
Object Oriented Modeling of Multistage
Stochastic Linear Programs

Leo Lopes and Robert Fourer

Abstract We present a specialization of the Unified Modeling Language (UML) to
help diverse stakeholders in an organization collaborate on the development of Sto-
chastic Optimization Models. Our language describes, at an abstraction level distinct
from that possible through algebraic notation, the relationships between decisions
and parameters, the dynamics of information acquisition, and the requirements for
model input and output. This paper describes the formal language and provides a
few illustrative examples.

Key words: Optimization, Modeling, UML

1 Introduction

While Operations Research (OR) applications and software applications differ in
fundamental ways, they also share some very important characteristics: complexity;
cross-disciplinary nature; and non-expert customers. Furthermore, OR applications
often include important software components, and usually reside inside Information
Technology (IT) infrastructures. These observations motivated us to study how es-
tablished Software Engineering (SE) techniques may be adapted to help create OR
models. Our emphasis is on Multistage Stochastic Linear Programs with Recourse
(MSPRs). Typical applications of MSPRs include asset and liability management

Leo Lopes
Systems and Industrial Engineering, University of Arizona, 1127 E James E Rogers Way Room
111, Tucson, AZ, 85721, e-mail: leo@sie.arizona.edu

Robert Fourer
Industrial Engineering and Management Sciences, Northwestern University, 2145 N. Sheridan
Road Room C210, Evanston, IL, 60201 e-mail: 4er@iems.northwestern.edu

J.W. Chinneck et al. (eds.), Operations Research and Cyber-Infrastructure, Operations 21
Research/Computer Science Interfaces Series 47, DOI: 10.1007/978-0-387-88843-9 2,
c© Springer Science+Business Media, LLC 2009

22 L. Lopes and R. Fourer

Yu et al (2003), energy production and distribution Sen et al (2006); Beraldi et al
(2008), strategic supply chain design Alonso-Ayuso et al (2003), and natural re-
sources management Heikkinen (2003).

SE techniques facilitate analysis and documentation and enhance maintainabil-
ity and reliability. The object oriented (OO) paradigm and graphical modeling lan-
guages are important components of current SE techniques. This paper addresses
the question of how to adapt these components to aid the development of Stochastic
Optimization Models. We have two motivations. First, OO methodology has had
great success in tackling very difficult but well structured problems similar in many
ways to OR problems. Second, OO methodology is pervasive and still expanding in
reach within the modern cyberinfrastructure.

The remainder of this paper proceeds as follows: In Section 2 we examine re-
lated OR research on model complexity and integration, as well as similar work in
other fields. In Sections 3 and 4 we briefly summarize OO SE methods and Multi-
stage Stochastic Programming. In Section 5, we introduce the major aspects of our
language with an illustrative example. In Section 6 we apply our language in a few
examples from the literature. Section 7 discusses some conclusions and possible
extensions.

2 Graphical Modeling and Communication in Optimization

Previous research on formal treatment of OR modeling can be grouped roughly into
two approaches: one whose goal is to produce more natural formulation environ-
ments for problems that are relatively precise; and one whose goal is to produce
analysis techniques suitable for problems which are very “messy”, where formality
may not be possible or productive.

Structured Modeling Geoffrion (1987), the Intelligent Mathematical Program-
ming System Greenberg (1996), and Jones’ work on graph-based Modeling Sys-
tems Jones (1990, 1991), are representatives of the more formal approach. Ideas
from those contributions have found their way into implementations like MODLER
and ANALYZE Greenberg (1993), and into graphical systems like MIMI/G Jones
(1996a), LPForm Ma et al (1996), and gLPS Collaud and Pasquier-Boltuck (1994).
A commercial modeling system based on ideas developed in the research above is
the Enterprise Optimizer (http://www.riverlogic.com). Some of the work
in visualization applied to optimization is summarized in Jones (1996b).

Less formal approaches include Problem Structuring Methods (PSM) Rosenhead
(1996) and Soft Systems Methodology (SSM) Checkland (2000). These approaches
consider conflicting objectives by different actors, group dynamics, incomplete in-
formation, ill-defined measures, and other issues that can arise in complex business
models.

Our language is designed to support a formal, well structured OR technique. At
the same time, it is designed to be used starting at the early stages of the model-
ing process, at which time some of the conditions well addressed by PSM are still

http://www.riverlogic.com

Object Oriented Modeling of Multistage Stochastic Linear Programs 23

present. This is an important difference between our work and the existing litera-
ture, which focuses mostly on replacing Algebraic Modeling Languages (AMLs)
like AMPL Fourer et al (2002) or GAMS Brooke et al (1988) with graphical lan-
guages Collaud and Pasquier-Boltuck (1994), or with creating detailed consistent
multi-level models Geoffrion (1987). In particular, this research addresses the need
to maintain a Problem Owner, usually not an OR specialist, involved as an Active
Modeler Powell (1997) and to communicate with other stakeholders in the OR
project, like IT professionals and operational managers. Our language does not at-
tempt to replace the AML, but to augment and support it.

