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Preface

This book is the companion volume to the Eleventh INFORMS Computing Society
Conference (ICS 2009), held in Charleston, South Carolina, from January 11 to 13,
2009. It includes 24 high-quality refereed research papers.

The focus of interest for ICS is the interface between Operations Research and
Computer Science, and the papers in this volume reflect that interest. This is nat-
urally an evolving area as computational power increases rapidly while decreasing
in cost even more quickly. The papers included here illustrate the wide range of
topics at this interface. For convenience, they are grouped in broad categories and
subcategories. There are three papers on modeling, reflecting the impact of recent
development in computing on that area. Eight papers are on optimization (three on
integer programming, two on heuristics, and three on general topics, of which two
involve stochastic/probabilistic processes). Finally, there are thirteen papers on ap-
plications (three on the conference theme of cyber-infrastructure, four on routing,
and six on other interesting topics). Several of the papers could be classified in more
than one way, reflecting the interactions between these topic areas.

We thank the members of the program committee (listed below), local arrange-
ments co-coordinator Chris Starr (College of Charleston) and the many authors,
referees, and stream organizers who contributed their time and effort.
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Python Optimization Modeling Objects (Pyomo)

William E. Hart

Abstract We describe Pyomo, an open-source tool for modeling optimization appli-
cations in Python. Pyomo can be used to define abstract problems, create concrete
problem instances, and solve these instances with standard solvers. Pyomo provides
a capability that is commonly associated with algebraic modeling languages like
AMPL and GAMS. Pyomo leverages the capabilities of the Coopr software, which
integrates Python packages for defining optimizers, modeling optimization applica-
tions, and managing computational experiments.

Key words: Python, Modeling language, Optimization, Open Source Software

1 Introduction

Although high quality optimization solvers are commonly available, the effective
integration of these tools with an application model is often a challenge for many
users. Optimization solvers are typically written in low-level languages like Fortran
or C/C++ because these languages offer the performance needed to solve large nu-
merical problems. However, direct development of applications in these languages
is quite challenging. Low-level languages like these can be difficult to program; they
have complex syntax, enforce static typing, and require a compiler for development.

There are several ways that optimization technologies can be more effectively
integrated with application models. For restricted problem domains, optimizers can
be directly interfaced with application modeling tools. For example, modern spread-
sheets like Excel integrate optimizers that can be applied to linear programming and
simple nonlinear programming problems in a natural way. Similarly, engineering
design frameworks like the Dakota toolkit (Eldred et al, 2006) can apply optimizers

William E. Hart
Sandia National Laboratories, Discrete Math and Complex Systems Department, PO Box 5800,
Albuquerque, NM 87185 e-mail: wehart@sandia.gov

J.W. Chinneck et al. (eds.), Operations Research and Cyber-Infrastructure, Operations 3
Research/Computer Science Interfaces Series 47, DOI: 10.1007/978-0-387-88843-9 1,
c© Springer Science+Business Media, LLC 2009



4 W.E. Hart

to nonlinear programming problems by executing separate application codes via a
system call interface that use standardized file I/O.

Algebraic Modeling Languages (AMLs) are alternative approach that allows
applications to be interfaced with optimizers that can exploit problem structure.
AMLs are high-level programming languages for describing and solving mathemat-
ical problems, particularly optimization-related problems (Kallrath, 2004). AMLs
like AIMMS (AIMMS, 2008), AMPL (AMPL, 2008; Fourer et al, 2003) and
GAMS (GAMS, 2008) have programming languages with an intuitive mathemati-
cal syntax that supports concepts like sparse sets, indices, and algebraic expressions.
AMLs provide a mechanism for defining variables and generating constraints with
a concise mathematical representation, which is essential for large-scale, real-world
problems that involve thousands of constraints and variables.

A related strategy is to use a standard programming language in conjunction
with a software library that uses object-oriented design to support similar math-
ematical concepts. Although these modeling libraries sacrifice some of the intu-
itive mathematical syntax of an AML, they allow the user to leverage the greater
flexibility of standard programming languages. For example, modeling tools like
FlopC++ (FLOPC++, 2008), OPL (OPL, 2008) and OptimJ (OptimJ, 2008) enable
the solution of large, complex problems with application models defined within a
standard programming language.

The Python Optimization Modeling Objects (Pyomo) package described in this
paper represents a fourth strategy, where a high level programming language is
used to formulate a problem that can be solved by optimizers written in low-level
languages. This two-language approach leverages the flexibility of the high-level
language for formulating optimization problems and the efficiency of the low-
level language for numerical computations. This approach is increasingly common
in scientific computing tools, and the Matlab TOMLAB Optimization Environ-
ment (TOMLAB, 2008) is probably the most mature optimization software using
this approach.

Pyomo supports the definition and solution of optimization applications using the
Python scripting language. Python is a powerful dynamic programming language
that has a very clear, readable syntax and intuitive object orientation. Pyomo was
strongly influenced by the design of AMPL. It includes Python classes that can
concisely represent mixed-integer linear programming (MILP) models. Pyomo is
interated into Coopr, a COmmon Optimization Python Repository. The Coopr Opt
package supports the execution of models developed with Pyomo using standard
MILP solvers.

Section 2 describes the motivation and design philosophy behind Pyomo, includ-
ing why Python was chosen for the design of Pyomo. Section 3 describes Pyomo and
contrasts Pyomo with AMPL. Section 4 reviews other Python optimization pack-
ages that have been developed, and discusses the high-level design decisions that
distinguish Coopr. Section 5 describes the Coopr Opt package and contrasts its ca-
pabilities with other Python optimization tools. Finally, Section 6 describes future
Coopr developments that are planned.
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2 Pyomo Motivation and Design Philosophy

The design of Pyomo is motivated by a variety of factors that have impacted ap-
plications at Sandia National Laboratories. Sandia’s discrete mathematics group
has successfully used AMPL to model and solve large-scale integer programs for
many years. This application experience has highlighted the value of AMLs for real-
world applications, which are now an integral part of operations research solutions
at Sandia.

Pyomo was developed to provide an alternative platform for developing math
programming models that facilitates the application and deployment of optimiza-
tion capabilities. Consequently, Pyomo is not intended to perform modeling better
than existing tools. Instead, it supports a different modeling approach for which the
software is designed for flexibility, extensibility, portability, and maintainability.

2.1 Design Goals and Requirements

2.1.1 Open Source

A key goal of Pyomo is to provide an open-source math programming modeling
capability. Although open-source optimization solvers are widely available in pack-
ages like COIN-OR, surprisingly few open-source tools have been developed to
model optimization applications. An open-source capability for Pyomo is motivated
by several factors:

• Transparency and Reliability: When managed well, open-source projects facil-
itate transparency in the software design and implementation. Since any devel-
oper can study and modify the software, bugs and performance limitations can
be identified and resolved by a wide range of developers with diverse software
experience. Consequently, there is growing evidence that managing software as
open-source can improve its reliability.

• Customizable Capability: A key limitation of commercial modeling tools is
the ability to customize the modeling or optimization process. An open-source
project allows a diverse range of developers to prototype new capabilities. These
extensions can customize the software for specific applications, and they can
motivate capabilites that are integrated into future software releases.

• Flexible Licensing: A variety of significant operations research applications at
Sandia National Laboratories have required the use of a modeling tool with a
non-commercial license. Open-source license facilitate the free distribution of
Pyomo within other open-source projects.

Of course, the use of an open-source model is not a panacea. Ensuring high reliabil-
ity of the software requires careful software management and a commited developer
community. However, flexible licensing appears to be a distinct feature of open-
source software. The Coopr software, which contains Pyomo, is licensed under the
BSD.
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2.1.2 Flexible Modeling Language

Another goal of Pyomo is to directly use a modern programming language to sup-
port the definition of math programming models. In this manner, Pyomo is similar
to tools like FlopC++ and OptimJ, which support modeling in C++ and Java respec-
tively. The use of an existing programming language has several advantages:

• Extensibility and Robustness: A well-used modern programming language
provides a robust foundation for developing and applying models, because the
language has been well-tested in a wide variety of contexts. Further, extensions
typically do not require changes to the language but instead involve additional
classes and modeling routines that can be used in the modeling process. Thus,
support of the modeling language is not a long-term factor when managing the
software.

• Documentation: Modern programming languages are typically well-
documented, and there is often a large on-line community to provide feedback
to new users.

• Standard Libraries: Languages like Java and Python have a rich set of libraries
for tackling just about every programming task. For example, standard libraries
can support capabilities like data integration (e.g. working with spreadsheets),
thereby avoiding the need to directly support this in a modeling tool.

An additional aspect of general-purpose programming languages is that they can
support modern language features, like classes and first-class functions, that can be
critical when defining complex models.

Pyomo is implemented in Python, a powerful dynamic programming language
that has a very clear, readable syntax and intuitive object orientation. When com-
pared with AMLs like AMPL, Pyomo has a more verbose and complex syntax.
Thus, a key issue with this approach concerns the target user community and their
level of comfort with standard programming concepts. Our examples in this paper
compare and contrast AMPL and Pyomo models, which illustrate this trade-off.

2.1.3 Portability

A requirement of Pyomo’s design is that it work on a diverse range of compute
platforms. In particular, working well on both MS Windows and Linux platforms
is a key requirement for many Sandia applications. The main impact of this re-
quirement has been to limit the choice of programming languages. For example,
the .Net languages were not considered for the design of Pyomo due to portability
considerations.

2.1.4 Solver Integration

Modeling tools can be roughly categorized into two classes based on how they in-
tegrate with optimization solvers: tightly coupled modeling tools directly link in
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optimization solver libraries (including dynamic linking), and loosely coupled mod-
eling tools apply external optimization executables (e.g. through system calls). Of
course, these options are not exclusive, and a goal of Pyomo is to support both types
of solver interfaces.

This design goal has led to a distinction in Pyomo between model formulation
and optimization execution. Pyomo uses a high level programming language to for-
mulate a problem that can be solved by optimizers written in low-level languages.
This two-language approach leverages the flexibility of the high-level language for
formulating optimization problems and the efficiency of the low-level language for
numerical computations.

2.1.5 Abstract Models

A requirement of Pyomo’s design is that it support the definition of abstract mod-
els in a manner similar to the AMPL. AMPL separates the declaration of a model
from the data that generates a model instance. This is supports an extremely flexible
modeling capability, which has been leveraged extensively in applications at Sandia.

To mimic this capability, Pyomo uses a symbolic representation of data, vari-
ables, constraints, etc. Model instances are then generated from external data sets
using construction routines that are provided by the user when defining sets, pa-
rameters, etc. Further, Pyomo is designed to use data sets in the AMPL format to
facilitate translation of models between AMPL and Pyomo.

2.2 Why Python?

Pyomo has been developed in Python for a variety of reasons. First, Python meets
the criteria outlined in the previous section:

• Open Source License: Python is freely available, and its liberal open source
license lets you modify and distribute a Python-based application with few re-
strictions.

• Features: Python has a rich set of datatypes, support for object oriented pro-
gramming, namespaces, exceptions, and dynamic loading.

• Support and Stability: Python is highly stable, and it is well supported through
newsgroups and special interest groups.

• Documentation: Users can learn about Python from extensive online documen-
tation, and a number of excellent books that are commonly available.

• Standard Library: Python includes a large number of useful modules.
• Extendability and Customization: Python has a simple model for loading

Python code developed by a user. Additionally, compiled code packages that
optimize computational kernels can be easily used. Python includes support for
shared libraries and dynamic loading, so new capabilities can be dynamically
integrated into Python applications.
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• Portability: Python is available on a wide range of compute platforms, so porta-
bility is typically not a limitation for Python-based applications.

Another factor, not to be overlooked, is the increasing acceptance of Python in the
scientific community (Oliphant, 2007). Large Python projects like SciPy (Jones
et al, 2001–) and SAGE (Stein, 2008) strongly leverage a diverse set of Python
packages.

Finally, we note that several other popular programming languages were also
considered for Pyomo. However, in most cases Python appears to have distinct
advantages:

• .Net: As mentioned earlier, the .Net languages are not portable to Linux plat-
forms, and thus they were not suitable for Pyomo.

• Ruby: At the moment, Python and Ruby appear to be the two most widely rec-
ommended scripting languages that are portable to Linux platforms, and compar-
isons suggest that their core functionality is similar. Our preference for Python
is largely based on the fact that it has a nice syntax that does not require users to
type weird symbols (e.g. $, %, @). Thus, we expect this will be a more natural
language for expressing math programming models.

• Java: Java has a lot of the same strengths as Python, and it is arguably as good a
choice for Pyomo. However, two aspects of Python recommended it for Pyomo
instead of Java. First, Python has a powerful interactive interpreter that allows
realtime code development and encourages experimentation with Python soft-
ware. Thus, users can work interactively with Pyomo models to become familiar
with these objects and to diagnose bugs. Second, it is widely acknowledged that
Python’s dynamic typing and compact, concise syntax makes software devel-
opment quick and easy. Although some very interesting optimization modeling
tools have been developed in languages like C++ and Java, there is anecdotal ev-
idence that users will not be as productive in these languages as they will when
using tools developed in languages like Python (PythonVSJava, 2008).

• C++: Models formulated with the FlopC++ package are similar to models de-
veloped with Pyomo. They are be specified in a declarative style using classes
to represent model components (e.g. sets, variables and constraints). However,
C++ requires explicit compilation to execute code, and it does not support an
interactive interpreter. Thus, we believe that Python will provide a more flexible
language for users.

3 Pyomo Overview

Pyomo can be used to define abstract problems, create concrete problem instances,
and solve these instances with standard solvers. Pyomo can generate problem in-
stances and apply optimization solvers with a fully expressive programming lan-
guage. Python’s clean syntax allows Pyomo to express mathematical concepts with
a reasonably intuitive syntax. Further, Pyomo can be used within an interactive
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Python shell, thereby allowing a user to interactively interrogate Pyomo-based mod-
els. Thus, Pyomo has many of the advantages of both AML interfaces and modeling
libraries.

3.1 A Simple Example

In this section we illustrate Pyomo’s syntax and capabilities by demonstrating how
a simple AMPL example can be replicated with Pyomo Python code. Consider the
AMPL model, prod.mod:

s e t P ;

param a { j i n P } ;
param b ;
param c { j i n P } ;
param u { j i n P } ;

v a r X { j i n P } ;

maximize T o t a l P r o f i t : sum { j i n P} c [ j ] ∗ X[ j ] ;

s u b j e c t t o Time : sum { j i n P} ( 1 / a [ j ] ) ∗ X[ j ] <= b ;

s u b j e c t t o L i m i t { j i n P } : 0 <= X[ j ] <= u [ j ] ;

To translate this into Pyomo, the user must first import the Pyomo module and
create a Pyomo Model object:

#
# I m p o r t Pyomo
#
from coopr . pyomo i m p o r t ∗

#
# C r e a t e model
#
model = Model ( )

This import assumes that Pyomo is available on the users’s Python path (see Python
documentation for PYTHONPATH for further details). Next, we create the sets and
parameters that correspond to the data used in the AMPL model. This can be done
very intuitively using the Set and Param classes.
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model . P = S e t ( )

model . a = Param ( model . P )
model . b = Param ( )
model . c = Param ( model . P )
model . u = Param ( model . P )

Note that parameter b is a scalar, while parameters a, c and u are arrays indexed by
the set P.

Next, we define the decision variables in this model.

model .X = Var ( model . P )

Decision variables and model parameters are used to define the objectives and con-
straints in the model. Parameters define constants and the variables are the val-
ues that are optimized. Parameter values are typically defined by a data file that
is processed by Pyomo.

Objectives and constraints are explicitly defined expressions in Pyomo. The
Objective and Constraint classes require a rule option that specifies how these
expressions are constructed. This is a function that takes one or more arguments:
the first arguments are indices into a set that defines the set of objectives or con-
straints that are being defined, and the last argument is the model that is used to
define the expression.

d e f O b j e c t i v e r u l e ( model ) :
ans = 0
f o r j i n model . P :

ans = ans + model . c [ j ] ∗ model .X[ j ]
r e t u r n ans

model . T o t a l P r o f i t = O b j e c t i v e ( r u l e = O b j e c t i v e r u l e ,
s e n s e =maximize )

d e f T i m e r u l e ( model ) :
ans = 0
f o r j i n model . P :

ans = ans + ( 1 . 0 / model . a [ j ] ) ∗ model .X[ j ]
r e t u r n ans < model . b

model . Time = C o n s t r a i n t ( r u l e = T i m e r u l e )

d e f L i m i t r u l e ( j , model ) :
r e t u r n ( 0 , model .X[ j ] , model . u [ j ] )

model . L i m i t = C o n s t r a i n t ( model . P , r u l e = L i m i t r u l e )

The rules used to construct these objects use standard Python functions. The
Time rule function includes the use of < and > operators on the expression, which
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define upper and lower bounds on the constraints. The Limit rule function illus-
trates another convention that is supported by Pyomo; a rule can return a tuple that
defines the lower bound, body and upper bound for a constraint. The value ‘None’
can be returned for one of the limit values if a bound is not enforced.

Once an abstract model has been created, it can be printed as follows:

model . p p r i n t ( )

This summarize the information in the Pyomo model, but it does not print out ex-
plicit expressions. This is due to the fact that an abstract model needs to be instanted
with data to generate the model objectives and constraints:

i n s t a n c e = model . c r e a t e ( ” prod . d a t ” )
i n s t a n c e . p p r i n t ( )

Once a model instance has been constructed, an optimizer can be applied to it to
find an optimal solution. For example, the PICO integer programming solver can be
used within Pyomo as follows:

o p t = s o l v e r s . S o l v e r F a c t o r y ( ” p i c o ” )
o p t . k e e p F i l e s =True
r e s u l t s = o p t . s o l v e ( i n s t a n c e )

This creates an optimizer object for the PICO executable, and it indicates that tem-
porary files should be kept. The Pyomo model instance is optimized, and the opti-
mizer returns an object that contains the solutions generated during optimization.

3.2 Pyomo Commandline Script

Appendix 7 provides a complete Python script for the model described in the previ-
ous section. Although this Python script can be executed directly, Coopr includes a
pyomo script that can construct this model, apply an optimizer and summarize the
results. For example, the following command line executes Pyomo using a data file
in a format consistent with AMPL:

pyomo prod . py prod . d a t

The pyomo script has a variety of command line options to provide information
about the optimization process. Options can control how debugging information is
printed, including logging information generated by the optimizer and a summary
of the model generated by Pyomo. Further, Pyomo can be configured to keep all
intermediate files used during optimization, which can support debugging of the
model construction process.
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4 Related Python Optimization Tools

A variety of related optimization packages have been developed in Python that are
designed to support the formulation and solution of specific classes of structure
optimization applications:

• CVXOPT: A Python package for convex optimization (CVXOPT, 2008).
• PuLP: A Python package that can be used to describe linear programming and

mixed-integer linear programming optimization problems (PuLP, 2008).
• POAMS: A Python modeling tool for linear and mixed-integer linear programs

that defines Python objects for abstract sets, constraints, objectives, decision vari-
ables, and solver interfaces.

• OpenOpt: A relatively new numerical optimization framework that is closely
coupled with the SciPy scientific Python package (OpenOpt, 2008).

• NLPy: A Python optimization framework that leverages AMPL to create prob-
lem instances, which can then be processed in Python (NLPy, 2008).

• Pyipopt: A Python interface to the COIN-OR Ipopt solver (Pyipopt, 2008).

Pyomo is closely related to the modeling capabilities of PuLP and POAMS. Pyomo
defines Python objects that can be used to express models, and like POAMS, Pyomo
supports a clear distinction between abstract models and problem instances. The
main distinguishing feature of Pyomo is support for an instance construction process
that is automated by object properties. This is akin to the capabilities of AML’s like
AMPL and GAMS, and it provides a standardized technique for constructing model
instances. Pyomo models can be initialized with a generic data object, which can be
initialized with a variety of data sources (including AMPL *.dat files).

Like NLPy and OpenOpt, the goal of Coopr Opt is to support a diverse set of
optimization methods and applications. Coopr Opt includes a facility for transform-
ing problem formats, which allows optimizers to solve problems without the user
worrying about solver-specific implementation details. Further, Coopr Opt supports
mechanisms for reporting detailed information about optimization solutions, in a
manner akin to the OSrL data format supported by the COIN-OR OS project (Fourer
et al, 2008).

In the remainder of this section we use the following example to illustrate the
differences between PuLP, POAMS and Pyomo:

minimize −4x1 −5x2
subject to 2x1 + x2 ≤ 3

x1 +2x2 ≤ 3
x1,x2 ≥ 0

(1)

4.1 PuLP

PuLP relies on overloading operators and commonly used mathematical functions to
define expression objects that define objectives and constraints. A problem object is
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defined, and the objective and constraints are added using the += operator. Further,
problem variables can be defined over index sets to enable compact specification of
constraints and objectives.

The following PuLP example minimizes the LP (1):

from pu lp i m p o r t ∗
x1 = L p V a r i a b l e ( ” x1 ” , 0 )
x2 = L p V a r i a b l e ( ” x2 ” , 0 )
prob = LpProblem ( ” Example ” , LpMinimize )
prob += −4∗x1 − 5∗x2
prob += 2∗x1 + x2 <= 3
prob += x1 + 2∗x2 <= 3
prob . s o l v e ( )

4.2 POAMS

POAMS is a Python modeling tool for linear and mixed-integer linear programs that
defines Python objects for abstract sets, constraints, objectives, decision variables,
and solver interfaces. These objects can be used to compose an abstract model defi-
nition, which is then used to construct a concrete problem instance from a given data
set. This separation of the problem instance from the data facilitates the definition
of abstract models that can be populated from a diverse range of data sources.

POAMS models are managed by classes derived from the POAMS LP object.
The following POAMS example minimizes the LP (1) by deriving a class, instanti-
ating it, and then running the model:

from poams i m p o r t ∗

c l a s s Example ( LP ) :

i n d e x = S e t ( 1 , 2 )
x = Var ( i n d e x )
o b j = O b j e c t i v e ( )
c1 = C o n s t r a i n t ( )
c2 = C o n s t r a i n t ( )

d e f model ( s e l f ) :
s e l f . o b j . min(−4∗ s e l f . x [ 1 ] − 5∗ s e l f . x [ 2 ] )
s e l f . c1 . l o a d ( 2∗ s e l f . x [ 1 ] + s e l f . x [ 2 ] <= 3 . 0 )
s e l f . c2 . l o a d ( s e l f . x [ 1 ] + 2∗ s e l f . x [ 2 ] <= 3 . 0 )

prob = Example ( ) . model ( )
p rob . s o l v e ( )
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4.3 Pyomo

The following Pyomo example minimizes LP (1) by instantiating an abstract model,
populating the model with symbols, generating an instance, and then applying the
PICO MIP optimizer:

from coopr . pyomo i m p o r t ∗

model = Model ( )

model . i n d e x = S e t ( i n i t i a l i z e = [ 1 , 2 ] )
model . x = Var ( model . i n d e x )

d e f o b j r u l e ( model ) :
r e t u r n −4∗model . x [1]−5∗model . x [ 2 ]

model . o b j = O b j e c t i v e ( r u l e = o b j r u l e )

d e f c 1 r u l e ( model ) :
ans = 2∗model . x [ 1 ] + model . x [ 2 ]
r e t u r n ans < 3 . 0

model . c1 = C o n s t r a i n t ( r u l e = c 1 r u l e )

d e f c 2 r u l e ( model ) :
ans = model . x [ 1 ] + 2∗model . x [ 2 ]
r e t u r n ans < 3 . 0

model . c2 = C o n s t r a i n t ( r u l e = c 2 r u l e )

i n s t a n c e = model . c r e a t e ( )
o p t = s o l v e r s . S o l v e r F a c t o r y ( ” p i c o ” )
r e s u l t s = o p t . s o l v e ( i n s t a n c e )

5 The Coopr Opt Package

The goal of the Coopr Opt package is to support the execution of optimizers in
a generic manner. Although Pyomo uses this package, Coopr Opt is designed to
support a wide range of optimizers. However, Coopr Opt is not as mature as the
OpenOpt package; it currently only supports interfaces to a limited number of opti-
mizers aside from the LP and MILP solvers used by Pyomo.

Coopr Opt is supports a simple strategy for setting up and executing an optimizer,
which is illustrated by the following script:
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o p t = S o l v e r F a c t o r y ( name )
o p t . r e s e t ( )
r e s u l t s = o p t . s o l v e ( problem )
r e s u l t s . w r i t e ( )

This script illustrates several design principles that Coopr follows:

• Dynamic Registration of Optimizers: Optimizers are registered via a plugin
mechanism that provides an extensible architecture for developers of third-party
optimizers. This plugin mechanism includes the specification of parameters that
can be initialized from a configuration file.

• Separation of Problems and Solvers: Coopr Opt treats problems and solvers
as separate entities. This promotes the development of tools like Pyomo that
support flexible definition of optimization applications, and it enables automatic
transformation of problem instances.

• Problem Transformation: A key challenge for optimization packages is the
need to support a diverse set of problem formats. This is an issue even for LP
and MILP solver packages, where MPS is the least common denominator for
users. Coopr Opt supports an automatic problem transformation mechanism that
enables the application of optimizers to problems with a wide range of formats.

• Generic Representation of Optimizer Results: Coopr Opt borrows and extends
the representation used by the COIN-OR OS project to support a general repre-
sentation of optimizer results. The results object returned by a Coopr optimizer
includes information about the problem, the solver execution, and one or more
solutions generated during optimization.

If the problem in Appendix 7 is being solved, this script would print the following
information that is contained in the results object:

=====================================================
−−− S o l v e r R e s u l t s −−−
=====================================================
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−− Problem I n f o r m a t i o n −−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

name : None
n u m c o n s t r a i n t s : 5
num nonzeros : 6
n u m o b j e c t i v e s : 1
n u m v a r i a b l e s : 2
s e n s e : maximize
uppe r bound : 192000

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−− S o l v e r I n f o r m a t i o n −−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

e r r o r r c : 0
nbounded : None
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n c r e a t e d : None
s t a t u s : ok
s y s t i m e : None
u s r t i m e : None

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−− S o l u t i o n 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

gap : 0 . 0
s t a t u s : o p t i m a l
v a l u e : 192000
P r i m a l V a r i a b l e s

X bands 6000
X c o i l s 1400

Dual V a r i a b l e s
c u L i m i t 1 4
c u T ime 0 4200

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

It is worth noting that Coopr Opt currently does not support direct library inter-
faces to optimizers, which is a feature that is strongly supported by Python. How-
ever, this is not a design limitation, but instead has been a matter of development
priorities. Efforts are planned with the POAMS and PuLP developers to adapt the
direct solver interfaces used in these packages for use within Coopr.

Although Coopr Opt development has focused on developing interfaces to LP
and MILP solvers, we have recently begun developing interfaces to general-purpose
nonlinear programming methods. One of the goals of this effort is to develop appli-
cation interfaces that are consistent with the interfaces supported by Acro’s COLIN
optimization library (ACRO, 2008). COLIN has recently been extended to support
a system call interface that uses standardized file I/O. An XML format has been
developed that can be more rigorously checked than the file format used by the
Dakota toolkit (Eldred et al, 2006), and this format can be readily extended to new
application results. Coopr Opt supports applications defined using this system call
interface, which will simplify the integration of COLIN optimizers into Coopr Opt.

6 Discussion

Coopr is being actively developed to support real-world applications at Sandia
National Laboratories. This experience has validated our assessment that Python
is an effective language for supporting the solution of optimization applications. Al-
though it is clear that custom languages can support a much more mathematically
intuitive syntax, Python’s clean syntax and programming model make it a natural
choice for optimization tools like Coopr.
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Coopr will be publicly released as an open source project in 2008. Future devel-
opment will focus on several key design issues:

• Interoperable with commonly available optimization solvers, and the relationship
of Coopr and OpenOpt.

• Exploiting synergy with POAMS and PuLP. Developers of Coopr, POAMS and
PuLP are assessing this intersection to identify where synergistic efforts can be
leveraged. For example, the direct solver interface used by POAMS and PuLP
can be adapted for use in Pyomo.

• Extending Pyomo to support the definition of general nonlinear models. Con-
ceptually, this is straightforward, but the model generation and expression
mechanisms need to be re-designed to support capabilities like automatic
differentiation.
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d e f O b j e c t i v e r u l e ( model ) :
ans = 0
f o r j i n model . P :

ans = ans + model . c [ j ] ∗ model .X[ j ]
r e t u r n ans

model . T o t a l P r o f i t = O b j e c t i v e ( r u l e = O b j e c t i v e r u l e ,
s e n s e =maximize )

d e f T i m e r u l e ( model ) :
ans = 0
f o r j i n model . P :

ans = ans + ( 1 . 0 / model . a [ j ] ) ∗ model .X[ j ]
r e t u r n ans < model . b

model . Time = C o n s t r a i n t ( r u l e = T i m e r u l e )

d e f L i m i t r u l e ( j , model ) :
r e t u r n ( 0 , model .X[ j ] , model . u [ j ] )

model . L i m i t = C o n s t r a i n t ( model . P , r u l e = L i m i t r u l e )
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Stochastic Linear Programs

Leo Lopes and Robert Fourer

Abstract We present a specialization of the Unified Modeling Language (UML) to
help diverse stakeholders in an organization collaborate on the development of Sto-
chastic Optimization Models. Our language describes, at an abstraction level distinct
from that possible through algebraic notation, the relationships between decisions
and parameters, the dynamics of information acquisition, and the requirements for
model input and output. This paper describes the formal language and provides a
few illustrative examples.
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1 Introduction

While Operations Research (OR) applications and software applications differ in
fundamental ways, they also share some very important characteristics: complexity;
cross-disciplinary nature; and non-expert customers. Furthermore, OR applications
often include important software components, and usually reside inside Information
Technology (IT) infrastructures. These observations motivated us to study how es-
tablished Software Engineering (SE) techniques may be adapted to help create OR
models. Our emphasis is on Multistage Stochastic Linear Programs with Recourse
(MSPRs). Typical applications of MSPRs include asset and liability management
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Yu et al (2003), energy production and distribution Sen et al (2006); Beraldi et al
(2008), strategic supply chain design Alonso-Ayuso et al (2003), and natural re-
sources management Heikkinen (2003).

SE techniques facilitate analysis and documentation and enhance maintainabil-
ity and reliability. The object oriented (OO) paradigm and graphical modeling lan-
guages are important components of current SE techniques. This paper addresses
the question of how to adapt these components to aid the development of Stochastic
Optimization Models. We have two motivations. First, OO methodology has had
great success in tackling very difficult but well structured problems similar in many
ways to OR problems. Second, OO methodology is pervasive and still expanding in
reach within the modern cyberinfrastructure.

The remainder of this paper proceeds as follows: In Section 2 we examine re-
lated OR research on model complexity and integration, as well as similar work in
other fields. In Sections 3 and 4 we briefly summarize OO SE methods and Multi-
stage Stochastic Programming. In Section 5, we introduce the major aspects of our
language with an illustrative example. In Section 6 we apply our language in a few
examples from the literature. Section 7 discusses some conclusions and possible
extensions.

2 Graphical Modeling and Communication in Optimization

Previous research on formal treatment of OR modeling can be grouped roughly into
two approaches: one whose goal is to produce more natural formulation environ-
ments for problems that are relatively precise; and one whose goal is to produce
analysis techniques suitable for problems which are very “messy”, where formality
may not be possible or productive.

Structured Modeling Geoffrion (1987), the Intelligent Mathematical Program-
ming System Greenberg (1996), and Jones’ work on graph-based Modeling Sys-
tems Jones (1990, 1991), are representatives of the more formal approach. Ideas
from those contributions have found their way into implementations like MODLER
and ANALYZE Greenberg (1993), and into graphical systems like MIMI/G Jones
(1996a), LPForm Ma et al (1996), and gLPS Collaud and Pasquier-Boltuck (1994).
A commercial modeling system based on ideas developed in the research above is
the Enterprise Optimizer (http://www.riverlogic.com). Some of the work
in visualization applied to optimization is summarized in Jones (1996b).

Less formal approaches include Problem Structuring Methods (PSM) Rosenhead
(1996) and Soft Systems Methodology (SSM) Checkland (2000). These approaches
consider conflicting objectives by different actors, group dynamics, incomplete in-
formation, ill-defined measures, and other issues that can arise in complex business
models.

Our language is designed to support a formal, well structured OR technique. At
the same time, it is designed to be used starting at the early stages of the model-
ing process, at which time some of the conditions well addressed by PSM are still

http://www.riverlogic.com
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present. This is an important difference between our work and the existing litera-
ture, which focuses mostly on replacing Algebraic Modeling Languages (AMLs)
like AMPL Fourer et al (2002) or GAMS Brooke et al (1988) with graphical lan-
guages Collaud and Pasquier-Boltuck (1994), or with creating detailed consistent
multi-level models Geoffrion (1987). In particular, this research addresses the need
to maintain a Problem Owner, usually not an OR specialist, involved as an Active
Modeler Powell (1997) and to communicate with other stakeholders in the OR
project, like IT professionals and operational managers. Our language does not at-
tempt to replace the AML, but to augment and support it.

The UML has been used or extended in a variety of fields including engi-
neering design Felfernig et al (2002), data warehousing Luján-Mora et al (2002,
leading to the CWM OMG Standard), groupware Rubart and Dawabi (2002), and
secure systems Jrjens (2002). No similar study applying OO to OR-centric sys-
tems is available, although a study of Entity Relationship Diagrams applied to op-
timization Choobineh (1991) exists. The new language SysML Bock (2006), also a
specialization of the UML, is of particular interest, since it deals with requirements,
constraints, performance measures, and other concepts distinct but similar to those
used in OR.

Many important details of stochastic optimization problems are not explicit in our
diagrams. This is intentional. Elision, modeling an element with certain characteris-
tics hidden in a specific view, is a powerful abstraction mechanism used extensively
in the UML. The primary intent of the graphical notation is to describe problems
at a high level of abstraction, to encourage discussions between analysts at early
stages of the modeling process, or to serve as complementary documentation to an
existing precise mathematical model. We believe that customary mathematical no-
tation is adequate to express the relationships in the model at more detailed levels.
Algebraic notation is far more concise than any graphical notation can be when rep-
resenting the same objects and relationships. The algebraic notation in use today is
very stable Cajori (1993). For instance, Leibniz used

∫
for summation of integers as

well as integration. Later, Euler introduced ∑ to indicate integer summation. Varia-
tions in the use of ∑ exist in the work of Lagrange, Cauchy, Fourier, and Jacobi up
to the 1820s, but except for specialized uses, the use of ∑ has remained stable since.

With additional assumptions, in specific application areas, it is possible to devise
graphical notations that capture all the detail necessary to build precise models in a
practical way. For example, the commercial package Enterprise Optimizer is capable
of representing a variety of deterministic linear programs arising from supply chains
using icons to represent resources and arcs to represent resource flows. Thus, we
have built enough expressiveness and detail into our design so that it is possible to
represent any linear expression using element diagrams, although we don’t foresee
this as the primary use case. A significant level of detail can be achieved in our
diagrams by using adornments. Adornments are optional graphical markers added to
an element that add semantic value to its representation. With the aid of adornments,
a significant proper subset of algebraic expressions can be rendered in a simple way.
An additional function of the adornments is to provide a convenient and intuitive
link to access more detailed expressions within a software system.
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3 Graphical Modeling and Software Engineering

SE is inherently dynamic and multidisciplinary. As systems became more complex,
new methodologies for SE evolved, each with accompanying graphical notations
to describe structural or dynamic aspects of systems. Structural aspects define how
parts of the system relate to each other. Dynamic aspects describe operations step
by step.

The first formal diagram language to find widespread use was the fluxogram or
flowchart (Figure 1). Fluxograms use special icons to indicate printing, disk storage,
tests, etc. and display control flow using edges. Fluxograms provided basic concepts
that would be reused by all the other modeling diagrams that describe the dynamics
of systems.

The use of redirections (i.e. goto statements), promoted by fluxograms, made
large systems difficult to manage. In response, the structured paradigm gained pop-
ularity. Its main characteristic was continuous flow of control. Small structures were
used for each iterative process, and within each structure systems were again de-
scribed by a continuous flow of control. Fluxograms did not encourage structured
thinking, and thus fell out of favor. Multiple graphical modeling languages like Jack-
son diagrams Jackson (1983) and data flow diagrams DeMarco (1979) were created
to support structured SE and adopted widely. People who were trained to use one set
of diagramming techniques were not always comfortable using another, even when
both diagrams were used in fundamentally similar ways.

As systems continued to become more complex, the structured paradigm reached
its own limits, and the OO paradigm became more popular. This brought to the
forefront of the modeling process many concepts which were previously dealt with
less formally, like: encapsulation, the notion that an object has a clear interface, but
its implementation is hidden from view; and specialization, the concept of having
a general class in charge of common functionality, and specialized subclasses for
specific behavior. None of the above concepts were necessarily new, but now they
were handled explicitly at the modeling level and enforced by development systems.

Fig. 1 A fluxogram for com-
puting N! (This image is from
Wikipedia, and is in the public
domain).
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As with the structured paradigm, many modeling methodologies were proposed
for the OO paradigm, each accompanied by a graphical notation. Three became par-
ticularly popular: the Booch method, by Grady Booch; OMT, by James Rumbaugh
and associates; and OOSE by Ivar Jacobson. In the early nineties, at Rational Soft-
ware Corporation, now part of IBM, they unified their methods. The result was the
Unified Modeling Language. Subsequently, the language became an Object Man-
agement Group (OMG) standard, currently on version 2.1.

4 Multistage Stochastic Programming

For a more comprehensive introduction to stochastic programming, see Birge and
Louveaux (1997, Chapter 1). Our main focus is on the MSPR. In the MSPR, we do
not know all the data with certainty when some decisions are made. The data will
only be observed at known points in the future. Unfortunately, our decisions need to
be made before the uncertainty is resolved. Our objective is to make a decision now
which minimizes its current (known) cost plus its expected future cost. In the future,
there may be recourse decisions available after the uncertainty has been observed.
Those decisions, in turn, may also have to be taken under uncertainty, in recursive
fashion, as illustrated in Figure 2.

The periods between when portions of the uncertain data are revealed are called
stages. To describe what information becomes available when, we created sto-
chasticity diagrams (Section 5.2). Decisions available within a stage are typically
dependent on decisions taken earlier and influence future decisions. Within a stage,
there are constraints that describe what types of decisions are available and how
decisions taken earlier affect the decisions available at this stage. Some of the costs
associated with the decisions, the effects of previous decisions, and the limits on the
available resources may be uncertain. Element diagrams (Section 5.3) help model
these aspects of the MSPR.

Sets are central to practical modeling. Decisions often need to be made over
sets of objects of the same kind. Input parameters are also provided over sets. The
UML class models this situation. For example, in a facility location model each
warehouse has a characteristics like fixed cost or maintenance cost. Each warehouse
is an instance of the Warehouse class. A class is represented in UML by a box with
compartments for different types of elements, as in Figure 3. UML class diagrams
(Section 5.1) describe the sets in an MSPR.

Make
Adjustment

Observe
Uncertainty

Make
Decision

Make
Adjustment

Observe
Uncertainty

Make
Adjustment

Observe
Uncertainty

...

Fig. 2 A stochastic programming model.
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Fig. 3 A simple class.

5 A Meta-model for Multistage Stochastic Programming

The collection of definitions which include Objective, Constraint, Random Variable,
etc... is part of the Meta-model for stochastic programming. Every problem is an
instance of this Meta-model, in the same sense that Knapsack is an instance of a
combinatorial optimization problem. A Meta-model is similar to a Graph Schema
in Jones (1990, 1991).

There are three main types of diagrams in our meta-model: Class Diagrams, spe-
cialized from UML Class Diagrams; Stochasticity diagrams, specialized from UML
Statechart Diagrams; and Element Diagrams, also specialized from UML Class
Diagrams. In this section, we will explain each diagram and illustrate it using a
stochastic location-routing problem (SLRP) with the following characteristics:

• The objective is to locate a number of facilities in order to maximize expected
profit over a finite horizon.

• Facilities must be opened at one or more candidate locations before the demand
is observed.

• At the start of each planning period, all orders to be served during that period are
known. Orders are shipped in less-then-truckload quantities by a fixed number of
trucks of limited capacity.

• Each truck services a number of areas, each of which has some demand associ-
ated with it. There is a limit to the time spent on each route, which includes travel
time as well as service time.

• New routes can be devised at the beginning of each planning period, but a penalty
is incurred for changing routes. A penalty is also incurred when a region that was
served in the previous planning period is dropped, if that region’s demand in the
current planning period is greater than zero.

• Demand not served may be lost to a competitor.

Many formulations and solution approaches are plausible for this problem. For the
purposes of this research, we will focus on devising a mechanism to communicate
the essential information above to all interested parties, not only OR specialists, but
also executive decision makers, IT specialists, or Floor Managers.

5.1 Class Diagrams

The function of a class diagram is to describe details of the classes in a sys-
tem and the relationships between them. Classes are represented by a box with
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Fig. 4 A class diagram.

Warehouse

fixedCost: dollars
maintenanceCost: dollars
capacity: units

isOpen(): bool

Facility

location: coords

currentStock(): units

Retailer

demand: units

shippingCost

distance

compartments. The first three compartments are used for the class name, attributes,
and operations. Other compartments may be used in specific applications for other
characteristics.

In Figure 4, we see a specialization relationship between Warehouse and Facil-
ity. A specialization indicates an is-a type of relationship: a Warehouse is-a Facility,
so it incorporates all its properties. We can also see an association relationship be-
tween two Facilities, called distance. The two are differentiated graphically by the
type of arrow. There is also an association between Warehouse and Retailer, called
shippingCost. Notice that this association does not have an arrow associated with it,
but is still valid. Arrows are optional in associations. They are elided here to illus-
trate a point, but are generally recommended to increase clarity.

The class diagram summarizes all the data used by the optimization problem
(parameters), and all the information provided by it (decision variables). It is im-
portant for communicating requirements to those responsible for the rest of the IT
infrastructure. Therefore, we reused as much functionality from the class diagram
as possible. However, elements of a class in an optimization problem have impor-
tant properties that distinguish them from their SE counterparts. The UML contains
mechanisms we can use to describe these differences.

There are two major types of elements in mathematical programming: decisions
and parameters. In stochastic programming, parameters may be deterministic or sto-
chastic. Both decisions and parameters can be modeled as attributes of a class. Pa-
rameters that are not stochastic are only initialized once, when the class instance
is created. The UML property {frozen} (in the UML, properties are expressed by
their label in curly brackets) gives an attribute the behavior we desire. In the UML,
unless specified otherwise, all attributes are {changeable}. This makes sense in gen-
eral SE, but is undesirable in the MSPR, since typically only a few parameters are
modeled as stochastic. The existing UML construct note can be used to indicate that
all attributes are {frozen} by default.

Stochastic parameters do not perfectly fit into any concept currently in the UML.
They are certainly {changeable}, but in a more specific way. So we create the new
property {stochastic}, derived from {changeable}.
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The UML has several mechanisms useful for representing decisions. Unfortu-
nately, none are quite perfect. One can think of decisions as operations on a class
(e.g., we open a facility). Both are given actions as names; and both affect other
characteristics of the class. In this view, opening or closing a facility is in fact an
action taken on a facility. Unfortunately this view has difficulties. Unlike opera-
tions, MSPR decisions are not allowed to affect parameters of a class, although they
affect the domains available to other decisions. In the OO framework, operations
cannot change other operations (there are frameworks where this is allowed, like in
functional programming). Thus, while operations and decisions share some charac-
teristics, one can not be considered a subclass of the other.

A better approach is to define decisions as subclasses of attributes. We suggest
defining a stereotype. Stereotyping is one of the extension mechanisms in the UML.
The mechanism is used to create meta-classes with specific characteristics. This
works very well for decision variables. In particular, the tagged values upperBound
and lowerBound can be associated with the decision (in the UML, stereotypes are
expressed by their label between guillemots) stereotype. The stereotype is used to
define decision variables as special types of attributes.

In Figure 5, we can see all the classes needed to define the stochastic location-
routing problem (SLRP) defined earlier. Figure 5 defines roles for some of the asso-
ciations, indicated by a verb followed by a triangle � or � pointing from the subject
to the object of the role. The role is an adornment, and has no direct translation to
the MSPR framework. In particular, it is not holding the place of a decision variable.
Diagram 5 implies that we are not concerned with which truck gets assigned to each
route. If that decision were part of the model, an association class would need to be
created and attached to the association between Truck and Route. This association
class should then be reflected in the algebraic problem description. If it is not, then
there is an inconsistency. Making these inconsistencies easy to spot is what we hope
to achieve.

The maximum cardinality of each component is unambiguous in the class di-
agram. Given M1 Warehouses and M2 Retailers, a tool can deduce that there are
M1 ×M2 ShippingCosts. Such a tool can also automate parts of the data acquisition

Fig. 5 Classes in the SLRP.

Truck
maximumLoad

Facility
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demand {stochastic}
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routines, as well as perform integrity checks. It is legal for a tool to allow certain
additions to the syntax. With these additions, it is possible to generate equations
automatically.

Decisions of arity > 1 present no difficulty. In particular, attributes with arrays
can be used when convenient. Associations of arity > 2 are also easily handled
within the UML. All that is needed is to draw the lines between classes in a manner
that shows unambiguously that the associations involve tuples of classes as opposed
to a set of classes taken two at a time. No normalization is required.

More important than generating equations automatically is having a graphical
language that improves communication between different analysts. A professional
with an IT background, who is likely to know where some of the desired information
can be found, will appreciate having a description of the data in a familiar language.
People interacting with the model solely at a decision maker level will also appre-
ciate the information about the model contained in the diagram. For example, from
the model in Figure 5 it is clear that direct shipments between the warehouse and
individual Client Clusters are not available as a recourse action. This message can
be conveyed precisely without the need for any mathematical notation or textual
description. Another example is the relationship between Truck and Route. If the
trucks all have the same maximumLoad, then the association isAssignedTo should
not have a decision associated with it. However, if maximumLoad is different for
each truck, and the smallest load is close to the typical demand for a cluster, then the
isAssignedTo association could become a class containing a decision. Any person
involved in the modeling process can spot this detail, and discuss its consequences,
without the need for specialized training in OR.

5.2 Stochasticity Diagrams

The Stochasticity Diagram provides a concise view of the decision process. It docu-
ments that the right decisions are being considered at the right time, using the right
information. It describes the point in time at which each piece of information be-
comes available with certainty; and the consequences of observing the information
for the decision process. It is is a UML Statechart, with each state representing a
decision process and each event representing the observation of some set of random
variables.

Systems which model dynamic aspects of stochastic programming explicitly and
associate single-stage LPs with each stage Fourer and Lopes (2008) are called
filtration-oriented. The term comes from a type of stochastic process used to
describe information release over time. The details of the definition of filtration are
not relevant to this discussion, except that the filtration-oriented approach leads to a
decomposition of the model that fits well with the OO paradigm. For more details
on filtrations, see Neftci (2000). Figure 6 represents the filtration process for the
SLRP.
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Fig. 6 A simple state machine
for a location-routing problem
with 5 stages.

Locate
Facilities

demand [stage<5]/
send routes,
send served demand/

send routes,
send served

Determine 
Routes

Adjust
Routes

[stage=5]

demand /
send openedFacilities

Every diagram has an initial state (the solid circle) and a final state (the other
circle). In between, there are a number of other states (the round-edged boxes),
each representing a set of decisions taken based on the same information. Each state
has a name.

In between each pair of states there is an event (represented by an arc) that de-
scribes what new information causes the state transition. Each event may have a
name and may take parameters. The parameters should be the random variables ob-
served. An event may also have a guard condition (represented in between square
brackets). When an event occurs, the transition only takes place if the guard con-
dition is satisfied. A signal may also be sent when an event occurs, represented in
the diagram by the send keyword followed by the name of the signal. The signal
describes the decisions at period t that must be taken into account later. Conditional
probabilities are not shown directly on the diagram. They are clearly important, but
they are too much detail for this level of abstraction.

5.3 Element Diagrams

Element diagrams represent the same information as the algebraic model, but at a
coarser level. Unlike activity graphs Schrage (2002) or diagrams from LPFORM Ma
et al (1996) or gLPS Collaud and Pasquier-Boltuck (1994), element diagrams do not
necessarily translate directly into algebraic expressions. Instead, they specify which
elements are related, rather than specifically how they are related. The primary rea-
son for not tying element diagrams directly to algebraic expressions is that element
diagrams are used at modeling stages where the specific expressions that determine
how elements are related may not be especially relevant. A problem owner or an IT
person may be unaware of, uncomfortable with, or even unconcerned with the spe-
cific dynamics of the relationships between elements. However, he or she is likely to
be interested in knowing that the expert has included the relationship in the model.

As an introduction, consider a problem without stochasticity. Figure 7, has an
unadorned element diagram of the Traveling Salesperson Problem (TSP). While
not useful for computation, Figure 7 contains a correct and complete representation
of the major components of the model. There is an objective, to minimize (thus
the triangle points down) the total distance; a decision (the diamond), the route to
choose; and a constraint (the box), to visit all nodes. There are also associations
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Fig. 7 An unadorned repre-
sentation of the TSP. distance

route

visit all nodes

Fig. 8 An adorned represen-
tation of a typical formulation
of the TSP

between the different elements in the diagram, represented by the lines connecting
them. Each symbol is a specialization of the UML Class.

If adornments are used, the element diagram can express any linear program.
In fact, when the element diagram is examined one set of constraints at a time, or
one objective at a time, with every relationship expressed correctly, it represents an
expression tree equivalent to one generated by a modeling language.

Figure 8 represents the following classical Dantzig-Fulkerson-Johnson TSP for-
mulation in detail: Given a graph G(V,E) with n nodes, let δ (U),U ⊂V be the cut
of node set U . Define a binary variable xe, and a cost parameter ce associated with
each edge e ∈ E:

min ∑
e∈E

cexe

∑
e∈δ ({v})

xe = 2 ∀v ∈V

∑
{e∈δ (U)}

xe ≥ 2 ∀U ⊂V,2 ≤ |U | ≤ n−1

Figure 9 is the corresponding class diagram. Each constraint in Figure 8 has a
symbol that identifies its type. Each constraint also includes an Object Constraint
Language (OCL) expression in curly brackets. OCL expressions are used to spec-
ify multiplicity, and are not related to the constraints of an optimization problem.
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Fig. 9 The Edge and Node
classes used in the TSP Ele-
ment Diagram in Figure 8.

Fig. 10 The determine route
state in the SLRP.

OCL is a formal language defined as a subset of the UML to aid in clarification
of the semantics of models. In the UML, the enforcement of the OCL expressions
is left to the implementation UML (2003). A computer implementation is free to
replace the OCL with any other formal language, such as an AML.

Each association has a cardinality associated with it. The cardinality may be
elided, as in Figure 7. In most cases the association corresponds to a summation
or product. An OCL expression can be added to the association to specify which
instances of constraint and variable classes are related, as in Figure 8. An imple-
mentation may use these expressions to generate AML code.

Each association in Figure 8 has a double arrow (to avoid clashing with reserved
symbols in the UML) at one of its ends. The arrow indicates flow balance. An arrow
pointing toward the constraint is a credit, and an arrow pointing away from the
constraint is a debit. Each association may have a name. If so, then this name should
be a parameter related with each instance of the association. It is not the instance of
the parameter that is used for the name, but the class. For example, in Figure 8, c
is the mathematical object corresponding to the association Edge.Cost between the
decision and the objective, and not ce.

Consider the SLRP. Figure 10 describes the Determine Routes state in Figure 6.
The double lines indicate stochasticity or externality. For example, the facility.open
decision was made before entering this state. It is represented as a decision, but it is
not mutable at this stage. It was received in this state as a signal sent by another state,
as indicated in Figure 6 by the send openedFacilities notation associated with the
two states involved. Similarly, the routes decision has an optional special marker on
it that indicates that this decision might influence decisions made in future stages.
The double lines on the demand parameter indicate that it is a random variable. All
double lines are adornments. The analyst should use judgment to determine when
to use them.
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6 Illustrations from the literature

We now present a few classical examples taken from Ariyawansa and Felt (2001).
For each example, we will provide a description and elided class, stochasticity and
element diagrams.

6.1 Airlift Operations Schedule

The goal of this model Midler and Wollmer (1969) is to minimize the expected
cost of airlift operations. Aircraft resources are allocated based on a forecast of the
demands for specific routes. However, the actual demand is unknown. The recourse
actions available are: allowing allocated flight time to go unused; switching aircraft
from one route to another; and purchasing commercial flights.

6.1.1 The Class Diagram

The class diagram 11 describes Flight and Plane. Each plane has available hours.
The most important parameters associated with each route are: origin and desti-
nation; demand, which is stochastic; spot market cost, which is the unit cost of
purchasing commercial flights on that route; and unused capacity cost, the unit
penalty for reserving Plane capacity and then leaving it unused. Each Route has two
decisions associated with it: spot purchase, the amount of demand that will be cov-
ered by commercial flights; and unused, the amount of capacity reserved but left
unused for this route.

The other classes are association classes. The Assignment and Reassignment
have the same attributes, but are modeled as different classes. They both have hours,
the time it takes for a given plane to fly a given route; cost, the unit cost of flying
a given route with a given plane; and capacity, the number of units a given plane
can carry when flying a given route. Because these parameters appear as members

Fig. 11 Airlift operations
class diagram

Plane

available hours

Flight
origin
destination
demand {stochastic}
spot market cost
unused capacity cost
spot purchase «decision»
unused «decision»

Assignment
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cost
capacity
assignment «decision»

Reassignment

Assignment

Reassignment
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of Assignment instead of Plane, it is clear that in this model they depend on the
specific combination of Plane and Route, as opposed to other plausible situations,
where some parameters may depend only on Plane.

6.1.2 The Stochasticity Diagram

The stochasticity diagram 12 is simple. The first stage decision is to assign planes
to routes; the second stage decision is to do any reassignments necessary.

6.1.3 The Element Diagrams

The first stage element diagram 13 prescribes that in this stage, assignments mini-
mize cost, respecting the number of hours available for each flight. The second stage
element diagram 14 is more sophisticated. There are two flows between reassign-
ment and Satisfy demand. This indicates that reassignments may either increase or
decrease the demand satisfied. The OCL constraint indicates which reassignments
result in increases or decreases of satisfied demand. The expressions in the origi-
nal paper involve each plane’s carrying capacity, and ratios between flight-hours in
different routes for each plane, but they are elided here.

6.2 Forest Planning

The goal of this model Gassmann (1989) is to maximize the revenue obtained from a
forest area, by deciding which parts of the forest should be harvested at each point in
time. The forest is segmented by the age of trees in a region, and each segment may

Fig. 12 Airlift operations
stochasticity diagram

Assign
Planes

Ressign
Planes

demand/
send reservedFlights

Fig. 13 Airlift first stage
element diagram
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Assignment.hours
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Fig. 14 Airlift second stage element diagram

Fig. 15 Forest planning class
diagram.

be worth a different amount per unit area. Due to fire, disease, or other casualties,
part of the trees that are not cut may be lost before they move into the next age
group.

6.2.1 The Class Diagram

The class diagram 15 contains only one class and no associations. Even though an
age method is present, it has no semantic meaning in optimization. It is present to
illustrate that objects used within our language can be shared with other parties who
may have different uses for them.
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6.2.2 The Stochasticity Diagram

The stochasticity diagram 16 has a self-transition, which takes place every period.
It is triggered by the random vector casualties and is processed so long as the stage
is less than the total number of stages.

6.2.3 The Element Diagram

The element diagram 17 is associated with the cut state in Figure 16. Both cut
and uncut forest have value. The amount of forest available in each category is
determined by a balance constraint that considers the amount available in in the
previous period, the amount cut in the previous period, and any casualties that may
have occurred. The double arrow linking the available variable from the previous
period to the balance constraint is hollow, in contrast to all the others. This is an
optional adornment to indicate that this parameter is stochastic.

The amount of forest that can be cut now is limited by the available variable,
as indicated by the Availability constraint. Lastly, the amount of timber the market

Fig. 16 Forest planning sto-
chasticity diagram

Cut [stage=stages]

casualties[stage<stages]

Fig. 17 Forest planning ele-
ment diagram
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is ready to accept is bounded above and below by the amount that was cut in the
previous period. Thus, the Industry capacity constraint has arrows coming both
in and out of both the current stage and previous stage cut variables. The Industry
capacity constraint could be separated into a lower industry bound and an upper
industry bound if desired.

6.3 Electrical Investment Planning

This model comes from Louveaux and Smeers (1998). The objective is to minimize
total investment and maintenance costs for electricity generation. Several technolo-
gies are available, with different capacities, costs, availabilities, and lifetimes. Some
of these characteristics are stochastic, and the goal is to balance all of them in deter-
mining an effective investment and operational schedule.

6.3.1 The Class Diagram

The class diagram 18 displays the major components of the model. Demand for
electricity can be thought of as coming in different modes, which discretize the
demand curve over a cycle. For a certain amount of time during a cycle (duration
in the class diagram), an amount of power exceeding the previous mode (power in
the class diagram) will be needed.

The total demand (demand in the class diagram) for each Demand Mode can
be produced by using several Technologies, each of which has: an availability, the
proportion of time a plant using the production technology can be operated in a
period; an operating cost, which is stochastic (it may depend, for example, on fuel
costs); and a planned capacity already contracted for.

Fig. 18 Electricity investment
class diagram.
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In addition, it is possible to invest in certain technologies. In this case, one must
take into account an investment cost, which is stochastic (it may depend, for ex-
ample, on technological achievements), a leadtime, the delay between when the
contract is signed and when the facility becomes operational; and also a lifetime,
describing for how many periods the technology will be usable.

The decision maker may increase the available capacity of an Investible Tech-
nology (which is a subclass of technology), which when combined with the already
contracted capacity, leadtime, and lifetime considerations, determines the available
capacity at any point in time.

There is also a special type of Investible Technology called the Spot Market, in
which typically the operating costs are very high. Spot Market purchases require no
investment, have no leadtime, and only last for the current period.

6.3.2 The Stochasticity Diagram

The stochasticity diagram 19 illustrates that the relevant random variables to be ob-
served are the demand and costs (both operating and investment). There is only one
set of decisions, defined by the Invest state. The information exchanged between
stages is the portfolio of current investments.

6.3.3 The Element Diagram

The element diagram 20 shows that there are two important constraints. Satisfy de-
mand ensures that the amount produced or purchased in the spot market is sufficient
to satisfy the demand for all modes. The Capacity constraint relates how capacity
added in previous planning periods and capacity originally contracted affects the
production capability at this stage.

The added capacity decision has a special marker to indicate that it will influ-
ence future decisions. Demand, operating cost and investment cost are marked
stochastic, the first because of the ellipse with double lines, and the others because
of the hollow double-arrows.

Fig. 19 Electricity investment
stochasticity diagram
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Fig. 20 Electricity investment
element diagram.

7 Conclusions and Further Work

Researchers have expressed concern with the increasing disconnect between acad-
emic models and those used in business environments Sodhi and Tang (2008). This
disconnect, along with changes in the availability of timely information throughout
the enterprise can sometimes hinder our ability to convey the value added by OR.
This research addresses a small portion of this problem that fits within our exper-
tise. We developed a graphical modeling language based on the UML to facilitate
the communication of MSPR models between diverse stakeholders.

The extensive use of elision sets this work apart from previous OR research on
modeling systems. While our language can describe linear programs in their en-
tirety, it really is designed to produce an abstract summary of the model, which is a
valuable modeling aid used extensively in fields involving information and decision
making. Our language is most effective when communicating and documenting the
general tradeoffs in a model and the information necessary to adequately analyze
the situation underlying the model. The language should be used throughout the
lifetime of a model. The development of the model should start with the creation of
a set of diagrams, and those diagrams should be used to organize the mathematical
expressions in the model. A computer system can guarantee consistency between
different levels of abstraction. Future research along this direction should exploit
new tools for collaboration available to the enterprise, like the Microsoft Surface.

We believe that the UML is sufficiently expressive, tractable, and extensible to
be the basis for a graphical language like ours. The occasional compromises on
expressiveness or simplicity we make are worth it when juxtaposed with the benefits
of the UML (i.e. software support, familiarity, standardization). Other researchers
may disagree, and design graphical languages which would perhaps be more clear
by dropping the UML assumption. Even within the UML, there are different ways of
describing stochastic optimization models. Perhaps a more elegant set of classes can
be devised. Empirical research will help refine the design. Future research should
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also produce graphical languages for other types of OR problems, or show that this
particular language can be generalized to cover other classes of problems well.

Ultimately, as with any language, practice will dictate which diagrams become
common. The set of objects and diagrams proposed here, however, provide a formal
starting point.
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AEON: Synthesizing Scheduling Algorithms
from High-Level Models

Jean-Noël Monette, Yves Deville, and Pascal Van Hentenryck

Abstract This paper describes the AEON system whose aim is to synthesize
scheduling algorithms from high-level models. AEON, which is entirely written
in COMET, receives as input a high-level model for a scheduling application which
is then analyzed to generate a dedicated scheduling algorithm exploiting the struc-
ture of the model. AEON provides a variety of synthesizers for generating complete
or heuristic algorithms. Moreover, synthesizers are compositional, making it pos-
sible to generate complex hybrid algorithms naturally. Preliminary experimental
results indicate that this approach may be competitive with state-of-the-art search
algorithms.

Key words: Scheduling, Constraints, Modelling, Local Search, Job-Shop

1 Introduction

Scheduling problems are ubiquitous in industrial applications and have been the
topic of significant research over several decades. Effective algorithms are now
available for various classes of problems and general systems are available for mod-
eling and solving complex problems. One of the difficulties with existing tools,
however, is that modelers not only need to understand their application domain, but
also need to be well-versed in the algorithmic and combinatorial aspects of solv-
ing the application at hand: Indeed, two applications which look essentially similar
for a modeling standpoint may require fundamentally different approaches to obtain
high-quality solutions.
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This work is a first step to address these limitations and to bridge the gap between
high-level modeling and effective solving of scheduling applications. It presents the
AEON1 system which allows high-level scheduling models to be synthesized into
effective algorithms by exploiting the model structure. Models in AEON are written
with traditional high-level abstractions and their structure is analyzed to synthesize
scheduling algorithms tailored to the applications at hand. Users state the models
and only specify the synthesizer which then generates a scheduling algorithm for a
specific resolution framework (e.g. greedy search, constraint programming, or local
search). Synthesizers in AEON are compositional, which makes it possible to specify
hybrid algorithms naturally.

The system has a number of benefits. From a user standpoint, AEON allows mod-
elers to focus on describing their applications at a high level of abstraction, relieving
them from delving into the algorithmic aspects. Moreover, since models reveal the
structure of the applications, the AEON synthesizers are in a position to exploit the
wealth of scheduling research in order to derive effective algorithms. Finally, be-
cause the model is independent of the solving technology, AEON makes it possible
to apply various paradigms and to develop hybridizations whose potential had been
demonstrated in a variety of practical applications. From an implementation stand-
point, AEON also features several innovations. First, the model analysis is extensi-
ble and allows new classes of scheduling problems to be described using standard
XML formats. Second, novel synthesizers can be added naturally and composition-
ally. Finally, several novel abstractions simplify the tasks of writing synthesizers.
In particular, AEON provides the concepts of model view, which enables access to a
general model and its solution through an interface specialized to the model at hand.

This paper extends and generalizes the research initiated in Van Hentenryck and
Michel (2007) which demonstrated how to synthesize local-search algorithms from
COMET models. The synthesizers proposed herein apply to the scheduling domain,
consider various paradigms to solve scheduling applications (greedy algorithms, lo-
cal search, and constraint programming), and are extensible and compositional. The
models are similar in style to those used in ILOG Scheduler, OPL, and COMET, and
earlier systems in constraint-based scheduling. ILOG Concert also provides a mod-
eling layer that can be extracted by various solvers, but there is no attempt to syn-
thesize search algorithms or their hybridizations. It is also useful to contrast the
research to recent work in constraint programming concerning the design of default
search procedures: See, for instance, Laborie and Godard (2007) which describes a
Self-Adapting Large Neighborhood Search for scheduling applications, and Refalo
(2004) for the use of impacts in directing the search. While their goal is to find a
search procedure robust across a variety of models, our objective is to exploit the
model structure to derive an effective search procedure for the model at hand and the
chosen methodology. We view these approaches as orthogonal since robust search
procedures must also be available for various classes of problems. However, reveal-
ing and exploiting the model structure is one of the main contributions of constraint
programming and the search algorithm may significantly benefit from a structural
synthesis.

1 Aeon is another name for the Greek god of time Chronos. It means forever, eternity.
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The rest of this paper presents an overview of the different parts of the system.
Section 2 covers the use of the system and the available abstractions and solvers. In
Section 3, the architecture is presented and some characteristics of the system are
highlighted. Section 4 then shows how the system can be extended to deal with other
families of problems or solvers. Section 5 presents and analyzes the experimental
results.

2 Modelling and Solving Scheduling Problems

Figure 1 presents an AEON model for a Job-Shop Problem (JSP) and an associ-
ated synthesizer. The initialization of the input data in lines 1–6 is not shown. The
model itself is given in lines 8–16. First, a schedule object is created. Then, the ob-
jects populating this schedule are created (lines 9–11), including activities, jobs, and
machines. Next the constraints are stated: Machine requirements (lines 12–13) and
precedences inside jobs (lines 14–15). Finally, the objective in line 16 minimizes
the makespan.

The three last lines deal with the resolution of the model. Line 18 defines
the synthesizer, which, in this case, synthesizes the hybridization of a greedy
heuristic followed by a tabu search. It is easy to change the synthesizer: Sim-
ply replace GreedyTabuSynthesizer by CPSynthesizer to obtain a
constraint-programming search. Line 19 applies the synthesizer to solve the model.
This induces the analysis and classification of the model, the generation of the

1 range jobs = 1..nbjobs;
2 range machines = 0..nbmachines-1;
3 range tasks = 1..nbjobs*nbmachines;
4 int proc[tasks];
5 int mach[tasks];
6 int job[jobs,machines];
7
8 Schedule<Mod> s();
9 Job<Mod> J[i in jobs](s,IntToString(i));

10 Machine<Mod> M[i in machines](s,IntToString(i));
11 Activity<Mod> A[i in tasks](s,proc[i],IntToString(i));
12 forall(i in tasks)
13 A[i].requires(M[mach[i]]);
14 forall(i in jobs)
15 J[i].containsInSequence(all(j in machines)A[job[i,j]]);
16 s.minimizeObj(makespanOf(s));
17
18 GreedyTabuSynthesizer synth();
19 Solution<Mod> sol = synth.solve(s);
20 sol.printSolution();

Fig. 1 A Job-Shop Model and Its Synthesizer.
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appropriate variables, constraints, and objectives for the solvers, and the execution
of a search algorithm dedicated to the model. The synthesizer application produces
a solution which can be queried and used in various ways. Line 19 simply prints the
obtained solution.

As shown in Fig. 1, the modelling and solving parts are clearly separated. AEON
features a rich set of abstractions to model a broad range of scheduling problems and
constraints and objectives are stated using functions and methods. The remainder of
this section reviews the set of abstractions that are available to model problems and
to solve them.

The modelling classes end with “<Mod>” to denote that they are used for mod-
elling2. Inside the system, other classes with names post-fixed with “<CP>” or
“<LS>” are used for the actual search algorithms. For instance, the purpose of the
class Activity<Mod> is completely different from the class Activity<CP>.
Although they are associated with the same concept (an activity), the first modeling
version provides methods to perform the analysis of the problem, while the CP ver-
sion encapsulates variables to represent the starting and finishing dates of an activity
and a constraint linking them. To simplify reading, the post-fix “<Mod>” is omitted
in this section when it is clear that we refer to modelling classes.

Table 1 presents the modelling classes available in AEON at this stage. They
are explained in the following. The central modelling class is Schedule (i.e.
Schedule<Mod>). It is passed to all the other created objects and is respon-
sible for the internal consistency of the model. To represent activities, there are
two classes. Activity and MultiModeActivity represent single- and multi-
mode activities respectively. At creation time, an activity receives as input a sched-
ule, a processing time and a name. The processing time is either fixed or defined by
lower and upper bounds. A MultiModeActivity is given the Schedule, the
number of modes, and a name. The processing time of the modes are given sepa-
rately for each mode. The methods available on activities (single- and multi-mode)
allow to specify preemption, the membership to a Job, the resource requirements,
and the precedences between activities. The requirements are mode-dependent but
the remaining constraints are common to every modes. Precedence constraints can
involve the start and the end of activities and jobs. They can also define delays. The
aforementioned Job class represents groups of activities logically related. The ac-
tivities are not necessarily ordered but they cannot be executed at the same time.
Jobs share some features with activities: They can be grouped into other jobs and
their ends and starts can be constrained with precedences. Lastly, activities and jobs
can be defined as optional, meaning that their execution is not required.

Resources are represented by four classes, depending on the type of resource
under consideration. The Machine class represents unary resources. Two activi-
ties that require the same machine cannot overlap in time. The Resource class
represents renewable resources. At every moment, the sum of the requests of the
activities being executed cannot exceed the capacity of the resource. On the con-
trary, the Reservoir class is used for non-renewable resources whose capacity

2 In spite of a syntax similar to C++, such classes are not templated classes.
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Table 1 Summary of the classes available for modelling.

Description Classes
Schedule Schedule
Activities Activity

MultiModeActivity
Jobs Job
Resources Resource

Machine
Reservoir
StateResource

Objectives ScheduleObjective
TaskObjective

CompletionTime
Lateness
Tardiness
Earliness
UnitCost
PiecewiseLinearFunction
AbsenceCost
AlternativeCost

ModifObjective
MultObjective
ShiftObjective

AgregObjective
SumObjective
MaxObjective

is decreased after the execution of each activity. A minimum capacity can be de-
fined for both the Resource and Reservoir classes. For these two classes and
the Machine class, it is possible to define (periodic) breaks, i.e. time intervals of
unavailability. The last kind of resource is the StateResource that represents a
state of the world. The resource can only be in one state at a time. Two activities that
require different states cannot overlap in time. For all kind of resources, it is possible
to define sequence-dependent setup times and costs. The set of requirements of an
activity (or of a mode of a multi-mode activity) has the form of a tree whose internal
nodes are either conjunctions or disjunctions of simpler requests. External nodes are
the basic requirements: a required machine, some required or provided amount of a
resource, some consumed or produced amount of a reservoir, or a particular state of
a state resource.

Objective functions are subclasses of ScheduleObjective. The subclasses
are either simple or compound functions. Compound functions are obtained by sum-
ming or taking the maximum/minimum of other functions, or multiplying a function
by a constant. Simple functions are the classical lateness, tardiness, earliness, and,
more generally piecewise-defined linear functions based on the completion time of
activities and jobs. The set of simple functions includes also cost functions associ-
ated with the modes of multi-mode activities, with the absence of optional activities
or with the sequence-dependent setup of resources. The global objective function is
passed to the Schedule object with a method that specifies if the function must be
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Table 2 Summary of the classes available to solve.

Description Classes
Synthesizers ScheduleSynthesizer

CPSynthesizer
TSSynthesizer
SASynthesizer
GreedySynthesizer
SequenceSynthesizer
ScheduleAnimator

Solutions Solution

minimized or maximized. The function makespanOf found in Fig. 1 is a shortcut
for the makespan, or sum of the completion times, which is a common and important
objective.

This set of abstractions makes it possible to model problems as various as classi-
cal shop problems (Job Shop, Open Shop, Flexible Shop, Flow Shop, Group Shop,
Cumulative Shop, Just-In-Time Job Shop), variations of the Resource-Constrained
Project Scheduling Problem (RCPSP, MRCPSP, RCPSP/max, MRCPSP/max)
(Kolisch and Sprecher (1997)), the trolley problem (Van Hentenryck et al (1999))
and the NCOS and NCGS classes of MaScLib (Nuijten et al (2004)). This covers
problems with different kind of objectives and different properties (disjunctive or
cumulative, single- or multi-mode).

Although the modelling abstractions are able to represent a large set of problems,
the set of problems that can be solved depends on the search that can be synthesized.
Table 2 presents the available synthesis classes in AEON at this point. Currently,
there are three underlying engines: Constraint Programming, Local Search (Tabu
search and Simulated Annealing) and Greedy Search.3 Their capabilities define the
capabilities of the whole system. Based on these basis solvers, more complex solvers
can also be synthesized. In particular, hybrid and animated solvers can be made out
of other solvers. For instance, an animated solver wraps any underlying solver into
a visual environment that shows the succession of (improving) solutions. Hybrid
solvers can be as simple as a sequence of solvers, or can provide decomposition
schemes parametrized by solvers for the various phases. Synthesizers also accept
parameters, for instance to bound the allocated time. Line 16 of Fig. 1 shows how
to create a synthesizer that is a sequence of two search algorithms. The first one
greedily finds a feasible solution that will serve as initial solution to the second
algorithm that is a Tabu Search.

3 Architecture

Figure 2 presents an overview of AEON centered around the resolution of a schedul-
ing problem. Rounded boxes are the successive steps toward a solution. Only the
first one, the modelling, involves the user. Subsequently, the model is analyzed and

3 Future work will also consider MIP-based solvers for various classes of scheduling problems.
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Fig. 2 Overview of AEON. Rounded boxes represent actions to solve the problem. Rectangles
and Containers represent their inputs and outputs. The containers on the right are provided by the
system, the rectangle on the left are inputs from, and output to, users and those between actions are
transitional products. Italic text denotes user involvement.

categorized into some classes of problems. An algorithm is then synthesized and
run, yielding a solution to the problem. The containers on the right hand side of
Fig. 2 represent what is provided by the system to perform each step. The remain-
der of this section explains in more details how each step is performed. Section 4
describes how it is possible to enlarge those containers.

3.1 Modelling

Section 2 presented the modelling from a user point of view. Under the cover, when
the model is executed, an internal representation of the problem is built. Most of
the information is recorded in the modelling objects that were presented. For in-
stance, the Activity class contains an attribute recording whether preemption is
allowed or not. In addition, the Schedule object keeps a reference to all objects
that were created. The information is recorded using graph structures: precedence
relations into a digraph, objective functions and resource requests into rooted trees.
The precedence constraints are labeled arcs of a graph whose nodes represent the
start and end of activities, jobs and the schedule. In addition to the arcs explicitly
added by the user, arcs are created to link the start of a job with the start of contained
activities and the end of the job with the end of contained activities. There are also
arcs to ensure that all activities and jobs are executed between the start and the end
of the schedule. The trees representing objective functions and resource requests are
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necessary to represent combinations of simple functions or requirements. Such com-
binations are sums, products, and minimums/maximums in the case of objectives.
They are conjunctions and disjunctions for the requirements.

3.2 Analysis and Classification

The goal of the second step is to categorize the model into one of the “known”
classes. This classification is based on problem characteristics. Each class of prob-
lems is defined by a combination of pairs (characteristic,value). Table 3 presents a
subset of the considered characteristics. Additionally, the last two columns specify
the values for two well-known problem classes. A dash means that the value can be
anything for this class of problems. This table presents a simplified version of the
definition of classes. In fact, it is not a simple conjunction of pairs characteristic-
value but rather a Boolean formula, with negation, disjunction and conjunction of
simpler formulas. Atoms correspond to the pairs whose truth value is determined
by the analysis of the model. If the value returned by the analysis is equal to the

Table 3 Partial Listing of Characteristics. The first column gives the characteristic, the second one
defines the type of values. The third and fourth columns illustrate possible values for the Job-Shop
(JSP) and RCPSP problems.

Characteristic Type JSP RCPSP
Unit Processing Time boolean – –
Fixed Processing Time boolean true true
Preemption Allowed enum never never
Common Release Dates boolean true true
Common Deadlines boolean – –
Deadlines Exist boolean false false

Form of the Precedence Graph enum chains DAG
Delay between Activities boolean false false
No wait between Activities boolean false false
Jobs inside Jobs boolean false –

Number Of State Resources integer 0 0
Maximum Capacity integer 1 –
All Capacities are Equal boolean true –
Reservoir Consumption boolean false false
Reservoir Production boolean false false
Setup Times boolean false false
Disjunctive Requirements boolean false false
All Activities in Jobs boolean true false
Nb of Multi-Mode Activities integer 0 0
Sum Of Requirements integer 1 –

Objective Type enum minimize minimize
Objective Form enum maximum total
Objective Components enum completion time lateness
Objective Scope enum all activities one activity
All Due-Dates are equal enum – –
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expected one, the atomic formula receives the value true. A model belongs to a
class of problem if the valuation of the formula defining this class is true.

Moreover, recurring sub-formulas are defined as higher-level characteristics or
more general models from which other models may inherit. For instance, the JSP
with Makespan is a special case of the JSP having the characteristic Makespan. The
JSP is in turn a case of Disjunctive Problem. The hierarchy of categories forms a
directed acyclic graph (DAG). This means that a problem categorized into some
class is also member of all its ancestor classes. The output of the classification is
thus a sequence of classes rather than a single class. This sequence represents a
total order on the classes of the problem compatible with the DAG of classes. This
means that, if a class inherits from another, it must appear before the ancestor in the
sequence but the order of unrelated classes is arbitrarily fixed.

The analysis of characteristics in itself is achieved by a set of functions that
gather information from the internal representation presented previously. Prior to
the analysis, a normalization step is performed on the internal representation. In
particular, the precedence graph is simplified to its transitive reduction in order to
remove useless constraints. The trees for the requirements and the objective function
are also simplified. For instance, a sum of sums is replaced by a single sum. Finally,
useless objects (unused machines, empty jobs, for instance) are marked as such.

To be useful, the analysis must be robust with respect to modelling variations.
AEON compiles models into a canonical form and the analysis is performed on
the canonical form. For instance, the code of Fig. 3 shows an alternative model
of a JSP. There are several differences (multi-mode activities, reservoirs, no jobs,
explicit objective function) compared to the code in Fig. 1. However, AEON correctly
categorizes it as a JSP, which is a highly desirable feature in practice. Indeed, it is
the semantic of the model which is significant, not the syntax of how the meaning is
described.

1 range machines;
2 range tasks;
3 int proc[tasks];
4 int mach[tasks];
5
6 Schedule<Mod> s();
7 Reservoir<Mod> M[i in machines](s,0,5,5,IntToString(i));
8 MultiModeActivity<Mod> A[i in tasks](s,1,IntToString(i));
9 forall(i in tasks) {

10 A[i].setProcTime(1,proc[i],proc[i]);
11 A[i].requires(1,M[mach[i]],3);
12 }
13 forall(i in tasks:i%nbmachines!=0)
14 A[i].precedes(A[i+1]);
15 s.minimizeObj(maxOf(all(i in tasks)completionTimeOf(A[i])));
16
17 GreedyTabuSynthesizer synth();
18 Solution<Mod> sol = synth.solve(s);
19 sol.printSolution();

Fig. 3 Alternative Model for the Job-Shop Problem
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3.3 Algorithm Synthesis

The classes responsible for the synthesis are ScheduleSynthesizer and its
subclasses (see Table 2). As reflected in Fig. 2, the input of the synthesis step is com-
posed of three parts: the user model, its classification, and a choice made by the user
for a particular solving technology. The chosen subclass of ScheduleSynthe-
sizer defines the solving technology (for instance Constraint Programming for
CPSynthesizer) and the solve method takes the model as an argument.

Based on the classification output, the synthesizer chooses the appropriate solv-
ing strategy. A strategy is a search algorithm specific to a class of problems that will
be instantiated to a particular instance. Each synthesizer associates different strate-
gies with the classes of problems. For instance, the TSSynthesizer class asso-
ciates the Tabu Search of Dell’Amico and Trubian (1993) with the class Job-Shop
Problem with Makespan. Each synthesizer might not define strategies for each class
of problems but it is possible that it defines a strategy for a more general problems.
As the output of the classification is a sequence of problem classes, the synthesizer
will look for a strategy for the first class. If it does not exist, a strategy for the next
class will be looked up. The sequence is visited while there is no matching strategy.
In the worst case, the problem is recognized as a “general scheduling problem” for
which there is a basic default search.

Once the strategy is chosen, it must be instantiated to the problem being solved.
The synthesizer delegates this work to a subclass of the Strategy class. Roughly
speaking, there is such a subclass for each existing pair of problem class and solving
technology. Each Strategy subclass is responsible for setting up and running a
search algorithm for the problem being solved. The difficulty is that although the
class of the problem is known, it may be hard to find the suitable information to
instantiate the search. To facilitate this step, AEON features a set of classes called
views. The views are used to present the schedule and its components in a unified
way, no matter how they were introduced. Different views correspond to different
conceptions of the problem. The most general (ScheduleView) is a generic way
to access the information, while specific views give direct access to the subset of
useful information for some classes of problems. For instance, the JobShopView
gives information for JSPs. It is meant to give the same interface no matter how
the problem was modeled by the user (whether it was specified as in Fig. 1 or as in
Fig. 3).

3.4 Algorithm Execution

The algorithm being actually run is different for each strategy. However they have
in common that a solution is returned. Objects of the class Solution assign
a value to each decision variable of the problem. This assignment is expressed
in terms of the model objects. For instance, the method getStartingTime
(Activity<Mod> act) returns the starting time of an activity. Beside the
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1 Solution<Mod> solve(Schedule<Mod> sched){
2 JobShopView view(sched);
3 range Activities = view.getActivities();
4 range Jobs = view.getJobs();
5 range Machines = view.getMachines();
6 int[] duration =
7 all(i in Activities) view.getProcessingTime(i);
8 int[] machine = all(i in Activities) view.getMachine(i);
9 int[][] jobAct =

10 all(j in Jobs) view.getOrderedActivitiesOfJob(j);
11
12 JobshopAlgorithm ls(LocalSolver(),Activities, Jobs,
13 Machines, duration, machine, jobAct);
14 ls.solve();
15 SolutionView sol(view);
16 ls.saveSolution(sol);
17 return sol.getModelSolution();
18 }

Fig. 4 Solving a Job-Shop Problem

starting time, other decision variables of activities are the completion time, the set
of resources effectively used, the mode (for multi-mode activities) and the presence
or absence (for optional activities). The solution records also the value of the ob-
jective function under this assignment. The main benefit of solution objects is that
the model stays independent. It can thus have several solutions that can be com-
pared. Moreover, solutions serve to communicate between cooperating strategies.
They can be used to perform an initial assignment, to provide an upper bound, or to
guide heuristics.

Solutions are expressed in terms of the model but strategies deal with views.
They need a SolutionView to express the solution in terms of the view. A
SolutionView object is created from a view and the values for the decision
variables are given in terms of this view. The underlying solution in terms of the
model can then be retrieved from the solution view. Figure 4 shows the body of
the solve method of the DellAmico class. It features the JobShopView and
SolutionView classes. Line 2-10 shows the creation and the use of the view
for Job-Shop problems. The actual search is delegated to another class named
JobshopAlgorithm (lines 12-14). Line 15 creates the view for the solution from
the view for the problem. This view is then fulfilled in line 16 and the actual solution
is returned in line 17.

4 Adding Classes of Problems and Strategies

As the main concern of this work is to simplify the use of scheduling algorithms,
it is also important to provide simple mechanisms to extend the system. In partic-
ular, the AEON architecture allows implementors to easily add classes of problems,
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synthesizers, and solving strategies. The extension of the modelling abstractions is
not covered as it may need deeper modifications into the system. New classes of
problems can be specified using XML files. Synthesizers and strategies are defined
by extending existing classes.

4.1 Adding Classes of Problems

All classes of problems and high-level characteristics are defined in XML files. Each
class is defined by its unique name and a structure of constraints that the problems of
this class must respect. This structure is recursively made of the following elements:

• SimpleConstraint: The characteristic must have a given value.
• And: All constraints must be respected.
• Or: At least one constraint must be respected.
• Not: The constraint cannot be respected.
• IsA: The constraints of another given model must be respected.

The root element is called “Constraints” and corresponds to an “And”. To add a
new class, it is necessary to write an XML file that defines the constraints to satisfy.
It is simple to reuse previous model thanks to IsA inheritance construct. For instance,
Fig. 5 shows the file for the particular case of a JSP with two jobs that can be solved
in polynomial time (Akers and Friedman (1955)). It is a conjunction of constraints,
namely that it is a Job-Shop problem, that the objective function is the makespan,
and that the number of jobs is two.

4.2 Adding Strategies

A new search strategy is created by extending class Strategy, which requires
specifying two methods: solve(Schedule<Mod>s) and solve(Schedule
<Mod> sched, Solution<Mod> initSol). The first method imple-
ments the resolution of the problem from scratch and the second one solves

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE Model SYSTEM "models.dtd">
3 <Model ID="JobShopWithMakespanWithTwoJobs">
4 <Constraints>
5 <IsA Name="Makespan"/>
6 <IsA Name="JobShop"/>
7 <Constraint Name="nbJobs" Value="2"/>
8 </Constraints>
9 </Model>

Fig. 5 XML Definition of the Job-Shop with 2 jobs.
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1 class MySynthesizer extends TSSynthesizer{
2 MySynthesizer():TSSynthesizer(){
3 registerStrategy("JobShopWithMakespanWithTwoJobs",
4 new AkersAndFriedmanAlgorithm());
5 }
6 }

Fig. 6 Adding a new strategy to the TSSynthesizer

the problem, starting from an initial solution. This initial solution may be dis-
carded, for instance in the case of a greedy solver. The body of these methods
should use views. This is illustrated in Fig. 4, which shows the implementation
of the first method. The implementation of the second one is similar. The only
modification is the replacement of line 14 by the instruction ls.solve(new
SolutionView(view,initSol)) where a view of the initial solution is
forwarded to the search algorithm.

A newly created strategy must then be linked to a class of problem by mean of a
synthesizer. This pairing is done by the method registerStrategy(string
name, Strategy strategy) defined in the Synthesizer class. This
method associates a class (defined by its name) to a strategy. If another strategy
was already associated with a synthesizer, the new one replaces the old one. This
method is typically called inside the constructor of a new class of synthesizer.
Figure 6 shows such a case, where a new synthesizer is defined as a subclass of
TSSynthesizer. This means that a JSP with two jobs will be solved using
the ad-hoc polynomial algorithm and all other problems will be solved with Tabu
Search.

From this example, it is clear that the user choice for a particular search tech-
nology (in Fig. 2) can also be removed, allowing a completely black-box search.
It suffices to create a default synthesizer with each class of problems, choosing the
best possible strategy for each problem subclass. However, the “best” strategy is not
necessarily unique even for a subclass: it may depend on the time constraints, the
need to obtain lower and upper bounds, the desire for optimality, and the character-
istics of the instances at hand. So providing the synthesizers increase the flexibility
and effectiveness of the system.

4.3 Building New Strategies Compositionally

New strategies can also be built from simpler strategies. The architecture of AEON
allows implementors to build composite searches by specialization or composition.
The first possibility is to create a new strategy for a specialized class as shown in the
previous subsection. At a more general level, a synthesizer can systematically create
compound strategies from other synthesizers. Figure 7 presents the two possibilities
for a simple compound: a Tabu Search followed by a CP search. Lines 1–14 illus-
trate a compound strategy for the JSP and lines 15-26 show the code of a synthesizer



56 J.-N. Monette et al.

1 class TS_CPJSP extends Strategy{
2 Strategy _s1;
3 Strategy _s2;
4 TS_CPJSP():Strategy(){
5 _s1 = new DellAmico();
6 _s2 = new CPJobShop();
7 }
8 Solution<Mod> solve(Schedule<Mod> s){
9 return _s2.solve(s,_s1.solve(s));

10 }
11 Solution<Mod> solve(Schedule<Mod> s,Solution<Mod> initSol){
12 return _s2.solve(s,_s1.solve(s, initSol));
13 }
14 }
15 class TS_CPSynthesizer extends ScheduleSynthesizer{
16 ScheduleSynthesizer _s1;
17 ScheduleSynthesizer _s2;
18 TS_CPSynthesizer():ScheduleSynthesizer(){
19 _s1 = new TSSynthesizer();
20 _s2 = new CPSynthesizer();
21 }
22 Solution<Mod> solve(Schedule<Mod> s){
23 string[] models = classify(s);
24 return _s2.solve(s,models,_s1.solve(s, models));
25 }
26 }

Fig. 7 Two implementations for a TS+CP strategy

chaining TS and CP. The methods classify and solve with several argument
are defined in ScheduleSynthesizer and represent the different steps under
the responsibility of the synthesizer: the classification and the resolution (with and
without initial solution). It is interesting to see how the code of the compound syn-
thesizer mimics the code of the compound strategy.

5 Experiments

The goal of this section is to show that the genericity of the system is compatible
with effective and efficient solving of scheduling problems. To assess this, we chose
to perform experiments on a few classical benchmark, the Job-Shop Problem with
Makespan minimization (JSP), the Open-Shop Problem with Makespan minimiza-
tion (OSP) and the Job-Shop Problem with total weighted tardiness minimization
(JSTWT). For each benchmark, three synthesized search algorithms will be consid-
ered: A Local Search (LS), a Constraint Progamming approach (CP) and a com-
pound where the Tabu Search gives an upper bound to the CP part (LS+CP). They
will be compared with the COMET implementation (Van Hentenryck and Michel
(2005)) of respectively the Tabu Search of Dell’Amico and Trubian (1993) for JSP,
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Table 4 Mean Relative Error and running time (in seconds) for 4 algorithms. Ref. stands for the
references algorithms, LS for Local Searches embedded in AEON, CP for Constraint Programming
embedded in AEON and LS+CP for a compound of LS and CP. For CP and LS+CP, the number in
parenthesis is the number of instances for which the search was complete and for which the running
time is counted. For OSP, the column CP counts 2 values. The second one is a Large Neighborhood
Search that can also be generated in AEON.

Problem #Inst. Average MRE Average running time to best solution
Ref. LS CP/LNS LS+CP Ref. LS CP/LNS LS+CP

JSP 78 2.08 2.09 54.40 2.03 2.6 3.1 4.4(30) 3.4(52)
OSP 80 1.68 1.70 1.58/0.01 0.85 24.1 25.0 8.0(49)/ <120 30.2(50)

JSPTW 22 4.28 3.87 97.88 4.14 24.4 24.3 -(0) -(0)

the Tabu Search of Liaw (1999) for OSP and a Metropolis algorithm presented in
Van Hentenryck and Michel (2004) for JSPTW.

The LS algorithms are counterparts of the original algorithms and have the same
limits : 12,000 iterations for JSP and OSP and 600,000 iterations for JSPWT. The
CP search is limited in time to max(300,3∗#activities) seconds, that is 25 minutes
for the largest instances.

For local search algorithms, 20 runs for each instance were performed. The al-
gorithms involving CP were only run once as they are much less variable. All runs
were performed on a Intel Core 2 Duo, 1.66Ghz with 1 Gb of RAM.

Table 4 presents a summary of the results for classical benchmark instances.
More detailed results are available online4. For each algorithm, the mean relative
error (MRE) is given. The MRE is equal to 100 ∗ (UB−LB)/LB where UB is the
value of the (average) makespan found by the algorithm and LB is the best lower
bound known for the instance (taken from Zhang et al (2008, 2007); Van Hentenryck
and Michel (2005); Laborie and Godard (2007)).

To show another hybrid approach, we also generated a Large Neighborhood
Search (LNS) for the OSP. This search is particularly efficient and solved all but
one of the 80 instances in less than 2 minutes, yielding a MRE of 0.01 as shown in
column CP/LNS of Table 4.

This table shows that there is no significant difference between the search gener-
ated by AEON and a search that is written apart. Of course the CP approach is not
always usable for larger instances but it is not restricted to AEON. On the contrary,
the use of CP in conjunction with the Local Search permits to prove optimality of
heuristically found solutions. In terms of running time, the CP approach is not com-
petitive for large problems but the local search (LS) is competitive with the COMET
implementation of the reference algorithms.

The cost of the use of AEON is illustrated on Fig. 8 where the total time used by
the setup, analysis, classification and generation operations is reported in function
of the number of activities in the problem. The plot exhibits a quadratic progression
with a soft slope. For instances containing 500 activities, the classification time is
less than 1.5 second.

4 http://becool.info.ucl.ac.be/aeon

http://becool.info.ucl.ac.be/aeon
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Fig. 8 Time (in milliseconds) to analyze a problem and generate the search in function of the
number of activities.

6 Conclusion

This work presents AEON, a system to model and solve scheduling problems. Given
a scheduling model specified in a high-level modeling language, AEON recognizes
and classifies its structure, and synthesizes an appropriate search algorithm. The
synthesized algorithm is specialized to a particular paradigm such as local search
or constraint programming. The approach makes it possible to exploit structural
information from the models to derive scheduling algorithms dedicated to classes of
problems.

AEON has a number of fundamental features: First the model classification does
not depend on the syntax or on the modeling choices. Models are transformed into a
canonical form on which the analysis is performed, increasing the robustness of the
modeling process. Second, AEON is an open and extensible system: New problem
classes can be specified in standard XML format and new solving strategies can be
added for all problem classes. Moreover, new synthesizers can be built from existing
ones compositionally, building sequences of solvers or specializing decomposition
algorithms (e.g., logical Benders decomposition) with different algorithms.

The experimental results demonstrated the feasibility of the approach. They show
that the overhead of using AEON compared to dedicated algorithm is small and that
the analysis cost is perfectly acceptable and grows quadratically with the problem
size, taking about 1.5 seconds for 500 activities.

Our current work aims at defining a wide variety of scheduling algorithms for
many problem classes. The inclusion of new algorithms, including large neighbor-
hood search and parallel version of existing algorithms, is also under way and ex-
perimental results should be available soon. Long-term research will focus on two
main directions. First, the automatic linearization of models will allow us to solve
them using MIP technology or to obtain linear relaxations to provide lower bounds
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or guide the search. Second, robust default search should be built for various general
classes of problems (e.g., disjunctive scheduling) when idiosyncratic constraints are
present.
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A Branch-and-cut Algorithm for Integer Bilevel
Linear Programs

S.T. DeNegre and T.K. Ralphs

Abstract We describe a rudimentary branch-and-cut algorithm for solving integer
bilevel linear programs that extends existing techniques for standard integer linear
programs to this very challenging computational setting. The algorithm improves
on the branch-and-bound algorithm of Moore and Bard in that it uses cutting
plane techniques to produce improved bounds, does not require specialized branch-
ing strategies, and can be implemented in a straightforward way using only lin-
ear solvers. An implementation built using software components available in the
COIN-OR software repository is described and preliminary computational results
presented.

Key words: Bilevel Programming, Integer Programming, Branch and Cut, Valid
Inequality, Branch and Bound

1 Introduction

Standard mathematical programs consider decision problems in which there is a
single decision-maker (DM) controlling all variables. Many real-world decision
problems involve multiple, independent DMs, whose interests are not necessarily
aligned. In this paper, we discuss solution methods for a class of models known as
integer bilevel linear programs (IBLPs) that generalize standard integer linear pro-
gramming (ILP) models by considering two sets of variables, each controlled by a
separate DM.
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The goal of the work described herein is to demonstrate that it is possible,
in principle, to generalize the tremendously successful branch-and-cut framework
commonly used to solve mixed integer linear programs to this very challenging
computational setting. By developing techniques for IBLP that are analogous to
those used in the ILP setting, we have been able to leverage the many advances
that have occurred in solution technology for ILPs. Although our implementation
is quite rudimentary and is intended only as a demonstration of concept, the algo-
rithm improves on the branch-and-bound algorithm previously proposed by Moore
and Bard (1990) in that it uses a basic cutting plane procedure to produce improved
bounds, does not require specialized branching techniques, and can be implemented
in a straightforward way using existing software.

Conceptually, the decisions in an IBLP are made in sequential order according to
an implicit hierarchy. Top-level decisions are made first, after which the lower-level
decisions are made under the mandates of those upper-level decisions. Formally, let
x ∈ R

n1 represent a set of variables controlled by an upper-level DM or leader and
let y ∈ R

n2 represent a set of variables controlled by a lower-level DM or follower.
The canonical integer bilevel linear program is then given by

zIBLP = max
{

c1x+d1y | x ∈ PU ∩Z
n1 ,y ∈ argmax{d2y | y ∈ PL(x)∩Z

n2}
}

,

where
PU =

{
x ∈ R

n1 | A1x ≤ b1,x ≥ 0
}

is the polyhedron defining the upper-level feasible region;

PL(x) =
{

y ∈ R
n2 | G2y ≤ b2 −A2x,y ≥ 0

}

is the polyhedron defining the lower-level feasible region with respect to a given
x ∈ R

m1 ; A1 ∈ Q
m1×n1 ; b1 ∈ Q

m1 ; A2 ∈ Q
m2×n1 , G2 ∈ Q

m2×n2 ; and b2 ∈ Q
m2 . The

defining characteristic of a bilevel program, in contrast with a standard mathemat-
ical program, is that the lower-level variables are required to consist of an optimal
solution to an ILP whose right-hand side depends on the values chosen for the upper-
level variables.

Bilevel models arise naturally in systems involving two opposing parties, such
as in military and law enforcement applications. The essence of what makes these
models difficult to analyze is the implicit adversarial relationship between the upper-
and lower-level DMs stemming from the fact that improvements to the upper-level
DM’s objective usually come at the expense of a degradation in the lower-level
DM’s objective. In fact, without such an adversarial relationship, these systems be-
come much easier to handle. In some cases, the adversarial relationship is explicit
and direct, i.e., the upper-level DM’s sole objective is to prevent the lower-level DM
from achieving a known objective. Such systems, called zero-sum, arise in analyzing
interdiction problems (see below).

Although bilevel linear programming (BLP) has received increased attention
recently, the literature on IBLP remains scarce. Moore and Bard (1990) intro-
duced a general framework for mixed integer bilevel linear programming (MIBLP),
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described associated computational challenges, and suggested a branch-and-bound
algorithm. The vast majority of the remaining IBLP literature has been restricted to
various special cases. Bard and Moore (1992) developed a specialized algorithm for
binary bilevel programs. Dempe (2001) considered the case characterized by contin-
uous upper-level variables and integer lower-level variables and used a cutting plane
approach to approximate the lower-level feasible region. Wen and Yang (1990) con-
sidered the opposite case, where the lower-level problem is a linear program and the
upper-level problem is an integer program. Linear programming duality was used to
derive exact and heuristic solutions.

A closely related class of models mentioned above that has already proven its
utility in practice is that of the interdiction models. Most research on these models
has focused on the network interdiction problem (Wollmer, 1964; McMasters and
Mustin, 1970; Ghare et al, 1971; Wood, 1993; Cormican et al, 1998; Israeli and
Wood, 2002; Held and Woodruff, 2005; Janjarassuk and Linderoth, 2006; Royset
and Wood, 2007; Lim and Smith, 2007; Morton et al, 2007), in which the lower-
level DM represents an entity operating a network of some sort. The upper-level
DM (or interdictor) attempts to reduce the network performance as much as possi-
ble via the removal (complete or otherwise) of portions (subsets of arcs or nodes) of
the network. Here, we generalize the underlying concept behind these network in-
terdiction models by allowing the lower-level problem to be completely general and
introducing the “interdiction” of lower-level decision variables in order to obtain a
class of models with a much wider range of application.

The remainder of the paper is composed as follows. In Section 2, we describe
the mathematical models that we consider. In Section 3, we discuss the challenge of
solving these models and the barriers to generalizing solution methods for single-
level mathematical programming problems. In Section 4, we describe how to over-
come these challenges and propose a branch-and-cut algorithm for IBLPs. Section 5
illustrates the algorithm via an example and provides some preliminary computa-
tional results. Finally, in Section 6, we provide conclusions and directions for future
work.

2 Definitions and Notation

When discussing various relaxations, it will sometimes be convenient to refer
to the matrices A := [(A1)�|(A2)�]� and G := [0|(G2)�]�, and the vector b :=
[(b1)�|(b2)�]�. The region obtained by dropping the optimality requirement for
the lower-level variables is then given by

Ω I = {(x,y) ∈ Z
n1 ×Z

n2 | Ax+Gy ≤ b,x,y ≥ 0} .

Removing the integrality requirements from Ω I yields the polyhedral region

Ω = {(x,y) ∈ R
n1 ×R

n2 | Ax+Gy ≤ b,x,y ≥ 0} .
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For each upper-level solution x ∈ PU ∩Z
n1 , we define the follower’s rational

reaction set to be

MI(x) = argmax{d2y | y ∈ PL(x)∩Z
n2}.

If we set
Ω I

proj =
{

x ∈ PU ∩Z
n1 | ∃y with (x,y) ∈ Ω I} ,

then any point (x,y) such that x ∈ Ω I
proj and y ∈ MI(x) is called bilevel feasible. The

IBLP problem can then be restated as that of determining

zIBLP = max
(x,y)∈F I

c1x+d1y, (IBLP)

where F I =
{

(x,y) | x ∈ Ω I
proj,y ∈ MI(x)

}
. We also define the continuous analog

of F I by
F =

{
(x,y) | x ∈ Ωproj,y ∈ M(x)

}
,

where
Ωproj = {x ∈ PU | ∃y with (x,y) ∈ Ω}

and
M(x) = argmax{d2y | y ∈ PL(x)}.

Consistent with the existing literature (Bard, 1988; Bard and Moore, 1990;
Moore and Bard, 1990; Bard and Moore, 1992), we assume that Ω I is nonempty
and bounded and that PL(x)∩Z

n2 �= /0 for all x ∈ PU ∩Z
n1 . Further, we assume

that if the lower-level DM’s rational reaction set MI(x) is not a singleton, the upper-
level DM is allowed to choose from among the alternatives one that is optimal with
respect to the upper-level objective. This is the so-called optimistic formulation of
the problem. The reader is referred to Loridan and Morgan (1996) for further insight
on and discussion of alternative formulations.

3 Computational Challenges of IBLP

Because ILP is a special case of IBLP, it is clear that IBLP is also an N P-hard
problem. In fact, in contrast to the ILP case, the question of IBLP feasibility is not
even in N P , essentially because the question of whether a pair (x,y) ∈ Z

n1 ×Z
n2

is feasible for a given IBLP is itself an ILP. Hansen et al (1992) show that even the
continuous version of the problem (a BLP) is strongly N P-hard and Vicente et al
(1994) adds that checking local optimality for BLPs is an N P-hard problem. All
of this indicates that solving IBLPs in practice is likely to be extremely challenging.

A natural approach to developing algorithms for solving IBLPs is to consider
generalizations of the techniques that are used for ILPs. It does not take long, how-
ever, to realize that our intuition does not easily carry over from the case of ILP
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to the case of IBLP. In a branch-and-bound algorithm for standard integer linear
programming, integrality constraints are removed and the resulting linear program,
which is easily seen to be a relaxation of the original ILP, is solved. The solution to
this relaxed problem yields useful information about the original problem. In par-
ticular, we can make use of the following well-known rules to prune the branch and
bound tree.

(R1) If the relaxed problem has no feasible solution, then neither does the original
problem.

(R2) If the relaxed problem has a solution, then its value is a valid upper bound on
the optimal value of the maximization original problem.

(R3) If the solution to the relaxed subproblem satisfies integrality restrictions, then
it is optimal for the original problem.

Unfortunately, these rules cannot be extended in a straightforward way to IBLPs be-
cause dropping the integrality constraints from both upper and lower-level problems
does not result in a relaxation, as the example in Figure 1 illustrates. In the figure,
the polyhedron represents the set Ω , while the integer points in this polyhedron
comprise the discrete set Ω I . Within each of Ω and Ω I , we have indicated points
that satisfy the optimality constraint on the lower-level variables (i.e., the bilevel
feasible solutions). From the figure, it is easy to see that F ⊆ Ω , F I ⊆ Ω I , and
Ω I ⊆ Ω . It is not the case, however, that F I ⊆ F . Hence, the BLP obtained by
dropping integrality constraints is not a relaxation of the IBLP.

In this example, optimizing over the continuous region F yields the integer so-
lution (8,1), with the upper-level objective value 18. However, the true solution to
the IBLP is (2,2), with objective value 22. From this, we observe that even when
solutions to max(x,y)∈F c1x+d1y are in F I , they are not necessarily optimal. Thus,
except in certain special cases, only Rule (R1) above remains valid if we simply
remove integrality constraints from the IBLP to yield a BLP. Complicating matters
further is the question of how to branch when faced with a solution that is integer
but infeasible.

4

1 2 3 4 5 6 7 8

3

1

2

5

x

y

FI

F

max
x∈Z+

x+10y

s.t. y ∈ argmax{−y :

−25x+20y ≤ 30

x+2y ≤ 10

2x− y ≤ 15

2x+10y ≥ 15

y ∈ Z+ }

Fig. 1 The feasible region of IBLP (Moore and Bard, 1990).
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4 Branch and Cut

As with many classes of mathematical programs, the most obvious route to achiev-
ing global optimality is the development of bounding procedures that can be used
to drive a branch-and-bound algorithm. As we have just observed, however, the
bounding, fathoming, and branching procedures employed in traditional LP-based
branch-and-bound algorithms cannot be applied in a straightforward way. In this
section, we describe how to overcome these challenges to develop a generalized
branch-and-cut algorithm for IBLPs that follows the same basic paradigm used in
ILP. This work improves on the branch-and-bound algorithm originally suggested
by Moore and Bard (1990) in a number of significant ways that we point out below.

4.1 Bounding

Although removing the integrality restrictions on all variables does not result in a
valid relaxation, removing the lower-level optimality constraint from the problem
does yield the relaxation

max
(x,y)∈Ω I

c1x+d1y, (1)

similar to one suggested by Moore and Bard (1990). Unfortunately, as we noted ear-
lier, determining whether solutions to this relaxation are bilevel feasible is a difficult
problem in itself.

In order to improve upon the bounds yielded by (1) and to avoid the potential
difficulties associated with being forced to branch when faced with an infeasible
integer solution, we consider here a branch-and-cut algorithm based on the iterative
generation of linear inequalities valid for F I and augmentation of the linear system
describing Ω until an optimal member of F I is exposed or we choose to branch.
The procedures we suggest are analogous to those used in the case of ILP but also
address the fact that integer solutions may not be feasible in this setting.

4.2 Generating Valid Inequalities

An inequality defined by (π1,π2,π0) is called a valid inequality for F I if π1x +
π2y ≤ π0 for all (x,y) ∈ F I . Unless conv(F I) = Ω , there exist inequalities that
are valid for F I , but are violated by some members of Ω . In order to generate
these inequalities, we must use information not contained in the linear description
of Ω . For a point (x,y) ∈ Z

n1 ×Z
n2 to be feasible for an IBLP, it must satisfy three

conditions:

(C1) (x,y) ∈ Ω ,
(C2) (x,y) ∈ Z

n1 ×Z
n2 , and

(C3) y ∈ MI(x).

