
Chapter 15
A Robust Estimation of Information Flow
in Coupled Nonlinear Systems

Shivkumar Sabesan, Konstantinos Tsakalis, Andreas Spanias, and Leon Iasemidis

Abstract Transfer entropy (TE) is a recently proposed measure of the information
flow between coupled linear or nonlinear systems. In this study, we first suggest im-
provements in the selection of parameters for the estimation of TE that significantly
enhance its accuracy and robustness in identifying the direction and the level of
information flow between observed data series generated by coupled complex sys-
tems. Second, a new measure, the net transfer of entropy (NTE), is defined based on
TE. Third, we employ surrogate analysis to show the statistical significance of the
measures. Fourth, the effect of measurement noise on the measures’ performance
is investigated up to S/N = 3 dB. We demonstrate the usefulness of the improved
method by analyzing data series from coupled nonlinear chaotic oscillators. Our
findings suggest that TE and NTE may play a critical role in elucidating the func-
tional connectivity of complex networks of nonlinear systems.

15.1 Introduction

Recent advances in information theory and nonlinear dynamics have facilitated
novel approaches for the study of the functional interactions between coupled
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linear and nonlinear systems. The estimation of these interactions, especially when
the systems’ structure is unknown, holds promise for the understanding of the
mechanisms of their interactions and for a subsequent design and implementation
of appropriate schemes to control their behavior. Traditionally, cross-correlation
and coherence measures have been the mainstay of assessing statistical interde-
pendence among coupled systems. These measures, however, do not provide reli-
able information about directional interdependence, i.e., if one system drives the
other.

To study the directional aspect of interactions, many other approaches have been
employed [24,22,11,18,19]. One of these approaches is based on the improvement
of the prediction of a series’ future values by incorporating information from an-
other time series. Such an approach was originally proposed by Wiener [24] and
later formalized by Granger in the context of linear regression models of stochas-
tic processes. Granger causality was initially formulated for linear models, and it
was then extended to nonlinear systems by (a) applying to local linear models in
reduced neighborhoods, estimating the resulting statistical quantity and then aver-
aging it over the entire dataset [20] or (b) considering an error reduction that is
triggered by added variables in global nonlinear models [2].

Despite the relative success of the above approaches in detecting the direction
of interactions, they essentially are model-based (parametric) methods (linear or
nonlinear), i.e., these approaches either make assumptions about the structure of the
interacting systems or the nature of their interactions, and as such they may suffer
from the shortcomings of modeling systems/signals of unknown structure. For a
detailed review of parametric and nonparametric (linear and nonlinear) measures of
causality, we refer the reader to [9, 15]. To overcome this problem, an information
theoretic approach that identifies the direction of information flow and quantifies the
strength of coupling between complex systems/signals has recently been suggested
[22]. This method was based on the study of transitional probabilities of the states
of systems under consideration. The resulted measure was termed transfer entropy
(TE).

We have shown [18, 19] that the direct application of the method as proposed
in [22] may not always give the expected results. We show that tuning of certain
parameters involved in the TE estimation plays a critical role in detecting the correct
direction of the information flow between time series. We propose a methodology
to also test the significance of the TE values using surrogate data analysis and we
demonstrate its robustness to measurement noise. We then employ the improved TE
method to define a new measure, the net transfer entropy (NTE). Results from the
application of the improved T E and NT E show that these measures are robust in
detecting the direction and strength of coupling under noisy conditions.

The organization of the rest of this chapter is as follows. The measure of
TE and the estimation problems we identified, as well as the improvements and
practical adjustments that we introduced, are described in Section 15.2. In Sec-
tion 15.3, results from the application of this method to a system of coupled Rössler
oscillators are shown. These results are discussed and conclusions are drawn in
Section 15.4.
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15.2 Methodology

15.2.1 Transfer Entropy (T E)

Consider a kth order Markov process [10] described by

P(xn+1|xn,xn−1, · · · ,xn−k+1) =
P(xn+1|xn,xn−1, · · · ,xn−k),

(15.1)

where P represents the conditional probability of state xn+1 of a random process X
at time n+1. Equation (15.1) implies that the probability of occurrence of a particu-

lar state xn+1 depends only on the past k states [xn, · · · ,xn−k+1]≡ x(k)
n of the system.

