is only allowed, however, to use a subset of the built-in predicates available in
SWI-Prolog; in particular, for example, no meta-predicates can be used.
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program ::= main id {
[knowledge { clause∗ }]
beliefs { clause∗}
goals { poslitconj∗}
program { (actionrule | module )+}
action-spec {actionspecification}

}
module ::= module id {

context { mentalstatecond }
[knowledge { clause∗ }]
[goals { poslitconj∗}]
program { (actionrule | module )+}
[action-spec {actionspecification}]

}
clause ::= any legal Prolog clause .

poslitconj ::= atom {, atom}∗ .
litconj ::= [not]atom {, [not]atom}∗

atom ::= predicate[parameters]
parameters ::= (id{ ,id}∗ )
actionrule ::= if mentalstatecond then action .

mentalstatecond ::= mentalatom { , mentalatom }∗ | not( mentalstatecond )
mentalatom ::= true | bel ( litconj ) | goal ( litconj )

actionspec ::= action { pre{litconj} post{litconj} }
action ::= user-def action | built-in action

user-def action ::= id[parameters]
built-in action ::= insert( poslitconj ) | delete( poslitconj ) |

adopt( poslitconj ) | drop( poslitconj ) |
send( id , poslitconj )

id ::= (a..z | A..Z | _ | $) { (a..z | A..Z | _ | 0..9 | $) }∗

Table 4.1 Backus Naur Syntax Definition

blocks is useful because it allows us to identify a block uniquely by its name.
This is much simpler than having to identify a block by means of its position
with respect to other blocks, for example. Typically, labels of blocks are used to
specify the current as well as goal configurations of blocks, a convention that we
will also use here. Observe that in that case labels define a unique feature of each
block and they cannot be used interchangeably as would have been the case if
only the colour of a block would be a relevant feature in any (goal) configuration.
In addition, blocks need to obey the following "laws" of the Blocks World: (i) a
block is either on top of another block or it is located somewhere on the table;
(ii) a block can be directly on top of at most one other block; and, (iii) there is
at most one block directly on top of any other block (cf. [11]).3 Although the
Blocks World domain defines a rather simple environment it is sufficiently rich
to illustrate various features of GOAL and to demonstrate that GOAL allows to
program simple and elegant agent programs to solve such problems.

3 For other, somewhat more realistic presentations of this domain that consider e.g., limited
table size, and varying sizes of blocks, see e.g. [18].
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Fig. 4.1 Example Blocks World problem taken from [40].

A Blocks World problem is the problem of which actions to perform to transform
an initial state or configuration of towers into a goal configuration, where the
exact positioning of towers on the table is irrelevant. A Blocks World problem
thus defines an action selection problem which is useful to illustrate the action
selection mechanism of GOAL. See Figure 4.1 for an example problem. Here we
assume that the only action available to the agent is the action of moving one
block that is on top of a tower onto the top of another tower or to the table. A
block on top of a tower, that is, a block without any block on top of it, is said to
be clear. As there is always room to move a block onto the table, the table is also
said to be clear.
The performance of a Blocks World agent can be measured by means of the num-
ber of moves it needs to transform an initial state or configuration into a goal
state. An agent performs optimally if it is not possible to improve on the num-
ber of moves it uses to reach a goal state.4 Some basic insights that help solving a
Blocks World problem and that are used below in the design of an agent that can
solve such problems are briefly introduced next. A block is said to be in position
if the block in the current state is on top of a block or on the table and this cor-
responds with the goal state, and all blocks (if any) below it are also in position.
A block that is not in position is said to be misplaced. In Figure 4.1 all blocks ex-
cept block c and g are misplaced. Observe that only misplaced blocks have to be
moved in order to solve a Blocks World problem. The action of moving a block
is called constructive if in the resulting state that block is in position. It should be
noted that in a Blocks World where the table has unlimited size in order to reach

4 The problem of finding a minimal number of moves to a goal state is also called the optimal
Blocks World problem. This problem is NP-hard [18]. It is not within the scope of this chapter
to discuss either the complexity or heuristics proposed to obtain near-optimal behaviour in the
Blocks World; see [13] for an approach to define such heuristics in GOAL.
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the goal state it is only useful to move a block onto another block if the move is
constructive, that is, if the move puts the block in position. Also observe that a
constructive move always decreases the number of misplaced blocks.5

Representing Knowledge, Beliefs and Goals

One of the first steps in developing and writing a GOAL agent is to design and
write the knowledge, beliefs and goals that an agent needs to meet its design ob-
jectives. The process of doing so need not be finished in one go but may need
several iterations during the design of an agent before completing the knowledge,
beliefs, and goals sections of a GOAL agent. It is however important to get the
representation of the agent’s knowledge, beliefs and goals right as both the action
specifications and action rules also depend on it. To do so we need a knowledge rep-
resentation language that we can use to describe the content of the various mental
attitudes of the agent. Although, as will be explained in Section 4.2.2, GOAL is not
married to any particular knowledge representation language, here, Prolog will be
used to present an example GOAL agent. We assume the reader to be familiar with
the basics of Prolog (see [41] for a classic introduction), although familiarity with
first-order logic probably will be sufficient to understand the example.
In the Blocks World, first of all we need to be able to represent the configuration
of blocks. That means we need to be able to represent which block is on another
block and which blocks are clear. In order to do so, the expressions on(X,Y) and
clear(X) are introduced. The predicate on is used to express that block X is on
Y, where Y may be either another block or the table. For example, on(a,b)
is used to represent the fact that block a is on block b and on(b,table) is
used to represent that block b is on the table. The predicate clear is used to
represent that nothing is on top of a block and to express that the table is clear,
i.e. there is always an empty spot on the table where a block can be moved to.
It is possible to derive that a block is clear from the facts expressed in terms of
the on predicate and we will introduce a logical rule to do so below. It is not
possible to similarly derive that the table is always clear (because it is a basic
assumption we have made) and we need to represent this fact explicitly by means
of the expression clear(table). Finally, to be able to distinguish blocks from
the table, the expression block(X) is introduced to express that X is a block.
Using the on predicate makes it possible to define the states a Blocks World can be
in. A state is defined as a set of facts of the form on(X,Y) that is consistent with
the basic "laws" of the Blocks World introduced above. Assuming that the set of
blocks is given, a state that contains a fact on(X,Y) for each block X in that set
is called complete, otherwise it is called a partial state. In the remainder, we only
consider complete states. It is now also possible to formally define a Blocks World
problem. A Blocks World problem is a pair 〈Binitial, G〉 where Binitial denotes

5 It is not always possible to make a constructive move, which explains why it is sometimes hard
to solve a Blocks World problem optimally. In that case the state of the Blocks World is said to
be in a deadlock, see [40] for a detailed explanation.
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the initial state and G denotes the goal state. The labels Binitial and G have been
intentionally used here to indicate that the set of facts that represent the initial
state correspond with the initial beliefs and the set of facts that represent the goal
state correspond with the goal of an agent that has as its main aim to solve a Blocks
World problem.

1 main BlocksWorldAgent
2 { This agent solves the Blocks World problem of Figure 1.
3 knowledge{
4 block(a), block(b), block(c), block(d), block(e), block(f), block(g).
5 clear(table).
6 clear(X) :- block(X), not(on(Y,X)).
7 tower([X]) :- on(X,table).
8 tower([X,Y|T]) :- on(X,Y), tower([Y|T]).
9 }

10 beliefs{
11 on(a,b), on(b,c), on(c,table), on(d,e), on(e,table), on(f,g), on(g,table).
12 }
13 goals{
14 on(a,e), on(b,table), on(c,table), on(d,c), on(e,b), on(f,d), on(g,table).
15 }
16 program{
17 if a-goal(tower([X,Y|T])), bel(tower([Y|T])) then move(X,Y).
18 if a-goal(tower([X|T])) then move(X,table).
19 }
20 action-spec{
21 move(X,Y) {
22 pre{ clear(X), clear(Y), on(X,Z) }
23 post{ not(on(X,Z)), on(X,Y) }
24 }
25 }
26 }

