
Chapter 3
Methodological Framework for EEG Feature
Selection Based on Spectral and Temporal
Profiles

Vangelis Sakkalis and Michalis Zervakis

Abstract Among the various frameworks in which EEG signal analysis has been tra-
ditionally formulated, the most widely studied is employing power spectrum mea-
sures as functions of certain brain pathologies or increased cerebral engagement.
Such measures may form signal features capable of characterizing and differentiat-
ing the underlying neural activity. The objective of this chapter is to validate the use
of wavelets in extracting such features in the time–scale domain and evaluate them
in a simulated environment assuming two tasks (control and target) that resemble
widely used scenarios of assessing and quantifying complex cognitive functions or
pathologies. The motivation for this work stems from the ability of time–frequency
features to encapsulate significant power alteration of EEG in time, thus character-
izing the brain response in terms of both spectral and temporal activation. In the
presented algorithmic scenario, brain areas’ electrodes of significant activation dur-
ing the target task are extracted using time-averaged wavelet power spectrum esti-
mation. Then, a refinement step makes use of statistical significance-based criteria
for comparing wavelet power spectra between the target task and the control con-
dition. The results indicate the ability of the proposed methodological framework
to correctly identify and select the most prominent channels in terms of “activity
encapsulation,” which are thought to be the most significant ones.
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3.1 Introduction

Electroencephalographic (EEG) measures have been successfully used in the past as
indices of cerebral engagement in cognitive tasks or in the identification of certain
brain pathologies. Higher brain functions typically require the integrated, coordi-
nated activity of multiple specialized neural systems that generate EEG signals at
various brain regions. Linear [7,18] and nonlinear signal analysis methods have been
applied in order to derive information regarding patterns of local and coordinated
activity during performance of specific tasks [11] or in various pathologies [2, 13].
The inherent complexity and the dynamic nature of brain function make the eval-
uation using EEG a rigorous job. Nevertheless, EEG signal analysis provides the
advantage of high time resolution and thus it can deduce information related to both
local and widespread neuronal activations in short-time periods, as well as their time
evolution.

Traditional spectral analysis techniques with Fourier transform (FT) and more
specifically the windowed power spectral density function, known as the peri-
odogram [16], form the most commonly used analytical tool for spectral represen-
tation and evaluation of activity on different EEG frequency bands [7, 15] – namely
delta (δ ), theta (θ ), alpha (α), beta (β ), and gamma (γ). However, this approach
considers the EEG signal as a stationary process, which assumption is not satisfied in
practice, thus restricting the actual confidence on results. A more promising method-
ology is based on the time-varying spectral analysis that takes into account the
nonstationary dynamics of the neuronal processes [1]. The short-time Fourier
(STFT) and the wavelet transforms are the most prevalent analysis frameworks of
this class. The first approach uses a sliding time window, whereas the second one
forms the projection of the signal onto several oscillatory kernel-based wavelets
matching different frequency bands. Currently, such time-varying methods have
been widely applied in event-related potential (ERP) data, where distinct waveforms
are associated with an event related to some brain function [3]. Under certain as-
sumptions, both time–frequency transforms are in fact mathematically equivalent,
since they both use windows that under certain conditions can provide the same
results [4]. The reason why these approaches are often regarded as different lies
in the way they are used and implemented. Wavelet transform (WT) is typically
applied with the relative bandwidth (Δ f / f ) held constant, whereas the Fourier ap-
proach preserves the absolute bandwidth (Δ f ) constant. In other words, STFT uses
an unchanged window length, which leads to the dilemma of resolution; a narrow
window leads to poor frequency resolution, whereas a wide window leads to poor
time resolution. Consequently, according to the Heisenberg uncertainty principle
one cannot accurately discriminate frequencies in small time intervals. However,
the WT can overcome the resolution problem by providing multiresolution analy-
sis. The signal may be analyzed at different frequencies with different resolutions
achieving good time resolution but poor frequency resolution at high frequencies
and good frequency resolution but poor time resolution at low frequencies. Such
a setting is suitable for short duration of higher frequency and longer duration of
lower frequency components of the EEG bands. For the purposes of this study the
wavelet approach is used.
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In this work we attempt to retrieve additional information (as compared to tra-
ditional spectral analysis methods) by making use of the time profile of the EEG
signal during the target task under study. The motivation for this work stems from
the fact that the WT method is able to extract not only the spectral activations but
also the time segments at which they occur. It constitutes the cornerstone of our
feature extraction scheme and is used for analyzing task-related or control EEG
signals by effectively capturing the power spectrum (PS) of each frequency band
and channel. In particular, it encodes the activation differences between the mental
states of interest. The subsequent feature selection steps apply test statistics on the
extracted “time-averaged” PS features. In addition, our approach introduces an extra
refinement step that makes further use of the time profile provided by the WT as to
derive and encode the temporally activated brain regions and bands. The proposed
EEG feature extraction and selection method may also be applied to other similar
nonstationary biological signal analysis problems.