The UML has been used or extended in a variety of fields including engi-
neering design Felfernig et al (2002), data warehousing Luján-Mora et al (2002,
leading to the CWM OMG Standard), groupware Rubart and Dawabi (2002), and
secure systems Jrjens (2002). No similar study applying OO to OR-centric sys-
tems is available, although a study of Entity Relationship Diagrams applied to op-
timization Choobineh (1991) exists. The new language SysML Bock (2006), also a
specialization of the UML, is of particular interest, since it deals with requirements,
constraints, performance measures, and other concepts distinct but similar to those
used in OR.

Many important details of stochastic optimization problems are not explicit in our
diagrams. This is intentional. Elision, modeling an element with certain characteris-
tics hidden in a specific view, is a powerful abstraction mechanism used extensively
in the UML. The primary intent of the graphical notation is to describe problems
at a high level of abstraction, to encourage discussions between analysts at early
stages of the modeling process, or to serve as complementary documentation to an
existing precise mathematical model. We believe that customary mathematical no-
tation is adequate to express the relationships in the model at more detailed levels.
Algebraic notation is far more concise than any graphical notation can be when rep-
resenting the same objects and relationships. The algebraic notation in use today is
very stable Cajori (1993). For instance, Leibniz used

∫
for summation of integers as

well as integration. Later, Euler introduced ∑ to indicate integer summation. Varia-
tions in the use of ∑ exist in the work of Lagrange, Cauchy, Fourier, and Jacobi up
to the 1820s, but except for specialized uses, the use of ∑ has remained stable since.

With additional assumptions, in specific application areas, it is possible to devise
graphical notations that capture all the detail necessary to build precise models in a
practical way. For example, the commercial package Enterprise Optimizer is capable
of representing a variety of deterministic linear programs arising from supply chains
using icons to represent resources and arcs to represent resource flows. Thus, we
have built enough expressiveness and detail into our design so that it is possible to
represent any linear expression using element diagrams, although we don’t foresee
this as the primary use case. A significant level of detail can be achieved in our
diagrams by using adornments. Adornments are optional graphical markers added to
an element that add semantic value to its representation. With the aid of adornments,
a significant proper subset of algebraic expressions can be rendered in a simple way.
An additional function of the adornments is to provide a convenient and intuitive
link to access more detailed expressions within a software system.

24 L. Lopes and R. Fourer

3 Graphical Modeling and Software Engineering

SE is inherently dynamic and multidisciplinary. As systems became more complex,
new methodologies for SE evolved, each with accompanying graphical notations
to describe structural or dynamic aspects of systems. Structural aspects define how
parts of the system relate to each other. Dynamic aspects describe operations step
by step.

The first formal diagram language to find widespread use was the fluxogram or
flowchart (Figure 1). Fluxograms use special icons to indicate printing, disk storage,
tests, etc. and display control flow using edges. Fluxograms provided basic concepts
that would be reused by all the other modeling diagrams that describe the dynamics
of systems.

The use of redirections (i.e. goto statements), promoted by fluxograms, made
large systems difficult to manage. In response, the structured paradigm gained pop-
ularity. Its main characteristic was continuous flow of control. Small structures were
used for each iterative process, and within each structure systems were again de-
scribed by a continuous flow of control. Fluxograms did not encourage structured
thinking, and thus fell out of favor. Multiple graphical modeling languages like Jack-
son diagrams Jackson (1983) and data flow diagrams DeMarco (1979) were created
to support structured SE and adopted widely. People who were trained to use one set
of diagramming techniques were not always comfortable using another, even when
both diagrams were used in fundamentally similar ways.

As systems continued to become more complex, the structured paradigm reached
its own limits, and the OO paradigm became more popular. This brought to the
forefront of the modeling process many concepts which were previously dealt with
less formally, like: encapsulation, the notion that an object has a clear interface, but
its implementation is hidden from view; and specialization, the concept of having
a general class in charge of common functionality, and specialized subclasses for
specific behavior. None of the above concepts were necessarily new, but now they
were handled explicitly at the modeling level and enforced by development systems.

Fig. 1 A fluxogram for com-
puting N! (This image is from
Wikipedia, and is in the public
domain).

Object Oriented Modeling of Multistage Stochastic Linear Programs 25

As with the structured paradigm, many modeling methodologies were proposed
for the OO paradigm, each accompanied by a graphical notation. Three became par-
ticularly popular: the Booch method, by Grady Booch; OMT, by James Rumbaugh
and associates; and OOSE by Ivar Jacobson. In the early nineties, at Rational Soft-
ware Corporation, now part of IBM, they unified their methods. The result was the
Unified Modeling Language. Subsequently, the language became an Object Man-
agement Group (OMG) standard, currently on version 2.1.

4 Multistage Stochastic Programming

For a more comprehensive introduction to stochastic programming, see Birge and
Louveaux (1997, Chapter 1). Our main focus is on the MSPR. In the MSPR, we do
not know all the data with certainty when some decisions are made. The data will
only be observed at known points in the future. Unfortunately, our decisions need to
be made before the uncertainty is resolved. Our objective is to make a decision now
which minimizes its current (known) cost plus its expected future cost. In the future,
there may be recourse decisions available after the uncertainty has been observed.
Those decisions, in turn, may also have to be taken under uncertainty, in recursive
fashion, as illustrated in Figure 2.