This is in contrast to standard ILPs, where we have only the first two conditions.
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Because the first requirement is enforced by requiring membership in Ω , we must
derive valid inequalities from the other two conditions. We start with the following
straightforward, but useful observations.

Observation 1 If the inequality (π1,π2,π0) is valid for Ω I , it is also valid for F I .

Observation 2 Let (x,y) ∈ Ω such that y �∈ MI(x). If the inequality (π1,π2,π0) is
valid for Ω I \{(x,y)}, it is also valid for F I .

Observation 1 is derived from the relationship F I ⊆ Ω I and allows us to separate
fractional solutions to the LP resulting from removal of the lower-level optimality
and integrality restrictions. Observation 2 states that we can separate points that are
integer but not bilevel feasible. From these observations, we can derive two classes
of valid inequalities to be used in a cutting plane procedure.

To initialize the cutting plane procedure, we must first solve the relaxation

max
(x,y)∈Ω

c1x+d1y. (LR)

If the solution (x̂, ŷ) to (LR) does not satisfy condition (C2) above, we may apply
standard cutting plane procedures used to separate points in Ω \Ω I from Ω I ⊇ F I .
For an overview of the various classes of valid inequalities used for separating frac-
tional solutions from the convex hull of solutions to generic integer programs, see
Cornuejols (2008). Any of the existing classes of valid inequalities are potential can-
didates for employment here, though the structure of each specific instance could be
used to decide which classes are likely to be the most effective.

If (x̂, ŷ) satisfies condition (C2), then we must check whether it satisfies condition
(C3). This is done by solving the lower-level problem

max
y∈PL(x)∩Z

n2
d2y (2)

with the fixed upper-level solution x̂. Let the solution to this IP be y∗. If d2ŷ =
d2y∗, then ŷ is also optimal for (2) and we conclude that (x̂, ŷ) is bilevel feasible.
Otherwise, we must again generate an inequality separating (x̂, ŷ) from F I . In either
case, however, (x̂,y∗) is bilevel feasible and provides a valid lower bound on the
optimal solution value of the original IBLP.

Now suppose d2ŷ < d2y∗. In this case, (x̂, ŷ) does not satisfy condition (C3) and is
therefore not bilevel feasible. We may still use (x̂,y∗) to bound the original problem,
but we would like to add an inequality to (LR) that is valid for F I and violated by
(x̂, ŷ). The simple procedure encapsulated in the following proposition can be used
to generate such an inequality.

Proposition 1. Let (x̂, ŷ) ∈ Ω I be a basic feasible solution to (LR). Let J be the set
of constraints that are binding at (x̂, ŷ). Then

π1x+π2y ≤ π0 −1, (3)

where (π1,π2) = ∑ j∈J(a j,g j) and π0 = ∑ j∈J b j, is valid for F I .
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Proof. The fact that (x̂, ŷ) is a basic feasible implies that there exist n = n1 + n2
linearly independent constraints in the description of Ω that are binding at (x̂, ŷ).
Thus, the system a′jx + g′jy = b j, j ∈ J has a unique solution, namely (x̂, ŷ). This,
in turn, implies that (x̂, ŷ) is the unique point of intersection between the hyperplane
defined by the equation π1x+π2y = π0 and the set Ω I . It follows that the inequality
π1x+π2y≤ π0 is valid for Ω I . Because the face of Ω induced by this inequality does
not contain any other members of Ω I and there does not exist (x,y)∈Z

n1 ×Z
n2 such

that π1x + π2y ∈ (π0 − 1,π0), this implies that the inequality π1x + π2y ≤ π0 − 1 is
valid for Ω I \{(x̂, ŷ)}. Applying Observation 2 yields the result. �

An example is shown in Figure 2 for the instance

max
x

min
y

{y | −x+ y ≤ 2,−2x− y ≤−2,3x− y ≤ 3,y ≤ 3,x,y ∈ Z+} .

In the figure, we can see the bilevel feasible region F I = {(0,2),(1,0),(2,3)}. Also
shown in the figure is the bilevel feasible region F of the corresponding BLP. In
this example, we start with the integer point (1,3), an optimal solution to the LP

max
x,y

{y | −x+ y ≤ 2,−2x− y ≤−2,3x− y ≤ 3,y ≤ 3,x,y ∈ R+} .

It is easy to see that this point is not bilevel feasible, because the rational choice for
the lower-level DM would be y = 0, when x = 1. Thus, we require a cut that separates
(1,3). Combining the constraints active at (1,3) yields the half-space {(x,y)∈Z

n1 ×
Z

n2 | −x+2y ≤ 5} and applying the procedure described above, we obtain the new
inequality

−x+2y ≤ 4,

which is valid for F I , but not satisfied by (1,3). Note that after adding this cut,
the optimal solution is obtained in the next iteration. Without the cutting plane pro-
cedure we have just described, we would be forced to branch after producing this
solution in a branch-and-bound framework.

Fig. 2 An example of the
bilevel feasibility cut. 1 2 3

2

3

1

x

y

−x + 2y≤ 5

−x + 2y≤ 4

F
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The combination of this procedure, the bounding technique of Section 4.1, and
the branching techniques given in Section 4.3 yields a branch-and-cut algorithm.
However, it is clear that the procedure will fail on large-scale problems. In order
to solve problems of interesting size, additional classes of valid inequalities derived
from Condition (C3) are necessary. One such class that utilizes information from
the value function of the lower-level ILP is described in DeNegre et al (2008).

4.3 Branching

As we have just described, an important advantage of our algorithm over its prede-
cessor from Moore and Bard (1990), is the fact that we are not forced to branch after
producing an infeasible integer solution and are therefore free to employ the well-
developed branching strategies used in algorithms for traditional ILP, such as strong
branching, pseudocost branching, or the recently introduced reliability branching
(Achterberg et al, 2005). Of course, it is also possible to branch using disjunc-
tions obtained from violations of Condition (C3). Although this is unnecessary for
small problems, we believe such branching strategies may ultimately be necessary
for larger problems. Specialized branching techniques for bilevel problems are dis-
cussed in DeNegre et al (2008).

4.4 A Branch-and-cut Algorithm

Putting together the procedures of the preceding three sections, we obtain a branch-
and-cut algorithm that consists of solving the linear relaxation (LR), iteratively gen-
erating valid inequalities to improve the bound, and branching when necessary. In
addition to the obvious advantage of producing potentially improved bounds, an ad-
vantage of this approach over the one proposed by Moore and Bard (1990) is that
it relies only on the solution of standard ILPs and preserves all the usual rules of
fathoming and branching. It therefore allows us to immediately leverage our vast
knowledge of how to solve standard ILPs. The general framework of such an algo-
rithm is described next.

Let
max

(x,y)∈Ft
c1x+d1y. (IBLPt )

be the IBLP defined at node t of the branch-and-cut tree. To process node t, we first
solve the LP

zt
LP = max

(x,y)∈Ωt
c1x+d1y. (LPt )

and denote its solution by (xt ,yt) (if it exists). If either the LP is infeasible or the
optimal value of (LPt ) is less than the current lower bound L, we can fathom the cur-
rent node. Otherwise we generate valid inequalities to separate the current solution
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from F I . If (xt ,yt) ∈ Ω I , we check for bilevel feasibility. If the solution is feasible,
we can stop. Otherwise, we add cuts of the form (3) to separate the current solu-
tion from Ω I \ {(xt ,yt)} if necessary and iterate. If a fractional solution is found,
we either add cuts to separate the current solution from Ω t ∩Z

n1 ×Z
n2 and iterate

or else we branch. A general outline of the node processing subroutine is given in
Algorithm 1.

Algorithm 1 Node Processing Loop
1: Solve (LPt ). If (LPt ) has an optimal solution, denote it (xt ,yt). Then, depending on the out-

come, do the following:

• If (LPt ) is infeasible, so is (IBLPt ) and the current node can be pruned.
• Else, if zt

LP ≤ L, the current node can be pruned.
• Else, go to Step 2.

2: Generate valid inequalities.

• If (xt ,yt) ∈ Ω I , fix x ← xt , and solve zt
LL = maxy∈PL(xt )∩Z

n2 d2y. If zt
LL = d2yt set L ←

c1xt +d1yt and prune the current node; else set

Ωt+1 = Ωt ∩
{

(x,y) ∈ R
n1 ×R

n2 | ∑
j∈J

(a jx+g jy) ≤ ∑
j∈J

b j −1

}

,

where J is the set of active constraints in Ωt at (xt ,yt), set t ← t +1, and go to Step 1.
• Else, either generate and add cuts valid for Ω t ∩Z

n1 ×Z
n2 and go to Step 1 or BRANCH.

4.5 Specialized Methods for Binary IBLPs

The bilevel feasibility cut (3) ensures that bilevel infeasible solutions to (1) are
not generated in future iterations. However, by design, it does not cut off any
other integer points. This may result in the generation of a sequence of points
(x∗,y1),(x∗,y2), . . . ,(x∗,yk) such that yi �∈ MI(x∗) for i < k. If x ∈ B

n1 , informa-
tion obtained from the lower-level problem can be used to avoid this problem.
While checking bilevel feasibility, we obtain an optimal solution and associated
objective value zL(x∗) for the lower-level problem (2). This leads to the implication
x = x∗ ⇒ d2y ≥ zL(x∗). Let I0 := {i | x∗i = 0} and I1 := {i | x∗i = 1}. Note that for
x ∈ B

n1 , we have that ∑i∈I0 xi + ∑i∈I1(1− xi) = 0 if and only if x = x∗. Otherwise,
∑i∈I0 xi + ∑i∈I1(1− xi) ≥ 1. One way to model this implication is to introduce the
constraint ∑i∈I0 xi + ∑i∈I1(1− xi)+ δ ≥ 1, where δ ∈ B, which imposes the impli-
cation x = x∗ ⇒ δ = 1. Then, adding the constraint d2y + mδ ≥ m + zL(x∗), where
m = min{d2y− zL(x∗) | (x,y) ∈ Ω I}, enforces δ = 1 ⇒ d2y ≥ zL(x∗), as desired.
Exploring further such logical implications is an area of future research.
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5 Computational Results

The branch-and-cut algorithm was implemented in C++, utilizing standard soft-
ware components available from the Computational Infrastructure for Operations
Research (COIN-OR) repository (Lougee-Heimer, 2003). The implementation uses
the COIN-OR High Performance Parallel Search Framework (CHiPPS) to perform
branch and bound, the MILP solver framework BLIS (part of CHiPPS), the COIN-
OR LP Solver (CLP) for solving the LPs that arise in branch and cut, the SYM-
PHONY MILP solver for solving the lower-level ILPs, the Cut Generation Library
(CGL) for generating cutting planes, and the Open Solver Interface (OSI) for inter-
facing with CHiPPS and SYMPHONY.

To our knowledge, the only other general IBLP algorithm proposed in the litera-
ture has been that of Moore and Bard (1990). We do not have the test set of Moore
and Bard (1990) or an implementation of their algorithm available, so a comprehen-
sive comparison to their algorithm is not feasible. In order to provide some basis for
comparison, we did examine the branch-and-cut tree constructed by our algorithm
on one of the examples from their original paper. The feasible region of the IBLP
and our branch-and-cut tree are shown in Figure 3. In this simple case, our algo-
rithm generated a total of seven nodes, and processed five, while the same example
in the original paper required twelve nodes. Of course, this comparison is only a
single instance, but examination of the two search trees does provide some evidence
for our intuition that certain aspects of Moore and Bard’s algorithm, such as the
requirement to branch on integer variables, result in a less efficient search.

We also tested our algorithm on a set of interdiction problems, in which the
lower-level problems were binary knapsack problems with a single constraint.
The goal of the upper-level DM was to minimize the maximum profit achievable
by the lower-level DM by fixing a subset of the variables in the lower-level problem
to zero. A cost was associated with the fixing of each lower-level variable to zero
and the upper-level problems contained a single constraint, representing the avail-
able interdiction budget. To create these instances, data files describing bicriteria

1 2 3 4

3

1

2

x

y
FI

F

y≥ 1

y≥ 2

y≤ 0

y≤ 1

x≤ 1

x≥ 3

x≥ 2

(3,1), 5

Fig. 3 Example 2 from Moore and Bard (1990) and the resulting branch-and-cut tree.
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Table 1 Summary results from the knapsack interdiction.

Maximum Infeasibility Strong Branching
2n Avg Nodes Avg Depth Avg CPU (s) Avg Nodes Avg Depth Avg CPU (s)
20 1801 16.45 3.17 1125 16.95 4.69
22 3538 18.25 6.63 1860 17.40 9.13
24 7034 20.20 13.27 3314 19.65 17.50
26 13867 22.00 27.54 6294 20.20 35.84
28 26155 23.85 60.08 11915 23.00 71.90
30 60626 26.65 124.84 23917 24.15 145.99
32 125840 26.75 249.19 45879 25.80 296.16
34 253965 29.65 516.65 – – –

knapsack problems were taken from the Multiple Criteria Decision Making library
(Figueira, 2000). The first objective in each file was used to define a lower-level
objective function, while the second objective provided a budget constraint. The
available budget was then chosen to be �∑n

i=1 ai/2�, where ai is the cost of interdict-
ing lower-level variable i. For a knapsack problem with n items, this construction
yielded a problem with 2n variables and n + 2 constraints. All computational tests
were performed on an Intel Xeon 2.4GHz processor with 4GB of memory. Sum-
marized results of two sets of runs—one in which we used maximum infeasibility
branching to select branching candidates and one in which we used strong branch-
ing, are shown in Table 1, where the results for each problem size reflect the average
of 20 instances. Note that a dash indicates that no instances of the corresponding size
were able to be solved due to memory requirements. These results look promising,
but are preliminary at best. For these instances, strong branching reduced the size of
the search tree significantly, but required more computation time. More fine-tuning
of algorithm parameters is needed to determine the best branching strategy.

6 Conclusions

We have discussed the challenges associated with solving integer bilevel linear pro-
gramming problems and described a branch-and-cut algorithm that can be seen as a
generalization of the familiar algorithm used for solution of standard integer linear
programs. The primary advantage of this approach is the ability to exploit the vast
array of existing technology for solving ILPs techniques. The next step in the devel-
opment of this approach is to include a wider range of the supplemental techniques
that have proven critical in our ability to solve difficult integer linear programs
in practice. These include such improvements as the development of preprocess-
ing techniques, primal heuristics, additional classes of valid inequalities, branching
rules based on disjunctions involving more than one variable, and more effective
search strategies. In this paper, we have only suggested a starting point and much
work remains to be done to make these methods practical for large-scale instances.
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A Principled Approach to Mixed Integer/Linear
Problem Formulation

J.N. Hooker

Abstract We view mixed integer/linear problem formulation as a process of
identifying disjunctive and knapsack constraints in a problem and converting them
to mixed integer form. We show through a series of examples that following this
process can yield mixed integer models that automatically incorporate some of the
modeling devices that have been discovered over the years for making the formula-
tion tighter. In one case it substantially improves on the generally accepted model.
We provide a theoretical basis for the process by generalizing Jeroslow’s mixed
integer representability theorem.

Key words: Mixed integer/linear programming, problem formulation, modeling,
representability

1 Introduction

Mixed integer problem formulation is an art rather than a science, but it need not
be unprincipled. A theorem of Jeroslow (1987), for example, provides guidance for
writing formulations. It states that a problem can be given a mixed integer/linear
formulation if and only if its feasible set is a union of finitely many polyhedra that
satisfy a certain technical condition.

This suggests a disjunctive approach to mixed integer formulation. A union of
polyhedra is represented by a disjunction of linear systems. So if we can understand
a problem as presenting choices between discrete alternatives, we can perhaps write
the choices as disjunctions of linear systems and convert each disjunction to a mixed
integer formulation. In this way we obtain a mixed integer formulation for the entire
problem.

Jeroslow’s disjunctive formulations have the additional advantage that each
disjunction receives a convex hull formulation, the tightest possible mixed
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integer/linear formulation. The continuous relaxation of the formulation describes
the convex hull of the feasible set of the disjunction.

The disjunctive approach provides a useful device for creating mixed integer for-
mulations for many problems, but in other cases it is impractical due to the large
number of disjunctions required. Integer knapsack constraints are particularly trou-
blesome, because the feasible set is a finite union of polyhedra only in the technical
sense that each integer point is a polyhedron. Even this assumes that the feasible set
is finite, and Jeroslow’s theorem is in fact valid only when the integer variables in the
mixed integer formulation are bounded. A purely disjunctive approach is therefore
impractical and unnatural when the problem contains integer knapsack constraints,
as many do.

We therefore propose that mixed integer/linear formulation combines two quite
different kinds of ideas: disjunctions and integer knapsack constraints. We suggest
that by identifying these two elements in a given problem, one can obtain practical
mixed integer formulations in a reasonably principled way. Some of these formula-
tions automatically incorporate nonobvious devices for tightening the formulation
that are part of the folklore of modeling. In at least one case, the formulation is even
better than the generally accepted one.

We ground this approach theoretically by extending Jeroslow’s theorem in a
straightforward way. We show that a problem has a mixed integer/linear formula-
tion if and only if its feasible set is a union of finitely many mixed integer polyhedra
satisfying a technical condition. A mixed integer polyhedron is, roughly speaking,
a polyhedron in which some or all of the variables are required to be integer.

This is more general than Jeroslow’s theorem because it allows for unbounded
integer variables. It also incorporates integer knapsack constraints in a natural way,
because disjunctions of linear systems become disjunctions of inequality systems
that may contain integer knapsack inequalities. A problem consisting entirely of
integer knapsack inequalities is a special case in which the formulation contains one
disjunct. We also show that each disjunction receives a convex hull formulation,
provided the individual disjuncts are convex hull formulations.

Williams (to appear) points out that a representable union of polyhedra can al-
ways be given a “big-M” formulation as well as a convex hull formulation. The
big-M formulation is generally not as tight but contains fewer variables. Thus
Jeroslow’s representability theorem does not rely specifically on giving a convex
hull formulation to disjunctions. We show that the same holds for general mixed
integer representability. Any representable union of mixed integer polyhedra can be
given a big-M mixed integer formulation as well as a convex hull formulation.

The paper has two main parts. The first deals with purely disjunctive formu-
lations, while the second incorporates integer knapsack constraints. The first part
begins with Jeroslow’s result and illustrates it with a fixed charge problem. It also
discusses the issue of when it is advantageous to combine several disjunctions into
one long disjunction. Formulations are then derived for capacitated and uncapaci-
tated facility location problems, using the disjunctive approach. The uncapacitated
formulation avoids a typical beginner’s mistake and thus shows how one may side-
step such pitfalls by following a principled method. Next, a lot sizing problem illus-
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trates how logical constraints can assist problem formulation, although they can in
principle be eliminated. Finally, we discuss big-M disjunctive formulations.

The second main part of the paper begins by generalizing Jeroslow’s repre-
sentability theorem, using both convex hull and big-M disjunctive formulations.
We then formulate a modified facility location problem in which discrete variables
account for the number of vehicles used to transport goods. This example shows
how disjunctions of mixed integer systems, rather than linear systems, can occur in
problem formulations. A package delivery problem then illustrates how a standard
modeling trick falls automatically out of a principled approach. One can therefore
obtain a tight model without knowing the “folklore” of modeling. It also illustrates
how a principled approach leads one to include a redundant constraint that, accord-
ing to conventional wisdom, can serve no purpose in the formulation. Nonetheless,
this constraint makes the problem much easier to solve.

Some of the disjunctive formulations presented here appear in Hooker (2007).
Several examples of mixed integer modeling in general can be found in Williams
(1999).

2 Disjunctive Formulations

Disjunctive formulations are useful when one must make a choice from two or more
alternatives. Problems typically present several such choices, and a disjunctive con-
straint can be written for each. If each constraint is a disjunction of linear systems,
then it can be given a tight mixed/integer linear formulation, yielding a formulation
for the problem as a whole.

We present in this section some examples in which a disjunctive analysis is
the natural one. Further examples can be found in Hooker (2007). We begin with
Jeroslow’s result, which provides the theoretical basis for disjunctive formulation.

2.1 Bounded Mixed Integer Representability

Jeroslow (1987, 1989) defined a subset of R
n to be bounded mixed integer repre-

sentable when it is the feasible set of a linear formulation with continuous and 0-1
variables. More precisely, S ∈ R

n is representable if there is a constraint set of the
following form whose projection onto x is S:

Ax+Bu+Dy ≥ b
x ∈ R

n, u ∈ R
m, yk ∈ {0,1}, all k

(1)

The continuous variables u and discrete variables y can be viewed as auxiliary vari-
ables that help to define the feasible subset of R

n.
The discrete variables are restricted to be 0-1 in this definition, but an equiva-

lent definition can be obtained by replacing the 0-1 variables with general integer
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variables—provided the general integer variables are bounded. This is because a
bounded integer variable yk can be replaced by ∑p

j=0 2 jyk j, where each yk j is 0-1,
and a system of the form (1) results. Thus the term “bounded” in “bounded mixed
integer representability” does not mean that the set to be represented is bounded. It
means that the integer variables are bounded.

Jeroslow proved that S ∈ R
n is representable in this sense if and only if S is a

union of finitely many polyhedra that have the same recession cone. The recession
cone of a polyhedron P is the set of directions in which P is unbounded, or more
precisely, the set of vectors r ∈ R

n such that, given any u ∈ P, u + β r ∈ P for all
β ≥ 0.

The proof is based on the fact that representability in Jeroslow’s sense is equiva-
lent to representability by a disjunctive constraint of the form

∨

k∈K

(
Akx ≥ bk

)

(2)

where K is finite. The disjunction (2) requires that x satisfy at least one of the lin-
ear systems Akx ≥ bk. Each system Akx ≥ bk can be viewed as defining one of the
polyhedra Pk that make up S, so that S =

⋃
k∈K Pk.

Theorem 1 (Jeroslow). A set S ⊂ R
n is bounded mixed integer representable if and

only if S is the union of finitely many polyhedra having the same recession cone. In
particular, S is bounded mixed integer representable if and only if S is the projection
onto x of a mixed integer formulation with following form:

x = ∑
k∈K

xk

Akxk ≥ bkyk, k ∈ K

∑
k∈K

yk = 1, yk ∈ {0,1}, k ∈ K

(3)

The mixed integer formulation (3) represents the disjunctive problem (2). In par-
ticular, yk = 1 when x satisfies the kth disjunct of (2). Note that x is disaggregated
into a sum of continuous variables xk, which play the role of auxiliary variables u in
(1). Thus (3) has the form (1).

The mixed integer formulation (3) not only represents (2) but is a convex hull
formulation of (2). That is, the continuous relaxation of (3) has a feasible set that,
when projected onto x, is the convex hull of the feasible set of (2). The continuous
relaxation of (3) is obtained by replacing yk ∈ {0,1} with yk ≥ 0 for each k.

2.2 Example: Fixed-Charge Function

Bounded mixed integer representability is illustrated by the fixed-charge function,
which occurs frequently in modeling. Suppose the cost x2 of manufacturing quantity



A Principled Approach to Mixed Integer/Linear Problem Formulation 83



.......................
.........................

.........................
........................

.........................
.........................

.........................
........................

.........................
.........................

........................
.........................

.........................
.........................

...........

.........................
.........................

........................
.........................

.........................
.........................

........................
.........................

.........................
........................

.........................
.........................

........................
.........................

..........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..

x2

x1

x2

x1

f ..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

.

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..........................

...................

Recession
cone of P1

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..........................

...................

.......................
.........................

.........................
........................

.........................
........................

.........................
........................
...................

Recession
cone of P 2

.......................................................................................................................................................................................................................................................................................... ..................................................................................................................................................................................................................................................................................................................................................

.......................
.........................

.........................
........................

.........................
.........................

.........................
........................

.........................
.........................

........................
.........................

.........................
.........................

...........

.........................
.........................

........................
.........................

.........................
.........................

........................
.........................

.........................
........................

.........................
.........................

........................
.........................

..........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..

.............
.............
..............
.............
.............
.............
..............
.............
.............
.............
..............
.............
.............
.............
..............
.............
.............
.............
.............
..............
.............
..

f

U1

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
..
..
....

...
.

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..........................

...................

Recession
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a b

Fig. 1 (a) Feasible set of a fixed-charge problem, consisting of the union of polyhedra P1 (heavy
vertical line) and P2 (shaded area). (b) Feasible set of the same problem with the bound x1 ≤ U1,
where P′

2 is the darker shaded area. The convex hull of the feasible set is the entire shaded area.

x1 of some product is to be minimized. The cost is zero when x1 = 0 and is f + cx1
otherwise, where f is the fixed cost and c the unit variable cost.

The problem can be viewed as minimizing x2 subject to (x1,x2) ∈ S, where S is
the set depicted in Figure 1(a). S is the union of two polyhedra P1 and P2, and the
problem is to minimize x2 subject to the disjunction

(
x1 = 0
x2 ≥ 0

)

∨
(

x2 ≥ cx1 + f
x1 ≥ 0

)

where the disjuncts correspond respectively to P1 and P2. In general there would
be additional constraints in the problem, but we focus here on the fixed-charge
formulation.

The recession cone of P1 is P1 itself, and the recession cone of P2 is the set of
all vectors (x1,x2) with x2 ≥ cx1 ≥ 0. Thus, by Theorem 1, S is not bounded mixed
integer representable. Indeed, the formulation (3) becomes

x1 = x1
1 + x2

1

x2 = x1
2 + x2

2

x1
1 ≤ 0

x1
1, x1

2 ≥ 0

−cx2
1 + x2

2 ≥ f y2

x2
1 ≥ 0

y1 + y2 = 1

y1,y2 ∈ {0,1}
(4)

and does not correctly represent S, as can be seen by simplifying (4). Only one 0-1
variable appears, which can be renamed y. Also, we can set x2

1 = x1 (since x1
1 = 0)

and x1
2 = x2 − x2

2, which yields

x1 ≥ 0, x2 − x2
2 ≥ 0, x2

2 − cx1 ≥ f y, y ∈ {0,1}
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Minimizing x2 subject to this is equivalent to minimizing x2 subject to

x1 ≥ 0, x2 − cx1 ≥ f y, y ∈ {0,1}

The projection onto (x1,x2) is the union of the two polyhedra obtained by setting
y = 0 and y = 1. The projection is therefore the set of all points satisfying x2 ≥ cx1,
x1 ≥ 0, which is clearly different from P1∪P2. The formulation is therefore incorrect.

However, if we place an upper bound U1 on x1, the problem is now to minimize
x2 subject to

(
x1 = 0
x2 ≥ 0

)

∨
(

x2 ≥ cx1 + f
0 ≤ x1 ≤U1

)

(5)

The recession cone of each of the resulting polyhedra P1,P′
2 (Figure 1b) is the same

(namely, P1), and the feasible set S′ = P1 ∪P′
2 is therefore bounded mixed integer

representable. The convex hull formulation is

x1
1 ≤ 0

x1
1,x

2
2 ≥ 0

−cx2
1 + x2

2 ≥ f y2

0 ≤ x2
1 ≤U1y2

x1 = x1
1 + x2

1

x2 = x1
2 + x2

2

y1 + y2 = 1

y1,y2 ∈ {0,1}

Again the model simplifies:

x1 ≤U1y, x2 ≥ f y+ cx1, x1 ≥ 0, y ∈ {0,1} (6)

Obviously, y encodes whether the quantity produced is zero or positive, in the former
case (y = 0) forcing x1 = 0, and in the latter case incurring the fixed charge f . Big-M
constraints like x1 ≤ U1y, which are very common in mixed integer models, can
often be viewed as originating from upper bounds that are imposed to ensure that
the polyhedra concerned have the same recession cone.

Big-Ms do not always have this origin, however. For example, a disjunctive con-
straint (2) can be given a big-M disjunctive formulation, which contains fewer con-
tinuous variables than a convex hull formulation but may not be as tight. This type
of formulation is discussed further in Section 2.6.

2.3 Multiple Disjunctions

A mixed integer formulation may consist of multiple convex hull formulations, one
for each disjunction. Such a formulation does not in general provide a convex hull
relaxation for the problem as a whole. Consider, for example, the constraint set

(
x1 = 0

x2 ∈ [0,1]

)

∨
(

x2 = 0
x1 ∈ [0,1]

)

(a)

(
x1 = 0

x2 ∈ [0,1]

)

∨
(

x2 = 1
x1 ∈ [0,1]

)

(b)

(7)
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Fig. 2 Convex hull relaxation of (8a) (horizontal shading), convex hull relaxation of (8b) (vertical
shading), continuous relaxation of (8) (heavy shading), and convex hull relaxation of (7) (heavy
vertical line segment).

The convex hull formulations of the two disjunctions are

0 ≤ x1 ≤ 1− y1, 0 ≤ x2 ≤ y1, y1 ∈ {0,1} (a)
0 ≤ x1 ≤ 1− y2, 1− y2 ≤ x2 ≤ 1, y2 ∈ {0,1} (b)

(8)

The feasible set of (8), projected onto x1,x2, is the heavy vertical line segment in
Fig. 2, and its convex hull is the same line segment. The convex hulls described by
continuous relaxations of (a) and (b) are

x1 + x2 ≤ 1, x1,x2 ≥ 0 (a)
x1 ≤ x2, x1 ≥ 0, x2 ≤ 1 (b)

(9)

and also appear in the figure. The continuous relaxation of (8) corresponds to the
intersection of these two convex hulls and is therefore weaker than a convex hull
relaxation of (8).

A convex hull formulation can always be obtained for multiple disjunctions by
taking the product of the disjunctions to obtain a single disjunction, which can then
be given a convex hull formulation. That is, two disjunctions A∨B and C∨D can
be written as a product AC∨AD∨BC∨BD, where AC refers to the linear system
consisting of both A and C. For example, the two disjunctions of (7) yield the product

(
x1 = 0

x2 ∈ [0,1]

)

∨

⎛

⎝
x1 = 0
x2 = 1

x1,x2 ∈ [0,1]

⎞

⎠∨

⎛

⎝
x1 = 0
x2 = 0

x1,x2 ∈ [0,1]

⎞

⎠∨

⎛

⎝
x2 = 0
x2 = 1

x1 ∈ [0,1]

⎞

⎠ (10)

The mixed integer formulation of (10) simplifies to x1 = 0, 0 ≤ x2 ≤ 1.
Although the convex hull formulation of the product simplifies in this example,

formulating a product of disjunctions is not in general a practical option because
the number of disjuncts grows exponentially. However, it may be useful to take a
product of certain subsets of disjunctions. This can strengthen the relaxation, but
only when the disjunctions have variables in common, due to the following lemma.
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Lemma 1. If two disjunctions D1,D2 of linear systems have no variables in com-
mon, then the convex hull formulations of D1 and D2, when taken together, already
provide a convex hull formulation of {D1,D2}.

Proof. Let Fi be the feasible set of Di, for i = 1,2. It suffices to show that
conv(F1 ∩F2) = conv(F1)∩ conv(F2), where conv(Fi) is the convex hull of Fi. Ob-
viously, conv(F1 ∩F2) ⊂ conv(F1)∩ conv(F2). To show that conv(F1)∩ conv(F2) ⊂
conv(F1 ∩F2), take any x̄ ∈ conv(F1)∩ conv(F2), and let x̄ = (ū, v̄), where u and v
consist of the variables in D1 and D2, respectively. Since x̄ ∈ conv(F1),

(ū, v̄) = α(a1,c2)+(1−α)(b1,d2) (11)

where α ∈ [0,1] and (a1,c2),(b1,d2) ∈ F1. Similarly,

(ū, v̄) = β (c1,a2)+(1−β )(d1,b2) (12)

where β ∈ [0,1] and (c1,a2),(d1,b2) ∈ F2. Using (11)–(12), it can be readily
checked that (ū, v̄) is a convex combination of four points:

αβ (a1,a2)+α(1−β )(a1,b2)+(1−α)β (b1,a2)+(1−α)(1−β )(b1,b2) (13)

where (11) is used to verify the first component ū and (12) to verify the second
component v̄. But (a1,a2) ∈ F1 ∩F2 because (a1,c2) ∈ F1, (c1,a2) ∈ F2, and D1 and
D2 have no variables in common. Similarly, the other three points belong to F1 ∩F2,
and x̄ ∈ conv(F1 ∩F2). �

2.4 Example: Facility Location

A simple capacitated facility location problem illustrates how a disjunctive formu-
lation can be developed in practice. There are m possible locations for facilities, and
n customers who obtain products from the facilities. A facility installed at location i
incurs fixed cost fi and has capacity Ci. Each customer j has demand D j, and the
unit cost of shipping from facility i to customer j is ci j. The problem is to decide
which facilities to install, and how to supply the customers, so as to minimize total
fixed and variable costs.

Each location i either receives a facility or not. If it does, the total shipments out
of the location must be at most Ci, and a fixed cost is incurred. Otherwise nothing is
shipped out of the location. Thus if xi j is the quantity shipped from i to j, we have
the disjunction

⎛

⎜
⎜
⎜
⎝

n

∑
j=1

xi j ≤Ci

xi j ≥ 0, all j
zi = fi

⎞

⎟
⎟
⎟
⎠

∨
(

xi j = 0, all j
zi = 0

)

(14)
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where zi represents the fixed cost incurred at location i. In addition, each customer
j must receive adequate supply:

m

∑
i=1

xi j = D j, all j (15)

This can be viewed as a disjunction with one disjunct. The problem is to minimize

m

∑
i=1

(

zi +
n

∑
j=1

ci jxi j

)

(16)

subject to (14) and (15).
Rather than writing a convex hull formulation for the product of the disjunctions

(14) and the disjunction (15), which is a very complicated matter, we can formulate
each disjunction individually. The convex hull formulation of (14) is

n

∑
j=1

xi j ≤Ciyi, zi = fiyi, yi ∈ {0,1}, xi j ≥ 0, all j (17)

and (15) is its own convex hull formulation. A mixed integer formulation can now
be obtained by minimizing (16) subject to (15) and (17) for all i. This immediately
simplifies to

min
m

∑
i=1

(

fiyi +
n

∑
j=1

ci jxi j

)

(a)

n

∑
j=1

xi j ≤Ciyi, all i (b)

m

∑
i=1

xi j = D j, all j (c)

yi ∈ {0,1}, xi j ≥ 0, all i, j

(18)

This formulation is succinct enough, and its continuous relaxation tight enough, to
be useful in practice.

A disjunctive approach to formulation can sometimes lead to tighter relaxations
than one would obtain otherwise. A common beginner’s mistake, for example, is to
model the uncapacitated facility location problem as a special case of the capaci-
tated problem. In the uncapacitated problem, there is no limit on the capacity of each
facility, and xi j represents the fraction of customer j’s demand supplied by facility i,
so that each D j = 1. Although there is no capacity limit, one can observe that each
facility will ship at most n units and therefore let Ci = n in the formulation (18) for
the capacitated problem. This is a valid formulation of the uncapacitated problem,
but there is a much tighter one.

We start with a disjunctive conception of the problem. If facility i is installed, it
supplies at most one unit to each customer and incurs cost fi. If it is not installed,
then it supplies nothing:
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(
0 ≤ xi j ≤ 1, all j

zi = fi

)

∨
(

xi j = 0, all j
zi = 0

)

The convex hull formulation of this disjunction is

zi = fiyi, yi ∈ {0,1}, 0 ≤ xi j ≤ yi, all j (19)

This yields a tighter formulation than (18):

min
m

∑
i=1

(

fiyi +
n

∑
j=1

ci jxi j

)

(a)

xi j ≤ yi, all i, j (b)
m

∑
i=1

xi j = 1, all j (c)

yi ∈ {0,1}, xi j ≥ 0, all i, j

(20)

To see that it is tighter, note first that constraints in (18) and (20) are the same except
for (b), and that (20b) implies (18b) because the latter is the sum of the constraints
in the former. Furthermore, setting (for example) yi = 1/2 for each i, xi j = 0 for
each i and j ≤ n/2, and xi j = 1 for each i and j > n/2 (supposing n is even) satisfies
the continuous relaxation of (18) but not that of (20).

This is an instance in which the more succinct relaxation is not the tighter one.
The smaller formulation (18) with only 2m constraints (other than variable bounds)
is not as tight as (20), which has m(n+1) constraints.

2.5 Example: Lot Sizing with Setup Costs

A lot sizing problem with set up costs illustrates how logical relations among linear
systems can be captured with logical constraints that involve the 0-1 variables. Log-
ical constraints do not enhance the representability of mixed integer formulations,
but they may be convenient in practice.

In the lot sizing problem, here is a demand Dt for a product in each period t. No
more than Ct units of the product can be manufactured in period t, and any excess
over demand is stocked to satisfy future demand. If there is no production in the
previous period, then a setup cost of ft is incurred. The unit production cost is pt ,
and the unit holding cost per period is ht . A starting stock level s0 is given. The
objective is to choose production levels in each period so as to minimize total cost
over all periods.

Let xt be the production level in period t and st the stock level at the end of the
period. In each period t, there are three options to choose from: (1) start producing
(with a setup cost), (2) continue producing (with no setup cost), and (3) produce
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nothing. If vt is the setup cost incurred in period t, these correspond respectively to
the three disjuncts

(
vt ≥ ft

0 ≤ xt ≤Ct

)

∨
(

vt ≥ 0
0 ≤ xt ≤Ct

)

∨
(

vt ≥ 0
xt = 0

)

(21)

There are logical connections between the choices in consecutive periods. If we
schematically represent the disjunction (21) as

Yt ∨Zt ∨Wt (22)

the logical connections can be written

Zt ⇒ (Yt−1 ∨Zt−1)
Yt ⇒ (¬Yt−1 ∧¬Zt−1)

(23)

where ¬ means “not” and ∧ means “and.” The inventory balance constraints are

st−1 + xt = Dt + st , st ≥ 0, t = 1, . . . ,n (24)

where st is the stock level in period t and s0 is given. The problem is to minimize

n

∑
t=1

(ptxt +htst + vt) (25)

subject to (21) and (23) for all t ≥ 1 and (24).
A convex hull formulation for (21) is

v1
t ≥ ftyt ,

0 ≤ x1
t ≤Ctyt ,

vt = v1
t + v2

t + v3
t ,

v2
t ≥ 0,

0 ≤ x2
t ≤Ctzt ,

xt = x1
t + x2

t + x3
t

v3
t ≥ 0

x3
t = 0

yt + zt +wt = 1, yt ,zt ,wt ∈ {0,1}

(26)

Thus, zt = 1 indicates a startup, yt = 1 continued production, and wt = 1 no pro-
duction in period t. To simplify (26), we first eliminate wt , so that yt + zt ≤ 1. Since
x3

t = 0, we can set x1 = x1
1 + x2

2, which allows us to replace the two capacity con-
straints in (26) by 0 ≤ xt ≤Ct(yt + zt). Finally, vt can replace v1

t , because vt is being
minimized and v2

t and v3
t do not appear. The convex hull formulation (26) becomes

vt ≥ ftyt , 0 ≤ xt ≤Ct(yt + zt)
yt + zt ≤ 1, yt ,zt ∈ {0,1} (27)

The logical constraints (23) can be formulated

zt ≤ yt−1 + zt−1, yt ≤ 1− yt−1 − zt−1 (28)
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The second constraint is correct because we know yt + zt ≤ 1. The entire problem
can now be formulated as minimizing (25) subject to (24) and (27)–(28) for all t ≥ 1.

The problem can also be formulated without logical constraints. We first write the
logical constraints (23) as a set of disjunctions (i.e., in conjunctive normal form):

¬Zt ∨Yt−1 ∨Zt−1

¬Yt ∨¬Yt−1

¬Yt ∨¬Zt−1

We now replace each negated term with the disjunction of the remaining terms in
the disjunction (22) that contains it:

Yt ∨Wt ∨Yt−1 ∨Zt−1

Zt ∨Wt ∨Zt−1 ∨Wt−1

Zt ∨Wt ∨Yt−1 ∨Wt−1

(29)

We can now drop the logical constraints (28) and add convex hull formulations of
the disjunctions in (29). This kind of maneuver can sometimes result in a tighter
formulation, but it may not be worth the additional variables and constraints.

2.6 Big-M Disjunctive Formulations

A disjunction (2) of linear systems can be given a big-M disjunctive formulation as
well as a convex hull formulation. The big-M formulation has fewer variables be-
cause the continuous variables are not disaggregated. It may be preferable in practice
when there are a large number of disjuncts, even though its continuous relaxation
can be significantly weaker than that of a convex hull formulation.

As noted earlier, Jeroslow’s bounded representability theorem does not rely
specifically on a convex hull formulation of disjunctions (Williams, to appear). Any
finite union of polyhedra with the same recession cone can be given a big-M formu-
lation as well as a convex hull formulation. We extend this result to general repre-
sentability in Section 3.2.

A big-M disjunctive formulation for (2) has the form

Akx ≥ bk −Mk(1− yk), k ∈ K

∑
k∈K

yk = 1, yk ∈ {0,1}, k ∈ K (30)

where Mk is set to a value sufficiently large that the kth disjunct is not constraining
when yk = 0. Thus the kth disjunct is enforced when yk = 1, but through a different
mechanism than in the convex hull formulation.

The formulation (30) is sharp when the Mks are as small as possible. This is
achieved by observing that if x does not belong to the polyhedron defined by the kth
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disjunct, then it must belong to at least one of the other polyhedra. Thus allows us
to set

Mk = bk −min
��=k

{
min

x

{
Akx

∣
∣
∣ A�x ≥ b�

}}
(31)

where the minima are taken componentwise; that is, min{(α1,α2),(β1,β2)} =
(min{α1,α2},min{β1,β2}). Computation of the big-Ms in this manner requires
solution of (|K| − 1)∑k∈K mk small linear programming problems of the form
minx{Ak

i x |A�x ≥ b�}, where mk is the number of rows Ak
i of Ak, but the resulting for-

mulation contains no disaggregated variables xk. The linear programming problems
must obviously be bounded, but this is assured by the condition that the polyhedra
have the same recession cone.

If finite bounds L ≤ x ≤U are available for the variables x = (x1, . . . ,xn), big-Ms
can be calculated more rapidly using the formula

Mk = bk −
n

∑
j=1

min
{

0,Ak
j

}
Uj −

n

∑
j=1

max
{

0,Ak
j

}
L j

where Ak
j is column j of Ak. The resulting big-Ms, however, are in general larger

than obtained by (31).
Sharp big-M formulations are sometimes convex hull formulations. This is true,

for example, of the sharp big-M formulation for the fixed charge problem of
Section 2.2. It simplifies to a formulation that is identical to the convex hull for-
mulation (6). In other cases, however, a sharp big-M formulation can provide a
relaxation much weaker than the convex hull. For example, the disjunction

(−x1 + x2 ≥ 1
x1,x2 ∈ [0,2]

)

∨
(

2x1 − x2 ≥ 2
x1,x2 ∈ [0,2]

)

(32)

has the sharp big-M formulation

−x1 +2x2 ≥−1+2y
2x1 − x2 ≥ 2−4y
x1,x2 ∈ [0,2]
y1 + y2 = 1, y1,y2 ∈ {0,1}

(33)

The projection of the continuous relaxation onto (x1,x2) is described by x1 +x2 ≥ 0,
x1,x2 ∈ [0,2] (Fig. 3). This is much weaker than the convex hull, which is described
by x1 + x1 ≥ 1, x1,x2 ∈ [0,2]. In fact, it adds nothing to the box constraints x1,x2 ∈
[0,2] that are already part of both disjuncts.

Disjunctions of single linear inequalities (i.e., each mk = 1) have special structure
that allow one to eliminate the 0-1 variables yk from a sharp big-M formulation and
obtain a relatively simple formulation (Beaumont, 1990). This and other formula-
tions are discussed in Hooker (2007).
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Fig. 3 Feasible set of disjunction (32) (dark shaded area), convex hull of the feasible set (entire
shaded area), and feasible set of the continuous relaxation of the sharp big-M formulation (33)
(entire box).

3 Knapsack Modeling

Mixed integer formulations frequently involve counting ideas that can be expressed
as knapsack inequalities. For present purposes we can define a knapsack inequal-
ity to be any inequality of the form ax ≤ α , where some of the variables x j may
be required to take nonnegative integer values. Variable x j can be interpreted as
the quantity (integer or continuous) of item j that is chosen for some purpose (per-
haps to be placed in a knapsack). The left-hand side of the inequality therefore
counts the total quantity selected, perhaps weighting some items differently than
others. The right-hand side places a bound on the total weight (perhaps the knap-
sack capacity).

Problems of this sort include set packing, set covering, and set partitioning prob-
lems. Capital budgeting problems provide textbook examples. Countless other prob-
lems use constraints of this form, containing both continuous and integer-valued
variables.

Knapsack constraints capture a very different modeling idea that the disjunctive
constraints discussed earlier. The bounded mixed integer representability theorem
(Theorem 1) technically accounts for knapsack problems, provided the variables are
bounded, but only by brute force. For example, a single knapsack constraint with
bounded integer variables defines a feasible set consisting of integer lattice points.
The points can be regarded as finitely many recession cones that have the same
recession cone (namely, the origin).

However, Theorem 1 can be generalized to account for knapsack constraints in
a more natural way. This also enhances representability, because the integer vari-
ables need not be bounded. We begin with this task and then illustrate how problem
formulation based on this result can lead to tight formulations.
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3.1 General Mixed Integer Representability

It is convenient at this point to assume that mixed integer formulations consist of
rational data. This has no practical repercussions but allows us to generalize the
idea of a recession cone more easily. We also regard a polyhedron as a set of the
form {x ∈ R

n | Ax ≥ b}, where A,b consist of rational data.
We define a subset S of R

n ×Z
p to be mixed integer representable if there is a

constraint set of the following form whose projection onto x is S:

Ax+Bu+Dy ≥ b
x ∈ R

n ×Z
p, u ∈ R

m, yk ∈ {0,1}, all k
(34)

Let us say that a mixed integer polyhedron in R
n+p is the nonempty intersection

of any polyhedron in R
n+p with R

n ×Z
p. We will show that a subset of R

n ×Z
p

is mixed integer representable if and only if it is the union of finitely many mixed
integer polyhedra that have the same recession cone.

This requires that we define the recession cone of a mixed integer polyhedron.
Let us say that rational vector d is a recession direction of mixed integer polyhedron
P ⊂ R

n ×Z
p if it is a recession direction of some polyhedron Q ⊂ R

n+p for which
P = Q∩(Rn×Z

p). Then the recession cone of P is the set of its recession directions.
The definition is well formed because of the following lemma.

Lemma 2. All polyhedra in R
n+p having the same nonempty intersection with R

n×
Z

p have the same recession cone.

Proof. Let Q = {x∈R
n+p |Ax≥ b} and Q′ = {x∈R

n+p |A′x≥ b′} be polyhedra,
and suppose that Q∩ (Rn ×Z

p) = Q′ ∩ (Rn ×Z
p) = P, where P is nonempty. It

suffices to show that any recession direction d of Q is a recession direction of Q′.
Take any u ∈ P. Since u ∈ Q, we have u + αd ∈ Q for any α ≥ 0. Furthermore,
because d is rational, u+ᾱd ∈Q∩(Rn×Z

p) for some sufficiently large ᾱ > 0. Now
if d is not a recession direction of Q′, then because u∈Q′, we have u+βᾱd �∈Q′ for
some sufficiently large integer β ≥ 1. Thus in particular u+βᾱd �∈ Q′ ∩ (Rn ×Z

p).
But because β is integer, u + βᾱd ∈ Q∩ (Rn ×Z

p). This violates the assumption
that Q,Q′ have the same intersection with R

n ×Z
p. �

We can now state a necessary and sufficient condition for mixed integer repre-
sentability. The proof is a straightforward extension of Jeroslow’s proof (Jeroslow,
1987).

Theorem 2. A nonempty set S ⊂ R
n ×Z

p is mixed integer representable if and only
if S is the union of finitely many mixed integer polyhedra in R

n×Z
p having the same

recession cone. In particular, S is mixed integer representable if and only if S is the
projection onto x of a mixed integer formulation of the following form:
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x = ∑
k∈K

xk

Akxk ≥ bkyk, k ∈ K

∑
k∈K

yk = 1, yk ∈ {0,1}, k ∈ K

x ∈ R
n ×Z

p

(35)

Proof. Suppose first that S is the union of mixed integer polyhedra Pk, k ∈ K, that
have the same recession cone. Each Pk has the form {x | Akxk ≥ bk}∩ (Rn ×Z

p). It
can be shown as follows that S is represented by (35), and is therefore representable,
because (35) has the form (34). Suppose first that x ∈ S. Then x belongs to some Pk∗ ,
which means that x is feasible in (35) when yk∗ = 1, yk = 0 for k �= k∗, xk∗ = x, and
xk = 0 for k �= k∗. The constraint Akxk ≥ bkyk is satisfied by definition when k = k∗,
and it is satisfied for other k’s because xk = yk = 0.

Now suppose that x, y and xk satisfy (35). Let Qk = {x | Akx ≥ bk}, so that Pk =
Qk ∩ (Rn ×Z

p). To show that x ∈ S, note that exactly one yk, say yk∗ , is equal to 1.
Then Ak∗xk∗ ≥ bk∗ is enforced, which means that xk∗ ∈ Qk∗ . For other k’s, Akxk ≥ 0.
Thus, Ak(βxk) ≥ 0 for all β ≥ 0, which implies that xk is a recession direction for
Qk. Because by hypothesis all the Pks have the same recession cone, all Qks have the
same recession cone. Thus each xk (k �= k∗) is a recession direction for Qk∗ , which
means that x = xk∗ +∑k �=k∗ xk belongs to Qk∗ and therefore to

⋃
k∈K Qk. But because

x ∈ R
n ×Z

p, we have

x ∈
(

⋃

k∈K

Qk

)

∩ (Rn ×Z
p) =

⋃

k∈K

(Qk ∩ (Rn ×Z
p)) =

⋃

k∈K

Pk

To prove the converse of the theorem, suppose that S is represented by (34). To
show that S is a finite union of mixed integer polyhedra, let P(ȳ) be the set of all
x that are feasible in (34) when y = ȳ ∈ {0,1}|K|. Because S is nonempty, P(ȳ) is
nonempty for at least one ȳ. Thus we let Y be the set of all ȳ for which P(ȳ) is
nonempty. So P(ȳ) is a mixed integer polyhedron for all ȳ ∈ Y , and S =

⋃
ȳ∈Y P(ȳ).

To show that the P(ȳ)’s have the same recession cone, note that

P(ȳ) =

⎧
⎨

⎩
x ∈ R

n ×Z
p

∣
∣
∣
∣
∣
∣

⎡

⎣
A B D
0 0 1
0 0 −1

⎤

⎦

⎡

⎣
x
u
y

⎤

⎦ ≥

⎡

⎣
b
ȳ

−ȳ

⎤

⎦ for some u,y

⎫
⎬

⎭

But x′ is a recession direction of P(ȳ) if and only if (x′,u′,y′) is a recession direc-
tion of ⎧

⎨

⎩

⎡

⎣
x
u
y

⎤

⎦ ∈ R
n ×Z

p ×R
m+|K|

∣
∣
∣
∣
∣
∣

⎡

⎣
A B D
0 0 1
0 0 −1

⎤

⎦

⎡

⎣
x
u
y

⎤

⎦ ≥

⎡

⎣
b
ȳ

−ȳ

⎤

⎦

⎫
⎬

⎭

for some u′,y′. The latter is true if and only if
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⎡

⎣
A B D
0 0 1
0 0 −1

⎤

⎦

⎡

⎣
x′

u′

y′

⎤

⎦ ≥

⎡

⎣
0
0
0

⎤

⎦

This means that the recession directions of P(ȳ) are the same for all ȳ∈Y , as desired.
�

The theorem says in part that any nonempty mixed integer representable subset
of R

n ×Z
p is the feasible set of some disjunction

∨

k∈K

(
Akx ≥ bk

x ∈ R
n ×Z

p

)

(36)

This and the following lemma give us a technique for writing a convex hull formu-
lation by conceiving the feasible set as a union of mixed integer polyhedra.

Lemma 3. If each disjunct of (36) is a convex hull formulation, then (35) is a convex
hull formulation of (36).

Proof. It is clear that x satisfies (36) if any only if x satisfies (35) for some
(xk,yk | k ∈ K). It remains to show that, given any feasible solution x̄, (x̄k, ȳk | k ∈ K)
of the continuous relaxation of (35), x̄ belongs to the convex hull of the feasible set
of (36). But x̄ is the convex combination

x̄ = ∑
k∈K+

ȳk
x̄k

ȳk
(37)

where K+ = {k ∈K | ȳk > 0}. Furthermore, each point x̄k/ȳk satisfies Ak(x̄k/ȳk)≥ bk

because (x̄k, ȳk) satisfies Akx̄k ≥ bkȳk. Thus x̄k/ȳk satisfies the continuous relaxation
of the kth disjunct of (36) and so, by hypothesis, belongs to the convex hull of the
feasible set of that disjunct. This and (37) imply that x̄ belongs to the convex hull of
the feasible set of (36). �

3.2 Big-M Mixed Integer Disjunctive Formulations

As noted earlier, any set that is bounded mixed integer representable can be rep-
resented by a big-M as well as a convex hull disjunctive formulation (Williams, to
appear). This is likewise true of general mixed integer representable sets. Let us say
that a sharp big-M mixed integer disjunctive formulation has the form

Akx ≥ bk −Mk(1− yk), k ∈ K

x ∈ R
n ×Z

p, ∑
k∈K

yk = 1, yk ∈ {0,1}, k ∈ K (38)
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where
Mk = bk −min

��=k

{
min

x

{
Akx

∣
∣
∣ A�x ≥ b�, x ∈ R

n ×Z
p
}}

(39)

Theorem 3. If set S ⊂ R
n ×Z

p is the union of finitely many mixed integer poly-
hedra Pk = Qk ∩ (Rn ×Z

p) (for k ∈ K) having the same recession cone, where
Qk = {x | Akx ≥ bk}, then S is represented by the sharp big-M mixed integer dis-
junctive formulation (38).

Proof. System (38) clearly represents S if every component of Mk as given by
(39) is finite. We therefore suppose that some component i of some Mk is infinite,
which implies that min

{
Ak

i x | A�x ≥ b�
}

is unbounded for some � �= k. Since P� is
nonempty, this means there is a point x̄ ∈ P� and a rational direction d such that
Ak

i (x̄+αd) is unbounded in a negative direction as α → ∞, and such that x̄+αd ∈
Q� for all α ≥ 0. This means d is a recession direction of P� and therefore, by
hypothesis, a recession direction of Pk. Thus by Lemma 2, d is a recession direction
of Qk. Since Pk is nonempty, there is an x′ satisfying Akx′ ≥ bk, and for any such x′

we have Ak(x′ + αd) ≥ bk for all α ≥ 0. Thus Ak(x̄ + αd) ≥ bk + Ak(x̄− x′) for all
α ≥ 0, which means that Ak

i (x̄ + αd) cannot be unbounded in a negative direction
as α → ∞. �

3.3 Example: Facility Location

An extension of the capacitated facility location problem considered earlier illus-
trates the usefulness of extending representability to disjunctions of mixed integer
systems. Before, the cost of transporting quantity xi j from facility location i to cus-
tomer j was a continuous quantity ci jxi j. Now we suppose that goods transported on
route (i, j) must be loaded into one or more vehicles, each with capacity Ki j, where
each vehicle incurs a fixed cost ci j. If wi j is the number of vehicles used, then we
have a disjunction of mixed integer systems for each location i:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

n

∑
j=1

xi j ≤Ci

0 ≤ xi j ≤ Ki jwi j, all j
zi = fi

wi j ∈ Z, all j

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∨
(

xi j = 0, all j
zi = 0

)

(40)

The mixed integer polyhedra defined by the two disjuncts have different reces-
sion cones. The cone for the first polyhedron is {(xi,wi) | xi = 0, wi ≥ 0} where
xi = (xi1, . . . ,xin) and wi = (wi1, . . . ,win), while the cone for the second is {(xi,wi)
| xi = 0}. However, if we add the innocuous constraint wi ≥ 0 to the second disjunct,
the two disjuncts have the same recession cone and can therefore be given a convex
hull formulation:
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n

∑
j=1

xi j ≤Ciyi, all i

0 ≤ xi j ≤ Ki jwi j, all j
zi = fiyi, yi ∈ {0,1}, wi j ∈ Z, all j

(41)

This yields a mixed integer formulation for the problem:

min
m

∑
i=1

(

fiyi +
n

∑
j=1

ci jwi j

)

n

∑
j=1

xi j ≤Ciyi, all i

0 ≤ xi j ≤ Ki jwi j, all i, j
m

∑
i=1

xi j = D j, all j

yi ∈ {0,1}, wi j ∈ Z, all i, j

(42)

Using a sharp big-M mixed integer formulation in place of the convex hull formula-
tion (41) yields the same problem formulation (42).

3.4 Example: Package Delivery

A final example, adapted from Aardal (1998) and Trick (2005), illustrates how the
approach presented here can result in a formulation that is superior to the standard
formulation. A collection of packages are to be delivered by several trucks, and each
package j has size a j. Each available truck i has capacity Qi and costs ci to operate.
The problem is to decide which trucks to use, and which packages to load on each
truck, to deliver all the items at minimum cost.

We will formulate the problem by analyzing it as a combination of knapsack and
disjunctive ideas. The decision problem consists of two levels: the choice of which
trucks to use, followed by the choice of which packages to load on each truck.
The trucks selected must provide sufficient capacity, which leads naturally to a 0-1
knapsack constraint:

m

∑
i=1

Qiyi ≥
n

∑
j=1

a j, (43)

where each yi ∈ {0,1} and yi = 1 when truck i is selected.
The secondary choice of which packages to load on truck i depends on whether

that truck is selected. This suggests a disjunction of two alternatives. If the truck i is
selected, then a cost ci is incurred, and the items loaded must fit into the truck (a 0-1
knapsack constraint). If truck i is not selected, then no items can be loaded (another
knapsack constraint). The disjunction is
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⎛

⎜
⎜
⎜
⎝

zi ≥ ci
n

∑
j=1

a jxi j ≤ Qi

xi j ∈ {0,1}, all j

⎞

⎟
⎟
⎟
⎠

∨
(

xi j = 0, all j
xi j ∈ {0,1}, all j

)

(44)

where zi is the fixed cost incurred by truck i, and xi j = 1 when package j is loaded
into truck i. The feasible set is the union of two mixed integer polyhedra. They have
the same recession cone if we add zi ≥ 0 to the second disjunct. If we suppose yi = 1
when the first disjunct is enforced, the convex hull formulation of (44) is

zi ≥ ciyi
n

∑
j=1

a jxi j ≤ Qiyi

yi,xi j ∈ {0,1}, all j

(45)

Finally, we make sure that each packaged must be shipped, which poses a set of
knapsack constraints:

m

∑
i=1

xi j ≥ 1, xi j ∈ {0,1}, all j (46)

Since (43) and (46) can be viewed as disjunctions having one disjunct, we have
conceived the problem as consisting of disjunctions of mixed integer systems. If we
minimize total fixed cost ∑i zi subject to (43), (45), and (46), the resulting mixed
integer model immediately simplifies to

min
m

∑
i=1

ciyi (a)

m

∑
i=1

Qiyi ≥
n

∑
j=1

a j (b)

n

∑
j=1

a jxi j ≤ Qiyi, all i (c)

m

∑
i=1

xi j ≥ 1, xi j ∈ {0,1}, all j (d)

yi ∈ {0,1}, xi j ∈ {0,1}, all i, j

(47)

This formulation differs in two ways from a formulation that one might initially
write for this problem. First, one might omit the factor yi from constraints (c), be-
cause these constraints ensure that each truck’s load is within that truck’s capacity. It
is therefore natural to write simply the capacity Qi on the right-hand side. However,
a fairly well-known modeling device is to write Qiyi instead, because this retains
the validity of the formulation while making its continuous relaxation tighter. The
approach recommended here allows one to derive the tighter formulation without
knowing the device in advance.
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Second, a standard formulation would not contain constraint (b), because due to
(d) it is implied by the sum of constraints (c). According to conventional wisdom,
there is no point is writing a constraint that is a nonnegative linear combination of
other constraints. However, it is reported in Trick (2005) that the problem is far eas-
ier to solve with constraint (b) than without it, because the presence of (b) allows the
solver to deduce lifted knapsack cuts, which create a much tighter continuous relax-
ation. Thus in this instance, a principled approach enables one to write a formulation
that is superior to the standard one.

4 Conclusion

We have suggested how mixed integer problem formulation can be undertaken in a
principled way. We by no means provide a method by which one can mechanically
generate mixed integer formulations. Problem formulation remains an irreducibly
creative act. Yet the framework presented here can give some guidance as to how to
proceed.

Problems often pose choices between alternatives, and these can be represented
as disjunctions of inequality systems. Counting ideas can be represented as integer
knapsack constraints that appear among the inequality constraints. The disjunctions
can be given convex hull or big-M formulations, resulting in a mixed integer formu-
lation for the problem.

There may be a good deal of latitude as to how to view a problem as containing
disjunctive and counting elements. Different interpretations of the problem can lead
to different formulations. Even when the disjunctive constraints have been written,
there is the issue as to whether some of them should be combined to obtain a tighter
formulation.

Once the disjunctive constraints are finalized, the mixed integer formulation of
each disjunct typically allows simplification. It may be possible to automate the
simplification process, and this presents an interesting issue for future research.

Several additional research issues remain. (a) Are there sufficient conditions un-
der which a big-M disjunctive formulation is a convex hull formation? (b) When is it
advantageous to use a big-M rather than a convex hull disjunctive formulation? (c)
Are there sufficient conditions under which a formulation containing logical con-
straints is a convex hull formulation? (d) When is it advantageous to replace logical
constraints with convex hull disjunctive formulations?

In general, mixed integer problem formulation deserves more serious study that
it has received. Jeroslow’s work was a significant contribution, but much remains
to be done. If the formulation process is better understood, it may be possible to
develop more effective tools to assist practitioners in formulating problems. This in
turn will allow more applications to benefit from the powerful solution technology
that has been developed for mixed integer programming.
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Experiments with Branching using General
Disjunctions

A. Mahajan and T.K. Ralphs

Abstract Branching is an important component of the branch-and-cut algorithm for
solving mixed integer linear programs. Most solvers branch by imposing a disjunc-
tion of the form“xi ≤ k∨xi ≥ k+1” for some integer k and some integer-constrained
variable xi. A generalization of this branching scheme is to branch by imposing a
more general disjunction of the form “πx ≤ π0 ∨ πx ≥ π0 + 1.” In this paper, we
discuss the formulation of two optimization models for selecting such a branching
disjunction and then describe methods of solution using a standard MILP solver.
We report on computational experiments carried out to study the effects of branch-
ing on such disjunctions.

Key words: branching, integer programming, general disjunctions

1 Introduction

In this paper, we consider the effect of using more general branching disjunctions in
the well-known branch-and-cut algorithm for solving mixed integer linear programs
(MILPs) than are typically considered by most solvers. Even though the method of
selecting a branching disjunction is a crucial component of branch and cut, most
solvers still only consider a very limited set of possible disjunctions when decid-
ing how to branch. It is not clear whether the reason for this is (i) that it is not
known how to generate more general branching disjunctions or (ii) the additional
effort necessary to generate such disjunctions is not offset by gains in the overall
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efficiency of the algorithm. In what follows, we address this question by formally
stating the problem of selecting a “best” branching disjunction as an optimization
problem, proposing a method to solve this optimization problem, and reporting on
the effect of deploying this method of selection in a standard commercial solver. Our
goal here is not to test the efficiency of our method for selecting disjunctions (it is
demonstrably inefficient), but simply to answer the question of what gains could be
realized in the overall efficiency of a branch-and-cut procedure (in terms of reduc-
ing the number of subproblems solved during the solution procedure) if “optimal”
branching disjunctions could be determined.

1.1 Definitions

We consider the mixed integer linear program

min cx

s.t. Ax ≥ b (P)

x ∈ Z
d ×R

n−d ,

where b ∈ Q
m,c ∈ Q

n, and A ∈ Q
m×n are the inputs and the variables with indices

1,2, . . . ,d are required to take on integral values. If (P) does not have any feasible
solution, then the optimal solution value is taken to be ∞. The linear programming
(LP) relaxation of (P), obtained by dropping the integrality constraints, is the linear
program

min
x∈P

cx, (PLP)

where P = {x ∈ R
n | Ax ≥ b}. Formally defining the problem of determining the

“best” branching disjunction requires defining precisely what set of possible dis-
junctions we consider and by what criteria we evaluate them. To do this, we must
first briefly describe the branch-and-bound procedure.

LP-based branch and bound is a recursive procedure for solving (P) in which a
lower bound is first obtained by solving its LP relaxation (PLP) (with the minimum
taken to be ∞ if P is empty). If the bound obtained is at least as large as the value
of the best feasible solution known (generated either by a separate heuristic pro-
cedure or as a by-product of solving the relaxation), then the current best solution
is globally optimal and we are done. Otherwise, we determine a disjunction (usu-
ally binary) that is satisfied by all solutions to the original MILP, but not satisfied
by the solution to the LP relaxation. Such a disjunction, referred henceforth to as
a valid branching disjunction, is then used to partition the feasible region into sub-
sets that define subproblems to which the algorithm can then be applied recursively
until exhaustion. For a more complete description of the algorithm (and also of
the branch-and-cut algorithm), see [Nemhauser and Wolsey, 1988, page 355]. Note
that a subproblem refers to a restriction of the original problem resulting from the
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imposition of one or more branching disjunctions on the original instance. These
subproblems should not be confused with the associated problem of selecting a
branching disjunction, which is formulated below and then solved to determine an
optimal branching disjunction.

Most solvers use branching disjunctions, called variable disjunctions, of the form
“xi ≤ k ∨ xi ≥ k + 1” for some integer k and some i ≤ d, since these are always
valid for (P). More generally, however, any π ∈ Z

d ×{0}n−d and π0 ∈ Z yields the
disjunction “πx ≤ π0∨πx ≥ π0 +1” (referred henceforth to as a general disjunction
and denoted by the ordered pair (π,π0)), which is also always valid for (P). Since the
set of general disjunctions includes all variable disjunctions, considering this larger
set should in principle be advantageous. It is this set of disjunctions we consider in
what follows, though in the computational experiments, we were forced to further
restrict the set in order to obtain results in a reasonable amount of time.

In its simplest form, the efficiency of the branch-and-bound procedure depends
mainly on the number of subproblems generated. The goal of selecting the branch-
ing disjunctions is then to minimize the total number of subproblems to be solved.
It is evident that the problem of selecting a branching disjunction that minimizes
the total number of subproblems solved globally is extremely difficult—at least as
hard as solving the original problem and likely much harder in practice. The ap-
proach taken by most solvers, and the one we shall take here, is to evaluate candi-
date branching disjunctions by assessing their effect using more myopic criteria. We
defer discussion of the specific criteria employed in this study until Section 2 below.

1.2 Previous Work

Despite its importance as a component of the branch-and-bound procedure, rela-
tively little effort has gone into improving methods by which branching disjunc-
tions are determined. In practice, however, where branching is typically limited
to variable disjunctions, some attention has been paid to selecting the “best” such
disjunction. Linderoth and Savelsbergh [1999] performed extensive computational
experiments to show that selecting a variable disjunction that will lead to maxi-
mum estimated increase in the lower bound of the subproblems is a good strategy.
Such estimates are made primarily in one of two ways. Strong branching consists
of making the estimates by partially solving each subproblem created by branch-
ing for each candidate variable disjunction. Pseudo-cost branching consists of
estimating the change on the basis of the actual change that occurred when the
candidate disjunction was previously imposed (in some other subproblem). Re-
cently, Achterberg et al. [2005] showed empirically that using a hybrid approach,
called reliability branching, yields better results in practice than either of above two
approaches used alone.

The study of branching on general disjunctions is not new either and has been
previously recognized as an important aspect of the theory of integer programming.
In their survey, Aardal and Eisenbrand [2004] discussed the fact that when the
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dimension is fixed, polynomial time algorithms for solving integer programs can
be obtained by branching on general disjunctions obtained by determining the so-
called thin directions of the feasible region. These polynomial time algorithms are
derived from the seminal work of Lenstra [H.W. Lenstra, 1983] and its extensions. It
has also been shown, for instance by Krishnamoorthy and Pataki [2006], that certain
specific problems can be solved “easily,” if one branches on some particular general
disjunction. On the other hand, few heuristics have been proposed that enhance com-
putational performance of standard solvers by using general branching disjunctions.
Fischetti and Lodi [2003] proposed a local branching heuristic that uses a general
disjunction for branching such that one of the branches has a small feasible region
but is more likely to contain feasible solutions with small objective function values.
Owen and Mehrotra [2001] used a greedy heuristic to generate branching disjunc-
tions with coefficients in {0,1,−1}. Karamanov and Cornuéjols [2007] suggested
branching using disjunctions that could be used for generating Mixed Integer Go-
mory cuts in the branch-and-cut algorithm. Some general branching disjunctions
have also been shown to be useful for problems with specific structures like special
ordered sets [Beale and Tomlin, 1970].

The remainder of the paper is organized as follows. In Section 2, we present
two different criteria by which to select a branching disjunction and describe how
to solve the problem of determining the optimal general disjunction with respect
to these criteria. In Section 3, we analyze the results of computational experiments
applying the methods from Section 2. In Section 4, we present our conclusions and
indicate directions for future work in this area.

2 Selecting Branching Disjunctions

As previously described, selecting a branching disjunction based on its global ef-
fect is likely to be extremely difficult and we must therefore resort to more myopic
(though still not theoretically efficient) selection procedures. The two criteria we use
here to evaluate a branching disjunction are (i) lower bound improvement achieved
after branching and (ii) width of P in the direction of the disjunction. The prob-
lem of finding an optimal general branching disjunction according to each of these
criteria is formulated in the following two sections. It is known from the results of
Sebő [1999] and our recent work [Mahajan and Ralphs, 2008] that the problem of
optimizing over the set of general branching disjunctions with either of the above
criteria is NP-hard, even when the set of disjunctions is restricted in various ways.

2.1 Branching to Maximize Lower Bound

As previously mentioned, experiments by Linderoth and Savelsbergh [1999]
and Achterberg et al. [2005] provided empirical evidence that selecting variable
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disjunctions on the basis of estimated increase in the lower bound after such a
branching could result in a reduction in the number of subproblems solved. There-
fore, we base our first criteria for choosing branching disjunctions on the same
principle. The procedure is based on detecting infeasibility of the subproblems
resulting from imposition of the branching disjunction, along with (possibly) an
inequality requiring a certain target increase in the lower bound.

First, consider the integer program (P) and assume that P is not empty (other-
wise, the problem is easy to solve). Let (π̂, π̂0) ∈ Z

d ×{0}n−d ×Z be a disjunction
that is used to branch after (PLP) is solved. Then the LP relaxations associated with
the two partitions created after branching are of the form

mincx
subject to:

Ax ≥ b
π̂x ≤ π̂0

and

mincx
subject to:

Ax ≥ b
π̂x ≥ π̂0 +1.

(1)

Now, consider the related linear programs

z∗L = min π̂x
subject to:

Ax ≥ b
and

z∗R = min−π̂x
subject to:

Ax ≥ b.
(2)

The programs (1) are infeasible if and only if z∗L > π̂0 and z∗R > −(π̂0 +1). The dual
of the programs (2) can be written as

z∗L = max pb
subject to:

pA = π̂
p ≥ 0

and

z∗R = maxqb
subject to:

qA = −π̂
q ≥ 0,

(3)

respectively. By imposing the requirement that z∗L > π̂0 and z∗R >−(π̂0 +1) and then
combining the two dual formulations (3), one can conclude that the LPs (1) are both
infeasible if and only if the system

pA−π = 0
qA+π = 0
pb−π0 ≥ δ
qb+π0 ≥ δ −1 (4)

p ≥ 0
q ≥ 0

(π,π0) ∈ Z
n+1,

has a solution for some δ > 0 and with π = π̂,π0 = π̂0.
A sequence of MILPs of the form (4) can now be solved in order to find a branch-

ing disjunction whose imposition maximizes the resulting lower bound as follows.
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Suppose it is desired to increase the lower bound resulting from imposition of the
branching disjunction to some value exceeding a given target zl . This is equivalent
to requiring that both the following system of inequalities be infeasible.

Ax ≥ b
π̂x ≤ π̂0
cx ≤ zl

and
Ax ≥ b
π̂x ≥ π̂0 +1
cx ≤ zl

(5)

Observe that dropping the branching constraints makes the systems (5) feasible,
as long as zl > zLP. Using the approach described above, the problem of finding
a suitable (π̂, π̂0) may now be written as that of finding a feasible solution to the
system

pA− sLc−π = 0
pb− sLzl −π0 ≥ δ
qA− sRc+π = 0 (6)

qb− sRzl +π0 ≥ δ −1
p,sL,q,sR ≥ 0

π ∈ Z
n,π0 ∈ Z.

The lower bound obtained after solving the LP relaxations (1) can be increased to at
least zl by imposing the branching disjunction (π̂, π̂0) if and only if π = π̂,π0 = π̂0
is a feasible solution to the system (6) for some δ > 0. Note the similarity in the
formulations (6) and (4). If there is a feasible solution to (6) with sL = sR = 0, then
(4) is also feasible and consequently, imposition of the corresponding branching
disjunction will make the LPs related to each member of partition infeasible.

If one treats zl as a variable in formulation (6), then it becomes a nonlinear pro-
gram because of the presence of bilinear terms sLzl and sRzl . Hence, it is not straight-
forward to get the maximum value of zl from this formulation. We overcome this
difficulty by solving a sequence of parametric (feasibility) MILPs of the form (6)
by treating zl as a fixed parameter and choosing a suitable value for δ . By doing a
binary search over a range of values for zl and solving (6) in each iteration of the
search, one can obtain the maximum value of the lower bound up to a desired level
of accuracy. Additionally, if x∗ is known to be a fractional optimal solution of the
LP relaxation of the original problem (P), then the constraint π0 < πx∗ < π0 +1 may
optionally be added to formulation (6).

2.2 Branching on Thin Directions

The second criterion by which we judge a branching disjunction (π,π0) is by the
width of P in the direction π , defined to be maxx,y∈P πy−πx. Intuitively, a branch-
ing disjunction with small associated width should be effective because it is likely
that the volume of the union of the feasible regions of the subproblems resulting
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from imposition of such a disjunction will be significantly smaller than that of the
polyhedron P . For a polytope Q, the minimum width in the direction of any general
branching disjunction is called the integer width and is defined to be

w(Q) = min
π

max
x,y∈P

(πy−πx) s.t. π ∈ Z
d ×{0}n−d ,π �= 0.

Sebő [1999] showed that for a given polytope Q, the problem of determining
whether w(Q) ≤ 1 is NP-complete, even when Q is a simplex. It is also known,
from a result of Banaszczyk et al. [1999], that if Q is empty, then w(Q) ≤ Cn

3
2 ,

where C is a constant. Derpich and Vera [2006] tried to approximate the direction
of the minimum integer width in order to assign priorities for branching on vari-
ables. They showed that the number of subproblems can be reduced when using this
heuristic approach. Aardal and Eisenbrand [2004] discussed the fact that branching
on thin directions leads to polynomial time algorithms for integer programs when
the dimension is fixed. Hence, such branching directions seem empirically to be
useful in reducing the number of subproblems to be examined during the solution
procedure.

For a fixed π̂ , the dual of the LP

max π̂y− π̂x

subject to:
Ax ≥ b (7)
Ay ≥ b,

can be written as

min−qb− pb

subject to:
pA− π̂ = 0 (8)
qA+ π̂ = 0
p,q ≥ 0.

Thus, the problem of finding w(P) can be equivalently expressed as the program

min−qb− pb

subject to:
pA−π = 0
qA+π = 0 (9)
p,q ≥ 0
π ∈ Z

n ×{0}n−d ,π �= 0.

Note that if there exists a feasible solution to formulation (4) described in the previ-
ous section, then w(P) < 1. However, the converse is not true. Furthermore, if (P)
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does not have any continuous variables (i.e., if d = n) and if P is not full dimen-
sional then w(P) = 0. In such a case, one may end up obtaining the same solution
from the formulation (9) for each subproblem. In order to overcome this difficulty,
we modified the formulation to

min−qb− pb

subject to:
pA−π = 0
qA+π = 0 (10)
π0 +δ ≤ πx∗ ≤ π0 +1−δ
p,q ≥ 0
π ∈ Z

n ×{0}n−d

π0 ∈ Z,

where x∗ is an optimal solution to the current LP relaxation and δ is a suitably small
constant. The formulation (10) is only an approximation to finding the integer width
of P . However, it ensures that x∗ violates the generated disjunction and also that
π �= 0.

3 Computational Experiments

In order to test the effect of selecting branching disjunctions using the formula-
tions presented in the previous section, we performed a sequence of experiments
using ILOG CPLEX 10.2 with the default selection method for branching disjunc-
tions replaced by the ones previously described. Since our goal was only to discern
the effectiveness of employing the disjunctions and not to test the efficiency of the
method for determining them, our measure of effectiveness was reduction in to-
tal number of subproblems required to solve each instance. Thus, we are ignoring
the time required to find the branching disjunctions, which was substantial in some
cases.

Initial experiments were carried out on 91 instances selected from MIPLIB 3.0
[Bixby et al., 1998], MIPLIB 2003 [Achterberg et al., 2006], and the Mittelmann
test set [Mittelmann, 2008]. The initial set was then reduced to 30 representative
instances in order to complete experiments in reasonable time. Table 1 shows the
size of these instances. The branching disjunctions were imposed using the callback
functions provided with the CPLEX callable library. All experiments were run on
64-bit machines, each with 16GB RAM, 8 1.86GHz cores and 4MB cache. In all
experiments, the best known objective function value was provided as upper bound
to the solver to ensure that the solution procedure was not affected by the order in
which subproblems were solved or other extraneous factors related to improvement
in the upper bound.
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Table 1 Number of constraints, variables, integer (including binary) variables and binary variables
in the 30 instances used in experiments.

Instance Cons Vars Ints Bins
10teams 231 2025 1800 1800

aflow30a 479 842 421 421
bell3a 123 133 71 39

blend2 274 353 264 231
egout 98 141 55 55
fiber 363 1298 1254 1254

flugpl 18 18 11 0
gen 780 870 150 144

gesa2 1392 1224 408 240
gesa2 o 1248 1152 672 336

gt2 29 188 24 0
harp2 112 2993 2993 2993

khb05250 101 1350 24 24
l152lav 97 1989 1989 1989

lseu 28 89 89 89

Instance Cons Vars Ints Bins
mod008 6 319 319 319

neos6 1037 8768 8340 8340
nug08 913 1632 1632 0
nw04 36 87482 87482 87482

p0548 176 548 548 548
pp08aCUTS 246 240 64 64

qnet1 503 1541 1417 1288
qnet1 o 456 1541 1417 1288

ran10x26 297 520 260 260
ran12x21 286 504 502 502
ran13x13 196 338 169 169

rout 291 556 315 300
stein45 331 45 45 45

vpm1 234 378 168 168
vpm2 234 378 168 168

In the first experiment, a pure branch-and-bound procedure was used—other ad-
vanced techniques such as cutting planes, heuristics and probing were disabled. This
allowed us to observe the effects of branching in isolation from the mitigating ef-
fects of applying these additional techniques. In the first experiment, a sequence of
MILPs of the form (6) were solved to determine the disjunction yielding the maxi-
mum increase in lower bound. During initial testing, we concluded that optimizing
over the entire set of general branching disjunctions was too time-consuming, as the
MILPs (6) were sometimes extremely difficult to solve. We therefore imposed the
following limitations for all tests.

1. π was restricted to the set {−M,−M + 1, . . . ,M}n. M = 1 was used in the first
experiment and higher values were tried in other experiments.

2. Each πi was replaced with two non negative variables substituting πi = π+
i −

π−
i ,π+

i ,π−
i ∈ [0,M]. Such a transformation was used in order to make it easier

for the solver to find heuristic solutions to the MILP formulation.
3. The constraint ∑n

i=1 |πi| ≤ k was introduced to further restrict the search space.
k was set to 2, 5, 10, 15 and 20 in different experiments.

4. A time limit of t seconds was imposed for solving any one MILP for selecting
a branching disjunction. Additionally, a limit of 8t seconds was imposed on the
time allowed to be spent in total on selecting any single branching disjunction.
In the first experiment, t was set to 1000. Values of 50 and 100 were used in later
experiments.

5. A total time limit of 20 hours was imposed for solving each instance. After 18
hours, only variable disjunctions were considered so that the problem could be
solved to completion in the remaining two hours.

In case the search for a branching disjunction failed (because of time limits or
because no solution was found), branching was carried out by considering variable
disjunctions. Since it was not known how the selection rule of CPLEX works, the
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LP relaxations of the subproblem resulting from the imposition of each candidate
variable disjunction were solved explicitly in order to determine the optimal vari-
able disjunction according to the criteria of maximum increase in lower bound. In
cases where it was found that there was no variable disjunction whose imposition
resulted in an increase in the lower bound, the default variable branching scheme
of CPLEX was invoked. The number of subproblems solved when branching on
general disjunctions was compared against that when branching only on variable
disjunctions.

The number of subproblems generated during solution of each instance in the
first experiment is shown in Table 2. Nk denotes the number of subproblems created
when the search was restricted by addition of the constraint ∑n

i=1 |πi| ≤ k. Thus, N1
denotes the number of subproblems when branching was done using only variable
disjunctions (by selecting a variable disjunction after solving the resulting LP relax-
ations explicitly, as described above). The value rk is defined to be N1

Nk
. Even though

the experiments for Table 2 were carried out with 91 instances, only results for the
30 selected for further investigation are reported, since other instances showed sim-
ilar results.

For all remaining experiments, the performance profiles of Dolan and Moré
[2002] are used to display compactly, the results comparing number of subprob-
lems solved in various experiments. A point (α,β ) in such a plot indicates that a
fraction β of all instances required less than α times the number of subproblems
required in the experiment achieving the lowest total overall. Figure 1(a) shows a
performance profile for the data in Table 2.

In the next two experiments, the time limit t imposed on the solution of each
MILP was reduced to 100 seconds and 50 seconds, respectively. This was done to
determine whether good branching disjunctions could still be found in a shorter
amount of time. Figures 1(b) and 1(c) show the performance profile when t was
fixed and k was varied.

The experiments described so far show that branching on disjunctions that maxi-
mize the subsequent lower bound increase does in fact lead to a significant reduction
in the number of subproblems required to be solved. In general, the number of sub-
problems is also reduced when the set of disjunctions considered is larger (i.e., the
number of non-zeros allowed in the vector π is increased).

Figures 2(a)-2(e) show the effect of time spent in selecting a branching disjunc-
tion when k is fixed. In general, when k is small, additional time spent selecting a
disjunction pays a bigger dividend than when k is large. Figure 2(d) shows that when
k = 15 the number of subproblems solved does not vary much as t is increased.
When k is set to 20, the performance with t = 50 is nearly equivalent to that with
t = 1000. One possible explanation is that for large values of k, if a feasible solu-
tion to the branching disjunction selection problem is not found quickly, then it is
unlikely that a solution will be found even after substantial additional search time.
Thus, even though branching on disjunctions that increase the lower bound appears
promising, the problem of selecting disjunctions becomes increasingly difficult with
the number of nonzero coefficients that are allowed in the description. This seems
to be the case for the instance vpm1 in particular (see Table 2)—when k is changed
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Fig. 1 Performance profile for number of subproblems when t is fixed and k is varied.
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Fig. 2 Performance profile for number of subproblems when k is fixed and t (in seconds) is varied.

from 15 to 20, the number of subproblems goes up from 20 to 5929, presumably
because the branching disjunction selection problem becomes so difficult that only
a few effective disjunctions are found within the time limit.

In the next experiment, cutting planes were enabled to see how the branching dis-
junction selection method would perform in a branch-and-cut algorithm. In general,
introduction of cutting plane generation should be expected to reduce the total num-
ber of subproblems. The default settings of CPLEX were used for cut generation,
with the exception that MIR, Gomory, and flow (cover and path) cuts were disabled
because the presence of these cuts caused numerical difficulties while solving some
of the associated branching disjunction selection problems. Figure 3(a) shows the
effect of adding cuts when t = 100 seconds and k has values 1, 2, and 5. It shows
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Fig. 3 Performance profile for number of subproblems when cuts are added to the original prob-
lem. t is fixed and k is varied.

that enabling cuts increases the performance of the solver significantly, even when
branching on general disjunctions is used. Figure 3(b) shows how the performance
varies when cuts are enabled and k is varied from 1 to 20. Figure 1(b) shows that,
in the absence of cuts, around 80% of instances required at least half as many sub-
problems when branching on general disjunctions. When the cuts were enabled,
this fraction dropped to 50%. So the effect of branching on general disjunctions is
substantial even when the cuts are enabled, though it is not as dramatic.

To see the effect of increasing M, we performed one experiment with M = 10,
k = 15, t = 100. Figure 4(a) shows a comparison of performance of this test against
the others. The performance seems to be slightly worse than when M = 1. However,
it could not be established whether this was due to larger coefficients in some of
the disjunctions or because of the increased difficulty of the MILPs used to identify
the disjunction. A similar experiment was carried with M = 10,k = 15, t = 1000 to
see the effects for the case when more time was spent in finding disjunctions with
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Fig. 4 Performance profile to compare the effect of branching for maximum lower bound when M
is increased to 10.
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Fig. 5 Performance profile to compare the effects of changing t when M in increased.

M > 1. Figure (5(a)) shows that there are no considerable effects from spending
more time or changing M. These experiments seem to suggest that k is probably a
more important parameter than either t or M.

Finally, we experimented with selecting a branching disjunction along a “thin”
direction by solving the formulation (10). Additional constraints, as described for
the criteria of maximizing lower bound above, were also added. Figure 6(a) com-
pares the number of subproblems solved when branching on “thin” directions with
other experiments. The performance is seen to be comparable to that of branching
on variable-disjunctions. One plausible reason why branching along thin directions
did not perform as well as other criteria might be that most of the integer constrained
variables in the test set were binary variables. For such problems, the integer width
of the polytope associated with the LP relaxation of a subproblem is at most one.
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Fig. 6 Performance profile to compare the effect of branching on “thin” directions against other
criteria.

Furthermore, there are typically a number of directions along which the width is
one. So, for the case when the minimum width of the polytope is one, the formu-
lation (8) selects any one of the many possible directions arbitrarily. One way to
overcome this problem would be to resort to other criteria when the minimum width
is found to be one. However, we have not yet pursued this line of research.

4 Conclusion

In this paper, we considered the use of general disjunctions of the form “πx ≤
π0 ∨ πx ≥ π0 + 1” in branch and bound and branch and cut. We formulated the
problem of selecting the optimal such disjunction using two different criteria and
reported on the effect of using the associated optimization models to select branch-
ing disjunctions within the branch-and-bound framework of the commercial solver
CPLEX. The naive approach to formulating and solving the branching disjunction
selection problem described herein yielded mixed results. The optimization prob-
lems that arose turned out to be extremely difficult to solve using off-the-shelf soft-
ware. Our experiments have given us many ideas as to how improve the efficiency of
solving these problems and also how to develop fast heuristics for obtaining “good”
disjunctions quickly. However, this is future work and was not the focus of this
initial study.

With regard to the effectiveness of using more general disjunctions, our conclu-
sion is that such an approach, if it can be made efficient, will undoubtedly yield im-
proved solution times. We observed consistent substantial reductions in the number
of subproblems required to be solved when using general disjunctions for branch-
ing. We therefore conclude that this is a fruitful line of future research, though much
thought has to go into how to make solution of the formulations presented here
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efficient. Other interesting lines of research concern the development of additional
criteria for selection of branching disjunctions and the study of the relationship be-
tween disjunctions used for generating valid inequalities and those used for branch-
ing. Both these topics have been addressed already to some extent, but certainly
deserve further study.
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Summary. Weight annealing is a metaheuristic that has been recently proposed in the physics
literature. We develop a weight annealing-based algorithm for solving four variants of the
two-dimensional bin packing problem. We apply our algorithm to 500 benchmark instances
and find that it quickly produces very high-quality solutions that are comparable to the best
published results.

Key words: Two-dimensional bin packing; weight annealing; heuristics

1 Introduction

In the two-dimensional bin packing problem (denoted by 2BP), we have n rectangu-
lar items and each item has a specified width and height. We need to pack the items
into a minimum number of identical bins that have width W and height H. The items
have to be packed with their edges parallel to the edges of the bins and no two items
can overlap.

Items may have a fixed orientation (O) or they may be rotated (R) through
90◦. There may be guillotine cutting (G) that produces items through a sequence
of edge-to-edge cuts that are parallel to the edges of a bin or the cutting may be
free (F). Lodi, Martello, and Vigo (1999b) proposed the following typology for
two-dimensional bin packing problems: 2BP|O|G (items oriented, guillotine cutting
required); 2BP|R|G (items rotated, guillotine cutting required); 2BP|O|F (items ori-
ented, free cutting); 2BP|R|F (items rotated, free cutting). The authors mentioned
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industrial contexts of each problem including the application of 2BP|O|F to the
placement of advertisements in newspapers.

Over the last eight years or so, several methods have been developed to solve
each of the two-dimensional bin packing problems (all four variants are NP-hard). A
good overview of methods for solving the 2BP developed through the late 1990s and
early 2000s including descriptions of upper and lower bounds, exact algorithms, and
metaheuristics is given by Lodi, Martello, and Vigo (2002).

Lodi, Martello, and Vigo (1999a) developed a tabu search algorithm for solv-
ing 2BP|O|G and applied their algorithm to problem instances taken from the lit-
erature including those proposed by Berkey and Wang (1987). The authors found
that the solutions of tabu search were closer to known lower bounds than solutions
produced by two well-known procedures (finite first-fit and finite best strip). Lodi,
Martello, and Vigo (1999b) developed a unified tabu search framework (TS) for solv-
ing each of the four problems. They considered 10 classes of problems - six from
Berkey and Wang (1987) and four from Martello and Vigo (1998) - and found that
TS was effective in all cases. Faroe, Pisinger, and Zachariasen (2003) presented a
heuristic based on guided local search (GLS) that solved both the three-dimensional
and the two-dimensional bin packing problems. GLS produced solutions that were
as good as those produced by TS on the 10 classes of two-dimensional problems.
Monaci and Toth (2006) solved the 10 problem classes for the 2BP|O|F variant us-
ing a set covering heuristic (SCH). They compared SCH to the exact algorithm (EA)
of Martello and Vigo (2001), the constructive algorithm (HBP) of Boschetti and
Mingozzi (2003), TS, and GLS. The authors concluded that SCH is very competitive
with the best procedures found in the literature.

In this paper, we propose an algorithm based on the concept of weight annealing
(WA) to solve the four variants of 2BP. Weight annealing is a new metaheuristic
that we have used to solve the one-dimensional bin packing problem (Loh, Golden,
and Wasil (2008)). In Section 2, we briefly describe weight annealing. In Sections 3
and 4, we present our algorithms for solving problems with guillotine cuts (2BP|O|G
and 2BP|R|G) and free cuts (2BP|O|F and 2BP|R|F), respectively. In Section 5, we
conduct extensive computational experiments using 10 classes of problems, report
results for all four variants, and compare our results to those found in the literature.
In Section 6, we summarize our contributions.

What is noteworthy here is that we have taken a new metaheuristic (weight
annealing) and, with moderate effort, applied it to two-dimensional bin packing prob-
lems, and obtained high-quality solutions that are comparable to the best results re-
ported in the literature.

2 Weight Annealing

Ninio and Schneider (2005) proposed a weight annealing algorithm that allows a
greedy heuristic to escape from a poor local optimum. Their algorithm assigns vari-
able weights to different parts of the solution space and has four steps.
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Step 1. Start with an initial configuration from a greedy heuristic solution using the
original problem landscape.

Step 2. Determine a new set of weights based on the previous optimization run and
insight into the problem.

Step 3. Perform a new run of the greedy heuristic using the new weights.
Step 4. Return to Step 2 until a stopping criterion is met.

Ninio and Schneider applied their weight annealing algorithm to five benchmark
traveling salesman problems with 127 to 1,379 nodes and produced results that were
comparable to the results of simulated annealing. The notion of changing the land-
scape to produce high-quality solutions to combinatorial optimization problems has
been incorporated into several approaches including search space smoothing (Coy,
Golden, Runger, and Wasil (1998)) and noising (Charon and Hudry (1993)).

3 Weight Annealing Algorithm for Problems
with Guillotine Cuts

In this section, we describe the three phases of our weight annealing algorithm for
solving 2BP|O|G and 2BP|R|G. We highlight key features of our algorithm including
the initial solution, objective function, item swap (exchange) schemes, and weight
assignments for solving 2BP|O|G. We describe the modifications to our algorithm
that are needed to solve 2BP|R|G.

3.1 Phase 1

3.1.1 Initial Solution

We construct an initial solution using a hybrid first-fit procedure (HFF) from Chung,
Garey, and Johnson (1982) that we have modified in the following way. We order the
items by non-increasing height and select an item for packing with probability 0.5.
In other words, we start with the first item on the ordered list and, based on a coin
toss, we pack it into a bin if it is selected, or leave it on the ordered list if it is not
selected. We continue down the ordered list until an item is selected for packing. We
then go to the top of the ordered list and pack the second item in the same manner,
and so on, until we reach the bottom of the list.

3.1.2 Objective Function for the Local Search

Using HFF, we pack items into horizontal levels where each level has width bi and
bi ≤ W (bin width). To help minimize the total number of levels that are used, we
swap (exchange) items between levels with an objective function that maximizes the

sum of the squared level widths bi, where bi =
mi
∑
j=1

ti j,mi is the number of items in

level i, and ti j is the width of item j in level i. In the local search, we accept a swap
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between level i and level k if it results in an increase in bi
2 + bk

2. Our objective
function is given by

maximize f =
p

∑
i=1

bi
2 (1)

where p is the number of levels. Our objective function is motivated by the one
developed by Fleszar and Hindi (2002) for the one-dimensional bin packing problem.

We illustrate our objective function in Figure 1. We have two levels and we move
item C from level 2 to level 1. This move results in the use of one less level, does not
violate the bin width constraint of 10, and increases the objective function value from
68 to 100. We denote the swap of one item between levels as Swap (1,0). This type
of swap was proposed by Fleszar and Hindi (2002) for moving one item between
bins in a one-dimensional bin packing problem. We point out that Fleszar and Hindi
also proposed Swap (1,1) which exchanges one item from a bin with one item from
a different bin.

The objective function (1) is equivalent to minimizing the number of levels, but
does not attempt to reduce the unused area in each level (this is a key weakness of
HFF). We would like our objective function to minimize the number of levels used
and also minimize the sum of the heights of the levels. We accomplish this with the
following objective function

maximize f =
p

∑
i=1

bi
2 −

p

∑
i=1

(Whi −Ai) (2)

 b1
2 = (5 + 3)2 = 64

f = (5 + 3 + 2)2 = 100

Level  1

Level  1

Level  2

10
A

A

B

B C

C

5

5

3

3 2

2

b2
2 = 22 = 4 f = b1

2 + b2
2 = 68⇒

Fig. 1. Moving one item between two levels (called Swap (1,0)) uses one less level and in-
creases the objective function value
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where hi is the height of level i and Ai is the sum of the areas of all items in bin i

(that is, Ai =
mi
∑
j=1

ai j where mi is the number of items in level i and ai j is the area of

item j in level i).
To summarize, in Phase 1 using the objective function (2), we try to pack all of

the items into a minimum number of levels with minimum wasted space. Our local
search procedure uses three types of swaps: Swap (1,0), Swap (1,1), and Swap (1, 2)
(swap one item from a level with two items from a different level).

3.2 Phase 2

Using the solution produced in Phase 1, we apply a first-fit decreasing algorithm to
generate an initial solution for the one-dimensional bin packing problem with items
of size hi j, where hi j is the height of level j in bin i, and bins of height H. Let di be
the stack height which is the sum of the heights of the levels in each bin. In order
to minimize the total number of bins, we use swap schemes that exchange levels
between all pairs of bins with an objective function that maximizes the sum of the

squares of stack heights di, where di =
mi
∑
j=1

hi j , and mi is the number of levels in bin

i. In the local search, we accept a swap between level i and level k if it results in an
increase in d2

i +d2
k . Our objective function is given by

maximize f =
q

∑
i=1

d2
i (3)

where q is the number of bins. As in Phase 1, we use the three swap schemes
(Swap(1,0), Swap(1,1), and Swap(1,2)) between all pairs of bins.

3.3 Phase 3

This phase can be regarded as post-optimization in which we try to fill unused space.
We look at unused space within a level and the unused space at the top of a bin.

In order to fill the unused space within a level, we partition the level with a grid
system that preserves the guillotine cutting constraint. In Figure 2, we show four
ways of partitioning the unused space. In option 1, there are vertical partitions that
originate from the top of each item. In option 2, there are horizontal partitions at
the top right of each item. In option 3, both vertical and horizontal partitions are
used. In option 4, there is a horizontal partition at the top of the level and vertical
partitions beneath it. We select option 4 as it has partitions of varying dimensions
to accommodate items of differing lengths and widths. We allow a feasible move to
occupy a partition starting at its left edge or the remaining space to the right of an
item already in that partition, but not the space above the item. In Figure 2, option 4,
we show four items that have been moved in this way to fill unused space.
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3 4

2 1

Option 1:    vertical cells

Option 2:    horizontal cells

Option 3:    hybrid

Option 4: one long horizontal cell
plus vertical cells

Fig. 2. Four ways of partitioning unused space within a level

In the local search, our objective function is given by

maximize f =
q

∑
i=1

A2
i (4)

where q is the number of bins and Ai is the sum of the areas of all items in bin i. For
ease of implementation, we use only Swap (1,0) moves. Within each partition, only
the remaining space to the right of an item can be filled up by additional items. In
other words, the first item that we move to fill an empty space will have its left edge
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Bin 1

Bin 1

Bin 2

1

1

6

5

2

2

3

3

4
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5 6

Fig. 3. Moving one item between bins to fill unused space

touching the left side of the partition. The next item will have its left edge touching
the right edge of the first item and so on, as along as the sum of the item widths does
not exceed the width of the partition.

We use the objective function in (4) and Swap (1,0) moves to fill the unused space
at the top of a bin. We illustrate this type of move in Figure 3.

3.4 Weight Annealing

In our algorithm, we assign different weights to the bins and levels, and their items
according to how well the bins and levels are packed. This distortion of item sizes
allows for both uphill and downhill moves and is a key feature of our algorithm.

3.4.1 Weight Assignments

In Phase 1, for each level i, we assign weight wi
T according to

wi
T = (1+Kri)T (5)

where W is the width of each bin, bi is the width of level i, K is a constant, T is a
temperature parameter, and the residual capacity of level i is ri = (W − bi)/W . The
scaling parameter K controls the amount of size distortion for each item. K is typi-
cally set to a small value (e.g., 0.01). The size distortion for an item is proportional
to the residual capacity of its level.
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f = (45.00 + 32.00)2 + (30.40 + 9.00)2 fnew = (45.00 + 30.40)2 + (32.00 + 9.00)2

= 7481.36 = 7366.16

Fig. 4. A feasible uphill move in the transformed space is a downhill move in the original
space

In Phase 2, for bin i, we compare the bin height H to the stack height di and assign
weight wi

T according to (5) where the residual capacity of bin i is ri = (H −di)/H.
In Phase 3, for bin i, we compare Ai (the sum of the areas of all items in bin

i) to the available bin area (HW) and assign weight wi
T according to (5) where the

residual capacity of bin i is ri = (HW −Ai)/(HW ).
The use of weights increases the sizes of items in poorly packed bins and helps

our algorithm to escape a poor local maximum through downhill moves. We illustrate
this in Figure 4 where the bin area is 100, K = 0.3, and T = 1, and we make a
Swap (1,1) move. We see that we have an uphill move in the transformed space (the
objective function value increases) which is actually a downhill move in the original
space (the objective function value decreases). We make a move as long as it is
feasible in the original space. (We point out that, after the transformation, but before
the swap, item sizes in bin 1 are 48.15 = 1.07 x 45 and 34.24 = 1.07 x 32.)

3.4.2 Weight Annealing Algorithm

In Table 1, we give our weight annealing algorithm for both variants of the two-
dimensional bin packing problem with guillotine cuts (2BP|O|G, 2BP|R|G). We de-
note our algorithm by WA2BPG.
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Table 1. Weight annealing algorithm for 2BP|O|G and 2BP|R|G

Step 0. Initialization.
Parameters are K (scaling parameter), nloop1, nloop2, nloop3, T (temperature), and
Tred.
Set K = 0.05, nloop1 = 20, nloop2 = 100, nloop3 = 50, T = 1, and Tred = 0.95.
Inputs are height and width of each item, height and width of a bin, and lower bound
(LB).

Step 1. Optimization runs.
for k = 1: nloop1 do
Step 1.1 Perform Phase 1

Construct an initial solution using modified hybrid first-fit procedure.
set T : = 1
for j = 1: nloop2 do

Compute weight of level i : = wi
T and weighted width of item j for all j.

Do for all pairs of levels {
Swap items between two levels.
Allow item rotations for 2BP|R|G.

Perform Swap (1,0).
Perform Swap (1,1).
Perform Swap (1,2).

}
T := T × Tred

end
Step 1.2 Perform Phase 2

set T : = 1
for j = 1: nloop3 do

Compute weight of bin i := wi
T and weighted height of level j for all j.

Do for all pairs of bins {
Swap levels between two bins.

Perform Swap (1,0), exit j loop and k loop if LB is reached.
Perform Swap (1,1), exit j loop and k loop if LB is reached.
Perform Swap (1,2), exit j loop and k loop if LB is reached.

}
T := T × Tred

end
Step 1.3 Perform Phase 3

Determine the locations and sizes of the partitions.
set T : = 1
for j = 1: nloop3 do

Compute weight of bin i = wiT and weighted area of item j for all j.
Do for all pairs of bins {

Perform Swap (1,0), exit j loop and k loop if LB is reached.
Allow item rotations for 2BP|R|G.

}
T := T × Tred
end

end
Step 2. Outputs are the number of bins and the final distribution of items.
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In Phase 1, WA2BPG starts with an initial solution that is generated by our mod-
ified hybrid first-fit procedure. Swapping operations with weight annealing are used
to improve a solution. A temperature parameter (T) controls the amount by which
a single weight can be varied. At the start, a high temperature (T = 1) allows for
higher frequencies of downhill moves. As the temperature is gradually cooled (the
temperature is reduced via the parameter Tred at the end of every iteration, that is,
T x 0.95), the amount of item distortion decreases and the problem space looks more
like the original problem space. The lower bound is defined in Section 5.2.

We compute a weight for each level (according to wi
T = (1 + Kri)T ) and then

apply the weight to the width of each item in the level. The swapping process begins
by comparing the items in the first level with the items in the second level, and so
on, sequentially down to the last level in the initial solution and is repeated for every
possible pair of levels.

For a current pair of levels (α , β ), the swapping of items by Swap (1,0) is carried
out as follows. The algorithm evaluates whether the first item (item i) in level α can
be moved to level β without violating the width constraint of level β in the original
space. In other words, does level β have enough original residual capacity to accom-
modate the original width of item i? If the answer is yes (the move is feasible), the
change in objective function value of the move in the transformed space is evaluated.
If the change in objective function value is nonnegative, then item i is moved from
level α to level β . After this move, the algorithm exits Swap (1,0) and proceeds to
Swap (1,1). If the move of the first item is infeasible or the change in objective func-
tion value is negative, then the second item in level α is evaluated and so on, until
a feasible move with a nonnegative change in objective function value is found or
all items in level α have been considered and no feasible move with a nonnegative
change has been found. The algorithm then performs Swap (1,1) followed by Swap
(1,2). In each of the swapping schemes, we always make the first feasible swap that
has a nonnegative change in the objective function value. We point out that the im-
provement step is carried out 100 times (nloop2 = 100) starting with T = 1, followed
by T = 1 x 0.95 = 0.95, T = 0.95 x 0.95 = 0.9025, etc.

In Phase 2, we solve a one dimensional bin packing problem treating each level

as an item with size (height) hi j. For bin i, we compute the stack height di =
mi
∑
j=1

hi j,

the residual capacity (ri) based on the bin height H, and its weight wi. We apply the
same weight to all levels in the bin. We swap levels between bins. The improvement
step is carried out 50 times (nloop3 = 50) or until the lower bound is reached (we
discuss the lower bounds in more detail in Section 5 on computational results).

In Phase 3, we try to move one item between bins to fill unused space. We start
by determining the locations and sizes of unused space. For each bin i, we compute
Ai (the sum of the areas of all items in bin i), the residual capacity ri, and the weight
wi for each bin, and apply the same weight to all items in bin i. The improvement
step is carried out 50 times (nloop3 = 50) or until the lower bound is reached.

If we have not obtained the lower bound at the end of the first optimization run,
we start another run with a new initial solution generated by our modified hybrid
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first-fit algorithm in Phase 1. We terminate the algorithm as soon as the lower bound
is reached or after 20 runs (nloop1 = 20).

3.4.3 Weight Annealing Algorithm for Problems with Non-oriented Items

We now describe the modifications to our algorithm that are needed to solve prob-
lems with items that can be rotated. WA2BPG solves the 2BP|R|G instances by al-
lowing item rotations during Phase 1 and Phase 3.

During Phase 1, we allow for the rotation of an item through 90◦ to minimize the
unused space within each level and each bin. In order to reduce computation time,
we allow for only a feasible move to occupy a partition starting from its left edge or
the remaining space to the right of an item already in the partition, but not the space
above the item. We would like to rotate an item through 90◦ if this produces a tighter
fit or results in a greater utilization of the unused space above an item that has its
original orientation. We illustrate rotating two items in Figure 5. These rotations free
a substantial amount of space to the right of the two items and this space can now
be used by other items. In WA2BPG, during Phase 1, we allow an item rotation if
it reduces a level’s width (bi), or if it results in a feasible swap with a nonnegative
change in the objective function value.

During Phase 3 of WA2BPG for 2BP|O|G, an item from one bin will be moved
into the unused space within a level or at the top of a bin if the move is feasible and
improving. In Figure 6, item 6 is moved from bin 2 to bin 1 and now occupies two
types of unused spaces – within a level and at the top of a bin.

