
Chapter 10
Solutions to Exercises

In this chapter, all the solutions of the exercises appearing at the ends of the chapters
of this book are presented. Each following section contains the solutions related to
one chapter.

10.1 Problems of Chapter 2

1 The variability of the components of the points

(1, −1), (3, 0), (2, 2)

has to be computed. Let us consider the x components. They can assume values 1,
3 and 2, and therefore the range of variability of x is 2. The value 2 comes from the
difference between the largest and the smallest values the x component can have.
Similarly, the variability of the y component can be computed and it is equal to 3.

2 The following MATLAB r© instructions generate a random set of points in a two-
dimensional space lying on the line y = x. Then, the principal component analysis
is applied in order to reduce the dimension of the set of points to 1:

>> x = rand(1,20);
>> y = x;
>> A = cov(x,y);
>> [v,d] = eig(A);
>> d

d =

0 0
0 0.1619

>> x1 = v(1,2)*x + v(2,2)*y;
>> y1 = v(1,1)*x + v(2,1)*y;
>> var_y1 = max(y1) - min(y1)

var_y1 =

0
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Fig. 10.1 A set of points before and after the application of the principal component analysis.

3 If the variables used in the previous exercise are still in the memory of the MATLAB
environment, then the following instructions can be used for creating the Figure 10.1,
as required by the exercise:

>> plot(x,y,’ko’,’MarkerSize’,10,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,
[.49 1 .63])

>> hold on
>> plot(x1,y1,’kd’,’MarkerSize’,10,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,

[.49 0 .63])

4 The equation of the unique line passing through the two points

(x1, y1) = (1, 0), (x2, y2) = (0, −2)

needs to be computed. The general equation of a line l is

y = ax + b.

In this very easy case, the equation of the l can be easily obtained imposing the
passage of the line through the points as follows:

(x1, y1) ∈ l =⇒ y1 = ax1 + b =⇒ 0 = a + b

(x2, y2) ∈ l =⇒ y2 = ax2 + b =⇒ −2 = 0 + b

Then, {
a = 2
b = −2

.

Let us check if the line l of equation
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y = 2x − 2

passes through the given points. Since

x1 = 1 =⇒ y1 = ax + b = 2 · 1 − 2 = 0
x2 = 0 =⇒ y2 = ax + b = 2 · 0 − 2 = −2

the passage is verified.

5 The following instructions draw the line which is the solution of Exercise 4 (see
Figure 10.2):

>> x = [1 0];
>> y = [0 -2];
>> plot(x,y)
>> hold on
>> plot(x,y,’ko’,’MarkerSize’,10,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,

[.49 1 .63])

6 The only parabola passing through the points

(x1, y1) = (0, 1), (x2, y2) = (1, 2), (x3, y3) = (−1, 3)

has to be computed. The general equation of the Newton polynomial is

y = f (x1) +
n+1∑
i=2

f [x1, . . . , xi]
i−1∏
j=1

(x − xj ).

In this case, the Newton polynomial can be written as:
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Fig. 10.2 The line which is the solution of Exercise 4.
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y = f (x1) + f [x1, x2](x − x1) + f [x1, x2, x3](x − x1)(x − x2).

Two divided differences have to be computed for finding the equation of the parabola.
The first one is

f [x1, x2] = y2 − y1

x2 − x1
= 2 − 1

1 − 0
= 1.

The second one needs the computation of the divided difference f [x2, x3], because

f [x1, x2, x3] = f [x2, x3] − f [x1, x2]
x3 − x1

.

Since

f [x2, x3] = y3 − y2

x3 − x2
= 3 − 2

−1 − 1
= −1

2
,

the needed divided difference is

f [x1, x2, x3] =
−1

2
− 1

−1 − 0
= 3

2
.

By substituting the divided differences in the Newton polynomial, the following
equation is obtained:

y = 1 + x + 3

2
x(x − 1).