3.2 Methods

3.2.1 Methodology Overview

Two different cognitive tasks are assumed for simplicity: the control and the tar-
get ones that involve a modulated rather than random activity. The latter task en-
capsulates the crucial information for extracting both the frequency bands and the
location of brain activity, in terms of channel references or groups of channels (re-
lated to specific brain areas) as an index of cerebral engagement in certain men-
tal tasks. The testing hypothesis suggests that the target task induces activity on
certain brain lobes, reflected on the associated electrodes in a way significantly
different compared to a control task. The WT constitutes the cornerstone of fea-
ture extraction and is used in analyzing task-related or control EEG signals by
effectively capturing the power spectrum (PS) of each band and channel, partic-
ularly encoding the activation differences between the tasks. From the technical
point of view, statistics is used to extract and select salient features, testing for
significance in both the time and scale domains of the signal. The feature selec-
tion steps apply test statistics on the extracted “time-averaged” PS features, but
in addition our approach introduces an extra refinement step that makes further
use of the time profile of the WT, as to derive and encode the temporally acti-
vated brain regions and bands. Test statistics form appropriate means for the de-
sign of feature selection criteria strictly based on statistical significance; they are
simple to implement and often perform better than other heuristic selection meth-
ods. To that respect, we base our selection on statistical tests that rely on statistical
properties of the feature data under consideration. Hopefully the identified chan-
nels and lobes may elucidate any neurophysiological pathways involved in brain
function.
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A generic overview of the proposed methodology emphasizing the various statis-
tical approaches is illustrated in Fig. 3.1. Different statistical decisions are possible
according to the profile of the data under examination. The first choice is based on
whether the data are normally distributed, whereas the second is based on the num-
ber of different groups under examination – i.e., whether two or more classes (tasks)
are being tested. A detailed view of feature selection and refinement blocks match-
ing our data characteristics is presented in Fig. 3.2. The steps involved, as well as
their implementation issues, are analyzed in the following sections.

Fig. 3.1: The proposed methodology uses significance-based statistics to reduce the
dimensionality of the problem and select the most salient and descriptive feature
vectors. Different statistical decisions are possible according to the profile of the
data under examination. If one is interested in discriminating two or more classes of
normally distributed data, t-test or analysis of variance (ANOVA) tests are appropri-
ate candidates, respectively. If the data is nonnormally distributed, Mann–Whitney
and Kruskal–Walls tests are the alternatives.

3.2.2 Feature Extraction (Step 1)

Over the past decade the WT has developed into an important tool for analysis of
time series that contain nonstationary power at many different frequencies (such
as the EEG signal), as well as a powerful feature extraction method [9]. There are
several types of wavelet transforms, namely the discrete (DWT) and the continuous
(CWT), which involve the use of orthogonal bases or even nonorthogonal wavelet
functions, respectively [8]. CWT is preferred in this approach, so that the time and
scale parameters can be considered as continuous variables. In the WT, the notion



3 Methodological Framework for EEG Feature Selection 47

Fig. 3.2: The diagram of the proposed algorithmic transitions, heading toward
derivation of significant activity channels and bands.

of scale s is introduced as an alternative to frequency, leading to the so-called time–
scale representation domain.