1

1 2

2

Fig. 5. Rotating items through 90 to produce a tighter packing
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Fig. 6. Rotating an item through 90 and moving it to another bin

4 Weight Annealing Algorithm for Problems with Free Cuts

In this section, we describe our weight annealing algorithm for solving 2BP|O|F and
2BP|R|F.

4.1 Alternate Directions Algorithm

For problems with free cuts, Lodi, Martello, and Vigo (1999b) developed an alter-
nate directions algorithm that exploited non-guillotine patterns by packing items in
alternate directions. We adopt this feature for packing bins in our weight annealing
algorithm. Specifically, we sort items by non-increasing height and then pack bands
of items in alternate directions. We start by packing the first band from left to right
at the bottom of a bin using a best-fit decreasing strategy. The first item in this band
is placed in the lowest position with its left edge touching the left edge of the bin.
The second item is placed in the lowest position with its left edge touching the right
edge of the first item. We then pack all subsequent items in the same way as the
second item until no items can be inserted into the band. In this way, we have pro-
duced the first left-to-right band. We now pack items in the opposite direction with
the first right-to-left band above the first left-to-right band in the lowest position. We
continue to pack items in alternate directions as long as the bin height constraint is
not violated, or the stack height, which is defined as the top edge of the highest item
amongst the stack of items in the bin, is less than the bin height. In Figure 7, we
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(3) Pack items in bin 1 from right to left

Bin 1 Bin 1

6

1

1 1

2

2 2

3

33

4

4

5

5

8
6

7

7

8

H d1

5

(1) Arrange items according to non-increasing height

(2) Pack items in bin 1 from left to right

Fig. 7. Packing items using the alternate directions algorithm

show how items are packed using the alternate-directions algorithm. We see that the
stack height of items in bin 1 (this is the sum of the heights of item 2 and item 6) is
d1 ≤ H.

4.2 Initial Solution

A feasible solution to 2BP|O|G is also a feasible solution to 2BP|O|F. We use the
final solution to 2BP|O|G produced by WA2BPG as our initial solution.

4.3 Objective Function for the Local Search

In the local search, our objective function is given by

maximize f =
q

∑
i=1

A2
i (6)

where q is the number of bins and Ai is the sum of the areas of all items in bin i.
We select a pair of bins, swap items between bins (we can use Swap (1,0), Swap

(1,1), and Swap (1,2)), and then repack each bin with the alternate directions al-
gorithm. If a swap between bins is feasible and results in a nonnegative change in
the objective function value, then we make the move. If not, we select another pair
of bins for evaluation and continue for all pairs of bins. In Figure 8, we move one
item from bin 1 to bin 2 with Swap (1,0), resulting in an increase in the objective
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Fig. 8. Moving an item from bin 2 to bin 1 and then repacking bin 2

function value. We then repack bin 2 to increase the residual space for subsequent
swaps. There is no need to repack bin 1 as item 13 is the last item to be moved in the
alternative directions algorithm.

4.4 Weight Assignments

Clearly, for a solution to be feasible, we must have its stack height less than the
bin height. For bin i, we compare the bin height H to the stack height di and assign
weight wi

T according to (5) where the residual capacity of bin i is ri = (H −di)/H.

4.5 Post-optimization Processing

When packing items into a bin with the alternative directions algorithm, there can
be dead spaces created in the bin. In Figure 9, we show an example of three dead
spaces in bin 1. In a post-optimization process, we determine the coordinates and
dimensions of these dead spaces and we try to fill them with a Swap (1,0) move. We
use Swap (1,0) to move item 15 from bin 2 to the dead space in bin 1. We make this
type of move in order to empty a less-filled bin (A2 < A1) which results in a larger
objective function value.
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Fig. 9. Moving an item from bin 2 to bin 1 to occupy a dead space

4.6 Weight Annealing Algorithm

In Table 2, we give our weight annealing algorithm for both variants of the two-
dimensional bin packing problem with free cuts (2BP|O|F, 2BP|R|F). We denote our
algorithm by WA2BPF.

We point out that the solution generated by our algorithm to 2BP|O|F is a feasible
solution to 2BP|R|F. To handle non-oriented items, we modify the post-optimization
process to allow rotations of items through 90◦ to fill up dead spaces in a bin. In
Figure 9, instead of moving item 15, we can now rotate item 14 and move it into the
dead space between items 3 and 6. This produces a better packing and an increase in
the objective function value.

5 Computational Results

5.1 Test Problems

In Table 3, we describe the six classes of randomly generated benchmark test prob-
lems from Berkey and Wang (1987). The height and width of an item are selected
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Table 2. Weight Annealing Algorithm for 2BP|O|F and 2BP|R|F

Step 0. Initialization.
Parameters are K (scaling parameter), nloop1, nloop2, T (temperature), and Tred.
Set K = 0.05, nloop1 = 20, nloop2 = 50, T = 1, and Tred = 0.95.
Inputs are height and width of each item, height and width of a bin, and lower bound
(LB).
Δ f is defined as the change in objective function value.

Step 1. Optimization runs.
for k = 1: nloop1 do

Construct an initial solution using the 2BP|O|G algorithm, exit k loop if LB is
reached.
Set T : = 1
for j = 1: nloop2 do
Compute weight of bin i : = wT

i and weighted area of item j for all j.
Do for all pairs of bins {

Perform Swap (1,0).
Evaluate feasibility and Δ f of alternate directions packing.
if feasible and Δ f ≥ 0

Swap the item.
Exit Swap (1,0) and
Exit k loop and j loop if LB is reached.

else restore the original solution.
Perform Swap (1,1).

Evaluate feasibility and Δ f of alternate directions packing,
if feasible and Δ f ≥ 0

Swap the items.
Exit Swap (1,0) and
Exit k loop and j loop if LB is reached.

else restore the original solution.
Perform Swap (1,2).

Evaluate feasibility and Δ f of alternate directions packing.
if feasible and Δ f ≥ 0

Swap the items.
Exit Swap (1,0) and
Exit k loop and j loop if LB is reached.

else restore the original solution.

}
T := T × Tred
end
Compute the sizes and coordinates of the dead spaces in all bins.
Do for all pairs of bins. {
Perform Swap (1,0).

Evaluate feasibility and allow item rotations for 2BP|R|F.
if feasible and Δ f ≥ 0

Move the item.
Exit k loop and j loop if LB is reached.

}
end

Step 2. Outputs are the number of bins and the final distribution of items.
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Table 3. Six classes of problems from Berkey and Wang (1987)

Class Item height, width Bin height (H), width (W )
I U[1, 10] 10
II U[1, 10] 30
III U[1, 35] 40
IV U[1, 35] 100
V U[1, 100] 100
VI U[1, 100] 300

Table 4. Four classes of problems from Martello and Vigo (1998)

Type Probabilities (%)
Class 1 2 3 4

VII 70 10 10 10
VIII 10 70 10 10
IX 10 10 70 10
X 10 10 10 70

Type Item width Item height
1 U[2/3W, W] U[1, 1/2H]
2 U[1, 1/2W] U[2/3H, H]
3 U[1/2W, W] U[1/2H, H]
4 U[1, 1/2W] U[1, 1/2H]

H = W = 100

from a uniform distribution. The height and width of a bin are the same value (e.g.,
in Class I, a bin has H = W = 10). For each class, we set n = 20, 40, 60, 80, 100 and
generate 10 instances; this produces 300 test instances.

In Table 4, we describe the four classes of randomly generated benchmark test
problems from Martello and Vigo (1998). There are four types of items where
the height and width of an item are selected from a uniform distribution with
H = W = 100. Each class of problems is a mixture of the four item types (e.g., 70%
of the items in Class VII are Type 1). For each class, we set n = 20, 40, 60, 80, 100
and generate 10 instances; this produces 200 test instances. Overall, we have a total
of 500 test instances (the test problems of Berkey and Wang (1987) and Martello and
Vigo (1998) are available at http://www.or.deis.unibo.it/research.html.)

5.2 Results for 2BP|O|F

We coded WA2BPF and WA2BPG in C/C++ and solved test problems on a 3 GHz
Pentium 4 computer with 256 MB of RAM.

We start with 2BP|O|F since most of the published results pertain to this variant.
However, it is not a straightforward task to compare results, given the way they have
been reported in the literature.

http://www.or.deis.unibo.it/research.html
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Lodi, Martello, and Vigo (1999b) reported the average ratios for tabu search (TS
solution value/ lower bound) for 10 problem instances computed on the 10 classes of
problems, but did not provide the lower bounds they used. Furthermore, these ratios
are different from the values reported in Lodi, Martello, and Vigo (1999a).

Faroe, Pisinger, and Zachariasen (2003) reported the number of bins used by GLS
for the 10 classes, but no running times. They also gave the number of bins used by
TS from Lodi, Martello, and Vigo (1999b) (although this paper reported only average
ratios). Faroe, Pisinger, and Zachariasen also gave the lower bounds they say were
reported in Lodi, Martello, and Vigo (1999a) (although this paper provided no such
bounds).

Monaci and Toth (2006) thanked various researchers for providing “results, for
each 2DBP instance, of their algorithms.” Monaci and Toth (2006) reported the num-
ber of bins used by TS for the 10 problem classes. These results do not agree with the
TS results given in Faroe, Pisinger, and Zachariasen (2003) (the TS results in Monaci
and Toth are slightly better; perhaps they were updated through private communica-
tion with Lodi, Martello, and Vigo; however, the computation times for TS reported
by Monaci and Toth are exactly the same as the times reported in Lodi, Martello, and
Vigo (1999b)). Monaci and Toth (2006) provided lower bounds for each problem.

In Table 5, we show results from the literature for five algorithms and results for
WA2BPF for the 10 classes of 2BP|O|F problems. In order to bring some consistency
to our comparison of results, here are the bounds and algorithms given in Table 5.

LLMV Lower bounds based on Lodi, Martello, and Vigo (1999a)
that are given in Faroe, Pisinger, and Zachariasen (2003).

LB* Lower bounds that are given in Monaci and Toth (2006).
TS Tabu search results obtained by Lodi, Martello, and Vigo

(1999b) that are given in Faroe, Pisinger, and
Zachariasen (2003).

GLS Guided local search results that are given in Faroe,
Pisinger, and Zachariasen (2003).

EA Exact algorithm results that are given in Monaci and
Toth (2006). Monaci and Toth “ran the corresponding
code [of Martello and Vigo (2001)] on [their] machine.”

HBP(TL) Constructive algorithm results that are given in Monaci
and Toth (2006). This is Monaci and Toth’s
implementation of the the algorithm of Boschetti and
Mingozzi (2003) with a time limit for computation.

SCH Set covering heuristic results that are given in Monaci
and Toth (2006).

In Table 5, for all 500 test instances, we see that SCH used 7,248 bins, closely
followed by WA2BPF with 7,253 bins and HBP with 7,265 bins. GLS, EA, and TS
needed more than 7,300 bins. The total number of bins used by SCH and WA2BPF
are about 2.6% and 1.1% above the total number of bins for the lower bounds LLMV
and LB∗, respectively. Although the computers are different, WA2BPF and SCH are
fast, taking 119.33 seconds and 148.46 seconds, respectively, to solve all 500 test
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Table 5. Number of bins and running times for six algorithms that solve 10 classes of 2BP|O|F
problems

TS GLS EA
Class n LLMV LB* Bins Time(s) Bins Bins Time(s)
I 20 67 71 71 24.00 71 71 0.01

40 128 134 136 36.11 134 134 4.62
60 193 197 201 48.93 201 201 21.01
80 269 274 282 48.17 275 275 15.01

100 314 317 327 60.81 321 322 24.07

II 20 10 10 10 0.01 10 10 0.00
40 19 19 21 0.01 19 20 3.00
60 25 25 28 0.09 25 27 6.00
80 31 31 33 12.00 32 34 9.00

100 39 39 40 6.00 39 40 3.00

III 20 46 51 55 54.00 51 51 0.01
40 88 92 98 54.02 95 95 12.01
60 133 136 140 45.67 140 140 15.04
80 184 187 199 54.31 193 195 24.01

100 217 221 237 60.10 229 228 27.70

IV 20 10 10 10 0.01 10 10 0.00
40 19 19 19 0.01 19 20 3.00
60 23 23 26 0.14 25 27 12.00
80 30 30 33 18.00 33 33 9.00

100 37 37 38 6.00 39 40 9.00

V 20 60 65 67 36.02 65 65 0.01
40 114 119 119 27.07 119 119 5.39
60 172 179 182 56.77 181 180 15.19
80 236 241 250 56.18 250 249 27.00

100 273 279 295 60.34 288 286 27.01

VI 20 10 10 10 0.01 10 10 0.00
40 15 15 21 0.03 18 19 12.00
60 21 21 22 0.04 22 22 3.01
80 30 30 30 0.01 30 30 0.01

100 32 32 34 12.00 34 35 9.01

VII 20 53 55 55 12.02 55 55 0.06
40 108 109 114 37.01 113 111 11.58
60 155 156 163 36.44 161 162 18.00
80 223 224 232 54.52 233 234 30.00

100 268 269 276 47.43 276 276 21.00
(continued)
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Table 5. (continued)

TS GLS EA
Class n LLMV LB* Bins Time(s) Bins Bins Time(s)
VIII 20 55 58 58 18.04 58 58 0.00

40 111 112 114 18.72 114 113 6.00
60 159 159 162 20.99 163 164 15.00
80 222 223 226 37.95 228 226 12.01

100 273 274 284 52.66 282 281 21.00

IX 20 143 143 143 0.01 143 143 0.00
40 274 278 277 24.05 278 278 0.01
60 433 437 437 24.26 437 437 0.12
80 569 577 575 54.31 577 577 3.51

100 689 695 696 34.11 695 695 12.80

X 20 40 42 44 12.00 42 42 0.05
40 71 74 75 25.18 74 74 2.28
60 97 98 104 42.13 102 103 16.86
80 123 123 130 47.30 130 132 28.29

100 153 153 165 60.10 163 164 30.00

Total 7064 7173 7364 1436.09 7302 7313 524.69

HBP(TL) SCH WA2BPF
Class n LLMV LB* Bins Time(s) Bins Time(s) Bins Time(s)
I 20 67 71 71 3.08 71 0.07 71 0.21

40 128 134 134 9.68 134 3.93 134 0.06
60 193 197 201 12.12 200 2.50 200 0.67
80 269 274 275 3.08 275 2.50 275 3.07

100 314 317 319 6.33 317 3.38 317 9.21

II 20 10 10 10 0.06 10 0.06 10 0.05
40 19 19 19 0.46 19 0.31 20 0.04
60 25 25 25 0.07 25 0.07 25 0.43
80 31 31 31 0.48 31 0.07 31 13.89

100 39 39 39 0.26 39 0.37 39 8.70

III 20 46 51 51 6.28 51 0.07 53 0.04
40 88 92 94 6.48 94 1.10 94 2.15
60 133 136 140 12.14 139 2.66 139 0.16
80 184 187 190 9.93 190 6.09 189 3.16

100 217 221 225 12.59 223 5.10 224 7.52

IV 20 10 10 10 0.07 10 0.06 10 0.05
40 19 19 19 0.08 19 0.07 19 0.14
60 23 23 25 6.13 25 1.86 25 0.05
80 30 30 32 7.10 32 3.15 31 12.19

100 37 37 38 4.04 38 2.32 38 0.36
(continued)
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Table 5. (continued)

HBP(TL) SCH WA2BPF
Class n LLMV LB* Bins Time(s) Bins Time(s) Bins Time(s)
V 20 60 65 65 0.10 65 0.06 65 0.10

40 114 119 119 9.31 119 1.21 119 0.17
60 172 179 180 8.21 180 1.05 180 1.49
80 236 241 248 18.80 247 8.82 247 2.66

100 273 279 286 18.50 283 5.30 283 3.50

VI 20 10 10 10 0.07 10 0.07 10 0.04
40 15 15 17 6.91 17 2.81 19 0.07
60 21 21 21 0.16 21 0.35 22 0.05
80 30 30 30 0.24 30 0.23 30 0.06

100 32 32 34 6.39 34 2.75 33 21.00

VII 20 53 55 55 6.09 55 0.12 55 0.05
40 108 109 112 10.25 111 1.41 111 2.12
60 155 156 160 13.09 158 3.50 159 6.79
80 223 224 232 24.24 232 15.71 232 0.27

100 268 269 273 13.01 271 9.86 271 1.92

VIII 20 55 58 58 0.07 58 0.06 58 0.05
40 111 112 113 3.47 113 0.49 113 0.21
60 159 159 162 9.33 162 3.36 162 0.16
80 222 223 225 6.36 224 3.90 224 0.33

100 273 274 279 15.48 279 13.30 277 0.06

IX 20 143 143 143 0.06 143 0.06 143 0.19
40 274 278 278 0.07 278 0.06 279 0.04
60 433 437 437 0.08 437 0.07 438 0.12
80 569 577 577 0.08 577 0.08 577 0.16

100 689 695 695 0.11 695 0.11 695 0.23

X 20 40 42 42 4.78 42 0.12 43 0.29
40 71 74 74 6.11 74 0.11 74 0.21
60 97 98 102 16.13 101 4.20 102 0.16
80 123 123 130 21.26 130 14.48 129 5.42

100 153 153 160 26.63 160 19.07 159 9.26

Total 7064 7173 7265 345.85 7248 148.46 7253 119.33
TS Silicon Graphics INDY R10000sc (195 MHz)
GLS Digital 500au (500 MHz) with a 30 second time limit
EA, HBP(TL), SCH Digital Alpha (533 MHz) with a 30 second time limit
WA2BPF Pentium 4 (3 GHz)



142 K.-H. Loh et al.

instances. We point out that, in Class IX with n = 40, the TS solution of 277 reported
by Faroe, Pisinger, and and Zachariasen (2003) is less than the lower bound of 278
given by Monaci and Toth (2006).

5.3 Results for 2BP|R|F

In Table 6, we show the results generated by WA2BPF on the 2BP|R|F problems
(items can be rotated). WA2BPF used 7,222 bins and needed 66.66 seconds for all
500 test instances. Since the items can be rotated, 31 fewer bins were used when
compared to the oriented solutions produced by WA2BPF that are given in Table 5.

Table 6. Number of bins and running times for WA2BPF on 10 classes of 2BP|R|F problems

WA2BPF WA2BPF
Class n Bins Time(s) Class n Bins Time(s)
I 20 71 0.21 VI 20 10 0.04

40 134 0.06 40 19 0.07
60 197 3.25 60 22 0.05
80 274 0.25 80 30 0.06

100 317 9.21 100 33 6.30

II 20 10 0.05 VII 20 55 0.05
40 20 0.04 40 111 1.26
60 25 0.11 60 156 4.31
80 31 1.70 80 225 1.34

100 39 1.50 100 269 1.87

III 20 52 0.04 VIII 20 58 0.05
40 94 2.23 40 112 0.21
60 138 0.16 60 159 0.17
80 189 1.08 80 223 0.13

100 224 3.12 100 274 0.57

IV 20 10 0.05 IX 20 143 0.10
40 19 0.14 40 279 0.04
60 25 0.05 60 438 0.12
80 31 1.42 80 577 0.16

100 38 0.36 100 695 0.23

V 20 65 0.10 X 20 43 0.29
40 119 0.17 40 74 0.21
60 180 0.66 60 101 5.96
80 244 4.65 80 128 6.85

100 283 2.17 100 159 3.44

Total 7222 66.66
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Lodi, Martello, and Vigo (1999b) published results produced by TS for the 10
classes of 2BP|R|F problems. They reported average ratio results. The lower bounds
from an unpublished paper by Dell’Amico, Martello, and Vigo (1999) that were used
by Lodi, Martello, and Vigo are not currently available, thereby making average ratio
comparisons between WA2BPF and TS impossible.

5.4 Results for 2BP|O|G and 2BP|R|G

In Tables 7 and 8, we show the results generated by WA2BPG on the 2BP|O|G and
2BP|R|G problems. WA2BPG used 7,373 bins and needed 24.77 seconds to solve

Table 7. Number of bins and running times for WA2BPG on 10 classes of 2BP|O|G problems

WA2BPG WA2BPG
Class n Bins Time(s) Class n Bins Time(s)
I 20 72 0.12 VI 20 10 0.04

40 137 0.06 40 19 0.07
60 202 1.78 60 22 0.05
80 277 0.72 80 30 0.06

100 326 0.24 100 35 0.07

II 20 10 0.05 VII 20 56 0.07
40 20 0.04 40 115 0.29
60 26 0.41 60 164 0.22
80 33 0.06 80 233 0.32

100 40 0.07 100 275 0.27

III 20 54 0.04 VIII 20 60 0.06
40 98 0.21 40 116 0.18
60 143 0.94 60 163 0.60
80 196 2.36 80 230 0.17

100 230 2.28 100 283 0.17

IV 20 10 0.05 IX 20 143 0.19
40 20 0.04 40 279 0.04
60 26 0.06 60 438 0.12
80 33 0.06 80 577 0.16

100 39 0.19 100 695 0.23

V 20 67 0.04 X 20 44 0.15
40 123 0.13 40 77 0.06
60 185 0.35 60 105 0.12
80 251 4.28 80 131 2.69

100 291 3.45 100 164 0.34

Total 7373 24.77
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Table 8. Number of bins and running times for WA2BPG on 10 classes of 2BP|R|G problems

WA2BPG WA2BPG
Class n Bins Time(s) Class n Bins Time(s)
I 20 71 0.04 VI 20 10 0.04

40 136 0.04 40 19 0.05
60 201 3.47 60 22 0.05
80 275 0.93 80 30 0.05

100 323 0.37 100 34 1.96

II 20 10 0.04 VII 20 56 0.07
40 20 0.24 40 110 0.83
60 26 0.51 60 158 2.53
80 32 0.88 80 227 1.21

100 39 0.59 100 273 2.80

III 20 52 0.05 VIII 20 58 0.92
40 95 0.24 40 113 0.07
60 141 1.39 60 159 0.08
80 193 0.81 80 223 1.97

100 229 4.67 100 275 0.40

IV 20 10 0.05 IX 20 143 0.02
40 19 0.80 40 278 0.05
60 25 0.12 60 437 0.10
80 33 0.06 80 577 0.15

100 38 0.17 100 695 0.23

V 20 66 0.06 X 20 42 0.21
40 120 0.48 40 74 0.08
60 181 4.51 60 102 0.88
80 248 3.35 80 130 0.33

100 288 4.70 100 163 0.36

Total 7279 44.01

the problems with oriented items, while it used 7,279 bins and needed 44.01 seconds
to solve the problems with rotated items.

Lodi, Martello, and Vigo (1999b) published results produced by TS for the 10
classes of 2BP|O|G and 2BP|R|G problems. Again, comparisons based on average
ratios cannot be made between WA2BPG and TS because the lower bounds used by
Lodi, Martello, and Vigo were not published in their paper. Lodi, Martello, and Vigo
(1998) published results produced by TS for 10 classes of 2BP|R|G problems. The
ratios reported in the 1998 paper are different from the values reported in the 1999b
paper. Lodi (2005) commented that the experiments in the two papers were run on
different machines and probably with different parameter settings.
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6 Conclusions

We developed an algorithm based on weight annealing that solved four variants of
the two-dimensional bin packing problem. Overall, our algorithm produced high-
quality results quickly. Specifically, with respect to oriented items and free cutting,
our weight annealing algorithm generated results that were very comparable in terms
of accuracy and computational speed to the best results found in the literature.

In summary, weight annealing is a straightforward, easy-to-implement meta-
heuristic that produces very good results to bin packing problems. We expect to
apply it to other combinatorial optimization problems in future work.
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Summary. In the maximum cardinality bin packing problem (MCBPP), we have n items
with different sizes and m bins with the same capacity. We want to assign a maximum number
of items to the fixed number of bins without violating the capacity constraint on each bin.
We develop a heuristic algorithm for solving the MCBPP that is based on weight annealing.
Weight annealing is a metaheuristic that has been recently proposed in the physics literature.
We apply our algorithm to two data sets containing 4,500 randomly generated instances and
show that it outperforms an enumeration algorithm and a branch-and-price algorithm.

Key words: Bin packing; weight annealing; heuristics; combinatorial optimization.

1 Introduction

In the maximum cardinality bin packing problem, we are given n items with sizes
ti, i ∈ N = {1, . . . ,n}, and m bins of identical capacity c. The objective is to assign a
maximum number of items to the fixed number of bins without violating the capacity
constraint. The problem formulation is given by

maximize z =
n

∑
i=1

m

∑
j=1

xi j (1)
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subject to

n
∑

i=1
tixi j ≤ c j ∈ {1, . . . ,m}

m
∑
j=1

xi j ≤ 1 i ∈ {1, . . . ,n}

xi j = 0 or 1 i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m}

where xi j = 1 if item i is assigned to bin j and xi j = 0 otherwise.
The MCBPP is NP-hard (Labbé, Laporte, and Martello 2003). It has been ap-

plied in computing where we need to assign variable-length records to storage. The
objective is to maximize the number of records stored in fast memory so as to ensure
a minimum access time to the records given a fixed amount of storage space (Labbé,
Laporte, and Martello 2003).

The MCBPP has been applied to the management of real-time multi-processors
where the objective is to maximize the number of completed tasks with varying job
durations before a given deadline (Coffman, Leung, and Ting 1978). It has been used
to design processors for mainframe computers and the layout of electronic circuits
(Ferreira, Martin, and Weismantel 1996).

A variety of bounds and heuristics have been developed for the MCBPP.
Coffman, Leung, and Ting (1978) and Bruno and Downey (1985) provided prob-
abilistic lower bounds. Kellerer (1999) considered this problem as a special case
of the multiple knapsack problem where all items have the same profit and all
knapsacks (or bins) have the same capacity and solved it with a polynomial approx-
imation scheme for the multiple knapsack problem. Labbé, Laporte, and Martello
(2003) developed several upper bounds and embedded them in an enumeration al-
gorithm. Peeters and Degraeve (2006) solved the problem with a branch-and-price
algorithm.

In this paper, we develop a heuristic algorithm for solving the MCBPP that is
based on the concept of weight annealing. In Section 2, we describe weight anneal-
ing. In Section 3, we give the upper bounds and lower bounds that are used in our
algorithm. In Section 4, we present our weight annealing algorithm. In Section 5, we
apply our algorithm to 4,500 instances and compare our results to those produced
by an enumeration algorithm and a branch-and-price algorithm. In Section 6, we
summarize our contributions.

2 Weight Annealing

Ninio and Schneider (2005) proposed a weight annealing method that allowed a
greedy heuristic to escape from a poor local optimum by changing the problem land-
scape and making use of the history of each optimization run. The authors changed
the landscape by assigning weights to different parts of the solution space. Ninio and
Schneider provided the following outline of their weight annealing algorithm.
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Step 1. Start with an initial configuration from a greedy heuristic solution using the
original problem landscape.

Step 2. Determine a new set of weights based on the previous optimization run and
insight into the problem.

Step 3. Perform a new run of the greedy heuristic using the new weights.
Step 4. Return to Step 2 until a stopping criterion is met.

In their implementation, Ninio and Schneider required nonnegative values for
all of the weights so their algorithm could look for good solutions. They used a
cooling schedule with temperature T to change the values of the weights. When the
value of T was large, there were significant changes to the weights. As T decreased,
all weights approached a value of one. Ninio and Schneider applied their weight
annealing to five benchmark traveling salesman problems with 127 to 1,379 nodes
and generated results that were competitive with simulated annealing.

Weight annealing shares features with metaheuristics such as simulated anneal-
ing (e.g., a cooling schedule) and deterministic annealing (e.g., deteriorating moves)
and similarities among these metaheuristics were presented by Ninio and Schneider
(2005). In contrast to simulated annealing and deterministic annealing, weight an-
nealing not only considers the value of the objective function, at each stage of an
optimization run it also makes use of information on how well every part of the
search space is being solved. By creating distortions in different parts of the search
space (the size of the distortion is controlled by weight assignments based on insights
gained from one iteration to the next), weight annealing seeks to expand and speed
up the neighborhood search and focus computational efforts on the poorly solved
regions of the search space.

3 Upper and Lower Bounds

3.1 Upper Bounds

Our algorithm uses upper bounds on the optimal value of the objective function (z∗)
in (1) that were developed by Labbé, Laporte, and Martello (2003). The objective
function value in (1) gives the maximum number of items that can be packed into
the bins without violating bin capacities. Without loss of generality, we assume that
the problem data are integers and 1 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ c (we refer to this as the
ordered list throughout the rest of this paper).

The first upper bound for z∗ developed by Labbé, Laporte, and Martello (2003)
is given by

Ū0 = max
1≤k≤n

{

k :
k

∑
i=1

ti ≤ mc

}

. (2)

Since the optimal solution is obtained by selecting the first z∗ smallest items, all
items with sizes ti for which i > Ū0 can be disregarded.
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Labbé, Laporte, and Martello (2003) derived the second upper bound Ū1 as fol-
lows. Let Q( j) be the upper bound on the number of items that can be assigned to j
bins. Then

Q( j) = max

{

k : j ≤ k ≤ n,
k

∑
i=1

ti ≤ jc

}

for j = 1, . . . ,m. (3)

An upper bound on z∗ is given by

U1( j) = Q( j)+ �Q( j)/ j�(m− j) (4)

since �Q( j)/ j� is an upper bound on the number of items that can be packed into each
of the remaining (m− j) bins. The upper bound is obtained by taking the minimum
over all j, that is,

Ū1 = min
j=1,...,m

U1( j). (5)

Note that Ū1 dominates Ū0.
The third upper bound Ū2 from Labbé, Laporte, and Martello (2003) is derived

in the following way. Let i be the smallest item in an instance with m bins. Then
m�c/t1� is an upper bound on the number of items that can be assigned to m bins
because �c/t1� is an upper bound on the number of items that can be packed into one
bin. A valid upper bound is given by

Ū2(i) = (i−1)+m�c/t1�. (6)

If i is not the smallest item, then an optimal solution will contain all items j < i, and
by taking the minimum over all i, we obtain a valid upper bound

Ū2 = min
j=1,...,n

U2(i). (7)

It follows that the best a priori upper bound is given by U∗ = min{Ū0, Ū1, Ū2}
(which is similar to what is given in Labbé, Laporte, and Martello (2003)). Since the
optimal solution is obtained by selecting the first z∗ smallest items, all items with
sizes ti for which i > U∗ can be disregarded. We point out that the time complexities
for the computation of the bounds are given in the paper by Labbé, Laporte, and
Martello (2003).

3.2 Lower Bounds

Our algorithm uses lower bounds developed by Martello and Toth (1990). Let I de-
note a one-dimensional bin packing problem instance. The lower bound L2 on the
optimal number of bins z(I) can be computed in the following way.

Given any integer α, 0 ≤ α ≤ c/2, let

J1 = { j ∈ N : t j > c−α},
J2 = { j ∈ N : c−α ≥ t j > c/2},
J3 = { j ∈ N : c/2 ≥ t j ≥ α}, N = {1, . . . ,n},
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then

L(α) = |J1|+ |J2|+max

⎛

⎜
⎜
⎜
⎝

0,

⎡

⎢
⎢
⎢
⎢
⎢
⎢

∑
j∈J3

t j −
(

|J2|c− ∑
j∈J2

t j

)

c

⎤

⎥
⎥
⎥
⎥
⎥
⎥

⎞

⎟
⎟
⎟
⎠

(8)

is a lower bound on z(I).
L2 is calculated by taking the maximum over α , that is,

L2 = max{L(α) : 0 ≤ α ≤ c/2, α integer} (9)

In our algorithm, we use the Martello-Toth reduction procedure (denoted by
MTRP and given in Martello and Toth 1990) to determine the lower bound L3 which
dominates L2.

Let I be the original instance, zr
1 be the number of bins reduced after the first

application of MTRP to I, and I(zr
1) be the corresponding residual instance. If I(zr

1) is
relaxed by removing its smallest item, then we can obtain a lower bound by applying
L2 to I(zr

1) and this yields L′
1 = zr

1 + L2(I(zr
1)) ≥ L2(I). This process iterates until

the residual instance is empty. For iteration k, we have a lower bound L′
k = zr

1 + zr
2 +

. . .+ zr
k +L2(I(zr

k)). Then

L3 = max{L′
1,L

′
2, . . . ,L

′
kmax

} (10)

is a valid lower bound for I where kmax is the number of iterations needed to have the
residual instance empty.

4 Weight Annealing Algorithm for the MCBPP

In this section, we present our weight annealing algorithm for the maximum cardi-
nality bin packing problem which we denote by WAMC. Table 1 illustrates WAMC
in pseudo code. We point out that a problem has been solved to optimality once we
have found a feasible bin packing for the current instance defined by the theoretical
upper bound U∗ at Step 4 of our algorithm.

The number of items (n), the ordered list of item sizes, the bin capacity (c), and
the number of bins (m) are inputs. For the ordered list, the data are integers and
1 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ c, where ti is the size of item i.

4.1 Computing the Bounds

We begin by computing the three upper bounds and then setting U∗ = min{Ū0,
Ū1, Ū2}. Since the optimal solution of any instance is obtained by selecting the first
z∗ smallest items, we update the ordered list by removing any item i with size ti for
which i > U∗.

To improve the upper bound, we compute L3 by applying MTRP. If L3 is greater
than m, it is not feasible to pack the items on the ordered list into m bins, so we can
reduce U∗ by 1. We update the ordered list by removing any item i with size ti for
which i > U∗. We iterate until L3 = m.
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Table 1. Weight annealing algorithm (WAMC) for the MCBPP

Step 0. Initialization
Parameters are K (scaling parameter), nloop1, nloop2, T (temperature), and Tred.
Set K = 0.05, nloop1 = 20, nloop2 = 50, T = 1, and Tred = 0.95.
Inputs are number of items (n), the item size ordered list, bin capacity (c), and number of bins (m).

Step 1. Compute the upper bound U∗ = {Ū0,Ū1,Ū2}.
Step 2. Set n = U∗.

Remove item i > U∗ from the ordered list.
Step 3. Improve the upper bound.

While (L3 > m) do{
U∗ = U∗ −1.
Remove item i > U∗ from the ordered list.
Compute L3.}

Step 4. For j = 1 to nloop1
Step 4.1 Construct initial solution with the ordered list with modified FFD algorithm.
Step 4.2 Improve the current solution.

Set T = 1.
Compute residual capacity ri of bin i.
For k = 1 to nloop2

Compute weights wT
i = (1+Kri)T .

Do for all pairs of bins{
Perform Swap (1,0)

Evaluate feasibility and Δ f(1,0).
If Δ f(1,0) ≥ 0

Move the item.
Exit Swap (1,0) and,
Exit j loop and k loop if m is reached.

Exit Swap (1,0) if no feasible move with Δ f(1,0) ≥ 0 is found.
Perform Swap (1,1)

Evaluate feasibility and Δ f(1,1).
If Δ f(1,1) ≥ 0

Swap the items.
Exit Swap (1,1) and,
Exit j loop and k loop if m is reached.

Exit Swap (1,1) if no feasible move with Δ f(1,1) ≥ 0 is found.
Perform Swap (1,2)

Evaluate feasibility and Δ f(1,2).
If Δ f(1,2) ≥ 0

Swap the items.
Exit Swap (1,2) and,
Exit j loop and k loop if m is reached.

Exit Swap (1,2) if no feasible move with Δ f(1,2) ≥ 0 is found.
Perform Swap (2,2)

Evaluate feasibility and Δ f(2,2).
If Δ f(2,2) ≥ 0

Swap the items.
Exit Swap (2,2) and,
Exit j loop and k loop if m is reached.

Exit Swap (2,2) if no feasible move with Δ f(2,2) ≥ 0 is found.}
T := T ×Tred
End of k loop

End of j loop
Step 5. Outputs are the number of bins used and the final distribution of items.
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4.2 Weight Annealing for the Bin Packing Problem

Next, we solve the one-dimensional bin packing problem with the current ordered
list. We start with an initial solution generated by the first-fit decreasing procedure
(FFD) that we have modified in the following way. We select an item for packing
with probability 0.5. In other words, we start with the first item on the ordered list
and, based on a coin toss, we pack it into a bin if it is selected, or leave it on the
ordered list if it is not selected. We continue down the ordered list until an item is
selected for packing. We then pack the second item in the same manner and so on,
until we reach the bottom of the list. For each bin i in the FFD solution, we compute

the bin load li which is the sum of sizes of items in bin i (that is, li =
qi
∑
j=1

ti j, where ti j

is the size of item j in bin i and qi is the number of items in bin i), and the residual
capacity ri which is given by ri = (c− li)/c.

4.2.1 Objective Function

In conducting our neighborhood search, we use the objective function given by
Fleszar and Hindi (2002):

maximize f =
p

∑
i=1

(l j)2 (11)

where p is the number of bins in the current solution. This objective function seeks to
reduce the number of bins along with maximizing the sum of the squared bin loads.

4.2.2 Weight Assignment

A key feature of our procedure is the distortion of item sizes that allows for both up-
hill and downhill moves. The changes in the apparent sizes of the items are achieved
by assigning different weights to the bins and their items according to how well the
bins are packed.

For each bin i, we assign weight wi
T according to

wi
T = (1+Kri)T (12)

where K is a constant and T is a temperature parameter. We apply the weight to each
item in the bin. The scaling parameter K controls the amount of size distortion for
each item. T controls the amount by which a single weight can be varied. We start
with a high temperature (T = 1) and this allows more downhill moves. The tem-
perature is reduced at the end of every iteration (T × 0.95), so that the amount of
item distortion decreases and the problem space looks more like the original prob-
lem space.

At a given temperature T , the size distortion for an item is proportional to the
residual capacity of its bin. At a local maximum, not-so-well packed bins will have
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large residual capacities. We try to escape from a poor local maximum with down-
hill moves. To enable downhill moves, our weighting function increases the sizes of
items in poorly packed bins.

Since the objective function tries to maximize the number of fully filled bins,
the size transformation increases the chances of a swap between one of the enlarged
items in this bin and a smaller item from another bin. Thus, we have an uphill move
in the transformed space, which may be a downhill move in the original space. We
make a swap as long as it is feasible in the original space.

4.2.3 Swap Schemes

We start the swapping process by comparing the items in the first bin with the items
in the second bin, and so on, sequentially down to the last bin in the initial solution.
Neighbors of a current solution can be obtained by swapping (exchanging) items
between all possible pairs of bins. We use four different swapping schemes: Swap
(1,0), Swap (1,1), Swap (1,2), and Swap (2,2). Fleszar and Hindi (2002) proposed
the first two schemes.

In Swap (1,0), one item is moved from bin α to bin β . The change in the objective
function value (Δ f(1,0)) that results from moving one item i with size tαi from bin α
to bin β is given by

Δ f(1,0) = (lα − tαi)2 +(lβ + tαi)2 − lα 2 − lβ
2. (13)

In Swap (1,1), we swap item i from bin α with item j from bin β . The change in
the objective function value that results from swapping item i with size tαi from bin
α with item j with size tβ j from bin β is given by

Δ f(1,1) = (lα − tαi + tβ j)
2 +(lβ − tβ j + tαi)2 − lα 2 − lβ

2. (14)

In Swap (1,2), we swap item i from bin α with items j and k from bin β . The
change in the objective function value that results from swapping item i with size tαi
from bin α with item j with size tβ j and item k with size tβk from bin β is given by

Δ f(1,2) = (lα − tαi + tβ j + tβk)
2 +(lβ − tβ j − tβk + tαi)2 − lα 2 − lβ

2. (15)

In Swap (2,2), we swap item i and item j from bin α with item k and item l from
bin β . The change in the objective function value that results from swapping item i
with size tαi and item j with size tα j from bin α with item k with size tβk and item l
with size tβ l from bin β is given by

Δ f(2,2) = (lα − tαi − tα j + tβk + tβ l)
2 +(lβ − tβk − tβ l + tαi + tα j)2 − la2 − lβ

2. (16)

For a current pair of bins (α, β ), the swapping of items by Swap (1,0) is carried
out as follows. The algorithm evaluates whether the first item (item i) in bin α can
be moved to bin β without violating the capacity constraint of bin β in the original
space. In other words, does bin β have enough original residual capacity to accom-
modate the original size of item i? If the answer is yes (the move is feasible), the
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change in objective function value of the move in the transformed space is evaluated.
If Δ f(1,0) ≥ 0, item i is moved from bin α to bin β . After this move, if bin α is empty
and the total number of utilized bins reaches the specified number of bins (m), the
algorithm stops and outputs the final results. If bin α is still partially filled, or the
lower bound has not been reached, the algorithm exits Swap (1,0) and proceeds to
Swap (1,1). If the move of the first item is infeasible or Δ f(1,0) < 0, the second item
in bin α is evaluated and so on, until a feasible move with Δ f(1,0) ≥ 0 is found or all
items in bin α have been considered and no feasible move with Δ f(1,0) ≥ 0 has been
found. The algorithm then performs Swap (1,1), followed by Swap (1,2), and Swap
(2,2). In each of the swapping schemes, we always take the first feasible move with
a nonnegative change in objective function value that we find.

We point out that the improvement step (Step 4.2) is carried out 50 times
(nloop2 = 50) starting with T = 1, followed by T = 1× 0.95 = 0.95, T = 0.95×
0.95 = 0.9025, etc. At the end of Step 4, if the total number of utilized bins has not
reached m, we repeat Step 4 with another initial solution. We exit the program as
soon as the required number of bins reaches m or after 20 runs (nloop1 = 20).

5 Computational Experiments

We now describe the test instances, present results generated by WAMC, and com-
pare WAMC’s results to those reported in the literature.

5.1 Test Instances

In this section, we describe how we generated two sets of test instances,

5.1.1 Test Set 1

We followed the procedure described by Labbé, Laporte, and Martello (2003) to ran-
domly generate the first set of test instances. Labbé et al. specified the values of three
parameters: number of bins (m = 2, 3, 5, 10, 15, 20), capacity (c = 100, 120, 150,
200, 300, 400, 500, 600, 700, 800), and range of item size [tmin, 99] (tmin = 1, 20,
50). For each of the 180 triples (m, c, tmin), we created 10 instances by generating
item size ti in an interval according to a discrete uniform distribution until the condi-
tion Σ ti > mc was met. This gave us a total of 180×10 = 1,800 instances which we
denote by Test Set 1. We requested the 1,800 instances used by Labbé et al. (2003),
but Martello (2006) replied that these instances were no longer available.

5.1.2 Test Set 2

Peeters and Degraeve (2006) extended the problems of Labbé et al. by multiplying
the capacity c by a factor of 10 and enlarging the range of item size to [tmin, 999].
Rather than fixing the number of bins, Peeters and Degraeve fixed the expected num-
ber of generated items (denoted by E(n′)). E(n′) is not an input for generating the
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instances; it is implicitly determined by the number of bins and capacity. Since the
item sizes are uniformly distributed on the interval [tmin, 999], the expected item size
is (tmin +999)/2 and E(n′) = 2cm/(tmin +999). Given the number of expected items
n̄ as an input, the number of bins m must be n̄(tmin +999)/2c.

We randomly generated the second set of test instances with parameter values
specified by Peeters and Degraeve: desired number of items (n̄ = 100, 150, 200,
250, 300, 350, 400, 450, 500), capacity (c = 1000, 1200, 1500, 2000, 3000, 4000,
5000, 6000, 7000, 8000), and range of item size [tmin, 999] (tmin = 1, 200, 500). For
each of the 270 triples (n̄, c, tmin), we created 10 instances. This gave us a total of
270×10 = 2,700 instances which we denote by Test Set 2.

5.2 Computational Results

We coded WAMC in C and C + + and used a 3 GHz Pentium 4 computer with
256 MB of RAM. In the next two sections, we provide the results generated by
WAMC on the two sets of test instances.

5.2.1 Results on Test Set 1

In Table 2, we show the average number of items (n) generated over 10 instances
for each triple (m, c, tmin) in Test Set 1. In Table 3, we give the number of instances
solved to optimality by WAMC. In Table 4, we give the average running time in
seconds for WAMC.

Table 2. Average value of n over 10 instances for each triple (m, c, tmin) in Test Set 1

tmin m c
100 120 150 200 300 400 500 600 700 800

1 2 4 5 6 9 12 16 21 25 28 34
1 3 6 7 10 12 18 25 31 36 45 49
1 5 11 12 15 20 30 40 53 61 70 79
1 10 20 24 31 41 62 82 99 120 137 160
1 15 30 36 46 62 94 117 150 179 210 239
1 20 41 49 60 85 119 158 198 240 278 317
20 2 4 4 5 7 10 14 17 21 24 27
20 3 5 6 8 11 15 21 26 30 36 42
20 5 8 10 13 16 26 34 42 52 60 67
20 10 17 21 25 34 51 70 84 100 116 134
20 15 26 30 39 51 79 101 125 149 177 203
20 20 34 41 51 70 101 134 167 201 236 267
50 2 3 3 4 5 8 11 13 16 19 22
50 3 4 5 6 8 12 16 21 24 28 33
50 5 7 8 10 13 20 27 34 41 48 54
50 10 14 16 20 27 41 54 68 81 93 107
50 15 20 24 30 40 61 81 101 121 140 161
50 20 27 32 40 54 82 107 134 160 188 215
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Table 3. Number of instances solved to optimality by WAMC in Test Set 1

tmin m c
100 120 150 200 300 400 500 600 700 800

1 2 10 10 10 10 10 10 10 10 10 10
1 3 10 10 10 10 10 10 10 10 10 10
1 5 10 10 10 10 10 10 10 10 10 10
1 10 10 10 10 10 10 10 10 10 10 10
1 15 10 10 10 10 10 10 10 10 10 10
1 20 9 10 10 10 10 10 10 10 10 10
20 2 10 10 10 10 10 10 10 10 10 10
20 3 10 10 10 10 10 10 10 10 10 10
20 5 10 10 10 10 10 10 10 10 10 10
20 10 9 10 9 10 10 10 10 10 10 10
20 15 10 10 9 10 10 10 10 10 10 10
20 20 9 10 10 10 10 10 10 10 10 10
50 2 10 10 10 10 10 10 10 10 10 10
50 3 10 10 10 10 10 10 10 10 10 10
50 5 10 10 10 9 10 10 10 10 10 10
50 10 10 10 10 9 10 10 10 10 10 10
50 15 10 10 10 10 10 10 10 10 10 10
50 20 10 10 10 10 10 10 10 10 10 10

Table 4. Average computation time (s) for WAMC over 10 instances for each triple (m, c, tmin)
in Test Set 1

tmin m c
100 120 150 200 300 400 500 600 700 800

1 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
1 10 0.01 0.01 0.00 0.00 0.00 0.01 0.02 0.02 0.04 0.04
1 15 0.01 0.01 0.00 0.00 0.00 0.03 0.07 0.12 0.18 0.30
1 20 0.03 0.07 0.00 0.01 0.03 0.09 0.23 0.41 0.54 1.05
20 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 10 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.02 0.04 0.08
20 15 0.01 0.00 0.00 0.00 0.00 0.02 0.04 0.09 0.18 0.04
20 20 0.01 0.03 0.02 0.01 0.02 0.05 0.11 0.03 0.49 0.87
50 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.07
50 15 0.00 0.00 0.00 0.09 0.00 0.01 0.02 0.03 0.07 0.18
50 20 0.00 0.00 0.00 0.06 0.00 0.02 0.03 0.05 0.18 0.37
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We see that WAMC found optimal solutions to 1,793 instances. On average,
WAMC is very fast with most computation times less than 0.01 s and the longest
average time about 1 s.

Labbé, Laporte, and Martello (2003) generated 1,800 instances and solved each
instance using a four-step enumeration algorithm (which we denote by LLM) on
a Digital VaxStation 3100 (a slow machine that is comparable to a PC486/33). We
point out that our Test Set 1 and the 1,800 instances used by Labbé et al. are very sim-
ilar (the average values of n that we give in Table 2 are nearly the same as those given
by Labbé et al. (2003), but they are not exactly the same). In Table 5, we provide the
number of instances solved to optimality by LLM. We see that LLM found optimal
solutions to 1,759 instances. On average, LLM is fast with many computation times
0.01 s or less and the longest average time several hundred seconds or more.

Peeters and Degraeve (2006) followed the procedure of Labbé et al. (2003) and
generated 1,800 instances. They solved each instance using a branch-and-price al-
gorithm (denoted by BP) on a COMPAQ Armada 700M, 500 MHz Intel Pentium III
computer with a time limit of 900 seconds. Peeters and Degraeve reported that BP
solved 920 instances (“. . . for those types of instances where the average CPU is sig-
nificantly different from 0 . . .”) to optimality. For these 920 instances, most of the
computation times were less than 0.01 s. Although not listed in the paper explicitly,
we believe that BP also solved the remaining 880 instances to optimality.

In summary, on three different sets of 1,800 instances generated using the specifi-
cations of Labbé et al. (2003), the number of optimal solutions found by BP, WAMC,
and LLM were 1,800, 1,793, and 1,759, respectively.

Table 5. Number of instances solved to optimality by LLM reported in Labbé et al. (2003)

tmin m c
100 120 150 200 300 400 500 600 700 800

1 2 10 10 10 10 10 10 10 10 10 10
1 3 10 10 10 10 10 10 10 10 10 10
1 5 10 10 9 10 10 10 10 10 10 10
1 10 10 9 10 10 10 10 10 10 10 10
1 15 10 8 10 10 10 10 10 10 10 10
1 20 10 10 10 10 10 10 10 10 10 10
20 2 10 10 10 10 10 10 10 10 10 10
20 3 10 10 10 9 10 10 10 10 10 10
20 5 10 9 8 9 10 10 10 10 10 10
20 10 10 9 10 10 10 10 10 10 10 10
20 15 10 10 8 10 10 10 10 10 10 10
20 20 10 10 8 10 10 10 10 10 10 10
50 2 10 10 10 10 10 10 10 10 10 10
50 3 10 10 10 10 10 10 10 10 10 10
50 5 10 10 10 10 10 10 10 10 10 10
50 10 10 10 10 10 9 10 10 10 10 10
50 15 10 10 10 7 7 7 10 10 10 10
50 20 10 10 10 8 6 5 8 9 7 10
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5.2.2 Results on Test Set 2

In Table 6, we show the average number of bins (n) over 10 instances for each triple
(n̄, c, tmin) in Test Set 2. In Table 7, we give the number of instances from Test Set 2
solved to optimality by WAMC. When the number of instances solved to optimality
is less than 10 for WAMC, the maximum deviation from the optimal solution in
terms of the number of items is shown in parentheses. In Table 7, we also provide
the results generated by BP as reported in Peeters and Degraeve (2006). BP solved
2,700 instances that are similar to, but not exactly the same as, the instances in Test
Set 2.

We see that WAMC found optimal solutions to 2,665 instances (there are a total
of 2,700 instances). BP found optimal solutions to 2,519 instances.

WAMC performed better on instances with large bin capacities and BP per-
formed better on instances with small bin capacities. WAMC solved all 1,080

Table 6. Average number of bins (m) over 10 instances for each triple (n̄, c, tmin) in Test Set 2

n̄ tmin c
1000 1200 1500 2000 3000 4000 5000 6000 7000 8000

100 1 50 42 33 25 17 13 10 8 7 6
100 200 60 50 40 30 20 15 12 10 9 7
100 500 75 62 50 37 25 19 15 12 11 9
150 1 75 63 50 38 25 19 15 13 11 9
150 200 90 75 60 45 30 22 18 15 13 11
150 500 112 94 75 56 37 28 22 19 16 14
200 1 100 83 67 50 33 25 20 17 14 13
200 200 120 100 80 60 40 30 24 20 17 15
200 500 150 125 100 75 50 37 30 25 21 19
250 1 125 104 83 63 42 31 25 21 18 16
250 200 150 125 100 75 50 37 30 25 21 19
250 500 187 156 125 94 62 47 37 31 27 23
300 1 150 125 100 75 50 38 30 25 21 19
300 200 180 150 120 90 60 45 36 30 26 22
300 500 225 187 150 112 75 56 45 37 32 28
350 1 175 146 117 88 58 44 35 29 25 22
350 200 210 175 140 105 70 52 42 35 30 26
350 500 262 219 175 131 87 66 52 44 37 33
400 1 200 167 133 100 67 50 40 33 29 25
400 200 240 200 160 120 80 60 48 40 34 30
400 500 300 250 200 150 100 75 60 50 43 37
450 1 225 188 150 113 75 56 45 38 32 28
450 200 270 225 180 135 90 67 54 45 39 34
450 500 337 281 225 169 112 84 67 56 48 42
500 1 250 208 167 125 83 63 50 42 36 31
500 200 300 250 200 150 100 75 60 50 43 37
500 500 375 312 250 187 125 94 75 62 54 47
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Table 7. Number of instances solved to optimality by WAMC in Test Set 2 and the number of
instances solved to optimality by BP reported in Peeters and Degraeve (2006)

n̄ tmin c
1000 1200 1500 2000 3000

BP WAMC BP WAMC BP WAMC BP WAMC BP WAMC

100 1 10 10 10 10 10 10 10 10 10 10
200 10 10 10 10 10 7(1) 10 10 10 10
500 10 10 10 10 10 10 10 10 10 10

150 1 10 10 10 9(1) 10 10 10 10 10 10
200 10 10 10 10 10 9(1) 10 10 10 10
500 10 10 10 10 10 10 10 10 10 10

200 1 10 8(1) 10 8(1) 10 10 10 10 10 10
200 10 10 10 10 10 10 10 10 10 10
500 10 10 10 10 10 9(3) 10 10 10 10

250 1 10 9(1) 10 10 10 10 10 10 10 10
200 10 10 10 9(1) 10 9(1) 10 10 10 10
500 10 10 10 10 10 10 10 10 10 10

300 1 10 9(1) 10 8(1) 10 10 10 10 10 10
200 10 10 10 10 10 8(1) 10 10 10 10
500 10 10 10 10 10 10 10 10 10 10

350 1 10 9(1) 10 9(1) 10 10 10 10 10 10
200 10 10 10 9(2) 10 10 10 10 10 10
500 10 10 10 10 10 10 10 10 10 10

400 1 10 8(1) 10 10 10 10 10 10 10 10
200 10 10 10 10 10 8(1) 10 10 10 10
500 10 10 10 10 10 10 10 10 10 10

450 1 10 9(1) 10 8(1) 10 10 10 10 10 10
200 10 10 10 9(2) 10 9(1) 10 10 9 10
500 10 10 10 10 10 7(4) 10 10 10 10

500 1 10 9(1) 10 10 10 10 10 10 10 10
200 10 10 10 10 10 9(1) 10 10 9 10
500 10 10 10 10 10 10 10 10 10 10

Total 270 261 270 259 270 255 270 270 268 270
( ) Maximum deviation from the optimal solution in terms of the number of items for WAMC.
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Table 7. (continued)

n̄ tmin c
4000 5000 6000 7000 8000

BP WAMC BP WAMC BP WAMC BP WAMC BP WAMC

100 1 10 10 10 10 10 10 10 10 10 10
200 10 10 10 10 10 10 10 10 10 10
500 10 10 10 10 10 10 10 10 10 10

150 1 10 10 10 10 10 10 10 10 10 10
200 10 10 10 10 10 10 10 10 10 10
500 10 10 10 10 10 10 10 10 10 10

200 1 10 10 10 10 10 10 10 10 10 10
200 10 10 10 10 10 10 10 10 10 10
500 10 10 10 10 10 10 10 10 10 10

250 1 10 10 10 10 10 10 10 10 10 10
200 10 10 10 10 10 10 10 10 10 10
500 10 10 10 10 10 10 10 10 10 10

300 1 10 10 10 10 10 10 10 10 10 10
200 10 10 10 10 10 10 10 10 10 10
500 10 10 1 10 3 10 3 10 10 10

350 1 10 10 10 10 10 10 10 10 10 10
200 10 10 10 10 10 10 10 10 10 10
500 10 10 0 10 0 10 0 10 9 10

400 1 10 10 10 10 10 10 10 10 10 10
200 10 10 10 10 10 10 10 10 10 10
500 10 10 0 10 0 10 0 10 0 10

450 1 10 10 10 10 10 10 10 10 10 10
200 10 10 10 10 10 10 10 10 9 10
500 10 10 0 10 0 10 0 10 0 10

500 1 10 10 10 10 10 10 10 10 10 10
200 10 10 10 10 10 10 10 10 9 10
500 7 10 0 10 0 10 0 10 0 10

Total 267 270 221 270 223 270 223 270 237 270

instances with large bin capacities (c = 5000, 6000, 7000, 8000) to optimality, while
BP solved 904 large-capacity instances to optimality. Over the 1,620 small-capacity
bins (c = 1000, 1200, 1500, 2000, 3000, 4000), BP solved 1,615 instances to opti-
mality, while WAMC solved 1,585 instances to optimality.

In Table 8, we show the average computation time in seconds for WAMC
and BP for the instances solved to optimality. To illustrate, for the triple (n̄ =
200, c = 1000, tmin = 1), WAMC solved eight instances and averaged 0.1 s, while
BP solved all 10 instances and averaged 0.5 s. We point out that for several triples
(e.g., (n̄ = 350, c = 5000, tmin = 500)), BP did not solve any instance to optimality,
so that no average computation time is provided in the table.

Over all 2,665 instances solved to optimality, WAMC had an average computa-
tion time of 0.20 s. Over all 2,519 instances solved to optimality, BP had an average
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Table 8. Average computation time (s) for WAMC and BP on instances solved to optimality

n̄ tmin c
1000 1200 1500 2000 3000

BP WAMC BP WAMC BP WAMC BP WAMC BP WAMC

100 1 0.1 0.2 0.1 0.9 0.3 0.3 0.0 0.0 0.0 0.0
200 0.1 0.0 0.1 0.0 0.4 0.2(7) 0.1 0.0 0.0 0.0
500 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 1.4 0.0

150 1 0.1 0.0 0.1 0.6(9) 2.3 0.1 0.0 0.1 0.0 0.1
200 0.1 0.0 0.1 0.6 2.2 0.2(9) 1.7 0.1 0.0 0.1
500 0.0 0.0 0.0 0.0 0.1 0.1 4.8 0.0 8.0 0.0

200 1 0.5 0.1(8) 3.0 0.6(8) 6.0 0.2 0.0 0.2 0.0 0.2
200 0.2 0.0 0.3 0.3 6.1 8.9 3.3 0.2 0.0 0.2
500 0.0 0.0 0.1 0.0 0.2 0.1(9) 6.1 0.0 24.3 0.1

250 1 1.7 0.1(9) 1.9 6.6 11.8 0.2 0.0 0.2 0.0 0.2
200 0.3 0.0 0.8 0.1(9) 14.9 9.3(9) 15.5 0.3 0.0 0.2
500 0.0 0.0 0.1 0.3 0.3 0.5 13.4 0.1 36.4 0.1

300 1 1.3 1.4(9) 7.2 3.4(8) 15.8 0.6 10.7 0.6 0.0 0.8
200 0.5 0.0 0.6 0.9 27.4 5.0 43.8 0.6 39.8 0.5
500 0.4 0.0 0.1 0.0 0.4 0.4 16.9 0.1 71.7 0.2

350 1 2.1 0.1(9) 29.3 5.4(9) 0.0 0.9 0.0 1.1 0.0 1.5
200 0.6 0.1 1.4 0.1(9) 41.2 11.7 86.6 1.2 94.1 0.9
500 0.0 0.0 0.1 0.1 0.6 0.8 27.7 0.1 117.9 0.3

400 1 3.3 0.1(8) 47.2 1.8 52.4 1.3 0.0 1.8 0.0 2.6
200 0.8 0.1 1.6 0.0 68.7 6.3(8) 139.1 1.9 0.1 1.3
500 0.0 0.0 0.2 0.1 0.8 2.5 39.5 0.2 165.0 0.4

450 1 8.2 5.2(9) 46.5 18.2(8) 128.6 1.8 35.2 2.3 0.0 3.3
200 1.0 0.1 2.3 0.2(9) 88.8 4.2(9) 207.5 3.0 0.1(9) 1.7
500 0.0 0.0 0.2 0.1 0.7 1.0(7) 50.7 0.3 237.4 0.6

500 1 13.2 0.2(9) 64.9 8.6 71.7 2.9 7.7 3.6 0.0 6.0
200 1.6 0.1 1.7 0.1 127.6 5.2(9) 374.7 4.7 0.4(9) 2.3
500 0.0 0.0 0.2 0.1 1.1 1.8 58.1 0.4 250.4 0.9

() When the number of instances solved to optimality is less than 10, the number solved to
optimality is given in parentheses.
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Table 8. (continued)

n̄ tmin c
4000 5000 6000 7000 8000

BP WAMC BP WAMC BP WAMC BP WAMC BP WAMC

100 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
500 0.6 0.0 1.5 0.0 0.6 0.0 0.0 0.0 0.0 0.1

150 1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.8 0.0 0.1
200 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.2
500 13.9 0.1 10.9 0.1 10.3 0.1 0.3 0.1 0.7 0.2

200 1 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.2
200 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.4 0.0 0.4
500 47.8 0.1 41.2 0.1 23.9 0.1 0.8 0.2 9.7 0.3

250 1 0.0 0.2 0.0 9.2 0.0 0.1 0.0 0.1 0.0 0.1
200 0.0 0.2 0.0 0.2 0.0 0.1 0.0 0.1 0.0 0.1
500 98.8 0.1 268.6 0.2 204.0 0.1 50.4 0.1 6.3 0.1

300 1 0.0 1.2 0.0 1.2 0.0 1.1 0.0 1.1 0.0 1.3
200 0.0 1.3 0.0 1.2 0.0 1.4 0.1 1.6 0.0 1.5
500 239.6 0.4 326.6(1) 0.5 115.3(3) 0.6 16.7(3) 1.0 7.4 1.0

350 1 0.0 2.0 0.0 2.1 0.0 2.3 0.0 2.0 0.0 1.8
200 0.0 2.2 0.0 2.2 0.0 2.3 0.0 2.0 0.0 2.8
500 318.1 0.6 ∗∗(0) 0.7 ∗∗(0) 0.9 ∗∗(0) 1.1 99.6(9) 1.5

400 1 0.0 2.9 0.0 3.4 0.0 3.5 0.0 3.6 0.0 2.8
200 0.0 3.2 0.0 3.3 0.0 4.6 0.0 4.4 0.0 3.6
500 400.9 0.8 ∗∗(0) 1.0 ∗∗(0) 1.2 ∗∗(0) 1.6 ∗∗(0) 2.6

450 1 0.0 5.1 0.0 5.2 0.0 6.0 0.0 5.7 0.0 4.8
200 0.1 5.0 0.1 4.8 0.0 5.8 0.0 6.8 0.0 6.3
500 578.4 1.2 ∗∗(0) 1.3 ∗∗(0) 1.9 ∗∗(0) 2.7 ∗∗(0) 3.3

500 1 0.0 7.1 0.0 7.3 0.0 8.5 0.0 8.6 0.0 7.6
200 0.1 6.8 0.2 7.4 0.0 8.2 0.0 9.9 0.0 8.9
500 693.7 1.5 ∗∗(0) 2.0 ∗∗(0) 2.4 ∗∗(0) 3.1 ∗∗(0) 4.3

∗∗ BP did not solve any of the 10 instances to optimality.

computation time of 2.85 s. The Pentium III computer used by Peeters and Degraeve
(2006) to run BP is much slower than the Pentium 4 computer that we used to
run WAMC.

We point out that our weight annealing algorithm is a robust procedure that can
be used to solve several variants of bin packing and knapsack problems such as the
dual bin packing problem (see Loh (2006) for more details).

6 Conclusions

We developed a new algorithm (WAMC) to solve the maximum cardinality bin pack-
ing problem that is based on weight annealing. WAMC is easy to understand and easy
to code.
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WAMC produced high-quality solutions very quickly. Over 4,500 instances that
we randomly generated, our algorithm solved 4,458 instances to optimality with an
average computation time of a few tenths of a second. Clearly, WAMC is a promising
approach that deserves further computational study.
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Combinatorial Design of a Stochastic Markov
Decision Process

Nedialko B. Dimitrov and David P. Morton

Abstract We consider a problem in which we seek to optimally design a Markov
decision process (MDP). That is, subject to resource constraints we first design the
action sets that will be available in each state when we later optimally control the
process. The control policy is subject to additional constraints governing state-action
pair frequencies, and we allow randomized policies. When the design decision is
made, we are uncertain of some of the parameters governing the MDP, but we as-
sume a distribution for these stochastic parameters is known. We focus on transient
MDPs with a finite number of states and actions. We formulate, analyze and solve
a two-stage stochastic integer program that yields an optimal design. A simple ex-
ample threads its way through the paper to illustrate the development. The paper
concludes with a larger application involving optimal design of malaria intervention
strategies in Nigeria.

Key words: stochastic optimization, Markov decision process, action space design

1 Introduction

Markov decision processes (MDPs) have seen wide application to time-dynamic
optimization under uncertainty; see, e.g., Puterman (2005). Much less attention has
been paid to optimally designing an MDP, and that is the focus of this paper. We ap-
proach the problem of selecting the actions available when controlling the process
via the MDP, using an integer program, and restrict attention to transient MDPs.
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Mathematical programming has played a key role both in understanding and solv-
ing MDPs, almost from their inception (d’Epenoux, 1963; Manne, 1960). The sur-
vey Kallenberg (1994) provides an overview of linear programming approaches to
solving MDPs. Linear programming formulations also play a central role in a recent
class of approaches to approximate dynamic programming in which the value func-
tion in the linear program (LP) is replaced by an approximate (e.g., affine) value
function that effectively reduces dimension (Adelman, 2007; de Farias and Roy,
2003, 2004; Schweitzer and Seidmann, 1985).

In a canonical MDP, the actions chosen to control the process in one state
are not affected by the actions we choose in another state. However, we consider
constrained MDPs, i.e., variants in which such constraints are present. These can
be approached using Lagrange multipliers (Beutler and Ross, 1985) or via linear
programming (Altman and Shwartz, 1991; Kallenberg, 1983). We consider con-
strained MDPs, primarily using a linear programming approach, but we turn to
the Lagrangian approach when we consider a large-scale special case of a single-
constraint MDP. Linear programming formulations can handle, in a natural way,
constraints that involve the frequency with which we take particular actions in each
state. These constraints concern the optimal control, or operation, of the process. On
the other hand, the additional design stage we consider is on top of the MDP control,
where we construct the actions that will be available in each state when operating
the MDP. The design problem is combinatorial, as action-inclusion decisions are
“yes-no” in nature. In addition, we consider resource constraints on these binary de-
sign variables. When selecting the MDP design, we may be uncertain with respect
to some of the MDP’s parameters, but these parameters are realized before we con-
trol the resulting system. We assume these uncertain parameters are governed by a
known probability distribution, and so the resulting integer program used to design
the system is a stochastic integer program.

The next section introduces our notation, formulates a basic MDP, and reviews
how linear programming can be used to solve an MDP. The basic model is extended
in simple ways in Section 3. Section 4 develops a stochastic integer program to
optimally design an MDP. A simple example of growing complexity illustrates the
ideas developed in these three sections. Section 5 considers a special structure that
allows us to handle problem instances of larger scale, and applies that model to
optimally design malaria intervention strategies in Nigeria.

2 A Basic Markov Decision Process

We begin by describing a discrete-time transient MDP or, more briefly, a system. At
each time period t ∈ T = {1,2, . . .}, we observe an individual in a state indexed by
s ∈ S , where |S | is finite, and we select an action a ∈ As, where |As| is also finite.
We collect a one-step reward rs,a, and the individual probabilistically transitions to
state s′ ∈ S via p(s′ | s,a). The initial position of the individual is governed by
the probability mass function ws, s ∈ S , and we let w = (ws)s∈S be the associated
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|S |-vector. Note that the set of available actions, As, the one-step reward, rs,a, and
the one-step transition probabilities, p(s′ | s,a), do not depend on the time index t.
Our goal is to maximize the total expected reward, i.e., value, we collect by speci-
fying a policy π = (δ 1,δ 2, . . .), where δ t ∈ ×s∈S As gives our decision rule in time
period t and δ t

s ∈ As denotes the action taken in period t if the individual is in state s.
Let Pδ denote the |S | × |S | transition matrix with [Pδ ]s,s′ = p(s′ | s,δs), and let
Pt

π = Pδ 1Pδ 2 · · ·Pδ t . We denote by rδ = (rs,δs)s∈S the |S |-vector of one-step re-
wards under decision rule δ . The problem of maximizing the system’s value can
then be formulated as:

max
π=(δ 1,δ 2,...)

w�
∞

∑
t=0

Pt
π rδ t+1 . (1)

We say that a policy π is transient if ∑∞
t=0 Pt

π is finite, and we call our system
transient if this series is finite for every policy π . A policy, π , is said to be station-
ary if π = (δ ,δ , . . .) for some δ , i.e., the action taken in period t depends on the
individual’s state but not t. It is well known that a system is transient if and only if
every stationary policy is transient; and, for transient systems, the maximum (opti-
mal) value in model (1) can be achieved by a stationary policy (Blackwell, 1962;
Derman, 1962; Veinott, Jr., 1969).

Let Vs denote the optimal value, given that the individual begins in state s ∈ S ,
i.e., the optimal value of model (1) if we were to take w = es, where es is the unit
vector with a 1 in the s-th component. The optimality principle, i.e., Bellman’s re-
cursion, states

Vs = max
a∈As

[

rs,a + ∑
s′∈S

p(s′ | s,a)Vs′

]

. (Bellman)

Here, the optimal value in state s is equal to the one-step reward from that state plus
the expected optimal value after transitioning, maximized over all actions in state s.
Assuming we have solved the Bellman recursion for all Vs, s ∈ S , we can use the
distribution governing the individual’s initial position to form our optimal expected
total reward, w�V = ∑s∈S wsVs, where V = (Vs)s∈S .

Following work that began with d’Epenoux (1963) and Manne (1960), we can
rewrite (Bellman) as a system of inequalities, coupled with minimizing ∑s∈S wsVs,
which has the effect of pushing each value Vs onto the largest of its inequalities over
a ∈ As. This allows us to solve the Bellman recursions via the following LP:

min
V ∑

s∈S

wsVs

s.t. Vs − ∑
s′∈S

p(s′ | s,a)Vs′ ≥ rs,a, s ∈ S ,a ∈ As.
(BellmanLP)

Provided ws > 0, s ∈S , the optimal decision variables in this LP solve the Bellman
recursion, and for any given initial distribution ws ≥ 0, s ∈ S , the optimal value of
this LP is our optimal expected total reward.
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The dual of (BellmanLP) will also prove useful. With xs,a, s ∈ S ,a ∈ As, denot-
ing dual variables associated with the inequality constraints of (BellmanLP), and x
representing the associated vector, we have the dual LP:

max
x ∑

s∈S
∑

a∈As

rs,axs,a

s.t. ∑
a∈As

xs,a − ∑
s′∈S

∑
a∈As′

p(s | s′,a)xs′,a = ws, s ∈ S

xs,a ≥ 0, s ∈ S ,a ∈ As.
(BellmanLPD)

The decision variables, xs,a, represent the expected number of times, over the indi-
vidual’s transient lifetime, that he is in state s and we perform action a. The equality
constraint is a type of flow-balance constraint, stipulating that the expected num-
ber of times the individual is in a state must equal the expected number of times
he enters that state, including inflow from the mass function, ws, specifying the
individual’s initial position. Any basic feasible solution to (BellmanLPD) has the
property that for each s ∈S , we have xs,a > 0 for at most one a ∈ As. This provides
a linear-programming proof that we can solve model (1) using a stationary and non-
randomized policy (Wagner, 1960). (We return to this issue in the context of con-
strained MDPs below.) So, having found an optimal basic solution to (BellmanLPD)
we can extract an optimal stationary policy by the following rule: In state s ∈ S if
∑a∈As xs,a > 0 then select the single action a ∈ As with xs,a > 0, and otherwise select
any action a ∈ As. Said another way, we can take the (single) basic variable for each
s ∈ S as an indicator specifying the action to take in that state.

The linear programming approach to solving an MDP is often less efficient than
using special-purpose algorithms such as policy iteration (Howard, 1960; Puterman,
2005). That said, it provides several advantages: First, the linear programming ap-
proach most easily handles certain types of constrained MDPs, i.e., MDPs with
constraints that restrict the class of policies that can be employed. Second, the lin-
ear programming approach also handles, in a natural way, the addition of a “design
stage” on top of the MDP. As we have already seen, viewing an MDP as an LP can
provide structural insight. Finally, when using an LP to solve the MDP we can make
use of open-source and commercially-available software. We return to these issues
below but first discuss an example. Throughout the paper, variants of this example
illustrate the models we consider.

Example 1. Suppose an individual moves randomly on the grid network depicted in Figure 1. The
top-left cell (northwest corner) and the bottom-right cell (southeast corner) are special. We seek
to guide the individual to the northwest corner, but he vanishes from the grid if he first reaches the
southeast corner. The set of grid cells, i.e., nodes in the individual’s spatial network, form S . There
are five actions, As, available in each cell: do nothing, close a one-way door blocking the north
exit, the south exit, the east exit, or the west exit. If we do nothing, the individual has a 1

4 probability
of transitioning to the adjacent cell to the north, south, east, or west in the next time period. If we
close a one-way door blocking one of the cell’s exits, the individual has a 1

3 probability of exiting to
each of the remaining three neighboring cells. The doors are one-way since they block movement
out of, but not into, the cell. The special cells are different: If the individual reaches the northwest
corner, or the southeast corner he departs the grid in the next time step, regardless of the action we
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Fig. 1: An optimal solution to the MDP from Example 1. The individual starts at the dark plus sign
in the southwest corner. We wish to maximize the probability the individual reaches the northwest
corner, before reaching the southeast corner. The grid is a taurus, so going north from the top row
leads to the bottom row, and going west from the left column leads to the right column, etc. The
one-way doors we close are indicated, with their darker sides facing the cell from which they block
movement. The relative sizes of the circles indicate the expected number of times the individual
is in each cell. In this example, we simply block transit to the southeast corner and wait for the
individual to eventually be absorbed in the northwest corner. The expected number of steps until
the individual exits the system is 13.25.

take. In the former case we receive a unit reward. The one-step reward for the latter case, along
with that of all other cells, is 0. As a result, the goal is to maximize the probability the individual
reaches the northwest corner prior to reaching the southeast corner and vanishing. Equivalently,
the goal can viewed as “protecting” the southeast corner, i.e., as minimizing the probability the
individual is allowed to transit into that cell.

This stylized example is motivated by applications in nuclear smuggler interdiction. In a full
fledged application, the cells of the grid are nodes in an arbitrary network, with each node repre-
senting a physical location and an edge between nodes representing a path the smuggler could take
between locations. The individual moving probabilistically through the network models a nuclear
smuggler’s movements through the locations. The MDP optimizers, the defense force, have certain
actions available, such as placing nuclear detectors, that limit the smuggler’s transition probabil-
ity from one place to another. Then, the goal of the optimization is to place nuclear detectors in
such a way so as to protect the major cities of the defense force.

We assume that the individual begins in the southwest corner, i.e., the associated ws is 1. The
grid is a taurus, i.e., it wraps around on the east-west and north-south “borders” in the figure.
Figure 1 shows an optimal policy, which seals off the southeast corner. Even though we have the
option to close a door in each cell, we only do so in the four cells required to block transit to that
corner. The relative sizes of the circles in the figure indicate ∑a∈As xs,a, i.e., the expected number of
times the individual is in that cell. ��

Note that the system of Example 1 is transient. That is, for every stationary pol-
icy, the individual eventually reaches either the northwest or southeast corner and
then exits the system with probability one. Note that it is impossible to “box in”
the individual, and while we can seal off transition to the northwest corner or the
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southeast corner, it is impossible to do both. Even in modifications of the prob-
lem formulation in which we fail to formally satisfy the transient condition, any
policy that obtains positive reward results in the individual exiting the system with
probability one. (For related notions of so-called proper and improper policies, see
Bertsekas and Tsitsiklis, 1991 and Eaton and Zadeh, 1962.)

Example 2. Here, we modify the model of Example 1 by reducing each of the positive transition
probabilities with the multiplicative factor (1−λ ), for 0 < λ < 1. Thus the individual vanishes from
a (standard) cell with probability λ , and this creates “time pressure” for us to guide the individual
to the northwest corner. Our goal, as before, is to maximize the probability the individual reaches
the northwest cell before he vanishes. The solution to this example is displayed in Figure 2. Here,
we close many more doors to guide the individual towards the northwest corner as quickly as
possible. ��

In the next section, we show how the multiplicative factor in Example 2 can instead
be interpreted as a discount factor. The next section also formulates a constrained
MDP that induces “time pressure” as in Example 2, albeit for a different reason.

3 Simple Modeling Extensions

We label the modeling extensions we consider in this section as being simple for two
reasons. First, from a computational perspective they do not significantly alter the
difficulty of the associated MDP that we seek to solve. Second, the model extensions

Fig. 2: An optimal solution to the MDP from Example 2. Refer to Figure 1 for a description of
the graph notation. There is a small probability that the individual disappears from the grid at each
step. This adds time pressure and so we are more aggressive in closing doors to guide the individual
to the northwest corner more quickly. Compare this with the results of Figure 1. (Note this solution
also solves the model of Example 1.) The expected number of steps until leaving the system is
8.00, and the probability the individual reaches the northwest corner can be made arbitrarily close
to 1 as λ shrinks to zero.
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we consider here are (now) “simple” in the sense that they are well-understood,
having been explored in the literature. Our motive for presenting them here is that
they will prove useful in understanding the scope of MDPs that we can optimally
design using the ideas of the subsequent section.

3.1 Random Replication and Branching MDPs

In some settings, we need to model richer population dynamics than that described
in Section 2, where a single individual moves from state to state and eventually
exits the system. As an example, we consider an extension that allows for random
replication. Specifically, given that an individual is in state s and we take action a,
that individual has probability βs,a of replicating, i.e., of producing another individ-
ual who then evolves in expectation in a manner identical to that of his progenitor.
(Except for the act of replicating, individuals in the system do not interact.) We can
capture this by altering the standard Bellman recursion to account for such replica-
tion as follows:

Vs = max
a∈As

[

rs,a + ∑
s′∈S

p(s′ | s,a)Vs′ +βs,a ∑
s′∈S

p(s′ | s,a)Vs′

]

. (R-Bellman)

The (R-Bellman) recursion captures the fact that with probability βs,a the individual
creates a replicate who then garners the same expected reward as his progenitor for
the remainder of the process.

Here, the potential replication happens after we collect the one-step reward for
performing action a, but we could instead have replication occur before collecting
the reward. The replication need not be created in the same state, either. For exam-
ple, if we would like to replicate from an individual in state s and create the copy in
state s′ with probability βs,a, we can simply add βs,aVs′ to the expression for Vs.

The (R-Bellman) recursion directly translates into an LP in the same way as the
original Bellman recursion. Specifically, we replace the constraint of (BellmanLP)
with

Vs − ∑
s′∈S

p(s′ | s,a)(1+βs,a)Vs′ ≥ rs,a, s ∈ S ,a ∈ As.

Note that the resulting model with replication is exactly of the form of our original
model with p(s′ | s,a) replaced by p(s′ | s,a)(1+βs,a).

Our development here can be generalized so that an individual can generate mul-
tiple offspring in one step. In Section 2, we defined p(s′ | s,a) as the probability
that the individual transits to state s′ given that he is in s and we take action a.
We can replace this with the following dynamics: An individual in state s and sub-
jected to action a generates a finite, nonnegative, number of individuals in the next
time period. And, p(s′ | s,a), called the transition rate, is the expected number of
individuals that transit to state s′. Further, the system can begin with more than a
single individual. Instead a finite number of individuals can appear in the system,
and ws is redefined as being the expected number of individuals that are initially in
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state s. Such MDPs are known as branching MDPs. The notions of a transient policy
and transient system are unchanged in that they hinge on convergence of ∑∞

t=0 Pt
π .

Similarly, stationary policies achieve maximum system value. Such policies can be
achieved by solving (BellmanLPD) and employing the rules outlined in Section 2.
Branching MDPs have a long history in dynamic programming, going back to the
original work of Bellman (1957).

3.2 Nontransient Stochastic Processes

For the special case we considered in Section 2, in which the population consists
of (at most) one individual, and ∑s′∈S p(s′ | s,a) ≤ 1 for each s ∈ S ,a ∈ As, the
system is termed substochastic. A system is termed stochastic if instead ∑s′∈S p(s′ |
s,a) = 1 for each s ∈ S ,a ∈ As. In the latter case, the population always consists of
exactly one individual, and hence, the system is not transient in the sense described
above. An ergodic Markov chain is an example of such a process. (In Examples 1
and 2, this would correspond to an individual who wanders the grid forever.) In this
setting, alternative measures of total system reward must be introduced to ensure
the system’s value is finite. Perhaps the simplest approach here is to introduce a
discount factor 0 < ρ < 1 and modify model (1) so that we maximize the expected
present value of reward:

max
π=(δ 1,δ 2,...)

w�
∞

∑
t=0

ρ tPt
π rδ t+1 . (2)

A system was previously (under ρ = 1) termed transient provided ∑∞
t=0 Pt

π converged
for every policy π , and we can see here that if we require the same property of
∑∞

t=0 ρ tPt
π , the development of Section 2 again carries over. Viewed another way, we

can think of replacing a stochastic transition matrix Pδ by the substochastic matrix
ρPδ , which has the effect of putting us in the transient setting.

From a modeling perspective, we usually think of ρ as discounting future rewards
due to the decreased value of receiving income in future time periods. However,
mathematically we see that ρ can also be viewed as “discounting” the transition
probabilities. We used this idea in Example 2, increasing the probability the indi-
vidual vanishes from the grid at each step by using a discount factor of ρ = 1−λ .
We now see this is equivalent to discounting the unit reward we obtain when the in-
dividual reaches the northwest corner. Under either interpretation, we have created
time pressure to guide the individual to the northwest corner more quickly.

3.3 Constrained MDPs

Our original MDP, i.e., model (1), does not constrain the policy π = (δ 1,δ 2, . . .)
beyond requiring the action taken in each state in each time period, δ t

s , come from
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the set As. This can be extended to a setting where limited resources are allocated
in order to take actions, and hence, actions taken in one state and in one time period
constrain those available in other states and time periods. That is, we restrict the
class of available policies by requiring π ∈ Π for some constraint set Π , which
requires, e.g., that we obey a budget constraint.

Before developing this in more detail, we turn to the notion of randomized poli-
cies, relaxing our notion of a decision rule from the beginning of Section 2. Let
δ t

s,a = P(δ t
s = a), a ∈ As. That is, given that we are in state s in period t, δ t

s,a is
the probability we choose action a ∈ As. We say this relaxes the space of feasible
policies because as stated, model (1) requires that we deterministically choose one
action in each time period in each state, i.e., it requires that the policy be nonrandom-
ized. Now, for a fixed state s, we allow δ t

s,a to be positive for more than one a ∈ As.
All we require is that for all time periods t and states s, we have ∑a∈As δ t

s,a = 1,
stipulating that we have a randomized choice of action in each state s.

Even when we allow for randomized policies, model (1) can be solved by a non-
randomized stationary policy, i.e., one in which for each s ∈ S , all but one of the
probabilities δ t

s,a, a ∈ As, takes value zero, and these are the same for all time pe-
riods t. We pointed to this fact in Section 2, following the dual LP (BellmanLPD),
where we indicated that an optimal basic solution to the dual LP has at most one
xs,a positive for each As. In the solutions of Examples 1 and 2 using nonrandomized
stationary policies means that in each cell we either do nothing or close one of the
four exits, with probability one.

We extend our earlier notation and let Pδ t denote the |S | × |S | transition ma-
trix with [Pδ t ]s,s′ = ∑a∈As δ t

s,a p(s′ | s,a). We similarly extend the reward vector rδ t

to denote the expected reward under a randomized decision rule. In introducing a
budget constraint, we let cs,a be the cost of performing action a in state s and let
cδ t be the |S |-vector of expected one-step costs under randomized decision rule
δ t = (δ t

s,a)s∈S ,a∈As . With b denoting the available budget, and under this set of
extended notation and allowing randomized policies, we formulate the following
budget-constrained MDP:

max
π=(δ 1,δ 2,...)

w�
∞

∑
t=0

Pt
π rδ t+1

s.t. w�
∞

∑
t=0

Pt
π cδ t+1 ≤ b.

(3)

We cannot solve (3) by simply solving the recursion (Bellman), which optimizes
over a ∈ As, separately for each s, because this ignores the fact that the policy is
now constrained by

π ∈ Π =

{

π = (δ 1,δ 2, . . .) ≥ 0 : w�
∞

∑
t=0

Pt
π cδ t+1 ≤ b, ∑

a∈As

δ t
s,a = 1, ∀t,s

}

.

It is important to recognize that the additional budget constraint is with respect to
the expected cost we incur over the individual’s transient lifetime.
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As an alternative to the budget constraint in (3), we can scale the budget b by the
expected lifetime of the individual, i.e., we formulate:

max
π=(δ 1,δ 2,...)

w�
∞

∑
t=0

Pt
π rδ t+1

s.t. w�
∞

∑
t=0

Pt
π cδ t+1 ≤ bw�

∞

∑
t=0

Pt
π e,

(4)

where e = (1,1, . . . ,1)�. The constraint in (4) captures the situation in which b is
earned in each time period of the individual’s transient lifetime, and that, in expecta-
tion, the costs incurred by carrying out actions a must be covered by these earnings.

By augmenting the dual LP (BellmanLPD) with one of the following budget
constraints, we can solve the respective models (3) and (4):

∑
s∈S

∑
a∈As

cs,axs,a ≤ b (5a)

∑
s∈S

∑
a∈As

cs,axs,a ≤ b ∑
s∈S

∑
a∈As

xs,a. (5b)

Optimal solutions to models (3) and (4) can be achieved by randomized stationary
policies. Suppose we have solved the augmented dual LP (BellmanLPD) and ob-
tained solution x = (xs,a). Then, we can extract such an optimal policy as follows. If
∑a∈As xs,a > 0 then we take action a ∈ As in state s according to:

δs,a = P(δs = a) =
xs,a

∑a∈As xs,a
, (6)

and the action we take is arbitrary if ∑a∈As xs,a = 0. Restated, if the individual is
expected to visit state s then we take action a with the probability specified in (6)
and, of course, if the individual does not visit state s then the action we take is
irrelevant. Here, if we have an optimal basic solution and only one budget constraint,
then there will be at most one state s ∈ S that has δs,a > 0 for multiple actions,
and this probability will be positive for (at most) two actions. More generally, if
we append m resource constraints then the policy will be randomized in at most m
states. (See, e.g., the discussion in Feinberg and Shwartz, 1995 and Ross, 1989.)
Intuitively, randomized policies arise because any stationary policy typically either
under- or over-utilizes the budget, but randomization enables full consumption of
the budget.

Example 3. We consider an instance of the budget-constrained model (3), similar to that in Exam-
ple 1, albeit with a modified grid and initial position for the individual, as indicated in Figure 3.
As in Example 1, the individual is equally likely to transit to any of the four neighboring cells if
we choose the “do nothing” action in that state. If we close a one-way door, the individual cannot
transit to the corresponding neighbor cell, and is equally likely to move to each of the remaining
three neighboring cells in the next time period. As before, the goal is to maximize the probability
the individual reaches the northwest cell before reaching the southeast cell and vanishing. Closing
a one-way door costs cs,a = 0.2, except for the doors that directly block transit to the southeast
corner. Those four one-way doors are considerably more expensive to close, with cs,a = 2. The “do
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Fig. 3: The figure shows an instance of the budget-constrained model (3) and its solution. The cost
of closing a door blocking transit to the southeast corner is very high. Thus, unlike in Figure 1, an
optimal policy cannot simply block-off transit to that cell. The relative sizes of the black square in
the southeast corner and the white square in the northwest corner, indicate the relative probabilities
of the individual first reaching those cells. The solution consumes all of the available budget by
randomizing the policy used in a cell near the southeast corner. There, a door is closed blocking
transit to the south with probability 0.44 and otherwise we choose the “do nothing” action with
probability 0.56. The total expected time for the individual in the system is 31.49 time periods.

nothing” action has zero cost, and the available budget is b = 1. We solve this model instance using
the dual LP (BellmanLPD), augmented with budget constraint (5a), and the solution is displayed
in Figure 3. Due to the budget constraint, it is no longer possible to simply block-off transit to
the southeast corner, and the relative sizes of the squares in the northwest and southeast corners
indicate the probabilities of the individual first reaching these respective cells (0.72 and 0.28).
The solution is randomized in only one cell, near the southeast corner, where we close a one-way
door blocking transit to the south with probability 0.44. We incur a cost each time the individual is
blocked by a door, and we must stay within budget b. This induces a time pressure for the individual
to vanish, and of course the objective is to maximize the probability he does so via the northwest
corner. ��

Example 4. We now modify Example 3 only in that we consider the budget constraint of model (4)
instead of that of model (3). So, we solve the instance using the dual LP (BellmanLPD), augmented
with budget constraint (5b). Figure 4 displays the solution. ��

Examples 3 and 4 maximize the probability the individual reaches the northwest
corner (or, equivalently minimizes the probability he reaches the southeast corner)
subject to a budget constraint. In Example 3, for instance, we could exchange the
role of the constraint and the objective, and instead formulate:

min
π=(δ 1,δ 2,...)

w�
∞

∑
t=0

Pt
π cδ t+1

s.t. w�
∞

∑
t=0

Pt
π rδ t+1 ≥ α.

(7)
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Fig. 4: The figure shows an instance of the budget-constrained model (4) and its solution. The
model instance is identical to that in Figure 3 except that now the available budget scales with the
expected time the individual spends in the system before vanishing. The optimal policy shown in
the figure leads to an expected time in the system of 46.05 periods. Compare this with the expected
time in Figure 3. The longer expected time in the system effectively increases the budget, and
thus we are able to completely block-off transit to the southeast corner. In this solution, we have a
randomized policy in a cell blocking transit to the east near the northeast corner.

In (7), we require the policy achieve a prespecified probability, α , that the individual
reaches the northwest corner prior to vanishing, and we seek a policy that does
so at minimum expected cost. This model contains what is known in stochastic
programming as a chance-constraint (Prékopa, 1995), and in our current setting can
be solved, e.g., using the appropriate variant of the dual LP (BellmanLPD).

4 Optimally Designing an MDP

So far, our discussion has centered on selecting a policy that optimally controls
a system. The system dynamics are such that we observe the system’s state and
then take an action, possibly subject to budget constraints, which restrict the control
policies we can choose. We now consider a one-time system “design” decision in
which we seek to (optimally) form the set of actions that we will have available
when we later solve the “operations” problem of optimally controlling the system
via the MDP model. The design problem is a combinatorial optimization problem
that constructs the sets As, s ∈ S , subject to resource constraints, where the objec-
tive function is the optimal value of the MDP we design. We begin with an integer
programming formulation of this problem, and discuss solution methods. Then, we
show that this formulation can also capture the situation where we face a budget-
constrained MDP, but restrict attention to the class of stationary nonrandomized
policies. Finally, we consider the problem of optimally designing an MDP, when
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the parameters governing the MDP are random. These parameters are known only
through a probability distribution at the time when we design the MDP, but are re-
alized prior to selecting the MDP’s control policy.

4.1 An Integer Programming Formulation

With A = (As)s∈S and with A denoting the set of all feasible action-set choices, we
can extend the budget-constrained MDP (3) to include a design stage as follows:

max
A∈A

max
π=(δ 1,δ 2,...)

w�
∞

∑
t=0

Pt
π rδ t+1

s.t. w�
∞

∑
t=0

Pt
π cδ t+1 ≤ b

∑
a∈As

δ t
s,a = 1, t ∈ T ,s ∈ S

δ t
s,a ≥ 0, t ∈ T ,s ∈ S ,a ∈ As

δ t
s,a = 0, t ∈ T ,s ∈ S ,a /∈ As.

(8)

In the final three constraints of (8) we have made explicit the dependence of the
MDP control policy on the design decision A = (As)s∈S .

We seek to reformulate (8), for a class of action-set restrictions A , in a compu-
tationally tractable manner, and we do so using a mixed-integer program (MIP). We
redefine As to index all candidate actions in state s ∈ S . A binary variable zs,a is
used to indicate whether (zs,a = 1) or not (zs,a = 0) we will have access to action
a in state s when controlling the system in the MDP. The following formulation
represents model (8) when the set of action sets we can form are subject to multi-
ple knapsack-style constraints defined by resource levels bi, i ∈ I, and action-design
costs, ci

s,a, s ∈ S ,a ∈ As, i ∈ I:

max
z

h(z) (9a)

s.t. ∑
s∈S

∑
a∈As

ci
s,azs,a ≤ bi, i ∈ I (9b)

zs,a ∈ {0,1},s ∈ S ,a ∈ As, (9c)

where

h(z) = max
x ∑

s∈S
∑

a∈As

rs,axs,a (10a)

s.t. ∑
a∈As

xs,a − ∑
s′∈S

∑
a∈As′

p(s | s′,a)xs′,a = ws,s ∈ S (10b)

∑
s∈S

∑
a∈As

cs,axs,a ≤ b (10c)
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xs,a ≥ 0,s ∈ S ,a ∈ As (10d)
xs,a ≤ Ms,azs,a,s ∈ S ,a ∈ As, (10e)

and where the Ms,a, s ∈ S ,a ∈ As, are sufficiently large. The objective function of
(9a), given as the optimal value in (10), is an MDP parameterized by the design
decisions z. Binary constraints (9c) are yes-no restrictions on including action a for
state s, and constraints (9b) require the designed action sets to satisfy our resource
constraints. The MDP given by (10a)-(10d) captures the budget-constrained MDP
(3), as discussed in Section 3.3. Constraints (10e) disallow use of action a in state s
when zs,a = 0, and when zs,a = 1, Ms,a being sufficiently large means that these con-
straints are vacuous. One way to find such values of Ms,a is to solve auxiliary MDPs
with zs,a = 1 for all s and a that maximize ∑a∈As xs,a for each s or maximize xs,a for
each s and a. (Of course, tighter values of Ms,a can be found.) We can solve model
(9) by forming a single optimization model in which we simultaneously optimize
over z and x, i.e.,

max
z,x ∑

s∈S
∑

a∈As

rs,axs,a

s.t. (9b)-(9c) and (10b)-(10e).

With Z denoting the constraint set defined by (9b)-(9c), note that h(z) is concave
over the convex hull of Z, at least when we view h as an extended real-valued func-
tion that takes value h(z) = −∞ if the LP (10) is infeasible for a specific z ∈ Z.
This permits solving (9) by Benders’ decomposition (Benders, 1962; Van Slyke and
Wets, 1969), in which we iteratively solve a master program to select the value of z
and solve the MDP (10) for that z, building up in the master program a combination
of optimality cuts that form an outer-linearization of h(z) and feasibility cuts that
eliminate choices of z ∈ Z that lead to an infeasible MDP. Such an approach has
the advantage that we need not solve the MDP (10) by linear programming but can
instead use more computationally efficient methods such as policy iteration applied
to the budget-constrained MDP.

It is worth noting that the design problem presented in this section can be solved
using standard MDP techniques by increasing the state space of the MDP by a mul-
tiplicative factor exponential in the length of the decision variable z. To do this, we
could introduce an initial virtual state where the available actions are all possible
settings of the decision variable z. A particular setting of z then forces MDP to tran-
sition with probability 1 to a set of states specific to that setting of z, where only
the actions allowed in z are available. Our formulation, in essence, removes this
exponential blowup in the state space.

4.2 A Nonrandomized Stationary Policy

Consider the variant of the budget-constrained MDP (3) in which we require π =
(δ ,δ , . . .), i.e., a stationary policy. So, we consider the following model:
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max
π=(δ ,δ ,...)

w�
∞

∑
t=0

Pt
π rδ t+1

s.t. w�
∞

∑
t=0

Pt
π cδ t+1 ≤ b

δ ∈ ×s∈S As,

(11)

and we disallow randomized policies, as indicated by the final constraint in (11).
Even though this model does not involve design, per se, we can solve it with a
specialization of the integer programming model developed in the previous section.
Specifically, we can use:

max
z,x ∑

s∈S
∑

a∈As

rs,axs,a

s.t. ∑
a∈As

zs,a = 1,s ∈ S

(9c) and (10b)-(10e),

where we have specialized constraints (9b) to ∑a∈As zs,a = 1,s ∈ S . This requires
us to select exactly one of the actions in each state, i.e., we require a nonrandomized
strategy. For such a binary solution z, there are only |S | variables xs,a that can
be nonzero by the forcing constraints (10e), and the values of these variables, x =
x(z), are fully specified by the |S | × |S | system of equations (10b). Constraint
(10c) forbids selection of nonrandomized strategies via z that lead to an x(z), which
violates the resource constraint.

4.3 Designing an MDP under Stochastic Parameters

The parameters of the budget-constrained MDP (3) are p(s | s′,a), rs,a, ws, cs,a,
for s ∈ S ,a ∈ As and b. Here, we model the situation in which these parameters
are known only through a probability distribution at the time we must select the
action-set design decisions z = (zs,a). We denote by ξ the vector of all the random
MDP parameters, and we also include in ξ one additional random parameter, Is,a,
s ∈ S ,a ∈ As. Parameter Is,a is an indicator random variable. If we include action a
in state s as part of our design decision, and Is,a takes value one then we will have
access to that action when selecting our control policy for the system. However,
when Is,a takes value zero we will not have access to that action, even if it has been
selected via zs,a = 1. This models exogenous factors disallowing a particular action.

With these constructs we formulate the following two-stage stochastic integer
program in which the MDP models our recourse:

max
z

Eξ h(z,ξ )

s.t. (9b)-(9c),
(12)
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where

h(z,ξ ) = max
x ∑

s∈S
∑

a∈As

rs,axs,a (13a)

s.t. (10b)-(10d) (13b)
xs,a ≤ Is,aMs,azs,a,s ∈ S ,a ∈ As. (13c)

We emphasize the timing of decisions and realizations of uncertainty in model (12).
When we select z, the random vector ξ = (p(s | s′,a),rs,a,ws,cs,a,b, Is,a) is known
only through its probability distribution. Then, we realize ξ = ξ (ω) for some sam-
ple point ω ∈ Ω , and knowing this we select the optimal control policy for the
corresponding MDP. This control policy depends on the realization of the MDP’s
parameters and of course, the system design z.

Example 5. Consider the following example of model (12), built on a variant of Example 3, in
which only the individual’s initial position, w = (ws), is stochastic. In order to close a one-way door
when controlling the individual’s movement in the MDP (using xs,a), we must have installed that
door in the design stage (using zs,a). In the design stage, we have a knapsack constraint on the zs,a.
In particular, we are cardinality constrained and can install 6 doors. After the design stage, there
are three equally-likely scenarios, with the individual beginning in one of the cells indicated by
the plus signs in Figure 5. While solving the MDP for a particular scenario, the budget constraint
for closing installed doors is identical to that in Example 3. The solution is shown in Figure 5. An

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3

Fig. 5: An optimal solution to the three-scenario design problem from Example 5. In the design
stage we are allowed to install 6 doors. After the design stage, there are three equally-likely sce-
narios, with the individual starting in one of the three cells indicated by crosses in the figure. Each
scenario has a budget constraint on closing doors that is identical to the constraint in Example 3.
In the optimal solution, we install a door in the northeast corner that is only used with probability
0.25, 0.18, and 0.87 in the first, second, and third scenarios, respectively. The individual is guided
to the northwest corner with probability 0.692 (over all scenarios).
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Fig. 6: An optimal solution to the one-scenario design problem from Example 5. In the design
stage we are allowed to install 6 doors. After the design stage, there is one scenario, with the
individual starting uniformly randomly in one of the three cells indicated by crosses in the figure.
The scenario has a budget constraint on closing doors that is identical to that in Example 3. In the
optimal solution, we install a door in the southeast that is only used with probability 0.74. The
individual is guided to the northwest corner with probability 0.696. As expected, this is greater
than the probability of exiting from the northwest corner in the three-scenario case presented in
Figure 5.

interesting feature of the optimal solution is the door installed in the northeast corner. The door is
used with probability 0.25, 0.18, and 0.87 in the randomized control policies in the first, second,
and third scenarios, respectively. The individual exists at the northwest cell with probability 0.692
over all scenarios.

It also interesting that this example, with three equally likely scenarios, is different, and has a
different optimal solution, than the case where there is one scenario with the individual starting
with probability 1/3 in each of the three respective cells. Consider model (12). If ξ is simply
w = (ws), as in this example, then h(z,ξ ) is concave in ξ . Thus, we have Eξ h(z,ξ ) ≤ h(z,Eξ ).
The three-scenario case is a maximization over z of the left-hand side of the inequality. The one-
scenario case is a maximization over z of the right-hand side of the inequality. Thus, based on the
inequality, we know that the objective function value of the one-scenario case should be at least
as large as the objective function value in the three-scenario case. In our instances, in the one-
scenario case, the individual arrives at the northwest cell with probability 0.696. The solution of
the one-scenario case is shown in Figure 6. ��

5 A Special Case with Application

Consider the special case of the MDP where the actions do not affect the transition
probabilities. In other words, p(s′ | s,a) = p(s′ | s,a′) for all a and a′ in As, and we
will denote this transition probability by simply p(s′ | s). The rewards and costs, on
the other hand, can still depend on the actions.



184 N.B. Dimitrov and D.P. Morton

Consider the equalities in (BellmanLPD),

∑
a∈As

xs,a − ∑
s′∈S

∑
a∈As′

p(s | s′,a)xs′,a = ws, s ∈ S .

In our special case, defining es = ∑a∈As xs,a, we can rewrite the equalities as

∑
a∈As

xs,a − ∑
s′∈S

p(s | s′) ∑
a∈As′

xs′,a = ws, s ∈ S

es − ∑
s′∈S

p(s | s′)es′ = ws, s ∈ S ,

which gives us a linear system in the |S |-vector e.
Solving the linear system for e, we can then reformulate (BellmanLPD) as

max
y ∑

s∈S
∑

a∈As

rs,aesys,a

s.t. ∑
a∈As

ys,a = 1, s ∈ S

ys,a ≥ 0, s ∈ S ,a ∈ As,

(SpecBellmanLPD)

where ys,a can be interpreted as the probability we perform action a given that the
individual is in state s. In other words, this reformulation solves directly for the
randomized policy δs,a, instead of using extraction rule (6). The budget constraints
for this special-case MDP can be reformulated in a similar way. For example, to
capture the specialized budget constraint (5a) we add

∑
s∈S

∑
a∈As

cs,aesys,a ≤ b. (14)

We can follow the steps described in Section 4 to perform optimal design in the
special case. When performing MDP design as in (12), the special case reformula-
tion only affects the recourse function h(z,ξ ). When using decision variables ys,a to
reformulate the linear program (13) which defines h(z,ξ ), we may take Ms,a = 1.
Again, there will be computational advantages to finding tighter values of Ms,a but
because the ys,a variables denote probabilities, the unit bound suffices. The special
case reformulation gives us several additional advantages in evaluating the recourse
function, and we now discuss these in turn.

5.1 Nonlinear Dependencies

The first advantage of (SpecBellmanLPD) over (BellmanLPD) is that we can easily
capture nonlinear dependencies between the rewards, or costs, and the expected
number of times the individual is in a state. In (BellmanLPD), the decision variables
are xs,a, representing the expected number of times we perform action a in state s.
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The objective function of (BellmanLPD) depends linearly on the expected number
of visits to a particular state. For example, if we lose a dollar when the state is visited
once, we lose twelve dollars when the state is visited twelve times.

On the other hand, in (SpecBellmanLPD), the decision variables are the ys,a and
the rs,aes are constants. The term rs,aes captures the linear dependence explained in
the previous paragraph. However, in (SpecBellmanLPD), we need not stick to this
linear dependence. For example, after computing the es, the expected number of
visits to state s, we can compute an arbitrary function of s, a, and es to substitute for
the expression rs,aes. In this way, we are able to capture nonlinear dependencies be-
tween the number of times a state is visited and the reward. For example, we can now
express (negative) rewards such as losing as many dollars as the square root of the
expected number of times we visit a state. A similar argument applies to the costs in
(14). Though we can capture some nonlinear dependencies, in (SpecBellmanLPD)
there is still a linear relationship between the rewards and the probability we select
an action in a state, ys,a.

5.2 Greedy Algorithm Through Lagrangian Relaxation

A second advantage of (SpecBellmanLPD) is that we do not need to solve it as
a linear program, but can instead solve it with a fast greedy algorithm. Imagine
solving (SpecBellmanLPD), i.e., without the inclusion of a budget constraint such
as the one in (14). For each state s, we can simply select the action a ∈ As with the
greatest reward, i.e., set ys,a = 1 and ys,a′ = 0 for all other a′ ∈ As.

When we add a budget constraint such as (14) to (SpecBellmanLPD), the prob-
lem does not immediately decompose as nicely. Of course, we can choose to solve
the budget-constrained problem as a linear program, but there can be computa-
tional advantages in large-scale instances to decomposing the problem by coupling
a Lagrangian relaxation with a line-search as follows. A Lagrangian relaxation of
(SpecBellmanLPD) under budget constraint (14) is:

max
y ∑

s∈S
∑

a∈As

(rs,aes −λcs,aes)ys,a

s.t. ∑
a∈As

ys,a = 1, s ∈ S

ys,a ≥ 0, s ∈ S ,a ∈ As,
(RelaxSpecBellmanLPD)

where λ is the Lagrange multiplier for the budget constraint.
To solve the budget-constrained version of model (SpecBellmanLPD) via model

(RelaxSpecBellmanLPD), we must search for the appropriate value of λ . In the
usual setting, a value of λ that is too small leads to a solution that exceeds the bud-
get, and if λ is too large we under-utilize the budget. A simple bisection search
allows us to find the “right” value of λ . Of course, the advantage of this approach
over directly solving the budget-constrained (SpecBellmanLPD) is that, like model
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(SpecBellmanLPD), model (RelaxSpecBellmanLPD) separates by state for each
value of λ , i.e., it can be solved by the greedy algorithm described above. For more
on constrained MDPs, see the discussion in the survey of Kallenberg (1994), and for
more on the use of Lagrangian relaxation to deal with an MDP with a single budget
constraint, like we consider here, see, e.g., Beutler and Ross (1985).