Table 4.2 GOAL Agent Program for solving the Blocks World Problem of Figure 4.1

In the agent program listed in Table 4.2 the beliefs section consists of the facts
that represent the initial state of the Blocks World problem of Figure 4.1. These
facts are represented in the program as a single conjunction (where the comma-
symbol denotes conjunction in Prolog). It would not have made a difference if
each of these facts would have been represented as individual clauses separated
here by the period-symbol. Similarly, the goal state corresponding with Figure
4.1 is represented as a single conjunction in the goals section in the program. In
the goals section, however, it is important to represent the goal to be achieved
as a single conjunction. The reason is that each of the facts present in the goals
section need to be achieved simultaneously. If these facts would have been included
as clauses separated by the period-symbol this would have indicated that the agent
has multiple, independent goals. Observe that it is not the same to have two separate
goals on(a,b) and on(b,c) instead of a single goal on(a,b), on(b,c) as
in the first case we may put a on top of b, remove a again from b, and put b
on top of c which would not achieve a state where a is on top of b which is
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on top of c simultaneously.6 It thus is important to keep in mind that, from a
logical point of view, the period-symbol separator in the beliefs (and knowledge
section) means the same as the conjunction operator represented by the comma-
symbol, but that the meaning of these separators is different in the goals section.
In the goals section the conjunction operator is used to indicate that facts are
part of a single goal whereas the period-symbol separator is used to represent that
an agent has several different goals that need not be achieved simultaneously. As
separate goals may be achieved at different times it is also allowed that single
goals when they are taken together are inconsistent, where this is not allowed in
the beliefs section of an agent. For example, an agent might have the two goals
on(a,b) and on(b,a). Obviously these cannot be achieved simultaneously,
but they can be achieved one after the other.
Facts that may change at runtime should be put in the beliefs section. They are
used to initialise the belief base of a GOAL agent that may change when a GOAL
agent performs actions. Facts that do not change may be put in the knowledge
section of a GOAL agent. These are used to initialise the knowledge base of the
agent which is never modified at runtime. For this reason, the facts of the form
block(X) representing the blocks present in the Blocks World are put in the
knowledge section in Table 4.2. All blocks present in Figure 4.1 are enumerated
in this section. The fact that the table is clear is also put in the knowledge section.
In addition, domain knowledge related to the Blocks World is represented here.
For example, the rule clear(X) :- block(X), not(on(Y,X)) can be
read as defining when a block X is clear, which is the case whenever there is no
other block on top of X. Observe that this rule is only correct if a state represented
by the agent’s beliefs is complete, as the negation of Prolog succeeds whenever
no proof can be constructed for on(Y,X) (negation as failure). That is, Prolog
supports the closed world assumption which is the presumption that what is not
currently known to be true is false.
A GOAL agent derives conclusions by combining its knowledge and beliefs. This
allows an agent to draw conclusions about the current state it believes it is in using
the rules present in the knowledge section. For example, the agent in Table 4.2
may derive that clear(a), which expresses that block a is clear, by means of
the rule clear(X) :- block(X), not(on(Y,X)). This follows since we
have block(a) according to the knowledge base of the agent and the belief base
does not contain a fact on(X,a) for any X.
Although a programmer may also include rules in the beliefs section it is a better
practice to include these in the knowledge section. One reason is that GOAL does
not allow to modify such rules at runtime. Another reason is that rules present
in the knowledge section may also be used when reasoning with goals. The def-
inition of the predicate tower in the knowledge section in Table 4.2 provides

6 Incidentally, note that these observations are related to the famous Sussman anomaly. Early
planners were not able to solve simple Blocks World problems because they constructed plans
for subgoals (parts of the larger goal) that could not be combined into a plan to achieve the main
goal. The Sussman anomaly provides an example of a Blocks World problem that such planners
could not solve, see e.g. [17].
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an example where this is useful. The rules that define this predicate define when a
list of blocks [X|T] is a tower. The first rule tower([X]) :- on(X,table)
requires that the basis of a tower is grounded on the table. The second rule recur-
sively defines that whenever [Y|T] is a tower, extending this tower with a block X
on top of Y also yields a tower, that is, [X,Y|T] is a tower. Observe that it is not
required that block X is clear and a stack of blocks that is part of a larger tower also
is considered to be a tower. For example, it is possible to derive tower([b,c])
using the facts representing the initial state depicted in Figure 4.1.
It turns out that the concept of a tower is particularly useful for defining when a
block is in position or misplaced. In order to provide such a definition, however,
we need to be able to derive that an agent has the goal of realizing a particular
tower. This cannot be derived from the information present in the goal base of
the example agent but requires additional conceptual knowledge which defines
the notion of a tower. In combination with the conceptual knowledge present in
the knowledge base it is possible, however, to derive such a goal, which illustrates
that it is useful to derive conclusions from a single goal in combination with the
knowledge base. By doing so, for example, it is possible for the example agent of
Table 4.2 to derive that tower([e,b]) is a (sub)goal. It can do so by means of
the rules that define the predicate tower in the knowledge base of the agent and
the (sub)goals on(b,table) and on(e,b) in the goal base.

Mental State Conditions

Agents that derive their choice of action from their beliefs and goals need the
ability to inspect their mental state. In GOAL, mental state conditions provide the
means to do so. These conditions are used in action rules to determine which
actions the agent may consider to perform. A mental state condition consists of
mental atoms which are conditions on the belief base of the form bel(ϕ) and
conditions on the goal base of the form goal(ϕ) where ϕ is a conjunction of
literals.
Informally, bel(ϕ) can be read as "the agent believes that ϕ". bel(ϕ) holds
whenever ϕ can be derived from the belief base in combination with the knowl-
edge base. Using the same example as above, it follows in the initial state that
bel(clear(a)), which expresses that the agent believes that block a is clear.
Similarly, goal(ϕ) can be read as "the agent has a goal that ϕ". goal(ϕ) holds
whenever ϕ can be derived from a single goal in the goal base in combination
with the knowledge base.7 Again using the same example as above, it follows given
the goal base of Table 4.2 and the definition of the tower predicate in the knowl-
edge section that goal(tower([e,b])) since on(b,table) and on(e,b)
are present in the goal base.

7 This reading differs from that provided in [3] where the goal operator is used to denote achieve-
ment goals, which additionally require that the agent does not believe that ϕ. The goal operator
goal introduced here is more basic and, in combination with the belief operator bel, allows
to define achievement goals.
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A mental state condition is a conjunction of mental atoms of the form bel(ϕ)
and goal(ϕ), or a negation of a mental state condition ψ of the form not(ψ).
For example, the mental state condition
goal(on(b,table)), not(bel(on(b,table))
expresses that the agent has a goal that block b is on the table but does not be-
lieve that this is the case (yet). Such goals that have still to be achieved are also
called achievement goals. As achievement goals are important reasons for choos-
ing actions and are frequently used in GOAL programs to this end, a new operator
a-goal(ϕ)is introduced as an abbreviation for mental state conditions of the
form goal(ϕ), not(bel(ϕ)).8

a-goal(ϕ)
df
= goal(ϕ), not(bel(ϕ))

Interestingly, this operator provides what is needed to express that a block is mis-
placed as a block is misplaced whenever the agent believes that the block’s current
position is different from the position the agent wants it to be in.9 As the position
of the tower which a block is part of is irrelevant, the fact that a block X is not in
position can be represented by a-goal(tower([X|T])) where T is a tower.
a-goal(tower([X|T])) expresses that in the goal state block X is on top of
the tower T but the agent does not believe that this is already so in the current
state. The concept of a misplaced block is important for defining a strategy to
resolve a Blocks World problem, since only misplaced blocks have to be moved,
and can be expressed easily and elegantly in GOAL using mental state conditions.
Another useful mental state condition is goal(ϕ), bel(ϕ) which ex-
presses that a (sub)goal has been achieved. Instantiating the template ϕ with
tower([X|T]), this condition expresses that the current position of a block
X corresponds with the position it has in the goal state.10 In this case ϕ is a
(sub)goal that is achieved and we call such a (sub)goal a goal achieved. The op-
erator goal-a(ϕ) is introduced as an abbreviation to denote such goals.

goal-a(ϕ)
df
= goal(ϕ), bel(ϕ)

The condition a-goal(tower([X,Y|T])), bel(tower([Y|T]) provides
another useful example of a mental state condition. It expresses that the achieve-
ment goal to construct a tower tower([X,Y|T])) has been realized except for
the fact that block X is not yet on top of tower [Y|T]. It is clear that whenever it
is possible to move block X on top of block Y the agent would get closer to achiev-

8 See [20] for a discussion of this definition.
9 Actually, here the difference between knowledge and belief is important as we normally would
say something is misplaced only if we know that the block is in a different position. That is, an
agent’s beliefs about the block’s position must also correspond with the actual position of the
block. If, in fact, the block is in the desired position, in ordinary language, we would say that
the block is believed to be misplaced but that in fact it is not.
10 Note that it would not be possible to express this using an achievement goal operator. In [21]
the goal-a operator is used to define the concept of a deadlock [40].
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ing (one of) its goals. Such a move, moreover, would be a constructive move which
means that the block would never have to be moved again. As the possibility to
make a move may be verified by checking whether the precondition of the move
action holds (see below), in combination with the mental state condition, we are
able to verify whether a constructive move can be made. This condition therefore
is very useful to define a strategy for solving Blocks World problems, and is used
in the first action rule in the program section listed in Table 4.2.