The CWT of a discrete sequence xn with time spacing δ t and N data points (n =
0,N− 1) is defined as the convolution of xn with consecutive scaled and translated
versions of the wavelet function ψ0(η):

Wn(s) =
N−1

∑
n′=0

xn′ψ∗
[
(n′ −n)δ t/s

]
, (3.1)

ψ0(η) = π1/4eiω0ηe−η
2/2, (3.2)

where η and ω0 = 6 indicate nondimensional “time” and frequency parameters,
respectively and ψ∗(·) denotes the complex conjugate operation. In our application,
ψ0(η) describes the most commonly used wavelet type for spectral analyses, i.e.,
the normalized complex Morlet wavelet given in (3.2). The wavelet function ψ0 is
a normalized version of ψ that has unit energy at each scale, so that each scale is
directly comparable to each other. The normalization is given as

ψ
[
(n′ −n)δ t/s

]
= (δ t/s)1/2ψ0

[
(n′ −n)δ t/s

]
. (3.3)

In principle, a complex wavelet function is better suited for capturing oscillatory
behavior than a real one, because it captures both the amplitude and the phase of
EEG signal. The scale set is given by

s j = s02 jδ j, j = 0, · · · , J, (3.4)
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where s0 = 2δ t is the smallest scale chosen and δ j specifies the width of the wavelet
function. In our case δ j = 0.25, implying that there is a scale resolution of four sub-
octaves per octave [5]. The larger scale is determined by the value of J specified in
(3.5), which in our case is J = 29:

J = δ j−1 log2(Nδ t/s0). (3.5)

Finally, the power spectrum of the WT is defined by the square of coefficients in
(3.1) of the wavelet series as ‖Wn(s)‖2 . By adopting the above settings a smooth
wavelet power diagram is constructed as in Fig. 3.3b for the signal in Fig. 3.3a.

Fig. 3.3: (a) A typical normalized EEG signal acquired from a single electrode. (b)
The wavelet power spectrum presented as a color-coded picture. Mapped scales to
frequencies are calibrated on the y-axis, with the horizontal dashed lines indicating
the different frequency bands. The significant regions over the time–scale transform
are indicated by closed contours. Power increase and decrease is bounded by blue
and red contours, respectively. The outer elliptical region at the edges of this second
graph indicates the cone of influence in which errors (edge effects) may be apparent
due to the transformation of a finite-length series EEG signal. (c) The scalogram
of a selected averaged band (Theta 4–8 Hz) reflecting characteristic EEG activity
while the participant is performing a complex mathematical calculation [14]. The
significance levels are indicated by the horizontal dashed lines. PS values greater
above the upper dashed line indicate significant increase, whereas PS values below
the lower dashed line indicate significant decrease over the expected control power
levels.
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As noted before, there exists a concrete relationship between each scale and an
equivalent set of Fourier frequencies, often known as pseudo f requencies [10]. For

the Morlet wavelet used this relationship is f = ω0+
√

2+ω2
0

4πs , which in our case
(ω0 = 6); this gives a value of f = 1/(1.03s). In this study the power spectra is
classified in six sequential frequency bands that are coarsely mapped to the scales
tabulated in Table 3.1.

Table 3.1: Frequency bands – scale set mapping

Band Frequency Scale

Theta (θ ) 4–8 21, 22, 23, 24
Alpha1 (α1) 8–10 20
Alpha2 (α2) 10–13 18, 19
Beta (β ) 13–30 14, 15, 16, 17
Gamma1 (γ1) 30–45 11, 12, 13
Gamma2 (γ2) 45–90 7, 8, 9, 10

The first stage of our feature extraction method is based on capturing the time-
averaged power spectrum Wn

2
for each electrode and scale, which is computed by

averaging the power spectrum ‖Wn‖2 over time:

Wn
2(s) = (1/N)

N−1

∑
n=0
‖Wn(s)‖2. (3.6)

Further averaging in scale is performed, in order to map a single feature per fre-
quency band of interest. Thus, the scale-averaged power spectrum Wn