The periods between when portions of the uncertain data are revealed are called
stages. To describe what information becomes available when, we created sto-
chasticity diagrams (Section 5.2). Decisions available within a stage are typically
dependent on decisions taken earlier and influence future decisions. Within a stage,
there are constraints that describe what types of decisions are available and how
decisions taken earlier affect the decisions available at this stage. Some of the costs
associated with the decisions, the effects of previous decisions, and the limits on the
available resources may be uncertain. Element diagrams (Section 5.3) help model
these aspects of the MSPR.

Sets are central to practical modeling. Decisions often need to be made over
sets of objects of the same kind. Input parameters are also provided over sets. The
UML class models this situation. For example, in a facility location model each
warehouse has a characteristics like fixed cost or maintenance cost. Each warehouse
is an instance of the Warehouse class. A class is represented in UML by a box with
compartments for different types of elements, as in Figure 3. UML class diagrams
(Section 5.1) describe the sets in an MSPR.

Make
Adjustment

Observe
Uncertainty

Make
Decision

Make
Adjustment

Observe
Uncertainty

Make
Adjustment

Observe
Uncertainty

...

Fig. 2 A stochastic programming model.

26 L. Lopes and R. Fourer

Fig. 3 A simple class.

5 A Meta-model for Multistage Stochastic Programming

The collection of definitions which include Objective, Constraint, Random Variable,
etc... is part of the Meta-model for stochastic programming. Every problem is an
instance of this Meta-model, in the same sense that Knapsack is an instance of a
combinatorial optimization problem. A Meta-model is similar to a Graph Schema
in Jones (1990, 1991).

There are three main types of diagrams in our meta-model: Class Diagrams, spe-
cialized from UML Class Diagrams; Stochasticity diagrams, specialized from UML
Statechart Diagrams; and Element Diagrams, also specialized from UML Class
Diagrams. In this section, we will explain each diagram and illustrate it using a
stochastic location-routing problem (SLRP) with the following characteristics:

• The objective is to locate a number of facilities in order to maximize expected
profit over a finite horizon.

• Facilities must be opened at one or more candidate locations before the demand
is observed.

• At the start of each planning period, all orders to be served during that period are
known. Orders are shipped in less-then-truckload quantities by a fixed number of
trucks of limited capacity.

• Each truck services a number of areas, each of which has some demand associ-
ated with it. There is a limit to the time spent on each route, which includes travel
time as well as service time.

• New routes can be devised at the beginning of each planning period, but a penalty
is incurred for changing routes. A penalty is also incurred when a region that was
served in the previous planning period is dropped, if that region’s demand in the
current planning period is greater than zero.

• Demand not served may be lost to a competitor.

Many formulations and solution approaches are plausible for this problem. For the
purposes of this research, we will focus on devising a mechanism to communicate
the essential information above to all interested parties, not only OR specialists, but
also executive decision makers, IT specialists, or Floor Managers.

5.1 Class Diagrams

The function of a class diagram is to describe details of the classes in a sys-
tem and the relationships between them. Classes are represented by a box with

Object Oriented Modeling of Multistage Stochastic Linear Programs 27

Fig. 4 A class diagram.

Warehouse

fixedCost: dollars
maintenanceCost: dollars
capacity: units

isOpen(): bool

Facility

location: coords

currentStock(): units

Retailer

demand: units

shippingCost

distance

compartments. The first three compartments are used for the class name, attributes,
and operations. Other compartments may be used in specific applications for other
characteristics.

In Figure 4, we see a specialization relationship between Warehouse and Facil-
ity. A specialization indicates an is-a type of relationship: a Warehouse is-a Facility,
so it incorporates all its properties. We can also see an association relationship be-
tween two Facilities, called distance. The two are differentiated graphically by the
type of arrow. There is also an association between Warehouse and Retailer, called
shippingCost. Notice that this association does not have an arrow associated with it,
but is still valid. Arrows are optional in associations. They are elided here to illus-
trate a point, but are generally recommended to increase clarity.

The class diagram summarizes all the data used by the optimization problem
(parameters), and all the information provided by it (decision variables). It is im-
portant for communicating requirements to those responsible for the rest of the IT
infrastructure. Therefore, we reused as much functionality from the class diagram
as possible. However, elements of a class in an optimization problem have impor-
tant properties that distinguish them from their SE counterparts. The UML contains
mechanisms we can use to describe these differences.

There are two major types of elements in mathematical programming: decisions
and parameters. In stochastic programming, parameters may be deterministic or sto-
chastic. Both decisions and parameters can be modeled as attributes of a class. Pa-
rameters that are not stochastic are only initialized once, when the class instance
is created. The UML property {frozen} (in the UML, properties are expressed by
their label in curly brackets) gives an attribute the behavior we desire. In the UML,
unless specified otherwise, all attributes are {changeable}. This makes sense in gen-
eral SE, but is undesirable in the MSPR, since typically only a few parameters are
modeled as stochastic. The existing UML construct note can be used to indicate that
all attributes are {frozen} by default.

Stochastic parameters do not perfectly fit into any concept currently in the UML.
They are certainly {changeable}, but in a more specific way. So we create the new
property {stochastic}, derived from {changeable}.