Actions

In order to achieve its goals an agent needs to select and perform actions. Unlike
other programming languages, but similar to planners, actions that may be per-
formed by a GOAL agent need to be specified by the programmer of that agent.
GOAL does provide some special built-in actions but typically most actions that
an agent may perform are derived from the environment that the agent acts in.
Actions are specified in the action-spec section of a GOAL agent. These actions
are called user-defined actions. Actions are specified by specifying the conditions
when an action can be performed and the effects of performing the action. The
former are also called preconditions and the latter are also called postconditions.
The action-spec section consists of a set of STRIPS-style specifications [27] of the
form (cf. Table 4.1):

action{
pre{precondition}
post{postcondition}

}

The action specifies the name of the action and its arguments or parameters and is
of the form id[args], where id denotes the name of the action and the [args] part
denotes an optional list of parameters of the form (p1, ..., pn), where the
pi are Prolog terms. If an agent is connected to an environment, the user-defined
actions will be sent to the environment for execution. (In that case it is important
that the name of an action corresponds with the name the environment expects to
receive when it is requested to perform the action.) The parameters of an action
in a GOAL agent may contain free variables which are instantiated at runtime. An
action can only be performed if all free variables in parameters of an action as well
as in the postcondition of the action have been completely instantiated. This is not
only true for user-defined actions but also for built-in actions.
The precondition in an action specification is a conjunction of literals. Precondi-
tions are used to verify whether it is possible to perform an action. A precondition
ϕ is evaluated by verifying whether (an instantiation of) ϕ can be derived from
the belief base (as always, in combination with knowledge in the knowledge base).
Any free variables in a precondition may be instantiated during this process just
like executing a Prolog program returns instantiations of variables. An action is
said to be enabled whenever its precondition is believed to be the case by the agent.
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A postcondition specifies the effect of an action. A postcondition is a conjunction
of literals. In GOAL effects of an action are changes to the mental state of an agent.
The effect ϕ of an action is used to update the beliefs of the agent to ensure the
agent believes ϕ after performing the action. In line with STRIPS terminology, a
postcondition ϕ is also called an add/delete list (see also [17, 27]). Positive literals
ϕ in a postcondition are said to be part of the add list whereas negative literals
not(ϕ) are said to be part of the delete list. The effect of performing an action
is that it updates the belief base by first removing all facts ϕ present in the delete
list and thereafter adding all facts present in the add list. Finally, as an action
can only be performed when all free variables in the postcondition have been
instantiated, each variable present in a postcondition must also be present in the
action parameters or precondition of the action.
In addition, performing an action may affect the goal base of an agent. As a ra-
tional agent should not invest resources such as energy or time into achieving a
goal that has been realized, such goals are removed from the goal base. That is,
goals in the goal base that have been achieved as a result of performing an action
are removed. Goals are removed from the goal base, however, only if they have
been completely achieved. The idea here is that a goal ϕ in the goal base is achieved
only when all of its subgoals are achieved. An agent should not drop any of these
subgoals before achieving the overall goal as this would make it impossible for the
agent to ensure the overall goal is achieved at a single moment in time (see also
the reference to the Sussman anamoly above). The fact that a goal is only removed
when it has been achieved implements a so-called blind commitment strategy [34].
Agents should be committed to achieving their goals and should not drop goals
without reason. The default strategy for dropping a goal in GOAL is rather strict:
only do this when the goal has been completely achieved. This default strategy
can be adapted by the programmer for particular goals by using the built-in drop
action.
In the GOAL agent of Table 4.2 only one action move(X,Y) has been specified.
The precondition specifies that in order to be able to perform action move(X,Y)
of moving X on top of Y both X and Y have to be clear. In addition, the literal
on(X,Z) in the precondition retrieves in variable Z on which particular thing,
i.e. block or table, X is currently on, in order to be able to remove this fact af-
ter performing the action. The precondition of move(X,Y) in Table 4.2 could
have been strengthened by including a condition not(on(X,Y)) to prevent
moves which move a block X on top of block Y in case block X already is on
top of Y. Clearly, such actions are redundant for solving a Blocks World prob-
lem. However, as we will see below, such move options are never generated by
the action selection mechanism of GOAL given the action rules in the program
section. It would be useful to include not(X=Y), however, to prevent moving
a misplaced block on the table to another place on the table. The postcondition
not(on(X,Z)), on(X,Y) of the action move(X,Y) has the effect of (first)
removing the current position on(X,Z) of block X from the belief base and
(thereafter) adding the new position on(X,Y) to it. Even though the precondi-
tion does not preclude moving a block on top of another block it is already on,
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observe that in the case that Z=Y the belief base would not change as a result of
performing the action.
In addition to the possibility of specifying user-defined actions, GOAL provides
several built-in actions for changing the beliefs and goals of an agent, and for
communicating with other agents. Here we only briefly discuss the two built-in
actions adopt(ϕ) and drop(ϕ) which allow for modifying the goal base of an
agent. The action adopt(ϕ) is an action to adopt a new goal ϕ. The precon-
dition of this action is that the agent does not believe that ϕ is the case, i.e. in
order to execute adopt(ϕ) we must have not(bel(ϕ)). The idea is that it
would not be rational to adopt a goal that has already been achieved. The effect
of the action is the addition of ϕ as a single, new goal to the goal base. The action
drop(ϕ) is an action to drop goals from the goal base of the agent. The precon-
dition of this action is always true and the action can always be performed. The
effect of the action is that any goal in the goal base from which ϕ can be derived
is removed from the goal base. For example, the action drop(on(a,table))
would remove all goals in the goal base that entail on(a,table); in the example
agent of Table 4.2 the only goal present in the goal base would be removed by this
action.

Action Rules

The program section specifies the strategy used by the agent to select an action
to perform by means of action rules. Action rules provide a GOAL agent with
the know-how that informs it when it is opportune to perform an action. In line
with the fact that GOAL agents derive their choice of action from their beliefs and
goals, action rules consist of a mental state condition msc and an action action and
are of the form if msc then action. The mental state condition in an action rule
determines whether the corresponding action may be considered for execution or
not. If (an instantiation of) a mental state condition is true, the corresponding
action is said to be applicable. Of course, the action may only be executed if it is
also enabled. If an action is both applicable and enabled we say that it is an option.
We also say that action rules generate options.
The program section of Table 4.2 consists of two action rules. These rules spec-
ify a simple strategy for solving a Blocks World problem. The rule
if a-goal(tower([X,Y|T])), bel(tower([Y|T])) then move(X,Y)
specifies that move(X,Y) may be considered for execution whenever
move(X,Y) is a constructive move (cf. the discussion about the mental state
condition of this rule above). The rule if a-goal(tower([X|T])) then
move(X,table) specifies that the action move(X,table) of moving block
X to the table may be considered for execution if the block is misplaced. As these
are all the rules, the agent will only generate options that are constructive moves
or move misplaced blocks to the table, and the reader is invited to verify that the
agent will never consider moving a block that is in position or making a redun-
dant move that puts a block on top of a block that it already is on. Furthermore,
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observe that the mental state condition of the second rule is weaker than the first.
In common expert systems terminology, the first rule subsumes the second as it
is more specific.11 This implies that whenever a constructive move move(X,Y)
is an option the action move(X,table) is also an option. The set of options
generated by the action rules thus may consist of more than one action. In that
case, GOAL arbitrarily selects one action out of the set of all options. As a result,
a GOAL agent is nondeterministic and may execute differently each time it is run.
A set of action rules may be viewed as specifying a policy. There are two dif-
ferences with standard definitions of a policy in the planning literature, however
[17]. First, action rules do not need to generate options for each possible state. Sec-
ond, action rules may generate multiple options in a particular state and do not
necessarily define a function from the (mental) state of an agent to an action. A
policy for a GOAL agent thus does not need to be universal12 and may underspecify
the choice of action of an agent.

Execution Traces of The Blocks World Agent

We will trace one particular execution of the Blocks World agent of Table 4.2 in
more detail here. As a GOAL agent selects an arbitrary action when there are more
options available, there are multiple traces that may be generated by the agent,
three of which are listed below.

In the initial state, depicted also in Figure 4.1, the agent can move each of the
clear blocks a, d, and f to the table. It is easy to verify the precondition of the
move action in each of these cases by instantiating the action specification of the
move action and inspecting the knowledge and belief bases. For example, instan-
tiating move(X,Y) with block a for variable X and table for variable Y gives
the corresponding precondition clear(a), clear(table), on(a,Z).
By inspection of the knowledge and belief bases, it immediately follows that
clear(table), and we find that by instantiating variable Z with b it follows
that on(a,Z). Using the rule for clear it also follows that clear(a)
and we conclude that action move(a,table) is enabled. Similar reasoning
shows that the actions move(d,table), move(f,table), move(a,d),
move(a,f), move(d,a), move(d,f), move(f,d), move(f,a) are
enabled as well. The reader is invited to check that no other actions are enabled.

(continued overleaf )

11 Thanks to Jörg Müller for pointing this out.
12 In the sense of [37], where a "universal plan" or policy specifies the appropriate action for
every possible situation.
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A GOAL agent selects an action using its action rules. In order to verify whether
moving the blocks a, d, and f to the table are options we need to verify
applicability of actions by checking the mental state conditions of action rules
that may generate these actions. We will do so for block a here but the other cases
are similar. Both rules in the program section of Table 4.2 can be instantiated such
that the action of the rule matches with move(a,table). As we know that
block a cannot be moved constructively, however, and the mental state condition
of the first rule only allows the selection of such constructive moves, this rule
is not applicable. The mental state condition of the second rule expresses that a
block X is misplaced. As block a clearly is misplaced, this rule is applicable. The
reader is invited to verify this by checking that a-goal([a,e,b]) holds in the
initial state of the agent.

Assuming that move(a,table) is selected from the set of options, the action
is executed by updating the belief base with the instantiated postcondition
not(on(a,b)), on(a,table). This means that the fact on(a,b) is re-
moved from the belief base and on(a,table) is added. The goal base may need
to be updated also when one of the goals has been completely achieved, which is
not the case here. As in our example, we have abstracted from perceptions, there
is no need to process any and we can repeat the action selection process again to
select the next action.

As all blocks except for blocks c and g are misplaced, similar reason-
ing would result in a possible trace where consecutively move(b,table),
move(d,table), move(f,table) are executed. At that point in time, all
blocks are on the table, and the first rule of the program can be applied to
build the goal configuration, e.g. by executing move(e,b), move(a,e),
move(d,c), move(f,d). In this particular trace the goal state would be
reached after performing 8 actions.

Additionally, we list the 3 shortest traces - each including 6 actions - that can be
generated by the Blocks World agent to reach the goal state:

Trace1 : move(a, table), move(b, table), move(d, c), move(f, d), move(e, b), move(a, e).
Trace2 : move(a, table), move(b, table), move(d, c), move(e, b), move(f, d), move(a, e).
Trace3 : move(a, table), move(b, table), move(d, c), move(e, b), move(a, e), move(f, d).