2
is defined

as the weighted sum of the wavelet power spectrum ‖Wn(s)‖ over scales s j1 to
s j2 within each frequency band, with scale correspondences defined in Table 3.1.
Based on these definitions, the average power over time and frequency band is
obtained as

Ws,n = (δ j/δ t/Cδ )
j2

∑
j= j1

(
‖Wn(s j)‖2/s j

)
, (3.7)

where Cδ is a constant scale-independent factor used for the exact reconstruction
of a δ (·) function from its wavelet transform (for the Morlet wavelet it equals to
0.776) [17]. Once the average PS for each of the studied EEG bands is calculated
for each EEG channel and task, we have a high number feature vectors (bands x
channels) per task (class), representing each participant (subject), which is actu-
ally the time–scale-averaged PS (Global PS – Fig. 3.2 – Step 1) over the band of
interest.
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3.2.3 Feature Selection (Step 2)

In data mining and classification applications, feature selection and reduction of
dimensionality in the feature space play a crucial role in the effective design by
regularizing and restricting the solution space. It is of practical concern that a large
number of features may actually degrade the performance of the classifier if the
number of training samples is limited in comparison to the number of features [12].
This study proposes a statistical method for mining the most significant channels,
resembling the way many clinical neurophysiological studies evaluate the brain
activation patterns.

Hence, the second step (Fig. 3.2 – Step 2) of our design involves the statisti-
cal test selection of features, which depends upon the feature-vector properties and
the experimental design. The distribution of features plays the most important role,
since it is the one to judge which statistical test is the most appropriate (Fig. 3.1).
Normality of the feature set may be tested using the D’Agostino–Pearson test [19].
Once normality is met and supposing that two classes are being discriminated,
t-test or analysis of variance (ANOVA) is the ideal test to use in our application.
The ANOVA test is superior for complex analyses for two reasons, the first being
its ability to combine complex data into one statistical procedure (more than two
groups may be compared). The second benefit over a simple t-test is the ANOVA’s
ability to determine interaction effects. One of the common assumptions underly-
ing ANOVA is that the groups being compared are independent of each other. In
the case of a related studies design (the same subjects perform each task), either
matched pairs or repeated measures are more appropriate, e.g., a repeated measures
ANOVA [19] with common measures factors being the two tasks and the number
of channels, testing for significance at the level of 0.05. For those bands where
the significance criterion is fulfilled, follow-up post hoc tests for each channel are
performed to accentuate the best candidate channels to preserve as features, which
resemble the most significant brain areas in terms of activity.

3.2.4 Feature Refinement (Steps 3 and 4)

The aforementioned steps derive a significant channels’ subset, based only on task
differentiation confidence intervals using Global PS measures. To further refine the
features and optimize the whole process, we propose to isolate only those time seg-
ments of the EEG signal where notable activity differences occur from the control
to the arithmetic task. The aim is to further map the EEG signal into a feature vec-
tor that best characterizes the EEG pattern of activity for the target task in terms
of significant temporal and spectral content. As we are interested in ongoing EEG
activity within various tasks, the temporal activity of EEG events is of interest.
Notice that we focus on significant (bursty and/or sequential) activations and not
on the evolution of brain operation during the task. Thus, we are mostly focused
on the time-localized EEG activity itself, without particular interest to the temporal
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relation of these events. We may describe the next step as an attempt to crop up
the most significantly different regions from control to target activity out of the bulk
initial signal (may be either significant power increase or decrease while performing
the requested task compared to the control condition). In fact, this study proposes
a way to derive the so-called significant PS activity on significantly activated EEG
time segments, by testing for significance in the wavelet–time domain the “active”
task over the control task (Significant PS – Fig. 3.2 – Step 3). The control task
spectra de-fine the mean time-averaged wavelet power spectrum over all subjects
performing the control task, as

W (s) = (1/P)
P

∑
p=1
‖W p

n (s)‖2, (3.8)

where p is the subject index and W p
n (s) is computed as in (3.1) for each subject.

