
Chapter 7
Biclustering

7.1 Clustering in two dimensions

Clustering techniques aim at partitioning a given set of data into clusters. Chapter 3
presents the basic k-means approach and many variants to the standard algorithm.All
these algorithms search for an optimal partition in clusters of a given set of samples.
The number of clusters is usually denoted by the symbol k. As previously discussed
in Chapter 3, each cluster is usually labeled with an integer number ranging from
0 to k − 1. Once a partition is available for a certain set of samples, the samples
can then be sorted by the label of the corresponding cluster in the partition. If a
color is then assigned to the label, a graphic visualization of the partition in clusters
is obtained. This kind of graphic representation is used often in two-dimensional
spaces for representing partitions found with biclustering methods.

A set of data can be represented through a matrix. The samples can be represented
by m-dimensional vectors, where the components of these vectors represent the
features used for describing each sample. All the vectors representing the samples
can be grouped in a matrix

A =

⎛
⎜⎜⎜⎜⎝

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n

. . . . . . . . . . . . . . .

am1 am2 am3 . . . amn

⎞
⎟⎟⎟⎟⎠ .

If a given set of data contains n samples which are represented by m features, then A

is an m×n matrix. Each column of the matrix represents one sample, and it provides
information on the expression of its m features. Each row represents a feature, and
it provides the expression of that feature on the n samples of the set of data.

Standard clustering methods partition the samples in clusters, i.e., the columns of
the matrix A are partitioned in clusters. Biclustering methods work instead simulta-
neously on the columns and the rows of the matrix A. Besides clustering the samples,
even their features are partitioned in clusters. Two different partitions are therefore
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needed. The search of the two partitions is not performed independently, but rather
the clusters of samples and the clusters of features are related. The concept of “bi-
cluster’’ is introduced for this purpose. A bicluster is a collection of pairs of samples
and features subsets B = {(S1, F1), (S2, F2), . . . , (Sk, Fk)}, where k, as usual, is the
number of biclusters [32]. Each bicluster (Sr , Fr) is formed by two single clusters:
Sr is a cluster of samples, and Fr is a cluster of features.

The following conditions must be satisfied:

k⋃
r=1

Sr ≡ A, Sζ ∩ Sξ = ∅ 1 ≤ ζ �= ξ ≤ k,

k⋃
r=1

Fr ≡ A, Fζ ∩ Fξ = ∅ 1 ≤ ζ �= ξ ≤ k.

Note that the union of all the clusters Sr must be A because each sample, organized
in columns in the matrix, must be contained in at least one cluster Sr . Similarly, the
union of all the clusters Fr must be A as well. The only difference is that the features
are organized on the rows of the matrix A. Note also that these same conditions are
imposed on clusters when standard clustering is applied. Besides ensuring that each
single sample or feature is contained in a cluster, they guarantee that all the clusters
of samples and the clusters of features are disjoint.

The aim of biclustering techniques is to find a partition of the samples and of
their features in biclusters (Sr , Fr). In this way, not only a partition of samples is
obtained, but also the features causing this partition are identified. As for the standard
clustering, the single clusters Sr and Fr can be labeled from 0 to k−1. Independently,
the clusters Sr can be sorted by their own labels, and the same can be done for the
clusters Fr . A color or a gray scale can be associated to each label, and a matrix
of pixels can be created. On the rows of such matrix, the clusters Fr are ordered
by their labels, and the clusters Sr are ordered on the columns. Even though this
matrix is built considering the clusters Sr and Fr independently, it gives a graphic
visualization of the biclusters (Sr , Fr). The matrix shows a checkerboard pattern
where the biclusters can be easily identified. This pattern can be easily noticed, for
instance, in Figure 7.4, related to the application of biclustering discussed in Section
7.4.1.

Biclustering is widely applied for partitioning gene expression data, and therefore
some of the nomenclature in biclustering is similar to the one in gene expression
analysis. In [159], a survey of biclustering algorithms for biological data is presented.
Since biology is currently the main field of application of biclustering, this survey
can be actually considered a survey on biclustering. It is updated to the year 2004,
and hence it does not include recent developments, which are discussed in Section
7.2 of this chapter.