The passage of the given points is satisfied by the obtained equation:

(x1, y1) =⇒ 1 = 1 + 0 + 3

2
0(0 − 1) = 1

(x2, y2) =⇒ 2 = 1 + 1 + 3

2
1(1 − 1) = 2

(x3, y3) =⇒ 3 = 1 − 1 − 3

2
1(−1 − 1) = 3.

Therefore, the obtained equation is actually a parabola passing from the given points.

7 A figure in which the points

(4, 2), (2, 2), (1, 4), (0, 0), (−1, 3)

and the join-the-dots function interpolating such points are displayed needs to be
created. The MATLAB instructions for performing this exercise are the following
ones:

>> x = [4 2 1 0 -1];
>> y = [2 2 4 0 3];
>> plot(x,y)
>> hold on
>> plot(x,y,’ko’,’MarkerSize’,10,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,

[.49 1 .63])
What is obtained is shown in Figure 10.3.
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Fig. 10.3 The solution of Exercise 7.

8 Considering the same points given in Exercise 7 and supposing that the join-the-
dots function is replaced by a quadratic regression function, then the exercise can be
solved by the following MATLAB instructions:

>> x = [4 2 1 0 -1];
>> y = [2 2 4 0 3];
>> plot(x,y,’ko’,’MarkerSize’,10,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,

[.49 1 .63])
>> hold on
>> c = polyfit(x,y,2);
>> xx = min(x)-1:0.1:max(x)+1;
>> yy = polyval(c,xx);
>> plot(xx,yy)

What obtained is shown in Figure 10.4.

9 In this exercise, the linear and quadratic regression functions approximating the
points

(1, 2), (2, 3), (1, −1), (−1, 3), (1, −2), (0, −1)

have to be computed in MATLAB. Figure 10.5 shows the result obtained by using
the following instructions in the MATLAB environment:

>> x = [1 2 1 -1 1 0];
>> y = [2 3 -1 3 -2 -1];
>> plot(x,y,’ko’,’MarkerSize’,10,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,

[.49 1 .63])
>> hold on
>> c = polyfit(x,y,1);
>> xx = min(x)-1:0.1:max(x)+1;
>> yy = polyval(c,xx);
>> plot(xx,yy)
>> c = polyfit(x,y,2);
>> yy = polyval(c,xx);
>> plot(xx,yy,’m:’)
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Fig. 10.4 The solution of Exercise 8.

10 In the previous exercise, the linear and quadratic regression functions related to a
set of 6 points are computed. If it is supposed that each point (x, y) is approximated
with the corresponding point (x, f (x)) of the linear regression f , then the mean
arithmetic error on these 6 points can be computed by using the following MATLAB
code:
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Fig. 10.5 The solution of Exercise 9.
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>> err = 0; for i = 1:6, err = err + abs(y(i) - polyval(c,x(i))); end
>> err = err/6

err =

2

10.2 Problems of Chapter 3

1 The aim of the exercise is to partition a small set of points by using the standard
k-means algorithm. Let us assign a label to each considered point:

x1 = (−1, −1), x2 = (−1, 1), x3 = (1, −1),

x4 = (1, 1), x5 = (7, 8), x6 = (8, 7).

As suggested by the exercise, the 1st , 3rd and 5th samples are initially assigned to
class 1, and the 2nd , 4th and 6th samples are initially assigned to class 2:

x1 → 1 x2 → 2 x3 → 1 x4 → 2 x5 → 1 x6 → 2.

Let us compute the centers of these two clusters:

c1 = x1 + x3 + x5

3
= (−1, −1) + (1, −1) + (7, 8)

3
=
(

7

3
, 2

)

c2 = x2 + x4 + x6

3
= (−1, 1) + (1, 1) + (8, 7)

3
=
(

8

3
, 3

)
.

Following the k-means algorithm, for each point xi , the distances d(xi, c1) and
d(xi, c2) must be computed and the point has to be assigned to the cluster corre-
sponding to the nearest center. Let us start from the first point x1:

d(x1, c1) = 4.48 d(x1, c2) = 5.43.

