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Summary. In the maximum cardinality bin packing problem (MCBPP), we have n items
with different sizes and m bins with the same capacity. We want to assign a maximum number
of items to the fixed number of bins without violating the capacity constraint on each bin.
We develop a heuristic algorithm for solving the MCBPP that is based on weight annealing.
Weight annealing is a metaheuristic that has been recently proposed in the physics literature.
We apply our algorithm to two data sets containing 4,500 randomly generated instances and
show that it outperforms an enumeration algorithm and a branch-and-price algorithm.
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1 Introduction

In the maximum cardinality bin packing problem, we are given n items with sizes
ti, i ∈ N = {1, . . . ,n}, and m bins of identical capacity c. The objective is to assign a
maximum number of items to the fixed number of bins without violating the capacity
constraint. The problem formulation is given by

maximize z =
n

∑
i=1

m

∑
j=1

xi j (1)
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subject to

n
∑

i=1
tixi j ≤ c j ∈ {1, . . . ,m}

m
∑
j=1

xi j ≤ 1 i ∈ {1, . . . ,n}

xi j = 0 or 1 i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m}

where xi j = 1 if item i is assigned to bin j and xi j = 0 otherwise.
The MCBPP is NP-hard (Labbé, Laporte, and Martello 2003). It has been ap-

plied in computing where we need to assign variable-length records to storage. The
objective is to maximize the number of records stored in fast memory so as to ensure
a minimum access time to the records given a fixed amount of storage space (Labbé,
Laporte, and Martello 2003).

The MCBPP has been applied to the management of real-time multi-processors
where the objective is to maximize the number of completed tasks with varying job
durations before a given deadline (Coffman, Leung, and Ting 1978). It has been used
to design processors for mainframe computers and the layout of electronic circuits
(Ferreira, Martin, and Weismantel 1996).

A variety of bounds and heuristics have been developed for the MCBPP.
Coffman, Leung, and Ting (1978) and Bruno and Downey (1985) provided prob-
abilistic lower bounds. Kellerer (1999) considered this problem as a special case
of the multiple knapsack problem where all items have the same profit and all
knapsacks (or bins) have the same capacity and solved it with a polynomial approx-
imation scheme for the multiple knapsack problem. Labbé, Laporte, and Martello
(2003) developed several upper bounds and embedded them in an enumeration al-
gorithm. Peeters and Degraeve (2006) solved the problem with a branch-and-price
algorithm.

In this paper, we develop a heuristic algorithm for solving the MCBPP that is
based on the concept of weight annealing. In Section 2, we describe weight anneal-
ing. In Section 3, we give the upper bounds and lower bounds that are used in our
algorithm. In Section 4, we present our weight annealing algorithm. In Section 5, we
apply our algorithm to 4,500 instances and compare our results to those produced
by an enumeration algorithm and a branch-and-price algorithm. In Section 6, we
summarize our contributions.

2 Weight Annealing

Ninio and Schneider (2005) proposed a weight annealing method that allowed a
greedy heuristic to escape from a poor local optimum by changing the problem land-
scape and making use of the history of each optimization run. The authors changed
the landscape by assigning weights to different parts of the solution space. Ninio and
Schneider provided the following outline of their weight annealing algorithm.
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Step 1. Start with an initial configuration from a greedy heuristic solution using the
original problem landscape.

Step 2. Determine a new set of weights based on the previous optimization run and
insight into the problem.

Step 3. Perform a new run of the greedy heuristic using the new weights.
Step 4. Return to Step 2 until a stopping criterion is met.

In their implementation, Ninio and Schneider required nonnegative values for
all of the weights so their algorithm could look for good solutions. They used a
cooling schedule with temperature T to change the values of the weights. When the
value of T was large, there were significant changes to the weights. As T decreased,
all weights approached a value of one. Ninio and Schneider applied their weight
annealing to five benchmark traveling salesman problems with 127 to 1,379 nodes
and generated results that were competitive with simulated annealing.

Weight annealing shares features with metaheuristics such as simulated anneal-
ing (e.g., a cooling schedule) and deterministic annealing (e.g., deteriorating moves)
and similarities among these metaheuristics were presented by Ninio and Schneider
(2005). In contrast to simulated annealing and deterministic annealing, weight an-
nealing not only considers the value of the objective function, at each stage of an
optimization run it also makes use of information on how well every part of the
search space is being solved. By creating distortions in different parts of the search
space (the size of the distortion is controlled by weight assignments based on insights
gained from one iteration to the next), weight annealing seeks to expand and speed
up the neighborhood search and focus computational efforts on the poorly solved
regions of the search space.

3 Upper and Lower Bounds

3.1 Upper Bounds

Our algorithm uses upper bounds on the optimal value of the objective function (z∗)
in (1) that were developed by Labbé, Laporte, and Martello (2003). The objective
function value in (1) gives the maximum number of items that can be packed into
the bins without violating bin capacities. Without loss of generality, we assume that
the problem data are integers and 1 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ c (we refer to this as the
ordered list throughout the rest of this paper).

