

INTRODUCTION TO NONLINEAR
AND GLOBAL OPTIMIZATION

Springer Optimization and Its Applications

VOLUME 37

Managing Editor
Panos M. Pardalos (University of Florida)

Editor — Combinatorial Optimization
Ding-Zhu Du (University of Texas at Dallas)

Advisory Board
J. Birge (University of Chicago)
C.A. Floudas (Princeton University)
F. Giannessi (University of Pisa)
H.D. Sherali (Virginia Polytechnic and State University)
T. Terlaky (McMaster University)
Y. Ye (Stanford University)

Aims and Scope

Optimization has been expanding in all directions at an astonishing rate during the
last few decades. New algorithmic and theoretical techniques have been developed,
the diffusion into other disciplines has proceeded at a rapid pace, and our knowledge
of all aspects of the field has grown even more profound. At the same time, one of
the most striking trends in optimization is the constantly increasing emphasis on the
interdisciplinary nature of the field. Optimization has been a basic tool in all areas of
applied mathematics, engineering, medicine, economics, and other sciences.

The Springer in Optimization and Its Applications series publishes undergradu-
ate and graduate textbooks, monographs, and state-of-the-art expository work that
focus on algorithms for solving optimization problems and also study applications
involving such problems. Some of the topics covered include nonlinear optimization
(convex and nonconvex), network flow problems, stochastic optimization, optimal
control, discrete optimization, multi-objective programming, description of software
packages, approximation techniques and heuristic approaches.

For other titles published in this series, go to
http://www.springer.com/series/7393

INTRODUCTION TO NONLINEAR
AND GLOBAL OPTIMIZATION

By

Eligius M.T. Hendrix
Málaga University, Spain

Boglárka G.-Tóth
Budapest University of Technology and Economics, Hungary

123

Eligius M.T. Hendrix
Department of Computer Architecture
Málaga University
Málaga, Spain
Eligius.Hendrix@wur.nl

Boglárka G.-Tóth
Department of Differential Equations
Budapest University of Technology
and Economics
Budapest, Hungary
bog@math.bme.hu

ISSN 1931-6828
ISBN 978-0-387-88669-5 e-ISBN 978-0-387-88670-1
DOI 10.1007/978-0-387-88670-1
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010925226

Mathematics Subject Classification (2010): 49-XX, 90-XX, 90C26

c© Springer Science+Business Media, LLC 2010
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Contents

Preface . ix

1 Introduction . 1
1.1 Optimization view on mathematical models 1
1.2 NLP models, black-box versus explicit expression 3

2 Mathematical modeling, cases . 7
2.1 Introduction . 7
2.2 Enclosing a set of points . 7
2.3 Dynamic decision strategies . 10
2.4 A black box design; a sugar centrifugal screen 13
2.5 Design and factorial or quadratic regression 15
2.6 Nonlinear optimization in economic models 17

2.6.1 Spatial economic-ecological model 18
2.6.2 Neoclassical dynamic investment model for cattle

ranching . 19
2.6.3 Several optima in environmental economics 19

2.7 Parameter estimation, model calibration, nonlinear regression . 20
2.7.1 Learning of neural nets seen as parameter estimation . . 24

2.8 Summary and discussion points . 26
2.9 Exercises . 27

3 NLP optimality conditions . 31
3.1 Intuition with some examples . 31
3.2 Derivative information . 35

3.2.1 Derivatives . 36
3.2.2 Directional derivative . 36
3.2.3 Gradient . 37
3.2.4 Second-order derivative . 38
3.2.5 Taylor . 40

3.3 Quadratic functions . 41

vi Contents

3.4 Optimality conditions, no binding constraints 45
3.4.1 First-order conditions . 45
3.4.2 Second-order conditions . 46

3.5 Optimality conditions, binding constraints 48
3.5.1 Lagrange multiplier method . 49
3.5.2 Karush–Kuhn–Tucker conditions . 52

3.6 Convexity . 54
3.6.1 First-order conditions are sufficient 56
3.6.2 Local minimum point is global minimum point 57
3.6.3 Maximum point at the boundary of the feasible area . . . 59

3.7 Summary and discussion points . 60
3.8 Exercises . 60
3.9 Appendix: Solvers for Examples 3.2 and 3.3 64

4 Goodness of optimization algorithms . 67
4.1 Effectiveness and efficiency of algorithms 67

4.1.1 Effectiveness . 68
4.1.2 Efficiency . 69

4.2 Some basic algorithms and their goodness 70
4.2.1 Introduction . 70
4.2.2 NLP local optimization: Bisection and Newton 71
4.2.3 Deterministic GO: Grid search, Piyavskii–Shubert 74
4.2.4 Stochastic GO: PRS, Multistart, Simulated Annealing . 78

4.3 Investigating algorithms . 84
4.3.1 Characteristics . 85
4.3.2 Comparison of algorithms . 87

4.4 Summary and discussion points . 88
4.5 Exercises . 89

5 Nonlinear Programming algorithms . 91
5.1 Introduction . 91

5.1.1 General NLP problem. 91
5.1.2 Algorithms . 91

5.2 Minimizing functions of one variable . 93
5.2.1 Bracketing . 93
5.2.2 Bisection . 94
5.2.3 Golden Section search . 95
5.2.4 Quadratic interpolation . 97
5.2.5 Cubic interpolation . 99
5.2.6 Method of Newton . 100

5.3 Algorithms not using derivative information 101
5.3.1 Method of Nelder and Mead . 102
5.3.2 Method of Powell . 105

5.4 Algorithms using derivative information . 106
5.4.1 Steepest descent method . 107

Contents vii

5.4.2 Newton method . 108
5.4.3 Conjugate gradient method . 109
5.4.4 Quasi-Newton method . 111
5.4.5 Inexact line search . 113
5.4.6 Trust region methods . 115

5.5 Algorithms for nonlinear regression . 118
5.5.1 Linear regression methods . 118
5.5.2 Gauss–Newton and Levenberg–Marquardt 120

5.6 Algorithms for constrained optimization . 121
5.6.1 Penalty and barrier function methods 121
5.6.2 Gradient projection method . 125
5.6.3 Sequential quadratic programming 130

5.7 Summary and discussion points . 131
5.8 Exercises . 132

6 Deterministic GO algorithms . 137
6.1 Introduction . 137
6.2 Deterministic heuristic, direct . 138

6.2.1 Selection for refinement . 139
6.2.2 Choice for sampling and updating rectangles 141
6.2.3 Algorithm and illustration . 142

6.3 Stochastic models and response surfaces . 144
6.4 Mathematical structures . 147

6.4.1 Concavity . 148
6.4.2 Difference of convex functions, d.c. 149
6.4.3 Lipschitz continuity and bounds on derivatives 150
6.4.4 Quadratic functions . 154
6.4.5 Bilinear functions . 155
6.4.6 Multiplicative and fractional functions 156
6.4.7 Interval arithmetic . 158

6.5 Global Optimization branch and bound . 159
6.6 Examples from nonconvex quadratic programming 161

6.6.1 Example concave quadratic programming 162
6.6.2 Example indefinite quadratic programming 163

6.7 Cutting planes . 165
6.8 Summary and discussion points . 168
6.9 Exercises . 169

7 Stochastic GO algorithms . 171
7.1 Introduction . 171
7.2 Random sampling in higher dimensions . 172

7.2.1 All volume to the boundary. 172
7.2.2 Loneliness in high dimensions . 173

7.3 PRS- and Multistart-based methods . 174
7.3.1 Pure Random Search as benchmark 174

viii Contents

7.3.2 Multistart as benchmark . 176
7.3.3 Clustering to save on local searches 178
7.3.4 Tunneling and filled functions . 180

7.4 Ideal and real, PAS and Hit and Run . 183
7.5 Population algorithms . 187

7.5.1 Controlled Random Search and Raspberries 188
7.5.2 Genetic algorithms . 191
7.5.3 Particle swarms . 195

7.6 Summary and discussion points . 197
7.7 Exercises . 197

References . 199

Index . 205

Preface

This book provides a solid introduction for anyone who wants to study the
ideas, concepts, and algorithms behind nonlinear and global optimization. In
our experience instructing the topic, we have encountered applications of opti-
mization methods based on easily accessible Internet software. In our classes,
we find that students are more often scanning the Internet for information
on concepts and methodologies and therefore a good understanding of the
concepts and keywords is already necessary.

Many good books exist for teaching optimization that focus on theoretical
properties and guidance in proving mathematical relations. The current text
adds illustrations and simple examples and exercises, enhancing the reader’s
understanding of concepts. In fact, to enrich our didactical methods, this
book contains approximately 40 algorithms that are illustrated by 80 exam-
ples and 95 figures. Additional comprehension and study is encouraged with
numerous exercises. Furthermore, rather than providing rigorous mathemati-
cal proofs, we hope to evoke a critical approach toward the use of optimization
algorithms. As an alternative to focusing on the background ideas often fur-
nished on the Internet, we would like students to study pure pseudocode from
a critical and systematic perspective.

Interesting models from an optimization perspective come from biology,
engineering, finance, chemistry, economics, etc. Modeling optimization prob-
lems depends largely on the discipline and on the mathematical modeling
courses that can be found in many curricula. In Chapter 2 we use several
cases from our own experience and try to accustom the student to using intu-
ition on questions of multimodality such as “is it natural that a problem has
several local optima?” Examples are given and exercises follow. No formal
methodology is presented other than using intuition and analytic skills.

In our experience, we have observed the application of optimization meth-
ods with an enormous trust in clicking buttons and accepting outcomes. It is
often thought that what comes out of a computer program must be true. To
have any practical value, the outcomes should at least fulfill optimality condi-
tions. Therefore in Chapter 3, we focus on the criteria of optimality illustrated

x Preface

with simple examples and referring further to the earlier mentioned books that
present more mathematical rigor. Again, many exercises are provided.

The application and investigation of methods, with a nearly religious belief
in concepts, like evolutionary programming and difference of convex program-
ming, inspired us to explain such concepts briefly and then ask questions on
the effectiveness and efficiency of these methods. Specifically, in Chapter 4 we
pose questions and try to show how to investigate them in a systematic way.
The style set in this chapter is then followed in subsequent chapters, where
multiple algorithms are introduced and illustrated.

Books on nonlinear optimization often describe algorithms in a more or
less explicit way discussing the ideas and their background. In Chapter 5, a
uniform way of describing the algorithms can be found and each algorithm is
illustrated with a simple numerical example. Methods cover one-dimensional
optimization, derivative-free optimization, and methods for constrained and
unconstrained optimization.

The ambition of global optimization algorithms is to find a global optimum
point. Heuristic methods, as well as deterministic stochastic methods, often
do not require or use specific characteristics of a problem to be solved. An
interpretation of the so-called “no free lunch theorem” is that general-purpose
methods habitually perform worse than dedicated algorithms that exploit the
specific structure of the problem. Besides using heuristic methods, determin-
istic methods can be designed that give a guarantee to approach the optimum
to an accuracy if structure information is available and used.

Many concepts exist which are popular in mathematical research on the
structures of problems. For each structure at least one book exists and it
was a challenge for us to describe these structures in a concise way. Chap-
ter 6 explores deterministic global optimization algorithms. Each concept is
introduced and illustrated with an example. Emphasis is also placed on how
one can recognize structure when studying an optimization problem. The ap-
proach of branch and bound follows which aims to guarantee reaching a global
solution while using the structure. Another approach that uses structure, the
generation of cuts, is also illustrated. The main characteristic of deterministic
methods is that no (pseudo-)random variable is used to find sample points.
We start the chapter discussing heuristics that have this property. The main
idea there is that function evaluations may be expensive. That means that
it may require seconds, minutes, or even hours to find the objective function
value of a suggested sample point.

Stochastic methods are extremely popular from an application perspective,
as implementations of algorithms can be found easily. Although stochastic
methods have been investigated thoroughly in the field of global optimiza-
tion, one can observe a blind use of evolution-based concepts. Chapter 7
tries to summarize several concepts and to describe algorithms as basically
and as dryly as possible, each illustrated. Focus is on a critical approach
toward the results that can be obtained using algorithms by applying them
to optimization problems.

Preface xi

We thank all the people who contributed to, commented on, and stim-
ulated this work. The material was used and tested in master’s and Ph.D.
courses at the University of Almeŕıa where colleagues were very helpful in
reading and commenting on the material. We thank the colleagues of the
Computer Architecture Department and specifically its former director for
helping to enhance the appearance of the book. Students and colleagues from
Wageningen University and from Budapest University of Technology and Eco-
nomics added useful commentary. Since 2008 the Spanish ministry of science
has helped by funding a Ramón y Cajal contract at the Computer Architec-
ture department of Málaga University. This enabled us to devote a lot of
extra time to the book. The editorial department of Springer helped to shape
the book and provided useful comments of the anonymous referees.

Eligius M.T. Hendrix
Boglárka G.-Tóth

September 2009

1

Introduction

1.1 Optimization view on mathematical models

Optimization can be applied to existing or specifically constructed mathemat-
ical models. The idea is that one would like to find an extreme of one output
of the model by varying several parameters or variables. The usual reason
to find appropriate parameter values is due to decision support or design
optimization. In this work we mainly consider the mathematical model as
given and have a look at how to deal with optimization. Several examples of
practical optimization problems are given.

The main terminology in optimization is as follows. Usually quantities
describing the decisions are given by a vector x ∈ R

n. The property (output)
of the model that is optimized (costs, CO2 emission, etc.) is put in a so-called
objective function f(x). Other relevant output properties are indicated by
functions gi(x) and are put in constraints representing design restrictions such
as material stress, gi(x) ≤ 0 or gi(x) = 0. The so-called feasible area that
is determined by the constraints is often summarized by x ∈ X . In non-
linear optimization, or nonlinear programming (NLP), the objective and/or
constraint functions are nonlinear.

Without loss of generality the general NLP problem can be written as

min f(x) subject to
gi(x) ≤ 0 for some properties i, inequality constraints,
gi(x) = 0 for some properties i, equality constraints.

(1.1)

The general principle of NLP is that the values of the variables can be varied
in a continuous way within the feasible set. To find and to characterize the
best plan (suggestion for the values of the decision variables), we should define
what is an optimum, i.e., maximum or minimum. We distinguish between a
local and global optimum, as illustrated in Figure 1.1. In words: a plan is
called locally optimal, when the plan is the best in its neighborhood. The
plan is called globally optimal, when there is no better plan in the rest of the
feasible area.

E.M.T. Hendrix and B.G.-Tóth, Introduction to Nonlinear and Global Optimization, 1
Springer Optimization and Its Applications 37, DOI 10.1007/978-0-387-88670-1 1,
c© Springer Science+Business Media, LLC 2010

2 1 Introduction

0 15 30 45 60 75 90

Global minimum

local non-global minima

Fig. 1.1. Global optimum and local optima

In general one would try to find an optimum with the aid of some software,
which is called an implementation of an algorithm. An algorithm is under-
stood here to be a list of rules or commands to be followed by the calculation
process in the computer. To interpret the result of the computer calculation
(output of the software), the user should have some feeling about optimality
criteria; is the result really an optimum and how can it be interpreted? In
this book we distinguish between three important aspects which as such are
of importance for different interest groups with respect to NLP.

• How to recognize an optimal plan? A plan is optimal when it fulfills
so-called optimality conditions. Understanding of these conditions is useful
for a translation to the practical decision situation. Therefore it is neces-
sary to go into mathematical analysis of the underlying model. The topic
of optimality conditions is explained in Chapter 3. This is specifically of
interest to people applying the methods (software).

• Algorithms can be divided into NLP local search algorithms that given
a starting point try to find a local optimum, and global optimization
algorithms that try to find a global optimum, often using local optimizers
multiple times. In Chapters 5, 6 and 7 we describe the ideas behind the
algorithms with many numerical examples. These chapters are of interest
to people who want to know how the underlying mechanisms work and
possibly want to make implementations themselves.

• Effectiveness of algorithms is defined by their ability to reach the target of
the user. Efficiency is the effort it costs to reach the target. Traditionally
mathematical programming is the field of science that studies the behavior
of optimization algorithms with respect to those criteria depending on the
structure of the underlying optimization problem. Chapter 4 deals with
the question of investigating optimization algorithms in a systematic way.

1.2 NLP models, black-box versus explicit expression 3

This is specifically of interest to researchers in Operations Research or
mathematical programming.

The notation used throughout the book will stay close to using f for the
objective function and x for the decision variables. There is no distinction
between a vector or scalar value for x. As much as possible, index j is used to
describe the component xj and index k is used for iterates xk in the algorith-
mic description. Moreover, we follow the convention of using boldface letters
to represent stochastic variables. The remainder of this chapter is devoted to
outlining the concept of formulating NLP problems.

1.2 NLP models, black-box versus explicit expression

Optimization models can be constructed directly for decision support following
an Operations Research approach, or can be derived from practical numerical
models. It goes too far to go into the art of modeling here. From the point
of view of nonlinear optimization, the distinction that is made is due to what
can be analyzed in the model. We distinguish between:

• Analytical expressions of objective function f and constraint functions gi

are available.
• The so-called black-box or oracle case, where the value of the functions can

only be obtained by giving the parameter values (values for the decision
variables x) to a subroutine or program that generates the values for f
and/or gi after some time.

This distinction is relevant with respect to the ability to analyze the problem,
to use the structure of the underlying problem in the optimization and to
analyze the behavior of algorithms for the particular problem.

Let us go from abstraction to a simple example, the practical problem of
determining the best groundwater level. Let us assume that the groundwater
level x should be determined, such that one objective function f is optimized.
In practice this is not a simple problem due to conflicting interests of stake-
holders. Now the highly imaginary case is that an engineer would be able to
compose one objective function and write an explicit formula:

f(x) = 2x − 100 ln(x), 30 ≤ x ≤ 70. (1.2)

The explicit expression (1.2) can be analyzed; one can make a graph easily and
calculate the function value for many values of the variable x in a short time.
However, often mechanistic models are used that describe the development of
groundwater flows from one area to the other. The evaluation of an (or several)
objective function may take minutes, hours or days on a computer when more
and more complicated and extended descriptions of flows are included. In
the optimization literature the term expensive function evaluations is also
used. This mainly refers to the question that the evaluation of the model is

4 1 Introduction

Decisions

x

Outcomes

z

Data and

technical parameters

Optimization

MODEL

structure

Criteria

f

simulation

Fig. 1.2. Optimization in mathematical models

relatively time consuming compared the algorithmic operations to generate
new trial points.

From the optimization point of view, the terms oracle or black-box case are
used, as no explicit expression of the objective function is visible. From the
modeler point of view, this is the other way around, as the mechanistic model
is closer to the processes that can be observed in reality and expression (1.2)
does not necessarily have any relation with the physical processes. Figure
1.2 sketches the idea. In general a mathematical model has inputs (all kinds
of technical parameters and data) and outputs. It becomes an optimization
problem for decision support as soon as performance criteria are defined and it
has been assessed as to what are the input parameters that are considered to
be variable. Running a model or experimenting with it, is usually called sim-
ulation. From the point of view of optimization, giving parameter values and
calculating criteria f is called a function evaluation. Algorithms that aim at
finding “a” or “the” optimum, usually evaluate the function many times. The
efficiency is measured by the number of function evaluations related to the
calculation time that it requires per iteration. Algorithms are more specific
when they make more use of the underlying structure of the optimization prob-
lem. One of the most successful and applied models in Operations Research
is that of Linear Programming, where the underlying input–output relation
is linear.

One type of optimization problems concerns parameter estimation prob-
lems. In statistics when the regression functions are relatively simple the term
nonlinear regression is used. When we are dealing with more complicated
models (for instance, using differential equations), the term model calibration

1.2 NLP models, black-box versus explicit expression 5

is used. In all cases one tries to find parameter values such that the output
of the model fits well observed data of the output according to a certain fit-
ness criterion. In the next chapter a separate section is devoted to sketching
problems of this type.

In Chapter 2, the idea of black-box modeling and explicit expressions is
illustrated by several examples from the experience of working 20 years with
engineering and economic applications. Exercises are provided to practice
with the idea of formulating nonlinear programming models and to study
whether they may have more than one local optimum solution.

2

Mathematical modeling, cases

2.1 Introduction

This chapter focuses on the modeling of optimization problems where objective
and constraint functions are typically nonlinear. Several examples of practical
optimization cases based on our own experience in teaching, research and
consultancy are given in this chapter. The reader can practice by trying
to formulate the exercise examples based on the cases at the end of the
chapter.

2.2 Enclosing a set of points

One application that can be found in data analysis and parameter identifi-
cation is to enclose a set of points with a predefined shape with a size or
volume as small as possible. Depending on the enclosure one is looking for, it
can be an easy to solve problem, or very hard. The first problem is defined as:

x
x

v

v

1

1

2

2

Fig. 2.1. Minimum volume hyperrectangle problem

E.M.T. Hendrix and B.G.-Tóth, Introduction to Nonlinear and Global Optimization, 7
Springer Optimization and Its Applications 37, DOI 10.1007/978-0-387-88670-1 2,
c© Springer Science+Business Media, LLC 2010

8 2 Mathematical modeling, cases

given the set of points P = {p1, . . . , pK} ∈ R
n, find an enclosing hyperrectangle

with minimum volume around the points of which the axes are free to be
chosen; see Keesman (1992). Mathematically this can be translated into find-
ing an orthonormal matrix X = (x1, . . . , xn) minimizing the objective

f(X) =
n∏

i=1

νi, (2.1)

where νi = (max
j=1,...,K

xT
i pj − min

j=1,...,K
xT

i pj), the length of the edges of the

hyperrectangle as in Figure 2.1. Here the axes x are seen as decision variables
and the final objective function f consists of a multiplication of the lengths
νi that appear after checking all points. So the abstract model of Figure 1.2
can be filled in as checking all points pj over their product with xi. In Figure
2.2 the set P = {(2, 3), (4, 4), (4, 2), (6, 2)} is enclosed by rectangles defined
by the angle α of the first axis x1, such that vector x1 = (cosα, sin α). This
small problem has already many optima, which is illustrated by Figure 2.3.

Note that case α = 0 represents the same situation as α = 90, because the
position of the two axes switches. The general problem is not easy to formulate
explicitly due to the orthonormality requirements. The requirement of the
orthonormality of the matrix of axes of the hyperrectangle, implies the degree
of freedom in choosing the matrix to be n(n − 1)/2. In two dimensions this
can be illustrated by using one parameter, i.e., the angle of the first vector.
In higher dimensions this is not so easy. The number of optima as such is
enormous, because it depends on the number of points, or more precisely, on
the number of points in the convex hull of P .

A problem similar to the minimum volume hyperrectangle problem is
to find an enclosing or an inscribed ellipsoid, as discussed for example
by Khachiyan and Todd (1993). The enclosing minimum volume ellipsoid

0 2 4 6 8

5

4

3

2

1x x12

α

Fig. 2.2. Rectangles around four points

2.2 Enclosing a set of points 9

0 15 30 45 60 75 90

9
8.9
8.8
8.7
8.6
8.5
8.4
8.3
8.2
8.1

8
7.9
7.8
7.7
7.6
7.5
7.4
7.3
7.2

vo
lu

m
e

α

Fig. 2.3. Objective value as a function of angle

problem can be formulated as finding a positive definite matrix and a center
of the ellipsoid, such that it contains a given set of points or a polytope.
This problem is fairly well analyzed in the literature, but goes too far to be
formulated as an example.
Instead, we focus on the so-called Chebychev (centroid location) problem
of finding the smallest sphere or ball around a given point set. For lower
dimensions, the interpretation in locational analysis is to locate a facility that
can reach all demand points as fast as possible. Given a set of K points
{p1, . . . , pK} ∈ R

n, find the center c and radius r such that the maximum
distance over the K points to center c is at its minimum value. This means,
find a sphere around the set of points with a radius as small as possible. In R

2

this problem is not very hard to solve. In Figure 2.4, an enclosing sphere is
given that does not have the minimum radius. In general, the optimal center
c is called the Chebychev center of a set of points or the 1-center of demand
points.

center
c

radius

Fig. 2.4. Set of points with an enclosing sphere

10 2 Mathematical modeling, cases

2.3 Dynamic decision strategies

The problems in this section involve sequential decision making. The per-
formance, objective function, not only depends on the sequence of decisions,
but also on fluctuating data over a given time period, often considered as
a stochastic variable. The calculation of the objective typically requires the
simulation of the behavior of a system over a long period.

The first example is derived from an engineering consulting experience
dealing with operating rules for pumping water into a higher situated lake
in the Netherlands. In general the rainfall exceeds the evaporation and the
seepage. In summer, however, water has to be pumped from lower areas and
is treated to maintain a water level above the minimum with a good water
quality. Not only the pumping, but certainly also the treatment to remove
phosphate, costs money. The treatment installation performs better when
the stream is constant, so the pumps should not be switched off and on too
frequently. The behavior of the system is given by the equation

It = min{It−1 + ξt + xt, Max} (2.2)

with

It: water level of the lake
ξt: natural inflow, i.e., rainfall - seepage - evaporation
xt: amount of water pumped into the lake
Max: maximum water level.

Figure 2.5 depicts the situation. When the water level reaches its maximum
(Max), the superfluous water streams downwards through a canal system to-
ward the sea. For the studied case, two pumps were installed, so that xt

only takes values in {0, B, 2B}, where B is the capacity of one pump. Deci-
sions are taken on a daily basis. In water management, it is common practice

-6

-4

-2

0

2

4

|

target level

Max

Min

water level (cm)

|jan feb mar apr may jun jul aug sep oct nov dec

β

β1

2

Fig. 2.5. Strategy to rule the pumping

2.3 Dynamic decision strategies 11

Parameters Water level

pumping

Weather data

20 years

Optimization

MODEL

decision

rules

Criteria

f

Fig. 2.6. Determining parameter values

to derive so-called operating rules, decision strategies including parameters.
A decision rule instructs as to what decision to make in which situation. An
example is rule (2.3) with parameters β1 and β2:

It < β1 xt = 2B
β1 ≤ It ≤ β2 xt = B
It > β2 xt = 0.

(2.3)

Given weather data of a certain period, now the resulting behavior of a
sequence of decisions xt can be evaluated by measuring performance indicators
such as the amount of water pumped

∑
xt and the number of switches of the

pumps
∑ | xt − xt−1 | /B. Assessment of appropriate values for the parame-

ters β1 and β2 can be considered as a black-box optimization problem.
The total idea is captured in Figure 2.6. For every parameter set, the

model (2.2) with strategy (2.3) can be simulated with weather data (rainfall
and evaporation) of a certain time period. Some 20 years of data on open
water evaporation and rainfall were available. The performance can be mea-
sured leading to one (multi)objective function value. At every iteration an
optimization algorithm delivers a proposal for the parameter vector β, the
model simulates the performance and after some time returns an objective
function value f(β). One possibility is to create a stochastic model of the
weather data and resulting ξt and to use the model to “generate” more years
by Monte Carlo simulation, i.e., simulation using (pseudo) random numbers.
In this way, it is possible to extend the simulation run over many years. The
model run can be made arbitrarily long. Notice that in our context it is useful
for every parameter proposal to use the same set of random numbers (seed),
otherwise the objective function f(β) becomes a random variable. The prob-
lem sketched here is an example of so-called parametrized decision strategies.

12 2 Mathematical modeling, cases

Fig. 2.7. Inventory level given parameter values

An important application in Logistics is due to Stochastic Inventory
Control. Equation (2.2) now reads as follows (see Hax and Candea (1984)):

It: level of inventory
xt: amount produced or ordered
ξt: (negative) demand, considered stochastic.

Let us consider a so-called (s, Q)-policy. As soon as the inventory is below
level s, an order is placed of size Q. An order becomes available at the end of
the next day. If there is not sufficient stock (inventory), the client is supplied
the next day (back ordering) at additional cost. Criteria that play a role are
inventory holding cost, ordering cost and back ordering or out of stock cost.

Usually in this type of problem an analysis is performed, based on
integrating over the probability density function of the uncertain demand
and delivery time. We will consider the problem based on another approach.
As a numerical example, let inventory holding cost be 0.3 per unit per day,
ordering cost be 750 and back order cost be 3 per unit. Figure 2.7 gives the
development of inventory following the (s, Q) system based on samples of a
distribution with an average demand of 400. Let us for the exercise, con-
sider what is the optimal order quantity Q if the demand is not uncertain,
but fixed at 400 every day, the so-called deterministic situation. The usual
approach is to minimize the average daily costs. The length of a cycle in
the sawtooth figure is defined by Q/400, such that the order cost per day
is 750/(Q/400) = 300000/Q. The average inventory costs are derived from
the observation that the average inventory over one cycle is Q/2. The total
relevant cost per day, TRC(Q), is given by

TRC(Q) = 300000/Q + 0.3 · Q/2.

• What is the order quantity Q that minimizes the total daily cost for this
deterministic situation?

A second way to deal with the stochastic nature of the problem is to apply
Monte Carlo simulation. Usually this is done for more complex studies, but
a small example can help us to observe some generic problems that appear.

2.4 A black box design; a sugar centrifugal screen 13

Costs versus value of s

540

545

550

555

560

565

570

0 50 100 150 200 250

Value of s

A
v

e
ra

g
e

 c
o

s
t

Q = 3100

Fig. 2.8. Average cost as a function of value for s applying a finite number of
scenarios (Monte Carlo)

Assume we generate 100 data for the demand, or alternatively use the data
of 100 days. Fixing the value Q = 3100 and varying the value of s gives the
response in Figure 2.8. The discontinuities and local insensitivities appear
due to IF-THEN constructions in the modeling. This makes models of this
type hard to optimize, see Hendrix and Olieman (2008).

2.4 A black box design; a sugar centrifugal screen

An example is sketched of a design problem where from the optimization
point of view, the underlying model is a black-box (oracle) case. The origin
of this case is due to a project in cooperation with a metallurgic firm which
among others produces screens for sugar refiners. The design parameters, of
which several are sketched in Figure 2.9, give the degree of freedom for the

x

xx

x1

2 3

4

Fig. 2.9. Parameters of slot grid pattern Fig. 2.10. Sugar refiner screen

14 2 Mathematical modeling, cases

stream

molassesmolasses

sugar sugar

screen

,

Fig. 2.11. Continuous centrifugal

product development group to influence the pattern in sugar screens. The
quality of a design can be evaluated by a mathematical model. This describes
the behavior of the filtering process where sugar is separated from molasses
in a continuous sugar centrifugal. We first give a flavor of the mathematical
model. The continuous centrifugal works as follows (Figure 2.11). The fluid
(molasses) including the sugar crystals streams into the middle of the rotating
basket. By the centrifugal force and the angle of the basket, the fluid streams
uphill. The fluid goes through the slots in the screen whereas the crystals
continue their way uphill losing all fluid which is still sticking on the material.
Finally the crystals are caught at the top of the basket. The constructed model
describes the stream of the fluid from the start, down in the basket, until the
end, top of the screen. The flux of the fluid through the screen does not only
depend on the geometry of the slots, but also on the centrifugal force and
height of the fluid film on a certain position. Reversely, the height depends
on how quickly the fluid goes through the screen. Without going into detail,
this interrelation can be described by a set of differential equations which can
be solved numerically. Other relations were found to describe the strength of
the screen, as wear is a big problem.

In this way a model is sketched in the sense of Figure 1.2, which given
technical data such as the size and angle of the basket, revolutions per second,
the stream into the refiner, the viscosity of the material, the shape of the slots
and the slot grid pattern, calculates the behavior described by the fluid profile
and the strength of the screen. Two criteria were formulated; one to describe
the strength of the screen and one to measure the dryness of the resulting sugar
crystals. There are several ways to combine the two criteria in a multicriteria
approach. Actually we are looking for several designs on the so-called Pareto
set describing screens which are strong and deliver dry sugar crystals when
used in the refiner. Several designs were generated that were predicted to
perform better than existing screens. The use of a mathematical model in
this design context is very useful, because it is extremely difficult to do real
life experiments. The approach followed here led to an advisory system to

2.5 Design and factorial or quadratic regression 15

make statements on what screens to use in which situation. Furthermore, it
led to insights for the design department which generated and tested several
new designs for the screens.

2.5 Design and factorial or quadratic regression

Regression analysis is a technique which is very popular in scientific research
and in design. Very often it is a starting point for the identification of relations
between inputs and outputs of a system. In a first attempt one tries to verify a
linear relation between output y, called regressand or dependent variable, and
the input vector x, called regressor, factor or independent variable. A so-called
linear regression function is used:

y = β0 + β1x1 + β2x2 + · · · + βnxn.

For the estimation of the coefficients βj and to check how good the function
“fits reality,” either data from the past can be used or experiments can be
designed to create new data for the output and input variables. The data for
the regression can be based on a design of a computer experiment which uses a
simulation model to generate the data on input and output. The generation of
regression relations out of experiments of a relatively large simulation model
is called metamodeling and is discussed in Kleijnen and van Groenendaal
(1988). The regression model is called a metamodel, because it models the
input–output behavior of the underlying simulation model. In theory about
design, the term response surface methodology is more popular and promoted
by Taguchi among others; see Taguchi et al. (1989) and Box and Draper
(2007).

The regression functions based on either historical data, special field ex-
periments or computer experiments can be used in an optimization context.
As long as the regression function is linear in the parameters β, and in the
input variables xj , linear programming can be applied. The optimization
becomes more complicated when interaction between the input variables is
introduced in the regression function. Interaction means that the effect of an
input variable depends on the values of another input variable. This is usually
introduced by allowing so-called two-factor interaction, i.e., multiplications of
two input variables in the regression function. An example of such a factorial
regression model is

y = β0 + β1x1 + β2x2 + β12x1x2. (2.4)

The introduction of multiplications implies the possibility to have several
optima in an optimization context.

Example 2.1. Consider the minimization of y(x) = 2 − 2x1 − x2 + x1x2 with
0 ≤ x1 ≤ 4 and 0 ≤ x2 ≤ 3. This problem has two minima: y = −1 for
x = (0, 3) and y = −6 for x = (4, 0).

16 2 Mathematical modeling, cases

-3 -1 1 3 5
-3

-1

1

3

5

12 9 4

-4

-9
-12

1

2x

x

X

Fig. 2.12. Indefinite quadratic problem

A further extension in regression analysis is to complete the second-order
Taylor series approximation, which is called quadratic regression to distinguish
from (2.4). In two dimensions the quadratic regression function is

y = β0 + β1x1 + β2x2 + β12x1x2 + β11x
1
1 + β22x

2
2.

Example 2.2. Consider the following Indefinite Quadratic Program:

minx∈X{f(x) = (x1 − 1)2 − (x2 − 1)2}
where X is given by
x1 − x2 ≤ 1
4x1 − x2 ≥ −2
0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4.

Contour lines and the feasible set are given in Figure 2.12. The problem has
two local minimum points, i.e., (1, 0) and (1, 4) (the global one).

Notice that in regression terms this is called linear regression, as the function is
linear in the parameters β. When these functions are used in an optimization
context, it depends on the second-order derivatives βij whether the function
is convex and consequently whether it may have only one or multiple optima
such as in Example 2.2.

The use in a design case is illustrated here with the mixture design
problem, which can be found in Hendrix and Pintér (1991) and in Box and
Draper (2007). An illustration is given by the so-called rum–coke example.

Example 2.3. A bartender tries to find a mix of rum, coke, and ice cubes, such
that the properties yi(x) fulfill the following requirements:

y1(x) = −2 + 8x1 + 8x2 − 32x1x2 ≤ −1
y2(x) = 4 − 12x1 − 4x3 + 4x1x3 + 10x2

1 + 2x2
3 ≤ 0.4.

2.6 Nonlinear optimization in economic models 17

F

y1 -1

y1 -1

y2 0.4

x2

x1
x3

0.2

0.2

0.4

0.4

0.6 0.8

0.8

0.6

1

1

0

0

coke

ice

rum

Fig. 2.13. Rum–coke design problem

The area in which the mixture design problem is defined is given by the unit
simplex S, where x1 + x2 + x3 = 1. Projection of the three-dimensional unit
simplex S on the x1, x2 plane gives the triangle as in Figure 2.13. Vertex xp

represents a product consisting of 100% of component p, p = 1, 2, 3 (rum, coke
and ice cubes). The area in which the feasible products are situated is given
by F . One could try to find a feasible design for a design problem defined by
inequalities yi(x) ≤ bi , by minimizing an objective function

f(x) = max
i

{yi(x) − bi} (2.5)

or by minimizing

f(x) =
∑

i

max{yi(x) − bi, 0}. (2.6)

The problem of minimizing (2.6) over S has a local optimum in xloc =
(0.125, 0, 0.875), f(xloc) = −0.725, and of course a global optimum (= 0)
for all elements of F ∩ S.

2.6 Nonlinear optimization in economic models

Economics studies human behavior in its relation with scarce resources. The
concept that economic agents (homo economicus) act in a rational optimizing
way makes the application of optimization popular. In Chapter 3, some small
examples are given derived from ideas in micro-economics. Many times, how-
ever, models with many decision variables are used to describe the behavior

18 2 Mathematical modeling, cases

of an economic system. The multiplicity of variables is caused by defining
separate variables for various aspects:

• Multiple agents, consumers, producers, countries, farmers, etc.
• Distinguishing spatial units, regions, plots, for which one takes decisions.
• Temporal elements (time), years, months, weeks, etc., are used.

The underlying mathematical structure of the models enhances the ideas of
decreasing returns to scale and diminishing marginal utility. These tendencies
usually cause the model to have one optimum. The difficulty is the dimen-
sionality; so many aspects can be added such that the number of variables
explodes and cannot be handled by standard software.

Usually so-called modeling languages are used to formulate a model with
hundreds of variables. After the formulation the model is fed to a so-called
solver, an implementation of an optimization algorithm, and a solution is
fed back to the modeling software. The gams-software (www.gams.com) is
used frequently in this field. However, there are also other systems avail-
able such as ampl (www.ampl.com), Lingo (www.Lindo.com) and aimms
(www.aimms.com). In the appendix, a small example is shown in the gams
format. To give a flavor of the type of models, examples from Wageningen
University follow.

2.6.1 Spatial economic-ecological model

In economic models where an economic agent is taking decisions on spatial
entities, decision variables are distinguished for every region, plot, grid cell,
etc. As an illustration we take some elements from Groeneveld and van Ier-
land (2001), who describe a model where a farmer is deciding on the use of
several plots for cattle feeding and the consequence on biodiversity conser-
vation. Giving values to land-use types l for every plot p for every season t,
determines in the end the costs needed for fodder (economic criterion) and the
expected population size of target species (ecological criterion) with a min-
imum population size s. The latter criterion is in fact a nonlinear function
of the land use, but in their paper is described by piecewise linear functions.
The restrictions have a typical form:

∑

p

Kpt = κ ∀t (2.7)

(
∑

l

Fpltαpqplt

)
+ Bgrowing season

pt ≥ φKpt ∀p, t. (2.8)

In their model, variable Fplt denotes the fraction of land-use type l on
plot p in season t, variable Kpt denotes the number of animals per plot p and
Bpt denotes the amount of fodder purchased. Without going into detail of

2.6 Nonlinear optimization in economic models 19

##

Population size
0 - 0.2
0.2 - 0.4
0.4 - 0.6
0.6 - 0.8
0.8 - 1

Farm

Fig. 2.14. Outcome example of the spatial model; population of the target species
in numbers per plot for s = 0 (left), s = 5 (center) and s = 10 (right)

used values for the parameters, which can be found in the article, what we
learn from such models is that summation symbols,

∑
, are used and many

variables are defined. Equations like (2.7) and (2.8) can directly be translated
into modeling languages. Figure 2.14 illustrates how outcomes of a spatial
model can be shown in a graphical way.

2.6.2 Neoclassical dynamic investment model for cattle ranching

In a dynamic model, the decision variables have a time aspect. In continuous
optimization, one speaks of optimal control when the decision sequence is con-
sidered with infinitely many small time steps and the outcome is a continuous
trajectory. Often in economic models the time is considered with discrete
periods (year, month, week, etc.). In this case a model can be formulated in a
nonlinear optimization way. In Roebeling (2003) the traditional neoclassical
investment model is reformulated for pasture cattle production in order to
study effects of price of land.

Maximize
∑

t

(1 + r)−t[pQ(St, At) − pSSt − pAAt − c(It)] (2.9)

subject to At = At−1 + It t = 1, . . . (equation of motion for At)
A0 > 0 and I0 = 0 (initial conditions)
At ≥ 0 and St ≥ 0.

The decision variables of the model include decisions on cattle stock S,
investment in land I and a resulting amount of pasture area A for every
year t. As in an economic model typically we have functions to describe
the production Q and costs c. The dynamic structure is characterized by
an equation of motion that describes the dynamics, the relation between the
time periods. The concept of discounting is used in the model (2.9). The
final optimal path for the decision variables depends on the time horizon and
the prices of end-product (p), maintenance of land (pA) and cattle (pS) and
interest rate r. A typical path is given in Figure 2.15.

2.6.3 Several optima in environmental economics

The following model describes a simple example of one pollutant having sev-
eral abatement techniques to reduce its emission:

20 2 Mathematical modeling, cases

0,0

5,0

10,0

15,0

20,0

25,0

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101

Year

0,0

50,0

100,0

150,0

200,0

250,0

Land stock

Investment in land

Fig. 2.15. Typical outcome of a dynamic model

min
∑

i Ci(xi)
subject to Em · R ≤ ε

with
Ci(xi) = αi · xi

R =
∏

i(1 − xi · ρi)
0 ≤ xi ≤ 1

(2.10)

xi: implementation rate abatement technique i
R: fraction of remaining emissions
Em: emissions before abatement
Ci(x): cost function for abatement technique i
ε: emission target
αi: cost coefficient technique i
ρi: fraction emissions reduced by technique i.

The resulting iso-cost and iso-emission lines for two reduction techniques are
depicted in Figure 2.16. Typical in the formulation here is that looking for
minimum costs would lead to several optimum solutions. Due to the struc-
ture of decreasing return to scales and decreasing marginal utility, this rarely
happens in economic models. In the example here, it is caused by the mul-
tiplicative character of the abatement effects. A similar problem with more
pollutants, more complicated abatement costs, many abatement techniques
can easily be implemented into a modeling language. The appearance of
several optima will persist.

2.7 Parameter estimation, model calibration, nonlinear
regression

A problem solved often by nonlinear optimization is due to parameter estima-
tion. In general a mathematical model is considered good when it describes

2.7 Parameter estimation, model calibration, nonlinear regression 21

iso – cost curves

x1

x2
iso – R curves

Fig. 2.16. Graphical representation for two reduction techniques

the image of the object system in the head of the modeler well; it “fits
reality.” Model validation is—to put it in a simple and nonmathematical
way—a matter of comparing the calculated, theoretical model results with
measured values. One tries to find values for parameters, such that input and
output data fit relatively well, as depicted in Figure 2.17. In statistics, when
the regression models are relatively simple, the term nonlinear regression is
used.

Parameters Output

prediction

Input data

Calibration

(regression)

MODEL
fitness

criterion

Output data

Fig. 2.17. Calibration as an optimization problem

When we are dealing with more complicated (for instance using differential
equations) models, the term model calibration is used. In all cases one tries
to find parameter values such that the output of the model fits well observed
data of the output according to a certain fitness criterion.

For the linear regression type of models, mathematical expressions are
known and relatively easy. Standard methods are available to determine

22 2 Mathematical modeling, cases

0

2

4

6

8

10

12

14

1 21 41 61 81
time

growth par. vector 1

par. vector 2

Fig. 2.18. Two growth curves confronted with data

optimal parameter values and an optimal experimental design. For the general
nonlinear regression problem, this is more or less also the case. For instance,
when using growth curves, which are popular in environmental sciences and
biology, methods appear to be available to estimate parameters and to find
the best way to design experiments; e.g., Rasch et al. (1997).

The mathematical expressions in the standard models have been analyzed
and used for the derivation of algorithms. Formalizing the parameter esti-
mation problem, the output variable y is explained by a model given input
variable x and parameter vector β. In nonlinear regression, the model z(x, β)
is called a regression function, y is called the regressand and x is called the
regressor. When measurements i = 1, . . . , m are available of regressand yi

and regressor xi, the model calculations z(xi, β) can be confronted with the
data yi. The discrepancy ei(β) = z(xi, β) − yi is called the residual or error.
Figure 2.18 illustrates this confrontation. Data points representing time x and
growth y are depicted with two parameter value vectors for a logistic growth
curve which is common in biological and environmental sciences,

z(x, β) =
β1

1 + ββ3x
2

. (2.11)

In Figure 2.18, the curve of parameter vector 1 fits well the data at the
beginning of the curve, whereas the curve of parameter vector 2 fits better
the data at the end. The discrepancy measure or goodness of fit criterion,
combines the residual terms in a multiobjective way. There are numerous
ways of doing so. Usually one minimizes the sum of (weighted) absolute or
squared values of the error terms:

f(β) =
∑

|ei(β) |, or (2.12)

2.7 Parameter estimation, model calibration, nonlinear regression 23

f(β) =
∑

e2
i (β). (2.13)

A less frequently used criterion is to look at the maximum absolute error
maxi | ei(β) | over the observations. The minimization of squared errors
(2.13) has an important interpretation in statistics. When assumptions are
made such as that the measurement errors are independent normally dis-
tributed random variables, the estimation of β by minimizing f(β) of (2.13)
corresponds to a so-called maximum likelihood estimate and probabilistic
statements can be made; see, e.g., Bates and Watts (1988). Parameter
estimation by minimizing (2.13) given data on yi and xi is called an ordinary
least squares approach.

In general more complicated models, which make use of sets of differential
equations, are applied to describe complex systems. Often the structure is
hidden from the optimization point of view. Although the structure of time
series and differential equations can be used for the derivation of appropriate
methods, this is complicated as several equations are involved and measure-
ments in general concern several output variables of the model.

Interpretation of local optima
The function which is optimized in parameter estimation, values the discrep-
ancy between model calculations and measurements. As the data concern
various observations of possibly several output variables, the function is
inherently a multiobjective function; it has to combine the discrepancies of all
observations. A locally optimal parametrization (values for the parameters)
can indicate that the model fits well one part of the observations whereas it
describes other observations, or another output variable, badly. One optimum
can give a good description of downstream measurements in a river model,
whereas another optimum gives a good description upstream. Locally optimal
parametrizations therefore are a source of information to the model builder.

Identifiability
Identifiability concerns the question as to whether there exist several param-
eter values which correspond to the same model prediction. Are the model
and the data sufficient to determine the parameter values uniquely? This
question translates directly to the requirement to have a unique solution of
the parameter estimation problem; Walter (1982). As will be illustrated, the
global optimal set of parameters can consist of a line, a plane, or in general
a manifold. In that case the parameters are called nonidentifiable. When a
linear regression function

z(x, β) = β1 + β2x

is fitted to the data of Figure 2.18, ordinary least squares (but also minimiza-
tion of (2.12)) results in a unique solution, optimal parameter values (β1, β2).
There is one best line through the points. Consider now the following model
which is nonlinear in the parameters:

24 2 Mathematical modeling, cases

z(x, β) = β1β2x.

The multiplication of parameters sometimes appears when two linear regres-
sion relations are combined. This model corresponds with a line through the
origin. The best line y = constant×x is uniquely defined; the parametrization,
however, is not. All parameter values on the hyperbola β1β2 = constant
give the same goodness of fit. The set of solutions of the optimization problem
is a hyperbola. The parameters are nonidentifiable, i.e., cannot be determined
individually. For the example this is relatively easy to see. For large mod-
els, analysis is necessary to determine the identifiability of the parameters.
For the optimization problem this phenomenon is important. The number of
optimal solutions is infinite.

Reliability
Often a researcher is more interested in exact parameter values than in how
well the model fits the data. Consider an investigation on several treatments of
a food product to influence the growth of bacteria in the product. A researcher
measures the number of bacteria over time of several samples and fits growth
models by estimating growth parameters. The researcher is interested in
the difference of the estimated growth parameters with a certain reliability.
So-called confidence regions are used for that.

2.7.1 Learning of neural nets seen as parameter estimation

A neural net can be considered as a model to translate input into output. It is
doubtless that neural nets have been successfully applied in pattern recogni-
tion tasks; see, e.g., Haykin (1998). In the literature on Artificial Intelligence,
a massive terminology has been introduced around this subject. Here we focus
on the involved parameter estimation problem.

It is the task of a neural net to translate input x into output y. Therefore a
neural net can be considered a model in the sense of Figure 2.17. Parameters
are formed by so-called weights and biases and their values are used to tune
the net. This can be seen as a large regression function. The tuning of the
parameters, called learning in the appropriate terminology, can be considered
as parameter estimation.

The net is considered as a directed graph with arcs and nodes. Every
node represents a function which is a part of the total model. The output y
of a node is a function of the weighted input z =

∑
wixi and the so-called

bias w0, as sketched in Figure 2.19. So a node in the network has weights
(on the input arcs) and a bias as corresponding parameters. The input z is
transformed into output y by a so-called transformation function, usually the
sigmoid or logistic transformation function:

y =
1

1 + exp(w0 − z)
.

2.7 Parameter estimation, model calibration, nonlinear regression 25

w

w

w

w

y

x

x

x

0
1

1

2
2

3

3

Fig. 2.19. One node of a neural net

This means that every individual node corresponds to a logistic regression
function. The difference with application of such functions in growth and
logit models is that the nodes are connected by arcs in a network. Therefore,
the total net represents a large regression function. The parameters wi can be
estimated to describe relations as revealed by data as good as possible. For
the illustration, a very small net is used as given in Figure 2.20. It consists
of two so-called hidden nodes H1 and H2 and one output node y. Each node
represents a logistic transformation function with three parameters, two on
the incoming arcs and one bias. Parameters w1, w2, . . . , w6 correspond to
weights on arcs and w7, w8 and w9 are biases of the hidden and output node.
The corresponding regression function is given by

y =
1

1 + exp
(

w9 − w5

1 + ew7−w1x1−w2x2
− w6

1 + ew8−w3x1−w4x2

) .

