
Chapter 13
Advances Toward Closed-Loop Deep Brain
Stimulation

Stathis S. Leondopulos and Evangelia Micheli-Tzanakou

Abstract A common treatment for advanced stage Parkinsonism is the application
of a periodic pulse stimulus to specific regions in the brain, also known as deep brain
stimulation (or DBS). Almost immediately following this discovery, the idea of dy-
namically controlling the apparatus in a “closed-loop” or neuromodulatory capacity
using neural activity patterns obtained in “real-time” became a fascination for many
researchers in the field. However, the problems associated with the reliability of sig-
nal detection criteria, robustness across particular cases, as well as computational
aspects, have delayed the practical realization of such a system. This review seeks
to present many of the advances made toward closed-loop deep brain stimulation
and hopefully provides some insight to further avenues of study toward this end.

13.1 Introduction

The uses of electrical stimulation and recording in medicine have a history dat-
ing back to the first century AD [95, 139, 121, 153, 76, 85, 21, 97, 138, 37, 30, 47].
However, since the first advances in microelectronics began to appear [7], med-
ical electro-stimulation and recording equipment became portable and even im-
plantable [23]. Soon after that, with the invention of the integrated circuit [84,115],
an ever-increasing number of components became available on a silicon chip of
millimeter or even micron dimensions [107]. As a consequence, the availability and
sophistication of electronic bio-implants began to greatly increase starting with the
work of House [68] on the cochlear implant in 1969, the work of Humayun and
de Juan [69] on the retinal implant in 1996, and the cortical implant reported by
Donoghue [35] and Nicolelis [111] in 2002 and 2003.
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Electrical stimulation of nuclei in the basal ganglia of the brain as a treatment for
Parkinson’s disease, also known as deep brain stimulation (or DBS), was approved
by the US Food and Drug Administration and became commercially available in
1997 [151]. The apparatus consists of a stimulus generator implanted under the
collar bone and a subcutaneous lead connecting the stimulator to an electrode fixed
at the cranium and reaching the basal ganglia in the center of the human brain.
Following implantation, a wireless link facilitates communication with the implant
for the routine adjustment of the stimulus waveform by medical staff. In this manner,
the treatment can be tuned or optimized over time while avoiding side effects. The
neural signals emanating from the basal ganglia during DBS have been recorded and
analyzed by Dostrovsky et al. [36], Wu et al. [162], Wingeier et al. [158], and Rossi
et al. [130]. Moreover, there have been studies regarding the use of information
contained in the neural activity of the basal ganglia as a control signal or regulator
of the stimulus apparatus [106, 146, 134, 78, 39, 90, 12].

13.2 Nerve Stimulation

The simplest model of electrical nerve stimulation was introduced by Arvanitaki and
uses the passive membrane model with membrane resistance Rm and capacitance
Cm [4, 95]. In this scenario, assuming the stimulus current applied across the cell
membrane is a constant Is, then the change in transmembrane voltage becomes

Vm(t) = IsRm

(
1− e−t/RmCm

)
. (13.1)

Moreover, given a threshold voltage ΔVth, then the minimum stimulus current
needed for the transmembrane voltage to reach ΔVth is found for t =∞ and is called
the rheobase current:

Irh =
ΔVth

Rm
. (13.2)

Also, another useful measure of stimuli is the time required to reach ΔVth when
Is = 2Irh. This is called chronaxy or chronaxie [95, 154] and is calculated as

tc = RmCmln2. (13.3)

As an example, Fig. 13.1 illustrates the decay of the minimum amplitude needed for
stimulating a neuron as pulse width increases [99].

More sophisticated distributed models such as the core conductor model incor-
porate the shape of the neuron axon and conductivity of external media [24, 95].
Moreover, the shape and timing of stimuli are also influential as shown in detailed
studies by Warman, McIntyre, Grill, and others [154,99,100,54]. However, the pas-
sive membrane model with appropriate effective values for Rm and Cm remains a
useful approximation for many applications [125, 74].
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Fig. 13.1: Firing threshold of the external urethral sphincter motoneuron (EUS), the
neuron innervating the bladder (BLA), and the fiber of passage in the white matter
(FOP) stimulated with bipolar stimulation as predicted by simulation techniques and
reported by McIntyre and Grill [99]. τCH represents the calculated chronaxie of the
particular neuron).

13.3 Local Field Potentials

Measurable electrical phenomena that occur in the human body are due primarily to
the transport of charged ions across the membrane of neurons as they relay and pro-
cess information governing movement and perception. In particular, rapid changes
in membrane permeability occurring on a millisecond scale produce current spikes
or “action potentials” [9,65]. At the same time, thousands of synaptic junctions con-
tribute to the “postsynaptic potential” or subthreshold changes in the transmembrane
potential. Furthermore, random processes within the neuron membrane may cause
spontaneous events to occur in addition to synaptic stimuli [81].