28 L. Lopes and R. Fourer

The UML has several mechanisms useful for representing decisions. Unfortu-
nately, none are quite perfect. One can think of decisions as operations on a class
(e.g., we open a facility). Both are given actions as names; and both affect other
characteristics of the class. In this view, opening or closing a facility is in fact an
action taken on a facility. Unfortunately this view has difficulties. Unlike opera-
tions, MSPR decisions are not allowed to affect parameters of a class, although they
affect the domains available to other decisions. In the OO framework, operations
cannot change other operations (there are frameworks where this is allowed, like in
functional programming). Thus, while operations and decisions share some charac-
teristics, one can not be considered a subclass of the other.

A better approach is to define decisions as subclasses of attributes. We suggest
defining a stereotype. Stereotyping is one of the extension mechanisms in the UML.
The mechanism is used to create meta-classes with specific characteristics. This
works very well for decision variables. In particular, the tagged values upperBound
and lowerBound can be associated with the decision (in the UML, stereotypes are
expressed by their label between guillemots) stereotype. The stereotype is used to
define decision variables as special types of attributes.

In Figure 5, we can see all the classes needed to define the stochastic location-
routing problem (SLRP) defined earlier. Figure 5 defines roles for some of the asso-
ciations, indicated by a verb followed by a triangle � or � pointing from the subject
to the object of the role. The role is an adornment, and has no direct translation to
the MSPR framework. In particular, it is not holding the place of a decision variable.
Diagram 5 implies that we are not concerned with which truck gets assigned to each
route. If that decision were part of the model, an association class would need to be
created and attached to the association between Truck and Route. This association
class should then be reflected in the algebraic problem description. If it is not, then
there is an inconsistency. Making these inconsistencies easy to spot is what we hope
to achieve.

The maximum cardinality of each component is unambiguous in the class di-
agram. Given M1 Warehouses and M2 Retailers, a tool can deduce that there are
M1 ×M2 ShippingCosts. Such a tool can also automate parts of the data acquisition

Fig. 5 Classes in the SLRP.

Truck
maximumLoad

Facility
location

Client Cluster
demand {stochastic}

Warehouse
 open «decision»

distance

*

*

isAssignedTo
Route

maximumLength
use «decision»

serves

Object Oriented Modeling of Multistage Stochastic Linear Programs 29

routines, as well as perform integrity checks. It is legal for a tool to allow certain
additions to the syntax. With these additions, it is possible to generate equations
automatically.

Decisions of arity > 1 present no difficulty. In particular, attributes with arrays
can be used when convenient. Associations of arity > 2 are also easily handled
within the UML. All that is needed is to draw the lines between classes in a manner
that shows unambiguously that the associations involve tuples of classes as opposed
to a set of classes taken two at a time. No normalization is required.

More important than generating equations automatically is having a graphical
language that improves communication between different analysts. A professional
with an IT background, who is likely to know where some of the desired information
can be found, will appreciate having a description of the data in a familiar language.
People interacting with the model solely at a decision maker level will also appre-
ciate the information about the model contained in the diagram. For example, from
the model in Figure 5 it is clear that direct shipments between the warehouse and
individual Client Clusters are not available as a recourse action. This message can
be conveyed precisely without the need for any mathematical notation or textual
description. Another example is the relationship between Truck and Route. If the
trucks all have the same maximumLoad, then the association isAssignedTo should
not have a decision associated with it. However, if maximumLoad is different for
each truck, and the smallest load is close to the typical demand for a cluster, then the
isAssignedTo association could become a class containing a decision. Any person
involved in the modeling process can spot this detail, and discuss its consequences,
without the need for specialized training in OR.

5.2 Stochasticity Diagrams

The Stochasticity Diagram provides a concise view of the decision process. It docu-
ments that the right decisions are being considered at the right time, using the right
information. It describes the point in time at which each piece of information be-
comes available with certainty; and the consequences of observing the information
for the decision process. It is is a UML Statechart, with each state representing a
decision process and each event representing the observation of some set of random
variables.

Systems which model dynamic aspects of stochastic programming explicitly and
associate single-stage LPs with each stage Fourer and Lopes (2008) are called
filtration-oriented. The term comes from a type of stochastic process used to
describe information release over time. The details of the definition of filtration are
not relevant to this discussion, except that the filtration-oriented approach leads to a
decomposition of the model that fits well with the OO paradigm. For more details
on filtrations, see Neftci (2000). Figure 6 represents the filtration process for the
SLRP.

30 L. Lopes and R. Fourer

Fig. 6 A simple state machine
for a location-routing problem
with 5 stages.

Locate
Facilities

demand [stage<5]/
send routes,
send served demand/

send routes,
send served

Determine
Routes

Adjust
Routes

[stage=5]

demand /
send openedFacilities

Every diagram has an initial state (the solid circle) and a final state (the other
circle). In between, there are a number of other states (the round-edged boxes),
each representing a set of decisions taken based on the same information. Each state
has a name.

In between each pair of states there is an event (represented by an arc) that de-
scribes what new information causes the state transition. Each event may have a
name and may take parameters. The parameters should be the random variables ob-
served. An event may also have a guard condition (represented in between square
brackets). When an event occurs, the transition only takes place if the guard con-
dition is satisfied. A signal may also be sent when an event occurs, represented in
the diagram by the send keyword followed by the name of the signal. The signal
describes the decisions at period t that must be taken into account later. Conditional
probabilities are not shown directly on the diagram. They are clearly important, but
they are too much detail for this level of abstraction.