Since d(x1, c1) < d(x1, c2), the point x1 is closer to the center of the cluster 1, and
therefore it is not moved to the other one. Let us consider now the second point:

d(x2, c1) = 3.48 d(x2, c2) = 4.18.

The closest center is the one of the cluster 1, whereas x2 is currently assigned to
cluster 2. Then, the point x2 is moved from cluster 2 to cluster 1. Following the
algorithm, the new centers of the two clusters need to be recomputed when there is a
change. In fact, the two clusters do not contain the same points anymore, and hence
their centers have changed. The new partition is

x1 → 1 x2 → 1 x3 → 1 x4 → 2 x5 → 1 x6 → 2

and the new centers are
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c1 = x1 + x2 + x3 + x5

4
= (−1, −1) + (−1, 1) + (1, −1) + (7, 8)

4
=
(

3

2
,

7

4

)

c2 = x4 + x6

2
= (1, 1) + (8, 7)

2
=
(

9

2
, 4

)
.

By considering the centers just computed, let us keep checking the distances starting
from the point x3:

d(x3, c1) = 2.80 d(x3, c2) = 6.10.

The point x3 results to be in the right cluster, hence it is not moved. The next point
is x4:

d(x4, c1) = 0.90 d(x4, c2) = 4.61.

In this case, x4 needs to be moved from cluster 2 to cluster 1:

x1 → 1 x2 → 1 x3 → 1 x4 → 1 x5 → 1 x6 → 2,

and therefore new centers are computed:

c1 = x1 + x2 + x3 + x4 + x5

5
= (−1, −1) + (−1, 1) + (1, −1) + (1, 1) + (7, 8)

5

=
(

7

5
,

8

5

)

c2 = x6 = (8, 7).

The next point to consider is x5, and its distances from the centers just recomputed
are checked:

d(x5, c1) = 8.50 d(x5, c2) = 1.41.

Since x5 is closer to c2, it is moved to cluster 2:

x1 → 1 x2 → 1 x3 → 1 x4 → 1 x5 → 2 x6 → 2

and new centers are computed:

c1 = x1 + x2 + x3 + x4

4
= (−1, −1) + (−1, 1) + (1, −1) + (1, 1)

4
= (0, 0)

c2 = x5 + x6

2
= (7, 8) + (8, 7)

2
=
(

15

2
,

15

2

)
.

The last point of the set that needs to be checked is

d(x6, c1) = 10.63 d(x6, c2) = 0.71,

and it is closer to the center of the cluster it is currently assigned to, and hence it
is not moved. All the points have been checked at least once, and during this phase
the centers changed several times. The centers are therefore not stable yet, and the
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algorithm needs to restart checking the points from the first one:

d(x1, c1) = 1.41 d(x1, c2) = 12.02.

The point x1 is not moved. All the other points are not moved as well:

d(x2, c1) = 1.41 d(x2, c2) = 10.70
d(x3, c1) = 1.41 d(x3, c2) = 10.70
d(x4, c1) = 1.41 d(x4, c2) = 9.19
d(x5, c1) = 10.63 d(x5, c2) = 0.71
d(x6, c1) = 10.63 d(x6, c2) = 0.71.

Since all the points have been checked and none of them changed cluster, the centers
are finally stable and the k-means algorithm can terminate.

2 In this exercise, the set of points

x1 = (1, 0), x2 = (1, 2), x3 = (2, 0),

x4 = (0, 1), x5 = (1, −3), x6 = (2, 3), x7 = (3, 3)

has to be partitioned in two clusters using the basic k-means algorithm. The initial
partition in clusters is

x1 → 1 x2 → 2 x3 → 1 x4 → 2 x5 → 1 x6 → 2 x7 → 1.

The current centers of the clusters are

c1 = x1 + x3 + x5 + x7

4
= (1, 0) + (2, 0) + (1, −3) + (3, 3)

4
=
(

7

4
, 0

)

c2 = x2 + x4 + x6

3
= (1, 2) + (0, 1) + (2, 3)

3
= (1, 2).

