
A Branch-and-cut Algorithm for Integer Bilevel
Linear Programs

S.T. DeNegre and T.K. Ralphs

Abstract We describe a rudimentary branch-and-cut algorithm for solving integer
bilevel linear programs that extends existing techniques for standard integer linear
programs to this very challenging computational setting. The algorithm improves
on the branch-and-bound algorithm of Moore and Bard in that it uses cutting
plane techniques to produce improved bounds, does not require specialized branch-
ing strategies, and can be implemented in a straightforward way using only lin-
ear solvers. An implementation built using software components available in the
COIN-OR software repository is described and preliminary computational results
presented.

Key words: Bilevel Programming, Integer Programming, Branch and Cut, Valid
Inequality, Branch and Bound

1 Introduction

Standard mathematical programs consider decision problems in which there is a
single decision-maker (DM) controlling all variables. Many real-world decision
problems involve multiple, independent DMs, whose interests are not necessarily
aligned. In this paper, we discuss solution methods for a class of models known as
integer bilevel linear programs (IBLPs) that generalize standard integer linear pro-
gramming (ILP) models by considering two sets of variables, each controlled by a
separate DM.

S.T. DeNegre
Department of Industrial & Systems Engineering, Lehigh University, 200 W. Packer Avenue,
Bethlehem, PA 18015, e-mail: sdenegre@lehigh.edu

T.K. Ralphs
Department of Industrial & Systems Engineering, Lehigh University, 200 W. Packer Avenue,
Bethlehem, PA 18015, e-mail: ted@lehigh.edu

J.W. Chinneck et al. (eds.), Operations Research and Cyber-Infrastructure, Operations 65
Research/Computer Science Interfaces Series 47, DOI: 10.1007/978-0-387-88843-9 4,
c© Springer Science+Business Media, LLC 2009

66 S.T. DeNegre and T.K. Ralphs

The goal of the work described herein is to demonstrate that it is possible,
in principle, to generalize the tremendously successful branch-and-cut framework
commonly used to solve mixed integer linear programs to this very challenging
computational setting. By developing techniques for IBLP that are analogous to
those used in the ILP setting, we have been able to leverage the many advances
that have occurred in solution technology for ILPs. Although our implementation
is quite rudimentary and is intended only as a demonstration of concept, the algo-
rithm improves on the branch-and-bound algorithm previously proposed by Moore
and Bard (1990) in that it uses a basic cutting plane procedure to produce improved
bounds, does not require specialized branching techniques, and can be implemented
in a straightforward way using existing software.

Conceptually, the decisions in an IBLP are made in sequential order according to
an implicit hierarchy. Top-level decisions are made first, after which the lower-level
decisions are made under the mandates of those upper-level decisions. Formally, let
x ∈ R

n1 represent a set of variables controlled by an upper-level DM or leader and
let y ∈ R

n2 represent a set of variables controlled by a lower-level DM or follower.
The canonical integer bilevel linear program is then given by

zIBLP = max
{

c1x+d1y | x ∈ PU ∩Z
n1 ,y ∈ argmax{d2y | y ∈ PL(x)∩Z

n2}
}

,

where
PU =

{
x ∈ R

n1 | A1x ≤ b1,x ≥ 0
}

is the polyhedron defining the upper-level feasible region;

PL(x) =
{

y ∈ R
n2 | G2y ≤ b2 −A2x,y ≥ 0

}

is the polyhedron defining the lower-level feasible region with respect to a given
x ∈ R

m1 ; A1 ∈ Q
m1×n1 ; b1 ∈ Q

m1 ; A2 ∈ Q
m2×n1 , G2 ∈ Q

m2×n2 ; and b2 ∈ Q
m2 . The

defining characteristic of a bilevel program, in contrast with a standard mathemat-
ical program, is that the lower-level variables are required to consist of an optimal
solution to an ILP whose right-hand side depends on the values chosen for the upper-
level variables.

Bilevel models arise naturally in systems involving two opposing parties, such
as in military and law enforcement applications. The essence of what makes these
models difficult to analyze is the implicit adversarial relationship between the upper-
and lower-level DMs stemming from the fact that improvements to the upper-level
DM’s objective usually come at the expense of a degradation in the lower-level
DM’s objective. In fact, without such an adversarial relationship, these systems be-
come much easier to handle. In some cases, the adversarial relationship is explicit
and direct, i.e., the upper-level DM’s sole objective is to prevent the lower-level DM
from achieving a known objective. Such systems, called zero-sum, arise in analyzing
interdiction problems (see below).