The definition given in Equation (15.1) can be extended to the case of Markov in-
terdependence of two random processes X and Y as

P(xn+1|x(k)
n ) = P(xn+1|(x(k)

n ,y(l)
n )), (15.2)

where x(k)
n are the past k states of the first random process X and y(l)

n are the past
l states of the second random process Y. This generalized Markov property implies
that the state xn+1 of the process X depends only on the past k states of the process X
and not on the past l states of the process Y . However, if the process X also depends
on the past states (values) of process Y , the divergence of the hypothesized transition

probability P(xn+1|x(k)
n ) (L.H.S. of Equation (15.2)), from the true underlying tran-

sition probability of the system P(xn+1|(x(k)
n ,y(l)

n )) (R.H.S of Equation (15.2)), can
be quantified using the Kullback–Leibler measure [11]. Then, the Kullback–Leibler
measure quantifies the transfer of entropy from the driving process Y to the driven
process X , and if it is denoted by TE(Y→X), we have

TE(Y → X) =
N

∑
n=1

P(xn+1,x
(k)
n ,y(l)

n ) log2
P(xn+1|x(k)

n ,y(l)
n )

P(xn+1|x(k)
n )

. (15.3)

The values of the parameters k and l are the orders of the Markov process for the two
coupled processes X and Y , respectively. The value of N denotes the total number
of the available points per process in the state space.

In search of optimal k, it would generally be desirable to choose the parameter k
as large as possible in order to find an invariant value (e.g., for conditional entropies
to converge as k increases), but in practice the finite size of any real data set im-
poses the need to find a reasonable compromise between finite sample effects and
approximation of the actual value of probabilities. Therefore, the selection of k and
l plays a critical role in obtaining reliable values for the transfer of entropy from real
data. The estimation of TE as suggested in [22] also depends on the neighborhood
size (radius r) used in the state space for the calculation of the involved joint and
conditional probabilities. The value of radius r in the state space defines the max-
imum norm distance in the search for neighboring state space points. Intuitively,
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different radius values in the estimation of the multidimensional probabilities in the
state space correspond to different probability bins. The values of radius for which
the probabilities are not accurately estimated (typically large r values) may eventu-
ally lead to an erroneous estimate of TE.

15.2.2 Improved Computation of Transfer Entropy

15.2.2.1 Selection of k

The value of k (order of the driven process) used in the calculation of TE (Y → X)
(see Equation (15.3)) represents the dependence of the state xn+1 of the system on
its past k states. A classical linear approach to autoregressive (AR) model order
selection, namely the Akaike information criterion (AIC), has been applied to the
selection of the order of Markov processes. Evidently, AIC suffers from substan-
tial overestimation of the order of the Markov process order in nonlinear systems
and, therefore, is not a consistent estimator [12]. Arguably, a method to estimate
this parameter is the delayed mutual information [13]. The delay d at which the mu-
tual information of X reaches its first minimum can be taken as the estimate of the
interval within which two states of X are dynamically correlated with each other.
In essence, this value of d minimizes the Kullback–Leibler divergence between the
dth and higher order corresponding probabilities of the driven process X (see Equa-
tion (15.1)), i.e., there is minimum information gain about the future state of X by
using its values that are more than d steps in the past. Thus, in units of the sampling
period, d would be equal to the order k of the Markov process.

If the value of k is severely underestimated, the information gained about xn+1

will erroneously increase due to the presence of yn and would result to an incorrect
estimation of TE. A straightforward extension of this method for estimation of k
from real-world data may not be possible, especially when the selected value of k
is large (i.e., the embedding dimension of state space would be too large for finite
duration data in the time domain). This may thus lead to an erroneous calculation of
TE. From a practical point of view, a statistic that may be used is the correlation time
constant te, which is defined as the time required for the autocorrelation function
(AF) to decrease to 1/e of its maximum value (maximum value of AF is 1) (see
Fig. 15.1d) [13]. AF is an easy metric to compute over time, has been found to be
robust in many simulations, but detects only linear dependencies in the data. As we
show below and elsewhere [18, 19], the derived results from the detection of the
direction and level of interactions justify such a compromise in the estimation of k.