Following the k-means algorithm, all the points from x1 to x7 have to be considered
and their distances from the centers of the clusters have to be checked. In this ex-
ample, all the points from x1 to x6 do not need to be moved, because the computed
distances are

d(x1, c1) = 0.75 d(x1, c2) = 2.00
d(x2, c1) = 2.13 d(x2, c2) = 0.00
d(x3, c1) = 0.25 d(x3, c2) = 2.23
d(x4, c1) = 2.02 d(x4, c2) = 1.41
d(x5, c1) = 3.09 d(x5, c2) = 5.00
d(x6, c1) = 3.01 d(x6, c2) = 1.41.

Then, the point x7 is moved to the cluster 2, because the distances from the centers are

d(x7, c1) = 3.25 d(x7, c2) = 2.24.

The new partition is therefore
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x1 → 1 x2 → 2 x3 → 1 x4 → 2 x5 → 1 x6 → 2 x7 → 2,

and the new centers are

c1 = x1 + x3 + x5

3
= (1, 0) + (2, 0) + (1, −3)

4
=
(

4

3
, −1

)

c2 = x2 + x4 + x6 + x7

4
= (1, 2) + (0, 1) + (2, 3) + (3, 3)

4
=
(

3

2
,

9

4

)
.

The centers changed, and hence another iteration of the algorithm has to be per-
formed. These are the distances of all the points in the set from the new two centers:

d(x1, c1) = 1.05 d(x1, c2) = 2.30
d(x2, c1) = 3.02 d(x2, c2) = 0.56
d(x3, c1) = 1.20 d(x3, c2) = 2.30
d(x4, c1) = 2.40 d(x4, c2) = 1.95
d(x5, c1) = 2.03 d(x5, c2) = 5.27
d(x6, c1) = 4.06 d(x6, c2) = 0.90
d(x7, c1) = 4.33 d(x7, c2) = 1.67.

Since all the points are closer to the centers of the cluster to which they belong, none
of them is moved. The algorithm then stops.

3 In this exercise, the set of points

x1 = (−1, −1), x2 = (−1, 1), x3 = (1, −1),

x4 = (1, 1), x5 = (7, 8), x6 = (8, 7),

must be partitioned in two clusters using the h-means algorithm. The centers of the
initial partition in clusters are (see Exercise 1):

c1 =
(

7

3
, 2

)
, c2 =

(
8

3
, 3

)
.

In the h-means algorithm, all the distances from the points and the centers c1 and c2
are computed and each point is moved to the cluster with closest center. Even though
some point can migrate from a cluster to another, the centers are updated only after
all the points have been checked. Let us compute all the distances:

d(x1, c1) = 4.48 d(x1, c2) = 5.43
d(x2, c1) = 3.48 d(x2, c2) = 4.18
d(x3, c1) = 3.28 d(x3, c2) = 4.33
d(x4, c1) = 1.67 d(x4, c2) = 2.60
d(x5, c1) = 7.60 d(x5, c2) = 6.62
d(x6, c1) = 7.76 d(x6, c2) = 6.67.

According to these distances, the new partition of the points becomes:
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x1 → 1 x2 → 1 x3 → 1 x4 → 1 x5 → 2 x6 → 2.

The new centers are:

c1 = x1 + x2 + x3 + x4

4
= (−1, −1) + (−1, 1) + (1, −1) + (1, 1)

4
= (0, 0)

c2 = x5 + x6

2
= (7, 8) + (8, 7)

2
=
(

15

2
,

15

2

)
.

This is the same partition obtained at the end of the solution of Exercise 1: this is
the optimal partition of the points. Note that the same partition has been obtained
by computing the centers only twice by using the h-means algorithm, whereas they
have been computed 4 times when the k-means algorithm has been applied.

4 The k-means algorithm can find 4 different partitions in clusters having the same
error function value (3.1) if, for instance, the following input is provided:

(−1, −1), (−1, 1), (1, −1), (1, 1).

5 An example of 8 points on a Cartesian plane that can be partitioned by k-means in 2
different ways that correspond to the same error function value (3.1) is the following
one:

(−1, 1), (0, 1), (1, 1),

(−1, 0), (1, 0),

(−1, −1), (0, −1), (1, −1).