The first upper bound for z∗ developed by Labbé, Laporte, and Martello (2003)
is given by

Ū0 = max
1≤k≤n

{

k :
k

∑
i=1

ti ≤ mc

}

. (2)

Since the optimal solution is obtained by selecting the first z∗ smallest items, all
items with sizes ti for which i > Ū0 can be disregarded.
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Labbé, Laporte, and Martello (2003) derived the second upper bound Ū1 as fol-
lows. Let Q( j) be the upper bound on the number of items that can be assigned to j
bins. Then

Q( j) = max

{

k : j ≤ k ≤ n,
k

∑
i=1

ti ≤ jc

}

for j = 1, . . . ,m. (3)

An upper bound on z∗ is given by

U1( j) = Q( j)+ �Q( j)/ j�(m− j) (4)

since �Q( j)/ j� is an upper bound on the number of items that can be packed into each
of the remaining (m− j) bins. The upper bound is obtained by taking the minimum
over all j, that is,

Ū1 = min
j=1,...,m

U1( j). (5)

Note that Ū1 dominates Ū0.
The third upper bound Ū2 from Labbé, Laporte, and Martello (2003) is derived

in the following way. Let i be the smallest item in an instance with m bins. Then
m�c/t1� is an upper bound on the number of items that can be assigned to m bins
because �c/t1� is an upper bound on the number of items that can be packed into one
bin. A valid upper bound is given by

Ū2(i) = (i−1)+m�c/t1�. (6)

If i is not the smallest item, then an optimal solution will contain all items j < i, and
by taking the minimum over all i, we obtain a valid upper bound

Ū2 = min
j=1,...,n

U2(i). (7)

It follows that the best a priori upper bound is given by U∗ = min{Ū0, Ū1, Ū2}
(which is similar to what is given in Labbé, Laporte, and Martello (2003)). Since the
optimal solution is obtained by selecting the first z∗ smallest items, all items with
sizes ti for which i > U∗ can be disregarded. We point out that the time complexities
for the computation of the bounds are given in the paper by Labbé, Laporte, and
Martello (2003).

3.2 Lower Bounds

Our algorithm uses lower bounds developed by Martello and Toth (1990). Let I de-
note a one-dimensional bin packing problem instance. The lower bound L2 on the
optimal number of bins z(I) can be computed in the following way.

Given any integer α, 0 ≤ α ≤ c/2, let

J1 = { j ∈ N : t j > c−α},
J2 = { j ∈ N : c−α ≥ t j > c/2},
J3 = { j ∈ N : c/2 ≥ t j ≥ α}, N = {1, . . . ,n},
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then

L(α) = |J1|+ |J2|+max

⎛

⎜
⎜
⎜
⎝

0,

⎡

⎢
⎢
⎢
⎢
⎢
⎢

∑
j∈J3

t j −
(

|J2|c− ∑
j∈J2

t j

)

c

⎤

⎥
⎥
⎥
⎥
⎥
⎥

⎞

⎟
⎟
⎟
⎠

(8)

is a lower bound on z(I).
L2 is calculated by taking the maximum over α , that is,

L2 = max{L(α) : 0 ≤ α ≤ c/2, α integer} (9)

In our algorithm, we use the Martello-Toth reduction procedure (denoted by
MTRP and given in Martello and Toth 1990) to determine the lower bound L3 which
dominates L2.

Let I be the original instance, zr
1 be the number of bins reduced after the first

application of MTRP to I, and I(zr
1) be the corresponding residual instance. If I(zr

1) is
relaxed by removing its smallest item, then we can obtain a lower bound by applying
L2 to I(zr

1) and this yields L′
1 = zr

1 + L2(I(zr
1)) ≥ L2(I). This process iterates until

the residual instance is empty. For iteration k, we have a lower bound L′
k = zr

1 + zr
2 +

. . .+ zr
k +L2(I(zr

k)). Then

L3 = max{L′
1,L

′
2, . . . ,L

′
kmax

} (10)

is a valid lower bound for I where kmax is the number of iterations needed to have the
residual instance empty.

4 Weight Annealing Algorithm for the MCBPP

In this section, we present our weight annealing algorithm for the maximum cardi-
nality bin packing problem which we denote by WAMC. Table 1 illustrates WAMC
in pseudo code. We point out that a problem has been solved to optimality once we
have found a feasible bin packing for the current instance defined by the theoretical
upper bound U∗ at Step 4 of our algorithm.

The number of items (n), the ordered list of item sizes, the bin capacity (c), and
the number of bins (m) are inputs. For the ordered list, the data are integers and
1 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ c, where ti is the size of item i.

4.1 Computing the Bounds

We begin by computing the three upper bounds and then setting U∗ = min{Ū0,
Ū1, Ū2}. Since the optimal solution of any instance is obtained by selecting the first
z∗ smallest items, we update the ordered list by removing any item i with size ti for
which i > U∗.

To improve the upper bound, we compute L3 by applying MTRP. If L3 is greater
than m, it is not feasible to pack the items on the ordered list into m bins, so we can
reduce U∗ by 1. We update the ordered list by removing any item i with size ti for
which i > U∗. We iterate until L3 = m.
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Table 1. Weight annealing algorithm (WAMC) for the MCBPP

Step 0. Initialization
Parameters are K (scaling parameter), nloop1, nloop2, T (temperature), and Tred.
Set K = 0.05, nloop1 = 20, nloop2 = 50, T = 1, and Tred = 0.95.
Inputs are number of items (n), the item size ordered list, bin capacity (c), and number of bins (m).