There are many more possible traces, e.g. by starting with moving block f to the
table, all of which consist of more than 6 actions.

To conclude the discussion of the example Blocks World agent, in Figure 4.2 the
RSG line shows the average performance of the GOAL agent in number of moves
relative to the number of blocks present in a Blocks World problem. This per-
formance is somewhat better than the performance of the simple strategy of first
moving all blocks to the table and then restacking the blocks to realize the goal
state indicated by the US line13 as the GOAL agent may perform constructive

13 Observe that this simple strategy never requires more than 2N moves if N is the number of
blocks. The label "US" stands for "Unstack Strategy" and the label "RSG" stands for "Random
Select GOAL", which refers to the default action selection mechanism used by GOAL.
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Fig. 4.2 Average Performance of a Blocks World GOAL Agent

moves whenever this is possible and not only after moving all blocks to the table
first.

4.2.1.2 Modules and Focus of Attention

Rational agents are assumed to create partial plans for execution and to not over-
commit to a particular way of achieving a goal. One important reason for not
computing a complete plan is that in a dynamic, uncertain environment an agent
typically does not have sufficient knowledge to fill in the details of a plan that
is guaranteed to succeed. It therefore is better practice to decide on the action to
perform next when the required information is available. As the action selection
mechanism in GOAL ensures that agents select their actions by inspection of their
current mental state overcommitment is avoided. As a result, the Blocks World
agent, for example, provides a robust solution for solving Blocks World problems
because it is flexible in its choice of action. It would still perform well even if
other agents would interfere, assuming that it is able to perceive what happens in
the Blocks World.
Even though action rules provide for a flexible choice of action it is useful to add
additional structure to a GOAL agent. As is the case in almost any programming
language, it is useful to be able to structure parts of a program in a single unit.
In GOAL it is useful to combine related conceptual and domain knowledge, goals,
actions and action rules that are relevant for handling particular situations in a
single structure. Modules provide such a structure in GOAL. Modules provide for
reusability and the encapsulation of related knowledge, goals, actions and action
rules. They also provide a programmer with a tool to focus on the particular
knowledge and skills that an agent needs to handle a situation.
Modules in GOAL also provide for focus in another sense. In many situations it is
natural to focus attention on achieving particular goals and disregard other goals for
the moment. Such focus allows for a more dedicated use of resources and the need
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for creating plans for a subset of ones goals only. It also allows for sequencing po-
tentially conflicting goals. As an example, consider a truck delivery domain where
a truck is supposed to deliver multiple packages to different locations. Given that
the load of packages that the truck may carry is limited, it is useful to focus on the
delivery of packages to a particular subset of locations and only load packages that
need to be delivered to those locations. Modules provide for a mechanism that en-
ables agents to focus attention in this way. In the remainder we will illustrate the
use of modules in the Blocks World domain. This example provides a simple il-
lustration of programming with modules which also illustrates how modules can
be used to program a different strategy for solving a Blocks World problem.
Syntactically, a module is very similar to a GOAL agent. The main difference with
a GOAL agent such as the Blocks World agent discussed in the previous section
is that a module has an additional Context section, which specifies an activa-
tion condition. A distinguishing feature of modules in GOAL is that the context
of a module is specified declaratively. A module’s context specifies not only when
to activate the module but also for what purpose a module is activated. It thus
provides a declarative specification of the intended use of a module. Such specifi-
cations are useful for a programmer as a programmer does not have to inspect the
implementation details inside a module but can read off the intended use from the
context.
Another difference with a GOAL agent is that a module does not have a beliefs
section and that all sections other than the program section are optional. The
reason that a module does not have a beliefs section is that a module specifies
knowledge and skills that are independent of the current state. A module specifies
the generic knowledge and know-how to deal with a particular situation but not
the specifics of a particular state. The belief base of an agent is used to keep track
of the state of the environment and is a "global" component of the agent. This
means that the beliefs of an agent are accessible by and may be modified by any
module. The knowledge and action-spec section are optional because the knowl-
edge in the knowledge section and all actions specified in the action-spec section
of the GOAL agent that contains the module are "inherited" by the module and
are "globally" accessible as beliefs are. The same does not hold for the goals of
an agent, however. The context of a module provides a filter on the set of goals
that the agent currently pursues which allows an agent to focus its attention on a
subset of these goals.
Table 4.3 presents an example module, which can be used by the Blocks World
agent introduced above. In the remainder we assume that the action rules used by
the original agent of Table 4.2 are replaced by the module of Table 4.3 and we
explain how this change modifies the behaviour of that agent.
The context of a module is a mental state condition that serves two functions.
The first function is that a context specifies when a module may be activated. For
example, the context of the module in Table 4.3 specifies that the module may be
activated whenever the agent has an achievement goal to build a tower with block
X as the top of that tower. That is, block X should be clear. The context can also
be viewed as a (pre)condition for activating a composed activity, or a policy, as a
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1 module BuildTower
2 { % This module achieves the goal of building a particular tower of blocks.
3 Context{
4 a-goal(clear(X), tower([X|T]))
5 }
6 program{
7 if a-goal(tower([X,Y|T])), bel(tower([Y|T])) then move(X,Y).
8 if bel(tower([X|T]), not(goal(tower([X|T])) then move(X,table).
9 }

10 action-spec{
11 move(X,Y) {
12 pre{ clear(X), clear(Y), on(X,Z) }
13 post{ not(on(X,Z)), on(X,Y) }
14 }
15 }

Table 4.3 Module Replacing the program Section of the Blocks World Agent

set of action rules in a module specifies such a policy. The second function of a
context is that it is used as a filter on the goals that the agent pursues which selects
a subset of these goals. The goals currently pursued by an agent are said to be in
the agent’s attention set. After activating a module the attention set of an agent is
restricted to those goals in that set that are obtained from a particular instantia-
tion of the context of a module. The goals that are put in the updated attention set
are all goals ϕ that are in the current attention set and correspond with a positive
occurence of a mental atom goal(ϕ) in the instantiated context.14 This means
all other goals in the current attention set of the agent are removed and, that, if a
context does not have positive occurrences of such mental atoms all goals in this
set are removed.15 Any goals introduced by the module’s goals section are added
to this updated attention set. For example, upon activation of the module listed
in Table 4.3, the context of the module is instantiated such that it becomes true.
Assume that the instantiated context is a-goal(clear(g), tower([g])),
which is an achievement goal in the initial state of Figure 4.1. As this con-
text is an abbreviation for a mental state condition with a positive occurrence
of a mental atom of the form goal(clear(g), tower([g])) the goal
clear(g), tower([g]) is included in the attention set of the agent and
all other goals are removed from the attention set. As the goals section in the
module is absent, the resulting attention set would consist of the single goal
clear(g), tower([g]).

14 A mental atom goal(ϕ) occurs positively in a context if it occurs within the scope of an
even number of negations not.
15 Formally, a filter function filter(c,m) with c a context andm a mental state (with a goal base
that provides the current attention set) can be defined as follows: filter(c,m) = {ϕ | m |=c

cθ & goal(ϕ) ∈ pos(cθ)} where pos(c) denotes the set of all positive occurrences of mental
atoms in c and θ is a substitution for variables that occur in c. For a definition of the entailment
relation |=c see Section 4.2.2.1. The filter function filter(c,m) provides the new attention set
after activating a module with context c.



4 Programming Rational Agents in GOAL 139

A module provides not only a means to focus on particular goals but also provides
a context which restricts the choice of action. When a module is activated the ac-
tion rules present in the module are the only rules available to generate action
options. A module may also introduce action specifications that are only avail-
able while the module is executed and specific for handling situations the module
has been designed for. Actions specified in the main GOAL agent, but not those
specified in other modules, are also accessible from within a module. In the ex-
ample in Table 4.3 the move action has been moved from the main GOAL agent
to the module. As a result, it is only possible to move blocks when the module is
activated.
The example module replaces the action rules in the program section of the
Blocks World agent of Table 4.2. The first action rule of that agent which gener-
ates constructive moves is included in the program section of the module. The
second action rule of this agent which generates moves of misplaced blocks to
the table, however, has been replaced by another rule. The reason is that the
original rule assumed that each block is part of the goal configuration and, as a
consequence, any block is either in position or misplaced. As the attention set of
an agent upon activation of a module is restricted we can no longer make this as-
sumption. Instead of being part of a goal condition a block may now be in the way
of achieving a goal of the agent, i.e. it may obstruct making moves with a block
that is part of such a goal because it is above such a block. Therefore, the sec-
ond action rule if bel(tower([X|T]), not(goal(tower([X|T])) then
move(X,table) in Table 4.3 still moves blocks to the table but under a differ-
ent condition. The mental state condition of this rule expresses that block X is
possibly in the way to get to a block needed to achieve a goal of the agent. Here,
possibly in the way means that the agent does not intend the block to be in the po-
sition it believes it to be in.16 Observe that blocks that are misplaced also satisfy
this mental state condition but that blocks that are possibly in the way do not
always satisfy the mental statement condition
goal(tower([X|T])), not(bel(tower([X|T]))). The latter condition
expresses that block X is misplaced and therefore must be part of the agent’s goals
whereas a block that is possibly in the way does not need to be part of one of the
goals of the agent.17