The local field potential (LFP) is related to the aggregate of the electric fields
produced by individual neurons in the vicinity of the electrode within the dielectric
medium of brain tissue. Furthermore, it is known that the recorded signal is influ-
enced by a frequency filtering characteristic, so that only low-frequency elements of
neural activity such as postsynaptic potentials propagate beyond the immediate cel-
lular environment to produce measurable signals [11,10]. Also, characteristics of the
analog front-end recording apparatus performing DC bias stability and prefiltering
further modify the frequency band of the signal.

Bedard et al. [11, 10] have shown that the frequency-dependent attenuation
with distance can be explained by using a nonhomogeneous model of extracel-
lular dielectric properties that take into consideration the properties of neighbor-
ing neuron membranes. Also, at the macroscopic level, a comprehensive study
of dielectric properties of tissues in the range of 10 Hz–20 GHz was prepared by
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Gabriel et al. [45], including an empirical parametric model that fits well to the
experimental data.

A more practical model for describing the dielectric properties at the neuroelec-
trode interface was developed by Johnson et al. [79]. In that study, an equivalent
circuit model is used for explaining voltage-biasing effects of the recorded signal.

13.4 Parkinson’s Disease

Parkinson’s disease is due to the death or alteration of cells that produce the neu-
rotransmitter dopamine in a region of the brain called substantia nigra pars com-
pacta (SNc). In turn, the lack of dopamine weakens synaptic pathways between the
SNc and the region called the striatum resulting in a general imbalance of activity
within a group of brain nuclei collectively known as the basal ganglia [31]. As a
result, the spike patterns of neurons in the external globus pallidus (GPe) become
sparse, while the neurons in the subthalamic nucleus (STN) and internal globus
pallidus (GPi) exhibit pronounced activity that is often in the form of synchro-
nized oscillatory bursting [16, 92, 156, 71, 126]. Figures 13.2 and 13.3 show neural
pathways of the basal ganglia as well as activity of key nuclei under normal phys-
iological conditions and Parkinsonism, respectively. Moreover, dark arrows repre-
sent inhibitory synaptic pathways, gray arrows excitatory, and perforated arrows are
pathways associated with dopamine. Externally, these processes are manifested as
the Parkinsonian symptoms of essential tremor, muscle rigidity, bradykinesia (slow-
ness of movement), and postural imbalance.

Fig. 13.2: Basal ganglia under normal conditions. This figure shows the nuclei in the
basal ganglia and their synaptic paths including excitatory (gray line), inhibitory
(dark line), and dopaminergic paths (gray perforated line, dark perforated line).
A feedback loop between the STN and the GPe can be seen. This figure is mod-
ified from the figures reported by Gurney et al. [56] to emphasize changes due to
dopamine depletion as described by Delong [31].
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Fig. 13.3: Basal ganglia during a lack of dopamine (Parkinson’s disease). Key nu-
clei and their synaptic paths including excitatory (gray line), inhibitory (dark line),
and dopaminergic (gray perforated line, dark perforated line) paths are shown.
Dark-colored nuclei signify diminished activity while bright-colored regions sig-
nify heightened activity. This figure is modified from the figures reported by Gur-
ney et al. [56] to emphasize changes due to dopamine depletion as described by
Delong [31].

13.4.1 Treatments

The treatment for early stage Parkinson’s disease typically consists of the admin-
istration of levodopa (L-DOPA) orally. L-DOPA crosses the blood–brain barrier
where it is converted into dopamine, thus restoring some of the movement capabili-
ties to the patient. However, side effects that may emerge are dyskinesia (difficulty
performing voluntary movements), depression, and psychotic episodes in some pa-
tients [28, 110].

Surgical procedures that have been used in the past as a treatment for advanced
stage Parkinson’s disease include pallidotomy, thalamotomy, and subthalamotomy
[55]. In these procedures, functional MRI imaging techniques detect the location
of specific nuclei in the brain of the patient. Following this, stereotactic surgical
techniques are employed for the placement of electrodes at the target location. Next,
electrode recordings are analyzed to achieve a more precise placement [59]. Finally,
high temperatures (80oC) or electric currents are applied to cause destruction of
cells (known as lesioning) in the STN or GPi.

