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Foreword

It is a real pleasure to write a foreword to this first book that seeks to illustrate
how concept mapping can be used to facilitate meaningful learning in mathematics.
I believe the authors succeed in showing that mathematics can be more than the
memorization of procedures to get answers to textbook types of problems. Through
all of my elementary and high school studies of mathematics, I thought that what
was required was to learn the procedures for getting answers, and I recall thinking
that after doing 2 or 3 textbook problems of a given type, mathematics was rather
tedious and relatively boring. By contrast, I saw the study of science as the search
for understanding of fundamental concepts, such as the nature of matter, energy,
and evolution. This I found to be exciting and I was always eager to seek deeper
understanding of basic science concepts. It came as a somewhat shocking surprise
to me when I was studying calculus at the University of Minnesota that there were
fundamental mathematics concepts also, such as limit, slope, proportionality, etc. I
recall feeling cheated that none of my teachers had helped me to gain a conceptual
understanding of mathematics!

Another fact that I pondered during my youth was that there were child prodi-
gies who could do unusually difficult mathematics at ages 10 or 12, but there were
very few such prodigies in sciences, literature, or history. With the invention of the
concept mapping tool, it became clear to me why the latter was the case in some dis-
ciplines. To achieve relative mastery in a field of science, there were many concepts
that had to be learned and understood. In contrast, in music or mathematics, if one
gains an early understanding of a few dozen fundamental concepts, such as those
discussed in the chapters of this book, you can move on to understanding of major
domains of mathematics, and perhaps even do some creative mathematics. History
has shown this to be the case. Of course, we are all familiar with the musical early
genius of Wolfgang Amadeus Mozart. My hypothesis is that if we can transform the
teaching of mathematics to a field that is conceptually transparent to students from
pre-school through high school, this might become one of the easiest fields of study
instead of the opaque and often-dreaded study mathematics has been for so many
students.

As a first pioneering effort, this book omits discussion of many issues that hinder
the kind of school instruction in mathematics that would make the subject concep-
tually transparent and meaningful to all students. Nevertheless, the authors of the
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vi Foreword

following chapters provide examples of how to teach mathematics better, and data
to support the validity of the idea that teaching mathematics for understanding of
mathematics concepts is better than what we are now doing in most school class-
rooms.

This book can also serve as a primer for mathematics teachers at all levels, who
wish to make the study of mathematics a meaningful learning experience for all
students. It can also provide guidance for future research using concept mapping
tools that can expand our understanding of meaningful teaching and learning in
mathematics. I see a bright future for the improvement of mathematics education.

Pensacola, FL Joseph D. Novak
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Estado Táchira, Venezuela, maspee@unet.edu.ve

William Caldwell University of North Florida, Jacksonville, FL, USA,
wcaldwel@unf.edu
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Fermı́n M. González Public University of Navarra, Pamplona, Spain,
fermin@unavarra.es

Greg McPhan SiMERR National Centre, University of New England, Armidale,
Australia, gmcphan2@une.edu.au

Joseph D. Novak Cornell University, Ithaca, NY, USA; Florida Institute for
Human & Machine Cognition, Pensacola, FL, USA, jnovak@ihmc.us
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Introduction

Karoline Afamasaga-Fuata’i

This book is the first comprehensive book on concept mapping in mathematics.
It provides the reader with an understanding of how the meta-cognitive tool, namely,
hierarchical concept maps, and the process of concept mapping can be used innova-
tively and strategically to improve planning, teaching, learning, and assessment at
different educational levels. The book consists of a collection of articles on research
conducted critically to examine the usefulness of concept maps in the educational
setting ranging from primary grade classrooms through secondary mathematics to
preservice teacher education, undergraduate mathematics and post-graduate mathe-
matics education. A second meta-cognitive tool, called vee diagrams, was also crit-
ically examined by some authors particularly its value in improving mathematical
problem solving and mathematical modeling in physics.

Thematically, the book flows from a historical development overview of con-
cept mapping in the sciences to applications of concept mapping in mathematics
by teachers and preservice teachers as a means of analyzing mathematics topics,
planning for instruction and designing assessment tasks including applications by
school and university students as learning and review tools. The book provides case
studies and resources that have been field tested with school and university students
alike. The findings presented have implications for enriching mathematics learning
and making problem solving more accessible and meaningful for students.

The theoretical underpinnings of concept mapping and of the studies in the
book include Ausubel’s cognitive theory of meaningful learning, constructivist and
Vygotskian psychology to name a few. There is evidence particularly from interna-
tional studies such as the Program for International Student Assessment (PISA) and
Trends in International Mathematics and Science Study (TIMSS) and mathematics
education research, which suggest that students’ mathematical literacy and problem
solving skills should be enhanced through students collaborating and interacting
as they work, discuss and communicate mathematically. This book proposes the
meta-cognitive strategy of concept mapping as one viable means of promoting, com-
municating and explicating students’ mathematical thinking and reasoning publicly

K. Afamasaga-Fuata’i (B)
University of New England, Armidale, Australia
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xii Introduction

in a social setting (e.g., mathematics classrooms) as they engage in mathematical
dialogues and discussions.

Whilst a number of books have been published on concept mapping in the sci-
ences and science education, none is dedicated to mathematics and mathematics
education.

Shared commitments to develop and promote meaningful learning of mathe-
matics and a more conceptual understanding of problem solving beyond simply
knowing the formulas and procedures subsequently led the contributing authors to
investigate the value of concepts maps as an educational tool in a variety of settings
with different types of students from primary to university levels. The book, organ-
ised into four main parts, presents a diversity of applications as researched by the
contributing authors.

Part I provides a historical overview of the development of concept mapping by
Joseph Novak, the inventor of hierarchical concept maps. While Part II focuses on
research conducted in primary mathematics with primary student teachers, teachers
and students, Part III focuses on research conducted in secondary mathematics with
secondary student teachers, teachers and students. Research conducted in university
mathematics with university teachers and students are presented in Part IV whereas
Part V poses questions about potential directions for future research in concept map-
ping in mathematics.

Individual chapters within each of Parts I–V are briefly summarised below:

Part I: A Historical Overview of Concept Mapping

In Chapter 1, Joseph Novak and Alberto Cañas describe how his research team, in
response to a need for a tool to describe explicit changes to children’s conceptual
understanding, invented concept mapping in 1972. Underlying the research program
and the development of the concept mapping tool was an explicit cognitive psychol-
ogy of learning and an explicit constructivist epistemology. As well as describing
the various applications of concept maps since its creation, leading up to the devel-
opment of a concept mapping software at the Institute for Human and Machine
Cognition to facilitate concept mapping, Novak and Cañas further propose A New
Model for Education.

Part II: Primary Mathematics Teaching and Learning

In Chapter 2, Karoline Afamasaga-Fuata’i presents the case study of a primary stu-
dent teacher who, over one semester, applied concept maps and vee diagrams as
tools to conceptually analyse the Measurement strand of a primary mathematics syl-
labus, to communicate her subsequent interpretations and understanding of syllabus
outcomes, and to pedagogically plan learning activities to ensure the development
of students’ conceptual understanding of length, volume, surface area, and capacity.
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In Chapter 3, Jean Schmittau and James Vagliardo use a case study to illustrate
the power of concept mapping to reveal both the centrality of the Positional concept
within elementary mathematics and the pedagogical content knowledge required to
teach the concept of positional system and other mathematics concepts to which it
is related.

Chapter 4 by Karoline Afamasaga-Fuata’i explores a post-graduate student’s use
of concept maps and vee diagrams as tools to analyse the Fraction strand of a pri-
mary mathematics curriculum and related problems and to record his developing
pedagogical understanding over the semester as a consequence of social critiques
and further revision.

Karoline Afamasaga-Fuata’i and Greg McPhan, in Chapter 5, presents a case
study to highlight the kinds of concerns and issues that can impede the introduction
of concept mapping to real classrooms and to demonstrate ways in which concept
maps can be used to reinforce and review learning of mathematics and science
topics in two primary classrooms. The ultimate highlight was the initiative by the
two primary teachers and their students to come together for peer tutoring and
peer collaborations as the older students mentored and assisted the younger ones
in using a computer software InspirationTM to collaboratively construct concept
maps.

Part III: Secondary Mathematics Teaching and Learning

In Chapter 6, Edurne Pozueta Mendia and Fermı́n González present a study to
illustrate how concept maps can be used to monitor and identify the extent of
secondary students’ meaningful learning of Proportionality after teaching an inno-
vative instructional module. Comparing individually-constructed concept maps to
an expert map enabled them to distinguish students who had learnt proportionality
more meaningfully from those who learnt by rote learning or had misconceptions.

In Chapter 7, Jean Schmittau examines how concept mapping can be used to
assess whether secondary teachers possess the requisite knowledge to teach both
concepts and procedures with understanding premised on the view that mathemat-
ical algorithms are not merely mechanical procedures to be learned by rote, but as
fully conceptual cultural historical products.

Karoline Afamasaga-Fuata’i in Chapter 8 describes the case of a secondary stu-
dent teacher, to demonstrate how concept maps can be used to provide a macro
view of a two-year mathematics curriculum and to innovatively develop a teaching
sequence and lesson plan on Derivatives.

James Vagliardo in Chapter 9 explores how concept maps may be used to
highlight the importance of mediating a deeper meaning of Logarithms and its
connections to other mathematical ideas by locating its conceptual essence from
a cultural-historical context.

In Chapter 10, Maria Ramirez, Mario Aspee, Irma Sanabria & Neyra Tellez pro-
vide practical guidelines that are theoretically driven to assist mathematics students
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to construct concept maps and vee diagrams to illustrate their understanding of
mathematical functions used to model physical phenomena.

William Caldwell explores in Chapter 11 the potential of concept mapping for
increasing meaningful learning in mathematics at middle school level for both teach-
ers and students and examines the results of mathematical professional development
and student learning activities using concept mapping.

Part IV: University Mathematics Teaching and Learning

In Chapter 12, Karoline Afamasaga-Fuata’i presents a study that investigated the use
of concept maps and vee diagrams to learn about new advanced mathematics topics
students had not encountered before. Students displayed their developing under-
standing and knowledge on concept maps and vee diagrams for public scrutiny.

Rafael Pérez Flores in Chapter 13 deals with a particular way of using concept
maps to contribute to engineering students’ meaningful learning of mathematics by
implementing a didactic strategy that is guided by the professor’s concept maps, to
facilitate the development of students’ critical thinking and understanding and the
application of these process in solving mathematics problems.

In Chapter 14, Karoline Afamasaga-Fuata’i presents the case of a student who
used concept maps to illustrate and communicate his evolving understanding of
Differential Equations over the semester as a result of his own research and revisions
subsequent to social critiques during seminar presentations and individual consulta-
tions.

In Chapter 15, Karoline Afamasaga-Fuata’i explores a group of students’ use
of concept maps and vee diagrams as tools to visually display their developing
and growing understanding of the conceptual structure of selected topics and the
connections between this structure and procedures for solving problems.

Part V: Future Directions

In Chapter 16, Karoline Afamasaga-Fuata’i provides a synopsis of chapter find-
ings and implications for incorporating concept mapping in real classrooms. Also
included are suggestions of potential directions for future research in concept map-
ping in mathematics education.
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Chapter 1
The Development and Evolution of the Concept
Mapping Tool Leading to a New Model
for Mathematics Education

Joseph D. Novak and Alberto J. Cañas

A research program at Cornell University that sought to study the ability of first
and second grade children to acquire basic science concepts and the affect of this
learning on later schooling led to the need for a new tool to describe explicit changes
in children’s conceptual understanding. Concept mapping was invented in 1972 to
meet this need, and subsequently numerous other uses have been found for this
tool. Underlying the research program and the development of the concept mapping
tool was an explicit cognitive psychology of learning and an explicit constructivist
epistemology, described briefly in this paper.

In 1987, collaboration began between Novak and Cañas and others at the Institute
for Human and Machine Cognition, then part of the University of West Florida.
This led to the development of software to facilitate concept mapping, evolving
into the current version of CmapTools, now widely used in schools, universities,
corporations, and governmental and non-governmental agencies.

CmapTools allows for selective use of Internet and other digital resources that
can be attached to concept nodes and accessed via icons on a concept, providing
a kind of knowledge portfolio or knowledge model. This capability permits a new
kind of learning environment wherein learners build their own knowledge models,
individually or collaboratively, and these can serve as a basis for life-long meaning-
ful learning. Combined with other educational practices, use of CmapTools permits
a New Model for Education, described briefly. Preliminary studies are underway to
assess the possibilities of this New Model.

J.D. Novak (B)
Cornell University, Ithaca, New York, USA; Florida Institute for Human & Machine Cognition,
Pensacola, FL, USA
e-mail: jnovak@ihmc.us

A.J. Cañas (B)
Florida Institute for Human & Machine Cognition, Pensacola, FL, USA
e-mail: acanas@ihmc.us

K. Afamasaga-Fuata’i (ed.), Concept Mapping in Mathematics,
DOI 10.1007/978-0-387-89194-1 1, C© Springer Science+Business Media, LLC 2009
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4 J.D. Novak and A.J.Cañas

Introduction: The Invention of Concept Mapping

During the 1960s, Novak’s research group first at Purdue University and then at
Cornell University sought to develop a coherent theory of learning and theory of
knowledge that would form a basis for more systematic research in education and a
scientific basis for school curriculum design. We found that Ausubel’s assimilation
theory of learning presented in his Psychology of Meaningful Verbal Learning
(1963) spoke to what we were most interested in, namely, how do learners grasp
the meanings of concepts in a way that permits them to use these concepts to facil-
itate future learning and creative problem solving? Ausubel stressed the distinction
between learning by rote and learning meaningfully. Rote learning or memorizing
information may permit short-term recall of this information, but since it does not
involve the learner in actively integrating new knowledge with concepts and propo-
sitions already known, it does not lead to an improved organization of knowledge
in the learner’s cognitive structure. In contrast, meaningful learning requires that
the learner chooses actively to seek integration of new concept and propositional
meanings into her/his cognitive structure, thereby enhancing and enriching her/his
cognitive structure. Since the 1960s, many studies have shown that what distin-
guishes the naive or novice learner from the expert is the extent to which the person
has a highly organized cognitive structure and metacognitive strategies to employ
this knowledge in new learning or novel problems solving (Bransford, Brown, &
Cocking, 1999). In short, one builds expertise in any discipline by building power-
ful knowledge structures that characterize the key intellectual achievements in that
discipline, as well as strategies to use this knowledge.

Also occurring in the 1960s was a philosophical movement away from positivism
where knowledge creation was seen as a search for “truths” unfettered by prior ideas
or emotion. Kuhn’s (1962) book, The Structure of Scientific Revolutions marked a
turning point toward constructivist ideas that saw knowledge creation as a human
endeavor that involved changing methodologies and paradigms and an evolving set
of ideas and methodologies leading to useful but evolving paradigms and ideas.
We saw that this constructivist epistemology and cognitive psychology was equally
applicable to mathematics and mathematics teaching. The challenge was: “how do
we get educators and the school contexts to change to enhance the utilization of
these new insights” (Novak, 1986, p. 184). As we proceeded in our mathematics
education studies, we found we could work with a theory of learning that explained
how new concepts are acquired and used that complemented a theory of knowl-
edge that focused on the evolving creation of new concepts and problem solving
approaches.

Working with elementary school children, we sought to design new instruction
in such a way that meaningful learning would be enhanced, and to demonstrate that
such learning could facilitate future learning and problem solving. To do this we
found that we needed an assessment method that could monitor the evolving knowl-
edge frameworks of our learners. Moreover, we were interested in demonstrating
that young children (ages 6–8) could acquire significant science concepts and that
this learning would facilitate later learning. The advances in learning theory and
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Fig. 1.1 An audio-tutorial
carrel unit showing a 7 year
old student learning about
energy transformations

epistemology permitted Novak to construct a theory of education, first presented
in 1977 (Novak, 1977) and modified and elaborated in 1998 (Novak, 1998). This
theory has been guiding our work for some three decades.

Given our interest in teaching young children basic science concepts such as
the nature of matter, energy, and energy transformations and related ideas, we were
faced with the reality that most primary grade teachers did not posses the knowledge
to teach these ideas. Therefore, we developed a series of audio-tutorial lessons where
children were guided by audio instruction in the manipulation of pertinent materi-
als and presented the vocabulary needed to code the concepts they were learning.
Figure 1.1 shows an example of one of these audio-tutorial lessons and the carrel
unit in which they were presented.

Lessons proceeded on a schedule of one new lesson every two weeks placed
in classrooms in Ithaca Public schools. Earlier studies had shown that a variety of
paper and pencil tests were inadequate for monitoring the growth in the children’s
understanding of concept meanings, so we used interviews to probe the children’s
knowledge. This, however created another problem in that it was difficult to see
in the interview transcripts just how the children’s cognitive structure was chang-
ing and how new concepts were being integrated into the child’s cognitive struc-
ture. After struggling with the problem for some weeks, Novak’s research group
came up with the idea of transforming the interview transcripts into a hierarchically
arranged picture showing the concepts and proposition revealed in the interview.
We called the resulting drawing a concept map. We found that we could now see
explicitly what concept and propositions were being integrated into a child’s mind
as they progressed through the audio-tutorial lessons, and also in later years as they
encountered school science studies.

Figure 1.2 shows an example of a concept map drawn from an interview with
one child at the end of grade two and another for the same child in grade 12.

This child was obviously a meaningful learner and not only were some miscon-
ceptions remediated, but he developed an excellent knowledge structure for this area
of science. The results from this 12-year longitudinal study demonstrated several
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F
ig

.1
.2

Tw
o

co
nc

ep
t

m
ap

s
dr

aw
n

fr
om

in
te

rv
ie

w
s

w
ith

ch
ild

re
n

in
gr

ad
e

2,
(t

op
)

an
d

gr
ad

e
12

(b
ot

to
m

).
T

he
se

sh
ow

th
e

en
or

m
ou

s
gr

ow
th

in
co

nc
ep

tu
al

un
de

rs
ta

nd
in

g
fo

r
th

is
ch

ild
ov

er
10

ye
ar

s
of

sc
ho

ol
in

g



1 Development and Evolution of the Concept Mapping Tool 7

things: concept maps could be a powerful knowledge representation and assessment
tool; young children can acquire significant understanding of basic science concepts
(widely disputed in the 1960s and 70s); technology can be used to deliver meaning-
ful instruction to students; early meaningful learning of science concepts highly
influenced learning in later science studies (Novak & Musonda, 1991).

Shortly after we developed the concept map tool for the assessing of changes in
learner’s cognitive structure, we found that our staff and others were reporting that
concept maps were very helpful as a study tool for virtually any subject matter. This
led Novak to develop a course called “Learning To Learn”, and he taught this course
at Cornell for some 20 years. One of the outcomes from the course was the book
Learning How to Learn (Novak & Gowin, 1984). The book has been published in
9 languages and remains as popular as when it was first published. Concept maps
are also powerful metacognitive tools helping students to understand the nature of
knowledge and the nature of meaningful learning (Novak, 1990). More recently we
have found concept maps to be an excellent tool for capturing expert knowledge
for archiving and training in schools and corporations, and also for team problem
solving. Beginning some 10 years ago, the Institute for Human and Machine Cog-
nition has developed CmapTools, software that not only facilitates building concept
maps but also offers new opportunities for learning, creating, and using knowledge,
as will be discussed further.

The Use of Concept Maps in Mathematics

Our early work using concept maps in mathematics was focused on demonstrat-
ing how mathematical ideas could be represented in this form. Cardemone (1975)
showed how the key ideas in a remedial college math course could be represented
using concept maps. He found that the use of concept maps could help teachers
design a better sequence of topics and helped students see relationships between
topics. Minemier (1983) found that when students made concept maps for the top-
ics they studied they not only performed better on problems solving tests but they
also gained increased confidence in their ability to do mathematics. Fuata’i (1985,
1998) used concept maps along with vee diagrams with Form Five students in West-
ern Samoa. She found that students became more autonomous learners and better at
solving novel problems as compared with students not using these tools. Figure 1.3
shows an example of a concept map produced by one of her students.

CmapTools and the Internet

CmapTools goes beyond facilitating the construction of concept maps through an
easy-to-use map editor, leveraging on the power of technology and particularly
the Internet and WWW to enable students to collaborate locally or remotely in
the construction of their maps, search for information that is relevant to their
maps, link all types of resources to their maps, and publish their concept maps,
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Fig. 1.3 A concept map made by a Western Samoan student in a study by Fuata’i (1998, p. 65)

(Cañas et al., 2004)1. CmapTools facilitates the linking of digital resources (e.g.
images, videos, text, Web pages, or other digital concept maps) to further explain
concepts through a simple drag-and-drop operation. The linked resources are
depicted by an icon under the concept that represents the type of resource linked.
By storing the concept maps and linked resources on a CmapServer (Cañas, Hill,
Granados, C. Pérez, & J. D. Pérez, 2003), the concept maps are converted to Web
pages and can be browsed through a Web browser. The search feature in CmapTools
takes advantage of the context provided by a concept map to perform Web searches
related to the map, producing more relevant results that may include Web pages and
resources, or concept maps stored in the CmapTools network (Carvalho, Hewett, &
Cañas, 2001). Thus, a small initial map can be used to search for relevant informa-
tion which the student can investigate, which leads to an improved map, to another
search, and so on. The student can link relevant resources found to the map, create
other related maps, and organize these into what we call a knowledge model (Cañas,
Hill, & Lott, 2003). Figure 1.4 illustrates a concept map made with CmapTools and
the insets show some of the resources attached to this map that can be opened by
clicking on the icon for the resource. Other examples will be given in subsequent
chapters of this book.

A New Model for Education

Given the new technological capabilities available now, and combined with new
ideas for applying the latest thinking about teaching and learning, it is possible to
propose a New Model for Education (Novak & Cañas, 2004; Cañas & Novak, 2005).
The New Model involves these activities that will be further elaborated:

1CmapTools can be downloaded and used at no cost from: http://cmap.ihmc.us
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1. Use of “expert skeleton concept maps” to scaffold learning.
2. Use of CmapTools to build upon and expand the expert skeleton concept maps

by drawing on resources available on the CmapServers, on the Web, plus texts,
image, videos and other resources.

3. Collaboration among students to build “knowledge models”.
4. Explorations with real world problems providing data and other information to

add to developing knowledge models.
5. Written, oral, and video reports and developing knowledge models.
6. Sharing and assessing team knowledge models.

Expert Skeleton Concept Maps

The idea behind the use of expert skeleton concept maps is that for most students
(and many teachers) it is difficult to begin with a “blank sheet” and begin to build
a concept map for some topic of interest. By providing a concept map prepared by
an expert with 10–15 concepts on a given topic, this “skeleton” concept map can
help the learner get started by providing a “scaffold” for building a more elaborate
concept map. Vygotsky (1934), Berk and Winsler (1995) and others point out that
the apprentice learner is often very insecure in their knowledge and needs both cog-
nitive and affective encouragement. While the teacher can best provide the latter,
the skeleton concept map can provide the cognitive encouragement to get on with
the learning task. Moreover, students (and often teachers) may have misconceptions
or faulty ideas about a topic that would impede their learning if they were to begin
with a “blank sheet”. The scaffolding provided by the expert map can get the learner
off to a good start, and as they begin to research relevant resources and to add con-
cepts and resources to their map, there is a good chance that their misconceptions
will also be remediated (Novak, 2002). Figure 1.5 shows an example of an expert
skeleton concept map.

Adding Concepts and Resources Using CmapTools

It is well known today that meaningful learning requires that the learner chooses to
interact with the learning materials in an active way and that he/she seeks to integrate
new knowledge into her/his existing knowledge frameworks (Novak, 1998; Bransford
et al., 1999). Through the drag-and-drop feature of CmapTools that allows for linking
supplemental resources to a concept map by simply dragging and dropping the icon
for an URL, an image, video, another concept map or any other digital resource on
a concept, a learner can build an increasingly complex knowledge model for any
domain of knowledge, which can serve as a starting point for later related learning.
Moreover, CmapTools provide for easy collaboration between learners either locally
or remotely, and either synchronously or asynchronously. When the recorder option
of CmapTools is turned on, it will record step-by-step the history of the creation of a
concept map, indicating the sequence of building steps and who did what at each step.
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Fig. 1.5 An example of an “expert skeleton concept map” that can serve as a starting point for
building a knowledge portfolio about number ideas. Figure 1.4 above shows an example of how
this skeleton map could be elaborated using CmapTools and resources drawn from the Web. In
general, the number of concepts expected to be added by the student is proportional to (e.g. two or
three times) the number of concepts originally in the skeleton map

Obviously this also provides a new tool for cognitive learning studies, but such work is
just beginning. For example, Miller, Cañas, & Novak (2008) using the Recorder tool
has shown that in the process of learning how to construct concept maps, patterns in
map changes for teachers in Proyecto Conéctate al Conocimiento in Panama (Tarté,
2006) were similar for teachers who had no previous experience using computers
when compared with those who reported previous experience.

A major problem in mathematics studies is that there is rarely clear focus on
the concepts underlying the mathematical operations learners are asked to do. It is
even more rare to have an explicit record of the conceptual thinking of the learners
as they progress in their studies, and a record the learner can turn to when related
materials are studied. Another important advantage is that concept maps can be
easily related to one another, for example as sub-concept maps in a more general,
more encompassing concept map. Examples of this are shown in other chapters.

Collaboration Among Students

With the rediscovery of the studies of Vygotsky (1934) in the past 20 years, educa-
tors are increasingly recognizing the importance of social exchange in the building
of cognitive structure, as well as for motivation for meaningful learning. Although
the work of the Johnson brothers (1988) and others have shown some of the mer-
its of “cooperative learning”, most of these studies could not take advantage of the
facilitation offered by CmapTools for cooperative learning. Often the advantages of
cooperative learning were found to be small at best. We need new research studies
showing the effect of collaboration on learning using CmapTools.
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Exploration with Real World Problems

One of the important conclusions from many recent studies on “situated cognition”
is the importance of placing learning into a meaningful, real world context. We rec-
ognize this value in our New Model and urge that whenever possible, new ideas in
mathematics should be introduced within the framework of some real world prob-
lem. While math teachers have been using for decades the idea that ratio and pro-
portion problems, for example, should be introduced with tangible activities, such
as using objects of different densities for comparison, most of these activities have
not made explicit the mathematics concepts involved in the problems given, and the
focus has been mostly on procedures to get the “correct” answer. Of course, this has
also carried over into physics teaching and teaching in other subjects.

When real world activities are tied in with the use of CmapTools and the cre-
ation of knowledge models for the domains studied, research is beginning to show
the resulting improvement in learning (Cañas, Novak, & González, 2004; Cañas &
Novak, 2006; Cañas et al., 2008).

In the Proyecto Conéctate al Conocimiento (Tarté, 2006) effort in Panama, we
are finding that the collaboration possibilities available with CmapTools are leading
not only to sharing in knowledge building but also to a variety of social exchanges.
During the training programs for teachers, teachers are invited to prepare a concept
map in the form of biography referred to as “Who am I?”. This has led to teachers
and principals also building concept maps about their schools, communities and a
variety of related exchanges (Sánchez et al., 2008). This personal engagement has
had strong motivating effects for pursuing other collaborations and we expect this
will increase over time as the social network grows. Figure 1.6 shows a sample mon-
tage of some of the work done by teachers and school principals in Panama. With
thousands of teachers and students involved in this project, we are learning many
new possibilities for ways to use concept maps to facilitate meaningful learning.

Written, Oral, and Video Reports and Developing
Knowledge Models

While we will continue to see an increase in the use of electronic communications
in the future, there will always be an important place for written and oral reports.
Whether in schools or corporate settings, our students need to become effective
written and oral communicators. In one of our early studies, we found that fifth
grade children who prepared concept maps prior to attempting to write out their
ideas not only wrote better stories but they were also better able to tell their stories
(Ben-Amar, 1990). In fact, they wrote a play derived from their stories and it was so
well received they were invited to present it at other elementary schools!

The full range of capabilities for organizing knowledge available using Cmap-
Tools is too recent to have an empirical research base to document the value of the
possibilities created, including what we call A New Model for Education. Hopefully,
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after the publication of this book, many empirical studies will be done to assess the
value of CmapTools not only for improving instruction in mathematics, but also
in improving students’ ability to communicate their mathematics ideas and a new
excitement for learning mathematics.

Sharing and Assessing Team Knowledge Models

Already indicated above are ways in which the sharing of individual and team
knowledge models can be facilitated using the collaboration tools of CmapTools.
However, many teachers want to know how they can evaluate knowledge models.
In our own teaching, we have used a variety of strategies including having teams
post their knowledge models anonymously and then asking students to rank the
models from lowest to highest, including criteria for their rankings. Using digital
knowledge models created with CmapTools, these can be posted on the class server
and provide easy access for assessment. Students can be very insightful, and often
brutally honest, in their assessments. Furthermore, serious assessment is an educa-
tional experience, and students learn how they can improve their own knowledge
models.

In Conclusion

Our objective in this chapter was to provide a brief history of the development of the
concept mapping tool, including the development of the computer software, Cmap-
Tools, designed to facilitate concept map making and to provide new opportunities
for individual and collaborative learning. Although the research to date supports the
value of concept mapping to facilitate meaningful learning (Coffey et al., 2003),
very little research has been done in the field of mathematics education. It is our
hope this book will encourage such research. We also hope to see studies in mathe-
matics learning that will utilize what we call a New Model for Education, and that
libraries of “expert skeleton concept maps” in mathematics will be posted on web
sites. We observed an increase in the number of papers dealing with mathematics
education presented at international conferences on concept mapping from 2004 to
2008 (Cañas, Novak, et al., 2004; Cañas & Novak, 2006; Cañas et al., 2008) and
we are hopeful that even more and improved studies will be presented at following
conferences (see http://cmc.ihmc.us).
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Cañas, A. J., & Novak, J. D. (2006). Re-examining the foundations for effective use of concept
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Chapter 2
Analysing the “Measurement” Strand Using
Concept Maps and Vee Diagrams

Karoline Afamasaga-Fuata’i

The chapter presents data from a case study, which investigated a primary student
teacher’s developing proficiency with concept maps and vee diagrams as tools to
guide the analyses of syllabus outcomes of the “Measurement” strand of a pri-
mary mathematics syllabus and subsequently using the results to design learning
activities that promote working and communicating mathematically. The student
teacher’s individually constructed concept maps of the sub-topics length, volume
and capacity are presented here including some vee diagrams of related problems.
Through concept mapping and vee diagramming, the student teacher’s understand-
ing of the mapped topics evolved and deepened, empowering her to confidently
provide mathematical justifications for strategies and procedures used in solving
problems which are appropriate to the primary level, effectively communicate her
understanding publicly, and developmentally sequence learning activities to ensure
future students’ conceptual understanding of the sub-topics.

Introduction

Various Professional Teaching Standards point to the need for teachers of mathe-
matics to have deep understanding of students’ learning, pedagogical content knowl-
edge of the relevant syllabus and the ability to plan learning activities that develop
students’ understanding, as essential to achieve excellence in teaching mathemat-
ics (AAMT, 2006). These Standards therefore imply that student teachers should
develop deep knowledge and understanding of principles, concepts and methods
they are expected to teach their future students. For example, the underlying theoret-
ical principles of the New South Wales Board of Studies’ K-6 Mathematics Syllabus
(NSWBOS, 2002) encourage the development of students’ conceptual understand-
ing through an appropriate sequencing of learning activities and implementa-
tion of working and communicating mathematically strategies. To this end, this
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chapter proposes that the application of the metacognitive tools of hierarchical
concept maps (maps) and vee diagrams (diagrams), and the innovative strategies
of concept mapping and vee diagramming can influence (a) the development of stu-
dents’ meaningful learning and conceptual understanding and (b) the dynamics of
working and communicating mathematically within a social setting. Therefore, the
focus question for this chapter is: “In what ways do hierarchical concept maps and
vee diagrams facilitate the preparation of primary student teachers for teaching
mathematics, in particular, the development of a deep understanding of the con-
tent of the relevant syllabus?” This chapter presents the case study of a Bachelor
of Education (Primary) student teacher (i.e., Susan) who concept mapped and vee
diagrammed over a semester, in her third year mathematics education course in a
regional Australian university.

Literature Review of Concept Mapping and Vee Diagrams

Ausubel’s theory of meaningful learning, which defines meaningful learning as
learning in which students actively make connections between what they already
know and new knowledge, underpins concept mapping particularly its principle that
learners’ cognitive structures are hierarchically organized with more general, super-
ordinate concepts subsuming less general and more specific concepts. Linking new
concepts to existing cognitive structures may occur via progressive differentiation
(reorganization of existing knowledge under more general ideas) and/or integrative
reconciliation (synthesising many ideas into one or two when apparent contradic-
tory ideas are reconciled) (Ausubel, 2000; Novak & Canãs, 2006). By constructing
maps/diagrams, students illustrate publicly their interpretation and understanding
of topics/problems. Hierarchical concept maps were first introduced by Novak as a
research tool to illustrate the hierarchical interconnections between main concepts
(nodes) in a knowledge domain with descriptions of the interrelationships (linking
words) on the connecting lines. The basic semantic unit (proposition) describes a
meaningful relationship as shown by the triad “valid node – valid linking words->
valid nodes” (Novak & Canãs, 2006; Novak & Gowin, 1984). Vee diagrams, in con-
trast, were introduced by Gowin as an epistemological tool, in the shape of a vee
that is contextualised in the phenomenon to be analysed. The vee’s left side depicts
the philosophy and theoretical framework, which drive the analysis to answer the
focus question. On the vee’s right side are the records, methods of transforming the
records to answer the focus question and value claims. The epistemological vee was
later modified (Afamasaga-Fuata’i, 1998, 2005) to one that is focused on guiding
the thinking and reasoning involved in solving a mathematics problem (examples
are presented later).

Numerous studies examined the use of maps and/or diagrams as assessment
tools of students’ conceptual understanding over time in the sciences (Novak &
Canãs, 2004; Brown, 2000; Mintzes, Wandersee, & Novak, 2000) and mathe-
matics (Afamasaga-Fuata’i, 2004; Hannson, 2005; Liyanage & Thomas, 2002;
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Williams, 1998). Investigations of the usefulness of maps/diagrams to illustrate
university students’ evolving understanding of mathematics topics found students’
mapped knowledge structure became increasingly complex and integrated as a con-
sequence of multiple iterations of the processes of presentation → critique →
revisions → presentation over the semester (Afamasaga-Fuata’i, 2007a, 2004).
Others also demonstrated the value of maps as pedagogical planning tools to pro-
vide an overview of a topic (Brahier, 2005; Afamasaga-Fuata’i, 2006; Afamasaga-
Fuata’i & Reading, 2007) or to analyse mathematics lessons (Liyanage & Thomas,
2002). Research also demonstrated the usefulness of diagrams to scaffold students’
thinking and reasoning and to illustrate their understanding of the interconnec-
tions between theory and application in mathematics problem solving (Afamasaga-
Fuata’i, 2007b, 2005), scientific inquiry (Mintzes et al., 2000) and epistemological
analysis (Novak & Gowin, 1984; Chang, 1994). In summary, the review of the lit-
erature shows three uses of maps/diagrams that are particularly relevant to teacher
education. Firstly, maps/diagrams as learning tools to illustrate students’ evolving
knowledge and understanding of the conceptual structure of a domain; secondly,
as analytical tools to scaffold the conceptual analysis of topics or problems; and
thirdly, as pedagogical tools to organize and sequence teaching and learning activi-
ties using the results of the conceptual analyses of syllabus outcomes.

Methodology

The case study reported here, started with a familiarisation phase in which Susan
was introduced to the metacognitive strategies of concept mapping and vee dia-
gramming using simple topics such as fractions and operations with fractions. The
main project for the course required Susan to construct a comprehensive, hierarchi-
cal concept map of a mathematics topic to be selected from the primary mathemat-
ics syllabus, and diagrams of related problems, which demonstrate the applications
of the mapped concepts. There were three phases to the project. The first phase
(Assignment 1) required that Susan compiled an initial list of concepts, based on
a conceptual analysis of the relevant syllabus outcomes, and then to construct an
initial topic concept map and diagrams of problems. These were presented and cri-
tiqued in class before returning for further revision and expansion. The second phase
(Assignment 2) involved the presentation of a more structurally complex, expanded
concept map and diagrams of more problems. These were socially critiqued and
returned for further revision and expansion. The third phase (Assignment 3) was
the final submission of a more comprehensive, hierarchical topic concept map and
more diagrams of related problems and activities, which extended previous work
and incorporating comments from previous critiques, and including a journal of
reflections of concept mapping and vee diagramming experiences.

Data collected included maps and diagrams from the familiarization phase,
weekly workshops, and three phases of the main project including a journal of
reflections. This chapter presents samples of Susan’s submitted work to illustrate the
application of maps/diagrams as learning, analytical and pedagogical tools for the
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Length and Volume sub-strands of the NSW BOS K-6 Mathematics Syllabus while
her work with the Area sub-strand is reported in Afamasaga-Fuata’i (2007b). The
Time, Mass, Volume, Capacity, Area, and Length sub-strands make up the “Mea-
surement” content strand of the NSW K-6 Mathematics Syllabus (NSWBOS, 2002).

Data Collected and Analysis

Susan’s map/diagrams presented here illustrate her interpretations of the Length and
Volume Knowledge & Skills (K&S) and Working Mathematically (WM) syllabus
outcomes from Early Stage One to Stage 3 and critical analyses and conceptual
understanding of related mathematics problems. Also presented are excerpts from
Susan’s reflection journal to support her concept map and vee diagram data.

“Length” Concept Maps

Provided in Figs. 2.1 and 2.2 are the results of Susan’s conceptual analyses of the
Length syllabus outcomes for Early Stage 1 to Stage 3. The concept maps are anal-
ysed by considering the networks of propositions each displays to determine its
meaningfulness and interconnectedness.

For Early Stage 1 and Stage 1 (Fig. 2.1), the corresponding super inclusive (most
general) propositions are: (P1) “Measurement” has a substrand “Length” when
looked at has very specific ideas and principles “Early Stage 1” (P1a) when some-
thing is measured from end to end it is measuring “Length”, and (P1b) when some-
thing is measured between two points it is known as “Distance”; and (P2) “Mea-
surement” has a substrand “Length” looks at, in “Stage 1” (P2a) the principle of
“Length”, and (P2b) the idea of “Distance”.

The particular propositions for Early Stage 1 are: (P3) “Length” is measured
using “Informal” language and ideas to “Predict” whether an object will be long or
short and are asked to “Explain” using everyday language (such as) “Long, Short,
High, Tall, Low, The Same”, for example, “the door is tall”; and (P4) “Distance” is
measured using “informal” calculations using appropriate “Unit” to conduct “Direct
Comparison” which is also called “One to one correspondence”.

Progressive differentiation from the latter node resulted in a number of propo-
sitions such as: (P5) “One to one correspondence” when comparing two objects
in the same position is called “Equal Length”; (P6) “One to one comparison” can
be “Recorded” informally by “Drawing”, “Cutting Pasting” and “Tracing”; (P7)
“Drawing”, “Cutting Pasting” and “Tracing” these visual representations of the
attribute of length can be used to make repeating “Patterns”, for example, (as shown
pictorially); (P8) “One to one correspondence” when describing this, students use
everyday language such as “Long, Short, High, Tall, Low, The Same”, for exam-
ple, “the door is tall”; (P9) “One to one correspondence” students can also describe
the comparison of two objects using “Comparative Language” such as “Longer,
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Fig. 2.1 Early Stage 1 and Stage 1 Length substrand

Higher, Taller than, Lower than, Same as”, for example, “the car is longer than the
desk”; and (P10) “One to one correspondence” when students identify that objects
are the same length although positions are altered they are “Conserving Length”.
A cross link (indicated by a thicker, directional link) between two systems of con-
cepts within this branch resulted in the integrative proposition (P11) “Patterns” that
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can be described by students using such language as “Longer, Higher, Taller than,
Lower than, Same as”. These propositions encompass Susan’s interpretations of the
length sub-strand for Early Stage 1. A number of progressive differentiation nodes
(indicated by multiple outgoing links usually between a higher more general con-
cept to lower less general concepts such as the “One to one correspondence” node)
and integrative reconciliation links (indicated by at least two links from more gen-
eral concepts merging with a less general concept such as the “Informal” node)
including illustrative examples demonstrated Susan’s understanding of interconnec-
tions between relevant concepts. A cross-link (indicated by a thicker, directional
link) between the “Unit” node of Early Stage 1 and “Unit of Length” node of the
Stage 1 branch demonstrated integration between the two branches resulting in the
proposition (P12) “Unit” there are progressions across stages “Unit of Length”.

For Stage 1 (Fig. 2.1), the particular propositions inclusive under the super inclu-
sive P2 are: (P13) “Length” recognises the need for “Informal” equal sized identical
appropriate “Unit of Length”, for example, “Pegs”; (P14) “Unit of Length” that are
placed end-to-end without gaps or overlaps to ensure the measurement is “Constant”
even when rearranged so that objects can be used to “compare” two or more immov-
able lengths and then put in an “order” before recognising that sometimes there
is a part left over which is called the “Remainder”; (P15) “Remainder” these can
be found when measuring “Linear Dimensions”; and (P16) “Linear Dimensions”
on the computer, are measured with a simple graphic, for example, (as pictorially
shown). At the top right of this sub-branch inclusive under proposition P2b are the
propositions (P17) “Distance” recognises the need for “Formal” units can be used to
make a “Device” such as the “Tape Measure”; (P18) “Distance” recognises the need
for “Formal” records referring to the number and type of “Unit” such as “Standard
Units”, for example, “Metre”; (P19) “Unit” is specific in their use of formal units
for example “Metre”; (P20) “Metre” which is recorded using the abbreviation (m)
and rounding off to the nearest m or 1/2 m. Students also recognise need for smaller
units, for example “Centimetre”; and (P21) “Centimetre” measures to the nearest
unit and uses abbreviation (cm). Also known as “Rounding Off”.

Progressively differentiating from the “Tape Measure” node are the propositions
(P22) “Tape Measure” is used to measure straight objects called “Linear Dimen-
sions”; (P23) “Tape Measure” is used to measure informally non-straight objects
that have “Curves”; and (P24) “Tape Measure” constructed using 10 cm length with
1 cm markings to measure “Curves”, for example, “bins”. Occurrences of progres-
sive differentiation (e.g., at the “Tape Measure” node) and integrative reconcilia-
tion (e.g., at the “Device” node) with some illustrative examples demonstrated the
interconnectedness of Susan’s interpretation and understanding of Stage 1 syllabus
outcomes.

For Stage 2, the super inclusive proposition is (Fig. 2.2) (P25) “Measurement”
has a substrand “Length” concentrates on, in “Stage 2”, (P25a) measures “Length”
using units that are “Formal”, and (P25b) measures “Distance” using units that are
“Formal”. The rest of the propositions inclusive under the left sub-branch of the
“Formal” node included (P26) “Formal” measurement requires “Units” which are
used to estimate, measure and compare lengths and distances using specifically
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Fig. 2.2 Stages 2 and 3 of the Length substrand



26 Karoline Afamasaga-Fuata’i

“Metre”; (P27) “Metre” when measuring you need more 100th of it is a “Cen-
timetre”; (P28) “Centimetre” recognises the need for a smaller unit and uses it
and its abbreviation (mm) “Millimetre”; (P29) “Millimetre” (for example) 10 mm
equals (10th) “Centimetre”; (P30) “Metre” students can convert between “Centime-
tre”; (P31) “Centimetre” students can convert between “Metre”; (P32) “Centime-
tre” students can convert between “Millilitre”; (P33) “Millilitre” students can con-
vert between “Centimetre”; (P34) “Millimetre” and other units are used to measure
“2D shapes”; (P35) “2D shapes can be measured and estimated around the entire
shape – this is called the “Perimeter”; (P36) “2D shapes”, horizontal long sides
are their “Length”; (P37) “2D shapes”, short, vertical sides are “Breadth”; (P38)
“2D shapes”, when made 3D “Height”; (P39) “Perimeter” students can have differ-
ent answers when using different units and “Decimal Notation”; (P40) “Length”,
“Breadth”, and “Height” these are recognised as features associated with length and
can be recorded in “Decimal Notation”; and (P41) “Decimal Notation” into two
decimals, for example “0.46782 m ≈ 0.47 m”.

In comparison to propositions P26 to P41 of the left “Formal” sub-branch, inclu-
sive under the right sub-branch is the single proposition (P42) “Formal” units can
be used to make a “Device” to measure lengths and distances such as “Tape Mea-
sure, Ruler, Trundle Wheel” and describes how they were used in order to measure
“2D shapes”. The incoming cross-links (indicated by thicker, directional links) on
the extreme left from Stage 1 to Stage 2 nodes resulted in the integrative proposi-
tions (P43) “Units” (from Stage 1) become only formal “Units” (in Stage 2); (P44)
“Metre” (from Stage 1) are used more frequently “Metre” (in Stage 2); and (P45)
“Centimetre” (from Stage 1) is linked to mm (by) “Centimetre” (in Stage 2). Occur-
rences of progressive differentiation and integrative reconciliation with some illus-
trative examples demonstrated the interconnectedness of Susan’s interpretation and
understanding of Stage 2 syllabus outcomes. Cross-links between Stages such as
propositions P43 to P45 demonstrated her comprehension and awareness of the pro-
gressive development of informal units initially encountered in the lower stage to
more formal units in the subsequent stage such as metre, centimetre and millimetre.

For Stage 3, the super inclusive proposition is (P46) “Measurement” has a sub-
strand “Length” should be explored in a variety of contexts in “Stage 3”, (P46a) they
should be able to measure effectively and efficiently “Length”, and (P46b) “Dis-
tance”. The next extended proposition inclusive under the “Formal” node is, from
the left sub-branch, namely, (P47) “Length” and “Distance” using “Formal” types
of appropriate “Units” including the use of the abbreviation km to represent “Kilo-
metre”, followed by other propositions such as (P48) “Kilometre” 1000th of a km
equals “Metre”; (P49) “Metre” 500 m equals “1/2 kilometre”; (P50) “Metre” recog-
nises the need for a longer unit “Kilometre”; (P51) “Kilometre” converts between
“Metre”; (P52) “Metre” converts between “Kilometre”; (P53) “Metre” and km are
used to “Interpret Symbols” used to record “Speed” for example “60 km/hr” and
solve problems that at times need to be expressed in “Decimal Notation” to three
decimal places, for example “0.6213918 ≈ 0.621”; (P54) “Metre” and km are used
to “Interpret Symbols” on maps and diagrams including “Scales” and solve prob-
lems that at times need to be expressed in “Decimal Notation”.
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In comparison to propositions P47 to P54 of the left “Units” sub-branch, inclu-
sive under the “Devices” sub-branch to the right are the extended propositions (P55)
“Length” and “Distance” using “Formal” types of appropriate “Devices” to mea-
sure and describe and estimate creating “Combinations” of mm, cm, km, ms in
order to complete “Converting to compare” measurements of lengths in a gener-
alised method of finding the sum of the side lengths also known as “Perimeters”;
(P56) “Perimeters” of large areas and small areas in the shape of “Rectangle”,
“Square” and “Triangle”; and (P57) “Rectangle”, “Square” and “Triangle” and find-
ing the relationships between them specifically triangles that are (P57a) “Isosceles”
and (P57b) “Equilateral”. Cross-links and integrative propositions between the two
sub-branches (indicated by thicker, directional links) and inclusive under the “For-
mal” node are (P58) “Converting to compare” measurements of lengths in a gen-
eralised method of finding the sum of the side lengths also known as “Perimeters”
and solve problems that at times need to be expressed in “Decimal Notation”, and
(P59) “Metre” (is) utilised when measuring in “Combinations”. Clearly, occurrences
of progressive differentiation and integrative reconciliation with some illustrative
examples and bi-directional linkages that form cyclic connections demonstrated the
interconnectedness of Susan’s interpretation and understanding of Stage 3 syllabus
outcomes. For example, cross-links between the two sub-branches of the “Formal”
branch indicated her comprehension and pedagogical understanding of the use of
units of length to measure distances and to record speed, scales on maps and total
distance around shapes (perimeters).

Overall, the overview concept map (Figs. 2.1 and 2.2) delineated the incremental
development of units of length and distance, initially from informal units and sub-
sequently to increasingly more formal units such as metre, centimetre and kilometre
using strategies that varied from direct comparison of two objects in the early stages
to increasingly more sophisticated strategies such as using devices to measure lin-
ear dimensions and curves. Linkages to other content strands (e.g., decimal notation
and geometry) were also displayed.

Volume “Concept Maps”

Provided in Figs. 2.3 to 7 are the results of Susan’s conceptual analyses of the Vol-
ume syllabus outcomes for Early Stage 1 to Stage 4. For the Early Stage 1 sub-strand
(Fig. 2.3), the super inclusive propositions are: (P1) “Early Stage 1” explores the
outcome “MES1.3”; (P2) “MES1.3” determines that the amount of space an object
or substance occupies is “Volume”; and (P3) “MES1.3” determines that the amount
a container can hold is called “Capacity”. Inclusive under the “Volume” node, from
left to right, are the propositions (P4) “Volume” found by “comparing two piles of
materials” (P4a) by “filling two identical containers”, and (P4b) by directly “observ-
ing the space each object occupies” for example “car vs truck” this is recorded using
“drawings, numerals and words”; (P5) “drawings, numerals and words”, (P5a) for
example “the trucks takes more space than the car. (words)”, (P5b) for example
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Fig. 2.3 Early Stage 1 of the Volume substrand

(shown pictorially with two cylinders to demonstrate “more” and “less”), and (P5c)
for example, (shown pictorially with two sets of blocks to demonstrate “12 blocks”
compared to “15 blocks”).

For proposition P6, “Volume” is explored by packing and stacking in defined
spaces, for example “blocks in boxes and cans” thus students recognise and explain
why “3D objects pack and stack easily”; (P7) “Volume” is explored by filling and
emptying containers with “water, sand, marbles, blocks”, (P7a) and use descrip-
tive terms to describe, e.g., “full, empty, about half full” to record informally using
“drawings, numerals, words”, (P7b) and uses comparative language such as “has
more/less, will hold more/less” to record informally using “drawings, numerals,
words”; and (P8) “Volume” is explored by predicting, questioning and acting out
to determine that “short holds more than tall”, (P8a) for example, (as shown picto-
rially with two cylinders holding “12 mL” and “4 mL”), (P8b) or that “short holds
less than tall” for example, (shown pictorially for a short cylinder with “2 mL” and
tall thin cylinder with “6 mL”), and (P8c) or “short and tall hold the same”, for
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example, (as shown pictorially with a short cylinder with “7 mL” compared to long
thin cylinder with “7 mL”).

To the right at the top inclusive under the “Capacity” node, from left to right,
are the propositions (P9) “Capacity” is found by “filling and pouring liquids” and
(P10) “Capacity” is found by “packing and transferring directly”. Evidently, occur-
rences of progressive differentiation and integrative reconciliation with illustrative
examples using drawings, numerals or words, demonstrated the interconnectedness
of Susan’s interpretation and understanding of the Early Stage 1 syllabus outcomes.
Overall, the concept map displayed the focus of this stage on the development of
a conceptual understanding of volume as the amount of space an object occupies
and capacity as the amount a container can hold through the use of appropriate
objects, sand or liquid to stack, pack, or fill respectively, depending on whether it
is measuring volume or capacity. Through comparison activities, the importance of
appropriate descriptive language is introduced concretely and informally developed.

For subsequent concept maps, ideas that are revisited again (i.e., prior knowl-
edge) for further development and consolidation in the current Stage are distin-
guished from the new knowledge that is being developed with concept ovals that
have bold outlines while connections to other content strands are indicated by ovals
with broken outlines. In the original maps, Susan used different colours to distin-
guish between prior and new knowledge and connections to other topics.

For the Stage 1 sub-strand (Fig. 2.4), the corresponding extended proposition,
from left to right, is: (P1) “Stage 1” has the outcome “MS1.3” estimates with
“Informal Units” such as the number and type of “discrete objects used” for exam-
ple “Blocks” leads to use of formal units such as “cubed metres and centimetres”;
propositions (P2) “Informal Units” which are used to measure “Volume”; (P3) “Vol-
ume” through trial and error strategies can be “compared and ordered”; (P4) “com-
pared and ordered” two or more containers by counting the “number of blocks in
each container”; (P5) “compared and ordered” two or more containers by noting
the “change in water level when submerged” also known as “Displacement” which
can be linked to “Fractions”; (P6) “Volume” through trial and error strategies can
be “estimated and measured” including “piles of materials”; and (P7) “Informal
Units” when they are small it means that “more units are needed”. A reconciliative
proposition integrating the “Volume” and “Capacity” systems of concepts inclusive
under the respective nodes is (P8) “Volume”, “Capacity” different shapes can have
the same “Displacement” which can be linked to “Fractions”. With the “Capacity”
branch, its more inclusive proposition is (P9) “Informal Units” which are used to
measure “Capacity” while the inclusive propositions are (P10) “Capacity” can be
“compared and ordered”, (P10a) by “filling and pouring into a third container and
marking level”, and (P10b) by “filling and pouring into each other”; (P11) “Capac-
ity” can be found by “filling with informal units and counting”, (P11a) for example
“cubic units into rectangular containers with no gaps” and (P11b) for example, “such
as using a calibrated large container using informal units”, for example, “mark water
level”; and (P12) “Capacity” can be found by “counting times the smaller container
can fill the bigger”. To the right of the “Capacity” branch is the extended proposi-
tion (P13) “Informal Units” such as the number and type of “continuous materials”,
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Fig. 2.4 Stage 1 of the Volume substrand

(P13a) for example, “water that is used” this leads to the use of formal units such as
“millilitres and litres”, and (P13b) are liquids.

Occurrences of progressive differentiation and integrative reconciliation with
descriptions of illustrative examples demonstrated the interconnectedness of
Susan’s interpretation and understanding of Stage 1 syllabus outcomes. Overall, the
concept map displayed the focus of this stage on the development of a conceptual
understanding of informal units of measure in terms of number and type through
the use of discrete objects (e.g., blocks) and continuous materials (e.g., water). Dis-
placement is introduced as well as formal units of millilitre and litre. Through com-
parison activities, the importance of appropriate units for volume and capacity is
further developed such as cubic metres and cubic centimetres. Prior knowledge from
the previous Stage is indicated by ovals with bold outlines (e.g., “blocks”, “informal
units”, “capacity” etc) while a reference to the “Fractions” strand is indicated by a
broken-outlined oval.
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Fig. 2.5 Stage 2 of the Volume substrand

For the Stage 2 sub-strand (Fig. 2.5), the super inclusive propositions are (P1)
“Stage 2” has the outcome “MS2.3”; (P2) “MS2.3” has a Unit 1 that looks at “For-
mal Units”; and (P3) “MS2.3” which has a second section called “Unit 2”. Again,
prior knowledge is indicated with bold-outlined ovals (e.g., “Displacement”) while
references or connections to other content strands are indicated by broken-outlined
ovals such as with “3D objects”.

Inclusive within the “Formal Units” branch are the propositions, from left to
right, (P4) “Formal Units” such as “cubed centimetre” is abbreviated to “cm3”; (P5)
“Formal Units” such as “cubed centimetre” which is used to measure “Volume”;
(P6) “Volume” which is found by stacking and packing “cubes”, and describing
“packing in layers”, for example, as shown pictorially for “2 layers of 10 cubic cm
blocks”; (P7) “cubes” that are used to construct and determine the volume of “3D
objects”; (P8) “Volume” when it is distinguished from “mass”, for example, “stone
is heavier than ball but takes up less space” visually represented as (a picture of
a stone with side lengths “2 cm by 10 cm” with mass “9 kg”) and (a picture of a
ball with diameter “30 cm” with mass “5 kg”); (P9) “mass” is defined as “amount of
matter in an object”; (P10) “Formal Units” used to “Estimate, Measure and compare
volume and capacities” and thus interpret information on “commercial packaging”;
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and (P11) “Formal Units” used to “Estimate, Measure and compare volume and
capacities” to the nearest “Litre”, (P11a) can be abbreviated to “L”, and (P11b) can
be related to everyday objects, e.g., “milk cartons”.

Moving to the right and and inclusive under the “Unit 2” node are the propo-
sitions, from left to right, (P12) “Unit 2” looks at when an object displaces its
own volume when submerged in liquid which is called “Displacement”; (P13)
“Displacement” can be measured by “full container whose overflow is measured”;
and (P14) “Displacement” can be measured by “partially filling a calibrated clear
container and measure difference in water height”. The last two propositions are
inter-connected through a bi-directional cross-link with linking words “volumes can
then be compared”. To the right are the propositions (P15) “Unit 2” that looks
at “Litres”; (P16) “Litres” can be converted to (a) smaller unit the “millilitre”;
(P17) “millilitre” can be used to “measure, estimate, compare, record volume and
capacity”; (P18) “millilitre” that are used in calibrated measuring devices such
as “medicine glass, measuring cylinder”; (P19) “millilitre” can be abbreviated to
“mL”; (P20) “millilitre” is applied when comparing “commercial packaging every-
day containers in formal units”; (P21) “millilitre” can be rounded off to “the nearest
100 mL or 10 mL”; and (P22) “millilitre” this conversion can take place such as
“1,000 mL = 1 L”. Occurrences of progressive differentiation and integrative recon-
ciliation with descriptions and pictures of some illustrative examples, demonstrated
the interconnectedness of Susan’s interpretation and understanding of Stage 2 syl-
labus outcomes. Overall, the concept map displayed the focus of this stage on the
consolidation of a conceptual understanding of formal units of measure of volume
and capacity (e.g, cubic centimetre, litre, millilitre) and consolidating the displace-
ment strategy by extending on the informal approach of the last two Stages – prior
knowledge is indicated with bold-outlined ovals. Introduced in this Stage is the con-
cept of mass as an example of making connections to other content strands (indi-
cated by broken-outlined ovals).

For Stage 3 (Fig. 2.6), the super inclusive propositions are (P1) “Stage 3” has
a measurement outcome that looks at “MS3.3”; (P2) “MS3.3” involves “Volume”;
and (P3) “MS3.3” looks at the selection of appropriate “units”, and (P4) “MS3.3”
involves “Capacity”.

The propositions inclusive under the “Volume” branch, from left to right, are
(P5) “Volume” is demonstrated using cubes of side lengths 100 cm which “will dis-
place 1 L” thus “1,000 cm3 = 1L”; (P6) “Volume” can be found using displacement
when measuring “irregular solids”, for example, (as pictorially shown); (P7) “Vol-
ume” of rectangular prisms is found through “repeated addition” which can lead
to the use of “layers”, for example, (as pictorially shown by a block with 3 layers
of 15 blocks); (P8) “Volume” can be the same if “the shape is different” this can
be seen through “construction”, for example, (as pictorially shown for a block of
2 x 4 x 5 and a block of 2 x 10 x 2 each with a volume of “40 units3); (P9) “Vol-
ume” is found by counting cubic centimetre blocks used to construct “rectangular
prisms”; (P10) “Volume” is demonstrated using medicine cups and a cubic centime-
tre “which displaces 1 mL of water” thus “1 cm3 = 1 mL”; and (P11) “Volume”
demonstrates a relationship between “length, breadth, height of rectangular prisms”
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Fig. 2.6 Stage 3 of the Volume substrand

and uses this to “calculate”, for example “ (l x b) x h = volume”. Those proposi-
tions inclusive within the “units” branch are (P12) “units” needed to be larger than
the cubic cm for example “metre cubed”, (P12a) abbreviated to “m3”, and (P12b)
uses this to estimate the size of “ 1

2 m3, 2 m3”; (P13) “units” are recorded using “dec-
imal notation to 3 decimal places”, for example, “0.2631052 ≈ 0.263”; and (P14)
“units” identifies the advantages of the “cube”. The rightmost branch shows the sin-
gle proposition (P15) “Capacity” can be found by being “estimated and measured”
by packing cubed centimetre blocks into “rectangular containers”, for example, (as
shown pictorially).

Overall, occurrences of progressive differentiation and integrative reconciliation
with descriptions and pictures of some illustrative examples, demonstrated the inter-
connectedness of Susan’s interpretation and understanding of Stage 3 syllabus out-
comes. In particular, the concept map displayed the focus of this stage on a deeper
understanding of volume and capacity, formal units, strategies and introduction of
a volume formula. Prior knowledge (as indicated by bold-outlined ovals) is further
consolidated in this Stage.

For Stage 4 (Fig. 2.7), the super inclusive proposition is (P1) “Stage 4” has the
outcome “MS4.2”; (P2) “MS4.2” looks at “Surface Area”, and (P3) “MS4.2” looks
at “Volume”.

The leftmost propositions inclusive within the “Surface Area” branch are (P4)
“Surface Area” looks at “Prisms’ areas”; (P5) “Prisms’ areas” are calculated by
identifying Surface Area and edge length of “Rectangular Prisms” by applying
practical means such as “nets”; and (P6) “Prisms’ areas” are calculated by iden-
tifying Surface Area and edge length of “Triangular Prisms” by applying practical
means such as “nets” for example, (as pictorially shown); and (P7) “nets” which are
“the blueprints of a 3D object”. The adjacent “Prisms” branch to the right included
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Fig. 2.7 Stage 4 of the Volume substrand

the proposition (P8) “Prisms” volumes are calculated using conversions such as
“1 cm3 = 1,000 mm3, 1 L = 1,000 mL = 1,000 cm3, 1 m3 = 1,000 L = 1 kL”
which is linked to “multiplication, division, powers, factors” which can be expanded
to include “higher powers”, for example, a5; (P9) “Prisms” which have cross sec-
tions that are composite are calculated by “dissecting into regular 2D shapes”; (P10)
“Prisms” are “constructed and identified” by drawing “cross section of the prism”,
for example, “triangular prism”; (P11) “triangular prism” has links to “Space and
Geometry Strands” as students look and draw “different orientations”, for example,
(as pictorially shown, a side view, top view and bottom view of a triangular prism);
(P12) “triangular prism” and its cross section (as shown pictorially) students use
cross section diagrams to “construct and draw prisms”; and (P13) “construct and
draw prisms” is the base area, when it is multiplied by height assists to “calculate
volume”.