16 We use "does not intend" here instead of the seemingly more natural "does not want" as the
agent is supposed to not have a goal here. The natural language expression "does not want ϕ"
is more commonly used to express that one wants to be in a state where ϕ is not the case (the
effect of which can be strengthed by putting more stress on "not" in the phrase). In other words,
this expression is commonly used to express that one has a goal to achieve that ϕ is not the case.
In contrast, the expression "does not intend" is more commonly used to express the lack of an
intention or goal. From a more technical point of view, as the knowledge representation used
is Prolog, there is no difference between writing not(goal(ϕ)) or goal(not(ϕ)) since
in Prolog the Closed World Assumption is supported (a similar point can be made for the bel
operator). The negation in Prolog is negation as failure and cannot be used to express "explicit"
negation which would be needed to make the distinction.
17 Suppose that block X is misplaced and the agent believes that X is part of a tower [X|T].
In that case, the agent has a goal that the block is part of another tower. That is, we have
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The second action rule may generate options that are not needed to realize the
achievement goal of the agent as there may be stacks of blocks which do not
contain a block needed to build the desired tower and these blocks therefore are
not in the way to achieve this goal. The reader is invited to provide a mental
state condition that more accurately captures the notion of a block being in the
way. (Hint: it is useful to introduce a Prolog definition of the concept above.) The
strategy of building towers in the goal state one by one implemented using the
module construct, however, never requires more than 2N steps where N is the
number of blocks.
Activating a module is making a commitment to achieve the goals in the atten-
tion set that is initialised upon activation. A module is terminated only when the
attention set, i.e. the set of goals currently pursued by the agent, is empty. The
knowledge and skills incorporated in a module need to be sufficient in order to
realize the goals in the agent’s attention set. In addition, another module may
be activated from a module whenever the context of that module is true. In the
example, the agent has a goal to achieve clear(g), tower([g]) and after
moving block f to the table this goal has been achieved and is removed from the
attention set and, as a result, the module is terminated. Upon termination the
agent’s previous goals except for those that have been completely achieved by the
module are put back into the attention set and the agent continues execution.18

4.2.2 Semantics and Verification

In this section we introduce the formal semantics of GOAL and discuss the veri-
fication framework for the language. The semantics of GOAL consists of several
more or less independent parts. The first part defines the semantics of the agent’s
mental state and the mental state conditions that can be used to inspect such states.
The second part defines the semantics of actions and the agent’s action rules used
for choosing an action to perform. The various parts combined together define
the operational semantics of GOAL.

4.2.2.1 Semantics of Mental States

GOAL is a general-purpose agent programming language. The basic design of the
language assumes that beliefs and goals of an agent are specified in a declarative
way. Beliefs of a GOAL agent thus do not encode procedural knowledge but rep-
resent what is the case and goals of a GOAL agent do not specify which actions an
agent wants to perform but represent what state an agent wants to achieve. The

not(goal([X|T])). Vice versa, it is not possible to derive from the fact that a block is possi-
bly in the way that the block is part of one of the goals of the agent and we cannot conclude the
block is misplaced.
18 For further details on and explanation of modules the reader is referred to [19].
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main benefit of using declarative specifications to represent an agent’s beliefs and
goals is that it allows an agent to reason with its beliefs and goals. GOAL thus aims
to facilitate the design of agent programs at the knowledge level [31].
An agent’s mental state consists of its knowledge, its beliefs and its goals as ex-
plained in Section 4.2.1.1. In the current implementation of GOAL these are rep-
resented in Prolog [41, 42]. The knowledge and beliefs of an agent in this imple-
mentation are stored in two different Prolog databases; the storage of goals in this
implementation is slightly more complicated because of the difference in seman-
tics of goals and beliefs. The details are not important here, however, since the
main point we want to make is that GOAL does not commit to any particular
knowledge representation technology. Instead of Prolog an agent might use variants
of logic programming such as Answer Set Programming (ASP; [1]), a database
language such as Datalog [7], the Planning Domain Definition Language (PDDL;
[17]), or other, similar such languages, or possibly even Bayesian Networks [32].
The only assumption that we will make throughout is that an agent uses a sin-
gle knowledge representation technology to represent its knowledge, beliefs and
goals. For some preliminary work on lifting this assumption, we refer the reader
to [13].
In order to abstract from the details of any specific knowledge representation
technology in the presentation of the semantics of GOAL, we first define abstractly
what we mean by a knowledge representation technology. The basic capabilities
that we need such a technology to provide are the capability to represent states
of affairs (which is fundamental), the capability to store these representations in
a storage facility, the capability to reason with them and the capability to change
the representations present in a storage. These capabilities are similar to some of
the functions associated with a knowledge technology as discussed in [15].
The first capability to represent states of affairs is realized by means of a language.
The only assumptions we make about this language is that it defines what a for-
mula is and that it contains a special formula ⊥. In other words, we assume that a
language defines the grammar or syntax of well-formed formulae. We write ϕ ∈ L
to denote that ϕ is a formula of language L; in particular, we have ⊥ ∈ L. In-
tuitively, we think of a formula as a sentence that expresses that a state of affairs is
the case (or not) similar to declarative sentences in natural language. Although the
meaning of formulae of a language is not formally defined, informally, we think
of a formula as having a truth value and of a formula being true or false (but other
possible truth values such as undefined are also allowed). The special formula ⊥ is
assumed to always have the truth value false and is introduced to be able to define
when a set of formulae is inconsistent.
The second capability to store representations is formalised here by means of the
notion of a set. We thus abstract from most implementation details typically asso-
ciated with this capability. A knowledge, belief and goal base each are represented
in the semantics as a set of formulae, or, equivalently, as a subset of a language L.
Below we use D ⊆ L to denote a knowledge base, Σ ⊆ L to denote a belief base,
and Γ ⊆ L to denote a goal base.
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The third capability is realized by means of a consequence relation (also called
entailment). A consequence relation defines when a formula follows from ("is a
consequence of") a set of formulae. We use |= to denote consequence relations
and write T |= ϕ for ϕ follows from a set of formulae T . For example, a formula
ϕ follows from an agent’s belief base Σ whenever we have Σ |= ϕ. When the
special formula ⊥ follows from a set T we say that T is inconsistent; the intuition
here is that in that case T is contradictory, something we typically want to avoid.
For example, we would like an agent’s knowledge and belief base to be consistent.
A consequence relation is the formal counterpart of the reasoning capability of
an agent in the semantics since it allows an agent to derive and reason with its
knowledge, beliefs, and goals.
The fourth and final capability we need is the capability to update an agent’s
beliefs.19 Recall that an agent’s knowledge base is assumed to be static and does
not change since it is assumed to represent conceptual and domain knowledge that
does not change (see also section 4.2.1). In particular we will need to be able to
define how an agent’s beliefs change when it performs an action. In order to do
so an update operator denoted by ⊕ is assumed that updates a set of formulae T
with a formula ϕ. That is, T ⊕ ϕ denotes the new set of formulae obtained after
updating T with ϕ. This will enable us in the next section to say that the resulting
belief base of updating a belief base Σ with the effect ϕ of an action is Σ ⊕ϕ. See
section 4.2.1.1 for a concrete, informally defined STRIPS-style operator.
Summarizing, a knowledge representation technology is defined here as a triple
〈L, |=,⊕〉 with L a language to represent states of affairs, |= a consequence rela-
tion that defines when a formula follows from a set of formulae, and ⊕ defines
how a set of formulae is updated with a given formula.20 Using our definition of
a knowledge representation technology, it is now easy to formally define what a
mental state of an agent is and to formally define the semantics of mental state
conditions. We first define a mental state, since it is needed to define the seman-
tics of mental state conditions as well, and then proceeed to discuss mental state
conditions.
A mental state consists of an agent’s knowledge, its beliefs, and its goals. Each
of these are represented using a particular knowledge representation language L.
The knowledge, beliefs and goals of a rational agent should satisfy some additional
constraints that we will call rationality constraints. First, we assume that an agent’s
knowledge as well as its beliefs are consistent. This is a reasonable assumption,
which may be debated by philosophers, logicians and psychologists, but makes
sense in the context of an agent programming language. We also assume that in-
dividual goals γ ∈ Γ in the goal base of an agent are consistent. It is irrational
for an agent to pursue inconsisent goals, which by definition it cannot achieve.

19 In the setup we use here, we do not need a special capability to update the goal base when an
agent comes to believe it has achieved a goal; in that case we simply remove the goal from the
goal base, which is a set-theoretic operation; see the next section.
20 Technically, we would also need to clarify the notion of a term which may be used to instanti-
ate a variable in order to specify the use of variables in a GOAL agent, but we abstract from such
details here.
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The reason that we require single goals in a goal base to be consistent but not
conjunctions of multiple goals is that we allow an agent to have conflicting goals
in its goal base. For example, an agent may want to achieve a state where the light
is on but thereafter may want to achieve a state where the light is off again. Here
we assume that the language used to express goals is not capable of expressing
such temporal dimensions of goals and therefore allow an agent to have multiple
goals that when viewed as a single goal would be inconsistent. The main reason
for allowing contradictory goals thus is not because we believe that the goals of
an agent may be inconsistent but because of the (assumed) lack of expressivity
of the knowledge representation language used to represent goals here.21 Finally,
an agent is assumed to only have goals which it does not believe to already have
been achieved completely. Any rational agent should avoid investing resources into
achieving something that is already the case. For that reason it should not have
any goals that have already been achieved. Note that an agent is allowed but not
required to believe that the opposite of what it wants is the case; for example, it
may believe the light is on when it wants to have the light off but does not need
to believe so to have the goal.