15.2.2.2 Selection of l

The value of l (order of the driving system) was chosen to be equal to 1. The jus-
tification for the selection of this value of l is the assumption that the current state
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Fig. 15.1: (a) Unidirectionally coupled oscillators with ε21 = 0.05. (b) Mutual in-
formation MI vs. k (the first minimum of the mutual information between the X
variables of the oscillators is denoted by a downward arrow at k = 16). (c) ln C vs.
ln r with k = 16, l = 1, where C and r denote average joint probability and radius,
respectively (dotted line for direction of flow 1→2; solid line for direction of flow
2→1). (d) Autocorrelation function (AF) vs. k (the delay at which the AF decreases
to 1/e of its maximum value is denoted by a downward arrow at k = 14).

of the driving system is sufficient to produce a considerable change in the dynamics
of the driven system within one time step (and hence only immediate interactions
between X and Y are assumed to be detected in the analysis herein). When larger
values for l were employed (i.e., a delayed influence of Y on X), detection of infor-
mation flow from Y to X was also possible. These results are not presented in this
chapter.

15.2.2.3 Selection of Radius r

The multi-dimensional transitional probabilities involved in the definition of transfer
entropy (Equation (15.3)) are calculated by joint probabilities using the conditional
probability formula P(A|B) = P(A,B)/P(B). One can then reformulate the transfer
entropy as

TE(Y → X) =

∑N
n=1 P(xn+1,x

(k)
n ,y(l)

n ) log2
P(xn+1,x(k)

n ,y(l)
n )P(x(k)

n

P(xn+1,x(k)
n )P(x(k)

n ,y(l)
n )

.
(15.4)
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From the above formulation, it is clear that probabilities of a vector in the state
space at the nth time step are compared with ones of vectors in the state space at the
(n+1)th time step, and, therefore, the units of TE are in bits/time step, where time
step in simulation studies is the algorithm’s (e.g., Runge–Kutta) iteration step (or
a multiple of it if one downsamples the generated raw data before the calculation
of TE). In real life applications (like in electroencephalographic (EEG) data), the
time step corresponds to the sampling period of the sampled (digital) data. In this
sense, the units of TE denote that TE actually estimates the rate of the flow of infor-
mation. The multidimensional joint probabilities in Equation (15.4) are estimated
through the generalized correlation integrals Cn(r) in the state space of embedding
dimension p = k + l +1 [14] as

Pr(xn+1,x
(k)
n ,y(l)

n ) =

1
N ∑

N−1
m=0 Θ

⎛

⎜
⎝r−

∣∣∣∣
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xn+1 − xm+1

x(k)
n − x(k)

m

y(l)
n − y(l)

m

∣∣∣∣
∣∣∣

⎞

⎟
⎠

= Cn+1(r),

(15.5)

where Θ(x > 0) = 1; Θ(x = 0) = 0, | · | is the maximum distance norm, and the
subscript (n + 1) is included in C to signify the dependence of C on the time index
n (note that averaging over n is performed in the estimation of TE, using Equa-
tion (15.5) into Equation (15.3)). In the rest of the chapter we use the notation Cn(r)
or Cn+1(r) interchangeably. Equation (15.5) is in fact a simple form of a kernel den-
sity estimator, where the kernel is the Heaviside functionΘ . It has been shown that
this approach may present some practical advantages over the box-counting meth-
ods for estimating probabilities in a higher dimensional space. We also found that
the use of a more elaborate kernel (e.g., a Gaussian or one which takes into account
the local density of the states in the state space) than the Heaviside function does
not necessarily improve the ability of the measure to detect direction and strength
of coupling. Distance metrics other than the maximum norm, such as the Euclidean
norm, may also be considered, however, at the cost of increased computation time.
In order to avoid a bias in the estimation of the multidimensional probabilities, tem-
porally correlated pairs of points are excluded from the computation of Cn(r) by
means of the Theiler correction and a window of (p− 1) ∗ l = k points in dura-
tion [23].