6 The set of points

x1 = (−1, −1), x2 = (−1, 1), x3 = (1, −1),

x4 = (1, 1), x5 = (7, 8), x6 = (8, 7).

is initially assigned to the clusters 1, 2 and 3 as follows:

x1 → 1 x2 → 2 x3 → 1 x4 → 2 x5 → 1 x6 → 2.

Note that the cluster 3 is currently empty. According to the k-means+ algorithm, the
cluster 3 can be filled by the point that currently is the farthest from its center. Let
us compute the distances from each point to the corresponding center:

d(x1, c1) = 4.48
d(x2, c2) = 4.18
d(x3, c1) = 3.28
d(x4, c2) = 2.60
d(x5, c1) = 7.60
d(x6, c2) = 6.67.

The farthest point is x5: the new partition of the points is therefore the following one:

x1 → 1 x2 → 2 x3 → 1 x4 → 2 x5 → 3 x6 → 2.
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The current centers are

c1 = (0, 1) , c2 =
(

8

7
, 3

)
, c3 = (7, 8) .

Let us check the distances of the points from these 3 centers:

d(x1, c1) = 1.00 d(x1, c2) = 4.54 d(x1, c3) = 12.04
d(x2, c1) = 2.24 d(x2, c2) = 2.93 d(x2, c3) = 10.63.

According to the algorithm, x2 is moved to the cluster 1, and the updated centers
need to be computed before proceeding. The new partition is

x1 → 1 x2 → 1 x3 → 1 x4 → 2 x5 → 3 x6 → 2

and the new centers are

c1 =
(

−1

3
, −1

3

)
, c2 =

(
9

2
, 4

)
, c3 = (7, 8) .

Let us continue checking the other points:

d(x3, c1) = 1.49 d(x3, c2) = 6.10 d(x3, c3) = 10.82
d(x4, c1) = 1.89 d(x4, c2) = 4.61 d(x4, c3) = 9.22.

The point x4 is then moved to cluster 1. The partition is now

x1 → 1 x2 → 1 x3 → 1 x4 → 1 x5 → 3 x6 → 2

and the centers are

c1 = (0, 0) , c2 = (8, 7) , c3 = (7, 8) .

Let us continue checking the points until the last one:

d(x5, c1) = 10.63 d(x5, c2) = 1.41 d(x5, c3) = 0.00
d(x6, c1) = 10.63 d(x6, c2) = 0.00 d(x6, c3) = 1.41.

x5 and x6 are not moved. Another iteration of the algorithm starts:

d(x1, c1) = 1.41 d(x1, c2) = 12.04 d(x1, c3) = 12.04
d(x2, c1) = 1.41 d(x2, c2) = 10.82 d(x2, c3) = 10.63
d(x3, c1) = 1.41 d(x3, c2) = 10.63 d(x3, c3) = 10.82
d(x4, c1) = 1.41 d(x4, c2) = 9.22 d(x4, c3) = 9.22
d(x5, c1) = 10.63 d(x5, c2) = 1.41 d(x5, c3) = 0.00
d(x6, c1) = 10.63 d(x6, c2) = 0.00 d(x6, c3) = 1.41.

None of the points are moved, none of the clusters are empty, and therefore the
k-means+ algorithm can stop.



10.2 Problems of Chapter 3 197

7 The set of points

x1 = (−1, −1), x2 = (−1, 1), x3 = (1, −1),

x4 = (1, 1), x5 = (7, 8), x6 = (8, 7)

are initially assigned to 3 clusters as in the previous exercise. The cluster 3 is empty,
and since x5 is the point which is the farthest from its center (see previous exercise),
it is chosen for filling the empty cluster. Then the current partition in clusters is

x1 → 1 x2 → 2 x3 → 1 x4 → 2 x5 → 3 x6 → 2

and the centers of the clusters are

c1 = (0, 1) , c2 =
(

8

7
, 3

)
, c3 = (7, 8) .