Although bilevel linear programming (BLP) has received increased attention
recently, the literature on IBLP remains scarce. Moore and Bard (1990) intro-
duced a general framework for mixed integer bilevel linear programming (MIBLP),

A Branch-and-cut Algorithm for Integer Bilevel Linear Programs 67

described associated computational challenges, and suggested a branch-and-bound
algorithm. The vast majority of the remaining IBLP literature has been restricted to
various special cases. Bard and Moore (1992) developed a specialized algorithm for
binary bilevel programs. Dempe (2001) considered the case characterized by contin-
uous upper-level variables and integer lower-level variables and used a cutting plane
approach to approximate the lower-level feasible region. Wen and Yang (1990) con-
sidered the opposite case, where the lower-level problem is a linear program and the
upper-level problem is an integer program. Linear programming duality was used to
derive exact and heuristic solutions.

A closely related class of models mentioned above that has already proven its
utility in practice is that of the interdiction models. Most research on these models
has focused on the network interdiction problem (Wollmer, 1964; McMasters and
Mustin, 1970; Ghare et al, 1971; Wood, 1993; Cormican et al, 1998; Israeli and
Wood, 2002; Held and Woodruff, 2005; Janjarassuk and Linderoth, 2006; Royset
and Wood, 2007; Lim and Smith, 2007; Morton et al, 2007), in which the lower-
level DM represents an entity operating a network of some sort. The upper-level
DM (or interdictor) attempts to reduce the network performance as much as possi-
ble via the removal (complete or otherwise) of portions (subsets of arcs or nodes) of
the network. Here, we generalize the underlying concept behind these network in-
terdiction models by allowing the lower-level problem to be completely general and
introducing the “interdiction” of lower-level decision variables in order to obtain a
class of models with a much wider range of application.

The remainder of the paper is composed as follows. In Section 2, we describe
the mathematical models that we consider. In Section 3, we discuss the challenge of
solving these models and the barriers to generalizing solution methods for single-
level mathematical programming problems. In Section 4, we describe how to over-
come these challenges and propose a branch-and-cut algorithm for IBLPs. Section 5
illustrates the algorithm via an example and provides some preliminary computa-
tional results. Finally, in Section 6, we provide conclusions and directions for future
work.

2 Definitions and Notation

When discussing various relaxations, it will sometimes be convenient to refer
to the matrices A := [(A1)�|(A2)�]� and G := [0|(G2)�]�, and the vector b :=
[(b1)�|(b2)�]�. The region obtained by dropping the optimality requirement for
the lower-level variables is then given by

Ω I = {(x,y) ∈ Z
n1 ×Z

n2 | Ax+Gy ≤ b,x,y ≥ 0} .

Removing the integrality requirements from Ω I yields the polyhedral region

Ω = {(x,y) ∈ R
n1 ×R

n2 | Ax+Gy ≤ b,x,y ≥ 0} .

68 S.T. DeNegre and T.K. Ralphs

For each upper-level solution x ∈ PU ∩Z
n1 , we define the follower’s rational

reaction set to be

MI(x) = argmax{d2y | y ∈ PL(x)∩Z
n2}.

If we set
Ω I

proj =
{

x ∈ PU ∩Z
n1 | ∃y with (x,y) ∈ Ω I} ,

then any point (x,y) such that x ∈ Ω I
proj and y ∈ MI(x) is called bilevel feasible. The

IBLP problem can then be restated as that of determining

zIBLP = max
(x,y)∈F I

c1x+d1y, (IBLP)

where F I =
{

(x,y) | x ∈ Ω I
proj,y ∈ MI(x)

}
. We also define the continuous analog

of F I by
F =

{
(x,y) | x ∈ Ωproj,y ∈ M(x)

}
,

where
Ωproj = {x ∈ PU | ∃y with (x,y) ∈ Ω}

and
M(x) = argmax{d2y | y ∈ PL(x)}.