The success of pallidotomies is hypothesized to be due to a reduction of activity
in the GPi that is caused by the administrated (or artificially placed) lesions [84].
Furthermore, lesioning the STN with a subthalamotomy has a similar effect in the
GPi because of the excitatory neuronal paths from the STN to the GPi [3]. Thus,
lesions in the GPi simulate the inhibitory input to the STN and GPi that would
otherwise be present under physiological conditions (see Figs. 13.2 and 13.3).
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13.5 Deep Brain Stimulation

Electrical stimulation of the brain as a treatment for Parkinson’s disease was first re-
ported by Benabid et al. [13] in 1987. In particular, during stereotactic neurosurgery
it was observed that stimulating the ventral intermediate nucleus (VIM) of the brain
with a sequence of 1–2 V 0.5 ms pulses at 100 Hz blocked symptoms of the disease.
Eventually, the lesioning procedures mentioned previously were replaced by the
implantation of electrodes connected to a pulse generator. Moreover, the physician
could tune the signal generator through a wireless link, thus adjusting the stimulus
parameters.

13.5.1 DBS Mechanism

A primary contributing factor to the inhibitory effect of DBS on the STN and
GPi is likely the release of adenosine by astrocytes as they are electrically stim-
ulated [12]. Also, the same study reports how the inhibition is likely a combination
of adenosine-related and “axonal” effects. That is, there are a number of hypothe-
ses that attempt to explain the inhibitory effect of DBS on the STN and GPi. In
particular, these are: (1) the blocking of action potentials by affecting properties
of ion conductance in the neuron membrane, (2) the preferential stimulation of ax-
ons that terminate at inhibitory synapses rather than neurons themselves, and (3)
the desynchronization of mechanisms occurring in the network as a whole. Out of
these hypotheses, desynchronization seems to be the least refuted and least under-
stood [101].

In practice, the effect of DBS on neural activity can be seen in recordings using
extracellular electrodes that have been taken from patients during surgical implan-
tation of DBS systems, as shown in Fig. 13.4. In particular, the work of Dostrovsky
et al. [36] shows how the activity of pallidal neurons displays a period of quiescence
after each stimulating pulse of DBS. Furthermore, the quiescent period increases
with respect to the DBS pulse amplitude as can be seen in Fig. 13.5. Also, as the
pulses become more dense at higher frequency stimulation, the quiescent periods
seem to overlap, thus causing the inhibitory effect. A more macroscopic view of the
effect of pulse amplitude is provided in Fig. 13.6 [162].

Figure 13.7 shows the neuron activity rate following a stimulus pulse measured
as a percentage of the activity preceding the pulse (baseline activity). As can be seen
in Fig. 13.7, neural activity is nearly 0 after the DBS pulse, but returns to normal
firing after some time (between 50 and 100 ms).

13.5.2 Apparatus

All commercially available DBS systems are currently designed and manufactured
by the Medtronic corporation. By name, the neurostimulators commonly used for
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Fig. 13.4: Effects of DBS pulses on neural activity in the GPi as observed experi-
mentally and reported by Dostrovsky et al. [36]. The larger vertical line segments
are stimulus artifacts while the shorter line segments can be attributed to neuronal
spike activity. A quiescent or inhibitory period during which there is no neuronal
activity can be observed after each stimulus.

DBS are the “Itrel II Soletra,” “Kinetra,” and “Extrel” units (with Extrel used less
frequently than the former two). Moreover, the specifications of the apparatus have
been described in a number of publications [59, 101, 5, 89, 152]. Specifically, a
1.27 mm diameter probe with four 1.5 mm long contacts spaced 0.5 mm or 1.5 mm
apart (depending on the version) is in contact with the target area of the brain and
secured to the cranium at its base. Furthermore, a subcutaneous lead connects the
base of the probe to a 53×60×10mm3 neurostimulator implanted in the chest area
under the collarbone of the patient [101].

The Extrel unit differs from the Soletra and Kinetra units in that an external stim-
ulus generator communicates with the implant. In particular, the external apparatus
generates the pulse waveform and then modulates it using a carrier frequency in the
RF range. In turn, an implanted receiver demodulates the signal using passive circuit
components including a capacitor [89, 137, 102].

13.5.3 Stimulus Specifications

The DBS units are capable of applying stimulus waveforms that consist of a train of
pulses with the following specifications [152, 101]:
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Fig. 13.5: Detail of the effects of a 50 and 5μA DBS pulse of duration 150μs
on a single GPi neuron of a Parkinson’s patient as observed experimentally and
reported by Wu et al. [162]. The tallest thin vertical line segments are the stimulus
artifacts, while the shorter line segments can be attributed to neuronal spike activity.
A large pulse immediately followed by an inhibitory period is observed following
the stimulus. Moreover, the smaller stimulus (5μA) is followed by a short inhibitory
period (roughly 30 ms), while the larger stimulus is followed by a longer inhibitory
period (roughly 60 ms).

Pulse amplitude: 0–10.5 V (in steps of 0.1 V), and assuming a 1 kΩ load as re-
ported, this means a 0–10.5 mA stimulation current.1

Pulse duration: 60–450μs (1,000μs maximum in the case of Extrel).
Pulse frequency: 2–185 Hz in the Soletra, 2–250 Hz in the Kinetra, and 2–1,000 Hz

in the Extrel.
Pulse polarity: both monopolar and bipolar modes are available (only bipolar in

the Extrel).