Step 1. Compute the upper bound U∗ = {Ū0,Ū1,Ū2}.
Step 2. Set n = U∗.

Remove item i > U∗ from the ordered list.
Step 3. Improve the upper bound.

While (L3 > m) do{
U∗ = U∗ −1.
Remove item i > U∗ from the ordered list.
Compute L3.}

Step 4. For j = 1 to nloop1
Step 4.1 Construct initial solution with the ordered list with modified FFD algorithm.
Step 4.2 Improve the current solution.

Set T = 1.
Compute residual capacity ri of bin i.
For k = 1 to nloop2

Compute weights wT
i = (1+Kri)T .

Do for all pairs of bins{
Perform Swap (1,0)

Evaluate feasibility and Δ f(1,0).
If Δ f(1,0) ≥ 0

Move the item.
Exit Swap (1,0) and,
Exit j loop and k loop if m is reached.

Exit Swap (1,0) if no feasible move with Δ f(1,0) ≥ 0 is found.
Perform Swap (1,1)

Evaluate feasibility and Δ f(1,1).
If Δ f(1,1) ≥ 0

Swap the items.
Exit Swap (1,1) and,
Exit j loop and k loop if m is reached.

Exit Swap (1,1) if no feasible move with Δ f(1,1) ≥ 0 is found.
Perform Swap (1,2)

Evaluate feasibility and Δ f(1,2).
If Δ f(1,2) ≥ 0

Swap the items.
Exit Swap (1,2) and,
Exit j loop and k loop if m is reached.

Exit Swap (1,2) if no feasible move with Δ f(1,2) ≥ 0 is found.
Perform Swap (2,2)

Evaluate feasibility and Δ f(2,2).
If Δ f(2,2) ≥ 0

Swap the items.
Exit Swap (2,2) and,
Exit j loop and k loop if m is reached.

Exit Swap (2,2) if no feasible move with Δ f(2,2) ≥ 0 is found.}
T := T ×Tred
End of k loop

End of j loop
Step 5. Outputs are the number of bins used and the final distribution of items.
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4.2 Weight Annealing for the Bin Packing Problem

Next, we solve the one-dimensional bin packing problem with the current ordered
list. We start with an initial solution generated by the first-fit decreasing procedure
(FFD) that we have modified in the following way. We select an item for packing
with probability 0.5. In other words, we start with the first item on the ordered list
and, based on a coin toss, we pack it into a bin if it is selected, or leave it on the
ordered list if it is not selected. We continue down the ordered list until an item is
selected for packing. We then pack the second item in the same manner and so on,
until we reach the bottom of the list. For each bin i in the FFD solution, we compute

the bin load li which is the sum of sizes of items in bin i (that is, li =
qi
∑
j=1

ti j, where ti j

is the size of item j in bin i and qi is the number of items in bin i), and the residual
capacity ri which is given by ri = (c− li)/c.

4.2.1 Objective Function

In conducting our neighborhood search, we use the objective function given by
Fleszar and Hindi (2002):

maximize f =
p

∑
i=1

(l j)2 (11)

where p is the number of bins in the current solution. This objective function seeks to
reduce the number of bins along with maximizing the sum of the squared bin loads.

4.2.2 Weight Assignment

A key feature of our procedure is the distortion of item sizes that allows for both up-
hill and downhill moves. The changes in the apparent sizes of the items are achieved
by assigning different weights to the bins and their items according to how well the
bins are packed.

For each bin i, we assign weight wi
T according to

wi
T = (1+Kri)T (12)

where K is a constant and T is a temperature parameter. We apply the weight to each
item in the bin. The scaling parameter K controls the amount of size distortion for
each item. T controls the amount by which a single weight can be varied. We start
with a high temperature (T = 1) and this allows more downhill moves. The tem-
perature is reduced at the end of every iteration (T × 0.95), so that the amount of
item distortion decreases and the problem space looks more like the original prob-
lem space.

At a given temperature T , the size distortion for an item is proportional to the
residual capacity of its bin. At a local maximum, not-so-well packed bins will have
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large residual capacities. We try to escape from a poor local maximum with down-
hill moves. To enable downhill moves, our weighting function increases the sizes of
items in poorly packed bins.

Since the objective function tries to maximize the number of fully filled bins,
the size transformation increases the chances of a swap between one of the enlarged
items in this bin and a smaller item from another bin. Thus, we have an uphill move
in the transformed space, which may be a downhill move in the original space. We
make a swap as long as it is feasible in the original space.

4.2.3 Swap Schemes

We start the swapping process by comparing the items in the first bin with the items
in the second bin, and so on, sequentially down to the last bin in the initial solution.
Neighbors of a current solution can be obtained by swapping (exchanging) items
between all possible pairs of bins. We use four different swapping schemes: Swap
(1,0), Swap (1,1), Swap (1,2), and Swap (2,2). Fleszar and Hindi (2002) proposed
the first two schemes.