5.3 An Application

As an example, we apply our special-case model to finding optimal malaria inter-
vention strategies in Nigeria. We divide Nigeria using a one arc-minute grid, creat-
ing 269,228 spatial cells, which form the states of the MDP. The “individual” that
moves among these states is malaria, or vectors (mosquitoes) carrying the disease.
We consider minimizing three objective functions: the deaths caused by malaria, the
economic impact of malaria, and a mixture of these two objectives. A more detailed
description of this application, albeit without the “design decisions” z (see below),
is contained in Dimitrov et al (2008).

In each cell, we have 18 available strategies. Each strategy has an associated cost,
and an associated effectiveness in reducing the negative reward in the objective func-
tion. Table 1 provides a summary of the purchasing costs and effects of some basic
intervention strategies considered in the model. Data on the cost and effectiveness
of each strategy were gathered from the malaria literature. Since it is reasonable to
assume that the listed strategies do not affect the transition probabilities of the dis-
ease vectors across the landscape, we are in the special MDP case described earlier
in this section.

In solving the malaria application, we optimally select a set of distribution centers
in Nigeria using the ideas in Section 4. In addition to purchasing costs, the costs of
the intervention strategies used in the MDP take into account a model of distribution
costs. The distribution costs of intervention strategies to a cell, depend linearly on

Table 1: Purchase costs and benefits of intervention strategies can be gathered from the malaria
literature (Guyatt et al, 2002; Kayentao et al, 2004; Kiszewski et al, 2007; van Eijk et al, 2004).
ACT stands for artemisinin-based combination therapy. IPT stands for intermittent preventative
treatment. IRS stands for indoor residual spraying. LLIN stands for long lasting insecticide-treated
nets. RDT stands for rapid diagnostic tests. These are the basic strategies included in the model.
The model includes 18 strategies total. Some strategies not listed in the table are ACT targeted to
children under 5 years old and combinations of strategies such as IPT and LLIN at the same time.

Strategy Purchase Cost (US $/person) Benefit
ACT 0.67 Reduce Number Infected by 50%
IPT 0.18 Reduce Pregnant Mortality Rate by 65%
IRS 1.08 Reduce Number Infected by 75%
LLIN 1.17 Reduce Number Infected by 63%
RDT 0.70 Decrease Intervention Costs by 25%
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the distance of that cell to the nearest distribution center. The optimization model is
allowed to select three of Nigeria’s five most populated cities as distribution centers.

Following the description of the special MDP case in this section, to construct
the malaria model we need an initial distribution of the disease vectors, w = (ws),
and the transition probabilities for the malaria vector, p(s | s′). Then, we can solve
the linear system that specifies the vector e, and hence construct the reformulated
model (SpecBellmanLPD), with a budget constraint.

All of the calculations described in the previous paragraph are solely used to cal-
culate the rewards of the reformulated program. In our malaria model, the rewards
of the reformulated program depend only on the number of individuals infected by
malaria.

One way to calculate the rewards in the reformulated program is to first estimate
the initial distribution of disease vectors w by using a regression from a number
of ecological and environmental factors. Then, we could use suitability data for
disease vectors to obtain transition probabilities (Moffett et al, 2007). Finally, we
could empirical data to estimate the number of infected individuals in a cell, given
the number of disease vectors and the population of the cell.

However, a more direct way of achieving the same goals is to estimate the ento-
mological inoculation rate (EIR), defined as the average number of infectious bites
per person per year using a linear regression from the ecological and environmen-
tal factors, factors such as “Mean Diurnal Temperature Range” and “Precipitation
During Driest Quarter.” We can then use the EIR values to determine the percent-
age of infected individuals within each cell. The relationship between EIR and the
percentage of infected individuals is nonlinear (Beier et al, 1999). Once we have
the percentage of infected individuals and the population of each cell, we go on to
calculate the number of deaths and the lost productivity in each cell. We use this
second, more direct approach in our calculations.

The results of the multivariate linear regression used to determine the distribu-
tion of EIR values across Nigeria are provided in Figure 7. EIR values were found
to be highest in the coastal areas, while low values were observed in the northeast.
This variation appears to result from both the small mean diurnal temperature range
in the coastal regions and from the large amount of rainfall that these regions en-
counter throughout the year. Malaria vector abundance is greatest in areas that have
consistently high temperatures and consistent precipitation. The EIR values are thus
compatible with our understanding of the ecological factors that are important to
malaria transmission.

So, design variables z (see Section 4) select the location of distribution centers,
and once those locations are selected we solve a budget-constrained version of the
special-case model (SpecBellmanLPD). And, in the results we now report, we do
so for a range of budget values b in constraint (14). In general, for different val-
ues of b, we expect that different subsets of the distribution centers could be se-
lected. However, in our computational instances this did not turn out to be the case.
That is, over a range of different budgets and objective functions, the optimal dis-
tribution center locations did not change, and were consistently the three locations
in the coastal areas. Figure 8 graphically displays the possible distribution center
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(a) Nigeria EIR (b) Mean Diurnal Temperature Range

(c) Total Precipitation in Driest
Quarter

Fig. 7: Results of the multivariate linear regression. Figure 7a depicts the variation in EIR values
across Nigeria, as measured in terms of the number of infective bites per person per year. The
regression indicated that the EIR values were largely a function of temperature and precipitation.
To help indicate this dependence, Figure 7b depicts the mean diurnal temperature range across
Nigeria, while Figure 7c depicts the total precipitation of the driest quarter of the year, as measured
in mm of rainfall.
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(b) Optimal Distribution Center
Locations

Fig. 8: Results of optimal distribution center selection. Figure 8a displays the locations of Nigeria’s
five most populated cities: Lagos, Kano, Ibadan, Kaduna, and Port Harcourt. The optimization is
allowed to select three of these to be distribution centers. The distribution costs of intervention
strategies depend linearly with the distance to the nearest distribution center. Figure 8b displays
the locations selected by the optimization. Even though the optimization is run separately for dif-
ferent budgets and objective functions, Lagos, Ibadan, and Port Harcourt are consistently selected
as distribution centers. Retrospectively, this selection is intuitive as the distribution centers are
targeted towards the coastal areas, where malaria is most prevalent. (see Figure 7)
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locations—Lagos, Kano, Ibadan, Kaduna, and Port Harcourt—as well as the op-
timal locations—Lagos, Ibadan, and Port Harcourt. Retrospectively, the clustering
of distribution centers around the coastal areas is intuitive as those areas have the
greatest malaria prevalence, as pictured in Figure 7a.

The optimal intervention strategies for three different objectives are provided in
Figure 9. The map in Figure 9a depicts the optimal strategy for limiting malaria

Budget (millions / yr) = 87.07; Deaths (100k / yr) = 142.02
act_under_5+ipt+irs
act_under_5+ipt+llin
act_under_5+ipt
ipt

null

10°N10°N

5°N5°N

10°E

600

500

400

300

200

100

0
20 40 60 80 100 120 140 1600

Budget (millions/yr)

(a) Minimize Deaths

Budget (millions / yr) = 309.99; Lost Dollars (millions / yr) = 90.21
act_all+irs
act_under_5+irs
irs

llin

null

10°N10°N

5°N5°N

10°E

600

500

400

300

200

100

50 100 150 200 250 300 350 4000
0

Budget (millions/yr)

Lo
st

 D
ol

la
rs

 (
m

ill
io

ns
 / 

yr
)

(b) Minimize Economic Impact

Budget (millions / yr) = 70.06; Reward (per year) = 4.03

act_under_5+ipt
ipt+irs

ipt+llin

ipt

null

10°N10°N

5°N5°N

10°E

20 40 60 80 100 120 140 1600
Budget (millions / yr)

9
8
7
6
5
4

1
2
3

R
ew

ar
d 

(p
er

 y
ea

r)

(c) Mixed Objective

Fig. 9: Optimal intervention strategies. Figure 9a depicts both the optimal strategy for limiting
malaria mortality at a selected budget, and the effects of adopting the optimal strategy for each of
a range of budgets. Figure 9b depicts the same information, but for the minimization of economic
loss due to malaria. Figure 9c depicts the results when limiting a mixture of economic loss and
mortality. With each of the objectives, at small budgets, strategies were initially targeted to areas
of high population density. This reflects the high cost effectiveness of implementing strategies in
urban areas. An interesting result of the analysis is the kinks visible in graphs of Figures 9a and
9b. These kinks represent a decrease in the cost effectiveness of the remaining available strategies
as the budget is increased.
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mortality at a selected budget. The different colors in the map represent different
actions, with the occurrence of a particular color in a particular area representing the
performance of the associated action in that area as part of the overall intervention
strategy. The map thus indicates that at a budget of 87.64 million dollars per year,
the optimal intervention strategy involves the distribution of IPT to pregnant women
and ACT to children under the age of five across most of the country. In highly
populated areas, these actions are supplemented with IRS and LLIN. The graph
in Figure 9a depicts the effects on mortality of adopting the optimal intervention
strategies associated with a range of budgets. The x-axis indicates the budget, in
millions of dollars per year, while the y-axis indicates the number of deaths from
malaria, in hundreds of thousands per year. The red dot indicates the budget and
corresponding number of deaths for the map shown in Figure 9a.

Malaria mortality is assumed to be limited to pregnant women and young chil-
dren. That is why, in increasing the budget, the first strategy to be implemented is
IPT, followed by the distribution of ACT to children under the age of five. Provid-
ing both IPT to pregnant women and ACT to children under five years old, in all
relevant areas of Nigeria, costs roughly 17 million dollars per year and prevents
290,000 deaths per year, at a cost of 60 dollars per life saved. The abrupt change
of slope in the graph in Figure 9a is located at this budget amount. As the budget
is increased beyond 17 million dollars per year, more expensive strategies such as
LLIN and IRS become optimal. These strategies are first implemented in the major
population centers, as can be seen in Figure 9a.

Figure 9b shows the results when the goal is instead to reduce the economic
impact of malaria. The format of the figure is identical to that of Figure 9a, however
the effects of adopting the different intervention strategies are presented in terms of
lost economic productivity, rather than malaria mortality.

At small budget amounts, the economic consequences of malaria infection are
reduced through the distribution of LLINs to highly populated areas. As the bud-
get is increased, these areas are supplemented with IRS. As the budget is further
increased, IRS is distributed throughout the majority of the country. Covering the
majority of the country with IRS costs approximately 131 million dollars per year
and prevents 422 million dollars in economic damages. The abrupt change in slope
in Figure 9b is located at this budget amount. As the budget is further increased,
ACT is distributed to all individuals in areas with high population densities, and
elsewhere to children under the age of five. The change in slope seen in Figure
9b reflects the lower efficiency of this strategy, as compared to that of distributing
LLINs and IRS.

Figure 9c depicts an optimal strategy for a selected budget when considering
both economic damage and mortality. Any aggregation of these two measures re-
quires the implicit assignment of a dollar value to human life, which will always
be controversial. So as not to endorse any particular such value, Figure 9c simply
represents the effects of assigning an arbitrary economic cost to mortality. For this
reason, the graph in Figure 9c is presented in terms of a unitless quantity referred to
as “Reward.” This graph indicates that as the budget increases, the optimal strategies
exhibit the combined characteristics of the optimal strategies for limiting economic
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loss and mortality individually. At the lowest budget, the majority of the country is
provided with IPT. As the budget increases, ACT is provided to children under the
age of five. However, before the entire country has been provided with with IPT and
ACT, LLINs are distributed to the major population centers, with IRS provided to
the outlying areas. As the budget is further increased, IRS and ACT are provided
across the country. The model is able to produce results for the assignment of any
value to the loss of human life.

For these calculations, we used the special case algorithm described in Section
5.2. Specifically, when solving the MDP for a particular design, i.e. selection of
distribution centers, and a particular budget, we performed a search for the correct
value of the Lagrange multiplier. To compute an optimal design for each budget
requires approximately 1.5 minutes on a modern laptop, while each iteration of the
underlying greedy algorithm requires 0.3 seconds.
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A Primal-Dual Slack Approach to Warmstarting
Interior-Point Methods for Linear Programming

Alexander Engau, Miguel F. Anjos, and Anthony Vannelli

Abstract Despite the many advantages of interior-point algorithms over active-set
methods for linear programming, one of their practical limitations is the remaining
challenge to efficiently solve several related problems by an effective warmstarting
strategy. Similar to earlier approaches that modify the initial problem by shifting the
boundary of its feasible region, the contribution of this paper is a new but relatively
simpler scheme which uses a single set of new slacks to relax the nonnegativity
constraints of the original primal-dual variables. Preliminary computational results
indicate that this simplified approach yields similar improvements over cold starts
as achieved by previous methods.

Keywords: interior-point methods – linear programming – warmstarting

1 Introduction

In this paper, we study linear programs (LPs) in standard primal form

min cT x (1a)
s.t. Ax = b (1b)

x ≥ 0 (1c)
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where the constraint matrix A ∈ R
m×n, the right-hand-side vector b ∈ R

m, and the
cost coefficient c ∈ R

n denote the problem data, and x ∈ R
n is the decision variable.

The dual problem of (1) with dual variable y ∈ R
m and nonnegative slack s ∈ R

n is

max bT y (2a)

s.t. AT y+ s = c (2b)
s ≥ 0 (2c)

Since the seminal work by Karmarkar (1984), interior-point methods (IPMs)
have become the algorithms of choice to efficiently solve LPs as well as convex
(conic) optimization problems (Roos et al 2006). In contrast to active-set methods
that move along the boundary of the feasible region, most prominently including
Dantzig’s simplex method, IPMs typically generate a sequence of intermediate in-
terior points along the trajectory of analytic centers (the so-called “central path”),
which converges to an optimal solution of the LP as the algorithm reduces the as-
sociated centrality measure to zero. IPMs are well-developed in theory and already
widely used in many practical applications, however, an aspect that is still under
active investigation is the development of effective warmstarting strategies.

By warmstarting we mean the use of information obtained from solving an initial
LP instance, particularly its optimal solution, to accelerate or otherwise facilitate the
re-optimization of one or more closely related problems with only minor changes
from the original problem structure by adding or removing some variables and/or
constraints, or some numerical changes due to (small) perturbations of the original
problem data. The former situation typically occurs when solving LPs as subprob-
lems for (mixed-)integer linear programs within the context of branch-and-bound,
branch-and-cut, cutting-plane or other sequential decomposition schemes, and sev-
eral papers have already considered this case (Mitchell and Todd 1992, Mitchell and
Borchers 1996, Gondzio 1998, Gondzio and Vial 1999, Mitchell 2000, Elhedhli and
Goffin 2004, among others). For the latter, data changes in right-hand side or cost
vectors naturally arise in Benders or Dantzig-Wolfe decomposition, respectively,
as well as in many engineering or financial contexts that, for example, deal with
frequent variation of product specifications or market prices. Fewer papers have ad-
dressed this case (Freund 1991a,b, Yildirim and Wright 2002, Gondzio and Grothey
2003, Benson and Shanno 2007) that we also discuss in this paper.

It is widely recognized that the major challenge in warmstarting an IPM lies in
the fact that optimal or nearly-optimal solutions that lie on or close to the boundary
of the nonnegative feasible region are typically not sufficiently interior to be suited
as initial iterate for an interior-point algorithm. In particular, because all nonbasic
variables will assume very small values after converging to a nearly-optimal solu-
tion, starting an IPM from such a point often causes numerical instabilities or other
difficulties that enable only very little progress, if at all. Therefore, and in contrast
with active-set methods for which the optimal solution of the original LP instance
is typically a very good starting point for a closely related problem, IPMs usually
perform better when (re-)started from well-centered points in close proximity to the
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central path although possibly still quite far from an optimal solution, compared to
points that are much closer but badly centered.

Based on these observations, the predominant solution strategy among the afore-
mentioned papers was the storage of intermediate iterates of the original problem,
which allows to retreat along its central path until a “good” warmstarting point is
found, good in the sense that it is also sufficiently close to the new central path of
the modified problem. First proposed by Mitchell and Todd (1992) and further stud-
ied by Mitchell and Borchers (1996), related approaches are analyzed more recently
by Yildirim and Wright (2002) and Gondzio and Grothey (2003) who also give
explicit bounds on the permissible problem perturbation so that the resulting infea-
sibilities at a previous iterate can be absorbed by one full Newton step to continue
a feasible path-following IPM. In support of these approaches, some computational
experiments have been reported and have shown encouraging preliminary results
(Gondzio and Grothey 2003, John and Yildirim 2008).

In the present paper, we study an alternative scheme that, instead of maintain-
ing a solution pool of previous iterates, modifies the new problem to allow a warm
start from an (exact or approximate) optimal solution of the initial problem. In this
case, to overcome the persistent problem of vanishing primal variables and dual
slacks, we employ an idea similar to Freund’s infeasible-start shifted-barrier meth-
ods (Freund 1991a,b, 1996) and Benson and Shanno’s exact primal-dual penalty
method approach (Benson and Shanno 2007) that modify the original problem by
shifting the boundary of the nonnegative feasible region to temporarily allow these
variables to become negative. Unlike these methods, however, we do not actually
change the problem by introducing new shift or penalty parameters, but we merely
choose the new but equivalent problem formulation that explicitly introduces the
corresponding slack variables for all nonnegative constraints. As a major benefit of
this approach, therefore, we are able to remove the difficulty to properly choose and
possibly update any additional problem parameters, while achieving a similar warm
start performance as obtained by the previous methods.

2 Preliminaries

In preparation of the discussion of our new warmstarting scheme, we first review the
basic primal-dual path-following interior-point algorithm and several related warm-
starting approaches that have been proposed in the existing literature. Throughout
this paper, we adopt the standard notation typically used in this context and denote
by X ∈ R

n×n and S ∈ R
n×n the diagonal matrices of the vectors x ∈ R

n and s ∈ R
n,

respectively. Moreover, for any vector norm ‖.‖ and any matrix A ∈ R
m×n, we let

‖A‖ := max{‖Ax‖ : ‖x‖ = 1,x ∈ R
n} (3)

be the associated subordinate matrix norm so that, in particular, ‖Ax‖ ≤ ‖A‖ ·‖x‖ if
‖.‖ denotes one of the most-commonly used �1, �2, or �∞-norms.
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2.1 Interior-Point Methods and Algorithms

While a variety of IPMs have been proposed over the last thirty years, including dif-
ferent variants of the affine-scaling, target-following, or potential-reduction methods
(Roos et al 2006), probably the most often used are the so-called primal-dual path-
following methods (Wright 1997) that stem from the logarithmic barrier formulation

mincT x−μ
n

∑
i=1

log(xi) s.t. Ax = b (4)

of problem (1). These methods perform a sequence of Newton iterations applied to
the first-order (Karush-Kuhn-Tucker) optimality conditions

Ax = b (5a)

AT y+ s = c (5b)
XSe = μe (5c)

where (5a) and (5b) ensure primal and dual feasibility, respectively, and (5c) de-
scribes complementary slackness for the decreasing barrier parameter or centrality
measure μ . It is well known that for every μ > 0, this system has a unique solution,
and the set of these solutions forms the so-called central path which converges to an
optimal solution of LP for μ tending to zero. Moreover, it is easy to see that for a
primal-dual feasible solution (x,y,s) and μ = xT s/n, the quantity nμ measures the
duality gap cT x−bT y between the objective values of the original primal-dual pair.

To solve the resulting Newton system associated with the KKT conditions (5)
⎡

⎣
A 0 0
0 AT I
S 0 X

⎤

⎦

⎡

⎣
Δx
Δy
Δs

⎤

⎦ =

⎡

⎣
rb
rc

μe−XSe

⎤

⎦ (6)

where the residuals rb = b−Ax and rc = c−AT y− s may be zero or nonzero, most
algorithms either solve the equivalent symmetric indefinite system

[
0 A

AT −D−2

][
Δy
Δx

]

=
[

rb
rc −μX−1e+ s

]

(7)

where D = X1/2S−1/2, or compute the Cholesky factorization of the symmetric pos-
itive definite system AD2AT that arises in the so-called normal equations

AD2AT Δy = rb +AD2(rc −μX−1e+ s). (8)

The missing terms in (7) and (8) can then be found by the simple back substitution

Δs = rc −AT Δy (9a)

Δx = μS−1e− x−D2Δs. (9b)
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Once the Newton direction (Δx,Δy,Δs) at a current iterate has been computed,
a corresponding step is taken which guarantees that the new iterate is still interior
and, depending on the particular IPM used, belongs to some pre-specified neighbor-
hood of the central path. Then the barrier parameter is updated, and this procedure
is repeated until all termination criteria for residuals and solution accuracies are
satisfied. This basic IPM is outlined with some more details as Algorithm 1.

Algorithm 1: Primal-Dual Path-Following IPM

Input: initial point z0 = (x0,y0,s0), scalar σ ∈ [0,1], tolerances εb > 0, εc > 0, εd > 0;
Initialization: set k = 0 and compute rk

b = b−Axk, rk
c = c−AT yk − sk, μk = σxkT sk/n;

while max
{
‖rk

b‖
εb

,
‖rk

c‖
εc

, (xk)T sk

εd

}

> 1 do

solve the Newton system (6) for (Δxk,Δyk,Δsk);

set αk < min
{

1,
xk

i
|Δxk

i |
,

sk
i

|Δsk
i |

: Δxi < 0,Δsi < 0, i = 1, . . . ,n
}

;

set (xk+1,yk+1,sk+1) = (xk,yk,sk)+αk(Δxk,Δyk,Δsk);
set k = k +1 and update rk

b, rk
c , and μk;

end

The initial point z0 = (x0,y0,s0) in Algorithm 1 must satisfy that (x0,s0) > 0 but
can otherwise be chosen either primal-dual feasible (r0

b = 0 and r0
c = 0) or infeasible

(at least one of r0
b and r0

c is nonzero). Correspondingly, we also call Algorithm 1 a
feasible or infeasible IPM, and in either case it is easy to show that

rk+1 = (1−αk)rk =
k

∏
j=0

(1−α j)r0 (10)

for both rb and rc, so that a feasible IPM preserves feasibility of its starting point,
whereas an infeasible IPM (IIPM) can always establish feasibility by taking a full
Newton step with αk = 1 (but at the risk of possibly leaving the interior). While
the early development of IPMs was primarily focused on feasible approaches that
still enjoy slightly better complexity bounds in theory, in practice IIPMs typically
outperform their feasible counterparts and are nowadays widely considered to be
the more powerful algorithms for LP.

2.2 Warmstarting Interior-Point Algorithms

Similar to the notation adopted in Yildirim and Wright (2002), we now denote the
problem data of an LP instance by the triplet d = (A,b,c) and assume that d =
d◦ + Δd, where d◦ = (A◦,b◦,c◦) is the initial LP with a known optimal solution
z◦ = (x◦,y◦,s◦), and Δd = (ΔA,Δb,Δc) is a (small) problem perturbation of d◦.
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Since z◦ is optimal for the initial data instance d◦, it also satisfies its KKT
conditions (5) and, in particular, is primal-dual feasible. However, for the new
instance d, this previous solution typically becomes infeasible because

rb = b−Ax◦ = (b◦ +Δb)− (A◦ +ΔA)x◦ = Δb−ΔAx◦ (11a)

rc = c−AT y◦ − s = (c◦ +Δc)− (A◦ +ΔA)T y◦ − s◦ = Δc−ΔAT y◦ (11b)

are nonzero, in general. Hence, to re-establish feasibility we may either move from
z◦ to some other close but feasible point or take a first full Newton step which, from
(10), will re-establish feasibility also for all following iterates. These approaches
have recently been investigated by Yildirim and Wright 2002 (with computational
results reported in John and Yildirim 2008) who proposed the (weighted) least-
squares adjustments (LSA)

min
Δx

‖ΣΔx‖ s.t. A(x◦ +Δx) = b,x◦ +Δx ≥ 0 (12a)

min
Δy,Δs

‖ΛΔs‖ s.t. AT (y◦ +Δy)+(s◦ +Δs) = c,s◦ +Δs ≥ 0 (12b)

where Σ and Λ can be chosen as identities (P(lain)LSA), the inverses X−1 and S−1

(W(eighted)LSA), or X−1S and S−1X (J(ointly)WLSA). A benefit of this approach
is that the solution to (12) can be given explicitly but with the drawback that the new
point (x,y,s) = (x◦ +Δx,y◦ +Δy,s◦ +Δs) may not be well-centered, in general.

An alternative to the above LSA adjustment is the pure Newton adjustment

AΔx = rb (13a)

AT Δy+Δs = rc (13b)
X◦Δs+S◦Δx = 0 (13c)

whose solution, however, is slightly more difficult and also requires a Cholesky fac-
torization of AD2AT if reduced to its equivalent normal equations. Related to the
above approaches, Gondzio and Grothey (2003) also provide theoretical bounds on
the permissible problem perturbation so that all resulting infeasibilities can be ab-
sorbed by one full Newton step from a previous iterate to continue a feasible path-
following IPM while staying within some predescribed neighborhood of the central
path. In a more recent paper (Gondzio and Grothey 2008), the same authors pro-
pose an alternative warmstarting strategy that uses sensitivity analysis to identify
those starting point components that cause blocking of the current Newton step,
with the aim of constructing a modified search direction in which larger steps are
possible.

In this paper, we choose a different approach that, instead of keeping track of
previous iterates to retreat along the central path, re-establish feasibility, and con-
tinue a feasible IPM, makes explicit use of the resulting infeasibilities to define
a new (infeasible) starting point as initial iterate for an IIPM. Since these algo-
rithms have been proven to be theoretically competitive and shown to outperform
their feasible counterparts in practice, it seems reasonable to initially ignore that the
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starting point is infeasible and achieve its feasibility in the course of the algorithm.
Nevertheless, we still cannot directly restart from an (approximate or exact) optimal
solution for which the duality gap is typically very close to zero so that several vari-
ables will have almost completely vanished and only very small steps can be taken
to maintain their interiority. To remedy this situation, the most common approach
is to temporarily allow x and s to become negative by shifting the boundary of their
feasible nonnegative region, which was first proposed in the shifted-barrier methods
by Freund (1991a,b, 1996, also Polyak 1992), later extended for column-generation
problems by Mitchell (1994), and recently used by Benson and Shanno (2007) in
their primal-dual penalty method.

In the first paper, Freund (1991a) introduces the new potential function

F(x,β ) = q log(cT x−β )−∑n
i=1 log(xi +hi(cT x−β )) (14)

where q = n+
√

n, h > 0 is a given and fixed positive shift vector, and β is a known
lower bound on the optimal objective function value. For this function, he proposes a
new potential-reduction algorithm that, under relatively mild assumptions, achieves
a constant decrease of duality gap and primal-dual infeasibilities in O(nL) steps, or,
under some more restrictive assumptions, in O(

√
nL) steps (as usual, here L denotes

the bit length of the problem input data).
In a related second paper and primarily studied from a theoretical point of view,

Freund (1991b) proposes to solve a sequence of shifted-barrier problems

min cT x− ε ∑n
i=1 log(xi + εhi) (15a)

s.t. Ax = b (15b)
x+ εh > 0 (15c)

where h > 0 is again a positive shift vector, for a sequence of values ε > 0 that con-
verges to zero. For this case, he shows that for suitable h and initial ε = ε0, the num-
ber of iterations required to achieve ε ≤ ε∗ is bounded by 	6

√
n ln(ε0/ε∗)
. Since

the proper choices of both h and ε0 depend on a priori knowledge of an approximate
center of the dual feasible region, however, these results are mostly theoretical and
the approach, in general, not fully satisfactory for practical implementation.

Related to the modified barriers by Polyak (1992), the third method examined by
Freund (1996) works with the so-called infeasible-start shifted-barrier problem

min (c+ ε(AT y◦ + s◦ − c))T x−με ∑n
i=1 log(xi) (16a)

s.t. Ax = b+ ε(Ax◦ −b) (16b)
x > 0 (16c)

and achieves an iteration complexity of O(nL) for a suitably chosen starting point.
Moreover, for those starting points that are feasible, the proposed algorithm further
reduces the iteration count to at most O(

√
nL), thereby matching today’s best known

complexity bound for any feasible IPM.
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In the specific context of warmstarting IPMs, a related approach to Freund’s
shifted-barrier methods is the exact primal-dual penalty method recently proposed
by Benson and Shanno (2007) which introduces a set of auxiliary variables ξ and
ψ that relax the nonnegativity constraints on x and s and are penalized in the primal
and dual objective function, respectively.

min cT x+dT ξ
s.t. Ax = b

0 ≤ x+ξ ≤ u

ξ ≥ 0

max bT y−uT ψ (17a)

s.t. AT y+ s = c (17b)
−ψ ≤ s ≤ d (17c)
ψ ≥ 0 (17d)

This formulation is exact because, for sufficiently large penalty parameters d and
u, the optimal values for ξ and ψ will be zero and the upper bound inequalities
x+ξ ≤ u and s+ψ ≤ d hold with a positive slack (the method itself is based on an
IPM and, thus, not exact, in general). Benson and Shanno highlight that the Newton
system associated with (17) can be reduced to a form similar to (6) for the original
LP, so that the computational effort per iteration is not substantially different than
that of solving the original problem. Hence, whereas the initialization of the new
variables ξ and ψ can be accomplished relatively easily, the only potential draw-
back of this method remains the proper initial choice and necessity of possible later
updates of the penalty parameters, which are of a high importance for the overall
performance of this approach. In particular, while too small choices do not yield
an optimal solution for the original LP and require repeated updates after spending
unnecessary time on any initially formulated penalty problem, Benson and Shanno
also report that too large values cause numerical errors and negatively affect the
stability of both algorithm and its final solution. In spite of these difficulties, the
general approach seems to work well as demonstrated on a subset of the Netlib LP
test problems and a group of mixed-integer linear programs using the (I)IPM imple-
mented in their software package LOQO (Vanderbei 1999). Most recently, Gondzio
and Grothey (2008) further build on these results and also combine this method with
their unblocking technique based on sensitivity analysis.

3 New Warmstarting Scheme

We recall from our discussion so far that there are mainly two challenges in solving a
perturbed problem instance d = d◦+Δd from a warmstarting point z◦ = (x◦,y◦,s◦),
that is optimal for the initial problem d◦ or possibly the last iterate of an IPM with
(sufficiently) small duality gap nμ◦ = x◦T s◦ � 0. The first problem, that z◦ is typi-
cally primal-dual infeasible for d, is not of our major concern and relatively easily
dealt with by using an infeasible IPM. The second hurdle, that several of the compo-
nents of x◦ and s◦ are very close or equal to zero, is more critical but can be handled
by shifting the boundary of the nonnegative feasible region to (at least temporarily)
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allow x and s to also take negative values and, thus, enable longer Newton steps and
more rapid progress during the initial iterations of the interior-point algorithm.

Following on these two ideas and adopting the notation used by Benson and
Shanno for the formulation of their primal-dual penalty approach (17), in this paper
we choose the similar but simpler scheme which only uses a new set of slacks to
relax the nonnegativity constraints of the original primal-dual variables.

min cT x

s.t. Ax = b

x−ξ = 0
ξ ≥ 0

max bT y (18a)

s.t. AT y+ s = c (18b)
s−ψ = 0 (18c)
ψ ≥ 0. (18d)

Note that this formulation is also exact and, in fact, equivalent to the original
primal-dual pair but does not depend on any additional parameters. Furthermore,
because x and s are now unrestricted, there is no problem to initialize (x0,y0,s0) =
(x◦,y◦,s◦) even if x◦ and s◦ contain elements that are zero as long as the initial slacks
ξ 0 and ψ0 are chosen sufficiently interior.

Before we analyze this formulation with respect to the standard worst-case iter-
ation bound for IIPMs and address the initialization of the new slack variables in
detail, we first derive its corresponding Newton system to show that the required
computations per iteration remain essentially unchanged compared to the original
LP. Similar to (5), the (KKT) optimality conditions of (18) for a centrality measure
μ are given by

Ax = b (19a)

AT y+ s = c (19b)
x−ξ = 0 (19c)
s−ψ = 0 (19d)
ΞΨe = μe (19e)

with corresponding Newton system
⎡

⎢
⎢
⎢
⎢
⎣

A 0 0 0 0
0 AT I 0 0
I 0 0 −I 0
0 0 I 0 −I
0 0 0 Ψ Ξ

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

Δx
Δy
Δs
Δξ
Δψ

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

rb
rc
rx
rs

μe−ΞΨe

⎤

⎥
⎥
⎥
⎥
⎦

(20)

where rb = b−Ax and rc = c−AT y− s as before, and rx = ξ − x and rs = ψ − s.
Using that Δξ = Δx− rx and Δψ = Δs− rs, we can further simplify (20) yielding
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⎡

⎣
A 0 0
0 AT I
Ψ 0 Ξ

⎤

⎦

⎡

⎣
Δx
Δy
Δs

⎤

⎦ =

⎡

⎣
rb
rc

μe−ΞΨe+ΞRse+ΨRxe

⎤

⎦ (21)

which has the exact same structure as (6) and, in particular, can be further reduced
to the augmented (symmetric indefinite) system

[
0 A

AT −D−2

][
Δy
Δx

]

=
[

rb
rc + μΞ−1e−ψ + rs +Ξ−1Ψrx

]

(22)

where now D = Ξ 1/2Ψ−1/2 but otherwise identical to (7). Finally, and similar to (9),
after solving this system or the corresponding normal equations for Δx and Δy, we
can find Δs, Δξ , and Δψ by the three simple back substitutions

Δs = rc −AT Δy (23a)
Δξ = Δx− rx (23b)
Δψ = Δs− rs. (23c)

Hence, the computations required to solve the Newton systems for the reformu-
lated problem (18) are essentially the same as for the original problem, so that the
addition of slacks should not increase the solution effort for the individual iterations.

3.1 Analysis of the new warmstarting scheme

Despite many advances in the development of IIPMs, the best worst-case iteration
bound, up to a constant factor C, remains the one first established by Mizuno (1994)

Cn log

(

max

{∥
∥r0

b

∥
∥

εb
,

∥
∥r0

c
∥
∥

εc
,

ζ 2n
εd

})

(24)

where ζ ≥ ‖(x∗,s∗)‖∞ for some optimal solution z∗ = (x∗,y∗,s∗) or, theoretically,
ζ = 2L for a problem instance with integer data of bit length L (Roos et al 2006).
A similar complexity analysis to that by Mizuno (1994)1 shows that for our refor-
mulated problem (18), the argument of the logarithmic term in (24) takes the form

max

{∥
∥r0

b

∥
∥

εb
,

∥
∥r0

c
∥
∥

εc
,

∥
∥r0

x
∥
∥

εx
,

∥
∥r0

s
∥
∥

εs
,

ζ 2n
εd

}

(25)

where r0
b, r0

c , r0
x , and r0

s denote the initial residuals of the four equality constraints
in (19), εb, εc, εx, εs, and εd are the individual error tolerances for feasibility and

1 The full details of this analysis are included in a forthcoming working paper.
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duality, respectively (in the following, we shall assume a uniform tolerance ε), and
ζ ≥ ‖(ξ ∗,ψ∗)‖∞ = ‖(x∗,s∗)‖∞ remains the same as before.

To compare the iteration bound in (24) for a traditional IIPM cold start from
(x0,y0,s0) = (ζ e,0,ζ e) with the bound in (25) for a warm start of the reformulated
problem (18) from (x0,y0,s0,ξ 0,ψ0) = (x◦,y◦,s◦,ζ e,ζ e), we first note that both
approaches start from an initial duality gap of nμ = (ζ e)T (ζ e) = ζ 2n and, thus,
result in identical worst-case iteration bounds especially if ζ 2n dominates the other
residual norm. For ‖rx‖ and ‖rs‖, this turns out to be always the case.

Proposition 1. Let ζ ≥ ‖(x◦,s◦,1)‖∞, where (x◦,s◦) are optimal for the initial LP
instance d◦, and let r0

x = ξ 0−x0 and r0
s = ψ0−s0 be the residuals of the initial point

(x0,y0,s0,ξ 0,ψ0) = (x◦,y◦,s◦,ζ e,ζ e) for (18). Then max
{∥
∥r0

x
∥
∥ ,

∥
∥r0

s
∥
∥
}
≤ ζ 2n.

Proof. Because (ξ 0,ψ0) = (ζ e,ζ e)≥ (x◦,s◦)≥ 0, it follows immediately that r0
x =

ζ e− x◦ ≥ 0 and r0
s = ζ e− s◦ ≥ 0 and thus

∥
∥r0

x
∥
∥ = ‖ζ e− x◦‖ ≤ ‖ζ e‖ = ζ ‖e‖ ≤ ζ 2n (26a)

∥
∥r0

s
∥
∥ = ‖ζ e− s◦‖ ≤ ‖ζ e‖ = ζ ‖e‖ ≤ ζ 2n (26b)

to give the result. ��

Hence, as long as we initialize the new slacks ξ 0 and ψ0 to values at least as
large as the previous optimal solutions x◦ and s◦, the new residuals r0

x and r0
s do not

increase the worst-case iteration bound of the standard IIPM. Clearly, because our
objective is to relax (especially the small) elements of x◦ and s◦, this condition will
be satisfied for our initialization scheme described in Section 3.2.

Next, we investigate the residuals rb and rc for the primal and dual infeasibilities
and establish a bound on the maximal problem perturbation so that their residual
norms for the warm-start bound in (25) do not exceed their corresponding cold-start
residual norms in (24). We quantify the problem perturbation Δd and the new data
d = d◦ +Δd in terms of the initial data d◦ using scalars α,α ′,β ,γ ≥ 0 so that

‖ΔA‖ ≤ α ‖A◦‖ ⇒ (1−α)‖A◦‖ ≤ ‖A‖ ≤ (1+α)‖A◦‖ (27a)
∥
∥ΔAT ∥

∥ ≤ α ′
∥
∥
∥A◦T

∥
∥
∥ ⇒ (1−α ′)

∥
∥
∥A◦T

∥
∥
∥ ≤

∥
∥AT ∥

∥ ≤ (1+α ′)
∥
∥
∥A◦T

∥
∥
∥ (27b)

‖Δb‖ ≤ β ‖b◦‖ ⇒ (1−β )‖b◦‖ ≤ ‖b‖ ≤ (1+β )‖b◦‖ (27c)
‖Δc‖ ≤ γ ‖c◦‖ ⇒ (1− γ)‖c◦‖ ≤ ‖c‖ ≤ (1+ γ)‖c◦‖ (27d)

Proposition 2. Let δb = max{2α,2β} and δc = max{2γ,α ′}. If

(δb,δc) ≤
(

‖b◦ −ζ A◦e‖
‖b◦‖+ζ ‖A◦‖‖e‖ ,

‖c◦ −ζ e‖
‖c◦‖+

∥
∥A◦T

∥
∥‖y◦‖

)

(28)

then the respective residual norms
∥
∥r0

b

∥
∥ and

∥
∥r0

c
∥
∥ in (25) for a warm start of (18)

are not larger than their corresponding cold-start residuals in (24).
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Proof. We first derive lower bounds on the residual norms
∥
∥r0

b

∥
∥ and

∥
∥r0

c
∥
∥ for the

new problem instance d when (cold)started from (x0,y0,s0) = (ζ e,0,ζ e).
∥
∥r0

b

∥
∥

cold =
∥
∥b−Ax0∥∥ = ‖(b◦ +Δb)−ζ (A◦ +ΔA)e‖ (29a)

≥ ‖b◦ −ζ A◦e‖− (‖Δb‖+ζ ‖ΔA‖‖e‖) (29b)
≥ ‖b◦ −ζ A◦e‖− (β ‖b◦‖+αζ ‖A◦‖‖e‖) (29c)

∥
∥r0

c
∥
∥

cold =
∥
∥c−AT y0 − s0∥∥ = ‖(c◦ +Δc)−0−ζ e‖ (29d)

≥ ‖c◦ −ζ e‖−‖Δc‖ ≥ ‖c◦ −ζ e‖− γ ‖c◦‖ (29e)

Similarly, we obtain the following two upper bounds when (warm)starting the re-
formulated problem (18) from (x0,y0,s0,ξ 0,ψ0) = (x◦,y◦,s◦,ζ e,ζ e)

∥
∥r0

b

∥
∥

warm = ‖Δb−ΔAx◦‖ (30a)

≤ ‖Δb‖+ζ ‖ΔA‖‖e‖ ≤ β ‖b◦‖+αζ ‖A◦‖‖e‖ (30b)
∥
∥r0

c
∥
∥

warm =
∥
∥Δc−ΔAT y◦

∥
∥ (30c)

≤ ‖Δc‖+
∥
∥ΔAT ∥

∥‖y◦‖ ≤ γ ‖c◦‖+α ′
∥
∥
∥A◦T

∥
∥
∥‖y◦‖ (30d)

where (30a) and (30c) follow as in (11). Finally, combining the two bounds from
(29) and (30) with the initial assumptions on δb and δc in (28) gives

∥
∥r0

b

∥
∥

cold −
∥
∥r0

b

∥
∥

warm ≥ ‖b◦ −ζ A◦e‖−2(β ‖b◦‖+αζ ‖A◦‖‖e‖) (31a)

≥ ‖b◦ −ζ A◦e‖−δb(‖b◦‖+ζ ‖A◦‖‖e‖) ≥ 0 (31b)
∥
∥r0

c
∥
∥

cold −
∥
∥r0

c
∥
∥

warm ≥ ‖c◦ −ζ e‖− (2γ ‖c◦‖+α ′
∥
∥
∥A◦T

∥
∥
∥‖y◦‖) (31c)

≥ ‖c◦ −ζ e‖−δc(‖c◦‖+
∥
∥
∥A◦T

∥
∥
∥‖y◦‖) ≥ 0 (31d)

to conclude the proof. ��

Furthermore, if the inequalities in (28) hold strictly, then the warm-start residuals
are strictly smaller than their corresponding cold-start residuals, thus leading to an
improvement of the theoretical worst-case iteration bound if the larger of the two
(cold-start) residual norms also dominates the initial duality gap ζ 2n.

Corollary 1. Let δ = max{α,β ,γ}. Then ζ 2n ≤ max
{∥
∥r0

b

∥
∥ ,

∥
∥r0

c
∥
∥
}

in particular if

δ ≤ max
{
‖b◦ −ζ A◦e‖−ζ 2n
‖b◦‖+ζ ‖A◦‖‖e‖ ,

‖c◦ −ζ e‖−ζ 2n
‖c◦‖

}

(32)

Proof. Similar to the proof of Proposition 2, this result follows directly by combin-
ing the bounds from (29) with (32). In particular, if the maximum in (32) is achieved
by either the first or second argument, then either the first or the second of the two
following inequalities
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∥
∥r0

b

∥
∥−ζ 2n ≥ ‖b◦ −ζ A◦e‖− (β ‖b◦‖+αζ ‖A◦‖‖e‖)−ζ 2n (33a)

≥ ‖b◦ −ζ A◦e‖−δ (‖b◦‖+ζ ‖A◦‖‖e‖)−ζ 2n ≥ 0 (33b)
∥
∥r0

c
∥
∥−ζ 2n ≥ ‖c◦ −ζ e‖− γ ‖c◦‖−ζ 2n (33c)

≥ ‖c◦ −ζ e‖−δ ‖c◦‖−ζ 2n ≥ 0 (33d)

will be satisfied, and the result follows. ��

In general, however, whereas the upper bounds given by (28) in Proposition 2
are usually positive and, thus, always satisfied for a positive but sufficiently small
problem perturbation, the bounds given by (32) in Corollary 1 may also become
negative so that the initial duality gap ζ 2n may exceed both cold- and warm-start
residual even for Δd = 0 and d = d◦.

Our last remark pertains to the final duality gap nμ upon termination of the
(I)IPM outlined in Algorithm 1. Throughout the above discussion, we implicitly
assumed a uniform value ε for each of the tolerances εb, εc, εx, εs and εd , but the
modification of the above results for varying values is only notationally tedious
and otherwise straightforward. Nevertheless, we shall point out that for the two ap-
proaches compared above, the duality tolerance εd actually applies to two different
products, namely xT s in standard form and ξ T ψ in the reformulated problem (18).
As the next result shows, in general, this requires to use a slightly smaller tolerance
for ξ T ψ in order to actually guarantee that nμ = xT s ≤ εd .

Proposition 3. Let (x∗,y∗,s∗,ξ ∗,ψ∗) be the final iterate when solving problem (18)
with tolerances εb, εc, εx, εs, and εd. If ψ∗T ξ ∗ ≤ εd − εxεs, or if ψ∗T ξ ∗ ≤ εd and
(s∗,x∗) ≥ 0, then x∗T s∗ ≤ εd.

Proof. Based on the termination criterion in Algorithm 1, we first note that the
final residuals r∗x = ξ ∗ − x∗ and r∗s = ψ∗ − s∗ satisfy that ‖r∗x‖ ≤ εx and ‖r∗s ‖ ≤ εs,
respectively. Furthermore, because ξ 0 ≥ x◦ and ψ0 ≥ s◦ for the initial iterates, it
follows that r0

x = ξ 0 − x◦ ≥ 0 and r0
s = ψ0 − s◦ ≥ 0 so that (10) implies that

ξ k − xk = rk
x =

k−1

∏
j=0

(1−α j)r0
x ≥ 0 (34)

and similarly, rk
s = ψk − sk ≥ 0 for all k ≥ 0. Hence, the first part now follows from

x∗T s∗ = (ξ ∗ − r∗x)
T (ψ∗ − r∗s ) ≤ ξ ∗T ψ∗ + r∗x

T r∗s (35a)
≤ (εd − εxεs)+‖r∗x‖‖r∗s ‖ ≤ εd (35b)

where (35a) is clear because ξ ∗ ≥ 0 and ψ∗ ≥ 0. In particular, if also x∗ ≥ 0 and
s∗ ≥ 0, then (34) implies that ξ ∗ ≥ x∗ ≥ 0 and ψ∗ ≥ s∗ ≥ 0 and, thus, x∗T s∗ ≤ ξ ∗T ψ∗

which also gives the second part and concludes the proof. ��

In principle, this result indicates two potential drawbacks of our approach when
used in practice, namely the necessity to choose a smaller termination tolerance for
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the final duality gap as well as the possibility of remaining negative components in
the final iterate x∗ and s∗ upon termination of the IIPM. From a numerical point of
view, however, the difference εxεs is typically very small and can be ignored for all
practical purposes. Furthermore, negative values x∗i < 0 ≤ ξ ∗

i or s∗i < 0 ≤ ψ∗
i are

usually negligible as well because they are necessarily of very small magnitude

|x∗i | ≤ ξ ∗
i − x∗i = r∗xi ≤ ‖r∗x‖ ≤ εx (36)

and similarly, |s∗i | ≤ εs. Hence, negative entries of x or s usually indicate a true value
of zero for sufficiently small termination tolerances εx and εs.

3.2 Initialization of the slack variables

Our above analysis has shown that for solving a standard primal-dual LP instance
d = d◦ + Δd by an IIPM, we always maintain (or improve) the (theoretical) com-
plexity in both individual iterations and overall iteration count also for the reformu-
lated problem (18) with (x0,y0,s0) = (x◦,y◦,s◦) and additional primal-dual slacks
ξ and ψ . Moreover, by preserving the optimal values for the initial instance d◦, we
found that for sufficiently small perturbations Δd, the residual norms

∥
∥r0

b

∥
∥ and

∥
∥r0

c
∥
∥

are smaller than for a cold start, so that we expect to start from a point closer to an
optimal solution and, thus, converge in a fewer number of iterations, in general.

For the initialization of ξ and ψ , so far we have assumed that (ξ 0,ψ0) = (ζ e,ζ e)
where ζ ≥ ‖(ξ ∗,ψ∗)‖∞ = ‖(x∗,s∗)‖∞ and (x∗,s∗) belong to some optimal solution.
In practice, however, it is clear that we do not know such a solution a priori and,
therefore, need to choose initial values for ξ and ψ by some other means. First,
based on our objective to relax (especially the small) elements of x◦ and s◦, and
to not simply carry over the numerical difficulties from small entries in x◦ and s◦

to ξ and ψ , respectively, we will always choose (ξ 0,ψ0) ≥ (x◦,s◦) which also en-
sures that the new starting point will not be significantly smaller in magnitude than
‖(x∗,s∗)‖∞, provided the problem perturbation Δd is small enough for (x∗,y∗,s∗) to
not deviate too much from the optimal solution (x◦,y◦,s◦) for the initial problem.

Second, because we know from (10) that every iteration reduces all residuals by
the same factor 1−αk, we also propose to start from initial residuals r0

x = ξ 0 − x◦

and r0
s = ψ0 − s◦ that are similar in size to r0

b and r0
c as measured by the maximal

residual ρ = ‖(rb,rc,1)‖∞. Furthermore, and in agreement with several other authors
(Gondzio 1998, Yildirim and Wright 2002, Gondzio and Grothey 2003) who justify
the choice of an initial point that is also well-centered, similar to the weighting
matrices for the JWLSA in (12) we let

r0
x = (X◦)1/2(S◦)−1/2ρe (37a)

r0
s = (X◦)−1/2(S◦)1/2ρe (37b)

so that the associated initial slacks ξ 0 and ψ0 achieve uniform complementarity
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Ξ 0Ψ 0e = (X◦ +R0
x)(S

◦ +R0
s )e = μe+2

√
μρe+ρ2e = (

√
μ +ρ)2e. (38)

The obvious drawback of this approach, however, is that it does not grant a warm
start from an exact optimal solution (x◦,s◦), for which some components are equal to
zero so that the inverses of X◦ and S◦ in (37) are not defined everywhere, in general.
In addition, even for an approximate solution with a nonzero but small centrality
measure μ = x◦T s◦ � 0, some variables will be of very small value and, thus, yield
a very large starting point that may unnecessarily slow down the convergence of
the algorithm. To avoid these problems, we first note that if (x◦,s◦) is well-centered
with xisi = μ � 0 and xi small, then si is necessarily much larger (or vice versa)
and, therefore, may not need to be relaxed at all. Hence, if we already knew which
variables are or are about to become basic, then we would not be concerned about
these variables reducing to zero and could directly warmstart from their previous
optimal values without the need for additional slacks.

The identification of basic and nonbasic variables in an IPM framework is ad-
dressed in several recent papers (Facchinei et al 2000, Oberlin and Wright 2006,
among others) and an older survey by El-Bakry et al (1994) that describes a vari-
ety of different indicator functions including the primal variables and dual slacks
themselves, the ratios of primal variables and dual slacks, and the ratio of subse-
quent iterates (the so-called Tapia indicator). In spite of the known difficulties with
especially the two former approaches, note that the primal-dual indicator defined by

x◦i
s◦i

< τ ⇒ x◦i → 0 and s◦i > 0 (39a)

s◦i
x◦i

< τ ⇒ s◦i → 0 and x◦i > 0 (39b)

for some indicator threshold τ ∈ [0,1] corresponds precisely to the (squared) ratios
in (37) and, therefore, is particularly well-suited for our particular purpose.

For the primal-dual indicator in (39), it is easy to see that τ ≤ 1 ensures that at
most one of the two inequalities can be satisfied, so that either xi or si is predicted
to become zero but never both. Furthermore, and in addition to the discussion in
El-Bakry et al (1994), we observe that if (x◦,s◦) is a perfectly-centered solution so
that x◦i s◦i = μ for all i, then the primal-dual indicator is in fact equivalent to using
the variables as indicators themselves, because

x◦i
s◦i

< τ ⇔ x◦i <
√

μτ <
√

μ/τ < s◦i (40a)

s◦i
x◦i

< τ ⇔ s◦i <
√

μτ <
√

μ/τ < x◦i (40b)

so that we refrain from slacking x◦i (or s◦i ), or equivalently, set ξ 0
i = x◦i (or ψ0

i = s◦i )
only if it exceeds the value

√
μ/τ . More precisely, in extension of (37) and to

preserve validity of the uniform complementarity products in (38), we now let



210 A. Engau et al.

(r0
xi,r

0
si) =

⎧
⎪⎨

⎪⎩

(
(2
√μρ +ρ2)/s◦i ,0

)
if x◦i <

√μτ <
√

μ/τ < s◦i(
0,(2

√μρ +ρ2)/x◦i
)

if s◦i <
√μτ <

√
μ/τ < x◦i(√

x◦i /s◦i ρ,
√

s◦i /x◦i ρ
)

if
√μτ ≤ (x◦i ,s

◦
i ) ≤

√
μ/τ

(41)

Finally, for the specific choice of the indicator threshold, is is apparent from (40)
and our above discussion that larger values for τ may lead to smaller starting points
but, at the same time, relax fewer variables at the risk of preserving the numeri-
cal difficulties from initial values that are too close to zero. On the other hand, by
choosing τ small, we obtain a larger starting point but may avoid those problems
(provided the starting point is not too large to cause problems itself). In particular,
El-Bakry et al (1994) mention conservative strategies that choose primal-dual in-
dicator thresholds similar in magnitude to the final centrality measure, τ = μ , thus
leading to an upper bound of 1 in (41) below which all variables will be relaxed.
While this choice was proposed for the early identification of zero variables during
an IPM, it is important to note that in our context we already know the final iterate so
that this choice is too conservative in general. In particular, we have found that the
best warmstarting results can be achieved for very aggressive choices with threshold
values across the complete range up to τ = 1. For the exact details, we refer to the
next section reporting our computational results.

4 Computational Results

We tested the above warmstarting scheme on selected LP problems from the Netlib
test suite following the framework described by Benson and Shanno (2007). In
particular, we picked only those problems for which m + n ≤ 1000, and we further
eliminated all those instances for which perturbations resulted in an infeasible or
unbounded problem. Although our current method treats the particular case of LPs
only, we have used the (freely available) semidefinite-quadratic-linear solver SDPT3
(Toh et al 1999) to enable the direct extension also to more general conic optimiza-
tion problems in the future. In any way, because our objective here is to evaluate
the performance of our new warmstarting scheme rather than to conduct a compre-
hensive comparison with other proposed methods, and because we only compare
the iteration count ratio between a warm and cold start and otherwise treat the spe-
cific solver as a black box, the particular choice of solver should not be of major
relevance for the results presented in this paper. However, our approach relies to
some degree on effectively handling free variables in an interior-point framework,
so that it was also convenient to use the recent modification of the SDPT3 code by
Anjos and Burer (2007) that avoids their otherwise common representation as the
difference of two nonnegative blocks. Finally, because SDPT3 is based on the soft-
ware package MATLAB c©, we used the Netlib problems in .mat-format that are
available from the COAP2 collection of LP test problems.

2 http://www.math.ufl.edu/∼hager/coap/testcases.html

http://www.math.ufl.edu/~hager/coap/testcases.html
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For each case, we first solved the original problem with initial data d◦ to obtain
an optimal solution (x◦,y◦,s◦). The subsequent perturbation Δd = (ΔA,Δb,Δc) was
defined following the scheme in Benson and Shanno (2007), which is repeated here
for the specific case of the cost perturbation Δc. Namely, for each entry Δci, we
first generated a uniformly distributed random number η ∈ [−1,1] and perturbed
the initial cost c◦i only if η < min{0.1,20/n}, so that at most 10% or 20 entries
were changed on average. To determine the magnitude of the perturbation, we then
generated a second random number ε ∈ [−1,1] and set

Δci =

{
εδ if c◦i = 0
εδc◦i otherwise

(42)

where the parameter δ was set to different values to observe the effects of differ-
ent perturbation levels similar to (27). The right-hand side vector b◦ was perturbed
analogously, and the only difference for the constraint matrix perturbation ΔA was
that we preserved any existing sparsity structure of A◦ also for A = A◦ +ΔA.

Using the default settings in SDPT3, we then solved the perturbed problem in
standard form by a cold start, and the reformulated problem (18) from the initial
point (x0,y0,s0) = (x◦,y◦,s◦) and with (ξ 0,ψ0) = (x◦+r0

x ,s
◦+r0

s )) defined accord-
ing to (41) to obtain the new optimal solutions (x∗,y∗,s∗) and (x∗,y∗,s∗,ξ ∗,ψ∗) ≈
(x∗,y∗,s∗,x∗,s∗), respectively. From the iteration counts for cold and warm start,
we computed the Warm-to-Cold-start-iteration-Ratio (WCR = number of warm-
start iterations / number of cold-start iterations) for both individual and simul-
taneous perturbation of A, b, and c, and for three different perturbation levels
δ ∈ {0.001,0.01,0.1}. In addition, for each instance we recorded the total number
of entries of A, b, and c that had been perturbed (Pert), the solution differences

‖x◦ − x∗‖
1.0+‖x◦‖

‖y◦ − y∗‖
1.0+‖y◦‖

‖s◦ − s∗‖
1.0+‖s◦‖ (43)

and a quantity B↔N that “guesses” the number of changes to the active sets for the
optimal solutions x◦ and x∗ by using the primal-dual indicator in (39) with threshold
τ = 10−5. While the detailed results for all individual problems are available online3,
Tables 1, 2, and 3 summarize these results for each combination of perturbation
type Δ and perturbation level δ , where the (#) entries indicate how many problems
remained both feasible and bounded for that particular combination.

The results in Table 1 are obtained from the original initialization scheme in (37)
without indicator, whereas Tables 2 and 3 follow the scheme given in (41) and use
the primal-dual indicator with threshold values of τ=μ◦=(x◦)T s◦/n (approximately
10−8 by using the default duality tolerance in SDPT3) and τ = 1, respectively. As
mentioned previously in the text, and despite several systematic differences between
the results across the three tables, we first observe that the performance of our warm-
starting scheme does not change dramatically from either using or abandoning an
indicator, although the indicator clearly improves its performance and, in particular,

3 http://mfa.research.uwaterloo.ca/EngauAnjosVannelli 2008a/warmstart.html

http://mfa.research.uwaterloo.ca/EngauAnjosVannelli_2008a/warmstart.html
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Table 1 Perturbations and WCR Statistics Without Indicator (τ = 0)

(Feasible) Perturbations WCR Statistics Solution Differences
Δ δ Pert (#) avg stdv min med max ‖x∗ − x◦‖ ‖y∗ − y◦‖ ‖s∗ − s◦‖ B↔N
b 0.001 10.6 16 0.34 0.16 0.11 0.36 0.66 1.9e-003 1.2e-002 1.5e-002 1.45
b 0.01 11.3 17 0.41 0.21 0.15 0.42 0.86 4.6e-003 2.6e-002 4.3e-002 4.64
b 0.1 11.6 18 0.60 0.35 0.15 0.56 1.32 7.3e-003 4.3e-002 4.7e-002 3.04
c 0.001 15.9 18 0.42 0.16 0.15 0.43 0.76 2.7e-003 2.9e-001 3.4e-002 2.20
c 0.01 15.9 17 0.58 0.21 0.22 0.56 1.08 6.5e-003 2.2e-001 6.9e-002 2.04
c 0.1 15.4 14 1.08 0.79 0.34 0.90 3.43 7.5e-003 7.1e-001 2.8e-001 0.61
A 0.001 19.5 20 0.48 0.27 0.14 0.49 1.40 1.9e-002 1.0e-001 1.5e+001 1.65
A 0.01 19.0 18 0.54 0.27 0.20 0.49 1.33 3.6e-003 1.3e-001 3.0e+001 2.00
A 0.1 19.2 16 0.97 0.45 0.43 0.81 1.98 1.0e-002 2.8e+001 5.6e+002 2.14
Abc 0.001 44.6 16 0.43 0.17 0.18 0.46 0.73 6.3e-003 1.2e+000 1.9e+000 3.01
Abc 0.01 41.4 13 0.61 0.19 0.39 0.62 1.00 1.5e-002 2.8e-001 2.8e-001 2.74
Abc 0.1 39.3 11 1.27 0.47 0.61 1.36 1.95 1.4e-002 4.1e-001 4.2e-001 1.53

Table 2 Perturbations and WCR Statistics With Primal-Dual Indicator Threshold τ = μ

(Feasible) Perturbations WCR Statistics Solution Differences
Δ δ Pert (#) avg stdv min med max ‖x∗ − x◦‖ ‖y∗ − y◦‖ ‖s∗ − s◦‖ B↔N
b 0.001 11.6 18 0.30 0.15 0.11 0.27 0.63 1.4e-003 2.3e-002 3.8e-002 1.82
b 0.01 10.9 16 0.40 0.20 0.12 0.36 0.99 2.6e-003 3.5e-002 3.7e-002 1.12
b 0.1 11.6 18 0.54 0.40 0.15 0.51 1.94 3.6e-003 2.2e-001 1.9e-001 1.88
c 0.001 16.2 22 0.39 0.14 0.16 0.40 0.68 3.2e-002 2.4e-001 2.6e-002 0.79
c 0.01 16.2 21 0.52 0.24 0.18 0.48 1.22 1.8e-002 3.3e-001 6.3e-002 0.82
c 0.1 15.9 19 1.17 0.73 0.24 0.92 3.30 8.7e-001 1.1e+000 8.5e-001 1.65
A 0.001 19.4 22 0.41 0.19 0.16 0.39 0.86 1.5e-002 1.5e-001 5.1e+000 0.80
A 0.01 19.5 21 0.56 0.31 0.19 0.45 1.44 1.1e-002 1.3e-001 6.6e+000 0.33
A 0.1 19.3 21 0.83 0.44 0.29 0.63 1.92 8.2e-002 2.5e-001 2.7e+000 0.69
Abc 0.001 45.8 18 0.44 0.16 0.20 0.43 0.73 4.7e-003 4.1e-002 4.0e-002 2.06
Abc 0.01 45.8 17 0.61 0.27 0.28 0.51 1.32 3.1e-003 7.2e-002 7.4e-002 1.04
Abc 0.1 44.4 17 1.21 0.57 0.43 1.31 2.29 8.5e-003 2.4e-001 2.4e-001 1.87

Table 3 Perturbations and WCR Statistics With Primal-Dual Indicator Threshold τ = 1

(Feasible) Perturbations WCR Statistics Solution Differences
Δ δ Pert (#) avg stdv min med max ‖x∗ − x◦‖ ‖y∗ − y◦‖ ‖s∗ − s◦‖ B↔N
b 0.001 11.3 18 0.26 0.14 0.10 0.19 0.60 3.5e-004 1.5e-003 6.4e-003 3.18
b 0.01 11.0 17 0.32 0.15 0.13 0.27 0.64 3.7e-004 2.2e-001 1.7e-001 3.33
b 0.1 11.8 18 0.38 0.17 0.15 0.40 0.78 6.2e-004 8.0e-002 8.2e-002 3.94
c 0.001 16.0 22 0.35 0.15 0.10 0.37 0.63 1.2e-002 1.9e-001 1.1e-002 0.77
c 0.01 16.4 22 0.42 0.17 0.18 0.40 0.82 1.3e-002 2.7e-001 9.9e-002 2.29
c 0.1 16.6 18 0.64 0.21 0.25 0.62 1.20 2.1e-001 5.4e-001 3.3e-001 1.19
A 0.001 19.4 23 0.36 0.17 0.14 0.38 0.79 8.6e-002 1.2e-001 2.6e-001 0.84
A 0.01 19.5 23 0.43 0.16 0.16 0.44 0.92 1.4e-001 1.9e-001 3.1e-001 1.03
A 0.1 19.4 22 0.60 0.19 0.28 0.60 1.08 1.0e-002 7.4e-001 2.3e+000 1.79
Abc 0.001 45.2 18 0.38 0.14 0.17 0.42 0.65 1.4e-003 2.5e-002 2.8e-002 0.76
Abc 0.01 44.5 17 0.52 0.19 0.23 0.52 0.94 5.8e-003 1.6e-001 1.6e-001 1.96
Abc 0.1 43.7 16 0.84 0.31 0.45 0.73 1.52 5.5e-003 6.3e-001 6.3e-001 2.67
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increases the number of problems (#) that are successfully solved. Second, by com-
paring Tables 2 and 3, we also find that the more conservative threshold of τ = μ is
clearly outperformed by the more aggressive choice of τ = 1, which also dominated
the other intermediate values from 10−8 to 10−1 which we tested but whose results,
for sake of space and lack of much additional insight, are not included in this paper.

For each individual set of results, our warmstarting schemes appears most fa-
vorable towards changes in the right-hand side b, although this may be caused by
the chosen perturbation scheme (42) resulting in fewer perturbations and, in ef-
fect, smaller solution differences for changes in the typically smaller-sized vectors
b compared to changes in either A or c. In particular, we also find that the WCRs for
the individual perturbations increase only relatively minor when changing A, b, and
c simultaneously, for which results have not been reported by Benson and Shanno
(2007) and Gondzio and Grothey (2008) and in spite of the significant increase in
the total number of perturbations (Pert). It is also noteworthy that the indicated num-
ber of changes to the active set does not seem to have a major impact, provided the
indicator reliably identified the optimal basis for the corresponding solutions.

In any case, it is to be expected that a warm start works better for smaller per-
turbation levels δ , which can be seen best from the associated performance profiles
in Figures 1, 2, and 3. These plots give on the abscissa the percentage of problems
that did not exceed a certain WCR, that is given on the ordinate and varied between
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Fig. 2 WCR Performance Profiles With Primal-Dual Indicator Threshold τ = μ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(# problems with wcr ≤  WCR) / (# all problems)

W
C

R

Perturbation of b

δ = 0.1
δ = 0.01
δ = 0.001

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(# problems with wcr ≤  WCR) / (# all problems) 

W
C

R

Perturbation of c

δ = 0.1
δ = 0.01
δ = 0.001

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(# problems with wcr ≤  WCR) / (# all problems)

W
C

R

Perturbation of A

δ = 0.1
δ = 0.01
δ = 0.001

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

(# problems with wcr ≤ WCR) / (# all problems) 

W
C

R

Perturbation of Abc

δ = 0.1
δ = 0.01
δ = 0.001

Fig. 3 WCR Performance Profiles With Primal-Dual Indicator Threshold τ = 1



A Primal-Dual Slack Approach to Warmstarting IPMs for LP 215

its minimum and maximum values that are given together with mean, median, and
standard deviation as WCR statistics in Tables 1, 2, and 3. These plots indicate that
our new warmstarting scheme is able to reduce the number of iterations on the vast
majority of problems and, for the particular choice of τ = 1 in Figure 3, for all prob-
lems with small and medium perturbations δ ∈ {0.001,0.01}. Although the claim
of an ultimate percentage seems rather meaningless in view of the variation within
the data, averaging between all twelve combinations for τ = 1 suggests an overall
reduction in the number of iterations of over 50%, which confirms the good results
found by previous authors for the warmstarting of interior-point algorithms.

Finally, some remarks regarding the testing framework are in order. As pointed
out also by other papers (Benson and Shanno 2007, Gondzio and Grothey 2008), a
wealth of successful heuristics has by now been proposed for warmstarting an IPM,
but no attempt has so far been made to rigorously compare these different strate-
gies in a unified environment. One issue is the current lack of a meaningful suite
of reoptimization test problems. Although we use the same (randomized) perturba-
tion scheme as the two aforecited papers, the resulting problems are still (possibly
quite) different, thus leading to questionable conclusions if one directly compares
the numbers reported in different papers. To achieve a meaningful comparison, all
approaches should be applied to the exact same problems and ideally use the same
computing architecture and solver. This, however, creates its own issues as Benson
and Shanno (2007, using LOQO) and we (using SDPT3) rely on efficient handling
of free variables, unlike Gondzio and Grothey (2008) who make use of their parallel
code OOPS. We propose the resolution of these issues as important future work.

5 Conclusions

In this paper, we have presented a new scheme for warmstarting interior-point meth-
ods for linear programming and provided both theoretical and computational ev-
idence for its good performance. In spite of the still predominant perception that
IPMs cannot be efficiently warmstarted in general, this paper confirms the results
reported by previous authors that warmstarting IPMs is possible and may lead to
reductions in the number of iterations of roughly 50% on average.

This paper builds on several ideas from the existing IPM literature, which most
prominently include the various approaches that permit negative primal variables
and dual slacks by moving the boundary of the nonnegative feasible region using
shifted barriers or penalized auxiliary variables. In contrast to these methods, how-
ever, our approach is novel in that it does not actually modify the original problem
but merely chooses a new but equivalent formulation which explicitly introduces
new sets of slacks to remove the nonnegativity constraints from the original primal-
dual variables. Intentionally starting from an initial point that is primal-dual infea-
sible, which is different from other warmstarting approaches reviewed in this paper,
allows us to keep all original variables at their previous optimal values while only
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adjusting the new slacks to be sufficiently interior and reaching common feasibility
in the course of the subsequent iterations of an infeasible IPM.

As one possible enhancement of our approach, we also address the use of indica-
tor functions to detect variables that are still far from zero and do not require further
relaxation by an additional slack variable. Although this introduces the challenge
to properly set the associated indicator threshold, the computational results indicate
that the good performance of our method can be preserved for a wide variety of
choices although best for thresholds well above the final duality gap. In particular,
this highlights another benefit of our approach: its non-dependency on parameters
that require extensive “fine-tuning” to make the method work in practice.

To further advance the warmstarting approach presented in this paper, we are
currently investigating the possibility of replacing the current primal-dual indicator
with more sophisticated ones like the Tapia indicator. Because this requires keep-
ing track of the previous iterates, which at the moment we do not, another possible
extension is to then combine our new warmstarting scheme with the strategy to
maintain a pool of previous iterates from which a new warmstarting point can be
chosen or suitably adjusted. An interesting third direction is the more general mod-
ification of the presented scheme, that so far only handles numerical changes in the
problem data, to also accommodate changes in the problem structure in the context
of decomposition and LP and SDP relaxations for integer or mixed-integer linear
programs. Finally, whereas by now several warmstarting approaches are proposed
for linear and general nonlinear programming, more specific results for the impor-
tant class of semidefinite programs are still outstanding but of high relevance due to
frequent advantages of SDP over LP relaxations, especially for many combinatorial
optimization problems.
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Linear Dynamic Programming and the Training
of Sequence Estimators

Christopher Raphael∗ and Eric Nichols†

Abstract We consider the problem of finding an optimal path through a trellis graph
when the arc costs are linear functions of an unknown parameter vector. In this con-
text we develop an algorithm, Linear Dynamic Programming (LDP), that simulta-
neously computes the optimal path for all values of the parameter. We show how the
LDP algorithm can be used for supervised learning of the arc costs for a dynamic-
programming-based sequence estimator by minimizing empirical risk. We present
an application to musical harmonic analysis in which we optimize the performance
of our estimator by seeking the parameter value generating the sequence best agree-
ing with hand-labeled data.

Key words: dynamic programming, optimal sequence, partially observable Markov
decision processes

1 Introduction

Dynamic programming (DP) is a well-established technique for finding the optimal
path through a trellis graph in which the score of the path is represented as a sum of
arc scores traversed along the path. The history of DP goes back at least to (Bellman
1957), though perhaps much further. In this work we introduce an extension of the
DP algorithm, we call linear dynamic programming (LDP). LDP also addresses a
situation in which we seek the best scoring path through a trellis. However, in the
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LDP case the arc scores are known linear functions of an unknown parameter. In this
context, LDP finds the optimal path simultaneously for all values of the parameter.
LDP mirrors regular DP by recursively constructing the score of the best possible
path to each intermediate trellis node. The score of this path, as a function of the
parameter, is shown to be the maximum of a finite collection of linear functions. This
form can be carried through the DP iteration exactly. While meaningful complexity
analysis remains open, we demonstrate the feasibility of this approach in the domain
of musical harmonic analysis.

While we find the LDP formulation interesting in its own right, we developed
the approach with a specific aim: LDP serves as an alternative to maximum likeli-
hood parameter estimation methods in sequence estimation problems using hidden
Markov models (HMMs). One vexing aspect of the HMM training algorithms, for
both labeled and unlabeled data, is the focus on data likelihood, rather than a cri-
terion of more direct interest, such as recognition performance. LDP can be used
to directly optimize recognition performance on a training set. This direct approach
is embraced by a host of other machine learning algorithms, though we extend the
approach to sequence estimators.

The algorithm we use to perform the LDP iteration is a close cousin to value
iteration in partially observable Markov decision processes (POMDPs) (Kaelbling
et. al. 1998), (Murphy 2000), (Cassandra et. al. 1997), (Sondik 1971), (White 1991),
though our problem formulation seems to have little in common with POMDPs.
We expect that the wealth of knowledge concerning POMDP solvers has much to
contribute to our LDP approach, though, at present, we have not yet exploited this
connection. This work demonstrates that the algorithmic approaches of POMDPs
find application in a more general setting.

We demonstrate our training approach with an application to musical harmonic
analysis. In this domain we associate a harmonic label, such as chord and key, to
each measure or beat of the music, while seeking the optimal harmonic labeling of
the music using DP. Our notion of optimality considers both agreement between our
harmonic sequence and the observable data, as well as prior knowledge concerning
harmonic sequences. We parameterize our DP trellis graph so that each arc score is
a linear function of an unknown parameter that weights the contributions of several
relevant features. We choose the parameter by finding the value that gives optimal
performance on a labeled training set, as well as presenting the performance on
separate test data.

2 Linear Dynamic Programming

2.1 Traditional Dynamic Programming

Suppose we have a trellis graph with finite set of nodes, S, as depicted in Figure 1. By
“trellis”, we mean that every node, s ∈ S, has an associated level, l(s) ∈ {1, . . . ,N},
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Fig. 1 A dynamic programming trellis structure.

while the arcs of the graph, A ⊂ S×S, only connect nodes at adjacent levels:

A ⊆ {(s, t) : l(t) = l(s)+1}

More general definitions are possible. A path through the trellis is a sequence
(s1, . . . ,sn) such that l(s1) = 1 and (sm,sm+1) ∈ A for m = 1, . . . ,n − 1. We will
call a path (s1, . . . ,sn) a complete path if n = N. We define the score of a path
as c(s1, . . . ,sn) = ∑n−1

m=1 c(sm,sm+1), where c(s, t) is some fixed score for each arc
(s, t) ∈ A.

Dynamic programming (DP) seeks a complete path s∗1, . . . ,s
∗
N having maximal

score. We denote the optimal score to a node sn at level n as

c∗(sn) = max
s1,...,sn−1

c(s1, . . . ,sn−1,sn)

where the maximum is over all paths ending in sn. The well known Viterbi algorithm
(Viterbi 1967), with roots going at least as far back as (Bellman 1957), defines
c∗(s) = 0 for states with l(s) = 1 and computes the function, c∗, recursively as

c∗(t) = max
s∈Pred(t)

c∗(s)+ c(s, t) (1)

a(t) = arg max
s∈Pred(t)

c∗(s)+ c(s, t)

for n = 2, . . . ,N, where Pred(t) = {s ∈ S : (s, t)∈ A}. We choose arbitrarily from the
optimal predecessor when the argmax is not unique. An optimal path s∗1,s

∗
2, . . . ,s

∗
n

to any state, s∗n, at level n is then recovered by defining s∗m = a(s∗m+1) for m = n−
1, . . . ,1. A globally optimal complete path can be found by tracing back an optimally
scoring state at level N,

s∗N = arg max
s:l(s)=N

c∗(s)
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2.2 An Extension to Simultaneous Computation

Now suppose that the arc scores, {c(s, t)}, are no longer fixed, but rather depend on
some parameter, θ ∈ ℜD, through:

cθ (s, t) = θ T β (s, t)+β0(s, t)

where β (s, t) ∈ ℜD and β0(s, t) ∈ ℜ are known. For instance, the trellis of Figure
1 may have M categories of arcs, each having a common, yet unknown arc score.
In this case θ would represent the M-dimensional vector of arc scores while β (s, t)
would be the vector that is 1 only in the component corresponding to the category
of (s, t) and 0 for other components, and β0(s, t) = 0. We now consider computing
the optimal path through the DP recursion of Eqn. 1, simultaneously for all values
of the parameter θ .

The key observation is the following. Note that the score of any particular path
s1, . . . ,sn, viewed as a function of θ , given by

cθ (s1, . . . ,sn) =
n−1

∑
m=1

θ T β (sm,sm+1)+β0(sm,sm+1)

is clearly affine in θ . Thus the score of the optimal path to sn, also viewed as a
function of θ , is a maximum of affine functions

c∗θ (sn) = max
s1,...,sn−1

cθ (s1, . . . ,sn) (2)

where the maximum is taken over all paths s1, . . . ,sn−1 ending in sn. The number of
paths in the maximization of Eqn. 2 grows exponentially in n, so such a representa-
tion will not be useful from an algorithmic perspective. However, many paths may
be suboptimal for all values of θ ; for such paths all descendant paths will also be
suboptimal for all θ and can be eliminated from consideration.

To this end, define the surviving paths to be

B(sn) =
⋃

θ∈ℜD

{(s1, . . . ,sn) : cθ (s1, . . . ,sn) = c∗θ (sn)}

These are the paths ending in sn that are optimal for at least one value of θ . Then
we have

c∗θ (sn) = max
(s1,...,sn)∈B(sn)

cθ (s1, . . . ,sn) (3)

since the discarded paths contribute nothing to the maximum of Eqn. 2. The paths
in B(sn) are those that could be prefixes of an optimal complete path for some θ .

The function of θ , c∗θ (sn), is rather interesting geometrically. First of all, as a
maximum of affine functions, c∗θ (sn) must be convex. For each path (s1, . . . ,sn),
define the associated region of optimality to be

R(s1, . . . ,sn) = {θ : c∗θ (sn) = cθ (s1, . . . ,sn)}
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Fig. 2 c∗θ (sn) viewed as a function of θ . The R(s1, . . . ,sn) regions for various paths are the sim-
plices labeled as Rk in the figure.

Thus R(s1, . . . ,sn) is non-empty if and only if (s1, . . . ,sn) ∈ B(sn). Each nonempty
region, R(s1, . . . ,sn), can be shown to be a simplex, and on such regions c∗θ (sn) is,
by definition, affine in θ . Figure 2 depicts a possible configuration of the regions,
R(s1, . . . ,sn), for a two-dimensional parameter space, θ = (θ1,θ2). On each region
Rk of the figure, c∗θ (sn) is affine in θ . The affine functions associated with two neigh-
boring regions are equal along the segment that separates the regions.

The essential computation of our linear dynamic programming (LDP) algorithm
is to compute the sets {B(s)}l(s)=n+1 recursively from the sets {B(s)}l(s)=n, as fol-
lows. Since, for any fixed θ , an optimal path at level n + 1 must be an extension of
some optimal path at level n, we know that

B(t) ⊆ B̃(t) def=
⋃

(s,t)∈A

B(s)◦ t

where by B(s)◦t we mean extending the paths in B(s) by t. We will obtain B(t) from
B̃(t) by removing any superfluous paths, (s1, . . . ,sn, t) whose score, cθ (s1, . . . ,sn, t)
is suboptimal for all θ . That is, B(t) is the smallest subset of B̃(t) having

max
π∈B(t)

cθ (π) = max
π∈B̃(t)

cθ (π) (4)
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This “filter” computation, which allows us to compute B(t) from B̃(t), is the
subject of a good deal of research in the POMDP community (Kaelbling et. al.
1998), (Murphy 2000), (Cassandra et. al. 1997), (Sondik 1971) (White 1991), as it
forms the computational workhorse for value iteration techniques. There are many
techniques for performing filtering, though the search for computationally attractive
approaches is a source of ongoing research in POMDPs. We will not not discuss
filtering techniques here in any detail. However, a popular approach due to (White
1991) iteratively constructs B(t) by comparing each new affine function of B̃(t) with
a set of current “survivors” already shown to be somewhere optimal. By solving a
linear program, the new function can be shown either to not be in B(t), or the algo-
rithm identifies a new member of B̃(t) that must be in B(t).

The LDP algorithm constructs a search tree of possible paths. In the tree, a path
at depth n corresponds to a path through the first n levels of the trellis. Such a tree
is depicted in Fig. 3 for a trellis having only two states per level, labeled 0 and 1,
thus two children for each nonterminal node. Each surviving path s1, . . . ,sn in the

Fig. 3 The search tree of po-
tentially optimal paths gener-
ated by the LDP algorithm for
a trellis graph having only two
states, 0 and 1, for each level.
A terminal node in the graph
indicates a path s1, . . . ,sn for
which R(s1, . . . ,sn) is empty.
Such a path requires no ex-
ploration of its children in the
graph.
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search tree has an associated set, R(s1, . . . ,sn), of parameter values, θ , for which the
path is optimal (with respect to other paths ending in sn). Thus, unlike in the regular
DP computation, we may have many surviving paths ending in state sn — each
optimal for a different range of parameter values. The task of the filter operation
is to determine which sets, R(s1, . . . ,sn), are empty since these paths need not be
considered further in the search tree. Along a particular path s1,s2, . . ., we have

R(s1) ⊇ R(s1,s2) ⊇ R(s1,s2,s3) . . .

This follows since, by the basic reasoning of DP, if (s1, . . . ,sn) is an optimal path
for some fixed θ , then so is (s1, . . . ,sn−1). That is, if θ ∈ R(s1, . . . ,sn) then θ ∈
R(s1, . . . ,sn−1)

The LDP algorithm constructs this search tree level by level, generating chil-
dren for each tree node at level n whose corresponding path, (s1, . . . ,sn), has non-
empty R(s1, . . . ,sn). If computationally necessary, perhaps additional nodes (paths)
are pruned. The paths that reach the final trellis node are the paths that are optimal
for some value of θ .

3 Linear Dynamic Programming for Training in Sequence
Estimation

The hidden Markov model (HMM) has proved to be a powerful and flexible ap-
proach for analyzing data sequences, with successes in many application domains
including speech recognition (Rabiner 1989), gesture recognition (Starner and
Pentland 1995), handwriting recognition (Hu et. al. 1996), various applications in
Bioinformatics, e.g. (Karplus et. al. 1998), musical score following (Raphael 1999),
and many others. In the HMM, recognition is often accomplished using dynamic
programming (DP) to find the mostly likely sequence of hidden states given the
observed data. This corresponds to finding the best scoring path through the state
space trellis. One of the most attractive aspects of the HMM is automatic training
procedures for estimating model parameters. However, a possible weakness of these
training methods is their focus on a criterion not directly related to recognition per-
formance. That is, HMM training algorithms such as the Baum-Welch algorithm,
for unlabeled data, and straightforward empirical probability, for labeled data, opti-
mize the data likelihood rather than a quantity, such as recognition error rate, that
explicitly measures the quality of labellings produced by the recognition algorithm.
In this section we show how LDP can serve as a reasonable alternative to maximum
likelihood techniques for parameter estimation in sequence estimation problems.

Suppose we observe a sequence of N data observations and wish to estimate a
corresponding sequence of labels that explain the data. A time-honored approach
builds an |S|×N trellis graph where S is our collection of possible labels or states.
Labeling of the data can be accomplished by assigning arc scores in a reason-
able manner and computing the trellis path giving the best score through DP. Of
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course, the resulting sequence strongly depends on the choice of arc scores. At a
minimum the arc scores should encourage a reasonable “vertical” correspondence
between the labels and associated data observations. For instance, some data obser-
vations are likely to occur under some states, so arcs leading to these states should
receive high scores. In addition, the arc scores can be chosen to prefer a priori
desirable label sequences over less plausible ones, perhaps even enforcing certain
“horizontal” constraints on the label sequence.

Now we introduce a way of learning the arc scores automatically. Suppose that
our arc scores are each known linear functions of an unknown parameter, θ . We will
choose θ as the value whose associated DP state sequence most closely matches a
ground truth sequence. This value of θ can be found with LDP. Thus we address a
problem of supervised learning. We emphasize that we are not trying to optimize the
DP score over θ — this problem is unbounded if θ is unrestricted. Rather, we seek θ
giving the best agreement between its associated DP state sequence and the ground
truth. Thus, our approach directly optimizes a criterion we care about, such as the
number of recognition errors we commit. Our optimality criterion, however, can
be anything we choose — thus we may optimize a loss function incorporating a
more nuanced assessment of the “badness” of different errors than does the 0-1
loss function. We will present such a loss function in the next section. In contrast,
traditional HMM training techniques optimize the data likelihood, which is not of
direct relevance to recognition performance.

Our approach does not address the issue of generalization error (Bishop 2006)
in any meaningful sense, since we simply optimize the unregularized performance
on a training set. Thus we hope that the training set is large enough that we do not
over-fit during this process.

The approach of optimizing performance on a training set is certainly an old and
well-established one in the machine learning community. What is novel here is our
LDP method for optimizing training performance over a family of sequence estima-
tors. We know of no other work that seeks to directly optimize the performance of a
sequence estimator on a training set.

4 Application to Harmonic Analysis

The problem of functional harmonic analysis seeks to partition a piece of music
into labeled sections, the labels giving the local harmonic state. The label usually
consists of a key, e.g. C Major or G minor, and a chord symbol such as I, ii, iii,
IV, V, vi, vii for the triads built on the scale degrees indicated by the roman nu-
merals. For instance, the label (A major, IV) corresponds to the triad built on the
fourth scale degree, (D,F�,A), in the key of A major. Since harmony represents a
significant part of what listeners respond to in music, its analysis is fundamental
to a host of musical applications including expressive rendering, improvisational
accompaniment systems, and may also constitute a one-dimensional reduction of
music suitable for some search and retrieval applications. Past efforts in this area
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include (Pardo and Birmingham 2002), (Raphael and Stoddard 2003) (Temperley
2001), While the problem holds promise for a wide range of musical applications,
the evaluation of such work remains difficult, primarily due to the scarcity of ground
truth data as well as a suitable evaluation metric (not all errors are equally bad).

Our recognition approach uses DP to find the best scoring path through the lat-
tice composed by an S×N array of states, where N is the number of measures or
beats in the piece and S is the number of possible harmonic labels we consider. Our
score function consists of two components: a data score and a path score. The data
score encourages close agreement between each measure label and the pitches of
that measure. The path score rewards paths that are more musically plausible, inde-
pendent of the data. Our recognized sequence is then computed as the lattice path
that minimizes the sum of these scores. We focus here on the problem of learning
the data and path scores in a way that optimizes the path quality using a hand-labeled
training set.

More explicitly, our score function, Cθ (s1 . . . ,sN), is composed as

Cθ (s N
1 ) = Dθ (s1, . . . ,sN)+Pθ (s1, . . . ,sN) (5)

where the path, (s1, . . . ,sN) is a sequence of labels, one for each measure. The data
score, Dθ (s1, . . . ,sN) = ∑N

n=1 dθ (sn,xn), is represented as

dθ (sn,xn) =
3

∑
i=1

4

∑
j=1

θ d
i jδi j(sn,xn) (6)

where xn is the collection of pitches in the nth measure and the counts, δi j(sn,xn),
are as follows. Each harmonic label, sn, divides the possible chromatic pitches into
four categories: those that are

1. the root of the chord
2. in the chord but not the root
3. in the scale but not the chord
4. outside the scale

Similarly, the pitches in a measure are divided into those that begin

1. on the downbeat of the measure
2. on a beat but not the downbeat
3. elsewhere in the measure

In Eqn. 6, δi j(sn,xn) counts the notes in the nth measure that are in position category
i and of chromatic type j. To avoid degeneracies in which families of parameter
assignments correspond to essentially identical choices, we further assume ∑ j θ d

i j =
0, thus reducing the effective length of the parameter θ d .

The path score Pθ (sN
1 ) = ∑N−1

n=1 pθ (sn,sn+1) is the sum of modulation and pro-
gression components:
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pθ (sn,sn+1) = θ mM(sn,sn+1)+
3

∑
i=1

θ h
i Hi(sn,sn+1)

where M(sn,sn+1) is an indicator function for key change. If M(sn,sn+1) = 1, the
{Hi} terms act as indicators for various classes of harmonic motion such as pro-
gressive (up a fifth) and regressive (down a fifth). As above, we assume ∑i θ h

i = 0.
In total, considering the linear constraints, In all, our parameter θ has dimension
12. Intuitively, the various terms in our objective function, Cθ , may be relevant for
describing the quality of a particular path. Since we can only optimize a univariate
quantity we choose as our optimality criterion a linear combination of these terms.
θ gives the weights used in forming the linear combination Cθ .

The LDP algorithm terminates with a collection of paths that are each optimal
on a particular region of θ values. We perform training by selecting a value for θ
whose associated path is the best of the surviving paths, according to some measure
of goodness.

This measure of goodness is entirely distinct from the score function described
above, and can be chosen arbitrarily. In the case of harmonic analysis, we believe
some errors are worse than others and should be penalized accordingly. For instance,
the difference between the ii chord and the IV chord may be subtle and subjec-
tive in some cases. We address this issue by assigning a penalty for recognizing
the true chord (from hand-labeled ground truth) with a possibly different chord as
the number of pitch classes in the symmetric difference between the two chords.
Thus there is no cost for getting a chord correct and cost of 2 for confusing chords
ii and IV, since each has one pitch class not contained in the other. Similarly, our
cost for the key attribute is formed by counting the number of pitch classes in the
symmetric difference of the two scales. These two attributes are weighted equally
and summed over the entire analysis sequence to form our goodness function for
comparing paths.

Rather than trying to optimize simultaneously over our 12-dimensional parame-
ter space, instead we have successively optimized over the various one-dimensional
components of θ , using a simple one-dimensional implementation of the LDP algo-
rithm. This technique is clearly inferior to simultaneous optimization over θ . While
it is, in principle, possible to perform simultaneous optimization, this area remains
to focus of ongoing work on our part. For our present purposes, we focus here on
the essential idea of using LDP for training a sequence recognizer. However, the si-
multaneous optimization problem remains a source of ongoing research for us, with
potential to draw on the relevant POMDP literature. The one-dimensional filtering
problem is quite simple since, given a collection of one-dimensional linear func-
tions, we only need discover which are maximal over some interval. It is straightfor-
ward to solve this one-dimensional problem in a computationally efficient manner,
though we omit the details here.

Our first experiments involved performing the LDP algorithm with no pruning.
In this case we observed a steady increase in the number of surviving paths at each
stage of the trellis, though far less than the exponentially growing number of paths
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present if no filtering is performed. Figure 4 shows how the number of surviving
paths grows as a function of trellis level over several one-dimensional iterations
of our algorithm. This demonstrates that the overwhelming majority of paths are
pruned, but also suggests difficulties with the scalability of the basic algorithm. We
expect that some pruning, with the possibility of losing potentially optimal paths,
will be necessary in more ambitious problems.

In the remaining experiments we used techniques analogous to beam search (Yu
and Fern 2007) to decrease the number of paths that are propagated through the
algorithm. In this case, as we progress through the trellis, we narrow the consid-
ered range of each particular component, θk, according to our path quality metric,
to focus on what seems to be the right region in parameter space. In effect, we
“tunnel in” on the best region in the one-dimensional parameter space under con-
sideration. Figure 5 shows our symmetric difference “goodness” measure for the

Fig. 4 Number of linear functions for each iteration of the algorithm.
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Fig. 5 After performing LDP on a particular component of θ , the resulting optimal cost and our
symmetric difference penalty function, both as functions of θk. Training is accomplished by opti-
mizing the latter criterion over the possible paths indexed by θk.
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surviving paths after a typical iteration of the algorithm for this beam search ver-
sion. Unlike the c∗θ (sn) function, which is convex in θ , our “goodness” measure can
have arbitrary dependence on θ .

Using this procedure, we trained our algorithm on the Grande Valse Brilliante
of Chopin using hand-labeled ground truth. In this experiment we limited the set of
possible harmonic labels to the 27 (key,chord) pairs encountered in the piece. Note
that, due to the nature of our data and path scores in Eqn. 5, parameter values trained
from a restricted set of harmonic labels can still be applied to recognition problems
using a different set of labels. Using this LDP implementation we were able to
improve our path quality measure from 2203 to 173, starting with a random initial
configuration for θ . The resulting configuration after our optimization terminates
corresponded to a total summed symmetric difference (SSD) of 73 between the
recognized chord pitch classes and the ground truth chord pitch classes, as well as
an SSD of 100 between the two scale sequences. This corresponds to 0.24 chord
errors and 0.33 scale errors per measure.

We then applied this learned parameter to the Chopin Petit Chien (the “Minute
Waltz”) using a collection of 14 labels. This resulted in an SSD of 186 chord pitch
class errors and 40 scale pitch class errors, corresponding to 1.33 chord errors and
0.29 scale errors per measure. Finally, we tried retraining the algorithm with a larger
collection of 80 labels and used the learned θ with the test data and a larger collec-
tion of 132 chord labels. This experiment resulted in a better chord error rate of 1.06
but much worse scale error rate of 1.2, suggesting that the selected best path often
”borrowed” chords from other keys. The lack of any significant quantity of ground
truth data, or agreement on the collection of possible labels, makes comparisons
with other approaches difficult.

The analysis is available for download as a midi file at http://www.music.infor-
matics.indiana.edu/papers/informs08/ that demonstrates the resulting analysis
by superimposing the the recognized triads over the piano music while printing out
the chord labels as they are played.
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Approximate Algorithms for Maximizing
the Capacity of the Reverse Link
in Multiple–Class CDMA Systems

Arash Abadpour and Attahiru Sule Alfa

Abstract Code Division Multiple Access (CDMA) has proved to be an efficient
and stable means of communication between a group of users which share the same
physical medium. With the rising demands for high–bandwidth multimedia services
on mobile stations, it has become necessary to devise methods for more rigorous
management of capacity in these systems. While a major method for regulating ca-
pacity in CDMA systems is through power control, the mathematical complexity
of the related model inhibits useful generalizations. In this paper, a linear and a
quadratic approximation for the aggregate capacity of the reverse link in a CDMA
system are proposed. It is shown that the error induced by the approximations is
reasonably low and that rewriting the optimization problem based on these approxi-
mations makes the implementation of the system in a multiple–class scenario feasi-
ble. This issue has been outside the scope of the available methods which work on
producing an exact solution to a single–class problem.

Key words: Quality of Service, CDMA, Optimization, Capacity, Multiple Classes
of Service

1 Introduction

In Code Division Multiple Access (CDMA), several independent users access a
common communication medium by modulating their symbols with preassigned
spreading sequences. The success of this strategy depends on the proper handling
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of the multiple access interference (MIA). The MIA could be either suppressed
through the implementation of advanced signal processing methods such as multi-
user detection and receiver beam–forming, or it could be managed through efficient
power control (Hanly and Tse (1999)) and signature selection. In this paper, we
look at the management of capacity in a single–cell system through power control,
where certain conditions have to be met in order to guarantee an efficient and stable
communication (see a survey in Zhang et al (2005)).

The basic approach to the power management problem is to define a set of con-
straints and then to find the solution which is binding for all of them. An example
of this approach is to find the set of transmission powers which provide a given (of-
ten identical) signal to interference ratio (SIR) for all the stations in a cell (Hanly
(1995)). For example, in Ishikawa and Umeda (1997), the researchers work on ca-
pacity design and analysis of the call admission control using a fixed–SIR approach
(also see Viterbi et al (1994); Shin et al (1999)). A comprehensive and generalized
treatment of this topic can be found in Yates (1995). The fixed–SIR approach is car-
ried out through open–loop power control by individual stations as guided by power
messages transmitted by the base station (Smith and Gervelis (1996)).

With the introduction of multimedia services to wireless CDMA communica-
tions, the goal is no more to provide fixed capacity to all of the users (Ulukus and
Greenstein (2000)), but to maximize the aggregate capacity given a set of constraints
(Hanly and Tse (1999)). In fact, the addition of other types of services to the con-
ventional voice–only communication channels has urged the need for more control
over the rates at which different stations transmit (Frodigh et al (2001)). This con-
trol is necessary in order to maximize system performance measures including the
aggregate capacity (Gilhousen et al (1991)). The implementation of capacity maxi-
mization in multimedia–enabled networks is in contrast with voice–only systems in
which the sole purpose of the power control mechanism is to eliminate the near–far
effect through providing every station with a fixed SIR (Gilhousen et al (1991)). For
the coverage of the early works on achieving multiple rates (Ottosson and Svensson
(1995)) through maintaining fixed chip–rate and different transmission powers refer
to Baier et al (1994); Chih-Lin and Sabnani (1995).

The maximization of the capacity, in this paper, is attempted at the reverse link
(uplink), because this link is often the limiting link in CDMA communication sys-
tems (Bender et al (2000); Parkvall et al (2001)). For the coverage of the early works
on the capacity of the reverse link, accompanied by results gathered from field tests
refer to Padovani (1994); Evans and Everitt (1999). Among different channels on the
reverse link, this paper concentrates on the traffic channels, due to the more demand-
ing conditions they need to satisfy in establishing stable communications (Yang
(1998b)). The work presented here is different from power control strategies used in
the forward link (Kim et al (2003)), mainly due to the stringent requirements of the
reverse link (Verdu (1989)). It is worth to mention that this present work analyzes
the system at chip–level, as opposed to some others which also include the different
transmission rates of the individual stations (Sung and Wong (2001)).

To reach a practically sound framework, it is important to consider a set of prac-
tical constraints to be satisfied in the system. While the minimal set of constraints
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considered by different researchers always includes a minimum Quality of Service
(QoS) bound (Hosein (2004)), it is observed that this constraint, in the absence
of others, can effectively cause very unfair systems (Oh et al (2003); Jafar and
Goldsmith (2003)). This issue could be dealt with by incorporating fairness con-
straints into the problem. This, however, would increase the complexity of the
solver. Moreover, adding more constraints into the problem makes the analysis of
the problem, and development of a solver algorithm, harder.

The existence of different services in modern wireless systems has led to the need
to define different classes of service (Lee et al (2005)). This, for example, means
potentially different guaranteed minimum QoS levels for different users. Moreover,
different users may have different significances to the service provider, for example
because of their premium rates. The fact that the constraints are met at different
points for different stations makes the application of many of the methods developed
previously impossible, unless changes are made to them to fulfill the new demand.
This is essentially because a majority of the previous algorithm were designed for
the case in which all the stations reside in the same class (Hosein (2003); Oh and
Soong (2006)).

In this paper, we look at the problem of maximizing the aggregate capacity of
the reverse link in a CDMA network. Hence, the aggregate capacity is defined as
the weighted summation of the capacities of the mobile stations. Also, we consider
the case in which there are separate minimum SIR constraints for different stations.
The problem analyzed here also includes a maximum aggregate received power
constraint and separate limits on the transmit powers of each station. Furthermore,
each station has its own maximum bandwidth constraint. We will show how this
problem can be approximately solved using linear or quadratic programming.

The rest of this paper is organized as follows. Section 2 contains the proposed
method, Section 3 presents some experimental results and, finally, Section 4 con-
cludes the paper.

2 Proposed Method

This section contains the analysis of the reverse–link capacity maximization in a
multiple–class system. Here, we assume that during the time it takes for the solver
to produce a solution the system is in a steady state. This model is based on the
assumption that the system is analyzed in time slots of Ts, where Ts � 1

W (W is
the bandwidth), and that the coherence time of the most rapidly varying channel is
greater than Ts. Therefore, in each time slot, path–loss propagation coefficients can
be assumed to be constant (Oh et al (2003)). It is also worth to mention that the typ-
ical time interval during which the shadowing factor is nearly constant for a mobile
station is a second or more (Torrieri (2004)). Hence, for solvers which take signifi-
cantly less than a second to produce a solution shadowing can be ignored as well.

The rest of this section is organized as follows. First, in Section 2.1, the system
model is presented. Then, a set of substitute variables are defined in Section 2.2,
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from which, in Section 2.3, two approximations for the objective function are
derived. These approximations are used to generate the canonical representations
depicted in Section 2.4. Then, after the issue of the addition of other constraints
into the problem is addressed in Section 2.5, Section 2.6 presents the proposed al-
gorithms as well as a complexity analysis.

2.1 System Model

Assume that there are M mobile stations with reverse link gains of g1, · · · ,gM , which
satisfy g1 > · · ·> gM . Denote the transmit power of the i–th mobile station as pi and
the maximum transmission power of the i–th station as pmax

i ,

0 ≤ pi ≤ pmax
i ,∀i. (1)

With a background noise of I, the SIR for the signal coming from the i–th station,
as perceived by the base station, is calculated as,

γi =
pigi

I +∑M
j=1, j �=i p jg j

. (2)

Here, we assume that Shannon’s formula can be used to approximately relate SIR
to the bandwidth, thereby writing Ci = B log2 (1+ γi). The adoption of the maxi-
mum bound given by Shannon’s theorem is based on previously–developed models
(see Kandukuri and Boyd (2000); Hanly and Tse (1999); Huawei (2005) for ex-
ample). Moreover, we omit the constant B for notational convenience and therefore
analyze relative capacities. Using these notations, in this section, we consider the
problem defined as maximizing,

C =
M

∑
i=1

αiCi, (3)

subject to,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γi ≥ γmin
i ,∀i,

Ci ≤Cmax
i ,∀i,

M

∑
i=1

pigi ≤ Pmax,

0 ≤ pi ≤ pmax
i ,∀i.

(4)

Here, the constants γmin
i , Cmax

i , and pmax
i are the minimum SIR, the maximum ca-

pacity, and the maximum transmission power of the i–th station, respectively and
αi is the significance of station i (αi > 0). In other words, the values of the αis
demonstrate the “interest” of the system in each particular station. Accordingly,
these values can indicate priority, for example for providing more urgency to calls
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made by emergency vehicles, or be based on the premium rate each station has
signed on to pay for the service. Through grouping the stations into classes of iden-
tical values for these parameters, this model will be applicable to a multiple–class
scenario.

Setting αi = 1, γmin
i = γ , Cmax

i = η , and pmax
i = pmax this problem will reduce to

the single–class problem titled as the NSC in Abadpour et al (2007b). In Abadpour
et al (2007b) an algorithm is proposed which solves the NSC in an M–station cell in
O(M3) flops.

The goal of the rest of this section is to solve the more generalized problem
of maximizing (3) subject to (4), in which different stations not only have dif-
ferent significances, denoted by different values of αi, but also have their own
individual constraints. In these circumstances, the mathematical method introduced
in Abadpour et al (2006) and used for tackling the NSC (Abadpour et al (2007b))
and its single–class generalizations (Abadpour et al (2007a)) will not work, because
the constraints are now specific to the stations and therefore the methodology used
previously will fail.

2.2 Substitute Variables

Here, we propose a new set of substitute variables and then rewrite the optimization
problem, using approximations, as a linear or a quadratic programming problem.

Define the new set of variables,

ϕi =
γi

1+ γi
=

pigi

∑M
j=1 p jg j + I

,∀i. (5)

Note that,

Ci = − log2 (1−ϕi) . (6)

Derivation shows that,

pigi = I
ϕi

1−∑M
j=1 ϕ j

. (7)

Thus, if ∑M
i=1 ϕi < 1, a set of positive ϕis will produce a set of positive pis.

Using (5), the conditions given in (4) can be rewritten as linear constraints for
ϕis as,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕmin
i ≤ ϕi ≤ ϕmax

i ,∀i,
M

∑
i=1

ϕi ≤
Xmax

Xmax +1
,

li
M

∑
j=1

ϕ j +ϕi ≤ li,∀i.

(8)
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Here,
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ϕmin
i =

γmin
i

γmin
i +1

,

ϕmax
i = 1−2−Cmax

i ,

Xmax =
Pmax

I
,

li =
pmax

i gi

I
.

(9)

Note that the second condition in (8) results in ∑M
i=1 ϕi ≤ 1, satisfying the condition

needed for (7) to produce positive pis. Define the M × 1 vectors ϕ , ϕmin and ϕmax

as the sequence of all values of ϕi, ϕmin
i and ϕmax

i , respectively. Furthermore, we
define,

A =

⎡

⎣
11×M

1M×M +diag
[

1
l1

, · · · , 1
lM

]
⎤

⎦ , (10)

b =

[ Xmax

Xmax +1
1M×1

]

. (11)

Now, (8) can be written as,
{

ϕmin ≤ ϕ ≤ ϕmax,
Aϕ ≤ b.

(12)

While we will use (12) as the set of constraints for the optimization problem, to be
given later in the paper, this set of inequalities can also be used for identifying the
feasible region for ϕ . This issue is not discussed in this paper.

2.3 Approximation of the Objective Function

The formulation of the objective function, in its present form, as a function of the
ϕis, includes fractional and logarithmic terms and is hard to work with. Thus. we
devise two methods, a linear and a quadratic one, to approximate C as a first–
degree or a second–degree function of the ϕis. With the linear representation of
the constraints, given in (12), this would make the application of standard linear and
quadratic programming methods to the problem analyzed here possible.

For small γi, We have,

Ci = log2 (1+ γi) �
1

ln2
γi �

1
ln2

ϕi. (13)
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The approximation used here can be written as,

ln(1+ x) � x
1+ x

,x ∈ [γ,2η −1], (14)

and yields a linear approximation of Ci in terms of ϕi. Another approximation is
given below,

Ci �
1

ln2
γi =

1
ln2

ϕi

1−ϕi
� 1

ln2
ϕi (1+ϕi) . (15)

This is a second order approximation of Ci in terms of ϕi and uses the following
approximation,

ln(1+ x) � x
1+ x

(

1+
x

1+ x

)

,x ∈ [γ,2η −1]. (16)

The appropriateness of the two approximations demonstrated in (14) and (16)
is investigated in Figure 1. Here, the nominal values of γ = −30dB and η = 0.3
are used, demonstrated using the shaded area. Based on Figure 1–b, both approx-
imations induce less than 10% error. Note that as pi increases, and thus so do γi
and ϕi, the error induced by either approximation goes up. However, the second
order approximation is always more accurate than the linear approximation (see
Figure 1–a). It is also important to emphasize that while the linear approximation is
conservative, i.e. it produces smaller values than the exact formulation, the second
order formulation approximates the capacity by a laregr value. Therefore, the sec-
ond order approximation overestimates the aggregate capacity which it attempts to
maximize.

2.4 Canonical Representation

Defining the M ×1 vector α , as the sequence of all αis, we use the linear approxi-
mation, given in (13), to rewrite the objective function as,

C � 1
ln2

M

∑
i=1

αiϕi = fT ϕ. (17)

Here,

f =
1

ln2
α . (18)

Similarly, the quadratic approximation, given in (15), results in,
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Fig. 1 Investigating the properness of the approximations given in (14) and (16). The shaded areas
show the working interval. Note that, as shown in (14) and (16), here we approximate ln(1+ x) in
terms of x

1+x . Thus, the fact that the quadratic approximation exhibits a line in the (x, f (x)) plane
should not mislead the reader. (a) The exact values compared with the two different approxima-
tions. (b) Relative error induced by the two approximations.

C � 1
ln2

M

∑
i=1

αi
(
ϕi +ϕ2

i
)

=
1
2

ϕT Hϕ + fT ϕ, (19)
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where,

H =
2

ln2
diag [α1, · · · ,αM] . (20)

The maximization of either (17) or (19) has to be carried out subject to the con-
straints shown in (8) and using linear or quadratic programming, respectively. We
call these two algorithms the M1SC and the M2SC, respectively. These algorithms
will be presented in detail in Section 2.6.