1 The amplitude used in commercial DBS units (0–10.5 mA) is obviously much larger than what is
reported in the experiments of Dostrovsky et al. [36], Hamilton et al. [60], and Lehman et al. [91],
namely 5–100μA. However, the current density turns out to be similar because of the differences
in electrode diameter. In particular, the experimental work sited uses 25μm (length) by 25–100μm
(diameter) electrodes, while commercial devices use a 1.5-mm (length) by 1.27-mm (diameter)
electrodes.
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Fig. 13.6: Effects of DBS pulses (at 10 Hz) on a single GPi neuron in the GPi as
observed experimentally and reported by Dostrovsky et al. [36]. The larger vertical
line segments are stimulus artifacts, while the shorter line segments can be attributed
to neuronal spike activity. It can be seen that as stimulus energy increases from 8 to
80μA, the neural activity becomes more sparse.

13.5.4 DBS Programming

The typical procedure for programming DBS apparatus postoperatively begins with
the determination of the “therapeutic window” of stimulation for each electrode
[5, 152]. That is, using monopolar stimulus, keeping the pulse width at 60μs and
the frequency at 130 Hz, the pulse amplitude is increased from 0 V at increments of
0.2–0.5 V. Furthermore, the therapeutic window or range for a particular electrode
is the set of amplitude values between the smallest therapeutic amplitude and the
onset of undesirable side effects such as rigidity and dystonia (sustained muscle
contractions). Next, the electrode with the largest therapeutic range is selected as
the stimulus electrode [152].

Over the months following implantation, DBS parameters are modified according
to the side effects and therapeutic results observed. Typically, the amplitude or fre-
quency is increased as the patient develops a tolerance to the stimulus effect. More-
over, it is believed that a higher impedance or displacement of the electrodes due to
glial tissue scarring is responsible for the diminishing effectiveness of DBS over the
first postoperative months [40, 108]. In addition, long-term physiological processes
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Fig. 13.7: Spike-rate in 10 ms bins, smoothed with a 20 ms sliding window, as per-
centage of baseline (no stimulus) and a function of time (stimulus at time 0) as
observed experimentally and reported by Dostrovsky et al. [36]. A period of qui-
escence or inhibition can be seen immediately following a stimulus. Then, normal
neural firing rates gradually resume.

influenced by neural activity cause the modification of synapses, thus strengthening
or weakening the influence of one neuron on the behavior of another [140].

Increasing the pulse width is avoided due to the recruitment of and possible dam-
age to adjacent brain centers and the resulting side effects such as dysarthria (a
speech disorder) and ataxia (loss of movement coordination) [152, 99, 100]. For ex-
ample, Fig. 13.8 shows curves of the minimum pulse width–amplitude combinations
that cause tremor suppression and onset of adverse side effects as found through ex-
perimentation on human subjects. Moreover, this is a verification of the response of
the theoretical lumped parameter model shown previously in Fig. 13.1.

In DBS, bipolar stimulation is avoided due to the higher power dissipation that
it requires. Only if side effects persist, the bipolar mode turned on because of the



13 Advances Toward Closed-Loop Deep Brain Stimulation 237

Fig. 13.8: Minimum pulse width–amplitude combinations causing tremor suppres-
sion and onset of adverse side effects as found experimentally and reported by Volk-
mann et al. [152]. The asterisk shows the pulse width suggested by Volkmann, while
the voltage-doubling limit is a property of the Itrel II and Soletra stimulus generators
reported by Volkmann.

more localized stimulation that it provides [5, 14]. At 6 months postoperatively, the
stimulation parameters require only minor adjustments, as reported by Ashkan [5].

13.5.5 Side Effects

The undesirable side effects of DBS are primarily due to excess current leakage
into adjacent brain centers and include cognitive degradation and severe emotional
disturbances. However, other ill side effects may occur when DBS therapy is ad-
ministered in conjunction with unrelated methods of diagnosis or treatment. For
example, electrodes may be displaced by intense electromagnetic fields during MRI
sessions, thus causing damage to brain tissue and displacing the location of the ap-
plied stimulus. Also, temperatures may become dangerously high during the admin-
istration of therapeutic diathermy (tissue heating), thus resulting in massive trauma
or death [115, 131].

13.6 Biosignal Processing

All biological processes associated with perception and limb movement involve
measurable electrical phenomena. Moreover, depending on where and how a mea-
surement is taken, the recorded signal will exhibit particular characteristics [65,
144]. Typically, biosignal processing involves the analysis and classification of
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recorded biosignals using any combination of signal processing techniques that are
suitable for the particular application at hand [25]. In particular, the signal process-
ing reduces the dimensionality of the data space by extracting useful information or
“features” of the signal [29]. Thus, the high-dimensional recorded data is mapped
to a lower dimensional “feature space.” Moreover, the feature space is divided into
regions or “classes” in order to categorize each measured signal.