In Swap (1,0), one item is moved from bin α to bin β . The change in the objective
function value (Δ f(1,0)) that results from moving one item i with size tαi from bin α
to bin β is given by

Δ f(1,0) = (lα − tαi)2 +(lβ + tαi)2 − lα 2 − lβ
2. (13)

In Swap (1,1), we swap item i from bin α with item j from bin β . The change in
the objective function value that results from swapping item i with size tαi from bin
α with item j with size tβ j from bin β is given by

Δ f(1,1) = (lα − tαi + tβ j)
2 +(lβ − tβ j + tαi)2 − lα 2 − lβ

2. (14)

In Swap (1,2), we swap item i from bin α with items j and k from bin β . The
change in the objective function value that results from swapping item i with size tαi
from bin α with item j with size tβ j and item k with size tβk from bin β is given by

Δ f(1,2) = (lα − tαi + tβ j + tβk)
2 +(lβ − tβ j − tβk + tαi)2 − lα 2 − lβ

2. (15)

In Swap (2,2), we swap item i and item j from bin α with item k and item l from
bin β . The change in the objective function value that results from swapping item i
with size tαi and item j with size tα j from bin α with item k with size tβk and item l
with size tβ l from bin β is given by

Δ f(2,2) = (lα − tαi − tα j + tβk + tβ l)
2 +(lβ − tβk − tβ l + tαi + tα j)2 − la2 − lβ

2. (16)

For a current pair of bins (α, β ), the swapping of items by Swap (1,0) is carried
out as follows. The algorithm evaluates whether the first item (item i) in bin α can
be moved to bin β without violating the capacity constraint of bin β in the original
space. In other words, does bin β have enough original residual capacity to accom-
modate the original size of item i? If the answer is yes (the move is feasible), the
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change in objective function value of the move in the transformed space is evaluated.
If Δ f(1,0) ≥ 0, item i is moved from bin α to bin β . After this move, if bin α is empty
and the total number of utilized bins reaches the specified number of bins (m), the
algorithm stops and outputs the final results. If bin α is still partially filled, or the
lower bound has not been reached, the algorithm exits Swap (1,0) and proceeds to
Swap (1,1). If the move of the first item is infeasible or Δ f(1,0) < 0, the second item
in bin α is evaluated and so on, until a feasible move with Δ f(1,0) ≥ 0 is found or all
items in bin α have been considered and no feasible move with Δ f(1,0) ≥ 0 has been
found. The algorithm then performs Swap (1,1), followed by Swap (1,2), and Swap
(2,2). In each of the swapping schemes, we always take the first feasible move with
a nonnegative change in objective function value that we find.

We point out that the improvement step (Step 4.2) is carried out 50 times
(nloop2 = 50) starting with T = 1, followed by T = 1× 0.95 = 0.95, T = 0.95×
0.95 = 0.9025, etc. At the end of Step 4, if the total number of utilized bins has not
reached m, we repeat Step 4 with another initial solution. We exit the program as
soon as the required number of bins reaches m or after 20 runs (nloop1 = 20).

5 Computational Experiments

We now describe the test instances, present results generated by WAMC, and com-
pare WAMC’s results to those reported in the literature.

5.1 Test Instances

In this section, we describe how we generated two sets of test instances,

5.1.1 Test Set 1

We followed the procedure described by Labbé, Laporte, and Martello (2003) to ran-
domly generate the first set of test instances. Labbé et al. specified the values of three
parameters: number of bins (m = 2, 3, 5, 10, 15, 20), capacity (c = 100, 120, 150,
200, 300, 400, 500, 600, 700, 800), and range of item size [tmin, 99] (tmin = 1, 20,
50). For each of the 180 triples (m, c, tmin), we created 10 instances by generating
item size ti in an interval according to a discrete uniform distribution until the condi-
tion Σ ti > mc was met. This gave us a total of 180×10 = 1,800 instances which we
denote by Test Set 1. We requested the 1,800 instances used by Labbé et al. (2003),
but Martello (2006) replied that these instances were no longer available.

5.1.2 Test Set 2

Peeters and Degraeve (2006) extended the problems of Labbé et al. by multiplying
the capacity c by a factor of 10 and enlarging the range of item size to [tmin, 999].
Rather than fixing the number of bins, Peeters and Degraeve fixed the expected num-
ber of generated items (denoted by E(n′)). E(n′) is not an input for generating the
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instances; it is implicitly determined by the number of bins and capacity. Since the
item sizes are uniformly distributed on the interval [tmin, 999], the expected item size
is (tmin +999)/2 and E(n′) = 2cm/(tmin +999). Given the number of expected items
n̄ as an input, the number of bins m must be n̄(tmin +999)/2c.

We randomly generated the second set of test instances with parameter values
specified by Peeters and Degraeve: desired number of items (n̄ = 100, 150, 200,
250, 300, 350, 400, 450, 500), capacity (c = 1000, 1200, 1500, 2000, 3000, 4000,
5000, 6000, 7000, 8000), and range of item size [tmin, 999] (tmin = 1, 200, 500). For
each of the 270 triples (n̄, c, tmin), we created 10 instances. This gave us a total of
270×10 = 2,700 instances which we denote by Test Set 2.

5.2 Computational Results

We coded WAMC in C and C + + and used a 3 GHz Pentium 4 computer with
256 MB of RAM. In the next two sections, we provide the results generated by
WAMC on the two sets of test instances.