The net is confronted with data. Usually the index p of “pattern” is used
in the appropriate terminology. Input data xp and output tp (target) are
said to be “fed to the network to train it.” From a regression point of view,
one wants parameters wi to take values such that the predicted y(xp, w) fits
the output observations tp well according to a goodness of fit criterion such as

y

H1

x2

x1

w1

w2

w3

w4

w5

H2

w6

w7

w8

w9

Fig. 2.20. Small neural net with two inputs, one output and two hidden nodes

26 2 Mathematical modeling, cases

y

H1

x2

x1

1

3

2

4

5

H2

6

1

2

3

y

H1

x2

x1

2

4

1

3

6

H2

5

2

1

3

Fig. 2.21. Exchanging two hidden nodes in a neural net

f(w) =
∑

p

(yp − tp)2,

in which yp is the regression function calculated for xp and the weights w. Now
we come across the symmetry property. The regression problem of neural
nets is multiextremal due to its structure. After finding an optimal vector
of weights for criterion f(w), exchanging hidden nodes leads to reordering
the parameters (or indices) and results in the same regression function and
consequently to the same goodness of fit. The two simple nets in Figure 2.21
correspond to the same regression function. Parameter vector (w1, . . . , w9) =
(1, 3, 2, 4, 5, 6, 1, 2, 3) gives the same regression function as parameter vector
(2, 4, 1, 3, 6, 5, 2, 1, 3). In general, a similar net with one output node and
N hidden nodes has N ! optimal parameter vectors all describing the same
input–output relation.

We have shown for this problem that the number of global optimal
parametrizations is not necessarily infinite, but it grows more than expo-
nentially with the number of hidden nodes due to an inherent symmetry in
the optimization problem.

2.8 Summary and discussion points

This chapter taught us several aspects about modeling and optimization
problems.

• In modeling optimization problems, one should distinguish clearly decision
variables, given parameters and data, criteria and model structure.

• From the examples one can distinguish two types of problems from an
optimization perspective.
1. Black-box models: Parameter values are given to a model that returns

the objective function value. Examples are simulation models like the
centrifugal screen design and dynamic stochastic simulation such as
the pumping rule and inventory control problems.

2.9 Exercises 27

2. White-box case: explicit analytical expressions of the problem to
be solved are assumed to be available. This was illustrated by the
quadratic design cases.

• The dimension of a decision problem can blow up easily taking spatial and
temporal aspects into the model, as illustrated by the economic models.

• Alternative optimal solutions may appear due to model structure. The
alternative solutions may describe a complete lower-dimensional set, but
also a finite number of alternatives that represent the same solution for
the situation that has been modeled. The illustration was taken from
parameter estimation problems.

2.9 Exercises

1. Minimum enclosing sphere
Given a set of 10 points {p1, . . . , p10} ∈ R

n. The generic question is to find
the (Chebychev) center c and radius r such that the maximum distance
over the 10 points to center c is at its minimum value. This means, find
a sphere around the set of points with a radius as small as possible.
(a) Formulate the problem in vector notation (min-max problem).
(b) Generate with a program or spreadsheet 10 points at random in R

2.
(c) Make a program or spreadsheet calculating the max distance given c.
(d) Determine the center c with the aid of a solver.
(e) Intuitively, does this problem have only one (local) optimum?

2. Packing circles in a square
How to locate K points in a given square, such that the minimum distance
(over all pairs) between them is as big as possible? Alternatively, this
problem can be formulated in words as finding the smallest square around
a given set of K equal size balls. Usually this problem is considered in a
two-dimensional space. Figure 2.22 gives an optimal configuration for K =
7 spheres. Source: http://www.inf.u-szeged.hu/∼ pszabo/Pack.html
(a) Formulate the problem in vector notation (max-min problem).

Fig. 2.22. Packing seven circles in a square

28 2 Mathematical modeling, cases

(b) Make a program or spreadsheet, such that for a configuration of K
points determines the minimum distance between all point pairs.

(c) Make a program or spreadsheet that given a starting configuration of
K = 3 points finds the maximum minimum distance between them in
the unit box [0, 1]2.

(d) Is there an intuitive argument to say that this problem has only one
(local) optimum?

3. Inventory control
Consider an (s, Q)-policy as described in Section 2.3. As soon as the inven-
tory is below level s, an order is placed of size Q which becomes available
at the end of the next day. If there is not sufficient stock (inventory), the
client is supplied the next day (back ordering) at additional cost. Take as
cost data: inventory holding cost: 0.3 per unit per day, ordering cost 750
and back order cost of 3 per unit. The stochastic daily demand follows a
triangular distribution with values between 0 and 800. This is the same
as the addition ξ = u1 +u2 of two uniformly distributed random variables
u1 and u2 between 0 and 400.
(a) Generate with a spreadsheet (or other program) 2000 daily demand

data.
(b) Make a program or spreadsheet that determines the total costs given

values for Q and s and the generated data.
(c) Determine good values for Q and s.
(d) Is the objective value (total costs) very sensitive to the values of s?

4. Quadratic optimization
Given property y(x) as a result of a quadratic regression: y(x) = −1 −
2x1 − x2 + x1x2 + x2

1. We would like to minimize y(x) on a design space
defined by 0 ≤ x1 ≤ 3 and 1 ≤ x2 ≤ 4. Determine whether y(x) has
several local optima on the design space.

5. Regression
Given four observations (xi, yi): (0, 0), (1

2 , 1), (1, 0) and (3
2 ,−1). A corre-

sponding regression model is given by z(x, α) = sin(αx). Determine the
least squares regression function f(α) and evaluate f(0) and f(2π). What
is the optimal value of α? Extend the exercise to the regression model
z(x, α, β) = sin(αx) + β.

6. Marking via a neural net
After 15 years of experience with the course “identifiability of strange
species” a professor managed to compose an exam quickly. For giving
marks, he found that in fact the result of the exam in the past only de-
pended on two answers A and B of the candidates. A colleague developed
a neural net for him which was fed the data of the exams of the past
years to train it. Within one hour after the exam the professor had put
into the net the answers A and B of the 50 students who participated.
He calculated the marks and transferred them to the administration just

2.9 Exercises 29

Table 2.1. Indicator values and corresponding marks

Indicator A Indicator B Mark Indicator A Indicator B Mark

70.0 30.0 7.3 35.0 13.7 1.2
98.2 14.9 9.8 21.6 14.7 2.7
27.0 29.9 7.3 87.8 21.0 9.8
18.4 25.6 2.7 38.9 17.9 2.7
29.0 27.3 7.2 73.0 23.1 5.4
28.1 17.2 2.7 10.9 21.4 2.7
36.3 12.1 1.2 77.9 16.8 9.8
33.2 30.0 7.3 59.7 15.7 6.5
9.5 18.7 2.7 67.6 29.7 7.3
78.9 13.2 9.8 57.1 24.8 7.3
63.6 28.9 7.3 91.2 16.5 9.8
98.6 14.2 9.8 98.1 27.6 9.8
14.6 14.2 2.7 57.7 26.2 7.3
97.2 23.9 9.8 77.1 27.1 5.0
71.1 18.3 9.8 40.3 16.1 1.3
49.1 23.0 7.3 25.6 26.7 3.8
71.7 18.5 9.8 8.3 23.3 2.7
56.7 22.4 6.6 70.4 23.7 5.0
38.4 25.1 7.3 5.2 24.9 2.7
51.3 18.4 5.0 84.7 21.7 9.8
26.5 10.4 1.2 3.9 19.7 2.7
12.1 12.7 2.7 65.3 19.3 5.3
13.8 15.3 2.7 67.8 21.1 5.1
60.6 25.8 7.3 46.3 10.2 1.3
47.6 29.9 7.3 44.1 16.3 1.3

in time to catch the airplane for research on more strange species. The
result is given in Table 2.1. The marks range from 0 to 10. The question
is now to construct a neural net that matches the input and output of the
exam results.
(a) Develop the simplest net without any nodes in the hidden layer, so

that it consists of one output node. How many parameters does it
have? What are the best values for the parameters in the sense that
your results match the marks as good as possible (minimum least
squares)?

(b) Add 1, 2 and 3 nodes to a hidden layer. What is the number of param-
eters in the network? Can some of the parameters be fixed without
changing the function of the network?

(c) What is the closest you can get to the resulting marks (minimum least
squares)?

3

NLP optimality conditions

3.1 Intuition with some examples

After an optimization problem has been formulated (or during the formu-
lation), methods can be used to determine an optimal plan x∗. In the
application of NLP algorithms, x∗ is approximated iteratively. The user
normally indicates how close an optimum should be approximated. We will
discuss this in Chapter 4.

There are several ways to use software for nonlinear optimization. One can
use development platforms like matlab. Modeling languages can be applied,
such as gams and gino. We found frequent use of them in economic studies, as
sketched in Chapter 2. Also in spreadsheet environments, a so-called solver
add-in on Excel, is used frequently. To get a feeling for the theories and
examples here, one could use one of these programs. In the appendices an
example can be found of the output of these programs.

The result of a method gives in practice an approximation of an optimal
solution that fulfills the optimality conditions and that moreover gives infor-
mation on sensitivity with respect to the data. First an example is introduced
before going into abstraction and exactness.

Example 3.1. A classical problem in economics is the so-called utility maxi-
mization. In the two-goods case, x1 and x2 represent the amount of goods of
type 1 and 2 and a utility function U(x) is maximized. Given a budget (here
6 units) and prices for goods 1 and 2, with a value of 1 and 2, respectively,
optimization problem (3.1) appears:

max{U(x) = x1x2}
x1 + 2x2 ≤ 6
x1, x2 ≥ 0.

(3.1)

To describe (3.1) in the terms of general NLP problem (1.1), one can define
f(x) = −U(x). Feasible area X is described by three inequalities gi(x) ≤ 0;
g1(x) = x1 + 2x2 − 6, g2(x) = −x1 and g3(x) = −x2.

E.M.T. Hendrix and B.G.-Tóth, Introduction to Nonlinear and Global Optimization, 31
Springer Optimization and Its Applications 37, DOI 10.1007/978-0-387-88670-1 3,
c© Springer Science+Business Media, LLC 2010

32 3 NLP optimality conditions

In order to find the best plan, we should first define what an optimum, i.e.,
maximum or minimum, is. In Figure 1.1, the concept of a global and local
optimum has been sketched. In words: a plan is called locally optimal when
it is the best plan in its close environment. A plan is called globally optimal
when it is the best plan in the total feasible area. In order to formalize this,
it is necessary to define the concept of “close environment” in a mathematical
way. The mathematical environment of x∗ is given as a sphere (ball) with
radius ε around x∗.

Definition 1. Let x∗ ∈ R
n, ε > 0. Set {x ∈ R

n | ‖x − x∗‖ < ε} is called an
ε-environment of x∗, where ‖‖̇ is a distance norm.

Definition 2. Function f has a minimum (or local minimum) over set X at
x∗ if there exists an ε-environment W of x∗ , such that: f(x) ≥ f(x∗) for all
x ∈ W ∩ X .

In this case, vector x∗ is called a minimum point (or local minimum point) of
f . Function f has a global minimum in x∗ if f(x) ≥ f(x∗) for all x ∈ X . In
this case, vector x∗ is called a global minimum point. The terminology strict
minimum point is used when above f(x) ≥ f(x∗) is replaced by f(x) > f(x∗)
for x 	= x∗. In fact it means that x∗ is a unique global minimum point.
Note: For a maximization problem, in Definition 2 “minimum” is replaced by
“maximum,” the “≥” sign by the “≤” sign, and “>” by “<.”

To determine the optimal plan for Example 3.1, the contour is introduced.

Definition 3. A contour of f : R
n → R of altitude h is defined as the set

{x ∈ R
n | f(x) = h}.

A contour can be drawn in a figure like lines of altitude on a map as long as
x ∈ R

2. Specifically in Linear Programming (LP), a contour c1x1 + c2x2 = h
is a line perpendicular to vector c. The contours of problem (3.1) are given
in Figure 3.1.

Example 3.2. Similar to graphically solving LP, we can try to find the highest
contour of U(x), that has a point in common with feasible area X . The
maximum point is x∗ = (3, 3/2), as indicated in Figure 3.1. The contours are
so-called hyperbolas defined by x2 = h/x1.

It is not a coincidence that the optimum can be found where the contour
of U(x) touches the binding budget constraint x1 + 2x2 ≤ 6, or abstractly
g1(x) = 0. As with many LP problems, the feasible area here consists of a so-
called polytope. However, the optimum point x∗ is not found in a vertex. For
NLP problems, the optimum can be found in a vertex, on a line, on a plane
or even in the interior of the feasible area, where no constraint is binding.
So the number of binding constraints in the optimum point is not known in
advance. We will come back to this phenomenon, but proceed now with the
next example.

3.1 Intuition with some examples 33

1

1

2

2

3

3

4

4

5

6

7

5 6 7 x1

x2

x*

X

Fig. 3.1. Maximizing utility function U(x) = x1x2

Example 3.3. In (3.1), the utility function is changed to U(x) = x2
1 + x2

2.
The contours are now circles around the origin. In x∗

1 = (6, 0)T the global
maximum point can be found; f(x∗

1) = 36 ≥ f(x) ∀x ∈ X , corresponds to
the highest feasible contour. The point x∗

2 = (0, 3)T is a local, nonglobal
maximum point. That is, there exists an ε-environment of x∗

2 (for instance for
ε = 0.01), such that all points situated in the intersection of this environment
and X , have a lower objective function value. The point x∗

3 = 1
5 (6, 12)T is a

point where a contour touches a binding constraint. In contrast to Example
3.2, such a point is not a maximum point.

What can be derived from Example 3.3? An optimum point possibly can be
found in a vertex of the feasible area. In contrast to Linear Programming,
there can exist points that are local nonglobal optima. A last example in this
section is discussed.

Example 3.4. The concept of investing money in a number of goods can also
be found in the decisions of investing in funds, so-called portfolio selection.
Traditionally a trade-off has to be made between return on investment and
risk. In the classical E, V model introduced by Markowitz (1959), a number of
funds, so-called portfolios, are given. Every portfolio has an expected return
μj and variance σ2

j , j = 1, . . . , n. A fixed amount, say 100 , should be invested
in funds, such that the total expected return is as high as possible and the
risk (variance) as low as possible. Let xj be the amount invested in portfolio
j; then

∑
xj = 100, xj ≥ 0 j = 1, . . . , n

34 3 NLP optimality conditions

1

1

2

2

3

3

4

4

5

6

7

5 6 7 x1

x2

x1*

X

x2*
x3*

Fig. 3.2. Several optima maximizing utility U(x) = x2
1 + x2

2

Expected return E =
∑

xjμj

Variance of return V =
∑

x2
jσ

2
j + 2

∑n
i=1

∑n
j=i+1 σijxixj .

The term σij is the so-called covariance between funds i and j. This can
be positive (sunglasses and sunscreen), negative (sunglasses and umbrellas)
and zero; the funds have no relation. The investor wants to maximize E and
at the same time minimize V . This is a so-called multiobjective problem.
In this case one can generate a trade-off curve between maximizing E and
minimizing V . The simplest case, similar to the examples discussed, is when
there are two funds. Substituting the binding budget constraint x2 + x1 =
100 → x2 = 100 − x1, a problem in one decision variable appears that can
be analyzed relatively easily. Given two funds with μ1 = 1, σ1 = 1, μ2 = 2,
σ2 = 2 and σ12 = 0. The variance V = x2

1 +4x2
2 by substituting x2 = 100−x1

becomes V (x1) = 5x2
1 − 800x1 + 40 000.

This describes a parabola with a minimum at x∗
1 = 80. An investor who

wants to minimize the risk has an optimal plan x∗ = (80, 20) where E = 120
and V = 8 000. This optimal plan is not a vertex of the feasible area. Maxi-
mizing the expected return E gives the optimal solution x∗ = (0, 100) where
E = 200 and V = 40 000. This is a vertex of the feasible area. In practice an
investor will make a trade-off between expected return and acceptable risk.
In this specific case of two funds, if one makes a graph with E and V on
the axes as a function of x1, the trade-off line of Figure 3.3 appears. In the
general Markowitz model, points on this curve are derived by maximizing an

3.2 Derivative information 35

(T
ho

us
an

ds
)

200190180170160150140130120110100

45

40

35

30

25

20

15

10

5

Expected return E

V
ar

ia
nc

e
V

 =201

 =701

 =1001

Pareto part

x

x

x

Fig. 3.3. Trade-off between variance and expected return

objective function f(x) = E−βV , where β is called a risk aversion parameter.
For every value of β, a so-called efficient point or Pareto point appears.

Determination of the optimal plan for varying parameter values is called para-
metric programming. In LP this leads to piecewise linear curves. As can be
observed from Example 3.4, in NLP this can be a smooth nonlinear curve.

Exercising with simple examples based on graphical analysis gives several
insights:

• An optimum point cannot always be found in a vertex of the feasible area.
• The point where a contour touches a constraint is a special point.
• Local, nonglobal optimum points may exist.
• Changes in parameter values (parametric programming) may lead to non-

linear curves.

The rest of the chapter concerns the formalization of these insights and the
question as to in what situations what phenomena appear.

3.2 Derivative information

Some terminology is introduced for the formalization. An objective function
f : R

n → R is analyzed. In the first section, the contour {x ∈ R
n | f(x) = h}

has already been introduced. A graph {(x, y) ∈ R
n+1 | f(x) = y} and level

set {x ∈ R
n | f(x) ≤ h} are further concepts. The level set is also sometimes

called the sublevel set. The graphical perception is limited to R
3. A graph as

such can be seen from the point of view of a landscape. In the development of
algorithms as well as theory, many concepts can be derived by cross-cutting
a function f : R

n → R considering a function ϕr of one variable starting in a
fixed point x and looking in the direction r:

ϕr(λ) = f(x + λr). (3.2)

36 3 NLP optimality conditions

3.2.1 Derivatives

The notion of a derivative is first considered for a function in one variable
and then via (3.2) extended to functions of several variables. The derivative
of f : R → R in the point x is defined as

f ′(x) = lim
h→0

f(x + h) − f(x)
h

(3.3)

whenever this limit exists. For instance, for f(x) =
√| x | this limit does

not exist for x = 0. The use of absolute value and the max-min structure
in an optimization model as illustrated in Chapter 2, in practice causes an
objective function not to be differentiable everywhere. Another important
concept in mathematical literature is that of continuously differentiable, i.e.,
the derivative function is a continuous function. This is mainly a theoretical
concept. It requires some imagination to come up with a function that is
differentiable, but not continuously differentiable. In textbooks one often
finds the example: f(x) = x2 sin 1

x when x 	= 0 and f(x) = 0 when x = 0.
Exercising with limits shows that this function is differentiable for x = 0, but
that the derivative is not continuous.

Algorithms often make use of the value of the derivative. Unless computer
programs can manipulate formulas (so-called automatic differentiation), the
user has to feed the program explicitly with the formulas of the derivatives.
Usually, however, a computer package makes use of so-called numerical dif-
ferentiation. In many cases outlined in Chapter 2, the calculation of a func-
tion value is the result of a long calculation process and an expression for
the derivative is not available. A numerical approximation of the derivative is
determined for instance by the progressive or forward difference approximation

f ′(x) ≈ f(x + h) − f(x)
h

(3.4)

by taking a small step (e.g., h = 10−5) forward. Numerical errors can occur
that, without going into detail, are smaller in the central difference approxi-
mation

f ′(x) ≈ f(x + h) − f(x − h)
2h

. (3.5)

3.2.2 Directional derivative

By considering functions of several variables from a one-dimensional perspec-
tive via (3.2), the notion of directional derivative ϕ′

r(0) appears, depending
on point x and direction r:

ϕ′
r(0) = lim

h→0

f(x + hr) − f(x)
h

. (3.6)

3.2 Derivative information 37

This notion is relevant for the design of search algorithms as well as for the
test on optimality. When an algorithm has generated a point x, a direction r
can be classified according to

r with ϕ′
r(0) < 0: descent direction,

r with ϕ′
r(0) > 0: ascent direction,

r with ϕ′
r(0) = 0: direction in which f does not increase nor decrease, it

is situated in the tangent plane of the contour.

For algorithms looking for the minimum of a differentiable function, in every
generated point, the descent directions are of interest. For the test of whether
a certain point x is a minimum point of a differentiable function the following
reasoning holds. In a minimum point x∗ there exists no search direction r
that points into the feasible area and is also a descent direction, ϕ′

r(0) < 0.
Derivative information is of importance for testing optimality. The test of
a set of possible search directions requires the notion of gradient which is
introduced now.

3.2.3 Gradient

Consider unit vector ej with a 1 for element j and 0 for the other elements.
Using in (3.6) ej for the direction r gives the so-called partial derivative:

∂f

∂xj
(x) = lim

h→0

f(x + hej) − f(x)
h

. (3.7)

The vector of partial derivatives is called the gradient

∇f(x) =
(

∂f

∂x1
(x),

∂f

∂x2
(x), . . . ,

∂f

∂xn
(x)
)T

. (3.8)

Example 3.5. Let f : R
n → R be a linear function f(x) = cT x. The partial

derivatives of f in x with respect to xj are

∂f

∂xj
(x) = lim

h→0

f(x + hej) − f(x)
h

= lim
h→0

cT (x + hej) − cT x

h
= lim

h→0

hcT ej

h
= cT ej = cj .

Gradient ∇f(x) = (c1, . . . , cn)T = c for linear functions does not depend on x.

Example 3.6. Consider again utility optimization problem (3.1). Utility func-
tion U(x) = x1x2 has gradient ∇U(x) = (x2, x1)T . The gradient ∇U is
depicted for several plans x in Figure 3.4(a). The arrow ∇U(x) is perpen-
dicular to the contour; this is not a coincidence. In Figure 3.4(b), contours
of another function can be found from the theory of utility maximization. It

38 3 NLP optimality conditions

1

2

3

4

5

6

7

1 2 3 4 5 6 7 x1

x2

U(x)=max{x1,x2}

U

1

2

3

4

5

6

7

1 2 3 4 5 6 7

x2

x1

U(x)=x1x2

U

(a) (b)

Fig. 3.4. Two utility functions and their contours

concerns the notion of complementary goods. A classical example of comple-
mentary goods is where x1 is the number of right shoes, x2 is the number of
left shoes and U(x) = min{x1, x2} the number of pairs of shoes, that seems to
be maximized by some individuals. This utility function is not differentiable
everywhere. Consider the graph over the line x + λr, with x = (0, 1)T and
r = (2, 1)T . The function is then

ϕr(λ) = U

((
0
1

)
+ λ

(
2
1

))
.

Note that for any direction r, ϕr(λ) is a parabola when U(x) = x1x2 and a
piecewise linear curve when U(x) = min{x1, x2}.
If f is continuously differentiable in x, the directional derivative is

ϕ′
r(0) = rT∇f(x). (3.9)

This follows from the chain rule for differentiating a composite function with
respect to λ:

ϕ′
r(λ) =

d

dλ
f(x + λr) = r1

∂

∂x1
f(x + λr) + · · · + rn

∂

∂xn
f(x + λr)

= rT∇f(x + λr).

Using (3.9), the classification of search directions toward descent and ascent
directions becomes relatively easy. For a descent direction r, rT∇f(x) =
ϕ′

r(0) < 0 holds, such that r makes a sharp angle with ∇f(x). Directions for
which rT∇f(x) > 0, are directions where f increases.

3.2.4 Second-order derivative

The second-order derivative in the direction r is defined similarly. However,
the notation gets more complicated, as every partial derivative ∂f

∂xj
has deriva-

tives with respect to x1, x2, . . . , xn. All derivatives can be summarized in the

3.2 Derivative information 39

so-called Hesse matrix H(x) with elements hij = ∂2f
∂xixj

(x). The matrix is
named after the German mathematician Ludwig Otto Hesse (1811–1874). In
honor of this man, in this text the matrix is not called Hessian (as usual), but
Hessean:

Hf (x) =

⎛

⎜⎜⎝

∂2f
∂x1∂x1

(x) . . . ∂2f
∂x1∂xn

(x)
...

. . .
...

∂2f
∂xn∂x1

(x) . . . ∂2f
∂xn∂xn

(x)

⎞

⎟⎟⎠ .

Example 3.7. Let f : R
n → R be defined by f(x) = x3

1x2 + 2x1x2 + x1:

∂f
∂x1

(x) = 3x2
1x2 + 2x2 + 1 ∂f

∂x2
(x) = x3

1 + 2x1

∂2f
∂x1∂x1

(x) = 6x1x2
∂2f

∂x1∂x2
(x) = 3x2

1 + 2

∂2f
∂x2∂x1

(x) = 3x2
1 + 2 ∂2f

∂x2∂x2
(x) = 0

∇f(x) =
(

3x2
1x2 + 2x2 + 1

x3
1 + 2x1

)
Hf (x) =

(
6x1x2 3x2

1 + 2
3x2

1 + 2 0

)
.

In the rest of this text, the suffix f of the Hessean will only be used when
it is not clear from the context which function is meant. The Hessean in this
example is a symmetric matrix. It can be shown that the Hessean is symmetric
if f is twice continuously differentiable. For the optimality conditions we are
interested in the second-order derivative ϕ′′

r (λ) in the direction r. Proceeding
with the chain rule on (3.9) results in

ϕ′′
r (λ) = rT H(x + λr)r (3.10)

if f is twice continuously differentiable.

Example 3.8. The function U(x) = x1x2 implies

∇U(x) =
(

x2

x1

)
and H(x) =

(
0 1
1 0

)
.

The Hessean is independent of the point x. Consider the one-dimensional
function ϕr(λ) = U(x + λr) with x = (0, 0)T . In the direction r = (1, 1)T is
a parabola ϕr(λ) = λ2,

ϕ′
r(λ) = rT∇U(x + λr) = (1, 1)

(
λ
λ

)
= 2λ and

ϕ′′
r (λ) = rT H(x + λr)r = (1, 1)

(
0 1
1 0

)(
1
1

)
= 2.

40 3 NLP optimality conditions

In the direction r = (1,−1)T is ϕr(λ) = −λ2 (parabola with maximum) such
that

ϕ′
r(λ) = (1,−1)

(−λ
λ

)
= −2λ and

ϕ′′
r (λ) = (1,−1)

(
0 1
1 0

)(
1
−1

)
= −2.

In x = (0, 0)T there are directions in which x is a minimum point and there
are directions in which x is a maximum point. Such a point x is called a
saddle point.

Definition 4. Point x is a saddle point if there exist directions r and s for
which ϕr(λ) = f(x + λr) has a minimum in λ = 0 and ϕs(λ) = f(x + λs) has
a maximum in λ = 0.

3.2.5 Taylor

The first- and second-order derivatives play a role in the so-called mean value
theorem and Taylor’s theorem. Higher-order derivatives that are usually pos-
tulated in the theorem of Taylor are left out here.

The mean value theorem says that for a differentiable function between
two points a and b a point ξ exists where the derivative has the same value
as the slope between (a, f(a)) and (b, f(b)).

Theorem 3.1. Mean value theorem. Let f : R → R be continuous on the
interval [a, b] and differentiable on (a, b), then ∃ ξ, a ≤ ξ ≤ b, such that

f ′(ξ) =
f(b) − f(a)

b − a
. (3.11)

As a consequence, considered from a point x1, the function value f(x) is

f(x) = f(x1) + f ′(ξ)(x − x1). (3.12)

So f(x) equals f(x1) plus a residual term that depends on the derivative in a
point in between x and x1 and the distance between x and x1. The residual
or error idea can also be found in Taylor’s theorem. For a twice-differentiable
function, (3.12) can be extended to

f(x) = f(x1) + f ′(x1)(x − x1) +
1
2
f ′′(ξ)(x − x1)2. (3.13)

It tells us that f(x) can be approximated by the tangent line through x1 and
that the error term is determined by the second-order derivative in a point ξ
in between x and x1. The tangent line f(x1) + f ′(x1)(x − x1) is called the
first-order Taylor approximation. The equivalent terminology for functions of
several variables can be derived from the one-dimensional cross-cut function
ϕr given in (3.2).

3.3 Quadratic functions 41

We consider vector x1 as a fixed point and do a step into direction r, such
that x = x1 + r; given ϕr(λ) = f(x1 + λr), consider ϕr(1) = f(x). The mean
value theorem gives

f(x) = ϕr(1) = ϕr(0) + ϕ′
r(ξ) = f(x1) + rT∇f(θ) = f(x1) + (x− x1)T∇f(θ),

where θ is a vector in between x1 and x. The first-order Taylor approximation
becomes

f(x) ≈ f(x1) + (x − x1)T∇f(x1). (3.14)

This line of reasoning via (3.10) results in Taylor’s theorem (second order)

f(x) = ϕr(1) = ϕr(0) + ϕ′
r(0) + 1

2ϕ′′
r (ξ)

= f(x1) + (x − x1)T∇f(x1) + 1
2 (x − x1)T H(θ)(x − x1),

(3.15)

where θ is a vector in between x1 and x. The second-order Taylor approxi-
mation appears when in (3.15) θ is replaced by x1. The function of equation
(3.15) is a so-called quadratic function. In the following section we will first
focus on this type of functions.

Example 3.9. Let f(x) = x3
1x2 + 2x1x2 + x1, see Example 3.7. The first-order

Taylor approximation of f(x) around 0 is

f(x) ≈ f(0) + xT∇f(0)

∇f(0) =
(

1
0

)

f(x) ≈ 0 + (x1, x2)
(

1
0

)
= x1.

In Section 3.4, the consequence of first- and second-order derivatives with
respect to optimality conditions is considered. First the focus will be on the
specific shape of quadratic functions at which we arrived in equation (3.15).

3.3 Quadratic functions

In this section, we focus on a special class of functions and their optimality
conditions. In the following sections we expand on this toward general smooth
functions. At least for any smooth function the second-order Taylor equation
(3.15) is valid, which is a quadratic function. In general a quadratic function
f : R

n → R can be written as

f(x) = xT Ax + bT x + c, (3.16)

where A is a symmetric n × n matrix and b an n vector. Besides constant c
and linear term bT x (3.16) has a so-called quadratic form xT Ax. Let us first
consider this quadratic form, as has already been exemplified in Example 3.8:

42 3 NLP optimality conditions

xT Ax =
n∑

i=1

n∑

j=1

aijxixj (3.17)

or alternatively as was written in the portfolio example, Example 3.4:

xT Ax =
n∑

i=1

aiix
2
i + 2

n∑

i=1

n∑

j=i+1

aijxixj . (3.18)

Example 3.10. Let A =
(

2 1
1 1

)
, then xT Ax = 2x2

1 + x2
2 + 2x1x2.

The quadratic form xT Ax determines whether the quadratic function has a
maximum, minimum or neither of them. The quadratic form has a value of 0
in the origin. This would be a minimum of xT Ax, if xT Ax ≥ 0 for all x ∈ R

or similarly in the line of the cross-cut function ϕr(λ) = f(0 + λr), walking
in any direction r would give a nonnegative value:

(0 + λr)T A(0 + λr) = λ2rT Ar ≥ 0 ∀r. (3.19)

We will continue this line of thinking in the following section. For quadratic
functions, it brings us to introduce a useful concept.

Definition 5. Let A be a symmetric n×n matrix. A is called positive definite
if xT Ax > 0 for all x ∈ R

n, x 	= 0. Matrix A is called positive semidefinite
if xT Ax ≥ 0 for all x ∈ R

n. The notion of negative (semi)definite is defined
analogously. Matrix A is called indefinite if vectors x1 and x2 exist such that
xT

1 Ax1 > 0 and xT
2 Ax2 < 0.

The status of matrix A with respect to positive, negative definiteness or
indefiniteness determines whether quadratic function f(x) has a minimum,
maximum or neither of them. The question is of course how to check the
status of A. One can look at the eigenvalues of a matrix. It can be shown
that for the quadratic form

μ1‖x‖2 ≤ xT Ax ≤ μn‖x‖2

where μ1 is the smallest and μn the highest eigenvalue of A and ‖x‖2 = xT x.
This means that for a positive definite matrix A all eigenvalues are positive
and for a negative definite matrix all eigenvalues are negative.

Theorem 3.2. Let A be a symmetric n×n matrix. A is positive definite ⇐⇒
all eigenvalues of A are positive.

Moreover, the corresponding eigenvectors are orthogonal to the contours of
f(x). The eigenvalues of A can be determined by finding those values of μ
for which Ax = μx or equivalently (A − μE)x = 0 such that the determinant
|A − μE| = 0. Let us look at some examples.

3.3 Quadratic functions 43

1
4

9

25

x2

x1

 = (1,1)r

Fig. 3.5. Contours of f(x) = x2
1 + 2x2

2

Example 3.11. Consider A =
(

1 0
0 2

)
such that f(x) = x2

1 + 2x2
2. The

corresponding contours as sketched in Figure 3.5 are ellipsoids. The eigenval-
ues can be found on the diagonal of A and are 1 and 2 with corresponding
eigenvectors r1 = (1, 0)T and r2 = (0, 1)T . Following cross-cut functions
from the origin according to (3.19) gives positive parabolas ϕr1(λ) = λ2 and
ϕr2(λ) = 2λ2. Walking into direction r = (1, 1)T also results in a positive
parabola, but as depicted, the corresponding line is not orthogonal to the
contours of f(x).

In Example 3.8 we have seen already a case of an indefinite quadratic form.
In some directions the parabola curves downward and in some directions it
curves upward. We consider here one example where this is less obvious.

Example 3.12. Consider A =
(

3 4
4 −3

)
such that f(x) = 3x2

1 − 3x2
2 + 8x1x2

The corresponding contours are sketched in Figure 3.6. The eigenvalues of A
can be determined by finding those values of μ for which

|A − μE| =
∣∣∣∣
3 − μ 4

4 −3 − μ

∣∣∣∣ = 0 → μ2 − 25 = 0 (3.20)

such that the eigenvalues are μ1 = 5 and μ2 = −5; A is indefinite. The
eigenvector can be found from Ar = μr → (A − μE)r = 0. In this example
they are any multiple of r1 = 1√

5
(2, 1)T and r2 = 1√

5
(1,−2)T . The corre-

sponding lines, also called axes, are given in Figure 3.6. In the direction of r1,
ϕr1(λ) = 5λ2 a positive parabola. In the direction of r2 we have a negative
parabola. Specifically in the direction r = (1, 3), f(x) is constant.

44 3 NLP optimality conditions

-6

-1

-1

-6
6

1

1
6

-10

10

10

-10 r1

r2

Fig. 3.6. Contours of f(x) = 3x2
1 − 3x2

2 + 8x1x2

When the linear term bT x is added to the quadratic form, the center of the
contours is shifted toward

x∗ = −1
2
A−1b (3.21)

where x∗ can only be determined if the columns of A are linearly independent.
In this case (3.16) can be written as

f(x) = xT Ax + bT x + c = (x − x∗)T A(x − x∗) + constant, (3.22)

where constant = c− 1
4bT A−1b. Combining Definition 5 with Equation (3.22)

gives that apparently x∗ is a minimum point if A is positive semidefinite and
a maximum point if A is negative semidefinite.

The derivative information of quadratic functions is typically linear. The
gradient of quadratic (3.22) is given by

∇f(x) = 2Ax + b. (3.23)

Note that point x∗ is a point where the gradient is the zero vector, a so-called
stationary point. The Hessean of a quadratic function is constant:

H(x) = 2A. (3.24)

Another typical observation can be made going back to the mean value
theorem of Section 3.2. There exists a vector θ in between points a and d
such that

3.4 Optimality conditions, no binding constraints 45

f(d) = f(a) + ∇f(θ)T (d − a). (3.25)

In general, the exact location of θ is unknown. However, one can check that
for quadratic functions θ is exactly in the middle; θ = 1

2 (a + d).

Example 3.13. Consider A =
(

1 0
0 2

)
, b =

(
2
4

)
, f(x) = x2

1 +2x2
2 +2x1 +4x2.

The center of Figure 3.5 is now determined by

x∗ = −1
2
A−1b = −1

2

(
1 0
0 1

2

)(
2
4

)
= −

(
1
1

)
(3.26)

and constant = − 1
4bT A−1b = − 1

4 (2, 4)T

(
1 0
0 1

2

)(
2
4

)
= −3 such that f(x)

can be written as f(x) = x2
1 + 2x2

2 + 2x1 + 4x2 = (x1 + 1)2 + 2(x2 + 1)2 − 3.

3.4 Optimality conditions, no binding constraints

An optimum point is determined by the behavior of the objective function in
all feasible directions. If f(x) is increasing from x∗ in all feasible directions
r, then x∗ is a minimum point. The feasibility of directions is determined
by the constraints that are binding in x∗. Traditionally, two situations are
distinguished:

1. There are no binding constraints in x∗, x∗ is an interior point of X . We
will deal with that in this section.

2. There are binding constraints, x∗ is situated at the boundary of X . We
deal with that in Section 3.5.

The same line is followed as in Section 3.2 starting with one-dimensional
functions via the cross-cut functions ϕr(λ) to functions of several variables.
Mathematical background and education often give the principle of putting
derivatives to zero, popularly called “finding an analytical solution.”The
mathematical background of this principle is sketched here and commented.

3.4.1 First-order conditions

The general conditions are well described in the literature such as Bazaraa
et al. (1993). We describe here some properties for f continuously differen-
tiable. Considering a minimum point x∗ of a one-dimensional function, gives
via the definition of derivative

f ′(x∗) = lim
x→x∗

f(x) − f(x∗)
x − x∗ . (3.27)

46 3 NLP optimality conditions

The numerator of the quotient is nonnegative (x∗ is a minimum point)
and the denominator is either negative or positive depending on x approach-
ing x∗ from below or from above. So the limit in (3.27) can only exist if
f ′(x∗) = 0. More-dimensional functions follow the same property with the
additional complication that the directional derivative

ϕ′
r(0) = lim

h→0

f(x∗ + hr) − f(x∗)
h

= rT∇f(x∗) (3.28)

depends on direction r. The directional derivative being zero for all possible
directions, rT∇f(x∗) = 0 ∀r implies ∇f(x∗) = 0.

A point x with ∇f(x) = 0 is called a stationary point. Finding one (or all)
stationary points results in a set of n equalities and n unknowns and in general
cannot be easily solved. Moreover, a stationary point can be:

• A minimum point; f(x) = x2 and x = 0
• A maximum point; f(x) = −x2 and x = 0
• A point of inflection; f(x) = x3 and x = 0
• A saddle point, i.e., in some directions a maximum point and in others a

minimum point (Example 3.8)
• Combination of inflection, minimum or maximum point in different direc-

tions.

The variety is illustrated by Example 3.14.

Example 3.14. Let f(x) = (x3
1−1)2+(x3

2−1)2. The contours of f are depicted
in Figure 3.7 having decreasing function values around a minimum point in

the positive orthant. The gradient of f is ∇f(x) =
(

6x2
1(x

3
1 − 1)

6x2
2(x3

2 − 1)

)
. The

stationary points can easily be found: ∇f(x) = 0 gives 6x2
1(x

3
1 − 1) = 0 and

6x2
2(x

3
2 − 1) = 0. The stationary points are (0, 0); (1, 1); (1, 0) and (0, 1). The

function value f in (1, 1) equals zero and it is easy to see that f(x) > 0 for all
other points. So point (1, 1) is a global minimum point. The other stationary
points (0, 0); (1, 0) and (0, 1) are situated on a contour such that in their
direct environment there exist points with a higher function value as well as
points with a lower function value; they are neither minimum nor maximum
points.

3.4.2 Second-order conditions

The assumption is required that f is twice continuously differentiable. Now
Taylor’s theorem can be used. Given a point x∗ with f ′(x∗) = 0, then (3.13)
tells us that

f(x) = f(x∗) +
1
2
f ′′(ξ)(x − x∗)2. (3.29)

Whether x∗ is a minimum point is determined by the sign of f ′′(ξ) in the
environment of x∗. If f ′(x∗) = 0 and f ′′(ξ) ≥ 0 for all ξ in an environment,

3.4 Optimality conditions, no binding constraints 47

f(x)=0.3
f(x)=1

f(x)=1.5

f(x)=2

f(x)=3

f(x)=10

x 2

x 1

Fig. 3.7. Contours of f(x) = (x3
1 − 1)2 + (x3

2 − 1)2

then x∗ is a minimum point. When f ′′ is a continuous function and f ′′(x∗) > 0,
then there exists an environment of x∗ such that for all points in that envi-
ronment f ′′(x) > 0, so x∗ is a minimum point. However, if f ′′(x) = 0, as for
f(x) = x3 and f(x) = x4 in x∗ = 0, then higher-order derivatives should be
considered to determine the status of x∗.

Theorem 3.3. Let f : R → R be twice continuously differentiable in x∗. If
f ′(x∗) = 0 and f ′′(x∗) > 0, then x∗ is a minimum point. If x∗ is a minimum
point, then f ′(x∗) = 0 and f ′′(x∗) ≥ 0.

Extending Theorem 3.3 toward functions of several variables requires
studying ϕ′′

r (0) in a stationary point x∗, where ϕr(λ) = f(x∗+λr). According
to (3.10) we should know the sign of

ϕ′′
r (0) = rT H(x∗)r (3.30)

in all directions r. Expression (3.30) is a quadratic form. The derivation
of Theorem 3.3 via (3.13) also applies for functions in several variables via
(3.15).

Theorem 3.4. Let f : R
n → R be twice continuously differentiable in x∗. If

∇f(x∗) = 0 and H(x∗) is positive definite, then x∗ is a minimum point. If
x∗ is a minimum point, then ∇f(x∗) = 0 and H(x∗) is positive semidefinite.

48 3 NLP optimality conditions

x2

x1

f=1.5

f=2

f=3

f=1 f=-1f=-1f=-2 f=-2

Fig. 3.8. Contours of f(x) = x3
1 − 3x1 + x2

2 − 2x2

Example 3.15. Consider the contours of f(x) = x3
1 − 3x1 + x2

2 − 2x2 in
Figure 3.8. A minimum point and a saddle point can be recognized. Both
are stationary points, but the Hessean has a different character. The gradient

is ∇f(x) =
(

3x2
1 − 3

2x2 − 2

)
and the Hessean H(x) =

(
6x1 0
0 2

)
. The eigenval-

ues of the Hessean are 6x1 and 2. The stationary points are determined by
∇f(x) = 0; x∗

1 = (1, 1)T and x∗
2 = (−1, 1)T .

H(x∗
1) =

(
6 0
0 2

)
is positive definite and Hf (x∗

2) =
(−6 0

0 2

)
is indefinite. This

means that x∗
1 is a minimum point and x∗

2 is not a minimum point.

3.5 Optimality conditions, binding constraints

To check the optimality of a given x∗, it should be verified that f is non-
decreasing from x∗ in all feasible directions r. Mathematical theorems have
been formulated to help the verification. If one does not carefully consider
the underlying assumptions, the applications of such theorems may lead to
incorrect conclusions about the status of x∗. With the aid of illustrative ex-
amples we try to make the reader aware of possible mistakes and the value of
the assumptions.

Many names are connected to the mathematical statements with respect
to optimality when there are binding constraints, in contrast to the theorems

3.5 Optimality conditions, binding constraints 49

mentioned before. Well-known conditions are the so-called Karush–Kuhn–
Tucker conditions (KKT conditions). We will first have a look at the historic
perspective; see Kuhn (1991).

J.L. Lagrange studied the questions of optimization subject to equality
constraints back in 1813. In 1939, W. Karush presented in his M.Sc. the-
sis, conditions that should be valid for an optimum point with equality con-
straints. Independently F. John presented some optimality conditions for a
specific problem in 1948. Finally, the first-order conditions really became
known after a presentation given by H.W. Kuhn and A.W. Tucker to a math-
ematical audience at a symposium in 1950. Their names were connected to
the conditions that are nowadays known as the KKT conditions. Important
notions are:

• Regularity conditions (constraint qualifications).
• Duality. We will sketch the relation with Linear Programming.
• Complementarity. This idea is important related to the distinction be-

tween binding and nonbinding constraints.

3.5.1 Lagrange multiplier method

The KKT conditions are often explained with the so-called Lagrange function
or Lagrangean. It was developed for equality constraints gi(x) = 0, but can
also be applied to inequality constraints gi(x) ≤ 0.

L(x, u) = f(x) +
∑

uigi(x), (3.31)

where f(x) is the objective function that should be minimized. The con-
straints with respect to gi(x) are added to the objective function with so-
called Lagrange multipliers ui that can be interpreted as dual variables. The
most important property of this function is that under some conditions it can
be shown that for any minimum point x∗ of (1.1), there exists a dual solution
u∗ such that (x∗, u∗) is a saddle point of L(x, u) via

x∗, u∗ is a solution of min
x

max
u

L(x, u). (3.32)

So x∗ is a minimum point of L (u∗ constant) and u∗ a maximum point. We
are going to experiment with this idea. Why is it important to get some
feeling for (3.32)? Often implicit use is made of (3.32) following the concept
of the “Lagrange multiplier method.” In this concept one uses the idea of the
saddle point for putting the derivatives to u and x to zero and trying to find
analytical solutions x∗, u∗ of

∇L(x, u) = 0. (3.33)

Example 3.16. In Example 3.1 (see Figure 3.1), one maximizes U(x) = x1x2.
The optimum has been determined graphically to be x∗ = (3, 3/2) where only

50 3 NLP optimality conditions

g1(x) = x1 + 2x2 − 6 ≤ 0 is a binding constraint. Given point x∗ in the
Lagrangean

L(x, u) = −U(x) +
∑

uigi(x)

one can put u∗
2 = u∗

3 = 0, because the second and third constraint x1 ≥ 0
and x2 ≥ 0 are nonbinding. The optimum point is the same if the second
and third constraint are left out of the problem. This illustrates the notion of
complementarity, that is also valid in Linear Programming; u∗

i gi(x∗) = 0. If
u2 = u3 = 0, then L(x, u) = −x1x2 + u1(x1 + 2x2 − 6). So (3.33) leads to

∂L/∂x1 = 0 ⇒ −x2 + u1 = 0
∂L/∂x2 = 0 ⇒ −x1 + 2u1 = 0
∂L/∂u1 = 0 ⇒ x1 + 2x2 − 6 = 0

⎫
⎬

⎭ ⇒

x∗
1 = 3, x∗

2 = 3/2, u∗
1 = 3/2, U(x∗) = 4.5

is a unique solution and x∗ = (3, 3/2), u∗ = (3/2, 0, 0) is a stationary point
of the Lagrangean corresponding to the optimum. The value of u∗

1 = 3/2 has
the interpretation of shadow price; an additional (marginal) unit of budget
results in 3/2 units of additional utility. One can compare the values with the
output of the Excel solver in the appendix.

The Lagrange multiplier method is slightly tricky:

1. Finding a stationary point analytically may not be easy.
2. An optimal solution may be one of (infinitely) many solutions of (3.33).
3. Due to some additional constraints, the saddle point (3.32) of L may not

coincide with a solution of (3.33).
4. For the inequality constraints one should know in advance which gi(x) ≤ 0

are binding. Given a specific point x∗ this is of course known.

These difficulties are illustrated by the following examples.

1. Finding a solution and 4. binding constraints

Analyzing a given point x∗ in Example 3.16 is easy; (3.33) appears to be a
linear set of equalities that can easily be solved. If the optimum point is not
known, the binding constraints are unknown in (3.33). Furthermore, finding
a solution for Example 3.16 is much harder when the objective function is
changed to U(x) = x1x

2
2.

Example 3.17. Notice that finding a solution for Example 3.16 is not as easy as
it seems. First of all we called g2(x) ≤ 0 and g3(x) ≤ 0 nonbinding constraints.
If one by mistake puts u1 = 0 (g1(x) ≤ 0 is nonbinding), the stationary point
of the Lagrangean is x∗ = (0, 0), u∗ = (0, 0, 0), g(x∗) = (6, 0, 0). This fulfills
(3.33), but is neither an optimum point nor a solution of (3.32).

3.5 Optimality conditions, binding constraints 51

2. A solution of (3.33) is not an optimum point

Finding a solution is one difficulty. Another difficulty is that when a solution
of (3.33) has been found, it does not necessarily correspond to a solution of
the optimization problem.

Example 3.18. Consider the utility function of Figure 3.2, U(x) = x2
1 + x2

2.
Following the same procedure as in Example 3.16 (u2 = u3 = 0) leads to

L(x, u) = −x2
1 − x2

2 + u1(x1 + 2x2 − 6)
∇L(x, u) = 0 gives

−2x1 + u1 = 0
−2x2 + 2u1 = 0

x1 + 2x2 = 6.

The solution of this system is x∗
1 = 6/5, x∗

2 = 12/5 with U(x∗) = 7.2 and
u∗

1 = 12/5, but not a maximum point of (3.1); over x1 + 2x2 = 6 it is even a
minimum point.

Example 3.18 illustrates that the first-order conditions are necessary, but not
sufficient. The optimum values for Example 3.18 can be found in the appendix.

3. The saddle point (3.32) is not a stationary point (3.33)

We focus on the case that an optimum point x∗ corresponds to a saddle point
of L(x, u) but not to a stationary point; not all constraints are included in L.
As shown before, the complementarity with respect to the inequalities should
be taken into account. We illustrate this by considering a Linear Programming
(LP) problem in the standard form

max {cT x}
Ax = b
x ≥ 0.