Following the definition, a bicluster is a pair of clusters (Sr , Fr), where Sr is a
cluster of samples and Fr is a cluster of features. Since the samples and the features
are organized in the matrix A as explained above, a bicluster can also be seen as a
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submatrix of A. A submatrix of an m × n matrix can be identified by the set of row
indices and column indices it takes from A. For instance, if

A =
⎛
⎝1 2 3

1 1 0
0 −1 2

⎞
⎠ ,

then the submatrix with the first and third row of A and the second and third column
of A is

SA =
(

2 3
−1 2

)
.

In the following, bicluster and submatrix of A will be used interchangeably.
Different kinds of biclusters can be defined. One might be interested in biclusters

in which the corresponding submatrices of A have constant values. This requirement
may be too strong in some cases, and it may work on non-noisy data only. Indeed,
data from real-life applications are usually affected by errors, and a bicluster with
constant values may not be possible to find. Formally, these kinds of biclusters are
the ones in which

aij = µ ∀i, j : ai ∈ Fr aj ∈ Sr,

where µ is a real constant value. If the data contain errors, the following formalism
can be used

aij = µ + ηij ∀i, j : ai ∈ Fr aj ∈ Sr,

where ηij is the noise associated to a real value µ of aij . The problem of finding
biclusters with constant values can be formulated as an optimization problem in
which the variance of the elements of the biclusters have to be minimized. If ISr is
the set of column indices related to the samples aj ∈ Sr , i.e., ISr contains all the
j indices associated to Sr , and IFr is the set of row indices related to the features
ai ∈ Fr , then

f (Sr , Fr) =
∑
i∈ISr

∑
j∈IFr

(
aij − M

)2
evaluates the quality of the bicluster (Sr , Fr), where M is the average of all the
elements in (Sr , Fr). If the data are not affected by errors, a perfect bicluster with
constant values is such that f (Sr , Fr) = 0. Otherwise, minimizing the function
f (Sr , Fr) equals finding the bicluster which is closest to the optimal one. It is worth
noting that every bicluster containing one row and one column is a perfect bicluster
with constant values, since its only element aij equals M . In general, when the
function f (Sr , Fr) is optimized, constraints must take into account that the number
of rows and columns of the submatrices representing the biclusters must be greater
than a certain threshold.

Biclusters with constant row values and constant column values can also be of
interest. If the row values in a bicluster are constant, then all the samples in the
bicluster (and in Sr ) have a constant subset of features (the ones in Fr ). Inversely,
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if the columns have constant values, then the samples in Sr have all the features in
Fr constant. In this case, different samples have different feature values, but all the
feature values in the same sample are the same. A bicluster having constant rows
satisfies the condition

aij = µ + αi ∀i, j : ai ∈ Fr aj ∈ Sr

or the condition
aij = µαi ∀i, j : ai ∈ Fr aj ∈ Sr

where µ is a typical value within the bicluster and αi is the adjustment for row
i ∈ ISr . Similarly, a bicluster having constant columns satisfies the condition

aij = µ + βj ∀i, j : ai ∈ Fr aj ∈ Sr

or the condition
aij = µβj ∀i, j : ai ∈ Fr aj ∈ Sr .

Even here, the presented conditions can be satisfied only if the data are not noisy, oth-
erwise the noise parameters ηij can be used, as in the previous example of biclusters
with constant values.

The easiest way to approach the problem of finding biclusters with constant row
values or constant column values is the following one. Let us suppose a bicluster with
constant rows is contained in a matrix A and that the submatrix which corresponds
to it is

SA =

⎛
⎜⎜⎝

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

⎞
⎟⎟⎠ .

Since all the values on the rows are constant, the mean among all these values
corresponds to any of the row values. If each row is normalized by the mean of all
its values, then the following matrix is obtained

ŜA =

⎛
⎜⎜⎝

1/1 1/1 1/1 1/1
2/2 2/2 2/2 2/2
3/3 3/3 3/3 3/3
4/4 4/4 4/4 4/4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞
⎟⎟⎠ ,

which corresponds to a bicluster with constant values. Therefore, the row and the
columns normalization can allow the identification of biclusters with constant values
on the rows or on the columns of the matrix A by transforming these biclusters into
constant biclusters.