An uplink from the latter node results in the proposition (P14) “calculate vol-
ume” as the base area multiplied by its height gives “V = base area × height”, for
example, (as pictorially shown with a cylinder with base area “�r2“ and height “h”).
The rightmost sub-branch inclusive under the “Prisms” node is (P15) “Prisms” are
used to develop the formula “V = base area × height”. A more inclusive proposi-
tion (P16) integrates the two branches, namely, “MS4.2 looks at “Volume”, (P16a)
of “Prisms”, and (P16b) of “Cylinders” with a bi-directional cross link between the
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last two nodes and linking words “which are 3D shapes” describing the nature of
their inter- relationship. Inclusive under the “Cylinders” node are the propositions
(P17) “Cylinders” can have the same “Volume different Surface Area” alternatively
they can have the same “Surface Area different Volume” and (P18) “Cylinders”
develop and use the formula “V = �r2h” where “V = volume, � = 22

7 , r = radius,
h = height”, for example, (as pictorially shown with a cylinder with base area “�r2”
and height “h”). Overall, occurrences of progressive differentiation and integrative
reconciliation with descriptions and pictures of some illustrative examples, demon-
strated the interconnectedness of Susan’s interpretation and understanding of Stage
4 syllabus outcomes. In particular, the concept map displayed the focus of this stage
on the extension of students’ deeper understanding of volume and capacity, for-
mal units, strategies, volume formula and the introduction of surface area of prisms.
A number of ideas encountered in previous Stages (bold-outlined ovals) and connec-
tions to other content strands (broken-outlined ovals) continued to be consolidated
and synthesized with the formal concepts of “volume” and “surface area”.

The concept map data presented above suggested that the student teacher became
competent and confident in her critical abilities to conceptually analyse the Length
and Volume sub-strands of the “Measurement” Strand for its key and subsidiary
ideas and strategies. By concept mapping the conceptual analysis results for each
Stage, Susan generated visual maps which highlighted developmental trends and
increasingly sophisticated means of estimating, measuring, comparing, and record-
ing length, volume and capacity using a variety of informal strategies and units
before introducing more formal strategies, units and formulas. Susan tracked the
progressive development and consolidation of previously encountered ideas by
using colours in her handwritten maps (but by using bold-outlined ovals here) with
connections to other content strands (as broken-outlined ovals here).

Vee Diagrams of Mathematics Problems

Examples of Susan’s’ vee diagrams are presented to illustrate how the vee diagrams
were applied in problem solving as a means to make explicit the interconnections
between mathematical principles (i.e. general statements of relationships between
concepts) and methods of solutions. A vee diagram (see Fig. 2.8a) illustrates the
conceptual and methodological information of a mathematics problem. The con-
ceptual (thinking) aspects (i.e., principles and concepts) of the problem are on the
left with the methodological (doing) aspects (i.e., given information, methods and
answers) on the right while the tip of the vee is anchored in the problem to be solved
and the focus question to be answered at the top. When completing the vee, the
conceptual analysis information is displayed on the thinking side as the mapper’s
responses to the guiding questions What do I know already? (e.g., mathematical
principles) and What are the main ideas? (main concepts) with a statement of math-
ematical beliefs as a response to Why I like mathematics? On the doing side, is the
given information (What is the information given?) and the methods of transforming
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the given information (How do I find my answers?) by applying the listed principles.
One’s reflections on the educational value of solving the problem, ideas for subse-
quent learning or connections to other topics are stated as responses to What are the
most useful things I learnt? (Or alternatively Where do I go from here? or What is
an interesting extension to the current learning activity?). The following analysis of
vee diagrams is done by considering the cohesiveness and relevance of the displayed
information to solving the given problem.

Figures 2.8a and 2.9 show Susan’s two examples of vee diagrams from her sec-
ond assignment while Figs. 2.8b and 2.10 are examples from the third assignment.
One of the main differences between the first two vees and the last two is in the
phrasing of the “focus question”; specifically, the entries were not phrased as ques-
tions to be answered but as statements in the first two vee diagrams. For example,
Fig. 2.8a included a statement and the methodological phrase “. . . subtract from 3
m”; the latter would be more appropriate on the right side under “How do I find
my answers?” while the corresponding entry for Fig. 2.9 needs to be phrased as a
question to be answered not a statement and without the methodological pointers.
The latter would be more suitable under methods. As a result of feedback to Susan,
this concern was appropriately addressed by the third assignment as evident by the
entries “What is the length of the pencil, desk and book? Which is shortest?” and
“What is the volume of a rectangular prism with dimensions 12 m × 6 m × 4 m?”
respectively, in Figs. 2.8b and 2.10.

A second main difference between the 4 vee diagrams is the absence of cross-
referencing of principles under How do I find my answers? in the first two vee dia-
grams (Figs. 2.8a and 2.9). The inclusion of cross references to the listed principles
on the right side in Figs. 2.8b and 2.10 made it easier to explicitly identify the prin-
ciple that represented the conceptual basis of a main step. For example, in Fig. 2.8b,
mathematical justifications for Method 1 are the principles 1 (P1), 2 (P2), and 4 (P4)
while principle 5 (P5) is the underlying conceptual basis for Method 2. Similarly for
Fig. 2.10, Susan referenced principle (v) (i.e., pv) as the mathematical justification
for Line 1 of Method 1 while principles (ii) and (iv) (i.e., pii and piv) underpinned
Line 2 of Method 1. The most significant similarity between all four vee diagrams
is the depth of conceptual details evident in the entries for What do I know already?.
For example, Susan’s responses for all four vee diagrams reflected the depth and
richness of her interpretations and conceptual analyses of the relevant syllabus out-
comes and as concept mapped in Figs. 2.1 to 2.7. The listed principles represented
Susan’s mathematical justifications for the multiple methods on the right hand side.
These are phrased in terms of the appropriate mathematical language, recommended
strategies and multiplicity of approaches most suitable for primary level.

For the “What are my answers to the question?” sections of the 4 vee diagrams,
entries also exhibited improvement by the third assignment. For example, the entry
for Fig. 2.8a showed part of the method (i.e., 300 – 140.5 = 159.5) whilst those in
Figs. 2.8b, 2.9 and 2.10 consisted mainly of the answers, not the methods, to the
respective focus question.

The entries for Why I like mathematics? revealed Susan’s perceptions of why
mathematics is important given the contexts of the problems while on the opposite
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side on the right under What are the most useful things I learnt? are Susan’s sugges-
tions for subsequent learning activities (Figs. 2.8a and 2.8b), affirmation of capac-
ities as related to containers only (Fig. 2.9) and general pedagogical belief for dis-
covering volume at any Stage (Fig. 2.10).

As was encouraged in the course, all 4 vee diagrams displayed more than one
method of solving each problem. The listed concepts on the other hand, indicated
Susan’s perception of the key and subsidiary ideas most pertinent for comprehend-
ing and solving each problem. On the right side under What is the given informa-
tion? are lists of the given quantities as extracted from problem statements and dia-
grams listed under Problem. Overall, each vee diagram provided a comprehensive
record of the most relevant conceptual and methodological information required in
the generation of an answer to the focus question. Of significance is the depth and
richness of prior knowledge (or principles) used as mathematical justifications for
the multiple methods.

Journal of Reflections

Susan’s journal of reflections documented her developing proficiency with con-
cept mapping and vee diagramming during the course (excerpts are in italics). She
recorded that her main reason for taking the unit was to help her develop a better
understanding of the mathematics syllabus and of the teaching of its concepts to
primary students. Rather than the year twelve (end of secondary level) style that
she “was used to, of formulas are everything”, she perceived the need to approach
primary mathematics from a primary perspective. In so doing, she felt she “was
taking a major risk in that (she) was approaching something that would take apart
all (her) previously attained ideas and approaches.” Organised around four themes,
namely, (1) critical ability to analyse syllabus topics and problems, (2) solve math-
ematics problems, (3) communicate effectively, and (4) develop a deep conceptual
understanding of the sub-strands, are Susan’s reflections presented below.

Critical Ability to Analyse Topics and Problem

At the beginning of the unit, Susan viewed problems as simply questions to be
answered and topics as containing a lot of information around one idea that needed
to be taught to students. However, upon completing workshop activities and the first
assignment, it became clear that “there was more to a problem than a formula and an
answer.” Instead, “(p)roblems consisted of a wide variety of factors that contributed
to the understanding and subsequent answer” such as the kinds of prior knowledge
one possessed, which influenced the methods, and through reflection, the value of
the learning experience, subsequent learning or extensions to the current activity.
The presented maps/diagrams provided evidence of Susan’s critical and conceptual
analyses of Staged outcomes, which facilitated the mapping of interconnecting con-
cepts, identification of multiple strategies and illustration of the theoretical bases of
multiple methods.
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Solve Mathematics Problems

As a result of constructing and completing vee diagrams, Susan realised that solving
a problem became more than just “an answer finder”. Initially, she found it difficult
to complete the thinking side because “(she) did not know how (she) constructed the
answer on the right hand side . . . and thus, did not know what principles (she) had
to list nor the important ideas”. However, she wrote, “I struggled with this as, as
a student I had only been taught the formulas never what was behind them.” With
this self-realisation, Susan chose to challenge herself, namely, “before finding the
answer in future diagrams, first, (she) would look only at the question and think
what (she needed) to know about it before (she actually solved) the problem.”

Communicate Effectively

Susan admitted it was always difficult for her to explain problems to others, “I
always had difficulty in explaining what I wanted them to do and it frustrated me
that they did not understand when I explained it the first time.” Through her reflec-
tions though, she said that her “communication skills verbally (had) been assisted
greatly by (her) written communication in both concept maps and vee diagrams.”
She claimed, “I now have the basic skills written before me and because it was me
that had to construct the written version I was able to explain what I did verbally
better than I had done before.”

Develop a Deep Conceptual Understanding of a Topic

Through concept mapping over time, Susan eventually realised that a topic has a
number of key and relevant concepts and recommended strategies that should be
introduced, developed and extended for students through a suitable selection of
learning activities to ensure a developmental conceptual understanding of the topic.
For example, she wrote, “(the length and volume sub-strands) have many connec-
tions that linked across a broad range of topics and through the construction of
maps and diagrams a deep understanding of the topics was achieved.”

Overall, over the semester, Susan developed critical (i) proficiency completing
the Thinking Side of diagrams “as quickly and as effectively as the (Doing Side)”
and (ii) analytical skills, “. . . to see where a problem is going before the actual com-
pletion . . . there are problems I can work backwards (from solution to principles) to
see where I am going”. She also found concept maps useful guides for completing
vee diagrams, “I could see the links and the next step (more clearly) in the solving
of problems in relation to the sub-strand.”

Discussion

Findings suggested Susan became competent and confident in her critical abili-
ties to analyse syllabus outcomes and problems and displaying the results appro-
priately on concept maps and vee diagrams. She analysed the syllabus outcomes
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for key concepts, strategies and illustrative examples before placing the results
in a conceptual, developmental order within each Stage and from left to right
on concept maps. Making connections between and within Stages was achieved
by colour coding nodes (in the original maps but with bold- and broken-outlined
ovals here) and cross-linking to differentiate between prior and new knowledge.
Using vee diagrams, she systematically analysed problems to make explicit both
the conceptual and methodological information involved in generating plausible
solutions.

Through her maps and diagrams, Susan was able to communicate effectively
with her audience. For example, because she had individually constructed the
maps/diagrams, she was in a better and stronger position to explain and justify her
ideas publicly due to the critical process she undertook in constructing and complet-
ing a concept map or a vee diagram. At the conclusion of the concept mapping and
vee diagramming activities, Susan realised that she was able to “see the connections
that infiltrated the topic”, consequently gaining a better understanding of sequenc-
ing learning activities. For example, “(she) now understands what needs to be taught
first and where (she) needs to go from there” through the connections that she made
visible on maps and diagrams. Furthermore, over time, completing the thinking side
of vee diagrams eventually became much easier and done as efficiently as she did
the right hand side. At times, she challenged herself by using the thinking side first
to guide the development of her methods, which was something she did not use to
do before. This was a significant development in her critical approach to problem
solving. In her journal, she recorded that the principles guided her development of
appropriate solutions, and sometimes, if the method is done first, she could flexibly
use the solutions to infer what the principles should be. Over time, Susan became
increasingly confident in critically using her concept map to identify subsequent
learning and the next developmentally appropriate strategy or method guided by the
propositions on the concept maps.

The presented data is only a sample of Susan’s work over the semester. However,
they explicitly illustrated the richness of information that can be captured by the
combined usage of maps and diagrams in analysing syllabus outcomes and mathe-
matical problem solving. Through her statements of mathematical principles using
the appropriate mathematical language (on vee diagrams), Susan captured the con-
ceptual and developmental essence of length, volume and capacity as recommended
in the syllabus outcomes. The concept maps on the other hand, visually illustrated
the recommended strategies to be promoted in primary mathematics, as well as mak-
ing explicit visual connections between length, volume, capacity and surface area.
The rich linking words describing the nature of the interrelationships between nodes
resulted in valid propositions. The latter transformed the hierarchical concept maps
into networks of meaningful, interconnecting propositions that coherently described
the focus and scope of each Stage.

The presented maps/diagrams demonstrated that a deep understanding of the
“length” and “volume” sub-strands of the “Measurement” Strand was developed
and reinforced through the construction of maps/diagrams. The vee diagram struc-
ture provided not only the space to express one’s mathematical beliefs and critical
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reflections, but also projections for future learning as evident from Susan’s projec-
tion for subsequent learning. Overall, constructing maps/diagrams evidently encour-
aged Susan to move beyond a procedural view to a more conceptually based jus-
tification of methods and a purposeful and clearer understanding of sequencing
prior, new and future learning to promote students’ developmental and conceptual
understanding.

Finally, Susan concluded that constructing maps/diagram had begun “a new
chapter in (her) understanding and teaching of mathematics.” She felt confident
and her understanding of the sub-strands had deepened particularly in “how each
and every one of (the concepts and strategies) builds upon the prior knowledge of
the last”. Findings from this case study contribute empirical data to support the
development of primary teachers’ deep understanding of mathematics of the rele-
vant syllabus through concept mapping and vee diagramming and the pedagogical
use of maps/diagrams to make explicit the developmental trends of key ideas across
multiple Stages and to highlight the critical synthesis of conceptual and method-
ological knowledge in problem solving.

Implications

The visual displays of networks of propositions on concept maps and theoretical and
procedural information of problems on vee diagrams effectively encapsulated the
interconnection between the Knowledge & Skills and Working Mathematically Syl-
labus Outcomes. This suggests the potential educational value of regularly expos-
ing primary students to the strategies of concept mapping and vee diagramming
to enhance and develop both their conceptual and methodological understanding
of mathematics. Doing so would necessarily enable working and communicating
mathematically amongst students in the classroom. Having students regularly con-
struct their own maps and diagrams before and after a topic, as part of their normal
mathematics classroom practices can lead to a more integrated and interconnected
understanding of mathematics concepts and strategies as well as the development of
critical thinking and reasoning.

As the data demonstrates, constructing concept maps engenders a deep under-
standing of how concepts and recommended strategies are developmentally pro-
gressed and consolidated across the Stages while constructing vee diagrams
enhances the critical synthesis of the relevant mathematical principles and methods
of generating solutions to problems. Collectively the impact engenders a better
appreciation of how the main concepts and recommended strategies are devel-
opmentally progressed within each sub-strand, and how its mathematical prin-
ciples are applied in methods as demonstrated by the sample data presented.
These findings imply that concept maps and vee diagrams are potentially use-
ful tools for learning mathematics and solving problems more meaningfully and
more conceptually. The classroom applications of these tools are worthy of further
investigation.
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Chapter 3
Concept Mapping as a Means to Develop and
Assess Conceptual Understanding in Primary
Mathematics Teacher Education

Jean Schmittau and James J. Vagliardo

Psychologists such as Vygotsky and Skemp indicate that as a superordinate concept
the understanding of positional system requires knowledge of several bases for its
adequate development. However, current elementary mathematics curricula fail to
adequately develop the concept of positional system, attempting instead to teach
operations in base ten in isolation. This paper exhibits the power of concept map-
ping to reveal to teachers the centrality of this concept in elementary mathemat-
ics. The map presented here, constructed by Maryanne, a pre-service teacher, also
features the pedagogical content knowledge required to successfully teach the con-
cept of positional system and the other mathematics concepts to which it is related.
Maryanne’s pedagogical treatment is neither simplistic nor reductionist, but reveals
the conceptual essence of the concepts in question and the complexity of their rela-
tionships within elementary mathematics when taught as a conceptual system.

Introduction

The teaching of multiple bases to develop the concept of positional system that
figured so prominently in the US mathematics education reform during the 1960s
and 1970s was swept out of favor with the advent of the back to basics movement
that succeeded the “new math” era. Unfortunately, its former prominence in the ele-
mentary mathematics curriculum has yet to be restored. It is not included in the
current reform effort of the National Council of Teachers of Mathematics (NCTM,
1989, 2000), and is absent from most elementary school mathematics and elemen-
tary mathematics methods textbooks as well (cf. Burris, 2005, for a notable excep-
tion). The multi-base blocks invented by Zoltan Dienes some fifty years ago have
virtually disappeared not only from US classrooms but from the catalogs of suppli-
ers of mathematics manipulatives as well (the Prairie Rainbow Blocks developed by
George Gagnon constitute a rare exception). Only base ten blocks are in common
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use in US classrooms. And yet not only Dienes, but Skemp (1987) and Vygotsky
(1962) stressed the importance of teaching multiple basic level concepts for the for-
mation of a superordinate concept such as positional system.

As long as the child operates with the decimal system without having become conscious
of it as such, he has not mastered the system but is, on the contrary, bound by it. When he
becomes able to view it as a particular instance of the wider concept of a scale of notation, he
can operate deliberately with this or any other numerical system. The ability to shift at will
from one system to another. . .is the criterion of this new level of consciousness, because
it indicates the existence of a general concept of a system of numeration (Vygotsky, 1962,
p. 115).

Skemp (1987) stresses that a superordinate concept can not be developed in the
mind on the basis of a single basic level concept. At least several basic level con-
cepts are required. A concept of positional system can not be developed through the
teaching of base ten alone. And Vygotsky (1962) asserts that a child can not master
the decimal system without attaining a mastery of the more general concept of posi-
tional system. Thus, as these leading psychologists in the theory of learning attest,
one cannot understand base ten without learning other bases as well.

Developing the Concept of a Positional System
in Teacher Education

Not only is the knowledge of multiple bases essential for understanding the con-
cept of a positional system, but the concept itself provides a conceptual foundation
for the four fundamental operations on whole numbers and for the development
of the concept of variable, exponent, polynomial and polynomial operations, deci-
mals, fractions, and area and volume experienced through the geometric modeling of
positional systems. Consequently, the omission of this important means to concept
development has multiple consequences for the learning of mathematics beyond the
elementary level.

While the case for teaching multiple bases has been well documented in the psy-
chological literature (Vygotsky, 1962; Skemp, 1987), its omission from elementary
school mathematics textbooks presents difficulties for prospective and practicing
teachers who may acknowledge its importance but be inclined to protest that “it’s
not in the curriculum”. Assigning pre-service and in-service teachers the task of
constructing a concept map exploring the connections of the concept of positional
system to other important mathematical concepts, reveals the centrality of this con-
cept both in elementary mathematics and as a foundation for concepts encountered
at the middle school level and beyond.

The concept map shown in Fig. 3.1 was made by a pre-service teacher
(pseudonym Maryanne) in response to such an assignment. When the concept of
positionality was addressed in her elementary mathematics methods course, con-
cept mapping was also introduced, and students were asked to begin to draw a map
centered on the role of positionality in school mathematics.
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Fig. 3.1 Maryanne’s concept map

As additional mathematics concepts were explored, students were encouraged to
continue adding to their maps, so that the construction of the concept map became
a project that continued to develop over the semester. The assignment revealed to
students the multiple connections the concept of positional system has with mathe-
matics concepts that children will study in the later elementary and middle school
years and even beyond. These include such concepts as decimals, exponentials, area,
volume, and polynomials and their operations.

Maryanne’s Map

Figure 3.1 presents a view of Maryanne’s concept map in its entirety. Figure 3.2
focuses on the extreme left section of the map, which reveals her understanding of
the need to establish the concept of positional system on the foundation of multiple
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Fig. 3.2 Left side of Maryanne’s concept map showing “Symbols” and “Many Bases” as subsumed
concepts

bases. Under the designation “Symbols” we see that she understands that for any
base b, numerals from 0 through 1, 2, 3, . . ., b-1 are necessary to designate the
numbers in the system. Base 4 is provided as an example, with 0, 1, 2, and 3 as
numerical symbols, and counting in base 4 is illustrated.
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Moving to the right across the map (Fig. 3.2), Maryanne further develops these
ideas, beginning with the initial proposition that the concept of “positionality
requires awareness and understanding of many bases”, including base 2 and 16 used
in computers, and base ten employed in both the metric and Hindu Arabic numera-
tion systems. Her illustrations of the powers of ten designated in the metric system
and the powers of 7 in the expanded form of the number 256 base 7 show the link
to exponentiation that derives from a consideration of meaning of numbers across
systems employing diverse bases.

Figure 3.3 identifies the section of Maryanne’s concept map that includes three
classroom applications involving different bases. A Mother Goose rhyme in base 7,
a packaging example in base 6, and chip trading in base 4, are examples of meth-
ods that can be used with elementary students to develop the concept of positional
system from the study of multiple bases. Pre-service teachers were encouraged to
include pedagogical methods (and these are found throughout Maryanne’s map), as
exemplary pedagogical practices that embody important conceptual content.

Chip trading in base 4 is treated in Burris’ (2005) text for elementary teachers
Understanding the Math You Teach, a feature that renders this text unique. The use
of chip trading to teach the fundamental operations of addition, subtraction, multi-
plication, and division appears in the bottom right section of Maryanne’s concept
map, denoted as “Teaching Basic Operations” (see Fig. 3.1). This section is specif-
ically highlighted in Fig. 3.6 and represents a pedagogical approach that connects
the algorithmic operations with their conceptual genesis.

Teaching Bases:

Mother Goose Rhyme (Base 7):

As I was going to St. Ives,
I met a man with seven wives;
Every wife had seven sacks,
Every sack had seven cats,
Every cat had seven kits;
Kits, cats, sacks, and wives,
How many were there going to St. Ives?

A Candy Factory Packaging in Sixes (Base 6)

Chip Trading in “the Land of Fours” (Base 4 or other)

Fig. 3.3 Classroom applications involving bases
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Considerations of exponentiation are shown in Fig. 3.4, including the extension
to negative integer and fractional powers, which designate fractional and irrational
numbers, respectively, and to their repeating (rational) and infinite non-repeating
(irrational) decimal representations. Maryanne goes further to relate to the real num-
ber line the combined infinite set of all numbers capable of being expressed as a base
raised to an integer or fractional power, and illustrates the generating of terminating
and repeating decimals from partitive division using base ten blocks, an effective
teaching strategy.

Figure 3.5 shows the interrelationships among the four fundamental operations
of addition, subtraction, multiplication, and division of whole numbers, together
with attendant processes of regrouping as required. Embedded within Fig. 3.5 is an
important link between the standard algorithms for these processes and modeling of
similar operations with polynomials.

The standard algorithms are unfortunately downplayed in the current reform
movement (NCTM, 1998) but are, as Maryanne’s map reveals, fully conceptual. She
illustrates the ease of transition to algebra from a consideration of multiple bases,
as it is an easy step from the notion of a variable base b, where b can be any integer
greater than 1, to the variable x which can be any real number. One simply removes
the positive integer restriction to produce a real valued variable. Further, the famil-
iar expanded form for numbers in various bases (such as 304 base 8 shown here and
256 base 7 in Fig. 3.3) is isomorphic to the form in which a polynomial (such as x2 +
5x + 1) must of necessity be written, since the value of x is unknown and hence, its
terms cannot be added together. Maryanne uses an area model for the polynomial.
In addition, she integrates both estimation by rounding and scientific notation into
this section of the map.

In Fig. 3.6, Maryanne reveals the pedagogical content knowledge necessary for
proper instruction in positionality employing chip trading (Davidson, Galton, &
Fair, 1975) with the requisite trades for regrouping as required in performing the
four fundamental multi-digit operations on integers. She also employs an area model
for multiplication.

It is noteworthy that the conceptual and the algorithmic are connected without
a separation of “concepts” and “procedures”. Under “Teaching Basic Operations”
the use of chip trading as a pedagogical tool is displayed. In the “Addition with
Regrouping” model, Maryanne illustrates the removal of ten “ones” chips and their
trade for a “ten” chip in adding 32 + 49 = 81. In the “Subtraction with Regrouping”
model, she shows the manner in which a “ten” chip is traded for ten “ones” chips,
and then 7 “ones” chips are removed from the resulting 13 “ones” chips. Then one
“ten” chip is removed from the remaining two “tens” chips in the subtraction prob-
lem 33 – 17 = 16.

In the depiction of multiplication using chip trading, Maryanne solves the prob-
lem 135 × 3 = 405 by tripling the 5 “ones” chips and trading ten of the resulting
15 chips for a “ten” chip, then tripling the 3 “tens” chips and trading the resulting
9 +1 “tens” chips for a single “hundred” chip. Tripling the original “hundred” chip
and adding this additional “hundred” chip results in the solution of 4 “hundreds”,
no “tens” and 5 “ones” chips. She then shows how in multiplying 15 × 12, the 12
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Fig. 3.5 Right side of Maryanne’s concept map showing “Operations” and “Place Value” as sub-
sumed concepts

is first split into 10 + 2, then each addend separately multiplies 15, and finally the
resulting partial products are added to obtain 180. The distributive property is the
underlying conceptual mechanism here, and this is emphasized in the area model
for multiplication of 13 × 11.

Finally, Maryanne illustrates the use of chip trading in the division of 124 by
4. First the “hundred” chip is traded for 10 “tens” chips to provide 12 “tens” chips.
Twelve tens divided by 4 is 3 tens, and finally four “ones” divided by four is 1 “one”.
Therefore the quotient is 31 which is 3 tens and 1 unit.

The power of chip trading is that it requires the child to employ the same cogni-
tive processes that are required for computing efficiently with multi-digit numbers
in our base ten positional system. As these processes are employed, the conceptual
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Fig. 3.6 Maryanne’s pedagogical approach connecting the algorithmic with the conceptual

content of the algorithms is continually reinforced; they are not arbitrary “rules”
to be memorized and executed by rote, but meaningful processes that rely for their
power on the concept of positional system and the properties of actions such as the
distributive property of multiplication over addition. Eventually, children have no
need for the chips and simply invoke the representation of the trades. Finally, they
are able to perform the requisite mathematical actions on the numbers alone, and
to see that the algorithms are merely the symbolic trace of the meaningful mathe-
matical actions they formerly performed on objects. When they attain this level of
competence and understanding they will not find actions on large numbers (which
would be too cumbersome to be easily performed with objects) to be daunting, nor
will they need a calculator to perform them.

Maryanne’s map thus shows connections of the concept of positional system with
its genesis from a consideration of multiple bases (perhaps begun with simple nurs-
ery rhymes, and pictures for young children as shown in Fig. 3.3), through connec-
tions with exponentiation, decimals, fractions, the real number line, estimation and
rounding, the metric system and scientific notation so important for measurement,
area models, the concept of variable, and the operations of addition, subtraction,
multiplication, and division of both integers and polynomials.

Death by Decimal

Concept mapping reveals the centrality of the concept of positional system in the
conceptually dense system of concepts that comprise elementary school mathemat-
ics. Not only does it connect to many important concepts that students will study
concurrently or for which it will prepare them for study in the future, it is also a
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prerequisite for any real understanding of the base ten system. It is significant that
the mathematics study group of the Mathematical Association of America recently
affirmed the concept of positional system to be foundational in school mathematics.
Indeed the consequences of failure to adequately grasp this concept in real world
applications range from measurement inaccuracies in trades such as construction to
those in professions such as medicine. The first can be costly; the second deadly.

In her study of the mathematical errors of student nurses, Pirie (1987) documents
the extent to which student nurses fail to correctly use mathematics to make mindful
decisions in such tasks as unit conversions, dosage calculations, and fluid monitor-
ing. Fragile and/or incorrect conceptual development in mathematics often invites
the use of procedural shortcuts that increase the potential for error and the possi-
bility of disastrous results for a patient whose life may depend on the correctness
of the calculation. In the absence of fundamental conceptual grounding, the same
mathematical procedures that could be used to promote the health and well-being of
a patient become unreliable.

The severity of miscalculation is evident in the simulation study published in
the American Journal of the Diseases of Children. Perlstein et al., whose study
involved the staff of a neonatal intensive care unit working with simulated physi-
cians’ orders, reported that ”56% of the errors tabulated would have resulted in
administered doses ten times greater or less than the ordered dose” (cited in Pirie,
1987, p. 145.) Lesar (2003) studied and classified the 200 tenfold errors in medi-
cation dosing that occurred in an 18 month period at a 631-bed teaching hospital
citing such errors as a misplaced decimal point, adding an extra zero, or omitting a
necessary zero. Przybycien (2005, p. 32) reports that a physician ordered morphine
0.5 mg IV for a 9-month-old baby but because of a missed decimal an inexperi-
enced nurse gave the baby 5 mg of morphine IV, and the baby died. It is an example
of “death by decimal” and the lack of meaningful understanding of positionality
continues to lead to such tragedy.

Summary

Using concept mapping in the development of the concept of positional system sub-
stantively reveals the need to teach multiple basic level concepts for the forma-
tion of a superordinate concept. Maryanne’s carefully considered concept map of
positionality is in sharp contrast to the superficial treatment often found in popu-
lar mathematics texts which display a decimal number with digits to the right and
left of the decimal point labeled to indicate the name and relative value of each
position. Maryanne’s concept map clearly indicates what must be taught to students
for a meaningful understanding of positionality to develop. It reflects her in-depth
exploration of the meanings associated with and underlying the concept of posi-
tional system, its antecedent concepts, and the complexity of their interrelation-
ships within a conceptual system. The map addresses a serious deficiency in cur-
rent elementary mathematics programs and provides a reliable direction for future
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mathematics curriculum development. The inadequate development of positional
system inhibits future learning in mathematics and has important consequences for
societal applications that require knowledge of the decimal system. Research in the
field of medicine corroborates the number of deadly errors attributable to misplaced
decimals in fluid monitoring and drug dosage calculations. It would be difficult to
imagine a nursing student who understands the concepts and relationships depicted
in Maryanne’s map ever making the devastating errors chronicled in Pirie’s (1987)
and Przybycien’s (2005) research.

Acknowledgement Our special thanks to the pre-service student who graciously provided the
concept map discussed in this chapter.
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Chapter 4
Using Concept Maps and Vee Diagrams
to Analyse the “Fractions” Strand in Primary
Mathematics

Karoline Afamasaga-Fuata’i

The chapter presents data from Ken, a post-graduate student who participated in a
case study to examine the value of concept maps and vee diagrams as means of com-
municating his conceptual analyses and developing understanding of the “Fractions”
content strand of a primary mathematics syllabus. Ken’s work required that he anal-
ysed syllabus outcomes and related mathematics problems and to display the results
on concept maps and vee diagrams (maps/diagrams) to illustrate the interconnect-
edness of key and subsidiary concepts and their applications in solving problems.
Ken’s progressive maps/diagrams illustrated how his pedagogical understanding of
fractions evolved over the semester as a consequence of social critiques and further
revision. Progressive vee diagrams also illustrated his growing confidence to justify
methods of solutions in terms of mathematical principles underlying the main steps.

Introduction

As mathematics teachers, it is incumbent upon us to ensure that we have a deep
understanding of the content of the syllabus we are going to teach, that we can ped-
agogically and effectively mediate the development of school students’ understand-
ing and meaningful learning of mathematical concepts and processes by providing
students with support as they engage with appropriately designed learning activities
that challenge their mathematical thinking and reasoning. Further, teachers should
have the capacity to diagnose instances of significant learning and, when it is not
occurring, to provide appropriate support to assist students along their developmen-
tal learning trajectories (e.g., AAMT, 2007; NCTM, 2007). This requires that we
are, not only familiar with the psychology and epistemology of learning to empower
us to appropriately assist individuals coming to know, understand and learn new
ideas meaningfully, but that we are also familiar with the range of socio-cultural
factors that impact on learning in a social milieu so that we can support students’
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interactions and exchange of ideas to further the development of their conceptual
understanding of mathematical situations, concepts and processes.

Shulman’s taxonomy of knowledges for effective quality teaching includes
knowledge of the content of the discipline, i.e., subject matter knowledge (SMK),
and knowledge of teaching mathematics, i.e., pedagogical content knowledge
(PCK). SMK is further defined as consisting of substantive knowledge (i.e., knowl-
edge of principles and concepts of the discipline) and syntactic knowledge (i.e.,
knowledge of the discipline’s methods of generating and validating knowledge)
(Shulman, 1986). While knowledge has the properties of a commodity – that is,
it is categorical, codifiable, and can be traded or exchanged (Lyotard, 1979, as cited
in Feldman (1996)), understanding is the result of meaning-making in situations
(Bruner, 1990) and requires that students actively organize knowledge hierarchi-
cally to show interconnections between relevant concepts, with the most general
and most inclusive concepts superordinate to less general and most specific con-
cepts (Ausubel, 2000; Novak & Gowin, 1984; Novak, 2002). That the conceptual
interconnections may be described, in accordance with the discipline knowledge,
to generate propositions that are mathematically correct, indicate the occurrence of
learning that is meaningful and conceptually based.

Through social interactions in a classroom setting, students and teacher collabo-
ratively negotiate meaning and shared understanding as they deliberate about, and
engage with, a learning activity. According to Ausubel’s theory of meaningful learn-
ing, students’ understanding is developed through the construction of their own
patterns of meanings and through participation in social interactions and critiques.
When new knowledge is meaningfully learnt, the student decides which established
ideas in his/her cognitive structure of meanings are most relevant to it. If there are
discrepancies and conflicts, the student reorganizes and reconstructs existing pat-
terns of meanings, reformulates propositions, or forms new patterns to allow for
the effective assimilation of new meaning. For example, if the student could not
reconcile the apparent contradictory ideas, then a degree of synthesis (integrative
reconciliation) or reorganization of existing knowledge under more inclusive and
broadly explanatory principles would be attempted (progressive differentiation). In
contrast, rote learning is learning where students tend to accumulate isolated propo-
sitions rather than developing integrated, interconnected hierarchical frameworks of
concepts (Ausubel, 2000; Novak & Cañas, 2006). Students’ conceptual understand-
ing of a domain may be displayed on hierarchical concept maps and vee diagrams.

Definitions of Concept Maps and Vee Diagrams

Concept maps are hierarchical graphs of interconnecting concepts (i.e., nodes) with
linking words on connecting lines to form meaningful propositions. Concepts are
arranged with the most general and most inclusive concepts at the top with less gen-
eral and less inclusive concepts towards the bottom. Vee diagrams, in contrast, are
vee structures with its vee tip situated in the problem or event to be analysed with
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its left side displaying the conceptual aspects (i.e., theory, principles, and concepts)
of the problem/activity while the methodological aspects (i.e., records (given infor-
mation), transformations and knowledge claims) are on the left side. A completed
vee diagram represents a record of the conceptual and methodological information
of solving a problem to answer some focus questions. The theoretical basis of these
meta-cognitive tools is Ausubel’s theory of meaningful learning (Ausubel, 2000;
Novak & Gowin, 1984). Examples of maps/diagram are provided later.

Case Study

The case study of a post-graduate student, Ken, presented here, is about his concept
maps and vee diagrams (maps/diagrams) constructed to illustrate and communicate
his analysis for key and subsidiary concepts (knowledge), comprehension and criti-
cal interpretation (meaning) of the “Fractions” syllabus outcomes holistically at the
macro level, from early primary to early secondary (i.e., Early Stage 1 to Stage 4
of the NSWBOS K-10 Mathematics Syllabus) (NSWBOS, 2002), and then at the
micro level in the context of solving fraction problems. Over the semester, Ken
transformed his evolving understanding of the relevant conceptual and methodolog-
ical interconnections of key and subsidiary concepts of fractions and its progressive
development across the primary years of schooling (NSWBOS, 2002) into visual
displays of hierarchical conceptual interconnections on concept maps on one hand
while on the other, of the synthesis of conceptual and methodological information
in solving problems on vee diagrams.

Draft maps/diagrams were presented to the lecturer-researcher on a weekly basis
in 1-hour workshops for 12 weeks. Through interactive discussions and negotia-
tions of meaning in a social setting, Ken explained, justified and elaborated his
constructed maps/diagrams while the lecturer-researcher challenged his explana-
tions and critiqued his presented maps/diagrams. In between meetings, Ken revised
his maps/diagrams to accommodate critical comments of the previous workshop in
preparation for the next presentation.

Context

Ken was enrolled in a post-graduate mathematics education one-semester course
which introduced the meta-cognitive strategies of concept mapping and vee dia-
gramming to analyse and explicate the conceptual structure of a domain, in terms
of the hierarchical interconnections of its key and subsidiary concepts as an abstract
overview displayed on concept maps and to make visible the connections between
methods of solving mathematics problems and the relevant concepts and prin-
ciples underpinning the methods on vee diagrams. Ken practiced constructing
maps/diagrams of different syllabus outcomes and mathematics problems. The set
of maps/diagrams presented here constituted part of his assignments for the course.
Only data from two tasks are presented.
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Task 1 was for Ken to analyse the treatment of fractions in the NSW K-10 Math-
ematics Syllabus, specifically, the developmental learning trend of “fractions of the
form a

b , equivalence and operations with fractions” before conducting a small pilot
study to examine some students’ conceptions of fractions/equivalence/operations
(i.e., pilot study content). The students were selected from Years 4, 6 and 8 of a
local school to correspond to the end years of Stages 2, 3 and 4 of the K-10 NSW
Mathematics Syllabus (NSWBOS, 2002). Whilst the results of this pilot study is
reported elsewhere (Jiygel & Afamasaga-Fuata’i, 2007), Task 1 focused on Ken’s
conceptual analyses of the “Fractions” content most relevant to his pilot study.

Task 2 required Ken to construct (a) an overview concept map of the “Fractions”
content strand and (b) vee diagrams of fraction problems to demonstrate the appli-
cation of some of the mapped conceptual interconnections in (a).

Ken was an international student enrolled in the Master of Education program in
a regional Australian university. Although, he was an experienced primary teacher
from his own country, it was important that he fully understood the development
of the “Fractions” content strand in the primary mathematics and early secondary
mathematics (PESM) syllabus implemented at the local school. Ultimately, his con-
cept mapping and vee diagram tasks were intended to make explicit, for discussion
and evaluation, his conceptual analyses and pedagogical understanding of (a) the
content specific to his pilot study and (b) the overall “Fractions” content strand of
the PESM syllabus. Therefore, the focus question of this chapter is: In what ways do
concept maps and vee diagrams facilitate the conceptual analyses and pedagogical
understanding of syllabus outcomes?

Data Collected and Analysis

The following sections present Ken’s concept map and vee diagram data as required
for Tasks 1 and 2 followed by a discussion of the results. Concept maps are analysed
by considering the propositions formed by strings of connected nodes and linking
words, the presence of cross-links between concept hierarchies which indicate inte-
grative reconciliation between groups or systems of concepts and multiple branch-
ing nodes which indicate progressive differentiation between more general and less
general concepts. Further, Ken’s pedagogical content knowledge and understanding
of fractions in accordance with the requirements of Tasks 1 and 2 (and as displayed
on maps/diagrams) are compared to the relevant syllabus outcomes of the K-10 NSW
Mathematics Syllabus (NSWBOS, 2002).

Task 1 Data and Analysis

Early Stage 1 and Stage 1 Concept Maps

Ken’s analysis of Early Stage 1 (Kindergarten) syllabus outcomes in Fig. 4.1 shows
that “half” or “halves” are introduced concretely from everyday context by the
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Fig. 4.1 Early Stage 1
Fractions concept map

Fig. 4.2 Stage 1 Fractions
concept map

sharing of an object and by dividing it into “two equal parts”. The emphasis at
this stage is that the two parts are equal to ensure fairness.

Figure 4.2 indicates that, at Stage 1 (Years 1–2), fractions are used in two dif-
ferent ways, to describe “equal parts of a whole” and to describe “equal parts of a
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collection of objects”. Fractions also expand to include “quarters”. Modelling and
describing halves and quarters using whole objects and collection of objects contin-
ues and the notations “ 1

2 ” and “ 1
4 ” are introduced to represent “half” and “quarter”

respectively. According to the syllabus (NSWBOS, 2002, p. 61), it is not neces-
sary for students at this stage to distinguish between the roles of the numerator and
denominator. Subsequently, students may use the symbol “ 1

2 ” as an entity to mean
“one-half” or “a half” and similarly for “ 1

4 ”. These last two points (Stage 1) and the
“fairness” basis of Early Stage 1 were not included in Ken’s maps.

Stage 2 Concept Map

Figure 4.3 shows that, at Stage 2 (Years 3–4), fractions are described in different
ways such as “equal parts of a whole” and “equal parts of collection of objects” and
students’ repertoire of fractions increase to include those with denominators 8, 5, 10

Fig. 4.3 Stage 2 Fractions concept map
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and 100. Students learn about ”modelling”, “naming”, and “comparing/ordering”
fractions with “denominators 2, 4 & 8”.

These fractions are modelled with “ 1
2 , 1

4 & 1
8 ” of a whole or collection of objects

and “mixed numerals” are modelled using diagrams as shown for 2 1
2 . Naming

fractions with “(denominators) 2, 4, & 8 up to 1 whole” is also developed, for
example, 1

4 , 2
4 , 3

4 and 4
4 for quarters. Naming is also used to learn about “equiva-

lent fraction” (e.g., between half, quarters and eighths) by placing “ 1
2 , 2

4 & 4
8 ” on

“number lines beyond 1” and using “concrete materials and diagrams” by “redivid-
ing the unit” as shown diagrammatically for 1

2 , 2
4 and 4

8 . Furthermore, fractions with
the same denominators are compared and ordered such as “ 1

8 is less than 3
8 is less

than 6
8 ”.

The rightmost branch illustrated that the “modelling, comparing & represent-
ing” of fractions with “denominators 5, 10 and 100” (i.e., fifths, tenths and hun-
dredths) is also developed by extending the knowledge and skills illustrated by the
branches to the left with halves, quarters and eighths. Whilst this last point is explic-
itly mentioned in the syllabus outcomes, Ken did not explicate this on his map, either
by cross-linking to the left branches or extending by adding more nodes. Alterna-
tively, it is a pedagogical concern that could be specifically addressed when planning
lessons and designing classroom activities (not covered here).

Omitted also from the concept map is the notion of “numerator” although
“denominator” is explicitly mentioned. However, syllabus notes caution that “(a)t
this Stage, it is not intended that students necessarily use the terms ‘numerator’ and
‘denominator’” (NSWBOS, 2002, p. 62). Other missing ideas are the use of frac-
tions as operators related to division and the term “commonly used fractions” to
refer to those with denominators 2, 4, 8, 5, 10 and 100 as recommended in the
syllabus documentation. Although the introduction of decimals (to two decimal
places), place value, money (as an application of decimals to two decimal places),
and simple percentage are to occur at this stage, Ken did not include them in his
concept map in Fig. 4.3. However, given the specific content of the pilot study and
focus of Task 1, the omission was to be expected. It was nonetheless, a point that
needed consideration for Task 2.

Stage 3 Concept Map

Ken’s analysis of Stage 3 (Years 5–6) syllabus outcomes as concept mapped in
Fig. 4.4 shows that the new fractions introduced are the thirds and sixths to sup-
plement the halves, quarters, eighths, fifths, tenths and hundredths from previous
stages. The “mixed numerals” branch illustrated fractions may be expressed with
“mixed numerals” as “improper fractions” through the use of diagrams and number
lines leading to a mental strategy. Adjacent to the right of this branch, are inter-
connections indicating that the “modelling” of thirds, sixths and eighths are to be
done with “whole/collection of objects” and by “placing” them on a “number line
between 0 and 1” to “develop equivalence” as illustrated by the 3 number lines pro-
vided in the middle of the map. The rightmost branch of the map (Fig. 4.4), which is
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Fig. 4.4 Stage 3 Fractions concept map

inclusive under the node “operations” are two concept hierarchies (or sub-branches).
Whereas the left hierarchy displayed “addition/subtraction” of fractions with the
“same denominator” (e.g., 5

6 + 3
6/ 5

6 − 3
6 ) and with “(denominators) as a multiple

of the other” (e.g., 2
3 + 1

6/ 2
3 − 1

6 ), the right hierarchy illustrated “multiplication” of
“fractions by whole numbers” using “repeated addition” (as shown by the illustra-
tive example) which led to a “rule” as shown by the last node.

In comparison, the leftmost branch inclusive under the “written/diagram/mental
strategies” node are illustrative examples for subtraction of a “unit fraction from 1”
(e.g., 1 − 1

3 ) and “unit fraction from any whole number” (e.g., 4 − 1
3 ). A concept

sequence subsumed by the “equivalent fractions” node is isolated from the rest of
the map. It depicted the “redividing the unit” idea that was viewed in Fig. 4.3 (for
the equivalence of half, two-quarters and four-eighths) but is now illustrating the
case of three-quarters and six-eighths.

Twelfths were not explicitly mentioned in the upper hierarchical levels of Fig. 4.4
but it is diagrammed on the number line shown in the middle. In this Stage, the
label “simple fractions” referred to those with denominators 2, 3, 4, 5, 6, 10, 12,
and 100 but was missing from the map. Also missing were “mental strategies” for
finding equivalent fractions and for reducing them to lowest term and calculating
unit fractions of a collection (e.g., 1

3 of 30). Decimal and percentage coverage for
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this stage is omitted from the concept map. Instead it focused specifically on the
case of fractions of the form a

b and equivalence given the emphasis of the pilot
study (e.g., Task 1).

Stage 4 Concept Map

Ken’s analysis of the Stage 4 (Years 6–7) fraction outcomes in Fig. 4.5 shows a
focus on “operations” involving “addition” and “multiplication/division” of “frac-
tions & mixed numerals” and “substraction” of “fractions from a whole number”.
Illustrative examples are shown for the four operations. The rightmost branch illus-
trated that fractions may be expressed as “improper fraction” and as mixed numerals
shown by a cross-link to the more general “fractions & mixed numerals” node. The
leftmost branch, in comparison, depicted the idea that “equivalent fractions” may be
reduced to its “lowest term”.

The Stage 4 outcomes about decimals, percentages, ratios and rates are omitted
from the concept map at this early stage of his mapping experiences. Instead, Ken
focussed on the development of fractions of the form a

b , equivalent fractions and
operations with fractions a

b where the denominators are 2, 3, 4, 5, 6, 8, 10, 12 and
100 (defined in the syllabus as “simple fractions”) most relevant to the focus of his
pilot study.

Fig. 4.5 Stage 4 Fractions concept map
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Overall, Ken’s five concept maps traced the introduction, development, and con-
solidation of (a) the views of simple fractions as “part of a whole”, “part of a collec-
tion of objects” and a “number” on the number line; (b) equivalence between, and
ordering of, simple fractions; and (c) operations with fractions and mixed numerals
using concrete materials, illustratively with diagrams and the a

b notation.
Whilst his objective for Task 1 is met with the presentation of the 5 concept maps

(Figs. 4.1–4.5), it was incumbent upon him as a teacher to also develop a big picture
overview of the coverage of fractions across the four stages of the PESM syllabus
(NSWBOS, 2002), as described for Task 2.

Task 2 Data and Analysis

Overview “Fractions” Concept Map

Ken’s overview concept map of the “Fractions” content strand, provided in Fig. 4.6,
had over 100 nodes. Close-up views of the top, middle and bottom sections of the
full map are shown in Figs. 4.7, 8 and 9. Structurally, all three sections are inter-
connected. For example, integratively reconciled links from the “Fractions” (Level
1) node and Level two nodes (“part of a whole”, “part of collection of objects”,
“ratio”, “decimals”, “quotients”, “percents”, “probability”, and “rates”) all merge at
the “ a

b ” node (Figs. 4.6 and 4.7), collectively illustrating the interconnections of the
top section to the “ a

b ” node of the middle section (Fig. 4.8).
Interconnections between the middle (Fig. 4.8) and bottom sections (Fig. 4.9)

are through the two progressive differentiation links from the node “computation”,
at the bottom of the middle section (Fig. 4.8), to link to “single operations” at the
top of the bottom section and “mixed operations” towards the bottom of the bottom
section (Fig. 4.9). Hence, the three sections (although split up for legibility and
ease of discussion) are appropriately linked to provide a single overview concept
map as requested for Task 2. In contrast to the early maps in Task 1, this overview
concept map was completed towards the end of the study period, and as such, it
was expected that Ken would accommodate some of the syllabus omissions raised
during the presentations of Figs. 4.1 to 4.5. Each section is further examined below.

Top Section – Inclusive under the “Fractions” node (Fig. 4.7) are 8 branches
subsumed under 8 Level 2 nodes, which, collectively, represented different ways
of describing or using fractions. While the 2-leftmost branches was the focus of
Task 1, Fig. 4.7 displays the full range of forms and applications of fractions based
on Ken’s critical analysis of the relevant syllabus outcomes. An inspection of the
interconnections within each branch revealed Ken’s attempts at elaborating, repre-
senting and communicating his understanding of the meaning and/or application of
each of the Level 2 nodes. For example, the “part of a whole” branch included the
extended proposition (P1): “Fractions” represent “part of a whole” which can be
represented by “area models” such as “squares”, “rectangles” and “circles”. Further
linear linking from each of the last 3 three nodes (i.e., “squares”, “rectangles” and
“circles”), showed illustrative examples descriptively and diagrammatically.
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Fig. 4.6 Ken’s overview Fractions concept map
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For the next branch to the right, the extended proposition (P2) is: “Fractions” rep-
resent “part of collection of objects” which can be represented as “discrete methods”
such as “counters” and “sets”. Using counters, an illustrative example is (P2a): “2
out of (a) collection of 5 marbles” represented as (diagrammatically shown) repre-
senting “ 2

5 ”. The illustrative example for “sets” is: (P2b): “fourths of the same unit
in a set” represented as (diagrammatically shown) representing “ 1

4 of a whole”.
The extended proposition (P3a) for the “ratio” branch is: “Fractions” represent

“ratio” which brings “part to part relationship” such as “every 2 boys for 3 girls”
expressed as “2:3 or 2 to 3” where “whole is made up of (2+3) equal parts” as shown
(diagrammatically). A second extended proposition (P3b) of the “ratio” branch is
the result of the progressive differentiating links at the node “every 2 boys for 3
girls” node and integrative reconciliation links merging at the node “whole is made
up of (2+3) equal parts”. Whereas the proposition (P4) for the “decimals” branch
is: “Fractions” represent “decimals” which have “denominator(s) that are powers of
ten” such as “ 1

10 = 0.1”, that for the “quotients” branch is: (P5) “Fractions” rep-
resent “quotients” which arise from “partitioning”, for example, “divide 3 cookies
among 5 boys” can be represented as “ 3

5 or 3 ÷ 5”.
Towards the right, the extended proposition (P6) for the “percents” branch is:

“Fractions” represent “percents” which means “out of 100”, for example, “25% or
25

100 ” while that for the “probability” branch is: (P7) “Fractions” represent “proba-

bility”, which means “ no actual outcomes
Total no. of possible outcomes”, for example, “probability of

getting one in tossing a die is 1
6 ”. Lastly, the rightmost branch displayed the extended

proposition (P8): “Fractions” represent “rates” which describe relationship between
“two different measures” such as “metre/second or kg/dollar”.

A single link at the extreme left of the map resulted in the proposition (P9)
“Fractions” are shown as “ a

b ”. Each of the Level 2 nodes cross-linked to the “ a
b ”

node resulting in 8 more propositions. Some examples are (P10): “Fractions” rep-
resent “part of a whole” expressed by “ a

b ”; (P11): “Fractions” represent “quotients”
expressed by “ a

b ”; and (P12): “Fractions” represent “rates” expressed by “ a
b ”. Over-

all, the top section presented a connected web of knowledge displaying the different
meanings, uses, applications and notation a

b of fractions. These are more compre-
hensive and reflective of the “Fractions” syllabus outcomes in the PESM syllabus
than Figs. 4.1 to 4.5.

Middle Section – Inclusive under the node “ a
b ” (Fig. 4.8) are four progressive

differentiating links to nodes: “‘a’ is part”, “‘b’ is a whole”, “types” and “equivalent
fractions”. The first proposition (P13) is: “ a

b ” where “‘a’ is part” known as “numer-
ator” while the adjacent proposition (P14) is: “ a

b ” where “‘b’ is a whole” known as
“denominator”. These two sub-branches addressed the information that was missing
from Ken’s analysis of Stage 2 in Fig. 4.3.

The extended propositions from the “Fractions” node of Level 1 that are inclusive
under “types”, from left-to-right, are (P15): “Fractions” are shown as “ a

b ” depends
on “types” such as “proper fraction” where “numerator is less than denominator”,
for example, “ 2

3 , 6
15 , 9

13 ”; (P16): “Fractions” are shown as “ a
b ” depends on “types”

such as “improper fraction” where “numerator is greater than denominator”, for
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example, “ 15
7 , 7

3 , 4
3 ”; (P17): “Fractions” are shown as “ a

b ” depends on “types”
such as “mixed numeral” where “a whole number and a fraction”, for example,
“1 2

3 , 7 5
9 , 2 4

7 ”; and (P18): “Fractions” are shown as “ a
b ” depends on “types” such as

“unit fraction” where “numerator is always one”, for example, “ 1
2 , 1

8 , 1
9 ”.

These propositions provided some concepts and definitions that were missing
from Figs. 4.1 to 4.5 such as numerator and unit fraction. Inclusive within the
“equivalent fractions” branch are the rightmost sub-branches of the middle sec-
tion (Fig. 4.8). The relevant propositions are: (P19a): “Equivalent fractions” (are)
defined as “different representations of the same amount”, for example, “ 2

3 = 4
6 ”;

(P19b): “Equivalent fractions” (are) defined as “different representations of the
same amount”, for example, (as shown diagrammatically for 1

4 = 2
8 ); (P20): “Equiv-

alent fractions” which can be “simplified” to its “lowest term” by “dividing the
numerator and denominator by same number”; and (P21): “Equivalent fractions”
where “identity is maintained” by “multiplying numerator and denominator by same
number”, for example, “ 2

3 × 4
4 ; 6

7 × 5
5 ”. Overall, this section defined the notation a

b
as well as defined and illustrated the different types of fractions.

Bottom Section – Two extended propositions from the top of the overview con-
cept map (Fig. 4.6) connected all three sections (Figs. 4.7, 4.8 and 4.9). These are
(P22): (1) “Fractions” are shown as “ a

b ” depends on “types” which are involved in
“computation” using “single operations” such as “addition”, “substraction”, “mul-
tiplication”, and “division” and (2) (P23): “Fractions” are shown as “ a

b ” depends
on “types” which are involved in “computation” which involves “mixed operations”
such as listed at the second to last level of the bottom section (see Fig. 4.9) from left
to right including illustrative examples for each type.

Four branches particular to the bottom section (Fig. 4.9) are inclusive under the
node “single operations” and subsumed under the nodes: “addition”, “subtraction”,
“multiplication”, and “division”. Inclusive under the “addition” node of proposition
P22 are two concept hierarchies. Reading from left-to-right, the left extended propo-
sition (P22a) is: “single operations” such as “addition” which involves “whole num-
ber and fraction”, for example, “1 + 2

3 ” which can be “described with models” such
as (diagrammatically shown); and the right one (P22b) is: “single operations” such
as “addition” which involves “fraction and fraction”, for example, “ 1

2 + 1
4 ” which can

be “described with models” such as (shown diagrammatically) for “ 1
2 + 1

4 = 3
4 ”. For

the “subtraction” branch, the extended propositions are (P22c): “single operations”
such as “subtraction” which involves “fraction from a whole number”, for example,
“1 − 1

3 ” which can be “described with models” such as (shown diagrammatically)
and (P22d): “single operations” such as “subtraction” which involves “fraction from
a fraction”, for example, “ 2

3 − 1
6 ” which can be “described with models” such as

(shown diagrammatically). This pattern of propositional links continued all the way
across the map to the rightmost node “division”.

The second half of the bottom section is the result of merging the integra-
tively reconciled links from the 4 operation nodes (“addition”, “subtraction”,
“multiplication” and “division”) and a progressively differentiating link from the
“computation” node (bottom of the middle section) at the “mixed operations” node.
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Some propositions are (P24): “single operations” such as “multiplication” which
come across “mixed operations” and part of P23, namely, “computation” which
involves “mixed operations”. Emanating from the “mixed operations” node are mul-
tiple progressive differentiating links to describe and illustrate the different types of
mixed operations at the bottom of Fig. 4.9. These 10 concept hierarchies (inclusive
under “mixed operations”) represented the final branch of the overview concept
map.

Overall, the overview concept map showed hierarchical networks of concepts
with the most general concepts at the top (e.g., Level 2 nodes) and progressively
less general ones (e.g., “single operations”) towards the middle with the more spe-
cific ones towards the bottom (e.g., “mixed operations”). Most (sub-)branches ter-
minate with illustrative examples at the bottom. This generality pattern (i.e., most
general -> most specific -> illustrative example) was consistently evident with most
concept hierarchies.

Concept Maps and Vee Diagrams of “Fraction” Problems

Two “Fractions” problems are presented to illustrate Ken’s use of maps/diagrams
to communicate his thinking and reasoning when solving problems. His conceptual
and process analysis results are provided in Fig. 4.10 for the first problem: “How
many 31/2 m lengths of rope can be cut from a length of 35 m?” (Problem 1).

Concept Maps – Ken envisaged that a useful proposition (P1) is: “Fractions”
(should be) understood as “Part of a whole” and “Whole” is “1” helps in solving
“Word Problems”, for example, (problem 1) while a second proposition (P2) is:
“Fractions” involve “operations” involving “Fractions & numerals” for example,
“1 − 2

5 ” and ”2 × 3
4 .” A multi-branched proposition (P3) is: “Fractions” involve

“operations” like “Addition”, “Subtraction”, “Multiplication”, “Division” which are
involved in “Problem Solving” of “Quantities” expressed as “Word problems”, for
example, (problem 1). Proposition P3 demonstrated examples of a progressive dif-
ferentiating link from the “Operations” node and integrative reconciliation links
from the four operations before linking to the “Problem Solving” node. A short
proposition (P4) is: “Quantities”, for example, “ 3

4 of 40 cm”. Displayed at the “Word
Problems” node is a proposition (P5): “Word Problems” (are) solved using “Strate-
gies” of “Problem Solving” which also illustrated an example of an uplink from a
less general concept to a more inclusive one towards the top of the map. Critiques
concerned the possibility of elaborating further on what is meant by strategies.

In subsequent workshops, Ken considered a second fraction problem, namely,
“If 1/4 of a post is below ground level, and 150 cm remains above the ground then
find the total length of the post” (Problem 2). This time, instead of constructing a
new concept map, he revised and expanded his previous draft map (Fig. 4.10) to
incorporate his thinking and reasoning about the two problems. The revised version
combined the main concepts and strategies for the two problems (see Fig. 4.11).

Reading from left-to-right (Fig. 4.11), the leftmost branch displayed the propo-
sition (P6): “Fractions” should be understood as “part of the whole” visualised as
(shown diagrammatically) and where the “whole” implies “1” which is evidently a
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Fig. 4.10 Ken’s draft concept map of the rope problem

better and expanded revision of proposition P1 of the previous map (Fig. 4.10) with
the inclusion of a diagram to illustrate the relationship between “part” and “whole”.
A cross-link from this branch at node “1” connected to the adjacent “word problems”
branch. The next proposition (P7) is: “Fractions” are used in “word problems”
involving “quantities”, for example, “ 3

4 of $40”. Some of the extended propositions,
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displayed in the middle, emanate from the multi-branching node “word problems”.
For example, (P8): “Fractions” are used in “word problems” which involves “prob-
lem solving” with “operations” like “addition”, “subtraction”, “multiplication”, and
“division” with each of the operation node linking to an illustrative example as shown;
(P9):“Fractions”areused in“wordproblems”whichmayinvolve“operations”; (P10):
“Fractions”areused in“wordproblems”, forexample, (problem1); (P11):“Fractions”
are used in “word problems” which may involve “fractions & numerals” with cross-
links to the illustrative examples of proposition P8; (P12): “Fractions” are used in
“word problems” which may involve “fractions & numerals” with “operations” like
“addition”, “subtraction”, “multiplication”, and “division”.

Propositions P8, P9 and P12 are integrated at the “operations” node with P11
cross-linking to the propositions’ illustrative examples. A number of integrative rec-
onciliation links to, and progressive differentiating links from, nodes: “operations”
and “strategies” are displayed.

The rightmost proposition (P13) involving the “strategies” node is: “word prob-
lems” are solved using “strategies” of problem solving such as “drawing diagrams”
(P13a), “simplifying a problem” (P13b), and “listing” (P13c).

The three sub-branches inclusive under the “strategies” node represented the
main additions in this revised map. Proposition P13a is an illustration of the “draw-
ing diagrams” strategy for problem 1 while the second one (P13b) illustrated the
“simplifying a problem” strategy. The latter demonstrated a meaningful interpreta-
tion and transformation of the given information as situated in the problem’s context.