(3.34)

The Lagrange function is formulated with respect to the equalities Ax = b
leaving the inequalities x ≥ 0, where we do not know in advance which are
binding and which nonbinding in the optimal solution. Given an optimal plan
x∗, it is known which x∗

j = 0 and formulas exist to determine u∗, see Bazaraa
et al. (1993). The Lagrangean of (3.34) is

L(x, u) = −cT x + uT (Ax − b). (3.35)

Literature shows that a solution x∗ of (3.34) is also a saddle point of (3.35), i.e.,

min
x≥0

max
u

L(x, u). (3.36)

What does this mean? Notice that u is free and maximization results in an
unbounded solution whenever Ax 	= b. Elaboration gives a logical result:

52 3 NLP optimality conditions

min
x≥0

[max
u

{−cT x + uT (Ax − b)}] = min
x≥0

{ ∞ if Ax 	= b
−cT x if Ax = b

and also follows from ∂L/∂ui = 0. Setting the derivatives toward xj to zero
makes no sense, because we should know which xj have a value of zero (basic
versus nonbasic variables).
The Lagrange multiplier method via (3.32) and (3.33) can always be used
to check the optimality of a given plan x∗, but is not always useful to find
solutions.

It is noted for the interested reader that the dual problem (D) is defined by
switching max and min in (3.36):

maxu [minx≥0 L(x, u)] =
maxu [minx≥0 {(AT u − c)T x − bT u}] =

maxu

{ −∞ if there exists an i with ci > aT
i u

−bT u if AT u ≤ c.

3.5.2 Karush–Kuhn–Tucker conditions

The Lagrange multiplier method may not always be appropriate for finding
an optimum. On the other hand, an optimum point x∗ (under regularity
conditions and differentiability) should correspond to a stationary point of
the Lagrangean (3.33) via the Karush–Kuhn–Tucker conditions, in which the
notion of complementarity is more explicit.

Theorem 3.5. Karush–Kuhn–Tucker conditions
If x∗ is a minimum point of (1.1), then there exist numbers u∗ such that

−∇f(x∗) =
∑

u∗
i∇gi(x∗)

u∗
i gi(x∗) = 0 complementarity

u∗
i ≥ 0 for constraints gi(x) ≤ 0.

In mathematical terms this theorem shows us that the direction of opti-
mization (−∇f(x∗) in a minimization problem and ∇f(x∗) in a maximization
problem) in the optimum is a combination of the gradients of the active con-
straints.

We first view this graphically and then go for an example. Point x∗ is
a minimum, if in any feasible direction r it is nondecreasing. A small posi-
tive step into a feasible direction cannot generate a lower objective function
value. Graphically seen, the directions that point into the feasible area are
related to the gradients of the active constraints (see Figure 3.9). Mathe-
matically this can be seen as follows. If constraint gi(x) ≤ 0, is binding
(active) in x∗, gi(x∗) = 0 a direction r fulfilling rT∇gi(x∗) < 0 is pointing
into the feasible area and a direction such that rT∇gi(x∗) > 0 points out of
the area. In a minimum point x∗ every feasible direction r should lead to an

3.5 Optimality conditions, binding constraints 53

x*

f x*()

x()=0g2x()=0g1

g2 x*()g1 x*()

X

-

r

Fig. 3.9. Feasible directions

increase in the objective function value, i.e., rT∇f(x∗) ≥ 0. If a direction r
fulfills rT∇gi(x∗) < 0 for every binding constraint, then it should also fulfill
rT∇f(x∗) ≥ 0. Because of the KKT conditions −∇f(x∗) =

∑
ui∇gi(x∗)

with ui ≥ 0 every feasible direction r fulfills

− rT∇f(x∗) =
∑

uir
T∇gi(x∗) ≥ 0. (3.37)

So the KKT conditions are necessary to imply that x∗ is a minimum point in
all feasible directions. Graphically this means that arrow −∇f(x∗) is situated
in between the gradients ∇gi(x∗) for all binding inequalities.

Example 3.19. Problem (3.1) with U(x) = x2
1 + x2

2 can be formulated as

min{f(x) = −x2
1 − x2

2}
g1(x) = x1 + 2x2 − 6 ≤ 0
g2(x) = −x1 ≤ 0
g3(x) = −x2 ≤ 0

so

∇f(x) =
(−2x1

−2x2

)
,∇g1(x) =

(
1
2

)
,∇g2(x) =

(−1
0

)
,∇g3(x) =

(
0

−1

)
.

In the (local) minimum point x∗
2 = (0, 3)T , g1 and g2 are binding and g3(x∗

2) =
−3 < 0 is nonbinding, so that u∗

3 = 0.

−∇f(x∗
2) =

(
0
6

)
= u∗

1∇g1(x∗
2) + u∗

2∇g2(x∗
2) + 0∇g3(x∗

2) ⇒
(

0
6

)
= u∗

1

(
1
2

)
+ u∗

2

(−1
0

)
⇒ u∗

1 = 3, u∗
2 = 3, u∗

3 = 0.

54 3 NLP optimality conditions

For the global minimum point x∗
1 = (6, 0)T can be derived analogously:

−∇f

(
6
0

)
=
(

12
0

)
= u∗

1

(
1
2

)
+ 0

(−1
0

)
+ u∗

3

(
0

−1

)
⇒

u∗
1 = 12, u∗

2 = 0, u∗
3 = 24.

One can compare these values with the ones in the appendix.

Note that x∗
3 = 1

5

(
6

12

)
is a KKT point (not optimum) according to

−∇f(
1
5

(
6

12

)
) =

1
5

(
12
24

)
=

12
5
∇g1 + 0∇g2 + 0∇g3.

Under regularity conditions, the KKT conditions are necessary for a point
x∗ to be optimum. The KKT conditions are not sufficient, as has been
shown by Example 3.19. Similar to the case without binding constraints,
second-order conditions exist based on the Hessean. Those conditions are far
more complicated, because the sign of the second-order derivatives should be
determined in the tangent planes of the binding constraints. We refer to the
literature on the topic, such as Scales (1985), Gill et al. (1981) and Bazaraa
et al. (1993). In the following section the notion of convexity will be discussed
and its relation to the second-order conditions.

3.6 Convexity

Why deal with the mathematical notion of convexity? The relevance for a
general NLP problem is mainly due to three properties. For a so-called convex
optimization problem (1.1) applies:

1. If f and gi are differentiable functions, a KKT point (and a stationary
point) is also a minimum point. This means the KKT conditions are
sufficient for optimality.

2. If a minimum point is found, it is also a global minimum point.
3. A maximum point can be found at the boundary of the feasible region.

It is even a so-called extreme point.

Note that the notion of convexity is not directly related to differentiability.
It is appropriate for property 1. The second and third property are also
valid for nondifferentiable cases. How can one test the convexity of a specific
problem? That is a difficult point. For many black-box applications and
formulations in Chapter 2, where the calculation of the function is the result
of a long calculation process, analysis of the formulas is not possible. The
utility maximization examples in this chapter reveal their expressions and one
can check the convexity. In economics literature where NLP is applied, other

3.6 Convexity 55

x1

f (x1+(1-)x2)

x1
x2x2

f (x1)

f (x1)

f (x2)
f (x2)

f (x1)+(1-)f (x2)

f (x1+(1-)x2)

f (x1)+(1-)f (x2)

x1+(1-)x2x1+(1-)x2

convex function concave function

Fig. 3.10. Convex and concave functions

weaker assumptions can often be found; the functions gi are quasi-convex.
What is the meaning and the relation with the notion of convexity? This will
be outlined. For a more detailed overview we refer to Bazaraa et al. (1993).

Definition 6. A function f is called convex when the chord between two
points on the graph of f is nowhere below the graph, Figure 3.10. Mathemat-
ically:

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2) 0 ≤ λ ≤ 1.

A function is concave if it is the other way around:

f(λx1 + (1 − λ)x2) ≥ λf(x1) + (1 − λ)f(x2) 0 ≤ λ ≤ 1.

In all other cases the terminology is that of nonconvex and nonconcave
functions. In this definition some details are omitted; namely, f is defined
on a so-called convex nonempty space. This is discussed later in Definition 7.
It is not always easy in practice to show via the definition that a function is
convex. Some examples are given.

Example 3.20. For a linear function f(x) = cT x:

f(λx1 + (1 − λ)x2) = cT (λx1 + (1 − λ)x2)
= λcT x1 + (1 − λ)cT x2 = λf(x1) + (1 − λ)f(x2).

By definition a linear function is as well convex as concave.

Example 3.21. For the quadratic function f(x) = x2 the convexity question is
given by

56 3 NLP optimality conditions

(λx1 + (1 − λ)x2)2 ≤ λx2
1 + (1 − λ)x2

2 so
λx2

1 + (1 − λ)x2
2 − (λx1 + (1 − λ)x2)2 ≥ 0 ?

Elaboration gives

λx2
1 + (1 − λ)x2

2 − λ2x2
1 − (1 − λ)2x2

2 − 2λ(1 − λ)x1x2

= λ(1 − λ)x2
1 + λ(1 − λ)x2

2 − 2λ(1 − λ)x1x2 = λ(1 − λ)(x1 − x2)2 ≥ 0
for 0 ≤ λ ≤ 1.

Indeed f(x) = x2 is convex.

3.6.1 First-order conditions are sufficient

We show that for a convex function f , a stationary point is a minimum point.
This can be seen from the observation that a tangent line (plane) is below the
graph of f ; see Figure 3.11.

x x

+
f (x)

f (x)
T (x -x)

f (
x)

1

1
1

1

Fig. 3.11. Tangent plane below graph

Theorem 3.6. Let f be a convex and continuously differentiable function on
X. For any two points x, x1 ∈ X

f(x) ≥ f(x1) + ∇f(x1)T (x − x1). (3.38)

This can be seen as follows. For a convex function f

f(λx + (1 − λ)x1) ≤ λf(x) + (1 − λ)f(x1).

So, f(x1 + λ(x − x1)) ≤ f(x1) + λ(f(x) − f(x1)); this means f(x) − f(x1) ≥
f(x1+λ(x−x1))−f(x1)

λ . Limit λ → 0 results at the right-hand side in the direc-
tional derivative f in x1 in the direction (x − x1), so that f(x) − f(x1) ≥
∇f(x1)T (x − x1).

Now it follows directly from (3.38) that x∗ is a minimum point, as in a
stationary point x∗, ∇f(x∗) = 0.

3.6 Convexity 57

Theorem 3.7. If f is convex in an ε-environment of stationary point x∗, then
x∗ is a minimum point of f .

Convexity and the Hessean is positive semidefinite
Combining Theorem 3.7 with the second-order conditions of Theorem 3.4
shows a relationship between convexity and the Hessean for twice-differentiable
functions.

Theorem 3.8. Let f : X → R be twice continuously differentiable on open
set X: f is convex ⇔ Hf is positive semidefinite on X.

Theorem 3.8 follows from combining (3.27) and (3.38). The theorem shows
that in some cases convexity can be checked.

Example 3.22. The function f(x) = x2
1 + 2x2

2 is convex.

The Hessean is Hf =
(

2 0
0 4

)
. The eigenvalues of the Hessean are 2 and 4, so

Hf is positive definite. Theorem 3.8 tells us that f is convex.

3.6.2 Local minimum point is global minimum point

For the notion of convex optimization, the definition of convex set is required.
A convex optimization problem is defined as a problem where the objective
function f is convex in case of minimization (concave in case of maximization)
and feasible set X is a convex set.

Definition 7. Set X is called convex if for any pair of points p, q ∈ X the
chord between those points is also in X : λp + (1 − λ)q ∈ X for 0 ≤ λ ≤ 1.

When is the feasible area X convex? In problem (1.1), X is defined by
inequalities gi(x) ≤ 0 and equalities gi(x) = 0. Linear equalities (LP) lead to
a convex area, but if an equality gi(x) = 0 is nonlinear, e.g., x2

1 +x2
2−4 = 0, a

p

q

convex set nonconvex set

p

q

Fig. 3.12. A convex and a nonconvex set

58 3 NLP optimality conditions

nonconvex area appears. In contrast to the mentioned equality, the inequality
x2

1 + x2
2 − 4 ≤ 0 describes a circle with its interior and this is a convex set.

Considering the inequality gi(x) ≤ 0 more abstractly, it is a level set of the
function gi(x). The relation with convex functions is given in Theorem 3.9.

Theorem 3.9. Let g : X → R be a convex function on a convex set X and
h ∈ R. Level set Sh = {x ∈ X | g(x) ≤ h} is a convex set.

The proof proceeds as follows. Given two points x1, x2 ∈ Sh so g(x1) ≤ h
and g(x2) ≤ h. The convexity of g shows that point x = λx1 + (1 − λ)x2 in
between x1 and x2 is also in Sh:

g(x) = g(λx1+(1−λ)x2) ≤ λg(x1)+(1−λ)g(x2) ≤ λh+(1−λ)h = h. (3.39)

A last property often mentioned in the literature is that the functions gi are
quasi-convex. This is a weaker assumption than convexity for which Theorem
3.9 also applies. To be complete, the definition is given here. The reader can
derive the variant of inequality (3.39).

Definition 8. A function f : X → R on a nonempty convex set X is called
quasi-convex if for any pair x1, x2 ∈ X ,

f(λx1 + (1 − λ)x2) ≤ maximum {f(x1), f(x2)} 0 ≤ λ ≤ 1.

The notion of a convex optimization problem (1.1) is important for the three
properties we started with. The KKT conditions are sufficient to determine
the optimality of a stationary point in a convex optimization problem, see
Bazaraa et al. (1993). Property 2 (local is global) can now be derived.

Theorem 3.10. Let f be convex on a convex set X, then every local minimum
point is a global minimum point.

Showing the validity of Theorem 3.10 is usually done in the typical mathemat-
ical way of demonstrating that assuming nonvalidity will lead to a contradic-
tion. For a local minimum point x∗, an ε-environment W of x∗ exists where
x∗ is minimum; f(x) ≥ f(x∗), x ∈ X ∩W . Suppose that Theorem 3.10 is not

x*

x1

X
W

,

Fig. 3.13. Local, nonglobal does not exist

3.6 Convexity 59

true. Then a point x1 ∈ W should exist such that f(x1) < f(x∗). By logical
steps and the convexity of f and X it can be shown that the existence of x1

leads to a contradiction. Points on the line between x1 and x∗ are situated in
X, x ∈ X and can be described by x = λx1 +(1−λ)x∗, 0 ≤ λ ≤ 1. Convexity
of f implies

f(x) = f(λx1 + (1 − λ)x∗) ≤ λf(x1) + (1 − λ)f(x∗) <
λf(x∗) + (1 − λ)f(x∗) = f(x∗). (3.40)

So the convexity of f and the assumption f(x1) < f(x∗) implies that all
points on the chord between x1 and x∗ have an objective value lower than
f(x∗). For λ small, the point x is situated in W in contradiction to x∗ being a
local minimum. So the assumption that a point x1 exists with f(x1) < f(x∗)
cannot be true.

The practical importance of Theorem 3.10 is that software like gino, gams/
minos, and the Excel solver return a local minimum point depending on the
starting value. If one wants to be certain it is a global minimum point, then
the optimization problem should be analyzed further on convexity. We al-
ready have seen that this may not be easy.

3.6.3 Maximum point at the boundary of the feasible area

The last mentioned property is: for a convex function a maximum point (if
it exists) can be found at the boundary of the feasible area. A special case of
this property is Linear Programming.

Theorem 3.11. Let f : X → R be a convex function on a closed set X. If
f has a maximum on X, then there exists a maximum point x∗ that is an
extreme point.

Mathematically extreme means that x∗ cannot be written as a convex combi-
nation of two other points in X . A typical extreme point is a vertex (corner
point). At the boundary of a circle, all points are extreme points. The proof
of Theorem 3.11 also uses contradiction. The proof is constructed by assum-
ing that there is an interior maximum point x∗ ; more exactly, a maximum
point x∗ with a higher function value than the points at the boundary. Point
x∗ can be written as a convex combination of two points x1 and x2 at the
boundary:

f(x∗) > f(x1), f(x∗) > f(x2) and x∗ = λx1 + (1 − λ)x2.

Just like in (3.40) this leads to a contradiction:

f(x∗) ≤ λf(x1) + (1 − λ)f(x2) < λf(x∗) + (1 − λ)f(x∗) = f(x∗).

60 3 NLP optimality conditions

The consequence in this case is that if the feasible area is a polytope, one can
limit the search for a maximum point to the vertices of the feasible area. Life
does not necessarily become very easy with this observation; the number of
vertices can explode in the number of decision variables. A traditional exam-
ple showing this and also giving a relation between NLP and combinatorial
optimization is the following.

Example 3.23.
max {f(x) =

∑
(xi − ε)2}

−1 ≤ xi ≤ 1, i = 1, . . . , n,

where ε is a small number, e.g., 0.01. The problem describes the maximization
of the distance to a point that is nearly in the middle of a square/cube. With
increasing dimension n, the number of vertices explodes, increases with 2n.
Every vertex is a local maximum point. Moreover, this problem has a multiple
of KKT points that are not maximum points. For the case of a cube (n = 3)
for instance 18.

3.7 Summary and discussion points

• Optimum points of an NLP problem may be found in the interior, on the
boundary of the feasible set or in extreme points.

• Trade-off curves giving the optimal solution are typically nonlinear in
changing parameter values. Nondifferentiable points also occur due to
constraints changing their status being binding.

• First-order conditions are typically based on the concept of stationary
points and Karush–Kuhn–Tucker points.

• Second-order conditions are based on the status of the Hessean on being
positive definite.

• Convexity of a problem gives that first-order conditions are sufficient for
points to be minimum points.

• For convex optimization problems, local minimum points are also global
minimum points.

• A convex objective function finds its maxima at the extreme points of the
feasible set.

3.8 Exercises

1. Solve the following NLP problem graphically:

min(x1 − 3)2 + (x2 − 2)2

subject to the constraints

3.8 Exercises 61

x2
1 − x2 − 3 ≤ 0

x2 − 1 ≤ 0
−x1 ≤ 0.

2. Designing a desk with length x and y wide, the following aspects appear:
• The surface has to be as big as possible: max xy.
• The costs of the expensive edge should not be too large: 2x + 2y ≤ 8.
• The desk should not be too wide: y ≤ b.

Solve this NLP problem graphically for b = 1.

What happens to the optimal surface when b increases?

3. In Example 3.4 determine V , x∗
1 and the (E, V)-curve when there is neg-

ative correlation according to σ12 = − 1
2 .

4. Is the function f(x) =
√

(x2
1 + x2

2) differentiable in 0?

5. Determine gradient and Hessean of f(x) = x2
1x

2
2e

x3 .

6. Derive the second-order Taylor approximation of f(x) = x1e
x2 around 0.

7. Given f(x) = 2x2
1 + x4

2. Derive and draw the contours corresponding
to a function value of 3, of f(x) and the first- and second-order Taylor
approximation around (1, 1)T .

8. Let f(x) = 4x1x2 + 6x2
1 + 3x2

2. Write f(x) as a quadratic function (3.16).
Determine stationary point and eigenvalues and eigenvectors of A.

9. Let f(x) = −1−2x1−x2 +x1x2 +x2
1. Write f(x) as a quadratic function

(3.16). Determine stationary point and eigenvalues and eigenvectors of A.

10. Let f(x) = (x1 − x2)2. Write f(x) as a quadratic function (3.16).
Determine the stationary points and eigenvalues and eigenvectors of A.
Are the stationary points minimum points?

11. Determine the minima of
(a) f(x) = x2

1 + x2
2

(b) f(x) =
√

x2
1 + x2

2

(c) f(x) = x1x2

12. Given function f(x) = x3
1 − x3

2 − 6x1 + x2:
(a) Determine gradient and Hessean of f(x).
(b) Determine the stationary points of f(x).
(c) Which point is a minimum point and which are saddle points?

13. Given utility function U(x) = x2
1x2 and budget constraint x1 + x2 = 3.

Determine the stationary point of the Lagrangean maximizing the utility
function subject to the budget constraint.

14. Given NLP problem

min (x1 − 3)2 + (x2 − 2)2

62 3 NLP optimality conditions

subject to
x2

1+ x2
2 ≤ 5

x1+ 2x2 ≤ 4
−x1 ≤ 0

−x2 ≤ 0.

(a) Determine graphically the optimal solution x∗.
(b) Check the Karush–Kuhn–Tucker (KKT) conditions for x∗.
(c) What happens when the right-hand side of the second constraint (4)

increases?

15. Given LP problem
max 2x1 + 2x2 (P)
x1 + 2x2 ≤ b
4x1 + 2x2 ≤ 10
x1, x2 ≥ 0.

(a) Solve (P) for b = 4 with the simplex method.
(b) Check the KKT conditions in the optimum point.
(c) Compare the values of the KKT multipliers to the solution of the dual

problem.
(d) What happens to the optimum if b increases?

16. Given the concave optimization problem P:

min −(x1 − 1)2 − x2
2 (P)

2x1 + x2 ≤ 4
x1, x2 ≥ 0.

(a) Determine graphically the local and global minimum points of P.
(b) Show that the minimum points fulfill the KKT conditions.
(c) Point (0, 0) fulfills the KKT conditions. Show via the definition that

(0, 0)T is not a local minimum point.
(d) Give another point that fulfills the KKT conditions, but is not a min-

imum point.

17. Show f(x) = max{g1(x), g2(x)} is convex if g1(x) and g2(x) are convex.

18. Given a convex continuous function f : R
n → R. Show that its epigraph

{(x, α) ∈ R
n+1|α ≥ f(x)} is a convex set.

19. Check whether f(x) = 2x1 + 6x2 − 2x2
1 − 3x2

2 + 4x1x2 is convex.

20. Determine the validity of Theorem 3.6 for f : (0,∞) → R with f(x) = 1/x.

21. Given a convex optimization problem, i.e., the objective function f is
convex as well as the feasible region X .
(a) Can the problem have more than one minimum?
(b) Can the problem have more than one minimum point?
(c) Can the problem have exactly two global minimum points?

3.8 Exercises 63

22. Given quadratic function f(x) = 2x2
1 + x2

2 − 2x1x2 − 6x1 + 1 and the
feasible area X given by 3 ≤ x1 ≤ 6 and 0 ≤ x2 ≤ 6.
(a) Show that f is convex.
(b) Can f have more than one minimum on X?
(c) Determine the minima of f on X .
(d) Determine all maximum points of f on X via the KKT conditions.

23. Given problem

min
X

f(x) = x1x2, X = {x ∈ R
2|2x1 + x2 ≥ 6, x1 ≥ 1, x2 ≥ 1}. (3.41)

(a) Determine graphically all minimum points of (3.41).
(b) Show that the minimum points fulfill the KKT conditions.
(c) Show feasible point x = (3, 1)T does not fulfill the KKT conditions.
(d) Give a point that fulfills KKT conditions, but is not a minimum point.

24. Given f(x) = 24x1+14x2+x1x2 and point x0 = (2, 10)T with f(x0) = 208.
(a) Determine gradient and Hessean of f .
(b) Give a descent direction r in x0.
(c) Is f convex in direction r?

64 3 NLP optimality conditions

3.9 Appendix: Solvers for Examples 3.2 and 3.3

Input and output of GINO for Example 3.3

MODEL:

 1) MAX= X1 ^ 2 + X2 ^ 2 ;

 2) X1 + 2 * X2 < 6 ;

 3) X1 > 0 ;

 4) X2 > 0 ;

 END

 SOLUTION STATUS: OPTIMAL TO TOLERANCES. DUAL

CONDITIONS: SATISFIED.

 OBJECTIVE FUNCTION VALUE

 1) 36.000000

 VARIABLE VALUE REDUCED COST

 X1 6.000000 .000000

 X2 .000000 .000000

 ROW SLACK OR SURPLUS PRICE

 2) .000000 12.000010

 3) 6.000000 .000000

 4) .000000 -24.000009

Fig. 3.14. Input and output gino

The optimal values for the variables, Lagrange multiplier and the status
of the constraints in the optimal solution can be recognized.

3.9 Appendix: Solvers for Examples 3.2 and 3.3 65

Input and output of GAMS/MINOS for Example 3.3

Variables

X1

X2

NUT;

POSITIVE VARIABLES X1,X2;

EQUATIONS

BUDGET

NUTD;

BUDGET.. X1+2*X2=L=6;

NUTD.. NUT=E=X1*X1+X2*X2;

MODEL VBNLP /ALL/

SOLVE VBNLP USING NLP MAXIMIZING NUT

Somewhere in the OUTPUT (7 pages) the optimal values of the variables, constraints and shadow prices can be

found. Here MINOS finds the global optimum. For another starting value it may find the local optimum.

GAMS 2.25.081 386/486 G e n e r a l A l g e b r a i c M o d e l i n g S y s t e m

**** SOLVER STATUS 1 NORMAL COMPLETION

**** MODEL STATUS 2 LOCALLY OPTIMAL

**** OBJECTIVE VALUE 36.0000

 RESOURCE USAGE, LIMIT 0.220 1000.000

 ITERATION COUNT, LIMIT 0 1000

 EVALUATION ERRORS 0 0

 M I N O S 5.3 (Nov 1990) Ver: 225-386-02

 = = = = =

 B. A. Murtagh, University of New South Wales

 and

 P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright

 Systems Optimization Laboratory, Stanford University.

 EXIT -- OPTIMAL SOLUTION FOUND

 MAJOR ITNS, LIMIT 1 200

 FUNOBJ, FUNCON CALLS 4 0

 SUPERBASICS 0

 INTERPRETER USAGE 0.00

 NORM RG / NORM PI 0.000E+00

 LOWER LEVEL UPPER MARGINAL

---- EQU BUDGET -INF 6.000 6.000 12.000

---- EQU NUTD . . . -1.000

 LOWER LEVEL UPPER MARGINAL

---- VAR X1 . 6.000 +INF .

---- VAR X2 . . +INF -24.000

---- VAR NUT -INF 36.000 +INF .

Fig. 3.15. Part of output gams

66 3 NLP optimality conditions

Output of Excel solver for Example 3.2

Microsoft Excel 8.0e Answer
Report
Worksheet:
[xlsolver.xls]Sheet1

Target Cell
(Max)

Cell Name Original
Value

Final
Value

 D9 x1*x2 0 4.5

Adjustable Cells

Cell Name Original
Value

Final
Value

 E6 x1 6 3
 F6 x2 0 1.5

Constraints

Cell Name Cell Value Formula Status Slack

 G6 x1+2*x2 6 G6<=6 Binding 0
 E6 x1 3 E6>=0 Not Binding 3
 F6 x2 1.5 F6>=0 Not Binding 1.5

Microsoft Excel 8.0e Sensitivity Report
Worksheet: [xlsolver.xls]Sheet1

Adjustable Cells

 Final Reduced
Cell Name Value Gradient

 E6 x1 3 0
 F6 x2 1.5 0

Constraints

 Final Lagrange
Cell Name Value Multiplier

 G6 x1+2*x2 6 1.5

Fig. 3.16. Output Excel solver for Example 3.2

4

Goodness of optimization algorithms

4.1 Effectiveness and efficiency of algorithms

In this chapter, several criteria are discussed to measure the effectiveness and
efficiency of algorithms. Moreover, examples of basic algorithms are analyzed.
Global Optimization (GO) concepts such as region of attraction, level set,
probability of success and performance graph are introduced. To investigate
optimization algorithms, we should say what we mean by them in this book;
an algorithm is a description of steps, preferably implemented into a computer
program, which finds an approximation of an optimum point. The aims can
be several: reach a local optimum point, reach a global optimum point, find
all global optimum points, reach all global and local optimum points. In
general, an algorithm generates a series of points xk that approximate an
optimum point. According to the generic description of Törn and Žilinskas
(1989):

xk+1 = Alg(xk, xk−1, . . . , x0, ξ), (4.1)

where ξ is a random variable and index k is the iteration counter. This
represents the idea that a next point xk+1 is generated based on information
in all former points xk, xk−1, ..., x0 (x0 usually being the starting point) and
possibly a random effect. This leads to three classes of algorithms discussed
here:

• Nonlinear optimization algorithms, that from a starting point try to reach
the “nearest” local minimum point. These are described in Chapter 5.

• Deterministic GO methods which guarantee to approach the global opti-
mum and require a certain mathematical structure. Attention is paid in
Chapter 6, but also several heuristics are discussed.

• Stochastic GO methods based on the random generation of feasible trial
points and nonlinear local optimization procedures. Those are discussed
in Chapter 7.

E.M.T. Hendrix and B.G.-Tóth, Introduction to Nonlinear and Global Optimization, 67
Springer Optimization and Its Applications 37, DOI 10.1007/978-0-387-88670-1 4,
c© Springer Science+Business Media, LLC 2010

68 4 Goodness of optimization algorithms

We will consider several examples illustrating two questions to be addressed
to investigate the quality of algorithms (see Baritompa and Hendrix, 2005).

• Effectiveness: does the algorithm find what we want?
• Efficiency: what are the computational costs?

Several measurable performance indicators can be defined for these criteria.

4.1.1 Effectiveness

Consider minimization algorithms. Focusing on effectiveness, there are several
targets a user may have:

1. To discover all global minimum points. This of course can only be realized
when the number of global minimum points is finite.

2. To detect at least one global optimum point.
3. To find a solution with a function value as low as possible.
4. To produce a uniform covering of a near-optimal or success region. This

idea as introduced by Hendrix and Klepper (2000) can be relevant for
population-based algorithms.

The first and second targets are typical satisfaction targets; was the search
successful or not? What are good measures of success? In the literature,
convergence is often used, i.e., xk → x∗, where x∗ is one of the minimum
points. Alternatively one observes f(xk) → f(x∗). In tests and analyses, to
make results comparable, one should be explicit in the definitions of success.
We need not only specify ε and/or δ such that

‖xk − x∗‖ < ε and/or f(xk) < f(x∗) + δ (4.2)

but also specify whether success means that there is an index K such that
(4.2) is true for all k > K. Alternatively, success may mean that a record
mink f(xk) has reached level f(x∗) + δ. Whether the algorithm is effective
also depends on its stochastic nature. When we are dealing with stochastic
algorithms, effectiveness can be expressed as the probability that a success
has been reached. In analysis, this probability can be derived from sufficient

+ε

x

−ε

f x < f

f

f +δ

+δ()

Fig. 4.1. Success region based on ε environment or f∗ + δ level set

4.1 Effectiveness and efficiency of algorithms 69

assumptions on the behavior of the algorithm. In numerical experiments, it
can be estimated by counting repeated runs how many times the algorithm
converges. We will give some examples of such analysis. In Section 4.2.4 we
return to the topic of efficiency and effectiveness considered simultaneously.

4.1.2 Efficiency

Globally efficiency is defined as the effort the algorithm needs to be successful.
A usual indicator for algorithms is the (expected) number of function evalua-
tions necessary to reach the optimum. This indicator depends on many factors
such as the shape of the test function and the termination criteria used. The
indicator more or less suggests that the calculation of function evaluations
dominates the other computations of the algorithm. Several other indicators
appear in the literature.

In nonlinear programming (e.g., Scales, 1985; Gill et al., 1981) the concept
of convergence speed is common. It deals with the convergence limit of the
series xk. Let x0, x1, . . . , xk, . . . converge to point x∗. The largest number α
for which

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖α

= β < ∞ (4.3)

gives the order of convergence, whereas β is called the convergence factor. In
this terminology, the special instances are:

• linear convergence with α = 1 and β < 1
• quadratic convergence with α = 2 and 0 < β < 1
• superlinear convergence: 1 < α < 2 and β < 1, i.e., β = 0 if α = 1 in

(4.3).

Mainly in deterministic GO algorithms, information on past evaluations
is stored in the computer memory. This requires efficient data handling for
looking up necessary information during the iterations. Furthermore, memory
requirements become a part of the computational burden as retrieving actions
cannot be neglected compared to the computational effort due to function
evaluations.

In stochastic GO algorithms, an efficiency indicator is the success rate
defined as the probability that the next iterate is an improvement on the
record value found thus far, i.e., P (f(xk) < minl=1,...,k−1 f(xl)). Its theo-
retical relevance to convergence speed was analyzed by Zabinsky and Smith
(1992) and Baritompa et al. (1995), who showed that a fixed success rate
of an effective algorithm (in the sense of so-called uniform covering; see,
e.g., Hendrix and Klepper, 2000) gives an algorithm with the expected num-
ber of function evaluations growing polynomially with the dimension of the
problem. However, empirical measurements can only be established in the
limit when such an algorithm stabilizes, and only for specifically designed test
cases (Hendrix et al., 2001).

70 4 Goodness of optimization algorithms

We do not go deeper into theoretical aspects of performance indicators
here. Instead some basic algorithms are introduced and analyzed. In Section
4.3, systematic investigation of algorithms is expanded upon.

4.2 Some basic algorithms and their goodness

4.2.1 Introduction

In this section, several classes of algorithms are analyzed for effectiveness and
efficiency. Two test cases are introduced first for which the performance of
the algorithms are investigated. We consider the minimization of

g(x) = sin(x) + sin(3x) + ln(x), x ∈ [3, 7]. (4.4)

Function g is depicted in Figure 4.2 and has three minimum points on the
interval, at x∗ = 3.73, x∗ = 5.65 and x∗ = 7. The global minimum is attained
at x∗ = 3.73, where g(x∗) = −0.220. The derivative function is

g′(x) = cos(x) + 3 cos(3x) +
1
x

(4.5)

on the interval [3, 7]. Alternatively to function g, we introduce a function h
with more local minimum points by adding to function g a bubble function
based on frac(x) = x − round(x) where round(x) rounds x to the nearest
integer. Now the second case is defined as

3 3.5 4 4.5 5 5.5 6 6.5 7
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

x

g(x)

Fig. 4.2. Test case g(x) with three optima

4.2 Some basic algorithms and their goodness 71

3 3.5 4 4.5 5 5.5 6 6.5 7
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x

h(x)

Fig. 4.3. Test case h(x) with 17 optima

h(x) = g(x) + 1.5frac2(4x). (4.6)

In Figure 4.3, the graph of function h is shown. It has 17 local minimum points
on the interval [3, 7]. Although neither g nor h is convex on the interval, at
least function h is piecewise convex on the intervals in between the points of
S = {x = 1

4k + 1
8 , k ∈ Z}. At these points, h is not differentiable. For the rest

of the interval one can define the derivative

h′(x) = g′(x) + 12 × frac(4x) for x /∈ S. (4.7)

The global minimum point of h on [3, 7] is shifted slightly compared to g
toward x∗ = 3.75, where h(x∗) = −0.217.

In the following sections, we will test algorithms on their ability to find
minima of these two functions. One should set a target on what is considered
an acceptable or successful result. For instance, one can aim at detecting a
local minimum or detecting the global minimum. For the neighborhood we
will take an acceptance of ε = 0.01. For determining an acceptable low value
of the objective function we take δ = 0.01. Notice that ε represents 0.25% of
the argument range [3, 7] and δ is about 0.25% of the function values range.

4.2.2 NLP local optimization: Bisection and Newton

Two nonlinear programming algorithms are sketched and their performance
measured for the two test cases. Both are further elaborated in Chapter 5.
First the bisection algorithm is considered.

72 4 Goodness of optimization algorithms

Algorithm 1 Bisect([l, r], f, ε)
Set k := 0, l0 = l and r0 = r
while (rk − lk > ε)

xk := lk+rk
2

if (f ′(xk) < 0)
lk+1 := xk and rk+1 := rk

else
lk+1 := lk and rk+1 := xk

k := k + 1
endwhile

The algorithm departs from a starting interval [l, r] that is halved itera-
tively based on the sign of the derivative in the midpoint. This means that
the method is only applicable when the derivative is available at the generated
midpoints. The point xk converges to a minimum point within the interval
[l, r]. If the interval contains only one minimum point, it converges to that.
In our test cases, several minima exist and one can observe the convergence
to one of them. The algorithm is effective in the sense of converging to a local
(nonglobal) minimum point for both cases. Another starting interval could
have led to another minimum point. In the end, we are certain that the cur-
rent iterate xk is not further away than ε from a minimum point. Alternative
stopping criteria like convergence of function values or derivatives going to
zero are possible for this algorithm. The current stopping criterion is easy for
analysis of efficiency. One question could be: How many iterations (i.e., cor-

Table 4.1. Bisection for functions g and h, first 6 iterations

function g function h

k lk rk xk g′(xk) g(xk) lk rk xk h′(xk) h(xk)

0 3.00 7.00 5.00 -1.80 1.30 3.00 7.00 5.00 -1.80 1.30
1 5.00 7.00 6.00 3.11 0.76 5.00 7.00 6.00 3.11 0.76
2 5.00 6.00 5.50 -1.22 0.29 5.00 6.00 5.50 -1.22 0.29
3 5.50 6.00 5.75 0.95 0.24 5.50 6.00 5.75 0.95 0.24
4 5.50 5.75 5.63 -0.21 0.20 5.50 5.75 5.63 -6.21 0.57
5 5.63 5.75 5.69 0.36 0.20 5.63 5.75 5.69 -2.64 0.29
6 5.63 5.69 5.66 0.07 0.19 5.69 5.75 5.72 -0.85 0.24

responding derivative function evaluations) are necessary to come closer than
ε to a minimum point? The bisection algorithm is a typical case of linear
convergence with a convergence factor of 1

2 , |rk+1−lk+1|
|rk−lk| = 1

2 . This means one
can determine the number of iterations necessary for reaching ε-convergence:

| rk − lk |= (1
2)k· | r0 − l0 |< ε ⇒

(1
2)k <

ε

| r0 − l0 | ⇒ k >
ln ε − ln | r0 − l0 |

ln 1
2

.

4.2 Some basic algorithms and their goodness 73

Algorithm 2 Newt([l, r], x0, f, α)
Set k := 0,
while (| f ′(xk) | > α)

xk+1 := xk − f ′(xk)
f ′′(xk)

! safeguard for staying in interval
if (xk+1 < l), xk+1 := l
if (xk+1 > r), xk+1 := r
if (xk+1 = xk), STOP

k := k + 1
endwhile

The example case requires at least 9 iterations to reach an accuracy of ε = 0.01.
An alternative for finding the zero point of an equation, in our case the

derivative, is the so-called method of Newton. The idea is that its efficiency
is known to be superlinear (e.g., Scales, 1985), so it should be faster than
bisection. We analyze its efficiency and effectiveness in the two test cases.

In general, the aim of the Newton algorithm is to converge to a point
where the derivative is zero. Depending on the starting point x0, the method
may converge to a minimum or maximum. Also, it may not converge at all,
for instance when a minimum point does not exist. Specifically in the version
of Algorithm 2, a safeguard is built in to ensure the iterates remain in the
interval; it can converge to a boundary point. If x0 is in the neighborhood
of a minimum point where f is convex, then convergence is guaranteed and
the algorithm is effective in the sense of reaching a minimum point. Let us
consider what happens for the two test cases.

When choosing the starting point x0 in the middle of the interval [3, 7],
the algorithm converges to the closest minimum point for function h and to
a maximum point for the function g, i.e., it fails for this starting point. This
gives rise to introducing the concept of a region of attraction of a minimum
point x∗. A region of attraction of point x∗ is the region of starting points
x0 where the local search procedure converges to point x∗. We elaborate this
concept further in Section 4.2.4.

Table 4.2. Newton for functions g and h, α = 0.001

function g function h

k xk g′(xk) g′′(xk) g(xk) xk h′(xk) h′′(xk) h(xk)

0 5.000 -1.795 -4.934 1.301 5.000 -1.795 43.066 1.301
1 4.636 0.820 -7.815 1.511 5.042 0.018 43.953 1.264
2 4.741 -0.018 -8.012 1.553 5.041 0.000 43.944 1.264
3 4.739 0.000 -8.017 1.553 5.041 0.000 43.944 1.264

One can observe here when experimenting further, that when x0 is close
to a minimum (or maximum) point of g, the algorithm converges to that

74 4 Goodness of optimization algorithms

minimum (or maximum) point. Moreover, notice the effect of the safeguard
to keep the iterates in interval [3, 7]. If xk+1 < 3, it is forced to a value of 3.
One can find by experimentation that the left point l = 3 is also an attraction
point of the algorithm for function g. Function h is piecewise convex, such
that the algorithm always converges to the nearest minimum point.

4.2.3 Deterministic GO: Grid search, Piyavskii–Shubert

The aim of deterministic GO algorithms is to approach the optimum with a
given certainty. We sketch two algorithms for the analysis of effectiveness and
efficiency. The idea of reaching the optimum with an accuracy of ε can be done
by so-called “everywhere dense sampling,” as introduced in the literature on
Global Optimization, e.g., Törn and Žilinskas (1989). In a rectangular domain
this can be done by constructing a grid with a mesh of ε. By evaluating all

x

x

1

2

l

r

Fig. 4.4. Equidistant grid over rectangular feasible set

points on the grid, the best point found is a nice approximation of the global
minimum point. The difficulty of GO is that even this best point found may
be far away from the global minimum point, as the function may have a needle
shape in another region in between the grid points. As shown in the literature,
one can always construct a polynomial of sufficiently high degree, which fits
all the evaluated points and has a minimum point more than ε away from
the best point found. Actually, grid search is theoretically not effective if no
further assumptions are posed on the optimization problem to be solved.

Let us have a look at the behavior of the algorithm for our two cases. For
ease of formulation, we write down the grid algorithm for one-dimensional
functions. The best function value found fU is an upper bound for the min-
imum over the feasible set. We denote by xU the corresponding best point
found. The algorithm starts with the domain [l, r] written as an interval and
generates M = �(r − l)/ε� + 1 grid points, where �x� is the lowest integer
greater than or equal to x.

Experimenting with test functions g and h gives reasonable results for
ε = 0.01, (M = 401) and ε = 0.1, (M = 41). In both cases one finds an
approximation xU less than ε from the global minimum point. One knows

4.2 Some basic algorithms and their goodness 75

Algorithm 3 Grid([l, r], f, ε)
M = �(r − l)/ε� + 1, fU := ∞
for (k := 1 to M) do

xk := l + (k−1)(r−l)
M−1

if (f(xk) < fU)
fU := f(xk) and xU := xk

endfor

exactly how many function evaluations are required to reach this result in
advance.

The efficiency of the algorithm in higher dimensions is also easy to estab-
lish. Given the lower left vector l and upper right vector r of a rectangular
domain, one can easily determine how many grid coordinates Mj , j = 1, . . . , n,
in each direction should be taken and the total number of grid points is

∏
j Mj .

This number is growing exponentially in the dimension n. As mentioned be-
fore, the effectiveness is not guaranteed in the sense of being closer than ε from
a global minimum point, unless we make an assumption on the behavior of
the function. A common assumption in the literature is Lipschitz continuity.

Definition 9. L is called a Lipschitz constant of f on X if

| f(x) − f(y) | ≤ L‖x − y‖, ∀x, y ∈ X.

In a practical sense it means that big jumps do not appear in the function
value; slopes are bounded. With such an assumption, the δ-accuracy in the
function space translates into an ε-accuracy in the x-space. Choosing ε = δ/L
gives that the best point xU is in function value finally close to minimum
point x∗:

| fU − f∗ |≤ L‖xU − x∗‖ ≤ Lε = δ. (4.8)

In higher dimension, one should be more exact in the choice of the distance
norm ‖·‖. Here, for the one-dimensional examples we can focus on deriving the
accuracy for our cases in a simple way. For a one-dimensional differentiable
function f , L can be taken as

L = max
x∈X

| f ′(x) | . (4.9)

Using equation (4.9), one can now derive valid estimates for the example
functions h and g. One can derive an over estimate Lg for the Lipschitz
constant of g on [3, 7] as

max
x∈[3,7]

| g′(x) | = max
x∈[3,7]

| cos(x) + 3 cos(3x) + 1
x |

≤ max
x∈[3,7]

{| cos(x) | + | 3 cos(3x) | + | 1
x |} (4.10)

≤ max
x∈[3,7]

| cos(x) | + max
x∈[3,7]

| 3 cos(3x) | + max
x∈[3,7]

| 1
x |

= 1 + 3 +
1
3

= Lg.

76 4 Goodness of optimization algorithms

The estimate of Lh based on (4.7) is done by adding the maximum derivative
of the bubble function 12× 1

2 to Lg for illustrative purposes rounded down to
Lh = 10. We can now use (4.8) to derive a guarantee for the accuracy. One
certainly arrives closer than δ = 0.01 to the minimum in function value by
taking a mesh size of ε = 0.01

4.33 = 0.0023 for function g and taking ε = 0.001
for function h. For the efficiency of grid search this means that reaching the
δ-guarantee requires the evaluation of M = 1733 points for function g and
M = 4001 points for function h. Note that due to the one-dimensional nature
of the cases, ε can be taken twice as big, as the optimum point x∗ is not
further than half the mesh size from an evaluated point.

The main idea of most deterministic algorithms is not to generate and
evaluate points everywhere dense, but to throw out those regions where the
optimum cannot be situated. Given a Lipschitz constant, Piyavskii and Shu-
bert independently constructed similar algorithms; see Shubert (1972) and
Danilin and Piyavskii (1967). From the point of view of the graph of the
function f to be minimized and an evaluated point (xk, fk), one can say
that the region described by {(x, y)|y < fk − L|x − xk|} cannot contain the
optimum; the graph is above the function fk−L | x−xk |. Given a set of eval-
uated points {xk}, one can construct a lower bounding function, a so-called
sawtooth under-estimator that is given by ϕ(x) = maxk(fk − L | x − xk |) as
illustrated by Figure 4.5. Given that we also have an upper bound fU on the
minimum of f being the best function value found thus far, one can say that
the minimum point has to be in one of the shaded areas.

We will describe here the algorithm from a branch and bound point of
view, where the subsets are defined by intervals [lp, rp] and the endpoints are
given by evaluated points. The index p is used to represent the intervals in

2 4 6 8 10 12
0

2

4

6

8

10

f
ϕ x

f x

x f1 1

f - L|x-x |3 3

= min k
U

min p

f

x f5 5

x f2 2

x f4 4

x f3 3

z

()

()

Fig. 4.5. Piyavskii–Shubert algorithm

4.2 Some basic algorithms and their goodness 77

Algorithm 4 PiyavShub([l, r], f, L, δ)
Set p := 1, l1 := l and r1 := r,Λ := {[l1, r1]}
z1 := f(l1)+f(r1)

2
− L(r1−l1)

2
, fU := min{f(l), f(r)}, xU := argmin{f(l), f(r)}

while (Λ �= ∅)
remove an interval [lk, rk] from Λ with zk = minp zp

evaluate f(mk) := f(f(lk)−f(rk)
2L

+ rk+lk
2

)
if (f(mk) < fU)

fU := f(mk), xU := mk and remove all Cp from Λ with zp > fU − δ
split [lk, rk] into 2 new intervals Cp+1 := [lk, mk] and Cp+2 := [mk, rk]

with corresponding lower bounds zp+1 and zp+2

if (zp+1 < fU − δ), store Cp+1 in Λ
if (zp+2 < fU − δ), store Cp+2 in Λ
p := p + 2

endwhile

Λ. For each interval, a lower bound is given by

zp =
f(lp) + f(rp)

2
− L(rp − lp)

2
. (4.11)

The gain with respect to grid search is that an interval can be thrown out
as soon as zp > fU . Moreover, δ works as a stopping criterion as the algo-
rithm implicitly (by not storing) compares the gap between fU and minp zp;
stop if (fU − minp zp) < δ. The algorithm proceeds by selecting the interval
corresponding to minp zp (most promising) and splitting it over the minimum
point of the sawtooth cover ϕ(x) defined by

mp =
f(lp) − f(rp)

2L
+

rp + lp
2

(4.12)

being the next point to be evaluated. By continuing evaluating, splitting and
throwing out intervals where the optimum cannot be, the stopping criterion
is finally reached and we are certain to be closer than δ from f∗ and therefore
closer than ε = δ/L from one of the global minimum points. The consequence
of using such an algorithm, in contrast to the other algorithms, is that we
now have to store information in a computer consisting of a list Λ of intervals.
This computational effort is now added to that of evaluating sample points
and doing intermediate calculations. This concept becomes more clear when
running the algorithm on the test function g using an accuracy of δ = 0.01.
The Lipschitz constant Lg = 4.2 is used for illustrative purposes. As can be
seen from Table 4.3, the algorithm is slowly converging. After some iterations,
15 intervals have been generated of which 6 are stored and 2 can be discarded
due to the bounding; it has been proved that the minimum cannot be in the
interval [5.67, 7]. The current estimate of the optimum is xU = 3.66, fU =
−0.2 and the current lower bound is given by minp zp = −0.66. Figure 4.6
illustrates the appearing binary structure of the search tree.

78 4 Goodness of optimization algorithms

[3, 7]
f U = 1.65
z1 =-6.05

f U = -0.2
<

z15 =-0.19

f U = -0.2
<

z14 =-0.19

[3, 3.66]
f U = -0.2
z8 =-0.66

[3.66, 3.9]
f U = -0.2
z9=-0.66

[3.9, 4.16]
f U = -0.2
z10 =-0.32

[4.16, 4.8]
f U = -0.2
z11 =-0.32

[4.8, 5.4]
f U = -0.2
z12 =-0.26

[5.4, 5.7]
f U = -0.2
z13 =-0.26

[3, 3.9]
f U = -0.08
z4 =-1.12

[4.8, 5.7]
f U = -0.08
z6 =-0.98

[5.7, 7]
f U = -0.08
z7 =-0.98

[3.9, 4.8]
f U = -0.08
z5 =-1.12

[3, 4.8]
f U = 1.54
z2 =-2.16

[4.8, 7]
f U = 1.54
z3 =-2.16

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Fig. 4.6. Branch and bound tree of Piyavskii–Shubert for function g

The maximum computational effort with respect to storing intervals is
reached when the branching proceeds and no parts can be thrown out; 2K

intervals appear at the bottom of the tree, where K is the depth of the tree.
This mainly happens when the used Lipschitz parameter L drastically over-
estimates the maximum slope, or from another angle, the function is very flat
compared to the used constant L. In that case, the function is evaluated in
more than the M points of the regular grid. With a correct constant L, the
number of evaluated points is less, as part of the domain can be discarded as
illustrated here.