Consistent with the existing literature (Bard, 1988; Bard and Moore, 1990;
Moore and Bard, 1990; Bard and Moore, 1992), we assume that Ω I is nonempty
and bounded and that PL(x)∩Z

n2 �= /0 for all x ∈ PU ∩Z
n1 . Further, we assume

that if the lower-level DM’s rational reaction set MI(x) is not a singleton, the upper-
level DM is allowed to choose from among the alternatives one that is optimal with
respect to the upper-level objective. This is the so-called optimistic formulation of
the problem. The reader is referred to Loridan and Morgan (1996) for further insight
on and discussion of alternative formulations.

3 Computational Challenges of IBLP

Because ILP is a special case of IBLP, it is clear that IBLP is also an N P-hard
problem. In fact, in contrast to the ILP case, the question of IBLP feasibility is not
even in N P , essentially because the question of whether a pair (x,y) ∈ Z

n1 ×Z
n2

is feasible for a given IBLP is itself an ILP. Hansen et al (1992) show that even the
continuous version of the problem (a BLP) is strongly N P-hard and Vicente et al
(1994) adds that checking local optimality for BLPs is an N P-hard problem. All
of this indicates that solving IBLPs in practice is likely to be extremely challenging.

A natural approach to developing algorithms for solving IBLPs is to consider
generalizations of the techniques that are used for ILPs. It does not take long, how-
ever, to realize that our intuition does not easily carry over from the case of ILP

A Branch-and-cut Algorithm for Integer Bilevel Linear Programs 69

to the case of IBLP. In a branch-and-bound algorithm for standard integer linear
programming, integrality constraints are removed and the resulting linear program,
which is easily seen to be a relaxation of the original ILP, is solved. The solution to
this relaxed problem yields useful information about the original problem. In par-
ticular, we can make use of the following well-known rules to prune the branch and
bound tree.

(R1) If the relaxed problem has no feasible solution, then neither does the original
problem.

(R2) If the relaxed problem has a solution, then its value is a valid upper bound on
the optimal value of the maximization original problem.

(R3) If the solution to the relaxed subproblem satisfies integrality restrictions, then
it is optimal for the original problem.

Unfortunately, these rules cannot be extended in a straightforward way to IBLPs be-
cause dropping the integrality constraints from both upper and lower-level problems
does not result in a relaxation, as the example in Figure 1 illustrates. In the figure,
the polyhedron represents the set Ω , while the integer points in this polyhedron
comprise the discrete set Ω I . Within each of Ω and Ω I , we have indicated points
that satisfy the optimality constraint on the lower-level variables (i.e., the bilevel
feasible solutions). From the figure, it is easy to see that F ⊆ Ω , F I ⊆ Ω I , and
Ω I ⊆ Ω . It is not the case, however, that F I ⊆ F . Hence, the BLP obtained by
dropping integrality constraints is not a relaxation of the IBLP.

In this example, optimizing over the continuous region F yields the integer so-
lution (8,1), with the upper-level objective value 18. However, the true solution to
the IBLP is (2,2), with objective value 22. From this, we observe that even when
solutions to max(x,y)∈F c1x+d1y are in F I , they are not necessarily optimal. Thus,
except in certain special cases, only Rule (R1) above remains valid if we simply
remove integrality constraints from the IBLP to yield a BLP. Complicating matters
further is the question of how to branch when faced with a solution that is integer
but infeasible.

4

1 2 3 4 5 6 7 8

3

1

2

5

x

y

FI

F

max
x∈Z+

x+10y

s.t. y ∈ argmax{−y :

−25x+20y ≤ 30

x+2y ≤ 10

2x− y ≤ 15

2x+10y ≥ 15

y ∈ Z+ }

Fig. 1 The feasible region of IBLP (Moore and Bard, 1990).

70 S.T. DeNegre and T.K. Ralphs

4 Branch and Cut

As with many classes of mathematical programs, the most obvious route to achiev-
ing global optimality is the development of bounding procedures that can be used
to drive a branch-and-bound algorithm. As we have just observed, however, the
bounding, fathoming, and branching procedures employed in traditional LP-based
branch-and-bound algorithms cannot be applied in a straightforward way. In this
section, we describe how to overcome these challenges to develop a generalized
branch-and-cut algorithm for IBLPs that follows the same basic paradigm used in
ILP. This work improves on the branch-and-bound algorithm originally suggested
by Moore and Bard (1990) in a number of significant ways that we point out below.