Biclusters have coherent values when the generic element of the corresponding
submatrix can be written as

aij = µ + αi + βj ∀i, j : ai ∈ Fr aj ∈ Sr .
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Particular cases of coherent biclusters are biclusters with constant rows (βj = 0),
or biclusters with constant columns (αi = 0), or biclusters with constant values
(αi = βj = 0). This kind of bicluster can be represented by submatrices such as

SA =

⎛
⎜⎜⎝

µ + α1 + β1 µ + α1 + β2 . . . µ + α1 + βm

µ + α2 + β1 µ + α2 + β2 . . . µ + α2 + βm

. . . . . . . . . . . .

µ + αn + β1 µ + αn + β2 . . . µ + αn + βm

⎞
⎟⎟⎠ .

The whole submatrix SA can be built using the value µ and the two vectors α ≡
(α1, α2, . . . , αn) and β ≡ (β1, β2, . . . , βm).

The following proves that a generic element aij of a submatrix SA can be obtained
from means among the rows, the columns and all the elements of the matrix. The
mean among the elements of the ith row of SA is

Mi = µ + αi + 1

m

m∑
k=1

βk,

whereas the mean among the elements of the j th column of SA is

Mj = µ + 1

n

n∑
k=1

αk + βj .

Moreover, the mean of all the elements of the matrix SA is

M = µ + 1

n

n∑
k=1

αk + 1

m

m∑
k=1

βk.

From simple computations, it results that

Mi + Mj − M = µ + αi + βj = aij . (7.1)

Therefore, the generic element of a coherent bicluster can be written as the mean of
its rows, plus the mean of its columns, minus the mean of the whole submatrix. If
the data are affected by errors, then equation (7.1) may not be satisfied. The residue
r(aij ) associated to an element aij is then defined as

r(aij ) = aij − Mi − Mj + M

and consists of the difference between the value aij and the value obtained applying
equation (7.1). A perfect (not affected by noise) coherent bicluster would have all
the residues r(aij ) equal to zero. Thus, the following function is able to evaluate the
coherency of biclusters:



148 7 Biclustering

H(Sr, Fr) = 1

nm

n∑
i=1

m∑
j=1

[
r(aij )

]2
.

Coherent biclusters can be located in the matrix A by minimizing this objective
function.

As shown in this section, the problem of finding a bicluster or a partition in
biclusters can be formulated as an optimization problem. The easiest way to solve
it is through an exhaustive search among all the possible biclusters. This can be
affordable only if the considered set of data contains a small number of samples and
features. When this is not the case, optimization methods need to be used. In Section
1.4, some standard methods for optimization are presented. However, usually the
optimization methods used for biclustering are tailored to the particular problem to
solve [66, 83].

7.2 Consistent biclustering

In this section, the notion of consistent biclustering is introduced. This part of the
chapter makes a large use of mathematical symbols: the symbology utilized follows.
As already observed, the set of clusters Sr and the set of clusters Fr represent two
partitions of the samples and of the features of a set of data. Each cluster Sr or Fr

has a certain center. Since we have to deal with two different partitions (samples
and features), let us denote the center of the generic cluster Sr with the symbol cS

r

and the center of the generic cluster Fr with the symbol cF
r . The center cS

r refers to
the rth cluster of the samples. Since it is the average of samples represented by m-
dimensional vectors, cS

r is an m-dimensional vector. These vectors can be organized
into an m × k matrix CS , where the centers are stored column by column, just as the
samples in the matrix A. The same can be done in correspondence of the clusters Fr

and their centers. The generic center cF
r refers to the rth cluster of features. A matrix

CF can be defined where such centers are organized column by column. CF is an
n× k matrix, since each feature is represented by an n-dimensional vector. Since the
matrices CS and CF contain averages, their elements are the average expressions of
the corresponding samples and features. It is clear that the nomenclature “average
expression’’ comes from the studies on gene expression data. An average expression
can be evaluated by a non-negative number: we will suppose in the following that
all the centers have non-negative values.