4.2.4 Stochastic GO: PRS, Multistart, Simulated Annealing

We consider stochastic methods as those algorithms that use (pseudo) random
numbers to generate new trial points. For an overview of stochastic methods
we refer to Boender and Romeijn (1995), Törn and Žilinskas (1989) and Törn
et al. (1999). Two basic approaches in Global Optimization, Pure Random
Search (PRS) and Multistart, are analyzed for the test cases. This is followed
by a classical variant of Simulated Annealing, a so-called heuristic.

Pure Random Search (PRS) generates points uniformly over the do-
main and stores the point corresponding to the best value as the approxima-
tion of the global minimum point. The algorithm is popular as a reference
algorithm as it can easily be analyzed. The question can now be how it be-
haves for our test cases g and h. The domain is clearly the interval [3, 7], but

4.2 Some basic algorithms and their goodness 79

Table 4.3. Piyavskii–Shubert for function g, δ = 0.01

p lp rp f(lp) f(rp) mp zp fU xU

1 3.00 7.00 1.65 3.44 4.79 -5.85 1.65 3.00 split
2 3.00 4.79 1.65 1.54 3.91 -2.16 1.54 4.79 split
3 4.79 7.00 1.54 3.44 5.67 -2.16 1.54 4.79 split
4 3.00 3.91 1.65 -0.08 3.66 -1.12 -0.08 3.91 split
5 3.91 4.79 -0.08 1.54 4.15 -1.12 -0.08 3.91 split
6 4.79 5.67 1.54 0.20 5.39 -0.98 -0.08 3.91 split
7 5.67 7.00 0.20 3.44 5.95 -0.98 -0.08 3.91 split
8 3.00 3.66 1.65 -0.20 3.55 -0.66 -0.20 3.66
9 3.66 3.91 -0.20 -0.08 3.77 -0.66 -0.20 3.66
10 3.91 4.15 -0.08 0.47 3.96 -0.32 -0.20 3.66
11 4.15 4.79 0.47 1.54 4.34 -0.32 -0.20 3.66
12 4.79 5.39 1.54 0.46 5.22 -0.26 -0.20 3.66
13 5.39 5.67 0.46 0.20 5.56 -0.26 -0.20 3.66
14 5.67 5.95 0.20 0.61 5.76 -0.19 -0.20 3.66 discarded
15 5.95 7.00 0.61 3.44 6.14 -0.19 -0.20 3.66 discarded

Algorithm 5 PRS(X, f, N)
fU := ∞
for (k := 1 to N) do

Generate xk uniformly over X
if (f(xk) < fU)

fU := f(xk) and xU := xk

endfor

what can be defined as the success region now? Let a success be defined as
the case that one of the generated points is closer than ε = 0.01 to the global
minimum point. The probability we do NOT hit this region after N = 50
trials is (3.98/4)50 ≈ 0.78. In the specific case, the size of the success region
is namely 2ε and the size of the feasible area is 4. The probability of NOT
hitting is (1 − 0.02

4) and of NOT hitting 50 times is (1 − 0.02
4)50. This means

that the probability of success as efficiency indicator has a value of about 0.22
for both cases h and g.

A similar analysis can be done for determining the probability that the
function value of PRS after N = 50 iterations is less than f∗ + δ for δ =
0.01. The usual tool in the analysis on the function space is to introduce
y = f(x) as a random variate representing the function value, where x is
uniformly distributed over X . Value y has cumulative distribution function
μ(y) = P (f(x) ≤ y). We will elaborate on this in Chapter 7.

Keeping this in mind, analysis with so-called extreme-order statistics has
shown that the outcome of PRS as record value of N points can be easily
derived from μ(y). For a complete introduction to extreme-order statistics in
optimization, we refer to Zhigljavsky (1991). Under mild assumptions it can
be shown that y(1) = min{f(x1), . . . , f(xN)} has the distribution function

80 4 Goodness of optimization algorithms

F(1)(y) = 1 − (1 − μ(y))N . This means that for the question about the
probability that y(1) ≤ f∗ + δ, we do not have to know the complete distribu-
tion function μ, but only the probability mass μ(f∗ + δ) of the success level
set where f(x) ≤ f∗ + δ, i.e., the probability that one sample point hits this
low level set. Here the two test cases differ considerably. One can verify that
the level set of the more smooth test function g is about 0.09 wide, whereas
that of function h is only 0.04 wide for a δ of 0.01. This means that the prob-
ability of PRS to reach a level below f∗ + δ after 50 evaluations for function
g is 1 − (1 − 0.09

4)50 = 0.68, whereas the same probability for function h is
1 − (1 − 0.04

4)50 = 0.40.
An early observation based on the extreme-order statistic analysis is due to

Karnopp (1963). Surprisingly enough, Karnopp showed that the probability
of finding a better function value with one draw more after N points have
been generated, is 1

N+1 , independent of the problem to be solved. Generating
K more points increases the probability to K

N+K . The derivation which also
can be found in Törn and Žilinskas (1989) is based on extreme-order statistics
and only requires μ not to behave too strange, e.g., μ is continuous such that
f should not have plateaus on the domain X .

Stochastic algorithms show something which in the literature is called the
infinite effort property. This means that if one proceeds long enough (read
N → ∞), in the end the global optimum is found. The problem with such
a concept is that infinity can be pretty far away. Moreover, we have seen in
the earlier analyses that the probability of reaching what one wants, depends
considerably on the size of the success region. One classical way of increasing
the probability of reaching an optimum is to use (nonlinear optimization) local
searches. This method is called Multistart.

Define a local optimization routine LS(x) : X → X as a procedure which
given a starting point returns a point in the domain that approximates a local
minimum point. As an example, one can consider the Newton method of
Section 4.2.2. Multistart generates convergence points of a local optimization
routine from randomly generated starting points.

Algorithm 6 Multistart(X, f, LS, N)
fU := ∞
for (k := 1 to N) do

Generate x uniformly over X
xk := LS(x)
if (f(xk) < fU)

fU := f(xk) and xU := xk

endfor

Note that the number of iterations N is not comparable with that in PRS,
as every local search requires several function evaluations. Let us for the

4.2 Some basic algorithms and their goodness 81

example cases assume that the Newton algorithm requires 5 function
evaluations to detect an attraction point, as is also implied by Table 4.2.
As we were using N = 50 function evaluations to assess the success of PRS
on the test cases, we will use N = 10 iterations for Multistart. In order to
determine a similar probability of success, one should find the relative size of
the region of attraction of the global minimum point. Note again that the
Newton algorithm does not always converge to the nearest optimum; it only
converges to a minimum point in a convex region around it.

For function g, the region of attraction of the global minimum is not easy
to determine. It consists of a range of about 0.8 on the feasible area of size 4,
such that the probability of one random starting point leading to success is
0.8/4 = 0.2. For function h, the good region of attraction is simply the bubble
of size 0.25 around the global minimum point, such that the probability of
finding the global minimum in one iteration is about 0.06. Reaching the
optimum after N = 10 restarts is 1− 0.810 ≈ 0.89 for g and 1− 0.9410 ≈ 0.48
for h. In both examples, the probability of success is larger than that of PRS.

As sketched so far, the algorithms of Pure Random Search and Multistart
have been analyzed widely in the literature of GO. Algorithms that are far
less easy to analyze, but very popular in applications, are the collection of
so-called meta-heuristics. This term was introduced by Fred Glover in Glover
(1986) and includes simulated annealing, evolutionary algorithms, genetic al-
gorithms, tabu search, and all the fantasy names derived from crossovers of
the other names. Originally these algorithms were not only aimed at con-
tinuous optimization problems; see Aarts and Lenstra (1997). An interesting
research question is whether they are really better than combining classical
ideas of random search and nonlinear optimization local searches. We discuss
here a variant of simulated annealing , a concept that also got attention in the
GO literature; see Romeijn (1992). Simulated annealing describes a sampling
process in the decision space where new sample points are generated from a
so-called neighborhood of the current iterate. The new sample point is always
accepted when it is better and with a certain probability when it is worse. The
probability depends on the so-called temperature that is decreasing (cooling)
during the iterations.

The algorithm contains the parameter CR representing the cooling rate
with which the temperature variable decreases. A fixed value of 1000 was
taken for the initial temperature to avoid creating another algorithm param-
eter. The algorithm accepts a worse point depending on how much it is worse
and the development of the algorithm. This is a generic concept in simulated
annealing. There are several ways to implement the concept of “sample from
neighborhood.” In one dimension one would perceive intuitively a neighbor-
hood of xk in real space [xk−ε, xk+ε], which can be found in many algorithms;
e.g., see Baritompa et al. (2005). As such heuristics were originally not aimed
at continuous optimization problems, but at integer problems, one of the
first approaches was the coding of continuous variables in bitstrings. For the
illustrations, we elaborate this idea for the test case. Each point x ∈ [3, 7] is

82 4 Goodness of optimization algorithms

Algorithm 7 SA(X, f, CR, N)
fU := ∞, T1 := 1000
Generate x1 uniformly over X
for (k := 1 to N) do

Generate x from a neighborhood of xk

if (f(x) < f(xk))
xk+1 := x

if (f(x) < fU)
fU := f(x) and xU := x

else with probability e
f(xk)−f(x)

Tk let xk+1 := x
Tk+1 := CR × Tk

endfor

represented by a bitstring (B1, . . . , B9) ∈ {0, 1}9, where

x = 3 + 4
∑9

i=1 Bi2i−1

511
. (4.13)

Formula (4.13) describes a regular grid over the interval, where each of the
M = 512 bitstrings is one of the grid points, such that the mesh size is
4

511 . The sampling from a neighborhood of a point x is done by flipping
at random one of its bit variables Bi from a value of 0 to 1, or the other
way around. Notice that by doing so, the generated point is not necessarily
in what one would perceive as a neighborhood in continuous space. The
question is therefore, whether the described SA variant will perform better
than an algorithm where the new sample point does not depend on the current
iterate, PRS. To test this, a figure is introduced that is quite common in
experimenting with meta-heuristics. It is a graph with the effort on the x-axis
and the reached success on the y-axis. The GO literature often looks at the
two criteria effectiveness and efficiency separately. Figure 4.7 being a special
case of what in Baritompa and Hendrix (2005) was called the performance
graph, gives a trade-off between the two main criteria. One can also consider
the x-axis to give a budget with which one has to reach a level as low as
possible; see Hendrix and Roosma (1996). In this way one can change the
search strategy depending on the amount of available running time. The
figure suggests, for instance, that a high cooling rate CR (the process looks
like PRS) does better for a lower number of function values and worse for a
higher number of function values.

Figure 4.7 gives an estimation of the expected level one can reach by
running SA on function g. Implicitly it says the user wants to reach a low
function value; not necessarily a global minimum point. Theoretically, one
can derive the expected level analytically by considering the process from
a Markov chain perspective; see, e.g., Bulger and Wood (1998). However,
usually the estimation is done empirically and the figure is therefore very
common in metaheuristic approaches. The reader will not be surprised that

4.2 Some basic algorithms and their goodness 83

0

0

0

0

0

1

1

1

1 21 41 61 81 101

-0.2

A
v

e
ra

g
e

 r
e

c
o

rd
 v

a
lu

e

Iterations

CR = 0.8

CR = 0.95

CR = 0.99

Fig. 4.7. Average record value over 10 runs of SA, three different values of CR for
a given amount of function evaluations, test case g

the figure looks similar for function h, as the number of local optima is not
relevant for the bitstring perspective and the function value distribution is
similar. Theoretically, one can also derive the expected value of the minimum
function value reached by PRS. It is easier to consider the theoretical behavior
from the perspective where success is defined Boolean, as has been done so
far.

Let us consider again the situation that the algorithm reaches the global
optimum as success. For stochastic algorithms we are interested in the prob-
ability of success. Define reaching the optimum again as finding a point with
function value closer than δ = 0.01 to the minimum. For function g this is
about 2.2% (11 out of the 512 bitstrings) of the domain. For PRS, one can
determine the probability of success as PPRS(N) = 1 − 0.978N . For SA this
is much harder to determine, but one can estimate the probability of success
empirically. The result is the performance graph in Figure 4.8. Let us have
a look at the figure critically. In fact it suggests that PRS is doing as well as
the SA algorithms. As this is verifying a hypothesis (not falsifying), this is a
reason to be suspicious. The following critical remarks can be made.

• The 10 runs are enough to illustrate how the performance can be estimated,
but are too low to discriminate between methods. Perhaps the author has
even selected a set of runs which fits the hypothesis nicely.

• One can choose the scale of the axes to focus on an effect. In this case,
one can observe that up to 40 iterations, PRS does not look better than

84 4 Goodness of optimization algorithms

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 21 41 61 81 101

E
s

ti
m

a
te

p
ro

b
a

b
il

it
y

o
n

s
u

c
c

e
s

s

Iterations

PRS

CR = 0.8

CR = 0.95

CR = 0.99

Fig. 4.8. Estimate of probability of reaching the minimum for PRS and three cooling
rate (CR) values for SA (average over 10 runs) on function g given a number of
function evaluations

the SA variants. By choosing the x-axis to run to 100 iterations, it looks
much better.

• The graph has been depicted for function g, but not for function h, where
the size of the success region is twice as small. One can verify that, in the
given range, the SA variants nearly always do better.

This brings us to the general scientific remark, that all results should be
described in such a way that they can be reproduced, i.e., one should be
able to repeat the experiment. For the exercises reported in this section,
this is relatively simple. Spreadsheet calculations and for instance matlab
implementations can easily be made.

4.3 Investigating algorithms

In Section 4.2, we have seen how several algorithms behave on two test cases.
What did we learn from that? How do we carry out the investigation sys-
tematically? Figure 4.9 depicts some relevant aspects. All aspects should
be considered together. The following steps are described in Baritompa and
Hendrix (2005).

1. Formulation of performance criteria.
2. Description of the algorithm(s) under investigation.
3. Selection of appropriate algorithm parameters.

4.3 Investigating algorithms 85

Parameters
of the Algorithm

GO
AlgorithmOpt. Problems

Characteristics

Performance

Fig. 4.9. Aspects of investigating Global Optimization algorithms

4. Production of test functions (instances, special cases) corresponding to
certain landscape structures or characteristics.

5. Analysis of its theoretical performance, or empirical testing.

Several criteria and performance indicators have been sketched: to get a low
value, to reach a local minimum point, a high probability to hit an ε neigh-
borhood of a global minimum point, obtain a guarantee to be less than δ
from the minimum function value, etc. Several classes of algorithms have
been outlined. The number of parameters has been kept low, a Lipschitz con-
stant L, the number of iterations N , cooling rate CR, stopping accuracy α.
Many modern heuristics contain so many tuning parameters that it is hard
to determine the effect of their value on the performance of the algorithm.

Only two test functions were introduced to experiment with. The main
difference between them is the number of optima, which in the literature is
seen as an important characteristic. However, in the illustrations, the number
of optima was only important for the performance of Multistart. The piece-
wise convexity appeared important for the local search Newton algorithm and
further the difference in size of the δ-level set was of especial importance for
the probability of success of stochastic algorithms. It teaches us that, in a
research setting, one should think carefully, make hypotheses and design cor-
responding experiments, to determine which characteristics of test functions
are relevant for the algorithm under investigation.

4.3.1 Characteristics

In Baritompa et al. (2005), an attempt is made to analyze the interrelation
between the characteristics, called “landscape” in their view, of the test cases
and the behavior of the algorithms. What we see experimentally is that often
an algorithm is run over several test functions and its performance compared
to other algorithms and/or other parameter settings. To understand behav-
ior, we need to study the relationships to characteristics (landscapes) of test
functions. The main question is how to define appropriate characteristics. We

86 4 Goodness of optimization algorithms

will discuss some ideas which appear in the literature. The main idea, as illus-
trated before, is that relevant characteristics depend on the type of algorithm
as well as on the performance measure. Extending previous stochastic exam-
ples to more dimensions, it is only the relative size of the sought-for success
region that matters, characteristics such as the number of optima, the shape
of regions of attraction, the form of the level sets, barriers in the landscape
do not matter.

It is also important to vary the test cases systematically between the ex-
treme cases, in order to understand how algorithms behave. In an experimen-
tal setting, depending on what one measures, one tries to design experiments
which yield as much information as possible. To derive analytical results, it is
not uncommon to make highly specific assumptions which make the analysis
tractable. In the GO literature, the following classes of problems with respect
to available information are distinguished.

• Black-box (or oracle) case: in this case it is assumed that nothing is known
about the function to be optimized. Often the feasible set is defined as a
box, but information about the objective function can only be obtained
by evaluating the function at feasible points.

• Gray-box case: something is known about the function, but the explicit
form is not necessarily given. We may have a lower bound on the function
value or on the number of global and/or local optima. As has proved useful
for deterministic methods, we may have structural information such as: a
concave function, a known Lipschitz constant. Stochastic methods often
do not require this type of information, but this information may be used
to derive analytical or experimental results.

• White-box case: explicit analytical expressions of the problem to be solved
are assumed to be available. Specifically so-called interval arithmetic al-
gorithms require this point of view on the problem to be solved.

When looking at the structure of the instances for which one studies the
behavior of the algorithm, we should keep two things in mind.

• In experiments, the researcher can try to influence the characteristics of the
test cases such that the effect on what is measured is as big as possible.
Note that the experimentalist knows the structure in advance, but the
algorithm does not.

• The algorithm can try to generate information which tells it about the
structure of the problems. We will enumerate some information which can
be measured in the black-box case.

Considering the lists of test functions initially in the literature (e.g., Törn and
Žilinskas, 1989) and later on the Internet, one can see as characteristics the
number of global minimum points, the number of local minimum points and
the dimension of the problem.

A difficulty in the analysis of a GO algorithm in the multiextremal case is
that everything seems to influence behavior: The orientation of components

4.3 Investigating algorithms 87

of lower level sets with respect to each other determines how iterates can jump
from one place to the other. The number of local optima up in the “hills”
determines how algorithms may get stuck in local optima. The difference
between the global minimum and the next lowest minimum affects the ability
to detect the global minimum point. The steepness around minimum points,
valleys, creeks, etc. which determine the landscape influences the success.
However, we stress, as shown by the examples, the problem characteristics
which are important for the behavior depend on the type of algorithm and the
performance criteria that measure the success.

In general, stochastic algorithms require no structural information about
the problem. However, one can adapt algorithms to make use of structure
information. Moreover, one should notice that even if structural information
is not available, other so-called value information becomes available when
running algorithms: the number of local optima found thus far, the average
number of function evaluations necessary for one local search, best function
value found, and the behavior of the local search, etc. Such indicators can
be measured empirically and can be used to get insight into what factors
determine the behavior of a particular algorithm and perhaps can be used to
improve the performance of an algorithm. From the perspective of designing
algorithms, running them empirically may generate information about the
landscape of the problem to be solved. The following list of information can
be collected during running of a stochastic GO algorithm on a black-box case;
see Hendrix (1998):

• Graphical information on the decision space.
• Current function value.
• Best function value found so far (record).
• Number of evaluations in the current local phase.
• Number of optima found.
• Number of times each detected minimum point is found.
• Estimates of the time of one function evaluation.
• Estimates of the number of function evaluations for one local search.
• Indicators on the likelihood to have found an optimum solution.

For the likelihood indicator, a probability model is needed. Measuring and
using the information in the algorithm, usually leads to more extended algo-
rithms, called “adaptive.” Often, these have additional parameters compli-
cating the analysis of what are good parameter settings.

4.3.2 Comparison of algorithms

When comparing algorithms, a specific algorithm is dominated if there is an-
other algorithm which performs better (e.g., has a higher probability perfor-
mance graph) in all possible cases under consideration. Usually, however, one
algorithm runs better on some cases and another on other cases.

88 4 Goodness of optimization algorithms

So basically, the performance of algorithms can be compared on the same
test function, or preferably for many test functions with the same characteris-
tic, measured by the only parameter that matters for the performance of the
compared algorithms. As we have seen, it may be very hard to discover such
characteristics. The following principles can be useful:

• Comparability: Compared algorithms should make use of the same type
of (structural) information (same stopping criteria, accuracies, etc.).

• Simple references: It is wise to include in the comparison simple bench-
mark algorithms such as Pure Random Search, Multistart and Grid Search
in order not to let analysis of the outcomes get lost in parameter tuning
and complicated schemes.

• Reproducibility: In principle, the description of the method that is used
to generate the results has to be so complete that someone else can repeat
the exercise obtaining similar results (not necessarily the same).

Often in applied literature, we see algorithms used for solving “practical”
problems; see, e.g., Ali et al. (1997), Hendrix (1998), and Pintér (1996) for
extensive studies. As such this illustrates the relevance of the study on
Global Optimization algorithms. In papers where one practical problem is
approached with one (type of) algorithm, the reference is lacking. First of
all we should know the performance of simple benchmark algorithms on that
problem. Second, if structure information is lacking, we do not learn a lot
about the performance of the algorithm under study on a class of optimiza-
tion problems. We should keep in mind this is only one problem and up to
now, it does not represent all possible practical problems.

4.4 Summary and discussion points

• Results of investigation of GO algorithms consist of a description of the
performance of algorithms (parameter settings) depending on characteris-
tics of test functions or function classes.

• To obtain good performance criteria, one needs to identify the target of
an assumed user and to define what is considered a success.

• The performance graph is a useful instrument for comparing performance.
• The relevant characteristics of the test cases depend on the type of algo-

rithm and performance criterion under consideration.
• Algorithms to be comparable must make use of same information, accura-

cies, principles, etc.
• It is wise to compare performance to simple benchmark algorithms like

Grid Search, PRS and Multistart in a study on a GO algorithm.
• Description of the research path followed should allow reproduction of

experiments.

4.5 Exercises 89

4.5 Exercises

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4.10. Contour lines of bi-spherical problem

1. Given function f(x) = 1
2x + 1

x on interval X = [1, 4].
(a) Perform three iterations of the bisection algorithm.
(b) How many iterations are required to reach an accuracy of ε = 10−4?

2. With Pure Random Search we want to generate a point on interval X =
[1, 4] for which f(x) = x2 − 4x + 6 has a low function value.
(a) Determine the level set Sδ = {x ∈ X |f(x) ≤ f∗ + δ} for δ = 0.01.
(b) Determine the probability a random generated point on X is in Sδ.
(c) Determine the probability a point in Sδ is found after 10 iterations.

3. Given f(x) = min{(x1 − 1)2, (x1 + 1)2 + 0.1}+ x2
2, a so-called bi-spherical

objective function over feasible set defined by the box constraints −2 ≤
x1 ≤ 2 and −1 ≤ x2 ≤ 1, i.e., X = [−2, 2]× [−1, 1]. See Figure 4.10.
(a) Estimate the relative volume of level set S0.01 = {x ∈ X |f(x) ≤ 0.01}.
(b) How would you generate grid points over X , such that the lowest point

is expected to be closer than ε = 0.01 to the global minimum point?
How many points do you have to evaluate accordingly?

(c) Determine the probability that Pure Random Search has found a point
in S0.01 after N = 100 trials.

4. Consider minimization of f(x) = sin(x) + sin(3x) + ln(x), x ∈ [3, 7] via
Algorithm 8 with a population size N = 10.
(a) How many points have been evaluated after k = 31 iterations?
(b) Execute Algorithm 8 for f(x) over [3, 7] taking ε = 0.1.
(c) Is it possible that the algorithm does not converge for this case?
(d) How to estimate the number of used function evaluations numerically?

How many evaluations does the algorithm require on average up to
convergence?

90 4 Goodness of optimization algorithms

Algorithm 8 Stochastic Population(X, f, N, ε)
Generate a set P of N points uniformly over feasible set X
Evaluate all points in P ; k := 0
Determine fU := f(xU) = maxp∈P f(p) and fu := minp∈P f(p)

while (fU − fu > ε)
k := k + 1
Select at random two parents p1, p2 ∈ P
Determine midpoint c := 1

2
(p1 + p2)

Take xk uniformly (chance of 1
3
) from {c, 3

2
p1 − 1

2
c, 3

2
p2 − 1

2
c}

Evaluate f(xk);
if (f(xk) < fU), replace xU by xk in P

Determine fU := f(xU) = maxp∈P f(p) and fu := minp∈P f(p)
endwhile

(e) How can the algorithm be modified in such a way that the population
stays in the feasible set?

5

Nonlinear Programming algorithms

5.1 Introduction

This chapter describes algorithms that have been specifically designed for
finding optima of Nonlinear Programming (NLP) problems.

5.1.1 General NLP problem

The generic NLP problem has been introduced in Chapter 1:

min f(x)
s.t. gi(x) ≤ 0 for some properties i, inequality constraints,

gi(x) = 0 for some properties i, equality constraints.
(5.1)

where x is moving in a continuous way in the feasible set X that is defined
by the inequality and equality constraints. An important distinction from the
perspective of the algorithms is whether derivative information is available on
the functions f and gi. We talk about first-order derivative information if the
vector of partial derivatives, called the gradient, is available in each feasible
point.

The most important distinction is that between smooth and nonsmooth
optimization. If the functions f and g are continuously differentiable, one
speaks of smooth optimization. In many practical models, the functions are
not everywhere differentiable as illustrated in Chapter 2, e.g., Figure 2.3.

5.1.2 Algorithms

In general one would try to find “a” or “the” optimum with the aid of software
called a solver, which is an implementation of an algorithm. For solvers related
to modeling software, see, e.g., the gams-software (www.gams.com), ampl
(www.ampl.com), Lingo (www.lindo.com) and aimms (www.aimms.com).

E.M.T. Hendrix and B.G.-Tóth, Introduction to Nonlinear and Global Optimization, 91
Springer Optimization and Its Applications 37, DOI 10.1007/978-0-387-88670-1 5,
c© Springer Science+Business Media, LLC 2010

92 5 Nonlinear Programming algorithms

Following the generic description of Törn and Žilinskas (1989), an NLP algo-
rithm can be described as

xk+1 = Alg(xk, xk−1, . . . , x0) (5.2)

where index k is the iteration counter. Formula (5.2) represents the idea that
a next point xk+1 is generated based on the information in all former points
xk, xk−1, . . . , x0, where x0 is called the starting point. The aim of an NLP
algorithm is to detect a (local) optimum point x∗ given the starting point x0.
Usually one is satisfied if convergence takes place in the sense of xk → x∗

and/or f(xk) → f∗. Besides the classification of using derivative information
or not, another distinction is whether an algorithm aims for constrained opti-
mization or unconstrained optimization. We talk about constrained optimiza-
tion if at least one of the constraints is expected to be binding in the optimum,
i.e., gi(x∗) = 0 for at least one constraint i. Otherwise, the constraints are
either absent or can be ignored. We call this unconstrained optimization.

In the literature on NLP algorithms (e.g., Scales, 1985; Gill et al., 1981),
the basic cycle of Algorithm 9 is used in nearly each unconstrained NLP
algorithm.

Algorithm 9 GeneralNLP(f, x0)
Set k := 0
while passing stopping criterion

k := k + 1
determine search direction rk

determine step size λk along line xk + λrk

next iterate is xk+1 := xk + λkrk

endwhile

The determination of the step size λk is done in many algorithms by
running an algorithm for minimizing the one-dimensional function ϕrk

(λ) =
f(xk + λrk). This is called line minimization or line search, i.e., f is mini-
mized over the line xk + λrk. In the discussion of algorithms, we first focus
on minimizing functions in one variable in Section 5.2. They can be used
for line minimization. In Section 5.3, algorithms are discussed that require
no derivative information. We will also introduce a popular algorithm that
does not follow the scheme of Algorithm 9. Algorithms that require derivative
information can be found in Section 5.4. A large class of problems is due to
nonlinear regression problems. Specific algorithms for this class are outlined
in Section 5.5. Finally, Section 5.6 outlines several concepts that are used to
solve NLP problems with constraints.

5.2 Minimizing functions of one variable 93

5.2 Minimizing functions of one variable

Two concepts are important in finding a minimum of f : R → R; that of
interval reduction and that of interpolation. Interval reduction enhances de-
termining an initial interval and shrinking it iteratively such that it includes
a minimum point. Interpolation makes use of information of function value
and/or higher-order derivatives. The principle is to fit an approximating
function and to use its minimum point as a next iterate. Practical algorithms
usually combine these two concepts. Several basic algorithms are described.

5.2.1 Bracketing

In order to determine an interval that contains an internal optimum given
starting point x0, bracketing is used. It iteratively walks further until we are
certain to have an interval (bracket) [a, b] that includes an interior minimum
point. The algorithm enlarges the initial interval with endpoints x0 and x0 ±

Algorithm 10 Bracket(f, x0, ε, a, b)
Set k := 1, � = 2√

5−1

if (f(x0 + ε) < f(x0))
x1 := x0 + ε

else if (f(x0 − ε) < f(x0))
x1 := x0 − ε

else STOP; x0 is optimal
repeat

k := k + 1
xk := xk−1 + �(xk−1 − xk−2)

until (f(xk) > f(xk−1))
a := min{xk, xk−2}
b := max{xk, xk−2}

ε with a step that becomes each iteration a factor � > 1 bigger. Later,
in Section 5.2.3 it will be explained why exactly the choice � = 2√

5−1 is
convenient. It stops when finally xk−1 has a lower function value than xk as
well as xk−2.

Example 5.1. The bracketing algorithm is run on the function f(x) = x+ 16
x+1

with starting point x0 = 0 and accuracy ε = 0.1. The initial interval [0, 0.1]
is iteratively enlarged represented by [xk−2, xk] and walks in the decreasing
direction. After seven iterations, the interval [1.633, 4.536] certainly contains
a minimum point as there exists an interior point xk−1 = 2.742 with a func-
tion value lower than the endpoints of the interval; f(2.742) < f(1.633) and
f(2.742) < f(4.536).

94 5 Nonlinear Programming algorithms

Table 5.1. Bracketing for f(x) = x + 16
x+1

, x0 = 0, ε = 0.1

k xk−2 xk f(xk)

0 0.000 16.00
1 0.100 14.65
2 0.000 0.261 12.94
3 0.100 0.524 11.03
4 0.262 0.947 9.16
5 0.524 1.633 7.71
6 0.947 2.742 7.02
7 1.633 4.536 7.43

The idea of interval reduction techniques is now to reduce an initial interval
that is known to contain a minimum point and to shrink it to a tiny interval
enclosing the minimum point. One such method is bisection.

5.2.2 Bisection

The algorithm departs from a starting interval [a, b] that is halved iteratively
based on the sign of the derivative in the midpoint. This means that the
method is in principle only applicable when the derivative is available at
the generated midpoints. The point xk converges to a minimum point within
the interval [a, b]. If the interval contains only one minimum point, it converges
to that. At each step, the size of the interval is halved and in the end, we are

Algorithm 11 Bisect([a, b], f, ε)
Set k := 0, a0 := a and b0 := b
while (bk − ak > ε)

xk := ak+bk
2

if f ′(xk) < 0
ak+1 := xk and bk+1 := bk

else
ak+1 := ak and bk+1 := xk

k := k + 1
endwhile

certain that the current iterate xk is not further away than ε from a minimum
point. It is relatively easy to determine for this algorithm how many iterations
corresponding to (derivative) function evaluations are necessary to come closer
than ε to a minimum point. Since | bk+1 − ak+1 | = 1

2 | bk − ak |, the number
of iterations necessary for reaching ε-convergence is

| bk − ak | = (1
2)k| b0 − a0 | < ε ⇒

(1
2)k < ε

|b0−a0| ⇒ k > ln ε−ln|b0−a0|
ln 1

2
.

5.2 Minimizing functions of one variable 95

Table 5.2. Bisection for f(x) = x + 16
x+1

, [a0, b0] = [2, 4.5], ε = 0.01

k ak bk xk f(xk) f ′(xk)

0 2.000 4.500 3.250 7.0147 0.114
1 2.000 3.250 2.625 7.0388 -0.218
2 2.625 3.250 2.938 7.0010 -0.032
3 2.938 3.250 3.094 7.0021 0.045
4 2.938 3.094 3.016 7.0001 0.008
5 2.938 3.016 2.977 7.0001 -0.012
6 2.977 3.016 2.996 7.0000 -0.002
7 2.996 3.016 3.006 7.0000 0.003
8 2.996 3.006 3.001 7.0000 0.000

For instance, bk −ak = 4 requires at least nine iterations to reach an accuracy
of ε = 0.01.

Example 5.2. The bisection algorithm is run on the function f(x) = x + 16
x+1

with starting interval [2, 4.5] and accuracy ε = 0.01. The interval [ak, bk] is
slowly closing around the minimum point x∗ = 3 which is approached by
xk. One can observe that f(xk) is converging fast to f(x∗) = 7. A stopping
criterion on convergence of the function value, | f(xk) − f(xk−1) |, would
probably have stopped the algorithm earlier. The example also shows that
the focus of the algorithm is on approximating a point x∗ where the derivative
is zero, f ′(x∗) = 0.

The algorithm typically uses derivative information. Usually the efficiency
of an algorithm is measured by the number of function evaluations necessary
to reach the goal of the algorithm. If the derivative is not analytically or
computationally available, one has to evaluate in each iteration two points,
xk and xk + δ, where δ is a small accuracy number such as 0.0001. Evaluating
in each iteration two points, leads to a reduction of the interval to its half at
each iteration.

Interval reduction methods usually use the function value of two interior
points in the interval to decide the direction in which to reduce it. One
elegant way is to recycle one of the evaluated points and to use it in the next
iterations. This can be done by using the so-called Golden Section rule.

5.2.3 Golden Section search

This method uses two evaluated points l (left) and r (right) in the interval
[ak, bk], that are located in such a way that one of the points can be used again
in the next iteration. The idea is sketched in Figure 5.1. The evaluation points
l and r are located with fraction τ in such a way that l = a + (1 − τ)(b − a)
and r = a + τ(b − a). Equating in Figure 5.1 the next right point to the old
left point gives the equation τ2 = 1− τ . The solution is the so-called Golden
Section number τ =

√
5−1
2 ≈ 0.618.

96 5 Nonlinear Programming algorithms

a1 b1

b2a2

a3 b3

r=xl=x

rl=x

l r=x

10

3

2

Fig. 5.1. Golden Section search

This value also corresponds to the value � used in the Bracketing algorithm
in the following way. Using the outcomes of the Bracketing algorithm as input
into the Golden Section search as [a, b] gives that the point xk−1 (of algorithm
Bracket) corresponds to x0 (in algorithm Goldsect). This means that it does
not have to be evaluated again.

Example 5.3. The Golden Section search is run on the function f(x) = x+ 16
x+1

with starting interval [2, 4.5] and accuracy ε = 0.1 The interval [ak, bk] encloses
the minimum point x∗ = 3. Notice that the interval is shrinking slower than
by bisection, as | bk+1 − ak+1 | = τ | bk − ak | = τk−1| b1 − a1 |. After eight
iterations the reached accuracy is less than by bisection, although for this case
xk approaches the minimum very well. On the other hand, only one function
evaluation is required at each iteration.

Algorithm 12 Goldsect([a, b], f, ε)

Set k := 1, a1 := a and b1 := b, τ :=
√

5−1
2

l := x0 := a + (1 − τ)(b − a), r = x1 := a + τ (b − a)
Evaluate f(l) := f(x0)
repeat

Evaluate f(xk)
if (f(r) < f(l))

ak+1 := l, bk+1 := bk, l := r
r := xk+1 := ak+1 + τ (bk+1 − ak+1)

else
ak+1 := ak, bk+1 := r, r := l
l := xk+1 := ak+1 + (1 − τ)(bk+1 − ak+1)

k := k + 1
until (bk − ak < ε)

5.2 Minimizing functions of one variable 97

Table 5.3. Golden Section search for f(x) = x + 16
x+1

, [a0, b0] = [2, 4.5], ε = 0.1

k ak bk xk f(xk)

0 2.955 7.0005
1 2.000 4.500 3.545 7.0654
2 2.000 3.545 2.590 7.0468
3 2.590 3.545 3.180 7.0078
4 2.590 3.180 2.816 7.0089
5 2.816 3.180 3.041 7.0004
6 2.955 3.180 3.094 7.0022
7 2.955 3.094 3.008 7.0000
8 2.955 3.041 2.988 7.0000

5.2.4 Quadratic interpolation

The interval reduction techniques discussed so far only use information on
whether one function value is bigger or smaller than the other or the sign of
the derivative. The function value itself in an evaluation point or the value
of the derivative has not been used on the decision on how to reduce the
interval. Interpolation techniques decide on the location of the iterate xk

based on values in the former iterates.

ca xk b

f

Fig. 5.2. Quadratic interpolation

The central idea of quadratic interpolation is to fit a parabola through the
endpoints a, b of the interval and an interior point c and to base the next
iterate on its minimum. This works well if

f(c) ≤ min{f(a), f(b)} (5.3)

and the points are not located on one line such that f(a) = f(b) = f(c).
It can be shown that the minimum of the corresponding parabola is

98 5 Nonlinear Programming algorithms

Algorithm 13 Quadint([a, b], f, ε)
Set k := 1, a1 := a and b1 := b

c := x0 := (b+a)
2

Evaluate f(a1), f(c) := f(x0), f(b1)

x1 := 1
2

f(a)(c2−b2)+f(c)(b2−a2)+f(b)(a2−c2)
f(a)(c−b)+f(c)(b−a)+f(b)(a−c)

while (| c − xk |> ε)
Evaluate f(xk)
l := min{xk, xk−1}, r := max{xk, xk−1}
if (f(r) < f(l))

ak+1 := l, bk+1 := bk, c := r
else

ak+1 := ak, bk+1 := r, c := l
k := k + 1

xk := 1
2

f(ak)(c2−b2k)+f(c)(b2k−a2
k)+f(bk)(a2

k−c2)

f(ak)(c−bk)+f(c)(bk−ak)+f(bk)(ak−c)

endwhile

x =
1
2

f(a)(c2 − b2) + f(c)(b2 − a2) + f(b)(a2 − c2)
f(a)(c − b) + f(c)(b − a) + f(b)(a − c)

. (5.4)

For use in practice, the algorithm needs many safeguards that switch to
Golden Section points if condition (5.3) is not fulfilled. Brent’s method is
doing this in an efficient way; see Brent (1973). We give here only a basic
algorithm that works if the conditions are fulfilled.

Example 5.4. Quadratic interpolation is applied to approximate the minimum
of f(x) = x + 16

x+1 with starting interval [2, 4.5] and accuracy ε = 0.001.
Although the iterate xk reaches a very good approximation of the minimum
point x∗ = 3 very soon, the proof of convergence is much slower. As can be
observed in Table 5.4, the shrinkage of the interval does not have a guaranteed
value and is relatively slow. For this reason, the stopping criterion of the
algorithm has been put on convergence of the iterate rather than on size of
the interval. This example illustrates why it is worthwhile to apply more

Table 5.4. Quadratic interpolation for f(x) = x + 16
x+1

, [a0, b0] = [2, 4.5], ε = 0.001

k ak bk c xk f(xk)

0 3.250 7.0147
1 2.000 4.500 3.250 3.184 7.0081
2 2.000 3.250 3.184 3.050 7.0006
3 2.000 3.184 3.050 3.028 7.0002
4 2.000 3.050 3.028 3.010 7.0000
5 2.000 3.028 3.010 3.005 7.0000
6 2.000 3.010 3.005 3.002 7.0000
7 2.000 3.005 3.002 3.001 7.0000

5.2 Minimizing functions of one variable 99

complex schedules like that of Brent that guarantee a robust reduction to
prevent the algorithm from starting to “slice off” parts of the interval.

5.2.5 Cubic interpolation

Cubic interpolation has the same danger of lack of convergence of an enclosing
interval, but the theoretical convergence of the iterate is very fast. It has a
so-called quadratic convergence. The central idea is to use derivative informa-
tion in the endpoints of the interval. Together with the function values, x∗ is

xkak bk

f

Fig. 5.3. Cubic interpolation

approximated by the minimum of a cubic polynomial. Like in quadratic inter-
polation, a condition like (5.3) should be checked in order to guarantee that
the appropriate minimum locates in the interval [a, b]. For cubic interpolation
this is

f ′(a) < 0 and f ′(b) > 0. (5.5)

Given the information f(a), f ′(a), f(b) and f ′(b) in the endpoints of the
interval, the next iterate is given in equation (5.6) in the form that is common
in the literature.

xk = b − (b − a)
f ′(b) + v − u

f ′(b) − f ′(a) + 2v
, (5.6)

where u = f ′(a) + f ′(b)− 3 f(a)−f(b)
a−b and v =

√
u2 − f ′(a)f ′(b). The function

value and derivative are evaluated in xk and depending on the sign of the
derivative, the interval is reduced to the right or left. Similar to quadratic
interpolation, slow reduction of the interval may occur, but on the other hand
the iterate converges fast. Notice that the method requires more information,
as also the derivatives should be available. The algorithm is sketched without
taking safeguards into account with respect to the conditions, or the iterate
hitting a stationary point.

100 5 Nonlinear Programming algorithms

Algorithm 14 Cubint([a, b], f, f ′, ε)
Set k := 1, a1 := a and b1 := b
Evaluate f(a1), f ′(a1), f(b1), f ′(b1)

u := f ′(a) + f ′(b) − 3 f(a)−f(b)
a−b

, v :=
√

u2 − f ′(a)f ′(b)

x1 := b − (b − a) f ′(b)+v−u
f ′(b)−f ′(a)+2v

repeat
Evaluate f(xk), f ′(xk)
if f ′(xk) < 0

ak+1 := xk, bk+1 := bk

else
ak+1 := ak, bk+1 := xk

k := k + 1

u := f ′(ak) + f ′(bk) − 3 f(ak)−f(bk)
ak−bk

, v :=
√

u2 − f ′(ak)f ′(bk)

xk := bk − (bk − ak) f ′(bk)+v−u
f ′(bk)−f ′(ak)+2v

until (| xk − xk−1 |< ε)

Example 5.5. Cubic interpolation is applied to find the minimum of f(x) =
x + 16

x+1 with starting interval [2, 4.5] and accuracy ε = 0.01. One iteration
after reaching the stopping criterion has been given in Table 5.5. For this
case, also the interval converges very fast around the minimum point.

Table 5.5. Cubic interpolation for f(x) = x + 16
x+1

, [a0, b0] = [2, 4.5], ε = 0.01

k ak bk xk f(xk) f ′(xk)

1 2.000 4.500 3.024 7.0001 0.012
2 2.000 3.024 2.997 7.0000 -0.001
3 2.997 3.024 3.000 7.0000 0.000
4 2.997 3.000 3.000 7.0000 0.000

5.2.6 Method of Newton

In the former examples, the algorithms converge to the minimum point, where
the derivative has a value of zero, i.e., it is a stationary point. Methods
that look for a point with function value zero can be based on bisection,
Brent method, but also on the Newton–Raphson iterative formula: xk+1 =
xk− f(xk)

f ′(xk) . If we replace the function f in this formula by its derivative f ′, we
have a basic method for looking for a stationary point. We have already seen
in the elaboration in Chapter 4 that the method may converge to a minimum,
maximum or infliction point.

In order to converge to a minimum point, in principle the second-order
derivative of an iterate should be positive, i.e., f ′′(xk) > 0. If we have a start-
ing interval, also safeguards should be included in the algorithm to prevent

5.3 Algorithms not using derivative information 101

Algorithm 15 Newt(x0, f, ε)
Set k := 0
repeat

xk+1 := xk − f ′(xk)
f ′′(xk)

k := k + 1
until (| xk − xk−1 |< ε)

the iterates from leaving the interval. The basic shape of the method without
any safeguards is given in Algorithm 15.

Example 5.6. The method of Newton is used for the example function f(x) =
x + 16

x+1 with starting point x0 = 2 and accuracy ε = 0.01. Theoretically the
method of Newton has the same convergence rate as cubic interpolation. For
this specific example one can observe a similar speed of convergence.

Table 5.6. Newton for f(x) = x + 16
x+1

, x0 = 2, ε = 0.01

k xk f(xk) f ′(xk) f ′′(xk)

0 2.000 7.3333 -0.778 1.185
1 2.656 7.0323 -0.197 0.655
2 2.957 7.0005 -0.022 0.516
3 2.999 7.0000 0.000 0.500
4 3.000 7.0000 0.000 0.500

5.3 Algorithms not using derivative information

In Section 5.2, we have seen that several methods use derivative information
and others do not. Let us consider methods for finding optima of functions of
several variables, f : R

n → R. When derivative information is not available,
or one does not want to use it, there are several options to be considered. One
approach often used is to apply methods that use derivative information and
to approximate the derivative in each iteration numerically. Another option is
to base the search directions in Algorithm 9 on directions that are determined
by only using the values of the function evaluations. A last option is the use
of so-called direct search methods.

From this last class, we will describe the so-called Downhill Simplex
method due to Nelder and Mead (1965). It is popular due to its attrac-
tive geometric description and robustness and also its appearance in standard
software like matlab (www.mathworks.com) and the Numerical Recipes of
Press et al. (1992). It will be described in Section 5.3.1. Press et al. (1992)
also mention that “Powell’s method is almost surely faster in all likely appli-
cations.” The method of Powell is based on generating search directions built
on earlier directions like in Algorithm 9. It is described in Section 5.3.2.

102 5 Nonlinear Programming algorithms

5.3.1 Method of Nelder and Mead

Like in evolutionary algorithms (see Davis, 1991, and Section 7.5), the method
works with a set of points that is iteratively updated. The iterative set P =
{p0, . . . , pn} is called a simplex, because it contains n + 1 points in an n-
dimensional space. The term Simplex method used by Nelder and Mead (1965)
should not be confused with the Simplex method for Linear Optimization.
Therefore, it is also called the Polytope method to distinguish the two. The
initial set of points can be based on a starting point x0 by taking p0 = x0,
pi = x0 + δei, i = 1, . . . , n, where δ is a scaling factor and ei the ith unit
vector. The following ingredients are important in the algorithm and define
the trial points.

• The two worst points p(n) = argmaxp∈P f(p), p(n−1) = argmaxp∈P\p(n)
f(p)

in P and lowest point p(0) = argminp∈P f(p) are identified.
• The centroid c of all but the highest point is used as building block

c =
1
n

∑

i	=(n)

pi. (5.7)

Algorithm 16 NelderMead(x0, f, ε)
Set k := 0, P := {p0, . . . , pn} with p0 := x0 and pi := x0 + δei i = 1, . . . , n
Evaluate f(pi) i = 1, . . . , n
Determine points p(n), p(n−1) and p(0) in P
with corresponding values f(n), f(n−1) and f(0)

while (f(n) − f(0) > ε)
c := 1

n

∑
i�=(n) pi

x(r) := c + (c − p(n)), evaluate f(x(r))

if (f(0) < f(x(r)) < f(n−1))

P := P \ {p(n)} ∪ {x(r)} x(r) replaces p(n) in P

if (f(x(r)) < f(0))

x(e) := c + 1.5(c − p(n)), evaluate f(x(e))

P := P \ {p(n)} ∪ {argmin{f(x(e)), f(x(r))}} best trial replaces p(n)

if (f(x(r)) ≥ f(n−1))

x(c) := c + 0.5(c − p(n)), evaluate f(x(c))

if (f(x(c)) < f(x(r)) < f(n))

P := P \ {p(n)} ∪ {x(c)} replace p(n) by x(c)

else

if (f(x(c)) > f(x(r)))

P := P \ {p(n)} ∪ {x(r)}
else

pi := 1
2
(pi + p(0)), i = 0, . . . , n full contraction

Evaluate f(pi), i = 1, . . . , n
P := {p0, . . . , pn}

k := k + 1
endwhile

5.3 Algorithms not using derivative information 103

• A trial point is based on reflection step: x(r) = c+(c−p(n)), Figure 5.4(a).
• When the former step is successful, a trial point is based on an expansion

step x(e) = c + 1.5(c − p(n)), shown in Figure 5.4(c).
• In some cases a contraction trial point is generated as shown in Figure

5.4(b); x(c) = c + 0.5(c − p(n)).
• If the trials are not promising, the simplex is shrunk via a so-called multiple

contraction toward the point with lowest value pi := 1
2 (pi + p(0)), i =

0, . . . , n.

Fig. 5.4. Basic steps of the Nelder and Mead algorithm

In the description we fix the size of reflection, expansion and contraction.
Usually this depends on parameters with its value depending on the dimension
of the problem. A complete description is given in Algorithm 16.

Example 5.7. Consider the function f(x) = 2x2
1 + x2

2 − 2x1x2 + |x1 − 3| +
|x2 − 2|. Let the initial simplex be given by p0 = (1, 2)T , p1 = (1, 0)T and
p2 = (2, 1)T . The first steps are depicted in Figure 5.5. We can see at
part (a) that first a reflection step is taken, the new point becomes p(1).
However, at the next iteration, the reflection point satisfies neither condition
f(0) < f(x(r)) < f(n−1) nor f(x(r)) < f(0), thus the contraction point is
calculated (see Figure 5.5(b)). As it has a better function value than f(x(r)),
p(n) is replaced by this point. We can also see that f(x(c)) < f(n−1) as the
ordering changes in Figure 5.5(c). One can observe that when the optimum
seems to be inside the polytope, its size decreases leading toward fulfillment

104 5 Nonlinear Programming algorithms

p(0)

p(1)

p(2)
cx(r)

x(r)

p(0)

p(1)

c

x(c)(a) First iteration

p(2)

p(1)

p(0)

p(2)
(b) Second iteration

(c) After second iteration

Fig. 5.5. Nelder and Mead method at work

of the termination condition. The fminsearch algorithm in matlab is an
implementation of Nelder–Mead. From a starting point p0 = x0 a first small
simplex is built. Running the algorithm with default parameter values and
x0 = (1, 0)T requires 162 function evaluations before stopping criteria are met.
The evaluated sample points are depicted in Figure 5.6.