According to the h-means+ algorithm, all the distances from the points and the centers
have to be checked and the centers must be updated only when all the points have
been checked. The distances are

d(x1, c1) = 1.00 d(x1, c2) = 4.54 d(x1, c3) = 12.04
d(x2, c1) = 2.24 d(x2, c2) = 2.93 d(x2, c3) = 10.63
d(x3, c1) = 1.00 d(x3, c2) = 4.00 d(x3, c3) = 10.82
d(x4, c1) = 2.24 d(x4, c2) = 2.01 d(x4, c3) = 9.22
d(x5, c1) = 11.40 d(x5, c2) = 7.70 d(x5, c3) = 0.00
d(x6, c1) = 11.31 d(x6, c2) = 7.94 d(x6, c3) = 1.41.

Because of the distances obtained, x2 is moved to cluster 1, and x6 is moved to cluster
3. The new partition is then

x1 → 1 x2 → 1 x3 → 1 x4 → 2 x5 → 3 x6 → 3

and the corresponding centers are

c1 =
(

−1

3
, −1

3

)
, c2 = (1, 1) , c3 =

(
15

2
,

15

2

)
.

All the distances are checked another time:

d(x1, c1) = 0.94 d(x1, c2) = 2.83 d(x1, c3) = 12.02
d(x2, c1) = 1.49 d(x2, c2) = 2.00 d(x2, c3) = 10.70
d(x3, c1) = 1.49 d(x3, c2) = 2.00 d(x3, c3) = 10.70
d(x4, c1) = 1.89 d(x4, c2) = 0.00 d(x4, c3) = 9.19
d(x5, c1) = 11.10 d(x5, c2) = 9.22 d(x5, c3) = 0.71
d(x6, c1) = 11.10 d(x6, c2) = 9.22 d(x6, c3) = 0.71.

None of the points changed cluster, and then the h-means+ can stop.
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This exercise also requires to compare the partition obtained in this exercise to
the one obtained in the previous one. The two partitions are different, and this shows
that the k-means(+) and h-means(+) algorithms can provide different solutions. In
particular, the error function (3.1) has value 5.34 in this partition, and value 5.64
in the one of the previous exercise. Therefore, in this case, the h-means+ algorithm
provided a better partition.

8 The following MATLAB code can be used for generating Figure 10.6.

x = [-1 -1 1 1 7 8];
y = [-1 1 -1 1 8 7];
class = [1 1 1 1 2 2];
plotp(6,x,y,class)

9 The possible code for the MATLAB function hmeans implementing the h-means
algorithm in the two-dimensional space follows.

%
% this function performs a h-means algorithm
% on a two-dimensional set of data
%
% input:
% n - number of samples
% x - x coordinates of the samples
% y - y coordinates of the samples
% k - number of classes
%
% output:
% class - classes to which each sample belongs
%
% [class] = hmeans(n,x,y,k)

function [class] = hmeans(n,x,y,k)
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Fig. 10.6 The set of points of Exercise 1 plotted with the MATLAB function plotp. Note that 3
of these points lie on the x or y axis of the Cartesian system.
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% initializing the clusters

for i = 1:n,
class(i) = int16(k*rand());
if class(i) == 0,
class(i) = k;

end
end

% computing the cluster centers

[cx,cy] = centers(n,x,y,k,class);

stable = 1; % unstable

while stable == 1,

% computing the distances between samples (x,y) and centers (cx,cy)
for i = 1:n,
mindist = 10.e+100;
minindex = 0;
for j = 1:k,
dist = (x(i) - cx(j))ˆ2 + (y(i) - cy(j))ˆ2;
dist = sqrt(dist);
if dist < mindist,
mindist = dist;
minindex = j;

end
end
% changing cluster
class(i) = minindex;

end

% checking the cluster centers

[cxnew,cynew] = centers(n,x,y,k,class);

stable = 0;
for j = 1:k,
if abs(cxnew(j) - cx(j)) > 1.e-6 | abs(cynew(j) - cy(j)) > 1.e-6,
stable = 1;

end
end

% preparing for the next iteration
for j = 1:k,
cx(j) = cxnew(j); cy(j) = cynew(j);

end

end % while

end

10 The simple proof of the equivalence follows. We have that

||xj1 − xj2 ||2 = ||xj1 − ci ||2 + ||xj2 − ci ||2 − 2||xj1 − ci ||
· ||xj2 − ci || cos(xj1 − ci, xj2 − ci)

= ||xj1 − ci ||2 + ||xj2 − ci ||2 − 2(xj1 − ci)(xj2 − ci).