The third concept hierarchy (P13c) illustrated the “listing” strategy using the
given information of the problem (i.e., first two bullet points) and application of
fraction knowledge to the given information (i.e., last two bullet points). Taken
together, the three concept hierarchies (P13a, b & c) depicted the results of his
processes of representing, transforming and listing/interpreting the given problem.
Overall, the revised and combined concept map for the two problems displayed the
key ideas that were applied (e.g., P6, P7 and P8) with the “word problems” node
shifting to a more general more inclusive level than the case was in Fig. 4.10, the
results of the thinking and reasoning from given information and the key strate-
gies applied as evidenced by propositions P13, and P13a, b, & c respectively. The
diversity of propositions delineated above directly resulted from progressive dif-
ferentiation such as at nodes “word problems”, “operations” and “strategies” and
integrative reconciliation at the last two nodes.

Vee Diagrams – Only one set of draft and revised vee diagrams are presented
here, namely, that for problem 2. Figure 4.12 showed the given problem statement
listed in the “Activity (Event)” section at the tip of the vee with the focus question
(What is the total length of the post?) listed at the top of the vee. On the “Conceptual
(Thinking) Side” on the left are the conceptual aspects relevant to the problem. For
example, Ken identified three relevant outcomes (as listed under “Outcomes”) with
the appropriate “Prior Knowledge (Principles)” as shown and 5 relevant concepts
listed under “Language (Concepts)”. On the “Methodological (Doing) Side” on the
right are the given information under “Data (Records)”, interpretations and trans-
formations of given information guided by the principles and as displayed under
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“Interpretations (Transformations)” with the answer to the focus question under
“Knowledge Claims”. Ken left the sections “Philosophy” and “Value Claims” blank.

Critiques in class challenged the relevance and appropriateness of the statements
of “Prior Knowledge (Principles)” as conceptual statements, and the need to pro-
vide philosophical and value statements given the context of the problem. Other
comments emphasised the need to ensure that there was a one-to-one correspon-
dence between the listed principles and main steps of the methods. For example,
which principles justify which main steps?

The revised vee diagram (Fig. 4.13) showed a number of additions such as the
inclusion of references to the relevant syllabus outcomes of the K-10 NSW Mathe-
matics Syllabus (NSWBOS, 2002) and reference labels for the listed principles. The
“Philosophy” and “Value Claims” sections now included entries (albeit they could
be better statements) with the addition of a “Theory” section to display the two main
topics most relevant to the problem. For the “Prior Knowledge (Principles)” section,
the principle list was now organised and labeled from P1 to P7. While the actual (P1
to P7) statements remained more or less the same as in Fig. 4.12, they would require
further elaboration into more suitable theoretical justifications for each main step of
the solution (displayed on the right side of the vee). For example, Principles P1
and P2 are not general statements about fractions, which would be more consistent
with propositions P6 (Fig. 4.11) and P1 (Fig. 4.6). Instead, they represented Ken’s
interpretation of the given situation and application of proposition P6 (Fig. 4.11).
As stated, these would be more suitable on the right side of the vee in the “Interpre-
tations (Transformations)” section. Each principle from P4 to P7 would need to be
rephrased and elaborated more fully so that they are more conceptual (i.e., general
statements of relationships between concepts) and less procedural (e.g., P4, P5 and
P6) to make them more suitable mathematical justifications as principles or formal
statements of conceptual relationships.

Discussion and Implications

The presented concept maps and vee diagrams displayed the results of Ken’s con-
ceptual analyses, comprehension and pedagogical understanding of the “Fractions”
content strand of the PESM syllabus as required for the two tasks. Whilst Figs. 4.1
to 4.5 represented his early interpretations of a subset of the content strand and early
attempts at concept mapping, Fig. 4.6 provided a more macro level and comprehen-
sive, summative concept map which evolved throughout the semester as a result of
multiple cycles of presentations, social critiques and revisions. Figure 4.11, in con-
trast, provided a more situated view of fractions in the context of two problems.
Taken together, the 3 sets of concept maps were qualitatively different in terms of
their purpose, situation and therefore focus.

For Task 1, the situation was the pilot study and the purpose was for Ken to
conceptually analyse the set of syllabus outcomes most relevant to the content
of his pilot study. Subsequently, the focus was to make explicit the results of his
conceptual analyses and to explicate his comprehension and depth of pedagogical
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understanding of the interconnections between, and meanings of the identified key
and subsidiary ideas visually on concept maps. The quality of his conceptual anal-
yses and pedagogical understanding was assessed by considering the hierarchical
levels of organization of the selected concepts, grouping of concepts into coherent
hierarchies and their interconnections, and richness of linking words to describe
the interrelationships, which collectively formed networks of propositions. In addi-
tion, the accuracy of his conceptual analyses and pedagogical understanding was
judged by whether or not he had analysed all of the relevant syllabus outcomes most
pertinent to the identified situation based on syllabus documentation. The result-
ing concept maps for Task 1 collectively explicated the progressive development
of the fraction concept using the different stages of cognitive development, (i.e.,
the concrete, iconic, and symbolic ( a

b )) as part of a whole, part of a collection and a
number across the different stages of the PESM syllabus. The demonstrated increas-
ing structural complexity of the five maps not only reflected the incremental depth
and breadth of content coverage (according to Ken’s interpretations of syllabus doc-
umentation) but also his understanding of the interconnectedness between fraction
concepts and its multiple models, representations and examples as evidenced by the
progressive differentiation of concepts between more inclusive and less general ones
and integrative reconciliation between coherent groups of ideas. As expected at pri-
mary level, a number of illustrative examples were selected from every day contexts
especially for Early Stage 1, and increasingly more use, in subsequent stages, of
concrete objects, the a

b notation with selective denominators, diagrams, and num-
ber line to model, represent and demonstrate fraction types, equivalence, order and
simple operations. Individually, each of the five concept maps illustrated the extent
and depth of coverage to be expected for each stage in terms of the meanings to be
developed using multiple models and increasingly more sophisticated development
of order, equivalence and operations towards the upper stages (i.e., Stages 3 and 4).
As Hierbert and Wearne (1986) argue, “conceptual knowledge grows as additional
connections are made via assimilation and integration (as) . . . related bits of knowl-
edge are related to earlier ideas” (p. 200). Although a number of key ideas were
omitted as irrelevant to the situation for Task 1, there were still some significant
relevant concepts missing especially towards the upper stages.

For Task 2, the situation for the first sub-task was the entire “Fractions” con-
tent strand in the PESM syllabus and the purpose was for Ken to conceptually
analyse the content to be covered up to Stage 4 and the focus was to construct
an overview concept map to include key and subsidiary ideas. Subsequently, over
the semester, as a result of multiple cycles of presentations, social critiques and
revisions, the Task 2 overview concept map evolved into a map that was organised
around three main sections, each with its own particular emphasis. Focussing on
the different definitions and applications of fractions in the top section, the middle
section was on the definition of the notation a

b and fraction types while the bottom
section elaborated computations with fractions. The hierarchical levels of generality
within each sub-branch appeared clearly defined, each following a basic sequence
that constituted a (i) concept label, (ii) brief description of concept meaning,
(iii) example description, and (iv) illustrative model/representation using diagrams,
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pictures, word descriptions and/or a
b notation as demonstrated by propositions P1 to

P12 of Fig. 4.7, P13 to P21 of Fig. 4.8 and P22 to 24 of Fig. 4.9. In addition, the
overview concept map illustrated integration and interconnectedness between the
3-sections as demonstrated by the extended propositions P22 and P23. Demon-
strating Ken’s growth of comprehension and pedagogical understanding of the
interconnectedness of “Fractions” syllabus outcomes were multiple occurrences
of progressive differentiation nodes and integrative reconciliation links which pro-
duced a more comprehensive overview of fraction concepts, computation types and
illustrative examples with over a hundred nodes, and structurally more complex
concept map than the earlier ones.

For the second sub-task of Task 2 (i.e., Figs. 4.10 and 4.11), the situation was
mathematical problems while the purpose was for Ken to conceptually analyse the
problems and the focus was to construct a concept map of the key and subsidiary
ideas pertinent to solving the particular problems. In contrast to the more abstract
(i.e., general) concept maps provided in Figs. 4.1 to 4.5, the situation for this sub-
task was more contextualised. The most significant difference between the general
and contextualised concept map was the inclusion of the “Problem Solving” con-
cept hierarchy in Fig. 4.10, which introduced the concept of “strategies” for solving
word problems, while the rest of the Fig. 4.10 nodes were similar to those pre-
viously viewed in the earlier abstract maps. Furthermore, although the “computa-
tion” branches of Fig. 4.6 displayed various single and mixed operations complete
with illustrative examples, the distinction was that the “word problems” branch in
the revised map (i.e., Fig. 4.11), in contrast, conveyed both the relevant concep-
tual propositions and problem solving strategies including the critical synthesis and
application of these (hence providing the evidence of the critical thinking and rea-
soning involved) in the particular situation of problem 2.

Overall, the three sets of concept maps varied in the extent of their selec-
tion of concepts, as determined by the purpose, situation and focus of the task,
and the hierarchical organisation and structural complexity of the interconnected-
ness of concepts and richness of its propositions. The various nodes indicating
progressive differentiation and integrative reconciliation, hierarchical networks of
concepts from most general to most specific, and richness of the resulting propo-
sitions evidenced the interconnectedness of Ken’s knowledge and growth in
conceptual and pedagogical understanding. The conceptual details (labels and
meanings) and linking relationships apparent in the final overview concept map
were substantively more enriched than the initial attempts of Figs. 4.1 to 4.5.
Figure 4.6 is not only relatively more comprehensive conceptually, but it is also
organisationally and structurally more differentiated and integrated than Figs. 4.1
to 4.5. In contrast to the general maps (Figs. 4.1 to 4.6), Fig. 4.11 captured the
essential synthesis of, and interplay between, concepts, principles, generalisations
and strategies most relevant in solving the two problems. Collectively, the concept
maps displayed the evidence of Ken’s conceptual analyses and his pedagogical
content knowledge in terms of the substantive (or conceptual) knowledge
of the PESM “Fractions” syllabus. As defined by Hierbert and Lefevre
(1986), conceptual knowledge is “knowledge that is rich in relationships . . . a
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connected web of knowledge, in which the linking relationships are as prominent
as the discrete pieces of information. Relationships pervade the individual facts
and propositions so that all pieces of information are linked to some network”
(p. 3–4).

Interestingly, a comparison of Figs. 4.6 and 4.11 suggested a difference in the
cognitive loading and processing, in terms of the critical thinking and reasoning
involved for “computations” and “problem solving” as encapsulated by the propo-
sitions inclusive under “computation” in Fig. 4.6 in contrast to those under “word
problems” and in particular under “strategies” in Fig. 4.11. More importantly, while
proficiency in computations is desirable and equally important, Fig. 4.11 highlighted
that being exposed to problem solving demands a much greater level of cognitive
processing and critical thinking. Such higher level of reasoning would be required
for constructing a vee diagram especially when completing the “Prior Knowledge
(Principles)” and “Interpretations (Transformations)” sections not only to ensure a
one-to-one correspondence between the listed principles on the left and the main
steps of the solutions on the right but that the listed principles were appropriate
general statements of relationships between concepts as mathematical justifications
for the steps. According to Blanton and Kaput (2000), justification in any form is a
significant part of algebraic (or mathematical) reasoning because it induces a habit
of mind whereby one naturally questions and conjectures to establish a generali-
sation, or in the case of Ken, to establish a principle that underlies a main step in
the solution. In addition, they argued that a classroom focus on justification could
encourage students to conjecture in order to establish generalisations. The same can
also be said for justification using principles to make explicit the conceptual bases of
methods on vee diagrams and similarly to creatively structure concepts and linking
words to form propositions on concept maps. Thus the data presented in this chapter
demonstrated how, through the routine use of concept maps and vee diagrams, a stu-
dent can develop habits of mind to conceptually and critically analyse mathematical
situations, thinking and reasoning from situations and justifying interpretations and
transformations in terms of the relevant substantive and syntactic knowledge of the
discipline. In so doing, teachers and student teachers can develop a deeper more con-
ceptual understanding of the structure of the relevant mathematics to pedagogically
mediate meaning in an educational context.

Overall, the richness of the linking words on the connecting lines and conse-
quently the conceptual richness of the propositions in Figs. 4.6 and 4.11 could be
further improved to convey more enriched descriptions of interrelationships than
had been shown. As Baroody, Feil, and Johnson (2007) proposed, “depth of under-
standing entails both the degree to which procedural and conceptual knowledge are
interconnected and the extent to which that knowledge is otherwise complete, well-
constructed, abstract and accurate” (p. 123). Similarly for further improvement are
the statements of principles in Fig. 4.13 to make them more theoretical, less con-
textualised and less procedural statements, as principled mathematical justifications
for the main steps. As Ellis (2007) pointed out for justifications and generalisations,
(which is equally viable for justifications and methods of solutions), “learning math-
ematics in an environment in which providing justifications for one’s generalisations
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(or methods of solutions) is regularly expected can promote the careful develop-
ment of generalisations (or methods of solutions) that make sense and can therefore
be explained” (p. 196). Furthermore, “a focus on justification may help students
not only to better establish conviction in their generalisations (or methods of solu-
tions) but also aid in the development of subsequent, more powerful generalisations”
(Ellis, 2007, p. 196) (or more powerful methods of solutions).

Findings from this case study contributes empirical data to the literature on the
use of concept maps and vee diagrams as viable tools that, through their routine
construction, can encourage students to engage in the processes of critical analysis
and synthesis, organising, thinking and reasoning, justifying and explaining their
knowledge and understanding of a situation publicly for social critiques, discussion
and evaluation. Further research is necessary to examine how these ideas could be
implemented in a whole class situation in the classroom.
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Chapter 5
Concept Maps as Innovative Learning
and Assessment Tools in Primary Schools

Karoline Afamasaga-Fuata’i and Greg McPhan

The introduction of concept maps to primary teachers as tools to guide and scaffold
their planning of learning activities in mathematics and science, or, alternatively as
an assessment tool for student learning, was treated with some trepidation and reser-
vations. That the tools have the potential to scaffold primary students’ learning and
understanding of mathematics and science concepts was an idea that needed empir-
ical testing in primary classrooms. Over a period of five school terms, through pro-
fessional development, on-going professional support and collaborations between
teachers and university researchers, an incremental introduction of semi-structured
concept maps was initiated in two primary classrooms. This classroom trial occurred
over a period of time until a more receptive and conducive learning environment was
established with primary students using concept maps to review their understanding
of Position in the K-Year 1 classroom and Fish’s Adaptive Features and Fractions
in the Year 5/6 classroom. This chapter documents the professional journey of two
primary teachers and their students as they struggled, persevered and succeeded in
incorporating concept maps as learning and assessment tools, as part of their normal
classroom practices during the year. The ultimate highlight of the innovative strategy
was the initiative by the two primary teachers and their students to come together
for peer tutoring and peer collaborations as the older students mentored and assisted
the younger ones in using the software InspirationTM to construct concept maps.

Introduction

Ausubel’s theory of meaningful learning proposes that learners’ cognitive structures
are hierarchically organized with more general, superordinate concepts subsuming
less general and more specific concepts where meaningful learning is defined as
the active assimilation of new knowledge onto existing knowledge through a pro-
cess of progressive differentiation between ideas and/or integrative reconciliation
across systems of ideas as a student’s cognitive structure or patterns of meanings
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are reorganized or reformulated to accommodate new knowledge (Ausubel, 2000;
Novak & Gowin, 1984). Through the meta-cognitive process of concept mapping,
students can illustrate publicly their interpretation and understanding of a knowl-
edge domain by constructing concept maps, which are hierarchical networks of
interconnecting concepts (nodes) with linking words describing the nature of inter-
connections subsequently forming propositions (Novak, 2002). The latter are mean-
ingful statements formed by connecting strings of “node –linking-words → node”
that are visually displayed on a concept map. Nodes (or contents of nodes) represent
key ideas, concepts or strategies most relevant to the focus of the concept map. The
richness of the meaning of a particular concept (or node) is dependent on its inter-
connections to other surrounding concepts or the system of concepts within which
it is situated or cross-linked to (examples are provided later).

Using concept maps to assess students’ conceptual understanding of a topic
requires, according to Ruiz-Primo (2004), making three criteria transparent. First
the mapping task should invite students to provide evidence of their understanding
and knowledge of the domain; second, there should be a clear format for students’
responses; and third, there must be a scoring system to consistently evaluate the
maps.

In this chapter, the nature of the professional, collegial and pedagogical processes
that ultimately led to, and facilitated, the introduction and incorporation of the inno-
vative strategy of concept mapping in two primary classrooms is examined. Whilst
vee diagrams (see Chapter 2 for a definition) was the other innovative strategy, only
concept mapping data is presented here based on the final choice made by two pri-
mary teachers from a local primary school.

Methodology

The research project, that is reported here, began with a professional development
workshop in the fourth term of the 2005 school year, to introduce two innovative
strategies to participating teachers with sufficient time soon after for them to reflect
and experiment with the strategies in their own classrooms. Reflection sessions,
scheduled fortnightly after the workshop, enabled teachers to report back to the
group regarding their progress and to discuss any emerging concerns. Over four
terms in the 2006 school year, additional on-going professional support was pro-
vided in the form of site visits to the schools by the researcher (first author), con-
sultative meetings with the teachers and more reflection sessions as the need arose,
while teachers grappled with the introduction and incorporation of the innovative
strategies as part of their regular classroom practices. The final concept mapping
activity was the development and implementation of a teacher-initiated mapping
task (i.e., final mapping project) to demonstrate the teachers’ and students’ evolv-
ing and increasing proficiency in constructing hierarchical concept maps as part of
their classroom teaching-learning-assessment practices. Outputs from the research
project were showcased in a one-day conference at the end of the 2006 school year.
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Two regional Australian central (i.e., has both primary and secondary levels) and
primary schools with a total of nine primary and secondary teachers and their stu-
dents participated in a research project that investigated the impact of innovative
teaching and learning strategies on students’ engagement in learning mathematics
and science. Only data from Matilda Primary School (MPS) (a pseudonym) is pre-
sented here. Three of the nine participating teachers were from MPS.

Results

Professional Development Workshops and Reflection Sessions

Teachers’ Professional Development Workshop

A two-day professional development (PD) workshop introduced the nine partic-
ipating teachers to the meta-cognitive tools of concept maps and vee diagrams
(maps/diagrams). Presentations from the two authors were interactive allowing
teachers to field questions for clarifications of ideas and critical comments of the
presented maps/diagrams. The emphasis was on introducing the innovative tools
using examples previously constructed by student teachers, teachers and secondary
students to illustrate the various applications of maps/diagrams in mathematics and
science (a) as learning and assessment tools for the analysis of problems and activ-
ities including the illustration and communication of students’ mathematical and/or
scientific understanding of topics and activities, and (b) as planning tools to design
teaching sequences, lesson plans and activities for teaching, learning and assessment
(see Afamasaga-Fuata’i, 2005, 2004, 1998 for more details). A prepared sched-
ule of group activities ensured teachers were progressively initiated into a differ-
ent and innovative way of thinking with sufficient time and practice to experience
for themselves the strategies of concept mapping and vee diagramming firstly as a
community of learners during and after the PD and before they can be expected,
in professional practice, to pedagogically introduce the strategies in their class-
rooms. For small group activities, the teachers collaboratively and cooperatively
co-constructed science and mathematics concept maps, by brainstorming and nego-
tiating ideas about what counts as key concepts and strategies of a topic or activity,
compiling the brainstormed ideas into concept lists, ranking them from most general
to most specific, and then meaningfully organizing them into coherent hierarchies
before linking concepts and describing the nature of inter-relationships using “link-
ing words”, which consequently formed hierarchical networks of interconnecting
propositions. Group presentations of concept maps and peer critique followed each
small-group activity thus providing critical feedback to further improve the clarity
and transparency of conceptual connections.

Towards the end of the PD workshop, participants reflectively considered how
they might incorporate the innovative strategies in their future planning and class-
room activities through their responses to an evaluation questionnaire. Workshop
outputs included maps/diagrams co-constructed by teachers during small group
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activities. Teachers were requested to experiment with the use of concept maps and
vee diagrams for up to four weeks before meeting again to reflect on their trials.

In summary, the workshop introduced and familiarised the teachers with the inno-
vative tools whilst group activities enabled the teachers to have hands-on experience
in concept mapping and vee diagramming topics, problems and activities. Participat-
ing teachers engaged in professional discourse as they collaboratively constructed
hierarchical concept maps of topics, syllabus outcomes, activities and problems to
illustrate interconnections between concepts, strategies and formulas. Whilst these
were mainly for planning learning activities, the teachers were also mindful that
maps/diagrams be Stage (or level) appropriate and meet the needs of the targeted
students particularly those with numeracy and literacy problems in understanding
the languages of mathematics and science. Teachers’ evaluative responses demon-
strated that they found maps/diagrams useful and efficient means of facilitating
interactions, collaboratively negotiating and clarifying meanings, and communicat-
ing common understanding of topics/activities/problems.

Reflection Sessions

Following the PD was a four-week period of reflection and classroom trials includ-
ing fortnightly reflection sessions. Vitally important was the need for the teachers to
have sufficient time and space to grapple with the innovative strategies themselves,
firstly as learners by reflecting upon their workshop experiences and experimenting
making connections between these PD experiences and regular classroom activi-
ties and secondly, as experienced teachers pedagogically mediating the use of the
innovative strategies to design learning activities and to assess students’ conceptual
understanding of taught topics.

During the first fortnight after the PD, teachers reflected and experimented with
how best to introduce the innovative strategies to students. Thus the first reflec-
tion session focused on the reporting of teachers’ experiences. Most of the discus-
sions focused around ways in which a seemingly complex idea (e.g., concept map
and/or vee diagram) could be modified to suit the level of the targeted students. For
example, using an example of a Year 5/6 (Stage 3) activity students were currently
engaged with (i.e. Christmas in Different Countries), the teachers brainstormed and
collaboratively recommended ways a vee diagram could be completed using the
appropriate language and vocabulary for a Stage 3 class. The discussions provoked
exchanges of ideas between primary and secondary teachers resulting in heightened
awareness and appreciation of the importance of Stage appropriate language whilst
simultaneously highlighting that cognitive processes such as observing events, mak-
ing connections between ideas, reporting, thinking, and reasoning basically under-
pin and permeate all science and mathematics syllabus outcomes from primary to
secondary.

Discussions in the second reflection session continued to revolve around the
need to further develop teachers’ understanding of, and proficiency modifying, an
“abstract” vee diagram for use in primary classrooms. As a result, the primary teach-
ers took the lead in making suggestions and confirming revisions to the displayed
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language of a Christmas Activity vee diagram (prepared by the first author based
on the previous session’s discussions) to make it more Year 5/6 appropriate. A sim-
ilar discussion eventuated with a “Volume Activity”, namely revising the language
of the displayed vee diagram so that it was more appropriate for primary level (see
Afamasaga-Fuata’i & McPhan, 2007 for more details). Again, the primary teachers
led the discussions and exchanges of ideas.

The rest of the data below, focused on the MPS primary teachers’ experiences
with the innovation, struggles to come to terms with the innovative strategies, and
their eventual adaptation and adoption of concept mapping as part of their class-
room teaching-learning-assessment practices. Therefore, the focus question for this
chapter is: “What are the issues and concerns associated with the introduction and
practice of an innovative strategy in primary classrooms?”

On-Going Professional Support for the Teachers

Preparation of Teaching and Learning Resources

Various types of concept maps were constructed by the researcher (hereafter refers
to the first author) at the beginning of the 2006 school year based on the primary
mathematics syllabus, to provide a readily available set of resources for classroom
applications, in anticipation of potential use by the MPS primary teachers who, in
previous reflection sessions, indicated that even concept maps were too abstract for
their primary students and consequently, from their point of view at the time, may
not be applicable as a teaching and/or learning strategy for their school.

Initial Site Visits

At the beginning of the 2006 school year, with the MPS school leader and also the
K-Year 1 teacher away on study leave, site visits involved meetings with just the
other two primary teachers (i.e., for the Year 2/3/4 and Year 5/6 classes). The meet-
ings discussed at length the basic literacy and numeracy problems of their students
and other problems concerning school support services, which impinged on the
teachers’ capacities to participate more fully in the research project. In recognition
of these practical demands on teachers’ time, it was mutually agreed that initially,
they would trial only concept maps, not vee diagrams, in their classrooms. Subse-
quently, it was suggested that the Year 5/6 would begin with a class-constructed map
whilst the Year 2/3/4 class would begin with individually-constructed maps given
the existing diversity of student abilities within this one class. Again, both teachers
reiterated their preference to work with concept maps only. The outcome of the dis-
cussion was for both teachers to focus on concept maps in the next few weeks and for
the researcher to visit their classrooms for observation of the language used in their
teaching (i.e., classroom discourse). The latter was important in order to authenti-
cally base further suggestions on how concept maps could be developed to closely
align with the teachers’ existing pedagogical practices and classroom discourse as
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a first step towards conceptualising a pedagogical bridge to the introduction of the
innovation in their classrooms.

Classroom Observation Visit

On the eve of the observation visit, the Year 2/3/4 teacher voluntarily chose to pull
out of the research project citing personal reasons, thus the researcher observed
only the Year 5/6 class as they solved problems on Addition of Decimals. Of par-
ticular interest for concept mapping purposes was the language Sue (a pseudonym)
used during the lesson, which provided an authentic and appropriate basis for a
list of words to begin constructing a concept map. Whilst observing the lesson,
the researcher also noted that some of the students struggled when doing some of
the problems on their own. In Fig. 5.1 is an example of one of the concept maps
constructed by the researcher based on a problem the Year 5/6 class was engaged
with during the classroom-observation visit. Figure 5.2 shows the concept map co-
constructed by the Year 5/6 class and facilitated by the teacher as evidence of her
self-initiated attempt at incorporating a concept map into her classroom activities
prior to the observation visit.

Portfolio of Teacher Resources

To provide additional professional support to the MPS teachers, a portfolio of con-
cept maps was prepared. Using Ruiz-Primo’s (2004) continuum of directedness,
concept maps may be classified on the basis of the amount of information (i.e.,
concept lists, linking words, and/or hierarchical structure) that is provided as part
of the mapping task. Specifically, the continuum ranges from “high directedness”
to “low directedness” where the least cognitively demanding task is the Fill-in-
the-Map (i.e., Fill-in-Lines or Fill-in-Nodes) type on the left side of the contin-
uum with the Construct-a-Map (no concepts, linking words or structure provided))
type on the extreme right as the most demanding. In between, from left to right are
Construct-a-Map (Concepts & Linking Phrases Provided); Construct-a-Map (Con-
cepts Provided & Structure Suggested) and Construct-a-Map (Concepts Provided).
More importantly, the researcher’s portfolio of semi-structured concept maps, con-
sisted of a variety of Fill-in-Nodes and Fill-in-Lines maps, based on the observed
Year 5/6 lesson on Addition of Decimals, and others from the Stages 1 (Years 1–2)
to 3 (Years 5–6) of the NSW K-6 Mathematics Syllabus (NSWBOS, 2002) such as
Lines, Shapes, and Geometry (see Figs. 5.3, 5.4 and 5.5) specifically designed to
supplement the Construct-a-Map types that were collaboratively developed by the
teachers during the PD workshop.

The main objective of the portfolio was to scaffold the teachers’ and students’
learning trajectories with semi-structured maps (i.e., Fill-in-the-Map type instead of
Construct-a-Map (no concepts, linking words or structure provided type)) until both
teachers and students were sufficiently confident in using concept maps. Ultimately,
the goal was for each individual (teacher and/or student) to create their own hierar-
chical structures of interconnecting concepts to reflect their idiosyncratic, existing
understanding of a topic and as an alternative means of prompting the teachers to be
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Fig. 5.1 One of the concept maps constructed by the researcher based on an observation of the
mathematical language used by the Year 5/6 teacher in a lesson on Addition of Decimals

more creative and flexible in their conceptualisation of a classroom application of
concept mapping.

More Site Visits and Reflection Sessions

Site meetings with the K-Year 1 teacher (pseudonym Carrie, who had returned from
leave) and Sue (Year 5/6 teacher), enabled further collaborative discussions around
the portfolio of maps including those based on the Year 5/6 observation visit from
the previous term. In addition, the computer software InspirationTM was purchased
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Fig. 5.2 A brainstorming
concept map co-constructed
by the Year 5/6 class and
teacher to introduce the
science topic Adapting
for Life

to assist with the classroom preparation of concept maps. The software provided
another tool and resource to address the concern that constructing concept maps was
messy and took too long. It had a tremendous impact on re-energising both teachers
to attempt concept mapping more readily and more frequently making them feel
less apprehensive about concept mapping.

Since the two teachers still appeared reluctant to create opportunities for students
to begin concept mapping claiming that it would be too difficult for their students,
the researcher offered to provide them with some pre-prepared semi-structured con-
cept maps on whatever topic they were currently teaching, which they can further
modify/revise as they see fit to start their students off. Accordingly, the K-Year 1
teacher advised she was working with students on describing relative Positions of
objects by taking the whole class for a walk around the school grounds followed by
further review of student understanding by using a wall-size picture of the school
grounds. The Year 5/6 teacher, in comparison, had been teaching Watery Environ-
ment in the previous two weeks and had already started to brainstorm ideas with her
students using a concept map (see Fig. 5.2). Outcomes of this consultative meeting
were that (1) the researcher would drop off samples of maps the following week and
(2) classroom visits would be scheduled soon after.
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Fig. 5.3 A Fill-in-Nodes concept map – Lines

Concept Mapping Activities

First Mapping Activities

K-Year 1 Class – Activity 1 – Fruits’ Position I

The K-Year 1 teacher began with a class demonstration using a white-board ver-
sion of the Fruits’ Position map shown in Fig. 5.6. By working through each link
on the map and by posing questions, Carrie invited students to suggest how the
links should be described. The class demonstration was followed with individual
work in which students were asked to write in “descriptions of positions” on the
blank links. Assisting students individually and in small groups were two parent-
teacher aides, the teacher associate and Carrie. Shown in Fig. 5.6 is an example of a
student-completed concept map from this first activity. In her written assessment of
the activity, Carrie wrote: “I was pleasantly surprised to see how well the children
coped with this activity and were able to use the language of position”. For fur-
ther improvement, she recommended that, for subsequent activities, “As this class
is Early Stage 1, most children had some difficulty writing the words onto the lines.
I recommend labels be used ”.
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Fig. 5.4 A Fill-in-Nodes concept map – Shapes

Year 5/6 Class – Activity 1 – Adaptive Features of a Fish

A week before this mapping activity, the Year 5/6 class had already completed a
brainstorming concept map as a class (i.e., Fig. 5.2) and had completed a diagram in
which students labeled the different parts of a fish using a given list of words. Hence
this mapping task included the same fish diagram on one side (i.e., prior knowl-
edge), which the students were asked to complete again to refresh their memories
before completing a Fill-in-Nodes concept map, based on the textbook summary of
Adaptive Features of a Fish the teacher had used in her teaching. From the given
list of “concept names and phrases”, students were to complete the blank nodes by
selecting the appropriate words/phrases from the list. Figure 5.7 shows an example
of a student-completed concept map. The teacher and teacher associate provided
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Fig. 5.5 A Fill-in-Nodes concept map – Geometry

assistance to the students by answering their queries, facilitating, and guiding them
in completing their maps.

Second Mapping Activities

The second mapping activities for both classes involved the application of concept
maps that were structurally different from those of the first activity.
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Fig. 5.6 A Fill-in-Lines
concept map – Fruits’
Position – K-Year 1 activity 1

Fig. 5.7 A Fill-in-Nodes concept map – Adaptive Features of a Fish – Year 5/6 activity 1
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(a) (b)

Fig. 5.8 Fill-in-Lines concept maps – Position – K-Year 1 activities 2 & 3

K-Year 1 Class – Activity 2 – Fruits’ Position II

Another Fill-in-Lines Fruits’ Position concept map was used in the K-Year 1 class.
This time, instead of students writing in the ‘linking words’, the students had to
chose one word from a selection of cardboard-cut-out-words before gluing it on
the appropriate link. Unlike the first visit, this time they worked in groups of 4
but individually completed their own maps, facilitated by two parent-teacher aides,
teacher associate and the teacher. Figure 5.8a shows an example of a student-
completed map.

Year 5/6 Class – Activity 2 – Adaptive Features of a Fish

Unlike their previous mapping activity, the Year 5/6 students were given cardboard-
cut-out words that were used in the previous activity but this time they were to
“create their own meaningful hierarchy” to display their understanding of the fish’s
adaptive features. That is, using the given cardboard words, the students creatively
constructed their own hierarchical structure and linking words to communicate their
understanding of the topic. This is an example of a Construct-a-Map (Concepts Pro-
vided) type according to Ruiz-Primo’s continuum. Shown in Fig. 5.9 is an example
of a student-completed map for this mapping activity.

Strategies that assisted in progressing to this benchmark of completing two map-
ping tasks included working closely with the teachers, hearing their concerns and
providing support where necessary as the teachers came to terms with a different
way of thinking whilst at the same maintaining sight of the aims of the research
project, namely, to introduce innovative teaching and learning strategies in the hope
of making a difference with students’ engagement with learning. The comments
from the project’s critical friend reflected the spirit and importance of achieving
this milestone: “The participation in this project is quite demanding of teachers
because they have to get their heads around to a different way of thinking, as well
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Fig. 5.9 A Construct-a-Map
(Concepts provided) concept
map – Fish – Year 5/6
activity 2

as encouraging their students to do so. This is, however, very worthwhile” (Project
Milestone Reporting Tool).

Additional Mapping Activities

By the end of the first two mapping activities, the MPS teachers appeared more
confident with incorporating concept mapping into their classroom practices and
hence more receptive to discussing more concept mapping activities.

K-Year 1 Class – Activity 3 – Animals’ Position III

The teacher used another Animals concept map that was left with her after the
second classroom visit for this third concept map activity. Interestingly, instead
of working individually or in small groups but individually completing their own
maps, this time Carrie organised the students into 4 small groups with each stu-
dent having up to 2 turns in gluing in a cardboard word on the appropriate link
thereby completing a group map cooperatively and more efficiently. Indeed, this
development demonstrated positive growth in progressively developing class/group
arrangements to enhance the efficiency of completing mapping activities. Carrie’s
increasingly refined execution of the activities reflected her growing enthusiasm and
demonstrated her developing confidence with the whole idea of concept mapping.
Figure 5.8b shows an example of a collaboratively-constructed concept map for this
activity. Carrie wrote in her reflection journal: “This activity worked much better as
each child took it in turns to pick up a card. They all assisted in positioning it onto
the map”. In her assessment of the results of the concept map activity, she wrote:
“The children worked well. Cards had to be read to them and children helped each
other to position them on map. Final maps were done well ”.
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Year 5/6 Class – Activities 3 and 4 – Fractions and Equivalent Fractions

Year 5/6 class had been working on Fractions since the second visit so the teacher
requested some semi-structured concept maps to assess her students’ understand-
ing of fractions. Subsequently, beginning with a simple Fill-in-Map Fraction map,
students individually filled in blank lines and nodes to reflect their understanding
of what fractions mean. An example of a student-completed map is in Fig. 5.10.
The fourth mapping activity was filling in lines and blank nodes in a bigger and
structurally more complex concept map on Equivalent Fractions. An example of a
student-completed map is in Fig. 5.11.

With both activities, students individually completed their own maps with the
teacher, teacher associate and parent-teacher aide moving around interacting with,
facilitating and helping students with their queries. Over three visits, this class
had evidently progressed through a series of semi-structured concept maps and
one open-structured concept map in both science and mathematics. A positive

Fig. 5.10 A Fill-in-Map concept map – Fractions – Year 5/6 activity 3
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Fig. 5.11 A Fill-in-Map concept map – Fractions – Year 5/6 activity 4

consequence of this evolving engagement was the emerging confidence exhibited
by Sue – who was beginning to critically formulate her own ideas of how she would
construct concept maps to align more with her style of teaching and consistent with
the type of language practiced in her classroom. This change marked a major step
forward and a positive indicator of things to come.

Strategies that contributed to the completion of these mapping tasks were the
multiple site visits, discussions and continuous support to the teachers until they
gained enough confidence to start introducing and using concept maps in their class-
rooms.
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The MPS parent-teacher aides contributed to the smooth administration of small
group activities especially in the K-Year 1 classroom and also the Year 5/6 class-
room, both of which had a diverse range of student abilities. Evidently, the persis-
tence and continuous meetings and consultations with the two teachers eventually
paid off. The concept maps up to this point had been prepared by the researcher
mainly to allow the teachers space and time to focus only on the task of introducing
them in the classroom. By the third classroom visit, the two teachers were beginning
to appreciate the educational value of the concept maps particularly its application
as a means of reviewing and assessing students’ summative understanding of a topic.
In summary, these additional mapping activities benchmarked a turning point in the
attitude and beliefs of the two teachers as evident by their enthusiastic discussion of
future possibilities, and in particular, of how they would design their final project
activities.

Teachers’ Self-Designed Final Mapping Activities

Although the maps the teachers/students had used by this stage, were semi-
structured with the option that students filled in the blank lines or nodes by selecting
words from a given list or their own words, the teachers had, through the implemen-
tation process, realised the value of the maps as a means of assessing students’
knowledge and understanding of topics already taught, for example, descriptions of
Position for the K-Year 1 class and Watery Environment and Fractions for the Year
5/6 class.

Continuing to meet with the MPS teachers as they progressed their self-designed
final project, the researcher provided critical feedback and professional advice as the
need arose. Ideas to resolve emerging concerns were brainstormed with suggestions
on how they could be practically realised in the classrooms. Subsequent consultative
meetings with the MPS teachers indicated steady progress with classroom activities
with students using InspirationTM to construct concept maps in the Year 5/6 class
after brainstorming and co-constructing a class concept map on Space (see Fig. 5.12)
while the K-Year 1 class, on the other hand, had started brainstorming and mind
mapping their ideas on Animals, see Fig. 5.13.

On-going professional support and regular face-to-face meetings with the par-
ticipating teachers became necessary to manage risks that threatened the success-
ful completion of the teacher-initiated mapping activities (i.e., final projects), and
to provide on-going support as the teachers made the professional transition from
receptors of ideas to implementers of innovative ideas. Healthy progress and positive
achievements were noted with the MPS teachers’ final projects. Comments from the
critical friend stated: “This was an interesting meeting – not least because of the dia-
grams made by students – and the teachers’ comments on the outcome and the pro-
cess. It seems as if teachers are learning alongside their pupils” (Project Milestone
Reporting Tool). Furthermore reflection sessions provided continuous support to the
MPS teachers as they progressed the implementation of their final projects with their
students. For example, the K-Year 1 teacher and her students were constructing hier-
archical concept maps by revising and extending their class-constructed mind map
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Fig. 5.12 A brainstorming
concept map – Space – Year
5/6 activity 5

Fig. 5.13 A brainstorming
mind map – Animals –
K-Year 1 activity 4

on Animals (Fig. 5.13). To facilitate the construction of concept maps, the two pri-
mary teachers instigated the coming together of the two classes to enable peer tutor-
ing of K-Year 1 students by the Year 5/6 students in learning how to use the soft-
ware InspirationTM. The Year 5/6 teacher, on the other hand, facilitated her students’
work in constructing Space concept maps using InspirationTM. This individual
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(a)

(b)

(c)

Fig. 5.14 Students’ concept maps – Animals – K-Year 1 Activity 5
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(c)

(a) (b)

Fig. 5.15 A student’s concept map – Space – Year 5/6 activity 6

construction of maps followed after their class-constructed concept map in Fig. 5.12.
Some examples of K-Year 1 concept maps constructed using InspirationTM are
shown in Fig. 5.14a, b and c whilst some student-constructed concept maps from
Year 5/6 are shown in Fig. 5.15a, b and c.

In summary, regular on-going professional collaborations between the teachers
and the researcher and on-going support while the teachers brainstormed their ideas,
developed and finalised their respective projects assisted in achieving this milestone.
The availability of the researcher in providing on-going support to the teachers paid
off particularly as the MPS teachers conceptualised their projects, developed and
implemented them in their respective classrooms.
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Post-Activity Reflective Session

The two MPS teachers shared their reflections of their difficult journey up to this
point in a final reflection session prior to the completion of their final project. In
direct contrast to their initial concerns, they enthusiastically discussed how they
would improve mapping activities if they were to do them again. They felt more
confident and were in a much stronger and better position to plan and take charge of
their own final mapping activity in preparation for the scheduled 1-day conference
at the end of the school year to showcase their students’ work. The final reflection
session was valuable and informative in that it enabled the researcher to share with
the two teachers her views of their successful progress in spite of initial difficul-
ties, and the two teachers also shared their own reflections of their experiences and
completed an evaluation questionnaire. For example, the teachers commented: “the
lesson (using concept maps was) quite successful and the concept map was a very
useful tool in enhancing the learning that had already taken place prior to the map-
ping activity” and “valuable for (her) to see that the (students) could apply (their)
knowledge in a more abstract way.”

The post-activity session also benchmarked the major progress demonstrated by
the two teachers in terms of their increasing proficiency and confidence to incorpo-
rate concept mapping as part of their repertoire of teaching and assessment strate-
gies. Activities that assisted the achievement of this milestone included multiple
consultations and site visits to encourage and provide support to teachers, and to
collaboratively negotiate a realistic pathway forward to ensure progress towards the
achievement of the aims of the research project, namely, the incorporation of con-
cept maps as an innovative teaching and learning strategy as part of the teachers’
classroom culture and practices.

By working collaboratively and cooperatively with the two teachers to gain their
confidence and trust, and providing on-going support through resources and pro-
fessional advice collectively contributed to the successful implementation of the
teacher-designed final projects. As a consequence, over the five terms, the teachers
eventually became more comfortable and receptive to having the researcher visit
their classrooms whilst engaged with concept mapping activities.

Discussion

The reality of pressures and demands on teachers’ time was an influential factor
on the implementation of an innovative strategy in a real school, something that
is also noted by Loughran and Gunstone (1997) when conducting professional
development programs with teachers. It needed to be taken into serious consider-
ation and balanced against what could be realistically achieved in a relatively short
period of time. For the MPS primary teachers, it was the struggle to come to grips
with the perceived difficulty level of the innovative strategies and the need for more
time to grapple with how they could be seamlessly incorporated as part of their
normal classroom practices. It became quickly apparent very early in the research
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project that unless teachers themselves felt personally comfortable with the innova-
tion, it would take awhile before their students can use them. Thus the trial period
was important and necessary to enable teachers to think reflectively about the new
ideas; this was most important with the MPS primary teachers.

Reflective Sessions

Initial reflection sessions met its objective of providing a forum whereby teachers
shared their trialing experiences as evidence of where they were along their learn-
ing trajectories, albeit some were more progressed than others. Secondly, the ses-
sions enabled discussions and sharing of ideas amongst professionals on how an
innovative strategy that was perceived as being too difficult could be modified and
applied to primary level topics. Through the convergence of reflective thinking and
professional collaboration and cooperation over two school terms, an incremental
approach was eventually determined for the MPS classes, which was more appro-
priate and less cognitively demanding for primary students particularly in the initial
introductory stage. An essential component of the research project was the promo-
tion of collegial interactions and professional exchanges in a non-threatening envi-
ronment, particularly in the early stages, to support teachers as they struggled to
come to terms with the innovative strategies.

Despite the MPS teachers’ struggles in the beginning, their leading role in the
professional exchanges and sharing of ideas during the first two reflection sessions
was significant as it provided them with the opportunity to share their primary teach-
ing expertise with other participating teachers to modify and revise an innovative
strategy to be more suitable for primary students. Over time and through on-going
professional support and negotiations, the two primary teachers eventually made a
professional decision to focus only on one innovative strategy, and thereafter became
more willing and open-minded about exploring possibilities in their own classrooms
as evident by their progressive engagement and increasing leadership roles with sub-
sequent concept mapping activities up to the final self-designed projects.

School Realities

The realities of school timetabling, normal school activities, unforeseen disruptions
and classroom situations were real issues that any innovative research project such
as this had to respect and work around. End-of- and beginning-of-school-year busy
schedules were real obstacles and there was a need to be cautious and prudent at
those times in encouraging the teachers to be more proactive and flexible about
applying the innovation. The consultative meetings were essential to minimise risks
to the aims of the research project. With sensitivity and persistence and due consid-
eration for the teachers’ viewpoints, an amicable solution can be and was negotiated
without necessarily alienating the teachers in the process.
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On-going Professional Support

Multiple visits to MPS by the researcher provided continuous support and encour-
agement to the teachers even in the face of transparent reluctance and disinterest
in continuing with the research project. This was to be expected especially given
the high demands on teachers’ times in dealing with their own classes and off-
class duties and hence the researcher had to patiently and gently persevere to gain
teachers’ confidence and trust. The progress made and achieved in terms of the will-
ingness of the teachers to remain in the project, despite one withdrawal, was worthy
of time and effort spent.

Since one of the aims of the research project was to cultivate functioning collab-
orative partnerships between university’s school of education and real schools, any
problems encountered in realising this effective collaboration were real and when
they occurred, had to be sensitively and diplomatically worked through in a pro-
fessional manner by the parties concerned. Getting teachers to agree to classroom
visits was a mammoth task. However, as mentioned earlier, with sensitivity and
persistence, and respect for the teachers, a compromise was negotiated without nec-
essarily losing sight of the bigger aims of the research project. Also, the importance
of having a school leader, that is prepared to put in the time to drive the innovation
within the school, was truly tested in the process of achieving the first few classroom
visits.

Summary of Class Contributions

For the K-Year 1 class, they started off using three different versions of Fill-in-
Lines concept maps to further enhance their learning of relative positions and, from
the teacher’s perspective, to assess what they have learnt, after doing physical, pic-
torial and concrete activities on Positions. The final project evolved from a class-
brainstormed list of words on Animals to a class-mind map, before working collab-
oratively with Year 5/6 students as peer tutors to learn how to use InspirationTM,
with individual students, subsequently, constructing their own concept maps using
InspirationTM.

For the Year 5/6 students, they started off using a Fill-in-Nodes concept map with
a given-list-of-concepts to further enhance previous learning, and from the teacher’s
perspective, to assess students’ understanding after a unit on Adaptive Features of
a Fish. A follow-up activity required students to individually construct their own
concept map from a given list of concepts on Adaptive Features of a Fish. After a
unit on fractions, students completed a simple Fill-in-Map concept map to illustrate
their understanding of fractions, numerators and denominators before continuing
onto to complete a more complex Fill-in-Map concept map to assess their under-
standing of “part of a whole”; its multiple representations using diagrams, word
descriptions, and notations; and equivalent fractions. The final project evolved from
a brainstormed list of words on Space and then a class-constructed concept map
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with students subsequently constructing their own hierarchical concept maps using
InspirationTM.

Innovation and Professional Practice

On-going site visits and consultative meetings with the participating teachers to
provide support as they designed, developed, finalised and implemented their final
projects collectively contributed to the progressive development of pedagogical pro-
cesses and procedures to ensure students were adequately prepared for, and actively
engaged in, completing and/or constructing hierarchical concept maps to reinforce
their previous learning and to communicate their summative knowledge and under-
standing at the end of a unit of work. Overall, a major highlight of the research
project, as presented here, was the success with the Matilda Primary School teach-
ers and their K-Year 1 and Years 5/6 students in the way they eventually adapted
and adopted concept mapping as a part of their normal classroom practices. This
is a particularly significant achievement given the initial difficulties encountered
by the two teachers very early in the program. However, as it turned out, with on-
going professional support and collegial collaborations between the researcher and
the teachers, over time, they eventually designed and developed their own concept
mapping classroom applications.

Through within-school professional collaborations between the two teachers,
they cooperatively organised across-Stage peer tutoring and mentoring (between
K-Year 1 and Year 5/6 students) with the older students mentoring and assisting
the younger ones in using InspirationTM so that the latter can construct their own
concept maps on Animals. This across-level peer tutoring would not have been pos-
sible if the two teachers themselves had not made a conscious professional decision
to collaborate, by initiating professional dialogues and negotiations to enable this
innovative change in their classroom cultures and practices resulting in their respec-
tive students co-learning and co-assisting each other with concept mapping using a
computer software.

This exemplary case study confirms a previous research finding on teacher
change, namely, that implementing innovation in schools and incorporating it into
classroom practices is dependent on teacher change. The latter is a long-term pro-
cess with the most significant changes in teacher attitudes and beliefs occurring
after teachers begin implementing a new practice successfully and observed changes
in learning (Guskey, 1985). As Grimbeek and Nisbet (2006) pointed out, profes-
sional development for a particular purpose (in this case, innovation) is an ongoing
and cyclical process that focuses on developing teachers’ knowledge, attitudes and
beliefs about the innovation, and including as well teacher change, which would
not come about unless teachers themselves experienced demonstrable success of
the innovation on student learning. In line with this perspective, there was evidence
in the data presented, which demonstrated that the MPS teacher were sufficiently
convinced of the value of concept mapping on their students’ learning for them to
have gone as far as they did and designed, along with their students, final projects
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to demonstrate their own growing proficiency and competence with concept map-
ping. For example, the MPS teachers became confident and proficient to the extent
that they designed, developed and implemented final project activities, which cul-
minated in a peer tutoring arrangement between the two classes of primary students,
with the older students assisting the younger ones with the use of the computer soft-
ware InspirationTM enabling the younger ones to control the mouse to construct their
own concept maps.

The biggest challenge to the research project and innovation in particular, was
sustaining the interest and commitment of the teachers to the project amidst practical
realities and competing realities of teaching in schools.

The data presented demonstrated that the effective implementation of an inno-
vation in classrooms requires a much longer period of ongoing professional devel-
opment and collaboration to support teachers as they get used to the innovation,
trial the innovation with sufficient time to design and implement their self-initiated
activities. It is, and was a long-term and cyclic process as the teachers made the tran-
sition from receptors of innovation to implementers of innovation and ultimately
even innovators themselves as they adapted and extended the innovation to suit
their own particular classroom practices and teaching programs. As evidenced by
outputs from the research project, the MPS teachers constructed concept maps of
mathematics and science topics in the PD workshop; they became proficient, along-
side their students, in constructing hierarchical concept maps to align with class-
room practices; and used concept maps to further enhance student learning and also
as assessment tools while MPS students had their own individually or collabora-
tively constructed concept maps, which illustrated their understanding of previously
taught topics. Overall, the MPS teachers incorporated concept maps into the teach-
ing, learning and/or assessment of student learning for some topics throughout the
school year as a result of their participation in the research project. Finally, this case
study contributes findings to the literature on the kinds of issues and concerns that
are encountered when research-based innovative ideas are applied in actual practice
in primary classrooms.

Implications

There are two main implications in adapting concept maps for use by students
as learning tools, and for use by teachers as assessment tools, both of which are
based on continuous reflection and negotiations. Firstly, a focus on the conceptual
interconnections provides students with the opportunity to clarify their own under-
standing of the links and integration between concepts. These maps then represent
a snapshot of student understanding at a particular point in time. Assessing the dis-
played connections or systems of interconnecting concepts can reveal the extent to
which meaningful learning has taken place leading to further reflection and dis-
course, not only with the individual student, but with other students as well. For
example, assessing the entries on the concept map provides an opportunity for the
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teacher to negotiate meaning with the individual student, and/or an opportunity for
the teacher to provide further clarifications and/or pose challenging questions to
prompt student thinking and reasoning as a class or in small groups.

Secondly, the students and teachers involved in the project have been exposed
to and have experienced concept mapping to different levels. It is now up to the
teachers to go forward with the strategies in ways that are suitable for their students
as learning and/or assessment tools. The MPS teachers indicated that they are con-
tinuing with concept mapping as a strategy to brainstorm ideas about a new topic
and then as an assessment tool after a unit by having students construct concept
maps to indicate their understanding. Peer tutoring was also highly recommended
as a means of working collaboratively with new students and/or new schools as a
way forward. These suggestions, based on the teachers’ own experiences, provide
viable directions for further research to identify the most efficient ways of trans-
forming research-based ideas into actual practice in more real classrooms for a wider
impact.
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Chapter 6
Evidence of Meaningful Learning in the Topic
of ‘Proportionality’ in Second Grade Secondary
Education

Edurne Pozueta and Fermı́n M. González

This chapter describes an experiment using concept maps to teach a mathematics
topic. The main goal was to detect and evaluate signs of meaningful learning in the
students through the analysis of their concept maps, in a setting in which second
grade students worked through an innovative instructional module on the topic of
mathematical proportionalities. The conceptually transparent instructional module
was designed to include introductory, focus and round up activities following the
LEAP (Learning about Ecology, Animals and Plants) Model developed at Cornell
University (USA).

The study was based on the comparative analysis of the concept maps drawn by
the students before and after the implementation of the instructional module, using
a model presented by Guruceaga and González (2004) that enabled us to identify
various features in students’ concept maps, providing a tool to monitor meaningful
learning and detect any tendency towards rote learning.

The results show that the implementation of a theoretically grounded instruc-
tional module enabled a group of students to learn about mathematical proportion-
alities more meaningfully. An additional finding, providing extra added value to the
study, was the emergence of three clear patterns of Concept Maps. As shown in the
study, through meaningful learning, original map structures indicating the possibil-
ity of undesired outcomes can be appropriately adjusted to contribute towards an
integral education (involving the heart, mind and body) for our students.

Theoretical Background

Over the course of the last 30 years profound changes have taken place in the teach-
ing of mathematics. The international community of experts in the didactics of math-
ematics continues to strive to find appropriate models. It is clear therefore that we
are currently undergoing a period of experimentation and change (Guzmán & Gil,
1993). On the one hand, the increasing scientific and technological development of
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our Western societies has created a demand for very high levels of knowledge in
the area of mathematics, widely considered to be one of the most important, if not
the most important, areas of the school curriculum. On the other hand, there is also
growing awareness, evidenced by findings from various surveys such as the PISA
report 2003 (Programme for International Student Assessment), of the fact that our
schoolchildren are seriously lacking in numeracy skills (Rico, 2005).

Meanwhile, the research on human learning processes has moved forward with
new series that have had a strong impact in educational circles. One of these is
Novak’s educational theory, Novak (1982), which proposes that, for children to learn
more actively and effectively and modify their understanding of mathematical activ-
ity, it is necessary to relate what is already known about the nature of knowledge
and human learning to the teaching of mathematics. Novak claims that meaningful
learning (ML) is the result of the constructive integration of thinking, feeling and
acting leading to the empowerment for commitment and responsibility. From his
constructivist approach, Novak (1988) stresses the concept of ML and the way it is
treated by Ausubel, Novak, and Hanesian (1976) in his assimilation theory.

One of the main problems in the learning of mathematics, according to Novak
(1998), is that most of the instructional material is conceptually confusing. In other
words, there is a failure to present either the concepts or the conceptual relationships
that schoolchildren require in order to understand the meaning of the mathematical
ideas in question. When it comes to designing and implementing classroom instruc-
tions that satisfy the conditions for ML, there is a need for tools to facilitate learning;
the concept map (CM) is one such tool.

The ML requires conceptually transparent curricular and instructional material
design (Ausubel et al., 1976), hierarchised, so the new information can be integrated
in the previously conditioned student’s cognitive structure. This condition for the
ML must fill every single knowledge area, even being valid for the mathematics.
So, to make this process operative, the design of an instructional module (IM) will
be necessary, an innovative IM based on the use of CM as a tool to facilitate ML
around a mathematic topic.

Some of the papers presented at the First International Conference on Concept
Mapping (Pamplona, 2004), and later published in the conference report, referred
to the use of CMs in mathematics topics. One example is that of Afamasaga-Fuata’i
(pp. 13–20), which stresses the usefulness of CMs as tools to help learners achieve
a better and deeper understanding of certain selected mathematics topics. Another
is that of Serradó, Cardeñoso, and Azcárate (2004, pp. 595–602) where CMs are
highlighted as tools to help in the diagnostic assessment of the obstacles that arise
when imparting mathematical knowledge, and described as a source of information
to promote the professional development of teachers.

The Second International Conference on Concept Mapping (San José, Costa Rica,
2006) included a special session on Concept Mapping in mathematics, moderated
by leading researchers: Nancy R. Romance from Florida Atlantic University (USA),
Jean Schmittau the State University of New York at Binghamton (USA) and Karo-
line Afamasaga-Fuata’i the University of New England (Australia). The proceedings
of that session list a number of case studies illustrating the use of concept maps in
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the teaching of mathematics. These include the use of concept maps to help students
to grasp the concept of the positional system in a study conducted by Jean Schmit-
tau and James J. Vagliardo (2006, pp. 590–597); the development of the concept
mapping approach to the teaching of mathematics in secondary schools in an article
by William H. Caldwell, Faiz Al-Rubaee, Leonard Lipkin, Della F. Caldwell, and
Matthew Campese (2006, pp. 170–176); a study presented by Rafael Pérez Flores
from the Universidad Autónoma Metropolitana de México (pp. 407–414); the assess-
ment of multidimensional concept maps by M. Pedro Huerta from the Universitat de
València (2006, pp. 319–326); concept maps in the learning stages of Van Hiele’s edu-
cational model in a study (2006, pp. 383–390) conducted by Pedro Vicente Esteban
Duarte, Edison Darı́o Vasco Agudelo, and Jorge Alberto Bedoya Beltrán.

Through the mention of such communications and studies directed to achieve a
deeper understanding of mathematics teaching, we try to underline the importance
and the validity of CMs in topics related to school mathematics. This way, we are
focusing on a new field for the application of CMs as an unbeatable tool to foment
ML not rote learning (RL) in students and to identify different patterns that might
have some predictive value.

The Topic of the Proportionality

From our experience as teachers, one of the most intriguing topics in the teaching of
mathematics is that of proportionality. From the earliest times, proportionality has
played a part in human understanding of the surrounding world. Thus, for exam-
ple, faced with the impossibility of directly measuring distances, resort was made
to comparative methods. The idea first arose in astronomy and later in science as
a whole, both for defining new magnitudes and for expressing numerical relation-
ships, working with indices, constants or rates. Proportionality is therefore a basic
concept in mathematics and is of major importance in the school curriculum (Fiol &
Fortuny, 1990), since it is associated with most mathematical content and the content
of other subjects such as physics, biology, chemistry, etc. It is not a simple concept,
however. Rapetti (2003) noted that it is not easy to acquire the notion of proportion
because it challenges learners with a range of situations of varying levels of numeri-
cal complexity and different types of magnitudes. The need to consider quantities in
relation to one another, in addition to approaching them in absolute terms, presents
a problem to some learners and creates an obstacle to their understanding of the
mathematical content surrounding the notion of proportionality.

According to Azcárate and Deulofeu (1990), in order to deal with proportionality
as a function model, it is first necessary to explore concepts such as ratio and pro-
portion, and ways of solving proportionality tasks. Although proportions played a
fundamental role for the Pythagoreans, historically, this proved to be a major obsta-
cle in the development of the general concept of function. When working with pro-
portions, it is hard to identify the relationship between two different magnitudes,
since compared magnitudes are not always of the same nature. Proportions there-
fore conceal the underlying interdependence of different magnitudes. The Greeks,
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however, always made their proportions homogeneous by means of ratios, each of
which was formed by two magnitudes of the same type. This apparently came about
as a result of the geometric significance of the magnitudes. In other words, length
was compared with length, or area with the area, with the result that a ratio between
different magnitudes became meaningless.

The prestigious journal, Mathematics Teaching in the Middle School (MTMS), an
official publication of the National Council of Teachers of Mathematics (founded in
1920 with members from the United States and Canada) is a widely acknowledged
resource for students and teachers. It contains articles and seminars presenting activ-
ities, ideas, strategies and problems, and, since the year 2000, has devoted over 20
articles to proportionality and the teaching/learning issues this involves.

This is a patent illustration of the current interest in proportionality as a key
teaching/learning topic in the first years of secondary education. Ben-Chaim, Fey,
Fitzgerald, Benedetto, and Miller (1998) specifically claim that proportional reason-
ing is the core mathematical topic during the last years of primary and first years of
secondary education.

Furthermore, in the search for reliable references on the analysis of proportion-
ality in a teaching/learning context, it is important to consider the existing research
into the definition of ratio and/or proportion. Lesh, Post, and Behr (1988), for exam-
ple, describe and compare the views of different authors such as Vergnaud, Schwartz
and Kaput, on the nature of ratios.

One characterisation of cognitive development is to be found in Piaget’s theory
(Piaget & Inhelder, 1972), which identifies the ability to reason proportionally as a
primary indicator of formal operational thought, one of Piaget’s levels of cognitive
development. Piaget approached the subject primarily in his studies of probability,
and the laws of physics and spatial relationships. He claimed that the notion of pro-
portion belongs to the level of formal relationships, in other words, that operations
are not performed directly on concrete objects; they are operations on operations.
In his research into the development of child thought, the author mentions having
faced the problem of explaining the process involved in learning to understand pro-
portions and found proportional reasoning to manifest itself around the beginning
of secondary education.

Further key contributions have been made by authors such as Freudenthal (1983),
who showed that proportional reasoning tasks can be divided into two types: those
involving internal ratios and those involving external ratios. Internal ratios are ratios
between terms belonging to the same magnitude, while external ratios are compar-
isons between values of two different magnitudes.

In a brief review of previous research into the concepts of ratio and proportion,
Nesher and Sukenik (1989) report that the standard procedure in many studies is
to test subjects’ understanding of ratio and proportion by asking them to solve
ratio problems (with or without illustrations; written or oral) and then analyse the
problem-solving strategies used in their answers. One of the main strategic errors
identified by them in students of different ages is the use of the additive strategy,
where the relationship between ratios is viewed as the difference between terms and
students fail to perceive its multiplicative nature.
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The above theoretical considerations and the importance of the subject of pro-
portional reasoning revealed in them suggested to us the need for an IM designed to
teach this mathematical topic to second grade secondary schoolchildren, incorporat-
ing the ideas presented in Novak’s theory of education. Thus, the aim was to create
conceptually transparent material, based on the use of CMs as a means to facilitate
meaningful learning and enhance understanding of the concept of proportionality
and the ability to solve related problems, with particular emphasis on two points;
one, ratios between different values of the same magnitude and, two, the potential
proportional relationship between two different magnitudes and the various forms
in which such a relationship may be expressed.