1

1 x1

x2

Fig. 5.6. Points generated by NelderMead on f(x) = 2x2
1 + x2

2 − 2x1x2 + |x1 − 3|+
|x2 − 2|. fminsearch with default parameter values

5.3 Algorithms not using derivative information 105

5.3.2 Method of Powell

In this method, credited to Powell (1964), a set of directions (d1, . . . , dn) is
iteratively updated to approximate the direction pointing to x∗. An initial
point x0 is given, that will be named x

(1)
1 . At each iteration k, n steps are

taken using the n directions. In each step, x
(k)
i+1 = x

(k)
i + λdi, where the

step size λ is supposed to be optimal, i.e., λ = argminμ f(x(k)
i + μdi). The

direction set is initialized with the coordinate directions, i.e., (d1, . . . , dn) =
(e1, . . . , en). In fact the first iteration works as the so-called Cyclic Coordinate
Method. However, in the method of Powell (see Algorithm 17) instead of
starting over with the same directions, they are updated as follows. Direction

Algorithm 17 Powell(x0, f, ε)

Set k := 0, (d0, . . . , dn) := (e0, . . . , en), and x
(1)
1 := x0

repeat
k := k + 1
for (i = 1, . . . , n) do

Determine step size λ := argminμ f(x
(k)
i + μdi)

x
(k)
i+1 := x

(k)
i + λdi

d := x
(k)
n+1 − x

(k)
1

x
(k+1)
1 := x

(k)
n+1 + λd where λ := argminμ f(x

(k)
n+1 + μd)

di := di+1, i = 1, . . . , n − 1, dn := d

until (|f(x
(k+1)
1) − f(x

(k)
1)| < ε)

d = x
(k)
n+1 − x

(k)
1 is the overall direction in the kth iteration. Let the starting

point for the next iteration be in that direction: x
(k+1)
1 = x

(k)
n+1 + λd with

optimal step size λ. The old directions are shifted, di = di+1, i = 1, . . . , n− 1,
and the last one is our approximation, dn = d. The iterations continue with
the updated directions until |f(x(k+1)

1) − f(x(k)
1)| < ε.

Example 5.8. Consider the function f(x) = 2x2
1+x2

2−2x1x2+|x1−3|+|x2−2|
and let x0 = (0, 0)T . The steps of the method of Powell are shown in Figure
5.7. Observe that points x

(1)
1 , x

(1)
3 , x

(2)
1 and x

(2)
1 , x

(2)
3 , x

(3)
1 lie on a common

line, that has the direction d of the corresponding iteration. In this example,
the optimum is found after only three iterations. Notice that in each step an
exact line search is done in order to obtain the optimal step length λ.

In both the Polytope method and the method of Powell the direction of the
new step depends on the last n points. This is necessary to generate a descent
direction when only function values are known. In the next sections we will
see that derivative information gives easier access to descent directions.

106 5 Nonlinear Programming algorithms

Fig. 5.7. Example run of the Powell method

5.4 Algorithms using derivative information

When the function to be minimized is continuously differentiable, i.e., f :
R

n → R ∈ C1, methods using derivative information are likely to be more
efficient. Some methods may even use Hessean information if that is available.
These methods usually can be described by the general scheme of descent
direction methods introduced in Algorithm 9. There are two crucial points in
these algorithms: the choice of the descent direction and the size of the step
to take. The methods are usually named after the way the descent direction
is defined, and they have different versions and modifications depending on
how the step length is chosen.

The first method we discuss is the Steepest descent algorithm in
Section 5.4.1, where the steepest direction is chosen based on the first-order
Taylor expansion. As a second algorithm, the Newton method is explained
in Section 5.4.2. It is based on the second-order Taylor expansion and uses
second derivative information. These two methods are based on local infor-
mation only, i.e., the Taylor expansion of the function at the given point.
Conjugate gradient and Quasi-Newton methods also use information from
previous steps to improve the next direction. These advanced methods are
introduced in Section 5.4.3 and 5.4.4, respectively. Finally, we discuss the
consequence of using practical line search methods together with the concept
of trust region methods in Section 5.4.5.

5.4 Algorithms using derivative information 107

5.4.1 Steepest descent method

This method is quite historical in the sense that it was introduced in the
middle of the 19th century by Cauchy. The idea of the method is to decrease
the function value as much as possible in order to reach the minimum early.
Thus, the question is in which direction the function decreases most. The
first-order Taylor expansion of f near point x in the direction r is

f(x + r) ≈ f(x) + ∇f(x)T r.

So, we search for the direction

min
r∈Rn

∇f(x)T r

‖r‖ ,

which is for the Euclidean norm the negative gradient, i.e., r = −∇f(x)
(see Figure 5.8). That is why this method is also called the gradient method.

)(xf∇

x2

x

r

x1

Fig. 5.8. Steepest descent direction

In Figure 5.9 we can see an example run of the method, when the opti-
mal step length is taken for a quadratic function. Notice that the steps are
perpendicular. This is not a coincidence. When the step length is optimal at
the new point, the derivative is zero in the last direction. The new direction
can only be perpendicular. This is called the zigzag effect, and it makes the
convergence slow when the optimum is near.

Example 5.9. Let f(x) = (x1 − 3)2 + 3(x2 − 1)2 + 2 and x0 = (0, 0)T . The

gradient is ∇f(x) =
(

2(x1 − 3)
6(x2 − 1)

)
, the steepest descent −∇f(x0) =

(
6
6

)
.

We take as first search direction r0 = (1, 1)T . The optimum step size λ can
be found by minimizing ϕr0(μ) = f(x0+μr0) over μ. For a quadratic function
we can consider finding the stationary point, such that

108 5 Nonlinear Programming algorithms

x2

x1

x3

x1

x2

Fig. 5.9. Example run of steepest descent method

ϕ′(λ) = rT
0 ∇f(x0 + λr0) = (1, 1)T

(
2(x1 − 3)
6(x2 − 1)

)
= 2(λ − 3) + 6(λ − 1) = 0.

This gives the optimal step size of λ = 3
2 . The next iterate is x1 = (x0+λr0) =

(0, 0)T + 3
2 (1, 1)T = (1.5, 1.5)T . Following the steepest descent process where

we keep the same length of the search vector leads to the iterates in Table
5.7. Notice that ‖∇fk‖ is getting smaller, as xk is converging to the minimum
point. Moreover, notice that rT

k rk−1 = 0.

Table 5.7. Steepest descent iterations, f(x) = (x1−3)2 +3(x2 −1)2 +2 and x0 = 0

k −∇fT
k−1 rT

k−1 λ xT
k f(xk)

0 (0,0) 12

1 (6,6) (1,1) 3
2

(1.5, 1.5) 5

2 (3,-3) (1,-1) 3
4

(2.25, 0.75) 2.75

3 (1.5, 1.5) (1,1) 3
8

(2.625, 1.125) 2.1875

In practical implementations, computing the optimal step length far away
from x∗ can be unnecessary and time consuming. Therefore, fast inexact line
search methods have been suggested to approximate the optimal step length.
We discuss these approaches in Section 5.4.5.

5.4.2 Newton method

We have already seen the Newton method in the univariate case in Section
5.2.6. For multivariate optimization the generalization is straightforward:

5.4 Algorithms using derivative information 109

xk+1 = xk − H−1
f (xk)∇f(xk).

But where does this formula come from? Let us approximate the function f
with its second-order Taylor expansion

T (x + r) = f(x) + ∇f(x)T r +
1
2
rT Hf (x)r.

Finding the minimum of T (x+ r) in r can give us a new direction towards x∗.
Having a positive definite Hessean Hf (see Section 3.3), the minimum is the
solution of ∇T (x+ r) = 0. Thus, we want to solve the linear equation system

∇T (x + r) = ∇f(x) + Hf (x)r = 0

in r. Its solution r = −H−1
f (x)∇f(x) gives direction as well as step size.

The above construction ensures that for quadratic functions the optimum
(if it exists) is found in one step.

Example 5.10. Consider the same minimization problem as in Example 5.9,
i.e., minimize f(x) = (x1 − 3)2 + 3(x2 − 1)2 + 2 with starting point x0 = 0.

Gradient ∇f(x) =
(

2(x1 − 3)
6(x2 − 1)

)
while the Hessean Hf (x) =

(
2 0
0 6

)
. Thus,

x1 = x0 − H−1
f ∇f(x0) =

(
0
0

)
−
(

1/2 0
0 1/6

)(−6
−6

)
=
(

3
1

)
. At x1 the

gradient is zero, the Hessean is positive definite, thus we have reached the
optimum.

5.4.3 Conjugate gradient method

This class of methods can be viewed as a modification of the steepest descent
method, where in order to avoid the zigzagging effect, at each iteration the
direction is modified by a combination of the earlier directions:

rk = −∇fk + βkrk−1. (5.8)

These corrections ensure that r1, r2, . . . , rn are so-called conjugate directions.
This means that there exists a matrix A such that rT

i Arj = 0, ∀i 	= j. For
instance, the coordinate directions (the unit vectors) are conjugate. Just take
A as the unit matrix. The underlying idea is that A is the inverse of the
Hessean. One can derive that using exact line search the optimum is reached
in at most n steps for quadratic functions.

Having the direction rk, the next iterate is calculated in the usual way:

xk+1 = xk + λrk

where λ is the optimal step length argminμ f(xk +μrk), or its approximation.
The parameter βk can be calculated using different formulas. Hestenes

and Stiefel (1952) suggested

110 5 Nonlinear Programming algorithms

βk =
∇fT

k (∇fk −∇fk−1)
rT
k (∇fk −∇fk−1)

. (5.9)

Later, Fletcher and Reeves (1964) examined

βk =
‖∇fk‖2

‖∇fk−1‖2
, (5.10)

and lastly the formula of Polak and Ribière (1969) is

βk =
∇fT

k (∇fk −∇fk−1)
‖∇fk−1‖2

. (5.11)

These formulas are based on the quadratic case where f(x) = 1
2xT Ax +

bT x + c for a positive definite A. For this function, the aim is to have
A-conjugate directions, so rT

j Ari, ∀j 	= i. Plugging (5.8) into rT
k Ark−1 = 0

gives −∇fT
k Ark−1 + βkrT

k−1Ark−1 = 0 such that

βk =
∇fT

k Ark−1

rT
k−1Ark−1

.

Now, having ∇f(x) = Ax+b gives ∇f(xk) = A(xk−1 +λrk−1)+b = ∇fk−1 +
λArk−1 such that ∇fk −∇fk−1 = λArk−1. Thus,

βk =
∇fT

k Ark−1

rT
k−1Ark−1

=
∇fT

k (∇fk −∇fk−1)
rT
k (∇fk −∇fk−1)

.

This is exactly the formula of Hestenes and Stiefel. In fact, for the quadratic
case all three formulas are equal, and the optimum is found in at most n steps.

Example 5.11. Consider the instance of Example 5.9 with f(x) = (x1 − 3)2 +
3(x2 − 1)2 + 2 and x0 = (0, 0)T . In the first iteration, we follow the steepest

descent, such that ∇f(x0) =
(−6
−6

)
gives our choice r0 = (1, 1)T , λ = 3

2 and

x1 = (1.5, 1.5)T . Now we follow the conjugate direction given by (5.8) and
Fletcher–Reeves (5.10). Given that ∇f(x1) = (−3, 3)T , ‖∇f(x0)‖2 = 72 and
‖∇f(x1)‖2 = 18, the next direction is determined by

r1 = −∇f1 + β1r0 = −∇f1 +
‖∇f1‖2

‖∇f0‖2
r0 =

(
3

−3

)
+

18
72

(
6
6

)
=
(

4.5
−1.5

)
.

This direction points directly to the minimum point x∗ = (3, 1)T , see Figure
5.10. Notice that r0 and r1 are conjugate with respect to the Hessean H of f :

rT
0 Hr1 = (1, 1)

(
2 0
0 6

)(
4.5

−1.5

)
= 0.

5.4 Algorithms using derivative information 111

x2

x*

x1

Fig. 5.10. Example run of conjugate gradient method

5.4.4 Quasi-Newton method

The name tells us that these methods work similarly as the Newton method.
The main idea is to approximate the Hessean matrix instead of computing
it at every iteration. Recall that the Newton method computes the search
direction as

rk = −Hf(xk)−1∇f(xk),

where Hf (xk) should be positive definite. In order to avoid problems with
non-positive-definite or noninvertible Hessean matrices and in addition to save
Hessean evaluation, quasi-Newton methods approximate Hf (xk) by Bk using
an updating formula Bk+1 = Bk + Uk.

The updating should be such that at each step the new curvature infor-
mation is built in the approximated Hessean. Using the second-order Taylor
expansion of function f ,

T (xk + r) ≈ f(xk) + ∇f(xk)T r +
1
2
rT Hf (xk)r,

one can obtain that

∇f(xk + r) ≈ ∇T (xk + r) = ∇f(xk) + Hf (xk)r.

Taking r = rk and denoting yk = ∇f(xk+1) −∇f(xk) gives

yk ≈ Hf (xk)rk. (5.12)

Equation (5.12) gives the so-called quasi-Newton condition, that is, yk = Bkrk

must hold for every Bk and each search direction rk = xk+1 − xk we take.
Apart from (5.12), we also require Bk to be positive definite and symmetric,
although that is not necessary.

112 5 Nonlinear Programming algorithms

For a rank one update, that is, Bk+1 = Bk +αkukuT
k (uk ∈ R

n), the above
requirements define the update:

Bk+1 = Bk +
1

(yk − Bkrk)T rk
(yk − Bkrk)(yk − Bkrk)T . (5.13)

This is called the symmetric rank one formula (SR1).
In general, after updating the approximate Hessean matrix, its inverse

should be computed to obtain the direction. Fortunately, using the Sherman–
Morrison formula we can directly update the inverse matrix. For SR1 formula
(5.13), denoting Mk = B−1

k

Mk+1 = Mk +
1

(rk − Mkyk)T yk
(rk − Mkyk)(rk − Mkyk)T .

Two popular rank two update formulas deserve to be mentioned. The
general form for rank two formulas is Bk+1 = Bk +αkukuT

k +βkvkvT
k . One of

them is the Davidon–Fletcher–Powell formula (DFP), that determines Bk+1

or Mk+1 as

Bk+1 = Bk +
(yk − Bkrk)(yk − Bkrk)T

yT
k rk

− BkrkrT
k Bk

yT
k rk

+
rT
k BkrkykyT

k

(yT
k rk)2

Mk+1 = Mk +
rkrT

k

yT
k rk

− MkykyT
k Mk

yT
k Mkyk

. (5.14)

Later, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method was dis-
covered by Broyden, Fletcher, Goldfarb, and Shanno independently of each
other around 1970. Nowadays mostly this update formula is used. The
updating formulas are

Bk+1 = Bk +
ykyT

k

yT
k rk

− BkrkrT
k Bk

rT
k Bkrk

Mk+1 = Mk +
(rk − Mkyk)(rk − Mkyk)T

yT
k rk

− MkykyT
k Mk

yT
k rk

+
yT

k MkykrkrT
k

(yT
k rk)2

.

Example 5.12. We now elaborate the DFP method based on the instance of
Example 5.9 with f(x) = (x1 − 3)2 + 3(x2 − 1)2 + 2 and x0 = (0, 0)T . In the

first iteration, we follow the steepest descent. ∇f(x0) =
(−6
−6

)
and exact line

search gives x1 = (1.5, 1.5)T . In terms of the quasi-Newton concept, direction
r0 = x1 − x0 = (1.5, 1.5)T and y0 = ∇f1 − ∇f0 = (3, 9)T . Now we can
determine all ingredients to compute the updated matrix of (5.14). Keeping
in mind that M0 is the unit matrix, such that M0y0 = y0,

r0r
T
0 =

9
4

(
1 1
1 1

)
, M0y0y

T
0 M0 = 9

(
1 3
3 9

)
, rT

0 y0 = 18 and yT
0 M0y0 = 90.

5.4 Algorithms using derivative information 113

The updated multiplication matrix M1 is now determined by (5.14):

M1 =
(

1 0
0 1

)
+

1
8

(
1 1
1 1

)
− 1

10

(
1 3
3 9

)
=

1
40

(
41 −7
−7 9

)
.

Notice that M1 fulfills the (inverse) quasi-Newton condition r0 = M1y0. Now
we can determine the search direction

r1 = −M1∇f1 =
1
40

(
41 −7
−7 9

)(
3

−3

)
=

6
5

(
3

−1

)
.

This is the same direction of search as found by the conjugate direction method
in Example 5.11 and points to the minimum point x∗ = (3, 1)T . Further
determination of M2 is more cumbersome by hand, although easy with a
matrix manipulation program. One can verify that M2 = H−1

f as should be
the case for quadratic functions.

5.4.5 Inexact line search

In almost all descent direction methods, a line search is done in each step.
So far we have only used the optimal step length, which means that exact
line search was supposed. We have already seen that for quadratic functions
the optimal step length is easy to compute. Otherwise a one-dimensional
optimization method (see Section 5.2) can be used. When we are still far away
from the minimum, computing a very good approximation of the optimal step
length is not efficient usually. But how to know that we are still far away from
the optimum and that an approximation is good enough? Of course there is no
exact answer to these questions, but some rules can be applied. For instance,
we suspect that ‖∇f(x)‖ → 0 as x → x∗. To avoid a too big or too small
step, a sufficient decrease in objective is required. For a small 0 < α < 1,

fk + (1 − α)λ∇fT
k rk < f(xk + λrk) (5.15)

f(xk + λrk) < fk + αλ∇fT
k rk (5.16)

must hold. Denoting ϕrk
(λ) = f(xk + λrk) we can write (5.15)–(5.16) to-

gether as

ϕrk
(0) + (1 − α)ϕ′

rk
(0)λ < ϕrk

(λ) < ϕrk
(0) + αϕ′

rk
(0)λ.

(5.15)-(5.16) is called the Goldstein condition. Inequality (5.16) alone is called
the Armijo condition. The idea is depicted in Figure 5.11. Inequality (5.15)
states that λ has to be greater than a lower bound λ. The Armijo condition
(5.16) gives an upper bound λ on the step size. We can have more disconnected
intervals for λ, and (5.15) may exclude the optimal solution, as it does exclude
a local optimum in Figure 5.11.

To avoid this exclusion, one can use the Wolfe condition. That condition
says that the derivative in the new point has to be smaller than in the old
point; for a parameter 0 < σ < 1,

114 5 Nonlinear Programming algorithms

φrk

λϕ′α+ϕ)0()0(
kk rr

0 λ

φrk
(λ)

λ λ

λϕ′α−+ϕ)0()1()0(
kk rr

[]

Fig. 5.11. Goldstein condition

ϕ′
rk

(λ) < σϕ′
rk

(0), (5.17)

or alternatively

∇f(xk + λrk)T rk < σ∇f(xk)T rk.

The Wolfe condition (5.17) together with the Armijo condition (5.16) is called
the Wolfe conditions. In the illustration, (5.16) and (5.17) mean that step size
λ must belong to one of the intervals shown in Figure 5.12.

The good news about these conditions is that the used line search can be
very rough. If the step length fulfills these conditions, then convergence can
be proved.

In practice, usually a backtracking line search is done until the chosen
conditions are fulfilled. The concept of backtracking line search is very easy.
Given a (possibly large) initial step length λ0, decrease it proportionally with
a factor 0 < β < 1 until the chosen condition is fulfilled (see Algorithm 18).

Algorithm 18 BacktrackLineSearch(λ0 , ϕrk , β)
k := 1
while (conditions not fulfilled)

λk := βλk−1

k := k + 1
endwhile

5.4 Algorithms using derivative information 115

φrk

)0(rϕ′σ

λϕ′α+ϕ)0()0(
kk rr

0
λ

)(
kr

ϕ

λ2 λ2λ1 λ1

)0(
kr

ϕ′

[[]]

φrk
(λ)

Fig. 5.12. Wolfe conditions

5.4.6 Trust region methods

Trust region methods have a different concept than general descent methods.
The idea is first to decide the step size, and then to optimize for the best
direction. The step size defines the radius Δ of the trust region, where the
approximate function (usually the second-order Taylor expansion) is trusted to
behave similarly as the original function. Within radius Δ (or maximum step
size) the best direction is calculated according to the approximate function
mk(x), i.e.,

min
‖r‖<Δ

mk(xk + r), (5.18)

where usually

mk(xk + r) = f(xk) + ∇f(xk)T r +
1
2
rT Hf (xk)r.

To control that we are doing well, the adequacy of the trust radius is checked.
Hence, the predicted reduction mk(xk)−mk(xk +rk) and the actual reduction
f(xk) − f(xk + rk) are compared. For a given parameter μ, if

(
ρk =

f(xk) − f(xk + rk)
mk(xk) − mk(xk + rk)

)
> μ (5.19)

holds, the trust region and the step are accepted. Otherwise the radius is
reduced and the direction is optimized again, see Figure 5.13. When the
prediction works very well, we can increase the trust region. Given a second
parameter ν > μ, if

116 5 Nonlinear Programming algorithms

f =4

f =2

f 1f =1

mk=3
mk=1

xk

Fig. 5.13. For different trust radius different directions are optimal

ρk > ν,

the trust radius is increased by some factor up to its maximum value Δ. The
general method is given in Algorithm 19. In the algorithm the factors 1/2, 2
for decreasing and increasing the trust radius are fixed. However, other values
can be used.

The approximate function mk(x) can be minimized by various meth-
ods. As in the case of line search, we do not necessarily need the exact
optimal solution. An easy method is to minimize the linear approximation,
min‖r‖<Δ{f(xk) + ∇f(xk)T r}. Its solution is the steepest descent direction,

Algorithm 19 TrustRegion(Δ, f, mk, x0, μ, ν)
k := 1, Δ := Δ
while (termination condition does not fulfill)

rk := argmin‖r‖<Δ mk(xk + r)

if (ν < ρk)

Δ := max{2Δ, Δ}
else

while (ρk < μ)
Δ := Δ/2
rk := argmin‖r‖<Δ mk(xk + r)

endwhile
xk+1 := xk + rk

k := k + 1
endwhile

5.4 Algorithms using derivative information 117

r = −∇f(xk)/‖∇f(xk)‖, where one only has to minimize the step length
bounded to be less than the trust radius. The optimal step size can be given di-
rectly. Consider rk = λr, where ‖r‖ = 1 is normalized. When rT Hf (xk)r ≤ 0,
mk(x+λr) is concave (or linear), descending in the direction of r. So the opti-
mal step size is Δ. If it is convex, the minimum is taken either at the stationary
point, where ∂mk(x+λr)

∂λ = ∇f(xk)T r + λrT Hf (xk)r = 0, (λ = −∇f(xk)T r
rT Hf (xk)r), or

at the maximum step size Δ, when the stationary point is outside;

λ =

⎧
⎨

⎩

Δ if rT Hf (xk)r ≤ 0,

min
{ ‖∇f(xk)‖

rT Hf (xk)r
, Δ
}

, otherwise. (5.20)

Notice that in this case the method is following a steepest descent method
with a bounded line search. Consequently, the convergence near the optima
is similar to that of the steepest descent method.

Example 5.13. Consider the problem in Example 5.9 with f(x) = (x1 − 3)2 +
3(x2 − 1)2 + 2 and x0 = (0, 0)T . The initial trust radius is taken Δ0 = 1,
and the maximum trust radius Δ = 2. The first direction is (1, 1)T as in
Example 5.9. Now the step length is λ = 1 according to (5.20). This gives
as next iterate x1 = (1√

2
, 1√

2
). The function to minimize is quadratic, so the

predicted reduction is the same as the actual one. For formula (5.19) this
means that ∀ k ρk = 1 and so Δ = 2. In the rest of the steps the trust radius
is always greater than the optimal step size. The iterates follow the steepest
descent algorithm from this point. The run is depicted in Figure 5.14.

x2

x*

x1

Fig. 5.14. Trust region method on the function f(x) = (x1 − 3)2 + 3(x2 − 1)2 + 2
with x0 = (0, 0)T and Δ0 = 1

Other approaches to solve (5.18) are the Dogleg method using Newton
direction and the Steihaug approach with Levenberg–Marquardt idea. Also,

118 5 Nonlinear Programming algorithms

the conjugate gradient method has a trust region version. For details, see,
e.g., Kelley (1999) and Nocedal and Wright (2006).

5.5 Algorithms for nonlinear regression

The least squares problem of minimizing f(β) =
∑m

i=1(z(xi, β)−yi)2 as intro-
duced in Section 2.7 has specific characteristics. Therefore, specific optimiza-
tion methods have been developed to minimize f(β). An important special
case is that of linear regression, where z is linear in β. For ease of notation
we will describe the linear regression case as z(x, β) = xT β and elaborate the
minimization of its least squares around an example in Section 5.5.1.

The methods are based on the shape of the gradient and Hessean of f(β).
A useful concept is that of the so-called Jacobian being the m × n matrix of
partial derivatives with elements

Jij(β) =
∂z(xi, β)

∂βj
(β). (5.21)

The partial derivatives of f are ∂f(β)
∂βj

(β) = 2
∑m

i=1
∂z(xi,β)

∂βj
(β)(z(xi, β) − yi).

With the aid of the Jacobian and the error vector e(β) with elements ei =
z(xi, β) − yi they can be summarized as

∇f(β) = 2JT (β)e(β). (5.22)

The Hessean of f obtains a more sophisticated shape:

Hf (β) = 2JT (β)J(β) + 2
m∑

i=1

Hi(β)ei(β), (5.23)

where Hi(β) is now the Hessean of the error ei(β) of the ith observation. The
specific shape of gradient and Hessean gives rise to dedicated methods for
optimizing f that are described in the following subsections.

5.5.1 Linear regression methods

The optimization of the sum of absolute values f(β) =
∑ |xT

i β − yi| or the
infinite norm (maximum error) f(β) = maxi |xT

i β − yi| can be written as
Linear Programming. The least squares criterion leads to the minimization of
a quadratic function. Let us first of all remark that the Jacobian is a constant
matrix X which does not depend on the parameter values in β. Thus we can
write the least squares criterion in linear regression as

f(β) = (Xβ − y)T (Xβ − y) = βT XT Xβ − 2yT Xβ + yT y, (5.24)

5.5 Algorithms for nonlinear regression 119

which is a quadratic function in β. If the columns of X are linearly dependent,
the minimum points can be found on a lower-dimensional plane. If they are
independent, the minimum point is the stationary point of (5.24):

β∗ = (XT X)−1XT y (5.25)

if we follow equation (3.21). Notice that the same follows from finding a
stationary point; ∇f(β) = 2XT (Xβ− y) = 0. The Hessean 2XT X is positive
semidefinite and its inverse has an important interpretation in statistics where
the so-called variance–covariance matrix of the estimated β∗ is proportional
to (XT X)−1; see Bates and Watts (1988). The ellipsoidal level sets f(β) −
f(β∗) = (β − β∗)T XT X(β − β∗) < δ have the interpretation of confidence
regions in statistics.

m
as

s
y

12

10

8

6

4

2

0

stage
543210

Fig. 5.15. Observations and estimated model of mass as function of stage

Example 5.14. We want to explain the mass y of a plant from its growth stage
with a simple linear model y = β1 + β2stage. The observed data points of
stage 0 to 5 are given by y = (1, 2, 4, 7, 9, 10)T . The X matrix is given by

X =
(

1 1 1 1 1 1
0 1 2 3 4 5

)T

,

such that

XT X =
(

6 15
15 55

)
and XT y =

(
33

117

)
.

Following (5.25) gives the least squares estimate

β∗ =
(

6 15
15 55

)−1(33
117

)
=
(

0.57
1.97

)
.

The corresponding model is y = z(stage, β∗) = 0.57 + 1.97stage. Data points
and model are illustrated in Figure 5.15.

120 5 Nonlinear Programming algorithms

5.5.2 Gauss–Newton and Levenberg–Marquardt

The method of Newton for least squares functions is given by

βk+1 = βk − 2H−1
f JT (βk)e(βk), (5.26)

where Hf is defined by the complicated expression (5.23). As it would be
complicated to evaluate all Hesseans Hi in (5.23), one can use approximations
with either the idea that z is linear in β or the idea that the error terms ei

are small.
The concept of the Gauss–Newton method is to approximate Hf by the

first part 2JT (βk)J(βk). Alternatively, one can say that the model z is lin-
earized around βk. The resulting search direction of Gauss–Newton is

rk = −(JT (βk)J(βk))−1JT (βk)e(βk), (5.27)

which is a descent direction as JT J is a positive semidefinite matrix. It can
be shown that for many instances, taking the final step sizes as 1 leads to
convergence.

Example 5.15. A researcher investigates the effect of dosing two nutrients on
the yield of tomatoes. Therefore he performs four experiments in separated
fields. The resulting data are given in Table 5.8. The expected relation is

yield = (1 + β1dose1)(1 + β2dose2), (5.28)

where β1 and β2 are reaction parameters. The least squares function to be
optimized is f(β) =

∑4
1((1 + β1dose1i)(1 + β2dose2i) − yieldi)2. The result-

ing Jacobian has rows (dose1i(1 + β2dose2i), dose2i(1 + β1dose1i)). Consider

Table 5.8. Observed yield of tomatoes and nutrient dosage

experiment 1 2 3 4

dose 1 1.0 1.0 1.0 2.0
dose 2 0.0 1.0 2.0 0.0
yield 0.5 5.0 6.5 1.0

starting vector β0 = (1, 1)T , with sum of squared errors f(β0) = 19.5. The
error vector itself is e(β0) = (1.5,−1,−0.5, 2)T and the Jacobian

J0 = J(β0) =
(

1 2 3 2
0 2 4 0

)T

and JT
0 J0 =

(
18 16
16 20

)
,

such that the resulting steepest descent direction is

r = −∇f(β0) = −2JT (β0)e(β0) =
(−4

8

)
.

5.6 Algorithms for constrained optimization 121

The Gauss–Newton direction is determined by

r = −
(

18 16
16 20

)−1(2
−4

)
=
(−1

1

)
.

This is a descent direction, as it makes a sharp angle with −∇f(β0).

One of the most used algorithms is due to Levenberg–Marquardt, which
has been implemented in most statistical software (Marquardt, 1963). The
basic iteration scheme is based on

βk+1 = βk − (JT (βk)J(βk) + αkE)−1JT (βk)e(βk), (5.29)

where E is the unit matrix and αk implicitly determines the step size. For
α big, the method follows the steepest descent. For smaller α, it looks more
like the Gauss–Newton method. Usually a scheme is followed where the size
of αk is reduced during the iterations.

5.6 Algorithms for constrained optimization

We write the generic NLP problem now as

min f(x)
s.t. gi(x) ≤ 0 i = 1, . . . , p, inequality constraints,

gi(x) = 0 i = p + 1, . . . , m, equality constraints.
(5.30)

Until now we have ignored the presence of the constraints g and searched
for the optimum in the whole space. When dealing with constraints, there
are two main options to take. One is to convert the problem into uncon-
strained problem(s) by embedding the constraints in the objective function,
or directly restricting the search to the feasible area. In the first case, the
new unconstrained problems are not equivalent to the original problem, but
using some parameters, their solutions tend to the solution of the constrained
problem. In this way the previously discussed methods can be used to solve
these new problems. In this type of method, the question is how to embed the
constraints in the objective. We will discuss the penalty and barrier function
method in Section 5.6.1.

In the other case, directly restricting the search to the feasible area, we
usually modify an unconstrained method. Starting from a feasible point, the
direction and step length of the original method are modified such that the
new point is also feasible. Such methods are the gradient projection method
and sequential quadratic programming discussed in Sections 5.6.2 and 5.6.3.

5.6.1 Penalty and barrier function methods

The penalty function method was introduced by Zangwill (1967) and also by
Pietrzykowski (1969). The main idea of the method is to penalize infeasibility.
The penalty functions

122 5 Nonlinear Programming algorithms

pμ(x) = μ

⎛

⎝
p∑

i=1

max{gi(x), 0} +
m∑

i=p+1

|gi(x)|
⎞

⎠

and

pμ(x) = μ

⎛

⎝
p∑

i=1

(max{gi(x), 0})2 +
m∑

i=p+1

g2
i (x)

⎞

⎠

are 0 when x is feasible, but take a positive value at infeasible points. Adding
the penalty function to the objective function, Pμ(x) = f(x) + pμ(x), we get
an unconstrained problem for every value of μ,

min Pμ(x). (5.31)

It means that the objective function of the converted unconstrained problem
has high values at infeasible areas. The minimizer of (5.31) approximates
the minimizer of (5.30) for a value of μ that is high enough. However, it
is not known apriori how high μ should be. The minimizer can be far from
feasibility even for a relatively high μ value. Moreover, choosing a high value
for μ can result in a so-called ill-conditioned problem. It means that the
penalty function has values much larger in order of magnitude than f(x).
Numerical methods can fail or give false results in such cases.

To resolve this problem, the penalty function method works as follows
(see Algorithm 20). Solve the penalized unconstrained problem minPμ(x) for
a given value for μ. If the minimizer x∗(μ) fulfills pμ(x∗(μ)) ≤ ε, x∗(μ) is
accepted as an approximate solution. Otherwise the value of μ is increased
and the penalized unconstrained problem solved until the above condition is
fulfilled. The minimization of the next unconstrained problem starts from the
last minimum, to reach the solution in fewer steps. Moreover, one prevents
ill-conditioning in the neighborhood of the optimization path.

Algorithm 20 PenaltyMethod(f, g, p, μ0, β, ε)
k := 0
xk := argmin Pμ(x)
while (pμ(xk) > ε)

k := k + 1
μk := β · μk−1

xk := argmin Pμ(x)
endwhile

Example 5.16. Consider the problem

min 5 − ex

s.t. x = 1.

5.6 Algorithms for constrained optimization 123

The constraint defines minimum point x∗ = 1. Taking pμ(x) = μ(x− 1)2, the
unconstrained problem is

min{5 − ex + μ(x − 1)2}.
Setting μ0 = 1 and β = 2, the objective function of the first four unconstrained
problems is depicted in Figure 5.16. The solution xk tends to 1 as μk goes to
infinity.

10

5

0

-5
-1 0 1 2 3 4

Fig. 5.16. The functions Pμ(x) for μ = 1, 2, 4, 8

Example 5.17. The penalty function method is used to find the solution of

min x2
1 + x2

2

s.t. x1 + x2 = 2.

Using the quadratic penalty function, we minimize

Pμ(x1, x2) = x2
1 + x2

2 + μ(x1 + x2 − 2)2.

The first-order necessary conditions in minimum point x∗(μ) are

∂Pμ

∂x1
= 0

∂Pμ

∂x2
= 0.

Thus, 2x1 + μ2(x1 + x2 − 2) = 0 and 2x2 + μ2(x1 + x2 − 2) = 0, from which
x1 = x2 = 2μ

2μ+1 . In Table 5.9 we can see that xk tends to the solution
x∗ = (1, 1) if the unconstrained problems are exactly solved using μ0 = 1 and
β = 4.

124 5 Nonlinear Programming algorithms

Table 5.9. Steps by the penalty function method for Example 5.17

k μ xk

0 1 (0.7500, 0.7500)
1 4 (0.8888, 0.8888)
2 16 (0.9696, 0.9696)
3 64 (0.9922, 0.9922)
4 256 (0.9980, 0.9980)
5 1024 (0.9995, 0.9995)
6 4096 (0.9998, 0.9998)

One can observe that the solution reached by the penalty function method
and all subsequent points are infeasible. Therefore, in applications where
feasibility is strictly required, penalty function methods cannot be used. In
such cases barrier function methods are more appropriate.

Barrier functions make a barrier at the constraints such that xk can only
be situated in the interior of the feasible area. If the minimizer of the original
problem is on the boundary of the feasible region, xk tends to the boundary
from the interior. It also means that the barrier function method works only
with inequality constraints (there is no interior for an equality constraint).
For instance, the barrier functions

bμ(x) = −μ

p∑

i=1

1
gi(x)

and

bμ(x) = −μ

p∑

i=1

ln(−gi(x))

give positive values for strictly feasible points and infinity when gi(x) = 0 for
some i. Note that the barrier function at infeasible points is not necessarily
defined. In contrast to the penalty function method we do have to take care
not to leave the feasible area while minimizing Bμ(x) = f(x) + bμ(x). One
could think that in this way the problem did not become easier as we still
have the constraints to be taken into account. Although the latter is true,

Algorithm 21 BarrierMethod(f, g, b, μ0, β, ε)
k := 0
xk := argminx∈X Bμ(x)
while (bμ(xk) > ε)

k := k + 1
μk :=

μk−1
β

xk := argminx∈X Bμ(x)
endwhile

5.6 Algorithms for constrained optimization 125

for the new problems none of the constraints are active, so any unconstrained
method can be used with some safeguards.

In Algorithm 21 a general barrier function method is given. The algorithm
is mainly the same as the penalty function method except that here μ tends
to zero in order to have Bμ(x) → f(x).

Example 5.18. Consider the barrier function method for a variant of the prob-
lem in Example 5.17,

min x2
1 + x2

2

s.t. x1 + x2 ≥ 2.

Using the logarithmic barrier function, our new problem is to minimize
Bμ(x1, x2) = x2

1 + x2
2 − μ ln(x1 + x2 − 2). The solution must satisfy the

first-order optimality condition, that is,

∂Bμ

∂x1
= 2x1 − μ

1
x1 + x2 − 2

= 0
∂Bμ

∂x2
= 2x2 − μ

1
x1 + x2 − 2

= 0.

Solving these equations, we get that x∗(μ) = (1
2 + 1

2

√
1 + μ, 1

2 + 1
2

√
1 + μ).

In Table 5.10 the run of the barrier function method is given for μ0 = 1 and
β = 2. We assume the exact optimum is found by the local optimizer.

Table 5.10. Steps by the barrier function method for Example 5.18

k μ xk

0 1 (1.2071, 1.2071)
1 0.5 (1.1123, 1.1123)
2 0.25 (1.0590, 1.0590)
3 0.125 (1.0303, 1.0303)
4 0.0625 (1.0153, 1.0153)
5 0.03125 (1.0077, 1.0077)
6 0.015625 (1.0038, 1.0038)

For the barrier function method every subproblem is ill-conditioned, as
Bμ is unbounded at the constraints. Hence, the logarithmic barrier function
is used generally, as it grows in a less dramatic way than 1

x . Because of the
ill-conditionedness, the above methods are not prevalent. In the following we
will discuss more practical methods.

5.6.2 Gradient projection method

This method is a modification of the steepest descent method (see Section
5.4.1) for constrained optimization. It was developed in the early 1960s by

126 5 Nonlinear Programming algorithms

Rosen (1960, 1961) and later improved by Haug and Arora (1979). At every
step the new direction is modified in order to stay in the feasible region by
projecting the gradient to the active constraints. In Figure 5.17 the negative
gradient of the objective −∇f(x), the constraint g(x) and its gradient ∇g(x)
are depicted together with the projected direction r.

)(xg

f 4

f=16

)(xf∇−

r

f=1

f=4

)(xg∇

Fig. 5.17. The projected gradient direction

The projection is done by a projection matrix, that is, r = −P∇f . Let M
be the Jacobian matrix of the active constraints; it consists of column vectors
∇gi(x) for these constraints for which gi(x) = 0. The projection matrix can
be computed as

P = E − M(MT M)−1MT .

How do we get this formula? We know that for every active constraint the
direction r is perpendicular to its gradient, ∇gT

i r = 0, such that

MT r = 0.

The steepest descent direction along the binding constraint can be obtained
by solving the problem

min rT∇f

s.t. MT r = 0, (5.32)
||r||2 = 1.

That is, we are searching for the most negative direction, which has unit
length. Using the Lagrangean (see Section 3.5.1) of (5.32),

L(r, u, v) = rT∇f + rT Mu + v(rT r − 1),

where u ∈ R
n, v ∈ R, ||r||2 = rT r, the necessary condition for optimality is

5.6 Algorithms for constrained optimization 127

∂L

∂r
= ∇f + Mu + 2vr = 0. (5.33)

Multiplying (5.33) by MT and considering MT r = 0,

MT∇f + MT Mu + 2vMT r = MT∇f + MT Mu = 0,

from which
u = −(MT M)−1MT∇f.

Substituting in (5.33) gives the projected direction

r = − 1
2v

(E − M(MT M)−1MT)∇f.

The factor 1
2v can be omitted, as r stands for a direction. Recall that the

step length is determined by the line search. When r = 0 and u ≥ 0 the
Kuhn–Tucker conditions are satisfied, thus we have found a KKT point. If
some Lagrange multipliers are negative (ui < 0 for some i), that means we
may still find a decreasing direction by removing constraints with ui < 0. In
fact the negative multiplier means that the corresponding constraint is not
binding for the decreasing direction. Usually, first the constraint with the
most negative Lagrange multiplier is removed from the active constraints and
r is calculated again. If r 	= 0, a decreasing direction is found. Otherwise we
remove more constraints with negative Lagrange multipliers. If there is no
more ui < 0, but r = 0, we can stop. We have reached a point where the
Karush–Kuhn–Tucker conditions hold.

After finding a feasible direction r, we want to obtain the optimal step
length λ = argminμ>0 f(xk + μr), such that the new iterate fulfills the
nonbinding constraints, i.e., gi(xk + λr) ≤ 0. In fact, the constraint that
becomes binding first along direction r determines the maximum step length
λmax. Specifically for a linear constraint aT

i x − bi ≤ 0, λ should satisfy
aT

i (xk + λr) − bi ≤ 0, such that λmax ≤ bi−aT
i xk

aT
i r

over all linear constraints.
The main procedure is elaborated in Algorithm 22 for the case where only
linear constraints exist.

Example 5.19. Consider the problem

min x2
1 + x2

2

s.t. x1 + x2 ≥ 2,

−2x1 + x2 ≤ 1,

x1 ≥ 1
2 .

Let x0 be (0.5, 2)T . The gradient is ∇f(x) = (2x1, 2x2)
T , so at x0 we have

∇f(x0) = (1, 4)T . We can see that the second and third constraint are active,

but not the first. Thus, M =
(−2 −1

1 0

)
, (MT M)−1 =

(
1 −2

−2 5

)
, and we

128 5 Nonlinear Programming algorithms

Algorithm 22 GradProj(f, g, x0, ε)
k := 0
do

r := −(E − M(MT M)−1MT)∇f
while (r = 0)

u := −(MT M)−1MT∇f
if (mini ui < 0)

Remove gi from the active constraints and recalculate r
else

return xk (a KKT point)
endwhile
λ := argminμ f(xk + μr)
if ∃i gi(xk + λr) < 0

Determine λmax

λ = λmax

xk+1 := xk + λr
k := k + 1

while(|xk − xk−1| > ε)

get P =
(

0 0
0 0

)
. Hence, r = 0. Now, computing the Lagrangean coefficients

u = (−4, 9), we can see that the second constraint (with coefficient −4) does
not bind the steepest descent direction, so that should not be considered in

the projection. Thus, M =
(−1

0

)
, P =

(
0 0
0 1

)
and r =

(
0

−4

)
. We can

normalize to r = (0,−1)T and compute the optimal step length λ. One can
check that the minimum of f(xk + λr) is 2, but the originally nonbinding
constraint, g1, is not fulfilled with such a step. To satisfy g1(xk + λr) ≥ 0,
the maximum step length 0.5 is taken, so x1 = (0.5, 1.5)T .

Now the two binding constraints are g1 and g3, while ∇f(x1) = (1, 3)T .

Corresponding M =
(−1 −1
−1 0

)
is nonsingular, P = 0 and r = 0. Checking

the Lagrangeans we get u = (3,−2)T , which means g3 does not have to be
considered in the projection. With the new M = (−1,−1)T the projection

matrix P = 1
2

(
1 −1

−1 1

)
, and so r = (1,−1)T . The optimal step length

λ = argminμ f(xk + μr) = 0.5, with which x2 = (1, 1)T satisfies all the
constraints. One can check that x2 is the optimizer (a KKT point) by having
P = 0 and u ≥ 0. The problem and the steps are depicted in Figure 5.18.

For nonlinear constraints an estimate of the maximum value of λ can
be calculated using the linear approximations of the constraints. Another
approach is to use a desired reduction of the objective, like f(xk)−f(xk+1) ≈
γ ·f(xk). Using this assumption we get directly the step length; see Haug and
Arora (1979).

5.6 Algorithms for constrained optimization 129

x2

x0

x1

x2

●

●

●

x1

Fig. 5.18. The steps for Example 5.19

In case of nonlinear constraints, we also have to take care that the new
iterate is not violating the active constraints. As we are moving perpendicular
to the gradients of the constraints, we may need to do a restoration move to
get back to the feasible area as illustrated in Figure 5.19.

resto

)(xg∇

oration

Fig. 5.19. The projected and the restoration move

The idea of projecting the steepest descent can be generalized for other
descent direction methods. One simply has to change −∇f to the desired
direction in Algorithm 22 to obtain the projected version of a descent direction
method.

In the next section we are going to discuss the sequential quadratic pro-
gramming which is also called the projected Lagrangean method.

130 5 Nonlinear Programming algorithms

5.6.3 Sequential quadratic programming

To our knowledge SQP was first introduced in the Ph.D. thesis of Wilson
(1963), later modified by Han (1976) and Powell (1978). SQP can be viewed
as a modified Newton method for constrained optimization. Actually it is a
Newton method applied to the KKT conditions. Using the method, a sequence
of quadratic programming problem is solved. That is, at every iteration
the quadratic approximation of the problem is solved, namely, the quadratic
approximation of the Lagrangean function with the linear approximation of
the constraints.

Let us start with equality constrained problems,

min f(x)
s.t. g(x) = 0.

(5.34)

The KKT conditions for (5.34) are

∇f(x) + u∇g(x) = 0
g(x) = 0.

(5.35)

Observe that the first KKT equation says the gradient (with respect to the
x-variables) of the Lagrangean should be zero, i.e., ∇xL(x, u) = 0. In Section
5.4.2, we discussed that the Newton method can be used to determine a
stationary point. To work with the same idea, we define ∇2

xL(x, u) as the
Hessean of the Lagrangean with respect to the x-variables. To solve (5.35),
the iterates are given by xk+1 = xk + r, uk+1 = uk + v, where r, v are the
solutions of

(∇2
xL(xk, uk) ∇g(xk)
∇g(xk)T 0

)(
r
v

)
= −

(∇xL(xk, uk)
g(xk)T

)
. (5.36)

Example 5.20. Consider the problem

min (x1 − 1)2 + (x2 − 3)2

s.t. x1 = x2
2 − 1.

Our constraint is g(x) = −x1 + x2
2 − 1 = 0 and the Lagrangean is L(x, u) =

(x1 − 1)2 + (x2 − 3)2 + u(x1 − x2
2 + 1). The gradients are ∇xL(x, u) =

(2(x1 − 1) + u, 2(x2 − 3) − 2x2u)T and ∇g(x) = (−1, 2x2)T , and the Hessean

for L is ∇2
xL(x, u) =

(
2 0
0 2 − 2u

)
.

Denoting by N the matrix of (5.36) and by rhs the right-hand-side vector,

we have N =

⎛

⎝
2 0 −1
0 2 − 2u 2x2

−1 2x2 0

⎞

⎠ and rhs =

⎛

⎝
2(1 − x1) − u

2(3 − x2) + 2x2u
x1 − x2

2 + 1

⎞

⎠ .

5.7 Summary and discussion points 131

Consider as starting point x0 = (0, 0)T and starting value for the mul-

tiplier u0 = 2. This gives N0 =

⎛

⎝
2 0 −1
0 6 0

−1 0 0

⎞

⎠ and rhs0 =

⎛

⎝
4
6

−1

⎞

⎠ giv-

ing a solution of (5.36) of (rT , v) = (1, 1,−2), such that x1 = (1, 1)T and

u1 = 0. Following this process, N1 =

⎛

⎝
2 0 −1
0 2 2

−1 2 0

⎞

⎠ and rhs1 =

⎛

⎝
0
4

−1

⎞

⎠ .

Now (rT , v) = (1, 0, 2), such that we reach the optimum point x2 = (2, 1)T

with u2 = 2. This point fulfills the KKT conditions.

Fig. 5.20. Iterates in Example 5.20

Figure 5.20 shows the constraint, contours and the iterates. Moreover,
a second process is depicted which starts from the same starting point x0 =
(0, 0)T , but takes for the multiplier u0 = 0. One can verify that more iterations
are needed.

Applying the same idea to inequality constrained problems requires more
refinement; one has to take care of complementarity and the nonnegative sign
of the multipliers.

5.7 Summary and discussion points

• Nonlinear programming methods can use different information on the in-
stance to be solved; the fact that the function value is higher in different
points, the value of the function, the derivative or second derivative.

132 5 Nonlinear Programming algorithms

• Interval methods based on bracketing, bisection and the golden section
rule lead to a linear convergence speed.

• Interpolation methods like quadratic and cubic interpolation and the
method of Newton are usually faster, require information of increased or-
der and safeguards to force convergence for all possible instances.

• The method of Nelder–Mead and the Powell method can be used when
no derivative information is available and even when functions are not
differentiable. The latter method is usually more efficient, but we found
the first more in implementations.

• Many NLP methods use search directions and one-dimensional algorithms
to do line search to determine the step size.

• When (numerical) derivative information is used, the search direction can
be based on the steepest descent, conjugate gradient methods and quasi-
Newton methods.

• Nonlinear regression has specific methods that exploit the structure of the
problem, namely, Gauss–Newton and Levenberg–Marquardt method.