Matrices are widely used in biclustering: A contains the set of data to partition in
biclusters; CS and CF contain the centers of the clusters Sr and Fr , respectively. aij

refers to the ith feature of the j th sample. A sample can be referred to as aj : the j as
superscript means that the j refers to the column index of the matrix A. Similarly, ai

refers to the ith row of the matrix, i.e., to the ith feature. The same symbology can
be used for elements in CS and CF . cS

ir refers to the ith component of the center of
the cluster Sr ; cF

jr refers to the j th component of the center of the cluster Fr .
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As already pointed out, the two single clusters in a bicluster (Sr , Fr) are related.
Actually, once a partition in clusters of the samples is provided, a corresponding
partition in clusters of the features can be obtained. Vice versa, a partition in clusters
Sr can be obtained from the clusters Fr . Let us suppose then that the clusters Sr are
known. In this case, each sample or column aj is assigned to a certain cluster. The
centers of all the clusters Sr are also known and contained in the matrix CS column
by column. The generic element cS

ir of the matrix represents the average expression
of the ith feature in the rth cluster, among all the samples in Sr . Let r̂ be the cluster in
which the ith feature is most expressed. In mathematical formulas, r̂ can be defined
as the index such that the following condition is satisfied:

ai ∈ Fr̂ ⇐⇒ cS
ir̂

> cS
iξ ∀ξ ∈ {1, 2, . . . , k} ξ �= r̂ . (7.2)

Intuitively, it is reasonable to assign the feature ai to the cluster Fr̂ . If the condition
(7.2) is applied for all the indices i ∈ {1, 2, . . . , k} and all the features ai are assigned
to the corresponding clusters Fr̂ , a partition in clusters Fr is obtained from a previous
partition in clusters Sr .

The same procedure can be applied for obtaining a partition of the samples when
a partition of the features is known. The following rule can be used for assigning a
sample aj to a certain cluster Ŝr :

aj ∈ Ŝr̂ ⇐⇒ cF
j r̂

> cF
jξ ∀ξ ∈ {1, 2, . . . , k} ξ �= r̂ . (7.3)

If this rule is applied for each j , a new partition in clusters Ŝr is obtained from the
partition in clusters Fr . Note that a symbol is used for discriminating the generic
cluster Sr and the generic cluster Ŝr . Indeed, Sr is the generic cluster used for finding
a partition in clusters Fr of the features, whereas Ŝr represents the partition in clusters
obtained from the clusters Fr . Two different notations for Sr and Ŝr are used because
these two partitions of samples can be different in general. Even though Sr generated
Fr and Fr generated Ŝr , there are no reasons why Sr and Ŝr should correspond. If
they correspond, then the partition in biclusters (Sr , Fr) is called consistent.

It is important to note that not all the sets of data admit a consistent partition in
biclusters. This may happen because there may not be a statistical evidence that a
sample or a feature belongs to a certain cluster. If a consistent partition in biclusters
exists for a certain set of data, then it is said to be biclustering-admitting. When it is
not the case, samples or features are usually deleted from the set of data for letting it
become biclustering-admitting. In this case, it is important to delete the least possible
in order to preserve the information in the set of data. This procedure is known as
feature selection.

The requirement of consistency can be weak in some cases. Let us suppose that a
partition in clusters Sr is available, and that a partition in clusters Fr is obtained from
it. Each feature is therefore assigned to the cluster Fr̂ such that cS

ir̂
has the largest

value in the vector cS
i . Let us suppose now that the following condition holds:

min
ξ �=r̂

{cS
ir̂

− cS
iξ } ≤ ε (7.4)
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where ε is a small number. In this case, small changes in the data can bring different
partitions of the features in the clusters Fr . Indeed, small variations of the samples
bring variations of the centers of the clusters Sr , and this can bring a different feature
to be more expressed. The following example should clarify this concept.

Let us suppose that the data are partitioned in two biclusters only. S1 and S2 are
known, as well as their centers cS

1 and cS
2 . The features are also partitioned into two

clusters F1 and F2. Each feature is assigned to one of the two clusters depending
on their average expressions in the corresponding clusters Sr . Therefore, the generic
feature ai is assigned to F1 if cS

i1 > cS
i2, and vice versa. Let us suppose for instance

that cS
i1 = 5.9 and cS

i2 = 6.1. Then, ai is assigned to F2. However, the condition
(7.4) holds with α ≥ 0. This means that it is not evident statistically that ai belongs
to F2. Indeed, let us suppose that another sample is added to the set of data, and
that it is assigned to cluster S1. The center of S1 hence changes, and in particular
its ith component changes. If the feature ai is more expressed in this sample, the
average cS

i1 can increase. Since it is an average and it considers all the samples in the
same cluster, it cannot change dramatically, even though the new sample might be
different from the others. However, in the considered example, the feature ai might
be assigned to a different cluster after the new sample is added. If indeed cS

i1 is now
equal to 6.2, then cS

i1 > cS
i2, and the feature ai is assigned to F1.