Definition 4.1. (Mental State)
A mental state is a triple 〈D, Σ, Γ 〉whereD ⊆ L is called a knowledge base,Σ ⊆ L
is a belief base, and Γ ⊆ L is a goal base that satisfy the following rationality
constraints:

• An agent’s knowledge combined with its beliefs is consistent:

D ∪Σ 6|= ⊥

• Individual goals are consistent with an agent’s knowledge:

∀γ ∈ Γ : D ∪ {γ} 6|= ⊥

• An agent does not have goals it believes to be completely achieved: 22

∀γ ∈ Γ : D ∪Σ 6|= γ

The next step in defining the semantics of GOAL is to define the semantics of
mental state conditions. An agent needs to be able to inspect its mental state, and

21 See for work on extending GOAL with temporal logic as a knowledge representation language
[20, 23].
22 The precise formulation of the rationality constraints relating the contents of the goal base to
that of the knowledge and/or belief base of an agent may depend on the knowledge representa-
tion language. In particular, when the knowledge representation language allows for expressing
temporal conditions, e.g. allows for expressing that a state of affairs holds at some time in the
future, then these constraints and the semantics of the G operator below would be in need of
reformulation (see [24]). In that case, the third rationality constraint also could be refined and
in addition we could require that an agent should not have any goals it believes are impossible
to achieve (a condition which can only be properly expressed using temporal operators).
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mental state conditions allow an agent to do so. Mental state conditions are condi-
tions on the mental state of an agent, expressing that an agent believes something
is the case, has a particular goal, or a combination of the two (see also section
4.2.1). Special operators to inspect the belief base of an agent, we use B(ϕ) here,
and to inspect the goal base of an agent, we use G(ϕ) here, are introduced to do
so. We allow boolean combinations of these basic conditions but do not allow the
nesting of operators. Basic conditions may be combined into a conjunction by
means of ∧ and negated by means of ¬. For example, G(ϕ) ∧ ¬B(ϕ) with ϕ ∈ L
is a mental state condition, but B(G(ϕ)) which has nested operators is not. Note
that we do not assume the operators ∧ and ¬ to be present in the L, and if so, a
negation operator might still have a different meaning in L.

Definition 4.2. (Syntax of Mental State Conditions)
A mental state condition ψ is defined by the following rules:

ϕ ::= any element from L
ψ ::= B(ϕ) | G(ϕ) | ψ ∧ ψ | ¬ψ

The meaning of a mental state condition is defined by means of the mental state of
an agent. A belief condition B(ϕ) is true whenever ϕ follows from the belief base
combined with the knowledge stored in the agent’s knowledge base (in order to
define this the consequence relation of the knowledge representation technology
is used). The meaning of a goal condition G(ϕ) is different from that of a belief
condition. Instead of simply defining G(ϕ) to be true whenever ϕ follows from
all of the agent’s goals (combined with the knowledge in the knowledge base),
we will define G(ϕ) to be true whenever ϕ follows from one of the agent’s goals
(and the agent’s knowledge). This is in line with the remarks above that a goal
base may be inconsistent, i.e. may contain multiple goals that taken together are
inconsistent. We do not want an agent to conclude it has the absurd goal ⊥ (i.e.
to achieve the impossible). Since individual goals are assumed to be consistent, we
can use these individual goals to infer the goals of an agent.

Definition 4.3. (Semantics of Mental State Conditions)
Let m = 〈D, Σ, Γ 〉 be a mental state. The semantics of mental state conditions ψ
is defined by the following semantic clauses:

m |=c B(ϕ) iff D ∪Σ |= ϕ,
m |=c G(ϕ) iff ∃γ ∈ Γ : D ∪ {γ} |= ϕ,
m |=c ψ1 ∧ ψ2 iff m |=c ψ1 and m |=c ψ2,
m |=c ¬ψ iff m 6|=c ψ.

Note that in the definition of the semantics of mental state conditions we have
been careful to distinguish between the consequence relation that is defined, de-
noted by |=c, and the consequence relation |= assumed to be given by the knowl-
edge representation technology and used to define |=c. The definition thus shows
how the meaning of a mental state condition can be derived from the semantics
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of more basic notions defined in an arbitrary knowledge representation technol-
ogy.23

In the remainder of this section, it is useful to assume that the knowledge repre-
sentation language at least provides the propositional operators for conjunction
and negation. Here we will simply use the same notation ∧ and ¬ also used for
mental state conditions to refer to these operators in the knowledge representa-
tion language L as well. Given this assumption, note that because of the fact that
a goal base may contain multiple goals that are inconsistent when taken together,
it follows that we may have that G(ϕ) as well as G(¬ϕ). It should be clear from
our previous discussion however that it does not follow from this that G(ϕ∧¬ϕ)
also holds. To repeat, intuitively, G(ϕ) should be interpreted as expressing that
the agent wants to achieve ϕ some time in the future. Given this reading of G(ϕ)
it is perfectly consistent for an agent to also have a goal ¬ϕ, i.e. G(¬ϕ).

P1 if ψ is an instantiation of a classical tautology, then |=c ψ.
P2 if |= ϕ, then |=c Bϕ.
P3 |=c B(ϕ→ ϕ′) → (Bϕ→ Bϕ′).
P4 |=c ¬B⊥.
P5 |=c ¬G⊥.
P6 if |= ϕ→ ϕ′, then |=c Gϕ→ Gϕ′.

Table 4.4 Properties of Beliefs and Goals

Some other properties of the belief and goal modalities and the relation between
these operators are listed in Table 4.4. Here, we use → to denote implication,
which can be defined in the usual way by means of the conjunction ∧ and nega-
tion ¬. The first property (P1) below states that mental state conditions that in-
stantiate classical tautologies, e.g. Bϕ ∨ ¬Bϕ and Gϕ → (Bϕ′ → Gϕ), are valid
with respect to |=c. Property (P2) corresponds with the usual necessitation rule
of modal logic and states that an agent believes all validities of the base logic. (P3)
expresses that the belief modality distributes over implication. This implies that
the beliefs of an agent are closed under logical consequence. Finally, (P4) states
that the beliefs of an agent are consistent. In essence, the belief operator thus
satisfies the properties of the system KD (see e.g. [30]). Although in its current
presentation, it is not allowed to nest belief or goal operators in mental state con-
ditions in GOAL, from [30], section 1.7, we conclude that we may assume as if our
agent has positive (Bϕ→ BBϕ) and negative (¬Bϕ→ B¬Bϕ) introspective prop-
erties: every formula in the system KD45 (which is KD together with the two
mentioned properties) is equivalent to a formula without nestings of operators.
Property (P5) states that an agent also does not have inconsistent goals, that is, we
have |=c ¬G⊥. Property (P6) states that the goal operator is closed under implica-

23 This semantics was first introduced in [22]. For a discussion of alternative semantics for goals,
see also [35].
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tion in the base language. That is, whenever ϕ → ϕ′ is valid in the base language
then we also have that Gϕ implies Gϕ′. This is a difference with the presentation
in [3] which is due to the more basic goal modality we have introduced here. For
the same reason we also have that Bϕ ∧Gϕ is not inconsistent.
We may now put our definitions to work and provide some examples of what we
can do. First, as discussed in section 4.2.1, we can introduce some useful abbreva-
tions. In particular, we can define the notions of an achievement goal A-goal(ϕ)
and the notion of a goal achieved goal-A(ϕ) as follows:

A-goal(ϕ)
df
= G(ϕ) ∧ ¬B(ϕ),

goal-A(ϕ)
df
= G(ϕ) ∧ B(ϕ).

For some properties of the A-goal operator we refer the reader to [3], Lemma
2.4. Both of these defined operators are useful when writing agent programs. The
first is useful to derive whether a part of a goal has not yet been (believed to be)
achieved whereas the second is useful to derive whether a part of a goal has already
been (believed to be) achieved. For some concrete examples, please refer back to
section 4.2.1. It should be noted that an agent is allowed to believe part of one
of its goals has been achieved but cannot believe that one of its goals has been
completely achieved as such goals are removed automatically from the goal base.
That is, whenever we have γ ∈ Γ we must have both A-goal(γ) as well as G(γ)
since it is not allowed by the third rationality constraint in Definition 4.1 that an
agent believes γ in that case.
Note that in this section we have only used the first two components of a knowl-
edge representation technology, the language L and consequence relation |=, so
far. We will use the third component, the update operator ⊕, in the next section
to formally define the effects of performing an action.