Research Planning and Design

The study presented here was made possible thanks to the researchers’ participation
in one of the subgroups of the research team that conducted the GONCA project
(González & Cañas, 2003), which was financed by the Government of Navarra Edu-
cation Department.

One of the aims of the GONCA project was to assess the effectiveness of
CMs versus rote learning, as evaluation, teaching and learning tools. Another of
its proposals was that the students should use CmapTools software to construct
their concept maps. This software was developed at the Institute for Human and
Machine Cognition to allow users to construct CMs using a very simple interface
and thereby make the maps easy to save on a universally accessible Internet resource
(González & Cañas, 2003).

In the present study, we wish to highlight various features of concept mapping as
a means towards ML.

It plays an extremely useful role in an innovative IM to teach proportionality, mak-
ing it easier, as recommended by Ausubel et al. (1976), to take into account pupils’
prior knowledge of the topic to be dealt with in the classroom. The maps produced
by the students prior to instruction can be used to establish each individual’s point
of departure in the learning process. Ausubel also proposed that the more inclusive
concepts relating to the topic be presented at the start of the instruction period, and
that the more specific concepts be dealt with later. Hence there is a need to clarify
which concepts are to be included in the instruction, define their meaning, identify
the hierarchical relationships and reconciliations between them and establish how
this frame of reference relates to what the pupils already know. Novak recommends
teachers to create a reference map, to arrange the relevant concepts, both inclusive and
specific, relating to the chosen topic; in this case, proportionality. Once the reference
map has been created (see Fig. 6.1), one can proceed to identifying the most significant
conceptual nodes around which to plan and schedule classroom activities.

Concept maps provide students with a learning tool to help them cover all the
content items of the module.

They can be used to evaluate students’ prior knowledge of this topic and monitor
their learning progress. We will therefore base our study on the comparative analysis
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Fig. 6.1 Reference map (Pozueta, 2003)

of the children’s maps before and after instruction, following the model presented
by Guruceaga and González (2004). This will allow us to focus on various features
of concept maps (see Table 6.1). Thus, our pupils’ concept maps will become the
means by which we will be able to detect the level of meaningful learning they have
attained, and will also serve to alert us if the process has involved rote or mechanical
learning rather than meaningful learning. The following table (Table 6.1) shows the
indicators that were checked. After analysis, the pupils’ maps can be classified into
groups showing similar characteristics and tendencies.

The Setting in Which the Concept Maps were Used

The fieldwork took place throughout the 2002–2003 academic years, in the state-
aided school, San Fermin Ikastola, in the outskirts of Pamplona (Spain). Classes
are conducted in the Basque language and the school caters for infants, primary,
secondary and high school pupils. The research, which was conducted by a highly
experienced secondary mathematics teacher, comprised several stages.

The first was to create the above-mentioned reference map (see Fig. 6.1), which
was geared to the teaching of second-grade secondary students (13 to 14 year olds).
Twenty five (25) concepts were selected and the main relationships between them
were identified, taking into account the didactic aims to be covered in the instruc-
tional module.



6 Evidence of Meaningful Learning in the Topic of ‘Proportionality’ 123

Table 6.1 Learning indicators

Indicators of rote/mechanical learning Indicators of meaningful learning

• No clear differentiation between
concepts and linking phrases; direction
of the relationships between concepts
not shown

• Clear differentiation between concepts and
linking phrases; shows the direction of the
relationships between concepts

• A minor number of concepts are used • Most of concepts are used
• A high frequency of erroneous

propositions: illogical conceptual
hierarchies

• A decreasing trend in erroneous propositions

• An incorrect hierarchical ordering of
concepts in terms of their inclusivity

• There is coherence in the hierarchical
organisation of the concepts in terms of their
inclusivity

• The most inclusive concepts are not
identified

• The most inclusive concept is identified

• Shows long linear relationships,
chaining of concepts

• Examples of super-ordination of an inclusive
concept

• Progressive differentiation between inclusive
concepts

• Linear relationships between concepts are
fewer or totally absent

• Crossed links are few in number and
erroneous: a sign of weak integrative
reconciliations

• There are numerous crossed links revealing
high-level integrative reconciliations

At this point it should be emphasised that the module was intended to present
and develop the topic of proportionality using mathematical situations involving
ratio, such as similarity, percentages and scales. In the final level of the hierarchical
map, therefore, we can see specific examples of such situations. The map does not
reflect the necessary condition of the equality of corresponding angles when defin-
ing similar figures; it simply reflects the fact that proportional reasoning is involved
in the definition. The map was meant, moreover, to clearly illustrate the difference
between ratio defined as a relationship between different values of the same mag-
nitude and the proportional relationship that may exist between two different mag-
nitudes, as well as the different ways in which this proportional relationship can be
expressed. Thus, the four ways of expressing a relationship between two magnitudes
appear on the right-hand side of the map, indicating in each case the type of propor-
tional relationship involved, that is, whether it is directly or inversely proportional.
The concept of ratio is defined as in the vast majority of lower secondary school
mathematics textbooks, despite the fact that Freudenthal (1983) considers such a
definition to be a violation of its meaning.

Sixty three (63) students from two second-grade secondary school classes each
drew a concept map prior to instruction. They were asked to use the same list of 25
concepts used in the reference map.
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These maps enabled the teachers to check the point of departure for each individ-
ual student and they served as a guide for the design of the innovative instructional
module on proportionality. The instruction largely followed the second-year sec-
ondary education mathematics syllabus, but it should be noted that in the textbooks
for this level the concepts involved usually appear under different topics: propor-
tionality, similarity, scales, percentages, linear functions, etc. hence there was a
need to relate them within the context defined above in order to create the refer-
ence map. The instructional sequence was adapted from Project LEAP (Learning
about Ecology, Animals and Plants, 1995). This was a plan that grouped activities
into three stages: introduction, focusing and summary. The process begins with the
presentation of the most inclusive concepts, after which progressive differentiations
and the more significant reconciliations are made, before finally applying the infor-
mation discussed throughout the instruction period. When designing activities for
this module, which was written in the Basque language ready for presentation in the
classroom, ideas were taken from several published texts.

The teacher carried out the instruction using the same approach in both classes
during the second term of the school year. In other words, there was no control
group; on the one hand, there was no need for altering the Mathematics Depart-
ment’s previously defined teaching planning and, on the other hand, it was important
to respect the school’s philosophy about not creating any type of distinction among
the students. From the methodological point of view, pupils were expected to work
individually during the presentation and summary stages, and in small groups of
five during the focusing stage. Although group work in the classroom was not stan-
dard practice during mathematics lessons, the second grade students on the whole
showed a positive attitude towards working in groups, except for a few isolated cases
of low contributors. During the instruction period, the pupils also created additional
concept maps using CmapTools software, already installed in the computers in the
school’s computer room. Concept mapping did not form part of the standard math-
ematics program at the school but had been adopted by the natural science depart-
ment. The pupils in this age group were therefore already trained in the creation of
concept maps relating to the content of the area of natural sciences, and thus had
no difficulty in using the technique. In the last activity of the instructional module,
each student was asked to produce a final concept map using the 25 concepts that
had featured in the reference map prior to instruction.

The concept maps created before and after instruction by 32 of the 63 students
who participated in the experiment were then subjected to a comparative analysis.

Description and Discussion of the Findings

In this section, we will discuss the indicators described above (see Table 6.1) with
a view to performing a comparative analysis of the maps produced by the pupils
before and after having worked through the instructional module. The analysis will
focus on the following issues:
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The Way in Which the Pupils Differentiate Concepts from Links

On the whole, their differentiation of concepts and links was very similar in both
maps; in other words, most of the pupils were able to make the correct distinction
between the concepts and the linking phrases on the maps created both before and
after instruction. Of the 32 pupils, 25 were found to differentiate correctly between
concepts and links, remembering to use arrows and explaining all the links, on both
maps.

On the whole, the quality of the links was also similar in both maps by all pupils.
Their propositions tended to be rather poor, but half the pupils showed a tendency
towards a gradual enrichment of their propositions.

Utilisation of Concepts

As shown in Table 6.2, only two of the 32 pupils (numbers 10 and 19) used all 25
of the concepts mentioned on the list they were given during the creation of the pre-
instruction concept map. The same two were also the only ones of the whole group
who reduced the number of concepts used from 25 to 24 in the second map. That
is, they used a greater number of concepts in the map prior to instruction than in
the one they created after instruction was complete. The majority of the pupils were
found to make more use of the concepts in the second map than in the first, 11 pupils
having managed to use all 25 concepts (higher frequency of use). It is important to
stress that 24 out of the 32 pupils did not use the concept ratio in the map drawn
prior to instruction. Of these, 21 introduced it in the second map; pupils numbers
24, 25 and 26 failed to use it in either of their maps, while pupil number two used it
in the first but not in the second. With regard to the three examples featured on the
list of concepts: bank interest, plan of an apartment and treble the side of the figure,
it should be noted that, of the whole group, 27 pupils failed to use one, two or three
of these examples in the map prior to instruction.

Propositions Formed from Links Between Concepts

From the information provided in Table 6.3, we can see that in the map constructed
prior to instruction, 19 pupils out of the whole group were able to identify up to 15
relationships, and none identified fewer than 7. In the post instruction map, all the
pupils were able to make at least 11 propositions, 29 of them made between 21 and
29, and six managed to make 30 or more links.

With regard to the share of erroneous or inaccurate propositions relative to the
total included in the maps, there is clear evidence of a decreasing trend in all the
pupils.

It is worth mentioning the case of three pupils, numbers 3, 16 and 27, who, out
of the total number of propositions in their post-instruction maps, (totals of 26, 29
and 39, respectively) had no incorrect propositions whatever.
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Table 6.2 Use of concepts relating to proportionality

Pupil

Number of
concepts used
(out of 25) in
first map

Percentage of
total number of
concepts used in
first map

Number of
concepts used
(out of 25) in
second map

Percentage of
total number of
concepts used in
second map

1 17 68 23 92
2 22 88 22 88
3 13 52 21 84
4 13 52 21 84
5 17 68 25 100
6 10 40 20 80
7 13 52 25 100
8 10 40 17 68
9 22 88 25 100

10 25 100 24 96
11 12 48 23 92
12 16 64 22 88
13 15 60 25 100
14 16 64 24 96
15 18 72 23 92
16 14 56 25 100
17 18 72 24 96
18 17 68 25 100
19 25 100 24 96
20 12 48 23 92
21 9 36 21 84
22 15 60 18 72
23 15 60 18 72
24 18 72 19 76
25 8 32 10 40
26 14 56 14 56
27 19 76 25 100
28 11 44 25 100
29 18 72 25 100
30 15 60 18 72
31 17 68 25 100
32 16 64 25 100

Specifically, 28% failed to introduce one of the three examples; treble the side of the figure was
the one least used. Another 28% failed to introduce two examples; but more than half of these
introduced all three examples after instruction. A further 28% failed to incorporate any of the
examples; but more than half of this group incorporated all three after receiving instruction. One
concept that was frequently omitted from the map produced after instruction was proportionality
constant, which 22% of the pupils failed to use.

In terms of the percentage of erroneous or inaccurate propositions in the totals,
15 of the 32 pupils made up to 50% inaccurate propositions in the first map, while
in the subsequent map only two made more than 50% and 16 made 10% or less.
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Table 6.3 Propositions in relation to proportionality

Pupil
In first map: Erroneous
propositions out of total

Percentage
in first
map

In second map:
Erroneous propositions
out of total

Percentage
in second
map

1 8/20 40 2/32 9.4
2 20/24 83.3 14/24 58.3
3 10/13 76.9 0/26 0
4 8/14 57.1 4/24 16.7
5 10/17 58.8 4/30 13.3
6 4/9 44.4 5/27 18.5
7 5/12 41.6 2/26 7.7
8 2/11 18.2 4/11 36.7
9 5/23 21.7 1/32 3.1

10 19/36 52.8 4/28 14.3
11 2/13 15.4 2/26 7.7
12 9/17 52.9 8/26 30.8
13 6/14 42.8 2/29 6.9
14 5/15 33.3 6/27 22.2
15 4/17 23.5 1/22 4.5
16 3/13 23.1 0/29 0
17 10/18 55.5 1/26 3.8
18 8/16 50 5/28 17.8
19 8/25 32 7/26 27
20 5/11 45.5 2/27 7.4
21 5/8 62.5 10/19 52.6
22 8/14 57.1 6/18 33.3
23 4/18 22.2 2/21 9.5
24 5/8 62.5 5/24 20.8
25 4/7 57.1 1/11 9.1
26 7/13 53.8 1/14 7.1
27 11/18 61.1 1/27 3.7
28 3/12 25 0/39 0
29 9/17 52.9 5/30 16.7
30 8/14 57.1 6/21 28.6
31 11/15 73.3 6/24 25
32 9/15 60 3/30 10

Levels of Hierarchy

In relation to this point, it is worth mentioning the differences between the pre-
instruction and post-instruction maps. The pre-instruction maps vary considerably in
structure from one pupil to another, while bearing little resemblance to the reference
map but displaying certain patterns as regards the grouping of concepts.

The concept of magnitudes is directly linked to quantities or units and a linear
sequence is made from there to proportion, which includes four types: proportional
relationship, directly proportional, inversely proportional and constant of propor-
tionality.
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The concept of magnitudes is linked with different forms of expression: scales,
tables, graphs, percentages and text.

The concept of quantities is associated with the rule of three, which is identified
as a formula while other examples of formulas are on y = mx and y = k/x.

The concept of scales is associated with the concept of plan of an apartment and
the concept of percentages with graphs.

Generally speaking, the hierarchical levels are more clearly defined in the post-
instruction maps, especially in the upper part of the map. Thus, 34% of the 32 pupils
were able to present the hierarchical levels correctly throughout the whole map.

All the maps begin at the top with a similar structure to that of the reference map,
with a more inclusive concept clearly differentiated. It is worth noting that, in many
of them, the concept of proportion is not associated with the concept proportional
relationship, showing that the students have failed to make reconciliation between
these two concepts. Another point worth mentioning is that in some of these maps
the four forms of expression of a proportional relationship are not placed on the
same hierarchical level.

Crossed Links

Although we can report no crossed links on the pre-instruction maps, they did appear
on 50% of the post-instruction maps. The crossed links on all maps referred to the
same concepts, in other words, transversal propositions were made linking the four
different forms of expression with each of the two types of proportional relationship.

This description illustrates the fact that, overall, the cognitive structure of the
pupils can be described as more organised and hierarchically ordered after instruc-
tion. There is a considerable increase in the number of concepts used to construct
the post-instruction maps and the pupils’ cognitive structure appeared to have been
enriched with the incorporation of the concept of ratio, the inclusive nature of which
was correctly shown in many cases. Judging from the pattern that can be observed
when the two maps of each pupil are compared for the percentage of erroneous
or inaccurate propositions out of the total, the pupil’s cognitive structure can also
be said to have become more logical. In the post- instruction maps, it is possible
to detect an increasing ability to establish clearer and more accurate hierarchical
levels, especially those that come highest on the map.

In many cases a clear differentiation was made between concepts such as propor-
tional relationship and proportion. Fifty six percent (56%) of the pupils succeeded
in differentiating one or other of these concepts, which were inclusive on the refer-
ence map.

The crossed links that appear on the post-instruction maps suggest that the major-
ity of the pupils had succeeded in making an integrative reconciliation between the
different forms of expression of the two types of proportional relationship. Fur-
thermore, we are able to report that the three pupils who were able to differentiate
the concepts of proportional relationship and proportion also managed to reconcile
them, since they established a correct link between the two.
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As we discuss this, it is interesting to note that there were three clear tendencies in
the concept maps constructed by the pupils after instruction. This same observation
has already been highlighted in a study by González (1997), describing three groups
of pupil-constructed concept maps, each sharing common characteristics. In the case
that concerns us, it was possible to observe similar groupings of maps with similar
characteristics. Thus, one of the first tendencies to be observed was the obvious
restructuring in the post-instruction map made by three of our pupils, who were
able to produce something very close to the reference map they had been shown.
The pre-and post-instruction maps made by pupil, I.I., (see Figs. 6.2 and 6.3) are
included as an illustration of the progress made by this group of students.

This particular pupil used 14 concepts in the first map, but increased this to 25
in the final map. It is interesting to observe how the concept of ratio is incorpo-
rated with its full meaning, shown in its linkage with proportion and proportional
relationship. The concept of proportional relationship is assigned the correct hier-
archical level, while the four forms of expression, that is, text, table, formula and
graph, for both types of proportionality presented and handled in the instructional
module are perfectly defined on a lower level. The crossed links between these types
of expression are also shown. Furthermore, the three mathematical contexts treated

Fig. 6.2 I.I.’s first map
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Fig. 6.3 I.I.’s final map

in the module as examples of direct proportionality are shown on another hierarchi-
cal level.

Another tendency can be observed on the second maps made by a group of 19
pupils. Here, the main characteristics are that the concept of proportional relation-
ship (or, in its absence, the concept of proportion) is differentiated, there are few
incorrect links, no linear sequences, the hierarchical levels are largely well defined,
the logic of the discipline is observed and, in some cases, reconciliations are made
between some forms of expression and both types of proportional relationship.
This tendency is reflected in the way pupil, I.M., has modified the second map
(see Figs. 6.4 and 6.5).

Note that the 19 concepts used in the first map increased to 25 in the second.
There are also clear signs that this pupil has begun to give a new meaning to the
concepts of ratio and proportion. However, despite having clearly differentiated the
concept of proportional relationship and correctly placed all the subordinate con-
cepts, the link between the concepts of proportion and proportional relationship has
not been identified, revealing this pupil’s inability to reconcile these two concepts.
Crossed links between the different forms of expression of the two types of propor-
tionality were also missing in this map. Finally, we can report on a third group of
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Fig. 6.4 I.M.’s first map

Fig. 6.5 I.M.’s final map

10 pupils, whose final maps showed many features that were more characteristic of
rote learning than meaningful learning, given the total absence of differentiations
and the very few examples of reconciliation.

The frequency of erroneous links is generally higher and there is barely any evi-
dence of adherence to the logic of the discipline. Some of these maps feature some
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Fig. 6.6 H.Z.’s first map

rather confused nodes. If we take the maps drawn by pupil, H.Z., (see Figs. 6.6 and
6.7) we are able to observe that although all 25 concepts are present in the second
concept map, 6 of the 24 links are incorrect. What is more, the concepts are not
placed on the appropriate level in the hierarchy, nor does the structure of the map
reveal a progression from the more inclusive to the more specific.

There is an abundance of linear sequences and no kind of reconciliation. What
does appear is a series of concepts, particularly in relation to the three mathemat-
ical contexts used in the instructional module as examples of direct proportion-
ality, but they are linked arbitrarily and meaninglessly in the upper levels of the
hierarchy.

Conclusion

The above results give us reason to believe that the implementation of the innovative
instructional module for the topic of proportionality was successful in promoting
more meaningful learning in the classroom.

We base this judgment on the criteria used to identify indicators of meaningful
learning in the concept maps created by our pupils. The indicators include a con-
siderable increase in the number of concepts used in the post-instruction maps, a
significant reduction in errors or inaccurate propositions, increased clarity in the
levels of hierarchy and coherence with the inclusivity of the concepts, a decrease in
the number of linear chains and confused nodes between concepts and an increase
in the progressive differentiations reconciliated integratively, all of which clearly
reveal the pupils’ greater ability to achieve meaningful learning.
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Fig. 6.7 H.Z’s final map

The research also revealed problems in terms of the pupils’ lack of ability to rec-
oncile ratio or proportion with that of proportional relationship. They clearly had
serious difficulty in identifying the most important inclusive concepts, and this obvi-
ously hindered their capacity to establish richer and more reconciled progressive
differentiations. In our view, however, it is important to note that the implementa-
tion of a theoretically grounded instructional module in a standard classroom setting
gave a group of pupils the opportunity to learn about the topic of proportionality in
a more meaningful manner.

Concept mapping revealed itself as a useful tool enabling us to design an inno-
vative and conceptually more transparent instructional module on a complex math-
ematical topic, and also to check the pupils’ prior knowledge of the topic and track
their learning process.

In addition, three clear patterns emerged in the concept maps made by the pupils,
revealing three different tendencies among them. In future research, it would be
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interesting to try to identify different patterns in the concept maps constructed by
our pupils. An operational definition of the maps and their correlation with the
pupils’ academic performance and certain aspects of their personality, attitudes and
behaviour could turn them into valuable predictors of learning capacity. As our
research has patently shown, it might be possible through meaningful learning to
modify the patterns that emerge in the original maps, which are predictive of unde-
sired effects, and thus achieve better results in terms of a more integrative education
(in cognitive, emotional and psychomotor terms) for our pupils.
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Ben-Chaim, D., Fey, J. T., Fitzgerald, W. M., Benedetto, C., & Miller, J. (1998). Proportional

reasoning among 7th grade students with different curricular experiences. Educational Studies
in Mathematics, 36, 247–273.

Caldwell, W.H., Al-Rubaee, F., Lipkin, L., Caldwell, D. F., & Campese, M. (2006). Developing a
concept mapping approach to mathematics achievement in middle school. In A. J. Cañas & J.
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cept maps: Theory, methodology, technology, CMC 2006 (pp. 383–390). San José, Costa Rica:
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Chapter 7
Concept Mapping as a Means to Develop
and Assess Conceptual Understanding
in Secondary Mathematics Teacher Education

Jean Schmittau

A case study of the concept maps of two pre-service teachers illustrates the potential
of concept mapping to the teacher educator. The maps reveal much about whether
future secondary teachers grasp the nature of mathematics as a conceptual sys-
tem, understand the conceptual content of mathematical procedures, and possess the
requisite pedagogical content knowledge to mediate such understandings to future
learners. The map of one of the two teachers reveals that she possesses these under-
standings. The map of the other shows a formalistic understanding of mathematics.
Concept mapping also functions as an epistemological heuristic for pre- and in-
service teachers.

Case Study

The relatively small number of mathematics presentations at the First and Second
International Conferences on Concept Mapping held in 2004 and 2006, in
Pamplona, Spain and San Jose, Costa Rica, respectively, suggests that across much
of the world the use of concept mapping in mathematics lags far behind its applica-
tions in the sciences. This is clearly the case in the US where, despite the emphasis
on conceptual understanding that characterizes the reform standards of the National
Council of Teachers of Mathematics (NCTM, 1989, 2000), concept mapping in
mathematics continues to be under utilized. This is unfortunate, since it has the
potential to begin to counteract the superficial treatment of concepts occasioned by
the failure to develop a coherent curriculum that identifies essential concepts and
probes them in sufficient depth (Schmidt, Houang, & Cogan, 2002). Indeed one of
the outcomes of the TIMSS study was the characterization of the US curriculum as
“a mile wide and an inch deep”. The standards developed by the fifty states con-
tinue to reflect the prevailing national tendency toward a multiplicity of topics and
consequent superficial coverage of mathematics concepts.
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In October 2006, citing the excessive number of topics required in the standards
of the various states (as high as 80 in one state’s fourth grade curriculum), NCTM
promulgated a set of “focal points” which target a small number of both concepts
and procedures to be taught and mastered at each grade level. The inclusion of
procedures in the focal points is significant, since although they were not excluded
in the NCTM Standards, procedures have clearly been de-emphasized in much of
the published literature. In addition, reform mathematics curricula in the US have
all but abandoned the teaching of algorithms in recent years, preferring to consign
computation to calculators instead (Morrow, 1998). This practice has not only been
widely criticized (Wu, 1999; Schmittau, 2004), but has, in fact, been a major factor
in fueling the US “math wars”.

At the root of this false dichotomy between mathematical procedures and math-
ematics concepts is the notion that algorithms can only be taught mechanically,
as they so often were in the past, and are therefore, incompatible with the teach-
ing of concepts. So accepted has the presumed dichotomy between concepts and
procedures become, that the nation’s leading newspapers reported that the NCTM
focal points represented a move “back to basics”, a reference to the rote learning of
mechanical procedures that had often characterized mathematics learning prior to
the reforms heralded by the NCTM Standards (1989). These media reports prompted
the NCTM president to write letters to the editors of two of the most prominent US
newspapers, the New York Times and the Washington Post, in an attempt to correct
this misperception and reaffirm NCTM’s commitment to conceptual understanding
as well as procedural competence in mathematics. Indeed, rather than a mechani-
cal “back to basics” approach to the teaching of mathematics procedures, the focal
points appropriately require that students understand the meaning behind the math-
ematical algorithms in which they are to demonstrate fluency. It is important, there-
fore, that algorithms be understood and taught not as divorced from concepts, but
as historical and epistemological analysis reveals them to be – namely, fully con-
ceptual cultural historical products. Concept mapping can serve as a useful tool to
enable the linking of algorithms with their conceptual content.

It is also imperative that prospective teachers master the pedagogical con-
tent knowledge that will enable them to teach algorithms conceptually, and concept
mapping can be a valuable means of both promoting and assessing this important
understanding in teacher education. The case study that is the focus of this chapter
illustrates the manner in which concept mapping can function as an assessment tool
for the teacher educator.

The background/classroom setting for the case study is as follows. The construc-
tion of a concept map of multiplication was assigned to pre-service teachers approx-
imately six weeks into a graduate mathematics education course. The students were
enrolled in a Master of Arts in Teaching program leading to certification to teach
secondary mathematics in grades 7 through 12. Questions concerning the mean-
ing of multiplication in the various numerical domains in which it functions were
threaded throughout the next few class sessions and became the focus of intense
thinking and discussion by the students. The Vygotskian tenet – that in order to
understand a concept it must be viewed in its full developmental history – marked
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the discussions, mandating student engagement in both conceptual and historical
analysis. In this chapter, the concept maps of two of the graduate student pre-service
teachers are presented by way of illustrating the contrast between a formalistic and
a truly conceptual understanding of mathematical content that the concept map has
the power to reveal.

The case study presented here provides an example of the manner in which a con-
cept map can alert the teacher educator to whether or not students are understanding
mathematics as a conceptual system (in which procedures are fully integrated), or
grasping it at the level of mere formalism (Schmittau, 2003). Both students drew
maps of their understanding of the concept of multiplication, subsequent to class
discussion of the concept as noted above. Pseudonyms are used for student names,
and since the maps were quite large, space considerations limit presentation to par-
tial sections of each.

In Fig. 7.1A, a section of Janet’s map reveals her understanding of what multipli-
cation is, viz., “a change in units in order to take an indirect measure” (cf. Davydov,
1992). Stephen, however, sees multiplication as an “operation which is composed
of ” an “operator” and “operands” (Fig. 7.1B). Janet’s definition can be meaning-
fully taught to children in the early elementary school years (Davydov, 1992), while
Stephen’s would make very little sense to students prior to college mathematics.

Janet’s definition reflects the development of multiplication from the need to
take a measurement or count of a quantity of objects or units sufficiently numerous
to render a direct count tedious and subject to error. In such a circumstance, it is
advantageous to construct a larger unit (or multiple) of the unit of interest, and
use it to take an indirect count. This is done in the case of the area of a rectangle,
for example, where the number of unit squares in a row are counted, and then the
number of rows are counted in order to indirectly obtain the area as the number of
square units.

Such an understanding of multiplication underlies the algorithm for obtaining the
product of multi-digit numbers. It does, however, require that the products of single
digit numbers (multiplication “facts”) be committed to memory. It is not sufficient
that the calculator can call up these “facts”; they must be stored in the human mem-
ory if they are to be recognized in subsequent mathematical studies in the myriad
of conceptual interrelationships into which they enter. Janet refers to these in her
concept map, indicating that their commitment to memory is important for math-
ematical understanding, and should not be by-passed as is often now occurring in
the wake of the reform movement. All of these points were emphasized during our
extensive class discussions of the concept of multiplication and the various numer-
ical domains in which it is defined. During these we noted the inadequacy of the
“repeated addition” definition that is ubiquitous in US textbooks (Schmittau, 2003).
Accordingly, neither Janet nor Stephen invoked this notion in their concept maps of
multiplication.

In Fig. 7.2, a portion of Janet’s map reflects the centrality of the concept of area
to her understanding of multiplication.

In the case of rectangular area, the unit changes from a unit square to a row of
such squares, which can then be counted to obtain the area in square units. Janet



140 J. Schmittau

(A)

(B)

division

factors

uses

to find

memorize

memorize

facts

addition of
equivalent
subgroups

such as

uses

such as

such as
operations

multiplication

order of
operations

operands

operator

which is composed of

such as
such as

such as
such as

find using

use for factoring

irrational

rectangular
arrays

limit of the
product =
product of
the limit

matrices

addition

subtraction

which is the inverse
operation of

division

graph

area model
(graph)

linear
2D model

chips

L × W

complete
the square

inverse of

defined as

multiplication
polynomials

area

represented using

models

is

for

change in unit
in order to take

an indirect
measurement

GCD results in

which is the inverse
operation of

which follow rules
defined by

Fig. 7.1 Janet’s (A) and Stephen’s (B) maps of the concept of multiplication

also presents area models for the conversion of a sum of terms (polynomial) to
a product (factoring) following the methods of Al-Khowarizmi (Karpinski, 1915).
Such area models are the conceptual foundation for the completion of the square.
The upper model for the solution of the quadratic equation “x2 + 10x = 39” shows
Al-Khowarizmi’s method, while the lower model displays the solution using algebra
tiles. In his development of algebra 1,000 years ago, Al-Khowarizmi solved this
equation by first drawing a square (having dimensions x by x), then dividing 10 by
4, and using the result to add a rectangle of dimensions “x” by 2.5 to each side of the
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Fig. 7.2 Janet’s map showing the historic role of the concept of area in the development of alge-
bra and the factoring of polynomials, and the concept of area underlying the algorithm for the
multiplication of fractions

square. There were as yet no algebraic symbols, but since it is cumbersome to use
word labels for variables, in my presentation to Janet and Stephen’s class, I labeled
the length of these four rectangles “x”. Al-Khowarizmi then literally completed the
square (the new larger square) by adding the four small squares in each corner.
Each of these had an area of 2.5 × 2.5 = 6.25, and since there were four of them,
their total area was 25 square units. Now the original equation (again we are using
symbols that Al-Khowarizmi lacked) becomes x2 + 10x + 25 = 39 + 25 = 64. Since
the length of a side of the square is x + 5 and the area of the square is 64, the square
has dimensions 8 by 8, and x + 5 = 8. Hence, x is 3. (Al-Khowarizmi’s geometric
method did not permit negative solutions.)

Janet’s lower model shows an algebra tile model for the same problem. Alge-
bra tiles are a modern manipulative designed to geometrically model polynomials.
Although the ten “x by 1” rods cannot be broken (to obtain rods having a dimension
of 2.5 as in Al-Khowarizmi’s solution), they can be arranged to produce a new larger
square by placing five of them along the side and five along the bottom of the x by
x square and completing the new square with 25 unit squares.

Janet’s inclusion of these models in her map is important for several reasons.
First, the map reveals area as the central antecedent concept necessary for an
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understanding of factoring. Many secondary students fail to grasp factoring despite
the use of algebra tiles, and teachers typically do not understand why a model that is
so transparent to them is not equally so for their students. If teachers realize that
area is insufficiently understood by many students (Schmittau, 2003), they will
understand why area models sometimes fall short of their anticipated effect. Sec-
ond, Janet’s map reveals her knowledge of the cultural historical development of
the solution of the quadratic equation by factoring, as well as its current render-
ing by the use of a popular manipulative. Her map reveals that she has internalized
from the class discussions, the relevant content and pedagogical content knowledge
necessary to teach this concept meaningfully.

Some teachers resist the use of algebra tiles, believing that a solution method
that is purely “algebraic” (i.e., symbolic), is just as effective. However, the fact
that Al-Khowarizmi tested his invented algebraic methods against geometric models
and that geometric models were used up to the nineteenth century, should caution
against the tendency to omit this important step in concept development. Further, Al-
Khowarizmi invented this method one thousand years ago, some 500 years before
the creation of algebraic symbols. So immediately engaging students at the level of
symbolic expression omits from their ontogenetic experience the equivalent of hun-
dreds of years in the phylogenetic development of this concept. Such an approach
violates Vygotsky’s insistence on the necessity for tracing the full developmental
history of a concept, and can scarcely be considered a recipe for adequate concep-
tual understanding.

If we explore this portion of Janet’s map further (Fig. 7.2), we see an area model
for the multiplication of fractions also, in which the algorithm for the product of
two fractions is identified by Janet as a “ratio of areas”. Janet now understands
what virtually none of my graduate students in mathematics understand prior to
our class discussions, viz., that the reason why the algorithm for the product of
two fractions “works”, is because the product of the numerators and the product
of the denominators are areas whose ratio is the product of the fractions. In the
example used by Janet, viz., “2/3 × 4/5”, the shaded area of the rectangle represents
the product of the numerators “2 × 4”, while the area of the larger rectangle is
the product of the denominators “3 × 5”. Their ratio, 8/15, is four-fifths of two-
thirds, the product of the two fractions.

Stephen (Fig. 7.3) states simply that “integer fractions” . . . “have the multiplication
formula a/b × c/d = ab/cd which is a ratio of area”. Without further elaboration or a
model representation, it is difficult to discern from his map alone whether he grasps
the precise nature of this ratio. This propositional acknowledgement alone, however,
is more than is commonly perceived by the typical pre-service or in-service teacher.

Finally, the current reform movement in mathematics often advocates that teach-
ing go no further than the use of manipulatives, and then allow students to “con-
struct” their own algorithms (Morrow & Kenney, 1998). There is, however, no
certainty that such student constructed algorithms will be correct. It is essential,
therefore, that the powerful culturally and historically constructed algorithms be
connected with their conceptual content and these understandings be mediated to
learners. Abandoning the teaching of such general methods in favor of dealing
only with “concepts” relegates procedural knowledge further to the rote end of the
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Fig. 7.3 Stephen’s map showing a formalistic understanding of fraction multiplication

meaningful-rote learning continuum (Novak & Gowin, 1984), reducing it to little
more than a memorized sequence of calculator keys. Janet’s map, however, reveals
that she is aware of the conceptual and procedural development of multiplication in
the historical progression of mathematical knowledge, and furthermore, possesses
the pedagogical content knowledge necessary to teach it effectively to students.

Another aspect of multiplication students find incomprehensible concerns the
product of two negative numbers. In Fig. 7.4A, Janet’s map indicates that multiplica-
tion of negative numbers can be modeled using chips to represent positive and negative
charges. Such a model makes use of Ausubel’s concept of an advance organizer, which
is often necessary because of the early grades (frequently 5th or 6th) at which this topic
is introduced. Here, the notion of charged particles serves this function.

In the model showing containers of charged particles, Janet first shows +2(–3).
Beginning with 3 positive and 3 negative charges in the container on the left (for a
net charge of zero), two groups consisting of 3 negative charges in each, are added,
resulting in a net charge of –6. From the middle container (starting with 6 posi-
tive and 6 negative charges), two groups of 3 positive charges are removed, rep-
resenting –2(+3) and leaving a net charge of –6. From the container on the right
(again starting with 6 positive and 6 negative charges), two groups of 3 negative
charges are removed, leaving a net charge of +6. Use of such an advance organizer
or other model appropriate for this age group is imperative, because the conceptual
integration of the product of two negatives is to be found in the system of complex
numbers, which is not studied until high school, long after this topic has been taught.
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Fig. 7.4 Janet’s (A) and Stephen’s (B) differing understandings of the multiplication of two negatives

Accordingly, Janet’s map shows a real understanding of the conceptual connec-
tions I presented to her class, linking the product of two negatives to the complex
number system. Her map displays a linkage from negative numbers to the product
“(–1)(–1) = 1” which is linked to multiplication of “complex numbers” and “rep-
resented by a rotation” shown in the complex plane. This is the actual inception of
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the concept of multiplication by a negative number, and Janet’s representation of
(4 + i)(2 + 3i) in the complex plane together with her assertion that the “distributive
property” is “used in” obtaining this product, suggests an understanding that multi-
plication by the scalar quantity “4” repeats the vector (2,3) four times, quadrupling
its norm (length) and resulting in the vector (8,12).

Multiplication of (2,3) by “i”, however, in a decided break with the meaning of
multiplication for real numbers, produces a 90◦ counterclockwise rotation of this
vector, resulting in the vector (–3,2). In class I showed students that the vector (1,0)
when multiplied by “i” rotates to the vector (0,1). Multiplying by “i” again results
in the vector (–1,0). Hence, the fact that (–1)(–1) = 1 is due to the fact that –1 mul-
tiplied by itself reflects two further 90◦ counterclockwise rotations, i.e., the vector
(–1,0) is rotated 180◦ to (1,0). Janet’s model shows four 90◦ counterclockwise rota-
tions to produce the real number “1”, which she states is “(–1)(–1)”. This, together
with linkages to the graph of the product of two complex numbers obtained using
the “distributive” property, connected to “complex number” that are “represented by
a rotation” modeled in the complex plane, suggests that she has internalized what
was taught in my graduate course, and has both the relevant content knowledge and
pedagogical content knowledge to teach this concept with meaning. A teacher who
possesses these understandings may be expected to point out the connection to mul-
tiplication of negative numbers when multiplication of complex numbers is taught.
None of my graduate students in mathematics have ever made this connection. They
learn it for the first time in my graduate course.

Stephen’s map deals with this topic very minimally, without models. His map
states that for complex numbers “multiplication is defined by . . . (a+bi)(c+di) =
(ac – bd) + (cb + ad)i”. This section of his map is unconnected to the section dealing
with “negative numbers” (Fig. 7.4B). Here he states that “When a and b are both
negative . . . a × b = (–a) – (–a) – . . .”, that is, “–a subtracted from itself b times”. If
that is the case, then (–3)(–2) = (–3) – (–3) = 0, rather than +6. Hence, despite the
fact that several meaningful ways of modeling this concept were presented during
our class discussions, Stephen’s map suggests that he views multiplication of two
negatives as repeated subtraction, which is an inaccurate conceptualization.

Stephen and Janet were both present in the same classes in which the concep-
tual content of multiplication that is reflected in Janet’s map above was taught and
discussed. However, the evidence from their maps is that one internalized the con-
cept in its systemic interconnections, while the other continued to see it through a
formalistic lens. Janet’s map gives evidence that she possesses the requisite concep-
tual understanding, and historical and pedagogical content knowledge, to mediate
the concept of multiplication meaningfully to students, without separating its so-
called “procedural” from its “conceptual” content. Indeed, it appears that she can
move rather seamlessly between the two. Stephen’s map, in its entirety, has con-
siderable extension, encompassing multiplication of matrices, determinants, and the
cross products of vectors. But the connections are consistently formalist and give
no evidence that his teaching will go beyond a formalistic approach. Both students
are nearing completion of the masters’ degree, but their maps reveal very different
understandings of this fundamental concept.
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Epistemological Value

While Ausubelian theory emphasizes the conceptual connections that are requisite
for meaningful learning (Novak & Gowin, 1984), Vygotskian theory points to the
need to unfold the historically developed conceptual content from its encapsulation
in symbolic expression in order to pedagogically mediate the full restructuring of
the concept (Davydov, 1990). In the examples above, the concept maps produced
were made subsequent to class discussions and presentations on the conceptual and
historical analyses of multiplication with masters’ level students preparing to be
high school teachers. I typically require that doctoral students conduct such anal-
yses on their own and frame pedagogical recommendations for the improvement
of instruction based upon their findings. James Vagliardo’s analysis of the con-
cept of logarithm is illustrative of the role of concept mapping in this process (cf.
Chapter 9).

In addition, concept mapping may be used to reveal to pre-service and in-service
teachers why it is occasionally imperative that they teach topics not contained in
their textbooks or the state mathematics curriculum. In mapping mathematical con-
cepts taught in middle school and searching for their conceptual roots, it becomes
clear that the concept of positional system, for example, is a central antecedent con-
cept with the power to render more effectively the meaning of such concepts as
decimals, fractions, and polynomials (cf. Chapter 3). But the concept of positional
system cannot be attained by studying only base ten (Vygotsky, 1986); for adequate
conceptualization of such a superordinate concept the study of multiple bases is
required. The folly of superficially covering many topics is simultaneously revealed;
only by establishing a conceptual base of concepts central to the future development
of mathematics, can students begin to grasp the nature of mathematics as a concep-
tual system. Yet two decades into the reform movement, US curricula continue to
cover too many topics each year, to repeat the same topics year after year, and with
little increase in depth (Schmidt, Houang, & Cogan, 2002). The NCTM focal points
if properly implemented may serve as a much needed corrective to this situation. It
would seem that their implementation and the reform movement in mathematics as
well could benefit from the pedagogical potential of concept mapping.

Acknowledgements My thanks to James J. Vagliardo for his expert assistance in digitizing the
concept mapping sections, and to the two pre-service teachers who graciously provided the concept
maps discussed in this chapter.
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Chapter 8
Concept Mapping a Teaching Sequence
and Lesson Plan for “Derivatives”

Karoline Afamasaga-Fuata’i

The chapter presents a student teacher’s work from a study, which investigated
secondary preservice teachers’ use of concept maps and vee diagrams as pedagog-
ical tools to (i) guide the critical analysis of the content of a mathematics syllabus,
and (ii) develop their skills in designing activities that promote working mathemati-
cally. Through in-class presentations and critiques of concept maps, student teachers
engaged in the processes of reasoning, justifying, verifying, and validating to ensure
that visually displayed interconnections effectively reflected their intended meanings.
Bobby’s concept maps presented here, illustrate the conceptual structure underpin-
ning a teaching sequence, a lesson and an assessment plan as part of a required course
assignment, to communicate his perceptions of what it means to developmentally
and conceptually teach “Derivatives” in contrast to simply compiling a sequential
list of sub-topics. Main insights from the findings suggested that constructing con-
cept maps (a) prompted Bobby to reflect more deeply about his own mathematics
knowledge beyond the assignment topic and (b) challenged him to strategically orga-
nize his conceptual analysis results into hierarchical displays of concept networks to
parsimoniously and meaningfully illustrate the interconnectedness between key and
subsidiary concepts as his pedagogical planning progresses from a 2-year curriculum
and topic syllabus notes to a teaching sequence, lessons and an assessment plan.

Introduction

Whilst syllabus outcomes and key ideas are useful to guide the planning of teach-
ing sequences, “they are only ‘frameworks’ – teachers need in-depth knowledge of
mathematical concepts and processes so as to enrich them” (Bobis, Mulligan, &
Lowrie, 2004, p. 25). Given the prevailing curricular emphasis on encouraging stu-
dents to think mathematically (New South Wales Board of Studies (NSW BOS),
2002), there is a need to conduct research into innovative ways of supporting student
teachers’ pedagogical and mathematical thinking and reasoning in deeper and more
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conceptually based ways. Hence, the main study explored ways in which growth
in understanding and pedagogical mediation of meaning of mathematical concepts
and processes could be supported, by investigating secondary student teachers’ use
of concept maps and vee diagrams as they (i) critically analyse the content of the
junior and senior secondary mathematics syllabus (NSW BOS, 2002), (ii) illustrate
and communicate their conceptual understanding of syllabus outcomes, activities
and problems, and (iii) develop requisite skills in designing conceptually rich activ-
ities to promote working and communicating mathematically.

The study was guided by Ausubel’s theory of meaningful learning which pro-
poses that learners’ cognitive structures are hierarchically organized with more gen-
eral, superordinate concepts subsuming less general and more specific concepts
(Ausubel, 2000; Novak, 2004). By constructing concept maps and vee diagrams
(maps/diagrams), students illustrate publicly their interpretation and understanding
of a topic/problem in terms of interconnections between concepts, principles and
methods. Concept maps are hierarchical graphs of interconnecting concept nodes
with links connecting relevant concepts. Descriptive words on the links describe the
meaning of the relationship between the connected concepts. Examples of concept
maps are provided later. A vee diagram, on the other hand, is a vee structure situated
in a problem with its lefthand side depicting the conceptual information underpin-
ning the methods of solving a problem displayed on the righthand side. Vee diagrams
are not presented in this chapter but some examples are found in Chapters 2 and 4.

Recent research (Afamasaga-Fuata’i, 2007, 2006, 2005, 2004a, 2004b) with
Samoan undergraduate mathematics students demonstrated the usefulness of
maps/diagrams as valuable meta-cognitive tools to scaffold students’ thinking and
reasoning, to illustrate their developmental and conceptual understanding of math-
ematics topics, and to enhance efficiency in communicating mathematically as they
learnt new mathematics topics and/or solved mathematics problems in their university
mathematics courses. Through participation in social critiques over the semester, stu-
dents receivedconstructive feedback to further improve their individually-constructed
maps/diagrams. Their final topic-concept-maps were structurally more complex and
differentiated than initial maps as a result of thinking and reflecting about their
own understanding, interacting with others and concept mapping. Whilst these stud-
ies focused on undergraduate students’ use of maps/diagrams as learning tools,
the main study that is reported here was with student teachers at an Australian
regional university; it focused on the applications of maps/diagrams as pedagogical
tools to analyse syllabus documentations and to plan learning activities.

The following sections briefly describe the Australian study’s methodology before
presenting data from one student teacher’s concept mapping work when developing a
teaching sequence and lesson plans as part of a required course assignment.

Methodology

The main study was a design experiment in which student teachers critically
analysed syllabus outcomes, problems and activities (i.e. critical analysis) for
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underlying concepts and principles (i.e. conceptual structure) before illustrating the
results on maps/diagrams followed by an examination of (a) the kinds of discourse
that emerged during critiques of presented maps/diagrams; (b) the nature of student
reflections on how their construction and mapping experiences impacted on the way
they planned, thought and viewed the teaching of mathematics topics; (c) the types
of participation norms (i.e. socio-mathematical norms) established and practiced for
the development and critique of maps/diagrams during weekly workshops; and (d)
the types of practical means by which the researcher “orchestrated relations among
these elements” (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003, p. 9).

The sample included ten internal students enrolled in two secondary mathemat-
ics education courses (i.e. junior and senior secondary) who agreed to participate.
The lecturer-researcher introduced and used maps/diagrams in her presentations
of materials during weekly workshops and student teachers practised constructing
maps/diagrams individually and collaboratively followed by presentations and cri-
tiques in-class. Required course assessments, in parts, required students to prepare
unit plans and lesson plans for various content areas of the NSW 7–12 Mathematics
Syllabus (NSW BOS, 2002).

The study was in two phases. First, as learners, student teachers practised and
constructed maps/diagrams to illustrate and communicate their conceptual and
methodological understanding of the mathematics content, of syllabus topics, and
that embedded in activities and problems. Second, as student teachers preparing for
teaching practicum, they developed lesson plans and activities using maps/diagrams
to guide instruction. Required course assignments included some questions on the
applications of maps/diagrams to planning teaching sequences, lesson plans and/or
learning activities.

Data Collected

Data collected, over the semester, included maps/diagrams constructed and pre-
sented in workshops and final maps/diagrams constructed as part of required course
assignments, students’ reflection journals, and researcher’s field notes. This paper
presents the case study of a student teacher (Bobby, a pseudonym), who used con-
cept maps to prepare a teaching sequence and lessons on the topic “Derivatives”
based on the syllabus notes: Section 8. The Tangent and the Derivative of a Func-
tion for the Higher School Certificate (HSC) Mathematics 2/3 Unit – Years 11–12
(NSW BOS, 2002, pp. 50–53). The task of developing a teaching sequence and two
consecutive lessons to introduce the formal definition of derivatives constituted part
of Assignment 1 for the senior secondary mathematics education course.

The next sections present data from Bobby’s concept mapping experiences dur-
ing the early part of the semester leading up to the completion of the first assign-
ment. Actual quotes from Bobby’s reflection journal are italicised and enclosed in
quotes.
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Data Analysis

Learning to Concept Map

The key characteristics of concept maps, namely the (i) hierarchical organization
of key and subsidiary concepts and (ii) inclusion of linking words on connecting
lines to form propositions from chains of “node –linking-words → node” triads,
were illustrated and demonstrated through a number of pre-prepared concept maps.
During group/individual work in weekly workshops, student teachers practiced con-
cept mapping selected topics/problems/activities and concerns were addressed as
they emerged during these activities. For Bobby, he identified, selected and ranked
key and subsidiary concepts of the selected topic/problem/activity before organising
them hierarchically from most general to more specific concepts.

While constructing a hierarchy of nodes, reflecting upon the emerging network
of interconnections, selecting linking words, critically evaluating and assessing the
map’s overall validity in terms of the discipline knowledge, Bobby inevitably real-
ized that he was thinking more deeply and intensively about possible variations of
underlying conceptual structures and cognitively deliberating between alternatives.
Not surprisingly, Bobby called this preparatory stage “the verb-type” by which he
meant “the act of doing the map” and is “represented by a pseudo-algorithm to draw
the concept map – such as choosing key concepts and possible links”. Explaining
his experiences, he said: “There are in fact 2 ‘knowledge constructs’ gained from
doing concept maps. Firstly the ‘verb-type’, by which I mean the act of doing the
map, even if it ends up in the bin at the end. And secondly, the ‘noun-type’ by which
I mean the end product, the actual map of the conceptual structure”.

It seems that whilst learning to concept map, Bobby realized for himself that
“there are actually 2 types of maps . . . there is the pre-existing one that is embedded
in the mapper’s brain, and then there is the map that actually best describes the
(unit/problem/activity) for the mapper”. Basically conjecturing that these “2 maps
and their differences could be described by Vygotsky’s zone of proximal develop-
ment”, he explained that, “I was confused as to whether I was mapping my ‘prior
knowledge construct map’ or the ‘map of best description’ and so I struggled with
the concept maps”. These distinctions (or confusions) between the likely nature and
focus of maps were perceived and defined by Bobby as “dimensions” of a concept
map; see Table 8.1 for his schematic representations of dimensions.

Elaborating further, Bobby proposed yet another dimension namely the “focus”
of the map. He wrote: “By this term I mean the ‘qualitative nature’ of the map –
Is it concrete in nature so that it’s usefulness lies in teaching a student to solve a
particular mathematics problem; or is it descriptive in nature providing an abstract
summary of a topic?” However, sharing and discussing these reflections later on in-
class clarified further for Bobby the need to explicate the intended purpose and
specific focus of a map, often a common point of confusion when learning to
concept map for the first time. That is, explicating the purpose and focus of map
first ensures the appropriate selection of concepts, hierarchical organization and
suitable linking of relevant nodes to enhance the map’s overall cohesiveness and



8 Concept Mapping a Teaching Sequence 153

Table 8.1 Student’s perceptions of “dimensions” of a concept map

Knowledge
construction Prior-knowledge construct mapa Best description mapb

Verb-type (1) Represented by pseudo-algorithm
to draw concept map – such as
choosing key concepts and
possible links.

(2) Represented by a plan to
re-arrange the prior-knowledge
construct map to best solve current
problem.

Noun-type (2) Final copy of concept map that
accurately represents “what is in
mapper’s head”.

(3) Final copy of concept map, which
may represent a solution to a
mathematics problem or a
teacher’s unit/lesson plan.

aAlready existing and may be primitive or erudite but exists and must be discovered.
bVaries depending on the nature of the problem; i.e. is it a mathematics problem to be solved; or a
content summary of a topic of study by a teacher?

meaningfulness. For example, a concept map of a mathematics problem (Type 1)
illustrates the conceptual structure embodied by the problem and underpinning its
solution whilst a topic concept map (Type 2) illustrates the conceptual and epistemo-
logical structure of the key ideas (i.e. mathematics concepts and principles) relevant
to the topic. As a consequence of such qualitative distinctions, Type 1 map would
be more contextualised and situated in contrast to the more general overview and
abstract Type 2 ones.

It was becoming apparent from his reflections and schematic representations in
Table 8.1 that, for Bobby, preparing and constructing a concept map demanded
much deliberation and decision-making, cognitive and analytical processing beyond
the mere recall of formal definitions and general formulas. As a consequence, by the
time the first assignment was due, Bobby had become increasingly more proficient
in selecting key and subsidiary concepts with strengthened skills in hierarchically
organizing concepts into cohesive groups and more confident in constructing viable
networks of propositional links to communicate his understanding of the task’s con-
ceptual structure. Explaining this growth in understanding, Bobby wrote: “I real-
ized that these 2 types of maps [‘prior knowledge construct map’ and ‘map of best
description’], need to be well-defined before mapping begins”.

Through his 2-dimensional schema in Table 8.1, Bobby posed two viable path-
ways for the construction of a “best description map”. Firstly, by progressing verti-
cally down the “prior-knowledge construct map” (Column 2 of Table 8.1) from (1) a
pseudo-algorithm through (2) a final copy of what is in the mapper’s head and then hor-
izontally across to (3) a final copy representing a solution to a mathematics problem or
teacher’s unit/lesson plan. Secondly, by progressing horizontally along the “verb-type
knowledge construction“ (Row 1 of Table 8.1) from (1) a pseudo-algorithm on to (2) a
plan to re-arrange the prior-knowledge construct map and down to (3) a final copy of
concept map to represent a solution to a mathematics problem or teacher’s unit/lesson
plan. The choice of pathways appears dependent on whether the focus is a problem
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or a unit/lesson. Irrespective of the pathway taken, each seems to represent a pro-
gressive or developmental trajectory from an initial preliminary version to a finalized
“best description map“. Presented below are Bobby’s final “best description“ maps
obtained through the first pathway for the purpose of illustrating a teaching sequence
and lessons as requested in Assignment 1.

Overview Concept Maps

Instead of designing a teaching sequence directly from syllabus notes, Bobby first
of all, situated the topic of “Derivatives” amongst those required for Years 11–12 in
the Mathematics 2/3 Unit (corresponding to the HSC Mathematics and Mathematics
Extension 1 courses, NSW BOS (2002)) to provide a better overview of topics to be
taught prior to introducing “Derivatives”. Proceeding by identifying the main ideas
from syllabus notes, Bobby went beyond the requirements of the assignment and
constructed 14 overview concept maps (only two are shown here), which covered a
range of Years 11–12 prescribed topics. He commented that: “For me it seems that I
must firstly define the entire space of the (unit) before attempting to define the (unit)
itself”.

Shown in Figs. 8.1 and 8.2 are Bobby’s first two overview concept maps illus-
trating some of his organisational hierarchies to depict differentiating levels of gen-
erality (i.e. Level #) from the most general concepts to progressively more specific
concepts towards the bottom of map.

#

*

Fig. 8.1 Year 11 overview concept map
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Fig. 8.2 Year 12 overview concept map

For example, Fig. 8.1 is an overview of Year 11 Mathematics (at Level 1) that is
subsumed under 3 main concepts namely “(A) Building Blocks of Functions”, “(B)
Real Functions”, and “(C) Examples of Functions” at Level 2, with the order A, B,
and C indicating a preferred teaching sequence. Relevant to the topic “Derivatives”
is the middle branch subsumed under the Level 2 node: “(B) Real Functions” with
a triple-branching link connecting to 3 less general concepts (at Level 3) namely
“I. Foundations”, “II. The Slope Problem” and “III. Introduction: Product, Quotient
and Chain Rule”. Again, the ordering I, II, and III suggests that (I) is the required
prior knowledge to the topic “Derivatives” embodied by the middle “II. The Slope
Problem” sub-branch (marked ∗). Similarly, the adjacent “(A) Building Blocks of
Functions” branch on the left and the adjacent “(C) Examples of Functions” branch
to the right, could be likewise read from top to bottom.

In comparison to Figs. 8.1 and 8.2 on Year 12 Mathematics (at Level 1) shows
the relevant information in relation to the topic: “Derivatives” such as nodes sub-
sumed under the Level 4 nodes: “HSC (2 Unit) Mathematics topics/units” and “HSC
(3 Unit) Mathematics Extension I topics/units” namely “II. Calculus” (marked ∗) and
“I. Applications of Calculus to the Physical World” (marked ∗∗). Reading from top-
to-bottom, the relevant proposition P1 is: “HSC (2 Unit) Mathematics topics/units
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comprises 3 sub-strandsI. Coordinate Geometry, II. Calculus and III. Transcendental
Functions and one unit 1. Kinematics”.

From the “II. Calculus” node is a progressive differentiation double-link to con-
nect to the two terminal nodes “1. Geometric Applications of Differentiation” and
“2. Integration” but with no linking words. Situated within the other calculus-related
sub-branch (marked ∗∗) subsumed under the node: “HSC (3 Unit) Mathematics
Extension I topics/units” is the proposition (P2): “1. Applications of Calculus to
the Physical World comprises 5 units: (1) Related Rates, (2) Growth and Decay,
(3) Rectilinear Motion, (4) Simple Harmonic Motion, and (5) Motion of Projec-
tiles”. In fact, Fig. 8.2 clearly depicts the nested structure of HSC 2 Unit Mathemat-
ics topics within HSC 3 Unit Mathematics and showing that HSC 3 Unit extends
topics initially encountered in HSC 2 Unit Mathematics. This inter-relationship is
schematically shown by the left-to-right order of the Level 6 concept hierarchies in
Fig. 8.2.

Collectively reading from the two maps, Fig. 8.1’s middle branch, from left-to-
right illustrates the syllabus’ expectation and Bobby’s plan that the topic “Deriva-
tives” would be introduced via “II. The Slope Problem” (marked ∗) through secants,
tangents, limits and differentials (marked ∗).

In comparison, Fig. 8.2 provides a more general overview of this sequencing of
topics but situated within Year 12 HSC 2 Unit Mathematics (i.e. “1. Coordinate
Geometry” to be covered prior to “II. Calculus”) and including clear distinctions
of topics covered as applications of calculus to the physical world within HSC (3
Unit) Mathematics (marked ∗∗). Following on from this general overview of Years
11–12 Mathematics courses, Bobby developed a detailed concept map to illustrate
a more developmental approach to “Derivatives” which explicitly builds upon stu-
dents’ prior knowledge of gradients of linear graphs by elaborating further the mean-
ing of the terminal node: “Secants, Limits, Tangents and Derivatives” of Fig. 8.1
(marked #). This process is briefly described next.

Teaching Sequence Concept Map

Bobby’s critical and conceptual analysis of Section 8: The Tangent and the Deriva-
tive of a Function (NSW BOS, 2002, pp. 50–53) yielded 19 main groups of sub-
topics of which 5 was identified to be the most relevant for introducing derivatives;
see Fig. 8.3 for the 8.5 syllabus referenced sub-topics.

Section 8.3 Gradient of a secant to the curve y = f(x).
Section 8.4a Tangent as the limiting position of a secant.
Section 8.4b The gradient of the tangent.
Section 8.5a Formal definition of the gradient of y = f(x) at the point where x = c.
Section 8.6a The gradient or derivative as a function.

Fig. 8.3 Sub-topics relevant to “derivatives” (NSW BOS, 2002)
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These sub-topics (Fig. 8.3) eventually formed the basis of Bobby’s topic con-
cept map for the introduction of derivatives shown in Fig. 8.4. Selecting the node:
“Secants, Limits, Tangents and Derivatives” (from Fig. 8.1, marked #) as the titular
node at Level 1 of Fig. 8.4, the next hierarchical level shows progressive differ-
entiating triple-links to three main concepts: “(1) The 2-Point Method”, “(2) The
Limiting Process” and “(3) Derivative Functions” at Level 2. Furthermore, the
resulting 3 branches and concept hierarchies appear organized around the three types
of knowledge namely (i) prior knowledge, (ii) new knowledge (i.e. derivatives) and
(iii) extensions, reflective of the philosophy of preparing learning activities pro-
moted by the mathematics education unit Bobby was enrolled in.

Specifically, the leftmost branch indicates the prior knowledge (“(1) The 2-Point
Method” branch) described in the syllabus students require before being introduced
to the derivative concept. Emanating from the “(1) The 2-Point Method” node is

Fig. 8.4 Topic “formal definition of derivatives” concept map
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a split-link that generates propositions: (P3): “(1) The 2-Point Method for finding
the gradient of: (a) straight lines” and (P4): “The 2-Point Methodfor finding the
gradient of: (b) Secants (8.3)” where 8.3 is a reference to syllabus notes, Section
8.3 (NSW BOS, 2002, p. 50) and the first of the 5 sub-topics listed in Fig. 8.3.

From the middle Level 2 node: “(2) The Limiting Process” are two progressive
differentiating split-links to Level 3 nodes: “Geographically” and “Algebraically”
which form the extended proposition P5: “(2) The Limiting Process which can be
looked at: Geographicallyby introducingthe 3 types of points which are Fixed: P(c,
f(c)), Moveable: Q(u, f(u)), and General R(x, f(x))”. Emanating from the “Move-
able: Q(u, f(u))” node is a split-link that forms propositions P6: “Moveable: Q(u,
f(u)) can generate tangent at point P(c, f(c)) by: (a) Moving Q to P (8.4a)” and P7:
“Moveable: Q(u, f(u)) can generate tangent for any point on curve R(x, f(x)) by: (b)
Moving Q to R (8.4a)”.

On the other hand at the Level 3 node: “Algebraically” of the middle branch, are
two differentiating links which formulate an extended proposition P8: “The Limit-
ing Process which can be looked at Algebraically by noting the change of x: �x =
c–u and by noting the change of y: �y = f(c)–f(u)”. The subsequent merging of
cross-links (i.e. integrative reconciliation) from the two Level 4 nodes “ �x = c–u”
and “ �y = f(c)–f(u)” formulates proposition P9: “ �x = c–u, � y = f(c)–f(u) which
yields m = �y

�x ” with a single link to the Level 6 node to form the extended proposi-

tion P10: “m = �y/�x” and the language for moving Q to P is: lim
u→c

(
f(c)−f(u)

c−u

)
which

gives: The gradient of the tangent at x = c. (8.4b) which is: (a) Denoted f’(c), and
called the differential coefficient of f(x) at c. (8.5a) The middle branch evidently
focuses on the geometric (or graphical) introduction of a tangent and the algebraic
representation of the limiting gradient as a differential coefficient.