• For constrained problems there are several approaches; using penalty
approaches or dealing with the constraints in the generation of search
directions and step sizes. In the latter the iterative identification of active
(binding) constraints is a major task.

5.8 Exercises

1. Given f(x) = (x2 − 4)2, starting point x0 = 0 and accuracy ε = 0.1.
(a) Generate with the bracketing algorithm an interval [a, b] which con-

tains a minimum point of f .
(b) Apply the golden section algorithm to reduce [a, b] to an interval

smaller in size than ε which contains a minimum point.

2. Given Algorithm 23, function f(x) = x2 − 1.2x + 4 on interval [0, 4] and
accuracy ε = 10−3.

Algorithm 23 Grid3([a, b], f, ε)
Set k := 1, a1 := a and b1 := b
x0 := (a + b)/2, evaluate f(x0)
while (bk − ak > ε)

l := ak + 1
4
(bk − ak), r := ak + 3

4
(bk − ak)

evaluate f(l) and f(r)
xk := argmin{f(l), f(xk−1), f(r)}
ak+1 := xk − 1

4
(bk − ak), bk+1 := xk + 1

4
(bk − ak)

k := k + 1
endwhile

5.8 Exercises 133

(a) Perform three iterations of the algorithm.
(b) How many iterations are required to reach the final accuracy?
(c) How many function evaluations does this imply?

3. Given Algorithm 24 for finding a minimum point of 2D function f : R
2 →

R, function f(x) = 2x2
1 + x2

2 + 2 sin(x1 + x2) on interval [a, b] with a =
(−1,−1)T and b = (1, 0)T and accuracy ε = 10−3.

Algorithm 24 2DBisect([a, b], f, ε)
Set k := 0, a0 := a and b0 := b
while (‖bk − ak‖ > ε)

xk := 1
2
(ak + bk)

Determine ∇f(xk)

if ∂f
∂x1

(xk) < 0, ak+1,1 := xk,1 and bk+1,1 := bk,1

else ak+1,1 := ak,1 and bk+1,1 := xk,1

if ∂f
∂x2

(xk) < 0, ak+1,2 := xk,2 and bk+1,2 := bk,2

else ak+1,2 := ak,2 and bk+1,2 := xk,2

k := k + 1
endwhile

(a) Perform three iterations of the algorithm. Draw the corresponding
intervals [ak, bk] which enclose the minimum point.

(b) Give an estimate of the minimum point.
(c) How many iterations are required to reach the final accuracy?

4. Given function f(x) = x2
1+4x1x2+x2

2+ex2
1 and starting point x0 = (0, 1)T .

(a) Determine the steepest descent direction in x0.
(b) Determine the Newton direction in x0. Is this a descent direction?
(c) Is Hf (x0) positive definite?
(d) Determine the stationary points of f .

5. Given an NLP algorithm where the search directions are generated as fol-
lows, r0 := −∇f(x0), the steepest descent and further rk := −Mk∇f(xk),
with Mk := I + rk−1r

T
k−1, where I is the unit matrix.

(a) Show that Mk is positive definite.
(b) Show that rk coincides with the steepest descent direction if exact line

minimization is used to determine the step size.

6. Given quadratic function f(x) = x2
1 − 2x1x2 + 2x2

2 + −2x2 and starting
point x0 = (0, 0)T .
(a) Determine the steepest descent direction r0 in x0.
(b) Determine the step size in direction r0 by line minimization.
(c) Given that M0 is the unit matrix, determine M1 via the BFGS update.
(d) Determine corresponding BFGS direction r1 = −M1∇f(x1) and per-

form a line search in that direction.

134 5 Nonlinear Programming algorithms

(e) Show in general that the quasi-Newton condition holds for BFGS, i.e.,
rk = Mk+1yk.

7. Three observations are given, x = (0, 3, 1)T and y = (1, 16, 4)T . One
assumes the relation between x and y to be

y = z(x, β) = β1e
β2x. (5.37)

(a) Give an estimate of β as minimization of the sum of (yi − z(xi, β))2.
(b) Draw observations xi, yi and prediction z(xi, β) for β = (1, 1)T .
(c) Determine the Jacobian J(β).
(d) Determine the steepest descent direction in β0 = (1, 0)T .

8. Using the infinite norm in nonlinear regression leads to a nondifferentiable
problem minimizing f(β) = maxi |yi − z(xi, β)|. Algorithm 25 has been
designed to generate an estimation of β given data xi, yi, i = 1, . . . , m.
In the algorithm, Ji(β) is row i of the Jacobian. Data on the length x

Algorithm 25 Infregres(z, x, y, β0, ε)
k := 0
repeat

Determine f(βk) = maxi |yi − z(xi, βk)|
direction r := 0
for (i = 1, . . . , m) do

if (yi − z(xi, βk) = f(βk))
r := r + Ji(β)

if (z(xi, βk − yi) = f(βk))
r := r − Ji(β)

λ := 5
while (f(βk + λrk) > f(βk))

λ := λ
2

endwhile
βk+1 := βk + λrk

k := k + 1
until (‖βk − βk−1‖ > ε)

and weight y of four students is given; x = (1.80, 1.70, 1.60, 1.75)T and
y = (90, 80, 60, 70)T . The model to be estimated is y = z(x, β) = β1 +β2x
and initial parameter values β0 = (0, 50)T .
(a) Give an interpretation of the while-loop in Algorithm 25. Give an

alternative scheme for this loop.
(b) Draw in an x, y-graph the observations and the line y = z(x, β0).
(c) Give values β for which f(β) is not differentiable.
(d) Perform two iterations with Algorithm 25 and start vector β0. Draw

the obtained regression lines z(x, βk) in the graph made for point (b).

5.8 Exercises 135

(e) Give the formulation of an LP problem which solves the specific esti-
mation problem of minβ f(β).

9. In order to find a feasible solution of a set of inequalities gi(x) ≤ 0, i =
1, . . . , m, one can use a penalty approach in minimizing f(x) = maxi gi(x).
(a) Show with the definition that f is convex if gi is convex for all i.
(b) Given g1(x) = x2

1 − x2, g2(x) = x1 − x2 + 2. Draw the corresponding
feasible area in R

2.
(c) Give a point x for which f(x) is not differentiable.
(d) For the given set of inequalities, perform two iterations with Algorithm

26 and start vector x0 = (1, 0).
(e) Do you think Algorithm 26 always converges to a solution of the set

of inequalities if a feasible solution exists?

Algorithm 26 feas(x0, gi(x), i = 1, . . . , m)
Set k := 0, determine f(x0) = maxi gi(x0)
while (f(xk) > 0)

determine an index j ∈ argmaxi gi(xk)
search direction rk := −∇gj(xk)
λ := 1
while (f(xk + λrk) > f(xk))

λ := λ
2

endwhile
xk+1 := xk + λrk

k := k + 1
endwhile

10. Linear Programming is a special case of NLP. Given problem

max
X

f(x) = x1 + x2, X = {x ∈ R
2|0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 3}. (5.38)

An NLP approach to solve LP is to maximize a so-called logbarrier func-
tion Bμ(x) where one studies μ → 0. In our case

Bμ(x) = x1 + x2 + μ(ln(x1) + ln(x2) + ln(4 − x1) + ln(3 − x2)). (5.39)

Given points x0 = (4, 1)T and x1 = (1, 1)T .
(a) Show that x0 does not fulfill the KKT conditions of problem (5.38).
(b) Give a feasible ascent direction r in x0.
(c) Is f(x) convex in direction r?
(d) For which values of x ∈ R

2 is Bμ defined?
(e) μ = 1, determine the steepest ascent direction in x1.
(f) μ = 1, determine the Newton direction in x1.
(g) Determine the stationary point x∗(μ) of Bμ.
(h) Show that the KKT conditions are fulfilled by limμ→0 x∗(μ).

136 5 Nonlinear Programming algorithms

(i) Show that Bμ is concave on its domain.

11. Given optimization problem maxX f(x) = (x1 − 1)2 + (x2 − 1)2, X =
{x ∈ R

2|0 ≤ x1 ≤ 6, 0 ≤ x2 ≤ 4} and x0 = (3, 2)T . One can try to
obtain solutions by maximizing the so-called shifted logbarrier function
Gμ(x) = f(x) + μ

∑
i ln(−gi(x) + 1), which in this case is

Gμ(x) = (x1−1)2+(x2−1)2+μ(ln(x1+1)+ln(x2+1)+ln(7−x1)+ln(5−x2)).

(a) For which values of x ∈ R
2 is Gμ defined?

(b) Determine the steepest ascent direction of G3(x) in x0.
(c) Determine the Newton direction of G3(x) in x0.
(d) For which values of μ is Gμ concave around x0?

12. Find the minimum of NLP problem min f(x) = (x1 − 3)2 + (x2 −
2)2, g1(x) = x2

1 − x2 − 3 ≤ 0, g2(x) = x2 − 1 ≤ 0, g3(x) = −x1 ≤ 0
with the projected gradient method starting in point x0 = (0, 0)T .

13. Find the minimum of NLP problem min f(x) = x2
1 + x2

2, g(x) = e(1−x1) −
x2 = 0 with the sequential quadratic programming approach, starting
values x0 = (1, 0)T and u0 = 0.

6

Deterministic GO algorithms

6.1 Introduction

The main concept of deterministic global optimization methods is that in
the generic algorithm description (4.1), the next iterate does not depend on
the outcome of a pseudo random variable. Such a method gives a fixed se-
quence of steps when the algorithm is repeated for the same problem. There is
not necessarily a guarantee to reach the optimum solution. Many approaches
such as grid search, random function approaches and the use of Sobol num-
bers are deterministic without giving a guarantee. In Section 6.2 we discuss
the deterministic heuristic direct followed by the ideas of stochastic mod-
els and response surface methods in Section 6.3. After that we will focus on
methods reported in the literature that expose the following characteristics.
The method

• solves a problem in a finite number of steps up to a guaranteed accuracy,
• uses the mathematical structure of the problem to be solved.

Example 6.1. Given a problem where we know that feasible set X is a polytope
and the objective function f is concave. In Chapter 3 we have seen that the
global minimum points must be located in the extreme points. This means
one “only” has to consider the vertices to find the optimum. This is called
vertex enumeration. One is certain to find the optimum in a finite number
of steps. The problem of course is that “finite number of steps” may imply
more than a human’s lifetime.

The type of deterministic algorithms under consideration is not applicable for
black-box optimization problems. Stating the other way around, black-box
problems cannot be solved up to an accuracy guarantee. In the literature,
usually the argument is given that after evaluating k points, a k + 1 degree
polynomial can be derived that has a minimum far from the best point found.
Alternatively, consider a grid search on the pathological function in Figure 6.1;
we are far from the optimum. Structure gives information on how far off we

E.M.T. Hendrix and B.G.-Tóth, Introduction to Nonlinear and Global Optimization, 137
Springer Optimization and Its Applications 37, DOI 10.1007/978-0-387-88670-1 6,
c© Springer Science+Business Media, LLC 2010

138 6 Deterministic GO algorithms

Fig. 6.1. Pathological function; minimum far from best evaluated point

may be. The idea of the discussed deterministic methods is to guarantee
the effectiveness of reaching the set of global minimum points. Analysis of
effectiveness may tell us that it can take quite some computational effort to
reach this target.

Example 6.2. The Piyavskii–Shubert algorithm introduced in Chapter 4 is an
example of an algorithm using structure; it requires knowledge of a Lipschitz
constant L. It provides a guaranteed distance δ of the function value of
the final outcome to the optimum objective function value. Assume that
f is constant apart from a small v-shape around the minimum. Then the
algorithm requires a full grid over the search interval [l, r]. Given a constant
L, the algorithm builds a binary tree with 2D + 1 trial points, where D =
�(ln(L × (r − l)) − ln δ)/ ln(2)� − 1, to reach the guaranteed δ-accuracy. So
one knows exactly the finite number of steps.

Deterministic GO methods that aim at a guaranteed accuracy work in a
similar way as methods in Combinatorial Optimization. The concepts are
based on enumeration, generation of cuts and bounding in such a way that
a part of the feasible area is proved not to contain any optimum solution.
In branch and bound, it is important to obtain lower bounds of the function
f on subregions that are as sharp as possible; the higher a lower bound the
better. Section 6.4 describes various important mathematical structures from
the literature and discusses how they can be used to derive lower bounds.
Section 6.6 illustrates how such bounds can be used in GO branch and bound.
In Section 6.7 the concept of cutting planes is illustrated.

6.2 Deterministic heuristic, DIRECT

Heuristics are usually understood as algorithms that provide an approximate
solution without any guarantee it is close to the optimal solution. In GO,
often heuristics are associated with random search techniques. An easy to

6.2 Deterministic heuristic, direct 139

understand deterministic heuristic is grid search. Its efficiency is easy to
analyze as the number of evaluated points grows exponentially in the dimen-
sion. More sophisticated deterministic heuristics are due to random function
approaches and radial basis functions discussed in Section 6.3. What is generic
in heuristics is that one tries to trade-off local and global search over the fea-
sible area.

The introduction of the DIviding RECTangles algorithm by Jones et al.
(1993) and also follow-up literature mention Lipschitz constants and a convex
hull. Both concepts are not necessary to describe the basic algorithm. The
objective function is not required to be Lipschitz continuous, nor continuous,
although it would be nice if it is around the global minimum points. Neither
is the idea of dividing rectangles necessary, although it is convenient for the
explanation. The algorithm generates a predefined number of N sample points
over a grid in a box-constrained feasible area starting from the scaled midpoint
x1 = 1

2 (1, 1, . . . , 1)T . The algorithm stays close to the generic description (4.1)
in that all sample points x1, x2, . . . , xk are stored as potential places where
refinement may take place. Refinement of xk consists of sampling more in a
region around xk.

To decide on promising regions where sampling takes place, for each sample
point xk a possibly changing radius vector uk can be stored to describe the
rectangular region (xk − uk, xk + uk) associated with xk. Its length ||uk||
and function value f(xk) determine whether xk is a candidate for refinement.
Only one parameter α is used to influence the local versus global trade-off.
Three choices describe the algorithm:

• How to select points for refinement.
• How to sample around a chosen point.
• How to update information uk and the associated rectangle.

We describe each choice, the complete algorithm and illustrate it.

6.2.1 Selection for refinement

The way of sampling over grid points gives that for each iteration a finite
number M of sizes of vectors u exist that can be kept ordered s1 > s2 > · · · >
sM . Each point and associated uk falls in a size class Sj corresponding to
size sj , k ∈ Sj . The bi-criterion Figure 6.2 is of importance in the selection.

Algorithm 27 Select subalgorithm select(f1, . . . , fk, ||u1||, . . . , ||uk||, α)
Determine fU = minl fl

Sort ||u1||, . . . , ||uk|| and create classes S1, . . . SM with sizes s1 > s2 > . . . > sM

m1 := mink∈S1 fk, j := 1
repeat select argmink∈Sj

fk

j := j + 1, mj := mink∈Sj fk

until (mj ≥ fU − α|fU | + sj

sj−1
(mj−1 − fU + α|fU |))

140 6 Deterministic GO algorithms

In this figure, for each sample point k, on the x-axis one can find the current
rectangle size ||uk|| and on the y-axis its function value f(xk). The idea is
that by generating new points, current sample points move to smaller sizes,
such that the points walk to the left in the figure. The sizes that occur are
not equidistant, but as we will see in the way uk is updated, they contain a
certain pattern. One is interested in sampling further around relatively low
points (f(xk) is low) and in relatively unexploited areas (||uk|| is big). In a
Pareto-like fashion, all nondominated points in the lower right are selected
for refinement. At first instance this would mean to select all points that
correspond to mj = mink∈Sj f(xk). Here the parameter α is coming in to
avoid sampling too locally. On the y-axis, point fU −α|fU | is marked, where
fU = mink f(xk) is the record value. This point is added to the so-called
nondominated points. A line is drawn from this point upwards such that the
resulting curve remains convex. Let us see how this can be done. We start in
the class of biggest length S1 by selecting the point corresponding to minimum
m1 and proceed over the classes j with smaller Sj up to

mj ≥ fU − α|fU | + sj

sj−1
(mj−1 − fU + α|fU |), (6.1)

such that mj is higher than the line through fU−α|fU | and mj−1. That means
that the last lower point(s) are possibly not used for refinement, because the
space around it is not empty enough. As stated, this is steered with the only
parameter α. In Figure 6.2, M = 4 sizes can be distinguished of a vector

fk

*

*

*

*

*
*

*

*
*

*

*

*

*

*

* *m1

sM-1sM s1s2
size
||uk||

*
*f U

f U-α| f U |

Fig. 6.2. Function value and size of region around sample points

length. The best value mM = fU fulfills (6.1) and the corresponding best
point found is not selected for refinement. Possibly in further iterations it is,
as the selected points move to classes with smaller sizes. Given the function
values f1, . . . , fk of the sample points and the sizes of their associated regions

6.2 Deterministic heuristic, direct 141

||u1||, . . . , ||uk||, we can now determine which sample points are going to be
a basis for further sampling. Subalgorithm 27 outlines the procedure. Now
that we know where to generate new grid points, the question is how.

6.2.2 Choice for sampling and updating rectangles

The refinement of a point x means that we sample more grid points around
it in its hyperrectangle (x − u, x + u). Moreover, the old point x as well as
the new sample points get a radius vector assigned smaller in length than u.
The sampling around a point x is also steered by the radius vector u. Now
not the size is the most important, but the coordinates i = 1, . . . , n and the
corresponding length of the elements ui. To avoid confusion, we leave out the
iteration counter k of the points and focus on the element index i. Due to
the process, several coordinates will have the same size of ui. Therefore, the
index set I = argmaxi ui represents the maximum size edges of the associated
hyperrectangle (x− u, x + u). In the direct algorithm this index set plays a
big role in determining the new grid points to be evaluated and the way the
radius vector is allocated to the points.

The set of new grid points is defined by

G = {x ± 2
3
uiei ∀i ∈ I}, (6.2)

where ei is the ith unit vector. They are evaluated and added to the set of
sample points. The number of evaluated points grows to k := k+|G| = k+2|I|.

The last item is how to assign radius vectors to the new sample points and
how to update the old one. The rule for old refined point x is relatively easy:

ui :=
1
3
ui, i ∈ I, ui := ui, i /∈ I. (6.3)

Algorithm 28 Refine subalgorithm refine(x, u, global k, N)
Determine I := argmaxi ui set of maximum sizes of rectangle
for (i ∈ I) do sample around x

Evaluate f(x − 2
3
uiei) and f(x + 2

3
uiei)

wi := min{f(x − 2
3
uiei), f(x + 2

3
uiei)}

k := k + 2
if (k ≥ N), STOP

for (i ∈ I), vi := u inherit old vector
repeat select η := argmaxi∈I wi assign radius vectors u

for (i ∈ I) do
viη := 1

3
uη reduce size in coordinate η

uη := 1
3
uη also for original rectangle

Remove η from I
Store xk−1 := x − 2

3
uηeη, uk−1 := vη

Store xk := x + 2
3
uηeη, uk := vη

until (I = ∅)

142 6 Deterministic GO algorithms

x1x1
* *

*

*

*

*

*

*

*

**
x2 x3

x5

x4

u1
u2 u1 u3

u4

u5

Fig. 6.3. Refinement of x1, u1 within direct

For the new points, values wi := min{f(x − 2
3uiei), f(x + 2

3uiei)} ∀i ∈ I are
determined. The idea is that new points in coordinate directions with a big
value of wi get a bigger rectangle assigned than the coordinates with lower
value of wi. The lowest wi coordinate gets the same size rectangle as the old
point. The way this can be described is as follows. First the new points inherit
the old radius vector u. Then they get a reduction for each coordinate with a
higher wi value. Iteratively find η = argmaxi∈I wi, give all i ∈ I a reduction
of 1

3 in the coordinate direction η and remove the new points in coordinate η
from the index list I. In this way, the old rectangle is partitioned into new
ones around the new and old sample points. The exact pseudocode is given
in Algorithm 28. The subalgorithm also has to do global bookkeeping. One
should stop sampling when the budget of function evaluations N is exhausted.
Moreover, we have to store the new points in the complete list of samples.

Example 6.3. Consider f(x) = 4x2
1 − 2.1x4

1 + 1
3x6

1 + x1x2 − 4x4
2, the six-hump

camel-back function on rectangular feasible area [−2, 4]× [−3, 3]. We will not
scale the set, such that x1 = (1, 0) and u1 = (3, 3) with ‖u1‖ = 3

√
2. As both

elements I = 1, 2 of u (and sides of the rectangle) are as big, I = {1, 2} and
four new points are generated; G = {(−1, 0), (3, 0), (1,−2), (1, 2)}. The new
rectangles and corresponding u vectors are determined by w1 = f(x2) = 2.23
being smaller than w2 = f(x4) = 48.23. The result of the refinement of x1, u1

is depicted in Figure 6.3.

6.2.3 Algorithm and illustration

Now that we have the basic operations of the algorithm, they can be com-
bined to describe the complete direct algorithm. Usually, the instance to
be solved is considered to be scaled between 0 and 1 to reduce notation. The
algorithm requires storing all evaluated points xk, their function value fk and
the current radius vector uk. Notice that in our description the global book-
keeping is done in the refinement step that is keeping hold of the budget N of
function evaluations not to be exceeded. The complete algorithm is outlined
in Algorithm 29.

6.2 Deterministic heuristic, direct 143

N = 30

N = 300

fk

fk

Sample pointsFunction values versus sizes

size ||uk||

size ||uk||

Fig. 6.4. N = 30 and N = 300 sample points of direct, α = 10−4. (Left) the
found function values fk versus the length of the allocated vectors uk. (Right) the
sampled points xk in the domain. Instance f(x) = 4x2

1 − 2.1x4
1 + 1

3
x6

1 + x1x2 − 4x4
2

on [−2, 4] × [−3, 3]

Example 6.4. We proceed with the six-hump camel-back function of Example
6.3 on feasible area [−2, 4]× [−3, 3]. Algorithm 29 is executed with α = 10−4.
Resulting sample points after N = 30 and N = 300 function evaluations are
depicted in Figure 6.4. Notice first of all that the graph that gives the function
values fk versus the length of uk is not as nicely scaled as the illustrative vari-
ant in Figure 6.2. Sample points with high function values are only selected

Algorithm 29 algorithm DIRECT(f, α, N)
k; = 1, x1 = 1

2
(1, 1, . . . , 1)T , u1 = 1

2
(1, 1, . . . , 1)T , f1 := f(x1)

repeat
J := select(f1, . . . , fk, ||u1||, . . . , ||uk||, α)
for (j ∈ J) do

refine(xj, uj , k, N)
until (STOP)

144 6 Deterministic GO algorithms

for refinement in a later stage of the algorithm. The occurring sizes sj for
two-dimensional instances are either

√
2 or

√
10 times a power of 1

3 . In our
run, larger sizes occur, as the feasible set was not scaled between 0 and 1.

Depending on the parameter value for α, more or less sampling is done
around points with the lowest function values and less or more sampling is
done on a grid in empty areas. In Figure 6.4, the resulting grid is clearly
visible. Most of the higher function value points have an associated size of
‖uk‖ = 0.47, whereas the lower value sample points cluster around the two
global minimum points.

Further research was done on the convergence speed of the basic algorithm
leading to several suggestions for modifications. Its use was promoted due to
matlab implementations for research and application. See, e.g., Finkel and
Kelley (2006); Björkman and Holmström (1999).

6.3 Stochastic models and response surfaces

As function evaluations may be time consuming, many researchers have been
studying how to best use the information of the evaluated points in order
to generate a most promising next sample point xk+1. The idea to use a
stochastic model to select the next point to be evaluated is usually attributed
to Kushner (1962). Given the evaluated sample points pi and their function
value yi, i = 1, . . . , k, the objective function is modeled as a random variable
ξk(x). Essential is that in fact the model ξk should coincide with the evaluated
function values, so P (ξk(pi) = yi) = 1, i = 1, . . . , k. The next point xk+1 to
be evaluated is based on maximizing for instance an expected utility value
U(·):

xk+1 = argmax
x

E[U(ξk(x)]. (6.4)

Also the term random function approach has been used. Although the
terms stochastic and random are used, the resulting algorithms are basically
deterministic as no random effect is used to generate xk+1. The numerous
possibilities to define ξk and the choice of the criterion in (6.4), lead to
follow-up research in what we would now call the Lithuanian and Russian
school. Mockus dedicated a book to the approach, Mockus (1988), and An-
tanas Žilinskas elaborated many variants as explained in his books Törn and
Žilinskas (1989) and Zhigljavsky and Žilinskas (2008). He investigated the
properties of what is called the P-algorithm.

Let fU = mini yi be the best function value found thus far and δk be a kind
of positive aspiration level on improvement in iteration k. The P-algorithm
takes as the next iterate the point where the probability of reaching a value
below fU − δk is maximum:

xk+1 = argmax
x

P (ξk(x) < fU − δk). (6.5)

6.3 Stochastic models and response surfaces 145

The ease of solving (6.5) depends on the construction of the stochastic model.
To get a feeling, it is to be noted that if ξk is Gaussian, we capture the model
into the mean mk(x) and variance s2

k(x) and write (6.5) as the equivalent

xk+1 = argmax
x

fU − δk − mk(x)
sk(x)

. (6.6)

Notice that sk(pi) = 0, as ξk is assumed to be known in these points.
The idea of the random function is close to what in spatial statistics is

called “Kriging”; see Ripley (1981). Such models are based on interpolating
measurements. As such the concept of interpolation or response surface mod-
eling is not the most appealing. Consider that we would fit a surface through
the measurements of Figure 6.1. The minimum of any fitted curve would
not be close to the peak. Recently, several papers generated more interest in
random function approaches by linking them to response surfaces and radial
basis functions. First, the paper of Jones et al. (1998) linked the work of
many researchers and the idea of response surfaces with stochastic models.
Second, the paper of Gutmann (2001) elaborated the radial basis function
interpolation ideas of Mike Powell with its use in Global Optimization. It
was directly recognized that the concepts are close to random function ap-
proaches. Later Žilinskas showed the equivalence with the P-algorithm. Due
to the implementation in software and the application to practical problems,
the concepts became more known.

The idea of radial basis functions is to interpolate f at x given the function
values yi at pi by taking values more into account when they are closer, i.e.,
r = ‖x−pi‖ is smaller. This is done by using a so-called radial basis function,
for instance θ(r) = exp(−r2). Now define

ϕk(x) =
∑

i

wiθ(‖x − pi‖), (6.7)

where the k weights wi can be determined by equating ϕk(pj) = yj, i.e., by
solving w = Θ(p)−1yT . The entrances of matrix Θ(p) are given by Θij(p) =
θ(‖pi − pj‖). Notice that if the iterations k proceed, this matrix is growing.
As we are dealing with an interpolation type of description, the minimum of
ϕk will tend to the best point found.

Hans-Martin Gutmann elaborated many variants, and we now describe
an idea close to the earlier sketched P-algorithm. In that sense we should
define an aspiration level fU − δ. However, instead of thinking in stochastic
models or maximum likelihood, the terminology is that of “bumpiness” and
a so-called seminorm wT Θ(p)w = yΘ−1(p)yT to be minimized. This means
that a point x is chosen for xk+1, such that adding (x, fu − δ) to p, y should
be “most appropriate” in terms of minimizing the seminorm. Notice that if
x = pi, then the matrix Θ(p, x) is singular and the seminorm infinite. Writing
this in one expression,

xk+1 = min
x

(y, fU − δ)Θ−1(p, x)(y, fU − δ)T . (6.8)

146 6 Deterministic GO algorithms

Adding xk+1 to the measurement points pk+1, yk+1 = f(xk+1) defines a special
case of an algorithm that uses the radial basis function as response surface to
find the global minimum. We illustrate with an example.

f

seminormresponse surface

4

3*

*
*

*
*

*
*

x

x

Fig. 6.5. Response surface based on three and four observations in the left of the
graph. Corresponding seminorm (6.8) on the right. Its minimum point x is used to
select the next sample point for the response surface

Example 6.5. Consider function f(x) = sin(x) + sin(3x) + ln(x) on interval
[3, 7]. Three points have been evaluated, namely, p1 = 3.2, p2 = 5 and p3 = 6.
In Figure 6.5 we first see the corresponding graph of response surface ϕ3(x) in
(6.7) based on θ(r) = exp(−r2). By using fU = 0.76 = f(6) and choosing δ =
0.1 now the seminorm of (6.8) is defined. Its graph is given in the upper right
of Figure 6.5. One can see that at the observation points pi it goes to infinity.
Its minimum is used as next measurement point p4 = xk+1 = 6.12 resulting
in the improved response surface ϕ4(x). The corresponding seminorm has a
minimum point in x5 = 5.24.

The idea of the random function approach and the use of the seminorm is that
the function evaluations are so expensive that they outweigh the increasing
computation we have to do due to taking information of all evaluated points
into account; the matrix Θ(p) gets bigger and bigger. The example shows

6.4 Mathematical structures 147

how in order to find the following evaluation point, we have to solve another
global optimization problem.

6.4 Mathematical structures

The literature on deterministic Global Optimization contains lots of analysis
on mathematical structures, such as quadratic, concave, bilinear structures
that can be used for the construction of specific algorithms. An overview is
provided by Horst and Tuy (1990). It goes too far to mention all of the litera-
ture which appeared in the field. Nevertheless, it is worthwhile to mention the
appearance of another summary, Horst and Pardalos (1995), which includes
more than deterministic approaches only. Further monographs are appearing.

We focus on how structural information can be obtained and used. More-
over, a new aspect is that we distinguish two types of structures, A and B.

A. Analysis necessary to reveal structure
This class of structures contains among others:

• Concavity
• d.c.: difference of convex functions
• Lipschitz continuity

Although not always easy to verify, concavity has the strong advantage that
no further value information is required to exploit this structure. On the
contrary, nearly every practical objective function is as well d.c. as Lipschitz
continuous. However, the use of the structures requires a so-called d.c. de-
composition for the first and a so-called Lipschitz constant for the second.
This will be illustrated.

B. Mathematical expression reveals structure
The following structures are used:

• Quadratic functions
• Bilinear functions
• Multiplicative functions
• Fractional functions
• Interval arithmetic on explicit expressions

The classes are not mutually exclusive, but mainly a view to approach the
function to be minimized or bounded (cut). One structure can be translated
to another. The main objective is to derive bounds on a set. A so-called
minorant of f on X is a function ϕ such that ϕ(x) ≤ f(x), ∀x ∈ X . A convex
envelope is specifically a minorant which is convex and sharp, i.e., there is no
better one: there does not exist a convex g with ϕ(x) ≤ g(x) ≤ f(x), ∀x ∈ X
and ∃x ∈ X, g(x) > ϕ(x). Minorants and convex envelopes are used to
derive bounds.

148 6 Deterministic GO algorithms

6.4.1 Concavity

(x)

f(x)

-1

0

1

2

3

4

5

-1 0 1 2

Fig. 6.6. Concave function f and affine minorant ϕ

Often, the term nonconvex optimization is related to global optimization.
This refers directly to Theorem 3.10: If f is a convex function on convex set
X , there is only (at most) one local and global minimum. The most com-
mon structure of multiextremal problems is therefore nonconvexity. On the
other hand, minimizing a nonconvex objective function f , does not necessar-
ily imply the existence of multiple optima but may explain the occurrence.
Concavity can be called an extreme form of nonconvexity. A property used by
deterministic methods is related to Theorem 3.11: If f is a concave function
on compact X , the local minimum points coincide with extreme points of X .

Example 6.6. Given concave function f(x) = 4−x2 on feasible set X = [−1, 2].
The extreme points of the interval are the minimum points; see Figure 6.6.

When in general the feasible set X is a polytope, then in a worst case
situation, every vertex may correspond to a local minimum. Some algorithms
are based on performing an efficient so-called vertex enumeration.

Minimizing a concave objective function on a closed convex feasible set
is called concave programming. Figure 6.6 also shows the possibility of con-
structing a so-called affine underestimating function ϕ(x), based on the defini-
tion of concave functions. Given two iterates xk and xl and their correspond-
ing function values fk = f(xk) and fl = f(xl), the function value for every
convex combination of the iterates, x = λxk +(1−λ)xl, is underestimated by

f(x) = f(λxk + (1 − λ)xl) ≥ λfk + (1 − λ)fl = ϕ(x), 0 ≤ λ ≤ 1. (6.9)

6.4 Mathematical structures 149

Example 6.7. For Example 6.6 this works as follows. Let xk = 2 and xl = −1.
An arbitrary point x in [−1, 2] is a convex combination of the extreme points:
x = λxk + (1 − λ)xl = 2λ − (1 − λ) → λ = (x + 1)/3. Now affine function
ϕ(x) = λf(2) + (1 − λ)f(−1) = 3(1 − λ) = 2 − x underestimates f(x) on
[−1, 2].

The minorant ϕ(x) can be used to derive lower bounds of the minimum ob-
jective function value on a bounded set. We illustrate its use in branch and
bound in Section 6.6.1 and for cutting planes in Section 6.7.

Concavity of the objective function from a given practical model formu-
lation may be hard to identify. Concavity occurs for instance in situations
of economies of scale. Following Theorem 3.8, in cases where f is two times
differentiable one could check whether the eigenvalues of the Hessean are all
nonpositive. The eigenvalues, representing the second derivatives, give a mea-
sure how concave the function is. Notice that the affine underestimator ϕ(x)
does not require the value information of the eigenvalues. This is a strong
point of the structure. Notice furthermore that the underestimation becomes
worse, less tight, when f is more concave, the second-order derivatives are
more negative.

6.4.2 Difference of convex functions, d.c.

Often, a function can be written as the difference of two convex functions,
f(x) = f1(x) − f2(x). For the function f(x) = 3/(6 + 4x) − x2 in Figure 6.7,
which has two minima on the interval [−1, 1], this is easy to see. Splitting
the function in a difference of two convex functions is called a d.c. decom-
position. For the example function, a logical choice is to consider f(x) as
the difference of f1(x) = 3/(6 + 4x) and f2(x) = x2. The construction of a
convex underestimating function of f proceeds as follows. The concave part
−f2(x) is underestimated by an affine underestimating function ϕ2(x) based
on (6.9) and added to the convex part f1. In this way a convex underestimat-
ing function f1 +ϕ2 appears, which can be used to derive lower bounds of the
objective function on bounded sets.

Example 6.8. For the function f(x) = 3/(6 + 4x)− x2, ϕ2(x) = −1 underesti-
mates −f2(x) = −x2 resulting in the convex minorant ϕdc1 = 3/(6 + 4x) − 1
in Figure 6.7. The decomposition is not unique. Often in the literature, the
argument is used that the second derivative may be bounded below; in this
case for instance by a value of −8. A decomposition can be constructed by
adding a convex function with a second derivative of 8 and subtracting it
again: f1(x) = f(x) + 4x2 and f2(x) = 4x2. The resulting convex minorant
ϕdc2 = f(x) + 4x2 − 4 depicted in Figure 6.7, is less tight than the first one.

This example teaches us several things. Indeed, nearly every function can be
written as d.c. by adding and subtracting a strong convex function. The con-
dition that the second derivative is bounded below is sufficient. For practical

150 6 Deterministic GO algorithms

dc1

dc2

f(x)

-4

-3

-2

-1

0

1

-1 -0.5 0 0.5 1

Fig. 6.7. Two convex minorants of a d.c. function

algorithmic development, first a d.c. decomposition has to be constructed. If
the lower bound on the second derivative is used, value information is neces-
sary.

Another related structure is the so-called concept of reverse convex pro-
gramming, i.e., minimizing a convex function on a convex set intersected by
one reverse convex constraint; the constraint defines the complement of a con-
vex set. A d.c. described function on a convex set X can be transformed to a
reverse convex structure by defining the problem:

min z + f1(x), z ≥ −f2(x), x ∈ X. (6.10)

The dimension of the problem increases by one, as the variable z is added.

Example 6.9. In Example 6.8, the transformation may lead to reverse convex
program min z + 3/(6 + 4x), z ≥ −x2, x ∈ [−1, 1].

Both structures require the same type of approaches. For further theoretical
results on d.c. programming we refer to the overview by Tuy (1995).

6.4.3 Lipschitz continuity and bounds on derivatives

In nearly every practical case, the function f to be optimized is also so-called
Lipschitz continuous. Practically it means that its slope is bounded on the
feasible region X . More formally, there exists a scalar L such that

| f(x1) − f(x2) |≤ L‖x1 − x2‖ ∀x1, x2 ∈ X. (6.11)

6.4 Mathematical structures 151

Mainly due to the one-dimensional algorithms of Shubert (1972) and Danilin
and Piyavskii (1967), Lipschitz continuity became well known in Global Op-
timization. The validation whether a function is Lipschitz continuous is, in
contrast to concavity, not very hard. As long as discontinuities, or “infinite
derivatives” do not occur, e.g., when f is smooth on X , the function is also
Lipschitz continuous. The relation with derivatives (slopes) is given by

L ≥ | f(x1) − f(x2) |
‖x1 − x2‖ ∀x1, x2 ∈ X. (6.12)

For differentiable instances L can be estimated by

L = max
x∈X

‖∇f(x)‖. (6.13)

The requirement of value information is more obvious using Lipschitz con-
tinuity in algorithms than using d.c. decomposition. Notice that (6.11) also
applies for any overestimate of the Lipschitz constant L. Finding such a
guaranteed overestimate is in general as difficult as the original optimization
problem. In test functions illustrating the performance of Lipschitz optimiza-
tion algorithms, trigonometric functions are often used so that estimates of
the Lipschitz constant can be derived easily. As illustrated by sawtooth cover
Figure 4.5 and Algorithm 4, the guarantee not to miss the global optimum is
based on the lower bounding

f(x) ≥ fk − L‖x − xk‖ (6.14)

at iteration points xk. Although the Piyavskii–Shubert algorithm was for-
mulated for one-dimensional functions, it stimulated many multidimensional
elaborations. It is interesting from a geometric perspective to combine the
cones (6.14) of all iterates xk, fk. A description of the corresponding algo-
rithm is given by Mladineo (1986). One can observe various approximations
in the literature to deal with the multivariate problem seen from a branch
and bound perspective. Among others, Meewella and Mayne (1988) change
the norm and obtain lower bounds on subsets via Linear Programming. In
Pintér (1988) and Sergeyev (2000), one can observe approaches that focus on
the diagonal of box-shaped regions.

Another interesting direction is due to the work of Breiman and Cutler
(1993). Their focus is on a bound K on the second derivative, such that
−K ≤ f ′′(x), x ∈ X or more general (in higher dimensions) an overestimate
of the negative of the minimum eigenvalue of the Hessean. The analogy of
(6.14) is given by

f(x) ≥ fk + f ′
k(x − xk) − 1

2
K(x − xk)2 (6.15)

for a function of one variable and in general

152 6 Deterministic GO algorithms

f(x)

x1 f1

x2 f2

x3 f3

x4 f4

x5 f5

(x)

Fig. 6.8. Breiman–Cutler algorithm for f(x) = sin(x)+sin(3x)+ln(x) given K = 10

f(x) ≥ fk + ∇fT
k (x − xk) − 1

2
K‖x − xk‖2. (6.16)

Now the underestimating function ϕ(x) can be taken as the maximum over k
of the parabolas (6.16). The algorithm of Breiman–Cutler takes iteratively a
minimum point of ϕ as next iterate.

Example 6.10. The absolute value of the second derivative of f(x) = sin(x) +
sin(3x) + ln(x) is bounded by 10 on the interval [3, 7]; K = 10. Figure 6.8
depicts what happens if we take for the next iterate a minimum point of
ϕ(x) = maxk{fk + f ′

k(x − xk) − 1
2K(x − xk)2}.

In more-dimensional cases this leads to interesting geometric structures. Bill
Baritompa studied additions on cutting away regions where the optimum can-
not be. Several articles (e.g., Baritompa, 1993) show what he called the
“southern hemisphere” view that it is not necessary to have a global overes-
timate of either Lipschitz constant L or second derivative K. Knowing the
local behavior around the global minimum point x∗ is sufficient and usually
better to cut away larger areas. Let K∗ be a value

f(x) ≤ f∗ +
1
2
K∗‖x − x∗‖2, ∀x. (6.17)

Given an iterate xk, fk (6.17) tells us about the optimum x∗, f∗ that f∗ ≥
fk − 1

2K∗‖xk − x∗‖2. This means that the area under

ϕ(x) = max
k

{fk − 1
2
K∗‖x − xk‖2} (6.18)

6.4 Mathematical structures 153

(x)

f(x)

x1 f1

x2 f2

x3 f3

x4 f4

x5 f5

Fig. 6.9. Iterate is a minimum of (6.18) for f(x) = sin(x) + sin(3x) + ln(x)

cannot contain the global minimum. The interesting aspect is that ϕ is not
necessarily an underestimating function of f .

Example 6.11. For function f(x) = sin(x) + sin(3x) + ln(x) we take K∗ = 10,
as the maximum value of the second derivative is taken close to x∗. Iteratively
taking a minimum point of (6.18) does not result in a lower bounding function,
but neither cuts away the global minimum. The minimum point of ϕ is a lower
bound for the minimum of f . The process is illustrated in Figure 6.9.

The same reasoning applies for

L∗ = max
x∈X

| f(x) − f(x∗) |
‖x − x∗‖ (6.19)

where the optimum cannot be below the sawtooth “cover” defined by

ϕ(x) = max
k

{fk − L∗‖x − xk‖}. (6.20)

The sawtooth cover with slope L∗ is not necessarily an underestimating func-
tion everywhere, but neither cuts away the global minimum.

Example 6.12. For the function f(x) = sin(x) + sin(3x) + ln(x) on the inter-
val X = [3, 7] the maximum L∗ = 2.67 of (6.19) is attained for boundary
point x = 3 as sketched in Figure 6.10. Taking L∗ = 2.67 in the Piyavskii–
Shubert algorithm gives that the tooth of the first iteration directly runs

154 6 Deterministic GO algorithms

f1

f2

L*

f3

f4

f5

f6

f7

Fig. 6.10. Piyavskii–Shubert for f(x) = sin(x) + sin(3x) + ln(x) given L∗ = 2.67

through the minimum, which is approached very fast. Iterate x6 = 3.76
approaches minimum point x∗ = 3.73 very close and in the end, only the in-
tervals [x1, x6] = [3, 3.76] and [x6, x4] = [3.76, 3.86] are not discarded. Figure
6.10 shows that the sawtooth cover does not provide a minorant, although in
the end we have the guarantee to enclose the global minimum point.

The use of structures is very elegant as such, as illustrated here. On the other
hand, practically value information is required. We now discuss the second
type of structures, where such information is relatively easy to obtain.

6.4.4 Quadratic functions

Quadratic functions have a wide applicability in economics and regression.
Also in the literature on mathematical optimization they get a lot of attention.
As introduced in Chapter 3 equation (3.16), they can be written as

f(x) = xT Ax + bT x + c. (6.21)

It is not difficult to recognize quadratic functions in a given model struc-
ture, as only linear terms and products of two decision variables occur in the
model description. The matrix A is a symmetric matrix which defines the
convexity of the function in each direction. Eigenvectors corresponding to
positive eigenvalues define the directions in which f is convex, negative eigen-
values give the concavity (negative second derivatives) of the function in the
direction of the corresponding eigenvectors. Depending on the occurrence of

6.4 Mathematical structures 155

positive and negative eigenvalues of A, the function can be either concave (all
eigenvalues negative), convex (all positive) or indefinite (positive as well as
negative eigenvalues).

If the function is concave, corresponding affine underestimation can be
used, as will be illustrated in Section 6.6. The eigenvalues in that case give
an indication as to the quality of the underestimation; more negative values
give a less tight underestimation. The d.c. view can easily be elaborated
by splitting the function in a convex and concave part due to a so-called
eigenvalue decomposition. Also the value information for the Lipschitzian
view can be found relatively easy. As the derivative 2Ax + b is linear, the
length ‖2Ax + b‖ is convex, such that its maximum can be found in one of
the extreme points of a subset under consideration. A bound on the second
derivative can be directly extracted from the eigenvalues of A.

In quadratic programming problems, f is minimized on a polyhedral set X .
Due to the linearity of the derivatives, the Karush–Kuhn–Tucker conditions
for the local optima are a special case of the so-called Linear Complementarity
Problem, which is often discussed in the optimization literature. For a further
overview, see Horst et al. (1995).

Example 6.13. Consider f(x) = 3x2
1 − 3x2

2 + 8x1x2 from Example 3.8; A =(
3 4
4 −3

)
and b = 0. A Lipschitz constant over a bounded set can be found

by maximizing ‖2Ax + b‖2 = 4xT AT Ax = 100x2
1 + 100x2

2, which is a convex
function. The eigenvalues of A are μ1 = 5 and μ2 = −5 with eigenvectors
r1 = 1√

5
(2, 1)T and r2 = 1√

5
(1,−2)T . An eigenvalue decomposition lets A be

written as

A =
1
5

(
2 1
1 −2

)(
5 0
0 −5

)(
2 1
1 −2

)
. (6.22)

From a d.c. decomposition point of view this means that now f(x) = xT Ax
can be written as f(x) = f1(x) − f2(x) by taking

f1(x) = xT 1
5

(
2 1
1 −2

)(
5 0
0 0

)(
2 1
1 −2

)
x = 4x2

1 + x2
2 + 4x1x2

and

f2(x) = xT 1
5

(
2 1
1 −2

)(
0 0
0 5

)(
2 1
1 −2

)
x = x2

1 + 4x2
2 − 4x1x2.

6.4.5 Bilinear functions

For bilinear functions, the vector of decision variables can be partitioned into
two groups (x, y) and the function can be written in the form

f(x, y) = cT x + xT Qy + dT y, (6.23)

156 6 Deterministic GO algorithms

in which Q is not necessarily a square matrix. The function is linear whenever
either the decision variables x or the decision variables y are fixed. Actually,
bi-affine would be a better name, as the function becomes affine in one group
of variables when the other group is fixed. The roots of bilinear programming
can be found in Nash (1951), who introduced game problems involving two
players. Each player must select a mixed strategy from fixed sets of strate-
gies open to each, given knowledge of the payoff based on selected strategies.
These problems can be treated by solving a so-called bilinear program. Bi-
linear problems are interesting from a research point of view, because of the
numerous applied problems that can be formulated as bilinear programs; such
as dynamic Markovian assignment problems, multicommodity network flow
problems, quadratic concave minimization problems. For an overview, we
refer to Al-Khayyal (1992). One of the properties is that the optimum is
attained at the boundary of the feasible set.

The underestimation is based on so-called Linear Programming relax-
ations. The basic observation is that for a product of variables xy on a box
x ∈ [lx, ux] and y ∈ [ly, uy]

xy ≥ lxy + lyx − lxly
xy ≥ uxy + uyx − uxuy.

(6.24)

Example 6.14. Consider the function f(x, y) = −2x − y + xy on the box con-
straint 0 ≤ x ≤ 4 and 0 ≤ y ≤ 3. The function has two minima attained in
the vertices (0, 3)T and (4, 0)T . Elaboration of (6.24) gives

xy ≥ 0
xy ≥ 3x + 4y − 12.

So the function ϕ(x, y) = max{0, 3x+4y−12} is a minorant of xy on 0 ≤ x ≤ 4
and 0 ≤ y ≤ 3. Function f(x, y) can be underestimated by −2x− y + ϕ(x, y).

The use of the minorant will be illustrated in Section 6.6.

6.4.6 Multiplicative and fractional functions

A function is called a multiplicative function when it consists of a multipli-
cation of convex functions. Besides the multiplication of two variables, as in
bilinear programming, higher-order terms may occur. A multiplicative func-
tion consists of a product of several affine or convex functions. It may not
be hard to recognize this structure in a practical model formulation. For an
overview on the mathematical properties we refer to Konno and Kuno (1995).

A function f is called fractional or rational when it can be written as one
ratio or the sum of several ratios of two functions, f(x) = g(x)

h(x) . The ratio
of two affine functions got most attention in the literature. Depending on
the structure of the functions g and h, the terminology of linear fractional

6.4 Mathematical structures 157

programming, quadratic fractional programming and concave fractional pro-
gramming is applied.

A basic property is due to Dinkelbach (1967). Let the function θ(x) be
defined as θ(x) = {g(x) − λh(x)}. If the (global) minimum λ∗ of f(x) is
used as the parameter in the function θ(x), then the minimum point of θ
(with objective value zero) corresponds to a global minimum point of f . This
property can be used for bounding in the following way. Let fU correspond to
a found objective function value. Then we can ask ourselves whether a subset
X of the feasible area contains a better (lower) function value than fU :

min
X

{
f(x) =

g(x)
h(x)

}
≤ fU ,

which translates into
min

X
{g(x) − fUh(x)} ≤ 0. (6.25)

If the latter is not the case, one does not have to consider subset X anymore.
For an overview on fractional programming, we refer to Schaible (1995).

Example 6.15. Consider the function f(x) = g(x)
h(x) , where g is a convex

quadratic function g(x) = 2x2
1 + x2

2 − 2x1x2 − 6x1 + 1 and h is linear
h(x) = 2x1 − x2 + 0.1. One can imagine it is convenient that h does
not become zero on the domain which we take as the box constrained area
X = [3, 6] × [0, 6].

Consider first an upper bound fU = −3. The question whether better
values can be found on X is given by (6.25) such that we want to minimize
g(x) + 3h(x) = 2x2

1 + x2
2 − 2x1x2 − 3x2 + 1.3 over X . It can be shown that

the unique minimum can be found at x = (3, 4.5)T with an objective function
value of −0.95. So indeed better function values can be found.