2.5 Addition of Other Constraints

The approximations proposed here are also helpful when a new constraint is to be
added to the problem. The reader is referred to the case of adding a new constraint
to the NSC, addressed in Abadpour et al (2007a), which led to the definition of the
N+SC. There, to tackle the unfairness of the solution to the NSC, a capacity–share
constraint was added to the problem, as,

C̃i =
Ci

C
≤ 1

μ
1
M

,0 < μ < 1. (21)

Adding this constraint to the NSC almost quadrupled the code complexity of the
solver (Abadpour et al (2007a)). Here, we demonstrate the straightforward approach
which yields the addition of the new constraint to the approximate problems.

Using (3) Equation (21) can be written as,

M

∑
j=1

α jϕ j ≥ Mμϕi,∀i. (22)

This translates into,

(MμIM×M −α11×M)ϕ ≤ 0M×1. (23)

We argue that the addition of any constraint which can be written as a linear function
of the ϕis could be performed similarly.

2.6 Proposed Algorithms

Using the formulation developed in Section 2.4, the two algorithms of the M1SC
and the M2SC can be written as the three steps of,

1. Generating A, b, f and H,



246 A. Abadpour and A.S. Alfa

2. Solving either ϕ=linprog(f,A,b,ϕmin,ϕmax), for the case of the M1SC, or
ϕ=quadprog(H,f,A,b, ϕmin,ϕmax), for the case of the M2SC, and, finally,

3. Calculating Cis using (6), pis using (7), and C using (3).

Note that, as the matrix H, defined in (20), is positive–definite, the computa-
tional complexity of the M2SC is polynomial (Kozlov et al (1979)). The linear
programming–based approach, namely the M1SC, will take up polynomial time as
well (Gill et al (1982)).

3 Experimental Results

The proposed algorithms are implemented in MATLAB 7.0 and executed on a
Pentium IV 3.00GHZ personal computer with 1GB of RAM running Windows xp.

Here, the work is carried out in a circular cell of radius R = 2.5Km. For the
station i at the distance di from the base station, only the path–loss is considered,
and is modeled as given in Rappaport and Milstein (1992), as follows,

gi = Cdn
i . (24)

For a comprehensive review of the subject refer to Rappaport (2002). Here, C and n
are constants equal to 7.75× 10−3 and −3.66, respectively, when di is in meters.
Equivalently, with di in kilometers, C will equal 1.2283×10−13 (see Yang (1998a);
Oh and Wasserman (1999); Goodman and Mandayam (2000)). To produce a se-
quence g of length M, a set of 3M points are placed in the [−R,R]× [−R,R] square,
based on a two dimensional uniform distribution. Then, from those in the circle with
radius R centered at the origin, M points are picked.

The base parameters used in this study are γ = −30dB, I = −113dBm, Pmax =
−113dBm, pmax = 23dBm, and η = 0.3. These values are partly based on the data
given in Goodman and Mandayam (2000); Goodman (1997); Yang (1998a). Note
that, here, the values of I and Pmax comply with the notion of limiting the blocking
probability, as defined in Viterbi and Viterbi (1993). The conversion from dB to
watts is performed according to xdB ≡ 10

1
20 x. Also, xdBm ≡ 10

1
10 xmw.

In order to evaluate the performance of the proposed methods, in comparison to
each other as well to the exact method, namely the NSC, first, a cell containing 15
stations, as shown in Figure 2–(a), is considered.

In order to be able to apply the NSC and the proposed algorithms on the same
problem, we set αi = 1, γmin

i = γ , Cmax
i = η , and pmax

i = pmax, for all the stations.
This setting reduces the general problem to what the NSC is capable of calculating
the solution to, thus providing a platform for comparing the M1SC and the M2SC
with the NSC.

It takes 8.6ms for the NSC to produce a solution to the given problem. Using
the first–order approximation, the M1SC solves the same problem in 26.6ms and
the M2SC, which is based on a second–order approximation, takes 23.4ms to finish.
Therefore, utilization of the second–order approximation results in more than 10%
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Fig. 2 Sample problems defined in 15–station cells. (a) All αis are one. (b) None unity αis visual-
ized using different shades of gray.

decline in the computational complexity of the solver. Similar observation is made
for problems with different sizes and locaitons of stations. It is worth to mention that
the application of the approximations almost triples the computational complexity.
This is mainly due to the fact that the exact algorithms go through a list of candidate
points (Abadpour et al (2007b)), whereas the approximate algorithms use numerical
search at their core. Nevertheless, the approximations enable us to solve the problem
in a multiple–class framework, a scenario which is out of the scope of the exact
algorithm.

Comparison of the aggregate capacity values generated by the three problems,
we observe values of C = 0.735, C = 0.734, and C = 0.735, produced by the NSC,
the M1SC, and the M2SC, respectively (values are relative). The more accurate re-
sult of the M2SC is notable. Numerically, the M1SC has caused 0.16% error in the
aggregate capacity whereas the M2SC is accurate up to four decimal places.

Comparing the M1SC with the exact algorithm, the mean deviation in the values
of pi is 11.50%. The minimum and the maximum deviation of the same variable is
0.08% and 52.08%, respectively. Similar figures are observed for values of Ci (mean
of 11.70%, minimum of 0.085% and maximum of 53.00%). Analyzing the solution
generated by the M2SC, however, the deviation in pis and Cis is zero per cent up to
four decimal places.

In the next experiment, the performance of the two algorithms, the M1SC and
the M2SC, in a truly multiple–class system are compared. In order to do so, a
sample problem is generated, as shown in Figure 2–(b). Here, darkness of each
station demonstrates its corresponding value of αi (the darker a stations is, the
higher the corresponding value of αi is). Using the M1SC, it takes about 29.7ms
to solve this problem, whereas the M2SC demands 28.1ms to find the solution to the
same problem (about 5% less). Furthermore, there is 1.09% difference between the
aggregate capacity values calculated by the two algorithms.
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Fig. 3 Pattern of movement of the stations used in the dynamic analysis of the M2SC.

Based on the results stated in the above, another experiment is carried out in or-
der to analyze the behavior of the M2SC in a simulation which spans a given period
of time. In this experiment, the movements of M = 5 stations in a cell are simulated
and the corresponding problems are solved. Here, the movements are modeled using
a discrete random walk with the speed at each moment chosen based on a uniform
random variable between zero and 5Km/h (Jabbari and Fuhrmann (1997)). Here,
we assume that no station leaves the cell or enters it. In this setting, the system is
analyzed in a time span of T = 200s, during which the resulting problem is solved
every dt = 100ms. Figure 3 shows the random walk of the stations during the ex-
periment. The solutions produced for all the corresponding problems are aggregated
in Figure 4. Here, each row represents one station. The graphs on the left present
the transmission powers of the stations in this time span while the graphs to the
right show the regarding capacities. Figure 5 shows the aggregate capacity of the
system during the experiment and, finally, Figure 6 presents the capacity shares of
the stations during this experiment.

4 Conclusions

The problem of maximizing the aggregate capacity of the uplink in a single–cell
CDMA system was analyzed in this paper. As an extension to the available meth-
ods, the case of multiple–class systems was analyzed. As opposed to the previous
studies which assume identical constraints for all the mobile stations, it was ar-
gued that in practical systems, customers constitute different classes and therefore
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Fig. 4 Transmission powers and the capacities of different stations over the time in the dynamic
experiment. (a) Transmission powers. (b) Capacities.
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Fig. 5 Aggregate capacity during the experiment.

should be treated accordingly. It was shown that, through using approximations, the
problem can be solved using linear or quadratic programming. While utilizing a
second–degree approximation yields a more accurate outcome, it overestimates the
capacities and therefore may result in spurious results, due to the fact that the aim of
the problem is the maximization of the aggregate capacity. First–order approxima-
tion, on the other hand, is conservative but induces more error. Nevertheless, both
algorithms are well inside a 5%–error margin. The proposed algorithms, however,
are computationally more expensive due to the utilization of numerical optimiza-
tion in them. The paper also contains analysis of the problem in a time span, during
which the stations perform a random walk inside a cell.
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Abstract The Push-Tree Problem is a recently addressed optimization problem,
with the aim to minimize the total amount of traffic generated on information broad-
casting networks by a compromise between the use of “push” and “pull” mecha-
nisms. That is, the push-tree problem can be seen as a mixture of building multicast
trees with respect to nodes receiving pieces of information while further nodes may
obtain information from the closest node within the tree by means of shortest paths.
In this sense we are accounting for tradeoffs of push and pull mechanisms in in-
formation distribution. The objective of this paper is to extend the literature on the
problem by presenting four mathematical formulations and by defining and applying
some metaheuristics for its resolution.
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1 Introduction

Many real-word information distribution systems may be modeled as a weighted
graph where some information stored in a specified node (the information source)
must be broadcasted to a subset of the other nodes. Usually in a realistic scenario
this information will not be static but will evolve over time, which necessitates as
primary issue finding the most appropriate way to transmit the information to the
interested nodes (called request nodes) whenever their local copy becomes outdated.

Let us suppose that the functionality of the whole network relies strictly on the
dynamic transmission of the information from the source, and therefore each request
node needs to be quickly informed of every update. An obvious solution would then
be transmitting all these updates on a minimum cost multicast tree involving the
source and the request nodes. It is clear that under these assumptions our problem
reduces to the well-known Steiner tree problem. Though being N P-hard, the prob-
lem has been extensively studied with respect to approximation algorithms as well
as metaheuristics and exact approaches (see Voß (2006) for a recent survey). The
broadcasting operation performed by the source in this scenario is known as push
mechanism.

On the contrary, it could also be the case that although the source keeps updating
the information with a certain rate, the request nodes of our network can rely for
a long period of time on previous copies and need to be informed about all the
occurred changes with much lower rates (an example of this scenario could be the
information caching at the basis of the Internet Domain Name System). In that case a
considerable amount of the traffic generated by the push operations described above
would be wasted; a much more reasonable solution would consist in an explicit
information request performed by each node whenever it needs it. Assuming that
each node chooses the cheapest possible path to communicate with the source, the
optimal solution in this case becomes a Shortest Path Tree, that is widely known
as a polynomially solvable problem (see, e.g., Papadimitriou and Steiglitz (1982)).
Each operation request of this type is known as pull.

If we now consider a heterogeneous network, which shares characteristics of
both scenarios discussed above in different regions, it becomes clear that a com-
bination of push and pull operations could be the most convenient choice. That is,
the source could use the push mechanism to keep a selection of nodes updated; at
this point, each of these nodes is capable to handle pull operations coming from any
request node not directly updated. We give a visual representation of this situation
in Figure 1.

The optimal set of connections needed by the source to update the selected set
of nodes defines a subtree of the graph which is called push-tree; since determining
the optimal paths from any request node excluded from the push-tree to any node
belonging to it is an easy task, the entire problem is characterized by the choice of
such tree, and that is why the name of the overall optimization problem refers just
to it.

Figure 1 shows the connection between the push-tree and some related problems.
In fact, the information replication performed on the push tree nodes is similar to
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Fig. 1 Push-tree example:
each node in the push-tree
(consisting of the solid edges)
is kept updated, so each
other node that needs the
information can choose the
nearest amongst them to
perform its request.

the problem of placing replicas (mirroring) of some resource in order to meet the
request of the clients and minimizing the replication cost addressed, e.g., in Tang
and Xu (2004). Moreover, as shown in the figure, each path between the source and
a request node can be considered as divided in two parts, with the push mechanism
operating on the first and the pull mechanism on the second part, and this relates to
some other works based on multilevel network design, such as, e.g., Mirchandani
(1996). However, while these works are more related to a fixed cost assigned to the
choices made, the push-tree refers to the variable cost associated to the levels of
traffic generated by the use of the two mechanisms.

The push-tree problem has been introduced in Havet and Wennink (2001, 2004).
In these works they formalize the problem and, as we will see in the next sec-
tion, they prove it to be polynomially solvable in a special case and present an
approximation algorithm for the general undirected case. Moreover, they present
some robustness results for their algorithm in the case of changes in the request
nodes set or in the update and request rates. These results are further extended in
Havet (2002). In Facundo et al. (2007) the authors have performed some computa-
tional results on the heuristic algorithm in Havet and Wennink (2004). To the best of
our knowledge neither mathematical programming formulations nor any advanced
metaheuristics have been proposed for the push-tree problem so far. In this paper
we strive to overcome this situation.

The remaining sections of the paper are organized as follows. Section 2 presents
a more formal description of the problem and summarizes some already known re-
sults. Section 3 presents our mathematical formulations. Section 4 describes our
metaheuristic approaches. Computational results are reported in Section 5 and con-
clusions are considered in Section 6.

2 Problem Formulation and Known Results

Let G = (V,E) be an undirected graph. For each edge (i, j) ∈ E, let li j ≥ 0 be its
length (or weight). Moreover, given a subgraph H of G, let lH be the length of all its
edges. Let s ∈V be the source node and R ⊆V \{s} be the set of request nodes. Let
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μ ≥ 0 be the update rate of the source (i.e., the number of times that the information
in s changes per time unit) and rv be the request rate for each node v ∈ R. We look
for the subgraph PT of G and the paths Pv from each v ∈ R to some node in PT such
that the following function is minimized:

μ lPT + ∑
v∈R

rvlPv (1)

Obviously lPv will be 0 if v itself belongs to PT . Moreover, PT will be surely a tree,
since a cycle would imply an additional cost while connecting the same set of nodes.
The values for μ and rv determine the size of the push tree: if μ is sufficiently small
(μ < rv ∀v ∈ R) the push-tree would include every request node (i.e., would be the
optimal Steiner tree for R∪{s} as the set of basic or required nodes). On the other
hand, if μ > ∑v∈R rv, the push-tree would be composed of just node s (and the opti-
mal solution would be given by the shortest path tree from every request node to s).

Now let us consider the case in which the input graph G is a tree. The exact linear
algorithm presented in Havet and Wennink (2004) is based on the following obser-
vation: removing a single edge e from G would disconnect it into two components,
and e is part of the path to the source for each request node in the component not
containing s. Let Λ(e) be the sum of all the request rates of the request nodes in
the component without the source; if e is not in the push-tree, its contribution to
the objective function is Λ(e)le, otherwise it will obviously be μ le. Therefore, the
optimal push-tree will be composed of all the edges e such that μ < Λ(e). Figure 2
summarizes the procedure; note that the edge lengths are not necessary to find the
optimal solution (but they are obviously required to determine its actual value).

The exact algorithm for the tree case suggests a two-step class of heuristics for
the general case: determine a tree of the graph (called routing tree) and execute the
exact algorithm for this tree. What differentiates these approaches is the routing tree
construction method.

Fig. 2 Optimal push-tree
in a tree: request nodes are
represented by squares, with
their request rate reported
inside. Λ(e) is reported for
each edge. The considered
value for μ is 4. The push-
tree is composed of the thick
edges.
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Two natural possibilities are to consider a minimum spanning tree or a shortest
path tree routed at the source, which can be easily computed. However, in Havet and
Wennink (2004) it was proven that both of these approaches can be arbitrarily bad,
i.e., there is at least a push-tree instance such that the ratio between the solution
produced with any of these approaches and the actual optimal solution grows to
infinity. We could then consider the Steiner tree problem on R∪{s}. The problem is
N P-hard itself. However, it is proven in Havet and Wennink (2004) that assuming
a given heuristic approximating the Steiner tree problem with ratio ρ , then

w(T )
w∗ ≤ ρ

μ
rm

(2)

where w(T ) is the objective function value if the Steiner tree heuristic is used for
the first step of the two-step push-tree heuristic, w∗ is the optimal objective function
value and rm is the smallest nonzero request rate on the network. In particular, well-
known heuristics approximating the Steiner tree problem with ratio 2− 2/|R|, like
the Prim-based cheapest insertion heuristic (Takahashi and Matsuyama, 1980), also
approximate this problem with a ratio less than 2(μ/rm).

In the following, unless differently specified, wherever we refer to the routing
tree heuristic we are considering a routing tree built with the Prim-based Steiner tree
heuristic. However, as it is clear from (2) even an optimal solution for the Steiner
tree problem would not necessarily result in an optimal solution for the push-tree
problem. We present an example of that in Figure 3, which shows the optimal Steiner
tree on a well-known instance for Steiner tree problems, the incidence graph i160–
003 of the SteinLib library (Koch et al., 2001). Let us consider node 1 as the source
node, all the other terminal nodes (2–7) as request nodes, an update rate μ of 5 and
a request rate equal to 2 for all the request nodes. The push-tree built on this tree is
composed of the edge (1,156). However, this achieves an objective function value
of 6012, as can be easily computed. If we use instead the shortest path tree routed at
the source, the constructed push-tree only consists of the source node, and the value
of the objective function is 6008 (in fact, this is the optimal objective function value
for this instance).

Fig. 3 (a) Optimal Steiner
tree, with a total edge weight
of 2297. The evaluating func-
tion of the related push-tree
problem is 6012. (b) Shortest
Path tree, with a total edge
weight of 2702. The evalu-
ating function of the related
push-tree problem is 6008.
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3 Mathematical Models for the Push-Tree Problem

In order to compare the results of our heuristics with the exact solutions, we present
four different mathematical formulations.

Let G = (V,E) be the input graph. In both formulations we consider a directed
version of the graph, containing both arcs (i, j) and ( j, i) for each edge (i, j) of the
original undirected graph both having the same weights associated to them. We will
refer to the following input parameters:

• n > 0: cardinality of V ;
• s ∈V : source node;
• μ ≥ 0: update rate of the source;
• R ⊆V \{s}: set of request nodes;
• ri ≥ 0 ∀i ∈ R: request rate for each request node;
• BS(i) ⊆ E ∀i ∈V : set of arcs from other nodes to i;
• FS(i) ⊆ E ∀i ∈V : set of arcs from i to other nodes;
• li j ≥ 0 ∀(i, j) ∈ E: length of the arc (i, j);
• Ai j ≥ 0 ∀i ∈ R, j ∈V : length of the shortest path between i and j in G (trivially

Aii = 0 ∀i ∈ R);
• Si > 0 ∀i ∈V \{s}: minimum number of hops between s and i in G.

Moreover, we define the following binary variables:

xi =

{
1 if node i belongs to the push-tree,
0 otherwise.

∀i ∈V (3)

zi j =

{
1 if the arc (i, j) belongs to the push-tree,
0 otherwise.

∀(i, j) ∈ E (4)

ai j =

⎧
⎪⎨

⎪⎩

1 if j is the node of the push-tree
with the shortest path from i,

0 otherwise.
∀i ∈ R, j ∈V (5)

Trivially, aii must be set to 1 if i ∈ R belongs to the push-tree.

3.1 Single-commodity Flow Formulation

The first formulation that we describe is a single-commodity flow formulation as it
can be found for various tree-like problems. In this formulation we will consider an
additional set of integer variables yi j defined on each arc (i, j) ∈ E, representing the
amount of flow passing through arc (i, j).

min μ( ∑
(i, j)∈E

li j · zi j)+ ∑
i∈R

ri(∑
j∈V

Ai j ·ai j) (6)
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subject to

xs = 1 (7)
xi = ∑

( j,i)∈BS(i)
z ji ∀i ∈V \{s} (8)

∑
j∈V

ai j = 1 ∀i ∈ R (9)

x j ≥ ai j ∀i ∈ R, j ∈V (10)

∑
(s, j)∈FS(s)

ys j = ∑
i∈V\{s}

xi (11)

∑
( j,i)∈BS(i)

y ji − ∑
(i,k)∈FS(i)

yik = xi ∀i ∈V \{s} (12)

yi j ≤ (n−1)zi j ∀(i, j) ∈ E (13)
yi j ≥ zi j ∀(i, j) ∈ E (14)
xi ∈ {0,1} ∀i ∈V (15)

ai j ∈ {0,1} ∀i ∈ R, j ∈V (16)
yi j ∈ {0,1, . . .} ∀(i, j) ∈ E (17)
zi j ∈ {0,1} ∀(i, j) ∈ E (18)

The objective function (6) minimizes the total amount of traffic on the network.
Constraint (7) imposes the source node as part of the solution. Constraints (8) define
each other node as part of the push-tree if and only if it is reached by some arc
belonging to it. Constraints (9) impose that each request node is associated to exactly
one node of the graph, while constraints (10) ensure that such nodes belong to the
push-tree. Constraints (11)-(14) impose the flow balancing constraints: the source
produces exactly one unit of flow for each other node in the solution, each of them
retains one unit, and there can be flow only on arcs belonging to the push-tree. This
guarantees the construction of a connected acyclic solution.

While this seems to be a natural formulation there may be ways to enhance it.
For instance, variables xi may be replaced based on constraints (8) and, e.g., the
following constraints added:

∑
(i, j)∈FS(i)

zi j ≤ (n−1) ∑
(k,i)∈BS(i)

zki ∀i ∈V \{s} (19)

These constraints impose that if a node different from the source has some arcs leav-
ing it in the solution, then it must have been reached by some other node. Moreover,
the maximum amount of flow that can reach a given node is bounded by its distance
in terms of hops from the source: let us suppose that a given node i belongs to the
push-tree and is connected to the source by exactly Si hops. Since no more than
n−1 units of flow are produced by the source and each node along the path from s
to i will retain one of them, no more than n−Si units of flow can reach node i. That
is, the right hand side of 13 may be strengthened as follows:
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yi j ≤ (n−Si) zi j ∀(i, j) ∈ E (20)

An immediate option coming to mind is to modify the formulation in defining
a multi-commodity flow formulation. In such a formulation we would consider a
different binary flow variable yk

i j, for each node k ∈ V \ {s} and each (i, j) ∈ E,
whose value is 1 if a unit of flow directed to node k uses (i, j) to reach its destination.
Related flow balancing constraints should have the following meaning: the source
produces exactly one unit of flow for each other node in the solution, each of them
retains one unit directed to itself and forwards all the others, and there can be flow
only on arcs belonging to the push-tree. Moreover, the maximum amount of flow
units that can reach a given node is bounded by its distance in terms of hops from
the source like in the proposed modification of the single-commodity model.

3.2 Miller-Tucker-Zemlin Formulation

The second formulation implements the Miller-Tucker-Zemlin subtour elimination
constraints (Miller et al., 1960). In this formulation we consider a set of integer
variables ui defined on each node i ∈V such that if arc (i, j) is part of the push-tree
then ui < u j.

min μ( ∑
(i, j)∈E

li j · zi j)+ ∑
i∈R

ri(∑
j∈V

Ai j ·ai j) (21)

subject to

xs = 1 (22)
xi = ∑

( j,i)∈BS(i)
z ji ∀i ∈V \{s} (23)

∑
j∈V

ai j = 1 ∀i ∈ R (24)

x j ≥ ai j ∀i ∈ R, j ∈V (25)

∑
(i, j)∈FS(i)

zi j ≤ (n−1) ∑
(k,i)∈BS(i)

zki ∀i ∈V \{s} (26)

us = 0 (27)
ui ≤ (n−1)xi ∀i ∈V \{s} (28)
ui ≥ xi ∀i ∈V \{s} (29)

ui +1 ≤ u j +(n−1)(1− zi j) ∀(i, j) ∈ E (30)
xi ∈ {0,1} ∀i ∈V (31)

ai j ∈ {0,1} ∀i ∈ R, j ∈V (32)
ui ∈ {0,1, . . .} ∀i ∈V (33)
zi j ∈ {0,1} ∀(i, j) ∈ E (34)
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The objective function (21) and constraints (22)-(25) are assumed to have the
same meaning as in the previous model. Constraints (26) impose that if a node
different from the source has some arcs outgoing from it in the solution, then it must
have been reached by some other node. Constraints (27)-(30) avoid the creation
of cycles in the solution by setting the source’s sequencing variable to 0 and by
imposing the sequencing variable of a given node j to be greater than the one of a
node i if (i, j) belongs to the solution, and together with constraints (26) guarantee
a connected acyclic solution.

This formulation may be modified, too, e.g., in the same way as the single-
commodity flow formulation by substituting variables xi as well as by some lifting
of constraints (30), e.g., in the following way:

nzi j +ui −u j +(n−2)z ji ≤ n−1 ∀(i, j) ∈ E (35)

4 Metaheuristics

It seems of interest to verify whether existing metaheuristics can be adapted to it in
order to produce good quality solutions. The metaheuristics implemented to achieve
this objective are simulated annealing and reactive tabu search. Both techniques
have been used in conjunction with four different methods to produce solutions and
neighborhoods. Before describing our metaheuristics, we will present these methods
as well as the solution representation used.

4.1 Routing Tree-based Neighborhoods

These two neighborhood generation schemes are basically an extension of the rout-
ing tree heuristic: iteratively, new routing trees are built and their related push-trees
are found and evaluated as previously described. Feasible solutions for these ap-
proaches can be obtained with a first execution of the basic routing tree heuristic.

Steiner Routing Tree Neighborhoods:

Each new solution is obtained by applying a Steiner tree heuristic on a given set
of required nodes. This tree is then used as routing tree. The neighborhood of the
current solution is composed of all the routing trees obtained by selecting as set
of required nodes the same of our current solution, except for one added or one
dropped, and avoiding to drop any node from the set of request nodes R or the
source node s (that must obviously be in each routing tree).
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MS Routing Tree Neighborhoods:

Each new solution is obtained by computing a minimum spanning (MS) tree on a
given set of nodes. This tree is then used as routing tree. The neighborhood of the
current solution is composed of all the routing trees obtained by selecting as set of
nodes the same of our current solution, except for one added or one dropped, and
avoiding to drop any node from the set of request nodes R or the source node s
(that must obviously be in each routing tree). This type of neighborhoods could lead
to infeasible solutions (i.e., the set of selected nodes could be disconnected, like
in the example in Figure 4). Infeasible solutions are taken into account by means
of appropriate penalties in their evaluation, i.e., we add a large penalty for each
selected node disconnected from the push-tree.

4.2 Push-Tree-based Neighborhoods

Instead of building routing trees, these two methods are focused on the direct con-
struction of new push-trees. Each new push-tree is evaluated using equation (1). The
shortest paths between each request node and every other node can be computed in
advance using the Floyd-Warshall algorithm (see, e.g., Papadimitriou and Steiglitz
(1982)). The push-tree of the starting solution can be obtained either with a routing
tree heuristic or considering just the source node s (i.e., considering the shortest path
tree as first solution). Note that for the latter case the worst case error ratio reported
in Havet and Wennink (2004) has not been proven.

Fig. 4 Simple example lead-
ing to infeasibility for MS
Routing Tree Neighborhoods.
The set of required nodes
considered is composed of
the nodes that have to be
included in the routing tree
for a given neighbor of the
current solution. A Steiner
Routing Tree could be eas-
ily found by considering the
edges connecting node 3 to
node 4 and node 5 and by
using node 2 to connect node
s and node 3. However, an MS
Routing Tree using just the
set of required nodes can not
be found, since node s is not
directly connected to any of
the other nodes of the set.
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Steiner Push-Tree Neighborhoods:

Each new solution is obtained by applying a Steiner tree heuristic on a given set of
required nodes. This tree is then used as push-tree. The neighborhood of the current
solution is composed of all the push-trees obtained by selecting as set of required
nodes the same of our current solution, except for one added or one dropped, and
avoiding to drop the source node s (that must obviously be in each push-tree).

MS Push-Tree Neighborhoods:

Each new solution is obtained by computing a MS tree on a given set of nodes.
This tree is then used as push-tree. The neighborhood of the current solution is
composed of all the push-trees obtained by selecting as set of nodes the same of
our current solution, except for one added or one dropped, and avoiding to drop the
source node s (that must obviously be in each push-tree). If the solution appears to
be disconnected, then only the component containing s is considered as push-tree.

4.3 Solution Representation

The solutions for all of these approaches can be represented with a bit vector defined
on the nodes of the given graph. In the Steiner neighborhoods the activated bits
represent the required nodes, while the bits set to 0 represent the possible Steiner
nodes for the heuristic. In the MS neighborhoods the activated bits represent the
nodes that we want to cover, while the bits set to 0 represent nodes that must be
excluded from the tree. Each move from the current solution to any of its neighbors
corresponds to a bit switch on any of these nodes, except for the nodes that must
always be activated, i.e., the nodes in R∪{s} for the Routing Tree neighborhoods,
and s for the Push-Tree neighborhoods.

We are now ready to introduce our metaheuristics.

4.4 Simulated Annealing

Simulated Annealing (SA) extends basic local search. The concept of SA may
be described as follows: Starting from an initial solution, successively a can-
didate move is randomly selected; this move is accepted if it leads to a solu-
tion with a better objective function value than the current solution, otherwise
the move is accepted with a probability depending on the deterioration Δ of
the objective function value. The acceptance probability is computed according
to the Boltzmann function as e−Δ/T , using a temperature T as control para-
meter. Various authors describe robust realizations of this general SA concept.
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Following Johnson et al. (1989), the value of T is initially high, which allows
many worse moves to be accepted, and is gradually reduced through multipli-
cation by a parameter coolingFactor according to a geometric cooling schedule.
Given a parameter sizeFactor, sizeFactor · nsize candidate moves are tested (nsize
denotes the neighborhood size) before the temperature is reduced. The starting tem-
perature is determined as follows: Given a parameter initialAcceptanceFraction
and based on an abbreviated trial run, the starting temperature is set so that the
fraction of accepted moves is approximately initialAcceptanceFraction. A fur-
ther parameter, f rozenAcceptanceFraction is used to decide whether the anneal-
ing process is frozen and should be terminated. Every time a temperature is com-
pleted with less than f rozenAcceptanceFraction of the candidate moves accepted,
a counter is increased by one, while this counter is re-set to 0 each time a new
best solution has been obtained. The whole procedure is terminated when this
counter reaches a parameter f rozenLimit. For our implementation we follow the
parameter setting of Johnson et al. (1989), which was reported to be robust for
different problems. Namely, we use α = 0.95, initialAcceptanceFraction = 0.4,
f rozenAcceptanceFraction = 0.02, sizeFactor = 16 and f rozenLimit = 5.

4.5 Reactive Tabu Search

Like simulated annealing, tabu search extends the concepts of local search to over-
come local optimality. This is done by using information about the search history to
guide future choices. Based on some sort of memory certain moves may be forbid-
den, we say they are set tabu (and appropriate move attributes such as a certain index
indicating a specific node are put into a list, called tabu list). The search may imply
acceptance of deteriorating moves when no improving moves exist or all improving
moves of the current neighborhood are set tabu. At each iteration a best admissible
neighbor may be selected. A neighbor, respectively a corresponding move, is called
admissible, if it is not tabu. See Glover and Laguna (1997) for a survey on tabu
search.

Reactive Tabu Search (RTS) aims at the automatic adaptation of the tabu list
length (Battiti, 1996): if the tabu memory indicates that the search is revisiting
formerly traversed solutions, then the tabu list size is increased. A possible spec-
ification can be described as follows: Starting with a tabu list length ls of 1 it is
increased to min{max{ls+2, ls×1.2},bu} every time a solution has been repeated,
taking into account an appropriate upper bound bu (to guarantee at least one admis-
sible move). If there has been no repetition for some iterations, we decrease it to
max{min{ls− 2, ls/1.2},1}. To accomplish the detection of a repetition of a solu-
tion, one may apply a trajectory based memory using hash codes.

For RTS, it is appropriate to include means for diversifying moves whenever the
tabu memory indicates that we are trapped in a certain region of the search space. As
a trigger mechanism one may use, e.g., the combination of at least three solutions
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each having been traversed three times. A very simple escape strategy is to perform
randomly a number of moves (depending on the average of the number of iterations
between solution repetitions).

We consider a given time limit as termination criterion.

5 Computational Results

Previous works on the push-tree problem with numerical results (Facundo et al.,
2007) do not specify in detail how data is generated. Since the problem has strong
connections with the Steiner tree problem, we decided to test our methods on already
studied instances for this problem, that had to be obviously adapted to fit our new
parameters.

We consider two different datasets. The first one is made of 18 instances and is
Dataset B of the OR-Library (Beasley, 1990). These instances are randomly gen-
erated connected graphs, with a weight between 1 and 10 for each edge. These
instances were generated according to the following parameters: n = 50,75,100
number of nodes, nr = 1

6 n, 1
4 n, 1

3 n, 1
2 n number of basic nodes which need to be con-

nected (in our case it will be the number of request nodes plus the source), and a
number of edges e specified to achieve an average node degree of 2.5 and 4.

The second group of instances is one of the so-called incidence datasets. The
parameters for these instances are n = 160, nr = logn,

√
n,2

√
n and n

4 , while the
values chosen for graph densities are m = 3n

2 ,n lnn, n(n−1)
2 ,2n and n(n−1)

10 , for a total
of 100 different instances. All the considered datasets can be found on SteinLib1.

To adapt the instances to our particular problem, we assumed the basic node with
smallest index to be the source. Moreover, our choice of parameters for update and
request rates was to set μ to 5 and ri to 2 for each i ∈ R.

All computations for the metaheuristics have been made on a workstation with
1 GB RAM and a 2.8 GHz Intel Xeon processor. The metaheuristic framework
HOTFRAME (Fink and Voß, 2002) has been used for the implementations. Optimal
solutions refer to the application of CPLEX 10 with OPL Studio on a workstation
with 2 GB RAM and a 3.2 GHz Intel Xeon processor. Times are measured in
seconds.

In the tables we refer to the mathematical models and metaheuristics as follows:

SC: Single-Commodity Flow Formulation
MTZ: Miller-Tucker-Zemlin Formulation
SASR: Simulated Annealing with Steiner Routing Tree Neighborhoods
RTSR: Reactive Tabu Search with Steiner Routing Tree Neighborhoods
SAMR: Simulated Annealing with MS Routing Tree Neighborhoods
RTMR: Reactive Tabu Search with MS Routing Tree Neighborhoods
SASPs: Simulated Annealing with Steiner Push-Tree Neighborhoods, source s used
as first push-tree

1 See Koch et al. (2001) as well as http://elib.zib.de/steinlib/steinlib.php .

http://elib.zib.de/steinlib/steinlib.php
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RTSPs: Reactive Tabu Search with Steiner Push-Tree Neighborhoods, source s used
as first push-tree
SAMPs: Simulated Annealing with MS Push-Tree Neighborhoods, source s used as
first push-tree
RTMPs: Reactive Tabu Search with MS Push-Tree Tree Neighborhoods, source s
used as first push-tree
SASPh: Simulated Annealing with Steiner Push-Tree Neighborhoods, first push-
tree obtained with the routing tree heuristic
RTSPh: Reactive Tabu Search with Steiner Push-Tree Neighborhoods, first push-
tree obtained with the routing tree heuristic
SAMPh: Simulated Annealing with MS Push-Tree Neighborhoods, first push-tree
obtained with the routing tree heuristic
RTMPh: Reactive Tabu Search with MS Push-Tree Tree Neighborhoods, first push-
tree obtained with the routing tree heuristic

5.1 Mathematical Models

The comparison between the two proposed models has been made on the first ten
instances of the B dataset. It takes into account two factors: the total computational
time and the quality of the linear programming relaxation returned. As can be seen
in Table 1, the Miller-Tucker-Zemlin formulation returned slightly better relaxations
on average, and resulted to be more efficient than the Single-Commodity flow for-
mulation in terms of computational time. For each instance, the optimal solution
value is given in the opt column.

The proposed models might be expected as “weakest models” for the push-tree
problem. For many tree-like problems one might even assume that the single com-
modity formulation behaves better than the MTZ-formulation. Surprisingly, here

Table 1 Mathematical models comparison

n nr e opt SC relax SC time MTZ
relax

MTZ
time

SCmod
relax

SCmod
time

50 9 63 217 113.19 0.922 125.03 0.969 126.87 0.75
50 13 63 290 116.65 2.735 114.47 4.719 117.84 2.75
50 25 63 440 280 5.328 280.59 6.234 291.69 4
50 9 100 172 89.5 19.078 85.74 1.688 90.87 8
50 13 100 159 102.11 5.297 100.95 0.672 103.88 4
50 25 100 385 224.5 >10000 218.06 56.921 227.15 >10000
75 13 94 344 179.1 4.797 180.11 4.438 185.71 5.25
75 19 94 337 176.25 11.375 176.64 29.578 185.13 6
75 38 94 681 428.37 39.015 458.51 5 442.49 25.75
75 13 150 243 145.97 113.922 144.78 3.172 147.9 68.17

average 326.8 185.564 188.488 191.953
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this seems not to be the case. Therefore, the results regarding these two formula-
tions are interesting in themselves. Modifying the single-commodity flow formula-
tion along the lines described at the end of Section 3.1 (columns SCmod in Table 1)
allowed us to slightly improve the results of the relaxation. Overall, however, these
formulations do not seem to provide good bounds as can be seen from the large gaps
between the relaxations and the optimal solutions.

We also explored the multi-commodity formulation following the above men-
tioned natural definition of flow variables, but the results were not as good as ex-
pected (providing much higher computation times and similar linear relaxations
compared to the single commodity and MTZ formulations).

5.2 Metaheuristic Comparisons on the B Dataset

On this dataset, we tried both our heuristics with all the possible combinations
of neighborhoods and starting solutions presented above. Results as well as com-
putational times are reported in Tables 2–4. Regarding tabu search, for which a
time limit had to be given, such a limit was fixed to three times the computational
time of the related simulated annealing time on that instance. This was done since
the metaheuristics on this dataset are generally quite fast, so we wanted to investi-
gate whether additional time could help to improve the results when the optimum is
not reached. Nevertheless, as Table 4 shows, the best result for these heuristics was
found generally much earlier than this limit. In Table 2 column heu reports the value
obtained by the routing tree heuristic on each instance, while column opt reports the
optimal solution found by means of our mathematical models.

We applied Friedman’s test (Hollander and Wolfe, 1999) on the results obtained,
in terms of solution value, total execution time and best solution time, in order to ob-
tain some statistical rankings between the different algorithms. Rankings are shown
in Figures 5-7. In particular, as we can see, the heuristics with Push-Tree neighbor-
hoods are the clear winners regarding solution quality, since the four Routing Tree
heuristics perform significantly worse (they reject the null hypothesis that the perfor-
mances are not statistically different). In particular, the heuristics with Steiner Push-
Tree neighborhoods are the best ranked (as we can see from Table 2, SASPs, RTSPs
and RTSPh found the optimal solution in all instances except one, and SASPh in
all of them except two). Regarding total solution time, the tabu search approaches
are obviously ranked worse than the respective simulated annealing ones, since we
gave higher time limits. Among the SA approaches, the best ranked are the ones with
MS Push-Tree neighborhoods (SAMPs and SAMPh), while the ones with Steiner
Push-Tree neighborhoods (SASPs and SASPh) are the only ones rejecting the null
hypothesis. Finally, regarding best solution times, the SA with Steiner Push-Tree
neighborhood heuristics (SASPs and SASPh) are the only ones performing signifi-
cantly worse, while the heuristics with Steiner Routing Tree neighborhoods (SASR
and RTSR) are the overall best ranked.
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Table 3 Total Time Comparisons for the B dataset

n nr e SASR RTSR SAMR RTMR SASPs RTSPs SAMPs RTMPs SASPh RTSPh SAMPh RTMPh

50 9 63 0.91 2.73 5.79 17.37 6.21 18.63 0.41 1.23 6.06 18.18 0.27 0.81
50 13 63 10.67 32.01 3.01 9.03 5.77 17.31 0.44 1.32 5.27 15.81 0.28 0.84
50 25 63 1.07 3.21 0.67 2.01 6.12 18.36 0.43 1.29 6.09 18.27 3.05 9.15
50 9 100 1.30 3.90 0.74 2.22 5.78 17.34 0.46 1.38 5.33 15.99 0.36 1.08
50 13 100 1.14 3.42 0.8 2.40 5.81 17.43 0.51 1.53 6.05 18.15 0.32 0.96
50 25 100 1.28 3.84 0.85 2.55 7.04 21.12 3.51 10.53 7.22 21.66 3.04 9.12
75 13 94 2.56 7.68 1.72 5.16 17.87 53.61 0.9 2.70 13.11 39.33 0.8 2.40
75 19 94 2.83 8.49 1.86 5.58 15.18 45.54 0.96 2.88 14.08 42.24 0.84 2.52
75 38 94 2.74 8.22 1.71 5.13 18.2 54.60 1.06 3.18 17.26 51.78 9.47 28.41
75 13 150 2.77 8.31 1.96 5.88 20.03 60.09 0.92 2.76 17.76 53.28 0.92 2.76
75 19 150 27.91 83.73 1.93 5.79 18.28 54.84 1.11 3.33 6.38 19.14 4.72 14.16
75 38 150 3.32 9.96 2.14 6.42 23.5 70.50 1.32 3.96 16.97 50.91 8.09 24.27

100 17 125 6.37 19.11 103.4 310.20 35.16 105.48 2.21 6.63 36.45 109.35 2.04 6.12
100 25 125 5.20 15.60 41.48 124.44 34.11 102.33 1.74 5.22 36.93 110.79 1.64 4.92
100 50 125 5.99 17.97 4.38 13.14 39.72 119.16 2.35 7.05 36.66 109.98 1.81 5.43
100 17 200 6.34 19.02 26.19 78.57 38.19 114.57 3.7 11.10 34.09 102.27 3.05 9.15
100 25 200 5.57 16.71 4.47 13.41 31.78 95.34 3.5 10.50 25.44 76.32 1.9 5.70
100 50 200 55.54 166.62 4.12 12.36 32.7 98.10 12.04 36.12 31.76 95.28 19.11 57.33

average 7.97 23.92 11.51 34.54 20.08 60.24 2.09 6.26 17.94 53.82 3.43 10.29

Table 4 Best Solution Time Comparisons for the B dataset

n nr e SASR RTSR SAMR RTMR SASPs RTSPs SAMPs RTMPs SASPh RTSPh SAMPh RTMPh

50 9 63 0.01 0.01 0.01 0.01 2.42 0.01 0.01 0.01 0.01 0.01 0.01 0.01
50 13 63 0.01 0.01 0.1 0.17 2.72 0.01 0.13 0.02 0.01 0.02 0.01 0.01
50 25 63 0.01 0.01 0.01 0.01 0.7 0.02 0.04 0.04 0.01 0.01 0.01 0.01
50 9 100 0.34 0.01 0.11 0.68 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.01
50 13 100 0.01 0.01 0.01 0.01 2.08 0.26 0.02 0.02 1.89 0.67 0.01 0.01
50 25 100 0.18 0.54 0.15 0.06 2.84 0.04 0.58 0.05 2.98 0.08 0.9 4.91
75 13 94 0.01 0.02 0.02 0.02 0.03 0.03 0.07 0.04 0.06 0.08 0.04 0.04
75 19 94 0.01 0.01 0.26 1.44 6.67 0.03 0.1 0.08 5.35 0.1 0.02 0.02
75 38 94 0.01 0.01 0.01 0.01 7.6 0.09 0.08 0.14 6.3 0.13 4.46 1.17
75 13 150 0.01 0.02 0.02 0.03 8.44 0.05 0.06 0.06 0.06 0.06 0.03 0.04
75 19 150 0.02 0.01 0.28 0.78 8.89 0.13 0.39 0.08 0.01 0.16 0.01 0.01
75 38 150 0.02 0.02 0.03 0.04 13.13 0.21 0.46 3.92 0.14 0.09 3.51 4.42
100 17 125 2.45 1.82 60.89 21.64 0.09 0.06 1.02 0.09 0.17 0.12 0.94 0.08
100 25 125 0.02 0.04 2.39 0.4 18.56 0.55 0.1 0.17 0.06 0.06 0.05 0.05
100 50 125 0.8 12.7 0.65 0.09 23.61 1.84 0.12 0.28 17.41 0.28 0.06 0.07
100 17 200 0.07 0.72 0.79 49.16 15.23 0.09 2.26 3 15.9 0.83 1.7 0.14
100 25 200 0.65 3.57 1.45 11.14 17.37 0.09 1.95 0.25 9.71 0.68 0.05 0.07
100 50 200 0.8 0.09 0.62 0.09 18.82 1.8 4.26 15.88 19.4 5.84 11.12 9.24

average 0.3 1.09 3.77 4.77 8.29 0.3 0.65 1.34 4.42 0.51 1.28 1.13

5.3 Metaheuristic Comparisons on the i160 Dataset

On this dataset both metaheuristics were tried, too, with all the possible combi-
nations of neighborhoods and starting solutions. Results as well as computational



270 M. Caserta et al.

2 3 4 5 6 7 8 9 10 11

RTMPh

SAMPh

RTSPh

SASPh

RTMPs

SAMPs

RTSPs

SASPs

RTMR

SAMR

RTSR

SASR

Fig. 5 Solution quality statistical ranks comparison for the B dataset

−2 0 2 4 6 8 10 12 14

RTMPh

SAMPh

RTSPh

SASPh

RTMPs

SAMPs

RTSPs

SASPs

RTMR

SAMR

RTSR

SASR

Fig. 6 Total time statistical ranks comparison for the B dataset

times are reported in Tables 5–10.2 The time limit for the tabu search was fixed to
2000 seconds per instance; however, as can be seen in Tables 9/10, also on these
instances the best results were generally found much earlier than the limit. The col-
umn heu in Table 5 (and its continuation in Table 6) reports the value obtained by the
routing tree heuristic on each instance. Since we were not able to find the optimal
solutions on instances of this size, the column LB in Table 5 (and Table 6) reports the
lower bounds obtained by the linear programming relaxation of our slightly modi-
fied single-commodity flow model (SCmod). As can be seen, the solutions obtained
by our heuristics are much closer to this lower bound than to the original routing
tree heuristic.

2 Note that tables are split for better readability. Average values in Tables 6, 8, and 10 are calculated
over the results of two continued tables, respectively.
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The statistical rankings obtained by Friedman’s test are shown in Figures 8-10.
As for the previous dataset, the heuristics with Steiner Push-Tree neighborhoods
(SASPs, RTSPs, SASPh and RTSPh) perform better than the others, and between
them, the tabu search approaches have better rankings than the SA ones. All the
other heuristics perform significantly worse, therefore there is not the clear distinc-
tion between push-tree neighborhoods and routing tree neighborhoods that could be
seen in Figure 5. Another interesting remark is that for every type of heuristic taken
into account the RTS approach is ranked better than the respective SA. Regarding
total solution time, the tabu search approaches are obviously the worse ones and
equally ranked, since we set the 2000 seconds time limit. Among the simulated an-
nealing approaches, the ones based on MS Push-Tree neighborhoods (SAMPs and
SAMPh) confirm to be the top ranked, as for dataset B, while all the others reject
the null hypothesis.

Finally considering best solution times, the Reactive Tabu Search with MS Push-
Tree neighborhood and source node as starting solution (RTMPs) is the top ranked,
while all the others perform significantly worse.

6 Conclusions

In this paper we addressed an optimization problem for information distribution
systems, namely the Push-Tree Problem. From an algorithmic point of view the
previous research provided an exact algorithm for tree networks and an approxima-
tion algorithm for the general case. In this paper we have shown that metaheuristic
approaches can be adapted to improve the solutions provided by this algorithm.
Our approaches have been tested on two classes of instances, differing in both di-
mensions and structure of the networks. Further research is focused on extending
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Table 5 Solution Comparisons for the i160 dataset

n nr e heu SASR RTSR SAMR RTMR SASPs RTSPs SAMPs RTMPs SASPh RTSPh SAMPh RTMPh LB

160 7 240 7081 6207 6173 6173 6729 6173 6173 6173 6173 6173 6173 6545 6545 4965.11
160 7 240 6039 5817 5817 5817 5817 5641 5641 5641 5641 5641 5641 5641 5641 4701.43
160 7 240 6192 6012 6012 6012 6192 6008 6008 6008 6008 6008 6008 6008 6008 5085.68
160 7 240 7510 6596 6596 6596 7310 6596 6596 6596 6596 6596 6596 6596 6696 4765.10
160 7 240 8017 6300 6388 6414 6678 6294 6294 6388 6388 6294 6294 6388 6388 4757.04
160 7 812 5187 4784 4486 5187 4674 4481 4481 4736 4481 4481 4481 4481 4486 3472.08
160 7 812 4806 4770 4612 4806 4806 4612 4612 4870 4672 4612 4612 4612 4612 3614.65
160 7 812 4825 4301 4301 4301 4301 4301 4301 4301 4301 4301 4301 4301 4301 3530.19
160 7 812 5492 4920 4842 4763 4763 4763 4763 4845 4763 4763 4763 4763 4763 3775.17
160 7 812 5132 4709 4518 4864 4587 4518 4518 4549 4518 4518 4518 4549 4518 3714.82
160 7 12720 6457 3360 3259 3360 3259 3259 3259 3259 3259 3259 3259 3259 3259 2755.04
160 7 12720 6794 3400 3303 3400 3303 3303 3303 3303 3303 3303 3303 3303 3303 2724.94
160 7 12720 4979 3309 3306 3309 3306 3306 3306 3306 3306 3306 3306 3306 3306 2742.04
160 7 12720 5596 3375 3325 3375 3325 3338 3325 3338 3325 3338 3325 3338 3325 2766.74
160 7 12720 5861 3333 3305 3333 3305 3305 3305 3305 3305 3305 3305 3305 3305 2787.40
160 7 320 6796 6210 6199 6199 6199 6024 6024 6029 6029 6024 6024 6029 6309 4389.61
160 7 320 7123 6100 6204 6334 6257 6100 6100 6100 6100 6100 6100 6100 6100 4518.82
160 7 320 5833 5150 5150 5150 5370 5150 5150 5150 5150 5150 5150 5150 5150 4397.10
160 7 320 6882 5684 5684 5684 5684 5684 5684 5684 5684 5684 5684 5684 5746 4283.24
160 7 320 6246 6063 5762 5747 5762 5747 5747 5940 5762 5747 5747 5762 5762 4385.45
160 7 2544 4828 4213 3863 4228 4117 3861 3861 4277 3861 3861 3861 4277 3861 3145.73
160 7 2544 4973 3847 3836 4325 3895 3836 3836 4164 3847 3847 3836 3911 3847 3109.47
160 7 2544 5939 4041 3736 3896 3728 3728 3728 4209 3728 3728 3728 3728 3919 3197.34
160 7 2544 3913 3874 3874 3895 3895 3847 3847 4132 3876 3847 3847 3874 3874 3254.97
160 7 2544 4020 3991 3991 4020 4020 3944 3944 4231 3944 3944 3944 4020 4020 3200.47
160 12 240 10295 9985 9933 9933 10269 9923 9923 9923 9923 9923 9923 9923 9923 8259.67
160 12 240 10775 9843 9660 9660 9843 9660 9660 9660 9660 9660 9660 9843 10166 7665.07
160 12 240 10413 10139 10139 10139 10139 10114 10114 10114 10114 10114 10114 10139 10139 7903.57
160 12 240 13122 10751 10751 10737 11353 10565 10565 10565 10565 10565 10565 10565 10565 7748.62
160 12 240 10951 8753 8753 8753 8753 8753 8753 9270 8753 8753 8753 9916 9270 7383.34
160 12 812 12398 7415 7415 8119 7771 7413 7413 7613 7462 7413 7413 7413 7501 6341.07
160 12 812 8205 7611 7611 7638 7638 7299 7299 7611 7603 7299 7299 7299 7299 6350.28
160 12 812 8784 7169 7494 8478 8117 7167 7167 7977 7631 7167 7167 7752 7752 6216.91
160 12 812 8645 7894 7722 7843 7857 7590 7590 7949 7590 7590 7590 7843 7843 6403.51
160 12 812 8038 7644 7201 7652 7652 7091 7091 7797 7091 7091 7091 7620 7620 6255.66
160 12 12720 11391 5378 5305 5378 5305 5305 5305 5305 5305 5305 5305 5305 5305 4742.39
160 12 12720 11362 5441 5274 5441 5274 5274 5274 5274 5274 5274 5274 5274 5274 4735.96
160 12 12720 11953 5377 5283 5377 5283 5283 5283 5283 5283 5283 5283 5283 5283 4754.73
160 12 12720 10296 5367 5292 5367 5292 5305 5292 5305 5292 5294 5292 5294 5292 4735.02
160 12 12720 11989 5308 5278 5308 5278 5308 5278 5308 5278 5278 5278 5278 5278 4732.11
160 12 320 10518 9008 9026 8835 8835 8835 8835 9310 8864 8835 8835 10185 9006 7169.11
160 12 320 10567 8708 8708 9195 8708 8708 8708 9805 8708 8708 8708 8708 8708 7248.38
160 12 320 11194 9412 9563 9652 9652 9091 9091 9353 9091 9091 9091 9353 9353 7662.42
160 12 320 10915 9085 9057 9095 9653 9057 9057 9057 9057 9057 9057 9113 9095 7494.08
160 12 320 11317 9487 9487 9487 9622 9487 9487 9487 9487 9487 9487 9830 9894 7710.66
160 12 2544 11571 6407 6149 6682 6389 6149 6149 6535 6371 6149 6149 6578 6371 5354.99
160 12 2544 12791 6308 6308 6537 6444 6270 6270 6403 6315 6302 6270 6348 6676 5399.55
160 12 2544 7310 6663 6411 6674 6546 6251 6251 6407 6407 6251 6251 6461 6461 5464.68
160 12 2544 6481 6481 6391 6481 6481 6367 6367 6390 6401 6367 6390 6391 6391 5584.31
160 12 2544 8762 6668 6511 6848 6589 6338 6338 6628 6465 6338 6338 6511 6511 5502.42
160 24 240 21120 18629 18822 18954 18954 18629 18629 19085 19085 18629 18629 18993 19672 15283.94
160 24 240 21584 18934 18934 18934 19247 18885 18885 19111 18885 18885 18885 19009 19009 15458.18
160 24 240 22301 20117 20048 20470 20076 19848 19848 20514 19880 19848 19848 20221 19848 16762.23
160 24 240 22018 19018 19018 19688 19018 18745 18745 19703 18745 18745 18745 18898 20150 15489.51
160 24 240 19325 19028 19028 19028 19307 18994 18994 19059 19042 18994 18994 19048 19006 16349.08
160 24 812 17389 14100 13993 14050 14049 13738 13738 14409 14378 13738 13738 14194 13946 12288.97
160 24 812 16502 14172 13686 14423 14243 13455 13455 13643 13846 13455 13455 13969 13969 12385.53
160 24 812 24168 14056 13852 15191 13951 13592 13629 14036 13648 13592 13592 14217 13830 12454.21
160 24 812 18843 14834 14458 15193 14322 13711 13711 14487 13711 13711 13711 13825 14431 12735.66
160 24 812 24717 14009 14244 14122 13672 13525 13525 13934 13915 13525 13525 14647 13542 12265.51
160 24 12720 24078 10086 10034 10086 10034 10034 10034 10034 10034 10034 10034 10034 10034 9498.48
160 24 12720 23185 10067 9949 10067 9949 9949 9949 9949 9949 10036 9949 10036 9949 9465.31
160 24 12720 24104 10180 10036 10180 10036 10053 10036 10053 10036 10053 10036 10053 10036 9487.60
160 24 12720 21822 10095 10036 10095 10036 10036 10036 10036 10036 10036 10036 10036 10036 9467.15
160 24 12720 24283 10058 10056 10058 10056 10058 10056 10058 10056 10058 10056 10058 10056 9484.78
160 24 320 25509 18060 18405 18865 18177 17311 17311 18185 17311 17311 17311 17676 17311 14694.45
160 24 320 23778 17633 17347 18420 18318 17252 17252 18245 17252 17252 17252 19625 19625 14888.51
160 24 320 19576 16605 16071 17788 17694 15995 15995 16371 16371 15995 15995 17703 17703 14617.12
160 24 320 17479 16537 16537 17025 17025 16529 16529 16591 16529 16529 16529 16529 16529 15447.32
160 24 320 21749 18113 18052 18305 19013 17852 17852 18085 17857 17852 17852 18220 18220 15068.52
160 24 2544 23422 12434 11993 12013 11722 11614 11614 11921 11767 11614 11614 12754 11614 10646.95
160 24 2544 22767 12314 12048 12898 11884 11908 11796 12369 12030 11858 11796 12707 11906 10765.84
160 24 2544 24592 12212 11922 11998 11809 11641 11641 11703 11661 11566 11566 13000 11661 10581.05
160 24 2544 22979 12137 12061 12286 11915 11619 11619 12504 11828 11619 11783 12087 11984 10644.20
160 24 2544 21859 12224 11833 12097 12103 11772 11772 12757 12051 11772 11772 12637 12451 10663.21
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Table 6 Solution Comparisons for the i160 dataset – Continued
n nr e heu SASR RTSR SAMR RTMR SASPs RTSPs SAMPs RTMPs SASPh RTSPh SAMPh RTMPh LB

160 40 240 40019 33860 33860 33995 33995 33426 33426 33611 33598 33426 33426 33598 33598 28094.31
160 40 240 37326 32254 32254 32254 32446 31752 31752 32316 32035 31752 31752 31752 32235 26568.41
160 40 240 41231 32273 32308 32305 33197 31614 31614 31796 31682 31614 31614 32066 31682 27068.78
160 40 240 35379 31781 31642 31781 32617 31219 31219 31330 32072 31219 31219 32447 32447 25767.01
160 40 240 37381 31971 31983 32643 32871 31181 31181 31905 31664 31181 31181 31829 31198 26517.60
160 40 812 35639 22013 22013 22178 22085 21695 21695 22082 21803 21744 21711 23166 22982 20417.50
160 40 812 40862 22044 21826 22191 21826 21596 21588 21656 21963 21588 21588 22586 22151 19998.66
160 40 812 38899 22427 22576 22344 22188 21616 21616 22026 22162 21785 21616 22443 22368 20197.08
160 40 812 37523 21728 21257 21451 21441 21001 21181 22305 21493 21181 21001 22012 21559 19732.45
160 40 812 43418 21831 21767 21804 21827 21479 21458 22461 21816 21479 21458 22464 21605 20067.56
160 40 12720 41639 16389 16389 16389 16389 16389 16389 16389 16389 16389 16389 16389 16389 15834.48
160 40 12720 39639 16360 16360 16360 16360 16360 16360 16360 16360 16360 16360 16360 16360 15827.79
160 40 12720 41970 16372 16372 16372 16372 16372 16372 16372 16372 16372 16372 16372 16372 15792.49
160 40 12720 39128 16406 16406 16406 16406 16413 16406 16413 16406 16406 16406 16406 16406 15850.16
160 40 12720 40762 16336 16336 16336 16336 16336 16336 16336 16336 16336 16336 16336 16336 15805.85
160 40 320 30583 26672 26344 28003 28003 26274 26274 26274 26274 26274 26274 27259 27273 23497.31
160 40 320 34665 28094 28094 28766 29684 27605 27605 28310 28209 27605 27605 28568 28600 25310.66
160 40 320 32954 27749 27749 28795 29513 27183 27183 27183 27263 27183 27183 27183 27183 24188.96
160 40 320 34835 27519 27519 27799 27934 26600 26600 26803 26600 26600 26600 27372 26600 24360.06
160 40 320 31247 27708 27683 27739 27945 26811 26811 27054 27271 26811 26811 27170 27506 24586.61
160 40 2544 42423 18660 18660 18675 18906 18755 18444 19407 18923 18444 18444 19042 18965 17379.88
160 40 2544 41694 19110 18877 18877 18885 18661 18669 19265 19065 18661 18644 19372 18951 17376.74
160 40 2544 39714 18334 18435 18566 18308 18308 18308 18635 18569 18334 18308 19644 18473 17143.93
160 40 2544 43417 19069 18412 18504 18375 18499 18375 19382 18375 18486 18375 19250 18829 17302.06
160 40 2544 42227 18754 18649 18935 18649 18748 18506 18911 18731 18605 18504 19358 18764 17279.24

average 19202.9 12640.3 12555 12782 12751.9 12390.6 12383.9 12662.9 12493.4 12389.7 12382.7 12737.8 12633.7 10917.17

Table 7 Total Time Comparisons for the i160 dataset

n nr e SASR RTSR SAMR RTMR SASPs RTSPs SAMPs RTMPs SASPh RTSPh SAMPh RTMPh

160 7 240 15.22 2000 214.51 2000 69.39 2000 4.72 2000 68.62 2000 4.67 2000
160 7 240 14.92 2000 205.74 2000 69.63 2000 5.39 2000 68.81 2000 4.64 2000
160 7 240 133.28 2000 200.39 2000 65.35 2000 4.07 2000 66.88 2000 5.24 2000
160 7 240 15.56 2000 261.41 2000 68.14 2000 4.75 2000 66.97 2000 5.15 2000
160 7 240 167.2 2000 212.04 2000 68.99 2000 4.07 2000 68.63 2000 5.02 2000
160 7 812 161.25 2000 11.45 2000 88.34 2000 7.76 2000 85.52 2000 9.23 2000
160 7 812 201.16 2000 11.44 2000 87.44 2000 7.89 2000 90.1 2000 8.14 2000
160 7 812 277.69 2000 15.18 2000 90.61 2000 7.91 2000 80.04 2000 8.42 2000
160 7 812 152.59 2000 28.29 2000 91.45 2000 7.91 2000 93.87 2000 8.41 2000
160 7 812 388.75 2000 21.28 2000 89.74 2000 6.85 2000 86.89 2000 8.29 2000
160 7 12720 1590.7 2000 1477.11 2000 975.73 2000 1025.84 2000 1045.92 2000 1017.57 2000
160 7 12720 1690.17 2000 1707.29 2000 963.61 2000 992.3 2000 1000.35 2000 936.98 2000
160 7 12720 1235.26 2000 1201.37 2000 1014.13 2000 989.44 2000 977.86 2000 1027.99 2000
160 7 12720 1421.34 2000 1388.61 2000 1016.05 2000 1054.21 2000 992.7 2000 933.11 2000
160 7 12720 849.69 2000 800.58 2000 1044.74 2000 1048.66 2000 924.74 2000 941.11 2000
160 7 320 14.87 2000 249.31 2000 71.76 2000 5.75 2000 76.26 2000 5.6 2000
160 7 320 15.08 2000 281.67 2000 73.23 2000 5.22 2000 71.99 2000 5.73 2000
160 7 320 14.46 2000 280.7 2000 71.28 2000 4.47 2000 66.25 2000 5.49 2000
160 7 320 15.14 2000 225.57 2000 84.31 2000 5.21 2000 69.52 2000 5.49 2000
160 7 320 165.9 2000 263.64 2000 80.31 2000 5.82 2000 73.62 2000 6.4 2000
160 7 2544 163.4 2000 24.46 2000 167.53 2000 19.12 2000 175 2000 18.49 2000
160 7 2544 464.29 2000 24.27 2000 171.64 2000 20.45 2000 173.18 2000 20.38 2000
160 7 2544 458.07 2000 27.98 2000 165.37 2000 20.29 2000 158.78 2000 20.21 2000
160 7 2544 319.01 2000 24.84 2000 169.48 2000 20.25 2000 188.89 2000 17.19 2000
160 7 2544 313.38 2000 21.56 2000 167.04 2000 15.86 2000 181.49 2000 17.48 2000
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Table 8 Total Time Comparisons for the i160 dataset – Continued

n nr e SASR RTSR SAMR RTMR SASPs RTSPs SAMPs RTMPs SASPh RTSPh SAMPh RTMPh

160 12 240 258.2 2000 279.85 2000 86.12 2000 5.44 2000 86.52 2000 5.57 2000
160 12 240 15.08 2000 243.78 2000 99.91 2000 5.37 2000 100.07 2000 5.41 2000
160 12 240 15.57 2000 246.36 2000 85.03 2000 5.61 2000 89.66 2000 5.62 2000
160 12 240 14.45 2000 177.28 2000 72.83 2000 4.99 2000 66.37 2000 5.32 2000
160 12 240 14.9 2000 282.9 2000 75.69 2000 6.12 2000 66.57 2000 5.35 2000
160 12 812 87.27 2000 13.18 2000 98.41 2000 9.22 2000 91.36 2000 8.53 2000
160 12 812 202.19 2000 17.54 2000 98.42 2000 10.08 2000 94.06 2000 8.34 2000
160 12 812 223.93 2000 13.61 2000 91.28 2000 9.49 2000 87.85 2000 11.94 2000
160 12 812 247.59 2000 20.63 2000 104.17 2000 7.92 2000 87.49 2000 8.72 2000
160 12 812 301.95 2000 13.14 2000 95.76 2000 9.36 2000 81.86 2000 7.71 2000
160 12 12720 1629.56 2000 1653.05 2000 901.54 2000 954.08 2000 926.41 2000 1022.11 2000
160 12 12720 2738.4 2000 2718.67 2000 971.65 2000 962.61 2000 1001.16 2000 994.78 2000
160 12 12720 1961.43 2000 1945.66 2000 907.95 2000 928.71 2000 972.63 2000 896.94 2000
160 12 12720 1918.07 2000 1923.71 2000 990.24 2000 992.96 2000 936.94 2000 1041.39 2000
160 12 12720 2084.33 2000 2097.89 2000 1136.96 2000 1066.48 2000 966.12 2000 963.42 2000
160 12 320 15.47 2000 87.36 2000 85.48 2000 6.59 2000 83.18 2000 5.77 2000
160 12 320 108.79 2000 80.82 2000 87.08 2000 5.5 2000 78 2000 5.78 2000
160 12 320 120.78 2000 19.3 2000 74.88 2000 6.11 2000 73.02 2000 6.38 2000
160 12 320 18.56 2000 229.66 2000 80.02 2000 12.73 2000 84.85 2000 5.9 2000
160 12 320 225.81 2000 14.45 2000 83.89 2000 9.57 2000 82.55 2000 6.42 2000
160 12 2544 282.71 2000 24.47 2000 201.74 2000 19.97 2000 167.95 2000 20.82 2000
160 12 2544 539.43 2000 372.67 2000 162.54 2000 19.95 2000 161.95 2000 19.57 2000
160 12 2544 277.19 2000 25.09 2000 174.46 2000 20.01 2000 160.05 2000 45.83 2000
160 12 2544 340.94 2000 21 2000 169.66 2000 19.62 2000 165.51 2000 18.03 2000
160 12 2544 279.79 2000 32.8 2000 169.32 2000 21.29 2000 177.65 2000 21 2000
160 24 240 194.62 2000 13 2000 104.98 2000 5.8 2000 95.84 2000 6.08 2000
160 24 240 16.13 2000 11.36 2000 113.38 2000 7.47 2000 103.61 2000 6.34 2000
160 24 240 21.2 2000 11.26 2000 98.55 2000 5.92 2000 95.1 2000 5.34 2000
160 24 240 214.99 2000 78.64 2000 91.54 2000 11.75 2000 81.07 2000 11.22 2000
160 24 240 147.6 2000 172.19 2000 96.69 2000 5.86 2000 92.7 2000 5.58 2000
160 24 812 306.53 2000 20.95 2000 134.38 2000 10.21 2000 117.13 2000 9.15 2000
160 24 812 297.91 2000 13.23 2000 94.8 2000 11 2000 87.22 2000 9.06 2000
160 24 812 389.51 2000 15.18 2000 106.22 2000 13.96 2000 93.19 2000 16.06 2000
160 24 812 257.55 2000 12.97 2000 108.14 2000 8.6 2000 87.44 2000 10.14 2000
160 24 812 290.63 2000 13.46 2000 89.28 2000 11.37 2000 83.69 2000 8.81 2000
160 24 12720 2652.08 2000 2683.6 2000 1113.87 2000 1062.54 2000 979.5 2000 1015.33 2000
160 24 12720 1429.13 2000 1426.65 2000 926.16 2000 1018.53 2000 904.59 2000 877.69 2000
160 24 12720 1471.06 2000 1556.71 2000 982.68 2000 1056.08 2000 1089.34 2000 950.28 2000
160 24 12720 1237.66 2000 1265.64 2000 947.09 2000 1072.29 2000 986.51 2000 984.99 2000
160 24 12720 1802.63 2000 1797.3 2000 944.38 2000 958.06 2000 995.03 2000 881.13 2000
160 24 320 204.12 2000 17.82 2000 92.63 2000 7.24 2000 101.03 2000 8 2000
160 24 320 27.36 2000 14.67 2000 106.2 2000 6.41 2000 104.11 2000 8.38 2000
160 24 320 15.05 2000 11.12 2000 87.48 2000 5.71 2000 84.55 2000 6.15 2000
160 24 320 110.71 2000 11.12 2000 81.27 2000 7.23 2000 79.73 2000 6.81 2000
160 24 320 231.43 2000 14.65 2000 119.99 2000 5.9 2000 80.75 2000 7.44 2000
160 24 2544 306.65 2000 314.58 2000 174 2000 20.71 2000 176.63 2000 60.1 2000
160 24 2544 417.3 2000 359.95 2000 186.83 2000 63.58 2000 188.95 2000 47.58 2000
160 24 2544 376.71 2000 263.04 2000 182.51 2000 49.56 2000 167.25 2000 29.02 2000
160 24 2544 494.87 2000 345.8 2000 186.3 2000 20.36 2000 165.88 2000 66.11 2000
160 24 2544 527.52 2000 375.47 2000 182.2 2000 63 2000 169.01 2000 37.36 2000
160 40 240 133.14 2000 15.23 2000 99.21 2000 7.11 2000 90.91 2000 9.97 2000
160 40 240 293.95 2000 166.41 2000 96.47 2000 6.92 2000 92.35 2000 12.96 2000
160 40 240 141.29 2000 11.61 2000 113.82 2000 7.96 2000 107.2 2000 9.5 2000
160 40 240 22.1 2000 11.91 2000 133.85 2000 6.27 2000 131.31 2000 5.71 2000
160 40 240 243.54 2000 14.97 2000 104.28 2000 7.02 2000 98.39 2000 6.62 2000
160 40 812 347.04 2000 159.94 2000 112.84 2000 9.23 2000 123.69 2000 19.56 2000
160 40 812 401.47 2000 154.96 2000 103.46 2000 11.8 2000 113.69 2000 12.6 2000
160 40 812 306.99 2000 202.31 2000 102.59 2000 13.28 2000 99.68 2000 11.98 2000
160 40 812 330.1 2000 142.23 2000 119.79 2000 8.88 2000 119.03 2000 14.73 2000
160 40 812 314.21 2000 169.55 2000 108.8 2000 37.69 2000 113.89 2000 10.48 2000
160 40 12720 811.02 2000 820.17 2000 991.35 2000 953.91 2000 1012.44 2000 1013.44 2000
160 40 12720 777.45 2000 760.26 2000 853.42 2000 892.28 2000 910.55 2000 911.59 2000
160 40 12720 732.19 2000 763.2 2000 959.04 2000 1086.24 2000 1023.58 2000 942.29 2000
160 40 12720 760.61 2000 756.98 2000 796.52 2000 831.28 2000 859.02 2000 831.89 2000
160 40 12720 749.32 2000 726.67 2000 890.91 2000 951.14 2000 914.2 2000 914.08 2000
160 40 320 358.73 2000 12.21 2000 101.63 2000 7.49 2000 102.25 2000 6.1 2000
160 40 320 158.25 2000 12.06 2000 162.06 2000 6.79 2000 159.3 2000 8.82 2000
160 40 320 232.95 2000 15.2 2000 108.47 2000 11.5 2000 111.11 2000 8.73 2000
160 40 320 397.84 2000 11.86 2000 110.14 2000 8.26 2000 105.93 2000 7.19 2000
160 40 320 190.79 2000 135.56 2000 117.77 2000 10.9 2000 116.04 2000 7.2 2000
160 40 2544 264.6 2000 244.81 2000 186.09 2000 31.11 2000 162.88 2000 48.75 2000
160 40 2544 254.08 2000 209.82 2000 177.62 2000 20.11 2000 173.54 2000 59.59 2000
160 40 2544 286.9 2000 221.22 2000 175.25 2000 97.38 2000 179.25 2000 66.09 2000
160 40 2544 384.86 2000 213.91 2000 188.43 2000 34.11 2000 188.31 2000 67.83 2000
160 40 2544 286.37 2000 211.54 2000 203.06 2000 51.07 2000 180.05 2000 76.72 2000

average 468.02 2000 387.21 2000 285.99 2000 210.33 2000 283.41 2000 203.52 2000
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Table 9 Best Solution Time Comparisons for the i160 dataset

n nr e SASR RTSR SAMR RTMR SASPs RTSPs SAMPs RTMPs SASPh RTSPh SAMPh RTMPh

160 7 240 0.15 0.97 119.4 38.83 56.58 0.15 0.18 0.1 54.05 0.46 0.01 0.01
160 7 240 2.79 1.86 79.06 1.72 51.71 0.17 0.18 0.13 0.01 0.01 0.01 0.01
160 7 240 0.04 0.12 74.4 0.01 0.01 0.01 0.01 0.01 0.3 0.28 0.24 0.23
160 7 240 2.84 109.68 51.3 17.95 50.88 0.16 1.54 0.16 46.88 0.86 0.28 760.39
160 7 240 8.01 0.19 164.79 1.05 0.1 0.16 0.01 0.01 0.22 0.38 0.15 0.21
160 7 812 0.11 0.28 0.01 51.4 0.58 0.21 1.52 0.23 64.98 1.28 0.58 0.54
160 7 812 0.24 49.37 0.01 0.01 63.41 0.23 0.11 0.14 0.36 0.52 0.3 0.46
160 7 812 128.74 0.59 4.44 1.13 71.18 0.24 0.08 0.14 0.64 0.43 0.7 0.38
160 7 812 0.12 0.17 17.78 11.41 76.22 0.25 0.06 0.14 0.85 0.53 0.28 0.36
160 7 812 0.09 1.48 11.33 457.36 67.12 0.22 0.14 0.14 0.6 0.7 0.36 0.47
160 7 12720 0.12 1.46 0.3 1.66 844.99 1.54 883.11 1.49 907.49 4.54 880 4.64
160 7 12720 0.11 1.43 0.3 1.66 735.6 1.59 748.54 1.49 778.86 8.59 727.19 8.56
160 7 12720 1.46 1.46 1.65 1.77 812.14 1.55 798.54 1.63 861.53 3.37 902.58 3.04
160 7 12720 22.85 1.41 24.28 1.63 835.82 1.53 852.56 1.52 881.28 3.66 824.32 3.28
160 7 12720 0.97 1.4 1.02 1.65 933.59 1.53 927.65 1.53 715.14 4.63 719.17 4.4
160 7 320 1.51 0.99 120.05 138.29 54.64 0.2 0.06 0.11 52.27 1.43 1.49 46.75
160 7 320 0.09 1.72 203.67 94.06 0.14 0.17 0.08 0.15 0.54 0.66 0.3 0.36
160 7 320 0.09 0.14 134.32 112.66 0.1 0.18 0.05 0.11 51.62 0.62 0.25 0.35
160 7 320 1.42 0.14 115.89 1807.39 61.47 0.17 1.06 0.11 0.41 0.54 1.61 133.21
160 7 320 35.14 2.52 182.89 102.38 54.44 0.2 0.16 0.15 53.35 16.03 0.28 0.34
160 7 2544 139.83 1.22 3.65 0.82 132.6 0.35 0.07 0.24 138.5 10.29 0.31 0.72
160 7 2544 0.12 0.28 0.36 2.19 0.18 0.41 3.29 0.47 172.98 2.04 3.83 0.92
160 7 2544 0.63 0.27 0.27 0.63 149.83 0.34 20.09 0.27 136.62 1.02 0.51 0.73
160 7 2544 0.14 0.28 0.6 0.64 148.65 2.12 0.1 0.27 175.75 1.42 0.42 0.52
160 7 2544 0.44 2.35 0.01 0.01 139.76 0.37 0.12 0.26 143.98 56.03 0.01 0.01
160 12 240 217.13 0.22 170.18 0.19 0.12 0.17 1.76 0.22 0.35 0.27 0.3 0.24
160 12 240 0.06 1841.64 120.65 0.19 47.8 0.22 0.5 0.46 49.19 1.12 1.59 0.24
160 12 240 0.08 0.13 0.18 0.19 0.29 0.15 0.22 0.22 49.64 2.07 0.22 0.24
160 12 240 0.12 166.5 164.8 0.18 60.56 0.15 0.11 0.15 0.42 0.52 0.2 0.34
160 12 240 1.38 0.13 140.6 367.18 54.07 0.23 0.37 0.29 45.23 0.77 0.22 29.13
160 12 812 49.41 375.31 3.58 1673.22 0.17 0.22 0.28 0.24 65.14 4.18 0.44 1.72
160 12 812 0.06 0.17 6.73 120.4 83.16 0.35 0.11 0.22 0.7 0.81 0.45 0.54
160 12 812 180.82 0.48 0.23 0.68 69.69 0.31 3.54 0.24 64.36 1.18 0.3 0.46
160 12 812 0.07 2.61 9.89 81.6 73.42 0.24 0.12 0.23 61.46 1.27 0.28 0.39
160 12 812 179.11 4.09 0.32 0.4 79.38 0.24 2.73 0.14 69.61 0.73 0.01 0.01
160 12 12720 0.12 1.48 0.3 1.53 794.22 1.61 850.12 1.5 815.01 30.93 904.95 30.95
160 12 12720 0.11 1.47 0.3 1.62 824.3 1.55 807.03 1.53 805.99 11.33 796.18 11.16
160 12 12720 0.12 1.46 0.3 1.56 710.58 1.54 729.31 1.51 759.88 8.46 700.1 9.42
160 12 12720 21.82 1.39 22.52 1.53 888.91 1.53 885.07 1.58 719.26 19.77 787.38 20.29
160 12 12720 21.87 1.44 24.35 1.65 841.39 1.54 776.29 1.56 692.3 8.8 693.66 10
160 12 320 0.52 0.22 79.14 4.02 0.12 0.19 0.16 0.18 44.94 1.27 0.32 241.1
160 12 320 55.04 3.68 27.01 24.56 60.43 0.19 0.16 0.23 0.52 0.66 0.44 1.35
160 12 320 0.11 240.3 9.82 0.97 54.67 0.24 0.28 0.3 55.46 0.97 0.45 0.8
160 12 320 0.1 30.8 110.82 120.42 57.97 0.31 8.92 0.3 53.19 1.16 0.44 0.6
160 12 320 0.31 0.3 5.84 168.92 48.78 0.34 5.88 0.37 53.78 0.75 0.29 0.39
160 12 2544 263.03 4.05 0.56 0.8 186.62 0.34 0.24 0.45 1.02 1.78 1.03 1.51
160 12 2544 539.24 0.27 192.97 0.98 146.52 30.09 0.18 0.46 113.57 32.2 0.57 2.14
160 12 2544 1.13 0.67 0.27 51.78 0.18 0.58 0.08 0.48 123.82 10.67 0.38 0.54
160 12 2544 0.01 0.47 0.01 0.01 154.21 7.38 1.18 0.46 135.42 32.45 0.84 0.5
160 12 2544 129.8 77.09 0.64 0.8 169.1 4.72 0.09 0.46 161.63 63.61 0.59 1.15
160 24 240 83.29 0.23 4.06 19.87 0.5 0.97 0.35 0.46 54.45 1.54 2.18 8.5
160 24 240 2.26 1.36 3.02 178.45 77.81 7.7 3.88 0.91 59.08 3.55 2.38 1.17
160 24 240 0.18 76.18 1.76 50.52 56.23 0.41 0.37 0.65 43.48 1.52 0.31 1.02
160 24 240 44.79 4.97 0.53 106.27 47.97 0.59 8.03 0.93 46.2 2.8 7.07 0.4
160 24 240 79.2 588.53 86.39 171.57 62.56 12.74 0.34 0.34 60.79 10.03 0.25 0.37
160 24 812 101.29 0.9 11.34 71.18 87.11 6.83 0.63 29.34 74.94 4.89 0.52 1.05
160 24 812 273.32 136.32 0.35 1288.64 76.94 1.98 0.46 0.5 68.24 4.95 1.75 0.36
160 24 812 274.39 711.05 4.23 1723.08 93.81 0.53 0.41 0.52 60.57 2.03 9.13 13.28
160 24 812 218.45 1088.02 3.59 223.22 84.85 0.69 0.21 0.5 69.66 3.89 0.82 1.01
160 24 812 161 1786.11 3.76 310.84 79.88 4.04 0.33 0.41 64.13 3.1 0.57 82.73
160 24 12720 21.62 1.23 21.35 1.48 878.25 1.63 827.53 1.49 766.59 28.8 794.37 27.66
160 24 12720 23.94 1.24 23.11 1.5 807.57 1.56 896.15 1.49 787.61 12.58 761.23 12.71
160 24 12720 1369.37 1.28 1436.37 1.38 818 1.61 870.46 1.6 896.12 14.22 785.62 15.83
160 24 12720 20.84 1.3 21.86 1.48 776.76 1.48 880.16 1.6 633.9 43.69 618.65 41.91
160 24 12720 22.58 1.22 21.79 1.43 827.79 1.59 835.45 1.56 866.88 980.09 760.4 949.55
160 24 320 13.23 167.43 9.22 486.52 62.87 97.95 0.14 0.59 51.41 1.84 3.74 4.61
160 24 320 15.05 663.23 5.34 81.77 58.98 0.4 0.29 0.56 52.69 3.15 4.14 0.73
160 24 320 0.11 79.02 1.81 0.51 51.23 0.87 0.26 0.49 54.17 1.45 0.56 0.26
160 24 320 91.46 1.2 1.84 338.16 62.93 1.39 0.54 0.37 0.29 0.4 0.23 0.35
160 24 320 130.47 1302.02 6.29 17.05 73.06 54.02 1.17 0.54 50.65 40.05 0.3 0.66
160 24 2544 280.22 6.7 243.83 58.64 133.4 0.56 20.5 0.85 138.53 8.05 0.78 2.42
160 24 2544 0.1 0.25 232.74 24.01 156.73 6.08 1.62 1.28 173.51 20.01 0.67 2.68
160 24 2544 262.54 9.37 239.91 0.92 0.71 26.45 0.55 0.66 126.93 3.78 1.35 2.79
160 24 2544 307.9 0.26 193.88 1.08 168.76 50.37 0.19 0.91 121.26 57.49 1.46 2.73
160 24 2544 276.14 2.83 231.68 305.77 140.92 4.31 0.29 0.9 125.09 2.6 0.97 4.96
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Table 10 Best Solution Time Comparisons for the i160 dataset – Continued

n nr e SASR RTSR SAMR RTMR SASPs RTSPs SAMPs RTMPs SASPh RTSPh SAMPh RTMPh

160 40 240 3.42 7.31 6.32 1.12 54.2 210.78 0.32 1.14 53.6 12.13 5.8 12.12
160 40 240 112.89 400.64 51.92 40.66 53.41 38.07 0.36 0.92 50.85 0.95 8.12 0.72
160 40 240 73.42 433.69 2.17 98.86 56.71 21.99 0.29 0.66 49.37 19.97 5.47 9.39
160 40 240 3.12 6.5 2.18 16.94 55.18 7.28 0.42 1.25 56.97 7.88 0.2 0.45
160 40 240 80.88 1147.9 5.36 69.88 65.31 3.32 0.22 0.65 55.97 1.37 0.59 1
160 40 812 164.37 261.83 68.05 1276.11 81.15 10.19 0.48 0.84 81.91 597.9 12.92 11.06
160 40 812 401.36 38.87 36.28 995.58 81.08 2.29 0.41 0.78 57.87 3.9 0.52 10.76
160 40 812 161.3 1541.58 73.89 1.51 82.68 2.6 0.53 1.02 68.48 2.95 0.81 5.29
160 40 812 148.81 1561.94 8.9 1099.36 70.42 47.35 0.18 0.87 77.18 46.28 7.55 5.78
160 40 812 172.3 196.84 41.22 1741.68 65.21 3.29 0.96 0.74 74.2 5.53 3.54 124.97
160 40 12720 588.43 1.01 593.39 1.2 835.51 1.69 806 1.53 706.87 23.54 681.82 24.3
160 40 12720 558.73 1.16 543.53 1.26 674.77 1.6 712.97 1.53 550.16 119.65 539.25 116.19
160 40 12720 578.75 1.07 608.71 1.2 671.52 1.67 768.77 1.6 634.48 29.44 572.39 29.62
160 40 12720 598.66 1.12 605.61 1.34 560.44 1.59 571.26 1.52 576.7 23.75 564.48 21.75
160 40 12720 658.2 1.07 641.59 1.18 587.98 1.63 632.23 1.52 687.81 26.34 689.64 24.22
160 40 320 180.27 347.72 2.05 154.36 62.48 9.19 3.25 0.81 65.47 5.81 1.72 0.58
160 40 320 54.65 868.25 3.01 208.22 59.14 1.51 2.3 0.83 59.48 7.16 4.07 17.07
160 40 320 97.93 68.3 5.01 262 57.32 1.21 7.2 0.71 60.26 1.28 0.41 1.75
160 40 320 383.36 264.6 2.39 100.54 61.76 1.32 0.5 0.67 56.92 1.83 2.59 32.61
160 40 320 107.97 1481.51 40.93 325.42 56.1 2.43 0.21 0.61 59.46 4.11 0.37 1.2
160 40 2544 192.56 172.6 136.13 30.54 166.83 21.48 1.24 1.07 145.71 18.4 1.27 5.2
160 40 2544 218.7 204.5 143.51 39.52 143.5 125.65 0.76 1.05 131.8 94.9 1.26 428.36
160 40 2544 249.53 31.97 152.91 145.96 141.61 2.85 0.41 1.08 165.84 6.06 1.28 136.13
160 40 2544 296.23 2.66 142.67 0.97 146.9 47.03 0.32 1.08 173.33 34.34 1.07 6.02
160 40 2544 257.51 0.39 154.61 40.4 185.91 6.2 1.18 1.03 133.07 65.36 1.1 5.18

average 124.27 186.15 92.86 175.95 215.11 9.29 161.77 0.99 204.62 27.75 148.24 35.47
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Fig. 8 Solution quality statistical ranks comparison for the i160 dataset

both the set of considered test instances, the parameters regarding update and re-
quest rates (so far, we restricted to a very limited but realistic set of values) and
the number of implemented metaheuristics. Moreover, further improvements for the
mathematical programming formulations are worth being investigated.
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Fig. 9 Total time statistical ranks comparison for the i160 dataset
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Two-Edge Disjoint Survivable Network Design
Problem with Relays

Abdullah Konak, Sadan Kulturel-Konak, and Alice E. Smith

Abstract In this paper, we study the network design problem with relays consider-
ing network survivability. This problem arises in telecommunications and logistic
systems. The design problem involves selecting two edge-disjoint paths between
source and destination node pairs and determining the location of the relays in the
network to minimize the network cost. A constraint is imposed on the distance that
a signal or commodity can travel in the network without being processed by a relay.
An efficient and effective meta-heuristic approach is proposed to solve large sized
problems and compared with construction heuristics and an exact approach run for
up to 24 hours using CPLEX.

Keywords: Network Design, Survivability, Relays, Genetic Algorithm

1 Introduction

The network design problem with relays (NDPR) is first introduced by Cabral
et al. (2007) in the context of a telecommunication network design problem. In
this paper, we study the two-edge connected network design problem with relays
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(2ECON-NDPR), which is an extension of the NDPR by considering survivability
in the network design. A survivable network has the ability to restore network ser-
vices after catastrophic edge or node failures. Network survivability is an important
concern in telecommunication network design as network topologies are becoming
sparse because of high capacity fiber-optic links which can transmit large amount
of data. Traditionally, the survivability of a network against component failures is
achieved by imposing redundant paths between nodes. For many real-life network
applications, a level of redundancy to protect against a single edge or node fail-
ure is sufficient since component failures are so rare that the probability of observ-
ing another failure during a repair is almost zero (Monma and Shallcross 1989;
Magnanti et al. 1995). Therefore, network design researchers mainly focus on
two-edge and two-node connectivity problems, which assure network connectivity
against a single component failure. In this paper, we consider two-edge connectiv-
ity (2ECON) in the context of NDPR. However, our approach can be extended to
two-node connectivity (2NCON) as well.

The 2ECON-NDPR is briefly defined as follows. An undirected network G =
(V, E) with node set V = {1,2, . . .,N} and edge set E = {(i, j) : i, j ∈ V, i < j} is
given. Each edge (i, j) is associated with a cost of ce

i, j and a distance of di, j. |K|
commodities, representing point-to-point traffics, are simultaneously routed on the
network; each commodity k has a single source node s(k) and a single destination
node t(k). For each commodity k, two edge-disjoint paths from node s(k) to node
t(k) are to be determined. The first path (p1(k)) is dedicated as the primary path for
the routing of commodity k, and the second path (p2(k)) is reserved as a backup
path in case path p1(k) fails. In other words, the connectivity between nodes s(k)
and t(k) for each commodity k is expected to be one edge fault tolerant similar to the
two-edge connected network design problem (Monma and Shallcross 1989). In the
2ECON-NDPR, however, an upper bound λ is imposed on the distance that com-
modity k can travel on a path from node s(k) to node t(k) without visiting a special
node, which is called a relay. A relay may correspond to different facilities on real
life networks. For example, in digital telecommunication networks, the signal can be
transmitted only for a limited distance without losing its fidelity due to attenuation
and other factors, and therefore, it has to be regenerated at certain intervals during
its transmission. In this case, a relay corresponds to a telecommunication facility
in which the signal is regenerated into its original form. Different from the classic
multi-commodity network design problem, in the 2ECON-NDPR some nodes of the
network have to be dedicated as relays in which the signal is regenerated. A fixed
cost, cv

i , is occurred when a relay is located at node i. The objective function of the
2ECON-NDPR is to minimize the network design cost while making sure that each
commodity k can be routed from node s(k) to node t(k) through two edge-disjoint
paths on each of which the distances between node s(k) and the first relay, between
any consecutive relays, and between node t(k) and the last relay are less than the
upper bound λ . A network flow based formulation of the 2ECON-NDPR on a di-
rected network, G = (V,E), where edge set E includes both edges (i, j) and ( j, i) is
given as follows:
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Decision Variables:

xi, j binary edge decision variable such that xi, j = 1 if edge (i, j) is included in the
solution , 0 otherwise.

yi binary relay decision variable such that yi = 1 if a relay is located at node i, 0
otherwise.

f k
i, j binary flow decision variable such that f k

i, j = 1 if edge (i, j) is used by com-
modity k, 0 otherwise.

up
k,i total distance traveled on a path p by commodity k before node i without vis-

iting a relay.
vp

k,i total distance traveled on a path p by commodity k after node i without visiting
a relay.

Formulation 2ECON-NDPR:

Min z = ∑
i∈V

cv
i yi + ∑

(i, j)∈E,i< j
ce

i, jxi, j (1)

∑
(i, j)∈E

f k
i, j − ∑

( j,i)∈E
f k

j, i =

⎧
⎨

⎩

2 i = s(k)
−2 i = t(k)
0 otherwise

k ∈ K, i ∈V (2)

up
k,i ≥ vp

k, j +d j,i − (1− f k
j, i)2λ k ∈ K, i ∈V, p ∈ {1,2},( j, i) ∈ E (3)

up
k,i ≤ λ k ∈ K, i ∈V, p ∈ {1,2} (4)

vp
k,i ≥ up

k,i −λyi k ∈ K, i ∈V, p ∈ {1,2} (5)

f k
i, j+ f k

j,i ≤ xi, j k ∈ K,(i, j) ∈ E, i < j (6)

yi,xi, j, f k
i, j ∈ {0,1}

up
k,i,v

p
k,i ≥ 0

In the above formulation, Constraint (2) is a set of standard node flow balance
constraints to make sure that two unit flows are sent from source node s(k) to des-
tination node t(k). Constraint (3) is used to calculate the total distance traveled by
commodity k to node i without visiting a relay on path p. Note that Constraint (3)
is valid due to Constraint (6) which limits the flow of the same commodity on each
edge to one unit. Constraint (3) becomes up

k,i ≥ vp
k, j + d j,i if commodity k is routed

through edge (i, j). If node j is not a relay, then vp
k, j ≥ up

k, j due to Constraint (5), and
using this inequality, Constraint (3) can be rewritten as follows:

up
k,i ≥ up

k, j +d j,i (7)

On path p, inequality (7) is used to calculate the total distance traveled by com-
modity k from a relay node to node i without visiting any relay node. This distance
is represented by decision variable up

k,i in the formulation. Constraint (4) is the relay
constraint that makes sure that the total distance traveled by commodity k on path p
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without visiting a relay node is less than λ at each node. Constraint (5) resets the
total distance of path p at a relay node. Note that if node j is a relay, both vp

k, j and
up

k, j can be zero in Constraint (5). Therefore, inequality (7) and Constraint (3) are
reduced to up

k,i ≥ d j,i at node i after visiting relay node j. Constraint (6) makes sure
that edge (i, j) cannot be used for routing if it is not included in the solution, as well
as edge (i, j) cannot be used by each commodity k more than once by restricting
flows to one unit. Constraints (2) and (6) make sure that there exist 2-edge disjoint
paths between every source and destination pair in the network.

Cabral et al. (2007) formulate a path based integer programming model of NDPR
and propose a column generation approach which can also be applied in the case
of the 2ECON-NDPR. Unfortunately, the column generation approach cannot be
practically used to prove the optimality of a solution in the case of large problem
instances since all feasible paths and relay locations combinations have to be gen-
erated as a priori. Therefore, they recommend using a subset of all feasible paths
and relays combinations. Although this approach does not guarantee optimality, su-
perior solutions can be found in reasonable CPU time. In addition, they proposed
four different construction heuristics in which a solution is constructed by taking
into consideration one commodity at a time. In this paper, we modify three of
their construction heuristics to solve the 2ECON-NDPR, which are used as bench-
marks to test the performance of our approach. More recently, Kulturel-Konak and
Konak (2008) study the NDPR and propose a hybrid local search-genetic algorithm
(GA) where a specialized crossover operator based on random paths between source
and destination nodes are utilized, and local search procedures are used to investi-
gate new solutions. These local search procedures are not directly applicable to the
2ECON-NDPR. In this paper, we modify this hybrid GA’s specialized crossover op-
erator for the 2ECON-NDPR, and the new crossover operator is coupled with cus-
tomized mutation strategies and a simple heuristic to determine location of relays.
Therefore, there is no need for computationally expensive local search procedures.

The NDPR is closely related to a set of well-known network design problems
such as the Steiner tree problem, the hop-constrained network design problem, the
constrained shortest path problem, and the facility location problem. In the hop
constrained network design problem, hop constraints impose an upper bound on
the number of edges between some source and some destination nodes due to re-
liability (LeBlanc and Reddoch 1990) or performance concerns (Balakrishnan and
Altinkemer 1992). Several papers (Choplin 2001; Randallet al. 2002; Kwangil and
Shayman 2005) address optical network design problems considering restricted
transmission range due to optical impairments, which is one of the main motiva-
tions in the NDPR.

Similar to the Steiner tree problem, all nodes are not required to be connected in
the 2ECON-NDPR. Voss (1999) considers the hop-constrained Steiner tree problem
and proposes a solution approach based on tabu search and mathematical program-
ming. Gouveia and Magnanti (2003) consider the diameter-constrained minimum
spanning and Steiner tree problems where an upper-bound is imposed on the num-
ber of edges between any node pairs. Gouveia (1996) proposes two different mathe-
matical models for the hop-constrained minimum spanning tree problem as well as
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Lagrangean relaxation and heuristic approaches to solve the problem. Subsequently,
Gouveia and Requejo (2001) develop an improved Lagrangean relaxation approach
to the problem. In addition, due to relay decision variables, the 2ECON-NDPR is
closely related to the facility location problem (Hakimi 1964).

The objective of this paper is to develop a meta-heuristic approach, namely a
genetic algorithm, for the 2ECON-NDPR to solve large problem instances effec-
tively and efficiently. To our best knowledge, 2ECON-NDPR has not previously
been studied.

2 A Genetic Algorithm Approach to 2ECON-NDPR

In this section, we describe a genetic algorithm to find good solutions to the 2ECON-
NDPR. The parameters and notation used in the GA are given as follows:

z a solution
z.xi, j edge decision variable of solution z such that z.xi, j = 1 if edge (i, j) is se-

lected in solution z, 0 otherwise.
z.yi relay decision variable of solution z such that z.yi = 1 if a relay is located at

node i, 0 otherwise.
z.pi(k) the ith path of commodity k of solution z.

E(z) edge set of solution z,E(z) ⊂ E
V (z) node set of solution z,V (z) ⊂V

μ population size
tmax maximum number of generations (stopping criteria)

P population
OP offspring population
P[i] the ith member in the population

U uniform random number between 0 and 1

2.1 Encoding, Fitness, and Solution Evaluation

By definition, a feasible solution to the 2ECON-NDPR does not have to be a
fully connected network. A solution is feasible if at least two edge-disjoint paths
exist between source node s(k) and destination node t(k) of each commodity k
such that on both paths, the distances between node s(k) and the first relay, be-
tween any consecutive relays, and between the last relay and node t(k) and are
less than the upper bound λ . This observation is used in the encoding of the
GA to represent solutions. Basically, a solution z includes the primary and sec-
ondary edge-disjoint paths for each commodity and the relay decision variables,
i.e., a solution is represented as z = {p1(1), . . ., p1(k); p2(1), . . ., p2(k);y1, . . .,yN}.
The crossover and mutation operators of the GA generate the edge-disjoint paths
{p1(1), . . ., p1(k); p2(1), . . ., p2(k)} of an offspring using the edges inherited from
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two randomly selected parents; and therefore, they ensure two edge-disjoint paths
between the source and destination nodes of each commodity. For a given path, re-
lay decision variables {y1, . . .,yN} are determined using a simple heuristic during
the crossover. This heuristic also ensures feasibility of the paths with respect to the
relay constraint. Since the procedures of the GA always generate feasible solutions,
the population is ranked according to the cost.

2.2 Specialized Crossover Operator

In a GA, the function of the crossover operator is to create new solutions by recom-
bining the edges of existing solutions. The representation of solutions in the GA is
permutation based. When used with the permutation based encodings, traditional
GA crossover operators such as single-point or uniform crossover may generate
highly infeasible solution structures which have to be repaired by using special re-
pair algorithms. There are a number of crossover operators specially designed for
permutation encodings (see (Fogel et al. 1999) for a survey), which can be used
to recombine the corresponding paths of parents to create offspring. For example,
the corresponding paths of two solutions a and b can be recombined (i.e., crossover
a.p1(k) with b.p1(k) and a.p2(k) with b.p2(k) for each commodity k). There are
a few drawbacks associated with such a crossover operator. Firstly, a.p1(k) and
b.p1(k) may not share any common nodes, which will make the crossover impos-
sible in this case. Secondly, a.p1(k) and b.p2(k) or a.p2(k) and b.p1(k) may have
many overlapping edges. In this case, the crossover of a.p1(k) with b.p1(k) must
be coordinated with the crossover of a.p2(k) with b.p2(k) since the paths of the
offspring must be disjoint. Thirdly, the paths of the commodities tend to overlap as
the routes of different commodities may share many edges in the 2ECON-NDPR
(i.e., a.p1(k) may share many edges with a.p1( j) and a.p2( j) where k �= j). If such
dependences between the paths are not considered, an offspring may end up having
a much higher number of edges than its parents. Therefore, these dependences be-
tween the paths should be considered in order to design an effective crossover for
the 2ECON-NDPR.

Because of the reasons briefly discussed above, a specialized crossover is de-
veloped based on the Suurballe-Tarjan algorithm (Suurballe and Tarjan 1984). The
Suurballe-Tarjan algorithm finds the shortest pair of edge-disjoint paths between a
source and a destination node in polynomial time. The crossover operator of the
GA is a random construction heuristic in which an offspring solution is constructed
from the union of two parent solutions by considering one commodity at a time in a
random order of commodities. In Figure 1, a step-by-step example of the crossover
and mutation is demonstrated for a problem with two commodities. In the figure,
relay nodes are identified by solid circles. The first step in the crossover is randomly
selecting two parent solutions, say a and b. After selecting parents, they are com-
bined as illustrated in Figure 1-step (ii), and each edge (i, j) ∈ E of the combined
solution is assigned to a temporary cost tci, j as follows:
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Fig. 1 An example for the crossover and mutation. Dotted edges represent low cost edges.

tci, j =
{

U × (ce
i, j + cv

i + cv
j) (i, j) ∈ E(a)∪E(b),

∞ otherwise.
(8)

Mutation is applied on the combined solution by adding new edges and/or a
node. The details of the mutation operators are discussed in the following section.
In Figure 1, steps (iii) and (iv) provide example for edge and node mutations, re-
spectfully. Newly added edges to the combined solution during mutation are as-
signed random costs (U), which are significantly smaller cost than the ones given in
equation (8), so that these new edges are encouraged to be used in the offspring. In
Figure 1, such low cost edges are identified by dotted edges.

After mutation, for each commodity k in a random order, two edge-disjoint
shortest paths, p1(k) and p2(k), from node s(k) to node t(k) are found using
the Suurballe-Tarjan algorithm (Suurballe and Tarjan 1984). In Figure 1, step (v)
demonstrates the edge-disjoint shortest paths p1(1) and p2(1) from node s(1) to
node t(1). Note that in this example, commodity 1 is randomly selected as the first
commodity to be routed.

After determining paths p1(k) and p2(k) of commodity k, the locations of the
relays on paths p1(k) and p2(k) are determined using a simple heuristic. To do
so, starting from node s(k) or t(k) (randomly and uniformly selected), each edge
(i, j) ∈ p1(k) is sequentially examined whether a relay should be located at node
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i or not. After examining edge (i, j), a relay is located at node i if and only if the
total distance between node j and the previous relay on path p1(k) is more than λ .
The same procedure is repeated for p2(k) to determine the locations of relays on
this path. For example in step (vi), the total distance exceeds λ after traversing the
fourth edge on path p1(1) and the third edge on path p2(1). Therefore, two relays are
allocated on the fourth node of p1(1) and the third node of p2(1) for the feasibility
of these paths.

Finally, tci, j is set to zero for all edges (i, j) ∈ p1(k)∪ p2(k) in order to encour-
age the paths of the unassigned commodities to use already assigned edges. This is
illustrated in step (vii) where edges of p1(1) and p2(1) are dotted, indicating low
costs. The example continues with commodity 2. In step (viii), two edge-disjoint
paths from node s(2) to node t(2) are found. In step (ix), these paths are analyzed to
locate any necessary relay stations. The resulting offspring is shown in step (x). The
pseudo code of the crossover operator is presented in the next section.

2.3 Mutation

The purpose of mutation in a GA is to introduce new solution structures (genes) to
existing solutions so that local minima can be avoided. In traditional GA mutation,
the structure of a solution is randomly changed. A mutation operator of the GA
for the 2ECON-NDPR should perturb the edge-disjoint paths by introducing new
edges and nodes, which do not exist in parent solutions, while maintaining the edge
disjoint paths. The mutation operators of this GA add randomly selected edges or
nodes to the parent solutions selected for the crossover. To increase the probability
of using these newly added edges and nodes, their costs are set to very small random
numbers with respect to existing ones. Then, the crossover operator is applied. By
adding new edges and nodes to the parent solutions before applying crossover, the
offspring is assured to have two edge-disjoint paths for each commodity. The GA
has the following two mutation operators:

Mutation-Edge: Randomly select an edge (i, j) such that (i, j) /∈ {E(a) ∪
E(b)}, i ∈ {V (a)∪V (b)}, and j ∈ {V (a)∪V (b)} and set tci, j := U . The objec-
tive of this mutation is to encourage an offspring to include an edge which does not
exist in its parents.

Mutation-Node: Randomly select a node i such that i /∈ {V (a)∪V (b)} and there
exist at least two edges (i, j) ∈ E where j ∈ {V (a)∪V (b)}, and then set tci, j := U
for all edges (i, j) where j ∈ {V (a)∪V (b)}. The objective of this mutation is to
route commodities through a new node which does not exist in the parents.

The procedure of the mutation and crossover is given below. As mentioned ear-
lier, the mutation operators are applied to the randomly selected parents before
applying the crossover. These two mutation operators are sequentially applied in-
dependently with the probability of ρ (mutation rate) as given in the procedure
below. By setting the cost of new edges introduced by the mutation operators to
a random number (U), which is much smaller than the cost of the existing edge on
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the parents, these new edges are encouraged to be used in the offspring instead of
the existing edges of the parents. Mutating the parents before crossover provides
significant computational efficiency compared to mutating the offspring by elimi-
nating the need for checking the existence of two edge-disjoint paths between each
source and destination pair.

Procedure Crossover Mutation()

Randomly select two solutions a and b from P to create offspring z.
for each edge (i, j) ∈ E do {

if edge (i, j) ∈ E(a)∪E(b) then set tci, j := U × (ce
i, j + cv

i + cv
j)

else set tci, j := ∞}
if (U < ρ) then apply Mutation-Edge
if (U < ρ ) then apply Mutation-Node
for each k ∈ K in a random sequence do {

find edge disjoint shortest paths p1(k) and p2(k) using random costs
for q := 1, ...,2 do {

set Q := 0
for each edge (i, j) ∈ pq(k) do {

set z.xi, j := 1
Q = Q+di, j
if Q > λ then { set z.yi := 1 and Q := di, j }
set tci, j := 0
}

}
Return offspring z

2.4 Overall Algorithm

The important features of the GA are follows:

• The GA is a generational GA where entire population is replaced by offspring
generated by the Crossover Mutation() operator. The GA retains only the best
feasible solution found so far in the population between iterations. All other so-
lutions in the next generation are newly generated offspring.

• In the selection procedure, the offspring population is sorted according to the
cost. The best μ offspring are selected for the next generation.

• Duplicate solutions are discouraged in the population. If the population has a
multiple copies of a solution, only one of them is actually ranked, and the others
are placed at the bottom of the population list, and they are not compared with
the others. Since comparison of solutions is performed during the ranking pro-
cedure, minimum additional computational effort is needed to discover identical
solutions in the population. With this approach, the population is discouraged to
converge to a single solution, which can be the case in GA. In our initial experi-
ments, we found better results by avoiding identical solutions in the population.
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The pseudo code of the GA is given in the following.

Procedure GA

Randomly generate μ solutions
for t := 1, . . ., tmax do {

//Crossover
set i := 0;
do {

OP[i] := Crossover Mutation();
Evaluate OP[i];
Update best feasible solution of necessary
set i := i+1;

} while (i < 2μ )
Rank OP by penalizing duplicate solutions.
for j := 1, . . .,μ do set P[ j] := OP[ j];

}

3 Construction Heuristics

This section presents three construction heuristics based on the ones proposed by
Cabral et al. (2007) for the NDPR. As mentioned earlier, in their study, a solution
is constructed by considering one commodity at the time using a path based integer
programming formulation to solve the NDPR with a single commodity. We used the
same approach to construct solutions using the formulation 2ECON-NDPR. The
formulation 2ECON-NDPR is a difficult integer programming model to be opti-
mally solved. However, it can be optimally solved in a reasonable time if only a
single commodity is considered at a time, which enables us to develop construction
heuristics for the 2ECON-NDPR in the similar fashion to those defined in (Cabral
et al. 2007) and use the resulting solutions as benchmarks.