4.2.2.2 Semantics of Actions and Action Selection

GOAL has a formal, operational semantics defined by means of Plotkin-style tran-
sition semantics [33]. The details of the semantics of modules and communication
are not discussed here.24

In order to define the semantics of actions, we need to model both when an ac-
tion can be performed as well as what the effects of performing an action are.
As actions, except for the built-in actions, are user-defined, we introduce some
assumptions about what information is available to define the semantics. First,
we assume that it is known which actions the agent can perform, i.e. those
actions specified by the programmer in the agent program, and that these ac-
tions are given by a set A. Second, we assume that two mappings pre and post

24 The reader is referred to [19] for a detailed semantics of modules. Communication in the
current implementation of GOAL implements a simple "mailbox semantics" as in 2APL [12].
In GOAL, messages are stored in an agent’s mailbox and may be inspected by querying special,
reserved predicates sent and received. See for a discussion also section 4.2.4.
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which map actions a from this set of actions A and mental states m to a for-
mula ϕ in the knowledge representation language L are given. The mappings
pre and post are assumed to provide the preconditions respectively postcondi-
tions associated with an action in a given state. For example, we would have
pre(move(a,table),m)=clear(a), clear(table), on(a,b) in the
initial state mental m of the GOAL agent listed in Table 4.2 and
post(move(a,b),m)=not(on(a,b)),on(a,table). Finally, we also as-
sume that the postconditions specified by post for each action are consistent with
the domain knowledge of the agent. As the domain knowledge of an agent is
assumed to be static, it would not be possible to perform an action with a post-
condition that conflicts with the agent’s domain knowledge without violating the
rationality constraints introduced earlier.
The precondition of an action is used to represent when an action can be per-
formed, whereas the postcondition is used to represent the effects of an action.
An action may affect both the beliefs and goals of an agent. The postcondition ex-
presses how the beliefs of an agent’s mental state should be updated. This is where
the update operator ⊕ of the knowledge representation technology is useful. The
new belief base that results from performing an action a ∈ A can be obtained by
applying this operator. In addition, the goals that have been completely achieved
need to be removed from the goal base. This transformation of the mental state is
formally defined by means of a mental state transformer function M, which also
provides the semantics of the built-in actions adopt and drop below.

Definition 4.4. (Mental State Transformer M)
Let pre and post be mappings from A to L. Then the mental state transformer
function M is defined as a mapping from user-defined and built-in actions A ∪
{adopt(ϕ), drop(ϕ) |ϕ ∈ L} and mental states m = 〈D, Σ, Γ 〉 to mental states
as follows:

M(a,m) =
{
〈D, Σ′, Γ \ Th(D ∪Σ′)〉 if D ∪Σ |= pre(a,m)
undefined otherwise

M(adopt(ϕ),m) =
{
〈D, Σ, Γ ∪ {ϕ}〉 if 6|= ¬ϕ and Σ 6|= ϕ
undefined otherwise

M(drop(ϕ),m) = 〈Σ,Γ \ {ψ ∈ Γ | ψ |= ϕ}〉

where Σ′ = Σ ⊕ post(a,m) and Th(T ) = {ϕ ∈ L | T |= ϕ}.

As discussed above, an action rule r is of the form if ψ then a. An action rule
specifies that action a may be performed if the mental state condition ψ and the
precondition of a hold. In that case, we say that action a is an option. At runtime,
a GOAL agent non-deterministically selects an action from the set of options. This
is expressed in the following transition rule, describing how an agent gets from
one mental state to another.

Definition 4.5. (Action Semantics)
Let m be a mental state, and r =if ψ then a be an action rule. The transition
relation a−→ is the smallest relation induced by the following transition rule.
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m |=c ψ M(a,m) is defined

m
a−→M(a,m)

The execution of a GOAL agent results in a computation. We define a computation
as a sequence of mental states and actions, such that each mental state can be
obtained from the previous by applying the transition rule of Definition 4.5. As
GOAL agents are non-deterministic, the semantics of a GOAL agent is defined as
the set of possible computations of the GOAL agent, where all computations start
in the initial mental state of the agent.

Definition 4.6. (Computation)
A computation, typically denoted by t, is an infinite sequence of mental states
m0, a0,m1, a1,m2, a2, . . . such that for each i we have that mi

ai−→ mi+1 can be
derived using the transition rule of Definition 4.5, or for all j > i, mj = mi and
mi 6

a−→ m′ for any a and m′. The meaning S of a GOAL agent with initial mental
state m0 is the set of all computations starting in that state. We also write tmi to
denote the ith mental state and tai to denote the ith action.

Observe that a computation is infinite by definition, even if the agent is not able
to perform any action anymore from some point in time on. Also note that the
concept of an agent computation is a general notion in program semantics that is
not particular to GOAL. The notion of a computation can be defined for any agent
programming language that is provided with a well-defined operational semantics.

4.2.2.3 Verification Framework

A formal verification framework exists to verify properties of GOAL agents [3].
This verification framework allows for compositional verification of GOAL agents
and has been related to Intention Logic [20]. The language GOAL thus is firmly
rooted in agent theory.
The verification logic for GOAL is based on Linear Temporal Logic extended
with modal operators for beliefs and goals. In addition the logic includes a set of
Hoare rules to reason about actions [3]. The setup of the verification framework
has some similarities with that for Unity [8]. To obtain a verification logic for
GOAL agents temporal operators are added on top of mental state conditions to
be able to express temporal properties over traces. Additionally an operator start
is introduced to be able to pinpoint the start of a trace.25

Definition 4.7. (Temporal Language: Syntax)
The temporal language LG, with typical elements χ, χ′, is defined by:

25 Here, only the temporal semantics is presented. The compositional verification of an agent
program also requires reasoning about actions. [3] introduces so-called Hoare rules to do so. In
[20] an operator [a]χ for reasoning about actions is introduced as this makes it easier to relate
the verification logic for GOAL to Intention Logic [10].
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χ ∈ LG ::= start | ψ ∈ Lm | ¬χ | χ ∧ χ | χUχ

The semantics of LG is defined relative to a trace t and time point i.

Definition 4.8. (Temporal Language: Semantics)
The truth conditions of sentences from LG given a trace t and time point i are
inductively defined by:

t, i |= start iff i = 0,
t, i |= Bφ iff tmi |=c Bφ,
t, i |= Gφ iff tmi |=c Gφ,
t, i |= ¬ϕ iff t, i 6|= ϕ,
t, i |= ϕ ∧ ψ iff t, i |= ϕ and t, i |= ψ,
t, i |= ©ψ iff t, i+ 1 |= ψ,
t, i |= ϕUψ iff ∃j ≥ i : t, j |= ψ and ∀i ≤ k < j : t, k |= ϕ

Using the U operator, other temporal operators such as the "sometime in the
future operator"♦ and the "always in the future operator" can be defined by
♦ψ ::= trueUψ and ψ ::= ¬♦¬ψ.
The temporal logic introduced above has provided a basis for a Maude [9] im-
plementation for the GOAL language which facilitates model checking of GOAL
agents. Maude has been used to verify the Blocks World agent discussed in this
chapter.

4.2.3 Software Engineering Issues

A key step in the development of a GOAL agent is the design of the domain knowl-
edge, the concepts needed to represent the agent’s environment in its beliefs and
the goals of the agent. As it has been discussed above, GOAL does not commit
to any particular knowledge representation language to represent the beliefs and
goals of an agent. In section 4.2.2.1 we have abstracted away from any particular
knowledge representation language and defined an abstract knowledge represen-
tation technology. This abstract knowledge representation has been defined such
that it makes clear what the minimal requirements are that a particular knowl-
edge representation language should satisfy in order to facilitate integration into
GOAL. Although the current implementation has integrated Prolog as the technol-
ogy for knowledge representation, in principle, other languages such as Answer
Set Programming [1], expert system languages such as CLIPS [26], database lan-
guages such as SQL [7], or a language such as PDDL [17] also fit the definition of a
knowledge representation technology in section 4.2.2.1 and could have been used
as well.
The option to integrate other knowledge representation technologies than Prolog
in an agent programming language may facilitate programmers as agent program-
ming per se does not require a programmer to learn a new and specific knowl-
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edge representation language but the programmer may choose its own favorite
knowledge representation tool instead. In principle this flexibility also allows the
integration of, for example, legacy databases. The GOAL interpreter provides an
interface that facilitates such integration in Java.
The GOAL interpreter provides other interfaces that facilitate connecting GOAL
to an environment or to middleware infrastructure on top of which GOAL agents
are run. The interface to an environment is generic and abstracts from the imple-
mentation language used to run the environment. At the time of writing, as the
GOAL interpreter has been written in Java, Java has been used to connect GOAL
agents to an environment. Our view is that this interface can be used and allows
the integration of GOAL agents into a larger application, part of which has been
written in Java or other languages.

4.2.4 Other features of the language

In this section we briefly discuss some other features of the GOAL language that are
important in order to write practical applications. As the main aim of this chapter
is to introduce the core concepts that distinguish GOAL from other languages, we
only discuss some of the issues that are involved in the development of GOAL
agents.