4.1 Bounding

Although removing the integrality restrictions on all variables does not result in a
valid relaxation, removing the lower-level optimality constraint from the problem
does yield the relaxation

max
(x,y)∈Ω I

c1x+d1y, (1)

similar to one suggested by Moore and Bard (1990). Unfortunately, as we noted ear-
lier, determining whether solutions to this relaxation are bilevel feasible is a difficult
problem in itself.

In order to improve upon the bounds yielded by (1) and to avoid the potential
difficulties associated with being forced to branch when faced with an infeasible
integer solution, we consider here a branch-and-cut algorithm based on the iterative
generation of linear inequalities valid for F I and augmentation of the linear system
describing Ω until an optimal member of F I is exposed or we choose to branch.
The procedures we suggest are analogous to those used in the case of ILP but also
address the fact that integer solutions may not be feasible in this setting.

4.2 Generating Valid Inequalities

An inequality defined by (π1,π2,π0) is called a valid inequality for F I if π1x +
π2y ≤ π0 for all (x,y) ∈ F I . Unless conv(F I) = Ω , there exist inequalities that
are valid for F I , but are violated by some members of Ω . In order to generate
these inequalities, we must use information not contained in the linear description
of Ω . For a point (x,y) ∈ Z

n1 ×Z
n2 to be feasible for an IBLP, it must satisfy three

conditions:

(C1) (x,y) ∈ Ω ,
(C2) (x,y) ∈ Z

n1 ×Z
n2 , and

(C3) y ∈ MI(x).

This is in contrast to standard ILPs, where we have only the first two conditions.

A Branch-and-cut Algorithm for Integer Bilevel Linear Programs 71

Because the first requirement is enforced by requiring membership in Ω , we must
derive valid inequalities from the other two conditions. We start with the following
straightforward, but useful observations.

Observation 1 If the inequality (π1,π2,π0) is valid for Ω I , it is also valid for F I .

Observation 2 Let (x,y) ∈ Ω such that y �∈ MI(x). If the inequality (π1,π2,π0) is
valid for Ω I \{(x,y)}, it is also valid for F I .

Observation 1 is derived from the relationship F I ⊆ Ω I and allows us to separate
fractional solutions to the LP resulting from removal of the lower-level optimality
and integrality restrictions. Observation 2 states that we can separate points that are
integer but not bilevel feasible. From these observations, we can derive two classes
of valid inequalities to be used in a cutting plane procedure.

To initialize the cutting plane procedure, we must first solve the relaxation

max
(x,y)∈Ω

c1x+d1y. (LR)

If the solution (x̂, ŷ) to (LR) does not satisfy condition (C2) above, we may apply
standard cutting plane procedures used to separate points in Ω \Ω I from Ω I ⊇ F I .
For an overview of the various classes of valid inequalities used for separating frac-
tional solutions from the convex hull of solutions to generic integer programs, see
Cornuejols (2008). Any of the existing classes of valid inequalities are potential can-
didates for employment here, though the structure of each specific instance could be
used to decide which classes are likely to be the most effective.

If (x̂, ŷ) satisfies condition (C2), then we must check whether it satisfies condition
(C3). This is done by solving the lower-level problem

max
y∈PL(x)∩Z

n2
d2y (2)

with the fixed upper-level solution x̂. Let the solution to this IP be y∗. If d2ŷ =
d2y∗, then ŷ is also optimal for (2) and we conclude that (x̂, ŷ) is bilevel feasible.
Otherwise, we must again generate an inequality separating (x̂, ŷ) from F I . In either
case, however, (x̂,y∗) is bilevel feasible and provides a valid lower bound on the
optimal solution value of the original IBLP.

Now suppose d2ŷ < d2y∗. In this case, (x̂, ŷ) does not satisfy condition (C3) and is
therefore not bilevel feasible. We may still use (x̂,y∗) to bound the original problem,
but we would like to add an inequality to (LR) that is valid for F I and violated by
(x̂, ŷ). The simple procedure encapsulated in the following proposition can be used
to generate such an inequality.