The estimation of joint probabilities between two different time series requires
concurrent calculation of distances in both state spaces (see Equation (15.4)). There-
fore, in the computation of Cn(r), the use of a common value of radius r in both state
spaces is desirable. In order to establish a common radius r in the state space of X
and Y , the data are first normalized to zero mean (μ = 0) and unit variance (σ = 1).
In previous publications [18, 19], using simulation examples (unidirectional as well
as bidirectional coupling in two and three coupled oscillator model configurations),
we have found that the TE values obtained for only a certain range of r accurately
detect the direction and strength of coupling. In general, when any of the joint prob-
abilities (Cn(r)) in log scale is plotted against the corresponding radius r in log scale,
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it initially increases with increase in the value of the radius (linear increase for small
values of r) and then saturates (for large values of r) [3]. It was found that using a
value of r∗ within the quasilinear region of the ln Cn(r) vs. ln r curve produces
consistent changes in TE with changes in directional coupling.

Although such an estimation of r∗ is possible in noiseless simulation data, for
physiological data sets that are always noisy, and the underlying functional descrip-
tion is unknown, it is difficult to estimate an optimal value r∗ simply because a
linear region of ln Cn(r) vs. ln r may not be apparent or even exist. It is known that
the presence of noise in the data will be predominant for small r values [10, 8] and
over the entire space (high dimensional). This causes the distance between neigh-
borhood points to increase. Consequently, the number of neighbors available to es-
timate the multidimensional probabilities at the smaller scales may decrease and it
would lead to a severely biased estimate of TE. On the other hand, at large values
of r, a flat region in ln Cn(r) may be observed (saturation). In order to avoid the
above shortcomings in the practical application of this method (e.g., in simulation
models with added noise or in the EEG), we approximated TE as the average of TEs
estimated over an intermediate range of r values (from σ /5 to 2σ /5). The decision
to use this range for r was made on the practical basis that r less than σ /2 typically
(well-behaved data) avoids saturation and r larger than σ /10 typically filters a large
portion of A/D-generated noise (simulation examples offer corroborative evidence
for such a claim). Even though these criteria are soft for r (no exhaustive testing of
the influence of the range of r on the final results), it appears that the proposed range
constitutes a very good compromise (sensitivity and specificity-wise) for the subse-
quent detection of the direction and magnitude of flow of entropy (see Section 15.3).
Finally, to either a larger or lesser degree, all existing measures of causality suffer
from the finite sample effect. Therefore, it is important to always test their statistical
significance using surrogate techniques (see next subsection).

15.2.3 Statistical Significance of Transfer Entropy

Since TE calculates the direction of information transfer between systems by quan-
tifying their conditional statistical dependence, a random shuffling applied to the
original driver data series Y destroys the temporal correlation and significantly re-
duces the information flow TE(Y → X). Thus, in order to estimate the statistically
significant values of TE(Y → X), the null hypothesis that the current state of the
driver process Y does not contain any additional information about the future state
of the driven process X was tested against the alternate hypothesis of a signifi-
cant time dependence between the future state of X and the current state of Y .
One way to achieve this is to compare the estimated values of TE(Y → X) (i.e.,

the TE(xn+1|x(k)
n ,y(l)

n )), thereafter denoted by TEo, with the TE values estimated by
studying the dependence of future state of X on the values of Y at randomly shuffled

time instants (i.e., TE(xn+1|x(k)
n ,y(l)

p )), thereafter denoted by TEs, where p∈ 1, . . . ,N
is selected from the shuffled time instants of Y . The above described surrogate
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analysis is valid when l = 1; for l >1, tuples from original Y, each of length l,
should be shuffled instead.