13.6.1 Features

Biosignals can be analyzed using a large set of signal processing methods. However,
some features are relatively simple to calculate while others are computationally
demanding. Moreover, the issue of computational complexity becomes particularly
important for integrated circuit implementations. Accordingly, Table 13.1 shows the
computational complexities of various useful features in terms of signal sample size
N, filter order n, decomposition levels L (for wavelets), number of signals m (PCA),
lag q in terms of clock cycles, and the number of ALOPEX iterations c [29] (a blank
“–” where present indicates that no studies were found).

Table 13.1: Feature extraction methods

Method Complexity Parallel and/or pipelined

Mean O(N) O(log(N))
Variance O(2N) O(2log(N))
FFT [124, 26] O(Nlog(N)) O(log(N))
LPC (Levinson) [33, 87] O(nN +n2) 169 cycles/iteration
Wavelets (lifting) [93] O

(
4+2N

(
1−1/2L

))
–

Karhunen–Loeve with ALOPEX [29] O(2cN) O(2clogN)
PCA – SGA [32] Onm O(n2)
Third-order cumulant (skewness) [1] O(Nq2 +3qN) O(N +q)
Fourth-order cumulant (kurtosis) [96] O(N6) –

a The 169 clock cycles (actually 3,378 per 20 iterations) for a pipelined multiplier implementation
of the Levinson algorithm are reported in [136], however, there is no explicit mention of
complexity in that paper. It seems evident, however, that for p multipliers in parallel, a pipelined

implementation of the Levinson algorithm would be O
(

N
p +n2

)
. Also, O(L4) is mentioned

in [141] for fourth-order moments.

13.6.2 Classifiers

When some features of measured neural activity contain useful information that can
be applied in regulating a stimulus generator, a method for automated classifica-
tion may be in order. To this end, there are various methods that can be employed
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broadly categorized as probability density estimation, nearest neighbor search, and
neural networks [88,66,2]. In particular, probability density estimation or Bayes es-
timation categorizes the measurement in order to minimize the probability of error,
nearest neighbor search finds the class that is associated with the nearest neighbors
of the measurement, while neural networks consist of simple interconnected compu-
tational elements that have the end result of dividing the feature space into specific
regions [59, 60, 58].

Among these classifiers, neural networks seem to be the most widely used meth-
ods in biomedical applications. However, choosing the best classifier as well as a
feature set for a particular case is often an empirical task. Thus, a set or “ensemble”
of different classifiers is often used for a single classification task [116].

13.6.3 Feature Selection

Selecting the features that minimize a cost function, such as the probability of
misclassification, can be done exhaustively by examining each subset. However,

this process is of complexity

(
N
n

)
and may become intractable for large feature

sets. Alternatively, there are a number of methods that reduce the complexity of the
task, including “branch and bound,” “sequential forward and backward selection,”
“Plus-l-take-away-r algorithm,” and “max–min feature selection” [122, 19, 118].

13.7 Closed-Loop DBS

Following the discovery of the effects of electrical brain stimulation on the symp-
toms of Parkinson’s disease [13] in 1987, investigations were initiated to explain
how the stimulus achieved the desired result [101, 54]. Also, methods for admin-
istrating the newfound treatment as an implantable “brain pacemaker” were being
explored [106, 146, 134, 54, 127, 78, 39]. In particular, the first disclosure of such
an apparatus was the original patent on DBS filed by Rise and King [127] of the
Medtronic corporation in 1996, where a system consisting of an electrode sensor,
a microprocessor, stimulus generator, and additional peripheral circuitry was pro-
posed for the purpose of measuring tremor-related symptoms in the arm and adjust-
ing stimulus parameters based on the measurements. Subsequently, another patent
was filed by John [78] in 2000, elaborating on the original proposal by including
provisions for multiple sensors such as electrodes implanted in the brain and/or
surface electrodes on the scalp and limbs. In addition, John proposed particular sig-
nal processing methods for assessing the measured data including the computation
of signal variance, correlation, discrete Fourier transform, peak detection, and Ma-
halanobis distance or Z-scores. Also, provisions for wireless data telemetry to an
external PC or handheld processor were included in that patent.
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In the scientific literature, improvements to DBS have been suggested by a num-
ber of authors [106, 146, 134, 39]. In particular, Montgomery and Baker [106]
suggested that a future direction of DBS would be to incorporate the ability of
acquiring and decoding neurophysiological information “to compute the desired
action.” Also, using results from a mathematical model of interconnected phase os-
cillators, Tass [146] proposes a method of demand-controlled double-pulse stimu-
lation that would hypothetically enhance the effectiveness of DBS while reducing
the power consumption of a stimulator in the long term. In addition, Sanghavi [134]
and Feng et al. [39] propose methods for adaptively modifying stimulus param-
eters while seeking to minimize measures of brain activity in the vicinity of the
implant.