5.3 Element Diagrams

Element diagrams represent the same information as the algebraic model, but at a
coarser level. Unlike activity graphs Schrage (2002) or diagrams from LPFORM Ma
et al (1996) or gLPS Collaud and Pasquier-Boltuck (1994), element diagrams do not
necessarily translate directly into algebraic expressions. Instead, they specify which
elements are related, rather than specifically how they are related. The primary rea-
son for not tying element diagrams directly to algebraic expressions is that element
diagrams are used at modeling stages where the specific expressions that determine
how elements are related may not be especially relevant. A problem owner or an IT
person may be unaware of, uncomfortable with, or even unconcerned with the spe-
cific dynamics of the relationships between elements. However, he or she is likely to
be interested in knowing that the expert has included the relationship in the model.

As an introduction, consider a problem without stochasticity. Figure 7, has an
unadorned element diagram of the Traveling Salesperson Problem (TSP). While
not useful for computation, Figure 7 contains a correct and complete representation
of the major components of the model. There is an objective, to minimize (thus
the triangle points down) the total distance; a decision (the diamond), the route to
choose; and a constraint (the box), to visit all nodes. There are also associations

Object Oriented Modeling of Multistage Stochastic Linear Programs 31

Fig. 7 An unadorned repre-
sentation of the TSP. distance

route

visit all nodes

Fig. 8 An adorned represen-
tation of a typical formulation
of the TSP

between the different elements in the diagram, represented by the lines connecting
them. Each symbol is a specialization of the UML Class.

If adornments are used, the element diagram can express any linear program.
In fact, when the element diagram is examined one set of constraints at a time, or
one objective at a time, with every relationship expressed correctly, it represents an
expression tree equivalent to one generated by a modeling language.

Figure 8 represents the following classical Dantzig-Fulkerson-Johnson TSP for-
mulation in detail: Given a graph G(V,E) with n nodes, let δ (U),U ⊂V be the cut
of node set U . Define a binary variable xe, and a cost parameter ce associated with
each edge e ∈ E:

min ∑
e∈E

cexe

∑
e∈δ ({v})

xe = 2 ∀v ∈V

∑
{e∈δ (U)}

xe ≥ 2 ∀U ⊂V,2 ≤ |U | ≤ n−1

Figure 9 is the corresponding class diagram. Each constraint in Figure 8 has a
symbol that identifies its type. Each constraint also includes an Object Constraint
Language (OCL) expression in curly brackets. OCL expressions are used to spec-
ify multiplicity, and are not related to the constraints of an optimization problem.

32 L. Lopes and R. Fourer

Fig. 9 The Edge and Node
classes used in the TSP Ele-
ment Diagram in Figure 8.

Fig. 10 The determine route
state in the SLRP.

OCL is a formal language defined as a subset of the UML to aid in clarification
of the semantics of models. In the UML, the enforcement of the OCL expressions
is left to the implementation UML (2003). A computer implementation is free to
replace the OCL with any other formal language, such as an AML.

Each association has a cardinality associated with it. The cardinality may be
elided, as in Figure 7. In most cases the association corresponds to a summation
or product. An OCL expression can be added to the association to specify which
instances of constraint and variable classes are related, as in Figure 8. An imple-
mentation may use these expressions to generate AML code.

Each association in Figure 8 has a double arrow (to avoid clashing with reserved
symbols in the UML) at one of its ends. The arrow indicates flow balance. An arrow
pointing toward the constraint is a credit, and an arrow pointing away from the
constraint is a debit. Each association may have a name. If so, then this name should
be a parameter related with each instance of the association. It is not the instance of
the parameter that is used for the name, but the class. For example, in Figure 8, c
is the mathematical object corresponding to the association Edge.Cost between the
decision and the objective, and not ce.

Consider the SLRP. Figure 10 describes the Determine Routes state in Figure 6.
The double lines indicate stochasticity or externality. For example, the facility.open
decision was made before entering this state. It is represented as a decision, but it is
not mutable at this stage. It was received in this state as a signal sent by another state,
as indicated in Figure 6 by the send openedFacilities notation associated with the
two states involved. Similarly, the routes decision has an optional special marker on
it that indicates that this decision might influence decisions made in future stages.
The double lines on the demand parameter indicate that it is a random variable. All
double lines are adornments. The analyst should use judgment to determine when
to use them.

Object Oriented Modeling of Multistage Stochastic Linear Programs 33

6 Illustrations from the literature

We now present a few classical examples taken from Ariyawansa and Felt (2001).
For each example, we will provide a description and elided class, stochasticity and
element diagrams.

6.1 Airlift Operations Schedule

The goal of this model Midler and Wollmer (1969) is to minimize the expected
cost of airlift operations. Aircraft resources are allocated based on a forecast of the
demands for specific routes. However, the actual demand is unknown. The recourse
actions available are: allowing allocated flight time to go unused; switching aircraft
from one route to another; and purchasing commercial flights.