The shuffling was based on generation of white Gaussian noise and reordering of
the original data samples of the driver data series according to the order indicated
by the generated noise values (i.e., random permutation of all indices 1, . . . ,N and
reordering of the Y time series accordingly). Transfer entropy TEs values of the
shuffled datasets were calculated at the optimal radius r∗ from the original data.
If the TE values obtained from the original time series (TEo) were greater than
T th standard deviations from the mean of the TEs values, the null hypothesis was
rejected at the α = 0.01 level (The value of T th depends on the desired level of
confidence 1–α and the number of the shuffled data segments generated, i.e., the
degrees of freedom of the test). Similar surrogate methods have been employed to
assess uncertainty in other empirical distributions [4, 21, 16].

15.2.4 Detecting Causality Using Transfer Entropy

Since it is difficult to expect a truly unidirectional flow of information in real-world
data (where flow is typically bidirectional), we have defined the causality measure
net transfer entropy (NTE) that quantifies the driving of X by Y as

NTE(Y → X) = TE(Y → X)−TE(X → Y ). (15.6)

Positive values of NTE(Y → X) denote that Y drives (causes) X , while negative
values denote the reverse case. Values of NTE close to 0 may imply either equal
bidirectional flow or no flow of information (then, the values of TE will help decide
between these two plausible scenarios). Since NTE is based on the difference be-
tween the TEs per direction, we expect this metric to generally be less biased than
TE in the detection of the driver. In the next section, we test the ability of TE and
NTE to detect direction and causality in coupled nonlinear systems and also test
their performance against measurement (observation) noise.

15.3 Simulation Example

In this section, we show the application of the method of TE to nonlinear data gen-
erated from two coupled, nonidentical, Rössler-type oscillators i and j [7], each
governed by the following general differential equations:

ẋi = −ωiyi− zi +∑2
j=1,i �= j ε jix j− εiixi,

ẏi = ωixi +αiyi,
żi = βixi + zi(xi− γi),

(15.7)
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where i, j = 1, 2, and αi = 0.38, βi = 0.3, γi = 4.5 are the standard parameters used
for the oscillators to be in the chaotic regime, while we introduce a mismatch in their
parameter ω (i.e., ω1 = 1 and ω2 = 0.9) to make them nonidentical, ε ji denotes
the strength of the diffusive coupling from oscillator j to oscillator i; εii denotes
self-coupling in the ith oscillator (it is taken to be 0 in this example). Also, in this
example, ε12 = 0 (unidirectional coupling) so that the direction of information flow
is from oscillator 2→1 (see Fig. 15.1a for the coupling configuration). The data
were generated using an integration step of 0.01 and a fourth-order Runge–Kutta
integration method. The coupling strength ε21 is progressively increased in steps
of 0.01 from a value of 0 (where the two systems are uncoupled) to a value of
0.25 (where the systems become highly synchronized). Per value of ε21, a total
of 10,000 points from the x time series of each oscillator were considered for the
estimation of each value of the TE after downsampling the data produced by Runge–
Kutta by a factor of 10 (common practice to speed up calculations after making
sure the integration of the differential equations involved is made at a high enough
precision). The last data point generated at one value of ε21 was used as the initial
condition to generate data at a higher value of ε21. Results from the application of
the TE method to this system, with and without our improvements, are shown next.

Figure 15.1b shows the time-delayed mutual information MI of oscillator 1
(driven oscillator) at one value of ε21 (ε21 = 0.05) and for different values of k. The
first minimum of MI occurs at k=16 (see the downward arrow in Fig. 15.1b). The
state spaces were reconstructed from the x time series of each oscillator with em-
bedding dimension p = k+ l +1. Figure 15.1c shows the ln C2→1(r) vs. ln r (dotted
line), and ln C1→2(r) vs. ln r (solid line), estimated according to Equation (15.5). TE
was then estimated according to Equation (15.4) at this value of ε21. The same pro-
cedure was followed for the estimation of TE at the other values of ε21 in the range
[0, 0.25]. Figure 15.1d shows the lags of the autocorrelation function AF of oscilla-
tor 1 (driven oscillator – see Figure 15.1a) at one value of ε21 (that is, ε21 = 0.05)
and for different values of k. The value of k at which AF drops to 1/e of its max-
imum value was found equal to 14 (see the downward arrow in Fig. 15.1b), that is
close to 16 that MI provides us with. Thus, it appears that AF could be used instead
of MI in the estimation of k, an approximation that can speed up calculations, as
well as end up with an accurate estimate for the direction of information flow.