13.7.1 Demand-Controlled DBS

From a theoretical perspective, Tass established a stimulus methodology based on
a model of Parkinsonian brain activity [146, 147]. In particular, Tass simulated the
synchronized oscillatory behavior of the basal ganglia using a network of phase
oscillators. This method is as follows: given N oscillators with global coupling
strength K > 0 where the phase, stimulus intensity, and noise associated with the
jth oscillator areΨj, I j, and Fj(t), respectively, the behavior of the jth oscillator and
its relation to other oscillators as well as the stimulus is shown in Equations (13.4),
(13.5), and (13.6). In particular, defining factors S j(Ψj) and Xj(t) as

S j(Ψj) = I jcos(Ψj) and (13.4)

Xj(t) =
(

1: neuron j is stimulated
0: otherwise

)
, (13.5)

the rate of change of the jth phase oscillator is given by

ψ̇ =Ω − K
N

N

∑
k=1

sin(ψ j−ψk)+Xj(t)S j(ψ j)+Fj(t). (13.6)

Tass showed that the model in Equations (13.4), (13.5), and (13.6) is able to
generate patterns of both synchronized oscillatory firing and random nonoscillatory
behavior. Moreover, the network tends to remain in a synchronized oscillation until
a global stimulus is applied at time t0 so that Xj(t0) = 1 for all j.

Effective stimulation methods for suppression of abnormal burst activity in this
model, as reported by Tass, include low-amplitude high-frequency stimulation (20
times the burst frequency), low-frequency stimulation (equal to the burst frequency),
or a single high-amplitude pulse, with the high-amplitude pulse being the most ef-
fective when it is applied at the appropriate phase of each neuron. Furthermore, Tass
proposes a demand-controlled stimulation technique whereby the synchronicity
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among individual oscillators is measured, and when passing a predefined threshold,
it activates a stimulation pulse.

In order to detect synchronicity among neurons, Tass proposes the calculation
of cluster variables – the center of gravity in phase space of all oscillators. Specif-
ically, if Rm(t) and φm(t) are the magnitude and phase respectively of the center
of gravity of m clusters, and Ψj is the phase of the jth oscillator, then the cluster
variable is

Zm(t) = Rm(t)eiφm(t) =
1
N

N

∑
j=1

eimψ j(t). (13.7)

Thus, if the magnitude of the cluster variable is close to 0, there is very little
synchronicity, but when it is close to unity, there is high synchronicity.

13.7.2 ALOPEX and DBS

Sanghavi [134] proposed an integrated circuit (IC) design of an adaptive DBS sys-
tem where power estimation of recorded neural activity is used as a global “error
measure” that drives the modification of stimulus pulse width, amplitude, and fre-
quency of multiple signal generators. Furthermore, the modification is accomplished
in simulation with minimal power requirements (roughly 0.8 mW) using an analog
design of the stochastic optimization algorithm ALOPEX.

Since its application to BCI [150, 62, 105, 38], the ALOPEX algorithm was ap-
plied to numerous studies involving image pattern recognition and artificial neural
networks [29]. The algorithm itself is based on the principle of Hebbian learn-
ing wherein the synaptic strength between two neurons increases in proportion
to the correlation between the activities of those neurons [140]. Similarly, given
a set of modifiable variables at iteration k, bk = {b1,k,b2,k, ,bN,k}, and a global
response estimate Rk, ALOPEX recursively modifies each b j,k by using correla-
tion measures between previous changes in b j,k and changes in Rk. Moreover, to
keep the algorithm from falling into an infinite loop, stochastic noise r j,k is in-
cluded. Finally, given stochastic and deterministic step sizes σ j,k and σ j,k, a re-
formulation of the algorithm in its most simplified “parity” form, as it is described
in [62], is

d j,k =
(Rk−1−Rk−2)
|Rk−1−Rk−2|

· (b j,k−1−b j,k−2)
|b j,k−1−b j,k−2|

, (13.8)

b j,k = b j,k−1 + γ j,k ·d j,k +σ j,k · r j,k. (13.9)

Subsequently, new versions were developed including the 2T-ALOPEX algo-
rithm contributed by Sastry et al. [135] and the ALOPEX-B algorithm contributed
by Bia [18]. In particular, 2T-ALOPEX incorporates explicit probability distri-
butions into the calculation of each iteration, while ALOPEX-B is a similar but
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simplified version of 2T-ALOPEX. Finally, Haykin et al. [63] improved conver-
gence by combining the original formulation with that of Bia. Moreover, Haykin
et al. provide a good contextual introduction and derivation of ALOPEX, while
Sastry et al. prove that 2T-ALOPEX behaves asymptotically as a gradient-descent
method. Also, Meissimilly et al. [103] introduced parallel and pipelined implemen-
tations of ALOPEX applied to template matching with corresponding computational
and temporal complexities of calculating the global response function Rk.