5.2.1 Results on Test Set 1

In Table 2, we show the average number of items (n) generated over 10 instances
for each triple (m, c, tmin) in Test Set 1. In Table 3, we give the number of instances
solved to optimality by WAMC. In Table 4, we give the average running time in
seconds for WAMC.

Table 2. Average value of n over 10 instances for each triple (m, c, tmin) in Test Set 1

tmin m c
100 120 150 200 300 400 500 600 700 800

1 2 4 5 6 9 12 16 21 25 28 34
1 3 6 7 10 12 18 25 31 36 45 49
1 5 11 12 15 20 30 40 53 61 70 79
1 10 20 24 31 41 62 82 99 120 137 160
1 15 30 36 46 62 94 117 150 179 210 239
1 20 41 49 60 85 119 158 198 240 278 317
20 2 4 4 5 7 10 14 17 21 24 27
20 3 5 6 8 11 15 21 26 30 36 42
20 5 8 10 13 16 26 34 42 52 60 67
20 10 17 21 25 34 51 70 84 100 116 134
20 15 26 30 39 51 79 101 125 149 177 203
20 20 34 41 51 70 101 134 167 201 236 267
50 2 3 3 4 5 8 11 13 16 19 22
50 3 4 5 6 8 12 16 21 24 28 33
50 5 7 8 10 13 20 27 34 41 48 54
50 10 14 16 20 27 41 54 68 81 93 107
50 15 20 24 30 40 61 81 101 121 140 161
50 20 27 32 40 54 82 107 134 160 188 215
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Table 3. Number of instances solved to optimality by WAMC in Test Set 1

tmin m c
100 120 150 200 300 400 500 600 700 800

1 2 10 10 10 10 10 10 10 10 10 10
1 3 10 10 10 10 10 10 10 10 10 10
1 5 10 10 10 10 10 10 10 10 10 10
1 10 10 10 10 10 10 10 10 10 10 10
1 15 10 10 10 10 10 10 10 10 10 10
1 20 9 10 10 10 10 10 10 10 10 10
20 2 10 10 10 10 10 10 10 10 10 10
20 3 10 10 10 10 10 10 10 10 10 10
20 5 10 10 10 10 10 10 10 10 10 10
20 10 9 10 9 10 10 10 10 10 10 10
20 15 10 10 9 10 10 10 10 10 10 10
20 20 9 10 10 10 10 10 10 10 10 10
50 2 10 10 10 10 10 10 10 10 10 10
50 3 10 10 10 10 10 10 10 10 10 10
50 5 10 10 10 9 10 10 10 10 10 10
50 10 10 10 10 9 10 10 10 10 10 10
50 15 10 10 10 10 10 10 10 10 10 10
50 20 10 10 10 10 10 10 10 10 10 10

Table 4. Average computation time (s) for WAMC over 10 instances for each triple (m, c, tmin)
in Test Set 1

tmin m c
100 120 150 200 300 400 500 600 700 800

1 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
1 10 0.01 0.01 0.00 0.00 0.00 0.01 0.02 0.02 0.04 0.04
1 15 0.01 0.01 0.00 0.00 0.00 0.03 0.07 0.12 0.18 0.30
1 20 0.03 0.07 0.00 0.01 0.03 0.09 0.23 0.41 0.54 1.05
20 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 10 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.02 0.04 0.08
20 15 0.01 0.00 0.00 0.00 0.00 0.02 0.04 0.09 0.18 0.04
20 20 0.01 0.03 0.02 0.01 0.02 0.05 0.11 0.03 0.49 0.87
50 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.07
50 15 0.00 0.00 0.00 0.09 0.00 0.01 0.02 0.03 0.07 0.18
50 20 0.00 0.00 0.00 0.06 0.00 0.02 0.03 0.05 0.18 0.37
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We see that WAMC found optimal solutions to 1,793 instances. On average,
WAMC is very fast with most computation times less than 0.01 s and the longest
average time about 1 s.

Labbé, Laporte, and Martello (2003) generated 1,800 instances and solved each
instance using a four-step enumeration algorithm (which we denote by LLM) on
a Digital VaxStation 3100 (a slow machine that is comparable to a PC486/33). We
point out that our Test Set 1 and the 1,800 instances used by Labbé et al. are very sim-
ilar (the average values of n that we give in Table 2 are nearly the same as those given
by Labbé et al. (2003), but they are not exactly the same). In Table 5, we provide the
number of instances solved to optimality by LLM. We see that LLM found optimal
solutions to 1,759 instances. On average, LLM is fast with many computation times
0.01 s or less and the longest average time several hundred seconds or more.

Peeters and Degraeve (2006) followed the procedure of Labbé et al. (2003) and
generated 1,800 instances. They solved each instance using a branch-and-price al-
gorithm (denoted by BP) on a COMPAQ Armada 700M, 500 MHz Intel Pentium III
computer with a time limit of 900 seconds. Peeters and Degraeve reported that BP
solved 920 instances (“. . . for those types of instances where the average CPU is sig-
nificantly different from 0 . . .”) to optimality. For these 920 instances, most of the
computation times were less than 0.01 s. Although not listed in the paper explicitly,
we believe that BP also solved the remaining 880 instances to optimality.

In summary, on three different sets of 1,800 instances generated using the specifi-
cations of Labbé et al. (2003), the number of optimal solutions found by BP, WAMC,
and LLM were 1,800, 1,793, and 1,759, respectively.