Let 2ECON-NDPR(k) represent the formulation of the 2ECON-NDPR with a
single commodity k. The formulation 2ECON-NDPR(k) can be used in the three
construction heuristics as follows:

Increasing Order Construction Heuristic (IOCH): In this heuristic, the optimal
two edge-disjoint paths and relay locations are found for each commodity k by solv-
ing the 2ECON-NDPR(k). Let k∗ represent the commodity with the minimum cost
solution 2ECON-NDPR(k) among all commodities. The paths and relay nodes of
the 2ECON-NDPR(k∗) solution are included in the solution, and their associated
costs are set to zero. Then, the 2ECON-NDPR(k) is solved again for the remaining
commodities using the updated costs, and the paths and relays of the minimum cost
solution are added to the solution, and their associated costs are set to zero. The
procedure continues in a similar fashion until all commodities are considered. The
procedure of IOCH is given below:
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Procedure IOCH

Set z.xi, j := 0 for each (i, j) ∈ E and z.yi := 0 for each i ∈V
while K �= Ø {

Solve the 2ECON-NDPR(k) for each k ∈ K
Let k∗ be the commodity with the minimum 2ECON-NDPR(k) solution
Let (x∗,y∗) be decision variables of the 2ECON-NDPR(k∗)
for each (i, j) ∈ E do {

if x∗i, j = 1 then set z.xi, j := 1 and ce
i, j := 0

}
for each i ∈V do {

if y∗i = 1 then z.yi := 1 and cv
i := 0

K := K \k∗

}
Return solution z

Decreasing Order Construction Heuristic (DOCH): This heuristic is the opposite
of the IOCH such that the solution is constructed starting from the maximum cost
2ECON-NDPR(k) solution to the minimum cost one. The procedure of the DOCH
is be the same as procedure IOCH with a single difference: k* represents the com-
modity with the maximum cost 2ECON-NDPR(k) solution among all available
commodities.

Random Order Construction Heuristic (ROCH): In this heuristic, a solution is
constructed one commodity at a time in a similar fashion to IOCH and DOCH, but
in a random order of the commodities. In each iteration a commodity k is selected
randomly among available commodities, and the 2ECON-NDPR(k) is solved.

4 Experimental Results & Discussions

In the experimental study, two different problem groups, 80 and 160 nodes are used.
For each problem group, the x and y coordinates and cost of each node i are ran-
domly generated from integer numbers between 0 and 100. The cost and distance
of each edge (i, j) are defined as the Euclidian distance between nodes i and j. Two
different values of λ , 30 and 35, are tested. Edges longer than λ are not considered
in the problems. Therefore, the number of edges (M) for each problem depends on
λ . For example, the 160 node problem with λ = 35 has 3,624 edges and the ones
with λ = 30 has 2,773 edges. In addition, three different levels of K,5,10 and 15,
are considered. The source and the destination nodes of commodities for each prob-
lem are randomly selected but forced to be far apart from each other so that the
problems are not trivial to solve. In Table 1, the problems are named using their
parameters (e.g., the problem with 160 nodes, 10 commodities and λ = 35 is named
as 160-10-35).
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Table 1 Results of the Test Problems
GA Avg. IP

Problem GA GA % Coef. CPU Model
(N −K −λ ) M Best Avg. Var Sec∗ (% Opt. Gap) IOCH DOCH ROCH
80-5-30 641 616.2 623.5 0.39 285 662.8 (32%) 758.9 773.0 746.7
80-5-35 853 527.7 527.8 0.02 309 593.7 (29%) 701.8 722.0 718.4
80-10-30 641 708.3 715.2 0.50 363 757.5 (35%) 1,025.5 1070.3 973.7
80-10-35 853 628.3 647.7 0.81 369 662.7 (31%) 1,004.9 1,018.8 922.8
80-15-30 641 880.5 914.3 2.16 432 934.8 (42%) 1,265.0 1,281.2 1,151.2
80-15-35 853 805.8 853.5 2.59 391 879.2 (41%) 1,236.7 1,169.7 1,126.0
160-5-30 2,773 420.6 453.7 5.17 348 545.1 (38%) 598.5 654.5 590.1
160-5-35 3,624 421.0 443.8 3.67 366 496.8 (33%) 568.8 625.5 599.6
160-10-30 2,773 590.9 617.6 2.96 494 769.5 (46%) 879.8 1,018.9 932.2
160-10-35 3,624 560.9 596.3 3.40 509 651.0 (36%) 913.6 926.0 861.7
160-15-30 2,773 705.5 745.0 4.60 642 876.4(45%) 1,128.4 1,159.3 1,077.7
160-15-35 3,624 696.9 739.9 3.41 688 835.8 (43%) 1,155.4 1126.8 1,075.2
∗The computational experiments were performed on a PC with 2.66GHZ Intel Dual-Core CPU and
4GB memory.

Table 1 presents the results found by the GA, the construction heuristics, and
the integer programming. To gauge GA’s results, formulation 2ECON-NDPR was
solved using CPLEX V9.0 with a time limit of 24 CPU hours. Unfortunately, none
of the problems could be solved to optimality within the time limit. Therefore, the
best feasible solutions found and their percent optimality gaps at the termination
are reported in Table 1. In the construction heuristics, each sub-problem 2ECON-
NDPR(k) was solved using CPLEX V9.0 with a time limit of 1,800 CPU seconds.
If the optimal solution of 2ECON-NDPR(k) could not be obtained within this time
limit, the best feasible solution was used in the construction heuristics.

The GA was run for 30 random replications with parameters μ = 50, ρ = 0.1,
and tmax = 1000. The best feasible solution, the average, and the percent coefficient
of variation of random 30 runs are provided in the table. In each case, the GA was
able to find a significantly better solution than the best solution found by integer
programming. As it can be seen in the table, the GA outperforms the construction
heuristics in all problems. The GA and the construction heuristics are similar in the
way solutions are created one commodity at a time. In the construction heuristics,
the solution for a single commodity is optimal for that commodity and they are
therefore myopic. In the GA, on the other hand, the solution for a single commodity
is randomly generated using random costs in the crossover and mutation. Therefore,
the GA may consider a broader range of solutions than the greedy construction
heuristics.

The GA is highly robust over random replications. The percent coefficient of
variation is less than 5% for all cases. As seen in the CPU times, the GA scales
well. Computationally, the most expensive operation of the GA is the Suurballe-
Tarjan algorithm to find the shortest pairs of edge-disjoint paths, which can be done
in O(M log1+M/N N) (Suurballe and Tarjan 1984). Since the Suurballe-Tarjan al-
gorithm runs for each commodity, CPU time depends on the number of the com-
modities routed in the network. However, we observed that after finding the shortest
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Fig. 2 The best GA solution found for 80-10-30.

paths for the first few commodities, the shortest paths for the remaining ones are
determined much faster since they tend to overlap with the already added paths.
Therefore, the CPU times did not linearly increase with the number of commodities
as it might be expected. Overall, the GA is capable of solving large size problems
in reasonably short times. Figure 2 illustrates the best solution found for problem
80-10-30 by the GA.

5 Conclusions and Future Research

In this paper, a GA with specialized crossover and mutation operators was devel-
oped to solve the survivable network design problem with relays for the first time.
Our initial experiments demonstrate that the GA is very promising in both computa-
tional efficiency and in optimization performance. The proposed crossover approach
can be extended to other survivable network design problems such as node-disjoint
network design problem as a further research.
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Fogel, DB, Bäck, T, Michalewicz, Z (1999) Evolutionary Computation 1. IOP Pub-
lishing Ltd, Bristol, UK

Gouveia, L (1996) Multicommodity flow models for spanning trees with hop con-
straints. European Journal of Operational Research 95: 178-190

Gouveia, L, Magnanti, TL (2003) Network flow models for designing diameter-
constrained minimum spanning and Steiner trees. Networks 41: 159-173

Gouveia, L, Requejo, C (2001) A new Lagrangean relaxation approach for the hop-
constrained minimum spanning tree problem. European Journal of Operational
Research 132: 539-552

Hakimi, SL (1964) Optimum locations of switching centers and absolute centers
and medians of graph. Operations Research 12: 450-459

Kulturel-Konak, S, Konak, A (2008) A Local Search Hybrid Genetic Algorithm
Approach to the Network Design Problem with Relay Stations. in S. Raghavan,
B. L. Golden and E. Wasil (ed) Telecommunications Modeling, Policy, and Tech-
nology. Springer, New York

Kwangil, L, Shayman, MA (2005) Optical network design with optical constraints
in IP/WDM networks. IEICE Transactions on Communications E88-B: 1898-
1905

LeBlanc, L, Reddoch, R (1990). Reliable link topology/capacity design and routing
in backbone telecommunication networks. First ORSA Telecommunications SIG
Conference.

Magnanti, TL, Mirchandani, P, Vachani, R (1995) Modeling and solving the two-
facility capacitated network loading problem. Operations Research 43: 142-157

Monma, CL, Shallcross, DF (1989) Methods for designing communications net-
works with certain two-connected survivability constraints. Operations Research
37: 531-541

Randall, M, McMahon, G, Sugden, S (2002) A simulated annealing approach to
communication network design. Journal of Combinatorial Optimization 6: 55-65

Suurballe, JW, Tarjan, RE (1984) A quick method for finding shortest pairs of dis-
joint paths. Networks 14: 325-336

Voss, S (1999) The Steiner tree problem with hop constraints. Annals of Operations
Research 86: 321-345



Part 3.2
Routing



Generating Random Test Networks for Shortest
Path Algorithms

Dennis J. Adams-Smith and Douglas R. Shier

Abstract One of the pillars in the empirical testing of algorithms is the generation
of representative and suitably informative test problems. We investigate the particu-
lar case of generating random test networks for shortest path problems and discuss
several methods proposed for generating such networks. Both analytic and simu-
lation results reveal several pitfalls to avoid in the generation of test networks. We
also identify two particular generation methods having desirable characteristics.

Key words: network generator, random test problems, shortest paths

1 Introduction

Networks are pervasive in our technological society, where transportation, logis-
tics, telecommunication, and computer networks play an increasingly important
role. A variety of exact and heuristic algorithms are regularly used to route goods,
messages, and tasks. Typically there are competing algorithms available for solv-
ing network optimization problems, so that both theoretical and empirical analyses
are used to identify bottleneck operations and to assess the relative efficiencies of
network algorithms. Ideally, one would like to delineate portions of the parameter
space (e.g., number of nodes, number of edges) over which certain algorithms are
preferred.

To aid in the empirical evaluation of algorithms, both standard benchmark
problems and randomly generated problems are used. Benchmark problems are
typically real-world problems possessing characteristics of networks encountered
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in transportation and communication applications. It is common to supplement the
testing of algorithms on real-world problems by also generating random test prob-
lems. Such random generation has a number of advantages: the experimenter can
vary the network parameters (and thus systematically explore the parameter space),
the generated problems can be analyzed by statistical means (Coffin, Saltzman,
2000), and an unlimited set of synthetic problems can be readily reproduced by
other investigators.

In this paper, we focus on the generation of random test networks for shortest
path algorithms, which are important not only for efficient solution of routing and
scheduling problems, but also for problems that arise in cartography, data compres-
sion, and DNA sequencing (Ahuja et al., 1993). The remainder of this section pro-
vides relevant terminology. In Section 2 we survey a number of generation methods
that have been deployed in the testing of shortest path algorithms. Exact results for
an illustrative small example are provided in Section 3, and more extensive compu-
tational results from our simulation experiments are discussed in Section 4. Conclu-
sions and areas for further research are presented in Section 5.

A (directed) network G = (N,E) consists of a set N of n nodes and a set E of
m directed edges. The cost of edge (i, j) is denoted ci j. The number of incoming
edges to a node is its indegree and the number of outgoing edges is its outdegree.
The density δ of network G is defined as δ = m

n ; it represents the average indegree,
as well as the average outdegree, of a node in G.

A root node r is also specified. Network G is root-connected if there is a (di-
rected) path from the root node r to every other node in the network. The single-
source shortest path problem involves finding a minimum cost directed path from
the source node r to every other node in the network. A solution to this problem
is given by a shortest path tree: that is, a tree rooted at r whose (unique) r- j path
is a shortest path from node r to node j. Notice that in a root-connected network,
every node is accessible from the source r and so a shortest path tree spans the
entire node set N. We argue that root-connectivity is a highly desirable property
for randomly generated test networks. In this way, each generated network will re-
quire a shortest path algorithm to work to its fullest: finite shortest path distances
will need to be found for every node in N, not just some (uncontrolled) subset of
N. This requirement has the added benefit of reducing variability in solution times
when R replications of an experiment are conducted with a fixed network size, but
a randomly generated topology and cost structure.

2 Approaches for Generating Random Networks

The goal of generating random networks for use in shortest path algorithm test-
ing is to (randomly) generate a certain number R of networks G = (N,E) of fixed
size n = |N|, m = |E| that are root-connected. We investigate seven generation ap-
proaches. The first method generates a truly random root-connected network, which
becomes our “gold standard” against which other approaches will be measured.
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The remaining methods generate a random sparse structure and then randomly add
the remaining edges; the random structure takes the form of a spanning tree, a
Hamiltonian cycle, or a structure based on indegrees. Once such a “random” topol-
ogy has been fully constructed, edge costs ci j can be generated according to various
cost models (e.g., uniform or normal). For the most part, we will focus on the net-
work topology, and not the costs. In particular, we will emphasize the trade-offs
between “true randomness” (uniformity) and computational effort in the various
generation methods.

2.1 Gn,m with Root-Connectivity

Using the Gn,m random graph model (Bollobás, 1985), we randomly generate m
distinct directed edges joining the n nodes. (The method for doing this is straight-
forward, but to ensure distinct edges it is advantageous to employ a hash function
(Aho et al., 1974).) In this procedure each selection of m edges will be as equally
likely as any other selection of m edges. This method has been used in various com-
putational studies of shortest path algorithms (Dial et al., 1979; Glover et al., 1985).
By contrast, we insist here that the generated network G should be root-connected.
Computationally, it is advantageous to first check the indegree of every node in the
generated network G. If every node has indegree at least one, then we conduct a
breadth-first search from the root r to check that every node is reachable from r.
If either check fails, the network is discarded and a new candidate network is gen-
erated. Since the Gn,m method produces networks uniformly among all (n,m) net-
works, it will produce root-connected networks uniformly among all such networks
and is henceforth denoted the Uniform method. We repeat this process until we have
generated R root-connected test networks of fixed size (n,m).

Unfortunately, this technique is computationally demanding, especially when
network densities are low. Erdős and Rényi (1959) specify a threshold density of
δ > 0.5lnn random edges before it is reasonable to expect (weak) connectivity —
and this is connectivity in the undirected sense, not root-connectivity. Thus, we may
need to generate and subsequently reject large numbers of networks before finding
acceptable ones. As one example, it was necessary to generate 2,122,478 random
networks with 100 nodes and 250 edges (δ = 2.5) in order to produce 200 that were
root-connected.

2.2 Rooted Spanning Tree Structures

Because of the large overhead of generating networks only to discard most of them
for lack of root-connectivity, several methods have been proposed that ensure root-
connectivity by first growing a spanning tree on the n nodes; the remaining m−
(n− 1) edges are then randomly added. Several methods have been developed for
evolving such a spanning tree T , rooted at node r.
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2.2.1 Prim’s Algorithm

Initially, we set T = {r}. A natural method to grow a rooted spanning tree is to suc-
cessively pick a random node i∈ T and connect it to a randomly selected node j �∈ T .
Conceptually this can be viewed as an implementation of Prim’s MST algorithm
(Ahuja et al., 1993) on the complete directed graph with uniform edge weights. Pre-
vious computational studies have employed this method (Gilsinn, Witzgall, 1973;
Hulme, Wisniewski, 1978; Van Horn et al., 2003). However, this method might cre-
ate trees with a demonstrable bias, since the longer a node is in the current tree T
the more often it will be selected as the origin node i; hence it will have a higher
(out) degree than nodes i added later in the process. Consequently, the rooted tree
T generated by Prim is unlikely to be uniformly drawn from the set of all spanning
trees rooted at r. In particular, the outdegree in T of the root node r should be on
average higher than occurs under uniform generation. After adding the additional
m− (n−1) random edges, the root should then continue to have too large an outde-
gree in the generated network G. These predictions are supported by both analytic
and simulation results; see Sections 3 and 4.

2.2.2 Kruskal’s Algorithm

Analogous to using Prim’s algorithm to create a spanning tree rooted at r, we can
similarly adapt Kruskal’s MST algorithm (Ahuja et al., 1993). Conceptually, we
create a complete undirected network on n nodes and assign random edge weights.
Then we apply Kruskal’s algorithm to find a (minimum) spanning tree in this
weighted complete network. Whereas at each iteration of Prim’s algorithm, nodes
are added to the current tree T , Kruskal’s algorithm adds edges to the current forest
at each iteration. This is classically accomplished by sorting the edges according
to their (random) weights and then examining the edges in order of nondecreasing
weight. Equivalently, we can simply examine the edges in a fixed, random order. If
the edge connects two nodes in different subtrees, we retain it and merge the asso-
ciated subtrees. In this way, subtrees will grow and merge until a spanning tree T is
created. We then perform a breadth-first search from the root r and direct all edges
outward to obtain a rooted spanning tree. Again the additional m− (n− 1) edges
are randomly added to T . As the computational results in Section 4 indicate, this
method is a (surprisingly) less biased approach than Prim’s method.

2.2.3 Broder’s Random Walk

Broder (1989) describes a random walk algorithm for producing a spanning tree in
an arbitrary connected, undirected graph H. This method produces spanning trees
uniformly over all the spanning trees of H. Conceptually, we can apply this method
to the complete graph on n nodes to create a random rooted spanning tree T . Namely,
we initialize T = {r} and begin the random walk at node r. At each step, we continue
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the random walk (by selecting a random neighbor of the current node i ∈ T ) until
we encounter a node j �∈ T ; at this point we add to the current tree T the directed
edge (i, j). The random walk then continues from node j. We stop once all nodes
are in T . Early in the process, edges are more likely to lead to a node outside the
current tree, while later on we are more likely to continue walking among the nodes
of T in search of a new node j �∈ T to add. By using a random walk among the
nodes, Broder’s method reduces the bias introduced by Prim’s algorithm, in which
nodes that have been in the tree longer have higher outdegree. This method has been
used in a recent computational study of label-correcting shortest path algorithms
(Bardossy, Shier, 2006).

2.2.4 Wilson’s Random Walk

Wilson (1996) proposes creating a rooted spanning tree by a random walk of a
directed graph H. This method is guaranteed to produce rooted spanning trees uni-
formly from all r-rooted spanning trees of H. Here, we initialize T = {r} and begin
the random walk at a random node j �∈ T . We continue a random walk from j tracing
out a path P until we encounter a node i ∈ T . At this point all edges of P are added
to T . By keeping a successor function on the nodes of P, we can ensure that this
path is a simple path: i.e., it contains no embedded directed cycles. For example,
suppose the current path is P = [i1, i2, i3, i4] with succ(i1) = i2, succ(i2) = i3, and
succ(i3) = i4. If the next random step takes us back to node i2 and then continues
on to node i5, we would update succ(i4) = i2 and succ(i2) = i5. Following the up-
dated successors then traces out the simple path P = [i1, i2, i5], in effect “cancelling”
out the directed cycle traversed in the random walk. By continuing this process, the
edges of a spanning tree directed into the root node r will be grown. Once every
node is in T , we can reverse all edges to obtain a rooted spanning tree directed away
from the root r. Notice that Wilson’s walk, which conducts a random walk outside
the current tree, adds an entire path P to the tree; however, extraneous cycles may
be traversed before adding new valid edges to the current T .

2.3 Hamiltonian Cycle Generator

Rather than adding n− 1 edges to form a rooted spanning tree, one can create a
random Hamiltonian cycle, involving the addition of n edges. This is easily done
by creating a random permutation π1,π2, . . . ,πn of {1,2, . . . ,n} and then adding the
edges (π1,π2), . . . ,(πn−1,πn),(πn,π1). Then the remaining m− n additional edges
are randomly added to the network. Several computational studies (Goldberg, 2001;
Klingman et al., 1974; Mondou et al., 1991; Skriver, Andersen, 2000) have used this
type of generation technique. A possible drawback to this approach is that the graph
density must be high enough to expect a naturally occurring directed Hamiltonian
cycle. For undirected random graphs G, there is a threshold function on the density
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for the likely appearance of a Hamiltonian cycle: namely, we need δ > 0.5lnn to
expect the occurrence of a Hamiltonian cycle in G. Consequently, this generation
method might be creating a structure that will distort the resulting distribution of
sparse test networks.

2.4 One-In Generator

To avoid the possible pitfalls in creating a fixed structure before adding random
edges, while still reducing the computational overhead associated with the Uniform
method in Section 2.1, we propose a “one-in” method. This method starts by creat-
ing an edge directed into every node (except the root r) from a random predecessor.
We then add the remaining m− (n−1) random edges and check the resulting graph
for root-connectivity via a breadth-first search. If the check fails, the network is
discarded and a new candidate is generated. By ensuring that no node is isolated
(except possibly the root), this approach saves much of the computational overhead
associated with the Uniform method. For example, whereas the Uniform method in
Section 2.1 required generating 2,122,478 random networks with 100 nodes and 250
edges in order to find 200 that were root-connected, the One-In method generated
only 228 random networks to find 200 that were root-connected.

3 Analytic Results

We begin by presenting exact analytic results for the various generation methods,
obtained by examining a small, but revealing, example with n = 4 nodes, m = 8
edges and root node r = 1. Of the 12 possible directed edges between 4 nodes, we
select only 8, so there are

(12
8

)
= 495 possible graphs of this type. Of these, only 456

are root-connected. The remaining 39 are simply those graphs whose 12−8 = 4
nonselected edges contain a cutset (X , X̄) with 1 ∈ X . Specifically, if X = {1},
X = {1,2,3}, X = {1,2,4}, or X = {1,3,4} we can remove the three edges of
the cutset (X , X̄) plus any of 9 other choices for the fourth edge. If X = {1,2},
X = {1,3}, or X = {1,4}, we remove all four edges of (X , X̄). Altogether, there are
a total of 4×9+3×1 = 39 possible graphs (on 4 nodes and 8 edges) that are not
root-connected.

Since the Uniform method generates each of the 456 root-connected graphs with
equal probability, we can exactly calculate certain theoretical measures associated
with this generation technique. In particular, we compute the mean root degree (the
outdegree of node r), the mean number of nodes D2(G) at distance 2 from r in G,
and the rooted diameter of G (the maximum distance from r to any of the other
nodes of G). This yields the entries in the first row of Table 1. Results for the other
generation techniques appear in the remaining rows.
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Table 1 Exact results for graphs with 4 nodes, 8 edges

Method Mean Root Degree Mean D2(G) Mean Diameter

Uniform 2.059 0.862 1.803
Prim 2.481 0.511 1.471
Kruskal 2.333 0.649 1.590
Random Spanning Tree 2.333 0.649 1.591
Hamiltonian Cycle 2.000 0.929 1.857
One-In 2.111 0.790 1.701

Table 2 Frequency distribution of the 16 spanning trees using the Prim and Kruskal methods

T1 T2 T3 T4 T5 T6 T7 T8

Root Degree 1 2 1 2 2 1 1 1
Prim Frequency 1 3 1 3 3 1 2 1
Kruskal Frequency 11 11 11 11 11 11 12 11

T9 T10 T11 T12 T13 T14 T15 T16

Root Degree 1 1 1 2 2 3 1 2
Prim Frequency 1 2 1 3 3 6 2 3
Kruskal Frequency 11 12 11 11 11 12 12 11

First we note that the mean root degree for the Uniform method is slightly larger
than the graph density δ = m

n = 2; this occurs because we are averaging over the
456 root-connected graphs G1,G2, ...,G456 rather than the 495 random graphs. Next
we examine the generation methods based on first producing a rooted spanning tree
and then generating additional random edges. As seen in Table 1, the Prim method
produces highly biased graphs, with an average root degree much larger than that
for the Uniform method. This bias can be explained as follows. In this example
there are nn−2 = 42 = 16 rooted spanning trees T1,T2, ...,T16; these spanning trees
are shown explicitly in (Adams-Smith, Shier, 2008). Rather than generating these
Ti uniformly, Prim’s method generates them according to the frequency distribution
shown in Table 2. This table also lists the root degree of each spanning tree Ti.
Notice that T14, which has the largest root degree, occurs with by far the largest Prim
frequency, verifying our suspicion that the Prim method favors spanning trees with
large root degrees. By contrast, if these Ti are uniformly generated, then the mean
root degree of the spanning tree would be 1.5; using the Prim frequencies, however,
produces the larger mean root degree of 1.833. Table 2 also shows the frequency
of occurrence of the 16 rooted spanning trees obtained using Kruskal’s method.
Interestingly enough, in this case the spanning trees are generated approximately
uniformly and the mean root degree turns out to be 1.5 (the same as if generated
uniformly).

The generation methods of Broder and Wilson do uniformly generate the span-
ning trees Ti and then randomly add the remaining edges. After creating such a
spanning tree, here containing 3 edges, there are

(9
5

)
= 126 ways to pick 5 additional
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Table 3 Frequency distribution of the 456 root-connected graphs among 2016 generated graphs

Number of Number of Number of Number of
Appearances Graphs Appearances Graphs

1 39 7 24
2 48 8 21
3 114 9 27
4 60 10 0
5 54 11 0
6 63 12 6

distinct edges from the 9 remaining, giving 16 ·126 = 2016 ways to generate a root-
connected (4,8)-graph. However, the 456 root-connected graphs Gi do not appear
with equal probability among these 2016 generated (4,8)-graphs; see Table 3.

In summary, Table 1 shows that the Prim method produces the largest bias in
terms of generated graphs, according to any of the three metrics used. On the other
hand, both the Hamiltonian Cycle and One-In methods are the closest to the Uniform
method, which guarantees uniform generation of the root-connected graphs. While
the Kruskal method does not ensure uniform generation of the initial spanning tree
T , it gives results virtually the same as those of Broder and Wilson (which do ensure
uniform generation of T ). The spanning tree methods of Kruskal, Broder and Wilson
show intermediate bias, situated between the Hamiltonian Cycle/One-In and Prim
methods. The lesson here is that uniformly generating a spanning tree and then
adding random edges does not produce graphs that are sufficiently representative
for our purposes.

4 Computational Results

The analytic results in Section 3 show that clear differences appear in the various
generation techniques for the small sample network studied. In this section, we study
randomly generated larger networks having n nodes and m edges, with R replications
for each fixed n and m. Specifically, we investigate n = 100,200,400 and a range of
densities: δ = 2.5,3,3.5,4,4.5,5,6 for n = 100; δ = 3,3.25,4,5,7.5,10,12.5,15,
17.5,20,22.5,25 for n = 200; and δ = 5,6.25,7.5,10,12.5,15 for n = 400. To en-
sure consistency, all generation algorithms were coded in MATLAB and computa-
tional results were obtained using MATLAB 7.2.0.283 (R2006a), executed on a Sun
V440 with 16GB RAM, 4x1.6GHz CPU, running Solaris 10. Some representative
results are presented in Table 4 for n = 200 and m = 800 (i.e., δ = 4), and in Table 5
for n = 400 and m = 4000 (i.e., δ = 10). All results are averaged over R = 200 rep-
etitions. Since the rooted diameter turned out to be a less discriminating measure,
we have only listed standard deviations for the first two measures.

Tables 4 and 5 order the generation methods approximately by their similarity
to the Uniform method. Note that in each table, the mean root degree ranks the
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Table 4 Computational results for networks with n = 200, m = 800, R = 200

Method Root Degree D2(G) Diameter
Mean Std Dev Mean Std Dev Mean

Uniform 4.195 1.946 15.955 8.001 6.465
One-In 3.995 1.888 15.300 7.855 6.335
Hamiltonian Cycle 3.860 1.601 14.490 6.458 6.350
Wilson 4.950 1.951 19.595 7.979 6.020
Kruskal 4.980 2.093 19.810 8.279 5.955
Broder 5.025 2.092 20.040 8.339 5.925
Prim 8.890 2.710 40.900 10.803 5.175

Table 5 Computational results for networks with n = 400, m = 4000, R = 200

Method Root Degree D2(G) Diameter
Mean Std Dev Mean Std Dev Mean

Uniform 9.890 3.021 85.280 23.119 4.030
Hamiltonian Cycle 9.900 2.756 86.060 22.834 4.015
One-In 10.145 3.128 88.125 25.022 4.040
Wilson 10.810 3.160 92.260 24.261 4.020
Broder 10.910 3.177 93.610 25.281 4.025
Kruskal 11.345 3.257 96.760 24.586 4.015
Prim 15.145 3.570 131.585 25.188 3.975

generation methods in exactly the same order as the mean D2(G) value; this is to be
expected since a larger number of nodes adjacent to the root tends to produce a larger
number of nodes at distance 2 from the root. Given the generally high correlation
between these two metrics (root degree and D2(G)), we focus on the root degree in
comparing the various generation techniques. These tables show that the One-In and
Hamiltonian Cycle methods produce networks with characteristics most similar to
the desired Uniform method. Broder, Wilson, and Kruskal produce networks with a
demonstrable bias (specifically, a much higher mean root degree). The Prim method
produces extremely atypical networks; for example, Table 4 shows that the mean
root degree is over twice as large as that for the Uniform method.

We carried out a standard two-sample t-test (with unequal variances) to compare
the mean root degrees of networks generated by the different methods, for the data
in Tables 4 and 5. This analysis showed that there were no statistically significant
differences between the One-In and Hamiltonian Cycle methods (at the α = .05
significance level), nor were there significant differences between these methods
and the Uniform method. Also, there were no statistically significant differences in
comparing the Broder, Wilson, and Kruskal methods. On the other hand, we found
that the Broder, Wilson, and Kruskal methods had significantly larger means than
that for the Uniform method (at the α = .001 significance level). The mean root de-
gree for Prim was at least 11 standard deviations greater than the means for Broder,
Wilson, and Kruskal.
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Fig. 1 Prim versus Uniform as a function of δ

These conclusions hold for other network sizes. Namely, the generation tech-
niques cluster into the groups {Uniform, One-In, Hamiltonian Cycle}, {Broder,
Wilson, Kruskal}, and {Prim}, with the groups ranked by their proximity to the
“gold standard” Uniform method. More extensive tabulations are available (Adams-
Smith, Shier, 2008) for the entire range of network sizes (n,m) studied.

Figure 1 compares the mean root degree, as a function of the density δ , for the
Prim method and the Uniform method. It is clear that the substantial bias for Prim
persists at all network sizes (n,m) studied. Examination of Figure 1 suggests that
this bias increases with the number of nodes n. In fact, using a result from the theory
of recursive trees (Smythe, Mahmoud, 1995), we can show that the average root
degree of Prim-generated networks grows as δ + O(lnn), establishing that the bias
of the Prim method indeed increases with the number of nodes n. Figure 2 compares
the One-In and Hamiltonian Cycle methods to Uniform for networks with 200 nodes
and varying densities; for comparsion, one of the random spanning tree methods
(Wilson) is also displayed. We can see that One-In and Hamiltonian Cycle track
fairly closely the Uniform method. Figure 3 verifies this conclusion for n = 100 and
n = 400 as well.

5 Conclusions

Both analytic and simulation results have demonstrated that the characteristics of
“random” test networks generated by alternative techniques can vary substantially,
especially when measured relative to our gold standard Uniform method. Since the
Uniform method can be computationally demanding for the generation of large test
networks (too many networks are rejected as not being root-connected), we have
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Fig. 2 One-In, Hamiltonian Cycle, and Wilson versus Uniform as a function of δ : n = 200

Fig. 3 One-In, Hamiltonian Cycle, and Wilson versus Uniform as a function of δ : n = 100, n = 400

studied here six other generation approaches. While the Prim method is often used,
and is computationally viable, it displays clear bias in the various metrics presented
here. To a large extent this bias results from the nonuniform generation of the initial
spanning tree T . The Broder and Wilson methods do ensure uniform generation of
the spanning tree T , yet they still produce nonuniform test networks, though with
not such a pronounced bias as the Prim-generated networks. The Kruskal method,
another MST-based approach, is surprisingly less biased than the Prim method;
however its implementation involves ranking all O(n2) edges of the complete undi-
rected graph and is computationally less efficient. The two best methods identified
are the Hamiltonian Cycle and One-In methods. Both of these methods are easy to
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Fig. 4 Number of node scans for FIFO as a function of δ using One-In, Broder, and Prim

Fig. 5 Number of node scans for Pape as a function of δ using One-In, Broder, and Prim

implement and are computationally feasible. The Hamiltonian Cycle method is gen-
erally applicable except when the network is very sparse, in which case the underly-
ing graph would not be expected to contain a Hamiltonian cycle. The One-In method
is applicable in all cases, though it does require checking for root-connectivity after
a potential network has been generated. This does not however appear to impose a
large computational burden.
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A natural next step is to investigate the extent to which these different network
characteristics can affect the conclusions of empirical studies conducted on net-
work algorithms. As a first step in that direction, we have studied two standard
shortest path algorithms (FIFO and Pape) and have counted the number of node
scans (Bardossy, Shier, 2006) to find a shortest path tree rooted at node r = 1 in
randomly generated networks with n = 1000 nodes. Results for selected generation
methods are shown for the two algorithms in Figures 4 and 5, averaged over R = 100
replications at each network density δ . We can see that Prim tends to create easier
problems (fewer node scans) over a wide range of densities δ for both FIFO and
Pape, whereas One-In tends to create more demanding problems. By comparison,
the Broder method creates problems of intermediate complexity; specifically it tends
to create easier problems at lower densities but harder ones at higher densities.
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A Branch-and-Price Algorithm for Combined
Location and Routing Problems Under Capacity
Restrictions

Z. Akca, R.T. Berger, and T.K. Ralphs

Abstract We investigate the problem of simultaneously determining the location of
facilities and the design of vehicle routes to serve customer demands under vehicle
and facility capacity restrictions. We present a set-partitioning-based formulation of
the problem and study the relationship between this formulation and the graph-based
formulations that have been used in previous studies of this problem. We describe
a branch-and-price algorithm based on the set-partitioning formulation and discuss
computational experience with both exact and heuristic variants of this algorithm.

Key words: branch-and-price, facility location, vehicle routing, column generation

1 Introduction

The design of a distribution system begins with the questions of where to locate the
facilities and how to allocate customers to the selected facilities. These questions can
be answered using location-allocation models, which are based on the assumption
that customers are served individually on out-and-back routes. However, when cus-
tomers have demands that are less-than-truckload and thus can receive service from
routes making multiple stops, the assumption of individual routes will not accurately
capture the transportation cost. Therefore, the integration of location-allocation and
routing decisions may yield more accurate and cost-effective solutions.
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In this paper, we investigate the so-called location and routing problem (LRP).
Given a set of candidate facility locations and a set of customer locations, the objec-
tive of the LRP is to determine the number and location of facilities and construct a
set of vehicle routes from facilities to customers in such a way as to minimize total
system cost. The system cost may include both the fixed and operating costs of both
facilities and vehicles. In this study, we consider an LRP with capacity constraints
on both the facilities and the vehicles.

Vehicle routing models in general have been the subject of a wide range of aca-
demic papers, but the number of these devoted to combined location and routing
models is much smaller. Laporte (1988) surveyed the work on deterministic LRPs
and described different formulations of the problem, solution methods used, and
the computational results published up to 1988. Min et al (1998) classified both
deterministic and stochastic models in the LRP literature with respect to problem
characteristics and solution methods.

Solution approaches for the LRP can be divided broadly into heuristics and exact
methods, with much of the literature devoted to heuristic approaches. Most heuristic
algorithms divide the problem into subproblems and handle these subproblems se-
quentially or iteratively. Examples of heuristics developed for the LRP can be found
in Perl and Daskin (1985), Hansen et al (1994) and Barreto et al (2007).

Many fewer papers have been devoted to the study of exact algorithms for the
LRP and most of these have been based on the so-called two-index vehicle flow for-
mulation. Laporte and Nobert (1981) solved a single depot model with a constraint
relaxation method and a branch-and-bound algorithm. They reported solving prob-
lems with 50 customer locations. Laporte et al (1983) solved a multi-depot model
using a constraint relaxation method and Gomory cutting planes to satisfy integral-
ity. They were able to solve problems with at most 40 customer sites. Laporte et al
(1986) applied a branch-and-cut algorithm to a multi-depot LRP model with vehicle
capacity constraints. They used subtour elimination constraints and chain barring
constraints that guarantee that each route starts and ends at the same facility. They
reported computational results for problems with 20 customer locations and 8 de-
pots. Finally, Belenguer et al (2006) provided a two-index formulation of the LRP
with capacitated facilities and capacitated vehicles and presented a set of valid in-
equalities for the problem. They developed two branch-and-cut algorithms based on
different formulations of the problem. They reported that they could solve instances
with up to 32 customers to optimality in less than 70 CPU seconds and could provide
good lower bounds for the rest of the instances, which had up to 134 customers.

Berger (1997) developed a set-partitioning-based model for a special case of the
LRP with route length constraints and uncapacitated vehicles and facilities. Berger
et al (2007) extended that work to develop an exact branch-and-price algorithm in
which they solved the pricing problem as an elementary shortest path problem with
one resource constraint. They reported computational results for problems with 100
customers and various distance constraints. Akca et al (2008) developed an exact
solution algorithm using branch-and-price methodology for the integrated location
routing and scheduling problem (LRSP), which is a generalization of the LRP. In
the LRSP, the assumption that each vehicle covers exactly one route is removed and
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the decision of assigning routes to vehicles subject to the scheduling constraints is
considered in conjunction with the location and routing decisions. They considered
instances with capacitated facilities and time- and capacity-limited vehicles. They
provided solutions for instances with up to 40 customers.

In this study, we utilize a variant of the model presented by Akca et al (2008) to
solve the LRP under capacity restrictions and modify their exact algorithm for the
LRSP to solve the LRP. We develop a number of variants and heuristic extensions
of the basic algorithm and report on our computational experience solving both
randomly generated instances and instances from the literature. The remainder of
the paper is organized as follows. Section 2 presents a formal description of the
problem, provides two formulations, and investigates the relationship between the
formulations. Section 3 describes details of the heuristic and the exact algorithms
for the set-partitioning formulation. Section 4 provides some computational results
evaluating the performance of the algorithms. Section 5 concludes the paper.

2 Problem Definition and Formulations

The objective of the LRP is to select a subset of facilities and construct an associ-
ated set of vehicle routes serving customers at minimum total cost, where the cost
includes the fixed and operating costs of both facilities and vehicles. The constraints
of the problem are as follows: (i) each customer must be serviced by exactly one
vehicle, (ii) each vehicle must be assigned to exactly one facility at which it must
start and end its route, (iii) the total demand of the customers assigned to a route
must not exceed the vehicle capacity, and (iv) the total demand of the customers
assigned to a facility must not exceed the capacity of the facility. In the literature,
most of the exact methods developed for the described LRP or its special cases are
based on the two-index vehicle flow formulation of the problem. To the best of our
knowledge, an exact solution algorithm based on a set-partitioning formulation has
not been applied to the case of the LRP with capacity constraints. The theoretical
relationship between the two-index formulation and the set-partitioning formulation
can be understood by considering a closely related three-index formulation that we
present below. We show that applying Dantzig-Wolfe decomposition to the three-
index formulation yields the set-partitioning formulation. This is turn shows that
the bounds yielded by the LP relaxation of the set-partitioning model must be at
least as tight as those of the three-index formulation.

2.1 Vehicle Flow Formulation

We let I denote the set of customers, J denote the set of candidate facilities, and
V = I ∪ J. To bypass the decision of assigning vehicles to facilities, we assume that
each facility has its own set of vehicles and that a vehicle located at facility j can
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only visit customer locations and the facility j during its trip. Let Hj be the set of
vehicles located at facility j, ∀ j ∈ J and H be the set of all vehicles, H =

⋃
j∈J Hj.

We define the following parameters and decision variables:
Parameters:

Di = demand of customer i, ∀i ∈ I,

CF
j = capacity of facility j, ∀ j ∈ J,

CV = capacity of a vehicle,
Fj = fixed cost of opening facility j, ∀ j ∈ J,

Oik = operating cost of traveling arc (i,k) ∀i,k ∈V .

Decision Variables:

xikh =

⎧
⎨

⎩

1 if vehicle h travels directly from location i to location k, ∀i ∈V,k ∈V,
h ∈ H

0 otherwise,

yih =
{

1 if vehicle h visits customer i, ∀i ∈ I,h ∈ H
0 otherwise,

t j =
{

1 if facility j is selected to be open, ∀ j ∈ J
0 otherwise.

A vehicle flow formulation of the LRP is as follows:

(VF-LRP) Minimize ∑
j∈J

Fjt j + ∑
h∈H

∑
i∈V

∑
k∈V

Oikxikh (1)

s.t. ∑
h∈H

∑
k∈V

xikh = 1 ∀i ∈ I, (2)

∑
k∈V

xikh − ∑
k∈V

xkih = 0 ∀i ∈V,h ∈ H, (3)

∑
k∈V

xkih − yih = 0 ∀i ∈ I,h ∈ H, (4)

yih − ∑
k∈S

∑
l∈V\S

xklh ≤0 ∀S ⊆ I, i ∈ S,h ∈ H, (5)

∑
i∈I

Diyih −CV ≤0 ∀h ∈ H, (6)

∑
h∈Hj

∑
i∈I

Diyih −CF
j t j ≤0 ∀ j ∈ J, (7)

xikh ∈ {0,1} ∀i,k ∈V,h ∈ H, (8)
yih ∈ {0,1} ∀i ∈ I,h ∈ H, (9)
t j ∈ {0,1} ∀ j ∈ J. (10)

In (VF-LRP), the objective function (1) seeks to minimize the total cost, which in-
cludes the fixed cost of the selected facilities and the operating cost of the vehicles.
Vehicle fixed costs can easily be incorporated into the model by increasing the cost
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of traveling from the facility to each customer location by a fixed amount. Con-
straints (2) specify that exactly one vehicle must service customer i. Constraints (3)
require that each vehicle should enter and leave a location the same number of times.
Constraints (4) determine the assignment of customers to vehicles. Constraints (5)
eliminate subtours, i.e. routes that do not include a facility. Constraints (6) are ve-
hicle capacity constraints. Constraints (7) ensure that the capacity of a facility is
not exceeded by demand flows to customer locations. For notational convenience,
we assume that variables associated with travel between different facilities or travel
between a customer and a facility using a truck not associated with that facility are
fixed to zero. Constraints (8), (9), and (10) are the set of binary restrictions on the
variables.

2.2 Set-Partitioning Formulation

Here we utilize a modified version of the set-partitioning formulation for the LRSP
presented by Akca et al (2008). We define the set P to be a set indexing all vehicle
routes feasible with respect to vehicle capacity and originating from and returning
to the same facility. We let Pj ⊆ P index routes associated with vehicles assigned to
facility j for j ∈ J. In addition to the parameters and sets defined for (VF-LRP), we
use the following parameters and decision variables:
Parameters:

Op = operating cost of route p ∈ P,

aip =
{

1 if customer i ∈ I is assigned to route p ∈ P, and
0 otherwise.

Decision Variables:

zp =
{

1 if route p ∈ P is selected, and
0 otherwise,

t j =
{

1 if facility j ∈ J is selected to be open, and
0 otherwise,

The formulation is as follows:

(SPP) Minimize ∑
j∈J

Fjt j + ∑
p∈P

Opzp (11)

subject to ∑
p∈P

aipzp = 1 ∀i ∈ I, (12)

∑
p∈Pj

∑
i∈I

Diaipzp −CF
j t j ≤0 ∀ j ∈ J, (13)

zp ∈ {0,1} ∀p ∈ P, (14)
t j ∈ {0,1} ∀ j ∈ J. (15)
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The objective function (11) seeks to minimize the total cost, which includes the fixed
cost of the selected facilities and the operating cost of the vehicles. Constraints (12)
guarantee that each customer location is served by exactly one route. Constraints
(13) ensure that the total demand of the selected routes for a facility does not exceed
the facility capacity. Constraints (14) and (15) are standard binary restrictions on the
variables.

2.3 Comparing the Formulations

Observe that the three-index formulation (VF-LRP) exhibits a high degree of sym-
metry under the assumption that the vehicle fleet assigned to each facility is homo-
geneous. This is due to the fact that the assignment of routes to a specific vehicle is
essentially arbitrary, i.e., the cost of a given solution to (VF-LRP) is invariant un-
der permutation of the indices assigned to specific vehicles. This symmetry can be
dealt with either (i) by using a two-index formulation, which requires the addition
of an exponential number of valid inequalities to the formulation or (ii) by apply-
ing Dantzig-Wolfe decomposition (DWD). Laporte et al (1986) and Belenguer et al
(2006) have each developed branch-and-cut algorithms using the former approach.
Here, we explore the latter approach.

As is standard in DWD, we decompose the constraints of (VF-LRP) into two
subsystems. The master problem is defined by constraints (2) and (7), while the
subproblem is defined by constraints (3), (4), (5), (6), (8), (9), and (10). All con-
straints of the subproblem are indexed by the set J and it is therefore immediate
that the subproblem decomposes by facility. The objective of each of the resulting
single-facility subproblems is to generate least-cost routes for all vehicles assigned
to the facility, though without the constraint that customers appear on exactly one
route. For each candidate facility j ∈ J, the set of integer solutions of the decom-
posed subproblem can be represented by the set of vectors

{(x,y, t) ∈ Z
(|V |×|V |×|Hj |)×(|V |×|Hj |)×{0,1} | (x,y, t) satisfies (3) j,(4) j,(5) j,

(6) j,(8) j,(9) j,(10) j},

which is described only by those constraints associated with facility j and speci-
fies values only for those variables associated with vehicles assigned to facility j.
Hence, the index j for the constraints represents the set of constraints associated
with facility j. Let E be a set indexing the members of all of the above sets, with
E j the indices for vectors associated with facility j only, so that E = ∪ j∈JE j. For a
facility j and an index q ∈ E j, the corresponding member (xq,yq, tq) of the above
set is then a vector with the following interpretation: for each pair (i,k) ∈ |V |× |V |
and h ∈ Hj, the parameter xq

ikh = 1 if vehicle h travels on arc (i,k) in solution q and
is 0 otherwise; for each i ∈ I and h ∈ Hj, yq

ih = 1 if customer i is visited by vehicle
h in solution q and is 0 otherwise; and tq = 1 if facility j is open in solution q. Note
that the variable t indicating whether the facility is open does not appear in any of



A Branch-and-Price Algorithm for LRPs Under Capacity Restrictions 315

the linear constraints of the subproblem and can hence be set to either 0 or 1 without
affecting feasibility.

Because the subproblem decomposes as described above, solutions to the original
problem can be seen as vectors obtained by “recomposing” convex combinations of
the members of E j for each j ∈ J. In other words, any solution (x,y, t) to the LP
relaxation of the original problem can be written as:

xikh = ∑
q∈E

xq
ikhθq ∀i,k ∈V,h ∈ H, (16)

yih = ∑
q∈E

yq
ihθq ∀i ∈ I,h ∈ H, (17)

t j = ∑
q∈E j

tqθq ∀ j ∈ J, (18)

∑
q∈E j

θq = 1 ∀ j ∈ J, (19)

θq ≥0 ∀q ∈ E. (20)

Using (16) - (20), we can then formulate the LP relaxation of the master problem as:

(MDW) Minimize ∑
q∈E

C̃qθq

s.t. ∑
q∈E

biqθq = 1 ∀i ∈ I, (21)

∑
q∈E j

∑
i∈I

biqDiθq −CF
j ∑

q∈E j

θqtq ≤0 ∀ j ∈ J, (22)

∑
q∈E j

θq = 1 ∀ j ∈ J, (23)

θq ≥0 ∀q ∈ E, (24)

where

biq = ∑
h∈H

∑
k∈I

xq
ikh = ∑

h∈H
yq

ih, ∀i ∈ I,q ∈ E,

C̃q = Fqtq + ∑
i∈V

∑
k∈V

∑
h∈H

Oikxq
ikh, ∀q ∈ E,

where Fq = Fj when q ∈ E j for j ∈ J. Here, biq can be interpreted as the number of
times customer i is visited in solution q, and C̃q is the cost of solution q (including
facility fixed cost) for all q ∈ E.

The similar forms of (SPP) and (MDW) should now be evident, but to rigorously
show their equivalence, we need to dissect the relationship between set E j and Pj for
a given facility j ∈ J. A member of set E j consists of a collection of routes assigned
to vehicles located at facility j. A member of set Pj, on the other hand, is a single
route that can be assigned to any vehicle at facility j. Therefore, a member of E j
can be constructed by associating at most |Hj| members of set Pj and some number
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of empty routes (zero vectors representing vehicles that are not used) to the vehicles
assigned to facility j.

Now, by utilizing the integrality requirements from the original problem and
carefully eliminating the indices of symmetric solutions from E, we get a much
smaller set that we will show is in one-to-one correspondence with collections of
members of Pj of cardinality at most |Hj|. We proceed as follows:

1. First, as the vehicles associated with a given facility j are identical, a set of routes
from Pj can be assigned to vehicles in any arbitrary order and each route can
also visit the customers in either clockwise or counterclockwise order. Hence,
we obtain different members of E j that are all equivalent from the standpoint of
both feasibility and cost. To eliminate superfluous equivalent members of E j, we
divide the members of set E j into equivalence classes, where two members of E j
are considered equivalent if the set of customers assigned to the facility and the
partition of that set of customers defined by the routes are identical. It is clear that
any two members of E j that are equivalent by this definition will have exactly the
same impact on both cost and feasibility. We then form equivalence classes from
which all but one member may safely be eliminated from E j.

2. Let θ̂ represent a solution to (MDW) for which the corresponding solution in the
original space obtained by applying equations (16)-(18) is feasible for the origi-
nal problem (VF-LRP). From (16) and (8), along with the fact that xq

ikh is binary
for q ∈ E, we get that xq

ikh = 1 whenever θ̂q > 0 in the solution to (MDW). In
other words, all members q of E j with θ̂q > 0 must correspond to routes visiting
exactly the same customers in exactly the same order. Hence, we must in fact
have θ̂q = 1 for exactly one q ∈ E j for each j ∈ J and so θq ∈ {0,1} for all q ∈ E.

3. It then follows easily that index q can be removed from E j if there exist vehicles
h1,h2 ∈ Hj such that xq

ikh1
= xq

ikh2
∀i,k ∈V , where xq

ikh1
> 0 for some i,k ∈ I (i.e.,

this is not an empty route). In this case, vehicles h1 and h2 define exactly the same
set of routes, which means that biq > 1 for some i ∈ I. Because of constraint (21),
such a solution must have θ̂q = 0.

4. Finally, from (18) and (22), we can conclude that if θ̂q = 1 and we have xq
ikh > 0

for some i,k ∈ V and h ∈ H, then tq must be 1. Hence, we can eliminate any
solutions for which tq = 0 that does not correspond to a zero solution (i.e., closed
facility). All of this allows us to rewrite (22) in the form

∑
q∈E j

∑
i∈I

biqDiθq −CF
j ∑

q∈E j

θq ≤ 0 ∀ j ∈ J. (25)

If we restrict set E j according to the rules described above and call the restricted set
Ē j for each j ∈ J, then we can finally conclude the following.

Proposition 1. There is a one-to-one correspondence between subsets of Pj with
cardinality less than |Hj| and members of Ē j.

The proof follows easily from the definition of sets Pj and Ē j and the restriction
rules. By replacing set E j with Ē j for all j ∈ J in (MDW), as well as replacing
(22) with (25) and adding the constraint θq ∈ {0,1} for all q ∈ E, we obtain a new
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(equivalent) formulation (MDW’). Then, we finally have the equivalence of (SPP)
and (MDW) as follows

Proposition 2. There is a one-to-one correspondence between solutions to (SPP)
and solutions to (MDW’) such that corresponding solutions also have the same ob-
jective function value. Thus, (SPP), (MDW’), and (MDW) are all equivalent.

3 Solution Algorithm

3.1 Branch-and-Price

Having shown that (SPP) is equivalent to a DWD of (VF-LRP), we now discuss
an exact solution algorithm based on a branch-and-price implementation utilizing
the formulation (SPP). First, we strengthen the original formulation by adding the
following additional valid constraints:

∑
p∈Pj

aipzp − t j ≤0 ∀i ∈ I,∀ j ∈ J, (26)

∑
j∈J

t j ≥NF , (27)

∑
p∈Pj

zp = v j ∀ j ∈ J, (28)

∑
j∈J

v j ≥
⌈

∑i∈I Di

CV

⌉

(29)

v j ≥ t j ∀ j ∈ J, (30)
v j ∈ Z

+ ∀ j ∈ J, (31)

where v j represents the number of vehicles used at facility j, ∀ j ∈ J and NF is a
lower bound on the number of facilities that must be opened in any integer solution,
calculated as follows:

NF = argmin{l=1,...,|J|}

(
l

∑
t=1

CF
jt ≥ ∑

i∈I
Di

)

s.t. CF
j1 ≥CF

j2 ≥ ... ≥CF
jn .

Constraints (26) force a facility to be open if any customer is assigned to it. Con-
straint (27) sets a lower bound on the total number of facilities required in any
integer feasible solution. Constraints (26) (from Berger et al (2007) and Akca et al
(2008)) and constraint (27) (from Akca et al (2008)) are shown computationally to
improve the LP relaxation of the model. Constraints (28) are only added to facil-
itate branching on the integrality of the number of vehicles at each facility in the
branch-and-price algorithm. Constraint (29) sets a lower bound for the total number
of vehicles in the solution. Finally, constraints (30) force the number of vehicles
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used at a facility to be at least 1 if the facility is open. We refer to formulation
(11)–(15) and (26)–(31) as (SP-LRP) in the rest of the paper.

The formulation (SP-LRP) contains a variable for each possible vehicle route
originating from each facility. Hence, the number of routes will be too large to enu-
merate even for small instances. To solve the LP relaxation of models that contain
exponentially many columns, column generation algorithms can be used. By solv-
ing a sequence of linear programs and dynamically generating columns eligible to
enter the basis, such an algorithm implicitly considers all columns but generates
only those that may improve the objective function. In order to generate integer
solutions, a branch-and-bound approach is used in combination with the column
generation and the overall approach is referred to as branch-and-price. Desrochers
et al (1992), Vance et al (1994), Berger et al (2007), and Akca et al (2008) provide
examples of branch-and-price algorithms from the literature.

Here, we modify the branch-and-price algorithm used in Akca et al (2008) to
solve the LRSP. Therefore, some parts of the algorithm are described only briefly.
For details, we refer the reader to Akca et al (2008). To initialize the algorithm, we
construct a restricted master problem (RMP), that is, an LP relaxation of (SP-LRP)
that contains all facility variables (t j for j ∈ J) and vehicle variables (v j for j ∈ J),
but only a subset of the vehicle route variables (zp for p ∈ P). The branch-and-price
algorithm consists of two main components: an algorithm for solving the pricing
problem or column generation subproblem, which is used to construct new columns
in each iteration, and branching rules, which specify how to partition the feasible re-
gion into subsets to which the algorithm is then applied recursively until exhaustion.

At each iteration of the solution process for the LP relaxation of (SP-LRP), the
objective of the column generation subproblem is to find a feasible vehicle route
originating from each facility j ∈ J with minimum reduced cost with respect to the
current dual solution of the RMP. The reduced cost of a given route p ∈ P is

Ĉp = Op − ∑
i∈N

aipπi + ∑
i∈N

aipDiμ j + ∑
i∈N

aipσ ji −ν j, (32)

where π , μ , σ and ν are the dual variables associated with constraints (12), (13),
(26), and (28), respectively, from the RMP. Hence, the column generation subprob-
lem for facility j ∈ J can be formulated as follows:

Minimize ∑
i∈M

(∑
k∈I

(Oik −πk +Dkμ j +σ jk)xik +Oi jxi j)−ν j (33)

s.t. y j = 1, (34)

∑
k∈M

xik = ∑
k∈M

xki = yi ∀i ∈ I, (35)

yi − ∑
k∈S

∑
l∈V\S

xkl ≤0 ∀S ⊆ I, i ∈ S, (36)

∑
i∈I

Diyi −CV ≤0, (37)

xik ∈ {0,1} ∀i,k ∈ M, (38)
yi ∈ {0,1} ∀i ∈ M, (39)
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where M = I∪{ j}, xik = 1 if link (i,k) is used in solutions, and yi = 1 if customer i
is assigned to the route.

The column generation subproblem above can be seen as an instance of the
well-known elementary shortest path problem with resource constraints (ESPPRC),
which is well-studied and arises as a subproblem in many different routing appli-
cations. To cast the above subproblem as an ESPPRC, we consider a network with
|I|+ 2 nodes, one node for each customer, one for the facility j as a source node
and a copy of the facility j as a sink node. We assign each customer node a demand
equal to its demand in the original problem and let the cost of each arc (i, l) in the
network equal the coefficient of xil in (33). A shortest path from source to sink vis-
iting a customer at most once (called elementary) and satisfying the constraint that
the total demand of customers included in the path does not exceed the vehicle ca-
pacity then corresponds to a vehicle route. The total cost of the path plus the fixed
cost −ν j is the reduced cost of the associated column.

To solve the ESPPRC, we use Feillet et al (2004)’s label setting algorithm with
a single resource (the vehicle capacity). In the algorithm, each path from source to
sink that is not dominated by another with respect to vehicle capacity, cost, and the
set of nodes that can still be visited is explored. More details on the variants of this
approach that were used in the computational experiments are given in Section 3.2
below.

When the pricing problem cannot identify any more columns with negative re-
duced cost, then the current solution to the LP relaxation of the master problem is
optimal. If this optimal LP solution is not integral, then we are forced to branch. De-
vising good branching rules is an important step in developing a branch-and-price
algorithm. Since the LP relaxations of the new nodes generated after branching are
also solved using column generation, the branching constraints must be incorpo-
rated into the pricing problem and the columns to be generated must satisfy branch-
ing constraints for the node. Therefore, the specific branching rules employed may
affect the structure of the pricing problem, causing it to become more difficult to
solve. Here, we implement the same four branching rules we used for our work on
the LRSP: branching on fractional variables t and v, forcing/forbidding the assign-
ment of a specific customer to a specific facility, and forcing/forbidding flow on a
single arc (originally used in Desrochers and Soumis (1989)). All branching rules
can easily be incorporated into the pricing problem without changing the structure.
Details on the effect of these rules on the pricing problem and the implementation
of them can be found in Akca et al (2008).

3.2 Solving the Column Generation Subproblem

The ESPPRC is an NP-hard optimization problem, but small instances may gen-
erally be solved effectively in practice using dynamic programming-based labeling
algorithms. In general, the number of labels that must be generated and evaluated in
the label setting algorithm increases as either the number of customers or the vehicle
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capacity increases. To enhance efficiency, we therefore augment the basic scheme
with some heuristic versions of the algorithm, since it is not necessary to find the
column with the most negative reduced cost in every iteration. We refer to the exact
pricing algorithm (that is guaranteed to produce a column with the smallest reduced
cost) as ESPPRC. The following are heuristic versions of the exact algorithm and
are not guaranteed to produce a column with negative reduced cost when one exists.

ESPPRC-LL(n). The ESPPRC algorithm keeps all non-dominated labels at each
node. Depending on the size of the instance, the number of labels kept can become
very large. In this heuristic version proposed by Dumitrescu (2002), we set a limit n
on the number of unprocessed labels stored at each node. At each iteration, labels are
sorted based on reduced cost and among the unprocessed labels, the n with smallest
reduced cost are kept and the rest are permanently deleted. Therefore, the ESPPRC-
LL(n) algorithm tends to terminate much more quickly than the ESPPRC for small
values of n.

ESPPRC-CS(n). The ESPPRC algorithm is efficient for instances with small
numbers of customers. In addition, the total number of customers in a route is re-
stricted by the vehicle capacity. To be able to take advantage of this, we choose a
subset of customers CS with size n based on the cost of arcs in the network (coef-
ficients of link variables in (33)). Since the objective of the pricing problem is to
find a route with smallest reduced cost, we determine the n customers in the subset
by constructing a minimum spanning tree over the customer locations. We stop the
spanning tree algorithm when we have n customers in the tree. The first customer
in the subset (and the tree) is chosen based on the cost of the links from source
to customers. Then to find valid vehicle routes, we run ESPPRC that include only
customers in CS.

2-Cyc-SPPRC-PE(n). The shortest path problem with resource constraints (SP-
PRC) is a relaxation of the ESPPRC in which the path may visit some customers
more than once. The SPPRC is solvable in pseudo-polynomial time, but use of this
further relaxation of the column generation subproblem results in reduced bounds.
Eliminating solutions containing cycles of length two strengthens this relaxation of
the pricing problem and improves the bound (for details of the algorithm, see Irnich
and Desaulniers (2005)). We refer to this pricing algorithm as 2-Cyc-SPPRC. In ad-
dition, we can also generate paths that are elementary with respect to a given subset
of customers. We call the resulting algorithm 2-Cyc-SPPRC-PE(n), where n is the
size of the customer set to be considered. At each iteration of the pricing problem,
for each facility, the algorithm consists of the following steps:

1. Solve the 2-Cyc-SPPRC.
2. Consider the column with minimum cost and choose at most m customers that

are visited more than once. Let CE1 be the set of these customers. If the set is
empty, stop (the path is already elementary).

3. Solve 2-Cyc-SPPRC-PE(m) with set CE1 from step 2.
4. Pick at most m customers that are visited more than once. Let CE2 be the set of

these customers. Let CE3 = CE1 ∪CE2 and m3 = |CE3|. If the set is empty, let
CE3 = CE1 and stop.

5. Solve 2-Cyc-SPPRC-PE(m3) with set CE3.
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In our experiments, we generally had the same set of customers CE3 in every step
of the column generation. Thus, we decided to determine set CE3 for each facility at
the first iteration of column generation at each node, and we use the same set for the
rest of the iterations at the node.

For computational testing, we implemented four variants of the branch-and-price
algorithm based on the above pricing schemes.

• Heuristic Branch-and-Price (HBP): The purpose of this algorithm is to pro-
vide a good upper bound. At each node of the tree, we use ESPPRC-CS(n) and
ESPPRC-LL(m) with small values of n and m (n is chosen to be 12 to 15 depend-
ing on the average demand and the vehicle capacity, while m is chosen to be 5
or 10). In addition, we also used combinations of ESPPRC-CS(n) and ESPPRC-
LL(m) for larger values of n. In the algorithm, we use an iteration limit for the
number of pricing problems solved at any node of the tree. If the number of
iterations exceeds the limit, we branch.

• Elementary Exact Branch-and-Price (EEBP): The purpose of this algorithm is to
prove the optimality of the solution or provide an integrality gap. At each node
of the tree, we use ESPPRC-CS(n), ESPPRC-LL(m) and ESPPRC.

• 2 Step Elementary Exact Branch-and-Price (EEBP-2S): In this variant, HBP is
run first to generate initial columns and an upper bound. Then, EEBP is initiated
with the columns and the upper bound obtained from HBP.

• Non-elementary Exact Branch-and-Price (NEBP): This is similar to elemen-
tary exact branch-and-price algorithm except that the pricing problem solved is
2-Cyc-SPPRC-PE(n).

4 Computational Results

In this section, we discuss the performance of our branch-and-price algorithm for
the LRP on two sets of instances. The first set contains the LRP instances used in
Barreto et al (2007) that are available from Barreto (2003). We used these instances
to test the performance of our HBP and NEBP algorithms. The second set of in-
stances were random instances we generated to test the performance of our EEBP
and EEBP-2S algorithms. We evaluate the effect of facility capacity constraints and
other parameters using this set of instances. For all of our experiments, we used a
Linux-based workstation with a 1.8 GHz processor and 2GB RAM.

4.1 Instances From the Literature

To the best of our knowledge, there are no benchmark instances available specifi-
cally for the LRP. Barreto et al (2007) used the instances in the literature available
for other types of problems to construct a set of LRP instances. They report lower
bounds found by applying a branch-and-cut algorithm to the two-index formulation
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Table 1 Performance of Heuristic Branch-and-Price

Instance LB1 Barreto et al (2007) Heuristic Branch-and-Price
UB2 Gap UB Gap CPU(s)

Gaskell67-21x5 424.9∗ 435.9 2.59 424.9 0 1.2
Gaskell67-22x5 585.1∗ 591.5 1.09 585.1 0 41.5
Gaskell67-29x5 512.1∗ 512.1 0 512.1 0 67.7
Gaskell67-32x5 556.5 571.7 2.73 562.3 1.04 10801.8
Gaskell67-32x5-2 504.3∗ 511.4 1.41 505.8 0.3 85.6
Gaskell67-36x5 460.4∗ 470.7 2.24 460.4 0 1077.6
C69-50x5 549.4 582.7 6.06 565.6 2.95 239.4
C69-75x10 744.7 886.3 19.01 852.1 14.42 10802.3
C69-100x10 788.6 889.4 12.78 929.5 17.86 10836.6
Perl83-12x2 204∗ 204 0 204.0 0 0.2
Perl83-55x15 1074.8 1136.2 5.71 1121.8 4.37 10800.0
Perl83-85x7 1568.1 1656.9 5.66 1668.2 6.38 10813.8
Min92-27x5 3062∗ 3062 0 3062.0 0 4.2
Min92-134x8 – 6238 – 6421.6 – 10850.9
Dsk95-88x8 356.4 384.9 8 390.6 9.58 10808.9
1 Reported by Barreto (2004), found using branch-and-cut
2 Reported by Barreto et al (2007), found using a heuristic
∗ Branch-and-cut used in Barreto (2004) proves the optimality

of the problem (Barreto, 2004) and upper bounds found by applying a sequential
heuristic based on clustering techniques (Barreto et al, 2007). They listed 19 in-
stances, three of which have more than 150 customers, too large for our approach
to work efficiently. We removed these three instances plus one more with 117 cus-
tomers and fractional demand, since we assume integer demands. The labels of the
instances denote the source of the instance and the number of customers and facili-
ties in the instances (for more details about the references, see Barreto (2003)).

We first ran HBP with a time limit of 3 CPU hours, focusing on producing quality
upper bounds. Table 1 presents the instances we tested and compares the results
with the upper bounds reported in Barreto et al (2007). Since neither our HBP nor
Barreto et al (2007) can provide a valid lower bound for the problem, we used the
best lower bounds as found in Barreto (2004) (second column in Table 1) to measure
the quality of our upper bound. The “Gap” in Table 1 is the percent gap between the
upper bound and the LB listed in the second column. HBP is capable of finding
better upper bounds (usually optimal) for the instances of small and medium size.
In these cases, the computation time is also very short. However, for larger instances,
the upper bounds reported by Barreto et al (2007) are generally better. In addition,
their heuristic algorithm is very efficient—they report that in most of the instances,
it provides the result in less than one second.

Next, we used the EEBP-2S algorithm to test the ability to produce lower bounds
and prove optimality. With this algorithm, we could not solve all of the instances
within the total time limit of 5 CPU hours (3 CPU hours for HBP and 2 CPU hours
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Table 2 Performance of 2 Step Elementary Exact Branch-and-Price

Instance LB OPT/BestIP Gap CPU(s) Total CPU(s)
Gaskell67-21x51 424.9 424.9 0 3.0 3.0
Gaskell67-22x5 585.1 585.1 0 2999.9 3041.4
Gaskell67-32x5 544.1 562.3 3.24% 8453.1 19254.9
Perl83-12x21 204.0 204.0 0 0.2 0.2
Min92-27x5 3062.0 3062.0 0 833.6 837.8
1 EEBP algorithm is used

Table 3 Performance of Non-elementary Exact Branch-and-Price

Instance LB OPT/BestIP Gap CPU(s)
Gaskell67-29x5 441.2 512.1 13.85% 14411.5
Gaskell67-32x5-2 494.4 505.8 2.26% 5654.8
Gaskell67-36x5 455.5 460.4 1.05% 100.1
C69-50x5 526.2 565.6 6.96% 2634.1
C69-75x10 693.5 852.1 18.62% 8785.8
Perl83-55x15 852.3 1121.8 24.02% 319.5
Perl83-85x7 1272.4 1668.2 23.73% 1379.6

for EEBP). The lower bounds found by our algorithm, along with the best integer
solution found, optimality gap, and computation time are reported in Table 2. Note
that because Gaskell67-21x5 and Perl83-12x2 are very easy to solve, we used the
EEBP algorithm instead of the EEBP-2S algorithm in these cases.

Finally, for instances that we could not provide lower bounds by using the EEBP
or the EEBP-2S algorithm, we used the NEBP algorithm with a time limit of 5 CPU
hours or evaluated node limit of 50 nodes. The results are reported in Table 3. For
the instances C69-100x10, Min92-134x8 and Dsk95-88x8, we could not solve even
the root node within the time limit.

In general, the lower bounds found by using branch-and-cut (Barreto, 2004) are
better than our lower bounds. However, in some cases, their computation times
are much larger than our time limits. The HBP algorithm can provide good upper
bounds, but for the medium and large size problems, we need to improve our lower
bounding, perhaps by adding dynamic cut generation to our algorithm in order to
close the optimality gap.

4.2 Random Instances

On random instances, Laporte et al (1986) provided computational results for
an exact method (branch-and-cut algorithm) for the capacitated LRP. Belenguer
et al (2006) also developed a branch-and-cut algorithm for the capacitated LRP,
but neither the details of the instances nor the computational results are publicly
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available. Therefore, we evaluated our algorithm by generating random instances
as in Laporte et al (1986), where they generated instances with 10, 15 and 20 cus-
tomers and 4 to 8 facilities. In addition to these, we generated instances with 30 and
40 customers and 5 facilities to test the performance of the algorithm on larger in-
stances. The coordinates of the customers and the facilities and the demand of each
customer were generated using a Uniform distribution on [0,100]. We then calcu-
lated the Euclidean distance between each pair of customers and between customers
and facilities and rounded the calculated distance to two decimal places. Demand
for each customer was rounded to the nearest integer. Vehicle capacity CV was cal-
culated as

CV = (1−α)maxi∈I{Di}+α ∑
i∈I

Di, (40)

where α was a parameter and the values were chosen in set {0, 0.25, 0.5, 0.75, 1}.

4.2.1 Small and Medium Random Instances

Laporte et al (1986) solved location and routing problems with capacitated vehicles,
but they did not have a facility capacity. Instead, they had a lower and upper bound
for the total number of facilities that could be open in a solution. In this experiment,
in order to provide a better comparison of our algorithm with that of Laporte et al
(1986), we removed constraint (13) from the SP-LRP. We set NF , the minimum
number of open facilities in (27), to 1, and we added constraint ∑ j∈J t j ≤ MF , where
MF be the maximum number of facilities that can be open in any solution. Facility
and vehicle fixed costs were set to be zero. As in Laporte et al (1986), three groups
of instances with different numbers of customers and facilities were available. For
each group, five different vehicle capacities were calculated by changing α . Some
details about the instances are listed in Table 4.

Tables 5, 6 and 7 present the results achieved with our branch-and-price algo-
rithm. Instances listed in these tables are labeled with the number of customers,
facilities and with letters {a,b,c,d,e} based on the α value used. For example, the
instance r10x4-a-1 has 10 customers, 4 facilities and α = 0. The integer from 1 to 3
after the letters represents the id of the instances within the same group. The tables
present the name of each instance, the LP solution value at the root node, the opti-
mal solution value, the number of evaluated nodes, and the CPU time in seconds. In
these instances, we first ran the EEBP algorithm for 5 minutes and if the algorithm
did not terminate within 5 minutes, we switched to the EEBP-2S algorithm. Table 5

Table 4 Details for the instances

# of Customers # of Facilities NF MF # of instances α
10 4 1 3 3 {0, 0.25, 0.5, 0.75, 1}
15 6 1 4 3 {0, 0.25, 0.5, 0.75, 1}
20 8 1 5 3 {0, 0.25, 0.5, 0.75, 1}
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Table 5 Performance of Elementary Exact Branch-and-Price for 10 customer instances

Instance LP OPT. # of Nodes CPU(s)
r10x4-a-1 472.11 472.11 1 0.00
r10x4-a-2 421.44 421.44 1 0.00
r10x4-a-3 548.28 548.28 1 0.02
r10x4-b-1 313.01 313.18 3 0.04
r10x4-b-2 297.57 305.27 19 0.08
r10x4-b-3 352.66 354.92 3 0.03
r10x4-c-1 257.25 257.25 1 0.06
r10x4-c-2 259.76 259.76 1 0.04
r10x4-c-3 296.82 296.82 1 0.05
r10x4-d-1 243.42 257.25 21 0.52
r10x4-d-2 250.04 250.04 1 0.04
r10x4-d-3 296.82 296.82 1 0.04
r10x4-e-1 226.46 226.46 1 0.32
r10x4-e-2 225.82 225.82 1 0.17
r10x4-e-3 272.85 272.85 1 0.31

Table 6 Performance of Elementary Exact Branch-and-Price for 15 customer instances

Instance LP OPT. # of Nodes CPU(s)
r15x6-a-1 435.2 435.2 1 0.01
r15x6-a-2 663.32 663.32 1 0.01
r15x6-a-3 411.45 411.45 1 0.01
r15x6-b-1 313.46 313.46 1 0.31
r15x6-b-2 414.65 414.65 1 0.21
r15x6-b-3 285.01 285.01 1 0.12
r15x6-c-1 313.46 313.46 1 3.1
r15x6-c-2 392.75 392.75 1 1.98
r15x6-c-3 279.82 279.82 1 5.37
r15x6-d-1 313.36 313.46 3 4.92
r15x6-d-2 378.76 378.76 1 9.41
r15x6-d-3 279.82 279.82 1 14.13
r15x6-e-1 305.86 312.18 5 9.82
r15x6-e-2+ 374.86 374.86 1 16.62+

r15x6-e-3 274.22 274.22 1 300.01
+ The EEBP-2S algorithm was used, total time is reported.

presents the results for instances with 10 customers, Table 6 presents instances with
15 customers, and Table 7 presents instances with 20 customers. We marked the
instances with a “+” sign if the EEBP-2S algorithm was used. For problems with at
least 20 customers, we needed to use the EEBP-2S algorithm. The branch-and-price
algorithm was very successful in finding the optimal solution quickly. In general, our
computation times were much smaller than those reported by Laporte et al (1986),
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Table 7 Performance of Elementary Exact Branch-and-Price for 20 customer instances

Instance LP OPT. # of Nodes CPU(s)
r20x8-a-1 639.77 653.11 57 0.41
r20x8-a-2 542.23 551.58 25 0.98
r20x8-a-3 760.42 760.42 1 0.05
r20x8-b-1 415.3 417.13 7 8.35
r20x8-b-2 383.19 383.19 1 6.32
r20x8-b-3 439.18 447.72 121 37.32
r20x8-c-1+ 398.34 398.34 1 26.25+

r20x8-c-2+ 363.86 363.86 1 110.87+

r20x8-c-3+ 402.85 402.85 1 28.74+

r20x8-d-1+ 392.26 392.26 1 10.04+

r20x8-d-2+ 359.49 359.49 1 200.29+

r20x8-d-3+ 402.85 402.85 1 124.24+

r20x8-e-1+ 392.28 392.28 1 12.39+

r20x8-e-2+ 355.39 355.39 1 82.77+

r20x8-e-3+ 402.46 402.46 1 103.27+

+ The EEBP-2S algorithm is used, total time is reported.

but it is difficult to make a fair comparison, given advances in computing technol-
ogy. In most of the instances, the LP solution found by our algorithm at the root
node was the optimal.

The instances become more difficult when the vehicle capacity increases (α in-
creases) because the number of labels generated in the pricing problem depends di-
rectly on the vehicle capacity. Laporte et al (1986) observed the reverse effect with
regard to their branch-and-cut algorithm. The number of cuts generated increases
and the problem gets more difficult when the vehicle capacity is small. This is most
likely due to the fact that the problem structure becomes more like that of the travel-
ing salesman problem (TSP) as the capacity is increased and the TSP is much easier
to solve by branch and cut than as a capacitated routing problem.

To strictly differentiate the instances from those with a single depot, we exper-
imented with changing the value of parameter NF , the minimum number of open
facilities, to 2 and ran the r15x6 and r20x8 b and c instances. There were no signifi-
cant changes in the computational times or the number of evaluated nodes. We then
added facility capacities to the same set of problems and ran our algorithm again.
Table 8 presents the computational results, as well as the facility capacity values
used for the facilities. The capacity value was chosen in order to require at least two
open facilities. The computational results do not show any significant difference
from those of the uncapacitated instances. For larger instances, we expect that the
LP solution times will tend to increase if the master problem has facility capacity
constraints. Adding a facility capacity to a two-index vehicle flow formulation re-
quires an additional set of constraints (Belenguer et al, 2006), the size of which can
be large. In a branch-and-cut algorithm, it may require additional time to generate
this set of constraints.
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Table 8 Instances with Capacitated Facilities

Instance Fac. Cap LP OPT. # of Nodes Total Time
cr15x6-c-1 600 299.07 299.07 1 1.15
cr15x6-c-2 600 392.75 392.75 1 2.53
cr15x6-c-3 600 279.82 279.82 1 1.86
cr15x6-d-1 700 299.07 299.07 1 0.57
cr15x6-d-2 700 378.76 378.76 1 6.42
cr15x6-d-3 700 279.82 279.82 1 11.01
cr20x8-c-1 750 398.34 398.34 1 40.46
cr20x8-c-2 750 363.86 363.86 1 88.12
cr20x8-c-3 750 402.85 402.85 1 15.25
cr20x8-d-1 900 392.29 392.29 1 29.1
cr20x8-d-2 750 359.49 359.49 1 257.94
cr20x8-d-3 900 402.85 402.85 1 31.3

Laporte et al (1986) report that adding facility fixed costs to the problem makes
the problem easier. We added facility fixed costs to r15x6 and r20x8 b and c in-
stances. The performance of the branch-and-price algorithm was not affected in
instances with 15 customers. However, for some of the 20 customer instances, the
computational times exceeded 2 CPU hours (for the results, see Akca (2008)).

4.2.2 Large Random Instances

In this section, we present the results of applying our algorithm to larger capacitated
random instances. We generated 6 instances with 30 customers and 6 instances with
40 customers. Each instance had 5 facilities with capacity constraints. The facilities
had a fixed cost of 100. The characteristics of each instance are listed in Table 9.
The first column includes the name of each instance, labeled based on the number
of customers and facilities and the vehicle capacity. For instances in group “a” the
vehicle capacity value (listed in the fourth column) was chosen to be 7 times the
average demand and for group “b”, the vehicle capacity value was 5.5 times the
average demand. Facility capacity (listed in the second column) was chosen based
on total demand such that at least two facilities (the minimum number of facilities
is listed in the third column) should be open in an integer solution.

We used the EEBP-2S algorithm in which the HBP and EEBP algorithms were
both used with a time limit of 3 CPU hours. Table 10 presents the results of both
steps. The algorithm was very successful in finding optimal or near-optimal solu-
tions for these larger instances. Some details, such as the number of open facilities,
the number of vehicles used at each open facility, the average number of customers
in each route (vehicle), and the number of customers in the longest route, are pre-
sented in Table 9.
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Table 9 Characteristics of the Instances and the Optimal Solutions

Instance OPT/BestIP Solution Info
Name Fac. NF LV # of # of Avg. # of # of Cust.

Cap. Fac. Vec. Cust/route longest route
cr30x5a-1 1000 2 350 2 3,2 6 8
cr30x5a-2 1000 2 350 2 3,2 6 7
cr30x5a-3 1000 2 350 2 3,3 5 7
cr30x5b-1 1000 2 275 2 3,2 6 8
cr30x5b-2 1000 2 275 2 4,3 4.29 7
cr30x5b-3 1000 2 275 2 3,4 4.29 6
cr40x5a-1 1750 2 340 2 3,3 6.67 8
cr40x5a-2 1750 2 390 2 3,4 5.71 8
cr40x5a-3 1750 2 370 2 3,3 6.67 7
cr40x5b-1 1750 2 275 2 3,5 5 7
cr40x5b-2 1750 2 275 2 3,5 5 7
cr40x5b-3 1750 2 325 2 5,3 5 7

Table 10 Performance of the EEBP-2S for Instances up to 40 Customers with Capacitated Facili-
ties and Facility Fixed Cost

Instance HBP EEBP Total
IP CPU(s) LP IP Gap # of N. CPU(s) CPU (s)

cr30x5a-1 819.53 43.5 810.29 819.5 0 33 993.3 1036.8
cr30x5a-2 823.49 7202.3 790.49 823.49 2.55 500 10806.5 18008.8
cr30x5a-3 702.29 44.2 687.72 702.19 0 51 917.9 962.1
cr30x5b-1 880.02 164.3 865.47 880.01 0 251 6420.6 6585
cr30x5b-2 825.32 8.3 815.95 825.3 0 7 33.2 41.5
cr30x5b-3 884.62 13.4 881.33 884.55 0 19 41.7 55.1
cr40x5a-1 928.11 631.8 911.39 928.11 1.49 11 10882.8 11514.6
cr40x5a-2 888.37 378.4 871.66 888.37 0.93 13 11052.9 11431.3
cr40x5a-3 947.24 173 939.54 947.24 0.18 28 10862 11035
cr40x5b-1 1052.07 257.3 1043.62 1052 0 627 8084.6 8342
cr40x5b-2 981.52 60.1 976.88 981.27 0 47 862.5 922.7
cr40x5b-3 964.32 62.6 959.05 964.23 0 45 963 1025.6

5 Conclusion

We have presented a set-partitioning-based formulation for the capacitated location
and routing problem, which to our knowledge is the first of its kind for this class
of problem. We have demonstrated that it can be obtained by applying Dantzig-
Wolfe decomposition to the graph-based formulation employed in most previously
reported research. We have described a branch-and-price algorithm and reported on
our experience using it to solve both problems from the literature and randomly
generated instances. Our experiments indicate that the algorithm is very effective
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at producing quality solutions and can handle larger instances than previously sug-
gested approaches, which have been primarily based on two-index formulations.
The approach, however, does not seem as effective at producing quality lower
bounds. This is likely due to the absence of dynamic cut generation. The next step in
this research will be to incorporate the generation of known classes of valid inequal-
ities into our algorithm. This should produce an algorithm exhibiting the advantages
of both the branch-and-price and branch-and-cut approaches.
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Using Oriented Random Search to Provide a Set
of Alternative Solutions to the Capacitated
Vehicle Routing Problem
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and Xavier Vilajosana

Abstract In this paper we present SR-GCWS, a simulation-based algorithm for the
Capacitated Vehicle Routing Problem (CVRP). Given a CVRP instance, the SR-
GCWS algorithm incorporates a randomness criterion to the classical Clarke and
Wright Savings (CWS) heuristic and starts an iterative process in order to obtain a
set of alternative solutions, each of which outperforms the CWS algorithm. Thus, a
random but oriented local search of the space of solutions is performed, and a list
of “good alternative solutions” is obtained. We can then consider several properties
per solution other than aprioristic costs, such as visual attractiveness, number of
trucks employed, load balance among routes, environmental costs, etc. This allows
the decision-maker to consider multiple solution characteristics other than just those
defined by the aprioristic objective function. Therefore, our methodology provides
more flexibility during the routing selection process, which may help to improve the
quality of service offered to clients. Several tests have been performed to discuss the
effectiveness of this approach.

Key words: Capacitated Vehicle Routing Problem, heuristics, Monte Carlo
simulation

Angel A. Juan, Miquel Gilibert and Xavier Vilajosana
Dep. of Computer Science and Telecommunication, Open University of Catalonia,
Rambla Poblenou, 156, 08018 Barcelona, Spain
{ajuanp, mgilibert, xvilajosana}@uoc.edu

Javier Faulin and Barry Barrios
Dep. of Statistics and Operations Research, Public University of Navarre,
Campus Arrosadia, 31006 Pamplona, Spain
javier.faulin@unavarra.es, bcubeb3@mit.edu

Rubén Ruiz
Dep. of Statistics, Applied OR and Quality, Valencia University of Technology,
Camino de Vera, s/n, 46022 Valencia, Spain
rruiz@eio.upv.es

J.W. Chinneck et al. (eds.), Operations Research and Cyber-Infrastructure, Operations 331
Research/Computer Science Interfaces Series 47, DOI: 10.1007/978-0-387-88843-9 17,
c© Springer Science+Business Media, LLC 2009



332 A.A. Juan et al.

1 Introduction

In the Capacitated Vehicle Routing Problem (CVRP), a fleet of vehicles supplies
customers using resources available from a depot or central node. Each vehicle has
the same capacity (homogeneous fleet) and each customer has a certain demand that
must be satisfied. Additionally, there is a cost matrix that measures the costs associ-
ated with moving a vehicle from one node to another. These costs usually represent
distances, traveling times, number of vehicles employed or a combination of these
factors. More formally, we assume a set Ω of n+1 nodes, each of them representing
a vehicle destination (depot node) or a delivery point (demanding node). The nodes
are numbered from 0 to n, node 0 being the depot and the remaining n nodes the de-
livery points. A demand qi > 0 of some commodity has been assigned to each non-
depot node i (1 ≤ i ≤ n). On the other hand, E = {(i, j)/i, j ∈ Ω ; i < j} represents
the set of the n · (n+1)/2 existing edges connecting the n+1 nodes. Each of these
links has an associated aprioristic cost, ci j > 0, which represents the cost of sending
a vehicle from node i to node j. These ci j are assumed to be symmetric (ci j = c ji,
0 ≤ i, j ≤ n), and they are frequently expressed in terms of the Euclidean distance,
di j, between the two nodes. The delivery process is to be carried out by a fleet of NV
vehicles (NV ≥ 1) with equal capacity, C � max{qi/1 ≤ i ≤ n}. Some additional
constraints associated to the CVRP are the following (Laporte et al. 2000):

1. Each non-depot node is supplied by a single vehicle
2. All vehicles begin and end their routes at the depot (node 0)
3. A vehicle cannot stop twice at the same non-depot node
4. No vehicle can be loaded exceeding its maximum capacity

Different approaches to the CVRP have been explored during the last decades
(Toth and Vigo 2002, Golden et al. 2008). These approaches range from the use
of pure optimization methods, such as linear programming, for solving small-
size problems with relatively simple constraints to the use of heuristics and meta-
heuristics that provide near-optimal solutions for medium and large-size problems
with more complex constraints. Most of these methods focus on minimizing an apri-
oristic cost function subject to a set of well-defined constraints. However, real-life
problems tend to be complex enough so that not all possible costs, e.g., environ-
mental costs, work risks, etc., constraints and desirable solution properties, e.g.,
time or geographical restrictions, balanced work load among routes, solution attrac-
tiveness, etc., can be considered a priori during the mathematical modeling phase
(Poot et al. 2002, Kant et al. 2008). For that reason, there is a need for more flex-
ible methods that provide a large set of alternative near-optimal solutions with dif-
ferent properties, so that decision-makers can choose among different alternative
solutions according to their concrete necessities and preferences. Furthermore, in
a recent critical review by (Laporte 2007), the author clearly states “When report-
ing results, most researchers concentrate on solution quality and computing time.
While these two measures are undoubtedly important, they do not tell the whole
story. Other qualities such as simplicity of implementation and flexibility are also
important (. . . ) It is also important to design algorithms that can easily handle the
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numerous side constraints that arise in practice”. Consequently, the main purpose of
this paper is to present SR-GCWS, a hybrid algorithm that combines the classical
Clarke & Wright Savings (CWS) heuristic with Monte Carlo Simulation (MCS) to
generate a set of alternative solutions for a given CVRP instance. Each solution in
this set outperforms the CWS heuristic, but it also has its own characteristics and
therefore constitutes an alternative possibility for the decision-maker where several
side constraints can be considered.

The rest of the paper is structured as follows: Section 2 reviews some relevant
CVRP literature, including the use of MCS in VRP; Section 3 introduces the main
ideas behind our approach; Section 4 explains in detail the methodology we used
to introduce randomness in the classical CWS algorithm; Section 5 discusses some
advantages of our approach over other existing approaches; Section 6 explains how
this algorithm has been implemented by means of the object-oriented programming
paradigm; Section 7 discusses some experimental results; finally, Section 8 con-
cludes this paper and highlights its main contributions.

2 Review of Related Work

Exact methods have achieved decent levels of performance, like the sophisticated
method by (Baldacci et al. 2008) where exact solutions to problems up to 100 cus-
tomers are solvable. However, the success rate is variable, as noted by (Laporte
2007). The computational times are extreme in some cases and adding new real
constraints is a challenge in such specialized exact methodologies.

The Clarke and Wright’s Savings (CWS) algorithm (Clarke and Wright 1964) is
probably the most cited method to solve the CVRP. This method uses the concept
of savings associated to each edge. At each step, the edge with the most savings is
selected if and only if the two corresponding routes can feasibly be merged and if
the selected edge comprises of nodes that are not interior to its respective route (a
node is interior to a route if it is not adjacent to the depot). The CWS algorithm
usually provides “good solutions”, especially for small and medium-size problems,
but it also presents difficulties in some cases (Gaskell 1967). Another important
approach to the CVRP is the Sweep method (Gillett and Miller 1974). There are
several variants of the CWS. For instance, (Mole and Jameson 1976) generalized
the definition of the savings function, introducing two parameters for controlling
the savings behavior. Similarly, (Holmes and Parker 1976) developed a procedure
based upon the CWS algorithm, using the same savings function but introducing a
solution perturbation scheme in order to avoid poor quality routes. (Beasley 1981)
adapted the CWS method to the optimization of inter-customer travel times. Corre-
spondingly, (Dror and Trudeau 1986) developed a version of the CWS method for
the Stochastic VRP. Two years later, (Paessens 1988) depicted the main character-
istics of the CWS method and its performance in generic VRP. Recently, the CWS
heuristic has been finely tuned by means of genetic algorithms experimentation by
(Battarra et al. 2009).
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The methodology we present in this paper combines the CWS algorithm with the
use of Monte Carlo simulation (MCS), which can be defined as a set of techniques
that make use of random number generation to solve certain stochastic or determin-
istic problems (Law 2007). MCS has proved to be extremely useful for obtaining
numerical solutions to complex problems which cannot be efficiently solved by us-
ing analytical approaches. (Buxey 1979) was probably the first author in combining
MCS along with the CWS algorithm to develop an algorithm for the CVRP. His
method was redesigned by (Faulin and Juan 2008), who introduced an entropy func-
tion to guide the random selection of nodes. MCS has also been used by (Fernández
de Córdoba et al. 2000) to solve the CVRP.

Other related heuristics that have been proposed to solve the VRP are the GRASP
procedures (Feo and Resende 1995). Likewise, the use of meta-heuristics in VRP
became popular during the nineties. Additionally, and as of late, new powerful hy-
brid metaheuristics are being proposed. Some of the most important papers on the
use of heuristics and meta-heuristics in that moment were (Gendreau et al. 1994),
which introduced the Tabu Route algorithm, and (Laporte et al. 2000), which in-
cludes a thorough discussion of classical and modern heuristics. Some years later,
(Tarantilis and Kiranoudis 2002) presented the Boneroute for routing and fleet man-
agement, and (Toth and Vigo 2003) the Granular Tabu Search as a new method to
solve the CVRP.

Moreover, other important references about meta-heuristics that can be applied
to CVRP are (Alba and Dorronsoro 2004, Berger and Barkaoui 2003), who intro-
duced some genetic algorithms in routing, and (Prins 2004), who developed a new
evolutionary algorithm for the VRP. Additional high performing notorious genetic
search methods are those proposed by (Mester and Bräysy 2005, Mester and Bräysy
2007). Advanced crossover operators are put forward by (Nagata 2007).

Large sized problems are solved efficiently by means of variable neighborhood
search methods by (Kytöjoki et al. 2007). Also (Pisinger and Ropke 2007) proposed
the use of general local search methods working over adaptive large neighborhoods.

Obviously, due to space limitations, a complete review of the vast VRP literature
is not given here. For more detailed reviews, the reader is referred to (Cordeau et al.
2004, Laporte 2007, Gendreau et al. 2008).

3 Our Approach to the CVRP

As we have explained before, our goal here is to develop a methodology that pro-
vides the decision-maker with a set of alternative near-optimal or “good” solutions
for a given CVRP instance. We are not especially interested in obtaining the best
solution from an aprioristic point of view –that is, the solution that minimizes the
aprioristic costs as expressed in the objective function. As we have already pointed,
in practical real situations there are important cost factors, constraints and desirable
solution properties that usually can not be modeled or accounted for a priori. Once
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generated, this list of alternative “good” solutions can be stored in a solutions data-
base so that the decision-maker can perform retrieval queries according to different
criteria or preferences regarding the desirable properties of an ideal “real-life” solu-
tion.

In order to generate this set of “good” solutions, we will make use of Monte
Carlo Simulation –and, in particular, of a random selection criterion–, to randomize
the CWS algorithm and perform an oriented random search in the space of feasible
solutions. To be more specific, given a CVRP instance, we generalize the CWS
algorithm in two ways:

• First, we introduce a random behavior in the solution-construction process of the
CWS algorithm: each time a new edge must be selected from the list of available
edges, we apply a selection criterion which assigns exponentially diminishing
probabilities to each eligible edge based on the edge’s savings value and on a
user-defined parameter β , where 0 < β < 1. Roughly speaking, this parameter
can be interpreted as the probability of selecting the edge with the highest savings
value at each step of the solution-construction process (a more detailed explana-
tion about this selection criterion is given in Section 4).

• Second, we perform a number of iterations, nIter ≥ 1, of the randomized CWS
algorithm. In this iterative process, different values of the β parameter are ex-
plored in what constitutes a simultaneous random search and parameter fine-
tuning process.

To be more precise, our approach is based on a series of simple steps (Fig. 1):

1. Given a CVRP instance, construct the corresponding data model and use the
classical CWS algorithm to solve it.

2. Choose a value for the parameter β for adding random behavior to the algorithm
(a fine-tuning analysis might be necessary at this stage).

Fig. 1 Scheme of our approach for the CVRP
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3. Start an iterative process to generate solutions using the SR-GCWS algorithm
with the user-defined values for parameters β and nIter (notice that an alternative
stopping criterion, such as the maximum computation time allowed or the desired
number of “good” solutions, could also be used instead of this second parameter).

4. At each iteration, save the resulting solution in a database only if it outperforms
the one provided by the CWS algorithm (i.e., we will consider that a solution is a
“good” one only if it outperforms the CWS solution from an aprioristic costs per-
spective). The resulting database should allow sending filtering queries regarding
different solution properties.

Since the parameter β is restricted to the interval (0,1) we expect that this para-
meter will be easy to fine-tune in most practical situations. In different tests that
we have developed, using a default value between β = 0.2 and β = 0.3 has shown
to provide good results without requiring any fine-tuning process. As an alterna-
tive to the use of these default values, a fine-tuning process could be performed by
just running a set of short-run simulations (covering just some hundreds or thou-
sands of iterations) with different values of this parameter. The parameter value
that provides the best solution in the short-run simulations can be then selected
to run a long-run simulation (covering some thousands or even millions of itera-
tions). Nevertheless, a lot of computation time could be required in order to perform
a large number of iterations, especially in the case of large CVRP instances with
hundreds of nodes. In these cases, Parallel and Grid Computing techniques (PGC)
could be employed to accelerate significantly the generation of “good” solutions
(Mohcine et al. 2007).

Due to its nature, we call the resulting algorithm the Generalized CWS of
the SimuRoute project (SR-GWCS) or, more formally SR-GWCS(β ,nIter). Using

this notation, it is easy to verify that SR-GWCS(0.
�

9,1) is just the classical CWS
heuristic.

The next section discusses in more detail the random process that the SR-GWCS
algorithm employs to select edges from the savings list at each step of a given
iteration.

4 Randomizing the CWS Algorithm

As we have described before, at each step of an iteration of the SR-GCWS algo-
rithm, an edge has to be randomly selected from the savings list. This savings list
is simply the list of available edges sorted by their corresponding savings values.
Our algorithm introduces randomness in this process by assigning a probability of
(approximately) β to the first edge in the sorted savings list –the one with the most
savings–, and by assigning probabilities to the rest of the nodes according to an ex-
ponential diminishing pattern, so that edges with higher associated savings receive
higher probabilities of being selected (Fig. 2).
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Fig. 2 Assignment of probabilities to edges

To do this probability assignment process we use the fact that:

+∞

∑
k=1

β · (1−β )k−1 = 1,∀β ∈ (0,1) (1)

Therefore, considering the random variable X =“next edge being selected from the
sorted savings list” and assuming that, at a particular step, the savings list contains
l eligible edges (l ≥ 1) sorted from higher savings (edge 1) to lower savings (edge
l), we can define the following probability distribution:

P(X = k) =
{

β + ε if k = 1
β · (1−β )k−1 if 1 < k ≤ l

(2)

Where:

ε =
+∞

∑
k=l+1

β · (1−β )k−1 = 1−
l

∑
k=1

β · (1−β )k−1 (3)

Our methodology also allows introducing some interesting “risky/conservative”
strategies for the routing selection. In effect, notice that high values of β are con-
servative in the sense that, each time a new edge has to be selected to define a new
merging operation between two routes, they promote the selection of those edges
with the highest savings values. On the contrary, low values of this parameter help
to promote the selection of edges other than the ones with the highest savings val-
ues, which contributes to explore a wider region of the space of solutions. In fact,
this “risky/conservative” strategy is also intrinsically built in the random selection
process for any given value of β : notice from equation (2) that, at each step, the
probability of selecting the edge with the highest savings value is given by the sum
of two terms. The second term, ε , is approximately zero at the beginning of any



338 A.A. Juan et al.

iteration, when the number of edges in the savings list is large, but it continuously
increases its value as this list shrinks after each edge selection. The collateral effect
is the one described next: during the first steps of a given iteration the probability
of selecting the edge with the highest savings will be relatively low –especially if
we are using a “risky” or low value for β , say β = 0.2–, but as the iteration evolves
this probability experiments a continuous increase. At the end, the logic behind this
strategy is that initial steps in a solution-construction could be less conservative in
order to explore more alternative routes but, as the solution evolves, these steps
become more conservative in order to keep high efficiency levels. Notice that this
approach also contributes to avoid the local minimum problem.

5 Additional Comments and Observations

As it has been described before, our approach makes use of an iterative process to
generate a set of random solutions which outperform the classical CWS algorithm.
Each of these solutions is a set of roundtrip routes that, altogether, satisfy all nodes
demand by visiting and serving them. Furthermore, each of these solutions will have
their own unique characteristics regarding properties such as total aprioristic cost,
number of routes or vehicles, visual attractiveness, load balancing, environmental
costs, etc., thus providing more alternatives to the decision-maker, who can choose
the ideal solution according to a set of preferences or non-aprioristic constraints or
additional costs.

The SR-GCWS algorithm has many desirable characteristics. First of all, it is
a simple method which requires little instantiation. With little effort, similar algo-
rithms based on the same key basic idea could be easily developed for other routing
problems and, in general, for other combinatorial optimization problems. Second,
SR-GCWS returns not only one solution or set of routes for the CVRP problem, like
most existing algorithms, but rather a relatively large set of solutions. Such behavior
is highly desirable, as it allows for multiple criteria decision making as the set of so-
lutions can be ranked according to different objectives. Notice that this is somewhat
different to Genetic Algorithms (GAs). While GAs maintains a population of solu-
tions as SR-GCWS does, the size of this population is usually limited to 100 or even
less, which is less than what our SR-GCWS algorithm can provide. Moreover, some
of the most efficient heuristics and metaheuristics are not used in practice because
of the difficulties they present when dealing with real-life problems and restrictions
(Kant et al. 2008). On the contrary, simulation-based heuristics, like the one pre-
sented here, tend to be more flexible and, therefore, they seem more appropriate to
deal with real restrictions and dynamic work conditions.
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6 Software Implementation

We have used an object-oriented approach to implement the described methodology
as a computer program. In order to do this, we have employed the Java programming
language. The implementation process is not a trivial task, since there are some
details which deserve special attention, in particular: (i) the use of a good random
number generator, (ii) a correct design of the different classes, so that convenient
cohesion and coupling levels will be reached, and (iii) the code levels of accuracy
and effectiveness –as an example of this, to perform mathematical operations the
use of the package java.lang.StrictMath is usually preferred over the use
of the more classical package java.lang.Math.

Regarding the generation of random numbers and variates, we have employed the
SSJ library (L’Ecuyer 2002). In particular, we have used the subclass GenF2W32,
which implements a generator with a period value equal to 2800-1.

Furthermore, we needed a software implementation of the classical CWS
heuristic in order to be able to test the efficiency of our approach against the
CWS approach. Since we did not find any available implementation for the CWS
algorithm –either on the Internet or in any book or journal–, we have developed our
own object-oriented implementation of this algorithm. As a matter of fact, there are
several variants of the CWS heuristic, so we decided to base our implementation
in the one described in the following webpage from the Massachusetts Institute
of Technology: <web.mit.edu/urban or book/www/book/chapter6/
6.4.12.htm>

7 Experimental Results

In order to test the efficiency of our approach, we started by using some CVRP in-
stances referenced in (Toth and Vigo 2002). We also used other CVRP instances
from the TSPLIB, a library of instances freely available from the University of
Heidelberg at:
<www.iwr.uniheidelberg.de/groups/comopt/software/TSPLIB
95/>.

At first, we were somewhat concerned with the results of our CWS implemen-
tation, since they did not seem to perfectly match the expected results. After dis-
cussing this matter with Professor Vigo, we understood that the expected CWS
results should be considered with caution, since some of them were obtained by
using CWS implementations that were not making use of real numbers, but only
integer numbers. Moreover, sometimes these integers were obtained by rounding,
while other times they were obtained by direct truncation. These details may have
a significant impact over the CWS results, even for the same instance. Because of
this, we decided to construct and use our own CVRP instances, which always use
real numbers of high precision (all numbers and calculations in our code use the
double Java type).

web.mit.edu/urbanorbook/www/book/chapter6/6.4.12.htm
web.mit.edu/urbanorbook/www/book/chapter6/6.4.12.htm
www.iwr.uniheidelberg.de/groups/comopt/software/TSPLIB95/
www.iwr.uniheidelberg.de/groups/comopt/software/TSPLIB95/
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7.1 Case 1: a small size CVRP

As a first CVRP instance to test our algorithm, we generated a random set of 20
nodes (nodes 1 to 20) uniformly distributed inside the square defined by the corner
points (−100, −100), (−100, 100), (100, 100) and (100, −100). The depot (node 0,
with no demand), was placed at the square center. The demand for each node was
randomly generated (with an average demand of 83 and a maximum individual de-
mand of 144). Finally, a value of 345 was assigned as the vehicle total capacity.
Fig. 3 shows the scatterplot for this instance together with the solution provided by
the classical CWS heuristic. Each point represents a node, and the corresponding
number represents its identification number. In this example, the traveling cost from
one node to other was calculated as the Euclidean distance between the two nodes.
Thus, the CWS heuristic provided a solution with a total cost of 1,221.81.

Similarly, we solved this instance by employing our SR-GCWS algorithm: using
a standard PC (Intel Centrino Duo CPU, 1.6 GHz and 2 GB RAM). It took less
than seven seconds to perform 10,000 iterations (i.e., to generate 10,000 random
solutions); after those iterations SR-GCWS provided 138 alternative solutions with
a lower cost than the CWS heuristic, with a minimal cost solution of 1,173.47, which
is represented in Fig. 4. Notice that this solution significantly differs from the one
provided by the CWS algorithm in at least two aspects other than the total cost, i.e.:
it employs only 5 routes while the CWS employed 6 routes, and its routes do not
overlap, which increases the visual attractiveness of the proposed solution.

Therefore, it seems reasonable to conclude that in small-size scenarios, SR-
GCWS can easily offer a considerable number of alternative solutions that outper-
form the solution provided by the CWS heuristic.

Fig. 3 CWS solution for the 21-node instance
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Fig. 4 SR-GCWS solution for the 21-node instance

7.2 Case 2: a medium size CVRP

As a second CVRP instance, we generated a random set of 50 nodes (nodes 1 to
50) uniformly distributed inside the square defined by the points (−1000, −1000),
(−1000, 1000), (1000, 1000) and (1000, −1000). As before, the depot was node 0
and it had zero demand. Demands for nodes other than the depot were randomly
generated, with an average demand of 162 and a maximum individual demand of
290. Finally, a value of 1,266 was assigned as the vehicle total capacity. Again, we
solved this instance by using the CWS heuristic (Fig. 5) and by using the SR-GCWS
algorithm (Fig. 6).

The solution given by the CWS heuristic has a cost of 17,356.33. After 10,000
iterations, processed in approximately two minutes of computing time, the SR-
GCWS algorithm provided 136 different solutions with a lower cost than the CWS
one. The best of these solutions has a total cost of 17,146.51. Moreover, while the
CWS solution has unbalanced routes with a 3,873.41 cost route, routes in the GCWS
solution are more balanced, with a maximum cost of 3,229.73.

Again, it seems reasonable to conclude that also for medium-size scenarios, SR-
GCWS can easily offer a considerable number of alternative solutions that outper-
form the CWS heuristic.

7.3 Other cases: two large size CVRPs

To test how our algorithm performs in large size scenarios with an important num-
ber of nodes, we also generated two random CVRP instances containing 126 and
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Unbalanced routes

Fig. 5 CWS solution for the 51-node instance

Fig. 6 SR-GCWS solution for the 51-node instance

251 nodes respectively. A value of 1,850 was randomly assigned to be the vehicle
capacity for the 126 nodes scenario. In the case of the 251 nodes scenario, a value
of 1,150 was randomly assigned as the corresponding vehicle capacity. As before,
we solved each of these scenarios both by using the CWS algorithm and by using
the SR-GCWS algorithm.

For the 126 nodes scenario, the CWS algorithm provided a solution with a to-
tal cost of 22,641.17. In this case, the SR-GCWS algorithm employed about six
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Table 1 Summary of results for the different cases

Case
(Number of nodes)

CWS Solution Best
SR-GCWS
Solution

Number of
SR-GCWS
solutions
improving CWS

Time (s)

Case 1 (21) 1,221.81 1,173.47 138 7
Case 2 (51) 17,356.33 17,146.51 136 126
Case 3 (126) 22,641.17 22,012.60 146 401
Case 4 (251) 31,632.49 30,779.79 18 625

and a half minutes to perform 1,000 iterations. From these iterations, a total of
146 solutions outperforming the CWS solution were obtained. The best of these
solutions has a total cost of 22,012.60.