Proposition 1. Let (x̂, ŷ) ∈ Ω I be a basic feasible solution to (LR). Let J be the set
of constraints that are binding at (x̂, ŷ). Then

π1x+π2y ≤ π0 −1, (3)

where (π1,π2) = ∑ j∈J(a j,g j) and π0 = ∑ j∈J b j, is valid for F I .

72 S.T. DeNegre and T.K. Ralphs

Proof. The fact that (x̂, ŷ) is a basic feasible implies that there exist n = n1 + n2
linearly independent constraints in the description of Ω that are binding at (x̂, ŷ).
Thus, the system a′jx + g′jy = b j, j ∈ J has a unique solution, namely (x̂, ŷ). This,
in turn, implies that (x̂, ŷ) is the unique point of intersection between the hyperplane
defined by the equation π1x+π2y = π0 and the set Ω I . It follows that the inequality
π1x+π2y≤ π0 is valid for Ω I . Because the face of Ω induced by this inequality does
not contain any other members of Ω I and there does not exist (x,y)∈Z

n1 ×Z
n2 such

that π1x + π2y ∈ (π0 − 1,π0), this implies that the inequality π1x + π2y ≤ π0 − 1 is
valid for Ω I \{(x̂, ŷ)}. Applying Observation 2 yields the result. �

An example is shown in Figure 2 for the instance

max
x

min
y

{y | −x+ y ≤ 2,−2x− y ≤−2,3x− y ≤ 3,y ≤ 3,x,y ∈ Z+} .

In the figure, we can see the bilevel feasible region F I = {(0,2),(1,0),(2,3)}. Also
shown in the figure is the bilevel feasible region F of the corresponding BLP. In
this example, we start with the integer point (1,3), an optimal solution to the LP

max
x,y

{y | −x+ y ≤ 2,−2x− y ≤−2,3x− y ≤ 3,y ≤ 3,x,y ∈ R+} .

It is easy to see that this point is not bilevel feasible, because the rational choice for
the lower-level DM would be y = 0, when x = 1. Thus, we require a cut that separates
(1,3). Combining the constraints active at (1,3) yields the half-space {(x,y)∈Z

n1 ×
Z

n2 | −x+2y ≤ 5} and applying the procedure described above, we obtain the new
inequality

−x+2y ≤ 4,

which is valid for F I , but not satisfied by (1,3). Note that after adding this cut,
the optimal solution is obtained in the next iteration. Without the cutting plane pro-
cedure we have just described, we would be forced to branch after producing this
solution in a branch-and-bound framework.

Fig. 2 An example of the
bilevel feasibility cut. 1 2 3

2

3

1

x

y

−x + 2y≤ 5

−x + 2y≤ 4

F

A Branch-and-cut Algorithm for Integer Bilevel Linear Programs 73

The combination of this procedure, the bounding technique of Section 4.1, and
the branching techniques given in Section 4.3 yields a branch-and-cut algorithm.
However, it is clear that the procedure will fail on large-scale problems. In order
to solve problems of interesting size, additional classes of valid inequalities derived
from Condition (C3) are necessary. One such class that utilizes information from
the value function of the lower-level ILP is described in DeNegre et al (2008).

4.3 Branching

As we have just described, an important advantage of our algorithm over its prede-
cessor from Moore and Bard (1990), is the fact that we are not forced to branch after
producing an infeasible integer solution and are therefore free to employ the well-
developed branching strategies used in algorithms for traditional ILP, such as strong
branching, pseudocost branching, or the recently introduced reliability branching
(Achterberg et al, 2005). Of course, it is also possible to branch using disjunc-
tions obtained from violations of Condition (C3). Although this is unnecessary for
small problems, we believe such branching strategies may ultimately be necessary
for larger problems. Specialized branching techniques for bilevel problems are dis-
cussed in DeNegre et al (2008).

4.4 A Branch-and-cut Algorithm

Putting together the procedures of the preceding three sections, we obtain a branch-
and-cut algorithm that consists of solving the linear relaxation (LR), iteratively gen-
erating valid inequalities to improve the bound, and branching when necessary. In
addition to the obvious advantage of producing potentially improved bounds, an ad-
vantage of this approach over the one proposed by Moore and Bard (1990) is that
it relies only on the solution of standard ILPs and preserves all the usual rules of
fathoming and branching. It therefore allows us to immediately leverage our vast
knowledge of how to solve standard ILPs. The general framework of such an algo-
rithm is described next.