15.3.1 Statistical Significance of T E and NT E

A total of 50 surrogate data series for each original data series at each ε21 coupling
value were produced. The null hypothesis that the obtained values of TEo are not
statistically significant was then tested at α = 0.005 for each value of ε21. For every
ε21, if the TEo values were greater than 2.68 standard deviations from the mean
of the TEs values, the null hypothesis was rejected (one-tailed t-test; α = 0.005).
Figure 15.2a depicts the TEo and the corresponding mean of 50 surrogate TEs values
along with 99% confidence interval error bars in the directions 1→2 and 2→1 (using
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Fig. 15.2: Transfer entropy TE and net transfer of entropy NTE between coupled
oscillators 1 and 2 (1→2 black line, 2→1 blue line) and mean ± 99.5% error bars
of their corresponding 50 surrogate values as a function of the systems’ underly-
ing unidirectional coupling ε21 (from 0 to 0.25). Each TE value was estimated from
N = 10,000 data points at each ε21. The value of ε21 was increased by a step of
0.01. (a) TEo (original data), mean, and 99.5% error bars from the distribution of
TEs (surrogate data). With k = 16, l = 1 (i.e., the suggested values by our method-
ology), TE is estimated at radius r∗ within the linear region of ln C(r) vs. ln r
from the original data (see Fig. 15.1c). TEo(2→1) (solid blue line) is statistically
significant (p <0.01) and progressively increases in value with an increase in ε21,
whereas TEo(1→2) (solid black line) is only locally statistically significant and re-
mains constant and very close to 0 despite the increase in ε21. (b) TEs estimated
with k = 5, l = 5 as an average of the TEs at intermediate values of the radius r
[σ/5 <ln r < 2σ /5]. Neither TEo(2→1) nor TEo(1→ 2) is statistically significant
(p >0.01) and does not progressively increase in value with an increase in ε21. (c)
TE estimated with the optimal values k = 16, l = 1. The picture is very similar to
the one in (a) above, suggesting that use of r∗ is not critical in the estimation of TEs.
(d) NTEo(2→1) and their corresponding NTEs(2→1) estimated from the TE values
in (c). (e) As in (d) above with noise of SNR = 10 dB added to the data. (f) As in
(d) above with more noise (SNR = 3 dB) added to the data. Detection of direction
of information flow is possible at all ε21 values (p <0.01), except at very small ε21

values (ε21 <0.02). Units of the estimated measures TE and NTE are in bits per it-
eration (time step was 0.1, i.e., Runge’s time step 0.01 times 10, because of the 10:1
decimation we applied on the generated data before analysis).
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a black and blue lines respectively) estimated over ε21 at a value of r∗ chosen in the
linear region of the ln Cn(r) vs. ln r of the original data, using MI-suggested k values
(k values decrease from 16 to 14 as ε21 increases) and with l = 1. (The corresponding
values for k through the use of AF changed from 14 to 12 with the increase of
ε21.) From this figure, it is clear that the TEo(2→1) is significantly greater than
μ(TEs)+2.68×σ(TEs) almost over the entire range of coupling, where μ(TEs) is
the mean of TEs over 50 surrogate values and 2.68×σ(TEs) is the error bar on the
distribution of TEs (49 degrees of freedom) at the α = 0.005 level. [For very small
values of coupling (ε21 < 0.02), detection of the direction of information flow is not
possible (p > 0.05).] Also, TEo shows a progressive increase in the direction 2→1,
proportional to the increase of coupling in that direction, and no significant change
in the direction 1→2. In Fig. 15.2b, the TEo(ε21) and the mean and 99.5% error bars
on the distribution of TEs(ε21) are illustrated for a pair of arbitrary chosen values
for k and l (e.g., k = l = 5). Neither a statistically significant preferential direction of
information flow (1→2 or 2→1) nor a statistically significant progressive increase
in TEo values with the increase of coupling ε21 were observed, due to erroneous
selection of k and l for the estimation of TE.