Table 5. Number of instances solved to optimality by LLM reported in Labbé et al. (2003)

tmin m c
100 120 150 200 300 400 500 600 700 800

1 2 10 10 10 10 10 10 10 10 10 10
1 3 10 10 10 10 10 10 10 10 10 10
1 5 10 10 9 10 10 10 10 10 10 10
1 10 10 9 10 10 10 10 10 10 10 10
1 15 10 8 10 10 10 10 10 10 10 10
1 20 10 10 10 10 10 10 10 10 10 10
20 2 10 10 10 10 10 10 10 10 10 10
20 3 10 10 10 9 10 10 10 10 10 10
20 5 10 9 8 9 10 10 10 10 10 10
20 10 10 9 10 10 10 10 10 10 10 10
20 15 10 10 8 10 10 10 10 10 10 10
20 20 10 10 8 10 10 10 10 10 10 10
50 2 10 10 10 10 10 10 10 10 10 10
50 3 10 10 10 10 10 10 10 10 10 10
50 5 10 10 10 10 10 10 10 10 10 10
50 10 10 10 10 10 9 10 10 10 10 10
50 15 10 10 10 7 7 7 10 10 10 10
50 20 10 10 10 8 6 5 8 9 7 10
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5.2.2 Results on Test Set 2

In Table 6, we show the average number of bins (n) over 10 instances for each triple
(n̄, c, tmin) in Test Set 2. In Table 7, we give the number of instances from Test Set 2
solved to optimality by WAMC. When the number of instances solved to optimality
is less than 10 for WAMC, the maximum deviation from the optimal solution in
terms of the number of items is shown in parentheses. In Table 7, we also provide
the results generated by BP as reported in Peeters and Degraeve (2006). BP solved
2,700 instances that are similar to, but not exactly the same as, the instances in Test
Set 2.

We see that WAMC found optimal solutions to 2,665 instances (there are a total
of 2,700 instances). BP found optimal solutions to 2,519 instances.

WAMC performed better on instances with large bin capacities and BP per-
formed better on instances with small bin capacities. WAMC solved all 1,080

Table 6. Average number of bins (m) over 10 instances for each triple (n̄, c, tmin) in Test Set 2

n̄ tmin c
1000 1200 1500 2000 3000 4000 5000 6000 7000 8000

100 1 50 42 33 25 17 13 10 8 7 6
100 200 60 50 40 30 20 15 12 10 9 7
100 500 75 62 50 37 25 19 15 12 11 9
150 1 75 63 50 38 25 19 15 13 11 9
150 200 90 75 60 45 30 22 18 15 13 11
150 500 112 94 75 56 37 28 22 19 16 14
200 1 100 83 67 50 33 25 20 17 14 13
200 200 120 100 80 60 40 30 24 20 17 15
200 500 150 125 100 75 50 37 30 25 21 19
250 1 125 104 83 63 42 31 25 21 18 16
250 200 150 125 100 75 50 37 30 25 21 19
250 500 187 156 125 94 62 47 37 31 27 23
300 1 150 125 100 75 50 38 30 25 21 19
300 200 180 150 120 90 60 45 36 30 26 22
300 500 225 187 150 112 75 56 45 37 32 28
350 1 175 146 117 88 58 44 35 29 25 22
350 200 210 175 140 105 70 52 42 35 30 26
350 500 262 219 175 131 87 66 52 44 37 33
400 1 200 167 133 100 67 50 40 33 29 25
400 200 240 200 160 120 80 60 48 40 34 30
400 500 300 250 200 150 100 75 60 50 43 37
450 1 225 188 150 113 75 56 45 38 32 28
450 200 270 225 180 135 90 67 54 45 39 34
450 500 337 281 225 169 112 84 67 56 48 42
500 1 250 208 167 125 83 63 50 42 36 31
500 200 300 250 200 150 100 75 60 50 43 37
500 500 375 312 250 187 125 94 75 62 54 47



160 K.-H. Loh et al.

Table 7. Number of instances solved to optimality by WAMC in Test Set 2 and the number of
instances solved to optimality by BP reported in Peeters and Degraeve (2006)

n̄ tmin c
1000 1200 1500 2000 3000

BP WAMC BP WAMC BP WAMC BP WAMC BP WAMC

100 1 10 10 10 10 10 10 10 10 10 10
200 10 10 10 10 10 7(1) 10 10 10 10
500 10 10 10 10 10 10 10 10 10 10

150 1 10 10 10 9(1) 10 10 10 10 10 10
200 10 10 10 10 10 9(1) 10 10 10 10
500 10 10 10 10 10 10 10 10 10 10

200 1 10 8(1) 10 8(1) 10 10 10 10 10 10
200 10 10 10 10 10 10 10 10 10 10
500 10 10 10 10 10 9(3) 10 10 10 10

250 1 10 9(1) 10 10 10 10 10 10 10 10
200 10 10 10 9(1) 10 9(1) 10 10 10 10
500 10 10 10 10 10 10 10 10 10 10

300 1 10 9(1) 10 8(1) 10 10 10 10 10 10
200 10 10 10 10 10 8(1) 10 10 10 10
500 10 10 10 10 10 10 10 10 10 10