In order to overcome this kind of problem, conditions stronger than consistent
biclustering are introduced in [176]. A biclustering is called an additive consistent
biclustering with parameter α or an α-consistent biclustering if the following two
relations holds

ai ∈ F̂r̂ ⇐⇒ cS
ir̂

> αF
j + cS

iξ ∀ξ ∈ {1, 2, . . . , k} ξ �= r̂ (7.5)

aj ∈ Ŝr̂ ⇐⇒ cF
j r̂

> αS
i + cF

jξ ∀ξ ∈ {1, 2, . . . , k} ξ �= r̂ (7.6)

where each αF
j and αS

i are positive numbers. It is easy to prove that an α-consistent
biclustering is a consistent biclustering, but not the inverse. Indeed, if the conditions
(7.5) and (7.6) are satisfied with αF

j > 0 and αS
i > 0, then they keep being satisfied

with αF
j = 0 and αS

i = 0. Inversely, let us suppose that cS
ir̂

> αF
j + cS

iξ for all

the ξ different from r̂ , in correspondence with some feature ai and with αF
j = 0. If

αF
j is successively modified and it becomes positive, then the condition may not be

satisfied anymore. The quantity αF
j + cS

iξ becomes larger, and therefore the quantity

cS
ir̂

may not be greater than it anymore.
Similar to α-consistent biclustering is the β-consistent biclustering.Abiclustering

is called a multiplicative consistent biclustering with parameter β or a β-consistent
biclustering if the following two relations holds

ai ∈ F̂r̂ ⇐⇒ cS
ir̂

> βF
j cS

iξ ∀ξ ∈ {1, 2, . . . , k} ξ �= r̂ (7.7)

aj ∈ Ŝr̂ ⇐⇒ cF
j r̂

> βS
i cF

jξ ∀ξ ∈ {1, 2, . . . , k} ξ �= r̂ (7.8)
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where βF
j > 1 and βS

i > 1. As before, a β-consistent biclustering is a consistent
biclustering.

7.3 Unsupervised and supervised biclustering

Biclustering is a technique for clustering on two dimensions. On the first dimension,
the samples contained in a set of data are taken into account. Standard clustering
methods work on this dimension only. On the second dimension, moreover, biclus-
tering considers the features that are used for representing the samples. The simulta-
neous clustering of samples and features allows one to partition the data in clusters
where similar samples are contained, and to find out the features that cause these
similarities.

Biclustering can be performed by solving one of the optimization problems dis-
cussed in Section 1.4. In this way, the partition of the samples and the partition of the
features are searched simultaneously. Biclustering can also be performed by using
methods for standard clustering coupled with the concepts introduced in the previous
section. For instance, the k-means algorithm can be applied for partitioning a given
set of samples. Then, the conditions (7.2) can be used for finding a correspondent
partition in clusters of the features. In this way, the biclusters can be defined. Besides
the partition of the samples, the partition of their features allows one to identify the
ones that generate the current partition of the samples.

However, the partition found in biclusters might not be consistent. From the par-
tition in clusters of the features, a partition in clusters, the samples can be obtained
using the conditions (7.3). As already pointed out, the obtained partition of the sam-
ples can be equal or not to the starting partition, i.e., to the partition found by the
k-means algorithm in this example. If they correspond, the biclustering is consistent,
otherwise it is not. In the latter case, some features be can deleted from the set of
data in order to let the biclustering become consistent. The feature selection process
is not easy, and the consistent biclustering can be found only if the set of data is
biclustering-admitting.

Clustering techniques are referred to as techniques for unsupervised classifica-
tions, because they are used when there is not any previous knowledge about the
data. Biclustering can be also supervised, because the information from a training
set can be actually used. If a training set is available, a set of data is available that
is already partitioned in different classes. In this case, a partition algorithm such as
k-means is not needed, because the data are already partitioned. Then, a partition
of the features can be obtained applying the conditions (7.2). At this point, a set of
biclusters is defined, which is able to provide information on the features that caused
the classification of the samples given by the training set. As before, this information
is accurate if the biclustering is consistent, otherwise there is not a strong statistical
evidence that a feature belongs to one cluster or another.