In the case of the 251 nodes scenario, the CWS algorithm provided a solution
with a total cost of 31,632.49. This time, the SR-GCWS algorithm employed about
ten minutes to perform 100 iterations. At the end of this process, a total of 18 so-
lutions outperforming the CWS were obtained, with a minimum cost of 30,779.79.
Notice that both in these large size scenarios, the respective numbers of iterations to
run were reduced to avoid larger computation times. As discussed before, in these
large size scenarios the use of Parallel and Grid Computing could significantly im-
prove the results in most practical situations without having to wait for longer com-
putation times.

Table 1 shows a summary of our results for the previously discussed tests.

8 Conclusions

We have presented here the SR-GCWS algorithm, which combines Monte Carlo
simulation and the Clark and Wright heuristic to provide a set of alternative solu-
tions for the Capacitated Vehicle Routing Problem. The SR-GCWS algorithm has
proven to be effective in scenarios of different sizes, ranging from instances with a
reduced number of nodes to instances with a considerable number of nodes.

One major advantage of simulation-based algorithms is the fact that they provide
not only a good solution to the decision maker, but a set of alternative good solutions
than can be ranked according to different criteria. Another major advantage of our
approach is the flexibility of simulation-based algorithms, which allows them to
deal with realistic situations defined by complex restrictions and dynamic working
conditions. In our opinion, simulation techniques offer a new way to explore some
traditional combinatorial problems, such as the CVRP and many others of similar
characteristics.
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Optimizing Paths in the Presence of Spherical
Impediments

Meike Verhoeven and David L. Woodruff

Abstract This paper provides formulations, solution methods and computational
results for continuous shortest path problems in the presence of spherical impedi-
ments in 3D space. We extend line-of-site methods developed for 2D obstacles to
create starting solutions for a non-linear solver in the 3D world and demonstrate that
the addition of intersection points and surface arcs provides a significant boost. We
compare our sophisticed method with a simple grid search. An important conclusion
is that a grid performs reasonably well and in fact is preferred when the penalties
for traversing the impediments are low. When better solutions in the presence of
high penalty impediments are needed, we provide a method based on a network of
intersection and tangency points which is used to construct a starting point for a
non-linear solver.

Key words: Optimal Path, Sensors, Impediments.

1 Introduction

Some RFID antennae, underwater sea mines, security systems and some simple
types of air defense systems impede objects within a range that is useful to model
as spherical. There are many situations where one might want to be able to find the
shortest path between two points when travel within the range of an impediment
adds a penalty to the distance (or speed). It can also be an important sub-problem
to the problem of selecting impediments for interdiction, selecting impediments to
probe, or the problem of designing a robust sensor network. We use words such as
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impediments and penalty for locutional convenience even though in some applica-
tions we might be interested in solving a sub-problem for which the master problem
considers things such as sensors that do not impeded, but are still modeled as adding
a penalty to the distance.

We concern ourselves with situations where the sensors or impediments are rea-
sonably modeled as having a clear spherical range. Travel outside the range of the
impediments is without penalty or reward and travel inside the range of an imped-
iment is penalized (or rewarded) in proportion to the distance traveled within the
range. This results in a penalty function with gradients that are discontinuous when
they are not constant, which preclude the effective use of many classic methods of
solving path problems using the calculus of variations [5] and the methods used in
planning paths for unmanned air vehicles [9] or aircraft in the presence of radar or
senors with a penalty that is continuous [11].

There has been significant work reported in the literature on two dimensional
problems where the impediments are obstacles, which is an extreme form of im-
pediment. In particular, very good methods have been proposed for finding optimal
paths when there are polygonal obstacles [6]. Earlier work on this problem (e.g.,
[8]) used visibility graphs [10], which were extended by Fishkind et al [7] to the
problem of circular obstacles. The basic idea, which we extend in §3, is to build a
graph that connects points that include those that must be visited in a shortest path
and then find the shortest path through the graph. Extension to three dimensions and
the ability to traverse the impediments adds complications that we address in this
paper.

The next section describes problem formulations. The problem is ultimately dis-
continuous and non-convex, but local optima can be found by a commercial solver
so in §3 we discuss algorithms for finding good starting solutions. Implementations
of the algorithms, problem instances for testing and computational results are de-
scribed in §4. The paper closes with conclusions and directions for further research.

2 Formulations

A general formulation seeks the best path through a connected, closed set of points
A⊂ ℜD from a ∈A to b ∈A where the presence of impediments affects the evalu-
ation of the quality of the path. We will represent the path as a continuous function
p : [0,1] →A. For each point in A a function f : A→ ℜ+ allows us to measure the
distance plus the penalty. The problem, then, is to

min
p

∫ 1

0
f (p(t))dt

subject to:
p(0) = a
p(1) = b
p ∈C([0,1],A).
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However C([0,1],A) is the space of continuous functions, which renders this for-
mulation uncomputable except in special cases. Consequently, we consider approx-
imations to the general problem.

Rather than allowing a fully general penalty function such as f (·), we exploit
a finite list of impediments S ⊂ A where each member s ∈ S has a penalty cs ∈
(−1,∞) and an associated indicator function δs(·) such that δs(x) takes the value
one if point x is in the range of impediment s. This allows us to split the penalty
function and to write our problem formulation as:

min
p

∫ 1

0

(

p(t)+ ∑
s∈S

csδs(p(t))

)

dt (P)

subject to:
p(0) = a
p(1) = b
p ∈C([0,1],A).

If cs < 0 then impediment s is a navigation aid and otherwise it is an impediment of
some sort, such as an impediment whose range is to be avoided. Having cs bounded
below by −1 is an artifact of standardizing to a unit penalty for portions of the path
not in the range of an impediment. To simplify the generation of test instances and
coding of algorithms, we make use of a cube as the region A.

A straightforward solution method is to discretize the space and approximate the
integration with a sum. If we create a finite set of points G ⊂A, then for i, j ∈ G the
path is given by variables pi j which are one if the arc from i to j is in the path and
zero otherwise. The version of problem (P) on a grid G is called (G) and is written
as a shortest path problem:

min
p ∑

i, j∈G

[

Di j pi j

(

1+ ∑
s∈S

csβ (s, i, j)

)]

(G)

subject to:
∑
i∈G

Iai pai = 1

∑
i∈G

Iib pib = 1

∑
i∈G

Iik pik − ∑
j∈G

Ik j pk j = 0, k ∈ G\{a,b}

where the elements of incidence matrix, Ii j, have the value one if i and j are neigh-
bors and zero otherwise; i.e., it indicates the presence of an arc between grid points
i and j. The elements of the distance matrix, Di j give the distances between neigh-
boring points i and j. For the moment, we leave unspecified the definition of the
neighborhood, but we have in mind a rectangular grid with the neighbors of i be-
ing those points immediately adjacent on the grid coordinates and the diagonals.
This formulation assumes that a and b are both in the set G. We have replaced δs(i)
with β (s, i, j), which gives the portion of the line segment between i and j that is in
the range of impediment s. If the problem is to be solved using a general purpose
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solver, then these values must be pre-computed; however, if a shortest path algo-
rithm is used, they can be computed as needed. The main point is that it is a shortest
path problem so once the data is made available it can be computed rapidly for large
instances. Unfortunately, for three dimensional problems the instances become very
large even for modest resolution.

Smaller problem instances can be achieved using a piecewise linear formulation
that exploits the fact that the impediment regions are spherical. Each impediment,
s has a range with radius rs. In this formulation, rather than creating a fixed grid a
priori, we allow the points that define the path to be placed optimally. The path is
represented by a vector of breakpoints, p, of length M. Each element pi ∈ A gives
the location of the ith point in the path. The trick is to treat the impediment range
indicator function as a variable rather than as data: δ̃s(i) is one if the line from pi to
pi+1 passes through the range of impediment s and zero otherwise. The formulation
makes use of the vector norm, given by ‖·‖ to establish a length for δ̃ and determine
the path cost. Hence, the formulation has a non-linear objective function and a non-
convex feasible region:

min
p,δ̃

M−1

∑
i=1

(

‖pi − pi+1‖
(

1+ ∑
s∈S

csδ̃s(i)

))

(L)

subject to:

p1 = a
pM = b
pi ∈ A, i = 1, . . . ,M
δ̃s(i) ∈ {0,1} s ∈ S, i = 1, . . . ,M
min

λ
{‖(λ pi +(1−λ )pi+1)− s‖ : λ ∈ [0,1]} ≥ rs(1− δ̃s(i)),

s ∈ S, i = 1, . . . ,M−1

With spherical impediments the minimum for the left hand side of the final con-
straint is given by

‖pi − s‖ , if − (pi−pi+1)·(pi+1−s)
‖pi−pi+1‖2 < 0

‖pi+1 − s| , if − (pi+1−s)·(pi−pi+1)
‖pi−pi+1‖2 > 1

‖(pi−pi+1)×(pi+1−s)‖
‖(pi−pi+1)‖ , otherwise

where × stand for the cross product and · for the dot product. The minimal
distance between the line that goes through pi and pi+1 and the center of s is
‖(pi−pi+1)×(pi+1−s)‖

‖(pi−pi+1)‖ . If this point of minimal distance lies between pi and pi+1 this
equals the minimum distance between the connecting line and s. Otherwise the min-
imal distance of the connecting line is the distance to the closer endpoint of the two.

Remark 1 The problem (L) is identical to the original problem (P), but with re-
stricting the path to all piecewise linear paths with M supporting points instead of
C([0,1],A). Since this is a subset (L) gives an upper bound for (P).
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For M → ∞ the set of feasible path converges to the original set and therefore
also the value of the objective function.

Since this problem has a non-linear objective function and a non-convex feasible
region good starting points are needed to make sure to find a good solution. In the
next section we will discuss some methods to find starting solutions.

3 Starting Solutions for Problem (L)

The basic idea for finding a good starting solution is to create a network and find the
shortest path through it. The nodes in this network should represent the character of
the problem. We generate nodes using tangency and intersection points as we now
describe. Formulas that we use to compute the exact locations of these points are
given in the Appendix.

3.1 Tangency Points

The shortest path between two points whose direct connection is interdicted by an
impediment that should not be entered, is the straight connection on a line that is
tangential to the impediment, the shortest path on the surface of the sphere (in the
three dimensional case this is a part of a great circle) to another point of the sphere
connecting to the ending point of another line tangential to the impediment and then
to follow this line. So tangential points are essential points on shortest path when
avoiding the impediments and therefore we include them among the nodes of the
network. This is basically the idea behind visibility graphs (see, e.g., [7]) reported
in the literature for 2D problems. In the two dimensional case for every impediment
s and every point p ∈ A (outside the impediment) there exist exactly two points on
the surface of s so that the connecting line to p is tangential to s. In the following we
will refer to the set of these points as the tangency points. They are often exploited
by algorithms for two dimensional problems.

For the three dimensional case the corresponding points for a point p and a sphere
s generally form a complete great circle of s. That is why we choose the tangency
points for this case to be the points on the great circle of tangency between s and the
starting point (and the end point) that are closest from the line connecting between
starting point and endpoint.

3.2 Intersection Points and Surface Arcs

Intersection points and surface arcs have not been exploited in the literature to date,
but we found them to be helpful for our problems. In order to generate good starting
solutions for problems where the impediment ranges are to be avoided we begin
with the observation given as Remark 2.
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Remark 2 For every shortest path that avoids all impediments, there are corre-
sponding paths that follow the edges of A and/or the edges of the impediment ranges
that can be reached from the shortest path without crossing an impediment.

When trying to find a path on the surfaces of the spheres or the boundary of
A, the points of interest are those where the impediment ranges intersect with each
other or the boundary of A. So these points should be added as nodes in the network.

For D=2, if the impediment ranges that are circles in general position, then for
every pair of impediments there are either no points of intersection or exactly two.
If A is a rectangle then there are either zero or two points of intersection with each
circle. So this gives at most 2∑|S|

k=1 (|S|− k) nodes for the intersections.
For D=3 the points of intersection form a complete circle. Since later on it is

hard to allocate the nodes in the network when only having the three dimensional
coordinates, we establish a plane for each sphere. A stereographic projection of
the intersection circles on to these planes results in ellipses and helps reduce the
network creation to be essentially the same as the two-dimensional case. To discuss
the ellipses and the resulting network, it is useful to refer to the sphere for which a
plane is defined as the primary sphere for that plane. The secondary spheres for a
particular plane are those spheres that intersect with the primary sphere. Therefore,
each secondary sphere results in an ellipse on the plane for the primary sphere.
Since we are using a stereographic projection, only those secondary spheres whose
circles of intersection with the primary sphere intersect each other will result in
intersections of the ellipses on the planes. Such intersections are assigned nodes as
in the two dimensional setting. Other ellipses that are isolated on the plane must be
assigned nodes at arbitrary points on the ellipses; we use points of tangency with a
line parallel to the x-axis. This results in two nodes per isolated ellipse.

3.3 Generating Arcs

Once the set of nodes, N, is constructed the corresponding arcs must be added to the
network. For our network there are two classes of arcs:

• Straight connections For every pair ni,n j ∈ N of distinct nodes an arc is added
to the network that stands for the straight line connection. Therefore the length
of this arc is set to the euclidean distance between ni and n j plus the fraction of
penalty for every impediment this line goes through.

• Surface connections For every pair ni,n j ∈ N of distinct nodes that lies on the
surface of the same impediment s an arc that follows the surface is added to
the network. The length of the arc is the length of the path on the surface plus
potential penalty cost for impediments in S\{s} where this paths goes through.

For both cases the arcs are only added to the network if they lie completely in A;
if they both lie in the region, then the lower cost arc is added. Since for every pair
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ni,n j ∈ N of distinct nodes only the cheaper arc of the two is added, the number of
arcs in the network is at most

|N|

∑
k=1

(|N|− k) = 2|N|(|N|−1).

4 Computational Results

In this section we describe test instances, algorithm implementations and results of
our computational experiments. We are particularly interested in being able to apply
these methods to solve sub-problems where the locations of the impediments vary,
either because they are design variables or because their locations are uncertain.
Hence, we are interested in the average performance of the algorithms both in terms
of quality and time.

4.1 Instances

To simplify the parameterization of instances and to facilitate comparison, we use
a square region for A with sides of unit length. For every instance we use a fixed
number of spheres with radius and penalty that are selected randomly from a given
interval. For most experiments, the starting point and ending point are placed in
opposite corners of the region.

Figure 1 shows an examples of a problem instance with 10 small spheres. This ex-
ample was chosen because it is relatively easy to see most of the spheres. For many
problem instances, particularly those with larger spheres, it is difficult to visualize.
This is one of the reasons that optimization software is needed to find good paths.

4.2 Implementations

All implementations were done in Xpress-Mosel and run on a 2.8 GHz dual core
processor under Linux.

4.2.1 Algorithm G

This algorithm solves problem (G) where the space is discretized with a regular rec-
tangular grid with k points per unit in each dimension. There are a number of rea-
sonable possibilities for placing arcs that we explored experimentally. We let G(k,c)
denote the algorithm where arcs are only parallel to the coordinate axes meaning
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Fig. 1 An example of a problem instance.

that the nodes that only differ in one coordinate by 1
k−1 are connected by an arc. For

G(k,d) we also add the arcs that are diagonal in two dimensions meaning that they
are connecting nodes that differ in two coordinates by 1

k−1 . For the three dimen-
sional case we also establish the algorithm G(k,dd) that additionally includes the
three dimensional diagonal that means that nodes that differ in all three coordinates
by 1

k−1 are added. It is clear that more arcs will require greater time, but result in a
better solution. This tradeoff is explored in §4.6.

In order to give some sense of what these solutions look like, Figure 2 shows the
solution generated by G(20,dd) to the problem shown in Figure 1.

4.3 Algorithms SU, TA, SUTA, and SUSITA

Algorithms SU and TA implement the surface and tangency points methods of cre-
ating nodes for the shortest path network as described in §3.2 and §3.1, respectively.
Algorithm SUTA creates nodes for points of tangency and well as surface intersec-
tion. Algorithm SUSITA is the same, except that each point of tangency is connected
only with the two closest points of tangency not on the same sphere. This results in
a dramatic reduction in the number of arcs and therefore in the computational effort
with only moderate impact on solution quality.

Figure 3 shows the results of algorithm SU added to the solution from G(20,dd)
as shown in Figure 2. The difference between the two algorithms is clearly shown.
Algorithm SU goes from sphere to sphere hugging the surfaces. As we will see, this
can produce better results than the grid when the spheres imply a large penalty.
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Fig. 2 Solution generated by G(20,dd) to the problem shown in Figure 1.

Fig. 3 Results of algorithm SU displayed along with the solution from G(20,dd) as shown in
Figure 2.
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4.3.1 Algorithm L

This algorithm solves problem (L) using the Xpress SLP package [3]. As noted
in §2, one of the constraints of the problem contains a minimization that can be
divided into three cases and replaced by a non-linear term. In order to implement this
efficiently, we can add the first two cases to the problem since these constraints do
not preclude a feasible solution in any case (if the endpoint of a line is in a sphere you
have to pay the penalty). The third constraint, which says that the minimum distance
between the line and the center must be smaller than the radius or the penalty must
be paid, is only allowed to be binding if the point of minimum distance lies between
the endpoints. So this constraint must be binding iff 0 ≤ ‖(pi−pi+1)×(pi+1−s)‖

‖(pi−pi+1)‖ ≤ 1.
Hence, two additional integer variable for every arc are needed, which makes 2|S|M
extra variables for the complete implementation.

Our main interest is in studying the different ways to generate starting solutions,
so we fix the parameters of Xpress SLP using out-of-the-box values. As a practical
matter, the SLP package works best on our problem instances when the variables
are bounded. Consequently, we bound the variables and then iteratively re-solve the
problem. Based on experimentation, we found that a good way to do this was to
bound the variables to move in each dimension by 0.02 times the distance from a
to b and to re-solve five times starting from the previous solution. The algorithm’s
running time is somewhat sensitive to the number of support points M. For the sake
of consistent comparisons between starting solution methods, we set M to 15 for
all runs summarized here. The algorithm L is parameterized by the algorithm that
generates its starting solution. For example L(SU) is problem (L) with a starting
point generated by paths on surfaces.

4.4 Main Results

Table 1 summarizes the main results. The runs are divided by the magnitude of
the randomly generated penalties for each of the 7 impediment spheres. The “Low
Penalty” instances had penalties uniformly generated on the interval (0,1), the
“Medium” on (2,3), and the “High” penalties on (10,20). For each penalty class,
nine instances were generated with impediment radii randomly generated between
0.3 and 0.8. Five different starting solution methods were applied to each instance
as shown in the table. Each cell of the table contains the average deviation from the
best solution found, followed by the standard deviation, then the average total time
in seconds, followed by the standard deviation.

The most striking result is that using only points of tangency to create the graph
works very poorly, as shown in the row labeled L(TA). The other important point is
that for low penalties, a grid is the most effective way to find a starting solution for
problem (L). For higher penalties, a more sophisticated starting point is needed. As
we will see in §4.6, adding resolution to the grid is computationally very expensive.
Hence, the algorithms that create a graph using lines of intersection and tangency
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Table 1 Results for instances with seven spheres with random size and penalty. Each cell of the
table contains the average deviation from the best solution found, followed by the standard devia-
tion, then the average total time in seconds, followed by the standard deviation. The “Low Penalty”
instances had penalties uniformly generated on the interval (0,1), the “Medium” on (2,3), and the
“High” penalties on (10,20). For each penalty class, nine instances were generated with impedi-
ment radii randomly generated between 0.3 and 0.8.

Low Penalty Medium Penalty High Penalty
Algorithm Gap σgap CPU σcpu Gap σgap CPU σcpu Gap σgap CPU σcpu
L(G(20,dd)) 0.2% 0.3% 166 53 6.0% 10.3% 129 40 15.2% 17.7% 100 40
L(TA) 12.3% 9.6% 64 14 58.1% 45.5% 64 20 180.6% 170.6% 50 20
L(SU) 3.6% 2.9% 124 52 8.9% 8.6% 98 43 13.4% 20.3% 51 43
L(SUTA) 1.9% 3.1% 399 119 5.9% 7.1% 376 114 11.6% 18.5% 256 114
L(SUSITA) 3.5% 3.0% 120 54 8.9% 8.6% 99 43 13.4% 20.3% 51 43

are preferred for instances with high penalties. The high values for the standard
deviation of the solution gap, particularly for high penalties, are due to the fact that
among the algorithms SU, SUTA, and SUSITA each found the best solution for some
instances.

For high penalty instances, SU and SUSITA did not differ in their average per-
formance because most of the arcs chosen for inclusion in the graph by SUSITA
were on the surface of the spheres. Algorithm SUTA provides slightly better results
at the expense of increased time. This is because some of the distant tangential con-
nections are sometimes better than the near connections, which are all that SUSITA
considers.

4.5 Experiments with More Spheres

To see the effect of adding more spheres, consider Table 2. The results are based
nine random instances: three each with 15, 20 and 25 spheres. The penalties were
medium, i.e., uniformly random on (2,3) and the radii were sampled from (0.2,0.4).
There is a significant increase in time for the more sophisticated methods, but the
only increase for the grid is due to the execution the non-linear solver for prob-
lem (L). Hence, for problems with large numbers of impediments, a grid may be
preferred.

4.6 Experiments Concerning Grid Structure

To explore the tradeoffs between grid structure, solution time and solution quality,
we solve nine instances each with seven randomly placed spheres with sizes drawn
randomly from (0.4,0.8) and penalties drawn from (2,3). To avoid giving an advan-
tage to any of the algorithms we place the start and end point randomly on two
opposite sides.
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Table 2 Larger number of Spheres. The results from nine random instances: three each with 15,
20 and 25 spheres. The penalties were medium, i.e., uniformly random on (2,3) and the radii were
sampled from (0.2,0.4). As in Figure 1, for each algorithm we show the average and standard
deviations of the gap to the best solution and the average and standard deviation of the number of
CPU seconds.

Avg. Gap St. Dev. Avg. CPU St. Dev.
Grid20dd 6.6% 13.6% 171 95
L(SU) 7.9% 15.2% 466 531
L(SUSITA) 7.9% 15.2% 466 526
L(TA) 46.9% 32.0% 45 27

Table 3 Grid experiments with 9 instances, each with 7 randomly placed spheres and starting and
ending points placed randomly on two opposite sides. As in Figure 1, for each algorithm we show
the average and standard deviations of the gap to the best solution and the average and standard
deviation of the number of CPU seconds.

Avg. Gap St. Dev. Avg. CPU St. Dev.
L(G(10,c)) 17.8% 6.7% 1 0
L(G(20,c)) 11.8% 6.3% 9 4
L(G(30,c)) 9.2% 5.7% 62 48
L(G(40,c)) 7.1% 6.1% 485 512
L(G(10,d)) 10.1% 3.8% 2 1
L(G(20,d)) 4.2% 2.1% 32 13
L(G(30,d)) 2.5% 1.8% 262 148
L(G(35,d)) 1.1% 1.9% 775 559
L(G(10,dd)) 7.0% 4.7% 3 1
L(G(20,dd)) 2.8% 2.5% 55 21
L(G(30,dd)) 1.1% 1.6% 502 259

Each instance is solved with the three different definitions of neighborhood
with the number of grid points k adjusted so as to keep the run times in close
proximity. The results are shown in Table 3. As one would expect, increasing
the grid resolution improves solution quality at the expense of solution time. We
selected G(20,dd) because the time required was comparable to the other meth-
ods and because parameters with slightly better performance required significantly
more time.

5 Conclusions and Directions for Further Research

We have provided formulations, algorithms and computational results for continu-
ous shortest path problems in the presence of spherical impediments in 3D space.
We have extended line-of-site methods developed for 2D obstacles to create starting
solutions for a non-linear solver and demonstrated that the addition of intersection
points and surface arcs provides a significant boost. An important conclusion is that
a simple grid performs reasonably well and in fact is preferred when the penalties
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for traversing the impediments are low. This is an important result, because a grid
is simple to program and not sensitive to the shapes of the impediments. For many
practical applications, a grid can be used to construct an adequate starting point for
further refinement by a non-linear solver or for direct use. When better solutions are
needed, a network of intersection and tangency points can be constructed and used
to find a shortest path that works well as a starting point.

The work could be extended to add a trip length constraint, where the Euclidean
travel distance irrespective of impediments is limited. This sort of formulation is
important in many applications, for example those involving aircraft [2]. Carlyle,
Johannes and Wood [1] have developed a shortest path algorithm that is very ef-
fective even though this constraint adds considerable complication. Hence, starting
points for (L) are computationally possible using either a grid or the surface and
tangency points.

The model could also be extended to consider the case where instead of im-
pediments, there are aides with spherical range. The formulation for problem (L)
requires no changes for this case, but the starting points should be selected by con-
structing a grid that includes the centers of the spheres and perhaps other key points.

Given the 3D benchmark instances, it would also be useful to construct fast
heuristics for situations where solutions are needed quickly. Any such work would
be greatly aided by improved visualization methods. These things remain as future
research.

The problem of finding the shortest path between two points when travel within
the range of an impediment adds a penalty can be an important sub-problem to the
problem of selecting impediments for interdiction, selecting impediments to probe,
and design of robust impediment network. It is also an interesting problem in its own
right for which we have provided algorithms, benchmark instances and insights into
when simply using a grid is preferred and when more sophisticated algorithms are
needed.

Acknowledgment

This work was sponsored in part by the Air Force Office of Sponsored Research un-
der grant F49620-01-0327. The graphics software used in the figures was developed
by Jaya Sreevalsan-Nair.

References

1. Carlyle, W. M., J.O. Royset, and R.K. Wood, “Lagrangian Relaxation and Enumeration for
Solving Constrained Shortest-Path Problems,” Networks, to appear, 2008.

2. Carlyle, W. M., J.O. Royset, and R.K. Wood, “Routing Military Aircraft With A Constrained
Shotest-path Algorithm,” Technical Report, Operations Research Department Naval Postgrad-
uate School Monterey, California, USA, 2007



360 M. Verhoeven and D.L. Woodruff

3. Dash Optimization, Xpress-SLP, version 2006a, Blisworth House, Church Lane, Blisworth,
Northants NN7 3BX, UK, 2006.

4. Eberly, D., “Intersection of Ellipses,”
http://www.geometrictools.com/Documentation/IntersectionOfEllipses.pdf, 2000.

5. Gelfand, I.M. and S.V. Fomin, Calculus of Variations, Prentice-Hall, Englewood Cliffs, NJ,
1963.

6. Hershberger, J. and S. Suri, “An Optimal Algorithm for Euclidean Shortest Paths on a Plane,”
SIAM Journal on Computing, 28, 1999, 2215–2256.

7. Fishkind, D.E., C.E. Priebe, K. Giles, L.N. Smith and V. Aksakalli, “Disambiguation Protocols
Based on Risk Simulation,” IEEE Transactions on Systems, Man, and Cybernetics, Part A,
137, (2007) 814–823.

8. Kapoor, S., S.N. Maheshwari and J.S.B. Mitchell, “An Efficient Algorithm for Euclidean
Shortest Paths Among Polygonal Obstacles in the Plane,” Discrete Computational Geome-
try, 18, 1997, 377–383.

9. Kim, J. and J.P. Hespanha, “Discrete Approximations to Continuous Shortest-Path: Applica-
tions to Minimum-Risk Path Planning for Groups of UAVs,” Proceedings of the 42nd IEEE
Conference on Decision and Control, 2003, 1734–1740.

10. Rao N.S.V., “Robot Navigation in Unknown Generalized Polygon Terrains Using Vision Sen-
sors,” IEEE Transactions on Systems, Man, and Cybernetics, 20, 1995, 947–962.

11. Zabarankin, M., Uryasev, S., and R. Murphey. “Aircraft Routing under the Risk of Detection”,
Naval Research Logistics, 53 (2006), 728–747.

Appendix - Projection and Intersection Formulas

The points of intersection of two spheres form a circle but since it is difficult to work
with the surface arcs in three dimensions, we project the circles of intersection via
stereographic projection on to planes, where they form ellipses. Therefore it suffices
to just evaluate a few points of each intersection in three dimensions to compute the
coefficients of the corresponding ellipse.

We are given intersecting spheres with center (a,b,c) and radius R and with cen-
ter(d,e,f) and radius r. To find the points of intersection we move the coordinate
system so that the center of the first sphere lies in the origin. Then the center of
the second sphere has the coordinates (d-a,e-b,f-c). We assume without loss of gen-
erality that d − a <> 0 and turn our coordinate system so that both of the other
coordinates of the center of the second sphere are zero. For that we use the rotation
matrices

A =

⎛

⎝
1 0 0
0 cos(α) −sin(α)
0 sin(α) cos(α)

⎞

⎠ and B =

⎛

⎝
cos(β ) 0 sin(β )

0 1 0
−sin(β ) 0 cos(β )

⎞

⎠ so (d − a,e− b, f −

c)AB =

⎛

⎝
(d −a)cos(β )+(e−b)sin(α)sin(β )− ( f − c)cos(α)sin(β )

(e−b)cos(α)+( f − c)sin(α)
(d −a)sin(β )− (e−b)sin(α)cos(β )+( f − c)cos(α)cos(β ))

⎞

⎠

T

≡ g

We choose α and β so that the transformed center of the second sphere, g, has the
desired properties. With α = arctan(− e−b

f−c ) for f − c <> 0 and α = π
2 otherwise

http://www.geometrictools.com/Documentation/IntersectionOfEllipses.pdf
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it follows that g2=0. With β = arctan(−
√

(e−b)2+( f−c)2

d−a ) for f − c <> 0 and β =
arctan( e−b

d−a ) otherwise, it also follows that g3=0.
Using these values of α and β , g1 =

√
(d −a)2 +(e−b)2 +( f − c)2, which is

the distance between the spheres.
In this coordinate system the spheres have the formulas

x2 + y2 + z2 = R2

(x−g1)2 + y2 + z2 = r2

So the points of intersection of the spheres form a circle with x = R2−r2+g2
1

2g1
and

radius r̃ =
√

4g2
1R2−(R2−r2+g2

1)2

2g1
.

If we turn this circle back to the original coordinate system we get

(x,cos(θ)r̃,sin(θ)r̃)B−1A−1

=

⎛

⎝
xcos(β )+ sin(θ)r̃ sin(β )

cos(θ)r̃ cos(α)+ xsin(β )sin(α)− sin(θ)r̃ cos(β )sin(α)
cos(θ)r̃ sin(α)− xsin(β )cos(α)+ sin(θ)r̃ cos(β )cos(α)

⎞

⎠

T

for θ ∈ [0,2π].
To get the ellipse of intersection in the two dimensional stereographic projection,

we select 5 arbitrary points on the intersection circle and perform the projection for
the first sphere (i.e., the first sphere is the primary sphere for this projection):

(u,v,w) 
→
(

2Ru
2R−w

,
2Rv

2R−w

)

for points (u,v,w) on the sphere with origin in (0,0,R) and radius R.
We get 5 points lying on the two-dimensional Ellipse x2 +axy+by2 + cx+dy+

e = 0 so that we can get the coefficients of the ellipse by solving this system of 5
linear equations.

Once we have the ellipses in two dimension, we can easily construct arcs and
find the points of intersection of three spheres, so we can construct the network as
described in §3.2.



Tailoring Classifier Hyperplanes to General
Metrics

John W. Chinneck

Abstract Finding a hyperplane that separates two classes of data points with the
minimum number of misclassifications is directly related to the following problem
in linear programming: given an infeasible set of linear constraints, find the small-
est number of constraints to remove such that the remaining constraints constitute a
feasible set (the Maximum Feasible Subsystem problem). This relationship under-
lies an effective heuristic method for finding separating hyperplanes in classification
problems [Chinneck 2001]. This paper shows how to tailor the maximum feasible
subsystem hyperplane placement heuristic so that it can provide good values for
metrics other than total accuracy. The concepts are demonstrated using accuracy-
related metrics such as precision and recall, balancing the population accuracies,
and balancing the accuracies on each side of the hyperplane, but the principles also
apply to other metrics such as the Gini index, entropy, etc. Customizations such as
these may prove useful in developing better decision trees.

Key words: classification, separating hyperplanes, infeasibility analysis

1 Introduction

Linear programming (LP) is frequently used to determine the best way to place a
separating hyperplane in classification problems (e.g. Glover [1990], Bennett and
Mangasarian [1992], Xiao [1993], and Bennett and Bredensteiner [1997]). One LP-
based approach recognizes that the problem of placing a separating hyperplane so
that the number of misclassified points is minimized is easily transformed into an
equivalent problem of analyzing infeasible LPs known variously as the Maximum
Satisfiability Problem, the Maximum Feasible Subsystem Problem, the Minimum
Unsatisfied Linear Relation Problem, or the Minimum Cardinality IIS Set Covering
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Problem [Amaldi 1994, Parker 1995, Chinneck 2001]. The different versions of
the infeasible LP analysis problem concentrate on finding the maximum cardinality
subset of linear constraints that can be satisfied simultaneously, or on the related
dual problem of finding the minimum cardinality subset of constraints to remove
such that the remaining constraints comprise a feasible set. We will refer to these
problems collectively as the Maximum Feasible Subsystem problem (MAX FS).
See Chinneck [2001] and references for some history of approaches to solving this
problem.

For a binary classification problem consisting of data points belonging to either
type 0 or type 1, the classification problem is converted to a linear program as fol-
lows [Chinneck 2001]:

Given: a training set of I data points (i = 1. . . I) in J dimensions ( j = 1. . .J), in
which the value of attribute j for point i is denoted by di j, and the class of each
point is known (either Type 0 or Type 1).
Define a set of linear constraints as follows (one constraint for each data point):

• for each point of Type 0 : Σ jdi jw j ≤ w0− ∈
• for each point of Type 1 : Σ jdi jw j ≥ w0+ ∈

(1)

where ∈ is a small positive constant (often set at 1). Note that the variables are
the unrestricted w j, where j = 0. . .J, while the di j are known constants.

If the data are completely classifiable by a single hyperplane, then any feasible
solution to the LP resulting from the conversion will yield a set of values for the w j
that defines the separating hyperplane Σ jw jxi j = w0, and there is no need for further
analysis. In the usual case in which the data points cannot be completely classi-
fied by a single hyperplane, then the LP resulting from the conversion is infeasible.
Finding a solution to the MAX FS problem in this infeasible LP solves the classifi-
cation problem of identifying the smallest set of data points to remove such that all
of the remaining points are completely classified by a single hyperplane. The actual
hyperplane is easily found once the data set has been modified by removal of those
points: any feasible solution to the resulting LP suffices, though some choices may
be better than others. The points removed will in general be incorrectly classified
by the resulting hyperplane, so any solution to the MAX FS problem determines a
hyperplane that misclassifies the smallest number of points.

MAX FS is known to be NP-hard [Sankaran 1993; Chakravarti 1994; Amaldi
and Kann 1995]. However, there are very good heuristic algorithms for its solution
[Chinneck 1996, 2001]; these are reviewed below. An important aspect of these
heuristics is that they remove constraints (or points in the classification problem)
one by one en route to finding a large (frequently maximum) cardinality feasible
subsystem of constraints, and hence a large cardinality set of completely classifiable
data points. In the classification context, this means that there is an opportunity to
tailor the operation of the algorithms for specific purposes, such as:

• maintaining the relative population accuracies of type 0 and type 1 points (i.e.
specificity and sensitivity) within a narrow band,
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• balancing the specificity and sensitivity as closely as possible,
• balancing the zone accuracies (i.e. precisions) on both sides of the classifier hy-

perplane,
• favouring the precision on one side of the classifier hyperplane,
• adjusting for misclassification costs,
• working towards better values of hyperplane selection criteria such as the Gini

index,
• taking remedial steps when the classifier returns a degenerate hyperplane that

puts all points on one side.

Some of these special variants can address the difficulties that arise when there
is a dominant type that comprises most of the data points. In such a case, most
hyperplane placement methods tend to simply classify all or nearly all of the data
points as being of the dominant type, which gives high overall accuracy due to the
prevalence of points of the dominant type. The problem of dominant populations
becomes even more severe as the analysis moves to the lower reaches of a develop-
ing decision tree. Some of the variants can also address issues such as the need to
reduce false-positive or false-negative predictions.

In general, the relative size of the two populations affects hyperplane placement
and accuracy assessment (see Flach [2003] for a detailed analysis), and this effect
needs to be explicitly considered by new methods that e.g. try to balance the ac-
curacy of each population, or that try to balance the accuracy on either side of the
hyperplane.

The variants of the original algorithm will be especially useful in developing de-
cision trees. Decision trees result when the hyperplane placement method is applied
repeatedly: first to the overall data set, then to the data on the nominal type 0 side of
the initial hyperplane, then to the data on the nominal type 1 side of the initial hyper-
plane, etc. No further hyperplanes are created when certain stopping conditions are
met, e.g. the population of one side of a hyperplane is almost entirely of one type,
or is too small (see Rokach and Maimon [2008] for background on decision trees)

Many decision tree construction methods use a greedy approach that chooses the
hyperplane (or rule) that maximizes the overall accuracy at the current node, but
this can be counter-productive. For example, it may be better to separate out a small
but highly accurate zone early in the tree, even though the associated hyperplane
has a much lower overall accuracy than competing hyperplanes at this node. As
Fürnkranz and Flach [2003] point out, the value of the decision rule at a node in the
tree lies not in its ability to discriminate between positive and negative examples,
but in its potential for being refined into a high-quality rule. There are numerous
ways to estimate the worth of a particular separating hyperplane at a node (e.g. Gini
index, entropy, etc.; see Fürnkranz and Flach [2003]), so there is obvious value in
algorithm variants that tend to return hyperplanes that give better measures on these
scores.

Section 2 describes the ways in which the algorithm for solving the MAX FS
problem can be tailored. Section 3 presents specific variants that control various
accuracy-related metrics, illustrating the differing effects via a two-dimensional data
set. Section 4 discusses the characteristics of these particular variants, and Section 5
presents ideas on how these may be used to construct better decision trees.
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1.1 Measuring Accuracy

The algorithm variants in this paper concentrate on various types of accuracy met-
rics, hence clear definitions are needed. All definitions are combinations of these
basic elements:

• Initial populations:

– Pop0: initial population of type 0 points
– Pop1: initial population of type 1 points
– PopT: initial population total (popT = pop0 +pop1)

• Final, or post-classification populations:

– Pop00: population of type 0 points classified as type 0 (true negatives)
– Pop11: population of type 1 points classified as type 1 (true positives)
– Pop01: population of type 0 points classified as type 1 (false positives)
– Pop10: population of type 1 points classified as type 0 (false negatives).

Note that the total population of points classified as type 0 (i.e. the type 0 zone
population) is pop00 + pop10 and the total population of points classified as type 1
(i.e. the type 1 zone population) is pop11 +pop01.

Using these elements, we define three types of accuracy:
Overall Accuracy or Total Population Accuracy: AT = (pop00 +pop11)/popT
Population Accuracy, the accuracy for each individual type:

• Ap0 = pop00/pop0
• Ap1 = pop11/pop1

Ap1 is also variously known as the true positive rate, sensitivity and recall. Ap0 is
also variously known as the true negative rate, and specificity.

Zone Accuracy, the accuracy for the nominal zones created by a single hyper-
plane:

• Az0 = pop00/(pop00 +pop10)
• Az1 = pop11/(pop11 +pop01)

Az1 is also variously known as precision, confidence and positive prediction ac-
curacy. Az0 is also known as negative prediction accuracy.

Consider the simple hyperplane example shown in Fig. 1. The zone to the upper
left is nominally type 0 (white dots) and the zone to the lower right is nominally type
1 (black dots). The population counts are as follows: pop0 = 14, pop1 = 14, popT =
28, pop00 = 11, pop11 = 10, pop10 = 4, pop01 = 3. The corresponding accuracies
are AT = (11+10)/28 = 0.75, Ap0 = 11/14 = 0.786, Ap1 = 10/14 = 0.714, Az0 =
11/(11 + 4) = 0.733, Az1 = 10/(10 + 3) = 0.769. Note that the accuracies are all
different.

Note that the various accuracy definitions are not the only metrics for choosing
the best hyperplane from among a selection of candidate hyperplanes at a node
in a developing decision tree. Other metrics such as the Gini index and entropy,
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Fig. 1 Separating hyperplane.

among others, can also be used. We will concentrate on the accuracy measures listed
above in this paper, but the other metrics can be handled in the same algorithmic
framework.

1.2 Placing Classifier Surfaces via the Maximum Feasible
Subsystem Heuristic

The basic algorithm for solving the MAX FS problem is briefly reviewed below;
consult the original articles [Chinneck 1996, 2001] for details.

The initial infeasible LP (1) is first converted to an elastic form by adding appro-
priate nonnegative elastic variables [Brown and Graves 1975], analogous to artificial
variables in an ordinary phase 1 LP formulation. In the classification application we
deal only with row inequalities, which are converted to elastic form as shown in
Eqn. 2. A nonnegative elastic variables ei is added to each row with the appropriate
sign.

nonelastic row elastic row
Σ jdi jw j ≤ w0− ∈ Σ jdi jw j − ei ≤ w0− ∈
Σ jdi jw j ≥ w0+ ∈ Σ jdi jw j + ei ≥ w0+ ∈

(2)

The associated elastic objective minimizes the sum of the elastic variables. This
amounts to determining the minimum sum of the constraint violations in the ini-
tial un-elasticized model, and is called the sum of the infeasibilities (SINF). If SINF
equals zero, then the initial un-elasticized model is feasible. Each nonzero elas-
tic variable indicates a violated constraint in the initial un-elasticized model; this
number of infeasibilities (NINF) is another measure of the infeasibility of the initial
un-elasticized model.

Algorithm 1 presents a simplified version of the basic heuristic algorithm for
solving the MAX FS problem. Refinements which improve the efficiency of the al-
gorithm are omitted for clarity. The main ideas in Algorithm 1 are:
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• constraints are removed one at a time until those remaining constitute a feasible
set,

• at each iteration, a subset of the constraints are candidates for removal,
• the candidate constraint that most reduces SINF is removed permanently.

For the classification problem, the input set of constraints is derived from the data
points by the conversion described in Equation 2, normally with ∈ = 1.0, though
any positive constant will do. The output of Algorithm 1 is a subset of constraints
corresponding to a subset of the data points that constitutes a linearly separable set.
Similarly the list of candidate constraints in Step 4 corresponds to a list of data
points in the classification problem. The algorithm tailoring described in this paper
mainly deals with adjusting this list of candidate data points, usually by completely
removing one type of point from the list.

There are several different ways to construct the initial list of candidate con-
straints in Step 4, using different figures of merit. The most accurate method
lists all of the constraints to which the elastic objective function is sensitive
[Chinneck 1996]. While quite accurate, this method is slower due to the number of
LPs that must be solved (however each LP is similar to the last, so advanced starts
are very effective). A faster variant [Chinneck 2001] uses a short list of candidates
based on the degree of sensitivity of the elastic objective function to the constraint,
and is nearly as accurate. We use the original version throughout this paper.

INPUT: an infeasible set of linear constraints.

1. Elasticize the constraints by adding appropriate elastic variables.
2. Solve the elastic LP.
3. If SINF= 0 then exit.
4. Construct the list of candidate constraints for removal, in decreasing order

of figure of merit.
5. For each candidate constraint:

5.1. Temporarily remove the candidate constraint.
5.2. Solve the reduced elastic LP and note the new value of SINF.
5.3. Reinstate the candidate constraint.

6. Permanently remove the candidate constraint whose temporary removal
gave the smallest value of SINF.

7. Go to Step 2.

OUTPUT: maximum cardinality feasible subset of constraints.
Alg. 1: Finding a maximum cardinality feasible subset of constraints.

After Alg. 1 has rendered the data set completely classifiable by a single hyper-
plane, several different methods are available for placing the final hyperplane. Some
examples:

a) Use the final hyperplane determined by the feasible solution found in Step 2 of
Algorithm 1 just before exiting in Step 3.
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b) Maximize the total slack of the constraints associated with the retained points.
Each retained point tries to push the separating hyperplane as far away from
itself as it can. This tends to push the plane towards the zone associated with the
minority type.

c) Averaging. First place a hyperplane as close as possible to the type 1 zone by
minimizing the total slack of the constraints associated with the remaining type
1 points. Now perform a similar operation for the type 0 zone. Finally, average
the coefficients in the two hyperplanes.

d) Minimize the total slack of the constraints associated with the removed (misclas-
sified) points, while correctly classifying the retained points.

Another good option is to place the final hyperplane using a support vector ma-
chine [Cristianini and Shawe-Taylor, 2000], but this has not been tested. The exper-
iments reported later use method (d) for the final hyperplane placement.

2 Customizing Hyperplane Placement

There are 3 ways to tailor the operation of Alg. 1 so that good values of specific
metrics can be achieved. These are (i) adjusting the list of candidate constraints
in Step 4, (ii) assigning weights to the elastic variables in Eqn. 1, and (iii) using a
different figure of merit in Steps 5.2 and 6. These are discussed in detail below. Since
adjusting the list of candidates has the greatest impact on the accuracy measures, we
rely on that method of customization in the examples below.

2.1 Adjusting the List of Candidates

The most important factor in guiding the hyperplane placement is the adjustment of
the list of candidate points for removal (i.e. Step 4 of Alg. 1).

Each solution of an elastic LP in Step 2 of Alg. 1 yields a new temporary hyper-
plane which does not completely separate the two data types (complete separation
happens only for the reduced final dataset output by Alg. 1). However each tempo-
rary hyperplane provides a basis for identifying candidate data points for removal. In
the LP problem, candidate constraints are either (i) violated constraints, or (ii) con-
straints that are tight. In the classification problem, these correspond to (i) points
misclassified by the temporary hyperplane, and (ii) points that are at a distance of
exactly ∈ from the temporary hyperplane. In this second case, the point is in some
sense holding the temporary hyperplane in place.

In the majority of cases, especially early in the process, the points removed be-
long mainly to category (i), i.e. are misclassified by the current temporary hyper-
plane. Consider the effect of removing a misclassified type 0 point from the dataset.
The next hyperplane no longer attempts to correctly classify this point, and so can
move away from it, possibly correctly classifying a few more type 1 points as it
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does so. In general, the type 1 zone will become larger, and the type 0 zone will
become smaller. However, in giving up several type 1 points, the final type 0 zone
accuracy will generally increase, while the final type 0 population accuracy will
generally decrease. There is an inherent conflict between increasing the population
accuracy and increasing the zone accuracy for a given point type.

Population accuracy of a given type is increased simply by claiming more and
more of the points as being of that type, i.e. by removing only points of the other
type. For example, we can achieve a type 0 population accuracy of 100% simply by
claiming all points as being of type 0. This obviously has a negative impact on the
population accuracy of type 1, and also on the zone accuracy of type 0.

An avenue for influencing the zone or population accuracy is choosing which
type of point is eligible for removal at the next iteration of Alg. 1. This is done
by pruning the list of candidate constraints in Step 4 of Alg. 1 of all constraints
associated with one or the other type. Which point type is pruned from the list at
each iteration is chosen based on the goal of the particular customization. In rare
cases the list of candidates is emptied by this technique, in which case the original
list is reinstated and used.

Note that pruning of the list of candidates can be guided by any evaluation metric,
not just one of the accuracy measures as in the examples presented later. The Gini
index, entropy, or any other metric could be used.

2.2 Adjusting the Weights on the Elastic Variables

A second way to adjust the hyperplane placement is to differentially weight the elas-
tic variables described in Eqn. 1. In Alg. 1, the elastic variables associated with both
types of data points are weighted equally; however it is straightforward to assign
different weights to the two types, perhaps reflecting the relative costs of misclassi-
fication errors, or the relative sizes of the constituent populations. Minimization of
SINF is then replaced by minimizing the weighted sum of the elastic variables. This
causes the LP solution to misclassify fewer of the more highly weighted points. As
before, the set of points is completely linearly classifiable when the weighted sum
of the elastic variables is zero. This will produce a different list of candidates at
each iteration as compared to the unweighted version, typically increasing the list
of low-weight candidates and reducing the list of high-weight candidates.

2.3 Selecting the Figure of Merit

Constraints (points) on the list of candidates may influence the positioning of the
temporary hyperplane when removed; those not on the list cannot. However exactly
where the temporary hyperplane will move after the candidate is removed is not
known beforehand, hence the necessity of checking the effect before deciding which
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candidate to remove permanently. In the original algorithm, SINF is the figure of
merit for deciding which candidate to drop permanently. As shown empirically, this
works well when the goal is minimizing the total number of violated constraints (or
misclassified points).

In principle, any other figure of merit can be used in place of SINF reduction
in Steps 5.2 and 6 of Alg. 1 to choose which candidate to drop permanently. For
example, we could evaluate the new value of the Gini index after dropping each
candidate, choosing to permanently drop the candidate that produces the best value
of the Gini index.

2.4 Interactions

Note that the three methods of tailoring interact. Weighting the elastic variables
tends to produce hyperplanes that reduce the number of costly misclassifications in
favour of more of the cheaper misclassifications, as opposed to minimizing the total
number of misclassifications as in the unweighted version. Of course, the hyper-
plane so produced determines the list of candidates, and pruning the list in various
ways has direct effects on the accuracy-related metrics as well as indirect effects on
other metrics. At the same time, the selection of the figure of merit may work in
a complementary fashion, such as reducing the Gini index. How best to adjust all
three customizations simultaneously is the subject of ongoing research.

3 Customizations for Controlling Accuracy

The goal of Alg. 1 is to maximize the overall accuracy of the separating hyper-
plane. To demonstrate how Alg. 1 can be tailored to pursue diverse metrics, five
new variations for different kinds of accuracy metrics are presented in the follow-
ing sections. These methods have objectives such as maximizing the zone accuracy
of one type, balancing the zone accuracies of the two types, balancing the relative
populations, etc.

Recall that the general effect of removing a type 1 point (i.e. pruning type 0
points from the list of candidates) has these effects:

• Final population accuracy: type 0 improves, type 1 worsens.
• Final zone accuracy: type 0 worsens, type 1 improves.
• Final zone populations: zone 0 increases, zone 1 decreases.

This happens because the hyperplane moves farther back into the type 1 zone
since it no longer has to accommodate the type 1 point that has been eliminated.
Removing a type 0 point has the analogous opposite effect.
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Some definitions are necessary:

• Kept points:

– Popk0: population of type 0 points kept.
– Popk1: population of type 1 points kept
– PopkT: total population of points kept.
– Popk00: population of type 0 points kept and correctly classified by current

hyperplane
– Popk10: population of type 1 points kept and incorrectly classified by current

hyperplane

• Removed points:

– Popr0: population of type 0 points removed.
– Popr1: population of type 1 points removed

Finally, some of the algorithms make use of a threshold control parameter, which
takes a value between 0 and 1.

The effects of the various algorithms are demonstrated using a two-dimensional
data set derived from the pima dataset [Blake and Merz 1998] by keeping only the
plasma glucose (horizontal axis) and body mass index (vertical axis) features, and
eliminating all data points having missing values. The resulting pima2d data set
consists of 752 instances (488 of type 0, 264 of type 1). Fig. 2 shows the hyperplane
placed by Alg. 1, which seeks maximum overall accuracy. The populations and
accuracies associated with Fig. 2 are summarized in Table 1.
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Fig. 2 Pima2d hyperplane placed by Alg. 1.
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Table 1 Pima2d confusion matrix for Alg. 1.

Actual type
0 1 popz Az % Overall

Nominal type 0 442 125 567 77.95 Wrong 171
1 46 139 185 75.14 Correct 581
popi 488 264 Total 752
Ap% 90.57 52.65 AT % 77.26

INPUT: rand-ordered list of candidate constraints and associated points,
MinPopFrac0, MinPopFrac1.

1. If popk0/popkT < MinPopFrac0 then eliminate type 0 points from candidate
list.

2. If popk1/popkT < MinPopFrac1 then eliminate type 1 points from candidate
list.

Alg. 2: Pruning the candidate list to control the population fractions.

The overall accuracy is moderate at 77.26%, but note that the population accuracy
for type 0 is quite high (90.57%) because 567 points are nominally type 0 even
though there are only 488 actual type 0 points.

3.1 Controlling the Population Fractions

This algorithm tries to prevent the elimination of a smaller population by a larger one
by working to keep the population fractions within a specified range. The algorithm
stops eliminating points of one type if their removal forces one of the population
fractions outside pre-set bounds. The bounds are defined by a threshold parameter,
in this case a small maximum deviation fraction, MaxDevFrac. The fraction of the
total remaining points associated with the smaller population is maintained in the
range ±MaxDevFrac× (original population fraction).

For example, consider a data set having 60 type 0 points and 40 type 1 points
and MaxDevFrac = 0.25. The smaller type 1 population fraction is maintained in
the range 0.4±0.25(0.4), i.e. between 0.3 and 0.5 of the total population of points
remaining. As a consequence, the type 0 population fraction is maintained between
0.5 and 0.7 of the total population of points remaining. The minimum population
fraction for type 0 (MinPopFrac0) and for type 1 (MinPopFrac1) are calculated in
advance and then used as shown in Alg. 2. Note that the candidate list is not pruned
if both population fractions are above their lower bounds.

Hyperplanes for the pima2d dataset at various values of MaxDevFrac are shown
in Fig. 3. Note how the value of MaxDevFrac affects the placement of the hyper-
planes. The results associated with MaxDevFrac = 0.0 are given in Table 2, and the
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Fig. 3 Pima2d with population fraction control.

Table 2 Pima2d confusion table with population fraction control at MaxDevFrac = 0.0.

Actual type
0 1 popz Az% Overall

Nominal type 0 357 71 357 83.41 Wrong 202
1 131 193 324 59.57 Correct 550
popi 488 264 Total 752
Ap% 73.16 73.11 AT% 73.14

Table 3 Pima2d confusion matrix with population fraction control at MaxDevFrac = 0.1.

Actual type
0 1 popz Az% Overall

Nominal type 0 382 88 470 81.28 Wrong 194
1 106 176 282 62.41 Correct 558
popi 488 264 Total 752
Ap% 78.28 66.67 AT% 74.20

results for MaxDevFrac = 0.1 are given in Table 3. The results for MaxDevFrac =
0.5 are identical to those in Table 1 since this very lenient value does not place any
restrictions on the selection of candidates.

The trends are clear. As MaxDevFrac increases, more points are classed as being
of the dominant type 0. The population accuracy for type 0 increases and the type
0 zone population increases, but the type 0 zone accuracy decreases. Type 1 experi-
ences the opposite effect: the population accuracy decreases and the zone population
decreases, but the zone accuracy increases. Notice also that the overall accuracy in-
creases. Maintaining the population fractions in a small range also tends to balance
the population accuracies, remarkably so in this case when MaxDevFrac is 0.
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3.2 Balancing the Population Accuracies

The goal of this method is to balance the population accuracies of the two types as
closely as possible. Without control of this nature, the population accuracies can be
quite different: in Table 1 the type 0 population accuracy is 90.57% while the type
1 population accuracy is just 52.65%.

As shown in Alg. 3, we make the reasonable assumption that removed points will
be misclassified by the final hyperplane, hence the kept points at each iteration are
the current best estimate of the points that will be correctly classified by the final
hyperplane. The estimated final accuracy is thus easily calculated, and only points
of the more accurate type are permitted to remain in the candidate list for removal
and hence ultimate misclassification. Note that the candidate list is not altered if the
currently estimated population accuracies are identical.

INPUT: rank-ordered list of candidate constraints and associated points.

1. If popk0/(popk0 +popr1) = popk1/(popk1 +popr0) then exit.
2. If popk0/(popk0 + popr1) > popk1/(popk1 + popr0) then eliminate type 0

points from the candidate list.
Else eliminate type 1 points from the candidate list.

Alg. 3: Pruning the candidate list to balance the population accuracies.

The hyperplane placed by Alg. 3 for the pima2d dataset is identical to that shown
in Fig. 3 at MaxDevFrac = 0.0, and the accuracy results are identical to those sum-
marized in Table 2. As shown in Table 2, the population accuracies are very closely
balanced (73.16% for type 0 vs. 73.11% for type 1), but at the cost of lower overall
accuracy compared to using unadjusted candidate lists.

3.3 Balancing the Zone Accuracies

The goal of this method is to balance the zone accuracies as closely as possible.
The reasonable assumption is again made that all points removed in the course of
the algorithm will be misclassified by the final hyperplane. As shown in Alg. 4, the
method eliminates points from the currently more accurate zone type from the list
of candidates. The next point removed will then be of the least accurate type, and
will end up misclassified in the more accurate zone, reducing the accuracy of that
zone. If the currently estimated final zone accuracies are identical, then take the top
ranked candidate, regardless of point type

The hyperplane for the pima2d dataset is illustrated in Fig. 4, and the accuracy re-
sults are summarized in Table 4. The zone accuracies are closely balanced (75.46%
vs. 78.34%) despite the large differences in their populations. The overall accuracy
is not much worse than using the original algorithm.
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Fig. 4 Pima2d results when balancing the zone accuracies.

Table 4 Pima2d confusion matrix after balancing the zone accuracies.

Actual type
0 1 popz Az% Overall

Nominal type 0 449 141 595 75.46 Wrong 180
1 39 123 157 78.34 Correct 572
popi 488 264 Total 752
Ap% 92.01 46.59 AT% 76.06

INPUT: rank-ordered list of candidate constraints and associated points.

1. IF popk0/(popk0 +popr1) = popk1/(popk1 +popr0) then exit.
2. If popk0/(popk0 + popr1) > popk1/(popk1 + popr0) the eliminate type 0

points from the candidate list.
Else eliminate type 1 points from the candidate list.

Alg. 4: Pruning the candidate list to balance the zone accuracies.

3.4 Favouring the Zone Accuracy of One Type

The goal here is to maintain the zone accuracy of one type above a specified thresh-
old, which is usually quite high (e.g. 90%). This normally lowers the zone accuracy
for the other type. The general effect is to slice off a small but highly accurate group
of points of the favoured type. This method actually checks the correctness of the
classification of each kept point at each intermediate hyperplane, as shown in Alg. 5,
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but assumes that removed points will be misclassified by the final hyperplane. As
long as the estimated zone accuracy of the favoured type is above the threshold, then
the favoured type cannot be removed (in order to keep the zone population as large
as possible). There is an analogous algorithm for favouring the accuracy of type 1
points. The two versions are designated Algorithms 5/0 and 5/1.

INPUT: rank-ordered list of candidate constraints and associated points.

1. If popk00/(popk00 +popr1 +popk10)≥ threshold then eliminate type 0 points
from the candidate list.
Else eliminate type 1 points from the candidate list.

Algorithm 5: Pruning the candidate list of favour the zone accuracy of type 0.

The hyperplanes for the pima2d dataset when favouring the zone accuracy of
type 0 at various values of threshold are shown in Figure 5, and the accuracy results
appear in Table 5 to Table 7. Fig. 5 shows that a threshold setting of 1.0 slices off
a zone that is almost purely type 0 (accuracy of 99.09% over 110 points). However
it does so at the cost of low overall accuracy (49.47%), and low type 0 population
accuracy (22.34%). The trends as the threshold is lowered are clear. The type 0 zone
encompasses more and more points, but the zone accuracy decreases. Meanwhile
the type 0 population accuracy increases as does the overall accuracy.

This type of edge “slicing” of almost pure zones is useful in many ways. In this
application, for example, it eliminates a set of people who almost certainly do not
have diabetes. There is no need to subject these people to tests. Pure zones will be
useful in the construction of decision trees.
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Fig. 5 Pima2d hyperplanes when favouring the zone accuracy of type 0.



380 J.W. Chinneck

Table 5 Pima2d confusion matrix when favouring type 0 zone accuracy at threshold = 1.0.

Actual type
0 1 popz Az% Overall

Nominal type 0 109 1 110 99.09 Wrong 380
1 379 263 642 40.97 Correct 372
popi 488 264 Total 752
Ap% 22.34 99.62 AT% 49.47

Table 6 Pima2d confusion matrix when favouring type 0 zone accuracy at threshold = 0.9.

Actual type
0 1 popz Az% Overall

Nominal type 0 182 9 191 95.29 Wrong 315
1 306 255 561 45.45 Correct 437
popi 488 264 Total 752
Ap% 37.30 96.59 AT% 58.11

Table 7 Pima2d confusion matrix when favouring type 0 zone accuracy at threshold = 0.7.

Actual type
0 1 popz Az% Overall

Nominal type 0 368 77 445 82.70 Wrong 197
1 120 187 307 60.91 Correct 555
popi 488 264 Total 752
Ap% 75.41 70.83 AT% 73.80

3.5 Degenerate Hyperplane Remedies

A degenerate separating hyperplane of the form 0x1 +0x2 + . . . = 0 is sometimes re-
turned by every hyperplane placement method. This has the effect of classifying all
of the points as being of the same type and usually happens when the population of
one type is much greater than the population of the other type, hence classifying all
points as the majority type gives quite a good overall accuracy. When a degenerate
hyperplane is detected, some remedial steps can be taken.

The most effective response is to replace the degenerate hyperplane with the hy-
perplane obtained by favouring the zone accuracy of the majority type, with the
threshold accuracy set higher than the overall accuracy obtained by the degen-
erate hyperplane. This typically produces an edge slice of the type described in
Section 3.4, preserving any clusters of the minority type on one side of the hy-
perplane. A minority cluster can eventually be isolated by other edge slices as the
decision tree develops.

A similar approach is to restart the placement algorithm when a degenerate hy-
perplane is detected, and to disallow the removal of any minority points at all. This
is an extreme version of favouring the zone accuracy of the majority type.
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Table 8 Characteristics of example datasets.

dataset comments features pop0 pop1
Iris versicolor vs. others 4 100 50
hd hungarian features ignored: slope, ca, thal 10 163 98
Glass type 2 glass vs. others 9 138 76
Pima 8 500 268

4 Examples

The flexibility of the algorithm variants is demonstrated on a small number of ex-
amples in this section. These variants are useful for datasets that are difficult to
separate by a single hyperplane, or in which the two populations are mismatched in
size, or when there are other special considerations. The four datasets are taken from
the UCI repository [Blake and Merz 1998], as summarized in Table 8. Note that the
type 1 population is smaller than the type 0 population in all cases, comprising about
a third of the points in each dataset.

Controlling the population fractions (Alg. 2) gives interesting results in practice.
It always produces very high total accuracies, regardless of the threshold setting.
Note that the two extreme threshold settings (0 and 1) have special meanings. At a
threshold of 0, Alg. 2 is equivalent to Alg. 3 which balances the population accura-
cies. Alg. 3 works by always removing points from the type that currently has the
highest population accuracy; Alg. 2 with threshold 0 does the same. At a threshold
of 1, Alg. 2 is usually equivalent to Alg. 1 since it normally imposes no conditions
at all on the removal of points, so the behaviour reverts to that of Alg. 1.

The variants are quite effective in operation. A few specific results for the exam-
ple datasets are summarized in Table 9. Alg. 2 is excluded from Table 9 since its
most interesting results, at the threshold extremes of 0 and 1, are covered by Alg. 3
and Alg. 1 respectively. Boldface entries highlight the effect that each algorithm
tries to achieve, e.g. balancing the zone accuracies for Alg. 4; pairs of results are
italicized.

The results show that the specialized algorithm variants achieve their goals.
Alg. 1 gives the highest total accuracy for each dataset in all of the specific statis-
tics that are shown in Table 9. Alg. 3 always provides the most balanced population
accuracies and Alg. 4 the most balanced zone accuracies. Alg. 5 always provides
the highest zone accuracies. Other expected patterns can also be seen. The highest
false positive rates are associated with the highest zone accuracies for type 0, and
the lowest false positive rates are associated with the highest zone accuracies for
type 1.

Receiver Operating Characteristic (ROC) curves [Metz 1978] are shown for the
example datasets in Fig. 6. ROC curves are created for Alg. 2, for Alg. 5/0 and for
Alg. 5/1 by varying the threshold parameter between 0 and 1. Algs. 1, 3 and 4 result
in single points rather than curves.
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Table 9 Selected statistics for example datasets.

dataset algorithm(threshold) fpr Ap1 Ap0 Az1 Az0 AT
Iris 1 0.170 0.840 0.830 0.712 0.912 0.833

3 0.170 0.840 0.830 0.712 0.912 0.833
4 0.060 0.340 0.940 0.739 0.740 0.740
5/0(1.0) 0.380 1.000 0.620 0.568 1.000 0.747
5/1(1.0) 0.000 0.080 1.000 1.000 0.685 0.693

hd hungarian 1 0.049 0.776 0.951 0.905 0.876 0.885
3 0.135 0.878 0.865 0.796 0.922 0.870
4 0.067 0.786 0.933 0.875 0.879 0.877
5/0(1.0) 0.540 1.000 0.460 0.527 1.000 0.663
5/1(1.0) 0.006 0.531 0.994 0.981 0.779 0.820

Glass 1 0.087 0.645 0.913 0.803 0.824 0.818
3 0.203 0.776 0.797 0.678 0.866 0.790
4 0.072 0.579 0.928 0.815 0.800 0.804
5/0(1.0) 0.464 0.987 0.536 0.540 0.987 0.696
5/1(1.0) 0.000 0.382 1.000 1.000 0.746 0.780

Pima 1 0.088 0.608 0.912 0.787 0.813 0.806
3 0.212 0.784 0.788 0.665 0.872 0.786
4 0.074 0.545 0.926 0.798 0.791 0.793
5/0(1.0) 0.708 0.996 0.292 0.430 0.993 0.538
5/1(1.0) 0.002 0.168 0.998 0.978 0.691 0.708
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Fig. 6 ROC curves for example datasets.
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A notable characteristic of Alg. 5 is the extent to which it affects the ROC curve
(see Fig. 6). Alg. 5/0 bulges the ROC curve upwards in the upper right quadrant of
the curve, and Alg. 5/1 bulges the ROC curve leftward in the lower left quadrant.
This moves the curve towards the desirable (0,1) extreme of the ROC space in both
cases. In addition, Alg. 2 tends to provide high quality results in the central portion
of the curves (most visible in the pima results in Fig. 6). As shown by Provost
and Fawcett [2001], combining the convex hulls of several ROC curves allows the
construction of a single improved curve. The resulting ROC Convex Hull (ROCCH)
is robust, defined as performing at least as well as the best constituent classifier
under any target cost and class distributions [Provost and Fawcett 2001]. Instead of
simply targeting the best overall accuracy as in the original version, the customized
algorithms permit the creation of an ROCCH curve with excellent overall properties
by combining the results from Algs. 2, 5/0 and 5/1.

Generally speaking, the tailored versions do not have much impact when Alg. 1
already produces the desired effect. For example, the first two results rows in Table 9
are identical because Alg. 1 already balances the population accuracies quite well.
However the customizations have a great effect when the original version does
not produce the desired effect, e.g. Alg. 5/1(1.0) greatly improves Az1 for the iris
dataset. Achieving these special results can affect the populations in each zone
though, a theme we will return to in Sec. 5.

As heuristics, the customized algorithms function very well, but cannot guarantee
to provide perfect results. An example of imperfect operation is visible in Fig. 6: the
downward jog for Alg. 5/0 on the left hand extreme in the glass dataset. In addition,
the best overall accuracy is not always provided by Alg. 1; in some cases a slightly
better value is provided by Alg. 2 or 5 at some particular threshold setting. This
happens in the glass dataset where an AT of 0.822 is given by Alg. 2(0.1) and by
Alg. 5/1(0.65), versus an AT of 0.818 given by Alg. 1.

5 Toward Better Decision Trees

Classification decision trees are created by the recursive application of hyperplane
placement methods (see Rokach and Maimon [2008] for background on decision
trees). The general idea motivating the algorithm variants developed here is that
a greedy “best total accuracy” metric for placing hyperplanes at every node may
not result in the best final decision tree. There exist numerous alternative metrics
for measuring the value of a candidate separating hyperplane at a node, including
recall, total accuracy, weighted relative accuracy, precision (zone accuracy), Rip-
per’s pruning heuristic, information content, entropy, the Gini index, information
gain, Laplace and m-estimates (see Fürnkranz and Flach [2003] for details on these
methods). Still, the candidate hyperplanes themselves are very often produced by
algorithms that emphasize total accuracy during the placement process. This is so
even for methods that have a controllable parameter that results in an ROC curve
from which a suitable specific point (and hence specific separating hyperplane) can
be chosen.
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One important feature of the maximum feasible subsystem algorithm is that the
hyperplane selection metric can be specifically considered while the hyperplane it-
self is calculated. We have concentrated on relatively simple accuracy-related met-
rics here, such as precision, balancing population accuracies and balancing zone
accuracies, but the general principle applies to any metric. For example, the candi-
date list could be pruned based on the current value of the Gini index or entropy or
any other metric, resulting in a final hyperplane that tends to have a better value for
that metric. Thus instead of using the metric solely as a selection criterion applied
to a set of (mediocre) candidates, we can use the metric to directly generate good
hyperplanes that score well on the metric.

As mentioned previously, the relative costs of misclassification can also be han-
dled by the customization framework, by assigning weights to the elastic variables.
Here again, a measurement metric can be directly incorporated in the algorithm for
developing the hyperplane, rather than simply used afterwards to measure the good-
ness of a hyperplane developed based on some other goal.

The specific algorithm variants presented here may prove quite useful. Alg. 5
is effective in separating out very pure zones: consider Fig. 5 for example. The
population of the zone so separated may be small however. For this reason new kinds
of visualizations may be needed to help in deciding how to place the hyperplane.
One such visualization is shown in Fig. 7 for the pima2d dataset from Fig. 5. Fig. 7
shows the relationship between the accuracy of the zone and the population of the
zone (as a fraction of the total population). It shows that a much more accurate type 0
zone can be isolated than a type 1 zone, for any zone population size. It also shows
that almost any possibility between Az0 = 99.1% for 14.6% of popT (110 points)
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Fig. 7 Example visualization for pima2d Alg. 5.
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and Az0 = 65.7% for 98.5% of popT (741 points) can be selected, depending on the
goal of the resulting decision tree.

Similarly, Algs. 3 and 4 may prove useful in specific situations. For example,
when trying to subdivide a very mixed node (e.g. at a leaf node), it may be desirable
to be about as sure about your type 0 predictions as about your type 1 predictions
(assuming similar misclassification costs). Algs. 3 and 4 apply in this case: a new
point arriving at this node in the decision tree has an approximately equal chance
of being correctly classified, no matter which zone it falls into. Of course, Algs. 3
and 4 provide different separating hyperplanes, and the interpretations are different,
mainly with respect to how representative the training set is of the relative frequency
of the two types in the general population.

There are two ways to handle misclassification costs in Algs. 3 and 4 when they
are not equal. Weighted elastic variables can be used. Another approach is to work
towards balancing in terms of the relative misclassification costs. For example, if
misclassifying a type 1 point is twice as costly as misclassifying a type 0 point, then
remove two type 0 points for every type 1 point as the algorithm proceeds: this will
balance the overall misclassification costs, either by zone or by population.

6 Conclusions

The specific algorithm variants for controlling hyperplane accuracy studied in this
paper are very effective in reaching their stated goals, e.g. balancing zone accuracies
etc. This demonstrates the potential that the maximum feasible subsystem classifi-
cation heuristic has for customization to produce good values on a variety of other
metrics. This differs from the usual approach of using the metrics to select from
among a palette of possibly mediocre candidate hyperplanes. The idea here is to
produce hyperplanes that score well on the selected metric.

There is extensive scope for further work:

• The full integration of the three avenues for customization mentioned in Sec. 2
should be explored. A special point of interest is balancing the effect of list prun-
ing (which works towards minimizing the total number or cost of misclassifica-
tion) and the figure of merit for selecting the candidate, which may work towards
a different goal. Integrated goals, such as balancing zone population sizes at the
same time as achieving specific population accuracies should also be investi-
gated.

• Specific customizations to achieve good values of other metrics such as the Gini
index should be developed.

• The specific accuracy-related customizations developed here can also be im-
proved, e.g. to find the hyperplane more quickly. Modifications to Alg 5 should
also be explored, e.g. to avoid pruning the candidate list at all when the current
accuracy is above the target threshold.
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• There may be new measures or visualizations that are useful in the development
of decision trees (as opposed to the evaluation of a completed decision tree). See
Fig. 7 for example.

Finally, the academic prototype software used to carry out the algorithms de-
scribed herein should be developed into generally-available code. Work is already
underway on this project using an open-source LP package.

The ability to find hyperplanes having good scores on a variety of metrics pro-
vides much greater flexibility in the construction of decision trees to achieve par-
ticular purposes. Experiments in decision tree construction via different policies are
ongoing.
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The Multi-Sensor Nuclear Threat Detection
Problem

Dorit S. Hochbaum

Abstract One way of reducing false-positive and false-negative errors in an alerting
system, is by considering inputs from multiple sources. We address here the problem
of detecting nuclear threats by using multiple detectors mounted on moving vehicles
in an urban area. The likelihood of false alerts diminishes when reports from several
independent sources are available. However, the detectors are in different positions
and therefore the significance of their reporting varies with the distance from the
unknown source position. An example scenario is that of multiple taxi cabs each
carrying a detector. The real-time detectors’ positions are known in real time as these
are continuously reported from GPS data. The level of detected risk is then reported
from each detector at each position. The problem is to delineate the presence of
a potentially dangerous source and its approximate location by identifying a small
area that has higher than threshold concentration of reported risk. This problem of
using spatially varying detector networks to identify and locate risks is modeled and
formulated here. The problem is then shown to be solvable in polynomial time and
with a combinatorial network flow algorithm.

Key words: Nuclear threat detection, network flow, parametric cut.

1 Introduction

We consider here a scenario in an urban environment facing potential nuclear threats
such as “dirty bombs”. With recent technology it has become operational and cost-
effective for multiple detectors to be mounted on vehicles in public service. Sodium
Iodine detectors are currently deployed on vehicles such as police cars, fire trucks,
trains, buses or even taxi cabs. A scenario involving taxi cabs carrying detectors
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in Manhattan was recently proposed by Fred Roberts (at the ARI Washington DC
conference) as a problem of interest. The information transmitted by the detectors
is to be used as input in a process which is to identify a “small region” with a
“high concentration” of risk. We formalize and define this problem quantitatively
and devise an efficient graph algorithm that solves the problem in polynomial time.

Detecting nuclear threats is a challenging problem under any circumstances. The
detection task is more challenging when the relative positions of the detector and
the source, if exists, are unknown. The sensitivity of the detectors is diminishing
with distance from the source, thus their geographic position impacts the reliability
of their reporting. Further, a detector may fail to detect correctly an existing threat
(false-negative), or report an alert on the existence of a nuclear source when there
is none (false-positive). The likelihood of false reports is diminished and their ef-
fect is mitigated when relying on reports from several independent sources. We are
interested in reducing the likelihood of false-positive and false-negative reports on
detecting nuclear threats in an urban environment. The idea is to mount detectors on
every taxi cab in an environment such as New York City, or on police cars in areas
where the density of taxi cabs is small. The position of each detector is known at any
point in time from GPS information transmitted to a central control data processing
facility.

The goal is to identify, at every period of time, a region within the area of interest,
which is limited in size and with high concentration of alerts. The purpose is to de-
lineate the presence of a potentially dangerous source and its approximate location.
The detectors transmitted information, along with the geographical positioning of
the collection of detectors is to be consolidated into reliable reporting on whether
nuclear threat exists, and if so, its approximate position. In case this information
is deemed to indicate a high enough likelihood of real danger, the detection opera-
tions shifts to a high alert state where higher sensitivity detectors and personnel with
expertise will be deployed into the region of interest with the task of pinpointing,
locating and disabling the source of the threat.

The alert concentration problem is quantified here as an optimization problem,
combining two goals: One goal is to identify a small region; another goal is to
have large number of alerts, or high concentration of alerts in the region. These two
goals are potentially conflicting – focusing on a large number of alerts within an
area is likely to result in the entire region; on the other hand focusing on concen-
tration alone would result in a single block of the area containing the highest level
of reported alert, thus disregarding information provided by other detectors in the
adjacent area.
Overview of paper We first provide the formalism for describing the problem. We
then formulate a mathematical programming model for the problem, parametrized
by a weight, β , that balances the relative contribution of the two goals. We then show
how the problem is solvable in polynomial time as a minimum s, t-cut problem.
We further show how to solve the problem for all values of the parameter using a
parametric cut procedure.
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2 Notation and Preliminaries

We introduce here graph theoretic notation to be used in formulating the problem.
Without loss of generality we consider the region where the detectors are deployed
to be a rectangular area subdivided in grid squares. These will be small enough to
contain approximately one vehicle and up to two detectors (although this assumption
plays no role in the formulation). Let V be the collection of positions (blocks or
pixels of the grid) in the area considered.

We construct a directed graph G with the set of nodes V corresponding to the set
of blocks. For each adjacent pair of blocks, if one is within the region and the other
outside, the added length to the boundary is 1. The adjacency [i, j] is represented by
a pair of arcs in opposite directions each of capacity 1. These arcs are referred to as
the “adjacency” arcs of G, and denoted by Aa.

Let B1,B2 ⊂ V be two disjoint sets of nodes in a graph G = (V,A) with arc
capacity ui j for each (i, j) ∈ A. The capacity of the cut separating the two sets
is C(B1,B2) = ∑i∈B1, j∈B2,(i, j)∈A ui j. Note that this quantity is not symmetric as
C(B1,B2) is in general not equal to C(B2,B1).

Let S ⊂V be the blocks of a selected sub-region. We measure the size of the area
delineated by S, by the length of its boundary, counted as the number of block sides
that separate S from S̄. The length of the boundary of a subset of grid points S is
then ∑i∈S, j∈S̄,(i, j)∈Aa

ui j. Since the set Aa contains arcs of capacity 1, this length is
equal to C(S, S̄) = |{[i, j]|i ∈ S, j ∈ S̄}|. Note that there is no requirement that the set
S is contiguous. Indeed it can be formed of several connected components. It will be
shown that a ratio formulation of the problem can always obtain a solution forming
a single connected component.

Let Gst be a graph (Vst ,Ast), where Vst = V ∪{s, t} and Ast = A∪As∪At in which
As and At are the source-adjacent and sink-adjacent arcs respectively. A flow vector
f = { fi j}(i, j)∈Ast is said to be feasible if it satisfies:
(i) Flow balance constraints: for each j ∈ V , ∑(i, j)∈Ast fi j = ∑( j,k)∈Ast f jk (i.e.,
inflow( j) = outflow( j)), and
(ii) Capacity constraints: the flow value is between the lower bound and upper bound
capacity of the arc, i.e., 0 ≤ fi j ≤ ui j.

A maximum flow is a feasible flow f ∗ that maximizes the flow out of the source
(or into the sink), called the value of the flow. The value of the maximum flow is
∑(s,i)∈As f ∗si. An s, t cut in Gst (or cut for short) is a partition of Vst to (S∪{s},T ∪
{t}). The capacity of the cut is C(S∪{s},T ∪{t}). The minimum s, t cut is the cut
of minimum capacity, referred to here as min-cut. It is well known (Ford-Fulkerson
[3]) that the maximum value of the flow is equal to the capacity of the min-cut. Every
algorithm known to date that solves the min-cut problem, also solves the maximum
flow problem.
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2.1 The Input

The information captured by a detector is a spectrum of gamma ray emissions
recording the frequency at each energy level. As such this is not scalar-valued in-
formation. The analysis of the detected energies spectrum therefore presents a chal-
lenge. The analysis process is currently under development using advanced data
mining techniques (by e.g. the DONUTS research group at UC Berkeley, [2]). The
output of the analysis is an indication of whether the detected information indicates
the presence of a nuclear threat or not.

At a given time instance, let D be the set of positions of taxis with D∗ ⊆ D
representing the set of positions reporting alert. The set D̄∗ = D \D∗ is the set of
taxi positions reporting no alert.

We will consider an extension of the model to account for varying levels of alert
and varying levels of no-alert. This is when the analysis of the detectors transmitted
information delivers, for each alert reported by a detector at i, an alert confidence
level of pi. For each no-alert reported from position j, there is a no-alert confidence
level of q j.

3 Formulating the Objective Function

Since our objective involves multiple goals, we address these by setting a trade-
off between the importance of the short boundary versus the high concentration of
alerts. One way of trading these off is by minimizing a ratio function – of the length
of the boundary divided by the concentration of alerts in the region. Another, is to
use a weighted combination of the goals.

To formalize the goal of “small area” we define an area to be of small size if it is
enclosed by a “short” boundary. The boundary of an area is then the number of edges
that separate in-region from out-region, or the rectilinear length of the boundary. In
the graph G = (V,Aa) defined in Section 2 the length of the boundary of a set S ⊂V
is C(S, S̄). Prior to proceeding, we note that this definition of length needs certain
tweaking. Let the set of boundary blocks of the entire area considered be denoted by
B. With the definition of the set of arcs Aa, the selection of any subset of B reduces
the defined size of the region. For example, if the selected region is all of V then
the length of the circumference C(V, /0) is equal to 0. To prevent that, we add a set
of arcs AB from the boundary nodes to an imaginary point in space. This will be
quantified in a manner explained later. We let the corner blocks contribute 2 to the
length of the boundary, if included in the set. The length of the boundary is thus
C(S, S̄)+ |B∩S| where we count the corner block twice in B (instead of introducing
additional notation.)

Next we formalized the goal of identifying high concentration of alerts. One
indication of the level of alert in an area is the number of alerts at higher than
threshold level within the area. Let for now, for the sake of simplicity, assume that
the inputs are in the form of alert or no-alert. Let D ⊆ V be the set of position
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occupied by vehicles. Let D∗ ⊂ D be the set of positions reporting alerts. Part of our
objective is then to identify a subregion of positions containing S so that |D∗ ∩S| is
maximized.

Maximizing the number of alerts within the selected region is an objective that
has some pitfalls. For instance, if the region considered, S, contains, in addition
to the alerts, also a relatively high number of no-alerts D̄∗ ∩ S, for D̄∗ = D \D∗,
then this should diminish the significance of the alerts in the region. The extent to
which the alert significance is diminished is not obvious at this point in time and
will require simulation studies, which we plan to undertake. Therefore, we add yet
another minimization objective, min |D̄∗ ∩S|. This objective is then combined with
the length of the boundary objective, as minC(S, S̄)+ |B∩S|+α|D̄∗ ∩S|. Although,
in terms of the model, we do not restrict the value of α , it is reasonable that α should
be a small value compared to the contribution of alert positions, as discussed below.
If we choose to disregard the number of no-alerts in the region, then this is captured
by setting α = 0.

3.1 Ratio Function and Weighted Combination Formulations

One way of combining a maximization objective g(x) with a minimization objective
f (x) is to minimize the ratio of the two functions f (x)

g(x) . For the alert concentration
problem the ratio objective function is:

minS⊂V
C(S,S̄)+|B∩S|+α|D̄∗∩S|

|D∗∩S| .

One advantage of using this ratio formulation is that it is guaranteed that an opti-
mal solution will be a single connected component. This was proved in Hochbaum
[5] for a general family of ratio problems. Formally, we define the concept of addi-
tive functions. For a set of connected components in the graph A1, . . . ,Ak, Ai ⊂ V ,
that are pairwise disjoint, the function f () is said to be additive if f (∪k

j=1A j) =

∑k
j=1 f (A j). For additive ratio functions there is an optimal solution consisting of a

single connected component:

Theorem 1. [Hochbaum 2008] For additive functions f and g, there exists an op-
timal solution to the problem min f (x)

g(x) consisting of a single connected component
and its complement.

It is easy to verify that our functions here are additive, and hence the existence of
a single connected component optimal solution follows.

An alternative to the ratio presentation is to minimize a function which is a linear
combination of the two objectives. Using β as a weight for the relative importance
of the weights, the objective function is:

minS⊆V C(S, S̄)+ |B∩S|+α|D̄∗ ∩S|−β |D∗ ∩S|.
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It is in comparison to β that the value of α should be small. This will reflect the
perceived relative diminishing of the threat in the presence of no-alerts in the region.

The solution procedure for this linear combination problem can be used as a
routine for solving the respective ratio problem. A standard technique for solving a
ratio problem is to “linearize” it. The β -question for the problem min f (x)

g(x) is:

Is min f (x)
g(x) ≤ β?

This is equivalent to solving the linear version
Is min f (x)−βg(x) ≤ 0?

Therefore if we can solve the linear version of the problem for each β and the
logarithm of the number of possible values of β is small enough (of polynomial
size) then the ratio problem is solved by a polynomial number of calls to the linear
version. Note that the reverse is not necessarily true and the ratio version and the
linear version might be of different complexities (for details on these issues that
reader is referred to [5].)

Here we devise an algorithm that solves the linearized problem, and for all values
of β , in strongly polynomial time.

The linearized objective of the concentrated alert (CA) problem is then modified:

(CA) minS⊆V C(S, S̄)+ |B∩S|−β |D∗ ∩S|+α|D̄∗ ∩S|.

The problem (CA) has two parameters, β and α . We show solve the problem for
all values of β provided that α is fixed, and vice versa. Each of these algorithms will
be shown to be running in strongly polynomial time for all values of the parameter.

3.2 Constructing the Graph

Let the region be represented by a collection of nodes V of a directed graph where
each block is represented by a node. The set of nodes is appended by a source
dummy node s and sink dummy node t.

An edge represents two adjacent blocks, where the adjacency can be selected
to be any form of adjacency. Here we use either the 4-neighbors adjacency or 8-
neighbors adjacency. The weight of each edge is set to 1, and each edge [i, j] is
replaced by two directed arcs, (i, j) and ( j, i) both of capacity 1. These arcs form
the set Aa.

We connect the set of arcs AB to the sink t with capacities of 1 except for “corner”
blocks that contribute 2 to the length of the boundary. Each position that contains
an alert taxi in D∗ is set to be adjacent to s with a directed arc of capacity β . Each
position that contains a no-alert taxi, in D̄∗, is set to be adjacent to t with a directed
arc of capacity α . We denote these sets of arcs by Aβ and Aα respectively.

We therefore constructed a directed s, t graph Gst = (Vst ,A), where Vst =V ∪{s, t}
and A = Aa ∪AB ∪Aβ ∪Aα . The construction of the graph is illustrated in Figure 1
where an alert position is indicated by a solid circle, and a no-alert position by a
crossed circle.



The Multi-Sensor Nuclear Threat Detection Problem 395

2

1

α

α

α

1

1
t

1

s

1
1

1
11

1

1
1

1
1

1β

1

1
1

1 1

1
1

1

1

11

1

1

1

β

β

11

1

Fig. 1 The graph Gst .

We now have a graph G = (V ∪{s, t},A) with arc capacities ui j for arc (i, j) ∈ A,
on which we define the minimum s, t-cut problem and show that solving it provides
the optimal solution to our CA problem.

4 Main Theorem

Let a cut be a partition (S,T ) of V of capacity C(S,T ) = ∑(i, j)∈A,i∈S j∈T ui j.

Theorem 2. The source set of the minimum cut in the graph Gst is the optimal region
for problem CA.

Proof. Let (S∪{s},T ∪{t}) be a partition of V ∪{s, t} and thus an s, t-cut in G. We
compute this cut’s capacity:
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C(S∪{s},T ∪{t}) = |B∩S|+ |D̄∗ ∩S|α + |D∗ ∩T |β +∑(i, j)∈A,i∈S j∈T 1
= |B∩S|+ |D̄∗ ∩S|α +(|D∗|− |D∗ ∩S|)β +C(S,T )
= |D∗|β + |B∩S|+C(S,T )+ |D̄∗ ∩S|α −|D∗ ∩S|β .

Now the first term is a constant |D∗|β . Thus minimizing C(S∪{s},T ∪{t}) is equiv-
alent to minimizing |B∩S|+C(S,T )+ |D̄∗ ∩S|α −|D∗ ∩S|β , which is the objective
of the CA problem.

We conclude that solving the concentrated alert problem reduces to finding the
minimum s, t cut in the graph Gst . The region we are seeking will then correspond
to the source set S of the minimum cut (S∪{s},T ∪{t}).

5 The Weighted Version of the Alert Concentration Problem

The information provided by the detector may be too ambiguous to translate to a
simple binary statement of the form of alert or no-alert. Instead, one defines a
threshold level, and within the above-threshold alert category, one creates a function
that maps the alert profile transmitted from location i to a weight value pi that is
monotone increasing with the increased confidence in the significance of the alert
information.

Similarly, the below-threshold category of no-alert maps into a weight value qi
that is monotone increasing with the increased confidence in the significance of the
no-alert information. The modified weighted concentrated alert problem is then to
find a sub-region S, optimizing the function

(WCA) minS⊆V C(S, S̄)+ |B∩S|+α ∑i∈D̄∗∩S qi −β ∑i∈D∗∩S pi.

In order to solve this weighted problem we modify the assignments of capacities
to the arcs in the graph Gst as follows:
For each position i in D∗ we let the capacity of the arc from the source to i be,
usi = β pi, and for each position i in D̄∗ we let the capacity of the arc from i to the
sink be, uit = αqi. We call the graph with these modified arc capacities GW

st . We
claim that a weighted version of Theorem 2 applies:

Theorem 3. The source set of the minimum cut in the graph GW
st is the optimal

region for problem WCA.

Proof. The proof is a simple generalization of Theorem 2. We include it here for
the sake of completeness.

Let (S∪{s},T ∪{t}) be, as before, an s, t-cut in G, of capacity:

C(S∪{s},T ∪{t}) = |B∩S|+α ∑i∈D̄∗∩S qi +βα ∑ j∈D∗∩T p j +∑(i, j)∈A,i∈S j∈T 1
= |B∩S|+α ∑ j∈D̄∗∩S qi +β (∑i∈V pi −∑ j∈D∗∩S p j)+C(S,T )
= β ∑i∈V pi + |B∩S|+C(S,T )+α ∑i∈D̄∗∩S qi −β ∑ j∈D̄∗∩S p j.
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Since β ∑i∈V pi is a constant, the source set of the minimum cut is also minimizing
|B∩S|+C(S,T )+α ∑i∈D̄∗∩S qi −β ∑ j∈D̄∗∩S p j.

6 Solving for all Values of the Parameters

As the value of β is changing the solution changes as well. Instead of solving for
each value of β we note that the source adjacent arcs are monotone increasing in
β and the sink adjacent arcs’s capacities are unaffected. Therefore this is a scenario
of the parametric maximum flow minimum cut problem. The complexity of solving
such a problem is the same as the complexity of solving for a single minimum s, t
cut [4] with the push-relabel algorithm. We plan to use the parametric pseudoflow
algorithm, [6], that also solves the problem in the same complexity as a single cut.
The source code of the solver we use is available at [1].

Since we can find the solution for all values of β , this leads to finding the optimal
solution to the respective ratio problem which corresponds to the largest value of β
where the solution value is still ≤ 0.

It is possible to conduct the sensitivity on the parameter α independently from
that on β . In other words, we keep β fixed and then study the effect on the solution
of solving for all possible values of α .

7 Numerical Examples

Several instances of the problem were devised on a grid. In the figures below a full
circle represents a detector position reporting alert and a crossed circle represents
a detector position reporting no-alert. The length of the boundary was taken to be
its rectilinear length. That is, the 4-neighbor adjacency was selected. The problem
instances were run for β = 3.99 and α = 0.5β . The reason why the value of β is
just under 4 is to prevent the generation of regions consisting of singletons of alert
positions.

In Figure 2 the set V is a 7 × 10 grid. The set of three alert positions forms
the optimal solution. The optimal region is indicated by darker shade. Notice that
in this example there are, on row 10, two alert positions separated by an empty
position. Although these might indicate an elevated alert status for that area, the
vacant grid position rules out selecting this set. The presence of vacant positions
therefore should not necessarily be interpreted as diminishing the alert level. These
are only the result of a random distribution of the positions.

To allow for regions to be generated even if they contain alert positions separated
by a small number of empty grid points, we assign a small value of β , denoted by
γ , to each vacant grid point. That means that every vacant position is interpreted
as a “minor” alert position and the objective function has an extra term −γ|V \D|.
The modification in the graph of Figure 1 is to add arcs from source s to every
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Fig. 2 The solution for a 7×10 grid.

a b c

Fig. 3 The effect of introducing γ values to vacant grid positions.

unoccupied square in the grid with capacity γ each. Theorem 2 is easily extended
for this case. In the next set of examples we set γ = 0.021.

As we see in Figure 3(a), the addition of the γ coefficient indeed changes the op-
timal solution, and now we have two alert regions, one of which contains an empty
position. However, if the two regions are “close”, and in the given configuration they
are 3 rows apart, as shown in Figure 3(b), then the two regions merge into one. In
Figure 3(c) one sees that adding one no-alert position within the region has the effect
of separating the two regions. The determination of which values to set and when
regions should be consolidated is to be determined by nuclear detection experts and
the geographical parameters of the region, as well as the density of the detectors’
distribution in the region.

8 Conclusions

We present here a formulation and an efficient algorithm solving the alert concentra-
tion problem. The approach presented allows to focus resources on real threats and
reduce the likelihood of false-positive and false-negative alerts. We believe that each
practical setting should be characterized by the density of the the vehicles carrying
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detectors, by the sensitivity of the detectors – in terms of distance from a source –
and by the finesse of the grid. Each setting requires different values of the parame-
ters β , γ and α . The plan for follow up research is to have these values fine-tuned
by simulating the application of the procedure on simulated data. This will be done
by considering the resulting size of the region generated and how it corresponds to
the detectors’ range.
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Radiotherapy optimAl Design: An Academic
Radiotherapy Treatment Design System
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P. Uhlig, and B. Salter

Abstract Optimally designing radiotherapy and radiosurgery treatments to increase
the likelihood of a successful recovery from cancer is an important application of op-
erations research. Researchers have been hindered by the lack of academic software
that supports comparisons between different solution techniques on the same design
problem, and this article addresses the inherent difficulties of designing and imple-
menting an academic treatment planning system. In particular, this article details
the algorithms and the software design of Radiotherapy optimAl Design (RAD),
which includes a novel reduction scheme, a flexible design to support comparative
research, and a new imaging construct.
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1 Introduction

With the USA spending about 18% of its gross national product on health care, the
need to efficiently manage and deliver health services has never been greater. In fact,
some distinguished researchers have claimed that if we are not judicious with our
resources, then our health care system will burden society with undue costs and vast
disparities in availability (Bonder, 2004; Pierskalla, 2004). Developing mathemati-
cal models that allow us to study and optimize medical treatments is crucial to the
overall goal of efficiently managing the health care industry. Indeed, we have already
witnessed medical advances by optimizing existing medical procedures, leading to
better patient care, increased probability of success, and better time management.

Much of the previous work focuses on using operations research to improve ad-
ministrative decisions, but several medical procedures are now being considered.
The breadth and importance of these is staggering, and the academic community is
poised to not only aid managerial decisions but also improve medical procedures.
A prominent example of the latter is the use of optimization to design radiotherapy
treatments, which is the focus of this article.

Cancer remedies largely fall into three categories: pharmaceutical - such as
chemotherapy, surgical - whose intent is to physically remove cancerous tissues,
and radiobiological - which uses radiation to destroy cancerous growths. Radiother-
apy is based on the fact that cancerous cells are altered by radiation in a way that
prevents them from replicating with damaged DNA. When a cell is irradiated with
a beam of radiation, a secondary reaction forms a free radical that damages cellu-
lar material. If the damage is not too severe, a healthy cell can likely overcome the
damage and replicate normally, but if the cell is cancerous, it is unlikely that it will
be able to regenerate. The differing abilities of cancerous and non-cancerous cells
to repair themselves is called a therapeutic advantage, and the goal of radiotherapy
is to deliver enough radiation so that cancerous cells expire but not so much as to
permanently damage nearby tissues.

Radiotherapy treatments are delivered by focusing high energy beams of ioniz-
ing radiation on a patient. The goal of the design process is to select the pathways
along which the radiation will pass through the anatomy and to decide the amount
of dose that will be delivered along each pathway, called a fluence value. Bahr et al
(1968a) first suggested that we optimize treatments in 1968, and since then medical
physicists have developed a plethora of models to investigate the design process.
Currently, commercially available planning systems optimize only the fluence value
and do not additionally optimize the pathways. All of these commercially available
systems rely on some form of optimization algorithm and these algorithms can range
from gradient descent to simulated annealing. To date, the optimization approaches
implemented clinically, typically by medical physicists working in the field of radi-
ation oncology, have been reasonably effective but have failed to exploit the signif-
icant advances of robust operations research theory. As operations researchers have
become aware of such problems, increasingly sophisticated optimization expertise
has been brought to bear on the problem, leading to a growing potential for more
elegant solutions.
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The knowledge barrier between medical physicists, who understand the chal-
lenges and nuances of treatment design, and operations researchers, who know little
about the clinical environment, is problematic. Clinical capabilities vary signifi-
cantly, making what is optimal dependent on a specific clinic (treatments also de-
pend on an individual patient). So, the separation of knowledge stems not only from
the fact that the operations researchers generally know little about medical physics,
but also from the fact that they typically know even less about the capabilities of a
specific clinic. This lack of understanding is being overcome by several collabora-
tions between the two communities, allowing academic advances to translate into
improved patient care.

One of the most significant research hindrances is the lack of head-to-head com-
parisons, with the vast majority of numerical calculations being undertaken by indi-
vidual research groups on patients from their associated clinic. This work describes
the academic treatment system Radiotherapy optimAl Design (RAD), which is de-
signed to use

• standard optimization software to model and solve problems,
• a database to store cases in a well-defined manner, and
• a web-based interface for visualization.

The use of standard modeling software makes it simple to alter and/or implement
new models, a fact that supports head-to-head comparisons of the various models
suggested in the literature. Storing problems in a database is an initial step toward
creating a test bank that can be used by researchers to make head-to-head compar-
isons, and the web interface facilitates use. These features agree with standard OR
practice in which algorithms and models are compared on the same problems and
on the same machine.

The paper proceeds as follows. Subsection 1.1 gives a succinct introduction into
the nature of radiotherapy and an overarching description of the technology associ-
ated with intensity modulated radiotherapy. Section 2 presents the radiation trans-
port model that is currently implemented in RAD. This deterministic model esti-
mates how radiation is deposited into the anatomy during treatment and provides
the data used to form the optimization models. Section 3 discusses the somewhat
annoying problem of dealing with the different coordinate systems that are native
to the design question. A few optimization models from the literature are presented
in Section 4. This section also highlights RAD’s use of AMPL, which allows the
optimization model to be altered and/or changed without affecting other parts of
the system. Unfortunately, addressing the entire anatomy associated with a standard
design problem leads to problems whose size is beyond the capability of modern
solvers, and our reductions are presented in Section 5. The methods used by RAD to
generate the images needed to evaluate treatments are presented in Section 6, and
Section 7 discusses our software design, which includes the novel use of a database
to store anatomical features. A few closing remarks are found in Section 8.

The fourth author once believed that a rudimentary version of RAD was possible
within a year’s effort. This was an extremely naive thought. RAD’s implementation
began in 1999, with the initial code being written in Matlab. The current version
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is written in C++ and PHP and links to AMPL, CPLEX and a MySQL database.
At every turn there were numerical difficulties, software engineering obstacles, and
verification problems with the radiation transport model. The current version re-
quired the concentrated effort of eight mathematics/computer science students, three
Ph.Ds in mathematics/computer science, and one Ph.D in Medical Physics spread
over 3 years. The details of our efforts are contained herein.

1.1 The Nature of Radiotherapy

Radiotherapy is delivered by immobilizing a patient on a horizontal table, around
which a linear accelerator, capable of producing a beam of radiation, rotates. The
table may be moved vertically and horizontally, which allows the central point of
gantry rotation, called the isocenter, to be placed anywhere in the anatomy, and the
table may also be rotated in a horizontal plane. The gantry is capable of rotating 360
degrees around the patient, although some positions are not allowed due to collision
potential, see Figure 1.

Treatment design is typically approached in 3 phases,

1. Beam Selection: Select the pathways through which the radiation will pass
through the anatomy.

2. Fluence Optimization: Decide how much radiation (fluence) to deliver along
each of the selected beams to best treat the patient.

3. Delivery Optimization: Decide how to deliver the treatment computed in the
first two phases as efficiently as possible.

The first two phases of treatment design are repeated in the clinic as follows. A de-
signer uses sophisticated image software to visually select beams (also called path-
ways or angles) that appear promising. The fluence to deliver along these beams
is decided by an optimization routine, and the resulting treatment is judged. If the
treatment is unacceptable, the collection of beams is updated and new fluences are

Fig. 1 A standard treatment delivery system.
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calculated. This trial-and-error approach can take as much as several hours per pa-
tient. Once an acceptable treatment is created, an automated routine decides how
to sequence the delivery efficiently. There is an inherent disagreement between the
objectives of fluence and delivery optimization since a fluence objective improves
as beams are added but a delivery objective degrades. Extending the delivery time
is problematic since this increases the probability of patient movement and the like-
lihood of an inaccurate delivery.

The initial interest in optimizing radiotherapy treatments was focused on fluence
optimization, and numerous models and solution procedures have been proposed
(see Bartolozzi et al, 2000; Holder, 2004; Holder and Salter, 2004; Rosen et al,
1991; Shepard et al, 1999). The variety is wide and includes linear, quadratic, mixed
integer linear, mixed integer quadratic, and (non) convex global problems. Clinically
relevant fluence problems are large enough to make combining the first two phases,
which is trivial to express mathematically, difficult to solve, and much of the cur-
rent research is directed at numerical procedures to support a combined model. One
of RAD’s contributions is that it is designed so that different models and solution
procedures can easily be compared on the same cases, allowing head-to-head com-
parisons that were previously unavailable.

There are many treatment paradigms, with one of the most common being In-
tensity Modulated Radiotherapy (IMRT). This treatment modality is defined by the
use of a multileaf collimator that is housed in the head of the gantry. The leaves
of the collimator shape the beam, see Figure 2, and by adjusting the beam’s shape
continuously during treatment, we can modulate the delivered dose. The idea is to
adjust the leaves so that different parts of the anatomy receive variable amounts of
radiation. By combining several beams from multiple orientations, we hope to de-
liver a uniform tumoricidal dose while sparing the surrounding healthy organs and
tissues.

While the treatment advantages of a collimator are apparent, the collimator sig-
nificantly adds to the complexity of treatment design since it provides the ability to
control small subdivisions of the beam. This is accomplished by dividing the open-
field into sub-beams, whose size is determined by the collimator. For example, the
collimator in Figure 2 has 32 opposing leaves that vertically divide the open-field.
Although the leaves move continuously, we horizontally divide the open-field to

Fig. 2 A multileaf collimator.
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approximate the continuous motion and design a treatment that has a unique value
for each rectangular sub-beam. The exposure pattern formed by the sub-beams is
called the fluence pattern, and an active area of research is to decide how to best
adjust the collimator to achieve the fluence pattern as efficiently as possible (see
Ahuja and Hamacher, 2004; Baatar and Hamacher, 2003; Boland et al, 2004).

A radiotherapy treatment is designed once at the beginning of treatment, but the
total dose is delivered in multiple daily treatments called fractions. Fractionization
allows normal cells the time to repair themselves while accumulating damage to tu-
morous tissues. The prescribed dose is typically delivered in 20 to 30 uniform treat-
ments. Patient re-alignment is crucial, and in fact, the beam of radiation can often
be focused with greater precision than a patient can be consistently re-aligned. Ra-
diosurgery treatments differ from radiotherapy treatments in that the total intended
dose is delivered all at once in one large fraction. The intent of a radiosurgery is to
destroy, or ablate, tissue. Patient alignment is even more important for radiosurg-
eries because the large amount of radiation being delivered makes it imperative that
the treatment be delivered as planned.

2 Calculating Delivered Dose

The radiation transport model that calculates how radiation energy per unit mass
is deposited into the anatomy, which is called dose, is crucial to our ability to es-
timate the anatomical effect of external beam radiation. Obviously, if the model
that describes the deposition of dose into the patient does not accurately represent
the delivered (or anatomical) dose, then an optimization model that aids the design
process is not meaningful.

Numerous radiation transport models have been suggested, with the “gold stan-
dard” being a stochastic model that depends on a Monte Carlo simulation. This tech-
nique estimates the random interactions between the patient’s cells and the beam’s
photons, and although they are highly accurate, such models generally require pro-
hibitive amounts of computational time (although this is becoming less of a con-
cern). We instead adapt the deterministic model from Nizin and Mooij (1997) that
approximates each sub-beam’s dose contribution. The primary dose relies on the
beam’s energy and on the ratio between the radius of the sub-beam and the open-
field. The way a sub-beam scatters as it travels through the anatomy depends on
the radius of the sub-beam. Small radius beams have a large surface area compared
to their volume, and hence, they lose a greater percentage of their photons than do
larger radius sub-beams. When many contiguous sub-beams are used in conjunc-
tion, much of this scatter is gained by surrounding sub-beams, called scatter dose
buildup.

The radiation transport model estimates the rate at which radiation is deposited,
and we let D(p,a,i) be the rate at which dose point p gains radiation from sub-beam
i in angle a. A few comments on the term ‘dose point’ are warranted. Much of the
literature divides the anatomy into 3D rectangles called voxels and then considers
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the amount of radiation delivered to an entire voxel. This approach is well suited
to other radiobiological models, but the one that we use is based on geometric dis-
tances. To calculate these distances, we represent each voxel by its center and call
this a dose point. The units of D(p,a,i) are Grays per fluence, where one Gray is equal
to 1 joule per kilogram. The triple (p,a, i) defines the depth d of dose point p along
sub-beam (a, i), see Figure 3. Beams attenuate as they pass through the anatomy,
meaning that lose energy as they pass through tissue. The maximum accumulation
is not at the anatomy’s surface but rather at a depth of M due to the previously
mentioned dose buildup, after which the attenuation is modeled as exponential de-
cay, e−μ(d−M), where μ is an energy parameter. For a 6MV beam, the maximum
dose rate is typically observed to occur at a depth of 1.5 cm. The dose rate at the
surface is approximately 60% of the maximum rate at depth M, and we linearly in-
terpolate between this value at depth 0 and the maximum rate at depth M. While this
interpolation is not exact, it is reasonable and the majority of critical structures are
at depths greater than M. The dose model we use is

D(p,a,i) =

⎧
⎪⎪⎨

⎪⎪⎩

(
P0 e−μ(d−M)(1− e−γr)+ rdαd

r+M

)
× ISF ×O, d ≥ M

( 0.4d
M +0.6

)
×

(
P0 (1− e−γr)+ rMαM

r+M

)
× ISF ×O, 0 ≤ d < M.