350 1 10 9(1) 10 9(1) 10 10 10 10 10 10
200 10 10 10 9(2) 10 10 10 10 10 10
500 10 10 10 10 10 10 10 10 10 10

400 1 10 8(1) 10 10 10 10 10 10 10 10
200 10 10 10 10 10 8(1) 10 10 10 10
500 10 10 10 10 10 10 10 10 10 10

450 1 10 9(1) 10 8(1) 10 10 10 10 10 10
200 10 10 10 9(2) 10 9(1) 10 10 9 10
500 10 10 10 10 10 7(4) 10 10 10 10

500 1 10 9(1) 10 10 10 10 10 10 10 10
200 10 10 10 10 10 9(1) 10 10 9 10
500 10 10 10 10 10 10 10 10 10 10

Total 270 261 270 259 270 255 270 270 268 270
( ) Maximum deviation from the optimal solution in terms of the number of items for WAMC.
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Table 7. (continued)

n̄ tmin c
4000 5000 6000 7000 8000

BP WAMC BP WAMC BP WAMC BP WAMC BP WAMC

100 1 10 10 10 10 10 10 10 10 10 10
200 10 10 10 10 10 10 10 10 10 10
500 10 10 10 10 10 10 10 10 10 10

150 1 10 10 10 10 10 10 10 10 10 10
200 10 10 10 10 10 10 10 10 10 10
500 10 10 10 10 10 10 10 10 10 10

200 1 10 10 10 10 10 10 10 10 10 10
200 10 10 10 10 10 10 10 10 10 10
500 10 10 10 10 10 10 10 10 10 10

250 1 10 10 10 10 10 10 10 10 10 10
200 10 10 10 10 10 10 10 10 10 10
500 10 10 10 10 10 10 10 10 10 10

300 1 10 10 10 10 10 10 10 10 10 10
200 10 10 10 10 10 10 10 10 10 10
500 10 10 1 10 3 10 3 10 10 10

350 1 10 10 10 10 10 10 10 10 10 10
200 10 10 10 10 10 10 10 10 10 10
500 10 10 0 10 0 10 0 10 9 10

400 1 10 10 10 10 10 10 10 10 10 10
200 10 10 10 10 10 10 10 10 10 10
500 10 10 0 10 0 10 0 10 0 10

450 1 10 10 10 10 10 10 10 10 10 10
200 10 10 10 10 10 10 10 10 9 10
500 10 10 0 10 0 10 0 10 0 10

500 1 10 10 10 10 10 10 10 10 10 10
200 10 10 10 10 10 10 10 10 9 10
500 7 10 0 10 0 10 0 10 0 10

Total 267 270 221 270 223 270 223 270 237 270

instances with large bin capacities (c = 5000, 6000, 7000, 8000) to optimality, while
BP solved 904 large-capacity instances to optimality. Over the 1,620 small-capacity
bins (c = 1000, 1200, 1500, 2000, 3000, 4000), BP solved 1,615 instances to opti-
mality, while WAMC solved 1,585 instances to optimality.

In Table 8, we show the average computation time in seconds for WAMC
and BP for the instances solved to optimality. To illustrate, for the triple (n̄ =
200, c = 1000, tmin = 1), WAMC solved eight instances and averaged 0.1 s, while
BP solved all 10 instances and averaged 0.5 s. We point out that for several triples
(e.g., (n̄ = 350, c = 5000, tmin = 500)), BP did not solve any instance to optimality,
so that no average computation time is provided in the table.

Over all 2,665 instances solved to optimality, WAMC had an average computa-
tion time of 0.20 s. Over all 2,519 instances solved to optimality, BP had an average
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Table 8. Average computation time (s) for WAMC and BP on instances solved to optimality

n̄ tmin c
1000 1200 1500 2000 3000

BP WAMC BP WAMC BP WAMC BP WAMC BP WAMC

100 1 0.1 0.2 0.1 0.9 0.3 0.3 0.0 0.0 0.0 0.0
200 0.1 0.0 0.1 0.0 0.4 0.2(7) 0.1 0.0 0.0 0.0
500 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 1.4 0.0

150 1 0.1 0.0 0.1 0.6(9) 2.3 0.1 0.0 0.1 0.0 0.1
200 0.1 0.0 0.1 0.6 2.2 0.2(9) 1.7 0.1 0.0 0.1
500 0.0 0.0 0.0 0.0 0.1 0.1 4.8 0.0 8.0 0.0

200 1 0.5 0.1(8) 3.0 0.6(8) 6.0 0.2 0.0 0.2 0.0 0.2
200 0.2 0.0 0.3 0.3 6.1 8.9 3.3 0.2 0.0 0.2
500 0.0 0.0 0.1 0.0 0.2 0.1(9) 6.1 0.0 24.3 0.1

250 1 1.7 0.1(9) 1.9 6.6 11.8 0.2 0.0 0.2 0.0 0.2
200 0.3 0.0 0.8 0.1(9) 14.9 9.3(9) 15.5 0.3 0.0 0.2
500 0.0 0.0 0.1 0.3 0.3 0.5 13.4 0.1 36.4 0.1