The problem of finding a consistent biclustering, once a partition of the samples
is given, can be formulated as an optimization problem (see Section 1.4). Before
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formulating the optimization problem, let us introduce some notations. Let F be an
m × k matrix whose elements can have value 0 or 1 only. The generic fir element
has value 1 if the feature ai belongs to the cluster Fr , and 0 otherwise. By using
this matrix, the condition of consistency can be written as follows. Suppose that the
clusters Sr are known. Suppose that the clusters Fr are built by using the conditions
(7.2). Then, the clustering in biclusters (Sr , Fr) is consistent if Sr is obtained when
the conditions (7.3) are applied. Equivalently, the following conditions must hold:

m∑
i=1

aij fir̂

m∑
i=1

fir̂

>

m∑
i=1

aij fiξ

m∑
i=1

fiξ

, ∀r̂ , ξ ∈ {1, 2, . . . , k}, r̂ �= ξ, j ∈ Sr̂ . (7.9)

Let us introduce now the binary vector x of length m whose generic element xi is
1 if the feature ai is taken into account, and 0 otherwise. The condition (7.9) on a
subset of features can be written as follows:

m∑
i=1

aij fir̂xi

m∑
i=1

fir̂xi

>

m∑
i=1

aij fiξ xi

m∑
i=1

fiξ xi

, ∀r̂ , ξ ∈ {1, 2, . . . , k}, r̂ �= ξ, j ∈ Sr̂ . (7.10)

As already pointed out, when deleting features in order to find a consistent biclus-
tering, the minimum possible features have to be removed. The problem of choosing
a subset of features that is as large as possible and such that the corresponding bi-
clustering is consistent can be formulated as an optimization problem. The function
to maximize is

f (x) =
m∑

i=1

xi (7.11)

while subject to the constraints (7.10). In the optimization field, this problem is called
fractional 0-1 programming problem. Its solution provides an efficient selection of
the features to take into account. This optimization problem can be solved by using a
suitable method for global optimization (Section 1.4), but it is usually quite difficult
to manage. Therefore, ad hoc methods have been developed. Details about these
methods can be found in [32, 176].

The solutions of the formulated optimization problem allow one to obtain consis-
tent biclusterings where the maximum number of features is considered. Similarly,
the following optimization problem provides α-consistent biclusterings:

max
x

f (x)

subject to
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m∑
i=1

aij fir̂xi

m∑
i=1

fir̂xi

> αj +

m∑
i=1

aij fiξ xi

m∑
i=1

fiξ xi

, ∀r̂ , ξ ∈ {1, 2, . . . , k}, r̂ �= ξ, j ∈ Sr̂ .

This other optimization problem provides instead β-consistent biclusterings:

max
x

f (x)

subject to

m∑
i=1

aij fir̂xi

m∑
i=1

fir̂xi

> βj

m∑
i=1

aij fiξ xi

m∑
i=1

fiξ xi

, ∀r̂ , ξ ∈ {1, 2, . . . , k}, r̂ �= ξ, j ∈ Sr̂ .

7.4 Applications

Biclustering techniques are nowadays mainly applied to the field of biology, and in
particular for the analysis of microarray data. In Section 7.4.1 we will discuss in
detail this kind of application and we will report the experiments presented in [32],
where supervised biclustering has been applied. Moreover, even other applications
of biclustering have emerged in the literature. Biclustering is used for collaborative
filtering, where the aim is to identify subgroups of customers with similar preferences
or behaviors toward a subset of products [55, 228, 244]. In information retrieval and
text mining [60], biclustering can be successfully used to identify subgroups of
documents with similar properties relative to subgroups of attributes, such as words
or images. In [103], biclustering has been used for analyzing electoral data and, in
[142], it has been used for studying the exchanges of foreign currencies. To the best
of our knowledge, biclustering has never been used before for solving problems
related to agriculture. However, as we will explain in Section 7.4.2, it is our opinion
that biclustering techniques can be successfully applied to agricultural-related data
mining problems.