6.1.1 The Class Diagram

The class diagram 11 describes Flight and Plane. Each plane has available hours.
The most important parameters associated with each route are: origin and desti-
nation; demand, which is stochastic; spot market cost, which is the unit cost of
purchasing commercial flights on that route; and unused capacity cost, the unit
penalty for reserving Plane capacity and then leaving it unused. Each Route has two
decisions associated with it: spot purchase, the amount of demand that will be cov-
ered by commercial flights; and unused, the amount of capacity reserved but left
unused for this route.

The other classes are association classes. The Assignment and Reassignment
have the same attributes, but are modeled as different classes. They both have hours,
the time it takes for a given plane to fly a given route; cost, the unit cost of flying
a given route with a given plane; and capacity, the number of units a given plane
can carry when flying a given route. Because these parameters appear as members

Fig. 11 Airlift operations
class diagram

Plane

available hours

Flight
origin
destination
demand {stochastic}
spot market cost
unused capacity cost
spot purchase «decision»
unused «decision»

Assignment
hours
cost
capacity
assignment «decision»

Reassignment

Assignment

Reassignment

34 L. Lopes and R. Fourer

of Assignment instead of Plane, it is clear that in this model they depend on the
specific combination of Plane and Route, as opposed to other plausible situations,
where some parameters may depend only on Plane.

6.1.2 The Stochasticity Diagram

The stochasticity diagram 12 is simple. The first stage decision is to assign planes
to routes; the second stage decision is to do any reassignments necessary.

6.1.3 The Element Diagrams

The first stage element diagram 13 prescribes that in this stage, assignments mini-
mize cost, respecting the number of hours available for each flight. The second stage
element diagram 14 is more sophisticated. There are two flows between reassign-
ment and Satisfy demand. This indicates that reassignments may either increase or
decrease the demand satisfied. The OCL constraint indicates which reassignments
result in increases or decreases of satisfied demand. The expressions in the origi-
nal paper involve each plane’s carrying capacity, and ratios between flight-hours in
different routes for each plane, but they are elided here.

6.2 Forest Planning

The goal of this model Gassmann (1989) is to maximize the revenue obtained from a
forest area, by deciding which parts of the forest should be harvested at each point in
time. The forest is segmented by the age of trees in a region, and each segment may

Fig. 12 Airlift operations
stochasticity diagram

Assign
Planes

Ressign
Planes

demand/
send reservedFlights

Fig. 13 Airlift first stage
element diagram

Cost

Assignment

Available
Hours

Flight Hours
<=

Assignment.hours

Object Oriented Modeling of Multistage Stochastic Linear Programs 35

Fig. 14 Airlift second stage element diagram

Fig. 15 Forest planning class
diagram.

be worth a different amount per unit area. Due to fire, disease, or other casualties,
part of the trees that are not cut may be lost before they move into the next age
group.

6.2.1 The Class Diagram

The class diagram 15 contains only one class and no associations. Even though an
age method is present, it has no semantic meaning in optimization. It is present to
illustrate that objects used within our language can be shared with other parties who
may have different uses for them.

36 L. Lopes and R. Fourer

6.2.2 The Stochasticity Diagram

The stochasticity diagram 16 has a self-transition, which takes place every period.
It is triggered by the random vector casualties and is processed so long as the stage
is less than the total number of stages.

6.2.3 The Element Diagram

The element diagram 17 is associated with the cut state in Figure 16. Both cut
and uncut forest have value. The amount of forest available in each category is
determined by a balance constraint that considers the amount available in in the
previous period, the amount cut in the previous period, and any casualties that may
have occurred. The double arrow linking the available variable from the previous
period to the balance constraint is hollow, in contrast to all the others. This is an
optional adornment to indicate that this parameter is stochastic.

The amount of forest that can be cut now is limited by the available variable,
as indicated by the Availability constraint. Lastly, the amount of timber the market

Fig. 16 Forest planning sto-
chasticity diagram

Cut [stage=stages]

casualties[stage<stages]

Fig. 17 Forest planning ele-
ment diagram

Value

Available Cut

Availability

Available
Available

Cut
Cut

Industry
Capacity

Balance

<=

casualty

Object Oriented Modeling of Multistage Stochastic Linear Programs 37

is ready to accept is bounded above and below by the amount that was cut in the
previous period. Thus, the Industry capacity constraint has arrows coming both
in and out of both the current stage and previous stage cut variables. The Industry
capacity constraint could be separated into a lower industry bound and an upper
industry bound if desired.

6.3 Electrical Investment Planning

This model comes from Louveaux and Smeers (1998). The objective is to minimize
total investment and maintenance costs for electricity generation. Several technolo-
gies are available, with different capacities, costs, availabilities, and lifetimes. Some
of these characteristics are stochastic, and the goal is to balance all of them in deter-
mining an effective investment and operational schedule.

6.3.1 The Class Diagram

The class diagram 18 displays the major components of the model. Demand for
electricity can be thought of as coming in different modes, which discretize the
demand curve over a cycle. For a certain amount of time during a cycle (duration
in the class diagram), an amount of power exceeding the previous mode (power in
the class diagram) will be needed.

The total demand (demand in the class diagram) for each Demand Mode can
be produced by using several Technologies, each of which has: an availability, the
proportion of time a plant using the production technology can be operated in a
period; an operating cost, which is stochastic (it may depend, for example, on fuel
costs); and a planned capacity already contracted for.