Let
max

(x,y)∈Ft
c1x+d1y. (IBLPt)

be the IBLP defined at node t of the branch-and-cut tree. To process node t, we first
solve the LP

zt
LP = max

(x,y)∈Ωt
c1x+d1y. (LPt)

and denote its solution by (xt ,yt) (if it exists). If either the LP is infeasible or the
optimal value of (LPt) is less than the current lower bound L, we can fathom the cur-
rent node. Otherwise we generate valid inequalities to separate the current solution

74 S.T. DeNegre and T.K. Ralphs

from F I . If (xt ,yt) ∈ Ω I , we check for bilevel feasibility. If the solution is feasible,
we can stop. Otherwise, we add cuts of the form (3) to separate the current solu-
tion from Ω I \ {(xt ,yt)} if necessary and iterate. If a fractional solution is found,
we either add cuts to separate the current solution from Ω t ∩Z

n1 ×Z
n2 and iterate

or else we branch. A general outline of the node processing subroutine is given in
Algorithm 1.

Algorithm 1 Node Processing Loop
1: Solve (LPt). If (LPt) has an optimal solution, denote it (xt ,yt). Then, depending on the out-

come, do the following:

• If (LPt) is infeasible, so is (IBLPt) and the current node can be pruned.
• Else, if zt

LP ≤ L, the current node can be pruned.
• Else, go to Step 2.

2: Generate valid inequalities.

• If (xt ,yt) ∈ Ω I , fix x ← xt , and solve zt
LL = maxy∈PL(xt)∩Z

n2 d2y. If zt
LL = d2yt set L ←

c1xt +d1yt and prune the current node; else set

Ωt+1 = Ωt ∩
{

(x,y) ∈ R
n1 ×R

n2 | ∑
j∈J

(a jx+g jy) ≤ ∑
j∈J

b j −1

}

,

where J is the set of active constraints in Ωt at (xt ,yt), set t ← t +1, and go to Step 1.
• Else, either generate and add cuts valid for Ω t ∩Z

n1 ×Z
n2 and go to Step 1 or BRANCH.

4.5 Specialized Methods for Binary IBLPs

The bilevel feasibility cut (3) ensures that bilevel infeasible solutions to (1) are
not generated in future iterations. However, by design, it does not cut off any
other integer points. This may result in the generation of a sequence of points
(x∗,y1),(x∗,y2), . . . ,(x∗,yk) such that yi �∈ MI(x∗) for i < k. If x ∈ B

n1 , informa-
tion obtained from the lower-level problem can be used to avoid this problem.
While checking bilevel feasibility, we obtain an optimal solution and associated
objective value zL(x∗) for the lower-level problem (2). This leads to the implication
x = x∗ ⇒ d2y ≥ zL(x∗). Let I0 := {i | x∗i = 0} and I1 := {i | x∗i = 1}. Note that for
x ∈ B

n1 , we have that ∑i∈I0 xi + ∑i∈I1(1− xi) = 0 if and only if x = x∗. Otherwise,
∑i∈I0 xi + ∑i∈I1(1− xi) ≥ 1. One way to model this implication is to introduce the
constraint ∑i∈I0 xi + ∑i∈I1(1− xi)+ δ ≥ 1, where δ ∈ B, which imposes the impli-
cation x = x∗ ⇒ δ = 1. Then, adding the constraint d2y + mδ ≥ m + zL(x∗), where
m = min{d2y− zL(x∗) | (x,y) ∈ Ω I}, enforces δ = 1 ⇒ d2y ≥ zL(x∗), as desired.
Exploring further such logical implications is an area of future research.

A Branch-and-cut Algorithm for Integer Bilevel Linear Programs 75

5 Computational Results

The branch-and-cut algorithm was implemented in C++, utilizing standard soft-
ware components available from the Computational Infrastructure for Operations
Research (COIN-OR) repository (Lougee-Heimer, 2003). The implementation uses
the COIN-OR High Performance Parallel Search Framework (CHiPPS) to perform
branch and bound, the MILP solver framework BLIS (part of CHiPPS), the COIN-
OR LP Solver (CLP) for solving the LPs that arise in branch and cut, the SYM-
PHONY MILP solver for solving the lower-level ILPs, the Cut Generation Library
(CGL) for generating cutting planes, and the Open Solver Interface (OSI) for inter-
facing with CHiPPS and SYMPHONY.