7.4.1 Biclustering microarray data

Microarrays in biology are used for studying the expression of genes under different
conditions. Genes in humans, for instance, have different expression levels in pres-
ence of diseases. Finding the set of genes that have similar expression levels in the
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Fig. 7.1 A microarray.

presence of a certain disease can help understanding the disease itself and how the
body reacts to it. Microarray data are organized as in a matrix: each row of the matrix
is related to a gene, and each column is related to a different condition. Therefore, the
generic element of a microarray gives the expression level of the gene, specified by
the current row, under the condition specified by the current column. The expression
levels are usually visualized by a matrix of colors ranging from light green to red. In
black and white pictures, this range of colors corresponds to a gray scale from white
to black. Figure 7.1 shows a microarray.

The expression levels obtained by a microarray can be placed in a m×n numerical
matrix A. The samples contained in this matrix are organized column by column:
each of them represents an experimental condition through the expression levels of
all the considered genes. The features used for describing such samples are hence the
expression levels of the genes. Each row of A contains all the measured expression
levels of the same gene under the different experimental conditions.

Biclusters in the matrix A can reveal genetic pathways that can be used, for
instance, for identifying the genes with different expression levels in presence of a
disease. A bicluster of samples and features groups a subset of similar conditions that
are caused by a subset of genes having similar expression levels. The meaning of the
term “similar’’ depends on the kind of considered bicluster. For instance, biclusters
can have constant values, on the whole bicluster or only on its rows or columns, or
it can be a bicluster with coherent values.
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Another way for finding biclusters in the matrix A is to look for a consistent
biclustering of the data as explained in Section 7.2. Let us suppose that the samples
(the experimental conditions in this application) are already classified in clusters.
Then, the rule (7.2) can be used for finding a partition in clusters of the features, i.e.,
a partition in clusters of the genes. In this way, biclusters containing conditions and
genes can be identified, and the genes causing certain conditions can be located. It
is important to note that the correlation between conditions and genes is statistically
evident only if the partition found in biclusters is consistent. For this reason, the best
way to find such partition is to solve the optimization problem (7.11)–(7.10). In this
way, the features that cause the biclustering not to be consistent are removed.

In [32, 176], this technique has been applied to a well-researched microarray data
set containing samples from patients diagnosed with acute lymphoblastic leukemia
(ALL) and acute myeloid leukemia (AML) diseases [89]. The original set of data has
been divided in two parts: a part used as training set and another used as validation
set. Hence, the training set used contains 27 samples classified as ALL and 11 sample
classified as AML; the validation set contains 20 ALL samples and 14 AML samples.
A consistent biclustering is obtained by following a methodology described in [32],
which is based on the optimization of the problem (7.11)–(7.10). After that, the
samples of the validation set are subsequently classified choosing for each of them
the class with the highest average feature expression: 3439 features for class ALL
and 3242 features for class AML have been selected. The obtained classification
contains only one error: one AML-sample was classified into the ALL class. The
obtained partition in biclusters is shown in Figure 7.2.

The same methodology has also been applied to the Human Gene Expression
(HuGE) Index data set [112]. The purpose of the HuGE project is to provide a
comprehensive database of gene expressions in normal tissues of different parts
of the human body and to highlight similarities and differences among the organ
systems [111]. The data set consists of 59 samples from 19 distinct tissue types. It
was obtained using oligonucleotide microarrays capturing 7070 genes. The samples
were obtained from 49 human individuals: 24 males with median age of 63 and 25
females with median age of 50. Each sample came from a different individual except
for the first 7 BRA (brain) samples that were from different brain regions of the same
individual and 5th LI (liver) sample, which came from that individual as well. The list
of considered tissue types with their abbreviations and the number of samples for each
of them is given in Figure 7.3. Figure 7.4 presents the partition in biclusters obtained
by applying the same methodology as above. The distinct block-diagonal pattern of
the heatmap evidences the high quality of the obtained feature classification.

7.4.2 Biclustering in agriculture

There are currently no applications in the agricultural field for biclustering tech-
niques. The reason might be the fact that biclustering techniques are used only in
recent years, in which they have been mainly applied to gene expression analysis.
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Fig. 7.2 The partition found in biclusters separating the ALL samples and the AML samples.
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Tissue type Abbreviation Number of samples

Blood BD 1
Brain BRA 11
Breast BRE 2
Colon CO 1
Cervix CX 1

Endometrium ENDO 2
Esophagus ES 1

Kidney KI 6
Liver LI 6
Lung LU 6

Muscle MU 6
Myometrium MYO 2

Ovary OV 2
Placenta PL 2
Prostate PR 4
Spleen SP 1

Stomach ST 1
Testes TE 1
Vulva VU 3

Fig. 7.3 Tissues from the HuGE Index set of data.