Then the quantity ∑
j1∈Si

∑
j2∈Si

||xj1 − xj2 ||2
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is equal to

∑
j1∈Si

∑
j2∈Si

(
||xj1 − ci ||2 + ||xj2 − ci ||2

)
− 2

∑
j1∈Si

∑
j2∈Si

(xj1 − ci)(xj2 − ci).

The last term is zero, since

∑
j1∈Si

∑
j2∈Si

(xj1 − ci)(xj2 − ci) =
∑
j1∈Si

⎛
⎝(xj1 − ci)

∑
j2∈Si

(xj2 − ci)

⎞
⎠

and ∑
j2∈Si

(xj2 − ci) =
∑
j2∈Si

xj2 − |Si |ci = |Si |ci − |Si |ci = 0.

Thus,∑
j1∈Si

∑
j2∈Si

||xj1 − xj2 ||2 =
∑
j1∈Si

∑
j2∈Si

(
||xj1 − ci ||2 + ||xj2 − ci ||2

)

= 2|Si |
∑
j1∈Si

||xj − ci ||2,

which implies the equality.

10.3 Problems of Chapter 4

1 The 1-NN rule has to be applied for classifying the points x1 = (2, 1), x2 = (−3, 1)

and x3 = (1, 4) in the two classes C+ and C− by using the training set:{{T1 = (−1, −1), C−}, {T2 = (−1, 1), C−}, {T3 = (1, −1), C+}, {T4 = (1, 1), C+}} .

Following the 1-NN rule, the points have to be classified in accordance with the
classification of their closest point in the training set. Let us consider the first point
x1:

d(x1, T1) = 3.61, d(x1, T2) = 3.00, d(x1, T3) = 2.23, d(x1, T4) = 1.00.

Since the nearest point to x1 in the training set is T4, the point is classified in the
same way as T4:

x1 ∈ C+.

Following the same procedure, the other two points x2 and x3 can be classified with
the same rule:

d(x2, T1) = 2.83, d(x2, T2) = 2.00, d(x2, T3) = 4.47,

d(x2, T4) = 4.00 =⇒ x2 ∈ C−
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d(x3, T1) = 5.38, d(x3, T2) = 3.61, d(x3, T3) = 5.00,

d(x3, T4) = 3.00 =⇒ x3 ∈ C+.

2 In this exercise, the points

x1 = (7, 8), x2 = (0, 0), x3 = (0, 2), x4 = (4, −2)

have to be classified in the classes CA and CB by using as training set the set of
points:

{T1 = (0, 1), T2 = (−1, −1), T3 = (1, 1)} ∈ CA,

{T4 = (−2, −2), T5 = (2, 2)} ∈ CB.

The 1-NN rule is applied:

d(x1, T1) = 9.90, d(x1, T2) = 12.04, d(x1, T3) = 9.22,

d(x1, T4) = 13.45, d(x1, T5) = 7.81
d(x2, T1) = 1.00, d(x2, T2) = 1.41, d(x2, T3) = 1.41,

d(x2, T4) = 2.83, d(x2, T5) = 2.83
d(x3, T1) = 1.00, d(x3, T2) = 3.16, d(x3, T3) = 1.41,

d(x3, T4) = 4.47, d(x3, T5) = 2.00
d(x4, T1) = 5.00, d(x4, T2) = 5.10, d(x4, T3) = 4.24,

d(x4, T4) = 6.00, d(x4, T5) = 4.47.

According to the distance values obtained, the unknown points are classified as
follows:

x1 ∈ CB x2 ∈ CA x3 ∈ CA x4 ∈ CA.