In contrast to the middle branch, the rightmost branch depicts the progressive
development (or extension) of the concept “differential coefficient f ’(c)” (marked ∗)
to the more general concept “Derivative Functions” (Level 2). Specifically, the
first proposition (P11) is: “(3) Derivative Functions are best studied by intro-
ducing the identity: u =x+�x” followed by the triple-pronged proposition (P12)
“u =x+�x which yields: f(u) = f(x+�x), u–x = �x, u→x ≡ �x→0” (Level 4).
Cross links from the latter nodes merged to form the proposition P13: “f(u) =
f(x+�x), u–x = �x, u→x ≡ �x→0 which upon substitution give lim

u→x

(
f(u)−f(x)

u−x

)
=

lim
�x→0

(
f(x+Dx)−f(x)

�x

)
” which is “(a) Denoted f’(x), and called the derivative function

of f(x). (8.6a).”
Overall, Fig. 8.4 shows a topic concept map with an explicit organization into

3 main branches, which implicitly suggests a teaching sequence from left-to-right.
Furthermore, within each concept hierarchy, there is a logical development of ideas
implied by reading from the top to the bottom levels and from left-to-right. Sim-
ilarly, when reading from the terminal node of a (sub-)branch up to the top level
of the adjacent concept hierarchy to the right as described above. The advantage
of the visual and more informative display of the interconnectedness of key ideas
with respect to each sub-topic (i.e. 8.4a, 8.4b and 8.5a) is clearly depicted by
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comparing each of the three sub-branches subsumed under the “(2) The Lim-
iting Process” middle branch to the linear sequential list in Fig. 8.3. Of addi-
tional interest are the explicit connections between concept maps such as the
link between the titular node: “Secants, Limits, Tangents and Derivatives” of
Fig. 8.4 and the same-named node in Fig. 8.1 (marked #). Taken together,
Figs. 8.1, 8.2 and 8.4 clearly illustrate a visual trend from the macro view
of main topics in a 2-year mathematics curriculum (Figs. 8.1 and 8.2) to
a micro-view of key and subsidiary concepts within a sub-topic (Fig. 8.4);
that is, there is an apparent increasingly more detailed elaboration of con-
ceptual interconnections most relevant to “Derivatives” when moving from
Figs. 8.2 to 8.1 and 8.4.

The next section presents Bobby’s pedagogical concept maps for one of his two
lessons to introduce derivatives including his assessment plan for the lessons. His
concept maps for the administrative details of the lessons (i.e. time-frame, class,
resources etc.) and second lesson are not included here.

Lesson Plan Concept Map

To design the required consecutive lessons to introduce the formal definition of
derivatives as requested in Assignment 1, Bobby selected the leftmost and middle
branches of the topic concept map in Fig. 8.4 as starting points.

By basically organising his teaching ideas around the 9 lesson-components
taught in the mathematics education units, namely, (i) short questions,
(ii) homework checking, (iii) introduction, (iv) explication, (v) worked example,
(vi) activity, (vii) written record, (viii) homework setting and (ix) conclusion, Bobby
re-grouped the components by subsuming them under the three main advance orga-
nizers; “OPENING”, “BODY” and “CLOSING” as provided in Figs. 8.5, 8.6, 8.7
and 8.8, where the left-to-right positioning of the nodes within a concept hierarchy
imply the instructional sequence of the lesson.

The “OPENING” part of the lesson-concept-map (Fig. 8.5) progressively dif-
ferentiates into three components, namely, “Short Questions”, “Homework Check-
ing” and “Introduction” (Level 3). The first node: “Short Questions” links to “Real
Functions Foundations” (Level 4) followed by progressively differentiating links,
detailing the relevant background knowledge (Level 5) for the introduction of the
new topic. Each Levels 4 and 5 node of the “Short Questions” sub-branch repre-
sents a separate overview concept map (of the 14 Bobby constructed, not shown
here), which further details the relevant key and subsidiary concepts within each
sub-topic. Included also on the lesson-concept-map (Fig. 8.5) are examples of short
questions Bobby plans on using to review the prior knowledge that is essential as a
platform to begin the development of the new ideas.

Subsumed under the “Introduction” node is the same titular node (“Secants,
limits, tangents and derivatives”, marked ∗∗), seen before in the teaching-sequence-
concept-map (Fig. 8.4), which signifies the focus of the lessons. Overall, the
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Fig. 8.5 Partial lesson 1 concept map (OPENING)

“OPENING” branch illustrates Bobby’s pedagogical intention for the first part of
Lesson 1, which begins with short questions followed by homework checking before
the introduction. As for the “BODY” branch to the right, the double link indicates
“Part 1: 2 Point Method” and “Part 2: The Limiting Process” nodes. Again, the
sequence from left-to-right echoes that displayed on the teaching-sequence-concept
map (Fig. 8.4), in terms of the intended instructional order. Further details of the
two sub-branches are in Figs. 8.6 and 8.7.

Fig. 8.6 details “Part 1: ’2-Point Method’ for straight lines“ of the “BODY”
branch with a teaching sequence defined by the left-to-right order of the lesson com-
ponents at Level 4, namely, “Explication”, “Worked Example”, “Written Record”,
and “Activity”. Subsequent differentiating links to Level 5 (and beyond) illustrate
examples of ideas and questions Bobby planned to utilise to introduce, develop and
consolidate students’ understanding of the 2-Point Method before progressing to
the next stage of the lesson as explicated by the “Part 2: The Limiting Process”
sub-branch shown more fully in Fig. 8.7.

A comparison between the 2-Point Method branches of Figs. 8.4 and 8.6 shows
that the latter, unlike the more macro view of Fig. 8.4, is more contextualised,
as expected, with actual examples at the lesson level. For example, displayed in
Fig. 8.6 are examples of points, functions and gradients and a description of Bobby’s
expectations of students’ written record. These represent example questions Bobby
planned to utilise to consolidate students’ understanding of gradients of straight
lines and the transfer of this understanding to a secant of a curve. Overall, this
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Fig. 8.6 Partial lesson 1 concept map (BODY Part 1)

sub-branch focussed on the development and establishment of students’ understand-
ing of the gradients of secants of curves.

Elaborated further in Fig. 8.7 is the “Part 2: The Limiting Process” branch, which
in addition to providing the two views (geometric and algebraic) similar to that
displayed in the topic-sequence-concept-map (Fig. 8.4), it also includes the same
component-sequence and various examples (similar to Fig. 8.6) and details of an
investigative activity on finding the numerical limit of the gradient of a secant.
Overall, the “geometric” sub-branch expanded the concept of a single secant to
include a parade of them to illustrate geometrically the two cases of: Q → P and
Q → R.
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Fig. 8.7 Partial lesson plan 1 concept map (BODY Part 2)

The adjacent “algebraic” sub-branch, in contrast, displays Bobby’s intention to
develop the concept of the numerical limit of a secant gradient as the secant moves
to its limiting position (i.e. as Q → P) as well as introduce the concept of a differ-
ential coefficient at x = c. The adjacent lesson-components: “Worked Example” and
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Fig. 8.8 Partial Lesson 1 concept map (CLOSING)

“Written Record” provide the opportunity for students to engage with a worked exam-
ple and then record their own understanding of the “limit process” before engaging
with the investigative activity shown in Fig. 8.7.

The “CLOSING” part of the lesson-concept-map (Fig. 8.8) illustrates Bobby’s
intentions for the homework and a set of questions to end the lesson. The latter
appears to review, examine and/or establish students’ understanding of the relation-
ship between a linear function equation and its gradient m; a concept (i.e. m) they
had been investigating up to this point of the lesson as the gradient of a line joining
two points of a linear function or secant (of a curve) and as a numerical limit of the
secant gradient as the secant approaches its limiting position on the curve at x = c.
Overall, this “CLOSING” sub-branch describes the type of problems intended for
homework and subsumed under the “Conclusion” node, is a question set to reinforce
students’ cumulative understanding of linear functions and the connection between
its algebraic form and m.

In summary, the complete concept map for Lesson 1 (Figs. 8.5, 8.6, 8.7 and 8.8)
illustrates Bobby’s pedagogical intentions to develop students’ understanding of the
gradients of straight lines (linear function and secant of a curve) and then varying
the positions of the second point and observing the numerical limit of the secant
gradient as one point approaches the other (e.g. as Q → P).

Comparing the teaching-sequence-overview-concept-map (Fig. 8.4) and the
lesson-concept-map (Figs. 8.5, 8.6, 8.7 and 8.8), it appears that Fig. 8.4 is more
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of Type 2 (i.e. general overview and abstract) while the lesson-concept-map (Figs.
8.5, 8.6, 8.7 and 8.8) is of Type 1 (more contextualized and situated) following on
from Bobby’s schema.

Whilst the concept map for Lesson 2 is not shown here, that for Bobby’s plan
to assess students’ understanding of derivatives at the end of the two lessons is in
Fig. 8.9.

The map illustrates both the objectives and outcomes and his general plan for
assessment. The “Objectives” branch illustrates that students should feel confident
about the underlying concepts of the formal definition of derivatives and Bobby’s
plan to have students construct a concept map to demonstrate their understanding
of the key and subsidiary concepts as briefly described in the terminal node of the
branch. The “Outcomes” branch to the right, on the other hand, shows four nodes at
Level 3, which briefly describe the four key ideas, covered in the two lessons from
left-to-right. Whereas the first two nodes display the key ideas developed in Lesson
1 (Figs. 8.5, 8.6, 8.7 and 8.8), the last two nodes represent the focus of Lesson 2 (not
shown). Subsequent links to Level 4 connect to the nodes: “2 Point method”, “The
limiting process” and “The identity u = x + �x and the three corresponding substi-
tutions” before cross-linking to the Level 5 node: “Half-hour test”, which indicates
the second means of assessing students’ understanding of derivatives.

Fig. 8.9 Lesson assessment concept map
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Discussion

The discussion of findings are organized around four main points namely (1) con-
cept maps of critical and conceptual analyses, (2) workshop discourse, (3) socio-
mathematical norms, and (4) practical management of the learning ecology within
weekly workshops. Each issue is briefly discussed next.

Concept Maps of Critical Analysis

Bobby’s overview concept maps in Figs. 8.1 and 8.2 provided a big picture view
of the Years 11 and 12 topics within which the topic “Derivatives” is situated and
Fig. 8.9 shows his overview assessment plan for the two consecutive lessons. In
contrast, his more situated lesson-concept-map is as illustrated in Figs. 8.5, 8.6, 8.7
and 8.8. Each map represented what Bobby had categorized as “final copy” of a
concept map to accurately represent a teacher’s unit, lesson or assessment plan.

The visual positioning of concepts within hierarchies and the overall grouping of
relevant hierarchies, not only suggested potential teaching sequences (at the macro
and micro levels) when the map is read from left-to-right, but it also depicted the
level of generality of ideas and/or concepts when read from top-to-bottom. Together,
they defined a unique position for a node/hierarchy, roughly paralleling that of
a point on the Cartesian plane, whilst simultaneously denoting a relative position
amongst a network of nodes/hierarchies highlighting the interrelatedness of ideas.

Findings demonstrated that concept maps provided a parsimonious, visual orga-
nization of interconnecting ideas, not only at the macro-level (Figs. 8.1, 8.2 and 8.9),
but also at a progressively more in-depth micro-level from a teaching sequence
(Fig. 8.4) to a lesson (Figs. 8.5, 8.6, 8.7 and 8.8), which collectively enriched the
design of a teaching sequence on “Derivatives”.

The cognitive processes of identifying key and subsidiary concepts, hierarchi-
cally organising them, constructing and finalising concept maps necessarily required
that the student teacher reflected deeply upon his own knowledge of mathematical
concepts and processes whilst determining the most viable, visual hierarchical organi-
zations of interconnections he anticipated would promote his future students’ concep-
tual understanding of derivatives. Labelling the preparatory version his “verb-type” or
“prior knowledge” map, he proposed that this was a necessary step before finalizing
a “noun-type” or “map of best descriptions”. His reflective practice when mapping
subsequently led him to develop a two-dimensional schema of “verb-type → noun-
type” by “prior-knowledge → best-description” to illustrate qualitative differences
between types of maps.

Although cognitive demands on the student teacher to critically analyse syllabus
documentation, whether or not a concept map is used prior to developing a teach-
ing sequence and lessons would probably be very similar, the significant differ-
ence however, is in the extra cognitive and meta-cognitive skills to meaningfully
and visually organise ideas into hierarchies of propositional links to display and
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highlight the “interconnectedness” of concepts across different levels of generality
and specificity. Hierarchically organizing concepts evidently challenged Bobby to
clarify his thinking as he sought out mathematical principles to provide underlying
frameworks that enhanced the cohesiveness and meaningfulness of nested hierar-
chies (branch). This cognitive exercise appeared to demand reflective, lateral and
deeper thinking about mathematics concepts and processes in order to construct
visual and schematic representations of meaningful and cohesive knowledge sys-
tems (e.g. Figs. 8.1, 8.2, 8.4, 8.5, 8.6, 8.7, 8.8 and 8.9) in contrast to a sequential
and linear view of topics from reading notes (e.g. Fig. 8.3).

Workshop Discourse

The kinds of discourse that emerged during critiques of presented maps in workshops
involved interactions and exchanges of ideas between the student teacher presenting
his/her own map and his/her peers and lecturer-researcher responding and making
critical comments usually in the form of requests for clarifications, recommendations
for additions/deletions, or confirmations of presented information. Consequently over
the semester, Bobby learnt to interact and respond appropriately to critical comments
as he argued the correctness of his maps, provided counter-arguments to points raised
by his peers, or sought modifications of maps when justifiable. Through these social
negotiations, argument and debate, the student teacher demonstrated growing aware-
ness of the importance of adjusting the level of his mathematical language (manifested
as concept labels and linking words) to be consistent with the recommended level
of the syllabus’ staged outcomes. Furthermore, student teachers voluntarily shared
their reflections of their experiences simultaneously encouraging others to do the
same. Ensuing discussions therefore, focussed on how their mapping experiences
impacted on the way they planned, thought and viewed the development of teaching
sequences/learning activities. For example, Bobby discussed initial difficulties as he
learnt to concept map problems/activities/units such as the difficulty of identifying
appropriate and concise labels for main ideas, clarifying the purpose and focus of
maps, and determining the most suitable hierarchies. However, through workshop
discourse, Bobby’s concerns were eventually clarified. Through the discussion of his
reflections, he demonstrated an in-depth engagement and reflective practice with the
task of concept mapping which, previously, independently prompted him to schema-
tise the mapping process as “dimensions” to qualitatively clarify the purpose and focus
of concept maps and to distinguish between general abstract concept maps (Type 2)
such as the teaching-sequence one (Fig. 8.4) and the more contextualised one pre-
sented here of the lesson plan (Figs. 8.5, 8.6, 8.7 and 8.8).

Socio-Mathematical Norms

The types of participation norms established in workshops included participation
in group/class analysis of key and subsidiary ideas in topics/problems/activities;
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the transformation of analysis results into concept maps leading to group/class co-
construction of exemplar maps; class critiques of individually constructed maps;
and discussions of student reflections and mapping experiences. Finally, estab-
lished socio-mathematical norms influenced, modulated and directed the dynamics
of group/class discussions and critiques in weekly workshops. Undoubtedly, these
norms impacted the way Bobby planned and developed his final “best description
maps“ of a teaching sequence, lessons and assessment as presented here.

Practical Management of the Learning Ecology

The types of practical means by which the lecturer-researcher “orchestrated rela-
tions among [the different] elements” (Cobb et al., 2003, p. 9) included selecting
appropriate tasks (activities/problems/topics) to introduce concept mapping, pro-
viding support to students whilst they were learning for the first time, critiquing
their work and setting more tasks to challenge their critical abilities and skills not
only of concept mapping but including critical analysis of syllabus outcomes. The
lecturer-researcher also facilitated group discussions and critiques during map pre-
sentations, and coordinated the sharing of students’ reflections as materials for dis-
cussion of the impact of concept mapping on their own “thinking about learning”
and “thinking about teaching”. With workshop presentations and reflection sessions
focussing on concept maps, ensuing discourse brainstormed multiple ways in which
classroom activities could be supported and facilitated through having their future
students present and communicate their mathematical understanding via concept
maps. Whilst the actual involvement of school students in concept mapping was not
part of the main study, using concept maps by student teachers as pedagogical tools
was.

Main Insights and Implications

With the acquired expertise and proficiency in constructing concept maps, the stu-
dent teacher was empowered to use these tools innovatively (i) to critically analyse
syllabus outcomes, and (ii) to design a suitable teaching sequence by hierarchically
and visually clarifying prior knowledge and future knowledge and using appropriate
mathematical language to effectively communicate staged-appropriate mathematics
content. Since completed, practice and final maps encapsulated both the conceptual
and epistemological frameworks of a topic, through their construction, the student
teacher routinely searched for connections between key and subsidiary concepts,
and whilst doing so, he made insightful observations about the qualitative distinction
between the nature of maps, depending on their purpose and focus, in terms of a two-
dimensional schema, to distinguish between maps that are more abstract as in topic
concept maps or those that are more concrete as in the lesson-plan-concept-map.
For example, he also distinguished between dimensions of a concept map when
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used as a meta-cognitive tool to collect his thoughts and ideas about the focus of the
map (verb-type) and a final concept map described as his “best-description map”
(noun-type). A significant advantage of being proficient in concept mapping is the
acquisition of critical skills that can be usefully applied to many situations such as
demonstrated through his additional effort to situate the assigned topic within the
macro picture of the two-year mathematics curriculum. The student teacher’s pro-
gressive, pedagogical planning from a macro overview of a 2-year mathematics cur-
riculum to syllabus notes, teaching sequence and subsequently an assessment plan
onto the micro view of lesson plans was made explicit for public scrutiny and eval-
uation by concept mapping the key and subsidiary concepts, and where appropriate
illustrative examples and activities.

The insights from the case study imply that concept mapping has the potential to
explicate student teachers’ understanding of the content of the relevant syllabus in
more conceptually-based and interconnected ways for further discussion and clari-
fications and subsequently assessment of their developing pedagogical competency
in communicating and mediating meaning of mathematical concepts and processes.
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reported in this chapter.
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Chapter 9
Curricular Implications of Concept Mapping
in Secondary Mathematics Education

James J. Vagliardo

Recognition of deep-seated conceptual crosslinks in mathematics is often weak or
nonexistent among students and faculty who view and study mathematics merely
in procedural terms. Too often mathematical course content is presented as an
approach to a currently considered problem with the mediation of deeper meaning
and the connections to other mathematical ideas left unaddressed. The development
of mathematical mindfulness requires that educators substantively address the
topics they teach by locating the conceptual essence of fundamental ideas from
a cultural-historical context. This important pedagogical work can be enhanced
through the skilful use of concept mapping. This chapter provides an in-depth look
at how concept mapping can be used in the development of a meaningful secondary
mathematics’ curriculum that avoids rote learning and favors transcendent cognitive
development.

The implications presented emerge from several related uses of concept map-
ping. The chapter illustrates an approach to mathematics’ education that first uses
concept maps in conjunction with a direct effort to locate the historically grounded
conceptual essence of a significant mathematical concept. Without historical con-
text, mathematics′ educators may easily be unaware of the conceptual essence of the
concepts they teach. Concept mapping is shown to address this shortcoming. Empir-
ical research is then guided by concept mapping in order to expose the “operating
understanding” among students and their teachers revealing specific metonymic
inadequacies that exist. By comparative use of concept maps, weak or missing
crosslinks are readily identified. Together, these uses of concept mapping inform and
guide the design of mathematics′ lessons that mediate mathematical understanding
in a profound way. Concept mapping is thus shown to provide a useful approach to
secondary mathematics′ education curricular reform aimed at meaningful learning.
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Introduction

Mindful use of an important mathematical concept necessitates substantive
knowledge, knowledge that extends well beyond the rote acquisition of standard
mathematical procedures. Inversely, mindless use usually involves weak or nonexis-
tent conscious awareness of purpose or meaning involved in activity. Langer (1989)
suggests that such mindlessness may be rooted in the development of automatic
behavior through repetition and practice. Premature cognitive commitment on
the part of a learner, a commitment to an early understanding that lacks the full
development that can be achieved through thoughtful contemplation and study of
the underlying concepts involved from a historical perspective, may also be the
cause. Mindlessness can be induced by organizations with an orientation focused
on outcomes, with minor attention given to conceptualization and a focused
dependency on rote learning.

Substantive knowledge refers to knowledge that reveals the essence of the con-
cept in question. This notion necessarily avoids the misconception that the cultural
historical context which gives rise to an idea, especially a mathematical concept,
is of little importance in the development of a deep understanding of that idea. On
the contrary, substantive knowledge is grounded in such considerations. An intel-
lectual dedication to a continual search for new and deeper understanding, relating
new conceptualizations to current knowledge, may be dependent upon the purity of
initial substantive knowledge. Subsequent thought and study is then more likely to
locate conceptual crosslinks, and may, over time, lead to the emergence of mental
models that reflect the essence of the original idea.

Concept Mapping and Historical Research as a Combined
Epistemological Tool

Concept mapping is at the heart of the four investigations presented here: an his-
torical search, a conceptual analysis, clinical research involving mathematics teach-
ers and their students, and the development of a curricular approach to logarithms
that addresses the historical and cultural foundation of this important mathemati-
cal concept. Each investigation was constructively informed and guided by concept
mapping. The logarithm is a concept whose understanding must be mediated by
knowledgeable and skillful instruction to be well understood. Results of the clini-
cal component of the study provide evidence of the need for conceptual interven-
tion through improved curriculum design based on concept mapping and historical
research as a combined epistemological tool. This is done in the context of the philo-
sophical and theoretical ideas of Lev Vygotsky (1978) and the notions of concept
formation and generalization of V. V. Davydov (1990) applied to the development
of theoretical scientific thought.

Historical references to the sixteenth and early seventeenth centuries provide the
original view of the logarithm revealed by John Napier. In order to better understand
the context that gave rise to his work, an extensive reading of the general history of
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mathematics was completed, starting in ancient Egypt and tracing the development
of computational methods and mathematical thought from Greece to India and its
subsequent spread to Europe via Arab merchants in the middle ages. The specifics
of Napier’s thinking cast in the complementary histories of mathematics and philos-
ophy provide the scientific and philosophical foundations for understanding what a
logarithm is, what gave rise to the idea, and gives a sense of the important cultural
implications of the discovery.

A concept map developed to reveal the discovery of John Napier in its essence
provides a surprising consequence with far reaching curricular implications for
mathematics educators. The central understanding of the logarithm concept illus-
trated by this map was compared to those generated from interviews with three
faculty members and six of their students and the texts they use as resources.
A composite map reflecting all understandings and relationships was also created
for purposes of contrasting perceptions. The map further displays traditional instruc-
tional content, current curricular focus, and implications for the study of calculus,
advanced science, and technology. By means of this composite map, six clinical
analysis categories were identified and addressed. Of significance in considering
curriculum development are the categories of “Conceptual Representation,” “Stu-
dent Competency and Problem Complexity,” and “Application and Importance.”
Findings in these areas translated into the development of a significant change in
pedagogical approach illustrated in a series of introductory logarithm lessons.

Conceptual Analysis From a Cultural Historical Perspective

Scientific ideas are, in the Vygotskian sense, ideas that do not occur spontaneously
in the human mind as a result of normal everyday experience but require dedicated
theoretical analysis.

If every object was phenotypically and genotypically equivalent. . . then everyday experi-
ence would fully suffice to replace scientific analysis. . . . real scientific analysis differs
radically from subjective, introspective analysis, which by its very nature cannot hope to go
beyond pure description. The kind of objective analysis we advocate seeks to lay bare the
essence rather than the perceived characteristics of psychological phenomena. (Vygotsky,
1978, p. 63)

Scientific ideas spring from and are mediated by a social, cultural, and historical
context. John Napier’s definition of a logarithm is just such an idea and provides a
generalization worthy of historical exploration using the lens of Ausubel’s cognitive
learning theory as described by Novak and Gowin (1984). I refer to the notions that
cognitive structure is hierarchically organized, that this structure is progressively
differentiated, and that the process of integrative reconciliation may yield linkage
between concepts providing new propositional meaning. The historical record of
Napier’s work also reveals strong evidence in support of Vygotsky’s thoughts on
cultural mediation. Napier’s discovery is a perfect example of integrative reconcili-
ation. His particular linkage of geometry and arithmetic has impacted the world for
nearly four hundred years.
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Historical Foundation

In 1619, John Napier wrote, Mirifici Logarithmorum Canonis Constructio, in which
he explained his idea of using geometry to improve arithmetical computations. This
was the breakthrough that accelerated the discoveries of science and led to the cre-
ation of new calculating devices, ultimately leading to modern day electronic calcu-
lators and computers.

Seeing there is nothing, right well-beloved students of mathematics, that is so troublesome
to mathematical practice, nor doth more molest and hinder calculators, than the multiplica-
tion, division, square and cubical extractions of great numbers, which besides the tedious
expense of time are for the most part subject to many slippery errors, I began therefore to
consider in my mind by what certain and ready art I might remove those hindrances. – John
Napier

The account of the mathematical consideration Napier used in defining a logarithm
refers topointsmovingon twodifferent lines (Fig.9.1).Consider thatpointPstarts atA
and moves along segment AB at a speed proportional to its remaining distance from B.
Simultaneously, point Q departs from C and moves along ray CD with a constant speed
equal to the starting speed of P. Napier called the distance CQ the logarithm of PB.
This idea proved to be an important benchmark in the history of mathematical thought,
providing a crosslink between concepts that immediately accelerated the interests of
science and economics. The genesis of Napier’s discovery is situated in Egyptian,
Greek, Hindu, and Arabic thought and reflects the influence of the Renaissance on
scientific thinking. From the Egyptian papyrus of Ahmes we see work on the reduction
of fractions of the form 2/(2n+1) into a sum of fractions with numerators of one, an
early form of computational efficiency. As the flow of ideas is transmitted between
cultures, the Greeks provide theoretical structure to mathematical thought. Pythagoras
establishes the twice split view of mathematics (Fig. 9.2) (Turnbull, 1969) that places
arithmetic and geometry on distinctly separate branches. Hindu mathematics, like the
Greek, considered arithmetic and geometry as separate categories of mathematics.
It is a significant conceptual separation that becomes the focus in the late sixteenth
century; ideas actually crosslinked by Napier.

This historical sampling of mathematical thought reveals the setting, motivation,
and approach that made the discovery of logarithms possible. The intent of historical
reference is to have a sense of what John Napier knew at the time of his discovery.

A B

C DQ

P

CQ is the logarithm of PB

Fig. 9.1 John Napier’s
development of the
logarithm concept
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Fig. 9.2 The view of
mathematics attributed to
Pythagoras

Access to his understandings sharpens the focus of our own as we consider the true
nature of what he revealed to the scientific world. The cultural historical approach
to the appropriation of knowledge is dependent on such considerations. Significant
is the realization that it is only through this historical lens that the true essence of the
scientific thought can be understood. In the case of the logarithm, evidence serves
to inform us that, motivated by computational efficiency, Napier provided a theoret-
ical link between the worlds of geometry and arithmetic. This novel generalization
provided fertile territory for new development, practical and theoretical.

Conceptual Essence of the Logarithm Concept
from a Cultural-Historical Perspective

Based on historical reference, a logarithm is a mapping between number sequences
with different types of change rates (Fig. 9.3). The arithmetic sequence has a con-
stant rate of change while the rate of change of the geometric sequence either
increases or decreases. It is this connection that accounts for the computational
power and efficiency the logarithm provides and justifies the importance of this
discovery in the historical account of mathematical development. The map situates
the conceptual genesis of a new mathematical idea, a realization of a connection
between arithmetic and geometry. This relationship is the substantive understand-
ing that requires mediational attention if students are to make sense of their work
with logarithms. The mapping across two previously considered disjoint branches
of mathematical thought is the core of the logarithm concept, an idea that became of
prime interest with the later discovery of exponents and the emergence of calculus.

More Fully Developed Concept Map of a Logarithm

As is often the case, theoretical development leads to new technology. The new tech-
nology is applied to practical matters and simultaneously enables related theoreti-
cal development. The logarithm gave scientists a new conceptualization that proved
immensely valuable in their effort to describe properties of the physical world using
the language of mathematics. It should be noted here that the theoretical explanation
found in the Mirifici, though completely consistent with calculus, was written prior to
the existence of calculus. Points P and Q, moving along at different rates in Fig. 9.1,
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Fig. 9.3 Concept map of logarithm showing the historical conceptual crosslink, genesis of a new
mathematical idea

PB decreasing in geometric progression while CQ increases in arithmetic progres-
sion, would necessarily fall in the jurisdiction of the mathematics of change, namely
calculus. Napier’s geometric representation defined logarithms in kinetic terms and
foreshadowed their significance in the development of calculus. Therefore it is not
surprising that we find logarithms along side other transcendental functions in every
modern calculus text. What you do not find in the Mirifici is any mention of logarithms
as exponents. Bernoulli and others recognized this connection toward the end of the
17th century. “One of the anomalies in the history of mathematics is that logarithms
were discovered before exponents were in use.” (Eves, 1969).

In a sense, Fig. 9.3 represents all that was known about logarithms in 1619. Con-
tinued mathematical conceptualization provides a concept map of far more extension
and depth. The growth of relationships that develop in a scientific discipline rapidly
create a complex structure that may mask the purity of the concept at the core.

Figure 9.4 incorporates the cultural historical perspective as the central structure
of a more detailed map of the logarithm concept. Generally, concepts arranged on
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the left are more strongly associated with the arithmetic notions and those on the
right more geometric in nature. Practical uses appear on the left and theoretical con-
nections on the right. It is interesting to note that the exponent emerges with such
prominence in the map even though the concept was unknown when the logarithm
relationship was first recognized. The same is true for the calculus related content.
It too is well represented in the map though it had not yet been developed. This
suggests the importance of cultural historical considerations in curriculum develop-
ment. The concept exists without reference to these later developments.

The map in Fig. 9.4 clearly reveals the extent of schema development that can
arise from a simple consideration of points moving on a line. For the mathemat-
ics educator, the map complexity can be problematic if the essence of the concept,
represented by the central structure, is missing. Instructionally, the concept loses its
original meaning. Practical uses become independent procedures involving symbol
manipulation. Theoretical connection becomes impossible, for there is no meaning-
ful cross over access without substantive knowledge. Without conscious conceptual
understanding of the essence of a scientific idea, mindful use is impossible.

The Problem of Generative Metonymy

Schmittau (2003) has identified the problem of generative metonymy as an impedi-
ment to mathematical understanding. Epistemological uncertainty accounts for con-
siderable confusion in mathematical thought and the difficulty of understanding
more advanced mathematics. As linguists Lakoff and Johnson (1980, p. 39) remind
us, “metonymic concepts allow us to conceptualize one thing by means of its rela-
tion to something else.” This use of language applied to scientific concepts masks
the ideational essence and effects how a learner organizes their thoughts around new
ideas. Multiple iterations of metonymy can develop completely inadequate concep-
tualizations leading to a form of intellectual desiccation.

For students in this study, the ability to reason mathematically and problem solve
with logarithms was minimal. As a result of generative metonymy the concept had
lost its genetic meaning. Concept mapping applied to this empirical research pro-
vides a clear view of student deficits by comparing their composite map with the
more fully developed map of the logarithm concept, the one with the cultural histor-
ical perspective as its central structure shown in Fig. 9.4. Comparing the teachers’
composite view to the map shown in Fig. 9.4 situates each teacher’s characteriza-
tion in various locations. The inherit limitations of developing a full understanding
of the idea from each of these vantage points is apparent.

Conceptual Representation – the Teachers’ View

Teachers (Fig. 9.5) variously describe a logarithm as: “a number,” “a symbol,” “a
type of notation,” “a function,” “a different language,” and “an exponent.” This
metonymy makes no mention of the essential characteristic, the mapping between



9 Curricular Implications of Concept Mapping 179

Fig. 9.5 Composite concept map of teachers’ characterizations of a logarithm

geometric and arithmetic sequences. The primary understanding of teachers in this
study is that a logarithm is an exponent. This is a central theme in their efforts to
teach students this concept. The awkward and somewhat nebulous statement that
“a logarithm is an exponent that you raise the base to to get a number” is often
abbreviated to “a logarithm is an exponent.” The statement is highlighted, under-
lined, and made the key idea in logarithm chapters of each of the twelve textbooks
investigated as part of this study. The statement doubly masks the essence of a loga-
rithm and fails to provide the conceptual connection that would make sense of both
practical and theoretical applications.

Of related importance are the views of teachers Fred, Maria and Steve. Fred
teaches logarithms as a notational convenience. “They [the students] have a hard
time with the definition because it′s pure notation to them. It’s a symbol, logbx.”
Maria’s students are taught to solve exponential equations using logarithms, a pro-
cess used as justification for the existence of the logarithmic concept.

“The emphasis should be on what a logarithm is. I start with an equation that
is impossible to solve without logs, something like 5x = 112.” Steve relies on the
fact that a logarithm is a function. “I like to think of it as a function that returns a
number. The log of x is going to give you back a number. What number? It’s going
to be the exponent, the log always returns an exponent.” These statements represent
clear evidence of some teachers’ admitted algorithmic focus and the superficiality
of understandings they present to students. There is little substance compared to the
conceptual essence depicted in Fig. 9.3.

Conceptual Representation – The Students’ View

The map in Fig. 9.6 was created from the map in Fig. 9.4 by removing anything not
mentioned by students in six hours of interview. In this sense, the map in Fig. 9.6
represents a composite of student understanding for the logarithm concept.

Note that the critical core, the essence of a logarithm, is missing. The laws of
logarithms and their use in solving exponential equations remain. Of the scien-
tific applications seen in Fig. 9.4, only pH and natural decay are cited. The student
map reveals the limited nature of understanding and accounts for the inadequacy of
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mathematical reasoning expressed in interviews. How are students to understand the
significance of reports of seismographic activity, for example? Will comparisons of
1.1 and 2.2 on the Richter scale be incorrectly interpreted as an earthquake of dou-
ble intensity, when in fact the increase is tenfold due to the logarithmic nature of
the scale? What sense will students make of Mandelbrot’s (1977) work on frac-
tals when the formula to determine fractal dimensions depends on logarithms? How
will students read with wonder, Bronowsky’s (1973) eloquent description of Ludwig
Boltzmann’s formula S = K log W, entropy is in direct proportion to the logarithm
of W, the probability of a given state. It was this formula that settled the theoreti-
cal debate over the existence of atoms and made possible current advancements in
physics and biology.

The student logarithm map revealed in Fig. 9.6 is the direct result of generative
metonymy, mediational inadequacy, and is void of conceptual essence. This lack of
substantive knowledge makes mindful student use of logarithms unlikely. Improved
conceptual representation can positively impact student problem solving compe-
tency and improve their ability to apply their knowledge to related scientific work.
This curricular work in mathematics represents the positive contribution to be made
by using concept mapping in conjunction with cultural historical research.

Curriculum Proposal

A review of twelve high school math texts, books that assumed first contact with
the logarithm concept and calculus texts, which presupposed earlier work, served
to confirm much of the clinical findings of this study. General observations of the
texts revealed weak or nonexistent emphasis on the conceptual essence of the math-
ematics presented. Absent was any apparent depth of research in support of the
historical context that gave rise to the mathematical ideas discussed. Text content
variety seemed to inhibit methodological consistency at the expense of a coherent
model of mathematical thought. Subject relevance was inadequately addressed.

Comparing specific content found in these texts with the findings of this log-
arithm study would lead one to conclude that teachers do not vary pedagogically
from the approach found in their text books. Chapters involving logarithms were
either presented jointly with discussions of exponents or were immediately preceded
by such a chapter. Introduction to the logarithmic function nearly always involved
describing the inverse of the exponential function. Content incorporated 3 or 4 laws
of logs followed by an algorithmic problem set. The newer the publication the more
likelihood of calculator based exercises. The algebraic exercise of focus was the
exponential equation and topic relevance addressed primarily via four applications:
population growth, radioactive decay, the Richter Scale, and inflation.

One book reviewed was very different. Mathematics: A Human Endeavor by
Harold R. Jacobs’ contained a radically different approach to presenting logarithms
to students. This author clearly understood the historical foundation of the con-
cept and with this insight develops student facility with arithmetic and geometric
sequences prior to addressing logarithms. Instead of “Exponents and Logarithms,”
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Jacobs’ chapter is titled “Large Numbers and Logarithms,” well chosen words that
at once present to students the concept and the context that gave rise to the idea,
defining its initial scientific consequence. Number and relation, the essence of math-
ematical thought, are captured in one title. Given the heretofore-stated conceptual
essence, historical foundation, and importance in the study of mathematics and con-
sidering the understandings that exist among mathematics educators and students,
Jacobs’ chapter on logarithms is excellent.

Perhaps, however, it is possible to present the concept to students in a man-
ner very similar to the geometric rendering of the definition offered by Napier.
As Schmittau (1993) has stated, “pedagogical mediation must facilitate the appro-
priation of the scientific concept through a mode of presentation that reflects the
objective content of the concept in its essential interrelationships” (p. 34). By doing
so with logarithms, it may be possible to close the gap of graphical understanding
that is evident among students and simultaneously reveal the computational con-
sequence that enabled the scientific community. The four lessons that follow are
presented toward that end. The first lesson addresses the essence and origin of the
concept. The second lesson presents the link between the conceptualization of a log-
arithm as a relation between moving points and the graphical representation of that
relation. The third lesson shows the impact of Napier′s discovery on computational
efficiency and accuracy. The final lesson cites two sources that develop the use of
logarithmic scales for use in mathematical reasoning. Lessons presented are each
grounded in an understanding of arithmetic and geometric sequences. The compu-
tational significance of the mapping between these sequences reveals the essence
and power of logarithms.

Lesson 1: “Introducing the Logarithm”

Figure 9.7 displays points moving along two lines, points which left their starting
positions at the same time.

The diagram is similar to Napier’s original, differing only in that the points on
line 1 are accelerating (Napier’s decelerated) and that the points have been carefully
constructed so that the constant movement of a point along line 2 is accompanied
by a point on line 1 that is doubling its distance from starting position. Students do
not need to know this since it is the intent of the lesson to work with the concept

Line 2

Start

Start

Line 1

P Q

P' Q'

Fig. 9.7 Points moving along two lines
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of logarithm in the abstract. The doubling metric will allow students to later ascend
from this abstraction to the concrete where any acceleration rate will be easy to
understand since they will be simple instantiations of the correct abstraction. The
base 2 logarithms used will also allow an easy bridge to the computational lesson
that follows. The lesson should proceed with students considering the differences
they recognize in points along line 1 versus those along line 2. It should become
apparent that the distances are growing rapidly along line 1 and steadily along
line 2. Connections to previous student understanding of arithmetic and geometric
sequences, can be accented. The discussion should lead to defining the logarithm
of the distance a point has moved along line 1, as the distance that the correspond-
ing point has moved along line 2. That is to say, the logarithm of distance PQ is
distance P‘Q’ in Fig. 9.1. This is not quite the same definition Napier gave us, but
similarly captures the essence of a logarithm and may more clearly introduce stu-
dents to the concept in a substantive and mindful way. For those students who ask
“So what?” the argument can be made at this stage that the points along line 1 will
soon accelerate out of sight but their corresponding points will still be visible along
line 2 enabling us to keep track of where they are along line 1 as a result of this
logarithmic relationship. Lesson 4 addresses the “So what” question more directly.

Lesson 2: “The Logarithmic Graph”

To gain a better understanding of the nature of a mathematical relationship it is useful
to view the relationship as a graph, in this case a graph of the related values between
geometric and arithmetic sequences. By simply rotating line 2 counterclockwise
90 degrees in Fig. 9.1 and joining the starting point to that of line 2 the logarith-
mic relationship is revealed graphically. By means of this lesson activity students can
generate a partial graph of the log function and discuss the related growth rates along
the axes. Discussion can explore hypotheses about what happens to the graph between
plotted points and later, when metrics are incorporated, what this means about other
logarithmic values. Metrification will also allow discussion about bases of logs, the

Line 1
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Line 2

P'
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Fig. 9.8 Point plot of the logarithmic relationship
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Table 9.1 Distances from the starting points
in Lesson 1 Distance from the

start on line 1
Corresponding
distance on line 2

2 1
4 2
8 3
16 4

relationship of logs to exponents, laws that guide the computational use and the other
common curricular content teachers generally include (Fig. 9.8).

The important point is that the fundamental concept be revealed and modeled
before the metrification so that the essence of a logarithm is not instructionally com-
promised. Ascendancy to the concrete should fine tune the well established concep-
tual understanding, an understanding that requires a historical reference on the part
of the teacher. Real world application of the concept can then proceed mindfully.

Lesson 3: ”Logarithms, So What?”

The set of points along lines 1 and 2 given in lesson 1 have been given reasonable
distances in Table 9.1, reasonable since the points along line 1 were intentionally
set up visually by doubling the distance from the starting point.

Students will be reminded that according to the definition, the values in the sec-
ond column are the logarithms of those in the first column. Recalling the properties
of arithmetic and geometric sequences will allow students to expand this list of val-
ues in both directions. Logarithms of the larger numbers are to be used to discuss the
historical advantage that developed as a result of using logs for computation. The
list of values less than 2 will allow students to complete the graph of the logarithmic
function yielding the x-intercept and the negative portion of the graph. The asymp-
totic nature of the graph can also be addressed. Just as it was easier to work with the
steadily moving points along line 2, once you understand the geometric/arithmetic
relationship it is easier to compute using the column of logs than to manipulate the
very large distances that appear in the first column of the table.

For the student who utters “Logarithms, so what?” Table 9.2 has the answer.
Inherent in logarithmic relationship is the ability to multiply a number in the mil-

lions by a number in the billions by simply adding 20 and 30 and reading the answer
from the table. Ease of computation is what Napier provided the scientific commu-
nity in 1619. Even with a modern calculator in hand, it may still be faster and more
accurate to use this table than to type in all those digits. The computation in question
is recorded below. Compared to the standard multiplication algorithm, this calcula-
tion would require more than 150 operations to complete, with the chance for error
very likely. With a previously established conceptual understanding of sequences
students can develop the laws that govern the computational use of logarithms as
a concrete consequence. Notational expressions of these laws should be simple to
grasp for the conceptual foundation of the relationship has been well established.
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Table 9.2 Using logarithmic values to ease calculations

Number Logarithm Calculation

2 1 N = 1048,576 × 1,073,741,824
4 2 log N = log 1048576 + log 1,073,741,824
8 3 log N = 20 + 30
16 4 log N = 50
32 5 therefore, from the table
64 6 N = 1,125,899,906,842,620
(values intentionally missing)
1,048,576 20
1,073,741,824 30
(values intentionally missing)
1,125,899,906,842,624 50

Lesson 4: “Logarithmic Scales and Logarithmic Graph Paper”

In addition to filling out the tables of values so that the log function can be more
completely graphed, students should be introduced to logarithmic scales and loga-
rithmic graph paper. The idea is the same. Using the values 0.0, 0.3, 0.48, 0.6, 0.7,
0.78, 0.85, 0.9, 0.95, 1.0 as the base 10 logarithms of 1 through 10, students are
to produce a number line in which the positions of the numbers are proportional
to their logs. The scale to be produced is shown in Fig. 9.9. Students can clearly
see the relationship between the arithmetic and geometric sequences of values that
comprise the logarithm concept. Computational and analytical exercises can follow
this activity meaningfully.

These scales allow us to investigate the nature of a mathematical relationship that
may exhibit an accelerating rate of change. The teachers who were part of this study
often noted the facility logs provide when solving exponential equations. Logarith-
mic scales provide a similar tool, graphically. Jacobs provides an excellent lesson
using the graph produced in lesson 2 above to create a pair of logarithmic scales in
order to produce a slide rule with C and D scales. Students then use this slide rule
to perform calculations.

These same logarithmic scales can be used to produce semi log and log log
graph paper. This graph paper can be in turn be used to investigate the dimension of
fractals, brightness of stars, and a host of other scientific applications. The physics
department of the University of Guelph, Ontario, Canada has a well developed les-
son on their web site showing that “if a graph of log y vs. log x for a set of data

1 

0.0 0.3 0.48 0.6 0.7 0.780.850.90.951.0

2 3 4 5 6 7 8 9 10

Fig. 9.9 A logarithmic scale
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is a straight line then the data does indeed follow the relation y = a xb .” This is
but a sample of the activities that can be used to demonstrate scientific use of this
powerful mathematical concept. The table below (Table 9.3) is offered to teachers
who are looking for other scientific applications to share with their students.

Table 9.3 Teachers’ list of logarithm related science

∗Seismographic studies and the Richter scale ( R = log(i/i0))
∗Cancer research and the growth rate of cancer cells
∗Radioactive half-life and nuclear decay
∗Population growth
∗Loudness of sound
∗Oceanographic studies of sunlight intensity at a given depth
∗Brightness of stars
∗Fixing the age of moon rocks
∗Radiocarbon dating
∗Compound interest
∗Position of a piano key and the pitch it produces ( n = 12 log2 (p / 440) )
∗Photographers f-stop setting ( n = log2 (1/p) )
∗Maximum velocity of a rocket given the ratio of its mass with and without fuel

(v = –0.0098 t + c ln R)
∗Expiration time of a natural resource (coal, crude oil, etc.)
∗Calculation of pH
∗Kepler′s third law of planetary motion
∗Gauss′ formula for the number of primes less than A, for very large A. (A/log A )
∗Area between a hyperbola and its asymptote. ( say y = 1/x–1 )
∗Development of security key cryptosystems
∗Mercator series
∗Fractal dimensions, zoom factor, and Chaos theory
∗Stirling′s formula for approximating factorials, for large n
∗Euler′s constant (0.5772156649. . .)
∗Power series x–x2/2 + x3/3–x4/4 + –
∗Statistical inference and correlation coefficients
∗The Boltzmann constant

Curriculum Design Questions to Use in Conjunction
with Concept Mapping

Schmittau’s (personal conversation, 2001) five guiding questions aid in the design of
a curriculum and instructional sequence that would better enable student substantive
understanding and mindful facility with a mathematical concept like logarithm.

Question 1: Essence . . . . . . . . . . . . What is it?
Question 2: Origin . . .. . . . . .. . .. . . How did it come about?
Question 3: Methodology . . . . . . How should we look at it?
Question 4: Models . . . . . . . . .. . . Are there models that reveal it?
Question 5: Relevance . . . . . . .. What other connections are there?
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Thoughtful consideration of these questions when planning a unit of mathemat-
ics centered on any important concept can provide profound instructional impact.
The usefulness of concept mapping to guide and inform such curricular decisions
increases the likelihood of evolving a quality instructional design.

The essence of a logarithm, as has been said many times in this work, is the mar-
riage of arithmetic and geometry. A natural place for students to begin, therefore,
is a study of the nature of arithmetic and geometric sequences. Such a unit should
precede work with logs. The origin of the idea has been shown to be the geomet-
ric problem posed by Napier in the Mirifici. Selectively replicating that problem,
with a slight modification for simplicity as presented in lesson 1, is intended to
overcome the conceptual disconnect so apparent in student and teacher interviews
presented here. This means the introduction of the concept can focus on the essence
of the original idea. The relationship, as evidenced by the concept map presented in
Fig. 9.3, would suggest looking at the idea computationally, algebraically, and geo-
metrically. The model that best captures the nature of the relationship is the graph
of the function as well as the use of logarithmic scales. Syntactic representational
competence should follow naturally, allowing students to make sense of written
mathematics and to express themselves correctly in written form. Since notion of
exponents developed historically after logarithms, the lessons provided here are not
justified on the basis of exponents, an approach that seems unnecessary. Perhaps
exponents should be presented to students after work with logarithms. Concept rel-
evance is evidenced by the long list of scientific applications and the role the idea
played historically in the development of a wide range of calculating machines.
These curricular suggestions attempt to capture the conceptual essence, historical
relevance and cultural implications of this significant mathematical idea. The goal
of promoting substantive knowledge and student mindfulness may be well served
with this instructional approach.

Conclusions and Implications

The focus guiding this study precipitated an extensive historical search for the origin
of the logarithm concept, an in-depth clinical study involving students and teachers,
and curricular considerations based on these findings. It is hoped that study results
serve to inform mathematics educators specifically about teaching logarithms and
more generally about using concept maps to create mathematics curriculum that
makes sense. Teaching on the basis of a curriculum constructed in this way avoids
rote learning, encourages meaningful understanding of concepts fully developed
and historically based, and enhances recognition of conceptual crosslinks in other
mathematical domains.

The curricular implications of concept mapping in secondary mathematics edu-
cation are clear. Substantive knowledge and mindful use of a scientific concept
is dependent upon a clear understanding of the cultural and historical source and
development of the idea. Vygotskian notions on cognitive development direct
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mathematics educators to identify the essence of concepts to be taught, reflecting
with clarity the cultural historical context that produces new mathematical thought.
Concept mapping, when combined with historical research, serves as an important
epistemological tool that can render to consciousness the conceptual essence of a
mathematical idea. In conjunction with empirical data, concept maps can also be
used to expose the operating understanding of important mathematical concepts held
by students and their teachers. These direct uses of concept mapping in turn provide
the means for educators to identify substantive focus for curriculum design and pro-
vide pedagogical direction toward the mindful use of learned mathematics on the
part of students. Meaningful instruction in mathematics avoids the temptation of a
rote learning approach, recognizing that focus on functional efficiency often leads to
cognitive deficiency. Complex problem solving depends on the thoughtful applica-
tion of meaningful mathematical ideas. In this regard concept mapping can instruct
and guide mathematics educators toward a pedagogy of significant cognitive conse-
quence.
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Chapter 10
Using Concept Maps and Gowin’s Vee
to Understand Mathematical Models
of Physical Phenomena

Maria S. Ramı́rez De Mantilla, Mario Aspée, Irma Sanabria, and Neyra Tellez

The fundamental presence of mathematics in the development and comprehension
of physics and its applications in physics learning has many forms. Beyond being an
indispensable component in the definition of metric concepts that express physical
magnitudes, it allows the construction of mathematical models to represent multi-
ple physical phenomena. Mathematical models have several applications in physics.
First year physics students often ignore the important role mathematics and particu-
larly mathematical models play in the learning of physics. Students limit themselves
to the use of a menu of equations often misunderstood as a set of “cook-book” proce-
dures applied to solve physics problems, without a real understanding of the reason
for using a particular function or model to solve a problem. This chapter reflects on
the outcome of a research project undertaken at “Universidad Nacional del Táchira”
(UNET), Venezuela, which focuses on the different ways teachers and students
could use concept mapping and Gowin’s Vee for the mathematical modelling of
physical phenomena. We have designed a strategy for the teaching and learning of
mathematical models most used in first year physics courses. This strategy uses con-
cept maps to improve understanding of basic conceptual structures involved in the
mathematical modelling process of physical phenomena, and Gowinś Vee as a tool
that facilitates the process of building a student’s own knowledge of a mathematical
model for a particular experiment.

Introduction

First year physics students at the Universidad Nacional del Táchira (UNET),
Venezuela, face difficulties in science learning. They experience difficulties under-
standing a whole body of information and in building their own knowledge about
complex conceptual structures. They also find it difficult to link concepts and to han-
dle adequate representational techniques either to show or sum up complex informa-
tion. To help solve these problems, we have found concept maps a powerful tool that
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facilitates students’ comprehension of physics at the university level. Also, students
face difficulties in the physics laboratory in making connections between lectures
and laboratory and in understanding how to plan and guide science fair research.
In this sense, we have used Gowin’s Vee to help students plan and carry out some
experiments in the physics lab.

On the other hand, we are conscious that learning mathematics is different from
learning physics, especially for first year university students. The structure of the
“scientific method” in mathematics is distinctly represented by the activity, abil-
ity and use of deduction. In physics, this feature is also found, but it is not the
only activity present, as this natural science also requires the application of induc-
tion, inherent in the scientific method to build up knowledge about the real world.
The language used to express physical knowledge about the world has universal
elements of mathematical language used by all scientists, as well as idiomatic lan-
guage, which is specific to each country. The symbolic, syntactic and semantics
terms of the language of mathematics are acquired by someone after those terms are
acquired as part of a specific idiomatic language. This implies that, it is more dif-
ficult for students to comprehend this mathematical language than learning to talk
and express themselves in their native language.

It is a commonly known that first year university students of natural science have
not finished incorporating to their cognitive structure the fundamental elements of the
language of mathematics evident when they are asked to use them within specific con-
texts in their studies of physics. Furthermore, they must complete the course showing
an appropriate knowledge and understanding of the language of physics. This learning
difficulty in mathematics causes a delay in the learning of physics.

In our experience, students show little understanding of the important role mathe-
matics and mathematical models play in the learning of physics especially when build-
ing mathematical models to explain physical phenomena in kinematics and dynamics
of particles. Instead, students limit themselves to the use of equations and theorems,
often misunderstood as a set of “cook-book” procedures used to solve physics prob-
lems, without a real understanding of their significance or the reason for using a par-
ticular function or model to solve a problem or explain a physical phenomenon.

In order to overcome this undesirable situation, our research team at the Uni-
versidad Nacional Experimental del Tachira, (UNET), Venezuela, worked with first
year engineering students, using a strategy for the teaching and learning of basic
mathematical models essential to the comprehension, explanation and prediction of
real-world phenomena most commonly studied in first year physics courses. These
mathematical models are based on essential concepts of function theory. The strat-
egy we propose uses concept maps to improve understanding of concepts and basic
conceptual structures involved in the mathematical modeling process and Gowin’s
Vee as a tool that facilitates the process of building a student’s own knowledge of a
mathematical model for a particular experiment.

This chapter is organized to explain, from our perspective, what concept maps
and Gowin’s Vee are, the strategy we used in the introductory physics laboratory
course, the phases involved in the implementation of the strategy, and, finally to
provide some results from each phase. The following concept map (in Fig. 10.1)
summarizes the structure of this chapter.
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Theoretical background: Concept Maps and Gowin’s Vee

Research undertaken over two decades with our students, has convinced us that a
student’s knowledge is a result of an autopoietic phenomenon taking place within
an individual’s cognitive structure. Cognitive abilities are without any doubt, the
protagonists or active agents in this personal knowledge self-construction process.

The most important role in this process of personal knowledge construction is
played by metacognition. This is understood as the capacity an individual mind
has to be aware of (a) possessing a certain set of cognitive abilities, (b) the way in
which the individual builds his or her own knowledge about the world and (c) self
development potential. Metacognition is then the capacity of thinking about how
we think, about how we know, and about how we learn. Along with the importance
assigned to metacognition, we have considered a set of six cognitive abilities that, in
our experience constitutes a minimum set needed for the learning process of basic
physics. We name it “the basic group of cognitive abilities” comprising the ability
to memorize, comprehend, apply, analyze, synthesize and evaluate.

The learning of physics may be considered as the elaboration of a discourse
developed entirely in a rational plane. In consequence, metacognition as well as
the basic group of cognitive abilities, which we have taken into consideration, are
defined in the most objective way possible, trying to avoid any unnecessary emo-
tional ingredient that may colour any cognitive ability.

On the other hand, we have found in concept maps, a heuristic tool designed
many years ago (Novak & Gowin, 1988), a very powerful tool used by physics
teachers to express concepts and meaningful relationships between those concepts
while presenting the different topics we teach to the students in a clear way and
with a minimum of complexity. But what seems to be most important is that concept
maps constitute an effective aid to promote meaningful thinking, a tool to promote
the self-construction of knowledge on the student’s behalf.

In a similar way, our attempts to introduce the heuristic tool known as Gowin’s
knowledge Vee or Gowin’s Vee have convinced us of the advantages of using it
as either a teaching tool or as a student learning tool. It helps to promote the self-
construction of knowledge related to mathematical process, which allows the com-
prehension of physical phenomena and the development of experiments inherent to
physics. These two heuristic tools are explained next.

What is a Concept Map?

The first difficulty a student faces when attempting to comprehend a text is to under-
stand what it is all about. That is, to grasp the global sense of the communica-
tion, understand its elements and the relationships between them. Imagine a physics
student, seeking for information about frame of reference, finds the information in
the following two different ways, see Fig. 10.2. Probably it is easier for many stu-
dents to grasp the whole sense of the concept frame of reference when faced with a
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graph like the one illustrated above. This is due to the powerful visual effect that a
graph has to facilitate understanding of a concept or a conceptual structure.

This graph is essentially a concept map. It is a map-like illustration that shows
meaningful relationships between concepts (events, objects). Observe that this is a
knowledge representation about a particular main idea (in this case, frame of refer-
ence), in the form of a graph comprising boxes connected with labeled lines. Words
or phrases that denote concepts (events, objects) are placed inside the boxes, and
relationships between different concepts are specified on each line. Propositions
(node – link – node triads) are a unique feature of concept maps, compared to
other graphs. Propositions consist of two or more concept labels connected by a
linking relationship that forms a semantic unit (Novak & Gowin, 1988). And the
reader, if not familiar with concept maps, may know some of the concepts men-
tioned before as separate entities but have no clear sense of the relationships between
some of them. Obviously, this makes it difficult to understand the whole conceptual
structure concept map. Let us then discuss some of the concepts involved in this
definition: object, event, concept, proposition and meaningful relationships, to be
able to understand what a concept map is.
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According to Novak, the construction of new knowledge begins with the under-
standing of the terms event and object (Novak & Gowin, 1988). Event may be rep-
resented (see Fig. 10.3 ) in this manner. And also, according to Novak’s definition,
object may be explained as provided in Fig. 10.4.

Now that we understand what objects and events are, we can define concepts as
perceived regularities in events or objects, or records of events or objects, desig-
nated by a label (Novak & Gowin, 1988). Also, concepts are mental representations
of objects or events with the following characteristics: (a) correspondence between
the concepts and what it represents, (b) absence of ambiguity and (c) optimal use of
the language involved. In concept mapping, concepts are usually written inside cells
or boxes although the actual design of cells is arbitrary. The important thing is that
the graph highlights concepts visually in a clear and distinctive way.

But concepts are not isolated in a concept map; they are connected by labeled
lines or arrows called links, which consist of words, phrases or verbs that explain
meaningful relationships between concepts by words or signs/symbols. Arrows, if
used, designate the directionality of the relationship. Otherwise, the concepts must
be arranged in a hierarchical way, from the most abstract and inclusive concepts on
the top of the graph to the most concrete and specific and it is assumed that the
direction of the relationship is downward. This facilitates the reading of concepts
and the links among them as whole sentences.
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Relationships among concepts are diverse. Some examples are presented in
Fig. 10.5. Cañas, Safayeni, and Derbentseva (2004) classify them as static or dynam-
ics relationships. Static relationships between concepts help to define, describe
and organize knowledge for a given domain. Classifications and hierarchies are
usually captured in relationships that indicate belongingness, composition, and
categorization.

These relationships comprise: inclusion (a concept is part of another one), com-
mon membership (two concepts are part of another) and intersection (a concept is
the meaning generated by crossing other two concepts). This intersection may be
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probabilistic (e.g. Polygons may be regular), or based on similarity between two
concepts. Dynamic relationships between two concepts show how changes of one
concept cause change of the other concept in a proposition (e.g. Concept A leads
to concept B). Dynamic relationships are those based on causality (e.g. Volume
is an inverse function of the density for a given mass), or those based on cor-
relation/probability (e.g. Concept maps may help students to achieve meaningful
learning). Scientific knowledge is based on both static and dynamic relationships
between concepts. The teacher who is learning about concept maps for the first
time must know that there are different types of relationships, and should take them
into consideration when he or she attempts concept mapping. Finally, a link may be
simple (showing the connection between two concepts) or a crosslink (showing the
relationships between ideas in different branches of the map).

Let us now talk about propositions. The basic unit of representation in concept
maps is a proposition defined as two concepts plus a relationship, which is stated
with a label on the link between concepts. Two or more concept connected by a
linking relationship forms a meaningful statement also called a semantic unit. Also
it can be said that propositions are units of meaning constructed in the cognitive
structure. Each proposition is a sentence that has a unique standardized truth value
(true or false) that is the basis for arguing whether the graph makes true or false
assertions. Consider the following sentences: (a) “Complex numbers include natural
numbers” and (b) “Mars has a unique moon”. These sentences are propositions
with a truth value (propositions a is true and b is false). In comparison, consider
the following sentence: “Mathematics problems are easy to solve”. This sentence
is not a proposition as there is no way to know whether it is true or false. Some
mathematics problems may be easy to solve . . . but not all. Moreover, what is easy
for one person may be difficult for someone else.

The scientific knowledge, that is to be reflected in concept maps, deals with the
truth, that is, knowledge widely accepted as true by a given scientific community.
That is the reason why Novak insists on constructing maps with real meaning-
ful propositions. Many conceptual structures in mathematics and physics could be
understood in an easier way if they were introduced by means of concept maps. An
example of a concept map about polygons is shown in Fig. 10.6.

Novak (Novak & Gowin, 1988) argues that a map is always built as an answer
to a focus question (e.g. What is a polygon?). The main idea (the polygon) is the
supraordinate concept, a subsumer, and the most general and more inclusive con-
cept. In order to expand on this concept (i.e., concept polygons), subordinate (less
important) concepts related to it begin to emerge. Describing appropriate relation-
ships of the main concept with subordinate concepts, make possible the construction
of propositions. Similarly, collateral structures begin to appear from the connections
among propositions. As a summary for this section, Fig. 10.7 represents an answer
to the focus question: What is a concept map?

The Proceedings of the International Congresses on Concept Mapping, CMC,
held in Pamplona (2004) and Costa Rica (2006) are valuable sources of information
about concept maps. There is also a special issue of Focus on Learning Problems
in Mathematics devoted entirely to concept maps with an article by the authors
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(Ramı́rez, Aspée, & Sanabria, 2006) to answer these questions: What are concept
maps? How are they constructed? What is the theory that supports concept maps?
What are they used for? And finally you will find an explanation of how concept
maps were used with large groups of university students to facilitate the teaching-
learning process (see also Ramı́rez de M. & Sanabria, 2004).