We now consider the Dinkelbach result from the perspective of maximiz-
ing f(x). While function g has a global maximum attained in (6, 0)T , the
fractional function f has a global maximum of 10 in (3, 6)T and two more
local optima. Defining

θ1(x) = {g(x) − 10h(x)} = 2x2
1 + x2

2 − 2x1x2 − 26x1 + 10x2

shows more clearly that we are maximizing a convex quadratic function. One
can verify that it has a global maximum of 0 in (3, 6)T and no local nonglobal
maxima. Now we focus on the minimum. One can show for instance by using
a solver that f has a minimum of about −3.66 in the boundary point (3, 4.8).
Writing the equivalent

θ2(x) = {g(x) + 3.66h(x)} = 2x2
1 + x2

2 − 2x1x2 + 1.33x1 − 3.66x2 + 1.37

gives a quadratic function with a minimum on the feasible area of 0 at (3, 4.8).
One can verify it fulfills the Karush–Kuhn–Tucker conditions.

158 6 Deterministic GO algorithms

6.4.7 Interval arithmetic

The concepts of interval arithmetic became known due to the work of Moore
(1966) with a focus on error analysis in computational operations. The use
for Global Optimization has been elaborated in Hansen (1992) and Kearfott
(1996). The main concepts are that of thinking in boxes (interval extensions)
and inclusion functions. I = {X = [a, b] | a ≤ b; a, b ∈ R} is the set of the one-
dimensional intervals. Then X = [x, x] ∈ I is a one-dimensional interval which
extends the idea of a real x. A box X = (X1, . . . , Xn), Xi ∈ I, i = 1, . . . , n,
is an n-dimensional interval as element of I

n. Where the range of an element
w(Xi) = (xi − xi) is given, the width w(X) = maxi=1,...,n w(Xi) is defined
as a kind of accuracy. Let f(X) = {f(x) | x ∈ X} be the real range of f on
X , then F and F ′ = (F ′

1, . . . , F
′
n) are called interval extensions of f and its

derivatives ∇f . The word inclusion is used to express that f(X) ⊆ F (X) and
∇f(X) ⊆ F ′(X).

An inclusion function generally overestimates the range of a function. The
extent of the overestimation depends on the type of the inclusion function, on
the considered function and on the width of the interval. If the computational
costs are the same, the smaller the overestimation, the better is the inclusion
function.

The main idea behind interval analysis is the natural extension of real
arithmetical operations to interval operations. For a pair of intervals X, Y ∈ I

and arithmetical operator ◦ ∈ {+,−, ·, /} one extends to X ◦ Y = {x ◦ y |
x ∈ X, y ∈ Y }. That is, the result of the interval operation contains all the
possible values obtained by the real operation on all pairs of values belonging
to the argument intervals. Because of the continuity of the operations, these
sets are intervals. For the division operation, zero should not belong to the
denominator. As arithmetic operations are monotonous, the definitions of the
corresponding interval versions are straightforward:

X + Y = [x + y, x + y] (6.26)

X − Y = [x − y, x − y] (6.27)

X · Y = [min{xy, xy, xy, xy}, max{xy, xy, xy, xy}]
1
Y

=
[
1
y
,
1
y

]
, 0 /∈ Y. (6.28)

Example 6.16. Many textbooks emphasize that x2 − x = x(x − 1), but

[0, 1]2 − [0, 1] = [0, 1] − [0, 1] = [−1, 1] and
[0, 1]([0, 1]− 1) = [0, 1][−1, 0] = [−1, 0].

Among others, Kearfott (1996) shows that bounds are sharp, which in that
context means that the bounds coincide with minimum and maximum, if
terms appear only once:
For f(x) = x2 − 2, F [−2, 2] = [−2, 2]2 − 2 = [0, 4] − [2, 2] = [−2, 2].
For f(x1, x2) = x1x2, F ([−1, 1], [−1, 1])T = [−1, 1][−1, 1] = [−1, 1].

6.5 Global Optimization branch and bound 159

For monotonic functions the interval extension is relatively easy. For instance,
√

X = [
√

x,
√

x], X ≥ 0 (6.29)
ln(X) = [ln(x), ln(x)], X > 0 (6.30)

eX = [ex, ex]. (6.31)

For a nonmonotonic function, such as sine or cosine, its periodic nature can
be used to construct its interval extension. For use in branch and bound
methods, the essential idea is that w(F (X)) → 0 if w(X) → 0.

6.5 Global Optimization branch and bound

We first sketch the basic form of branch and bound (B&B) methods and then
elaborate it for several illustrative cases in the following sections. The basic
idea in B&B methods consists of a recursive decomposition of the original
problem into smaller disjoint subproblems until the solution is found. The
method avoids visiting those subproblems which are known not to contain a
solution. B&B methods can be characterized by four rules: Branching, Selec-
tion, Bounding, and Elimination (Ibaraki, 1976; Mitten, 1970). For problems
where the solution is determined when a desired accuracy is reached, a Ter-
mination rule has to be incorporated.

Algorithm 30 sketches a generic scheme for cases where lower bound cal-
culation also involves the generation of a feasible point. It generates approxi-
mations of global minimum points that are less than δ in function value from
the optimum. The method starts with a set C1 enclosing the feasible set X
of the optimization problem. For simplicity, we assume minimization and the
set X to be compact. At every iteration the branch and bound method has
a list Λ of subsets (partition sets) Ck of C1. In GO, several geometric shapes
are used for that like cones, boxes and simplices. The method starts with C1

as the first element and stops when the list is empty. For every set Ck in Λ, a
lower bound fL

k of the minimum objective function value on Ck is determined.
For this, the mathematical structures discussed in Section 6.4 are used.

At every stage, there also exists a global upper bound fU of the minimum
objective function value over the total feasible set defined by the objective
value of the best feasible solution found thus far. The bounding (pruning)
operation concerns the deletion of all sets Ck in the list with fL

k > fU , also
called cut-off test. Besides this rule for deleting subsets from list Λ, a subset
can be removed when it does not contain a feasible solution. In Algorithm 30,
index r represents the number of subsets which have been generated. Note
that r does not give the number of subsets on the list.

There are several reasons to remove subsets Ck from the list, or alterna-
tively, not to put them on the list in the first place.

• Ck cannot contain any feasible solution.

160 6 Deterministic GO algorithms

Algorithm 30 Outline branch and bound algorithm B & B(X, f, δ, ε)
Determine a set C1 enclosing feasible set X, X ⊂ C1,
Determine a lower bound fL

1 on C1 and a feasible point x1 ∈ C1 ∩ X
if (there exists no feasible point) STOP

else fU := f(x1); Store C1 in Λ; r := 1
while (Λ �= ∅)

Remove (selection rule) a subset C from Λ and split it
into h new subsets Cr+1, Cr+2, . . . , Cr+h

Determine lower bounds fL
r+1, f

L
r+2, . . . , f

L
r+h

for (p := r + 1 to r + h) do
if (Cp ∩ X contains no feasible point)

fL
p := ∞

if (fL
p < fU)
determine a feasible point xp and fp := f(xp)
if (fp < fU)

fU := fp

remove all Ck from Λ with fL
k > fU cut-off test

if (fL
p > fU − δ)

Save xp as an approximation of the optimum
else if (Size(Cp) ≥ ε) store Cp in Λ

r := r + h
endwhile

• Ck cannot contain the optimal solution as fL
k > fU .

• Ck has been selected to be split.
• It has no use to split Ck any more. This may happen when the size

Size(Ck) of the partition set has become smaller than a predefined accu-
racy ε, where

Size(C) = max
v,w∈C

‖v − w‖. (6.32)

Branching concerns further refinement of the partition. This means that one
of the subsets is selected to be split into new subsets. There exist several
ways for doing so. The selection rule determines the subset to be split next,
and influences the performance of the algorithm. One can select the subset
with the lowest value for its lower bound (best first search) or for instance the
subset with the largest size (relatively unexploited); breadth first search. The
target is to obtain sharp bounds fU soon, such that large parts of the search
tree (of domain C1) can be pruned.

Specific interval B&B algorithms keep the concept of enclosing the op-
timum by a box. The final result is a list of boxes whose union certainly
contains the global optimizers and not a list of global optimum points. The
upper bound is not necessarily a result of evaluating the function value in
a point, but can be based on the lowest (guaranteed) upper bound over all
boxes. Moreover, in differentiable cases there is also a so-called monotonicity
test. One focuses on partial derivatives ∂f

∂xj
(x) = ∇jf(x), which for a box Ck

6.6 Examples from nonconvex quadratic programming 161

is included by F ′
j(Ck). If 0 /∈ F ′

j(Ck), it means it cannot contain a stationary
point and one should consider whether Ckj contains a boundary point of the
feasible area. If this is not the case, one can discard the box.

After a successful search, list Λ will be empty and a guarantee is given
either that the global optimum points have been found or that there exists no
feasible solution. However, in practical situations, the size of list Λ may keep
increasing and filling up the available computer memory, despite possible use
of efficient data structures. In the following, we illustrate the B&B procedure
for several specific cases.

6.6 Examples from nonconvex quadratic programming

We specify Algorithm 30 for the quadratic programming problem making use
of the structures discussed in Section 6.4. The algorithms should find all
global optimum points for the general (nonconvex) quadratic programming
problem on a compact set; i.e., f(x) = xT Ax + bT x + c and X is a polytope.

As partition sets (hyper)rectangles (boxes) Ck are used, defined by the
two extreme corners l and u, i.e., ljk ≤ xj ≤ ujk, j = 1, . . . , n. Initially the
global upper bound fU can be set to infinity or given the objective function
value of a feasible solution of X which can be found by LP. Two ways of calcu-
lating a lower bound fL are elaborated and used for small numerical examples.

Lower bound “concave” The lower bound based on concave minimization
can be applied when f(x) is concave. Let the vertices of box Ck be vi, i =
1, . . . , 2n, with corresponding function values Fi = f(vi). We define the convex
piecewise affine underestimating function ϕk(x) =

min
λ

2n∑

i=1

Fiλi (convex combination function values)

s.t.
2n∑

i=1

viλi = x (convex combination vertices)

2n∑

i=1

λi = 1 (weights)

λi ≥ 0 i = 1, . . . , 2n.

(6.33)

The difference between ϕk and f becomes automatically smaller when the
partition set Ck becomes small. The lower bound fL

k can now be found by
solving LP problem (6.33) minimizing over x as well as λ:

fL
k = min

x∈X
ϕk(x). (6.34)

Notice that due to equations (6.33), in (6.34) we implicitly minimize over Ck.

162 6 Deterministic GO algorithms

Lower bound “bilinear” A lower bound based on the equivalence of
quadratic programming with bilinear programming (Al-Khayyal, 1992) can
be applied. The quadratic term xT Ax is equivalent to

xT y, y = Ax. (6.35)

Now the bilinear inequality (6.24) can be used, if we have easily available
bounds [ly, uy] on y = Ax given a box C = [lx, ux] on x. This is indeed the
case. First define an indicator I that selects the upper and lower bound of
C = [lx, ux] depending on the sign of a matrix element a:

I(C, j, a) =

{
lxj if a < 0,

ux
j if a ≥ 0.

(6.36)

Based on this indicator we can construct upper and lower bounds for y:

lyi =
∑

j aijI(C, j, aij), i = 1, . . . , n

uy
i =

∑
j aijI(C, j,−aij), i = 1, . . . , n.

(6.37)

Given rectangle C = [lx, ux] with corresponding bounds [ly, uy] for y = Ax,
the lower bound is based on solving LP problem

fL
k = min

∑
j αj + bT x + c

s.t. y = Ax,
αj ≥ lxj yj + lyj xj − lxj lyj , j = 1, . . . , n

αj ≥ ux
j yj + uy

jxj − ux
j uy

j , j = 1, . . . , n

x ∈ X ∩ Ck.

(6.38)

Now the question is what it looks like, if we put the branch and bound algo-
rithm in practice with these lower bounds. For the illustration we elaborate
two examples.

6.6.1 Example concave quadratic programming

Example 6.17. Consider the following concave quadratic program:

min
x∈X

{f(x) = 4 − (x1 − 1)2 − x2
2}. (6.39)

X = {0 ≤ x1 ≤ 2.5, 0 ≤ x2 ≤ 2,−x1+8x2 ≤ 11, x1+4x2 ≤ 7, 6x1+4x2 ≤ 17}.
Contour lines and feasible area are depicted in Figure 6.11. The problem
has four local optimum points; (0, 1.375)T , (1, 1.5)T , (2, 1.25)T and (2.5, 0.5)T .
Moreover, points (0, 0)T , (1, 0)T and (2.5, 0)T are Karush–Kuhn–Tucker points
which are not local optima.

To run the branch and bound algorithm, many choices have to be made.
First of all, the choice of the partition sets. We use boxes (hyperrectangles)
with as first set C1 = [lx, ux] = [(0, 0)T , (2.5, 2)T]. The choice of the splitting

6.6 Examples from nonconvex quadratic programming 163

1 2 x1

x2

1

0.5

1.5

f =3

f =1.75

Fig. 6.11. Example concave quadratic program

is to bisect them over the longest edge into two new subsets. For each box Ck,
a lower bound is determined by solving problem (6.33), which also provides
xk. Its function value is used to update global upper bound fU . The selection
criterion is of major importance for the course of the algorithm; which subset
is selected to be split next? In this example, the subset with the lowest lower
bound is selected. For the final accuracy we take here a value of δ = 0.05.
The resulting course of the algorithm is given in Figure 6.12.

Example 6.17 shows several generic aspects. One can observe that the global
optimum x∗ = (0, 1.375) is found in an early stage of the algorithm. Actually,
it is even an alternative solution to x1 of problem (6.33). The further iterations
only serve as a verification of the optimality of x∗. It is important to find
a good global bound soon. During the course of this specific algorithm we
observe that xk often is the same point. However, the difference for the subsets
is that if we get deeper into the tree, its lower bound is going up. Mainly what
is necessary for convergence is that the gap between lowest lower bound and
upper bound fU is closing. Implicitly, an accuracy δ determines the stopping.
One can observe that C10, which encloses the global optimum, like C1, C2, C7

and C8, is not split further because fL > fU − δ. This means that we have
the guarantee to be closer than δ = 0.05 in objective function value from the
global optimum. The bounding leads to removing subsets C4, C6, C9, C12 and
C13 because fL > fU . Subset 11 appeared to be infeasible.

6.6.2 Example indefinite quadratic programming

Example 6.18. Consider indefinite quadratic problem (2.2), where we minimize

164 6 Deterministic GO algorithms

l = (0, 0)

u = (2.5, 2)

x = (1,1.5)

f L = -0.5

f = 1.75

f U = 1.75

1

l = (1.25, 0)

u = (2.5, 2)

x = (2, 1.25)

f L = 0.125

f = 1.43

f U = 1.11

l = (0, 1)

u = (1.25, 0)

x = (0, 1.375)

f L = 0.875

f = 1.11

f U = 1.11

7

l = (0, 0)

u = (1.25, 2)

x = (0, 1.375)

f L = 0.25

f = 1.11

f U 1.11

2

l = (0, 0)

u = (1.25, 1)

x = (0,1)

f L = 2 > f U

6 l = (1.25, 0)

u = (2.5, 1)

x = (2.5,0.5)

f L = 1.25 > f U

4 l = (1.25,1)

u = (2.5, 2)

x = (2, 1.25)

f L = 0.875

f = 1.43

f U =1.11

5

l = (0.625, 1)

u = (1.25, 2)

x = (1,1.5)

f L = 1.41 > f U

9l = (0,1)

u = (0.625, 2)

x = (0, 1.375)

f L = 0.875

f = 1.11

f U = 1.11

8 l = (1.25, 1)

u = (1.875, 2)

x = (1.875, 1.28)

f L = 1.38 > f U

12
l = (1.875, 1)

u = (2.5, 2)

x = (2, 1.25)

f L = 1.19 > f U

13

l = (0, 1.5)

u = (0.625, 2)

Infeasible

11l = (0, 1)

u = (0.625, 1.5)

x = (0, 1.375)

f L = 1.062 >

f U – 0.05 =1.06

10

3

Fig. 6.12. Resulting B&B tree for concave optimization

min{f(x) = (x1 − 1)2 − (x2 − 1)2} (6.40)

over X = {0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4, x1−x2 ≤ 1, 4x1−x2 ≥ −2}. Contour lines
and feasible area are depicted in Figure 2.12. The problem has local optima
in the points (1, 0)T and (1, 4)T . The first set is logically C1 = [lx, ux] =
[(0, 0)T , (3, 4)T]. For each box Ck, the lower bound calculation is now based
on the bilinear concept by solving problem (6.38). The calculation of the
bounds for the y variable is extremely simple as y1 = x1 and y2 = −x2.

6.7 Cutting planes 165

0 1 2 3 4
0

1

2

3

4

x

x
x

1

2

*

X

x1 x3

x2

x5
x4

x6

CCCCC

C5C 6

C8

C10

C13

2

Fig. 6.13. Final partition running B&B

For the final accuracy we take here a value of δ = 0.05. The course of the
algorithm is given in Figure 6.14. The final partition is depicted in Figure 6.13.
The selection criterion is in this case not relevant, as the algorithm behaves
like a local search leaving at most one subset in list Λ. In an early stage
already large parts of the feasible set can be removed, e.g., C2. One observes
several improvements of the best point found. Finally, x12 = (0.94, 4)T is
taken as an approximation of the global optimum and the algorithms stops,
as fU − δ < fL

12 < fU where no subsets are left on the list. Once more during
the iterations it stops exploring similarly, when it finds fL

8 > fU − δ, so that
x8 is temporarily saved as an estimation of the optimum.

Typical in this example is that the lower bound does not always improve,
despite the fact that the subset is getting smaller. Observe for instance the
shrinking of subset C1 to C3 and C9 to C11. Theoretically, the algorithm
will always converge due to a final check on the size of the remaining box.
Practically, the designer of an algorithm feels more comfortable when the gap
between lowest lower bound and upper bound is shrinking with a guaranteed
step size.

6.7 Cutting planes

In general, cutting planes (hyperplanes) serve to discard parts of the search re-
gion. In mixed integer programming so-called Gomory cuts are cutting planes,

166 6 Deterministic GO algorithms

Fig. 6.14. Resulting B&B tree for indefinite example

6.7 Cutting planes 167

and in convex optimization Kelley’s method works with cutting planes; see
Kelley (1999). They are important in the development of large-scale opti-
mization algorithms where NLP and integer programming are mixed.

Here we introduce the concept of cutting planes focusing on concave pro-
gramming. In concave optimization we want to minimize a concave function
over a convex set, typically given by linear constraints. As we have discussed
in Chapter 3, the minimum points can be found at a vertex (or vertices) of
the feasible region.

To calculate a cutting plane, consider a vertex v of the convex set together
with its neighbors v1, v2, . . . , vn, and the best function value γ = fU found so
far. Starting from v, one determines the largest step size in the direction of
each neighbor, for which the function value is larger than γ. To be precise,
denote by di = vi − v the direction toward neighbor vi. Now for i = 1, . . . , n
determine θi such that

f(v + ρidi) ≥ γ ∀ 0 ≤ ρi ≤ θi.

The term γ-extension is used in this context. The n points (v + θidi) define a
hyperplane, that can be considered as cutting plane. One can cut off the part
of the feasible set where v lies, because there is no point with better function
value than γ = fU . Occasionally, we may cut off a point x with f(x) = γ,
but that is not a problem as we already know that point.

Cutting planes can be generated until the convex set disappears, such
that one stops where the minimum f∗ coincides with γ = fU . Instead of
formalizing an algorithm, we have a look at what such a procedure would
look like for the instance in Example 6.17.

Fig. 6.15. Cutting planes for Example 6.19

168 6 Deterministic GO algorithms

Example 6.19. Consider the concave quadratic problem of Example 6.17, i.e.,

min
x∈X

{f(x) = 4 − (x1 − 1)2 − x2
2}. (6.41)

X = {0 ≤ x1 ≤ 2.5, 0 ≤ x2 ≤ 2,−x1+8x2 ≤ 11, x1+4x2 ≤ 7, 6x1+4x2 ≤ 17}.
Let v = (0, 0)T , so the neighbors are v1 = (0, 1.375)T , v2 = (2.5, 0)T with
objective function values f(v) = 4, f(v1) = 1.11, f(v2) = 1.75 so γ = 1.11. To
determine θ1, consider f(v + ρ1d1), where d1 = v1 − v = (0, 1.375)T ; f(v +
ρ1d1) = 4−(1.375ρ1)2−1, such that θ1 = 1. Similarly, d2 = v2−v = (2.5, 0)T

and f(v+ρ2d2) = 4−(2.5ρ2−1)2 from which θ2 = 1.08. The two points which
define the cutting plane are (0, 1.375)T and (2.7, 0)T . The corresponding cut
can be described as (1.375, 2.7)Tx ≥ 3.78 or x1 + 1.96x2 ≥ 2.7.

Consider v = (0, 1.375)T as next iterate. The new neighbors are v1 =
(1, 1.5)T , v2 = (2.5, 0.1)T with objective function values f(v) = 1.11, f(v1) =
1.5, f(v2) = 1.74 so γ is still 1.11. Now, d1 = (1, 0.125)T and d2 =
(2.5,−1.273)T . To determine θ1, the function f(v + ρ1d1) = 4 − (ρ1 − 1)2 −
(1.375 + 0.125ρ1)2 is considered, while for θ2 the inequality f(v + ρ2d2) =
4 − (2.5ρ2 − 1)2 − (1.375 − 1.273ρ2)2 ≥ γ must hold. One can verify that
θ1 = 1.63 and θ2 = 1.08. Thus, the points of the cutting plane are (1.63, 1.58)T

and (2.7, 0)T , and the cutting plane is (1.58, 1.07)Tx ≥ 4.27.
The problem with the two cutting planes is depicted in Figure 6.15.

6.8 Summary and discussion points

• After a given number of function evaluations no guarantee can be given
on the distance from the best point found to a global optimum point, if
no structural information is used.

• Heuristic methods can be used to handle problems with expensive function
evaluations. direct and stochastic model algorithms store and use infor-
mation of all evaluated points. Moreover, the sketched algorithm based on
radial basis functions requires solving a global optimization problem for
choosing the next point to be evaluated.

• Knowing concavity requires no further value information to construct a
rigorous method.

• Mathematical structures of d.c. (difference of convex functions), Lipschitz
continuity and bounds on higher derivatives need value information to be
applied in an algorithmic context.

• Methods applying quadratic, bilinear, fractional programming or interval
arithmetic contain procedures to generate necessary information for solv-
ing problems up to a guaranteed accuracy.

• With respect to efficiency, it is not known if the latter effectiveness is
reached within a human’s lifetime.

• Algorithms based on branch and bound contain choices like selection rule
and priority of tests that influence the efficiency.

6.9 Exercises 169

• The B&B methods require effort to be implemented and a design of effi-
cient data structures, such that the memory can still be handled.

6.9 Exercises

1. Given function f(x) = 1 − 0.5x + ln(x). Show that f is concave on the
interval [1, 4]. Give an affine minorant ϕ(x) of f on [1, 4].

2. Given function f(x) = −x3
1+3x2

1+x2 on the feasible set X = [−1, 1]×[0, 2].
Determine the Lipschitz constant of f on X . Give the lower bounding
expression (6.14) given xk = (0, 1)T .

3. Given function f(x) = −x3
1+3x2

1+x2 on the feasible set X = [−1, 1]×[0, 2].
Determine K as the maximum absolute eigenvalue of the Hessean of f over
X . Give the lower bounding expression (6.16) given xk = (0, 1)T .

4. Given function f(x) = x1x2. Find a d.c. decomposition of f , i.e., write
f(x) = f1(x)−f2(x) such that f1, f2 are convex. How would you construct
a convex underestimating function ϕ(x) based on the decomposition over
feasible set X = [−1, 1]× [−1, 2]?

5. Given function f(x) = x1x2 on feasible set X = [−1, 1]× [−1, 2]. Give an
underestimating function ϕ(x1, x2) considering the bilinear nature of the
function. Determine a lower bound of f by minimizing ϕ(x) over X .

6. Given fractional function f(x) = x1+x2
2x1+3x2+1 on feasible set X = [1, 2] ×

[1, 2]. Given a bound fU = 0.5. Determine whether f has lower values
than fU on X . Determine the global minimum λ∗ of f on X by analyzing
the sign of the partial derivatives. Minimize (x1 +x2)−λ∗(2x1 +3x2 +1)
over X .

7. Given function f(x) = (x1 +x2)2− | x1 | on feasible interval X = [−1, 2]×
[1, 2]. Generate a lower and upper bound (inclusion) of f over X based on
the natural interval extension. Consider the two subintervals that appear
when we split the longest side of X over the middle. Determine now the
bounds for these two new intervals. Which of them would you split further
first when minimizing f?

8. Given a value K > f ′′(x), ∀x ∈ X according to (6.18) one can determine
a bound zp on the optimum f∗ for an interval [lp, rp]. Elaboration gives

zp =
f(lp) + f(rp)

2
− 1

2K

(
f(lp) − f(rp)

rp − lp

)2

− K

8
(rp − lp)2. (6.42)

The minimum point of ϕ on [lp, rp] is given by

mp =
1
K

f(lp) − f(rp)
rp − lp

+
rp + lp

2
. (6.43)

A possible branch and bound algorithm close to Piyavskii–Shubert is given
in Algorithm 31. Construct a branch and bound tree following this algo-
rithm for finding the minimum of f(x) = sin(x) + sin(3x) + ln(x) on the

170 6 Deterministic GO algorithms

Algorithm 31 Barit([l, r], f, K, δ)
Set p := 1, l1 := l and r1 := r,Λ = {[l1, r1]}
fU := min{f(l), f(r)}, xU := argmin{f(l), f(r)}
z1 := f(l)+f(r)

2
− 1

2K
(f(l)−f(r)

r−l
)2 − K

8
(r − l)2

while (Λ �= ∅)
remove an interval [lk, rk] from Λ with zk = minp zp

evaluate f(mk) := f(1
K

f(lk)−f(rk)
rk−lk

+ rk+lk
2

)

if (f(mk) < fU)
fU := f(mk), xU := mk and remove all Cp from Λ with zp > fU − δ

split [lk, rk] into 2 new intervals Cp+1 := [lk, mk] and Cp+2 := [mk, rk]
with corresponding lower bounds zp+1 and zp+2

if (zp+1 < fU − δ) store Cp+1 in Λ
if (zp+2 < fU − δ) store Cp+2 in Λ
p := p + 2

endwhile

interval X = [3, 7]. Take K = 10 and for the accuracy use δ = 0.005.
Compare your tree with Figure 4.6.

7

Stochastic GO algorithms

7.1 Introduction

We consider stochastic methods as those algorithms that use (pseudo) random
numbers in the generation of new trial points. The algorithms are used a lot
in applications. Compared to deterministic methods they are often easy to
implement. On the other hand, for many applied algorithms no theoretical
background is given that the algorithm is effective and converges to a global
optimum. Furthermore, we still do not know very well how fast the algorithms
converge. For the effectiveness question, Törn and Žilinskas (1989) already
stress that one should sample “everywhere dense”. This concept is as difficult
with increasing dimension as doing a simple grid search. In Section 7.2 we
describe some observations that have been found by several researchers on the
question of increasing dimensions.

For the efficiency question, the literature is often looking at the process
from a Markovian perspective (Zhigljavsky and Žilinskas, 2008). This means
that the probability distribution for the next trial point depends on a certain
state that has been reached. This view allows analysis in the convergence
speed. For practical algorithms, often it is impossible to distinguish a state
space and stationary process for the Markovian view. Theoretical results can
be derived by not looking at implemented algorithms, but by investigating
ideal algorithms. In Section 7.4 we will sketch the idea of Pure Adaptive
Search and the analysis.

According to the generic description of Törn and Žilinskas (1989):

xk+1 = Alg(xk, xk−1, . . . , x0, ξ), (7.1)

where ξ is a random variable, a random element enters the algorithm. One
perspective is to consider ξ as a stationary random variable. Another way is
to say that the algorithm is adapting the distribution of ξ in each iteration.
For the analysis this distinction is important. It is also good to realize that in
practice we are not dealing with random numbers, but with pseudo-random

E.M.T. Hendrix and B.G.-Tóth, Introduction to Nonlinear and Global Optimization, 171
Springer Optimization and Its Applications 37, DOI 10.1007/978-0-387-88670-1 7,
c© Springer Science+Business Media, LLC 2010

172 7 Stochastic GO algorithms

numbers generated by a computer. This also gives rise to all kinds of practical
variants such as the use of so-called Sobol numbers to get a more uniform cover
of the space, or using stratified sampling. Initially most analysis focused on
Pure Random Search (PRS), Multistart and when to stop sampling. Devel-
opment of effective variants followed where one applies clustering with the
former two strategies. We sketch the concept of clustering in Section 7.3.

Summarizing, there is a difference in the popularity of applying stochastic
algorithms and the difficulty of deriving scientific theoretical results such as
summarized in Boender and Romeijn (1995) and Zhigljavsky and Žilinskas
(2008). In our personal experience cooperating in engineering applications,
we feel that there is a belief that stochastic algorithms solve optimization
problems, whereas we only know that they generate many candidates of which
one selects the best one. This belief seems to be fed by physical and biological
analogies. Although population algorithms for GO were already in existence,
they really became popular due to a wave of so-called genetic algorithms that
appeared in the seventies. The evolutionary analogy is as attractive as the
idea of simulated annealing, particle swarms, ant colony analogies, etc. In
Section 7.5, several of these algorithms are described.

7.2 Random sampling in higher dimensions

The final target of algorithms is to come close to the global optimum, or the set
of global optimum solutions. When the number of decision variables grows,
this looks a hopeless task to perform by random sampling, as the success
region becomes exponentially small as illustrated in Chapter 4. In this section
we discuss several other findings when the dimension of the decision space
increases and we consider a fixed number N of uniformly random samples.

7.2.1 All volume to the boundary

When researchers were designing algorithms, they would sometimes like to
consider that the sample points are in the interior of the feasible set. Soon
they found that this is an impossible assumption. We illustrate this with a
basic example. Consider the feasible set being a unit box X = [0, 1]n, such
that its volume is always 1 in all dimensions. Let the numerical interior be
defined as the area that is ε away from the boundary of X , so NI = [ε, 1−ε]n.
Now it is easy to see that its relative volume is

V (NI) = (1 − 2ε)n (7.2)

which goes to zero very fast. That means that all N samples are soon to be
found close to the boundary.

Example 7.1. Let ε = 0.05. For n = 10, 35% of the points can be found in the
numerical interior, but for n = 50 this has reduced to 0.5%.

7.2 Random sampling in higher dimensions 173

7.2.2 Loneliness in high dimensions

An easy reasoning is to say that a sample of N = 100 points becomes less
representative in higher dimension. We know that indeed it will be exponen-
tially difficult to find a point closer than ε to a global minimum point x∗.
However, how empty is the space when the dimension increases? Is the space
really covered in the sense of “everywhere dense”? One would like the nearest
neighbor sample point to be close to all points in the space. How far are the
sample points apart; how far is the nearest neighbor away? In the following
illustration we show a result which might be counterintuitive.

Let us keep in mind a feasible space that is normalized toward the unit
box X = [0, 1]n, such that the volume V (X) is said to be 1. Notice that for
this case the samples can never be further away than

√
n; distances are far

from exponential in the dimension.
Let Rnn be the average nearest neighbor distance of a sample p1, . . . , pN

of N points. After realization, we determine this as

Rnn =
1
N

N∑

i=1

min
j=1,...,N ;j 	=i

‖pi − pj‖. (7.3)

How far is the nearest neighbor from one of the points on average? In the
spatial statistics literature (e.g., Ripley, 1981), one can find that qn × Rnnn

estimates the inverse of the density V (X)/N of points in the set X , where

qn =
π

n
2

Γ(1 + n
2)

. (7.4)

So, q2 = π, q3 = 3
4π, q4 = 1

2π2, etc. This expression is easier thinking
of even numbers n and Γ(x) = (x − 1)!. As we took V (X) = 1, rewriting
qn × Rnnn ≈ 1

N gives an approximation of the average nearest neighbor
distance

Rnn ≈ 1√
π

(n
2 !
N

) 1
n

. (7.5)

Considering N− 1
n → 1 with increasing dimension gives Rnn ≈ 1√

π

(
n
2 !
) 1

n .

Example 7.2. For n = 20, the neighbor is theoretically at 1.2, for n = 100 he
goes to 2.5 and for n = 1000 he has been crawling to a distance of about
7.7. One can check (7.5) numerically. Generating numerical estimates by
calculating (7.3) sampling N = 5, 10, 20 points uniformly in X = [0, 1]n gives
a nearest neighbor at about 1.2, 3.9 and 12.6 for respectively n = 20, 100, 1000.

This means that life is becoming lonely in higher dimensions, but not in an
exponential way.

174 7 Stochastic GO algorithms

7.3 PRS- and Multistart-based methods

Basic algorithms for Stochastic Global Optimization, useful as benchmarks,
are the Pure Random Search and Multistart algorithms as described in
Chapter 4. We elaborate their behavior in Sections 7.3.1 and 7.3.2. The con-
cept of clustering is highlighted with the Multi-Level Single Linkage algorithm
in Section 7.3.3.

We illustrate the behavior of the algorithms on two typical test problems.
A well-known test problem in the literature is due to the so-called six-hump
camel-back function:

f(x) = 4x2
1 − 2.1x4

1 +
1
3
x6

1 + x1x2 − 4x2
2 + 4x4

2 (7.6)

taking as feasible area X = [−5, 5]× [−5, 5]. It has six local optimum points of
which two describe the set of global optimum solutions, where f∗ = −1.0316
is attained. Figure 7.1 gives contours over X = [−3, 3]2.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Fig. 7.1. Contours of six-hump camel-back function

The bi-spherical function f(x) = min{(x1 − 1)2, (x1 + 1)2 + 0.01}+
∑n

2 x2
i

has two optima of which one is the global one. It allows us to analyze behavior
for increasing dimension n. We use both functions for illustration purposes.

7.3.1 Pure Random Search as benchmark

Our first analysis of PRS, as described in Chapter 4, shows that its perfor-
mance does not depend on number of optima, steepness of the problem, etc.

7.3 PRS- and Multistart-based methods 175

In Chapter 4, the focus was mainly on the probability of hitting a success re-
gion as effectiveness indicator. Only the relative volume of the success region
matters.

Example 7.3. Consider the bi-spherical function. For n = 2 the volume of
level set S(0.01) = {x ∈ X |f(x) ≤ 0.01} is π(0.1)2 = 0.0314. For n = 20 it
has been reduced to approximately 2.6 × 10−22.

What is a reasonable level to reach with PRS and how fast is it reached? A
surprising result was found by Karnopp (1963). He showed that the probabil-
ity of finding a better function value with one draw more after N points have
been generated, is 1

N+1 , independent of the problem to be solved. Generating
K more points increases the probability to K

N+K .
However, the absolute level to reach depends on the problem to be solved.

An important concept is the distribution function of function value f(x) given
that the trial points x are uniformly drawn over the feasible region. We define

μ(y) = P{f(x) ≤ y}, (7.7)

where x is uniform over X as the cumulative distribution function of random
variable y = f(x). The domain of function μ(y) is [minX f(x), maxX f(x)].
The probability that a level y is reached after generating N trial points is given
by 1 − (1 − μ(y))N . This gives a kind of benchmark to stochastic algorithms
to reach at least probability 1 − (1 − μ(y))N after generating N points.

An explicit expression for μ(y) is usually not available and is mostly ap-
proximated numerically. In Figure 7.2 one can observe approximations for the
six-hump camel-back function over X = [−3, 3]2 and the bi-spherical function

y

µ(y)
µ(y)

y

Cumulative distribution, function value

Six-hump camel-back Bi-spherical

Fig. 7.2. Approximation of cumulative distribution function μ(y) via 10000 samples

176 7 Stochastic GO algorithms

over [−2, 2]2 based on the frequency distribution of 10000 sample points. One
can observe that it is relatively easy to obtain points below the level y = 50 for
the six-hump camel-back function on its domain, which corresponds to 12.5%
of the function value range. For the bi-spherical function it is as hard to get
below 50% of the function value range. The μ(y) functions are relevant for
investigation of algorithms over sets of test functions, where each test function
has its cumulative distribution.

7.3.2 Multistart as benchmark

In modern heuristics one observes the appearance of so-called hybrid meth-
ods that include local searches to improve the performance of algorithms. In
comparing efficiency, the performance of Multistart is an important bench-
mark. It is a simple algorithm where local searches LS(x) are performed from
randomly generated starting points. Depending on the used local optimizer,
the starting point will reach one of the local optimum points. As defined in
Chapter 4, the region of attraction of a minimum point consists of all points
reaching that minimum point. Theory is often based on the idea that the
local minimization follows a downward gradient trajectory. In practice, the
shape of compartments of level sets and regions of attractions may differ.

µ(y)

Six-hump camel-backBi-spherical

Fig. 7.3. One hundred starting points for local search. Points in the same region
of attraction have the same symbol, two for the bi-spherical problem and six for the
six-hump camel-back

Example 7.4. For both the bi-spherical and the six-hump camel-back function
we generate 100 starting points at random for the fminunc procedure in

7.3 PRS- and Multistart-based methods 177

matlab 7.0. Each point is allocated to a region of attraction by giving points
reaching the same minimum point the same symbol. For the bi-spherical
problem, a descending local optimizer will reach local optimum point (−1, 0)T

starting left from the line x1 = −0.025 and reach global minimum point x∗ =
(1, 0)T elsewhere. One can recognize this structure in the left picture of Figure
7.3; the regions of attraction follow the shape given by the compartments of
the level sets. For the six-hump camel-back function at the right, this seems
not the case. The clusters formed by points from the same region of attraction
cannot be separated easily by smooth curves.

From a statistical viewpoint, Multistart can be considered as drawing from
a so-called multinomial distribution if we are dealing with a finite number
W of local optimum solutions. Consider again a bounded feasible set X ,
where we draw N starting points uniformly. Depending on the local op-
timizer LS used, this results in unknown sizes of the regions of attraction
attr(x∗

i) for the optimum points x∗
i , i = 1, . . . , W . The relative volumes

pi = V (attr(x∗
i))/V (X) are the typical parameters of the multinomial dis-

tribution. This means that the probability that after N starting points the
local optima are hit n1, n2, . . . , nW times is given by

F (n1, . . . , nW , N, p1, . . . , pW) =
N !

n1! . . . nW !
pn1
1 . . . pnW

W . (7.8)

For the expected value of the number of times Ni that x∗
i is found it gives

E(Ni) = Npi and its variance is V (Ni) = Npi(1 − pi).

Example 7.5. Bi-spherical function f(x) = min{(x1−1)2, (x1+1)2+0.1}+x2
2 is

considered. We draw randomly N starting points from a uniform distribution
over feasible set X = [−2, 2] × [−1, 1]. Because we have two optima, the
number of times N∗ the global optimum is reached now follows a binomial
distribution with chance parameter p = 0.506, as that is the chance that
x1 ≥ −0.025. This leads to an expression for the probability distribution

P (N∗ = n) =
N !

n!(N − n)!
pn(1 − p)n−1 =

N !
n!(N − n)!

.506n(.494)n−1 (7.9)

such that E(N∗) = .506N and the variance is V (N∗) = .506× .494N . In an
experiment where the fminunc routine of matlab is used as local optimizer
LS, for N = 8 we reached the global optimum 5 times. The probability of
this event is P (N∗ = 5) = 8!

5!3! (.506)5(.494)3 = 0.22.

Using standard test problems in experiments means that we may know the
number W of optima and can ask ourselves questions with respect to the
multinomial distribution as illustrated in the example. One of the important
questions in research dealt with when to stop doing local searchers, because
we found all optima, or we feel certain that there are no more optima with
a better value. This is called a stopping rule. Actually, how can we know
the number of optima? Boender and Rinnooy-Kan (1987) derived a relatively

178 7 Stochastic GO algorithms

simple result using Bayesian statistics not requiring many assumptions. If
we have done N local searches and discovered w local optimum points, an
estimate ŵ for the number of optimum points is

ŵ =
w(N − 1)
N − w − 2

. (7.10)

The idea of a stopping rule is to stop sampling whenever the number w of
found optima is close to its estimate ŵ.

Example 7.6. Consider the six-hump camel-back function with 6 minimum
points. Assume we discovered all w = 6 minimum points already. After
N = 20 local searches, the estimate is still ŵ = 9.5. After N = 100 local
searches we get more convinced, ŵ = 6.46.

7.3.3 Clustering to save on local searches

The idea is that it makes no sense to put computational power in performing
local optimizations, if the starting sample point is in the region of attraction
of a local optimum already found. Points with low function value tend to
concentrate in basins that may coincide with regions of attraction of local
minimization procedures. In smooth optimization, such regions have an ellip-
soidal character defined by the Hessean in the optimum points. Many variants
were designed of clustering algorithms and much progress was made in the
decades of the seventies and eighties differing in the information that is used
and the way the clustering takes place; see, e.g., Törn and Žilinskas (1989).
Numerical results replaced analytical ones.

We describe one of the algorithms that appeared to be successful and does
not require a lot of information. The algorithm Multi-Level Single Linkage is
due to Rinnooy-Kan and Timmer (1987). It does not form clusters explicitly,
but the idea is not to start a local search from a sample point that is close
to a sample point that has already been allocated (implicitly) to one of the

Algorithm 32 Multi-Level Single Linkage(X, f, N, LS, γ, σ)
Draw and evaluate N points uniformly over X; Λ = ∅
Select the k := γN lowest points.
for (i = 1 to k) do

if (�j < i, (f(xj) < f(xi) AND ‖xj − xi‖ < rk))
Perform a local search LS(xi)
if (LS(xi) /∈ Λ), store LS(xi) in Λ

while (ŵ − |Λ| > 0.5)
k:= k+1; sample a point xk in X
if (�j < k, (f(xj) < f(xk) AND ‖xj − xk‖ < rk))

Perform a local search LS(xk)
if (LS(xk) /∈ Λ), store LS(xk) in Λ

endwhile

7.3 PRS- and Multistart-based methods 179

found optima. The found optima are saved in set Λ. The threshold distance
rk depending on the current iteration k is given by

rk =
√

π

(
σV (X)Γ(1 +

n

2
)
log k

k

) 1
n

, (7.11)

where σ is a parameter of the algorithm. The local search is only started from
a new sample point close to another one, if its function value is lower. The
algorithm is really following general framework (7.1) closely in the sense that
we have to store all former evaluated points and its function value.

Example 7.7. We run the algorithm on the six-hump camel-back function tak-
ing as feasible area X = [−5, 5] × [−5, 5]. We initiated the algorithm using
N = 100, γ = 0.2 by performing 20 local searches from the best sampled
points. The algorithm does these steps if the points are ordered by function
value. A typical outcome is given in Table 7.1. By coincidence in this run one
of the local optimum points was not found. The current value of the radius
rk of (7.11) does not depend on the course of the algorithm and has a value
of about 9 using σ = 4. Practically this means that initially sample points
are only used to start a local search if their function value is lower than the
best of the starting points. After 1000 iterations still rk ≈ 2. At this stage

Fig. 7.4. About 1000 sample points and the resulting local searches (lines) toward
local minimum points, one run of MLSL on six-hump camel-back

180 7 Stochastic GO algorithms

Table 7.1. Minimum points after 20 local searches, nr: number of times detected

x1 x2 f nr

-0.0898 0.7127 -1.0316 9
0.0898 -0.7127 -1.0316 5
-1.7036 0.7961 -0.2155 3
1.7036 -0.7961 -0.2155 2
-1.6071 -0.5687 2.1043 1

the estimate of the number of optima via (7.10) is ŵ = 7. After discovering
all W = 6 optima, in 92 local searches ŵ is close to w and the algorithm
stops. In a numerical experiment where V (X) = 100 we had to downscale σ
to about 0.25 to have this happening around k = 1000. Figure 7.4 sketches
the resulting sample points and lines are drawn to indicate the local searches.
Typically they start at distant points.

7.3.4 Tunneling and filled functions

Where the idea of clustering was analyzed in the seventies, another idea ap-
peared in the eighties: we are not interested in finding all local optima, we
just want to walk down over the local optima to the global one. There are
several highly cited papers that initiated this discussion and led to a stream of
further investigation. We will sketch the ideas of these papers and elaborate
an example on one of them. The first papers started with the idea that we
want to solve a smooth function with a finite number of minimum points on
a bounded area. After finding a local minimum point, one transforms the
function to find a new starting point for local search in a region of attraction
of a better function value, either by the concept of tunneling, or that of filled
functions.

The term tunneling became mainly known due to the paper of Levy and
Montalvo (1985). After finding a local minimum point x∗

1 (k = 1) from a
starting point x0, their algorithm attempts to find iteratively a solution of

Tk(x) :=
f(x) − f(x∗

k)
(x − x∗

k)α
= 0, (7.12)

with a positive parameter α. The solution xk 	= x∗
k has the same function value

f(xk) = f(x∗
k) and is then used as a starting point in a local search to reach

x∗
k+1 with f(x∗

k+1) < f(x∗
k), which is then again used to define the tunneling

function Tk+1, etc. The idea is appealing, but the resulting challenge is of
course in solving (7.12) efficiently.

One of the follow-up papers that due to application and an article in
Science became widely cited is Cetin et al. (1993). They changed the tunneling
transformation (7.12) to what they call subenergy tunneling:

Esubk(x) := ln
(

1
1 + exp(f(x∗

k) − f(x) − a)

)
, (7.13)

7.3 PRS- and Multistart-based methods 181

with a parameter a typically with value a = 2. The elegance of this trans-
formation is that Esubk has the same stationary points as f(x), but is far
more flattened. They consider the problem from a dynamic system viewpoint
and in that terminology they add a penalty function named terminal repeller
function:

Erepk(x) :=
{−ρ

∑
i(xi − x∗

ik)
4
3 if (f(x) > f(x∗

k))
0, otherwise

(7.14)

with ρ a positive-valued parameter and i the component index. The idea
is to make x∗

k a local maximum with the repeller and to minimize Ek(x) =
Esubk(x) + Erepk(x) to obtain a point in a better region of attraction. The
so-called TRUST (Terminal Repeller Unconstrained Subenergy Tunneling)
algorithm is shown to converge with certainty under certain circumstances for
the one-dimensional case.

The concept of tunneling is in principle a deterministic business using
the multistart approach. If everything works out fine, the end result does
not depend on a possible random starting value. More recently one can find
literature using the term Stochastic Tunneling where random perturbation is
used. The intention of the follow-up literature on these basic concepts is to
achieve improvement of performance.

The follow-up literature also refers to the work of Ge who worked in parallel
in the eighties on the concept of filled functions and finally became known due
to the paper by Ge (1990). The target is the same as that of tunneling; one
attempts to reach the region of attraction of better minima than the already
found ones. The concept to do so is not to have all stationary points the same
as the objective function, but to eliminate them in regions of attractions of
minima higher than the found minimum point x∗

k by “filling” the region of
attraction of x∗

k. One minimizes for instance filled function

ff (x) :=
1

r + f(x)
exp−

(‖x − x∗
k‖2

ρ

)
, (7.15)

with positively valued parameters r and ρ. The difficulty is to have and obtain
an interior minimum of the filled function. A good look at (7.15) shows that
r + f∗ > 0 is necessary to have ff (x) continuous, and that ff (x) → 0 for
increasing values of ‖x‖. Therefore the algorithm published by Ge contains a
delicate mechanism to adapt the values of the parameters of the filled function
during the optimization. Follow-up research mainly investigates alternatives
for filled function (7.15).

Algorithm 33 describes the basic steps. In each iteration a local minimum
of the filled function is sought with a local search procedure LSff . In reality
one has to adapt values of r and ρ and no exact minimum is necessary. For
instance, a lower function value f(x) < f(x∗

k) guarantees we are in another
region of attraction. The resulting point xk is then perturbed with a pertur-
bation vector ξ and used as starting point for minimization of the original

182 7 Stochastic GO algorithms

Algorithm 33 Filled function multistart(X, f, ff , LSf , LSff , x0)
k := 1, x∗

1 = LSf(x0)
repeat

adapt parameter values ρ and r
Choose ξ
xk := LSff (x∗

k + ξ)
x∗

k+1 := LSf (xk)
k:= k+1

until (f(x∗
k) ≥ f(x∗

k−1))

objective function with the local search procedure LSf . Adaptation of pa-
rameters, iterative choice of ξ and stopping criteria are necessary to have the
basic process functioning.

Example 7.8. We follow Algorithm 33 for the six-hump camel-back function
(7.6) on X = [−3, 3]2. We take as starting point x0 = (1.5, 0.5)T . A local
search procedure gives the nearby minimum point x∗

1 = (1.61, 0.57)T . For
the choice r = 1.2, ρ = 9, the filled function has an interior local minimum
point, see Figure 7.5. After choosing ξ = −0.001 × (1, 1)T as perturbation
vector and minimizing (7.15) from x∗

1 + ξ, one reaches the (local) minimum
point x1 = (1.18, 0.10)T . Using this point as a starting point of a local

Fig. 7.5. Filled function of six-hump camel-back, r = 1.2, ρ = 9, x∗
k = (1.61, 0.57)

7.4 Ideal and real, PAS and Hit and Run 183

search on the objective function, results in one of the global minimum points
x∗

2 = (0.09,−0.712)T .

7.4 Ideal and real, PAS and Hit and Run

The basic algorithms of Pure Random Search and Multistart allow theoret-
ical analysis of effectiveness and efficiency. Also the Metropolis criterion in
Simulated Annealing is known for its theoretical basis. From a theoretical
point of view, a Markovian way of thinking where the distribution of the next
sample depends on a certain state given the realized iterates looks attractive
(Zhigljavsky and Žilinskas, 2008). This allows analysis of the speed of conver-
gence. However, usually popular practical algorithms like Genetic Algorithms
are hard to map with this Markovian way of analysis.