P is the total number of participants. It should be noticed that all EEG signals are
normalized to zero mean and identity variance. Further rescaling and comparisons
may be performed using each subject’s actual signal variance in order to include
subject-specific information. Significant power increase on the “active” task is cal-
culated using the 95% confidence level at each scale by multiplying the control task
spectrum in Equation (3.8) by the 95th percentile value for a chi-squared distributed
variable χ2 with two degrees of freedom χ2

2 . This is justified because the wavelet
power spectrum is derived from the Morlet wavelet in a complex product with the
signal, so that both the squares of the real and the imaginary parts of the result are
being χ2 distributed with one degree of freedom each [17, 6]. In a similar manner,
significant power decrease is measured using the lower power limit of 5% confi-
dence level at each scale, by multiplying the control task spectrum in Equation (3.8)
by the 5th percentile value for the chi-squared distributed variable χ2

2 . Figure 3.3
depicts one subject’s initial normalized EEG signal (Fig. 3.3a) together with its WT
(Fig. 3.3b). The significant regions over the time–scale-transformed domain that
differentiate the two tasks are indicated by the closed contours; red for significantly
increased and blue for decreased activity. Figure 3.3c illustrates another view of the
scalogram focusing on a selected averaged band, i.e., (Theta 4–8 Hz). The signifi-
cance levels in this case are indicated by horizontal dashed lines.

Having derived this significant information, we are now able to form the so-called
significant power spectral (significant PS) features, which are obtained from the
signal energy over those time- and band-localized regions where apparent significant
differentiation is indicated (contours in Fig. 3.3b). For the computation of these
features, Equation (3.6) is adapted as

Wst
2 = (1/m)

mi+1

∑
m=mi

‖Wm(s)‖2, i = 1, · · · , I, (3.9)

where m is the total number of time points delimited between the boundaries mi and
mi+1 of all significant regions I denoted by each contour in Fig. 3.3b and i is the
index of each significant region. Finally, the last step (Fig. 3.2 – Step 4) is actually a
repetition of the statistical testing in the second step on the new feature set. ANOVA
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or any other better suited statistical method (as described previously) may be used
to further sort out and select the best candidate features (significant energy per time,
band and electrode), in terms of their task discriminating power.

3.3 Results

The proposed methodology is tested on simulated data, where there exist well-
defined spatiotemporal differences in frequency content between the target and the
control tasks, as discussed in the following section. In addition, the performance
of the proposed approach, as well as its results on actual experimental dataset, is
discussed in [14].

3.3.1 Simulation Test

Two different tasks are simulated by two different groups of signals. The first group
(control task) consists of 10 simulated spatiotemporal signals, each one comprised
of five channels. The idea is to reflect 10 participants virtually registered with a
5-channel-EEG system each. All the channels of the control task are randomly gen-
erated quasi-white noise signals, approximately 9-s-long (500 Hz sampling rate –
4,608 samples). The second group (target task) comprises of three channels (chan-
nels 1, 3, 4) reflecting white noise and two channels (channels 2, 5) encoding
frequency-modulated signals mixed again with quasi-white noise. Channel 2 con-
sists of a time-varying theta EEG signal occurring at a fixed latency, linearly mod-
ulated (5–7 Hz) and varying in length randomly between 512 and 1,024 samples
among subjects, and a gamma EEG signal, linearly modulated (30–90 Hz) and vary-
ing in length randomly between 1,024 and 2,048 samples among subjects, all mixed
with quasi-white noise. In a similar manner, channel 5 consists of an alpha band lin-
early modulated signal (9–12 Hz) varying in length randomly (768–1,536 samples)
and a gamma linearly modulated signal (30–90 Hz) varying in length randomly be-
tween 512 and 1,024 samples, mixed with quasi-white noise. Quasi-white noise
covers the interval between the modulated signals. Such a generated signal (channel
2) together with the wavelet time–frequency representation is depicted in Fig. 3.4.
Theta and gamma bands are apparent at different latencies. The tabulated channels
in Table 3.2 are the significant ones extracted with the proposed approach from the
six (most widely studied) frequency bands (delta, theta, alpha, beta, gamma1, and
gamma2). The channels listed in the first column are the selected ones after the first
statistical test (Step 2), whereas the channels listed in the second column are the
refined ones after the second statistical selection (Step 4). Although the first stage
can identify both channels (2 and 5) with the pre-specified frequency content, it is
not able to discriminate correctly the activated frequency bands because of leakage
effects between bands, as illustrated in Fig. 3.4. In contrast, the second stage focuses
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Fig. 3.4: (a) The simulated channel 2 consists of a time-varying (among different
participants) theta linearly modulated signal (length 2 s) occurring at a fixed latency
and a gamma linearly modulated signal (length 3 s) mixed with quasi-white noise.
Quasi-white noise also covers the interval between the modulated signals. (b) The
wavelet PS time–frequency representation picture. The significant regions over the
time–frequency transform are indicated by the contours. The significant signal seg-
ments (contours) are successfully discriminated from the white noise background.