Gowin’s Vee

This is a heuristic tool known as Gowin’s knowledge Vee or Gowin’s Vee, designed
initially by Novak and Gowin (1988) to be used in science laboratories to help
teacher and students to clarify the nature of the work to be done in the lab and
the main goals and objectives of a given experiment. It is a V shape diagram that
explains researcher’s decisions about two domains: conceptual and methodologi-
cal. This diagram shows the conceptual aspects to be considered in order to carry
on an experiment or research, and the methodological procedures the researcher
follows in order to solve the problem orientated by means of a focus question.
Figure 10.8 is a concept map designed to explain the knowledge construction pro-
cess using a Gowin’s Vee.

Gowin shares with Novak basic concepts such as objects and events, and insists
on the need for a focus question that will orientate a research or the development of
an experiment in a science lab. This diagram helps students to focus discussions on
answering a main question, or research question that is placed in the middle of the
V-shaped diagram.

The Vee diagram separates the conceptual side, which is written on the left, from
the methodological side, which will be filled on the right. It is a visual aid that rep-
resents the relations between the research question and the objects or events to be
investigated. This diagram also shows the interrelationships between the conceptual
framework and the methodological procedures that will be used in the research pro-
cess. The diagram focuses on the research question and moves downward through
the vertex where the student will describe the specific events or object being studied.

Table 10.1 describes the main concepts involved in a Gowin’s Vee Diagram as
Gowin defines them (Novak & Gowin, 1988). Students’ use Gowin’s Vee to under-
stand what they are going to do in the lab; what question they must answer; what
machines, objects or lab equipment students could work with; and finally, which
events are going to be investigated. This will help them to organise themselves
in order to plan, carry out the experiment, collect raw data, transform and graph
data, and finally analyze the results obtained. The construction of the conceptual
side begins with a student studying the regularities about the events or object being
investigated, which will lead him or her to concepts, hypothesis models and theories.
On the other side, students will be making decisions about the methodological pro-
cedure they will follow in order to study a particular phenomenon. Gowin’s Vee is
a useful device to establish relationships between the conceptual and practical sides
of a laboratory activity and it also helps to structure the discussions that precede and
follow the practical activity.
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Fig. 10.8 Concept map of Gowin’s Vee

Phases of the Implementation of the Strategy

This section explains the strategy used for the teaching and learning process
for the topic “Mathematical Modeling of Physical Phenomena”. This was a
constructivist teaching/learning approach designed to improve first year physics stu-
dents’ confidence in, and attitude to, modeling of physical phenomena. This strategy
was based on the use of the heuristic tools concept maps and Gowin’s Vee to help
students in their self-construction of knowledge. The program encouraged students’
use of concept mapping in order to explore basic mathematical function concepts,
as well as the concept of models in physics during the first part of the laboratory
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Table 10.1 Gowin`s Vee some definitions

Focus question Initiate activities between the two domains and are
embedded in or generated by theory; FQ’s focus
attention on events and objects

Events & objects Phenomena of interest apprehend through concepts and
record-marking: occurrences, objects

Methodological domain

Value claims The worth, either in field or out of field, of the claims
produced in an enquiry

Knowledge claims New generalizations in answer to the telling questions,
produced in the context of inquiry according to
appropriate and explicit criteria of excellence.

Interpretations, explanations &
generalizations

Product of methodology and prior knowledge used for
warrant of claims

Results Representation of the data in tables charts and graphs.
Transformations Ordered facts governed by theory of measurements and

classification
Facts The judgment, based on trust in method, that records of

events are valid
Records Records of event or objects

Conceptual domain

Concepts Signs or symbols signifying regularities in events and
shared socially

Conceptual Structures Subsets of theory directly used in the inquiry
Constructs Ideas which support reliable theory, but without direct

referents in events or objects
Principles Conceptual rules governing the linking of patterns in

events; propositional in form; derived from prior
knowledge claims

Theories Logically related sets of concepts permitting patterns of
reasoning leading to explanations

Philosophies (E.g. Human understanding by Toulmin)
World views (E.g. nature is orderly and knowable.)

workshops. Later on, students were encouraged to analyze and carry on experiments
using Gowin’s Vee to model physical phenomena. The strategy was imple-
mented throughout four successive phases outlined at the beginning of this chapter
(see Fig. 10.1).

Phase I: Learning About Concept Maps and Gowin’s Vee

As a result of a diagnostic survey carried out by the research team with physics
students, it was evident that they needed training in the construction and use of
concept maps and Gowin’s Vee. In order to do so, written materials for Gowin’s Vee
were prepared and these were supplemented with materials from the text “Concept
maps as a heuristic tool to facilitate learning” (Ramirez de M., 2005).
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Phase II: Eliciting Basic Conceptual Knowledge of Mathematical Functions

Though the students have completed two mathematics courses; it was not uncom-
mon for them to have difficulties stating, graphing and using mathematical functions
necessary for modeling physical phenomena. Therefore, it was necessary to clarify
students’ prior knowledge of the linear, power and exponential functions.

Phase III: Acquisition of the Concept “model” in Physics

In this phase, students were taught the meaning of model, in a way that this con-
cept is understood within the physical sciences. This was followed by the teaching
and learning for the concepts qualitative and quantitative models and mathematical
model.

Phase IV: Students Training in the Application of the Concept “Model” to
Physical Phenomena

In this phase, emphasis was put on the creation of mathematical models for spe-
cific physical phenomena. The main goal was to involve students in varied learning
experiences to allow for the emergence of autopoiesis of procedural knowledge for
the construction and handling of mathematical models. This is the most important
phase in the implementation of the overall strategy, as it is the stage in which student
can reach sufficiency in the use of mathematics to build up satisfactory models for
the world of physics.

The Evaluation of the Strategy

Based on an interpretation of the Complementary Principle for dialectic approaches
used in education, we adopted two perspectives to evaluate our strategy. Firstly,
a quantitative research approach was used to analyze students’ written work to
count the number of right answers in the questions that have been stipulated as
unknowns to be solved. Secondly, a qualitative analysis of interviews conducted
with students allowed the assessment of the degree of comprehension, about the
understanding of potential uses of both heuristic tools. These two perspectives were
directed towards the same final objective, which was the evaluation of the strategy
used. The application of two distinctly different analytical approaches has a parallel
in the physical sciences. It is evident, for instance, with the corpuscular and wave
models for the nature of light, in which the Complementary Principle allows the
acceptance of both models as contributors to the knowledge of this physical entity
(light) without imposing the need that one of them prevails over the other. This
was the case with the two dialectic perspectives adopted to evaluate the strategy,
with each providing different information. It was possible to obtain evidence for
the number of successful learning cases using the quantitative approach, and also
to determine a general consensus about the comprehension of models and ability to
apply them, using the qualitative approach.
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Data was collected from a trial study undertaken with one hundred students of
the course Introductory Physics Laboratory in the first semester of 2003. These labs
are one-credit courses where students meet for two hours every week for a 16-week
semester.

The Strategy – Trial and Results

This section focuses on the strategy used, a description of the teaching activities and
a brief summary of some of the results obtained in each phase.

Phase I: Learning About Concept Maps and Gowin’s Vee.

Teaching activities – Students were provided with a text about concept maps
designed for a constructivist learning of a topic (Ramı́rez de M, 2005). They were
also trained in the use of InspirationTM 8.0 and CmapTools, both of which are con-
cept mapping software programs that help students organize their ideas in a visual
manner. In addition, students were provided with appropriate written text materials
to learn about Gowin’s Vee. An eight-hour workshop was conducted to introduce
students in the design of concept maps and Gowin’s Vee for specific purposes within
the context of real situations and examples from simple everyday experiments.

Assignment – Students were asked to produce concept maps for a single topic
related to physics concepts already known by them. Similarly they were asked to
construct a Gowin’s Vee diagram for a simple everyday experiment, which they had
been involved with.

Discussion and results – In this phase students acquired the necessary skills to
build concept maps and Vee diagrams (the results indicated that 84% of the students
managed to do the assigned maps successfully). The other heuristic tool, Gowin’s
Vee, seemed to be more difficult for them to understand and to use in order to follow
up and report a simple experiment (62% of the students completed them correctly).

Phase II: Eliciting Basic Conceptual Knowledge of Mathematical Functions

In this phase, the focus was on two activities: (i) comprehension of the three basic
mathematical functions and (ii) transformations of power and exponential function
in order to graph them on semi-logarithmic and logarithmic paper.

Basic Mathematical Functions

Teaching activities to review mathematical notions about basic mathematical func-
tions – Students were shown a group of mathematical functions, which should be
known by them, as they were part of the topics taught at the introductory university
mathematics courses prior to studying physics. This group of functions comprised
the linear function y = mx + b, the power function y = b. xm and the exponen-
tial function y = b. em.x. These functions were taught in a single presentation in a
traditional way, without using concept maps or any other heuristic tool.
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Assignment – Students were asked to express their understanding of the three
functions mentioned above, by using the concept mapping technique, previously
taught to them.

Discussion and Results – The concept maps produced by students were com-
pared with “expert maps” previously prepared. These maps were grouped into two
categories:

(a) Satisfactory: Those maps which clearly show the main idea, subordinate con-
cepts and relationships among them for a given mathematical function (65%).

(b) Insufficient (35%): In this category, the distinction was made between maps
exhibiting conceptual mistakes in mathematical prior knowledge (12%), and
maps showing an incorrect application of the concept map heuristic tool (23%).

In the examples that follow, the reader needs to take into account that this
research was conducted in Spanish. Concept maps have been translated into English
to illustrate students’ work. Samples of students’ concept maps classified as satis-
factory are presented in Figs. 10.9, 10.10 and 10.11.

Transformations of Basic Mathematical Functions

Teaching activities: Transforming Exponential Equations and Power Equations into
Linear Equations – The teacher drew attention to transformations of power and
exponential functions which allow the drawing of linear graphs.

His explanation is provided below:

First: The function y = b. em.x can be transformed into the equivalent function Ln y = Ln
b + m. x which is linear in the variables Ln y, and x. In this work, ln x = loge x denotes a
natural logarithm.
This last function shows a linear tendency when a graph of Ln y and x is plotted on a
millimetre paper sheet and also shows a straight line in a graph y vs x on a semi logarithmic
paper.
Second: The function y = b . x m can be transformed into the equivalent function.
Ln y = Ln b + m. Ln x, which is linear in the variables Ln y, and Ln x.
This last function shows a linear tendency, when plotted in millimetre paper sheets, using the
variables Ln y and Ln x and also shows a linear trace when we make a graph in logarithmic
paper of the variables y and x.

Assignment – Students were asked to explain how it is possible to deduce from
a set of y, x values on logarithmic and semi-logarithmic paper, which one of the
functions (power or exponential) was compatible with the assigned set of values.
They were again asked to provide explanations by means of a concept map.

Discussion and Results – From the results, 58% of the students provided satisfac-
tory maps. Some students (20%) confused the log and semi-logarithmic papers and
arrived at wrong conclusions. The other students made maps, which did not show a
clear conceptual structure about transformations of non-linear functions. From pre-
vious studies, it has been observed that it is not easy for students to express in a map
what they have learnt in class from the teacher’s presentation. Figure 10.12 shows a
map classified as “satisfactory” produced by a student.
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Fig. 10.9 Concept map of the power function made by a student

Phase III: Acquisition of the Concept “Model” in Physics

This phase focused on three aspects: (1) the concept of model in physics science,
(2) qualitative models and (3) the concept of mathematical model for a physical
phenomenon.

The Concept of Model in Physics Science

Teaching activities – Based on the epistemological conceptions of model, presented
by Hertz (1900), Feynman (1970), and Bunge (1997), a short text was designed with
standard definitions of model as well as qualitative and quantitative models, as they
are understood in physics.
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Fig. 10.10 Concept map of the linear function designed by a student

Assignment – Students were asked to work in small groups, read the text and
generate a concept map for the concept “Model in physical science”.

Discussion and Results – Most groups, corresponding to 80% of the students,
managed to produce maps demonstrating acceptable understanding of the concept
“Model” This is not surprising and supports previous findings which indicate that
the easiest way for beginners to design a concept map is from the information given
in a written text. In comparison, beginners find it more difficult to make a map
from the contents given in a presentation or a lesson. A lower percentage (58%)
was obtained when students were asked to build concept maps in Phase II about
mathematical functions following their class notes and what the teacher said in the
lab class. Two examples of satisfactory concept maps for this topic are shown in
Figs. 10.13 and 10.14.

Qualitative Models and Gowin’s Vee for Constructing an Explanation

Teaching activities – Students were presented with a phenomenon, which could be
explained with a qualitative model. It is related to a physical system called the black
box tunnel. In physics, a black box is a system whose internal structure is unknown,
or need not be considered for a particular purpose.
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Fig. 10.12 Map of linear and non-linear functions made by a student

The following procedure was followed:

(a) Students were given a written text with the following description.
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Fig. 10.13 Concept map about model

There is a tunnel with open ends in both sides. Some experiments made with small toys cars
allow us to state the following facts:

– If a car enters the tunnel in point B at a low speed, the car comes back to
point B.

– If the same car enters the tunnel in point B with a higher speed, then it goes
across the tunnel and emerges in point A.

– If the same car enters the tunnel in point A moving slowly, the car returns
to point A.

– If the same car enters the tunnel in point A with a higher speed, then it does
not goes across the tunnel or return to point A, rather on disappears inside
the tunnel.

Create a qualitative model that could explain this phenomenon and might be used
to make predictions about the way the tunnel works.
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Fig. 10.14 Concept map about model in science

(b) Students were given a written guide explaining how they could proceed in order
to make a qualitative model.

In order to build a qualitative model of a phenomenon or physical systems you must first
observe it. Then you must imagine what it looks like and find out if there is something
similar that you already know. This is to find out if there is something we can remember
with an analogous behaviour, which has been observed previously. This may help us to make
a representation of the phenomenon or physical system. We cannot forget that whatever we
produce as an answer must comply with the general characteristics of a model.

(c) An adaptation of Gowin’s Vee was presented to help students with their reason-
ing about the phenomenon under consideration (see Fig. 10.15).

Assignment – Working in small groups, students were asked to build a qualitative
model that could explain the structure and functions of the tunnel and could be
used to make predictions about the way the tunnel works. It was suggested that
they should follow the steps and answer the questions mentioned in Gowin’s Vee
described above.

Discussion and Results – Fifteen groups out of the twenty-five groups (of four
students each) managed to produce acceptable tentative models for the phenomenon
observed. Six groups had an idea of what was going on, but could not use the
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Fig. 10.15 Gowin’s Vee for the construction of qualitative models

Gowin’s Vee provided (Fig. 10.15) as a tool to orientate the process of reasoning.
They simply produced a written report explaining what they thought was going on.
Two groups produced wrong qualitative models that did not account for the events
explained.

The other students could not manage to generate adequate qualitative models
corresponding to the phenomenon under consideration. It became clear from the
interviews conducted with those students than they could not connect the theory
about models (which they successfully reflected on in their concept maps) with the
interpretation of a real phenomenon and the need to build a qualitative model to
explain it. Figure 10.16 illustrates Gowin’s Vee produced by a group of students for
the first part of the experiment and the corresponding explanations to account for
the phenomenon observed.

Figure 10.17 illustrates the Vee diagram the same students made for the second
part of the experiment (when the car enters the tunnel in point A).

Quantitative Models

Teaching activities – A teacher worked alongside students to develop an experiment
about a pendulum that swings through a small angle (in the range where the function
sin θ can be approximated as θ ) in order to answer the focus question: What are the
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Fig. 10.16 Qualitative model for a car entering the tunnel in point B

Fig. 10.17 Qualitative model for the car entering in point A and general explanation
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Fig. 10.18 Adaptation of Gowin’s Vee for quantitative models

relationships between the mass of bob, the length of pendulum, the displacement of
the pendulum (amplitude) and the period of a pendulum?.

The teacher and students discussed what they could do in order to study the dif-
ferent variables involved. They considered various options in studying, for instance,
mass against length of pendulum, until students found out that they had to study
separately the effect of changing a variable such as displacement (amplitude), mass
of bob, or length of pendulum on period of a pendulum. The teacher showed and
explained the adaptation of Gowin’s Vee we use (see Fig. 10.18 ) and put an empha-
sis on the importance of using Gowin’s Vee guiding questions for each Vee element
in order to plan, carry out the experiment, collect raw data, transform it and graph it
and analyse the results obtained.

Assignment – Once the information was recorded and organized, students were
asked to plot the set of points and were asked to find the appropriate mathemat-
ical model to explain the different relationships between the variables and finally
express the corresponding quantitative models. The teacher helped them to com-
plete Gowin’s Vee diagram up to the value claims and conclusions (Sanabria &
Ramı́rez, 2006).

Discussion and Results – Seventy-four out of a hundred (74%) students man-
aged to produce the adequate mathematical function (power function) for the set
of values T against length of the string (L). The others incorrectly generated an
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exponential model from their analysis of the data graphed on a semi-logarithmic
paper as they were convinced that an exponential function was an appropriate model.
It is worth mentioning that of this group, sixty students managed to define ade-
quately the meaning of the variables to give an appropriate quantitative model to
explain the phenomenon observed.

The others did not understand why it was necessary to change the y-value for
period (T) and the x-value for length of the string (L), showing that they had misun-
derstood the physical meaning of the variables involved in the experiment as well
as the need to modify the mathematical power function variables to express it as
a mathematical model to account for the phenomenon observed. That is, students
thought that expressing the results of their experiment as the mathematical function
y = 1.98 x0.5 is the same as answering the mathematical model to express the rela-
tion between T and L is T = 1.98 L0.5 which is not. It was necessary for the students
to distinctively express the meaning of the x-value and the y-value. Figure 10.19
shows the Vee diagram made by a student for this experiment.

It needs to be restated that all work was done in Spanish and there may have been
some changes in the real meaning of some expressions when translating some vees
of students’ work. In general terms, it was found that students’ use of Gowin’s Vee
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to help them construct a quantitative model proved to be more effective than the use
of the same tool to make qualitative models. Further research is needed to find a
more effective way of using Gowin’s Vee as an aid to develop qualitative models.

Phase IV: Modelling Physical Phenomena

This phase was devoted to the development of real life experiments that may be
explained by means of quantitative and qualitative models using the lab activities
organized for the whole semester.

Teaching activities – In this phase the teacher presented to the students every
phenomenon and set up the restrictions, if necessary. Then it was made clear, which
machines, objects or lab equipment students could work with, and formulated the
appropriate question for the students to answer, letting them decide what to do in
order to answer each question. In every lab, the teacher emphasized that final work
and results should be given using concept maps and Gowin’s Vee diagrams.

Assignment – Students were asked to carry out the different experiments, using
concept maps, when necessary, and Gowin’s Vee diagrams. They were asked to cre-
ate qualitative models, which account for (i) the internal structure and functioning
of a car seat belt and, (ii) a toy friction car. They were not allowed to examine either
of these physical systems or to pull the pieces apart.

Also, as an integral part of the studies, every week they were asked to develop
quantitative models for the different experiments we studied in this physics
laboratory. Figure 10.19 shows the Gowin’s Vee diagram produced by a student
for the simple pendulum experiment.

Discussion and Results – By the end of the course, students showed signs of
an acceptable conceptual understanding of modeling physical phenomena through
concept mapping and Gowin’s Vee diagrams. Final grades for this course showed
that 81 students passed the course compared with 19 that failed it. This result was
an improvement over previous courses where the passing rate for all students was
65%, lower than the 81% obtained as a result of the application of this strategy.
Our findings confirm those reported by Afamasaga-Fuata’i (2006), which stated
that verifying and justifying mathematical solutions were greatly facilitated through
the combined usage of concept maps and Vee diagrams.

Conclusions

In the last two decades, this research team has tried different teaching and learning
strategies to introduce physics concepts to our students. Statistical analysis of the
strategies used in previous years for the topic Mathematical Modeling of Physical
Phenomena gave a mean passing rate of 65% for students taking regular courses.
On the other hand, a qualitative analysis of results allowed us to propose that the
main problems faced by students failing the physics course were mainly dueto:
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• Lack of motivation to study this topic.
• Insufficient prior knowledge of the linear, power, exponential and functions.
• Students’ difficulties in explaining the process followed in order to generate their

models.
• Students’ difficulties in communicating the results of their experiments.

The strategy described in this chapter was designed to overcome these difficul-
ties, based on the use of the heuristic tools concept map and Gowin’s Vee. This strat-
egy uses concept maps to improve understanding of concepts and basic conceptual
structures involved in the mathematical modeling process of physical phenomena,
and Gowin’s Vee as an adapted tool that facilitates the process of building student’s
own knowledge of a mathematical model for a particular experiment.

The results after the application of the strategy showed 81% of students passed
the course. A qualitative analysis of process and results allows us to propose that
improvement in overall performance along the lab course may be due to:

• An increase in student’s motivation to develop the experiments with the aid of
the heuristic tools concept maps and Gowin’s Vee.

• Consciousness of the need to improve knowledge about mathematical functions
and the plotting of curves in order to find adequate models to explain physical
phenomena.

• An improvement in students’ ability to communicate results and to interpret their
findings while studying physical phenomena.

Beyond the rather broad measures of “passing” or “success”, evidence from a
variety of assessments suggests that the quality of learning was high relative to that
for students in previous courses. Students finished with significantly higher levels
of confidence in their abilities to understand, plan, carry out and analyze an exper-
iment. There were also many benefits reported by students including ownership of
knowledge, the development of skills to build concept maps and the use of Vee dia-
grams to plan and develop ideas and basic experiments in order to model physical
phenomena.

Even though the results demonstrated the benefits obtained from applying this
strategy, it is worth noting that in order to obtain satisfactory results it is necessary
to take into consideration two facts:

1. A considerable amount of time must be devoted to train teachers in the applica-
tion of the strategy and to train students in the use of concept maps and Gowin’s
Vee; and

2. Initially, there will be an increased workload for the teacher in order to develop
an instructional sequence for the learning experiences.

This research group has continued to use and improve the strategy described
in this chapter throughout successive trials with satisfactory results. By the end of
each semester students get more familiarity with the use of Gowin’s Vee and concept
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maps to help them understand physical phenomena and construct adequate mathe-
matical models to account for them.

This strategy reinforces the notion that in order to explain physical phenomena,
the process of proposing appropriate mathematical models, verifying and justifying
them is greatly facilitated through the combined usage of concept maps and Vee
diagrams. Finally, the ability to model physical phenomena is facilitated through
the development of this strategy that serves to promote the process of ”thinking
about thinking”, or more precisely metacognition. This strategy can be adapted for
other purposes and in other educational contexts.

Novak’s and Gowin’s heuristic tools have been applied for more than twenty
years and, like a good wine, have done nothing but improve with time. Concept
maps and Gowin’s Vee are readily accessible tools which can be used to support
teaching and learning in science. Thus, it is our hope that teachers begin building
their own knowledge base about these heuristic tools and trial effective ways of
using them with students. That is the challenge.
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Chapter 11
Applying Concept Mapping to Algebra I

William Caldwell

Concept mapping has great potential for increasing meaningful learning in mathe-
matics at all levels. The fundamental quality that supports this kind of learning is the
necessity for concept mappers both to clarify for themselves, and to relate simply
and explicitly the connections that exist among the various concepts being mapped.
This requires that the concepts first be connected to the current knowledge of the
person doing the mapping. This meaningful learning takes place for the teacher as
well as the student. The teacher also can use the student maps to determine to what
extent the student grasps the ideas and their relationships to one another. Thus con-
cept mapping plays a role in teaching, learning, and also in assessment.

Introduction

Concept mapping can be a useful tool in measuring student progress in middle
grades mathematics courses, as well as being a valuable planning and teaching tool
for teachers of these courses. To explore these ideas, we will focus on Algebra I,
a specific middle school/high school course that typically is taught in the eighth or
ninth grade, and represents a significant hurdle for students because of the abstract
concepts it includes.

A concept map is, mathematically, a directed graph in which the vertices (nodes)
represent individual concepts, and the edges are labeled with descriptive connecting
phrases and are assigned directions to describe the relationship between the two
concepts in adjacent nodes. For example, the nodes “Rational Numbers” and “Real
Numbers” in a map might be connected as follows:
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The connecting phrase is the verb “are,” and the direction of the arrows indicates
the direction in which the map should be read. Notice that reversing the arrows in
this example yields an incorrect relationship between the concepts.

A concept map is developed to answer a particular question (often called a focus
question) through describing relationships that exist among a selection of concepts
pertinent to the question. These will be mathematical concepts in our maps.

We first must agree on the Concept Mapping principles we will adhere to. The
most important of these principles, but one that can be difficult to follow, is the
protocol that every basic sequence (i.e., node – connecting phrase – node) in a
concept map should comprise a correct mathematical sentence when read in the
direction of the connecting links. To clarify this, consider first the map

and then consider the map

Each of these maps contains two basic sequences. In the first map, they are:

These two basic sequences each yield satisfactory mathematical sentences when
read in order.

On the other hand, the two basic sequences in the second example are:

Neither of these two basic sequences yields a correct mathematical statement
when read in the directed order. The first yields a sentence, but is mathematically
incorrect; and the second is a phrase that is not a complete sentence. Thus, the map
does not follow our protocol, even though when the full original map is read in
sequence, it does give a correct mathematical sentence.

Another important principle we will follow is that we will consider a concept map
to be “Good” when it is Correct, Clear, and Complete. The following conditions
should be satisfied.

Correct: Is every basic sequence in the map a correct mathematical sentence?
Clear: Are the relationships among the concepts described clearly? Do they give

precise and relevant information that helps to form an answer to the focus
question?
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Complete: Do the specific concepts used in the map and the relationships
described among them provide an answer to the focus question that is suit-
able for those to whom the map is directed?

Developing an Algebra I Course Through Concept Mapping

The typical Algebra I course usually is focused on five or six major mathemati-
cal concepts, and relies upon some specific prerequisite knowledge. The picture of
Algebra I we will discuss with concept mapping will be structured upon the follow-
ing five basic concepts:

Equations and their solutions
Inequalities and their solutions
Exponents
Polynomials
Graphs

Each of these can be described through identified sets of sub-concepts, and the
concepts related through concept maps. Note that we will discuss developing these
concepts at the Algebra I level – although all five concepts appear at various levels
throughout the mathematics curricula in high schools and colleges, and thus could
be discussed at many levels of expertise.

Course Prerequisites

The prerequisite knowledge required for our course will be fundamental ideas about:

Constants and variables
Real numbers
The number line
The Cartesian plane

Concept maps of prerequisites showing the essential sub-concepts and relation-
ships among them also will be necessary for us to describe the course. The prereq-
uisites we select as fundamental are:

A beginner’s understanding of the terms “constant” and “variable.”
Familiarity with the basic arithmetic of the real numbers, including the integers

and rational numbers; and, some knowledge of irrational numbers.
Experience with the number line and the Cartesian plane.



220 W. Caldwell

To use concept mapping as a resource for planning a course and developing indi-
vidual lessons, the teacher will follow the process above – first identify the major
concepts that will form the framework for the course, and then give a general picture
of the basic prerequisite knowledge required for the student to be successful in deal-
ing with those concepts at the level at which the course will be delivered. For each
of the major framework concepts decided upon, a list of related sub-concepts that
are essential to understanding the major concept will be developed. For example,
suppose the teacher is developing the major concept “polynomials.” The specific
sub-topics identified will be influenced by the level of the course being planned; the
identified sub-concepts for “polynomials” in Algebra I might be:

Monomials (for use in the definition of “polynomial.”)
Operations on polynomials
Degree of a polynomial
Factoring polynomials (quadratics and a few special cases)
Roots of polynomials
Graphs of polynomials (linear and quadratic ones)

The teacher then will write a narrative statement of ideas and techniques sur-
rounding each sub-concept, and describe how they will be included in the develop-
ment of the major concept. In the list above, some of the surrounding ideas have been
given in parenthetical comments following the sub-concepts; they will be expanded
upon in the statement. Here is an example of such a narrative statement involving
the first three of the sub-concepts in the list above.

Narrative on the Development of Polynomials

Monomials will be introduced in terms of the constant coefficient, the variable,
and the exponent. The idea of “degree” will be introduced, and the processes of
multiplying any two monomials and of adding any two polynomials of equal degrees
will be presented. Students will learn to evaluate monomials for specific assigned
values of the variable. Polynomials will be defined as being either a monomial, or
as the algebraic sum of two or more monomials. Then, the addition of polynomials
will be defined in terms of the operations on monomials that comprise them. (A
property like the distributive law for addition over multiplication of real numbers
will be used in defining multiplication of polynomials.) The degree of a polynomial
will be defined, and the degree of the sum or product of two polynomials will be
related to the degrees of the original two.

This paragraph describes not only the content the teacher expects to include in
the development of the three sub-concepts, it also suggests the order in which they
will be presented, and relates some of the connections among those concepts. In
this statement, there are specific concepts that must be introduced to the student,
viz., monomial, constant coefficient, variable, exponent, and degree. There also are
processes that must be explained – adding monomials of equal degree, multiplying
any two monomials, forming polynomials as the algebraic sum of monomials, and
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evaluating monomials and polynomials. For each of these concepts and processes,
a definition or a process explanation will be thought out by the teacher, and this
information then will be translated into process or concept maps. Then, the maps
will be linked to one another as appropriate to present a comprehensive picture of
how monomials will be treated in the course. Here is an example of how the teacher
might proceed.

Working With Monomials

Definitions Monomial in x. An expression of the form cxn, where c is the constant
coefficient (represents a particular but perhaps unspecified real number), x is the
variable (a “place holder” that may be assigned a specific real number value when
“evaluating” the monomial for that particular value of x), and n is the exponent
(a non-negative integer). Specific examples of monomials in x are 3x5, and (–4)x17.
In the general form of a monomial, it is not necessary to give the constant the label
“c,” – any letter (although usually one selected from the beginning part of the alpha-
bet) could be used. Thus bx14 is also a monomial in x. The label of the variable can
be changed, also. For example, 7y8 is a monomial in the variable y. (It is common
practice to use letters from the latter part of the alphabet to denote variables.)

Evaluating a monomial in x. The monomial cxnis thought of as c times the
nthpower of x. To evaluate this at x = 4, we calculate c×4n. Therefore, if c = 6
and n = 3, we are calculating 6×43, so we get 384. We can evaluate cxnfor any real
number replacing x.

Constant monomial. A monomial of the form cx0. The special case where c = 0
is called the monomial 0.

Degree of a monomial. The value of the exponent for a monomial different from
the monomial 0. For example, 7x23 has degree 23. The monomial 0 does not have a
degree.

At this point, the teacher could develop a concept map describing the relation-
ships among the concepts comprising the definitions above. Such a map is given in
Fig. 11.1.

Once this map has been determined, the teacher will clarify the role that monomi-
als will play in the development of polynomials. First, the (binary) algebraic opera-
tions of addition and multiplication of monomials must be defined. Since multipli-
cation of two monomials always results in a monomial. This process is addressed
first, and then the meanings of the quotient, sum, and difference of two monomials
are addressed. The quotient of two monomials results in either a monomial or in
the reciprocal of a monomial, which is a type of rational expression; and the sum
or difference of two monomials is either a monomial, or is a polynomial with two
terms. Once the results of all four of these processes are determined, a composite
process map is developed. Figure 11.2 represents such a map. Notice that in this
map we have cases where the result of performing an operation on two monomials
does not result in a monomial.
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Fig. 11.2 Algebraic operations on monomials

This places us at the point of defining polynomials and continuing the develop-
ment of this basic concept in our Algebra I course.

Polynomials are Developed From Monomials

Definitions Polynomial in the variable x. A monomial, or the (algebraic) sum of two
or more monomials in x. The monomials that comprise a polynomial are called the
monomial terms of the polynomial. Examples of polynomials are 7x14, and 4 + 5x7+
3x10+ 2x8. The first of these has one term, the second has four.

When defining the addition and multiplication of polynomials, it is useful to agree
on a standard form in which polynomials will be written.

Standard form for a polynomial in x. A polynomial is in standard form if its indi-
vidual terms have distinct degrees, and are listed in either increasing or decreasing
order of degrees. The second example above is not in standard form. Its two possible
standard forms are 3x10+ 2x8+ 5x7+ 4, and 4 + 5x7+ 2x8+ 3x10. The polynomial
5x10+ 3x10also is not in standard form. Its standard form is 8x10, as can be seen from
the “sum” portion of the map in Fig. 11.2. Clearly, any polynomial has a standard
form.

A concept map describing the definition of polynomial in terms of monomials is
given in Fig. 11.3.

The word “added” when applied to polynomials must be discussed by the teacher,
since before they take algebra, students think of addition as being related only to
numbers, not to symbols.
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Fig. 11.3 Definition of a polynomial

The map provided in Fig. 11.2 discussed addition of monomials; this idea can
be generalized to addition of polynomials since polynomials are defined in terms of
monomials. The map in Fig. 11.3 may serve as a guide to the teacher in preparing a
discussion of the definition of polynomial, and to a lesser degree a tool for students
to organize the concept of polynomial in their minds.

To continue the development of the polynomial component of the course, we next
address what is meant to say that two polynomials are the same. By this, we mean
that they have identical monomial terms. For example, the polynomials

10x12 + 5x8 + 3x4 − 2x + 6 and 4x12 + 5x8 + 3x4 − 2x + 6

are not the same, because, for example, the second one does not have the term 10x12,
whereas the first one does.

On the other hand, the polynomials

3x4 + 5x8 + 10x12 − 2x + 6 and 6 + 10x12 + 5x8 + 3x4 − 2x

are the same because they do in fact have identical terms – the polynomials would
match exactly if written in order of increasing degrees of monomial terms.

Definition Two polynomials are identical if (and only if) they have exactly the same
set of (monomial) terms.

Operations on Polynomials

Notice that the concept map in Fig. 11.3 shows that the sum of two monomials
is a polynomial, and the one in Fig. 11.2 shows that the algebraic addition and
multiplication of two monomials both are commutative operations. That addition
and multiplication of polynomials also are associative operations is merely stated
as being true in Algebra I, so we will assume that commutativity and associativity
hold when we perform addition and multiplication operations on all polynomials.
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Fig. 11.4 The product of polynomials

First we address addition. From Fig. 11.3 we can conclude that any finite sum of
monomials is a polynomial, and that when we add any two polynomials we get
a polynomial. It is easy then to rewrite any sum of polynomials into a standard-
form polynomial using the properties of addition of monomials given in the map in
Fig. 11.2, and assuming that the associative and commutative properties for addition
are satisfied. Multiplication of polynomials is described in Fig. 11.4. Note that this
definition usually will not give a polynomial in standard form, so that the simpli-
fication process – changing the resulting polynomial into standard form – will be
discussed again by the teacher when this is presented.

Degree of a Polynomial

The remaining idea we must address from our narrative on polynomials is the degree
of the sum and product of two polynomials.

The degree of a polynomial is defined in the concept map in Fig. 11.3, and the
degree of a monomial is given in Fig. 11.1. If we examine the map in Fig. 11.2,
we can develop the degree of the sum and the product of two polynomials from
information given there. We see from these that the degree of the polynomial that
is the sum of two non-zero monomials is the larger of the degrees of the two. This
tells us that the degree of the sum of any two polynomials will be the larger of the
degrees of the two polynomials being added. Also from Fig. 11.2, the degree of the
product of two non-zero monomials is the sum of the degrees of the two monomials.
From the map in Fig. 11.4, the term in the product of two non-zero polynomials that
will have the largest degree will be the product of the term in the first polynomial
having largest degree among the terms of that first polynomial, with the term in the
second polynomial having the largest degree among that polynomial’s terms. Thus,
the degree of the product of any two non-zero polynomials will be the sum of the
degrees of the two. We see from Fig. 11.2 that the product of the zero polynomial
any other polynomial is always the zero polynomial, so such a property of degrees
(the degree of the product is the sum of the degrees of the two factors) would not
hold if one of the two polynomials were the polynomial 0. That is why we do not
assign a degree to the zero polynomial.

The polynomials investigated in Algebra I are to a great extent linear and
quadratic polynomials, with some brief coverage of special cases of polynomials
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of higher degree. In the course, linear polynomials (polynomials of degree less than
or equal to 1) are investigated individually (for graphs, slopes, and intercepts), in
pairs (for finding intersection points), and sometimes in larger groupings (as in lin-
ear programming). Quadratic polynomials (polynomials of degree 2) are covered
deeply, as well, with some graphing presented, and a heavy emphasis is given to
solving quadratic equations.

Evaluating Polynomials and Solving Polynomial Equations

In the monomial cxn, we think of the components c, x, and n as being numbers, as
was described in Fig. 11.1. We also think of the monomial as being a mathemati-
cal product of the coefficient c and the nth power of some unspecified number x.
Thus, when we replace the variable x with a specific real number, we can calculate
the resulting product. This is called evaluating the monomial at the specified num-
ber. For example, if we evaluate the monomial 4x3 at x = 5, we get 4×53, or 500.
Polynomials are evaluated at a specified number by evaluating each of the mono-
mial terms at that number value, and then adding the results. This can be put into a
concept map as in Fig. 11.5.

Polynomial equations arise in the process of using algebra to provide mathemat-
ical models of real world problems. Finding an answer to the real world problem
through such a mathematical model will require applying algebraic techniques to
the equations, in order to find what is called a solution to the polynomial equation.

Definition A solution to a polynomial equation in Algebra I is a real number such
that when each of the two polynomials in the equation is evaluated at that num-
ber, the resulting two values are equal. (Complex number solutions to polynomial
equations usually are not addressed in Algebra I.)

Particular attention is given to polynomial equations of the form p(x) = 0, where
p(x) is any polynomial, and 0 is the zero polynomial 0x0. Finding solutions to poly-
nomial equations of this form is called solving the polynomial p(x), and the solutions
found are referred to as solutions to the polynomial p(x), or roots of the polynomial
p(x).

Fig. 11.5 Evaluating a polynomial at a fixed real number
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Quadratic Polynomials

In Algebra I, much attention is given to quadratic polynomials and their solutions.
As we develop this segment of the course, again a list of concepts to be covered is
proposed, and a brief narrative written to describe how the class presentation of the
topic will unfold.

Suppose that the following concept list is decided upon:

Quadratic Polynomials
Definition
Factors
Roots
Discriminant
Solving techniques
Quadratic Formula

Once the teacher has prepared a narrative describing how these ideas will be pre-
sented, the teacher then would develop a concept map relating the topics reflecting
the manner in which the teacher views the connections among them. Such a map
will be useful in developing the day-to-day order of presentation of the ideas, and
will assist in the development of individual lesson plans. A possible such map is
given in Fig. 11.6.

Factoring polynomials plays a major role in Algebra I, and some teachers
will want a more general coverage of factoring in addition to that given in Fig. 11.6.
Figure 11.7 gives a possible such map.

The teacher planning the course would develop the narrative and concept maps
for the remaining topic in the original list – graphs – and would determine the best
order in which to present the material, setting up examples, necessary definitions,
and connecting concept maps as the course unfolds. In this way, a concept map
describing the entire course could evolve. A sample master map for a complete
Algebra I course is given in Fig. 11.8. It is complex; however if it is examined
relative to the major topics identified and how each of those is connected to other
ideas treated in the course, it becomes easier to read.

The value in such a map is that it provides a template for all teachers in a partic-
ular school to use as they teach the course. Indeed, the faculty could develop such a
set of “expert” concept maps to serve as a model for the course their school would
offer.

We have looked at the development of only a very small portion of the master
map – a part in the segment on polynomials and rational functions. In the process,
we have developed a number of maps of concepts related to the three nodes within
that map segment.

To complete the Algebra I course development using a concept mapping
approach will require the careful analysis of each of the remaining topical segments,
and the development of the necessary concept maps related to the nodes within those
segments. That process will require the teacher to think carefully through each of the
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individual concepts and their meanings, and then to explore the many connections
that exist among the concepts and sub-concepts identified. The maps produced may
differ from teacher to teacher, but all who go through the process will gain a greater
understanding of the topics in the course, and will recognize any existing areas in
the course where their own understanding needs strengthening.

In addition to being a useful tool in course planning, concept mapping can be
quite valuable in organizing lessons. This value can come into play when a teacher
is using a textbook in which the order of presentation in the text is not comfortable
for them. One teacher dealt with this situation by reviewing the textual material care-
fully, identifying the concepts included in that material, determining the primary con-
cept(s) being addressed therein, and then using the main concept they could identify
as the root concept in a concept map to describe the entire unit. Specifically, the
table of contents for the unit in the text presented the topics in the following order:

Area of a Circle
Circumference of a Circle
Circle Vocabulary
Area of a Triangle
Substitution
Distributive Property
Order of Operations

A review of the unit, though, led the teacher to decide that the goal of the unit
was to have the students learn how to deal with complex numerical expressions. The
map in Fig. 11.9 was produced, and then used to decide how the material would be
addressed in daily lesson plans of the teacher. As can be seen, the order in which
topics were covered using the concept map emphasized the relationships the teacher
visualizes as the optimal way of connecting the concepts, rather than the textbook
author’s presentation.

The three properties that we use to evaluate concept maps - that they are clear,
correct, and complete - allow us to use concept mapping in student assessment. For
example, suppose that we have been discussing the idea of function in Algebra I. By
giving the students a list of topics related to functions and asking them to describe
the connections among them in a concept map, we can get a useful picture of how
the students grasp the main concepts the teacher is presenting.

Figure 11.10 is a concept map that gives a comprehensive picture of the idea of
function in Algebra I, and could serve as a guide to the teacher in forming the class-
room discussion of the concepts surrounding functions, as well as being a source for
ideas on how to have the students use concept maps to show their understanding of
the concepts involved.

For example, the teacher might give the students a concept list such as:

Function
Domain
Range
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Fig. 11.9 Parsing of a mathematics text unit based upon its concept organization

Fig. 11.10 Function and its underlying concepts

The teacher then could ask the students to produce a concept map describ-
ing the relationships and connections they see among these concepts. Using the
clear-correct-complete assessment model, the teacher would evaluate the maps and
determine the level of understanding each student has of the connections among the
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Fig. 11.11 A formal concept map definition of scientific notation

Fig. 11.12 A concept map of relationships among sets of numbers encountered in Algebra I
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Fig. 11.13 The value of using concept maps in mathematics courses

ideas. This will allow the teacher to determine what kind of assistance is needed to
help the student fill critical gaps in knowledge and understanding.

Concept mapping techniques and structures also can be used to express defini-
tions, as in Fig. 11.11, and to clarify relationships among sets, as in Fig. 11.12.

Most important, however, is that teachers have the opportunity to introduce this
important tool to their planning, and present this visual learning technique to all
of their students. Indeed, the concept map in Fig. 11.13 expresses the value of the
concept mapping approach to mathematics teaching in general.
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Chapter 12
Enhancing Undergraduate Mathematics
Learning Using Concept Maps
and Vee Diagrams

Karoline Afamasaga-Fuata’i

Data from a group of six students who participated in a study, which investigated the
impact using concept maps and Vee diagrams (maps/diagrams) has on learning and
understanding new advanced mathematics topics, is presented. Constructing com-
prehensive topic concept maps, and Vee diagrams of problems as ongoing exercises
throughout the semester was a requirement of the study. Students quickly found
that learning about the new tools and a new topic was demanding. However, they
also found that the concurrent use of the two tools in learning a new topic con-
tributed substantively in highlighting the close correspondence between the concep-
tual structure of the topic and its methods. Having students display their develop-
ing understanding and knowledge on maps/diagrams greatly facilitated discussions,
critiques, dialogues and communications during seminar presentations and one-on-
one consultations. Maps/diagrams were qualitatively assessed three times during
the study period. It was found that there was noticeable growth in students’ in-depth
understanding of topics as indicated by increased valid propositions and structural
complexity of concept maps, and multiplicity of methods and suitability of guiding
theoretical principles on Vee diagrams. The chapter discusses the results and pro-
vides implications for teaching mathematics particularly for promoting meaningful
learning and effective problem solving in mathematics classrooms.

Introduction

The vision of classrooms filled with students actively engaged in working and com-
municating mathematically is one that is encapsulated by various Teaching and
Curriculum Standards (NCTM, 2007; AAMT, 2007; NSW BOS, 2002). Research
shows that students’ perceptions of what is important to learn in mathematics is
influenced by routine classroom practices and assessment programs, that is, stu-
dents’ mathematical learning reflect the way they have been, and are, taught math-
ematics (Thompson, 1984; Knuth & Peressini, 2001; Schell, 2001). In addition,
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pedagogical decisions teachers make about teaching and assessment are influenced
by their mathematical beliefs (Ernest, 1999; Pfannkuch, 2001). Typically, an author-
itative perspective views mathematics as a body of knowledge to be taught by trans-
mission and learnt by simply receiving the information. In contrast, cognitive and
social perspectives view mathematics learning and understanding “as the result of
interacting and synthesizing one’s thoughts with those of others” (Schell, 2001, p. 2)
suggesting mathematics knowledge is a social construction that is validated over
time, by a community of mathematicians. Hence making sense is both an individ-
ual and consensual social process (Ball, 1993). Ideally, classroom practices should
equip students with the appropriate language and skills to enable the construction of
the mathematics that is taught, and critical analysis and justification of the construc-
tions in terms of the structure of mathematics (Richards, 1991). Lesh (2000) argues
that, “mathematics is not simply about doing what you are told . . . . . . mathematics
is about making sense of patterns, and regularities in complex systems . . . it involves
interpreting situations mathematically.” (p. 193) while Balacheff (1990, p. 2) points
out that “students need to learn mathematics as social knowledge; they are not free
to choose the meanings they construct. These meanings must not only be efficient
in solving problems, but they must also be coherent with those socially recognized.
This condition is necessary for the future participation of students as adults in social
activities.”

Existing problems with mathematics learning in Samoa (as in most other coun-
tries) are perceived as related to students’ perceptions of mathematics, ability to
communicate mathematically, and critical problem solving (Afamasaga-Fuata’i,
Meyer, Falo, & Sufia, 2007). Firstly, in Samoa the narrow view most undergradu-
ate students have, reflects their school mathematics experiences, found to be mostly
rote learning, a problem consistently raised by national examiners. Even the top
10-percent of Year 13 (equivalent to Year 12 in Australia) students consistently
struggle with applications of basic principles to solve inequations/equations and/or
graph functions (Afamasaga-Fuata’i, 2005a, 2002; Afamasaga-Fuata’i, Meyer, &
Falo, 2007). Secondly, students justify methods in terms of sequential steps instead
of the conceptual structure of mathematics. Thirdly, students may be proficient in
solving familiar problems, however, the lack of critical analysis and application
becomes evident when they are given novel problems (Afamasaga-Fuata’i, 2005b).
Such approaches are symptomatic of authoritative classroom practices in which stu-
dents typically do not question, challenge or influence the teaching of mathematics
(Knuth & Peressini, 2001, p. 10). The examination-driven teaching of sec-
ondary mathematics in Samoa naturally inculcates a narrow view of mathemat-
ics (Afamasaga-Fuata’i, 2005a, 2002), As a result, problem solving skills students
acquire over the many years of secondary schooling may not necessarily be situ-
ated “within a wider understanding of overall concepts” and would probably not be
“long-lasting” (Barton, 2001).

As one way of addressing the demonstrated problems about students’ mathe-
matical performance, a series of studies was conducted to explore how their math-
ematical understanding could be improved beyond the algorithmic and procedural
proficiency typically characterising their mathematical experiences after years of
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schooling. Since students also experience difficulties when trying to communicate
and argue mathematically (Richards, 1991; Schoenfeld, 1996), transfer, and apply
what they know to solve novel problems (Afamasaga-Fuata’i, 2007, 2006, 2005a,
2002), it became increasingly important, for Samoan mathematics education, that
research is conducted to examine students’ conceptions and evolving understanding
of the mathematics that is embedded in familiar/simple problems in anticipation of
solving more challenging and novel problems. More importantly, by having students
identify the relevant conceptual bases of a problem and its solution would reveal the
extent and depth of students’ integrated or fragmented understanding of the relevant
mathematics.

The data reported here was collected from a group of six undergraduate students
who used concept maps and Vee diagrams (maps/diagrams) to communicate their
growing understanding of a new topic they had not encountered recently in their
mathematics courses. Consequently, the challenge was for them to learn about a
new topic through independent research and then construct maps/diagrams to illus-
trate their developing understanding. New socio-cultural practices in the classroom
setting (i.e., socio-mathematical norms) were established, to define the expectations
for all students participating in the study. For example, classroom interactions and
presentations of an individual’s work in a social setting were in accordance with the
principles of the social constructivist and socio-linguistic perspectives, which view
the process of learning as being influenced and modulated by the nature of interac-
tions and linguistic discourse undertaken in a social setting (Ball, 1993; Schoenfeld,
1996; Ernest, 1999; Richards, 1991; Knuth & Peressini, 2001).

This chapter’s focus questions are: (1) In what ways did the activities of concept
mapping and Vee diagramming influence students’ mathematics learning? (2) What
roles did concept maps play in learning about the structure and nature of mathe-
matics learning? (3) What roles did Vee diagrams play in facilitating the problem
solving process and generation of multiple methods?

The main assumptions of the study included (1) mathematics has a conceptual
structure that guide its methods of solutions (Schoenfeld, 1991); (2) knowledge is a
human construction; (3) meta-cognitive skills are required for controlling and mon-
itoring the problem solving process; and (4) educational and classroom practices
tend to sanction a particular view of mathematics learning. The theoretical frame-
work of the study is examined next followed by the methodology and analysis of
the data collected.

Theoretical Framework

The difference, between an authoritative perspective of mathematics learning and
Ausubel’s cognitive theory of meaningful learning, socio-linguistic and social
constructivist perspectives, is the extent to which classroom discourse and social
interactions are supported (Wood, 1999). That is, students learn mathematics in
meaningful ways, by developing their understanding through the construction of
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their own patterns of meanings and through participation in social interactions and
critiques (Novak & Cañas, 2006); Novak, 2002). In contrast, rote learning tends to
accumulate isolated propositions rather than developing integrated, interconnected
hierarchical frameworks of concepts (Novak & Cañas, 2006; Ausubel, 2000; Novak,
2004).

The theoretical principles of meaningful learning, describe the process in which
the learner deliberately chooses to relate new information to existing knowledge
by assimilation through progressive differentiation (i.e., a reorganization of existing
knowledge under more inclusive and broadly explanatory principles) and/or integra-
tive reconciliation (i.e., integration of new and old knowledge into existing knowl-
edge structures through a degree of synthesis) (Ausubel, 2000; Novak, 2004, 1998,
1985). It is argued that, making connections between old and new knowledge, may
be cognitively facilitated by organising and constructing, and visually communi-
cated through, maps/diagrams.

A hierarchical concept map is a graph consisting of interconnecting concepts
(nodes), which correspond to important concepts in a domain and arranged hierar-
chically, connecting lines indicate a relationship between the connected nodes, and
linking words describe the meaning of the interconnections (explanation). A propo-
sition is the statement formed by reading the triad(s) “node–linking-words→node”
(Novak & Cañas, 2006). For example, the triad “Functions – may be described
using→equations” forms the proposition, “Functions may be described using equa-
tions.” Having students identify main concepts and organize them into a concept
hierarchy of interconnecting nodes with propositional links can indicate the existing
state of students’ cognitive structures or patterns of meanings.

Gowin’s epistemological Vee was developed as a strategy to assist in the under-
standing of meaningful relationships between events (phenomenon), processes or
objects. It visually illustrates the interplay between what is known and what needs
to be known or understood. With the Vee-structure situated in the event/object to be
analysed, the two sides represent on the left, the thinking, conceptual aspects under-
pinning the methodological aspects displayed on the right. All elements interact
with one another in the process of constructing new knowledge or value claims, or
in seeking understanding of these for any set events and questions. A completed Vee
diagram represents a record of an event or object that was investigated or analysed
to answer particular focus questions (Novak & Gowin, 1984).

Gowin’s Vee was subsequently adapted to guide the process of solving a math-
ematics problem (Fig. 12.1). The Vee diagram was used, in this study, as a tool to
not only assess students’ proficiency in solving a problem but as well the depth and
extent of the conceptual bases of this proficiency by having students identify the
mathematical principles and concepts underpinning listed methods and procedures.
Hence, the structure of the Vee (Fig. 12.1) with its various sections and guiding
questions provide a systematic guide for students’ thinking and reasoning from the
problem statement (Event/Object) to identify the given information (Records) and
questions to be answered (Focus Questions).

The reasoning process may continue onto the identification of relevant Concepts
and Principles that potentially suggest, or can guide the development of appropriate
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Fig. 12.1 The mathematics problem solving Vee diagram (Afamasaga-Fuata’i, 1998)

methods and procedures (Transformations) to generate an answer (Knowledge
Claims) to the focus questions. Alternatively, if methods are easily obtainable (i.e.,
for familiar problems), then students are challenged to identify the relevant prin-
ciples and concepts underpinning the methods. The arrow indicates that there is a
continuous interplay between the two sides, as students reason through the various
sections of the Vee. This (continuous interplay) is a necessary process to ensure that
the conceptual and theoretical underpinnings are abstracted and displayed on the
left while the given information, interpretations and subsequent transformations to
find answers are displayed on the right side.

The social constructivist perspective views learning as the construction of knowl-
edge to make sense of our experiences whilst socially interacting with others, and
that together students and teachers can learn from each other’s strategies. Also,
the socio-cultural theories view classroom practices as means of reinforcing cer-
tain views of what it means to learn and succeed in mathematics. Collectively,
learning mathematics involves both individual and social processes. According to
Schoenfeld (1991) and Ernest (1999), when an effort is made to change classroom
practices into activities that involve: questioning, analyzing, conjecturing, refuting,
proving, extending, and generalizing as students solve problems, those rituals and
practices can actually shape the behaviour and understanding of students by mak-
ing it more natural for them to think and reason mathematically. Overall, both the
meaningful learning and social constructivist approaches support the meta-cognitive
development of students’ understanding and the active construction of mathemati-
cal thought whilst publicly presenting, for example, maps/diagrams, within a social
setting.
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Methodology

The study was conducted, with the class meeting three times a week for one-
hour sessions over 14 weeks, as an exploratory teaching experiment (Steffe &
D’Ambrosio, 1996) using the meta-cognitive tools of concept maps and Vee dia-
grams (Novak, 1985, 2004) with students presenting their work for group and
one-on-one social critiques. After completing practice sessions, in constructing
maps/diagrams and presenting in a social setting for critiques, students selected their
new topics as content for the application of the meta-cognitive tools. The six stu-
dents (Student 1–6) chose the topics Laplace’s transform, trigonometric approxima-
tions, least squares polynomial approximations, multivariable functions and their
derivatives, partial differential equations, and numerical methods of solving first
order differential equations.

The newly established socio-mathematical norms required students to under-
take independent research of their new topic; be prepared to justify their con-
structions publicly in-class; address concerns raised by, and negotiate meanings
with, their peers and researcher during critiques; and to continuously improve their
maps/diagrams for subsequent presentations. Students were expected to demon-
strate and communicate their understanding of the new topic clearly and succinctly
so that the critics (peers and researcher) could make sense of it.

Students engaged in the cyclic process of presenting→revising→critiquing→
presenting for at least three iterations over the semester. The data collected consisted
of progressive concept maps (4 versions) and Vee diagrams of four problems (at
least 2 versions each).

Data Analysis

Concept maps and Vee diagrams are analysed qualitatively. For concepts maps, the
analysis was in terms of the structural complexity, and validity of concept labels and
propositions. Vee diagrams, on the other hand, the analysis was in terms of the extent
of the appropriateness and relevance of the Vee entries (i.e., overall criteria), and the
mutual correspondence between the listed conceptual information and displayed
methodological information (i.e., specific criteria) in the context of the problem.

Concept Maps

The qualitative approach adopted with the map analysis is a modification of the
Novakian scheme (Novak & Gowin, 1984) and by using only counts of occurrences
of each criterion. Collectively, the criteria assess the concept maps in terms of the
structural complexity of the network of concepts, nature of the contents (entries) of
concept boxes (nodes) and valid propositions.
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The structural criteria indicate the extent of integrative cross-links between con-
cepts, progressive differentiation between levels, and the number of average hier-
archical levels per sub-branch, multiple branching nodes, sub-branches and main
branches. Progressive differentiation at a node is indicated by multiple outgoing
links from the node whilst integrative reconciliation is represented by cross-links,
which connect concepts across concept hierarchies or (sub-)branches.

The contents criteria of a node indicate the nature of students’ perceptions of
the mathematical knowledge in terms of mathematical concepts as distinct from
illustrative examples, procedural steps, or descriptive linking words. Illustrative
examples are those used to illustrate concepts. Inappropriate nodal entries are pro-
cedural entries, redundant concepts and linking-word-type. Redundant entries indi-
cate students’ tendency to learn information as isolated from each other instead of
identifying potential integrative cross-links with the first occurrence of the concept
or consider a re-organization of the concept hierarchy. Linking-word-type indicates
students’ difficulties to distinguish between a “mathematical concept” and descrip-
tive phrases.

Valid propositions are defined as mathematically correct statements or propo-
sitions constructed from at least two valid, interconnected nodes with appropriate
linking words that describe the nature of the (string of) inter-relationship(s). A
proposition is invalid if linking words are missing, incorrect nodes have inappro-
priate entries.

Vee Diagrams

Vee diagrams are qualitatively analysed to determine whether or not the conceptual
and methodological sides mutually support each other. That is, do the listed princi-
ples support the given solution? Are the listed principles the most relevant for the
displayed solution? Is the knowledge claim supported by the listed principles and
transformations? As Gowin (1981) points out: “The structure of knowledge may
be characterized (in any field) by its telling questions, key concepts and conceptual
systems; by its reliable methods and techniques of work. . .” (pp. 87–88). Hence, stu-
dents’ understanding of the production of mathematical knowledge claims would be
demonstrated by the entries on the Vee.

Data Collected and Analysis

The data collected is presented beginning with the concept map data and then fol-
lowed by the Vee diagram data before a discussion of the main themes that emerged
from both sets of data.
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Concept Map Data

Data for the six students’ progressive concept maps (first and final maps) are shown
in Tables 12.1 and 12.2 below. The six cases are presented next.

Student 1’s Topic – Laplace’s Transform (LT)

From his research, Art selected a few concepts for his first map to provide a defini-
tion for LT, and to illustrate how they are used in solving initial value problems. His
first concept map had 17 nodes of which 14 were valid with 3 inappropriate ones
due to procedural, redundant and link-word-type entries. Only 35% of the proposi-
tions were valid with only one integrative crosslink, see Table 12.1. The high pro-
portion of invalid propositions was due to missing or inappropriate linking words.
At the first group critique, critical comments focused on the need to reconsider the
hierarchical order of concepts, missing relevant concepts and inappropriate concept
labels. Comments from subsequent critiques over the semester pinpointed areas of
confusion, which guided Art to sections of his map that needed re-organization and
re-structuring to enhance its intended meaning. By the end of semester, Art’s final
concept map showed an increase in valid nodes (from 14 to 24) with significantly
more valid propositions (from 35 to 78%), more sub-branches (from 6 to 10), higher
average hierarchical levels per sub-branch (from 4 to 6), an additional main branch
(from 3 to 4) and an increased number of multiple branching nodes (from 4 to 8)
(Table 12.2).

Overall, Art’s final concept map had become more integrated and complex as his
understanding expanded and became more enriched as a result of critiques, revisions
and individual research. For example, he wrote: “with concept maps, its uses that I
have experienced from the semester is that they broaden my understanding of my

Table 12.1 Concept maps’ contents and valid propositions criteria

Referente Art Art Ada Ada Lou Lou Asi Asi Afa Afa Les Les
Student 1 2 3 4 5 6
Map 1 4 1 4 1 4 1 4 1 4 1 4

Concepts 14 24 8 19 13 43 12 51 13 43 36 84
Examples 0 0 2 0 0 0 1 0 2 2 2 4
Definitional 0 2 2 6 0 0 3 0 0 0 0 0
Inappropriate 3 0 2 2 0 0 1 0 0 1 2 17
Total 17 26 14 27 13 43 17 51 15 46 40 105
Concepts 82% 92% 57% 70% 100% 100% 71% 100% 87% 93% 90% 80%
Examples 0% 0% 14% 0% 0% 0% 6% 0% 13% 4% 5% 4%
Definitional 0% 8% 14% 22% 0% 0% 18% 0% 0% 0% 0% 0%
Inappropriate 18% 0% 14% 7% 0% 0% 6% 0% 0% 2% 5% 16%
Valid prop 6 18 6 17 12 41 6 42 14 47 40 87
Invalid prop 11 5 8 14 0 1 10 17 2 2 5 28
% Valid 35% 78% 43% 55% 100% 98% 38% 71% 88% 96% 89% 76%
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Table 12.2 Concept maps’ structural criteria

Referent Art Art Ada Ada Lou Lou Asi Asi Afa Afa Les Les
Student 1 2 3 4 5 6
Map 1 4 1 4 1 4 1 4 1 4 1 4

Sub-branches 6 10 4 8 3 15 6 20 4 19 14 32
Hierarchical levels 4 6 4 7 8 8 4 7 4 9 10 15
Main branches 3 4 2 3 1 6 3 4 3 5 4 5
Integrative Cross-links 1 1 0 0 4 6 0 4 0 4 7 18
Multiple Branching nodes at:
Level 1 2 2 2 2 2 2
Level 2 2 3,2 2 3 3,2
Level 3 2,2 2,2 2 2,2 2,3 2,6 4 2 2
Level 4 2 2 5 2 2 3,2,3 2 2,4,2
Level 5 2 2,2,2,3 2 3 2 2 2
Level 6 2 2 2,2 2 2,2 2
Level 7 2 2,3 2,2,2 2 2 2,2 2
Level 8 2 3 2 3,2
Level 9 2 2,3
Level 10 2 2 2,2
Level 11 2 2 2
Level 12 2,2 2 3,2,3,2
Level 13 2 2
Level 14 2 2,2

Total # multiple 4 8 3 3 2 14 4 13 3 15 10 16
Branching nodes

chosen topic . . . (constructing concept maps) allows the writer to easily understand
his own topic through substantial and more comprehensive links and to simply make
changes from comments in class presentations.”