Environments and Sensing

Agents with incomplete information that act in an environment which possibly
inhabits other agents need to have sensors for at least two reasons. First, sensors
provide an agent with the ability to acquire new information about its environ-
ment previously unknown to it and thus to explore its environment. Second, sen-
sors provide an agent with the ability to acquire information about changes in its
environment that are not caused by the agent itself and thus to keep track of the
current state of its environment.
In GOAL, sensing is not represented as an explicit act of the agent but a perceptual
interface is defined between the agent and the environment that specifies which
percepts an agent will receive from the environment. A GOAL agent thus does
not actively perform sense actions (except for the case where the environment
makes such actions available to an agent). Each time after a GOAL agent has per-
formed an action the agent processes any percepts it may have received through
its perceptual interface. Percepts represent "raw data" received from the environ-
ment the agent is operating in. The percept interface is part of the environment
interface to connect GOAL agents to an environment.
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Multi-Agent Systems

GOAL facilitates the development and execution of multiple GOAL agents. A
multi-agent GOAL system needs to be specified by means of a mas file. A mas
file in GOAL is a recipe for running a multi-agent system. It specifies which agents
should be launched when the multi-agent system is launched and which GOAL
source files should be used to initialize those agents. GOAL allows for the possi-
bility that multiple agents instantiate a single GOAL agent file. Various features
are available to facilitate this. In a mas file one can associate multiple agent names
with a single GOAL file. Each agent name additionally can be supplied with a list
of optional arguments. These options include the number of instances of an agent,
indicated by #nr, that should be launched. This option is available to facilitate the
launching of large numbers of agents without also having to specify large numbers
of different agent names. Other options allow to initialize an agent with a particu-
lar set of beliefs specified in a separate file using #include:filename.bb. The
beliefs in the file filename.bb are simply added to the belief base specified in
the agent file. This option allows for the launching of a multi-agent system with a
set of agents that, for example, share the same domain knowledge but have differ-
ent beliefs about the state of the environment. The #override:filename.bb
option is provided to completely override and replace the initial beliefs specified
in the GOAL agent file. The overriding of a by the #override:filename.bb
option simply replaces all beliefs in the initial belief base specified in the GOAL
file; this is implemented by using the file filename.bb to initialize the belief
base of the agent instead of loading the beliefs specified in the GOAL file into the
agent’s belief base. Similar options are available for other sections such as the goals
and action-spec sections of a GOAL agent.
GOAL does not support explicit constructs to enable the mobility of agents. The
main concern in the design of the language is to provide appropriate constructs
for programming rational agents whereas issues such as mobility are delegated to
the middleware infrastructure layer on top of which GOAL agents are run.

Communication at the Knowledge Level

Communication in the current implementation of GOAL is based on a simple
"mailbox semantics", very similar to the communication semantics of 2APL [12].
Messages received are stored in an agent’s mailbox and may be inspected by the
agent by means of queries on special, reserved predicates sent(agent,msg) and
received(agent,msg) where agent denotes the agent the message has been
sent to or received from, respectively, andmsg denotes the content of the message
expressed in a knowledge representation language.
Although a "mailbox semantics" can be used to write agents that communicate
messages, such a semantics leaves too much to the programmer. We feel that a se-
mantics is needed that facilitates programming with the high-level concepts used
to write agents such as beliefs and goals. Agent communication at the knowledge
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level should facilitate communication between agents about their beliefs and goals.
At the time of writing, it seems that there is no commonly agreed approach to in-
corporate communication into agent programming languages. Various languages
take different approaches. The "mailbox semantics" of 2APL is based on com-
munication primitives Send(receiver,performative,content) with
the effect of adding sent(Receiver, Performative, Content) to the
sender’s mailbox and received(Receiver, Performative, Content)
to the receiver’s mailbox. A similar construct is available in Jason [4]. However, the
effect of performing a .send(Receiver,tell,Content) where tell is a
specific instance of a performative is that the receiving agent adds the Content
of the received message to its belief base instead of the fact that a message has been
received.
The semantics of communication in agent programming languages seems rather
poor compared to more theoretical frameworks such as FIPA. FIPA introduces
many primitive notions of agent communication called speech acts. The broad
range of speech act types identified, however, may complicate writing agent pro-
grams and it makes more sense to us to restrict the set of communication prim-
itives provided by an agent programming language. In this respect we favor the
approach taken by Jason which limits the set of communication primitives to a
core set. We would prefer a set of primitives that allows communication of declar-
ative content only in line with our aim to provide an agent programming language
that facilitates declarative programming. We believe this is still an evolving area
that requires more research. It would be useful, from a more practical perspective,
to gain more experience about what would be useful communication primitives
that facilitate the programming of multi-agent systems.

4.3 Platform

4.3.1 Available tools and documentation

The GOAL interpreter can be obtained by downloading the GOAL installer. For
the most up to date version as well as information about the GOAL agent pro-
gramming language the reader may visit

http://mmi.tudelft.nl/~koen/goal.html

Here also additional references to GOAL-related publications can be found. The
language comes with an Integrated Development Environment (IDE) which al-
lows editing and debugging of GOAL agents. The IDE is illustrated in Figures 4.3
and 4.4. Figure 4.3 shows the IDE after loading a mas file into the IDE. Upon
loading a mas file, all files related to the same project are loaded and the plain text
files (inlcuding GOAL files) are ready for editing. jar files related to environments
cannot be edited.
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Fig. 4.3 GOAL Integrated Development Environment

Alternatively, a loaded GOAL mas file can be executed from the IDE and the IDE is
switched automatically to the run environment. Various options are available here
to a user to monitor and debug GOAL agents. Figure 4.4 shows the introspector
that is associated with each agent that is part of the multi-agent system that has
been launched.

Fig. 4.4 GOAL Agent Introspector

The introspector shows the agent’s beliefs and goals, and any percepts and mes-
sages received. The knowledge, action rules and action specfications which are
static parts of a GOAL agent are not shown here but may be inspected by inspect-
ing the GOAL agent program text. The debugging functionality provided by the
IDE can be used to trace the operation of an agent at various levels of granularity,
e.g. at the inference level which allows tracing belief and goal inferences as well
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as at higher levels which allows tracing of action selection only. Additionally, a
sniffer is available to monitor message exchanges between agents.
GOAL comes with documentation discussing the language, IDE and some exam-
ples that are distributed with the language as well. A manual is provided for GOAL,
including a discussion of the main language features, the IDE, installation and
some advice on troubleshooting, and can be obtained from the site referenced
above. The development of a tutorial is planned.

4.3.2 Standards compliance, interoperability and portability

The implementation of GOAL has been tested and runs on most well-known plat-
forms. The system has been tested on Windows XP, Windows Vista 32bit, OSX
Tiger, OSX Leopard (Intel only), and Linux with Ubuntu or Suse 10.1. The GOAL
interpreter has been written in Java and needs SUN Java version 1.5 or higher.
The design of the interpreter has been structured such that it provides a "plu-
gin framework" that, in principle, can be instantiated with various knowledge
representation technologies in line with the discussion in section 4.2.2.1 and vari-
ous middleware systems that facilitate message passing and distributed computing
on multiple machines. This has been achieved by defining a number of interfaces
that specify what functionality the GOAL interpreter expects to be provided by
the knowledge representation technologies or middleware systems. Similarly, an
interface has been created that specifies how the GOAL interpreter can be con-
nected to environments, e.g. a robot system or a simulated environment such as
the Blocks World.
The requirements on the knowledge representation language used are minimal but
the choice may introduce additional dependencies that may have consequences
for portability. The current implementation integrates and uses SWI-Prolog [42]
as the knowledge representation technology. As SWI-Prolog runs on most well-
known operating systems, this does not introduce any severe restrictions, but
other choices may do so. The use of SWI-Prolog does have implications for the
number of agents that may be run on a single machine, however. Since by default
SWI-Prolog reserves 100MB for any instance of a SWI-Prolog engine, in combi-
nation with the memory capacity of a machine on which the GOAL interpreter
is run, this constrains the number of agents that may be run on that machine.
Creating additional GOAL agents that go beyond this limit requires distributing
these agents on multiple machines.
Similarly, the GOAL interpreter does not depend on any particular middleware
infrastructure. The current implementation uses JADE [2] to facilitate interoper-
ability with other systems that are built on top of JADE, but in principle any
other middleware system that provides for message passing and the distributed
execution of agents on multiple machines may be chosen. The middleware on top
of which GOAL is run may also introduce additional dependencies or constraints
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on the GOAL interpreter. We did not encounter any severe problems, however,
while running GOAL on top of JADE on the platforms listed above.
The GOAL framework does not itself provide support for open systems nor for
heterogeneous agents. GOAL agents are particular agents defined by their beliefs,
goals and action rules that facilitate decision making. GOAL agents may neverthe-
less interact with other types of agents whenever these agents run on top of the
same middleware infrastructure and exchange messages using the facilities pro-
vided by this infrastructure.

4.3.3 Other features of the platform

The current state of the GOAL platform is still a prototype. The core of the GOAL
framework is stable and well-defined in several papers [3, 19, 21, 22] and has been
implemented in the GOAL interpreter. GOAL will be distributed under the GPL
open source license.The GOAL language is aimed at providing a general-purpose
programming language for rational agents at the knowledge level. As it does not
commit to any particular knowledge representation technology, domain or mid-
dleware infrastructure (see also section 4.3.2), users and/or developers of agent
systems are provided with the tools to extend the GOAL interpreter with other
knowledge representation technologies, and to implement other environments to
run agents in.

4.4 Applications supported by the language and/or the
platform

The GOAL agent programming language provides a high-level language for pro-
gramming agents. The language provides high-level concepts such as beliefs, goals
and action rules to select actions. GOAL is a general purpose agent programming
language, but is most suitable for developing systems of rational agents that de-
rive their choice of action from their beliefs and goals. It is not targeted at any
specific application in particular, but may be most beneficially used in domains
that are familiar from the traditional planning competitions. The Blocks World
example discussed in this chapter provides an example of such a domain, but other
domains such as the transportation domain may also provide good examples.
GOAL agents provide additional flexibility and robustness as also illustrated by
the Blocks World example. This is achieved by a flexible action selection mecha-
nism based on action rules. The GOAL interpreter has been used in education to
program agents that operate in a toy world and similarly a multi-agent system for
cleaning dirt in a grid world has been written. We are currently looking at more
serious applications among which a system of agents that negotiate by exchanging
qualitative information besides the traditional bids in an alternating offer protocol
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and a Philips iCat robot with a cognitive control layer that interacts with humans
while playing a game.
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