on the significant regions and is able to detect and correctly account for the energy
content of the selected regions.

3.4 Discussion

Using the wavelet transform method on EEG signals, cortical activation evaluation
is normally performed by means of comparing a target task (while participant is
engaged with a difficult cognitive task or reflects certain pathology) and compares
it with a rest condition. This method, in contrast to traditional spectral ones, can
estimate changes between EEG signals without being bounded to the stationarity
assumption and can provide information for the entire time evolution of the signal.

The simulation test and the results presented justify the suggestion that relevant
characteristics are temporally localized in the most significant regions (contours in
the WT scalogram), rather than in the entire segment length of the EEGs. The Global
PS only partially encapsulates the significant information, since there is significant
frequency leakage between the bands due to the transient response of the time–
frequency filter in different frequencies. Using such features, both channels 2 and 5
in the simulated case induce activity in almost every band. However, the proposed
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Table 3.2: Statistical feature – channel selection results

Band Channel (step 2) Channel (step 4) Target

Delta (δ ) 2 – –
Theta (θ ) 2, 5 2 2
Alpha (α) 2, 5 5 5
Beta (β ) – – –
Gamma1
(gamma1)

2, 5 2, 5 2, 5

Gamma2
(gamma2)

2, 5 2, 5 2, 5

methodology with its second statistical feature selection scheme can efficiently iso-
late the channels and the correct band activations. Traditional FT spectral analysis
methods pose intrinsic limitations on encapsulating the time variation of the signal.
Beyond traditional spectral analysis, the WT enables the consideration of time spe-
cific significant regions as in Step 3 of the proposed methodology. WT is proved to
be a useful measure to detect time-varying spectral power and performs better than
traditional time–frequency methods in identifying activity, especially on a shorter
temporal scale in high frequencies, which could indicate neuronal synchronous
activation in some cortical regions. This is an advantage to previous methodolo-
gies, since high-frequency bands are weak and difficult to evaluate using spectral
methods.

A qualitative reasoning arising from the application of this methodology to ac-
tual data is discussed in [14], where the certain methodology is applied to a com-
plex mathematical reasoning task. Finally, the presented method reveals additional
signal characteristics, since it captures not only its average power but also the
time-localized activation of the signal.

3.5 Conclusion

The proposed algorithmic approach emphasizes the idea of selecting EEG features
based on their statistical significance and further supports the use of time–scale WT
domain in order to select significant EEG segments capable of describing the most
prominent task-related changes.

Results suggest that the proposed methodology is capable of identifying regions
of increased activity during the specified target task. The entire process is automated
in the sense that different feature types can be adaptively (according to the data pro-
file) extracted and further refined in a way “transparent” to the user. Such processes
may be transferred to a clinical environment if the methods prove to be valuable
for the diagnosis of certain pathologies by comparing any routine EEG against a
database of pathological ones.
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Furthermore, the added value of this approach over other classical Fourier-based
methods lies in its ability to further utilize time-domain characteristics of the WT
in a way comparable to the evoked potential applications, without making any com-
promise in the statistical validity of the results.
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