Student 2’s Topic – Trigonometric Approximations

Ada found his topic hard, but after reading a few textbooks, he chose to approach
his topic using his background knowledge of Taylor’s polynomial. For example,
he chose to demonstrate the concept of approximations of values of a compound
trigonometric function by successively approaching the point. Thus, the first map
was mainly procedural but with time and critiques, his final map evolved into a
more conceptual one with the demonstration of method of application relegated to
a Vee diagram.

For example, Ada wrote in his report: “I was forced to look for key concepts
involved in Taylor’s polynomial and how they are interrelated to other branches of
mathematics. I sought how the terms in the series functioned and what relationship
they had to practical applications like speed, acceleration and distance, forming the
ability to use this tool in other situations. . . . Overall, it was a difficult but helpful
experience in which I have a deeper understanding of Taylor’s polynomial but as yet
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many unanswered questions.” Ada’s final concept map had relatively more valid
concepts (from 8 to 19). Unfortunately, 6 nodes had definitional phrases, which
require further analysis to form more succinct conceptual entries. There was also
an increase in valid propositions (from 6 to 17) but the inordinately high invalid
propositions (from 8 to 14) are due to missing linking words, and inappropriate-
nodes (definitional phrases).

Student 3’s Topic – Least Squares Polynomial Approximations (LSPA)

Lou’s first concept map consisted of one main branch with only two multiple
branching nodes, and four integrative cross-links, see Table 12.2 for data and the
map in Fig. 12.2. From the first group critique, she realized that her map did not pro-
vide sufficient concepts to explain the main ideas relevant to her topic particularly
the concept of errors in spite of having included the concept of squared differences.
Hence, with more readings, and research, she added in concepts of errors, five-
point-least-square-polynomial, smoothing formula, data smoothing and nth degree
to name a few, for her first revisions.

However, as she wrote in her report: “Despite the clustered and plentiful infor-
mation given in my map, the main concept of errors is lost. This is because there was
less emphasis on understanding the topic. Rather, a collection of various concepts
seemed more important at the time. Hence, an improved map would require mean-
ingful concepts, mathematical formula, neater presentation, and simple examples. I
learnt here that the basic idea behind the topic is that there is an error and everything
falls around the minimising of this error.”

With more critiques, further research for additional concepts and subsequent revi-
sions, Lou realized that the concepts of Least-square polynomial P(x), Function F(x)
and Error = Y(x) – P(x) have to be positioned appropriately and the case for contin-
uous data required further clarification.

By her third revision, Lou noted that her revised map “showed a clear hierarchy
of linking concepts . . . hence it was easier to follow what the map is trying to tell us.
However, there is still work to be done on clarification, organization and available
information.” She also learnt that “organization plays a huge role in making the map
comprehensive.”

With more critiques and revisions, Lou’s final concept turned out to be a “a
much more effective one in terms of understanding the concepts related to the
topic (LSPA). So, the idea of errors was clear, its application and determination
was also specified, and the table for clarification of Newton’s formula, was also a
great improvement. ”

In summing up her experiences in the study, she wrote: “I have now seen an evolve-
ment from a very basic map to a more complicated one. The surprising fact discovered
is that the basic map (i.e., first map) was more confusing than the resulting one (i.e.,
final map).” This is quite a revealing statement about the value of her final map as a
more meaningful, comprehensive and informative piece of work. Part of Lou’s final
map is shown in the right map in Fig. 12.3 for comparison to her first attempt.
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Fig. 12.2 Lou’s first concept map

Student 4’s Topic – Multivariable Functions

Asi’s first concept map had 12 valid nodes with 4 invalid nodes due to a definitional
phrase and inappropriate entries. The invalid propositions (10 out of 16) were due
to missing linking words or inappropriate nodes (see Tables 12.1 and 12.2). In spite
of Asi’s efforts, the group found her first concept map presentation confusing due
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Fig. 12.3 Partial view of Lou’s final concept map

to vague and inappropriate linking words. Asi then revised and reorganized her con-
cept hierarchy to make the map more meaningful. Subsequent one-on-one and group
critiques over the semester eventually resulted in a final map which was more differ-
entiated with increased multiple branching nodes (from 4 to 13), and sub-branches
(from 6 to 20) with a higher average hierarchical levels per sub-branch (from 4 to
7). In response to critical comments, Asi reorganized the concept hierarchy, revised
linking words to make them more descriptive of interconnections, created more sub-
branches, and provided meaningful integrative cross-links to improve the clarity and
organization of information. Overall, the final map had significantly more valid nodes
(from 12 to 51) and valid propositions (from 6 to 42). Asi wrote in her final report: “To
me, using concept maps has given me a chance to learn more of my research topic.”

Student 5’s topic – Numerical methods

Afa’s first concept map had 15 valid nodes of which 2 were examples, 3 multi-
ple branching nodes, and 4 sub-branches with average hierarchical levels of 4 per
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Fig. 12.4 Student 5’s final concept map

sub-branch. Through critiques and subsequent revisions, his final map evolved into
one that was more differentiated and enriching with substantial increases in sub-
branches (from 4 to 19), average hierarchical levels per sub-branch (from 4 to 9),
main branches (from 3 to 5), integrative cross-links (from 0 to 4), and multiple
branching nodes (from 3 to 15). Overall, valid propositions increased from 14 to 47.
Figure 12.4 shows Afa’s final concept map. It was also the map with the highest
proportion of valid propositions (96%).
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Student 6’s Topic – Partial Differential Equations (pdes)

Les’ first concept map had 38 valid nodes with only 2 invalid ones due to redundant
entries. The map differentiated between first and second order pdes with further
differentiation at lower levels into homogenous and non-homogeneous types, and
had 40 valid propositions with only 5 invalid ones due to incorrect/vague linking
words and inappropriate nodes.

With further critiques and subsequent revisions, Les’ final map eventually
evolved into one that was substantially more complex with increases in sub-branches
(from 14 to 32), average hierarchical levels per sub-branch (from 10 to 15), mul-
tiple branching nodes (from 10 to 16) and integrative cross-links (from 7 to 18).
Valid propositions had also increased from 40 to 87. However, the higher number of
invalid propositions (from 5 to 28) is due to an increased number of inappropriate
nodes resulting from inappropriate (procedural, redundant and linking-word-type)
entries and missing linking words.

Les created additional sub-branches in the final concept map to provide concep-
tual bases for his Vee diagram problems. He wrote in his final report: “I myself
understand fully the path from one concept to another and how a conclusion can be
obtained because I created the concept maps.” He continued on to state that “From
my experience in laying out my concept map I have learnt that differentiating first
order and its special cases and second order and its special cases avoids confusion.
It helps me to classify each pde I come across so that I could see the big picture.”
Figure 12.5 shows part of Les’s final map. It was also the map with the most cross-
links and multiple branching nodes.

Vee Map Data

Vee diagrams are assessed qualitatively in terms of one overall criteria and a more
specific one. Specifically, the overall criteria assesses the appropriateness of entries
in each section according to the guiding questions in Fig. 12.1 and the given problem
whilst the specific criteria refers to the extent of integration and correspondence
between listed principles and displayed main steps of the solutions. The emphasis is
on the relevance, appropriateness and completeness of listed Principles in relation
to methods and procedures displayed under Transformations. Rather than present
each student’s case, general themes emanating from their work are.

Overall Criteria

The overall criteria assess whether students had satisfactory entries for the
sections Theories, Concept, and Records as these are basically extracted and inferred
from the problem statements in accordance with the guiding questions (Fig. 12.1).
Also because they were free to select their problems, obtaining the correct answers
(Knowledge Claims) was not problematic. However, what caused a lot of critical
comments and numerous revisions were the inappropriate entries for the sections,
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Principles, and Transformations. The general weakness with the former is the lan-
guage used to describe principles. For example, the intention is clear but wording
were initially too procedural in contrast to theoretical statements of principles, gen-
eral rules and formal definitions. The tendency was to provide only formulas without
clarifications subsequently leading to ambiguities. With transformations, listed main
steps did not always have supporting principles on the Vee.

Specific Criteria

The specific criteria assess the degree of correspondence between the listed princi-
ples and displayed methods. Most of the students scored low in their initial maps.
However, with critiques, evolving comprehensive concept maps, and subsequent
revisions over the semester, students’ listed principles improved to become more
conceptual statements, and the principle lists expanded to include key principles
that support listed main steps in the transformation section. As one of the students
wrote in the final report: “the principles section required much thought and reor-
ganising . . . my struggle was to ensure the principles were general statements and
formula that became tools for solving the given problem.”

Figure 12.6 shows an example of one of Lou’s revised Vee diagram. Feedback
from the critique concerned the need to “discuss the significance of the quadratic
function approximation in relation to the linear function in Vee-map 1.” Subse-
quently, the next revision (Vee-map 2–3rd attempt) showed (i) the addition of “Prin-
ciple 6. Comparing the least-square functions for the same data values enables one
to see which one approximates the given data better.” and (ii) an elaborated knowl-
edge claim “The lease-squares quadratic function or parabola for the given data is
P(x) = −0.0023x2 + 0.11x + 3.73 since the plot for this P(x) is almost the same
as the least square line, we can say that the least-square parabola for this data is
unnecessary” to replace the previous one-line equation whilst the rest of the Vee
remained as shown in Fig. 12.6.

Discussion

Learning a new topic and learning to use concept maps and Vee diagrams were big
demands of students as Lou puts it: “I began my semester of reading a page over
and over again, looking at examples and reading the same page one more time, only
to realise that I had to reorganize my concepts again. This became my routine for
the study of concept mapping: reading, checking, writing, organizing, . . . , reading,
checking, and onwards I went. ” However, by the end of the semester, Lou wrote: “it
would have been impossible to reach a more comprehensive map without the input
from the class and lecturer.” All six students found that to construct a map that made
sense to the critics, they had to research more, continually revise and re-organize the
concept hierarchies.

Furthermore, the construction of the Vee diagrams was greatly facilitated when
based on a comprehensive integrated and differentiated concept map as evidenced
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by the creation of additional branches on concept maps to illustrate guiding princi-
ples for a method on a Vee diagram. In doing these activities, students learnt more
about the conceptual structure of their topics in more meaningful ways and at a
deeper level as well becoming proficient with the relevant methods and procedures.
As Lou sums up her experiences: “When I presented my last concept map to class,
it dawned on me that I had finally understood what I was struggling to know since
the beginning of semester. The words, ‘Least square polynomial approximations’ no
longer threatened me. I could close my eyes and summarize this topic to someone
else without a doubt in my head that what I would be saying made sense.”

The qualitative analyses of the maps/diagrams demonstrated that the concurrent
use of the two tools in learning about a new topic contributed significantly in high-
lighting the close correspondence between the conceptual structure of a mathematics
topic and its methods. For example, a student wrote: “With the help of constructive
comments from critiques, I was able to work on appropriate Vee maps that elab-
orated on the concept map. This was the fundamental role of the Vee diagrams –
to elaborate on the concepts shown by the concept maps. With this elaboration, I
was able to understand the topic even better.” That is, possessing only a procedural
and algorithmic view of mathematics is limiting. Instead, an enriched knowledge of
the conceptual bases of methods, and in-depth knowledge of the conceptual struc-
ture can motivate students to learn more about their topic. For example, Lou wrote:
“Making sense out of a difficult topic through concept mapping was the miracle
that I was enlightened with. In addition to this awesome discovery, I realised that
the miracle was endless. That is, I could go on learning more about least square
polynomial approximations because there is always more concepts waiting to be
discovered, analysed and revised. So concept mapping is also a tool for extending
one’s knowledge.”

Conclusions and Implications

Students’ progressive concept maps and Vee diagrams showed improvement over time
as a consequence of group presentations, individual work, peer critique and one-on-
one consultations. That is, students’ concept maps evolved into maps that were more
meaningfully integrated and differentiated and more enriching in its conceptual struc-
ture. Their Vee diagrams showed growth in their correspondence between methods of
solutions and listed principles and enhancement of the conceptual integrity of listed
principles from predominantly procedural statements and bold formulas to more con-
ceptual statements, general mathematical principles, and definitions. The increased
structural and conceptual complexity reflected the growth in the extent and depth
of students’ understanding of the links between theoretical principles and methods of
solutions of the selected topic. The established socio-mathematical norms of critiques
and presentations contributed significantly to the developing quality and refinement
of students’ evolving understanding of their topics. The act of talking aloud (pre-
senting and justifying to peers) required a level of reflection that aided in the prob-
lem solving process. In the study, talking aloud had the power to change students’
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performance (Richards, 1991, p. 37) as evident by the dynamic social interactions
during critiques and demonstrated by the progressively complex concept maps and
integrated conceptual and methodological Vee diagrams of their selected topic.

One of the value claims from students’ perspectives is the self-realization that the
construction of maps/diagrams requires and demands a much deeper understand-
ing of interconnections than simply knowing what the main concepts and formulas
are. Although time consuming, the construction of maps/diagrams facilitates learn-
ing the structure of a topic in more meaningful ways. Furthermore, students real-
ized that the communication of their understanding is more effective if concepts
are arranged in a hierarchical order complete with appropriate labels, meaningful
links with concise and suitable linking words. Another value claim of the study is
the potential of applying the meta-cognitive tools to other subject areas by the same
students. This is succinctly captured by Lou’s comments in her final report: “I was
able to apply the theory of concept mapping to my other subjects and found that I
became relaxed when confronted with a difficult topic. Then I was rewarded with
good marks. Before I learnt of concept maps, my initial response to a difficult sub-
ject would be to panic. Then I would try to break the problem down, read, research,
memorize, and do all the things an average student does before understanding some
of the topic being studied. Now I wish that our high school teachers had taught us
about concept mapping. It would have done wonders for me.”

There are still problematic areas that need attention mainly due to the newness
of the tool which students need to overcome with more practice and more time.
As one of the students noted, collecting a list of relevant concepts and formulas is
one thing but actually figuring out how they should all be interconnected is another.
That is, the task of determining the most appropriate linking words to concisely
describe the nature of the interconnection still requires further improvement. From
this study, the 6 students appreciated the utility of the maps/diagrams as means of
illustrating conceptual interconnections within a topic and highlighting connection
between principles and procedural steps. Students also appreciated the value of the
tools in mapping their growing understanding and as means of communicating that
understanding to others in a social setting. Findings from this cohort suggest that
concept maps and Vee diagrams are potentially viable tools for developing a deeper
understanding of the structure of mathematics and facilitative tools to guide and
regulate mathematical discussions and dialogues in mathematics classrooms. Using
these tools as part of normal classroom routine and practices is an area worthy of
further research.
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Chapter 13
Concept Mapping: An Important Guide
for the Mathematics Teaching Process

Rafael Pérez Flores

The chapter deals with a particular way of using concept maps to contribute to the
learning of mathematics by students who begin their formation in engineering at
university level. The focus is on a particular process of teaching. When the expert in
mathematics analyses in detail the material of his assignment, he is able to realise
that within the structure of knowledge itself, a group of concept maps are found in
an implicit way. The maps made by the professor are of great importance when he
uses them as a guide for his performance in the classroom. When the teacher utilises
in the classroom a guided way of performing with the maps, he implements a didac-
tic strategy and he helps students to develop skills of thought to achieve meaningful
learning. This way of performing allows the development of the processes of basic
thinking in mathematics; it facilitates the understanding of concepts and the appli-
cation of them within the process of solving problems.

Introduction and Antecedents

When one looks at the different paradigms about education frequently encountered
today, such as the cognitive, humanistic and socio-cultural paradigms, in general
terms it can be observed that learning is understood as a development of both cog-
nitive as well as affective elements.

Resulting from an analysis of the principle aspects of each of the educational
paradigms, Román and Dı́ez (1999) put forward the idea of a paradigm or integrat-
ing model, a socio-cognitive paradigm, consisting of the fusion of two: the cognitive
and the socio-cultural, an integration resulting from a search for complementary
models. The authors point out that together the cognitive and the socio-cultural
paradigms can complement each other to give meaning to what is learnt. This com-
plementary model finds support in the affirmation by Vygotsky (1979), namely, the
potential of learning (i.e., the cognitive dimension) is developed by means of con-
textualized socialization (i.e., the cultural dimension).
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Román and Dı́ez (1999) point out that certain important aspects must be taken
into consideration, such as: how does the student learn, how does the teacher
teach and what is the atmosphere and life in the classroom. The authors, from
this perspective, emphasize that one can and should complement both paradigms.
While the cognitive paradigm is more individualistic, the socio-cultural paradigm
is more socializing. The first centers around the individual, the thought pro-
cesses both of the teacher and of the student, and the second centers around the
context-group-individual interaction and vice versa. Following these ideas, learn-
ing mathematics may be understood as a development of capacities (i.e., cognitive
elements the student develops while relating with the mathematical content dur-
ing the learning process) as well as attitudes (i.e., affective elements developed in
the context of the classroom as a product of the interactions with the teacher and
companions).

As is well known, concept maps are an important teaching tool to assist in the
learning of different contents (Novak and Gowin, 1988). But one must not forget
that this in its turn implies starting up thought processes that favor the development
of a cognitive structure and in addition offer a great opportunity, depending on the
way the teaching activities are organized, for the development of affective aspects
in the context of collaborative learning.

In a great number of curricula models rooted in different educational paradigms,
reasons can be found for the use of concept maps in the process of teaching and
learning. But also by analyzing educational panoramas in different regions of the
world, we find other reasons of great importance that justify the study and introduc-
tion of novel teaching methodologies that include concept maps. Considering what
today is known as, namely, “the society of knowledge” or “the society of infor-
mation”, the development of cognitive and affective elements, also known as the
development of competence, has become the leader in educational systems, from
the early levels up to university, in many nations.

It is important to mention the process of agreement in the European Area of
Higher Education and the development of competence, (Hernández, Martı́nez, Da
Fonseca, and Rubio, 2005). The Universities in the Europe of Knowledge play a very
important role in social and human growth/development. The universities have the
task of affording the citizens the necessary competence to face the challenges of the
new millennium, as well as contributing towards the consolidation and enrichment
of the citizens of Europe. The declaration made in 1988 at the Sorbonne emphasizes
the central role of the Universities in the development of European cultural dimen-
sions and the creation of the European Area of Higher Education in order to favor
the mobility of the citizens and the ability to obtain employment for the general
development of the continent.

The systems of higher education and research of all the nations, not only in
Europe, must be continually adapted to the ever changing needs and demands of
society. The transformations that constantly appear in societies evoke reflections in
the organizations about its role, commitment and especially the way to confront the
new needs and demands of society. In the case of educational institutions reflection
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in the pedagogical world is important in order to be able to attend to and offer a
better formation of the students in accord with the characteristics of the context.

The commonly evident characteristics in present day societies of almost all the
countries force reflection and discussion about the role of the universities and their
commitment to society. In the same way today, to speak of changes to aid the forma-
tion of the student demands special attention to the process of learning and teaching
in order to create ways of acting in the classroom different to the usual or classi-
cal ones. In other words, it is paramount not to forget the importance of the role
of didactics when carrying out actions in the classrooms to expedite the cognitive
activity of the student allowing him to develop his thought potential which in its turn
spurs him on to learn. As Román (2005) has described, it is a question of achieving
in the student a meta-cognitive autonomy to facilitate his integration in a present
day social context characterized by information, knowledge and a great diversity of
activities.

When one looks at the educational institutions, both at the basic level and at
the university level, one can appreciate and distinguish difficult situations. Nowa-
days there are throughout the world problems related to the teaching and learning
of mathematics. Certainly, this reality in education has increased an interest to learn
about, from different standpoints, studies that offer an alternative or guide for teach-
ing and learning of this content. Mathematics is of great importance, among other
aspects, for its application in science, technology and even in the context of daily
life, but, also, it has great educational value at all levels since it permits the devel-
opment of thought De Guzmán (1999).

Something even more important, pointed out by different thinkers like Casassus
(2003), is that the changes that imply new methods (methods of teaching and learn-
ing depending on the development of competence) that permits the citizen to inte-
grate in the activities of society, are changes or transformations that aim to a great
extent at social equity, as well as improving higher education.

With regard to the social commitment of the universities there are weighty
aspects in the proposals (for the development of competence) that are primordial
for the student’s learning by taking into consideration the cognitive and affective
dimension of the learner. As explained by Casassus (2003), the variables within the
educational institutions (internal variables) have greater weight than the variables
outside the institutions (external variables) such as the families, the social milieu
and what this implies, for instance: the previous academic formation of our stu-
dents. The variable within the institution: “teaching without regard for learning”,
in other words without attention to the development of competences, allows certain
external variables to enter into action leading to, as a result, drop outs or failure at
school.

Whatever strategy eases the learning process of mathematics is important for its
potential contribution to the development of competence and all that it implies. All
the work towards achieving proper formation in the students begins in the classroom
with different ways of acting by the teachers, reflecting upon the attitudes and cur-
rent didactic tools. This chapter proposes that concept maps represent a didactic
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tool that contributes to learning of quality; the latter is defined as learning that
is constructive, meaningful and by experimentation. Within the framework of the
socio-cognitive paradigm quality learning is understood to be the development of
cognition and affectivity.

Concept Maps and The Learning Process

One of the fundamental ideas about concept maps and mathematics is that the con-
cept maps are implicit in the content of mathematics itself, (see Fig. 13.1). For exam-
ple, a group of particular elements conform generalities that can be called “low level
generalities”. At the same time, a group of “low level generalities” form “mid level
generalities”. Finally a group of “mid level generalities” form “high level general-
ities”. Depending upon the characteristics of the contents themselves there can be
few or many generalities. The conformation or grouping of information represents a
structure that is implicit in the knowledge of mathematics. This structure or network
can be noted when the mathematical content is analyzed or weighed up. But also,
these structures represent concept maps. Novak (1998) points out that concept maps
represent knowledge. That knowledge can be concepts and can be propositions as
well, depending on the context. Concept maps, as a representation of knowledge,
serve as support for teaching and learning.

As can be seen in Fig. 13.2, a concept map combines particularities in a generality
and also combines low level generalities in a generality of a higher level. Concept
maps are structures characterized by very particular elements in the lower part and
general elements or very general elements in the upper half.

The teacher interested in finding different teaching methods can construct his
own concept maps once he has carried out a profound analysis of the structure of
knowledge he wishes to teach. These maps represent for the teacher a guide, let-
ting him know how to act in the classroom to achieve adequate learning. The maps
show him what information he can present in order to respect the stages present in

Fig. 13.1 Structure of knowledge and concept maps
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Fig. 13.2 Levels of generality

the learning process (e.g., perception, representation and conceptualization) by con-
templating the different levels of generalities and promoting the starting up of basic
operations of thought (such as induction and deduction) favoring the development
of competences in the student (i.e., cognitive development).

The stages present in the process of conformation or learning of knowledge: per-
ception, representation and conceptualization are, according to Román and Dı́ez
(1998), stages or basic levels of learning. The authors consider that learning there-
fore implies articulating in the classroom adequately these three basic levels of
learning. For them learning supposes the initiation of a cyclical process which first
must be inductive (from perception to conceptualization) and later deductive (from
concepts to facts). For the authors this learning is considered a Cyclical Process of
Scientific Learning, (see Fig. 13.3). They recommend that teaching professionals
must be respectful of this cyclical learning process, since in this way the students
will make sense of what they are learning. Added to this is the idea that the student
constructs knowledge by induction (from the particular to the general) and deduc-
tion (from the general to the particular).

Fig. 13.3 Cyclical process of scientific learning



264 R.P. Flores

The following are a series of ideas through which Román and Dı́ez (1998)
described the three basic levels of learning.

Perception The basis of learning is in the sensorial perception of facts, examples and expe-
riences captures preferably from the context or milieu in which the learner lives. The basis
of perception is above all auditive and visual since today we move in an audiovisual culture.
The latest theories of short and long term memory try to revalue perception as a basis of the
active and constructive memory. Short term memory acts by codifying and storing infor-
mation of a perceptive origin and constructing a data base (facts, examples, experiences,
perceptions and concrete sensations) that later will have to be re-elaborated in order to con-
stitute a knowledge base through representations and conceptualization. To construct a base
of knowledge without empirical data and without contrasting with reality will be problem-
atic for the learner.
Representation Facts, examples and experiences capture by sensations and perceptions are
converted into representations and mental images, more less organized, usually associated
with other representations. In this way what has been perceived is converted into images.
According to Aristotle, images presuppose perception and sensation by which the human
being conserves the content. The image becomes the data or what has been given and as such
is not a creative act. It is a generic representation of what has been given (facts, examples,
experiences, . . .) possessing a high intelligible potential for the creation and development of
concepts. The concept is supported by images of mental representations – the image in this
way becomes the raw material for the concepts and acts as a potentially intelligible object.
Conceptualization To learn is to conceptualize or symbolize concepts, theories, principles,
conceptual systems, hypotheses and laws. It implies managing concepts and symbols ade-
quately and interrelating them. From this point of view, the data base, captured by percep-
tion and semi-organized by representation, becomes a base of knowledge structured in the
form of concepts and symbols interrelated adequately. The authors mention that Aristo-
tle denominates concepts as universal and considers they are products of intelligence and
thought (abstraction) (pp. 178–183).

Basic Processes and The Learning of Mathematics

There are some authors who have pointed out important aspects about the basic
thought processes in the context of the teaching and learning of mathematics. For
example, Usabiaga, Fernandez, and Cerezuela (1984) mentions that the interchange
of inductive and deductive proceedings can help the student to ways of acting that
complement each other and definitely this interchange allows the student to have
available mental elements and creative resources to resolve difficulties. As to the
relation induction-deduction, the author says it is not right to drop the inductive
elements too soon in the cognitive activity of the student in the classroom. On the
one hand, it is not correct to assimilate in a reduced way the scientific method, in
other words, only employ the deductive part, or only use the hypothetical-deductive
method. The lack of inductive processes (the abuse of deductive processes) limits
the options of personal research important for the development of thought. That
does not mean that as the student reaches formal levels he leaves aside the deduc-
tive processes. On the way to high levels of abstraction the student must count,
in his personal experience, on a certain prior training in inductive processes. This
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implicitly suggests a balance between inductive and deductive processes during the
learning of mathematics. When designing the didactic strategies this harmony must
be sought without falling into an inductive extreme or a deductive extreme.

While insisting on the ideas, one must remember as a fundamental element in
the didactic strategies to be designed, from the position of Scientific Learning, for
the teaching of mathematics, the teaching activity, implies propitiating an inductive
process by analyzing the contents and demonstrating the facts, examples and expe-
riences, accessible to the intellect of the students, to be perceived by them. From
the perception of this information (i.e., starting from the particular), the teacher in
charge will guide the students, without forgetting the processes of representation
(i.e., imagination) and with visual support (De Guzmán, 1996), towards conceptu-
alization (i.e., construction of concepts; understanding of ideas; arriving at the gen-
eral). The other way round, to promote the deductive process, the teacher will guide
the students so that, starting from concepts (i.e., generalities) and through images
the student arrives at facts and examples, at the understandable (i.e., the particular).
The concept maps created by the teacher are an important guide for this kind of
teaching task.

This method, as a didactic or learning strategy is not only relevant to mathemat-
ics or physics but it was also the way the thinkers and scientists such as Aristotle,
Galileo and Newton among others, reached knowledge. It is a way that represents
the form in which such knowledge was elaborated. Teaching methods are not some-
thing foreign to the knowledge that is mathematics. As González and Dı́ez (2004)
points out, the didactic of mathematics is something implicit in its very construc-
tion. The route followed by the scientist which led him to knowledge was also the
way he learnt.

It is very common to find in the everyday teaching world methods that mainly
follow deductive processes. An inductive process is not employed first so that later
the student can be taken through a deductive process. Generally, perhaps more often
at the university, a formal conceptual system is introduced by means of symbols
that include principles, definitions, theorems, and laws; that is to say, they intro-
duce theory. This is more notable in what is known as master classes, commonly
found in university lecture halls (De Miguel Dı́az et al., 2006). Since the student
is not in a condition to assimilate such a system, audiovisual methods are used so
they understand. From a theoretical framework, they wish to pass to representation.
Afterwards, when they realize the student is not able to apply the concepts, even
with the help of audiovisual methods, they teach him the applications in reality. So
finally they reach the reality (the particular) where they should have started. Thus in
classical and present day teaching, the order of learning activities is not respected.
Learning of quality implies teaching that procures a balance between the thought
processes that conform abstraction.

To sum up, (see Fig. 13.4), it is suggested that concept maps are to be found in the
structure of knowledge of mathematics. The concept maps are a guide to teaching
that respects the basic levels of learning and that develop competence. In this sense,
as the title of this chapter states, concept maps are an important guide for the teacher,
for the process of teaching mathematics.
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Fig. 13.4 Concept map:
“A guide for the process of
teaching”

Concept Mapping for Mathematics Teaching Process:
Some Examples

The following are a collection of concept maps. They have been selected with the
aim of elaborating the subject further as a guide for the teacher during the teaching
process. Their characteristics will be explained and the possible ways of acting in
the lecture room are described to illustrate their potential to support the development
of thought processes. Teachers who wish to carry out their teaching with these ideas,
can make their own adaptations, based on their experiences, for the important and
detailed task of teaching.

“Critical Point of a Function” Concept Map

If one reads down from top to bottom the concept map entitled “Critical point of a
function” presented in Fig. 13.5, the following appears: a critical point in a function
can be an extreme point (extreme value) or a non extreme point (non extreme value).
An extreme point can be a maximum point or a minimum point. Also a maximum
point can be a point with a horizontal tangent line (a tangent line with an inclination
equal to zero) or a point without atangent line, that is, a point where the derivative
is not defined (does not exist). A minimum point can be a point with a horizontal
tangent line or a point where the derivative is not defined. In addition, a non-extreme
point can be the one that has a horizontal tangent line or a point that has avertical
tangent line. In the concept map “Critical point of a function” one can note in the
lower part there is particular information specified in images (i.e., graphs).

These images that can be shown to the student represent a support leading to
comprehension and the learning of concepts at a low level of generality. In this
concept map the concepts extreme point or non-extreme point can be considered as
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Fig. 13.5 Concept map: “Critical point of a function”

concepts at a medium level of generality. The concept critical point of a function is
at the highest level of generality in the map. As Ausubel explains, the inductive and
deductive thought processes allow the disposition of information respecting concep-
tual hierarchies, achieving subordinate and supra-ordered learning, moving from the
particular to the general and vice versa (Ausubel, 1976).

The concept map Critical point of a function represents a guide for the teacher
to offer information going from the particular to the general promoting an inductive
process. The information in this map is related to the applications of the concept
of the derivative and is a very important topic to help resolve problems in real life
engineering. For each one of these examples, the teacher can demonstrate by apply-
ing the mathematical tools relating to the derivative to obtain the value of the critical
points and then classify them. A wide battery of functions can be shown that have
critical points to demonstrate the different types, to move toward the more gen-
eral concept. Various functions can show maximum and minimum points as extreme
values and other functions can show just non-extreme values. This can all come
together as critical points of a function.

It is useful for the student to bear in mind the characteristics of each of the crit-
ical points. This will help him realize a part of the analysis of a function and will
be very useful information to obtain a graph. The deductive process appears when
concepts that were understood previously are compared with facts (the information
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obtained from the analysis of a function) in order to conclude with the critical points
of a function and its classification. In other words, after the student has determined
the critical points he can classify them into extreme or non-extreme values. If it
is a question of extreme values he can classify them into maximum or minimum
points. If it is a question of non-extreme values he can classify them in points
with a vertical tangent line or a horizontal tangent line. As a particular interpre-
tation of Piaget’s ideas, contrasting facts with concepts and concepts with facts
is considered as leading to inductive and deductive processes thus contributing to
constructive learning (Piaget, 1979). It is worth indicating that the study of crit-
ical points of a function should have previously assimilated the definition of the
derivative.

It is very important to point out that the teaching of mathematics from this per-
spective is not merely presenting the students with a concept map elaborated by
the teacher. They are only personal materials used by the teacher. Perhaps if the
teacher wishes, he can show these maps at the end of the classes. It is also useful
for learning and to reinforce the development of cognitive capacities that the stu-
dents try to construct their own maps guided by the teacher. This activity, which
can be carried out in groups, requires special sessions during a course where col-
laborative learning is undertaken, creating in the classroom, among other aspects,
important affective elements for the student in the learning process. Some of the
previous ideas can be summed up in the following manner: in the dynamics of col-
laboration, learning happens through the interactions in the social context of the
classroom.

“Extreme Point” Concept Map

To further examine the topic of critical points, another map can be made showing
other concepts. In the concept map “Extreme point” of Fig. 13.6 the following can
be read: an extreme point can be a maximum point or a minimum point. In turn, a
maximum point, with a horizontal tangent line, can be an absolute or relative max-
imum point. On the other hand, a minimum point with a horizontal tangent line can
be an absolute or relative minimum point. It can be seen that this map concentrates
on the extreme points with a horizontal tangent line. This kind of critical points are
those that appear frequently in the functions that model a great number of situations
in real life proper to the context of engineering. In the lower part of the map a col-
lection of graphs can be seen that represent visual support for the comprehension of
concepts. It is information that is particular and accessible at the level of students in
the course of calculus.

Through the visual supports common aspects can be determined in order to arrive
at the concept of the more generalized map: an extreme point (Fig. 13.6).The math-
ematics teacher must realize he can construct many concept maps according to the
different contents of his course. Some will be more specific than others but they
will always represent an important tool for his work and for stimulating the thought
processes.
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Fig. 13.6 Concept map: “Extreme point”

“Real Numbers” Concept Map

Figure 13.7 gives a useful map entitled “Real numbers”. In the lower part there is the
more particular, different classes of numbers that can be placed in a horizontal line
as visual support in order to understand the great concept of the map: real numbers.
The teacher can play with information to show that a natural number is apositive
integer number and a integer number either positive or negative is a rational number.
He can also play with the information to show how certain irrational numbers can
be placed in the horizontal line, for example

√
2. What is important is for the student

to initiate learning by perceiving particular information accessible to his intellect.
During the teacher’s classes or in the sessions to foster collaborative learning (at
the moment of elaborating maps in a groups with the help of the teacher) different
systems implicit in learning are set in motion.

From the point of view of Bruner and the theory of learning by discovery, starting
from an enactive system (facts, examples and experiences) up to a symbolic system
(concepts) passing through an iconic system (images) learning by discovery happens
permitting the development of inductive processes (Bruner, 1988). The question of
real numbers is important for the study of calculus. The concept map the student can
create on this topic, after hearing the presentation and explanations of the teacher,
in addition to setting in motion thought processes, represents an image that can be
stored easily by the student to which he can return when necessary during his studies
for the solution of problems.
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Fig. 13.7 Concept map:
“Real numbers” – Taken
from
http://canek.azc.uam.mx

“Displacement of Functions” Concept Map

On occasions, presentations or university courses begin from generalities. An exam-
ple is when initiating the subject of transformations of function by presenting the
expression g (x) = k f (a x – b) + c and explaining the effects of the constants k,
a, b y c on the function f (x). This procedure in the lecture room forces a deductive
process without any previous inductive process and motivates memorization rather
than the comprehension of the ideas. The concept map in Fig. 13.8 presents two
concrete cases of displacement, a horizontal displacement and a vertical one of a
particular function. These two cases, can be presented first by the teacher, contain
appropriate images that allow the comprehension of the effect of the constants b and
c on a function. Various concept maps can be constructed to foster thought processes
during the explanation of the displacements such as the lengthening, the compres-
sions and reflections of functions, leading finally to link all this information with
the expression g (x) = k f (a x – b) + c. As has been said before, at later stages of the
explanations, the students, with the advice of the teacher, can elaborate their own
maps. The proper construction of these maps represents satisfactory learning in the
subjects of calculus.

Mathematics Problem Concept Maps

But in mathematics there are not only concepts. The exercises and problems that
naturally imply the handling of concepts are a part of the mathematical content too.
Following the ideas and characteristics of concept maps, structures and networks
can be constructed that contain information on the procedures to resolve exercises
or part of them, where generalities or concepts appear as previously explained and
learnt (see Figs. 13.9 and 13.10). It is common that at times one should wish to
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Fig. 13.8 Concept map: “Displacements of functions” – graphs taken from http://canek.azc.uam.mx

proceed in the lecture hall in one way or another, emphasizing certain aspects, in
regard to the experiences and particular difficulties appreciated during the resolution
of problems and exercises.

“Solution of Certain Inequalities” Concept Map

The concept map of Fig. 13.9 shows two structures that link a generality (|x–b|< M
& |x–b| > M) with a collection of exercises as examples (or particular exercises).
It is a way of showing that generality can be applied to resolve inequalities of a
particular kind.

The teacher can show these or other exercises as examples and explain the appli-
cation of the general expression to reach the particular solution. Of course, the idea
of generality is as explained earlier. Naturally these exercises are simple for the
teachers but not for the students.

Simple concept maps like these, when prepared by the students, represent images
easy to recall and useful to resolve exercises appropriately.

“Elements of a Function” Concept Map

The concept map presented in Fig. 13.10 gives elements of a function and how
to obtain them. This map shows applications of the concept of the derivate. The
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Fig. 13.9 Concept map: “Solution of certain inequalities”

Fig. 13.10 Concept map: “Elements of a function”
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structure presents a series of graphs showing critical points, intervals of growth and
decrease, points of inflection and intervals of concavity and convexity. Obtaining
all this information about a function in particular is necessary to be able to obtain
a graph with a certain precision for the said function. A map such as this suggests
the information to be presented for the student to reach conclusions and to carry out
processes of abstraction. A series of functions can be given to show that by resolving
f ′(x) = 0, f ′(x) > 0, f ′(x) < 0, f ′′(x) = 0, f ′′(x) > 0 and/or f ′′(x) < 0 a series of
characteristics are obtained about f(x). After this handling of particular information a
formal mathematical explanation must be given about the application of the derivate.
One must always remember that previous work with particular information permits
a satisfactory assimilation of the later explanation about mathematical generalities.

Cognitive Development of the Learner

By using concept maps in the classroom or lecture room with a series of strate-
gies (as previously described) favors, in general terms, the cognitive development
of the learner. In particular, with this method, the aim is to seek the development of:
(1) the skills of induction and deduction considered as part of the capacity for logical
reasoning and (2) the skills of situating, localizing and expressing graphically, con-
sidered as part of the capacity for spatial orientation. Both capacities form, among
others, the operations of thinking about thought (i.e., cognition). When developing
the cognitive processes implicit in mathematics, thought is developed (De Guzmán,
1999). Developing the skills and capacities during the teaching process also implies
the development of student competence.

There are a great number of ways of acting in the classroom for the teaching of
mathematics and perchance many of them have good results for learning. The use
of concept maps as a guide for the teacher is yet another way of acting and it is
certain that other ways of acting have in them the aspects presented above. A syn-
thesis of these ideas for the teacher might be: show the information feasible for the
intellect of the student, let him play with this information, offer images that comple-
ment and nourish their mental representations, so that the way toward generalities
may be an educational truth followed with pleasure. Miguel De Guzmán, a great
mathematician and educator insisted:

Playing and beauty are the origin of a great part of mathematics. If the mathematicians of
all times have had such fun playing and contemplating their game and their science, why
not try to learn it and communicate it through games and beauty.

(cited in Sanz, n.d.)

Concept Map and Students: Important Considerations

To speak of concept maps as a guide for the teacher is to speak of maps as important
elements for intervention. As has been mentioned before, concept maps contribute
to learning, being understood as the development of elements in the cognition of the
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student. But this development of the cognitive sphere is not isolated from the devel-
opment of the affective sphere. The development of thought processes affects the
affectivity understood as a grouping of attitudes. At the same time one can speak of
the opposite, that is to say, the development of attitudes has influence on the devel-
opment of thought processes. In this last section various important effects are pre-
sented as the effects of the concept maps on the students such as effects on the
development of cognitive capacities and the development of affective elements.

The Intervention and Its Methodology

As part of the educational experiences in the Universidad Autónoma Metropolitana
of Mexico City concept maps have been used. These have been a substantial part of a
Program of Intervention for a Calculus course to help in the learning of mathematics.
Two groups were formed: the control group and the experimental group, each one
with 20 students. The control group began an ordinary Calculus course and the
experimental group began the same course but with the Program of Intervention.
During this investigation both quantitative and qualitative instruments were used in
order to carry out an evaluation of the teaching process with teaching guided by
concept maps. The instruments employed to carry out the qualitative register were;
a diary of each of the students, a diary by the teacher and the partial evaluations of
the content carried out during the course. The information offered by the students in
these evaluations reflected qualitative aspects of academic benefits understood as the
level of learning obtained by the students from the contents of the subject and about
the development of capacities and skills. To carry out the quantitative register the
following instruments were used: Test of differential aptitudes DAT-5 (Differential
Aptitude Test, Fifth Edition. Authors: George K. Bennett, Harold G. Seashore and
Alexander G. Wesman) measuring Numerical Reasoning, Abstract Reasoning and
Spatial Relationships.

Results

The information gathered from the students revealed qualitative aspects of the aca-
demic advances. The students frequently expressed the fact that they understood the
initial information very well, which in its turn helped them understand the concepts.
It is a question of the emphasis made in the presentation of particular information
(examples) accessible to their intellect that supports the introduction of the con-
cepts. Also the students commented that the images and graphic representations for
particular information is an effective aid to the comprehension of more complex
concepts. They evaluated this methodology as appropriate since it contributes to the
learning of the theory of calculus in a way that does not imply memorizing. They
referred to the fact that they comprehended the theory and had not memorized it.
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On the other hand the students considered it important to know the concept maps
prepared by the teacher once the practical and theoretical aspects had been pre-
sented. They said this activity motivated them to construct their own maps on the
content of the course, thus developing their thought processes.

The results obtained from the DAT-5 tests represent evidence of the favorable
effects of the didactic strategies guided by concept maps. Having processed the
information from Dat-5 measuring Numerical Reasoning of a control group and
an experimental group, statistically significant differences were observed only in
the experimental group with a confidence level of 99% between before and after.
The processing of information from DAT-5 measuring Abstract Reasoning and
Spatial Relationships revealed, in addition, statistically significant differences in
the experimental group with a confidence level of 99% between before and after.
Consequently, it is obvious there is a significant evolution of Numerical Reason-
ing, Abstract Reasoning and Spatial Relationships in the experimental group. This
increase can be explained principally from the effect of integrating into the teaching-
learning process for a Calculus course, of concept maps as tools for the develop-
ment of cognitive skills and capacities in the students. It is important to emphasize
the theoretical ideas supporting the concept maps, mainly those implicit in the way
of employing them, which can plausibly explain the changes experienced by the
students.

Discussion and Implications

Hernández et al. (2005) underlines two points of view about learning. He points out
that Marton and Säljo (1976a, 1976b) were the first to coin the terms deep focus and
superficial focus of learning to refer to the two differentiated ways of processing
information. In general terms, deep focus depends upon the student centering his
attention on the content of the learning material and is orientated toward the mes-
sage this contains, toward the meaning. Superficial focus is characterized by the fact
that the student directs his attention to the text itself, toward the sign, which indi-
cates a reproductive conception of learning. What is important in deep focus is the
comprehension and in superficial, memorization.

Hernández et al. (2005) place the emphasis on the fact that the primordial ideal in
regard to the methodology in the classroom is not to try to change the subject (i.e.,
student) in order to improve learning. Rather it is to change his learning experience
or his concept of learning. The inclusion of concept maps as a teaching guide directs
the new experiences toward a deep focus for learning.

Non intellectual elements suffer modifications during the learning experience.
The development of these elements implies the development of motivational factors
and the development of affective factors. Motivational factors are the expectations,
the aims, the interests and the attitudes. The development of affective factors refers
to the development of a feeling of security, a feeling of independence and develop-
ment of the concept of oneself (auto-concept).
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To speak of the auto-concept is to speak of the image the subject has of himself.
The auto-concept is a product of many factors; among them are the learning experi-
ences. One must not forget that in the classroom or the lecture hall, a consideration
of emotional and cognitive situations, favor a learning atmosphere and collabora-
tion in the resolution of problems, which reflects in the cognitive and non cognitive
competence and in the auto-concept of the students. Polya (1981) asserts it would
be a mistake to consider the solution to a problem is a purely intellectual matter;
determination and emotions play an important part. Auto-concept is a basic factor
in learning, which can be modified or developed in the classroom with repercussion
in better learning. Undertaking collaborative activities in the classroom for the cre-
ation of concept maps has a strong effect upon motivational and affective factors in
the students.

Teachers through strategies in the classroom have a great task so that the students
learn to control feelings such as anxiety, fear, despair, and perplexity that limit the
cognitive processes. Developing auto-concept can be understood as developing the
capacity of a student for knowledge, control and gestation of feelings. Anxiety and
despair can appear at a moment of cognitive conflict, which presents the student
with two options: control of his feelings or abandoning the task or activity. Every
effort related to improving the learning processes represents a way of achieving
educational equity.

The university domain needs new research that contemplates the learning and
teaching processes. Research for the enhancement of pedagogical knowledge
includes: students, teachers contents and technology. Currently in the Universidad
Autónoma Metropolitana of Mexico City, Mathematics teachers are constructing,
backed by the courses, a mathematics portal in Internet called “CANEK” to be found
at http://canek.uam.mx. There is material online for which concept maps are being
created and gradually introduced. At present theory and problems can be found in
the page offering learning support; in the future it is hoped that all this online mate-
rial with its concept maps will represent an element for further educational research
to contribute to pedagogical knowledge in the field of the technology of information.
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Chapter 14
Concept Mapping and Vee Diagramming
“Differential Equations”

Karoline Afamasaga-Fuata’i

The chapter presents a case study of a student’s (Nat’s) developing understanding of
differential equations as reflected through his progressive concept maps and Vee dia-
grams (maps/diagrams). Concept mapping and Vee diagramming made Nat realized
that there was a need to deeply reflect on what he really knows, determine how to use
what he knows, identify when to use which knowledge, and be able to justify why
using valid mathematical arguments. Simply knowing formal definitions and mathe-
matical principles verbatim did not necessarily guarantee an in-depth understanding
of the complexity of inter-connections between mathematical concepts and proce-
dures. The presentations of his ideas and understanding of differential equations, Nat
found, was greatly facilitated by using his individually constructed concept maps
and Vee diagrams. The external projection of his ideas visually on maps/diagrams
also facilitated social critiques and mathematical communication during seminar
presentations and one-on-one consultations with the researcher. The chapter dis-
cusses some implications for teaching mathematics.

Introduction

Distinctions between doing mathematics and meaningfully learning mathematics
are often drawn to highlight the difference between the algorithmic proficiency
of simply substituting values into formulas to get an answer and that which val-
ues, in addition to this procedural proficiency, a deeper conceptual understanding
that seeks to make sense of connections between principles, concepts and meth-
ods where concepts exist in and are characterized by systems of relations to other
concepts, each concept serving as an axis around which other forms of knowledge
can be organized (Ernest, 1999). When mathematical understanding is conceived
as a personally-constructed system of relations among concepts, symbols, formu-
las, methods, and objects or situations, then valid assessment of this understanding
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requires that we obtain information about how students view these as systems of
interconnecting concepts and formulas and multiplicity of methods as a demonstra-
tion of students’ connected understanding and ability to apply this understanding to
different situations and contexts. This chapter proposes that the construction of hier-
archical concept maps and Vee diagrams enables an individual to demonstrate visu-
ally and publicly his/her knowledge and understanding of a mathematical domain’s
conceptual structure and different methods.

Hierarchical concept maps are graphs of interconnecting concepts (i.e. nodes)
representing the key concepts of a domain, arranged hierarchically with linking
words on interconnecting links to describe the nature of the relationships between
connected nodes. The basic semantic unit is a proposition made up of a triad or
strings of triads comprising linked nodes with linking words. For example, two
nodes: “Graphs” and “Parabolas” may be interconnected and described with linking
words: “may be” on the link, to form the proposition “Graphs” may be “Parabolas.”
A Vee diagram on the other hand is a Vee with its tip situated in the problem to be
solved with its two sides representing the conceptual information (i.e. theory, prin-
ciples and concepts) on the left and the methodological information (given infor-
mation, transformations and knowledge claims) on the right. An active interplay
between the two sides ensures cohesiveness of the displayed information to gener-
ate a summative overview of the theoretical principles and concepts informing and
guiding the methods of transforming the given information to answer some focus
questions (Novak & Gowin, 1984). Examples of concept maps and Vee diagrams
are provided later.

The use of concept maps and/or Vee diagrams in learning subject matter more
meaningfully and more effectively has been the focus of numerous research in the
sciences (Mintzes, Wandersee, & Novak, 1998; Novak, 2002, 1998). Others have
researched the use of concept maps in mathematics, as a tool to illustrate con-
ceptual understanding of a topic (Williams, 1998), and pedagogical content knowl-
edge of teachers (Liyanage & Thomas, 2002; Hansson, 2005; Brahier, 2005). The
author also investigated the use of both concept maps and Vee diagrams as tools
to facilitate the meaningful learning of, and problem solving in, mathematics by
secondary students (Afamasaga-Fuata’i, 1998, 2002), undergraduate mathematics
students (Afamasaga-Fuata’i, 2002, 2001, 2004, 2005, 2006a, 2007a), practicing
teachers (Afamasaga-Fuata’i, 1999) and preservice teachers (Afamasaga-Fuata’i,
2006b, 2007b; Afamasaga-Fuata’i & Cambridge, 2007). Relevant to this chapter
are the studies involving undergraduate mathematics students and university math-
ematics, briefly described next.

Concept Mapping and Vee Diagram Studies

The undergraduate concept map and Vee diagram studies (mapping studies) evolved
out of a need to seek innovative ways in which Samoan students’ ways of learning
mathematics and solving problem could be improved beyond their technical pro-
ficiency in applying known procedures and algorithms to solve familiar problems.
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The predominantly rote memorization style of learning in schools often means stu-
dents “learn” mathematics by simply applying formulas and memorising facts to be
applied to given problems whether or not they are appropriate (Afamasaga-Fuata’i,
2002).

The mapping studies, involving different cohorts of undergraduate mathemat-
ics students, explored and investigated the impact of using concept maps and Vee
diagrams on students’ understanding of the structure of mathematics and the conse-
quential effect of this understanding on their efficiency and effectiveness in solv-
ing mathematics problems (Afamasaga-Fuata’i, 2002). Different cohorts, over a
decade, chose mathematics topics that varied in the recency of their formal study
of it. “Formal study” is defined as the study of the topic as part of a traditional
semester-long, undergraduate mathematics course while “recency” is characterised
three ways, namely, recent past, concurrent, or new. “Recent past” refers to formal
study in the previous one or two semesters before the research while “concurrent”
means the student is formally studying the topic in a separate course whilst also par-
ticipating in the research. “New” topic means students have not yet formally studied
it in a semester-long mathematics course.

The data that is presented in this chapter is that of a student (Nat) who chose a
topic he had studied in the recent past. The case study documents Nat’s journey as
he learnt to use the two meta-cognitive tools of concept maps and Vee diagrams
(maps/diagrams) to make explicit his understanding of the topic of “differential
equations.” He was part of a cohort of students who learnt to use maps/diagrams
to communicate their knowledge and understanding of selected mathematics topics
over a semester. Unlike Nat, the rest of the cohort chose topics that were new (see
Chapter 12 for the cohort results). Before presenting Nat’s case study, the theoretical
principles driving the mapping studies are presented next.

Theoretical Perspectives

To explain the processes of knowledge construction and development of concep-
tual understanding, Ausubel–Novak’s theory of meaningful learning was used as a
guiding theoretical framework. In particular, its principles of assimilation and inte-
gration of new and old knowledge into existing knowledge structures assisted in
making sense of the processes of meaningful learning. It is argued that when learn-
ing new knowledge, students may begin by trying to decide which established ideas
within their cognitive structures (or patterns of meanings) are most relevant to it.
The deliberate linking of concepts to relevant existing concepts may take place by
progressive differentiation and/or integrative reconciliation (Ausubel, Hanesian, &
Novak, 1998; Ausubel, 2000). To illustrate these processes, one of Nat’s concept
maps is used. Figure 14.1 shows a partial view (left vertical segment) of Nat’s first
concept map in which the concept “a0 dy/dx + a1 y = Q(x)” is progressively dif-
ferentiated into two links to connect to concepts “Q(x) = 0” and “Q(x) �= 0.” In
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Fig. 14.1 Left vertical segment – Nat’s first concept map

contrast, the two concepts “Function (x, y)” and “Integrating Factor” are integra-
tively reconciled with the less general concept “General Solution.”

According to Ausubel–Novak’s theory, students’ cognitive structure should be
hierarchically organized with more inclusive, more general concepts and proposi-
tion superordinate to less inclusive, more specific concepts and propositions to facil-
itate assimilation and retention of new knowledge (Ausubel et al., 1978; Ausubel,
2000; Novak, 1998). Knowledge about knowledge or meta-knowledge learning is
viewed “as a form of meta-cognition, where learners acquire an understanding of
the nature of concepts and concept formation and the processes of knowledge cre-
ation” (Novak, 1985). That people remember better, longer, and in more detail if
they understand, actively organize what they are learning, connect new knowledge to
prior knowledge, and elaborate is also supported by Bransford, Brown, and Cocking
(2000). Students will remember procedures better, longer, and in more detail if they
actively make sense of procedures, connect procedures to other procedures, and
connect procedures to concepts and representations. These perspectives collectively
recommend that the best way to remember is to understand, elaborate, and organize
what you know thus providing support for the principles of meaningful learning and
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the use of maps/diagrams as one way of visually explicating the interconnectedness
of the main concepts of a domain and its methods.

The social constructivist approach to learning provides the opportunity for the
development of students’ meta-cognitive skills within a classroom setting particu-
larly as through interactions with others, students actively construct mathematical
knowledge as their ideas are challenged causing them to reflect more on their think-
ing and reasoning. Hence, through public presentations, students necessarily seek to
negotiate meaning, justify and argue the validity of their work. For the social interac-
tions and negotiations to be mathematically relevant, the substance of the commu-
nication needs to be focused on important mathematical ideas. Engaging students
in evidence-based arguments as part of classroom communication, by focusing on
explanations, arguments, and justifications, builds conceptual understanding. Com-
munication should include multiple modes (talking, listening, writing, drawing, etc.)
because making connections among multiple ways of representing mathematical
concepts is central to developing conceptual understanding (Moschkovitch, 2004).
This chapter suggests an innovative, alternative mode of communication, namely,
concept mapping and Vee diagramming in a mathematics classroom.

The socio-linguistic view promoted by Richards (1991), that mathematics learn-
ing is “a task practiced by communities in terms of linguistic discourse enacted
by its members,” facilitates distinction between prevailing mathematics learning in
schools (i.e. learning mathematics as a collection of facts and procedures) and the
ideal, which is inquiry mathematics (i.e. students think, discuss and act mathemati-
cally).

Collectively these (cognitive, social constructivist and socio-linguistic) perspec-
tives highlight the fundamental principle that “learning mathematics involves being
initiated into mathematical ways of knowing, ideas and practices of the mathemat-
ical community and making these ideas and practices meaningful at an individual
level” (Ernest, 1999) as well as having the ability to maintain and conduct a math-
ematical discussion (Richards, 1991) and communicating more effectively through
multiple modes within a classroom setting (Moschkovitch, 2004).

Nat’s Case Study

As previously mentioned (in Chapter 12), the mapping studies were qualitative,
exploratory teaching experiments conducted over a semester of 14 weeks with dif-
ferent cohorts of mathematics students enrolled in a research course. A teaching
experiment is defined as “an exploratory tool . . . aimed at providing understanding
of what might go on in (students’) heads as they engage in mathematical activity.”
(Steffe & D’Ambrosio, 1996). The course introduced students to the meta-cognitive
tools as means of learning mathematics more meaningfully and solving problems
more effectively. The selection of procedures and activities were guided by the
principles of social constructivist and socio-linguistic epistemologies namely that
of building upon students’ prior knowledge, group work, negotiation of meanings,
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consensus and provision of time-in-class to allow students to reflect on their own
understanding. For example, the mapping studies included a familiarization phase,
which introduced students to maps/diagrams and the new socio-mathematical norms
of group and one-on-one (1:1) critiques including the expectations that each stu-
dent should be prepared to justify and address critical comments from peers and
researcher, and then later on critique peers’ presented work. Time was set aside
in between critiques for students to revise and modify their maps/diagrams where
appropriate in readiness for the next critique. Students underwent 3 cycles of group
and 1:1 critiques before completing a final report.

Topics selected by Nat’s cohort of 7 students included partial differential equa-
tions, approximation methods for first order differential equations, multiple vari-
able functions, Laplace’s transform, least square polynomial approximations, and
trigonometric approximations. This chapter reports data from Nat’s differential
equation concept maps and Vee diagrams.

Nat’s Data and Analysis

Data collected included Nat’s progressive concept maps (4 versions) and progres-
sive Vee diagrams of 4 problems (2 versions each), and final reports. Analysis of
the maps/diagrams, are in accordance with the Ausubel–Novak theory of mean-
ingful learning particularly in terms of how Nat organized his knowledge. Nat’s
perceptions of the value of maps/diagrams as meta-cognitive tools were obtained
through written responses to two questions on the advantages and disadvantages of
using the tools in learning mathematics. The written responses and all versions of
maps/diagrams formed part of the final reports. In the following sections, the con-
cept map data is presented first followed by those for the Vee diagrams. Excerpts
from Nat’s final report are used, where appropriate, to support the discussion of the
results.

Concept Map Data Analysis

Concept Map Criteria

A review of the literature shows different ways of assessing and scoring concept
maps (Novak & Gowin, 1984; Ruiz-Primo & Shavelson, 1996; Liyanage & Thomas,
2002) however for this case study, a qualitative approach is adopted using only
counts of occurrences of each criterion. Nat’s concept maps are assessed mainly
in terms of the complexity of the network structure (structure) of concepts, nature of
the contents (contents) within concept boxes and valid propositions (propositions).
The structure criteria indicate the depth of differentiation and extent of integration
between concepts, whilst the contents criteria reflect the nature of Nat’s perceptions
of what constitutes mathematical knowledge. Tables 14.1 and 14.2 list the relevant
breakdown within each category (conceptual elements, inappropriate entries, and
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Table 14.1 Contents and propositions criteria of Nat’s concept maps

First map Count Final map Count % Increase

Criteria: Contents
A: Conceptual contents

Concept names/labels 31 27 –13
Concept symbols/expressions 4 13 225
Symbols 0 4
Mathematical statements/expressions 8 13 63
Names of methods 2 6 200
General formulas/expressions 0 8 800
Formula concepts 0 1 100

Total A – Conceptual contents 45 (86.5%) 72 (88.9%) 2.4

B: Inappropriate entries
Procedures 0 1
Linking words used in concept boxes 0 2
Redundant entries 7 2

Total B – Inappropriate entries 7 (13.5%) 5 (6.2%) –7.3

C: Definitional entries
Parts of definitions 0 3

TOTAL C – definitional entries 0 3

D: Examples
Examples 0 1

Total D – Examples 0 1

Totals A+B+C+D 52 81 55.8

Criteria: Propositions
Valid propositions 33 54 63.6
Invalid propositions 16 19 18.8

definitional entries for contents; valid and invalid propositions for propositions; and
main branches, sub-branches, average hierarchical levels per sub-branch, integra-
tive cross-links and multiple branching nodes for structure).

Valid propositions are mathematically meaningful statements formed by con-
necting valid concept contents with suitable linking words correctly describing the
nature of the interrelationship between the connected-concepts.

The occurrences of lengthy definitional phrases (definitional entries) although
conceptual indicate students have not completely analyzed them to identify major
concepts. Other types of entries are generally categorized as inappropriate entries
since they require further modifications and revisions from their existing forms to
make them more suitable. For example, procedural entries include those that specif-
ically describe a procedural step, which are more appropriate on Vee diagrams.
Redundant entries indicate students’ tendency to learn information verbatim, and/or
in isolation instead of seeking out meaningful integrative cross-links with the first
occurrence of the concept elsewhere in the map. Inappropriate linking word entries
are those that contain words more suitable as linking words; these indicate students’
difficulties to distinguish between mathematical concepts and descriptive phrases.
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Table 14.2 Structural criteria of Nat’s concept maps

First map Final map % Increase
Count Count

Criteria: Structure
Main branches 8 8 0
Sub-branches 13 17 31
Average hierarchical levels per sub-branch 7 11 57
Integrative cross-links

Between (sub-)branches at same level 2 2
Between (sub-)branches at different levels 1 12

Total – Cross-links 3 14 366
Multiple branching nodes
Progressive differentiation links from nodes at:

Level 2 5 2
Level 3 2 3
Level 4 2,2,2 3
Level 5 5,2,2
Level 6 2,2 2,2
Level 7 2,2 7
Level 8 2
Level 9 2
Level 10 2,3
14 2

TOTAL Multiple branching nodes 9 14 56

Concept Map Data

The data summarized in Tables 14.1 and 14.2 and partial views of Nat’s concept
maps in Figs. 14.1–14.4 show that there was an overall 2.4% increase (86.5–88.9%)
in the number of nodes with valid conceptual entries compared to an associated
7.3% (13.5–6.2%) decrease in inappropriate entries due to inclusion of procedural
steps, linking words or redundant entries.

Specific significant increases were noted with the sub-criteria: concept sym-
bols/expressions (225%), mathematical statements/expressions (63%), general for-
mulas/expressions (800%) and names of relevant methods (200%) (see Table 14.1)
as Nat tried to enhance the meaningfulness of various concept hierarchies
(branches/sub-branches) by progressively differentiating concepts (56% increase in
nodes with multiple branching (i.e. more than 1-outgoing link), Table 14.2) resulting
in increased hierarchical levels (by 200% from Level 7 to Level 14) and increased
integration across (sub-)branches (366% increase in valid cross-links, Table 14.2).