300 1 1.3 1.4(9) 7.2 3.4(8) 15.8 0.6 10.7 0.6 0.0 0.8
200 0.5 0.0 0.6 0.9 27.4 5.0 43.8 0.6 39.8 0.5
500 0.4 0.0 0.1 0.0 0.4 0.4 16.9 0.1 71.7 0.2

350 1 2.1 0.1(9) 29.3 5.4(9) 0.0 0.9 0.0 1.1 0.0 1.5
200 0.6 0.1 1.4 0.1(9) 41.2 11.7 86.6 1.2 94.1 0.9
500 0.0 0.0 0.1 0.1 0.6 0.8 27.7 0.1 117.9 0.3

400 1 3.3 0.1(8) 47.2 1.8 52.4 1.3 0.0 1.8 0.0 2.6
200 0.8 0.1 1.6 0.0 68.7 6.3(8) 139.1 1.9 0.1 1.3
500 0.0 0.0 0.2 0.1 0.8 2.5 39.5 0.2 165.0 0.4

450 1 8.2 5.2(9) 46.5 18.2(8) 128.6 1.8 35.2 2.3 0.0 3.3
200 1.0 0.1 2.3 0.2(9) 88.8 4.2(9) 207.5 3.0 0.1(9) 1.7
500 0.0 0.0 0.2 0.1 0.7 1.0(7) 50.7 0.3 237.4 0.6

500 1 13.2 0.2(9) 64.9 8.6 71.7 2.9 7.7 3.6 0.0 6.0
200 1.6 0.1 1.7 0.1 127.6 5.2(9) 374.7 4.7 0.4(9) 2.3
500 0.0 0.0 0.2 0.1 1.1 1.8 58.1 0.4 250.4 0.9

() When the number of instances solved to optimality is less than 10, the number solved to
optimality is given in parentheses.
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Table 8. (continued)

n̄ tmin c
4000 5000 6000 7000 8000

BP WAMC BP WAMC BP WAMC BP WAMC BP WAMC

100 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
500 0.6 0.0 1.5 0.0 0.6 0.0 0.0 0.0 0.0 0.1

150 1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.8 0.0 0.1
200 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.2
500 13.9 0.1 10.9 0.1 10.3 0.1 0.3 0.1 0.7 0.2

200 1 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.2
200 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.4 0.0 0.4
500 47.8 0.1 41.2 0.1 23.9 0.1 0.8 0.2 9.7 0.3

250 1 0.0 0.2 0.0 9.2 0.0 0.1 0.0 0.1 0.0 0.1
200 0.0 0.2 0.0 0.2 0.0 0.1 0.0 0.1 0.0 0.1
500 98.8 0.1 268.6 0.2 204.0 0.1 50.4 0.1 6.3 0.1

300 1 0.0 1.2 0.0 1.2 0.0 1.1 0.0 1.1 0.0 1.3
200 0.0 1.3 0.0 1.2 0.0 1.4 0.1 1.6 0.0 1.5
500 239.6 0.4 326.6(1) 0.5 115.3(3) 0.6 16.7(3) 1.0 7.4 1.0

350 1 0.0 2.0 0.0 2.1 0.0 2.3 0.0 2.0 0.0 1.8
200 0.0 2.2 0.0 2.2 0.0 2.3 0.0 2.0 0.0 2.8
500 318.1 0.6 ∗∗(0) 0.7 ∗∗(0) 0.9 ∗∗(0) 1.1 99.6(9) 1.5

400 1 0.0 2.9 0.0 3.4 0.0 3.5 0.0 3.6 0.0 2.8
200 0.0 3.2 0.0 3.3 0.0 4.6 0.0 4.4 0.0 3.6
500 400.9 0.8 ∗∗(0) 1.0 ∗∗(0) 1.2 ∗∗(0) 1.6 ∗∗(0) 2.6

450 1 0.0 5.1 0.0 5.2 0.0 6.0 0.0 5.7 0.0 4.8
200 0.1 5.0 0.1 4.8 0.0 5.8 0.0 6.8 0.0 6.3
500 578.4 1.2 ∗∗(0) 1.3 ∗∗(0) 1.9 ∗∗(0) 2.7 ∗∗(0) 3.3

500 1 0.0 7.1 0.0 7.3 0.0 8.5 0.0 8.6 0.0 7.6
200 0.1 6.8 0.2 7.4 0.0 8.2 0.0 9.9 0.0 8.9
500 693.7 1.5 ∗∗(0) 2.0 ∗∗(0) 2.4 ∗∗(0) 3.1 ∗∗(0) 4.3

∗∗ BP did not solve any of the 10 instances to optimality.

computation time of 2.85 s. The Pentium III computer used by Peeters and Degraeve
(2006) to run BP is much slower than the Pentium 4 computer that we used to
run WAMC.

We point out that our weight annealing algorithm is a robust procedure that can
be used to solve several variants of bin packing and knapsack problems such as the
dual bin packing problem (see Loh (2006) for more details).

6 Conclusions

We developed a new algorithm (WAMC) to solve the maximum cardinality bin pack-
ing problem that is based on weight annealing. WAMC is easy to understand and easy
to code.
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WAMC produced high-quality solutions very quickly. Over 4,500 instances that
we randomly generated, our algorithm solved 4,458 instances to optimality with an
average computation time of a few tenths of a second. Clearly, WAMC is a promising
approach that deserves further computational study.
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