In fact, biclustering was introduced in the literature in 1972 by Hartigan [103], but
only later, in 2000, Cheng and Church took the idea and applied it to expression
data [47]. Another reason for the non-use of biclustering in agriculture may be the
complexity of the method. As usual, scientists who are expert in fields different from
numerical analysis and computer science tend to use easier solutions. This is one of
the reasons why methods such as k-means are applied more than neural networks or
support vector machines in applied fields.

However, it is our opinion that biclustering may provide good results if applied
to agricultural problems. Let us take as example the problem considered in Sec-
tion 3.5.1, where wine fermentation problems are predicted by a k-means approach.
In this example, each sample is represented as a vector having as components some
compounds measured in the wine during the fermentation process. The goal is to
predict wine fermentation problems that may occur using information about the
compounds measured not later than 3 days after the start of the fermentation process.
The clustering algorithm used provides a partition of the samples but no consid-
erations are made about the compounds that are responsible for these partitions.
Biclustering might also provide this kind of information. If the feature is known, a
particular compound in this case that is associated to a cluster of samples, then such
samples are similar because of that feature. In this application, besides discovering
patterns that signal fermentation problems, the compounds that are more responsible
for such problems can be located. This may help the work of the enologist when his
intervention is required to correct the fermentation process.
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Fig. 7.4 The partition found in biclusters of the tissues in the HuGE Index set of data.
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Biclustering can be applied even to other applications discussed in the other
chapters of the book. In particular, when a training set is available, and classification
techniques can be used, then a partition in biclusters of the data can be found before
the classification technique is applied. This can be done using the rule (7.2). When
the biclusters are found, each class in the original training set is associated to a
cluster of features. This allows one to find out which are the features responsible
for grouping a subset of samples in a certain class. In order to be sure that each
feature is actually assigned to the right class, the partition in biclusters has to be
consistent. The consistency can be checked by applying the rule (7.3) and checking
if the original classification in the training set is found again. In the case the partition
is not consistent, then some of the features need to be discarded. This task could be
done by hand if the classification problem is not so large. Otherwise, the optimization
problem (7.11)–(7.10) needs to be solved.

Note that, once the samples in a testing set have been classified by using a classifi-
cation technique, the rule (7.3) can be applied to it and another partition in biclusters
can be found. The classification technique tries to reproduce the classification in the
training set on unclassified samples. Therefore, choosing a certain class, the corre-
sponding bicluster in the training set and the one in the testing set should be similar.
This may also be used for validating the data mining technique used.

7.5 Exercises

In this section some exercises related to biclustering are presented.

1. Consider the matrix

A =

⎛
⎜⎜⎜⎜⎝

1 2 3 −4 5
1 1 0 0 1
0 1 2 2 0

−1 3 1 0 2
3 −1 1 2 1

⎞
⎟⎟⎟⎟⎠ .

Locate a bicluster with constant row values having dimension 2 × 2.
2. Consider 6 samples in a three-dimensional space:

x1 = (7, 0, 0), x2 = (5, 0, 0), x3 = (0, 1, 0),

x4 = (0, 3, 0), x5 = (0, 0, 1), x6 = (0, 0, 5).

Suppose that they are assigned to 3 clusters as follows:

x1 ∈ S1, x2 ∈ S1, x3 ∈ S2, x4 ∈ S2, x5 ∈ S3, x6 ∈ S3.

By using the rule (7.2), find a partition of the features used for representing the
three-dimensional points. Then, define a partition of the points in biclusters.

3. Verify that the partition in biclusters obtained in the previous exercise is consistent.
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4. Consider 4 samples in a three-dimensional space:

x1 = (1, 2, 3), x2 = (2, 3, 4), x3 = (3, 4, 2), x4 = (4, 5, 1).

Suppose that
x1 ∈ S1, x2 ∈ S1, x3 ∈ S2, x4 ∈ S2.

Find a partition in biclusters by using the rule (7.2) and check if the biclustering
is consistent.

5. Provide an example of partition in biclusters of a given set of data which is α-
consistent but not consistent for a certain α value.
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