Figure 14.1 shows the left vertical segments of Nat’s first map that attracted var-
ious critical comments during the first group presentation. His peers felt it was
not illustrating sufficient information to guide the solution of a differential equa-
tion problem. One of the comments referred to the inappropriate use of impor-
tant concepts such as “differential form” and “derivative form” as linking words
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in the propositions: “First Order Linear Differential Equation” differential form
“M(x,y)dx + N(x,y)dy = 0” and “First Order Linear Differential Equation” deriva-
tive form “a0 dy/dx + a1 y = Q(x).”

Over the semester, as a consequence of critiques and feedback from his peers and
researcher, these segments (Fig. 14.1) evolved to its final form shown in Fig. 14.2 in
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is
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branches

connected to 
another sub-
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connected onto  2 
other sub-
branches

classified as

ifif

– + + + +

Fig. 14.3 Middle & right vertical segments – Nat’s first concept map

which the above propositions were subsequently revised to read: “First Order Lin-
ear Differential Equations” may be expressed in “Derivative Form dy

dx + P(x, y)y =
Q(x)” and “First Order Linear Differential Equations” may be expressed in “Differ-
ential Form: M(x, y)dx + N (x, y)dy = 0” Fig. 14.2 also shows a more integrated
and differentiated network structure that included 9 more new nodes, much higher
average number of hierarchical levels and twice as many multiple branching nodes.
In terms of the structure criteria, data and partial views in Figs. 14.2 and 14.4 illus-
trate that the structural complexity of Nat’s final map had changed significantly
compared to the first one.

In spite of the unchanged number of main branches, the final map was signifi-
cantly more complex. For example, there was a substantial increase (366%) in the
number of integrative cross-links, predominantly more progressive differentiation
of nodes at various levels of the hierarchy (Levels 2–10 and Level 14, Table 14.2),
a 56% increase in multiple branching nodes, a 31% increase in the number of sub-
branches and a 57% increase in the average number of hierarchical levels. Table 14.1
shows that the number of valid propositions also increased significantly (63.6%) by
the final map. Some of the changes (compare Figs. 14.3 and 14.4) were deletions of
nodes (e.g. independent variable, dependent variable), and merging of two branches
(second order linear differential equation, nth order linear differential equation) to
give a more enriched, differentiated and integrated concept hierarchy as partially
shown in Fig. 14.4.
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Fig. 14.4 Middle & right vertical segments – Nat’s final concept map

Vee Diagram Data Analysis

The structure of the Vee (see Fig. 14.5 for one of Nat’s Vee diagram) and guiding
questions (see Table 14.3 below) provide a systematic guide to students as they
reason from the problem context (Event/Object) to extract the given information
(Records) and identify relevant principles, theorems, formal definitions and major
rules (Principles) and Concepts which could guide the development of appropriate
methods and procedures (Transformations) to find an answer (Knowledge Claim)
to the Focus Question. Engaging in this reasoning process enables the students to
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x4 dy
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 (v) Apply initial 
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= 0,    

(1)2(0) = – +1
1 c

                        c 
= 1

METHODOLOGICAL SIDECONCEPTUAL SIDE

Fig. 14.5 Nat’s Vee diagram – Problem 1 (P1)

consider not only the methods of solving the problem but including as well the
articulation of the conceptual bases of these methods.

As Gowin (1981) explains: “The structure of knowledge may be characterized
(in any field . . .) by its telling questions, key concepts and conceptual systems;
by its reliable methods and techniques of work . . .” (pp. 87–88). Therefore, a Vee
diagram is a potentially useful tool for not only assessing students’ proficiency in
solving a problem but it can assess the depth and extent of students’ conceptual
understanding of mathematical principles and concepts underpinning the methods.
A completed Vee diagram, consequently, provides a record of both the conceptual
and methodological information involved in solving a problem.
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Table 14.3 Guiding questions for Vee diagrams of mathematics problems

Sections Guiding Questions

Theory What theory(ies), major principles govern the methods?
Principles How are the concepts related? What general rule, principle, formula do

we need to use?
Concepts What are the concepts used in the problem statement? Relevant concepts

required to solve problem?
Event/Object What is the problem statement?
Records What are the “givens” (information) in the problem?
Transformations How can we make use of the theories/principles/concepts/records to

determine a method?
Knowledge claims What is the answer to the focus question given the event?
Focus question What is the problem asking about?

For assessment, a completed Vee diagram may be evaluated qualitatively in terms
of (i) Overall Criteria, which consider the appropriateness of section entries against
the guiding questions (Table 14.3) in the context of the given problem, and (ii)
more Specific Criteria, which assess the extent of integration and correspondence
between listed principles and listed main steps. Nat’s Vee diagrams were drawn after
one cycle of group and 1:1 critiques, which means that he was able to use his first
revised concept map to guide the completion of his Vee diagrams. The first problem
(P1) (Fig. 14.5) was on first order whilst the other 3 were all on second order differ-
ential equations (D.E.) of type non-homogenous with constant coefficients (second
problem P2), homogenous with constant coefficients (third problem P3, Fig. 14.6)
and homogenous with variable coefficients (fourth problem P4).

Overall Criteria

In all four Vee diagrams, the common entry under Theory was “differential equa-
tions” with a second one reflecting the general order (n = 1 or 2) of the D.E. A third
entry of “homogenous with constant coefficients” was included for P3, and for P4,
additional entries were “homogenous” and “power series.”

For the sections, Event/Object, Focus Questions, and Records all entries were
appropriate and extracted directly from the problem statements and in accordance
with the guiding questions of Table 14.3. In contrast, Nat’s selections of entries under
Concepts included others not explicitly in the problem statement but were considered
relevant. This means that, Nat had already recognized potential underlying principles,
and guided by his revised concept map, he selected the most “suitable” principles, and
subsequently relevant concepts, for each Vee diagram. For example, in Fig. 14.5, his
concept list was: {exactness, derivative, integrating factor, partial differentiation, ini-
tial value problem, general solution, particular solution} where 3 of the 7 concepts
listed were explicitly stated in the problem statement whilst the rest were inferred as
being relevant; similarly, for the other 3 Vee diagrams.
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Fig. 14.6 Nat’s Vee diagram – Problem 3 (P3)

However, entries for Principles required some reflection and consideration. For
the first problem, his initial diagram only included 3 of the listed principles. A fourth
one was added in the final version when he realized that none of the 3 listed prin-
ciples justified part (v) under Transformations. This was a positive self-realization
indicative of a growing confidence in his skills to complete the Vee diagram. How-
ever, he did not pick up the missing principle underlying the normalization step in
part (i) of the transformations.

The rest of the main steps had corresponding principles supporting their trans-
formations. As a presenter of his own work and critic of peers’ maps, he was aware
that maintaining a close correspondence between principles and main steps of the
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solution was a critical aspect of, and a common problematic area when constructing
a Vee diagram.

Specific Criteria

The specific criteria of a tighter integration and correspondence between main steps
and principles calls into consideration the inclusion of relevant principles and the
“statement,” or “wording” of identified principles. That is, are the listed principles
stated in theoretical terms (i.e. formal definitions or general rules) and not as proce-
dural instructions?

An inspection of Nat’s Vee diagrams shows a number of listed principles have the
ingredient concepts; however the statements are phrased in procedural or algorith-
mic terms. For example, in the Vee diagram for P3 (Fig. 14.6), Nat listed principles
(iii) and (iv) as: “With successful substitution forms: a0m2 +a1m + a2 = 0 which
is called ‘Auxiliary Equation’” and “Roots m1 and m2 are obtained after solving
the auxiliary equation for m” respectively. These statements are more procedurally
worded (substitution and obtained after solving) than conceptual. This algorithmic
nature is also evident in the choice of linking words (substituted to give, must satisfy,
and check for) used in the partial segment shown in Fig. 14.4.

It appears that his background in computer programming and experience with
flow charts are influencing his perceptions of what constitutes appropriate “linking
words” and “principles.” Alternatively, this procedural view of mathematics sug-
gests that his perceptions of “mathematical knowledge” up to this point may have
been predominantly as “a collection of methods and procedures.” Thus, in spite
of the improvement in aligning the listed principles with main steps of solution in
Vee diagrams, Nat still needs to rephrase his “procedural” principles to be more
theoretical.

Discussion

Both Nat’s final concept maps and final Vee diagrams showed significant changes by
the end of the study compared to his initial attempts. For example, the final map was
structurally more complex with increased integrative cross-links, more progressive
differentiation links, additional concepts, and increased number of valid proposi-
tions. These increased criteria provided empirical evidence that Nat’s understand-
ing of differential equations had become more structured, better organized and more
enriched to the point that it greatly facilitated the construction of his Vee diagrams.

For example, he wrote: “the Vee diagram consists of the theoretical and prac-
tical senses of the event/object . . . directed by the concept map flow (right seg-
ment, Fig. 14.4) . . . these senses help guide the transformations.” That is, he was
beginning to realize for himself the value of a clearly organized concept map as
a guide to make decisions about effectively solving a problem. Since his Vee dia-
grams were constructed after the first cycle of critiques, they attracted relatively
less criticism during critiques unlike his concept maps. From the socio-cultural
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perspective, Nat’s conceptual, more structured and better organized understanding
of D.E. was partially a result of sustained social interactions, and critiques from
his peers and researcher throughout the semester. For example, Nat wrote: “Due to
questions raised in class, on what ‘auxiliary equations’ represented and how it’s
formed. Therefore, more details were presented . . .” and “the whole concept of
reduction of order needed clarification in all senses due to its shortened presen-
tation before.” When there was no criticism, he tended to leave the maps/diagrams
unchanged. For example, he said: “I encountered very little or no critical comment
during class presentations . . . (so). . . I’m left with no urge to make any further mod-
ifications . . . not criticized at all, therefore no changes.” That is, his determination
to minimize critical comments from others motivated Nat to continually develop a
more complete and comprehensive map, which accommodated critical comments of
the previous critique to ensure minimal criticism in the next critique. For example,
he added branches to clarify the concepts: auxiliary equation, reduction of order in
his second map, and added a new branch in the final map to accommodate power
series solutions (see Fig. 14.4).

From the perspectives of Richards (1991) and Knuth and Peressini (2001) Nat
and his peers engaged in inquiry mathematics where classroom discourse was
both “to convey meaning” and “to generate meaning.” Nat, through the use of
maps/diagrams engaged in mathematical discussions, dialogues and critiques with
his peers and researcher. His fluency with the language of D.E. and the com-
munication of this mathematical understanding publicly was made more effective
and efficient with maps/diagrams involving important mathematical ideas. Substan-
tive mathematical communication and multiple communication modes to support
the development of conceptual understanding in mathematics, as emphasized by
Moschkovitch (2004) for bilingual learners, were evident in Nat’s case study. Fur-
ther, noticeable growth in Nat’s in-depth understanding of D.E. was indicated by
the increased number of valid propositions and structural complexity of conceptual
networks in his final map, and improved correspondence between listed principles
and solutions on Vee diagrams. However, because of his tendency to view inter-
connections and principles with a procedural bias, Nat needs to continuously revise
his maps/diagrams with appropriate critiques and feedback from other mathemat-
ics people to ensure that the conceptual interconnections are made more explicit on
links on concept maps and the principles of Vee diagrams are more theoretically
stated and less procedural.

Finally, the established socio-mathematical norms, and use of maps/diagrams
appeared to promote a classroom environment that was alive with meaningful dis-
cussions as students engage in the critiquing and justification processes. Whilst
it could be argued that this would happen irrespective of the type of meta-
cognitive tools used, the author proposes that the unique visual structures of the
maps/diagrams were pivotal in facilitating and promoting dialogues and critiques. It
appeared then from the empirical evidence that the established socio-mathematical
norms and use of the meta-cognitive tools had substantially influenced Nat’s
perceptions of mathematics as reflected by the progressive improvement in his
maps/diagrams and his responses in the final report. Clearly, with the right
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supportive classroom environment, students can be encouraged to dialogue, discuss
and communicate mathematically. In so doing, students begin to realize that learn-
ing mathematics meaningfully involves much more than implementing a sequence
of steps. Findings from this case study suggest that students are amenable to changes
in classroom practices, and with their cooperation, and using appropriate meta-
cognitive tools, mathematics learning can be rendered more enriching and mean-
ingful at an individual level.

Implications

The results of the case study suggest that active organization of one’s knowledge
and understanding and visually presenting and communicating this understanding
publicly through individually-constructed concept maps and Vee diagrams has the
potential to make mathematics learning and problem solving more than simply
“doing” mathematics (i.e. applying, and substituting values in, formulas). By con-
structing maps/diagrams, students can be challenged to represent and organize their
mathematics knowledge and to demonstrate their understanding of the structure of
the mathematics embedded in a problem or relevant to a topic. Socially interacting
and negotiating meanings with others has the potential to influence one’s thinking
and reasoning such that it may result in consolidating one’s understanding or signal-
ing the need for further reflection and revisions. Such a process of reorganization,
revision and reflection is necessarily cyclic and interactive, which can ultimately
result in the development of one’s conceptual understanding and meaningful learn-
ing of mathematics. Further research is recommended to investigate these ideas fur-
ther in mathematical classrooms at all levels.
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Chapter 15
Using Concept Maps to Mediate Meaning
in Undergraduate Mathematics

Karoline Afamasaga-Fuata’i

The chapter presents the concept map data from a study, which investigated the
use of concept maps and Vee diagrams (maps/diagrams) to illustrate the concep-
tual structure of a topic, its relevant problems and common procedures. Students
were required to construct comprehensive topic maps/diagrams as ongoing exer-
cises throughout the semester and to present these for critique before individuals
finalized them. With improved mapping proficiency and on-going social critiques,
students’ mathematical understanding deepened, becoming more conceptual as a
result of continually revising their work as the validity of each map is dependent
on how effective it illustrated the intended meanings and correct mathematics struc-
ture. Students also developed an appreciation of the crucial inter-linkages between
mathematical principles, common procedures and formulas, and how all of these
mutually reinforce each other conceptually and methodologically. Incorporating
concept mapping as a normal mathematical practice in classrooms can potentially
alter the learning of mathematics, making it more meaningful and conceptual to sup-
plement the predominantly procedural proficiency practised in many mathematics
classrooms.

Introduction

It is not enough just to be able to solve problems. Students must be able to reason
out connections between the underlying mathematics in the context of a problem or
topic and they must be able to make conjectures, justify methods, and communicate
solutions and strategies. These are the core ideas embedded in various curriculum
standards (e.g., NCTM, 2007; AAMT, 2007). For many undergraduate students,
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explaining why their methods work is difficult, mainly because they do not possess
the language with which to explain their solutions. Alternatively, explaining and
justifying their methods have not been normal practices in their classrooms (Pratt &
Kelly, 2005). Richards (1991) describes this situation as a communication problem
resulting from students’ inability to “understand the appropriate language . . . of a
mathematical discussion, and no sense of making conjectures or evaluating mathe-
matical assumptions”. Instead, answers are often in terms of methodological issues
or sequential relations rather than a conceptual framework, which indicate that a
student’s proficiency and adeptness in executing a procedure may not necessarily
reflect deep, conceptual understanding of the mathematics involved. To challenge
the depth of student understanding in any domain, they may be asked to effectively
represent and communicate that understanding for public scrutiny.

Mathematics Education in Samoa

From a socio-cultural perspective, students’ answers typically reflect the norms,
discourse and practices of their cumulative mathematics experiences (Pratt & Kelly,
2005). In Samoa, the fragmented, and narrow view of mathematics most under-
graduate students have, reflect their secondary mathematics experiences. While
most students are proficient in applying formulas to familiar problems (i.e., rou-
tine expertise (Hatano, 2003)), there is a remarkable lack of critical thinking and
analysis especially evident when they are given novel problems to solve. More par-
ticularly, students may have the knowledge of relevant content areas and proce-
dures but are often unable to, independently and flexibly, apply what they know
to problems unless substantial guidance is provided (Afamasaga-Fuata’i, 2005a,
2002; Afamasaga-Fuata’i, Meyer, Falo, & Sufia, 2007). Such manifestations (a)
characterize students who learn mathematics by memorising collections of facts
and procedures with little effort in making connections between topics, and (b) typ-
ically reflect prevailing socio-cultural practices of their school mathematics class-
rooms. According to Hiebert and Carpenter (1992), understanding takes place when
students develop relationships and connections in their mathematical knowledge
whereas adaptive expertise (Hatano, 2003), in contrast to routine expertise, is mean-
ingful (deep conceptual and procedural) knowledge that can be applied creatively,
flexibly, and appropriately to new, as well as familiar tasks.

At the national level, failure rates in secondary mathematics examinations are
fairly high up to 70% (Afamasaga-Fuata’i, 2002, 2001). Despite the restricted
entry into the National University of Samoa (NUS) University Preparatory Year
(UPY)1 program, mathematics failure rates are still high at up to 65% a semester.
Although UPY students represent the top 10% of those that passed the Pacific
Senior Secondary Certificate (PSSC) examinations in the previous year at the
end of secondary level, they nonetheless consistently struggle with applications

1 The UPY program subsequently changed its name to Foundation program in 2004.
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of basic mathematics principles to solve problems that require investigation and
interpretation (Afamasaga-Fuata’i, Meyer, & Falo, 2007), demonstrating that UPY
students and those that continue onto undergraduate studies consistently perceive
mathematics learning narrowly as basically manipulating symbols and substituting
values into formulas with a tendency to use any procedure to get an answer to a
word problem without really checking whether the algorithm is suitable to the prob-
lem (Schoenfeld, 1996). If and when explanations are given, they are “reflective
of precedent-thriven comprehension with no logical basis for a priori reasoning”
(Baroody, Feil, & Johnson, 2007), indicative of previous socio-mathematical prac-
tices in classrooms where mathematical dialogues and discussion of mathematical
ideas are neither supported nor encouraged (Richards, 1991). Further exacerbating
this problem is the examination-driven teaching of secondary school mathematics,
which naturally inculcates a narrow view of mathematics. Against this general back-
ground, a series of concept mapping and Vee diagrams studies (mapping studies)
with different cohorts of undergraduate students was initiated (Afamasaga-Fuata’i,
2005b, 2002, 2001) primarily to explore different ways in which mathematics learn-
ing could be made more meaningful and more conceptual. Therefore, the research
questions for this chapter are: (1) How can hierarchical concept maps illustrate
improvements in students’ understanding of mathematics topics? (2) In what ways
do social interactions influence students’ developing understanding?

The chapter presents data from one of the cohorts that selected topics they
recently or concurrently studied at the time, as content for the application of two
meta-cognitive tools (concept maps and Vee diagrams). An overview of the relevant
theoretical framework guiding the studies is examined next followed by a review of
relevant studies.

Literature Review

Theoretical Framework

The two main theories guiding the studies are Ausubel’s theory of meaningful learn-
ing and Vygotsky’s theory of development. The fundamental idea in Ausubel’s cog-
nitive psychology is that learning takes place by the assimilation of new concepts
and propositions into existing concept and propositional frameworks (i.e., cogni-
tive structures) held by the learner (Novak & Cañas, 2006). The assimilation of
new knowledge into students’ existing patterns of meanings takes place through the
process of progressive differentiation and/or integrative reconciliation where new
meanings are acquired by the interaction of new, potentially meaningful ideas with
what is previously learnt. This interactional process results in a modification of both
the potential meaning of new information and the meaning of the knowledge struc-
ture to which it becomes connected to (Ausubel, 2000).

The process of progressive differentiation involves the consequent refinement of
meanings of a more general more inclusive concept in terms of less general and
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more specific concepts. In contrast, integrative reconciliation of ideas involves the
synthesis of a group of coherent concepts with another concept or concepts not
initially connected to them. According to Ausubel’s theory of meaningful learn-
ing, meaning is created through the deliberate connection of concepts and in how
this interrelationship is interpreted and internalised by the learner. This meaningful
learning is “a constructive process involving both our knowledge and our emotions
or the drive to create new meanings and new ways to represent these meanings”
(Novak & Cañas, 2006).

To provide evidence of students’ developing understanding of a domain, concept
maps and Vee diagrams may be constructed (Novak & Gowin, 1984). Concept maps
are hierarchical networks of interconnecting concepts (nodes) with linking words
describing the meanings of the interrelationships. Strings of triads of valid concept
nodes, linking words and concept nodes form meaningful statements called propo-
sitions (examples of concept maps are presented later). Vee diagrams on the other
hand is a Vee situated in the problem or activity to be examined with its left hand
side displaying the conceptual information required to interpret the problem/activity
with the methodological information on the right hand side to illustrate how the con-
ceptual information is applied to the given information to generate answers to the
focus questions (see Chapter 12 for an example).

Whilst Ausubel’s cognitive theory of meaningful learning defines the construc-
tion of knowledge and meaning by a learner, Vygotsky’s zone of proximal develop-
ment describes how a learner, through interactions, and discussion with help from
adults or more capable peers, master concepts and ideas that they cannot understand
on their own, in order to, through the process of mediation, become more knowl-
edgeable and expert in a particular domain or more proficient with a particular skill.
The emphasis here is that the learner reaches “cognitive maturation” (Vygotsky,
1978) in his/her cognitive development. Social interactions or external stimuli are
consequential to a learner only to the degree that he/she can assimilate them by
means of his/her cognitive structures (Piaget, 1969). Hence, while social interactions
and negotiations are influential to a student’s thinking and reasoning that he/she has
reached cognitive maturation (i.e., at the peak of his/her zone of proximal develop-
ment) would be manifested by what he/she does with directed thought. The latter
is internal and occurs without communication with another as social thought that is
increasingly influenced by experience and logic and no longer tied to an imme-
diate social context. Consequently, higher mental processes engage the ”social”
interactions of inner speech to create new knowledge (Marsh & Ketterer, 2005).
Furthermore, Vygotsky proposed that human beings achieve control over natural
mental functions by bringing socio-culturally formed mediating artifacts into think-
ing activity while cultural artifacts, situated within a human activity system, medi-
ate human activity (Marsh & Ketterer, 2005). Again the emphasis falls on learners
actively constructing knowledge and meaning through participating in activities and
challenges, with the added emphasis on the interaction between learners and facil-
itators in order to arrive at a higher level of truth (Sternberg & Williams, 1998). In
problem solving, having information about which to think, analytically, creatively,
or practically is as important as the thinking process itself. In other words, thinking
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requires information to analyze, creative thinking, to go beyond the given, requires
knowledge of the given, and practical thinking must make use of knowledge of the
situation (Sternberg & Williams, 1998).

Relevant Studies

Numerous studies investigated the use of concept maps and Vee diagrams
(maps/diagrams) as assessment tools of students’ conceptual understanding over
time in the sciences (Novak & Cañas, 2006; Novak, 2002; Mintzes, Wandersee, &
Novak, 2000), and mathematics (Afamasaga-Fuata’i, 2005b, 2007). Research in sec-
ondary (Afamasaga-Fuata’i, 1998, 2002) and university mathematics (Afamasaga-
Fuata’i, 2007b, 2004, 2006b) found students’ conceptual understanding of mapped
topics was further enhanced after a semester of concept mapping. Research with pre-
service teachers showed maps were useful pedagogical planning tools (Afamasaga-
Fuata’i, 2006a, 2007a; Brahier, 2005) and means of examining students’ conceptual
understanding of mathematical concepts (Baroody & Bartel, 2000; Williams, 1998;
Hansson, 2005; Swarthout, 2001). Workshops with science and mathematics spe-
cialists and teachers found maps/diagrams have potential as teaching, learning and
assessment tools (Afamasaga-Fuata’i, 2005b, 2002, 1999).

Collectively, these studies provide empirical evidence of the value of concept
maps as a way of illustrating, representing, and organizing one’s understanding of
the interconnections of a group of coherent concepts, and as methodological tools to
organise the analysis of interview protocols into schematic categories that are sys-
tematically interrelated. Both these uses emphasize the importance of valid inter-
connections and meaningful hierarchical organization of concepts. Vee diagrams on
the other hand, have been used to unpack participants’ epistemological beliefs and
perceptions of how knowledge is produced and structured in a discipline as contex-
tualized in a problem/activity and as a pedagogical planning tool for the design of
learning activities.

Concept Mapping and Vee Diagram Studies

The mapping studies conducted at NUS in Samoa, investigated the dual impact of
the deliberate construction of maps/diagrams and altered socio-mathematical class-
room norms have on students’ understanding of mathematics particularly in terms
of (i) their fluency with the language of mathematics, (ii) their effectiveness in artic-
ulating and communicating their understanding to others, and (iii) their perceptions
of mathematics. The newly established socio-mathematical norms required students
to conduct conceptual analyses of a topic and its problems and to display the results
using maps/diagrams in order to publicly communicate their understanding for cri-
tique in a social setting, comprising their peers and the researcher, during individ-
ual presentations to the group and one-on-one consultations with the researcher.
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Preparatory work for maps/diagrams involved the analyses of a topic to identify
its relevant key concepts, principles, formal definitions, theorems, and formulas in
addition to being proficient in executing its methods and procedures.

Methodology of the Study

The study reported here was an exploratory teaching experiment to investigate stu-
dents’ developing understanding of particular topics (Steffe & D’Ambrosio, 1996).
Students met twice a week for 50 minutes each time over 14 weeks. Maps/diagrams
were introduced as means of learning mathematics more meaningfully and solv-
ing problems more effectively. The content included the topics: limits and conti-
nuity, indeterminate forms, numerical methods, differentiation, integration, motion,
multiple integrals, infinite series, normal distributions and complex analysis. The
epistemological principles, namely, building upon students’ prior knowledge, nego-
tiation of meanings, consensus and provision of time-in-class for student reflec-
tions, guided classroom practices. Hence, the study included a familiarization phase,
which introduced the new socio-mathematical norms of students presenting and
justifying their work publicly, addressing critical comments, and then later on
critiquing peers’ presented work. Time was set aside between critiques to revise
maps/diagrams. The cyclic process of: presenting (to peers or researcher) → cri-
tiquing → revising → presenting underpinned the study. Of the 13 students, 3 chose
topics outside of mathematics (computer programming, cell biology, and organic
chemistry). This paper reports the data from the mathematics maps only.

Analysis of Concept Maps

Whilst the literature documents a variety of assessment/scoring techniques
(Novak & Gowin, 1984; Ruiz-Primo, 2004; Liyanage & Thomas, 2002), a modified
version of the Novak scheme was adopted using counts of a criterion particularly as
the depth of a student’s understanding is determined by the number, accuracy, and
quality of connections (Hiebert & Carpenter, 1992; Baroody et al., 2007). The three
criteria are the structural (complexity of the hierarchical structure of concepts), con-
tents (nature of the contents or entries in the concept nodes) and propositions criteria
(valid propositions).

The structural criteria are in terms of integrative cross-links between concept
hierarchies (integrative reconciliation) signaled by nodes with multiple incoming
links, progressive differentiation evidenced by nodes with multiple branching (more
than one outgoing link) (which create main branches and sub-branches), and aver-
age number of hierarchical levels per sub-branch. The contents criteria indicate
students’ perceptions of mathematical concepts in terms of suitable labels and illus-
trative examples. Inappropriate entries included those describing procedural steps
(more appropriate on diagrams), redundant entries (indicating the need for a re-
organization of concepts), and linking words as concept labels (linking-word-type).
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The definitional-phrase invalid node, although conceptual is too lengthy, its pres-
ence signals the need for further analysis to identify “concepts” as distinct from
“linking words”. The propositions criteria define valid propositions as those formed
by valid triads (i.e., “valid node- valid-linking words → valid node”). Propositions
are meaningful statements made up of triads of valid nodes and valid linking words.

Concept Maps Collected

The data collected consisted of students’ progressive maps (4 versions) and progres-
sive Vee diagrams of 3 problems (at least 2 versions per problem), and final reports.
Only the data from maps are presented here. The three criteria were used to assess
students’ first and final maps, to identify any changes. The map data for Students 1–
10 are in Tables 15.1 and 15.2. The results show that 7 out of 10 students displayed
increases in valid propositions by the final map with five students showing increases
in at least 4 of the 5 structural sub-criteria.

In this chapter, a second level analysis was conducted to extend beyond that
presented in Afamasaga-Fuata’i (2007b), to determine an overall rating for each
final cmap, by averaging the ratings based on the two criteria (1) valid propositions
and (2) structural complexity. This extended analysis is to provide a more in-depth
investigation of features that distinguish between different types of maps. Implicit
in the criteria: valid propositions is the count of valid nodes and valid linking words
to form a valid proposition while the structural complexity criteria is in terms of
whether or not there were increases (↑) with its 5 sub-criteria.

For valid propositions (VP), a rating scale of 1–5 is defined based on the per-
centage of valid propositions in the final cmap. That is, rating 1 means at least 80%
VP, 2 (70% ≤ VP < 80%), 3 (60% ≤ VP < 70%), 4 (50% ≤ VP < 60%), and 5
(VP < 50%). For structural complexity, a rating scale of 1–5 indicates the number
of increased sub-criteria, that is, a rating of 1 is for 5 increased sub-criteria (↑), 2
for 4↑, 3 (3↑), 4 (2↑), and 5 (1↑).

Within the overall rating framework, a rating of 1 signifies a map that is concep-
tually meaningful, evident by its high percentage of valid propositions, and struc-
turally complex, reflected by increased integrative reconciliation between concept
hierarchies and progressive differentiation of concepts. In contrast, an overall rating
of 5 indicates a map that has a high proportion of invalid proportions and structurally
less complex with predominantly linear links that are sparsely, or, not, connected
to each other or fragmented hierarchies. A summary of overall ratings for the 10
final maps are shown in Table 15.3 with a further categorization to describe types,
namely, good, above average, average, below average, and poor.

The good maps (top-3) indicate high proportions of valid propositions (rating 1)
with 4 increased structural sub-criteria out of 5 (rating 2) while the bottom map
(rating of 4) had a high proportion of invalid propositions and only 3 increased
structural sub-criteria. The below-average maps (rating of 3.5) were mainly due to
few (1 or 2) increased structural sub-criteria with less than 70% valid propositions.
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Table 15.3 Summary of overall ratings for the final concept maps

Criteria Final concept map

Student Valid Structural Overall Type of
# – Name Propositions Complexity Rating concept map

3 – Fia 1 2 1.5 Good
4 – Vae 1 2 1.5 Good
9 – Toa 1 2 1.5 Good
5 – Heku 3 2 2.5 Above average
2 – Loke 5 1 3 Average
7 – Fili 3 3 3 Average
8 – Pasi 3 4 3.5 Below average
6 – Santo 2 5 3.5 Below average
10 – Salo 2 5 3.5 Below average
1 – Pene 5 3 4 Poor

Of the above-average, average, and below-average types (overall ratings 2.5, 3 and
3.5 respectively), Students 2’s, 6’s and 10’s maps stand out because of the one lowest
rating (i.e., 5).

The next sections present the cases of each type of map to illustrate some of the
key features distinguishing between them.

Examples of “Good” Concept Maps

Student 3: Fia – Numerical Methods

Fia’s first map had a high percentage of valid propositions (96%) reflecting her
careful organization of propositions. As a result of critiques, revisions and further
research, the final map showed increased number of valid concept nodes (from 73
to 83) and valid propositions (from 77 to 106) but proportionally reduced (valid
nodes from 99 to 89% and valid propositions from 96 to 88%) due to increased
definitional-phrase and inappropriate nodes (from 1 to 11%).

Structurally, the final map expanded (increased main branches from 5 to 8),
becoming more integrated (increased cross-links from 9 to 10) and more differenti-
ated (increased multiple-branching nodes from 18 to 19 and increased sub-branches
from 26 to 33) with more compact sub-branches (reduced average hierarchical levels
from 10 to 9).

Figures 15.1 and 15.2 show sections of the final map, which depict general and
more inclusive concepts at the top with progressively less inclusive and more spe-
cific concepts towards the bottom, examples of progressive differentiation (e.g.,
algorithms, collocation polynomial) and integrative reconciliation (e.g., errors).

An example of a linking-word-type of inappropriate entry (Fig. 15.1) is “used as
a measure of accuracy” while those exemplifying definitional-type are “Rounding
up of numbers due to the given decimal place” and “When a number is automatically
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Fig. 15.1 Partial view of student 3’s final concept map

chopped or cut-off due to not enough string place”. The last two entries require further
analysis to provide more precise concept labels. Figure 15.2 displays more examples
of progressive differentiation and clear hierarchical arrangements of nodes.

Student 4: Vae – Limits and Continuity

Vae’s first map showed inclusion of complete formal definitions as concept labels
(see partial view, Fig. 15.3), which the first peer critique highlighted as problematic.
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Fig. 15.2 Partial view of student 3’s final concept map

As a result of revisions, and critiques, Vae’s map progressively evolved into
a more conceptual one (increased valid nodes from 74 to 99%) with substan-
tially increased valid propositions (from 51 to 97%), structurally expanded (main
branches increased from 4 to 5), more integrated (cross-links increased from 4 to
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Fig. 15.3 Partial view of student 4’s first concept map
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Fig. 15.4 Partial view of student 4’s final concept map

17), more differentiated (increased multiple branching from 9 to 18 and increased
average hierarchical levels per sub-branch from 7 to 8), and more compact (reduced
sub-branches from 22 to 19) (Fig. 15.4).

Figure 15.4 displays a partial view of the final map showing a more differenti-
ated illustration of concepts, more precise concept labels, examples of cross-links
and progressive differentiation in contrast to bulk definitions of the initial cmap.
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Evidently, continuous revisions enhanced the hierarchical interconnections such that
formal definitions were analysed substantively for its key concepts, with concepts
appropriately linked and interconnections described meaningfully.

Student 9: Toa – Normal Distributions (ND)

Toa felt challenged to construct a map that included ND, Poisson distributions (PD)
and binomial distributions (BD). He wrote: (it was) hard to think of a concept to
start the map and then link the others right down to the end when it introduces
(BD, PD and ND). The first peer critique commented the map had “too many useful
concepts . . . missing”, and the “concepts used were paragraphs”, see Fig. 15.5.

Fig. 15.5 Partial view of student 9’s initial concept map
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Fig. 15.6 Partial view of student 9’s final concept map

In subsequent revisions, he “tried to break down those paragraphs into one or
two concept names” and “re-organized concept hierarchies” eventually resulting in
a final map that was more conceptual (increased valid nodes from 76 to 79%) with
increased valid propositions (from 56 to 81%). Structurally, the final map (partial
view in Fig. 15.6) became more expanded (increased main branches from 3 to 10),
more integrated (increased cross-links from 13 to 21), more differentiated (substan-
tial increases with multiple branching nodes from 9 to 17 and sub-branches from 10
to 24) and more compact within sub-branches (reduced average hierarchical levels
from 11 to 9). Shown in Fig. 15.5 is a partial view of Toa’s first map, with para-
graphs as nodal entries. The corresponding revisions in the final map (Fig. 15.6)
include more precise concept labels and examples of integrative cross-links between
two branches (propositions “Binomial Distribution can be converted using Bino-
mial Distribution → Poisson Distribution” and “Poisson Distribution can be con-
verted using Binomial Distribution → Poisson Distribution”), multiple branching
nodes (Binomial Distribution, Poisson Distribution, and parameters) and integra-
tive reconciliation of a number of nodes merging into a single node (nodes x, n – x,
p, n, q = 1 – p with merging links to Probability Function).
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Example of an “Above Average” Final Concept Map

Student 5: Heku – Motion

Half of Heku’s initial map (Fig. 15.7) was mostly derivation of different formulas
for speed and distance with the other half (not shown) displaying graphs of distance,
speed and acceleration versus time. The first critique targeted the need to show more
conceptual interconnections, less demonstration of procedural steps (more appropri-
ate on Vee diagrams), to complement the various formulas.

As a result of critiques and revisions, Heku’s final map became more conceptual
with increased number of valid concept nodes (from 44 to 50 but proportionally
reduced from 86 to 74%) and increased valid propositions (from 66 to 67%). Struc-
turally, the final map was more expanded (increased main branches from 6 to 9),
more integrated (increased cross-links from 6 to 22), more differentiated (increased
multiple branching nodes from 9 to 19 and increased sub-branches from 9 to 32)
but relatively more compact within sub-branches (reduced average hierarchical lev-
els from 8 to 7). Increased invalid nodes (from 14 to 26%) resulted mainly from
increased definitional phrases (from 2 to 22%). Provided in Fig. 15.8 is a section
of the final map showing less formula derivation but more conceptual nodal entries
with an improved structural hierarchical organization. Examples of definitional-type
entries are: “rate in which something moves” and “rate of velocity of a moving
object”.

Example of an “Average” Final Concept Map

Student 2: Loke – Differentiation

Loke’s first map had relatively more illustrative examples (49%) than conceptual
entries (44%) (see partial view in Fig. 15.9). As a result of critiques, revisions and
independent research, the final map was relatively more conceptual (increased valid
concept nodes from 44 to 56% and a reduction in examples from 49 to 28%), struc-
turally more expanded (addition of 2 more main branches), more integrated (addi-
tion of 6 new cross-links) and more differentiated (increased multiple-branching
nodes from 5 to 8 and increased sub-branches from 9 to 19). However, the reduction
of valid propositions (from 69 to 49%) was due mainly to increased definitional-
phrase invalid nodes (from 3 to 14%).

A partial view of the final map (Fig. 15.10) shows some examples of defini-
tional phrases are “finding the limit of the difference quotient”, “gradient of secant
at point PQ” and “secant, join by point PQ”, which could be either analysed fur-
ther to extract relevant concepts from linking works or revised to represent more
precise concept names. Examples of cross-links and progressive differentiation
are also shown. Overall, the final map was structurally more differentiated and
more integrated with the quality of the revised nodes more conceptual than the
first map.
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Fig. 15.7 Partial view of student 5’s first concept map
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Fig. 15.8 Partial view of student 5’s final concept map

Example of a “Below Average” Final Concept Map

Student 8: Pasi – Integration

Pasi’s first concept map was at first glance, well organized and structured with the
12 main branches neatly arranged and consisting of a total of 19 sub-branches with a
fairly high average number of hierarchical levels of 12. However, from the contents
criteria, 55% (63/114) of the nodes had entries related to the illustrative examples
compared to only 36% (41/114) which were classified as concept names, symbols
or general formulas with 3% (3/114) with entries that were more or less complete
formal definitions such as statements like “Limit of Riemann sum (as max Δxi→ 0
of f for interval [a,b] ” (see Fig. 15.11), which could be decomposed further into pre-
cise concepts. The inclusion of main steps of methods (more appropriate for a Vee
diagram and demonstrating his procedural knowledge) resulted in a high proportion
of illustrative examples.

As a consequence of the cyclic process of presenting → critiquing → revising
→ presenting, Pasi’s final map evolved into a substantially more conceptual one
(increased valid nodes from 54 to 87%) with increased valid propositions (from 40
to 67%) and a conspicuous absence of illustrative examples (of procedural steps)
Fig. 15.12).
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Fig. 15.9 Partial view of student 2’s first concept map

Structurally, the map was more compact (reduced multiple-branching nodes (from
13 to 11), reduced sub-branches (from 19 to 16), reduced main branches (from 12 to
6), and reduced average hierarchical levels per sub-branch (from 12 to 9)). Overall,
the final map was predominantly more conceptual with its concept labels and more
valid propositions with a more parsimonious, compact final structure. That its struc-
tural criteria was rated 4 (resulting in an overall rating of 3.5), was caused mainly by
the reduction of excessive procedural steps (and hence hierarchical levels) while the
quality of propositions was relatively better than the initial map.

A partial view of Pasi’s final concept map (Fig. 15.12) shows the more conceptual
and expanded numerical limit and area under the curve sub-branches in contrast to
the initial version in Fig. 15.11, which was predominantly an illustration of the
application of the definite integral formula. Whilst the middle and right branches
subsumed under the more inclusive node: Definite Integral are cross-linked towards
the bottom (Fig. 15.12), the middle and left branches are not.

Example of a “Poor” Final Concept Map

Student 1: Pene – Indeterminate Forms

Despite encountering “indeterminate forms” in first year mathematics, Pene strug-
gled to begin a map. The segment of his first map (see Fig. 15.13) shows, radiating



318 K. Afamasaga-Fuata’i

Fig. 15.10 Partial view of student 2’s final concept map

from node: Limit, are linear, sequential relations (or strings of triads), each express-
ing a mathematical statement or fact with little integrative linking to adjacent con-
cepts or other concept hierarchies. As a result of critiques, revisions and independent
research, Pene’s final map became structurally more integrated (increased cross-
links from 3 to 10), more differentiated (increased multiple-branching nodes from 8
to 10 and increased average hierarchical levels per sub-branch from 6 to 8) and more
compact (decreased sub-branches from 17 to 14) with main branches remaining
unchanged (Table 15.1). However, the percentage of valid nodes (from 77 to 67%)
and valid propositions (from 52 to 44%) decreased due to increased definitional-
phrase invalid nodes (from 8 to 30%) and vague/incorrect linking words. Some
examples of definitional phrases in Fig. 15.14 are “Ratio of two functions as x →a”,
“Quotient of the two functions”, and “Differentiable in an open interval a < x <
b and f(x) �=0”. Despite this, the final map was conceptually richer in its choice of
concept labels but linking words were still of poor quality and inaccurate, with a
structurally parsimonious, network of linked nodes.
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Fig. 15.11 Partial view of student 8’s first concept map

Discussion

Findings suggested that students’ progressive maps became integrated and differ-
entiated as students continually strove to illustrate valid nodes and meaningful
propositions, in response to specific concerns raised during social critiques and
in anticipation of subsequent critiques. These progressive maps provided evidence
of students’ deepening conceptual understanding of the topics as indicated by the
increasing complexity of the hierarchical organisation of concepts from most gen-
eral to less general, progressive differentiation between more inclusive and less
inclusive concepts, integrative links, and quality of propositions.

Social interactions evidently influenced students to structurally reorganize
concept hierarchies and further analyse nodal entries to be more precise, less



320 K. Afamasaga-Fuata’i

Fig. 15.12 Partial view of student 8’s final concept map

definitional and non-procedural. In terms of Stermberg and William’s view of prob-
lem solving, these structural and conceptual changes with the maps indicated that
students were not only thinking and reasoning out the conceptual structure of their
topics (analytical), but that they also attempted (a) to think creatively by going
beyond the analysed information to hierarchically organize the concepts into net-
works of connected concepts, and (b) to think practically and flexibly in order to fit
all of the above meaningfully on a map in preparation for social critiques.

Consequently, the re-definition of socio-mathematical norms appeared to sub-
stantively affect the quality of students’ mathematical thinking and reasoning as
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Fig. 15.13 Partial view of student 1’s first concept map

reflected in the evolving quality of their progressive maps, particularly given that
students were additionally required to publicly justify their displayed connections,
negotiate meanings with their peers and reach a consensus to revise or not. The
effects of the dialectic processes of social interactions and individual thinking and
reasoning materialised as conceptual and structural changes on the maps. For exam-
ple, the majority of students showed increases in valid propositions with half the
students showing increased structural complexity by the final map. It appeared that
the public presentation of the maps prompted the students to strive for effective com-
munication of their ideas as manifested through improved hierarchical organization,
precise nodal entries and more meaningful linking words albeit to different extents
as indicated by the final maps’ overall ratings.

For the students in the study, they were challenged to develop a deeper under-
standing of their topic, in order to address concerns raised in social critiques,
through further revisions and independent research, as they internalised the mean-
ings of concepts and being transformed by them as they communicated these inter-
nalised meanings (as their understanding) during presentations and visually through
their individually constructed maps. Consequently, students constructed their own
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Fig. 15.14 Partial view of student 1’s final concept map
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knowledge and understanding (on maps) and developed mathematical meanings (as
propositions) as they learnt to publicly explain and justify their thinking to others.

There was a marked shift from simply providing entire paragraphs, procedu-
ral steps, formulas, and excessive illustrative examples to seeking out more precise
concept labels and valid linking words, and structurally more integrated and differ-
entiated conceptual interconnections, which reflected the impact of the social inter-
actions on an individual’s evolving understanding, and developing directed thought
and meta-cognitive skills.

Students necessarily had to reflect more deeply, as individuals, about the concep-
tual structure of topics than they normally did. Because of the need to communicate
their understanding competently in a social setting, over time and with increased
mapping proficiency, students became more analytical, flexible, creative, and pre-
cise in their selection of concept entries and more astute in describing the nature of
the relationships between connecting concepts more correctly to minimize critical
comments.

From students’ perspectives, they realized that mathematics has a conceptual
structure, the socially validated body of knowledge, which underpins its formal
definitions and formulas. By searching for missing relevant concepts to make the
maps more robust and comprehensive, students eventually realized that an in-depth
understanding of topics required much more than re-stating a definition or formula.
Instead, concept mapping invited the students to identify more inclusive and less
inclusive concepts of their topics, demonstrate an integrated understanding of con-
cepts, definitions and formulas, and visually organise this understanding as a mean-
ingful hierarchy of interconnecting nodes with rich linking words to form valid
propositions for public scrutiny and critique. In so doing, concept mapping pro-
vided one means of reinforcing a “view (of) mathematical knowledge as cohesive
or structured rather than a series of isolated” (Baroody et al., 2007) definitions, for-
mulas and procedures and as knowledge that is socially warranted by a community
of mathematicians.

Over the semester, students eventually appreciated the utility of maps as a means
of depicting networks of conceptual interconnections within topics and highlighting
connections between concepts, definitions and formulas. However, attaining this
more conceptual understanding of mathematics was hard work and required much
reflection, social negotiations and individual research on their part.

As Novak and Cañas (2006) found, learners struggle to create good maps as
they are engaged in a creative process of “creating new meanings and new ways
to represent these meanings” which can be challenging, especially to learners who
have spent most of their life learning by rote (p. 9).

The findings suggested that with more time and practice students can become
proficient and adept at constructing maps whilst simultaneously deepening and
expanding their theoretical knowledge of the structure of mathematics. Challenges
faced by the students included (1) the importance of getting quality feedback from
their peers, (2) the need to sustain students’ motivation to seek more meaningful
propositions by (a) revising inappropriate nodes, (b) selecting more rich and mean-
ingful linking words, and (c) reorganising concept hierarchies, and (3) the need
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for them to further develop their self-confidence and fluency in presenting mathe-
matical justifications and counter-arguments during social critiques. Furthermore,
students experienced difficulties reconciling the type of linear learning style they
are used to (e.g., by memorizing definitions) to the hierarchical nature and orga-
nization required for concept mapping. The progressive quality of students’ maps
over the semester confirmed that students’ deepening understanding of their top-
ics were very much influenced by the scaffolding and social interactions during
critiques, the newly established socio-mathematical norms of the classroom set-
ting, and the socially-validated structure of mathematics. That is, the deliberate
alteration of the classroom environment and practices particularly in terms of the
individual/social orientation of the learning, and the form and extent of the focus
of assessment (Pratt & Kelly, 2005) resulted in a more conceptual and theoretical
understanding of their topics. Findings also extended the literature on the impact of
social negotiations of meanings, interactions and critiques on the development of
students’ conceptual understanding of topics, which in this study, was greatly facil-
itated with the visual mapping of students’ progressive conceptions on hierarchical
maps over time. Finally, using the meta-cognitive tools promoted a higher level of
self-reflection and lateral thinking which, generally motivated students to critically
analyse their perceptions of mathematics knowledge and, specifically encouraged
deeper, conceptual understandings of topics.

Implications

Findings from the study imply that the concurrent use of concept mapping and social
critiques as part of the culture and practices within mathematics classrooms has
the potential to promote the development of mathematical thinking, reasoning, and
effective communication which are most desirable skills to be successful in math-
ematics learning. Doing so as early as primary level would be an area worthy of
further investigation.
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Novak, J. D., & Cañas, A. J. (2006). The theory underlying concept maps and how to construct
them. Technical Report IHMC Map Tools 2006-01, Florida Institute for Human and Machine
Cognition, 2006, available at: http://cmap.ihmc.us/publications/ResearchPapers/ TheoryUnder-
lyingConceptMaps.pdf

Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. Cambridge: Cambridge University
Press.

Piaget, J. (1969). Science of education and the psychology of the child. New York: Grossman
Publishers.

Pratt, N., & Kelly, P. (2005). Mapping mathematical communities: Classrooms, research
communities and master classes. Retrieved on August 20, 2007 from http://orgs.man.ac.
uk/projects/include/experiment/communities.htm

Richards, J. (1991). Mathematical discussions. In E. von Glaserfeld (Ed.), Radical constructivism
in mathematics education (pp. 13–51). London: Kluwer Academic Publishers.

Ruiz-Primo, M. (2004). Examining concept maps as an assessment tool. In A. J. Canãs, J. D.
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Chapter 16
Implications and Future Research Directions

Karoline Afamasaga-Fuata’i

Empirical evidence presented in the preceding chapters demonstrated that there is
much to be gained educationally in general, and mathematically in particular, for
learners and teachers of mathematics at all levels, through the development and
application of an innovative approach to teaching mathematics by utilising the meta-
cognitive strategy of concept mapping, available computer software and internet
resources and recent developments in mathematics education to improve the pro-
cesses involved in the planning and teaching of mathematics by teachers and in the
learning and assessment of students’ problem solving skills and most important, the
constructive development of students’ conceptual understanding of mathematics.
Whilst various authors from different parts of the world, investigated and presented
the work of one, a few, or many teachers/students, subsequent findings nonetheless
suggest potentially viable approaches that could be usefully adopted and adapted
in mathematics classrooms anywhere in the world to address the recurring prob-
lems experienced by many students as they struggle to make sense of mathematics
problems, concepts and processes. These findings have implications for learners of
mathematics both in schools and various university programs.

For example, Novak & Cañas proposed a new model of education that involved
the use of expert concept maps to scaffold learning and the collaborative construc-
tion of concept maps or knowledge models using CmapTools and readily available
Internet resources. Having students explore real problems, develop knowledge mod-
els and communicate their mapped understanding or knowledge models, as oral,
written or video reports are key aspects of the proposed model. Whilst work at the
Institute has focused mainly in science education, much remains to be done in math-
ematics education.

In addition to concept maps, some authors examined vee diagrams, as an addi-
tional meta-cognitive tool, to determine the extent of students’ analysis and under-
standing of the integrated linkages between methods of solving problems and the
conceptual structure of mathematics. Afamasaga-Fuata’i, in the second chapter,
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provided evidence from a case study of a primary preservice teacher’s analysis of
the measurement content strand in primary mathematics, which demonstrated the
richness of interconnections between antecedent concepts of measurement such as
length, distance, area, volume and capacity, and developmental trends across the
different stages of the primary level. Most important were the visual displays of net-
works of propositions on concept maps and theoretical and procedural entries on vee
diagrams, which effectively encapsulated the interconnections between the curricu-
lum’s Knowledge and Skills and Working Mathematically Syllabus Outcomes. The
student’s reflections provided further evidence of the value of the meta-cognitive
strategies in enabling her to become more pedagogically aware of developmental
trends and interconnections most relevant to make mathematics learning and prob-
lem solving more meaningful and conceptual for her future students. Examining the
impact of this kind of preparatory work on teaching practice and students’ meaning-
ful learning of mathematics is worthy of further investigation.

In their chapter, Schmittau & Vagliardo provided evidence from a case study of
a primary preservice teacher, who constructed a concept map which reflected the
results of her in-depth exploration of the meanings associated with and underly-
ing the concept of positional system, its antecedent concepts and the complexity of
interrelationships within a conceptual system. The student’s concept map addressed
both a serious deficiency in current elementary mathematics programs in the United
States and provides a reliable direction for future mathematics curriculum develop-
ment. Findings underscore the importance of conducting similar analyses to include
other fundamental concepts of mathematics to promote the view of mathematics as
a conceptual system.

Afamasaga-Fuata’i, in Chapter 4, provided additional evidence from another case
study, which demonstrated the usefulness of maps/diagrams in making explicit the
conceptual structure of the fraction strand of a primary mathematics curriculum.
Through a series of progressive concept maps, the post-graduate student demon-
strated his evolving conceptual and hence pedagogical understanding of the devel-
opment of the fraction concept across the primary level. The conceptual labels,
and propositional links apparent in the final overview map were substantively more
enriched than the initial maps whilst through the construction of vee diagrams, the
student engaged in the processes of critical analysis and synthesis, thinking and
reasoning, justifying and explaining his knowledge and understanding to highlight
the interconnections between mathematics principles, concepts and procedures. The
findings imply that the routine construction of concept maps and vee diagrams and
regularly expecting students to provide justifications for their mapped interrelation-
ships and methods of solutions can promote the careful development of solutions
that make sense and can therefore be justified and rationalized (cf. Ellis, 2007, p.
196), and inevitably over a long period of time, could lead to learning mathematics
that is more meaningful and more conceptual in regular mathematics classrooms.
Such an undertaking and anticipated outcome requires further research.

In Chapter 5, Afamasaga-Fuata’i & McPhan provided data from a project, which
introduced concept maps as an innovative learning and assessment tool in two
Australian schools. The evidence provided suggested that implementing innovation
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in schools and incorporating it into classrooms is dependent on teacher change;
a long-term process with the most significant changes in teacher attitudes and
beliefs occurring after teachers began implementing the innovation successfully and
observed changes in learning (Guskey, 1985). Student maps provided snapshots of
their understanding of a topic at a particular time. Assessing the displayed inter-
connections revealed the extent to which meaningful learning took place, leading
to further reflection and discourse between student and teacher and/or amongst stu-
dents. The teachers indicated that they would continue with concept mapping as a
strategy to brainstorm ideas about new topics and as an assessment tool after a unit.
Peer tutoring was highly recommended as a means of working collaboratively with
new students or new schools. These suggestions provide viable directions for further
research with more schools in anticipation of a broader impact of concept mapping
on student learning and assessment.

Pozueta & Gonzàlez, in their chapter provided evidence of meaningful learning
of proportionality in a Spanish second grade secondary classroom by comparing stu-
dents’ pre-instruction and post-instruction concept maps to an expert concept map.
Indicators of meaningful learning included increase in numbers of concepts used,
reduction in errors or inaccurate propositions, increased clarity in hierarchical lev-
els and coherence with the inclusivity of the concepts, and increase in progressive
differentiation reconciliated integratively. Findings revealed concept mapping as a
useful tool to enable the design of an innovative and conceptually more transparent
instructional module on proportionality and also to check the pupils’ prior knowl-
edge and monitor their learning process. Potential directions for future research
include the investigation of the relationship between concept mapping, some person-
ality aspects and academic performance as a means of predicting students’ learning
capacity.

Schmittau in Chapter 7 provided evidence from a case study of two secondary
preservice teachers who, after receiving the same instruction on the concept of mul-
tiplication in a graduate mathematics education course constructed vastly differ-
ent concept maps, which revealed their differential understanding of the nature of
mathematics as a conceptual system, the conceptual content of mathematical proce-
dures and requisite pedagogical content knowledge to mediate such understandings
to future learners. One student demonstrated that she had internalized the concept in
its systemic interconnections while the other continued to see it through formalistic
lens. Findings suggest the need for teachers to not only examine the conceptual con-
nections of superordinate concepts as revealed in curriculum documents and text-
books but that they should also analyse the concepts’ historical conceptual devel-
opment to fully grasp the nature of mathematics as a conceptual system. Further
research is necessary to conduct similar analyses with other fundamental concepts
in mathematics.

Afamasaga-Fuata’i, in Chapter 8, provided evidence that demonstrated the use
of concept maps by an Australian secondary preservice teacher to develop a teach-
ing sequence on derivatives and a lesson plan to introduce the formal definition. Of
his own volition, he constructed additional concept maps of the 2-year senior math-
ematics curriculum first to conceptually and pedagogically situate the topic at the
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macro-level before a microanalysis of the conceptual interconnections of derivatives
to prior knowledge and subsequent learning. Findings imply that concept mapping
has the potential to explicate preservice teachers’ pedagogical content knowledge
and understanding of the relevant syllabus in more conceptually-based and inter-
connected ways, for further discussion and subsequent assessment of their devel-
oping pedagogical competence to mediate meaning of mathematical concepts and
processes.

In Chapter 9, Vagliardo presented evidence of the value of concept mapping,
when combined with historical research, as an important epistemological tool that
can make transparent the conceptual essence of a mathematical idea such as log-
arithms. Other direct uses such as exposing the operating understanding of impor-
tant mathematics concepts held by both teachers and students provided the means
to identify substantive focus for curriculum design and provide pedagogical direc-
tion for positive student learning in mathematics. Findings imply that concept map-
ping can instruct and guide mathematics educators toward a pedagogy of signifi-
cant cognitive consequence. Further research is necessary to examine the classroom
application and implementation of these ideas, and its subsequent impact on student
learning.

Ramirez, Aspèe, Sanabria & Neyra, in their chapter, provided useful guidelines
for constructing concept maps and vee diagrams. Using various examples of physi-
cal phenomena, they elaborated a number of strategies to guide students’ construc-
tions to explicate their understanding of various modeling functions visually on
concept maps and subsequently to illustrate, on vee diagrams, how these could be
appropriately applied in the context of modeling physical phenomena. The practical
suggestions provided reinforced the simplicity of the strategies of concept mapping
and vee diagramming and encouraged both students and teachers to consider using
them. The challenge therefore for further research is to investigate various models of
incorporating concept mapping and vee diagrams in classrooms to further enhance
students’ learning outcomes in both physics and mathematics.

Caldwell, in Chapter 11, provided evidence from a project that used a concept
mapping approach to course planning and lesson planning, development of student
learning and assessment of student learning of Algebra I in middle school. Caldwell
not only elaborated the processes of planning and constructing comprehensive con-
cept maps for a topic which involved groups of teachers but also provided an assess-
ment model to evaluate teachers’ and students’ concept maps. Further research into
the long-term use of this concept mapping approach in classrooms and its impact on
mathematics achievement would be most worthwhile.

Afamasaga-Fuata’i, in Chapter 12, using data from a group of Samoan under-
graduate mathematics students, demonstrated that the concurrent use of concept
mapping and vee diagrams, as means of supporting students’ learning and develop-
ment of their understanding of new topics, contributed significantly in highlighting
the close correspondence between a topic’s conceptual structure and its methods
and the realization that constructing maps/diagrams requires and demands deeper
understanding of interconnections than simply knowing what the main concepts
and formulas are. Findings imply that undergraduate mathematics learning can be a
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more meaningful and conceptually enriching experience through the concurrent use
of these metacognitive tools. Further research into the routine use of concept map-
ping and vee diagrams in undergraduate mathematics and its impact on students’
creativity and flexibility in problem solving can explicitly inform the improvement
of teaching practices in undergraduate mathematics.

Pérez, in Chapter 13, provided evidence of the use of concept maps by an instruc-
tor to guide his teaching and the impact of this approach on students’ comprehen-
sion and learning of calculus. Findings showed the improvement of students’ skills
in numerical reasoning, abstract reasoning and spatial relationships as a result of
integrating concept maps in the teaching-learning process. Further research is nec-
essary to examine the long-term impact of using concept maps in both teaching and
learning calculus.

In Chapter 14, Afamasaga-Fuata’i provided a case study that demonstrated the
impact of the concurrent use of concept mapping and vee diagrams on a Samoan
student’s understanding of, and proficiency in solving problems on, differential
equations. Newly established socio-mathematical norms within the classroom pro-
moted mathematical dialogues, critiques and meaningful discussions of each other’s
ideas. Findings underscore the value of using maps/diagrams as means of making
transparent one’s developing mathematical understanding for peer critiques. Fur-
ther research would be worthwhile in identifying potential barriers to incorporation
of these metacognitive strategies in undergraduate mathematics classrooms.

Afamasaga-Fuata’i, in Chapter 15, presented evidence from a group of Samoan
undergraduate students’ work with concept maps, which demonstrated that, initially,
students experienced difficulties reconciling the type of linear learning style they
were used to (e.g., by memorizing definitions) to the hierarchical nature and orga-
nization required for concept mapping. The progressive quality of students’ maps
over the semester confirmed that students’ deepening understanding of their top-
ics were very much influenced by the scaffolding and social interactions during
critiques, the newly established socio-mathematical norms of the classroom set-
ting, and the socially-validated structure of mathematics. That is, the deliberate
alteration of the classroom environment and practices particularly in terms of the
individual/social orientation of the learning, and the form and extent of the focus
of assessment (Pratt & Kelly, 2005) resulted in a more conceptual and theoretical
understanding of their topics. Findings imply that the simultaneous use of concept
mapping and social critiques in class has the potential to promote the development
of mathematical thinking, reasoning and effective communication in mathematics
classrooms.

Premised on the research findings presented in this book, further research is
desirable to fully investigate the potential value, advantages and limitations of using
concept maps as a metacognitive tool for planning, teaching, learning and assess-
ment for, and of, learning in whole school settings and in the preparation of prospec-
tive teachers of mathematics. How we can effectively introduce concept mapping
into mainstream mathematics education is an issue that is worthy of further research.
Moreover, collaborative construction of concept maps in mathematics classrooms at
different levels by using an appropriate software or CmapTools and its potential
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impact on student learning is another fertile area for further research. Worthy also
of further investigation is the identification of the types of mathematics courses
or topics that students are likely to find most conducive for concept mapping to
optimize the development of their conceptual understanding of the relevant mathe-
matical concepts, processes and procedures particularly those often encountered in
routine problem solving in anticipation of subsequently solving novel and/or more
challenging problems. Besides the applications of concept mapping already pre-
sented in this book, further research is necessary to explore other innovative peda-
gogical uses of concept maps and concept mapping in mathematics.

Whilst the chapters in this book reported on research of a minute part of the
plethora of problems faced by mathematics students in educational institutions,
the authors hope that, through the empirical evidence generated from working
with real students, teachers and educators, the findings herein will provoke further
research and discussions in the mathematics education community about how this
metacognitive strategy can contribute more efficiently and effectively in enhancing
the meaningful learning of mathematics and proficient solving of more challenging
mathematics problems.
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