Fig. 18 Electricity investment
class diagram.

38 L. Lopes and R. Fourer

In addition, it is possible to invest in certain technologies. In this case, one must
take into account an investment cost, which is stochastic (it may depend, for ex-
ample, on technological achievements), a leadtime, the delay between when the
contract is signed and when the facility becomes operational; and also a lifetime,
describing for how many periods the technology will be usable.

The decision maker may increase the available capacity of an Investible Tech-
nology (which is a subclass of technology), which when combined with the already
contracted capacity, leadtime, and lifetime considerations, determines the available
capacity at any point in time.

There is also a special type of Investible Technology called the Spot Market, in
which typically the operating costs are very high. Spot Market purchases require no
investment, have no leadtime, and only last for the current period.

6.3.2 The Stochasticity Diagram

The stochasticity diagram 19 illustrates that the relevant random variables to be ob-
served are the demand and costs (both operating and investment). There is only one
set of decisions, defined by the Invest state. The information exchanged between
stages is the portfolio of current investments.

6.3.3 The Element Diagram

The element diagram 20 shows that there are two important constraints. Satisfy de-
mand ensures that the amount produced or purchased in the spot market is sufficient
to satisfy the demand for all modes. The Capacity constraint relates how capacity
added in previous planning periods and capacity originally contracted affects the
production capability at this stage.

The added capacity decision has a special marker to indicate that it will influ-
ence future decisions. Demand, operating cost and investment cost are marked
stochastic, the first because of the ellipse with double lines, and the others because
of the hollow double-arrows.

Fig. 19 Electricity investment
stochasticity diagram

Object Oriented Modeling of Multistage Stochastic Linear Programs 39

Fig. 20 Electricity investment
element diagram.

7 Conclusions and Further Work

Researchers have expressed concern with the increasing disconnect between acad-
emic models and those used in business environments Sodhi and Tang (2008). This
disconnect, along with changes in the availability of timely information throughout
the enterprise can sometimes hinder our ability to convey the value added by OR.
This research addresses a small portion of this problem that fits within our exper-
tise. We developed a graphical modeling language based on the UML to facilitate
the communication of MSPR models between diverse stakeholders.

The extensive use of elision sets this work apart from previous OR research on
modeling systems. While our language can describe linear programs in their en-
tirety, it really is designed to produce an abstract summary of the model, which is a
valuable modeling aid used extensively in fields involving information and decision
making. Our language is most effective when communicating and documenting the
general tradeoffs in a model and the information necessary to adequately analyze
the situation underlying the model. The language should be used throughout the
lifetime of a model. The development of the model should start with the creation of
a set of diagrams, and those diagrams should be used to organize the mathematical
expressions in the model. A computer system can guarantee consistency between
different levels of abstraction. Future research along this direction should exploit
new tools for collaboration available to the enterprise, like the Microsoft Surface.

We believe that the UML is sufficiently expressive, tractable, and extensible to
be the basis for a graphical language like ours. The occasional compromises on
expressiveness or simplicity we make are worth it when juxtaposed with the benefits
of the UML (i.e. software support, familiarity, standardization). Other researchers
may disagree, and design graphical languages which would perhaps be more clear
by dropping the UML assumption. Even within the UML, there are different ways of
describing stochastic optimization models. Perhaps a more elegant set of classes can
be devised. Empirical research will help refine the design. Future research should

40 L. Lopes and R. Fourer

also produce graphical languages for other types of OR problems, or show that this
particular language can be generalized to cover other classes of problems well.

Ultimately, as with any language, practice will dictate which diagrams become
common. The set of objects and diagrams proposed here, however, provide a formal
starting point.

References

(2003) OMG Unified Modeling Language Specification. Object Management
Group, version 1.5

Alonso-Ayuso A, Escudero LF, Garı́n A, M T Ortu n, Pérez G (2003) An approach
for strategic supply chain planning under uncertainty based on stochastic 0-1
programming. J of Global Optimization 26(1):97–124, DOI http://dx.doi.org/10.
1023/A:1023071216923

Ariyawansa KA, Felt AJ (2001) On a new collection of stochastic linear program-
ming test problems. Tech. Rep. 4, Department of Mathematics, Washington State
University, Pullman, WA 99164

Beraldi P, Conforti D, Violi A (2008) A two-stage stochastic programming model
for electric energy producers. Comput Oper Res 35(10):3360–3370, DOI http:
//dx.doi.org/10.1016/j.cor.2007.03.008

Birge JR, Louveaux F (1997) Introduction to Stochastic Programming. Springer-
Verlag

Bock C (2006) SysML and UML 2 Support for Activity Modeling. Systems Engi-
neering 9(2):160–186

Brooke A, Kendrick D, Meeraus A (1988) GAMS A User’s Guide. The Scientific
Press

Cajori F (1993) History of Mathematical Notations. Dover Publications, Inc.
Checkland P (2000) Soft systems methodology: a thirty year retrospective. Systems

Research and Behavioral Science
Choobineh J (1991) A diagramming technique for representation of linear program-

ming models. Omega
Collaud G, Pasquier-Boltuck J (1994) glps: A graphical tool for the definition and

manipulation of linear problems. European Journal of Operations Research
DeMarco T (1979) Structured analysis and system specification. Yourdon Press Up-

per Saddle River, NJ, USA
Felfernig A, Friedrich G, Jannach D, Zanker M (2002) Configuration knowledge

representation using uml/ocl. LNCS
Fourer R, Lopes L (2008) StAMPL: A Filtration-Oriented Modeling Tool for Sto-

chastic Programming, upcoming in INFORMS Journal on Computing
Fourer R, Gay DM, Kernighan BW (2002) AMPL A Modeling Language For Math-

ematical Programming, 2nd edn. Duxbury Press
Gassmann HI (1989) Optimzal harvest of a forest in the presence of uncertainty.