In order to proceed in theoretical analysis, ideal algorithms have been de-
veloped that cannot be implemented practically, but which allow studying
effectiveness and efficiency. We discuss here the concept of Pure Adaptive
Search (PAS) and try to present intuition into its properties. For more pro-
found studies we refer to Zabinsky (2003).

PAS is not a real implementable algorithm, but a tool for analysis of
complexity and in some sense an ideal. The analysis in the literature focuses
on the question of what would happen if we were able in every iteration
to sample a point xk+1 in the improving region, i.e., the level set S(yk),
where yk is the function value of the current iterate, yk = f(xk). The most

Algorithm 34 PAS(X, f, δ)
k := 1, let y1 := maxX f(x)
while (yk > δ)

Sample point xk+1 from a uniform distribution over S(yk)
yk+1 := f(xk+1), k := k + 1

endwhile

important property, shown among others by Zabinsky and Smith (1992), is
that in some sense the number of iterations grows less than exponential in
the number of variables of the problem. To be precise, point xk+1 should
be strictly improving, i.e., f(xk+1) < yk. We will try to make this plausible
to the reader and show why it is improbable that this ideal will be reached.
That is, it is unlikely that uniformly sampling in the improving region can
be performed in a time which grows polynomially in the dimension n of the
problem.

In the algorithmic description we take as satisfaction level δ a relative
accuracy with respect to the function range maxx f(x) −minx f(x). For ease
of reasoning it is best to think in scaled terms where f∗ = minx f(x) = 0 and
the range is maxx f(x) − minx f(x) = 1.

184 7 Stochastic GO algorithms

Algorithm 35 NPAS(X, f, N, δ)
k := 1, Generate set P = {p1, . . . , pN} of N random points in X
yk := f(pmaxk) = maxp∈P f(p)
while (yk > δ)

Sample point xk+1 from a uniform distribution over S(yk)
P := P ∪ {xk+1} \ {pmax} replace pmax by xk+1 in P
yk+1 := f(pmaxk+1) = maxp∈P f(p), k := k + 1

endwhile

Further research mainly focused on relaxing the requirement of improve-
ment, such as in “Hesitant Adaptive Search” (HAS) which studies how the
probability of having an improvement (success rate, or bettering function)
may go down without damaging the less than exponential property of PAS;
see Bulger and Wood (1998). Another straightforward extension due to the
popularity of population algorithms is NPAS performing PAS with a popula-
tion of N points simultaneously, Hendrix and Klepper (2000). The theoretical
properties of Adaptive Random Search have stimulated research on imple-
mented algorithms that resemble its behavior. The Hit and Run process has
been compared to PAS and HAS; Controlled Random Search and Uniform
Covering by Probabilistic Rejection to NPAS or NHAS. Before elaborating
these algorithms, we focus on the positive properties of PAS.

It has been shown by Zabinsky and Smith (1992) that for problems satis-
fying the Lipschitz condition the expected number of iterations grows linearly
in the dimension; it is bounded by 1+n× ln(L×D/δ). Here L is the Lipschitz
constant and D the diameter of the feasible area X . To illustrate this we need
an instance where L and D are not growing with the dimension n.

Example 7.9. Consider f(x) = ‖x‖ on feasible set X = {x ∈ Rn | ‖x‖ ≤ 1}.
For each dimension n the Lipschitz constant L and diameter D are 1. In order
to obtain a δ-optimal point, PRS requires on average V (S(δ))

V (X) = δn iterations;
the expected number of required function evaluations grows exponentially in
the dimension. How is this for PAS and NPAS?

At iteration k, level yk with corresponding level set Sk = S(yk) is reached.
Let x be the random variable uniformly distributed over Sk and y = f(x) the
corresponding random function value. For our instance, random variable y
has cumulative distribution function (cdf) Fk(y) = yn/yn

k . In every iteration
of PAS, the volume V (Sk) is reduced to V (Sk+1). The expectation of the
reduction is

E
V (Sk+1)
V (Sk)

= E
yn

yn
k

=
1
yn

k

∫ yk

0

yndFk(y) =
1
2
. (7.16)

On average in every iteration half of the volume is thrown away. This deriva-
tion for NPAS shows a reduction of N

N+1 . Because the reductions are inde-
pendent and identically distributed random variables, the expected reduction

7.4 Ideal and real, PAS and Hit and Run 185

after k iterations for PAS is (1
2)k. Ignoring variation, the expected value of

the necessary number of iterations to obtain one point in S(δ) (with relative
volume δn) is at least n × ln(δ)/ ln(1/2). NPAS requires n × ln(δ)/ ln(N

N+1)
to obtain N points in S(δ). This is indeed linear in n.

The linear behavior in dimension tells us that PAS and NPAS would be able
to solve problems where the number of local optima grows exponential in
dimension. For this we construct another extreme case.

xk+1

xk+2

xk

X

Fig. 7.6. Hit and Run process (H&R)

Example 7.10. Consider a function g(x) on the unit box X = [0, 1]n with
Lipschitz constant Lg < 1/

√
n. The optimization problem is to solve binary

program
min g(x), x ∈ {0, 1}n, (7.17)

which requires to try all 2n vertices. We translate this problem into an equiv-
alent GO problem:

min
X

{f(x) = g(x) +
n∑

i=1

xi(1 − xi)}. (7.18)

The Lipschitz constant of (7.18) is L <
√

n + 1 and diameter D =
√

n. This
means that PAS and NPAS would solve (7.18) in polynomial expected time.

186 7 Stochastic GO algorithms

Algorithm 36 IH&R(X, f, N)
Sample point x1 from a uniform distribution over X, evaluate f(x1)
for (k = 2 to N) do

Sample dk from a uniform distribution over the unit sphere
Sample λk uniformly over {λ ∈ R | xk−1 + λdk ∈ X}
y := xk−1 + λkdk

if (f(y) < f(xk−1))
xk := y

else xk := xk−1

endfor

The optimist would say “this is great.” The pessimist would say “sampling
uniformly on a level set cannot be done in polynomial time.” One of the
implementable approximations of uniformly generating points is the Hit-and-
Run process, sketched in Figure 7.6. Smith (1984) showed that generating
points according to this process over a set X makes the points resemble as
being from a uniform distribution when the process continues. GO algorithms
based on the process were investigated: the Improving Hit and Run (IHR)
algorithm in Zabinsky et al. (1993) and a simulated annealing variant called
Hide-and-Seek in Romeijn and Smith (1994).

The direction d is usually drawn by using a normal distribution and nor-
malizing by dividing by its length; draw ui from N(0, 1) and take di = ui

‖u‖ ,
i = 1, . . . , n. Actually, any spherical symmetric distribution for u satisfies.
The distance between the uniform distribution and the H&R sampling in-
creases in the dimension. The consequence is that when n goes up, H&R
behaves more like a random local search. This can easily be seen when con-
sidering the density of iterate y which concentrates around xk. For an interior
point further than 2ε from the boundary,

V {x ∈ X |‖x− xk‖ ≤ ε}
V {x ∈ X |ε ≤ ‖x − xk‖ ≤ 2ε} =

(2ε)n − εn

εn
= 2n − 1. (7.19)

The density is running exponentially away from the uniform distribution con-
centrating around the current iterate xk. The theoretical convergence has
been studied in Lovász (1999). It is shown that convergence is polynomial
in some sense, where a large constant is involved. One can observe the local
search behavior experimenting with cases that allow increasing dimension.

Example 7.11. We consider f(x) = min{(x1 − 1)2, (x1 + 1)2 + 0.01} +
∑n

2 x2
i

a bi-spherical function on X = [−2, 2]n. For n = 2 the level set S(0.01) has a
relative volume of π

1600 . PRS with N = 1000 random points gives a probability
of about 0.86 to hit S(0.01). Running experiments with 10000 repetitions
show that IHR converges to S(0.01) in 80% of the cases. In higher dimensions
one needs much higher values to have at least some relative volume; δ = 0.01
was never reached for n = 20. For δ = 0.25 the relative volume of S(0.25) in

7.5 Population algorithms 187

x1

x2

x1

x2

n = 2 n = 20

Fig. 7.7. 200 sample points of IHR in 2 and 20 dimensions for a bi-spherical function

X = [−2, 2]20 is very small; order of 10−19. Nevertheless, IHR with N = 1000
reaches in about 85% of the runs a point in S(0.25) of which half belong to
the basin of the global minimum point. This shows the strong local search
behavior in higher dimensions. After reaching a point in the compartment
of 0.25 around the local optimum the chance of jumping to the global one is
practically zero, where PRS on the level set has a chance of 0.5.

Figure 7.7 shows the sample points that are generated in the lower- and
higher-dimensional case. One can observe that for n = 20 the points cluster
around the starting point; in this case in the left compartment. One can verify
numerically that the probability of converging to the global optimum is about
50%, the same as that of a local search.

For the run with n = 2, the algorithm is able to jump to the other compart-
ment and to converge there. The scattering of sample points in x1, x2-space is
stronger. The probability of converging to the global minimum is about 80%.

7.5 Population algorithms

Algorithms like Pure Random Search, Multistart and Pure Adaptive Search
have been analyzed widely in the literature of GO. Population algorithms are
often far less easy to analyze, but very popular in applications. Mainly for
algorithms with more than 10 parameters it is impossible to make systematic
scientific statements about its performance. Population algorithms keep a
population of solutions as a base to generate new iterates. They have existed
for a long time, but became more popular under the name Genetic Algo-
rithms (GA) after the appearance of the book by Holland (1975) followed by
many other works such as Goldberg (1989) and Davis (1991). Most of the de-
velopment after that can be found on the internet under terminology such as

188 7 Stochastic GO algorithms

Evolutionary Programming, Genetic Programming, Memetic Algorithms, etc.

Algorithm 37 GPOP(X, f, N)
Generate set P = {p1, . . . , pN} of N random points in X and evaluate
while (stopping criterion)

Generate a set of trial points x based on P and evaluate
Replace P by a selection of points from P ∪ x

endwhile

A generic population algorithm is given in Algorithm 37. The typical
terminology inherited from GA is to speak about parent selection for those
elements of P that are used for generating what is called offspring x. We dis-
cuss some of the population algorithms that have been investigated in Global
Optimization: Controlled Random Search, Uniform Covering by Probabilistic
Rejection, basic Genetic Algorithms and Particle Swarms.

7.5.1 Controlled Random Search and Raspberries

Price (1979) introduced a population algorithm that has been widely used
and also modified into many variants by himself and other researchers. In-
vestigation of the algorithm shows mainly numerical results. Algorithm 38

Fig. 7.8. Generation of trial point by CRS

7.5 Population algorithms 189

describes the initial scheme. It generates points in the manner of Nelder and
Mead (1965) (see Section 5.3.1) on randomly selected points from the current
population as sketched in Figure 7.8.

Algorithm 38 CRS(f, X, N, α)
Set k := N
Generate and evaluate a set P , of N random points uniformly on X
yk := f(pmaxk) = maxp∈P f(p)
while (yk − minp∈P f(p) > α)

k := k + 1
select at random a subset {p1, . . . , pn+1} from P
xk := 2

n

∑n
i=1 pi − pn+1

if (xk ∈ X AND f(xk) < yk−1)
replace pmaxk by xk in P

yk := f(pmaxk) = maxp∈P f(p)
endwhile

In later versions the number of parents n + 1 is a parameter m of the
algorithm. A so-called secondary trial point, which is a convex combination
of the parent points, is generated when the first type of points do not lead
to sufficient improvement. A rule is introduced which keeps track of the so-
called success rate, i.e., the relative number of times the trial point leads to
an improvement.

Example 7.12. Algorithm 38 is run for the six-hump camel-back function (7.6)
on X = [−3, 3]2; see Figure 7.9. The algorithm starts for this case with
N = 50 randomly generated points. During the iterations, the population
clusters (k = 200) in lower regions. It divides into two subpopulations as can
be observed from the figure at k = 400. In the end the population concentrates
in the lower level set with two compartments corresponding to the two global
minimum points. The algorithm is able to cover lower level sets and to find
several global minimum points.

Hendrix et al. (2001) investigated for which cases the algorithm is effective in
detecting minimum points and what is its efficiency. Surprising results were
reported. The ability to find several optima depends on whether the number
of parents m is odd or even. In the first version m was taken as n. Also, the
algorithm behaves more as a local search when m is taken bigger, whereas the
population size N does not seem to matter.

If we consider the viewpoint of NPAS, or NHAS (not every trial point
will lead to an improvement, success), it appears that for convex quadratic
functions the success rate does not depend on the level that has been reached.
The so-called bettering function as mentioned in Bulger and Wood (1998) is
constant. Of course, the improvement rate, or success rate, goes down with
the dimension n, otherwise CRS would be a realization of NHAS.

190 7 Stochastic GO algorithms

initial population, k = 50 k = 200

k = 400 final population, k = 930

Fig. 7.9. CRS population development on six-hump camel-back, N = 50, α = 0.01

S(f*+)

R

P

Fig. 7.10. UPCR, level set S with Raspberry set R

An alternative for CRS which focused most on the ability to get a uniform
cover of the lower level set is called Uniform Covering by Probabilistic Re-
jection (UPCR) (Hendrix and Klepper, 2000). The method has mainly been

7.5 Population algorithms 191

developed to be able to cover a level set S(f∗ + δ) which represents a confi-
dence region in nonlinear parameter estimation. The idea is to cover S(f∗+δ)
with a sample of points P as if they are from a uniform distribution or with
a so-called Raspberry set R = {x ∈ X | ∃p ∈ P, ‖x − p‖ ≤ r}, where r is a
small radius; see Figure 7.10.

Algorithm 39 UCPR(f, X, N, c, f∗ + δ)
Set k := N
Generate and evaluate a set P , of N random points uniformly on X
yk := f(pmaxk) = maxp∈P f(p)
while (yk > f∗ + δ)

k := k + 1
determine the average interpoint distance rk in P
Raspberry set Rk := {x ∈ X | ∃p ∈ P, ‖x − pi‖ ≤ c × rk}
Generate xk from a uniform distribution over Rk

if (xk ∈ X AND f(xk) < yk−1)
replace pmaxk by xk in P

yk := f(pmaxk) = maxp∈P f(p)
endwhile

The algorithm uses the idea of the average nearest neighbor distance for
approximating the inverse of the average density of points over S. In this
way, a parameter c is applied to obtain the right effectiveness of covering the
set. Like CRS, the UCPR algorithm has a fixed success rate with respect to
spherical functions that does not depend on the level yk = maxp∈P f(p) that
has been reached. The success rate goes down with increasing dimension, as
the probability mass goes to the boundary of the set if n increases. Therefore,
more of the Raspberry set sticks out of set S.

Example 7.13. A run of Algorithm 39 for the six-hump camel-back function
(7.6) on X = [−3, 3]2 is depicted in Figure 7.11. We take for the parameter
c the value

√
π following the nearest neighbor covering idea of (7.4). Given

the average nearest neighbor distance of the initial population in this run
(c × r50)2 = 0.7056 ≈ V (X)

50 . In the end the population concentrates in the
lower level set S(−1.02) with two compartments corresponding to the two
global minimum points.

7.5.2 Genetic algorithms

Genetic Algorithms (GA) became known after the appearance of the book by
Holland (1975) followed by many other works such as Goldberg (1989) and
Davis (1991). In the generic population Algorithm 37, they generate at each
iteration a set of trial points. Reports on investigating GAs sometimes hide the
followed scientific methodology (if any) behind an overwhelming terminology

192 7 Stochastic GO algorithms

initial population, k = 50 k = 200

k = 400 final population, k = 430

Fig. 7.11. UCPR population on six-hump camel-back, N = 50, c =
√

π, δ = 0.01

from biology and nature: evolution, genotype, natural selection, reproduc-
tion, recombination, chromosomes, etc. Existing terminology is replaced by
a biological interpretation; the average interpoint distance in a population is
called diversity.

Furthermore, the resulting algorithms are characterized by a large number
of parameters. A systematic study into what instances the algorithms with
their parameter settings converge to the set of global optimum points and
under which efficiency, becomes nearly impossible. For instance, the matlab
GA function has 26 parameters of which about 17 influence the performance
of the algorithm, and the others refer to output. Initially the points in the
population were thought of in their bitstring representation following the anal-
ogy of chromosomes. Several ways were developed to represent points as real
or floating point. The basic concepts are the following:

• the objective function is transformed to a fitness value,
• the solutions in the population are called individuals,
• points of the population are selected for making new trial points: parent

selection for generating offspring,
• candidate points are generated by combining selected points: crossover,

7.5 Population algorithms 193

• candidate points are varied randomly to become trial points: mutation,
• new population is composed.

The fitness F (x) of a point giving its objective function value f(x) to be
minimized can be taken via a linear transformation:

F (x) =
fmax(P) − f(x)

fmax(P) − fmin(P)
(7.20)

with fmax(P) = maxp∈P f(p) and fmin(P) = minp∈P f(p). A higher fitness
is thought of as better; in the parent selection, the probability for selecting
point p ∈ P is often taken as F (p)∑

F (pj)
. Parameters of the algorithm deal with

choices on: fitness transformation, the method of probabilistic selection, the
number of parents (like in CRS), etc.

The next choice is how to perform crossover: one point, multiple point,
uniform, etc. A starting concept is that of one-point crossover of a (bit)string
(chromosome). Let (a1, a2, a3, a4, a5, a6, a7) and (b1, b2, b3, b4, b5, b6, b7) be two
parents. An example of one-point crossover can be

parents
(a1, a2, a3, a4, a5, a6, a7)
(b1, b2, b3, b4, b5, b6, b7)

⇒
offspring

(a1, a2, b3, b4, b5, b6, b7)
(b1, b2, a3, a4, a5, a6, a7)

and an example of two-point crossover

parents
(a1, a2, a3, a4, a5, a6, a7)
(b1, b2, b3, b4, b5, b6, b7)

⇒
offspring

(a1, a2, b3, b4, b5, b6, a7)
(b1, b2, a3, a4, a5, a6, b7)

Example 7.14. Let bitstrings (B1, B2, B3, B4, B5, B6) represent points in two-
dimensional space via (x1, x2) = (

∑3
1 Bi2i−1,

∑6
4 Bi2i−1). This means that the

parents (2, 3) and (5, 1) are represented by (0, 1, 0, 1, 1, 0) and (1, 0, 1, 1, 0, 1),
respectively. One-point crossover at position 2 gives as children (0, 1, 1, 1, 0, 0)
→ (6, 1) and (1, 0, 0, 1, 1, 0) → (1, 3).

Algorithm 40 GA(f, X, N, M , other parameters)
Set k := N
Generate and evaluate a set P , of N random points uniformly on X
while (stopping criterion)

Parent selection: select points used for generation candidates
Crossover: create M candidates from selected points
Mutation: vary candidates toward M trial points
k := k + M , evaluate trial points
create new population out of P and trials

endwhile

194 7 Stochastic GO algorithms

Many alternatives can be found in the literature of how to perform crossover
for real-coded genetic algorithms, e.g., Herrera et al. (2005). The inheritance
concept enclosed in crossover gets a more Euclidean character than using bit-
strings. The same applies for the mutation operations. Initially, bits in the
string were flipped at random according to mutation rates or probabilities
(algorithm parameters). A real-coded alternative is easy to think of, as one
can add a random vector to a candidate to obtain a trial point. Finally the
selection of the new population from the evaluated trial points and former
population leaves many alternatives (algorithm parameters). Algorithm 40
gives a fairly generic scheme, although even the generation of the initial pop-
ulation can be done in other ways than uniformly.

initial population, k = 50 k = 200

k = 400 final population, k = 1000

Fig. 7.12. GA population on six-hump camel-back, N = 50, default matlab values

Example 7.15. To illustrate the procedure, we fed a uniform population of
N = 50 points on the feasible set X = [−3, 3]2 to the GA routine of matlab
to generate solutions of the six-hump camel-back function. Figure 7.12 gives
the development of a population in one run. In general, more than 1000 eval-
uations are necessary to have the algorithm converge. It typically converges
to one of the global minimum points.

7.5 Population algorithms 195

We have seen that CRS and UCPR seek to cover the global minimum points
and the corresponding compartments of a lower level set. Evolutionary com-
puting developed the term “niching” for that. The attempt to obtain points
of the final population in the neighborhood of all global minimum points leads
to clustering approaches to distinguish subpopulations. Euclidean distance is
renamed “genotypic distance.” A niching radius is a variant of a cluster dis-
tance used for allocation of points to optimum points, to reduce the number of
points in a cluster, or to modify the fitness function, such that the algorithm
does not converge that fast to one of them. Variants of evolutionary comput-
ing have been developed to deal with this, often containing many parameters
to tune the behavior.

There has also been a movement from an engineering perspective to cre-
ate simpler algorithms with less parameters, but keeping up with terminology
from nature. Examples are Differential Evolution, Shuffled Complex Evolu-
tion, and Particle Swarms. We discuss the latter.

7.5.3 Particle swarms

Kennedy and Eberhart (1995) came up with an algorithm where evolutionary
terminology was replaced by “swarm intelligence” and “cognitive consistency.”
The target is not to develop scientific measurable indicators for these concepts,
but to create a simple population algorithm. In each iteration of the algorithm,
each member (particle) of the population, called a swarm, is modified and
evaluated. Classical nonlinear programming modification by direction and
step size is now termed “velocity.” Instead of considering P as a set, one
better thinks of a list of elements, pj , j = 1, . . . , N . So we will use the index j
for the particle. Besides its position pj , also the best point zj found by pj is
stored. A matrix of modifications (velocities) [v1, . . . , vN] is updated at each
iteration containing random effects. The velocity vj is based on points pj, zj

Algorithm 41 Pswarm(f, X, N, ω, δ)
Set k := N
Generate and evaluate a set P , of N random points uniformly on X
yk := f(xk) = minj f(pj)
Z := P ; vj := 0, j = 1, . . . , N
while (yk > δ)

for (j := 1 to N) do
generate r and u uniformly over [0, 1]n

for (i := 1 to n) do
vji := ωvji + 2ri(zji − pji) + 2ui(xki − pji)

pj := pj + vj ; evaluate f(pj)
if (f(pj) < f(zj)), zj := pj

k := k + N
yk := f(xk) = minj f(zj)

endwhile

196 7 Stochastic GO algorithms

and the best current point xk = argminj f(zj). In the next iteration simply
pj := pj +vj . For the description it is useful to use the element index i besides
the particle index j and iteration index k.

initial population, k = 50 k = 200

k = 400 final population, k = 640

Fig. 7.13. Particle swarm on six-hump camel-back, N = 20, δ = −1.02 and ω = 0.8

The basic algorithm is outlined in Algorithm 41. It is rather an algorithm
that performs N trajectory searches in parallel. Only information on the best
point found xk is needed for all N processes. The investigated processes in the
initial paper for updating the modification matrix were in favor of not using
any damping parameters. We add a so-called inertial constant ω, coming to
an updating scheme for the change matrix (velocity)

vji := ωvji + 2ri(zji − pji) + 2ui(xki − pji) (7.21)

with random values ri and ui for each element. In our experiments the al-
gorithm diverged to an exploding population when not adding a damping
parameter ω. Many modifications have been added in the literature to this
basic scheme.

Notice that in the algorithm the stopping criterion was put on the record
(best) value found and not on the convergence of the complete population.

7.7 Exercises 197

The population keeps on swarming around the best points found and unless
more damping is included does not converge to a set of minimum points.

Example 7.16. The process with a population of N = 20 points and ω = 0.8 is
illustrated with one run on the six-hump camel-back function in Figure 7.13.
In this run, evaluation k = 638 hits a function value lower than δ = −1.02
and the process was stopped. The initial population is generated on [−3, 3]2,
but the swarm takes on wider values if no limit is applied. In Figure 7.13, the
population is depicted on a range of [−30, 30]2. It keeps swinging around the
minimum points.

7.6 Summary and discussion points

• Stochastic methods require no mathematical structure of the problem to
be optimized. In that sense they are generally applicable.

• Most methods are relatively easy to implement compared to deterministic
branch and bound methods.

• No certainty exists with deterministic accuracy that a global optimum
point has been reached.

• For an effective stochastic method, an optimum is approximated in a prob-
abilistic sense when effort increases to infinity.

• Increasing dimension pushes volume of the feasible set to the boundary,
but lets the nearest neighbor of sampling points remain relatively close.

• Pure random search and Multistart give benchmark performance for
stochastic algorithms.

• Multi-Level Single Linkage is a very effective algorithm, but requires main-
taining an increasing list of evaluated points.

• Pure Adaptive Search (PAS) and N -point PAS are ideal algorithms with a
desirable complexity. It is unlikely that uniform sampling on level sets can
be realized in a time polynomial in the dimension (size) of the problem.

• Implementable algorithms such as Hit and Run, Controlled Random
Search and Uniform Covering by Probabilistic Rejection deviate increas-
ingly from ideals with increasing dimension of the problem.

• The evolutionary drift in the development of GA-based methods has led
to stochastic algorithms with many parameters without any analytical
guarantee to come close to a global optimum.

7.7 Exercises

1. Consider set X = [0, 1]2.
(a) Generate five random points over X and determine the average nearest

neighbor distance.

198 7 Stochastic GO algorithms

(b) Repeat the former 10 times and determine the average and variance
of the nearest neighbor statistic.

2. Consider the bi-spherical problem of Example 7.5 to be solved by the
Multistart algorithm with N = 5 starting points.
(a) Determine the probability that the global optimum solution is found

two times. What is the probability it is not found at all?
(b) Repeat Multistart(X, f, LS, 5) 10 times with an available optimizer

LS and determine the average and variance of the number of times
the optimum has been found. Is the result close to the theoretical
values of mean and variance?

3. Generate 10 points on the unit sphere {x ∈ R4 | ‖x‖ = 1} in four-
dimensional space. Determine the biggest distance among the 10 points.

4. Given population P = {(1, 0)T , (2, 1)T , (1, 1)T , (0, 2)T }. Determine the
set of trial points CRS is able to generate from P .

5. Consider a bi-spherical problem on X = [−4, 4] × [−1, 1] where lower
level set S(0.01) = {x ∈ X | f(x) ≤ 0.01} consists of two circular com-
partments L = {x ∈ X | (x1 + 1)2 + x2

2 ≤ 0.01} and R = {x ∈ X |
(x1 − 1)2 + x2

2 ≤ 0.01}. Of N = 50 sample points, 40 are situated in L
and 10 are situated in R.
(a) Draw the feasible area X with its level set S(0.01).
(b) Determine the probability that CRS will generate a next iterate which

is “far from” S(0.01), i.e., xk+1 > 2 or xk+1 < −2.
(c) Determine the probability that the next iterate of CRS is in the neigh-

borhood of L and the probability it is in the neighborhood of R.
(d) To which point do you think that CRS will probably converge?
(e) Determine the probability the next iterate of UCPR is in the neigh-

borhood of L and the probability it is in the neighborhood of R.
(f) To which point do you think that UCPR will probably converge?

6. Points on the feasible set [1, 4]2 are represented using bitstrings from
{0, 1}8 as (x1, x2) = (1+0.2

∑4
1 Bi2i−1, 1+0.2

∑8
5 Bi2i−1). Parents (2, 3)

and (1, 2) are represented by (1, 0, 1, 0, 0, 1, 0, 1) and (0, 0, 0, 0, 1, 0, 1, 0).
(a) Is it possible to generate a child (4, 4) by a crossover operation?
(b) How many different children can be generated by two-point crossover?
(c) Generate two pairs of children from the parents via two-point crossover.

References

Aarts, E. H. L. and Lenstra, J. K.: 1997, Local Search Algorithms, Wiley,
New York.

Al-Khayyal, F. A.: 1992, Generalized bilinear programming, Part I, mod-
els, applications and linear programming relaxation, European Journal of
Operational Research 60, 306–314.

Ali, M. M., Story, C. and Törn, A.: 1997, Application of stochastic global opti-
mization algorithms to practical problems, Journal of Optimization Theory
and Applications 95, 545–563.

Baritompa, W. P.: 1993, Customizing methods for global optimization, a
geometric viewpoint, Journal of Global Optimization 3, 193–212.

Baritompa, W. P., Dür, M., Hendrix, E. M. T., Noakes, L., Pullan, W. and
Wood, G. R.: 2005, Matching stochastic algorithms to objective function
landscapes, Journal of Global Optimization 31, 579–598.

Baritompa, W. P. and Hendrix, E. M. T.: 2005, On the investigation of
stochastic global optimization algorithms, Journal of Global Optimization
31, 567–578.

Baritompa, W. P., Mladineo, R., Wood, G. R., Zabinsky, Z. B. and Baoping,
Z.: 1995, Towards pure adaptive search, Journal of Global Optimization
7, 73–110.

Bates, D. and Watts, D.: 1988, Nonlinear Regression Analysis and Its Appli-
cations, Wiley, New York.

Bazaraa, M., Sherali, H. and Shetty, C.: 1993, Nonlinear Programming, Wiley,
New York.

Björkman, M. and Holmström, K.: 1999, Global optimization using the direct
algorithm in matlab, Advanced Modeling and Optimization 1, 17–37.

Boender, C. G. E. and Rinnooy-Kan, A. H. G.: 1987, Bayesian stopping rules
for multistart global optimization, Mathematical Programming 37, 59–80.

Boender, C. G. E. and Romeijn, H. E.: 1995, Stochastic methods, in R. Horst
and P. M. Pardalos (eds.), Handbook of Global Optimization, Kluwer, Dor-
drecht, pp. 829–871.

200 References

Box, G. E. and Draper, N. R.: 2007, Response Surfaces, Mixtures and Ridge
Analysis, Wiley, New York.

Breiman, L. and Cutler, A.: 1993, A deterministic algorithm for global opti-
mization, Mathematical Programming 58, 179–199.

Brent, R. P.: 1973, Algorithms for Minimization without Derivatives,
Prentice–Hall, Englewood Cliffs, NJ.

Bulger, D. W. and Wood, G. R.: 1998, Hesitant adaptive search for global
optimisation, Mathematical Programming 81, 89–102.

Cetin, B. C., Barhen, J. and Burdick, J.: 1993, Terminal repeller uncon-
strained subenergy tunneling (TRUST) for fast global optimization, Jour-
nal of Optimization Theory and Applications 77, 97–126.

Danilin, Y. and Piyavskii, S. A.: 1967, An algorithm for finding the absolute
minimum, Theory of Optimal Decisions 2, 25–37 (in Russian).

Davis, L.: 1991, Handbook of Genetic Algorithms, Van Nostrand Reinhold,
New York.

Dinkelbach, W.: 1967, On nonlinear fractional programming, Management
Science 13, 492–498.

Finkel, D. and Kelley, C. T.: 2006, Adaptive scaling and the direct algorithm,
Journal of Global Optimization 36, 597–608.

Fletcher, R. and Reeves, C. M.: 1964, Function minimization by conjugate
gradients, The Computer Journal 7, 149–154.

Ge, R.: 1990, A filled function method for finding a global minimizer of a
function of several variables, Mathematical Programming 46, 91–204.

Gill, P. E., Murray, W. and Wright, M. H.: 1981, Practical Optimization,
Academic Press, New York.

Glover, F. W.: 1986, Future paths for integer programming and link to arti-
ficial intelligence, Computers and Operations Research 13, 533–554.

Goldberg, D. E.: 1989, Genetic Algorithms in Search, Optimization and Ma-
chine Learning, Kluwer, Boston.

Groeneveld, R. and van Ierland, E.: 2001, A spatially explicit framework for
the economic and ecological analysis of biodiversity conservation in agro-
ecosystems, in Y. Villacampa, C. Brebbia and J.-L. Uso (eds.), Ecosystems
and Sustainable Development III, Vol. 10 of Advances in Ecological Sciences,
WIT Press, Southampton, UK, pp. 689–698.

Gutmann, H.-M.: 2001, A radial basis function method for global optimiza-
tion, Journal of Global Optimization 19, 201–227.

Han, S.-P.: 1976, Superlinearly convergent variable metric algorithms for
general nonlinear programming problems, Mathematical Programming 11,
263–282.

Hansen, E.: 1992, Global Optimization Using Interval Analysis, Vol. 165 of
Pure and Applied Mathematics, Dekker, New York.

Haug, E. J. and Arora, J. S.: 1979, Applied Optimal Design: Mechanical and
Structural Systems, Wiley, New York.

Hax, A. and Candea, D.: 1984, Production and Inventory Mangement,
Prentice–Hall, Englewood Cliffs, NJ.

References 201

Haykin, S.: 1998, Neural Networks: A Comprehnsive Foundation, Prentice–
Hall, Englewood Cliffs, NJ.

Hendrix, E. M. T.: 1998, Global Optimization at Work, Ph.D. thesis, Wa-
geningen University, Wageningen.

Hendrix, E. M. T. and Klepper, O.: 2000, On uniform covering, adap-
tive random search and raspberries, Journal of Global Optimization 18,
143–163.

Hendrix, E. M. T. and Olieman, N. J.: 2008, The smoothed Monte Carlo
method in robustness optimisation, Optimization Methods and Software
23, 717–729.

Hendrix, E. M. T., Ortigosa, P. M. and Garćıa, I.: 2001, On success rates for
controlled random search, Journal of Global Optimization 21, 239–263.

Hendrix, E. M. T. and Pintér, J. D.: 1991, An application of Lipschitzian
global optimization to product design, Journal of Global Optimization
1, 389–401.

Hendrix, E. M. T. and Roosma, J.: 1996, Global optimization with a limited
solution time, Journal of Global Optimization 8, 413–427.

Herrera, F., Lozano, M. and Sánchez, A.: 2005, Hybrid crossover for
real-coded genetic algorithms; an experimental study, Soft Computing 9,
280–298.

Hestenes, M. R. and Stiefel, E.: 1952, Methods of conjugate gradients for solv-
ing linear systems, Journal of Research of the National Bureau of Standards
49, 409–436.

Holland, J. H.: 1975, Adaptation in Natural and Artificial Systems, University
of Michigan Press, Ann Arbor.

Horst, R. and Pardalos, P. M.: 1995, Handbook of Global Optimization,
Kluwer, Dordrecht.

Horst, R., Pardalos, P. and Thoai, N. (eds.): 1995, Introduction to Global Op-
timization, Vol. 3 of Nonconvex Optimization and its Applications, Kluwer
Academic Publishers, Dordrecht.

Horst, R. and Tuy, H.: 1990, Global Optimization: Deterministic Approaches,
Springer, Berlin.

Ibaraki, T.: 1976, Theoretical comparisons of search strategies in branch and
bound algorithms, International Journal of Computer and Information Sci-
ence 5, 315–344.

Jones, D., Perttunen, C. and Stuckman, B.: 1993, Lipschitzian optimization
without the Lipschitz constant, Journal of Optimization Theory and Appli-
cations 79, 157–181.

Jones, D. R., Schonlau, M. and Welch, W. J.: 1998, Efficient global opti-
mization of expensive black-box functions, Journal of Global Optimization
13, 455–492.

Karnopp, D. C.: 1963, Random search techniques for optimization problems,
Automatica 1, 111–121.

Kearfott, R. B.: 1996, Rigorous Global Search: Continuous Problems, Kluwer
Academic Publishers, Dordrecht.

202 References

Keesman, K.: 1992, Determination of a minimum-volume orthotopic enclosure
of a finite vector set, Technical Report MRS Report 92-01, Wageningen
Agricultural University.

Kelley, C. T.: 1999, Iterative Methods for Optimization, SIAM, Philadelphia.
Kennedy, J. and Eberhart, R. C.: 1995, Particle swarm optimization, Proceed-

ings of IEEE International Conference on Neural Networks, Piscataway,
NJ, pp. 1942–1948.

Khachiyan, L. and Todd, M.: 1993, On the complexity of approximating
the maximal inscribed ellipsoid for a polytope, Mathematical Programming
61, 137–159.

Kleijnen, J. and van Groenendaal, W.: 1988, Simulation, a Statistical Per-
spective, Wiley, New York.

Konno, H. and Kuno, T.: 1995, Multiplicative programming problems, in
R. Horst and P. M. Pardalos (eds.), Handbook of Global Optimization,
Kluwer, Dordrecht, pp. 369–405.

Kuhn, H. W.: 1991, Nonlinear programming: A historical note, in J. K.
Lenstra, A. H. G. Rinnooy-Kan and A. Schrijver (eds.), History of Mathe-
matical Programming, CWI North Holland, Amsterdam, pp. 145–170.

Kushner, H.: 1962, A versatile stochastic model of a function of unknown
and time-varying form, Journal of Mathematical Analysis and Applications
5, 150–167.

Levy, A. V. and Montalvo, A.: 1985, The tunneling algorithm for the global
minimization of functions, SIAM Journal on Scientific and Statistical Com-
puting 6, 15–29.

Lovász, L.: 1999, Hit-and-run mixes fast, Mathematical Programming
86, 443–461.

Markowitz, H.: 1959, Portfolio Selection, Wiley, New York.
Marquardt, D. W.: 1963, An algorithm for least squares estimation of non-

linear parameters, SIAM Journal 11, 431–441.
Meewella, C. C. and Mayne, D. Q.: 1988, An algorithm for global optimiza-

tion of Lipschitz continuous functions, Journal of Optimization Theory and
Applications 57, 307–322.

Mitten, L. G.: 1970, Branch and bound methods: general formulation and
properties, Operations Research 18, 24–34.

Mladineo, R. H.: 1986, An algorithm for finding the global maximum of a
multimodal multivariate function, Mathematical Programming 34, 188–200.

Mockus, J.: 1988, Bayesian Approach to Global Optimization, Kluwer, Dor-
drecht.

Moore, R.: 1966, Interval Analysis, Prentice–Hall, Englewood Cliffs, NJ.
Nash, J. F.: 1951, Noncooperative games, Annals of Mathematics 54,

286–295.
Nelder, J. A. and Mead, R.: 1965, A simplex method for function minimiza-

tion, The Computer Journal 7, 308–313.
Nocedal, J. and Wright, S. J.: 2006, Numerical Optimization, 2nd ed.,

Springer, Berlin.

References 203

Pietrzykowski, T.: 1969, An exact potential method for constrained maxima,
SIAM Journal on Numerical Analysis 6, 294–304.

Pintér, J. D.: 1988, Branch-and-bound algorithms for solving global optimiza-
tion problems with Lipschitzian structure, Optimization 19, 101–110.

Pintér, J. D.: 1996, Global Optimization in Action; continuous and Lipschitz
optimization: algorithms, implementations and application, Kluwer, Dor-
drecht.

Polak, E. and Ribière, G.: 1969, Note sur la convergence de directions con-
juges, Rev. Francaise Informat. Recherche Operationelle 3, 35–43.

Powell, M. J. D.: 1964, An efficient method for finding the minimum of a
function of several variables without calculating derivatives, The Computer
Journal 7, 155–162.

Powell, M. J. D.: 1978, Algorithms for nonlinear constraints that use La-
grangian functions, Mathematical Programming 14, 224–248.

Press, W. H., Teukolsky, S. A., Vettering, W. T. and Flannery, B. P.: 1992,
Numerical Recipes in C, Cambridge University Press, New York.

Price, W. L.: 1979, A controlled random search procedure for global opti-
mization, The Computer Journal 20, 367–370.

Rasch, D. A. M. K., Hendrix, E. M. T. and Boer, E. P. J.: 1997, Repli-
cationfree optimal designs in regression analysis, Computational Statistics
12, 19–52.

Rinnooy-Kan, A. H. G. and Timmer, G. T.: 1987, Stochastic global opti-
mization methods. Part II: Multi-level methods, Mathematical Program-
ming 39, 57–78.

Ripley, B. D.: 1981, Spatial Statistics, Wiley, New York.
Roebeling, P. C.: 2003, Expansion of cattle ranching in Latin America. A

farm-economic approach for analyzing investment decisions, Ph.D. thesis,
Wageningen University, Wageningen.

Romeijn, H. E.: 1992, Global Optimization by Random Walk Sampling Meth-
ods, Ph.D. thesis, Erasmus University Rotterdam, Rotterdam.

Romeijn, H. E. and Smith, R. L.: 1994, Simulated annealing for constrained
global optimization, Journal of Global Optimization 5, 101–126.

Rosen, J. B.: 1960, The gradient projection method for nonlinear program-
ming, Part I – linear constraints, SIAM Journal of Applied Mathematics
8, 181–217.

Rosen, J. B.: 1961, The gradient projection method for nonlinear program-
ming, Part II – nonlinear constraints, SIAM Journal of Applied Mathemat-
ics 9, 514–532.

Scales, L.: 1985, Introduction to Non-Linear Optimization, Macmillan,
London.

Schaible, S.: 1995, Fractional programming, in R. Horst and P. M. Pardalos
(eds.), Handbook of Global Optimization, Kluwer, Dordrecht, pp. 495–608.

Sergeyev, Y. D.: 2000, Efficient strategy for adaptive partition of n-
dimensional intervals in the framework of diagonal algorithms, Journal of
Optimization Theory and Applications 17, 145–168.

204 References

Shubert, B. O.: 1972, A sequential method seeking the global maximum of a
function, SIAM Journal of Numerical Analysis 9, 379–388.

Smith, R. L.: 1984, Efficient Monte Carlo procedures for generating points
uniformly distributed over bounded regions, Operations Research 32, 1296–
1308.

Taguchi, G., Elsayed, E. and Hsiang, T.: 1989, Quality Engineering in Pro-
duction Systems, McGraw–Hill, New York.

Törn, A., Ali, M. M. and Viitanen, S.: 1999, Stochastic global optimization:
Problem classes and solution techniques, Journal of Global Optimization
14, 437–447.

Törn, A. and Žilinskas, A.: 1989, Global Optimization, Vol. 350 of Lecture
Notes in Computer Science, Springer, Berlin.

Tuy, H.: 1995, D.c. optimization: theory, methods and algorithms, in R. Horst
and P. M. Pardalos (eds.), Handbook of Global Optimization, Kluwer, Dor-
drecht, pp. 149–216.

Walter, E.: 1982, Identifiability of state space models, Springer, New York.
Wilson, R. B.: 1963, A simplicial algorithm for concave programming, Ph.D.

thesis, Harvard University, Boston.
Zabinsky, Z. B.: 2003, Stochastic Adaptive Search for Global Optimiza-

tion, Vol. 72 of Nonconvex Optimization and Its Applications, Springer,
New York.

Zabinsky, Z. B. and Smith, R. L.: 1992, Pure adaptive search in global opti-
mization, Mathematical Programming 53, 323–338.

Zabinsky, Z. B., Smith, R. L., McDonald, J. F., Romeijn, H. E. and Kaufman,
D. E.: 1993, Improving hit-and-run for global optimization, Journal of
Global Optimization 3, 171–192.

Zangwill, W. I.: 1967, Nonlinear programming via penalty functions, Man-
agement Science 13, 344–358.

Zhigljavsky, A. A.: 1991, Theory of Global Random Search, Kluwer, Dor-
drecht.

Zhigljavsky, A. A. and Žilinskas, A.: 2008, Stochastic Global Optimization,
Vol. 1 of Springer Optimization and Its Applications, Springer, New York.

Index

γ-extension, 167

accuracy, 74
δ-accuracy, 75
ε-accuracy, 75

analytical solution, 45

barrier function method, 124
benchmark algorithms, 88
bettering function, 184
BFGS method, 112
bi-spherical function, 174
bilinear, 155, 162
binary program, 185
binding constraint, 32, 45
bisection, 71, 94, 163
black box, 3, 13
bound

bound on the second derivative, 151
bracketing, 93
branch and bound, 138, 159

calibration, 20
characteristics

characteristics of test functions, 85
Chebychev center, 9, 27
clustering, 178
complementarity, 52
concave, 55

concave programming, 148
confidence region, 24, 191
conjugate gradient method, 109
constrained optimization, 121
contour, 32, 35

Controlled Random Search, 188
convergence

convergence speed, 69
linear convergence, 72

convex, 54
convex function, 55
convex optimization, 57
convex set, 57
nonconvex, 55, 148
reverse convex, 150

convex envelope, 147
cooling rate, 81
cross-cut function, 35, 42
cumulative distribution function, 79

function value, 175
cut-off test, 159, 160
cutting hyperplane, 165

d.c. programming, 149
decreasing returns to scale, 18
derivative, 36

automatic differentiation, 36
continuously differentiable, 36
directional derivative, 36, 38, 46
numerical differentiation, 36
partial derivative, 37
second-order derivative, 38, 39

difference
central difference, 36
forward difference, 36

Differential Evolution, 195
direct algorithm, 138
direction

ascent direction, 37, 38

206 Index

descent direction, 37, 38
feasible direction, 45, 52

dominate, 87
dynamic decision making, 10, 19

economic models, 17
effectiveness, 2, 68
efficiency, 2, 68
eigenvalue, 42, 43
eigenvector, 43
emission abatement, 20
enclosing a set of points, 7
environment

ε-environment, 32, 57, 58
error term, 22
everywhere dense, 76, 171
experiments

design of experiments, 85
extreme cases, 86
numerical experiments, 69

extreme-order statistics, 79

filled function, 180, 182
fractional function, 156
function evaluations, 4, 69, 83

expensive, 3

gams, 18, 31
Gauss–Newton method, 120
Genetic Algorithms, 191

crossover, 193
diversity, 192
fitness, 193

Golden Section
number, 95
search, 95

goodness of fit, 25
gradient, 37

method, see steepest descent method
gradient projection method, 125
graph, 35
grid search, 74, 77, 137
guarantee, 137

Hessean, 39
Hide-and-Seek, 186
high dimensions, 172
Hit and Run, 185

Improving Hit and Run, 186

hybrid methods, 176

identifiability, 23
inclusion function, 158
indefinite, 42
infinite effort property, 80
inflection point, 46
information

structural information, 87
value information, 87, 149, 154

interpolation
cubic, 99
quadratic, 97

interval arithmetic, 158
interval extension, 158

inventory control, 12, 28

Karush–Kuhn–Tucker, 49, 162
KKT conditions, 52

Lagrangean, 49, 50
landscape, 85
least squares, 23
level set, 35, 80
Levenberg–Marquardt, 121
line search, 92

inexact, 113
linear complementarity, 155
linear regression, 118
Lipschitz continuous, 75, 150

Lipschitz constant, 75, 151
local optimization, 80
logistic growth, 22

Markov, 82, 183
mathematical structure, 147
maximum absolute error, 23
maximum likelihood, 23
mean value theorem, 40
memory requirement, 69
meta-heuristics, 81
metamodeling, 15
minorant, 147, 156

affine minorant, 148, 169
convex minorant, 150

monotonicity test, 160
Multi-Level Single Linkage, 178
multinomial distribution, 177
multiplicative function, 156
Multistart, 80, 176

Index 207

nearest neighbor distance, 173, 191
negative (semi)definite, 42
Nelder and Mead method, 102
neural network, 24, 28
Newton method, 73

multivariate, 108
univariate, 100

niching, 195
nonlinear programming, 1
nonlinear regression, 118
notation, 3

objective function, 1
offspring, 188
optimal control, 19
optimality conditions, 2, 31

first-order conditions, 45
second-order conditions, 46

optimum
global optimum, 1, 32
local optimum, 1, 32
number of optima, 178

oracle, 3

packing circles, 27
parabola, 34, 38, 43
parameter estimation, 4, 20, 24, 191
parametric programming, 35
parents, 188, 189
Pareto, 35, 140
particle swarms, 195
partition set, 159
penalty function method, 121
performance graph, 83
Piyavskii–Shubert algorithm, 76, 138
polynomial, 183
polytope, 32, 137

method, see Nelder and Mead method
portfolio, 33
positive (semi)definite, 42, 44, 47, 57
Powell’s method, 105
probability mass, 80
pseudo-random numbers, 11, 172
Pure Adaptive Search, 183

Hesitant Adaptive Search, 184
N-point PAS, 184

Pure Random Search, 78, 174

quadratic function, 41, 154

quadratic optimization, 15
quasi-convex function, 58
quasi-Newton method, 111

radial basis function, 145
Raspberry set, 191
record, 68, 140, 196
region of attraction, 73, 81, 176, 177
regression, 4, 15, 23

logistic regression, 25
nonlinear regression, 20

reproduction of experiments, 84, 88
response surface, 145
risk aversion, 35
rum–coke example, 16

saddle point, 40, 46, 49
sawtooth cover, 77, 151
selection rule, 160
sequential quadratic programming, 130
simulated annealing, 81
simulation, 4

Monte Carlo, 11
six-hump camel-back function, 174
smooth function, 41
Sobol numbers, 172
solver, 31, 91
spatial models, 19
SQP, 130
stationary point, 44, 46
steepest descent method, 107
stochastic model, 144

P-algorithm, 144
random function approach, 144

stopping rule, 177
subset, 159

interval, 76
success

measure of success, 68
success rate, 69, 184
success region, 79, 175

Taylor, 40
first-order Taylor approximation, 41
second-order approximation, 41

trust region methods, 115
tunneling, 180

subenergy tunneling, 180
terminal repeller, 181

208 Index

underestimation, 156

underestimating function, 153

uniform cover, 190

Uniform Covering by Probabilistic
Rejection, 190

unit vector, 37

utility, 18, 31

variance, 33
vertex enumeration, 137, 148
volume

boundary, 172
relative volume, 172, 186
volume reduction, 184

zigzag effect, 107

	INTRODUCTION TO NONLINEARAND GLOBAL OPTIMIZATION
	Preface
	1 Introduction
	2 Mathematical modeling, cases
	3 NLP optimality conditions
	4 Goodness of optimization algorithms
	5 Nonlinear Programming algorithms
	6 Deterministic GO algorithms
	7 Stochastic GO algorithms
	References
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