13.7.3 Genetic Algorithms and DBS

Feng et al. [39] use a model by Terman et al. [149] to test a method of stimulus
administration where each stimulus parameter is obtained from a distribution of such
measures, thus incorporating a degree of randomness in the stimulus waveform.
Moreover, in this method, the shape of each distribution curve is a piecewise linear
model where the model parameters are modified by a genetic algorithm that seeks
to reduce the cross-correlation and/or autocorrelation of measurements taken from
multiple sensors. Figure 13.9 shows a diagram of the method proposed by Feng
et al.

Fig. 13.9: The method proposed by Feng et al. [39] to draw deep brain stimula-
tion parameters (Ii

DBS) from distributions whose shape descriptors (ai) are selected
by a genetic algorithm that seeks to minimize correlations in measured data (xi).
Constraints (R) on the genetic algorithm may be imposed externally.

13.7.4 Hardware Implementations

Various components of a closed-loop system have been implemented as a
microelectronic design, including power and telemetry components [159], and
stimulus/recording circuits interfacing with an external computing platform [90].
A typical setup for the real-time transmission of biosignals from a neural implant is
shown in Fig. 13.10 [159].
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Fig. 13.10: A system for recording and decoding neuron activity. Power and data
are transmitted through wireless telemetry [159].

13.8 Related Advances in Other Neuroprosthetic Research

Real-time biosignal processing has also advanced in other applications of neu-
ral prostheses in addition to DBS, such as cardiac pacemakers [133], retinal and
cochlear implants [123, 69, 144], and brain-to-computer interfaces (BCI) [150, 62,
48, 91, 132, 161, 155, 49, 46]. In particular, pattern recognition systems for detect-
ing abnormal heart activity have been proposed for cardiac pacemaker technol-
ogy [133, 86]. Also, the decoding of neural activity in the premotor cortex of the
brain to control robotic limbs has been successfully implemented in experiments
with primates [111, 35]. Moreover, wireless telemetry and power transfer to im-
planted circuitry have been successful for cochlear and retinal implants [109]. There
has also been research on detecting epileptic seizures and building an artificial
hypocampus [72, 15].

Retinal and cochlear implants are relevant to DBS because of their wireless
power transfer and data telemetry capabilities [123, 69, 144], while real-time sig-
nal processing of biosignals seems to have advanced more in cardiac pacemak-
ing [6,103,128,42] and especially BCI systems [150,62,48,91,132,161,155,49,46].

A typical setup for the real-time transmission of biosignals from a neural im-
plant includes sensors (chemical or electrode) for detecting neural activity, signal
processing for coding the activity, and communications circuitry for transmitting
the information as shown in Fig. 13.10. In addition, the need for analog ampli-
fiers, filters, and stimulus generators is ubiquitous among these designs [159]. Thus,
methods included in the preprocessing and stimulus pulse generation stages have
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also been proposed including amplifier designs [50, 117, 52], analog-to-digital con-
version (A/D) [51], and voltage multiplier designs [113].

13.8.1 Closed-Loop Cardiac Pacemaker Technology

Some research in cardiac pacemaker technology has sought to modify stimulus
parameters in response to measured neural activity. Moreover, this notion of au-
tonomous regulation is similar in principal to adaptive, autonomous, or closed-loop
deep brain stimulation (DBS).

The current standard for signal processing in cardiac pacemaking still consists
of a simple band-pass filter with adaptive threshold detection [6, 103, 128]. How-
ever, new methods have been proposed that also include nonlinear filtering, wavelet
analysis, and linear regression as well as threshold detection [86,128,42]. For exam-
ple, Rodrigues et al. [128] implement filter banks (wavelets) with linear regression
and threshold techniques in an IC design for detecting “R-waves” in cardiograms.
In particular, given an input waveform x(n) and wavelet filter H, the output of the
wavelet decomposition is

y(n) = x(n)T H. (13.10)

Next, the “decision signal” is computed as

T (n) = x(n)T H(HT H)−1HT x(n). (13.11)

Finally, the detection of the R-wave is considered positive if for some β > 0
and maximum decision signal Tmax, T (n)≥ βTmax. Furthermore, complexity of the
algorithm is O(N), while the circuit design reported in [128] requires 6 multiplica-
tions and 45 summations per iteration and achieves a performance of roughly 99%
correct detection and less than 1% false alarm.