Canadian Journal of Forest Research 19:1267–1274

http://dx.doi.org/10.1023/A:1023071216923
http://dx.doi.org/10.1023/A:1023071216923
http://dx.doi.org/10.1016/j.cor.2007.03.008
http://dx.doi.org/10.1016/j.cor.2007.03.008

Object Oriented Modeling of Multistage Stochastic Linear Programs 41

Geoffrion AM (1987) An introduction to structured modeling. Management Science
Greenberg H (1993) A Computer-Assisted Analysis System for Mathematical Pro-

gramming Models and Solutions: A User’s Guide for ANALYZE. Kluwer Acad-
emic Publishers

Greenberg HJ (1996) A bibliography for the development of an intelligent mathe-
matical programming system. ITORMS

Heikkinen VP (2003) Timber harvesting as a part of the portfolio management: A
multiperiod stochastic optimisation approach. Manage Sci 49(1):131–142, DOI
http://dx.doi.org/10.1287/mnsc.49.1.131.12752

Jackson M (1983) Systems Development. Prentice-Hall
Jones CV (1990) An introduction to graph-based modeling systems, part i:

Overview. ORSA Jorunal on Computing
Jones CV (1991) An introduction to graph-based modeling systems, part ii: Graph-

grammars and the implementation. ORSA Jorunal on Computing
Jones CV (1996a) Mimi/g: A graphical environment for mathematical programming

and modeling. Interfaces
Jones CV (1996b) Visualization and Optimization. Operations Research/Computer

Science Interface Series, Kluwer Academic Publishers
Jrjens J (2002) Umlsec: Extending uml for secure systems development. LNCS
Louveaux FV, Smeers Y (1998) Optimal investments for electricity generation: A

stochastic model and a test-problem. In: Numerical Techniques for Stochastic
Optimization, SpringerVerlag, chap 24, pp 445–453

Luján-Mora S, Trujillo J, Song IY (2002) Extending the uml for multidimensional
modeling. LNCS

Ma P, F H Murphy, E A Stohr (1996) An Implementation of LPFORM. INFORMS
Journal on Computing

Midler JL, Wollmer RD (1969) Stochastic programming models for scheduling air-
lift operations. Naval Research Logistics Quarterly 16:315–330

Neftci SN (2000) An Introduction to the MAthematics of Financial Derivatives.
Academic Press

Powell SG (1997) The teachers’ forum: From intelligent consumer to active mod-
eler, two mba success stories. INTERFACES

Rosenhead J (1996) What’s the problem? an introduction to problem structuring
methods. Interfaces

Rubart J, Dawabi P (2002) Towards uml-g: A uml profile for modeling groupware.
LNCS

Schrage L (2002) Optimization Modeling with Lingo, 4th edn. LINDO Systems Inc.
Sen S, Yu L, Genc T (2006) A stochastic programming approach to power portfolio

optimization. Oper Res 54(1):55–72, DOI http://dx.doi.org/10.1287/opre.1050.
0264

Sodhi MS, Tang CS (2008) The or/ms ecosystem: Strengths,weaknesses, opportu-
nities and threats. Operations Research 56(2):267–277

Yu LY, Ji XD, Wang SY (2003) Stochastic programming models in financial opti-
mization: A survey. AMO — Advanced Modeling and Optimization 5(1), URL
citeseer.ist.psu.edu/yu03stochastic.html

http://dx.doi.org/10.1287/mnsc.49.1.131.12752
http://dx.doi.org/10.1287/opre.1050.0264
http://dx.doi.org/10.1287/opre.1050.0264

	Chapter 2
	Object Oriented Modeling of Multistage Stochastic Linear Programs
	1 Introduction
	2 Graphical Modeling and Communication in Optimization
	3 Graphical Modeling and Software Engineering
	4 Multistage Stochastic Programming
	5 A Meta-model for Multistage Stochastic Programming
	5.1 Class Diagrams
	5.2 Stochasticity Diagrams
	5.3 Element Diagrams

	6 Illustrations from the literature
	6.1 Airlift Operations Schedule
	6.1.1 The Class Diagram
	6.1.2 The Stochasticity Diagram
	6.1.3 The Element Diagrams

	6.2 Forest Planning
	6.2.1 The Class Diagram
	6.2.2 The Stochasticity Diagram
	6.2.3 The Element Diagram

	6.3 Electrical Investment Planning
	6.3.1 The Class Diagram
	6.3.2 The Stochasticity Diagram
	6.3.3 The Element Diagram

	7 Conclusions and FurtherWork
	References