In Fig. 15.2c, we present the same quantities as in Fig. 15.2a, but they now are
estimated as averages of TEs over an intermediate range of values of r [σ /5<ln r <
2σ /5] (that is, not at r∗). We also observe that the TE values in Fig. 15.2c are larger
than the ones in Fig. 15.2a with r = r∗ and that it is possible from Fig. 15.2c to detect
the correct direction of flow and its significant changes with the strength of coupling.
This result is very important for the estimation of TE in practical applications, where
an optimal r∗ is difficult to obtain. In Fig. 15.2d, we show the values of the measure
of causality NTE and its statistical significance for the detection of direction and
strength of coupling in the two coupled oscillator system over a range of ε21. NTE
was also estimated as an average of NTEs over intermediate values of r [σ /5<ln
r < 2σ /5]. From the statistically significant values of NTE, it is clear that oscillator
2 drives oscillator 1 and the degree of driving increases proportional to the increase
in their coupling.

15.3.2 Robustness to Noise

In order to assess the practical usefulness of this methodology for the detection
of causality in noise-corrupted data, Gaussian noise with variance corresponding
to a 10 or 3 dB signal-to-noise ratio (SNR) was added independently to the X se-
ries of the original data from each of the two coupled Rössler systems. The noisy
data were then processed in the same way as the noise-free data, including testing
against the null hypothesis that an obtained value of TE at each coupling value ε21

is not statistically significant. The corresponding TEo and TEs values are illustrated
in Fig. 15.2e, f for each of the two SNR values, respectively. It is noteworthy that
only at extremely low values of coupling (ε21 <0.02) NTE cannot detect the direc-
tion of information flow. Thus, it appears that the NTE, along with the suggested



282 S. Sabesan et al.

improvements and modifications for the estimation of TE, is a robust measure for
detecting the direction and the rate of the net information flow in coupled nonlinear
systems even under severe noise conditions (e.g., SNR = 3 dB).

15.4 Discussion and Conclusion

In this study, we suggested and implemented improvements for the estimation of
transfer entropy (TE), a measure of the direction and the level of information flow
between coupled subsystems, built upon it to introduce a new measure of informa-
tion flow, and showed their application to a simulation example. The two innovations
we introduced in the TE estimation were: (a) the distance in the state space at which
the required probabilities should be estimated and (b) the use of surrogate data to
evaluate the statistical significance of the estimated TE values. The new estimator
for TE was shown to be consistent and reliable when applied to complex signals gen-
erated by systems in their chaotic regime. A more practical estimator of TE, that av-
erages the values of TE produced in an intermediate range of distances r in the state
space, was shown to be robust to additive noise up to S/N=3 dB, and could reliably
and significantly detect the direction of information flow for a wide range of cou-
pling strengths, even for coupling strengths close to 0. Our analysis in this chapter
dealt with only pairwise (bivariate) interactions between subsystems and as such,
it does not detect both direct and indirect interactions among multiple subsystems
at the time resolution of the sampling period of the data involved. A multivariate
extension of TE to detect information flow between more than two subsystems is
straightforward. Such an extension could also be proven useful in distinguishing be-
tween direct and indirect interactions [6,5], and thus further enhance TE’s capability
to detect causal interactions from experimental data.

A new measure of causality, namely net transfer of entropy [NTE(i→ j)], was
then introduced for a system i driving a system j (see Equation (15.6)). NTE of the
system i measures the outgoing net flow of information from the driving i to the
driven j system, that is, it takes into consideration both incoming TE to and outgo-
ing TE from the driving system i. Our simulation example herein also showed the
importance of NTE for the identification of the driving system in a pair of coupled
systems for a range of coupling strengths and noise levels. We believe that our ap-
proach to estimating information flow between coupled systems can have several
potential applications to coupled complex systems in diverse scientific fields, from
medicine and biology, to physics and engineering.
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