The primary dose contribution for depths at least M is P0 e−μ(d−M), where P0 is a
machine-dependent constant. The factor (1− e−γr) represents the percentage of the
open-field radiation present in a sub-beam, where γ is experimentally defined and
r is the radius of the sub-beam. Notice that as r decreases the sub-beam’s intensity
falls exponentially, so extremely small sub-beams are not expected to effectively
treat deep tissue malignancies. The term (rdαd)/(r +M) models the scatter contri-
butions from the surrounding sub-beams, where

αd = −0.0306ln(d)+0.1299.

Again, the contribution from scatter decreases with r (although linearly instead of
exponentially).

The final two factors are the inverse square factor, ISF , and the off-axis fac-
tor, O. The inverse square factor is the square of the ratio of the distance from the
gantry to the isocenter and the distance from the gantry to the dose point. Allowing
l(s, isocenter) and l(s, p) to be the distances from the source s to the isocenter and
from s to the dose point p, we have

ISF =
(

l(s, isocenter)
l(s, p)

)2

.

The off-axis factor adjusts the dose contribution so that dose points near a sub-beam
accumulate radiation faster than those that are farther away. This factor depends
on the off axis distance o in Figure 3 and is machine and beam energy dependent,
making it necessary to use a table tailored to a specific machine. Linear interpolation
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Fig. 3 The geometry of a radiobiological model.

Fig. 4 The dose contour of a single sub-beam.

is performed to determine off axis contributions for distances not listed in the table.
A two dimensional image of a beam is found in Figure 4.

For distances greater than M, Nizin and Mooij (1997) report that the maximum
error is 5% for clinically relevant beams when compared to Monte-Carlo models.
For extremely narrow beams, which are not clinically relevant, there is a maximum
error of 8%. For our purposes, this level of accuracy is sufficient.

The dose rates discussed in the previous section are arranged to form a dose
matrix, denoted by A, whose rows are indexed by p and whose columns are index
by (a, i). Allowing x(a,i) to be the fluence of sub-beam i in angle a, the cumulative
dose at point p is

∑
(a,i)

D(p,a,i)x(a,i) = (Ax)p,

where the indices of the vector x correspond to the columns of A. So, the linear map
x �→ Ax transforms a fluence pattern into anatomical dose (Gy).

Although Figure 3 depicts angle a being divided into ‘flat’ sub-beams, the colli-
mator segments a beam into a 2D grid. The column widths of the grid are decided
by the width of the leaves, and the row widths depend on the type of collimator.
Some collimators are binary, and each leaf is either open or closed. Other collima-
tors allow each leaf to move continuously across the column, and in this situation
the rows of the grid are used to discretize the continuous motion. The subscript i
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indexes through this grid at each angle, and hence, i is actually a 2D index. Simi-
larly, the index for angles need not be restricted to a single great circle around the
patient, and the index a represents an angle on a sphere around the patient.

3 Coordinate Systems

A complete foray into the authors’ tribulations with the different coordinate systems
is beyond the scope of this article, but a few notes are important. There are three
coordinate systems that need to be aligned: 1) the coordinates for the patient images,
2) the coordinates for the dose points, and 3) the location of the gantry. The patient
images are three dimensional of the form (μ ,ν ,ζ ), where each ζ represents a typical
cross sectional image. The images are not necessarily evenly spaced, with images
often being closer through the target. The dose points are also three dimensional of
the form p = (u,v,z). As discussed below, placement of these points is restricted to
an underlying, evenly space grid, and hence, the z coordinate does not necessarily
agree with ζ . However, each dose point needs to be linked to a tissue that is defined
by an image, and we associate (u,v,z) with (u,v,ζz), where ζz is the closest ζ to
z. The gantry coordinates describe the machine and not the anatomy. To link the
gantry’s position and rotation to the patient, we need to know the location of the
isocenter within the patient and the couch angle. Gantry coordinates are calculated
in polar form and translated to rectangular coordinates that are synced with the
anatomy’s position on the couch.

Our solution to aligning the coordinate systems is to build a three dimensional
rectangle whose coordinates are fixed and whose center is always the location of
the isocenter. We load the patient images into the rectangle so that they position the
isocenter accordingly, and then build a three dimensional grid in the rectangle that
defines where dose points are allowed to be placed. The couch angle defines a great
circle around the fixed rectangle that allows us to position and rotate the gantry,
which in turn allows us to track the sub-beams as they gantry moves.

4 Optimization Models

The linear operator x �→ Ax facilitates an optimization model. For convenience, we
sub-divide the rows of A into those that correspond to the target, critical structures,
and normal tissue, and we let AT , AC, and AN be the corresponding sub-matrices
so that AT x, ACx and ANx are the anatomical doses for the target, the critical struc-
tures, and the normal tissue. Physicians form a prescription by placing bounds and
goals on the anatomical dose. The precise definition of a prescription depends on
the definition of an optimal treatment. For example, a simple least squares model is

min{ω1‖AT x−T G‖2 +ω2‖ACx‖2 +ω3‖ANx‖2 : x ≥ 0}. (1)
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The prescription for this model is the vector of goal doses for the targeted region,
T G, which is commonly a scalar multiple of the vector of ones. The ω scalars weight
the terms of the objective to express clinical preference. A linear model with a more
complicated prescription is

min{ω1 ·α +ω2 ·β +ω3 · γ : T LB−αe ≤ AT x ≤ TUB, ACx ≤CUB+βe,

ANx ≤ NUB+ γe, 0 ≤ AT x ≤ T LB, β ≥−‖−CUB‖∞, γ ≥ 0}, (2)

where e is the vector of ones (length is decided by the context of its use). The
prescription for this model is T LB - vector of lower bounds for the target, TUB -
vector of upper bounds for the target, CUB - vector of upper bounds for the critical
structures, NUB - vector of upper bounds for the normal tissues, and the weighting
values ωi, i = 1,2,3. Both (1) and (2) are fluence problems since they define an
optimal treatment for a known set of angles, sub-beams and dose points. In general,
a prescription is the information provided by a physician that is used to define an
instance of a fluence problem. Table 1 shows the prescription information gathered
by RAD. The ABSMIN and ABSMAX information is used in some models to define
‘hard’ constraints instead of the goals suggested by other bounds. For example,
the model below differentiates between the goal lower bound T LB and the target’s
absolute minimum bound ABSMINT .

min{‖z‖2 : ABSMINT ≤ AT x ≤ TUB+ z, ACx ≤CUB+ z, ANx ≤ NUB+ z, x ≥ 0}.

The hard constraint ABSMINT ≤ AT x guarantees the target will receive at least the
values in ABSMINT , whereas TUB, CUB and NUB are goals parametrized by z.

Error bound parameters are commonly used in what are called dose volume con-
straints, which limit the volume of tissue allowed to violate a goal. For example, a
mixed integer extension of (1) that limits the amount of under irradiated target is

min{ω1‖AT x−T G‖2 +ω2‖ACx‖2 +ω3‖ANx‖2 :
(1− yp)∑(a,i) A(p,a,i)x(a,i) ≤ T LB, ∑p∈T yp ≤ PERBLW · |T |, y ∈ {0,1}|T |, x ≥ 0}.

These are notoriously difficult problems with a substantial literature (see Cho et al,
1998; Lee et al, 2003, as examples).

Once an optimization model is decided, an optimal treatment can be calculated
using a host of different solvers. If the model is linear, solver options include the
primal simplex method, the dual simplex method, Lemke’s algorithm, and several
interior point methods. Unless the optimization problem has a unique solution, it is
likely that different solution algorithms will terminate with different fluence patterns
(although the objective values will be the same). This phenomena has been observed
in Ehrgott et al (2005), where CPLEX’s dual simplex was shown to routinely design
treatments with a few angles having unusually high fluences. If the model is nonlin-
ear but smooth, typical options are gradient descent, Newton’s method, and variants
of quasi-Newton’s methods.
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Table 1 Prescription information gathered by RAD. Each of these vectors is indexed to accommo-
date the required number of structures.

Notation Description
Goals T G A goal dose for a target.

T LB A goal lower bound for a target.
TUB A goal upper bound for a target.
CUB A goal upper bound for a critical structure.
NUB A goal upper bound for the normal tissues.

Dose Bounds ABSMAX An absolute maximum dose allowed on any structure.
ABSMIN An absolute minimum dose allowed on the target.

Error Bounds PERABV Percent of volume allowed to violate an upper bound.
PERBLW Percent of volume allowed to violate a lower bound.

In the spirit of RAD’s academic intent, one of our goals is to allow easy and seam-
less flexibility in how optimal treatments are defined and calculated. This is possible
by using pre-established software that is designed to model and solve an optimiza-
tion problem. In particular, we separate data acquisition, modeling, and solving.
This differs from the philosophy behind most of the in-house systems developed by
individual clinics, where modeling and solving are intertwined in a single compu-
tational effort. The mingling of the two complicates the creative process because
changing either the model or the solution procedure often requires large portions of
code to be rewritten, thus hindering exploration. We instead use standard software
to model and solve a problem. For instance, RAD uses AMPL to model prob-
lems, which makes adjusting existing models and entering new ones simple. AMPL
links to a suite of 35 solvers such as (integer) linear and (integer) quadratic models
(as well as many others). RAD currently has access to CPLEX, MINOS and PCx.
This approach takes advantage of the numerous research careers that have gone
into developing state-of-the-art software to model and solve optimization problems,
and hence, brings a substantial amount of expertise to the design of radiotherapy
treatments.

There are limitations to this design approach, especially with global (non-convex)
problems that are often successfully solved with simulated annealing or other
heuristics. The lack of access to quality heuristics for global optimization problems
is a detriment because one of the industry’s primary solution methods is simulated
annealing. Simulated annealing has the favorable quality that it can successfully
accommodate any model, but the unfavorable quality that there is no guarantee of
optimality. However, the medical physics community has learned to trust this tech-
nique because it has consistently provided quality treatments. Moreover, some of
the suggested optimization models are non-convex global models. A future goal
is to link RAD to global solvers like LGO, simulated annealing, and genetic al-
gorithms. Once this is complete, a large scale study of which model and solution
methodology provides the best clinical benefit is possible. Wide scale testing of dif-
ferent models and solution procedures has not been undertaken, but RAD has the
potential to support this work. These comparisons are important because clinical
desires vary from clinic to clinic and from physician to physician. This leads to the
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situation where the sense of optimality —i.e. the optimization model can be differ-
ent from one physician to another for the same patient. It is possible, however, that
the basic treatment goals pertinent to all clinics and physicians are best addressed
by a single model and solver combination. If this is true, then such a combination
would provide a consensus on what an optimal treatment is for a specific type of
cancer and a subsequent standard of care for clinics with similar technology.

5 Problem Management

The size of a typical design problem is substantial, making them difficult to solve.
Indeed, the results in Cheek et al (2004) show that storing the dose matrix can re-
quire over 600 Gigabytes of memory. For this reason, it is necessary to use reduction
schemes to control the size of a problem, and this section discusses the methods in-
troduced in RAD, several of which are designed to assist the combination of beam
selection and fluence optimization.

The current practice of asking the treatment planner to select beams has the favor-
able quality that the underlying fluence problem only considers the selected beams,
which reduces the number of columns in the dose matrix. RAD is capable of ad-
dressing a fluence problem with a large number of candidate beams by judiciously
selecting sub-beams and dose points. The first reduction is to simply remove the
sub-beams that do not strike the target. One naive way to remove these sub-beams
is to calculate an entire dose matrix and then remove the columns whose aggregate
rate to the target is below a specified threshold. RAD’s approach is different, and
before calculating the rates associate with a sub-beam, we search for the minimum
off-axis factor over the dose points on the surface of the target. If the minimum value
is too great, we classify the sub-beam as non-target-striking and are spared the cal-
culation of this column. This technique requires two calculations that are not needed
by the naive approach, that of locating the target’s surface and evaluating the min-
imum off-axis factor. Both of these calculations only consider the target, whereas
the naive approach calculates rate information for each point in the anatomy. Our
numerical comparisons, even for large targets, show that RAD’s approach is signif-
icantly faster.

A novel reduction introduced in RAD is to accurately define the anatomical re-
gion that will receive significant dose. For example, consider a lesion in the upper
part of the cranium. The volume defined by the entire set of patient images is called
the patient volume, and for this example it would likely encompass the head and
neck. However, it is unlikely that we will need to calculate dose in the area of the
neck. We have developed a technique that defines a (typically much) smaller volume
within the patient where meaningful dose is likely to accumulate.

Assume that a designer considers a unique great circle around the patient by
selecting a single isocenter and couch angle, represented by the pair (c, j). Further
assume that beams will be selected from the collection of beams placed every 5o

on this great circle. Using only the sub-beams that strike the target, we trace them
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through the anatomy to define a swath. A mathematical description highlights the
ease with which this region can be calculated. Let B0 be the plane defined by the
gantry as it rotates around the isocenter with a fixed couch angle. B0 is defined
by the unit normal vector N and the isocenter c0: B0 = {c0 + Nν : Nν = 0}. Two
additional planes B1 and B2 are defined using the same normal vector N, so that they
are parallel to B0, but with the respectively different points,

c1 = (max{dist(E(i),B0) : i ∈ S}+ r)N

c2 = (min{dist(E(i),B0) : i ∈ S}− r)N.

In this calculation, S is the set of all sub-beams that are target striking and E is the
map from S into R

3 so that E(i) is the point where sub-beam i exits the anatomy.
The distance between this point and the B0 plane is

dist(E(i),B0) =
NT E(i)−NT c0

‖N‖ .

Note that this is the signed minimum distance between a point and a plane. Points in
the direction of N have a positive distance, and points in the direction of −N have a
negative distance. Allowing D to be the collection of all possible dose points in the
patient volume defined by the entire set of images, we define the swath for isocenter
c and couch angle j to be

W(c, j) = {d ∈ D : dist(d,B1) ≤ 0}∩{d ∈ D : dist(d,B2) ≥ 0}.

This development shows that constructing the swath is computationally simple be-
cause we only need to iterate over the elements of S, which are already defined by
the first reduction, calculate dist(E(i),B0), and keep the maximum and minimum
elements. We additionally add any delineated critical structures that lay outside this
region. The combined region is called the treatment volume for (c, j). If there are
further isocenters and couch angles, the entire treatment volume is the union over
all (c, j). Dose points are only placed within this volume for planning purposes,
reducing the number of rows of the dose matrix.

The arrangement of dose points over the treatment volume is critical for two
reasons: 1) the discrete representation of the anatomical dose needs to accurately
estimate the true continuous anatomical dose, and 2) the size of the problem grows
as dose points are added. Clinical relevance is achieved once the dose points are
within 2mm of each other. Some technologies are capable of taking advantage of
0.1mm differences, and hence, require much finer grids. Our experiments show that
using the treatment volume instead of the patient volume reduces the storage re-
quirement to 10s of Gigabytes instead of 100s of Gigabytes with a grid size of 2
mm, assuming a single isocenter and couch angle. Although this is a significant
reduction, solving a linear or quadratic problem with a dose matrix in the 10 Giga-
byte range is impossible with CPLEX on a 32 bit PC, there are simply not enough
memory addresses.
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Our final reduction is a technique that iteratively builds a dose matrix for the
treatment volume. The idea is to eliminate the numerous dose points in the normal
tissue that are largely needed to protect against hot spots, which are clinically de-
fined as a cubic centimeter of tissue receiving an unusually high dose, say 110% of
the average target dose. While hot spots are not desired in any part of the anatomy,
including the target, the general consensus is that hot spots should never be located
outside the target. Our final reduction scheme attempts to ensure that we place nor-
mal tissue dose points so that we can monitor areas likely to have hot spots while
eliminating the dose points in the normal tissue that do not influence the problem.
RAD uses the following iterative procedure:

1. On the first solve we only include normal tissue dose points that are adjacent
to the target, forming a collar around the target. This concept was used in the
earliest work in the field (see Bahr et al, 1968b).

2. We segment the patient volume into 1cm3 sectors.
3. We trace the sub-beams that have sufficiently high fluence values, and each sector

is scored by counting the number of high fluence sub-beams that pass through it.
4. Normal tissue dose points are placed within the treatment volume for the sectors

with high scores.
5. The process repeats with the added dose points until every sector receives a suf-

ficiently small score.

This iterative procedure solves several small problems instead of one large one. On
clinical examples, the initial dose matrices are normally under 1 Gigabyte, a size
that is appropriate for the other software packages. We point out that RAD does
not calculate the anatomical dose to each sector but rather only counts where high
exposure sub-beams intersect. Just because a few high exposure sub-beams pass
through a sector does not mean that this sector is a hot spot, but it does mean that
it is possible. Sectors with low counts can not be hot spots because it is impossible
to accumulate enough dose without several high exposure sub-beams. We find that
1 to 5 iterations completely removes hot spots outside the target. At the end of
the process, the dose matrix has typically grown negligibly and remains around 1
Gigabyte in size.

The iterative procedure above reduces the number of rows of the dose matrix so
dramatically and successfully that we can increase the number of beams. Although
a clinic will only use a fraction of the added beams, solving for optimal fluences
with many beams provides information about which beams should and should not
be selected. A complete development of beam selection is not within the scope of
this work, and we direct readers to Ehrgott et al (2005) for a complete development.
Beam selectors are classified as uninformed, weakly informed or informed. An un-
informed selector is one that only uses geometry, and the current clinical paradigm
of selecting beams by what looks geometrically correct is an example. A weakly in-
formed selector is guided by the dose matrix and the prescription, and an informed
selector further takes advantage of an optimal fluence pattern calculated with a large
set of possible beams. The premise behind an informed selector is that it begins with
a large set of possible beams that are allowed to ‘compete’ for fluence through an
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optimization process. The expectation is that a beam with a high fluence is more
important than a beam with a low fluence. The numerical results in Ehrgott et al
(2005) demonstrate that informed selectors usually select quality beams in a timely
fashion.

RAD is designed to study beam selection and fluence optimization and is well
positioned to address the current research pursuit of simultaneously optimizing both
fluence and beams (see Aleman et al, 2006, 2007; Lim et al, 2007). Rather than ask-
ing a user to identify beams, users are instead asked to select collections of couch
angles and isocenters, which are clinically easier. RAD then places angles on each
of the great circles, calculates the treatment volume, and uses the iterative procedure
above to control hot spots. Beams are typically spaced at 5o increments on each of
the great circles. The resulting optimal treatment is not clinically viable but is avail-
able for an informed beam selector. Of course, uninformed and weakly informed
beam selectors are possible as well, but RAD provides the additional option of us-
ing an informed selector. Once beams are selected, RAD places dose points on a
fine mesh (spacing no greater than 2 mm) throughout the treatment volume. Since
the number of beams is small, this leads to a dose matrix that remains appropriate
with our other software packages. A final optimal treatment is calculated with this
matrix. Table 2 contains the expected size reductions for a 20cm3 region.

We conclude this section with a brief discussion about sparse matrix formats
and other reductions that did not work. A straightforward approach of reducing
the storage requirements of the dose matrix is to store only those values above a
predefined threshold. This method requires the calculation of every possible rate
coefficient over the patient volume. Our approach of defining the treatment volume
preempts the majority of these calculations and is faster. That said, about 90% of
the rate coefficients over the treatment volume are insignificant since each sub-beam
delivers the majority of its energy to a narrow path through the treatment volume.
So, a sparse matrix format over the treatment volume should further reduce our
storage requirements. However, our reduction schemes allow us to forgo a sparse
matrix format and store a dose matrix as a simple 2D array with double precision.
This simplicity has helped us debug and validate the code.

Before arriving at the reductions above, we attempted a different method of plac-
ing dose points. The idea was to use increasingly sparse grids for the target, critical

Table 2 Approximate dose matrix sizes for a 20cm3 region with 3 couch angles around a single
isocenter in the middle of the patient volume. A 2mm 3D grid spacing is assumed. Each swath is
1cm in width (6 dose points wide), is parallel to one of the axes, and passes through the center of
the patient volume. The example assumes that 10,000 dose points in the treatment volume are not
normal and that 20,000 additional dose points outside the treatment volume are needed to describe
the critical structures. Each beam is assumed to have a 25×25 grid of sub-beams, of which 4 are
assumed to strike the target. The final treatment has 10 angles.

Size Number of Rows Number of Columns Size of A

Patient Volume 106 1.3×105 1.3×1011

Sequential Solves 3.0×104 8.4×102 2.5×107

Final Solve 3.8×105 4.0×10 1.5×107
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structures, and normal tissues. This is not a new idea, with different densities being
considered in Lim et al (2002) and Morrill et al (1990). There are two problems
with this approach. First, the voxels of different grids have different volumes, and
our code to handle the volumes at the interface of different grids was inefficient.
Second, the sparsity of the normal tissue grid had to exceed 1 cm (often 2+ cm)
to accommodate the use of many angles, which is clinically unacceptable. More-
over, the sparsity did not prevent hot spots from appearing in the normal tissue. We
are aware that Nomos’s commercial software uses an octree technique that allows
varying densities, so it is possible to use this idea successfully, although our attempt
failed.

6 Solution Analysis

A treatment undergoes several evaluations once it is designed. In fact, the number of
ways a treatment is judged is at the heart of this research, for if the clinicians could
tell us exactly what they wanted to optimize, we could focus on optimizing that
quantity. However, no evaluative tool comprehensively measures treatment quality,
which naturally makes the problem multiple objective (see Hamacher and Küfer,
2002; Holder, 2001). The issue is further complicated by the fact that treatment
desires are tailored to specific patients at a specific clinic. That said, there are two
general evaluative tools.

A Dose Volume Histogram (DVH) is a graph that for each structure plots dose
against percent volume, which allows a user to quickly evaluate how the entirety of
each structure fairs. A treatment and its corresponding DVH from the commercial
system Nomos are found in Figures 5 and 6. The upper most curve of the DVH
corresponds to the target, which is near the brain stem. This curve starts to decrease
at about 52 Gy, which indicates that 100% of the target receives at least this dose.
The next highest curve represents the spinal cord, a structure whose desired upper

Fig. 5 The isodose contours for a clinically designed treatment.
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Fig. 6 The DVH for the treatment in Figure 5.

bound is 45 Gy. This curve shows that about 18% of the spinal cord is to receive a
higher dose. The remaining curves are for the eye sockets and the remaining normal
tissue.

Notice that a DVH curve depends on the volumetric estimate of the correspond-
ing structure, an observation that leads to a subtle issue. Different clinics are likely to
create different volumes of the normal tissue by scanning different patient volumes.
This means the curve for normal tissue will vary, and in particular, the information
provided by this curve diminishes as more normal tissue is included. For example,
if we were treating the lesion in Figure 5, we could artificially make it appear as
though less than 1% of the normal tissue receives a significant dose by including the
tissue in the patient’s feet. The authors of this paper are unaware of any standard,
and for consistency, all of RAD’s DVHs are based on the treatment volume, which is
a definable and reproducible quantity that removes the dependence on the clinically
defined patient volume.

A DVH visually displays the amount of a structure that violates the prescription
but does not capture the spacial position of the violation. If 10% of a structure’s
volume violates a bound but is distributed throughout the structure, then there is
likely no radiobiological concern. However, if the volume is localized, then it might
be a hot spot and the treatment is questionable. To gain spatial awareness of where
dose is and is not accumulated, each of the patient images is contoured with a se-
quence of isodose curves. Examples are found in Figure 5. Each of these curves
contains the region receiving dose above a specified percentage of the target dose.
So, a 90% isodose curve contains the tissue that receives at least 0.9×T G. Isodose
curves clearly indicate the spatial location of high dose regions, but they require the
user to investigate each image and form a mental picture of the 3D dose. Since there
are often hundreds of scans, this is a tedious process.

Rendering isodose curves proved more complicated than we had first assumed,
and RAD incorporates a new approach. We build a cubic approximation of the con-
tinuous dose with a B-spline. Let δ(k,t), δ(k+1,t), δ(k,t+1) and δ(k+1,t+1) be the dose
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at four neighboring dose points on one of the patient images (recall that dose on an
image is associated with the dose at the closest dose point - since we are dealing
with a single image, we remove the ζ coordinate). The cubic approximation over
this region is

S(k,t)(μ ,ν) = (1/36)UMQ(k,t)M
TV T ,0 ≤ μ ,ν ,≤ 1,

where U = [μ3,μ2,μ ,1],V = [ν3,ν2,ν ,1],

M =

⎡

⎢
⎢
⎣

−1 3 −3 1
3 6 3 0
−3 0 3 0
1 4 1 0

⎤

⎥
⎥
⎦ and Q(k,t) =

⎡

⎢
⎢
⎣

δ(k−1,t−1) δ(k−1,t) δ(k−1,t+1) δ(k−1,t+2)
δ(k,t−1) δ(k,t) δ(k,t+1) δ(k,t+2)

δ(k+1,t−1) δ(k+1,t) δ(k+1,t+1) δ(k+1,t+2)
δ(k+2,t−1) δ(k+2,t) δ(k+2,t+1) δ(k+2,t+2)

⎤

⎥
⎥
⎦ .

By design, these regional approximations combine to form a smooth approximation
over the entire patient image, which is

S(μ ,ν) = S(	μ
,	ν
)(μ −	μ
,ν −	ν
),

where (μ ,ν) ∈ [1,m]× [1,n]. If the indexing exceeds the image, then exterior dose
values are interpreted as the dose of their nearest neighbor. For example, δ(0,0) =
δ(1,0) = δ(0,1) = δ(1,1), of which δ(1,1) is the only real dose value.

This is a traditional (uniform) B-spline, and nothing is new about continuously
approximating discrete information with this technique. However, the cubic esti-
mation allows us to draw an isodose curve by finding a level curve of S(μ ,ν) –
i.e. the solutions to S(μ ,ν)− αT G = 0, where 0 ≤ α ≤ 1. What is new is that
we use a shake-and-bake algorithm to identify the isodose curve (see Boender and
et al, 1991). The idea is to start within the region of high-dose, randomly select a
direction, and then find the high dose boundary along the forward and backward
rays. Formally, fix α between 0 and 1 so that we are looking for the α isocon-
tour. Let (μ0,ν0) be a position on the patient image such that the dose δ(μ0,ν0)
is greater than αT G. Uniformly select ρ0 in [0,π), and along the line segment
(μ0,ν0)+θ(cos(ρ),sin(ρ)), find the smallest positive θ and largest negative θ such
that either S((μ0,ν0)+θ(cos(ρ0),sin(ρ0)))−αTG = 0 or θ is at a bound that pre-
vents the coordinate from leaving the patient image. This calculation renders a line
segment defined by θmax

0 and θmin
0 , and the next iteration begins with the midpoint

of this segment,

(μ1,ν1) = (μ0,ν0)+(1/2)(θmax
0 +θmin

0 )(cos(ρ0),sin(ρ0)).

This technique has the favorable mathematical property that if the region within the

isocontour is convex, then the random sequence (μk,νk)+ θmax(or min)
k (cos(ρk),

sin(ρk)) converges to the uniform distribution on the isocontour (Boender and
et al, 1991). Moreover, it is suspected, although not proved, that the uniformity is
achieved for any connected region (Caron, 1998). An example is shown in Figure 7.
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Fig. 7 A 90% isocontour rendered with the shake-and-bake algorithm.

We let (μ0,ν0) be the location of the dose point with the maximum dose. We
mention that this may or may not be the largest value of S(μ ,ν), and another op-
tion would be to solve ∇S(μ ,ν) = 0 to find its maximum value. We use Newton’s
Method, with a full step, to solve S((μ0,ν0) + θ(cos(ρ0),sin(ρ0)))− αT G = 0,
which has favorable quadratic convergence and is simple to implement since the
partials of S(μ ,ν) are

∂
∂ μ

S(k,t)(u,v) = (1/36)UÎMQ(k,t)M
TV T

and
∂

∂ν
S(k,t)(u,v) = (1/36)UMQ(k,t)M

T ÎTV T ,

where

Î =

⎡

⎣
0 0 0
1 0 0
0 1 0

⎤

⎦ .

Many alternative line searches are available, such as a binary search, and such tech-
niques may provide stability if the gradient of S is near zero. Lastly, we mention that
this method renders an unordered collection of points on the isocontour, and without
an order, it is not clear how to connect them. This is not a concern if enough points
are rendered, for after all, every displayed curve is a collection of pixels.

7 Software Design & Structure Identification

The previous sections’ discussions about the algorithms that support RAD do not
address the software engineering aspects, and the authors would be remiss if they
did not discuss how the different parts of RAD interlink. Some of the topics in this
section are general software issues and others are specific to the design of radiother-
apy treatments.

The basic idea behind our approach is to exploit a language’s strengths. As
Table 2 indicates, the size of the dose matrix is significant, and the code used to
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MySQL, stores and retrieves
problem information

DoseCalc, written in C++,
and compiled as a php module

AMPL, commercial modeling
language

The php scripting language

Visualization, written in php

Solvers, such as CPLEX,
MINOS, etc....

Fig. 8 The SWIG compiler links PHP to C++, which in turn allows us to pass information between
DoseCalc (the parallel implementation of our radio-biological model) and other software.

calculate this matrix is written in C++. Dose matrices may be written to disc for
debugging purposes or they may be kept in memory and passed directly to other ap-
plications. Reading and writing a 1 Gigabyte file from and to disc is time consuming,
and the latter approach saves time, especially when everything stays in RAM. We
use the SWIG compiler to link our C++ code to the scripting language PHP, which
allows the dose matrix to be stored in a native PHP structure. Through the use of
a bi-directional pipe, we can pass the dose matrix to other applications like AMPL
and receive information when a problem is solved. Moreover, PHP gives us control
of the linux command line, naturally interfaces with MySQL, and easily interfaces
with the web to support the user interface. For these reasons, PHP has become the
‘glue’ that holds the system together, and the power of this ability should not be
under estimated. Figure 8 depicts the general design of how different parts of the
code interact. This is not descriptive of the flow of information through the system,
which is discussed below.

Another of RAD’s unique features is that it stores problems in a MySQL data-
base. Beyond being an information repository for RAD, its intent is to become a
library of problems for comparative research. The medical literature on treatment
design is vast, but each paper highlights a technique on a few examples from a
specific clinic, examples that can not be used by others to compare results. This
is strange from a computational perspective, and RAD’s database will support the
numerical work necessary to fairly evaluate different algorithms and models.

A natural question about data storage is, What is a problem? In other words, what
data is needed to define a problem instance. We adhere to the following structure,
which is new as far as the authors can tell,

Problem = (Case, Prescription, Settings)
Solution = (Problem, Model, Solution Technique).

A Case is defined by the geometry of the patient. We parse RTOG files (a stan-
dard protocol for radiotherapy treatments) to gain a description of the structures
that were delineated on the patient images. Each structure is defined by a series of



Radiotherapy optimAl Design 421

Fig. 9 An enlarged view of a kidney. The white areas are not kidney and were delineated on the
patient images.

Fig. 10 The kidney was defined for this patient image by three segments: an outer segment delin-
eating the larger volume and two inner segments that contain non-kidney tissue. The points listed
in the RTOG file are indicated by small circles.

connected regions on individual patient images, with each region being defined by
an ordered list of points. We construct a continuous boundary for each structure by
linearly joining consecutive points on each image. We mention that other splining
techniques were tested in an attempt to make the structural boundaries smooth, but
none were more accurate when overlaid on the CT scan. Some structures, such as the
kidney shown in Figures 9 and 10, may be described by several regions on the same
slice, creating geometries that complicate the process of automatically defining the
regions associated with each tissue. The regions defined by these curves may or
may not be contained within each other. If the regions are disjoint, we assume they
enclose the same tissue. However, if one of the regions is within the other, such as
in Figure 9, we assume that the region defined by the inner curve is not part of the
defined tissue. To test whether or not the regions are disjoint, we calculate a winding
number. Let (μk,νk) and (μ̂k, ν̂k) be two lists of points on the same image for the
same structure. To see whether or not the region defined by (μ̂k, ν̂k) is within the
region defined by (μk,νk), we select a single (μ̂K , ν̂K) and consider the vertical line
through this point. For every directed line segment from (μk,νk) to (μk+1,νk+1) that
passes the vertical line above (below) (μ̂K , ν̂K) from right to left, we accrue 1 (−1).
The signs reverses if we pass from left to right. In the event that (μk+1,νk+1) lies
on the vertical line, we instead consider the directed line segment from (μk,νk) to
(μk+2,νk+2) (or an even larger index if the second point is also on the vertical line)
for the calculation. Under the assumption that regions are either disjoint or nested,
which is an assumption we make, this calculation returns 0 if and only if the region
defined by (μ̂k, ν̂k) is within the region defined by (μk,νk).
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Tissue information is captured with a tga image that is generated for each patient
image by flooding each tissue with a unique color. For example, the three segments
in Figure 10 would be linearly interpolated and the pixels within the outer region
but outside the inner region would be flooded with a color unique to kidney tissue.
This is possible with a PHP class that generates tga images, which are not stored but
rather generated as needed from the list of points in the database (this saves storage
requirements). Representative tga images for each tissue are displayed via a web
interface that additionally asks the user for the prescription information for each
tissue. Each dose point is associated with the closest pixel on a patient image, where
ties are decided with a least index rule. Thus, the tga images are the link between the
user defined prescription and the associated bounds of the optimization problem.

Another concern about tissue identification is that regions representing different
tissues may intersect. Our simple solution follows that of several commercial sys-
tems, and we ask the user to rank tissues. In the case of an intersection, the dose
points within the intersection are labeled as the tissue with the highest priority.

We have already defined the information available for the prescription in Table 1.
The Settings information details the dose point grid, the location of the possible
angles, and the type & sub-division of the beam. Whereas the information that com-
prises a Problem details what is needed to design a treatment, a Solution additionally
includes the type of optimization model and the technique used to solve it -i.e. it in-
cludes how we are defining and finding optimality. Hence, a Solution is everything
needed to define the anatomical dose of an optimal treatment, and with this infor-
mation it is possible to render a treatment to be evaluated.

The information flow through RAD is described by the following algorithmic
description.

1. Step 1: RTOG files are parsed by a php script that reads Case information into a
MySQL database.

2. Step 2: Representative tga images are generated from the Case and are displayed
via a web interface to gain a Prescription.

3. Step 3: Settings are selected to match a clinical setting.
4. Step 4: An optimization model and solution technique are selected.
5. Step 5: Using the reductions and the iterative scheme described above, RAD cal-

culates an optimal treatment. Models are generated in AMPL and solved by the
solver selected in Step 4.

6. Step 6: Solution information is written to the MySQL database.
7. Step 7: Visualization scripts written in php generate dose-volume histograms and

isocontours, which are displayed through a web interface.

8 Conclusion

Orchestrating the creation of a radiotherapy design system is a significant task that
lives at the application edge of operations research and computer science. This pa-
per has discussed many of the fundamental concerns and has introduced several
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new tactics that allow the underlying optimization problem to be approached with
standard software, even in the case of numerous possible angles. It additionally in-
troduces a new method to draw isocontours. The system is based on an efficient and
well studied radiation transport model.

Many researchers have faced the challenge of designing their own design soft-
ware, which is why there are several in-house, research systems. Our goal was to
detail the algorithmic and software perspectives of RAD so that others can incorpo-
rate our experience as they either begin or continue their research. In the future, the
authors will initiate the process of a rigorous, detailed and wide-spread investiga-
tion into which model and solution method consistently produces quality treatments.
Moreover, RAD will allow others to compare their (new) techniques to ours with
the same dose model and patient information. Lastly, RAD is designed to accom-
modate the amalgamation of beam selection and fluence optimization, a topic that
is currently receiving interest.
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Integrated Forecasting and Inventory Control
for Seasonal Demand

Gokhan Metan and Aurélie Thiele

Abstract We present a data-driven forecasting technique with integrated inventory
control for seasonal data, and compare it to the traditional Holt-Winters algorithm in
the context of the newsvendor problem. The data-driven approach relies on (i) clus-
tering data points reflecting a similar phase of the demand process, and (ii) com-
puting the optimal order quantity using the critical quantile for the relevant data,
i.e., data observed when the demand was in a similar phase to the one forecasted
for the next time period. Results indicate that the data-driven approach achieves a
1-5% improvement in the average regret when holding and backorder costs are of
the same order of magnitude. For particularly imbalanced cost structures, average
regret can be improved by up to 90%. This is because traditional forecasting penal-
izes under- and over-shooting equally, but penalties at the inventory management
level are much more severe in one case (typically, backorder) than the other (typ-
ically, holding). This suggests the data-driven approach holds much promise as a
cost reduction technique.

Key words: data-driven optimization, integrated inventory control, clustering,
Holt-Winters method.

1 Introduction

Forecasting and optimization have traditionally been approached as two distinct,
sequential components of inventory management: the random demand is first esti-
mated using historical data, then this forecast (either a point forecast of the future
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demand or a forecast of the distribution) is used as input to the optimization module.
In particular, the primary objective of time series analysis is to develop mathematical
models that explain past data; these models are used in making forecasting decisions
where the goal is to predict the next period’s observation as precisely as possible. To
achieve this goal, demand model parameters are estimated or a distribution is fitted
to the data using a performance metric such as Mean Square Error, which penalizes
overestimating and underestimating the demand equally. In practice, however, the
optimization model penalizes under- and over-predictions unequally, e.g., in inven-
tory problems, backorder is viewed as particularly undesirable while holding inven-
tory is less penalized. In such a setting, the decision-maker places an order in each
time period based on the demand prediction coming from the forecasting model, but
the prediction of the forecasting model does not take into account the nature of the
penalties in the optimization process, and instead minimizes the (symmetric) error
between the forecasts and the actual data points.

In this paper, we investigate the integration of the forecasting and inventory con-
trol decisions; in particular, our focus is on comparing the performance of this data-
driven approach with the traditional Holt-Winters algorithm for random demand
with a seasonal trend. The goal is no longer to predict future observations as accu-
rately as possible using a problem-independent metric, but to blend the inventory
control principles into the demand analysis to achieve superior performance. Data-
driven operations management has been the focus of growing interest over the last
few years. In an early work, van Ryzin and McGill (2000) determine the optimal
protection levels in airline revenue management by combining the optimality con-
ditions derived by Brumelle and McGill (1993) with the stochastic approximation
procedure proposed in Robbins and Monro (1951); while promising, the method ex-
hibits mixed performance in numerical studies. Godfrey and Powell (2001) present
an adaptive technique based on concave piecewise linear approximations of the
value function for the newsvendor problem with censored demand. More recently,
Bent and van Hentenryck (2004) consider a scenario-based planning approach to the
multiple vehicle routing problem with time windows and achieves significant gains
by exploiting stochastic information. Bent and van Hentenryck (2005) focus on on-
line stochastic scheduling where time constraints limit the opportunities for offline
optimization; instead of sampling distributions, it relies on machine learning tech-
niques and historical data. That paper also presents the idea of historical sampling,
which selects a starting position in the past sequence of data, and generates a sample
of pre-specified size starting from that position and selecting the next data points in
a continuous fashion, without gaps. The reader is referred to Van Hentenryck and
Bent (2006) for an in-depth treatment of online stochastic combinatorial optimiza-
tion. Bertsimas and Thiele (2004) investigate the data-driven newsvendor problem
under risk aversion, using one-sided trimming of the historical data in a tractable ap-
proach that incorporates trimming and optimization in a single linear programming
problem. Data-driven management can also be applied to multi-product pricing, as
demonstrated in Rusmevichientong et al (2006).

The present work adds to this growing body of literature by focusing on cycli-
cal demand, and comparing the performance of a novel algorithm based on the
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clustering of data points (Metan and Thiele (2008)) with that of the traditional Holt-
Winters approach. Cluster creation and recombination allow the decision-maker to
place his order at each time period based only on the most relevant data. Because
the Holt-Winters algorithm was developed for uncensored data, we only investi-
gate the uncensored case in our comparative study. Issues related to the censored
newsvendor, i.e., a newsvendor who observes sales data but not the demand, are dis-
cussed in Ding et al (2002) and Bisi and Dada (2007). To the best of our knowledge,
we are the first authors to propose a clustering approach to the data-driven (sea-
sonal) inventory management problem. As pointed out in Metan and Thiele (2008),
customer behavior exhibits cyclical trends in many logistics applications where the
influence of exogenous drivers is difficult to quantify accurately, which makes the
approach particularly appealing. The proposed methodology captures the tradeoff
between the various cost drivers and provides the decision-maker with the optimal
order-up-to levels, rather than the projected demand. Results indicate that the data-
driven approach achieves a 1-5% improvement in the average regret when holding
and backorder costs are of the same order of magnitude. For particularly imbalanced
cost structures, average regret can be improved by up to 90%. Again, this is because
traditional forecasting penalizes under- and over-shooting equally, but penalties at
the inventory management level are much more severe in one case (typically, backo-
rder) than the other (typically, holding). This suggests that inventory managers could
significantly benefit from implementing this approach.

The rest of the paper is organized as follows. In Section 2, we describe the
methodology for integrated forecasting and inventory control in a data-driven frame-
work. We present simulation results and compare the performance of the proposed
approach with the traditional Holt-Winters algorithm in Section 3. Finally, Section
4 contains concluding remarks.

2 Integrated Data-driven Forecasting and Inventory Control

In this paper, our objective is to determine the optimal order for the newsvendor
problem under cyclical demand using the integrated approach; however, the method
can extended to other problem structures. The data-driven algorithm seeks to differ-
entiate between the deterministic seasonal effect and the stochastic variability (see
Figure 1) so that cycle stock and safety stock levels can be set accurately.

We use the following notation.
Cost parameters:

c: the unit ordering cost,
p: the unit selling price,
s: the salvage value,

cu: undershoot cost (cu = p− c),
co: overshoot cost (co = c− s),
α: critical ratio (α = cu

cu+co
).
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Fig. 1 Differentiation of cyclic behavior and stochastic variability.

Demand parameters and decision variable:
Q: the order quantity,
D: the demand level,

φ(.): pdf of standard normal distribution,
Φ(.): cdf of standard normal distribution,

S: the set of data points obtained from previous observations,
N: the number of historical observations in S,
di: the ith demand observation in set S, with i = 1,2, . . . ,N,

d<i>: the ith smallest demand in set S, with i = 1,2, . . . ,N,

Additional parameters required in algorithm:
T : periodicity of time series,

Cj: list of data points assigned to cluster j, j=1, . . . ,T , ranked in increasing order,
m: number of data points assigned to each cluster.

The methodology that we propose here is a dynamic and data-driven approach
that builds directly upon the historical observations and addresses seasonality by
creating and recombining clusters of past demand points. Our description follows
Metan and Thiele (2008) closely, although at a less technical level, since our purpose
here is not to demonstrate the algorithm’s absolute performance but its relative per-
formance with respect to the Holt-Winters method. Clustering can be defined as
grouping a set of instances into a given number of subsets, called clusters, so that
instances in the same cluster share similar characteristics. Most research efforts
in clustering focus on developing efficient algorithms, in particular in the context
of marketing applications and customer data (Jain et al (1999)), which are be-
yond the scope of this paper. We only mention here the method of k-means, which
was originally developed by MacQueen (1967) and is one of the simplest cluster-
ing approaches available in the literature: it partitions the data into k clusters by
minimizing the sum of squared differences of objects to the centroid or mean of the
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cluster. The objective of minimizing total intra-cluster variability can be formulated
as: min∑k

i=1 ∑ j∈Si |x j − μi|2, where there are k clusters Si, i = 1,2, ...,k and μi is
the mean point of all the instances x j in Si. This method presents similarities with
the clustering approach we propose; in particular, we sort the demand and assign
the data points to clusters in a manner that also attempts to minimize intra-cluster
variability. A difference is that, while the k-means algorithm proceeds iteratively
by updating the centroids of each cluster but keeps the same number of clusters
throughout, we update the number of clusters by merging subsets as needed. Tech-
niques for cluster aggregation/disaggregation are not discussed here; the reader is
referred to Metan and Thiele (2008) for more details.

The approach consists of five main steps, as described in Algorithm 2.1. For
simplicity of exposition, we assume that the periodicity of the time series is known
to the master algorithm; for settings where the true periodicity is unknown, an initial
period estimation subroutine can be used to initiate the master algorithm.

Algorithm 2.1 (Master algorithm for cyclical demand (Metan and Thiele)
(2008))
Step 1. Sort the historical demand data in set S in ascending order to form the list Ŝ.
Step 2. Create T data clusters using Ŝ (Algorithm 2.2).
repeat (until the end of the planning horizon)
Step 3. Detect the phase ϕ and the corresponding cluster Cj of the demand at the
next time period ( j = 1,2, . . . ,T ).
Step 4. Select the next order level using inventory control policy π defined over the
set Cj.
Step 5. Assign the new demand observation to appropriate cluster Cj ( j =
1,2, . . . ,T ).

Update the phase for the next decision point (ϕ ←− (ϕ +1) mod T )
end repeat.

The objectives of each step of the master algorithm are summarized in Table 1.
In Step 1 of Algorithm 2.1 the historical data is sorted and stored in the list Ŝ, which
is then used by Algorithm 2.2 to create the initial clusters (Step 2). Algorithm 2.2
creates as many clusters as the periodicity of the seasonal demand function, i.e., one
cluster for each phase of the seasonality, and assigns m =

⌊N
T

⌋
data points to each

cluster, with the N −mT oldest data points being discarded. (Alternatively, the last
cluster could receive more points than the others.)

Table 1 Categorization of the master algorithm’s steps.

Activity Category Objective Steps

Initialize forecasting method Steps 1 & 2
Forecasting Forecast cyclic effect Step 3

Update forecasts Step 5
Inventory control Make optimal ordering decision given the forecast Step 4
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The output of Step 2 is a set of clusters {Cj| j = 1,2, . . . ,T} and each cluster
can be thought of as a set that defines a group of possible forecasts corresponding
to a given phase of the time series. The algorithm selects such a set Cj among the
available sets {Cj| j = 1,2, . . . ,T} in Step 3, which is equivalent to defining a set of
predictions rather than having a single point forecast. Then, Step 4 concludes the
decision-making process by selecting the order-up-to level using inventory control
policy π : Cj → ℜ. Finally, Step 5 updates cluster Cj by assigning the new observa-
tion to this set and the process repeats itself starting from Step 3.

Algorithm 2.2 (Initial clustering) Set m =
⌊N

T

⌋
, j = 1.

repeat
Assign observations d<m( j−1)+1>, . . . ,d<m( j−1)+m> to cluster Cj,
j ←− j +1,

end repeat when j = T +1.

Figure 2 shows the repartition of 100 data points into clusters for a cyclical demand
with a periodicity of T = 20. Since, m = N

T = 100
20 = 5, the algorithm creates 20

clusters with 5 data points in each. The data points that lie within the boundaries of
two consecutive horizontal lines in Figure 2 all belong to the same cluster.

The newsvendor problem, which is the focus of this work, has been exten-
sively studied in the literature under a wide range of assumptions (see, e.g., Porteus
(2002).) We review here properties of the optimal order when the demand D is a con-
tinuous non-negative random variable with probability density function (pdf) f and

Fig. 2 Clustering the historical data for D ∼ N(200+50sin( 2πt
20 ),7). (Metan and Thiele (2008))
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cumulative density function (cdf) F , and there is no setup cost for placing an order.
The newsvendor decides how many items to order before knowing the exact value
of the demand, with the goal of maximizing his expected profit. Since the goods are
perishable, no inventory can be carried over to the next time period. The classical
newsvendor problem is then formulated as:

max
Q≥0

(p− c)Q− (c− s)E [max(0,Q−D)] ,

The optimal solution to the classical newsvendor problem is (Porteus (2002)):

Q∗ = F−1 (α)

The value of the optimal order depends heavily on the underlying demand distrib-
ution. In practice, however, such precise knowledge is difficult to obtain, because
we lack historical observations to compute meaningful estimates. This data scarcity
may be due to the introduction of a new product (no historical data is available), or
to the non-stationarity of the demand (historical data is then in large part irrelevant,
since past demands obey different distributions than the demand in the current time
period.) This motivates the direct use of the empirical data to guide the manager,
so that the decision-making process builds upon the precise amount of information
available without estimating any additional parameters.

In what follows, we focus on non-stationary demand as the main reason for scarce
data. We assume that we do not have any information about the distribution of the
underlying demand process, but we do have a set of historical observations at our
disposal. The data-driven counterpart of the classical newsvendor problem becomes:

max
Q≥0

(p− c)Q− (c− s)
N

N

∑
i=1

max(0,Q−di),

and the optimal order Q∗ is given by:

Q∗ = d< j>, with j = �αN	.

where all di are possible realizations of the demand at the next time period.
In the problem with seasonal demand, we define the control policy as the

α-quantile of the data set Cj, rather than the whole data set (which contains data
points observed for different phases of the cycle). Therefore, we restate Step 4 of
the master algorithm as follows:

Step 4. Select the next order level using inventory control policy π : Q∗ =
d<�α|Cj |	> defined over the set Cj.
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3 Experimental Results

3.1 The Holt-Winters Method

We start by reviewing the traditional procedure. The Holt-Winters method is a type
of exponential smoothing technique that is best suited for forecasting a time series
with a linear trend and seasonality. The technique is due to Winters (1960) and the
method assumes that the time series can be described by the model:

yt = (β0 +β1t)SNt + εt ,

where β0, β1, SNt are the permanent component (or intercept), trend, and seasonal
factor, respectively. These parameters are estimated using the historically available
data and the estimates are calculated using Equations (1)-(3). Let us assume that
we are at the end of period T − 1 and already have the estimates of the parameters
β0, β1, SNt (the estimates of the parameters at time T −1 are denoted as a0(T −1),
b1(T − 1), and snT (T −L− 1), respectively). In period T , we observe a new data
point, yT , and we would like to update our estimates using this new information.
By using Equations (1)-(3), we can obtain the new estimates of the model (i.e.,
a0(T ), b1(T ), and snT (T )) and forecast next period’s value via Equation (4). In
these equations L is the periodicity of the process and α, β , γ are the smoothing
constants. In Equation 4, τ is the variable that defines the number of periods from
the current period in which the forecast is being made. For instance, if we are at
period T = 10 and want to forecast the time series’ value at time 12, then τ = 2 and
the corresponding prediction is denoted by ŷT+τ(T ).

a0(T ) = α
yT

snT (T −L)
+(1−α) [a0(T −1)+b1(T −1)] (1)

b1(T ) = β [a0(T )−a0(T −1)]+(1−β )b1(T −1) (2)

snT (T ) = γ
yT

a0(T )
+(1− γ)snT (T −L) (3)

ŷT+τ(T ) = [a0(T )+b1(T )τ]snT+τ(T + τ −L) (4)

One of the difficulties with the Holt-Winters method is setting the optimal values of
the smoothing constants, α, β , andγ . These constants take their values in [0, 1]. An
appropriate combination of smoothing constants is found by minimizing a perfor-
mance metric, such as Mean Square Error (MSE), over the historical data set.

3.2 Results

In this section, we implement the Holt-Winters method and the integrated data-
driven forecasting technique proposed in Section 2. We compare the performances
of both techniques in terms of the average regret via simulation.
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Table 2 Experimental Parameters.

Exp. Set b T σ Warm-up Simulation length

Set 1 200 10 7 200 5000
200 20 7 200 5000
200 100 7 1000 5000

Set 2 50 10 7 200 5000
50 20 7 200 5000
50 100 7 1000 5000

The underlying demand process used in the experiments is modeled as a Nor-
mally distributed demand, N(μ ,σ2), where μ = a+bsin( 2π

T ). We consider two sets
of experiments as shown in Table 2. In Set 1 and Set 2 of the experiments, we con-
sider high and moderate levels of amplitude for the seasonality (i.e., b = 200 as
high and b = 50 as moderate). We use the value of 500 for the demand level (i.e.,
a = 500) and standard deviation of σ = 7. At the beginning of the simulation, we
generate demand observations from the underlying demand distribution for a length
of time defined by the warm-up period. This set of demand observations is used by
the Holt-Winters method and the data-driven method for initializing their own pa-
rameters. We set the optimal values for the smoothing constants (i.e., α,β ,γ) of the
Holt-Winters method with 0.05 precision. For each experimental setting we gener-
ate 20 simulation replications with each replication having a run length of 5000 time
periods, and collect the performance statistics of each method. We use the following
values for the inventory cost parameters: p = 10 (the unit selling price); c = 7 (the
unit purchasing cost), and s = 5 (the unit salvage value). Finally, different methods
can be used to initialize the Holt-Winters method’s initial estimates. Here, we use
the one described in Bowerman and O’Connell (1979). When we examine the results
of the individual simulation runs, we see that the data-driven method always outper-
forms the Holt-Winters method in terms of the average regret values. (Note that this
version of the Holt-Winters method, which is the version traditionally used by prac-
titioners, generates a point forecast for the demand and not a distribution.) To further
strengthen our analysis, we construct the 95% paired-t confidence intervals. Table 3
summarizes the results including the 95% confidence intervals for each experiment.
None of the confidence intervals given in Table 3 contains the value 0, which allows
us to conclude that the average regret achieved by using the data-driven method is
significantly less than the average regret achieved by Holt-Winters method with 0.95
confidence level. Also, experiments indicate that the data-driven method provides a
2-5% improvement in average regret over this version of the Holt-Winters method
for the experimental setting tested. The improvement is greater in experiments with
large amplitude.

We also investigate the impact of the length of the planning horizon on the per-
formances of the methods. Figure 3 shows the average simulated regret values for
both methods as a function of the simulation run length. Figure 3 suggests that the
performance of both methods improves as time elapses and the rate of improvement
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Table 3 Summary of results.

Experiment Avg. Performance of Avg. Performance of Avg. Performance 95% CI
Data-Driven meth. Holt-Winters meth. Difference

Set 1, Exp. 1 13.7645 14.418 0.6535 [0.5712, 0.7357]
Set 1, Exp. 2 13.6365 14.3975 0.761 [0.6949, 0.8270]
Set 1, Exp. 3 13.762 14.4255 0.6635 [0.6348, 0.6921]
Set 2, Exp. 1 13.739 14.29 0.551 [0.4981, 0.6038]
Set 2, Exp. 2 13.6335 14.295 0.6615 [0.6136, 0.7093]
Set 2, Exp. 3 14.1155 14.423 0.3075 [0.2124, 0.4026]

Fig. 3 Effect of planning horizon on the methods’ performance (results obtained under Set 1,
Experiment 3 parameter levels).

is higher early in the process as compared to the rate of improvement near the end of
the planning horizon. Also, the performance of both methods stabilizes once enough
time periods have elapsed.

The preliminary simulation results above indicate that the integrated data-driven
forecasting and inventory control technique improves the performance of the system
over the Holt-Winters method. We now perform additional experiments to answer
the following questions:

1. What are the performances of both methods measured in terms of mean square
error (MSE) as well as average regret?

2. What impact does a different inventory control policy π̂ have on the performance
of the data-driven technique?
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Table 4 Experimental Parameters.

Instance b T σ Warm-up Simulation length p c s

I1 200 10 7 200 5000 10 7 5
I2 200 20 7 200 5000 10 7 5
I3 200 100 7 1000 5000 10 7 5
I4 200 10 7 200 5000 10 3 1
I5 200 20 7 200 5000 10 3 1
I6 200 100 7 1000 5000 10 3 1

Table 5 Experimental Results.

Instance Holt-Winters with safety stock Data-driven with π

Avg. Regret MSE Avg. Regret MSE
I1 13.9425 55.2970 13.7557 53.8062
I2 13.9626 55.3469 13.5916 52.8218
I3 14.0027 54.5063 13.8555 52.8032
I4 20.0325 105.9309 19.1052 78.4688
I5 20.0450 106.0904 18.8668 78.1311
I6 19.7161 89.5257 19.6570 67.6535

3. What is the impact of the cost parameters on the relative performance of the
forecasting techniques?

We investigate these issues under the same experimental conditions as above, except
for the number of simulation replications (we perform 60 replications rather than
20 to obtain tighter confidence bounds), by extending the first experimental set in
Table 2. The new experimental instances are shown in Table 4, in which the first
three instances impose a critical ratio of α = cu

cu+co
= 0.6 whereas the second three

instances have a critical ratio of α = cu
cu+co

≈ 0.78. Also, to test the impact of the
inventory control policy on the system performance, we use the following alternative
policy in Step 4 of the master algorithm.

Step 4. Select the next order level using inventory control policy π̂ : Q =
∑di∈Cj di

|Cj |
defined over the set Cj.

The reason for using the cluster averages as the order-up-to level policy is that it
minimizes the mean-square error (MSE) and it provides neutral predictions against
under- and over-shooting the demand. In other words, it provides forecasts similar
to those of the Holt-Winters method since it now discards the imbalance between
the cost parameters when producing the predictions.

Results of the second set of experiments are summarized in Tables 5–7 (confi-
dence intervals in Table 7 are calculated for the average regret difference between
the two methods). In Table 5, we summarize the experimental results in which we
compare the performances of the data-driven method operating under the policy π
and the Holt-Winters method with the safety stock, that is, a modified Holt-Winters
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Table 6 Experimental Results.

Instance Holt-Winters without safety stock Data-driven with π̂

Avg. Regret MSE Avg. Regret MSE
I1 14.4127 52.0754 14.1444 50.3155
I2 14.4316 52.2010 14.0038 49.3302
I3 14.4611 52.5743 14.2142 50.6321
I4 25.9762 52.0754 25.4281 50.3155
I5 25.9990 52.2010 25.1729 49.3302
I6 26.0188 52.5610 25.4555 50.2703

Table 7 Experimental results: 95% confidence interval for the average regret difference.

Instance 95% CI for the difference between 95% CI for the difference between
Holt-Winters and Data-driven with π Holt-Winters and Data-driven with π̂

Lower bound Upper bound Lower bound Upper bound
I1 0.1730 0.2007 0.2243 0.3123
I2 0.3557 0.3864 0.3860 0.4695
I3 0.0391 0.2552 0.0920 0.4018
I4 0.8257 1.0291 0.3406 0.7556
I5 1.0850 1.2716 0.6275 1.0247
I6 0.0280 0.0902 0.4388 0.6878

method where we estimate the future demand distribution rather than a point fore-
cast. Since the Holt-Winters method provides the point estimate that minimizes the
mean square error, we adjust its predictions by adding the safety stock term. This
safety stock changes the order quantity by considering the imbalance between the
cost parameters as well as the standard deviation of the random error term of the
forecast. If σε =

√
MSE is the standard deviation of the residuals, then the safety

stock for the Holt-Winters predictions can be calculated as ss = zα σε , where zα
is the α-quantile of the standard Normal distribution. In Table 6, we present the
results for the comparison of the data-driven method operating under the policy π̂
and the Holt-Winters method without the safety stock. Since the data-driven method
operating under the policy π̂ (where the decision-maker orders an amount equal to
the cluster average) does not consider the imbalance between the cost terms, it is
most appropriate to compare it to the Holt-Winters method without adjusting the
Holt-Winters’ predictions as well.

In terms of average regret, the data-driven method (under both π and π̂ poli-
cies) performs significantly better than the Holt-Winters method (with and without
safety stock, respectively). Also, the proposed method performs even better when π
is used as the inventory control policy (compared to policy π̂ ), which is the optimal
policy for the newsvendor problem. This indicates that under the problem-specific
optimal control policy, the integrated forecasting and inventory control results in
significantly improved performance. In terms of MSE, the data-driven method re-
sults in lower values than the Holt-Winters method; this suggests that the data-driven
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Table 8 Percentage of improvement in average regret (HW with safety stock and DD with π).

α = 0.6 α ≈ 0.78

I1 I2 I3 I4 I5 I6
1.34% 2.66% 1.05% 4.63% 5.88% 0.30%

Table 9 Percentage of improvement in average regret (HW without safety stock and DD with π̂ ).

α = 0.6 α ≈ 0.78

I1 I2 I3 I4 I5 I6
1.86% 2.96% 1.71% 2.11% 3.18% 2.16%

approach also has the power of closely predicting the actual observations when an
appropriate policy such as π̂ is used (Table 6). However, if we compare the MSE
results across alternative policies, Table 6 provides lower MSE values than the cor-
responding MSE values given in Table 5. This observation is mainly due to the
different objectives of the two policies, in which the objective of the first policy is to
minimize the cost whereas the objective of the second policy is to minimize the av-
erage error between the predictions and the actual demand observations. Therefore,
the first policy results in better regret values and the second policy results better
MSE values.

Another performance statistics is presented in Tables 8 and 9. We observe from
these results that the percentage of improvement achieved by the data-driven method
over the Holt-Winters method is more significant when the integrated forecasting
and inventory control policy is implemented. Also, the percentage of improvement
generally increases when the imbalance between the cost parameters increases;
however, when the periodicity of the demand process is large (e.g., problem in-
stance I6), the potential improvement diminishes since it becomes more difficult to
differentiate the seasonal behavior from the stochastic variability. To quantify the
impact of the critical ratio on the average regret one more step further, we perform
additional experiments for instance I1 for different cost parameter combinations.
Figure 4 shows the percentage of improvement in the average regret values with
respect to the critical ratio. We calculate the percentage of improvement by com-
paring the average regret values of the data-driven method (“DD”) under policy π
and the Holt-Winters (“HW”) method without safety stock. The percentage of im-
provement is a convex function of the critical ratio and reaches its minimum value
at 0.5, which is the point where under- and over-shooting the demand are penalized
equally. Therefore, the integrated forecasting and inventory control loses its attrac-
tiveness since bare forecasting achieves the same performance. However, when the
imbalance is high (in many practical applications, backorder costs are much higher
than holding costs), the cost reduction becomes significant: up to 90% improvement
is observed at extreme critical ratio values (Figure 4).
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Fig. 4 Effect of imbalance between cost parameters on the percentage of improvement in average
regret (results obtained using the parameter levels of instance I1).

4 Conclusions

We have compared the performance of a data-driven algorithm based on the clus-
tering of data points to the Holt-Winters method when the demand faced by the
newsvendor is seasonal, and observed the integrated forecasting-control approach
achieves significant gains over the traditional method.
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A Provably Good Global Routing Algorithm
in Multilayer IC and MCM Layout Designs

Mohamed Saad, Tamás Terlaky, Anthony Vannelli, and Hu Zhang

Abstract Given a multilayer routing area, we consider the global routing problem
of selecting a maximum set of nets, such that every net can be routed entirely in one
of the given layers without violating the physical capacity constraints. This problem
is motivated by applications in multilayer IC and multichip module (MCM) layout
designs. The contribution of this paper is threefold. First, we formulate the problem
as an integer linear program (ILP). Second, we modify an algorithm by Garg and
Könemann for packing linear programs to obtain an approximation algorithm for the
global routing problem. Our algorithm provides solutions guaranteed to be within
a certain range of the optimal value, and runs in polynomial-time even if all, possi-
bly exponentially many, Steiner trees are considered in the formulation. Finally, we
demonstrate that the complexity of our algorithm can be significantly reduced in the
case of identical routing layers.

1 Introduction

Traditionally, the VLSI routing process is divided into two phases: global routing
and detailed routing. Global routing is to find a routing tree for each net, and detailed
routing assigns the actual tracks and vias. Advances in VLSI fabrication technology
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have made it possible to use multiple routing layers for interconnections. A signif-
icant amount of research exists on handling multiple routing layers in the detailed
routing phase. However, only limited research exists on multilayer global routing
[13]. In other words, multiple routing layers have been dealt with in the detailed
routing phase rather than in the global routing phase [13].

Given a multilayer routing area and a set of nets, we consider the global routing
problem of selecting a maximum (weighted) subset of nets, such that every net can
be routed entirely in one of the given layers without violating the physical capacity
constraints. This problem is motivated by the following.

• Routing the majority of nets each in a single layer significantly reduces the num-
ber of required vias in the final layout. It is known that vias increase fabrication
cost and degrade system performance [7].

• Routing the majority of nets each in a single layer greatly simplifies the detailed
routing problem in multilayer IC design [7].

Two examples of the global routing problem are shown in Fig. 1 and Fig. 2. For
simplicity, a single-layer routing area is assumed in both examples. It is assumed
also that each channel is able to accomodate at most one routing tree. In the example
of Fig. 1, two nets are given in the routing area. The vertices belonging to the first
(respectively, second) net are all labeled by the number 1 (respectively, number 2).
Furthermore, a solution is presented such that both nets can be successfully realized
in one layer. In particular, the first net is realized by the thick solid routing tree,
while the second net is realized by the dashed routing tree. However, if a third net is
added as in Fig. 2, there is no feasible solution for the routing problem any more. In
particular, the third net (with vertices labeled by the number 3) cannot be realized by
a routing tree any more. In practical global routing instances, this feasibility problem
frequently occurs. Therefore, we address in this paper the important objective of
selecting a maximum (weighted) subset of nets, such that every net can be routed
entirely in one of the given layers without violating the physical capacity constraints.

Fig. 1 A feasible routing.
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Fig. 2 An infeasible routing.

A similar multilayer topological planar routing problem was addressed in [8] and
[7]. Given a number of routing layers, these studies addressed problem of choosing
the maximum (weighted) subset of nets such that each net can be topologically
routed entirely in one of the given layers. In particular, Cong and Liu proved in [8]
that the problem is NP-hard. A provably good greedy algorithm for the problem
was presented by Cong, Hossain and Sherwany [7]. A limitation of these studies
is that they considered only planar routing, i.e., physical capacity constraints were
not considered [7]. Moreover, planar routing graphs cannot handle state-of-the-art
technologies properly [13].

The contribution of this paper is threefold.

• We formulate the multilayer global routing problem of selecting the maximum
subset of nets such that every net can be routed entirely in one of the given layers
without violating the physical capacity constraints, as an integer linear program
(ILP).

• We modify an algorithm by Garg and Könemann for packing linear programs to
obtain an approximation algorithm for the global routing problem. Our algorithm
provides solutions guaranteed to be within a certain range of the optimal value,
and runs in polynomial-time even if all, possibly exponentially many, Steiner
trees are considered in the formulation.

• We demonstrate that the complexity of our algorithm can be significantly reduced
in the case of identical routing layers.

The remainder of this paper is organized as follows. In Section 2, we model the
global routing problem as an ILP. In Section 3, we present a polynomial-time ap-
proximation algorithm for the linear programming (LP-) relaxation of the problem
(i.e., for the fractional global routing problem), and establish its performance guar-
antee and computational complexity. A reduced complexity algorithm is introduced,
in Section 4, for the case of identical routing layers. In Section 5, we derive our over-
all approximation guarantee for solving the integer global routing problem. Section
6 concludes the paper.
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2 Mathematical Model

In this section we introduce an ILP formulation for the global routing problem.
Following [1], an undirected grid graph G = (V,E) is constructed. In other words, a
two-dimensional grid is placed over the chip. For each tile, there is a vertex v ∈ V ,
and two vertices corresponding to adjacent tiles are connected by an edge. In other
words, each edge e ∈ E represents a routing area between two adjacent tiles. In
multilayer designs, an edge may consist of more than one layer [19]. In particular,
the following are given as inputs to the problem.

• V : the set of vertices in the routing graph, |V | = N.
• E: the set of edges in the routing graph, |E| = M.
• L = {1,2, . . . ,L}: the set of available routing layers1.
• ce,l : the capacity of edge e ∈ E on layer l ∈ L .
• I : the set of nets. Each net i ∈ I is defined by a subset of vertices Vi ⊆ V that

need to be connected. In particular, a net i ∈ I is realized by finding a Steiner
tree that connects all vertices in Vi.

• Ti: the set of all Steiner trees in G that can be used to realize net i ∈ I . In other
words, every tree T ∈Ti connects the vertices in Vi. It is worth noting that Ti can
be exponentially sized. Our algorithm, however, does not require that the sets Ti
are explicitly given.

A net i ∈ I is realized by finding a Steiner tree T ∈ Ti that is routed entirely
in one of the given layers l ∈ L . The objective is to maximize the number of nets
successfully realized. The design variables are {xi(T, l) : i ∈ I ,T ∈ Ti, l ∈ L },
where for some i ∈ I :

xi(T, l) =
{

1, T ∈ Ti is selected to route net i on layer l ∈ L ;
0, otherwise.

The global routing problem can be cast as ILP as follows:

max ∑
l∈L

∑
i∈I

∑
T∈Ti

wi(T, l)xi(T, l)

s.t. ∑
i∈I

∑
T∈Ti:e∈T

xi(T, l) ≤ ce,l , ∀e, l (1a)

∑
l∈L

∑
T∈Ti

xi(T, l) ≤ 1, ∀i (1b)

xi(T, l) ∈ {0,1}, ∀i,T, l, (1c)

1 A routing layer considered in this paper may, in practice, be implemented as a pair of layers: one
for wiring in the x direction, and the other for wiring in the y direction. The problem formulation
and algorithm presented in this paper avoids the use of stacked vias between different pairs of
layers. However, vias used to connect wires within any pair of layers may be required. These vias
are less expensive, and may be minimized in the detailed routing phase. In the sequel, pairs of
layers are simply termed “layers”.
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where wi(T, l) is the weight associated with the design variable xi(T, l). Although
all of our results remain valid for the weighted case, to keep the discussion simple,
in the rest of this paper we assume that all weights wi(T, l) are equal to one.

Equation (1a) represents the capacity constraints. It ensures that the number of
nets routed over any edge e and assigned to the same layer l does not exceed the
capacity ce,l of that edge. Equation (1b) ensures that at most one tree is chosen for
every net i. Equation (1c) represents the non-negativity and integrality constraints of
the variables. The objective is to maximize the number of nets successfully routed.

It is straightforward to see that the global routing problem as formulated by (1) is
NP-hard. In fact, it contains the unsplittable maximum multicommodity flow prob-
lem as a special case. Let L contain only one layer, and let every net i ∈ I contain
only two vertices, i.e., for every net i ∈ I let Vi = {si,di} where si,di ∈ V . In this
case Ti will contain only simple paths that join si and di. Under these restrictions
ILP (1) will be equivalent to the following problem: Given a graph G = (V,E), a
capacity associated with every edge, and a set of commodities (each defined by a
pair of vertices and associated with a unit demand), we seek to route a subset of the
commodities of maximum total demand, such that every demand is routed along a
single path and that total flow routed across any edge is bounded by its capacity.
This is precisely the unsplittable maximum multicommodity flow problem, which
is known to be NP-hard [12].

The NP-hardness of the global routing problem as given by (1) justifies the use of
heuristics. In this paper, however, we are interested in polynomial-time approxima-
tion algorithms that have a theoretically proven worst-case performance guarantee.
We start by giving an efficient algorithm to solve the linear programming (LP-) re-
laxation of ILP (1).

3 A Provably Good Algorithm for Fractional Global Routing

We briefly digress from the global routing problem to a more general packing prob-
lem, which is a special kind of LP. In fact the LP-relaxation of (1) is a packing
problem. In this section we will design a fast approximation algorithm for the LP-
relaxation of (1) based on the method in [18].

We consider the following fractional packing problem:

max cT x
s.t. Ax ≤ b;

x ≥ 0.
(2)

Here A is an m× n positive matrix, and b ∈ IRm and c ∈ IRn are positive vectors.
It is worth noting that problem (1) has exponentially many variables. Therefore, it
cannot be solved using many exact algorithms for LPs, e.g., standard interior point
methods. The volumetric cutting plane method [2] or the ellipsoid method with
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separation oracle [10] may be employed, but in general they lead to large complex-
ity. Therefore, we are interested in approximation algorithms.

The approximation algorithms for fractional packing problems (2) are well stud-
ied in [9, 14, 18, 20]. All these algorithms are based on the duality relation for LPs.
However, the algorithms in [14, 20] run in a time depending on the input data, and
therefore only lead to polynomial time algorithms. The algorithm in [9] is the first
with a strictly polynomial time but the block problem (subproblem) is required to
be polynomial time solvable. Unfortunately it is not the case as we shall show later
that the block problem of LP-relaxation for (1) is NP-hard. Hence, we will apply
the algorithm proposed in [18].

The approximation algorithm in [18] is an iterative approach. It maintains a se-
quence of a pair of the primal solution x and the dual solution y. At each iteration,
for a pre-computed y ∈ IRm, an approximate block solver ABS(y) is called once that
finds a column index q that:

(Aq)T y/cq ≤ r min
j

(A j)T y/c j,

where r ≥ 1 is the approximation ratio of the block solver, which plays a role similar
to the separation oracle in [10]. It is shown in [18] that their algorithm can find
a (1− ε)/r-approximate solution within coordination complexity (bounds on the
number of iterations) of O(mε−2 lnm). The approximation algorithm for fractional
packing problem (2) is in Table 1.

In the algorithm, the parameters f and D are in fact the objective values of the
primal and dual programs for current pair x and y. It is shown in [18] that the scaled
solution x/ log1+δ ((1+δ )/u) at the final iteration is a feasible solution and its cor-
responding objective value is at least (1− ε)OPT/r, where OPT is the optimum
value of (2). For the complexity, the following result holds:

Proposition 1. [18] There exists a (1−ε)/r-approximation algorithm for the pack-
ing problem (2) running in O(mε−2 lnm) iterations, each iteration calling an r-
approximate block solver once.

Table 1 Approximation algorithm for fractional packing problems.

δ = 1−
√

1− ε , u = (1+δ )((1+δ )m)−1/δ , f = 0, yi = u/bi, D = um;
while D < 1 do {iteration}

call ABS(y) to find a column index q;
p = argmini bi/Ai,q;
xq = xq +bq/Ap,q;
f = f + cqbp/Ap,q;

yi = yi

[

1+δ
bp/Ap,q

bi/Ai,q

]

;

D =
m
∑

i=1
biyi;

end do
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It is worth noting that the complexity of the algorithm in [18] is independent of
the input data or the approximation ratio r, which is similar to the result in [11] for
convex min-max resource-sharing problems.

Applying the approximation algorithm for fractional packing problems to the
LP-relaxation of (1) yields the following result:

Theorem 1. There is a (1− ε)/r-approximation algorithm for the LP-relaxation of
(1) with a running time O((ML + |I |)L|I |ε−2β ln(ML + |I |)), where r and β
are the ratio and the running time of the approximate minimum Steiner tree solver
called as the approximate block solver, respectively.

Proof. We just need to consider the block problem. There are two types of compo-
nents in the dual vector y. The first type of components corresponding to the first set
of constraints (capacity constraints) in (1) are

y1, . . . ,yM,yM+1, . . . ,y2M, . . . ,yM(L−1)+1, . . . ,yML,

which correspond to edge ei ∈ E and layer l. The remaining components yML+1, . . . ,
yML+|I | correspond to the second set of constraints in (1). It is easy to verify that
the block problem of the LP-relaxation of (1) is to find a tree T such that

min
i

min
l

min
T∈Ti

(

∑
e∈T

yMl+e + yML+iδi,T

)

, (3)

where the indicator variable δi,T = 1 if T ∈ Ti, and otherwise δi,T = 0. To find the
minimum, we can just search a number of L|I | trees to attain the following minima:

min
T∈Ti

∑
e∈T

yMl+e,

for all i = 1, . . . , |I | and l = 1, . . . ,L. Then we can find the minimal objective value
of (3) over all these L|I | trees. If we regard the first ML components of the dual
vector y1, . . . ,yML as the length associated to all edges in the given graph for all
layers, then minT∈Ti ∑e∈T yMl+e is equivalent to finding a tree on the l-th layer for
net i with a minimum total length. Now the block problem is in fact the minimum
Steiner tree problem in graphs. With an r-approximate minimum Steiner tree solver
and using the approximation algorithm for fractional packing problems in [18], we
can prove the theorem. �	

Unfortunately, the minimum Steiner tree problem is APX-hard [3, 4]. The best
known lower and upper bounds on the approximation ratio are 96/95 ≈ 1.0105 [6]
and 1 +(ln3)/2 ≈ 1.550 [17], respectively. Thus, we can only use the approxima-
tion algorithm in [18] with an approximate minimum Steiner tree solver to obtain
a feasible solution to the LP-relaxation of (1) to obtain an approximation algorithm
with theoretical performance bounds.
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4 A Reduced Complexity Algorithm for Identical Layers

In this section we consider the special case of the global routing problem where for
every edge e ∈ E:

ce,1 = ce,2 = . . . = ce,L = ce

This corresponds to the situation of all routing layers being identical. In this case,
the LP-relaxation of the global routing problem will be given as follows.

max ∑
l∈L

∑
i∈I

∑
T∈Ti

xi(T, l)

s.t. ∑
i∈I

∑
T∈Ti:e∈T

xi(T, l) ≤ ce, ∀e, l (4a)

∑
l∈L

∑
T∈Ti

xi(T, l) ≤ 1, ∀i (4b)

0 ≤ xi(T, l) ≤ 1, ∀i,T, l. (4c)

Now, consider another special case of the global routing problem as given by (1),
where the number of routing layers is reduced to one and the capacity of every edge e
is set to ce ·L. Let this problem be termed single-layer problem. It is straightforward
to see that the LP-relaxation for the single-layer problem is given as follows.

max ∑
i∈I

∑
T∈Ti

yi(T )

s.t. ∑
i∈I

∑
T∈Ti:e∈T

yi(T ) ≤ ce ·L, ∀e (5a)

∑
T∈Ti

yi(T ) ≤ 1, ∀i (5b)

0 ≤ yi(T ) ≤ 1, ∀i,T. (5c)

Recall that M and L denotes the number of edges in the routing graph and the
number of routing layers, respectively. Moreover, let |T | and |I | denote the total
number of Steiner trees in the graph and the total number of nets, respectively. The
number of constraints in the multilayer LP (4) is M ·L + |I |, while the number of
constraints in the single-layer LP (5) is M + |I |. Moreover, the number of variables
in (4) is |T | ·L, while the number of variables in (5) is |T |. To give more insight,
note that, in the case of ten routing layers, the single-layer LP as given by (5) has an
order of magnitude less constraints and variables than the multilayer LP as given by
(4). In the following theorem we establish the fact that solving LP (5) provides the
same solution and objective function value as solving LP (4).

Theorem 2. Let OPTm denote the optimal objective function value of the multilayer
LP given by (4). Also, let OPTs denote the optimal objective function value of the
single-layer LP given by (5). Then, OPTm = OPTs.
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Proof. We establish the proof by showing that OPTm ≤ OPTs and OPTm ≥ OPTs.
Let {x∗i (T, l) : i ∈ I ,T ∈ Ti, l ∈ L } be an optimal solution to LP (4). Define

y∗i (T ) = ∑l∈L x∗i (T, l) for every i ∈I and T ∈Ti. By (4b) and (4c), for every i ∈I
and T ∈ Ti, we have 0 ≤ y∗i (T ) = ∑l∈L x∗i (T, l) ≤ 1. Also, by (4a), for every e ∈ E,
we have ∑i∈I ∑T∈Ti:e∈T y∗i (T ) = ∑l∈L ∑i∈I ∑T∈Ti:e∈T x∗i (T, l) ≤ ∑l∈L ce = ce ·L.
Furthermore, by (4b), for every i∈I , we have ∑T∈Ti y∗i (T ) = ∑l∈L ∑T∈Ti x∗i (T,l) <=
1. In other words, {y∗i (T ) : i ∈ I ,T ∈ Ti} is a feasible solution for LP (5). Conse-
quently,

∑
i∈I

∑
T∈Ti

y∗i (T ) ≤ OPTs. (6)

By replacing y∗i (T ) by its definition in terms of x∗i (T, l) in (6), we conclude that

OPTm ≤ OPTs. (7)

Conversely, let {y∗i (T ) : i ∈ I ,T ∈ Ti} be an optimal solution to LP (5). Define
x∗i (T, l) = 1

L · y∗i (T ) for every for every i ∈ I , T ∈ Ti and l ∈ L . By (5c), for
every i ∈ I , T ∈ Ti and l ∈ L , we have 0 ≤ x∗i (T, l) ≤ 1. Also by (5a), for every
e ∈ E and l ∈ L , we have ∑i∈I ∑T∈Ti:e∈T x∗i (T, l) = 1

L ·∑i∈I ∑T∈Ti:e∈T y∗i (T ) ≤
1
L ·ce ·L = ce. Furthermore by (5b), for every i ∈I , we have ∑l∈L ∑T∈Ti x∗i (T, l) =
1
L · ∑l∈L ∑T∈Ti y∗i (T ) = ∑T∈Ti y∗i (T ) ≤ 1. In other words, {x∗i (T, l) : i ∈ I ,T ∈
Ti, l ∈ L } is a feasible solution for LP (4). Consequently,

∑
l∈L

∑
i∈I

∑
T∈Ti

x∗i (T, l) ≤ OPTm. (8)

By replacing x∗i (T, l) by its definition in terms of y∗i (T ) in (8), we conclude that

OPTs ≤ OPTm. (9)

Combining (7) and (9) completes the proof. �	
Moreover, we have the following result.

Corollary 1. Let {y∗i (T ) : i ∈ I ,T ∈ Ti} be an optimal solution to LP (5). Then,
{x∗i (T, l) : i ∈I ,T ∈Ti, l ∈L }, where x∗i (T, l) = 1

L ·y∗i (T ) for every i ∈I , T ∈Ti
and l ∈ L , is an optimal solution to LP (4).

Proof. Follows directly from the proof of Theorem 2. �	
Furthermore, using the same argument we can show that if y∗i (T ) is a ρ-

approximate solution to LP (5), then x∗i (T, l) = 1
L ·y∗i (T ) is a ρ-approximate solution

to LP (4). Therefore, the algorithm presented in Section 3 can be used at reduced
complexity to obtain a provably good solution to the single-layer LP as given by (5).
This solution can then be used to obtain a solution of precisely the same quality to
the multilayer LP as given by (4).
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5 The Approximation Algorithm

As usual, our approximation algorithm for the global routing problem in multi-
layer VLSI design is as follows: We first solve the LP-relaxation of (1) to ob-
tain a fractional solution; Then we round the fractional solution to obtain feasible
solution to (1).

By the algorithm in [18], we are able to obtain a (1− ε)/r-approximate solution
for the LP-relaxation of (1). Then we apply the randomized rounding in [15, 16]
to generate the integer solution. Based on the scaling technique in [15, 16], for any
real number v satisfying (ve1−v)c < 1/(m+1), where c = mine,l ce,l is the minimal
capacity, we can obtain a bound for the integer solution by randomized rounding:

Theorem 3. There is an approximation algorithm for the global routing problem in
multilayer VLSI design such that the objective value is no less than
⎧
⎪⎨

⎪⎩

(1−ε)vOPT/r−(exp(1)−1)(1− ε)v
√

OPT ln(M +1)/r, if OPT > r ln(M +1);

(1− ε)vOPT/r− exp(1)(1− ε)v ln(M +1)
1+ ln(r ln(M+1)/OPT )

, otherwise,

where OPT is the optimal integer solution to (1).

Another strategy to obtain an approximate solution to (1) is to directly apply the
approach to find (1− ε)/r-approximate solution for integer packing problems in
[18]. Thus we have the following result:

Theorem 4. If all edge capacities are not less than (1 + log1+δ (ML + |I |))/δ ,
then there exists an algorithm that finds a (1 − ε)/r-approximate integer solu-
tion to the global routing problem in multilayer VLSI design (1) within O((ML +
|I |)L|I |ε−2cmaxβ ln(ML + |I |)) time, where r and β are the ratio and the run-
ning time of the approximate minimum Steiner tree solver called as the oracle, and
cmax is the maximum edge capacity.

Though this approach has complexity depending on the input data, i.e., it is only
a pseudo polynomial time approximation algorithm, it is worth using this method
for some instances as the rounding stage is avoided.

In addition, at each iteration there are only L|I | Steiner trees generated. Thus,
there are only a polynomial number of Steiner trees generated by using the approxi-
mation algorithm for fractional packing problem in [18], though there are exponen-
tially many variables. This is similar to the column generation technique for LPs.

Corollary 2. The approximation algorithms for the global routing problem in mul-
tilayer VLSI design only generates at most O((ML + |I |)L|I |ε−2 ln(ML + |I |))
Steiner trees.
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6 Concluding Remarks

Given a multilayer routing area, this paper has addressed the problem of selecting
the maximum (weighted) set of nets, such that every net can be routed entirely in
one of the given routing layers without violating the physical capacity constraints.
This problem is motivated by the following.

• Routing the majority of nets each in a single layer significantly reduces the num-
ber of required vias in the final layout. It is known that vias increase fabrication
cost and degrade system performance [7].

• Routing the majority of nets each in a single layer greatly simplifies the detailed
routing problem in multilayer IC design [7].

First, we have formulated the problem as an integer linear program (ILP). Second,
we have modified an algorithm by Garg and Könemann [9] for packing linear pro-
grams to obtain a (1− ε)/r approximation algorithm for the LP-relaxation of the
global routing problem, where r is the approximation ratio of solving the minimum
Steiner tree problem2. This has led also to an algorithm for the integer global routing
problem that provides solutions guaranteed to be within a certain range of the opti-
mal solution, and runs in polynomial-time even if all, possibly exponentially many,
Steiner trees are considered in the formulation. Finally, we have demonstrated that
the complexity of our algorithm can be significantly reduced in the case of identical
routing layers.
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Eliminating Poisson’s Spot with Linear
Programming

Robert J. Vanderbei

Abstract A leading design concept for NASA’s upcoming planet-finding space
telescope involves placing an occulter 72,000 km in front of a 4-m telescope.
The purpose of the occulter is to block the bright starlight thereby enabling the
telescope to take pictures of planets orbiting the blocked star. Unfortunately, dif-
fraction effects prevent a simple circular occulter from providing a sufficiently dark
shadow—a specially shaped occulter is required. In this paper, I explain how to re-
duce this shape-optimization problem to a large-scale linear programming problem
that can be solved with modern LP tools.

Key words: linear programming, large scale optimization, optical design, high-
contrast imaging, extrasolar planets

1 Introduction

Over the last decade or so, astronomers have discovered hundreds of planets orbit-
ing stars beyond our Sun. Such planets are called exosolar planets. The first such
discovery (by Marcy and Butler (1998)) and most of the subsequent discoveries in-
volved an indirect detection method called the radial velocity (RV) method. This
method exploits the fact that in a star-planet system, both the star and the planet
orbit about their common center of mass. That is, not only does the planet move in
an elliptical “orbit”, so does the star itself. Of course, planets are much less massive
than their stars and therefore the center of mass of the system generally lies close to
the center of the star itself. Nonetheless, a star with a planet orbiting it will show a
sinusoidal wobble which, even if quite small, can be detected spectroscopically us-
ing clever modern techniques in spectroscopy assuming, of course, that we are not
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viewing the star-planet system “face-on”. Clearly, this technique is strongly biased
toward very massive (say Jupiter sized) planets orbiting very close to their star (say
closer than Mercury is to our Sun).

It should be apparent that the radial velocity method of indirect planet detection
is a rather subtle method. The results should be confirmed by other means and in
some cases this has been done. The most successful alternative method for planet
detection is the so-called transit method. This method only works for star-planet
systems that we “see” almost perfectly edge-on. For such systems, from our per-
spective here on Earth the planet orbits the star in such a manner that at times it
periodically passes directly in front of the star causing the star to dim slightly, but
measurably, during the “transit”. The first such example, discovered by Charbon-
neau et al (2000) involves the star HD209458. Its planet was discovered by the
radial velocity method but confirmed by detecting transits. This particular planet is
1.3 times larger than Jupiter in radius and it orbits HD209458 once every 3.5 days.
During a transit event, the intensity of the starlight dips by 1.7%.

These discoveries have generated enormous interest among professional as-
tronomers in actually detecting and even imaging Earth-like planets in Earth-like
orbits around Sun-like stars. The planets detected by indirect methods tend to be
much more massive than Earth and have orbits much closer to their star. Such plan-
ets would be rather uninhabitable by life-forms that have evolved here on Earth.
The interest is in finding, and more specifically imaging, so-called habitable plan-
ets. This is called the direct detection problem. But it is a hard problem for three
rather fundamental reasons:

1. Contrast. In visible light our Sun is 1010 times brighter than Earth.
2. Angular Separation. A planet at one Sun-Earth distance from its star viewed

from a distance of 10 parsecs (32.6 light years) can appear at most 0.1 arcseconds
away from the star itself.

3. Paucity of Targets. There are less than 100 Sun-like stars within 10 parsecs of
Earth.

2 Large Space Telescope

The simplest design concept is just to build a telescope big enough to overcome the
three obstacles articulated in the previous section. An Earth-like planet illuminated
by a Sun-like star at a distance of about 10 parsecs will be very faint—about as faint
as the dimmest objects imaged by the Hubble space telescope, which has a light-
collecting mirror that is 2.4 meters in diameter. Hence, the telescope will need to be
at least this big.

But, the wave nature of light makes it impossible to focus all of the starlight
exactly to a point. Instead, the starlight makes a diffraction pattern that consists of
a small (in diameter) concentation of light, called the Airy disk surrounded by an
infinite sequence of rings of light, called diffraction rings, each ring dimmer than
the one before. The complete diffraction pattern associated with a point source is
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called the Airy pattern. About 83.8% of the light falls into the Airy disk. Another
7.2% lands on the first diffraction ring, 2.8% on the second diffraction ring, etc.
Mathematically, the diffraction pattern is given by the square of the magnitude of
the complex electric field at the image plane and the electric field is given by

E(ρ,φ) =
1

iλ f

∫ D/2

0

∫ 2π

0
e

iπ
λ f (ρ2−2rρ cos(θ−φ))rdθdr

=
2π
iλ f

e
iπρ2
λ f

∫ D/2

0
J0 (2πrρ/λ f )rdr

=
D

2iρ
e

iπρ2
λ f J1 (πDρ/λ f ) .

Here, (ρ,φ) denotes polar coordinates of a point in the image plane, (r,θ) denotes
polar coordinates of a point on the telescope’s light-collecting mirror, f is the focal
length of the telescope, D is the aperture (i.e., diameter) of the mirror, and J0 and J1
are the 0-th and 1-st Bessel functions of the first kind. Note that the electric field can
in principle depend on both ρ and φ but in this case it depends only on ρ because
the φ dependence disappeared after integrating the inner integral (over θ ). When the
electric field is manifestly a function of only ρ , we will denote it simply by E(ρ).

From the last expression we see that, except for some scale factors, the Airy
pattern for a point source is given by the square of the function J1 (see Figure 1). Of
course, the scale factors are critically important—we need them to figure out how
large to make the telescope. In other words, we need to figure out values for D and f
that will allow us to “see” a dim planet next to a bright star. With two point sources,
a star and a planet, the combined image is obtained by adding the Airy patterns from
each source together, after displacing one pattern from the other by an appropriate
amount. Simple geometry tells us that the physical separation of the two images in
the image plane is just their angular separation on the sky (typically 0.1 arcseconds)
in radians times the focal length of the telescope. For example, 0.1 arcseconds is
4.85× 10−7 radians and so a planet separated from its star by 0.1 arcseconds as
viewed from Earth will form an image a distance ρ = 4.85×10−7 f from the star’s
image in the image plane of a telescope of focal length f . At this value of ρ , the
intensity of the starlight I(ρ) = |E(ρ)|2 must be reduced by 10 orders of magnitude
otherwise the starlight will overwhelm the planet light. In other words, we need

|E(ρ)| ≤ 10−5|E(0)|.

Substituting

|E(ρ)| = D
2ρ

|J1 (πDρ/λ f ) |

and

|E(0)| = 2π
λ f

(
D
2

)2
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Fig. 1 The upper left figure shows that we are considering a telescope whose mirror has a circular
profile (as is typical). The associated Airy pattern is shown in the two right-hand figures. The top
one is shown with the usual linear scale. The bottom one is shown logarithmically stretched with
everything below 10−10 set to black and everything above 1 set to white.

into this inequality, we get

D
2ρ

|J1 (πDρ/λ f ) | ≤ 10−5 × 2π
λ f

(
D
2

)2

This inequality simplifies to
|J1(u)|

u
≤ 10−5,

where u = πDρ/λ f . As most programming languages (e.g., C, C++, Matlab, and
Fortran) have Bessel functions built in just like the trigonometric functions, it is
easy to determine that the inequality is satisfied if and only if u ≥ 1853. Now, as
mentioned before, ρ/ f = 4.85×10−7. Also for visible light λ ≈ 5×10−7 meters.
Hence, we can assume that ρ/λ f is about 1 and therefore simplify our contrast
criterion to

πD ≥ 1853.

In other words,
D ≥ 590 meters.
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Of course, atmospheric turbulence is a major problem even for moderate sized tele-
scopes. Hence, this telescope will need to be a space telescope. The Hubble space
telescope (HST) has a mirror that is 2.4 meters in diameter. To image planets with a
large but straight-forward telescope would require a space telescope 250 times big-
ger in diameter than HST. Of course, cost grows in proportion to the volume of the
instrument, so one would imagine that such a telescope, if it were possible to build
at all, would cost 2503 = 16× 106 times as much as HST. Such a large telescope
will not be built in our lifetime.

3 Space Occulter

In the previous section, we saw that it is not feasible to make a simple telescope
that would be capable of imaging Earth-like planets around nearby Sun-like stars.
The problem is the starlight. One solution, first proposed by Spitzer (1965), is to
prevent the starlight from entering the telescope in the first place. This could be
done by flying a large occulting disk out in front of the telescope. If it is far enough
away, one could imagine that it would block the starlight but the planet would not be
blocked. Of course, as explained already the angular separation between the planet
and the star is on the order of 0.1 arcseconds. Also, simple calculations about the
expected brightness of the planet suggest that the telescope needs to have an aperture
of at least 4 meters in order simply to get enough photons from the planet to take
a picture in a reasonable time-frame. So, the occulting disk needs to be at least 4
meters in diameter. To get the planet at 0.1 arcsecond separation to be not blocked
by the occulter, means that the occulter has to be positioned about 8250 kilometers
in front of the telescope. But, this back-of-the-envelope calculation is based on the
simple geometry of ray optics. As before, diffraction effects play a significant role.
A 4 meter occulting disk at 8250 km will produce a shadow but the shadow will not
be completely dark—some light will diffract into the shadow. In fact, at this small
angle, lots of light will diffract into the shadow (see Figure 2). The occulter needs
to be made bigger and positioned further away.

The first question to be addressed is: how much bigger and further? To answer
that requires a careful diffraction analysis. The formula is similar to the one before.
It differs because now there is no focusing element. Instead we have just an obstruc-
tion. Also, the disk of the occulter blocks light whereas the disk represented by the
light-collecting mirror of a telescope transmits the light. Nonetheless, the formula
for the downstream electric field can be explicitly written:

E(ρ,φ) = 1− 1
iλ z

∫ D/2

0

∫ 2π

0
e

iπ
λ z (ρ2−2rρ cos(θ−φ)+r2)rdθdr

= 1− 2π
iλ z

e
iπρ2

λ z

∫ D/2

0
J0 (2πrρ/λ z)e

iπr2
λ z rdr,

where z is the distance between the occulting disk and the pupil of the telescope.
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Fig. 2 A circular occulting disk 4 meters in diameter and 8250 km away gives a shadow that
provides less than an order of magnitude of starlight suppression in its shadow. The left image is
plotted on a linear scale. The right image shows a semilog plot of intensity as a function of radius.
Note that the shadow is darkened by less than an order of magnitude. Also, note the small but
bright spot at the center—this is Poisson’s spot.
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Fig. 3 A circular occulting disk 50 meters in diameter and 72,000 km away gives a shadow that
provides only a few orders of magnitude of starlight suppression in its shadow. The left image is
plotted on a linear scale. The right image shows a semilog plot of intensity as a function of radius.
Note that the shadow is only about 2 orders of magnitude suppressed, a far cry from the 10 orders
needed for planet finding. Also, note that Poisson’s spot is again visible.

Figure 3 shows that even an occulter 50 meters in diameter 72000 km away does
not give a dark enough shadow. Even an occulter 100 times larger and further away
than that achieves only 4 orders of magnitude suppression.



Eliminating Poisson’s Spot with Linear Programming 461

4 Poisson’s Spot

Note that both Figures 2 and 3 show a bright spot at the center of the shadow.
One would expect that a shadow would be darkest at its center and this spot might
make one think there is something wrong with the formulae used to compute the
shadow. In fact, when Poisson realized in 1818 that the wave description of light
would imply the existence of just such a bright spot, he used this as an argument
against the theory, not well-accepted at the time, that light is a wave. But Dominique
Arago verified the existence of the spot experimentally. This was one of the first, and
certainly one of the most convincing, proofs that light is indeed a wave. Today, the
bright spot is called either Poisson’s spot or the spot of Arago.

Mathematically, it is easy to see where the spot comes from. Putting ρ = 0 in the
formula for the electric field, the field can be computed explicitly:

E(0,φ) = 1− 2π
iλ z

∫ D/2

0
e

iπr2
λ z rdr

= 1+
∫ iπ

λ z
D
2

2

0
eudu

= e
iπ
λ z

D
2

2

.

Since the intensity of the light is the magnitude of the electric field squared, we see
that the intensity at the center is unity.

5 Apodized Space Occulter

Conventional wisdom, developed over centuries, is that unpleasant diffraction ef-
fects such as Poisson’s spot can be mitigated by “softening” hard edges. This sug-
gests replacing the disk occulter, which is assumed to be completely opaque to its
outer edge, with a translucent occulter, opaque in the center but becoming progres-
sively more transparent as one approaches the rim (Copi and Starkman (2000) were
the first to propose this). Such variable transmissivity is called apodization. The
question is: can we define an apodization that eliminates Poisson’s spot and in addi-
tion guarantees a very dark shadow (10 orders of magnitude of light suppression) of
at least 4 meters diameter using an apodized occulting disk that is not too large and
reasonably close by (if anything flying tens of thousands of kilometers away can be
considered close by)?

Let A(r) denote the level of attenuation at radius r along the occulter. Then the
formula for the electric field has to be modified to this formula:

E(ρ) = 1− 2π
iλ z

e
iπρ2

λ z

∫ D/2

0
J0 (2πrρ/λ z)e

iπr2
λ z A(r)rdr,
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We can formulate the following optimization problem:

minimize γ

subject to |E(ρ)| ≤ γ, for ρ ∈ [0,3] ,λ ∈ [0.4, 1.0]×10−6

All lengths are in meters. The wavelength λ varies over visible and near infra-red
wavelengths. The radius of the deep shadow is 3 meters to leave some wiggle-room
for a 4 meter telescope to position itself. We have chosen the apodization function
A to depend only on radius r. Hence, the electric field depends only on radius too.
We have therefore written E(ρ) for the electric field at radius ρ . The variables in
the optimization are the suppression level γ and the apodization function A. Since
the electric field E depends linearly on the apodization function A, the problem is
an infinite-dimensional second-order cone-programming problem.

We can make it an infinite dimensional linear programming problem if we re-
place the upper bound on the magnitude of the electric field E with upper and lower
bounds on the real and imaginary parts of E:

minimize γ

subject to −γ ≤ ℜ(E(ρ)) ≤ γ for ρ ∈ [0,3] ,λ ∈ [0.4, 1.0]×10−6

−γ ≤ ℑ(E(ρ)) ≤ γ for ρ ∈ [0,3] ,λ ∈ [0.4, 1.0]×10−6.

Finally, we can discretize the set of shadow radii [0,3] into 150 evenly space
points, the set of occulter radii [0,D] into 4000 evenly space points, and the wave-
length band [0.3,1.1]×10−6 in increments of 10−7 and replace the integral defining
E in terms of A with the appropriate Riemann sum to get a large-scale (but finite)
linear programming problem:

minimize γ

subject to −γ ≤ ℜ(E(ρ)) ≤ γ for ρ ∈ [0,3] ,λ ∈ [0.4, 1.0]×10−6

−γ ≤ ℑ(E(ρ)) ≤ γ for ρ ∈ [0,3] ,λ ∈ [0.4, 1.0]×10−6

A′(r) ≤ 0, for r ∈ [0,D/2]

−d ≤ A′′(r) ≤ d, for r ∈ [0,D/2] .

For the linear programming problem, we add additional constraints to stipulate
that the function A be monotonically decreasing and have a second derivative (dif-
ference) that remains between given upper and lower bounds. These additional
constraints help to ensure that the solution to the discrete problem is a good
approximation to the solution to the underlying infinite dimensional problem.

The linear programming problem was formulated in AMPL (Fourer et al (1993))
and solved using LOQO (Vanderbei (1999)). The AMPL model is shown in
Figure 4. The linear programming problem has 4001 variables and 8645 constraints.
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function J0;

param pi := 4*atan(1);
param pi2 := pi/2;
param N := 4000; # discretization parameter at occulter plane
param M := 150; # discretization parameter at telescope plane
param c := 25.0; # overall radius of occulter
param z := 72000e+3; # distance from telescope to apodized occulter
param lambda {3..11}; # set of wavelengths
param rho1 := 25; # max radius investigated at telescope’s pupil plane
param rho_end := 3; # radius below which high contrast is required

# a few convenient shorthands
param lz {j in 3..11 by 1.0} := lambda[j]*z;
param pi2lz {j in 3..11 by 1.0} := 2*pi/lz[j];
param pilz {j in 3..11 by 1.0} := pi/lz[j];

param dr := c/N;
set Rs ordered;
let Rs := setof {j in 1..N by 1} c*(j-0.5)/N;

var A {r in Rs} >= 0, <= 1;

set Rhos ordered;
let Rhos := setof {j in 0..M} (j/M)*rho1;

var contrast >= 0;

var Ereal {j in 3..11 by 1.0, rho in Rhos} =
1-pi2lz[j]*
sum {r in Rs} sin(pilz[j]*(rˆ2+rhoˆ2))*A[r]*J0(-pi2lz[j]*r*rho)*r*dr;

var Eimag {j in 3..11 by 1.0, rho in Rhos} =
pi2lz[j]*
sum {r in Rs} cos(pilz[j]*(rˆ2+rhoˆ2))*A[r]*J0(-pi2lz[j]*r*rho)*r*dr;

minimize cont: contrast;

subject to main_real_neg {j in 3..11 by 1.0, rho in Rhos: rho < rho_end}:
-contrast <= Ereal[j,rho];

subject to main_real_pos {j in 3..11 by 1.0, rho in Rhos: rho < rho_end}:
Ereal[j,rho] <= contrast;

subject to main_imag_neg {j in 3..11 by 1.0, rho in Rhos: rho < rho_end}:
-contrast <= Eimag[j,rho];

subject to main_imag_pos {j in 3..11 by 1.0, rho in Rhos: rho < rho_end}:
Eimag[j,rho] <= contrast;

subject to monotone {r in Rs: r>first(Rs)}: A[prev(r)] >= A[r];
subject to smooth {r in Rs: r>first(Rs) && r<last(Rs)}:

-0.044 <= (A[next(r)]-2*A[r]+A[prev(r)])/drˆ2 <= 0.044;

let {j in 3..11 by 1.0} lambda[j] := (j-0.5)*1e-7;

solve;

printf: "%12e, %f, %f \n", contrastˆ2, 2*c, z/1000;

printf {r in Rs}: "%10.7f %10.7f \n", r, A[r] > "A";

Fig. 4 AMPL model for optimal apodization.
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Fig. 5 An apodized circular occulting disk 50 meters in diameter and 72,000 km away gives that
achieves roughly 10 orders of magnitude suppression over the entire desired band of wavelengths.
The top-left image shows the apodized occulter. The top-right graph shows its attenuation as a
function of radius. The bottom graph shows the intensity at the pupil plane at the two extreme
wavelengths 0.4 and 1.0 microns.

Using its default stopping criteria, LOQO solves the problem in 51 iterations which
takes 224 seconds on a current generation Macbook Pro. The optimal apodized
occulter is shown in Figure 5.

By modern computational standards, this is not a very large linear programming
problem. But, there are several issues at play here not the least of which is that this
particular instance is only a discrete approximation to a much larger, in fact infinite
dimensional, problem. It is of paramount importance to verify that the discretization
provides a meaningful solution to the real problem. To do this, we have code that
uses a spline to resample the apodization function at a finer level and then com-
pute the electric field at the telescope pupil also at a finer level of discretization. We
also need to check at wavelengths falling between the discrete set at which we have
stipulated high contrast. All of these checks have been performed. It turns out that
the discrete sampling of wavelengths creates the biggest errors. Hence, at times we
have run the model with twice as many wavelength sample points. But, we should
also bear in mind that there are many other issues. For one, we are still in the design
phase and are therefore considering many different designs. This occulter becomes
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transparent beyond 0.075 arcseconds. Is that adequate? Do we need to be able to de-
tect planets closer to their star than that? Is 10−10 a strong enough level of contrast?
Is it stronger than it needs to be? These issues are still being debated by the sci-
entists who have a feel for what is needed. Also, what about sensitivity? There will
undoubtedly be manufacturing error. How precisely must the occulter be made to en-
sure the design level of performance? This is one of the most critical questions and
will be addressed in more detail in the next section. Finally, how accurately can two
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Fig. 6 The top image shows a 16-petal approximation to the optimal apodization. The second row
shows the downstream shadow for λ = 0.4 microns using both a linear (on the left) and a log (on
the right) stretch. The third row shows the downstream shadow for λ = 1.0 microns.
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spacecraft separated by tens of thousands of kilometers be positioned with respect
to each other? Can we get the telescope centered in the shadow and can we keep
it there long enough to take a multi-hour exposure? These are difficult engineering
questions. Optimization plays a critical role in assessing various trade-offs. We have
produced a large number of scenarios for consideration. The one presented here is
currently the one that seems to provide the best balance of the various trade-offs
that must be considered. But, surely next month a slightly different version will be
considered better.

6 Petalized Space Occulter

The apodized occulter design given in the previous section provides the starlight
suppression necessary to image an Earth-like planet. But, sensitivity analyses show
that it is not possible to build such an occulter with adequate precision. It is shown
in Vanderbei et al (2007) that a binary, i.e. unapodized, non-circular occulter that
consists of multiple petals designed so that the average level of opacity at radius r
matches A(r) can provide a dark shadow as long as the number of petals is large
enough. Simulations show that 16 petals is adequate—see Figure 6. This is the cur-
rent baseline design for the occulter concept for planet finding. While it may seem
like a daunting task to build such a large occulter (50 meters tip-to-tip) with the
required precision (millimeter) and fly it 72000 kilometers in front of a 4 meter tele-
scope with a positioning accuracy of 1 meter, this design is currently considered
the most promising concept for NASA’s eventual Terrestrial Planet Finder space
telescope—see Simmons et al (2003) and Cash (2006).
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