To our knowledge, the only other general IBLP algorithm proposed in the litera-
ture has been that of Moore and Bard (1990). We do not have the test set of Moore
and Bard (1990) or an implementation of their algorithm available, so a comprehen-
sive comparison to their algorithm is not feasible. In order to provide some basis for
comparison, we did examine the branch-and-cut tree constructed by our algorithm
on one of the examples from their original paper. The feasible region of the IBLP
and our branch-and-cut tree are shown in Figure 3. In this simple case, our algo-
rithm generated a total of seven nodes, and processed five, while the same example
in the original paper required twelve nodes. Of course, this comparison is only a
single instance, but examination of the two search trees does provide some evidence
for our intuition that certain aspects of Moore and Bard’s algorithm, such as the
requirement to branch on integer variables, result in a less efficient search.

We also tested our algorithm on a set of interdiction problems, in which the
lower-level problems were binary knapsack problems with a single constraint.
The goal of the upper-level DM was to minimize the maximum profit achievable
by the lower-level DM by fixing a subset of the variables in the lower-level problem
to zero. A cost was associated with the fixing of each lower-level variable to zero
and the upper-level problems contained a single constraint, representing the avail-
able interdiction budget. To create these instances, data files describing bicriteria

1 2 3 4

3

1

2

x

y
FI

F

y≥ 1

y≥ 2

y≤ 0

y≤ 1

x≤ 1

x≥ 3

x≥ 2

(3,1), 5

Fig. 3 Example 2 from Moore and Bard (1990) and the resulting branch-and-cut tree.

76 S.T. DeNegre and T.K. Ralphs

Table 1 Summary results from the knapsack interdiction.

Maximum Infeasibility Strong Branching
2n Avg Nodes Avg Depth Avg CPU (s) Avg Nodes Avg Depth Avg CPU (s)
20 1801 16.45 3.17 1125 16.95 4.69
22 3538 18.25 6.63 1860 17.40 9.13
24 7034 20.20 13.27 3314 19.65 17.50
26 13867 22.00 27.54 6294 20.20 35.84
28 26155 23.85 60.08 11915 23.00 71.90
30 60626 26.65 124.84 23917 24.15 145.99
32 125840 26.75 249.19 45879 25.80 296.16
34 253965 29.65 516.65 – – –

knapsack problems were taken from the Multiple Criteria Decision Making library
(Figueira, 2000). The first objective in each file was used to define a lower-level
objective function, while the second objective provided a budget constraint. The
available budget was then chosen to be �∑n

i=1 ai/2�, where ai is the cost of interdict-
ing lower-level variable i. For a knapsack problem with n items, this construction
yielded a problem with 2n variables and n + 2 constraints. All computational tests
were performed on an Intel Xeon 2.4GHz processor with 4GB of memory. Sum-
marized results of two sets of runs—one in which we used maximum infeasibility
branching to select branching candidates and one in which we used strong branch-
ing, are shown in Table 1, where the results for each problem size reflect the average
of 20 instances. Note that a dash indicates that no instances of the corresponding size
were able to be solved due to memory requirements. These results look promising,
but are preliminary at best. For these instances, strong branching reduced the size of
the search tree significantly, but required more computation time. More fine-tuning
of algorithm parameters is needed to determine the best branching strategy.

6 Conclusions

We have discussed the challenges associated with solving integer bilevel linear pro-
gramming problems and described a branch-and-cut algorithm that can be seen as a
generalization of the familiar algorithm used for solution of standard integer linear
programs. The primary advantage of this approach is the ability to exploit the vast
array of existing technology for solving ILPs techniques. The next step in the devel-
opment of this approach is to include a wider range of the supplemental techniques
that have proven critical in our ability to solve difficult integer linear programs
in practice. These include such improvements as the development of preprocess-
ing techniques, primal heuristics, additional classes of valid inequalities, branching
rules based on disjunctions involving more than one variable, and more effective
search strategies. In this paper, we have only suggested a starting point and much
work remains to be done to make these methods practical for large-scale instances.