13.8.2 Brain-to-Computer Interface

The first reported brain-to-computer interface (BCI) employing an adaptive algo-
rithm and feedback was reported by Tzanakou et al. [150, 105, 38] where pixels on
a screen were modified by the ALOPEX algorithm [62] to excite particular neurons
(or receptive fields) in the visual pathway of a frog brain. Recently, BCI methods
have been reported for detecting intended movements of primates. These include
linear methods such as the “population vector” algorithm [48], finite impulse re-
sponse (FIR) filters [132], Kalman filtering [161], nonlinear methods such as neural
networks (NN) including time-delay NN’s (TDNN) [155], gamma models [49] and
recurrent NN’s [132], and probabilistic approaches such as Bayesian inference [46].
Moreover, the nonlinear methods tend to achieve more accurate results at the ex-
pense of computational complexity.
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In the case of linear methods, a typical formulation consists of sampling neuron
spike-counts at intervals of 50 ms from multiple (15) recording sites. Moreover, the
training stage consists of sampling roughly 1 s of data (20 intervals) and storing this
information into a matrix R(20×15) while storing the resulting hand position in terms
of x−y coordinates into a vector k. Next, the filter is constructed as f = (RT R)−1RT k
and the reconstruction of movement for a history of neural activity R is obtained as
u = R× f .2 In addition, there are more sophisticated formulations that take into
account the velocity and acceleration of the movement as well as prior information
about the behavior of neurons in the cortex [82].

Almost all reported BCI methods utilize the same preprocessing stage that con-
sists of spike detection, sorting, and counting over an interval typically in the range
of 50–100 ms. Moreover, correlation methods and principal component analysis
(PCA) with threshold detection are reported as methodologies for the spike detec-
tion [22, 80]. However, Wessberg et al. [155] report using straight linear regression
with no spike detection.

13.9 Neural Network Modeling and the Basal Ganglia

The neurocomputational aspects of Parkinson’s disease and DBS have been ex-
amined using neural network models. Aside from their usefulness as classifiers
[129, 98, 67], static neural networks have been used to model the basal ganglia and
the outcome of pallidotomies [60, 58, 104]. In addition, the temporal characteristics
of neurons in these areas and the effects of DBS on neural activity have been inves-
tigated using dynamic, pulsed, or spiking neural networks [56, 57, 53, 17, 43, 44, 70,
149, 54, 8]. The models employed typically include Hodgkin–Huxley formulations
as well as larger networks of simpler integrate-and-fire units [70]. However, there is
a plethora of models that range in complexity and accuracy that may be used to this
end, such as the Noble [112] and Fitzhugh-Nagumo [41] models, as well as many
others [136, 61, 64, 160, 157, 143, 141, 27, 73, 75].

Three general methods of modeling nuclei of the basal ganglia can be found in
the scientific literature. These can be broadly categorized into “functional” models
that are designed to provide insight into the computational function of the basal
ganglia [56, 57, 53, 17, 43, 44, 142, 8], “physiological” models that incorporate more
details of ion transport [70, 149, 54], and “conceptual” models [20, 77, 145, 34, 148]
that provide a description of the synaptic connectivity. Moreover, the physiological
models have been used in simulations of applied deep brain simulation (DBS). In
particular, Grill et al. [54] show that extrinsic high frequency stimulation “masks” or

2 The formulation is included here as it appears in the literature. However, there are some unre-
solved questions. In particular, it would seem that a separate filter would be required for each move-
ment element so that given a history of 20 positions, there are corresponding x and y-coordinate
vectors x and y of 20 elements each. In that case, two filters would be derived as fx = (RT R)−1RT x
and fy = (RT R)−1RT y. Then, given a set of new data S in the testing phase, the corresponding hand
positions would be given as xnew = S× fx and ynew = S× fy.
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prevents internal activity of single neurons from being expressed at the output, thus
causing an “informational lesion,” while Feng et al. [39] use a model by Terman
et al. [149] to test a novel method of stimulus administration. Also, in response to
in vitro studies of the rat GPe and STN [120], Humphries and Gurney [70] design
models that reproduce the oscillatory and bursting modality of the neural circuits.
In addition, an analog CMOS model of Parkinsonian activity has been investigated
by Sridhar [142].

13.10 Summary

Overall, various methods for implementing a closed-loop neuromodulator have been
presented including conceptual schemes in simulation as well as hardware designs
facilitating the goal. Also, both experimental and simulation studies have provided
some insight into the neural mechanisms involved in the success of DBS. However,
there remains a need for some performance criteria in deciding which method of
closed-loop DBS will be the most successful. To this end, some preliminary com-
parisons of computational complexity are merely a starting point. What is needed
is a rigorous test on animal and human subjects including quantitative measures of
success in reducing symptoms while avoiding side effects. Ultimately, the progress
will depend on what is (or is not) approved by organizations such as the United
States (US) Food and Drug Administration (FDA) [119].
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