A Branch-and-cut Algorithm for Integer Bilevel Linear Programs 77

References

Achterberg T, Koch T, Martin A (2005) Branching rules revisited. Operations Re-
search Letters 33(1):42–54

Bard J (1988) Convex two-level optimization. Mathematical Programming 40:
15–27

Bard J, Moore J (1990) A branch and bound algorithm for the bilevel programming
problem. SIAM Journal on Scientific and Statistical Computing 11(2):281–292

Bard J, Moore J (1992) An algorithm for the discrete bilevel programming problem.
Naval Research Logistics 39:419–435

Cormican K, Morton D, Wood R (1998) Stochastic network interdiction. Operations
Research 46(2):184–197

Cornuejols G (2008) Valid inequalities for mixed integer linear programs. Mathe-
matical Programming B 112:3–44

Dempe S (2001) Discrete bilevel optimization problems. Tech. Rep. D-04109,
Institut fur Wirtschaftsinformatik, Universitat Leipzig, Leipzig, Germany

DeNegre S, Ralphs T, Guzelsoy M (2008) A new class of valid inequalities for
mixed integer bilevel linear programs. Tech. rep., Lehigh University

Figueira J (2000) MCDM Numerical Instances Library. URL http://www.univ-
valenciennes.fr/ROAD/MCDM/ListMOKP.html

Ghare P, Montgomery D, Turner W (1971) Optimal interdiction policy for a flow
network. Naval Research Logistics Quarterly 18:27–45

Hansen P, Jaumard B, Savard G (1992) New branch-and-bound rules for linear
bilevel programming. SIAM Journal on Scientific and Statistical Computing
13(5):1194–1217

Held H, Woodruff D (2005) Heuristics for multi-stage interdiction of stochastic net-
works. Journal of Heuristics 11(5-6):483–500

Israeli E, Wood R (2002) Shortest path network interdiction. Networks 40(2):
97–111

Janjarassuk U, Linderoth J (2006) Reformulation and sampling to solve a stochastic
network interdiction problem. Tech. Rep. 06T-001, Lehigh University

Lim C, Smith J (2007) Algorithms for discrete and continuous multicommodity flow
network interdiction problems. IIE Transactions 39(1):15–26

Loridan P, Morgan J (1996) Weak via strong stackelberg problem: New results.
Journal of Global Optimization 8(3):263–287

Lougee-Heimer R (2003) The Common OPtimization INterface for Operations Re-
search. IBM Journal of Research and Development 47(1):57–66

McMasters A, Mustin T (1970) Optimal interdiction of a supply network. Naval
Research Logistics Quarterly 17:261–268

Moore J, Bard J (1990) The mixed integer linear bilevel programming problem.
Operations Research 38(5):911–921

Morton D, Pan F, Saeger K (2007) Models for nuclear smuggling interdiction. IIE
Transactions 39(1):3–14

Royset J, Wood R (2007) Solving the bi-objective maximum-flow network-
interdiction problem. INFORMS Journal on Computing 19(2):175–184

http://www.univ-valenciennes.fr/ROAD/MCDM/ListMOKP.html
http://www.univ-valenciennes.fr/ROAD/MCDM/ListMOKP.html

78 S.T. DeNegre and T.K. Ralphs

Vicente L, Savard G, Judice J (1994) Descent approaches for quadratic bilevel pro-
gramming. Journal of Optimization Theory and Applications 81:379–399

Wen U, Yang Y (1990) Algorithms for solving the mixed integer two-level linear
programming problem. Computers & Operations Research 17(2):133–142

Wollmer R (1964) Removing arcs from a network. Operations Research 12(6):
934–940

Wood R (1993) Deterministic network interdiction. Mathematical and Computer
Modelling 17(2):1–18

	Chapter 4
	A Branch-and-cut Algorithm for Integer Bilevel Linear Programs
	1 Introduction
	2 Definitions and Notation
	3 Computational Challenges of IBLP
	4 Branch and Cut
	4.1 Bounding
	4.2 Generating Valid Inequalities
	4.3 Branching
	4.4 A Branch-and-cut Algorithm
	4.5 Specialized Methods for Binary IBLPs

	5 Computational Results
	6 Conclusions
	References