3 In this exercise, the points

x1 = (5, 1), x2 = (−1, 4),

must be classified into the classes CA and CB by using the points:

{T1 = (0, 1), T2 = (−1, −1), T3 = (1, 1)} ∈ CA,

{T4 = (−2, −2), T5 = (2, 2)} ∈ CB.

The 3-NN rule is applied:

d(x1, T1) = 5.00, d(x1, T2) = 6.32, d(x1, T3) = 4.00,

d(x1, T4) = 7.62, d(x1, T5) = 3.16
d(x2, T1) = 3.16, d(x2, T2) = 5.00, d(x2, T3) = 3.61,

d(x2, T4) = 6.08, d(x2, T5) = 3.61.

Both the points x1 and x2 are classified as belonging to the class CA.

4 The following training set allows different classification for the point x̂ = (1, 1)

if the k-NN rule is applied with k equal to 1 or 3. The set of points contains:
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xA1 = (1, 0), xA2 = (3, 0),

xB1 = (0, 0), xB2 = (−1, 0), xB3 = (0, 2),

and they are classified in the classes CA and CB according to their subscripts. The
point x̂ is classified as belonging to class CA if k is 1 and it is classified as belonging
to class CB if k is 3. Let us compute the distances between x̂ and all the points in the
training set:

d(x̂, xA1) = 1.00, d(x̂, xA2) = 2.24,

d(x̂, xB1) = 1.41, d(x̂, xB2) = 2.24, d(x̂, xB3) = 1.41.

The nearest point to x̂ is xA1. If the 1-NN rule is then applied, x̂ is classified as xA1,
i.e., it is assigned to the class CA. If the 3-NN rule is instead used, the three nearest
neighbors of x̂ are xA1, xB1 and xB3. Since two of them belong to the class CB and
only one to the class CA, the unknown point x̂ is classified as the majority of its
neighbors. In this case, then, x̂ is assigned to the class CB .

5 The training set and the unknown sample that satisfies the requirements of Exer-
cise 3 can be plotted by the MATLAB function plotp. Figure 10.7 shows the training
set and the point given as solution of Exercise 4.

6 The classification problem proposed in Exercise 1 can be easily solved by using
the MATLAB environment and the function knn. A list of instructions in MATLAB
follows:

>> ntrain = 4;
>> xtrain = [-1 -1 1 1];
>> ytrain = [-1 1 -1 1];
>> ctrain = [1 1 2 2];
>> x = [2 -3 1];

−2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

2.5

Fig. 10.7 The training set and the unknown point that represents a possible solution to Exercise 4.
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>> y = [1 1 4];
>> class = knn(3,x,y,2,ntrain,xtrain,ytrain,ctrain)

class =

2 1 1

7 In this exercise, a training set has to be randomly created and the correspond-
ing condensed and reduced set have to be computed. In MATLAB, the following
instructions can be used for this purpose:

>> [x,y] = generate(200,0.1);
>> [class] = hmeans(200,x,y,2);
>> [ntcnn,xtcnn,ytcnn,ctcnn] = condense(200,x,y,class,2);
>> ntcnn

ntcnn =

11

>> [ntrnn,xtrnn,ytrnn,ctrnn] = reduce(200,x,y,class,2);
>> ntrnn

ntrnn =

9

As shown, the condensed training set has only 11 points, and the reduced training
set has only 9 points. The original training set was created with 200 points.

8 The figures required by the exercise can be generated using the function plotp.
If the variables used in the previous exercise in MATLAB are still in memory, then
the following instructions can be used:

>> plotp(200,x,y,class)
>> plotp(ntcnn,xtcnn,ytcnn,ctcnn)
>> axis([-1.5 1.5 -1 1])
>> plotp(ntrnn,xtrnn,ytrnn,ctrnn)
>> axis([-1.5 1.5 -1 1])

The first call to the function plotp generates Figure 10.8. The other two calls create
Figures 10.9(a) and 10.9(b).

9 The solution of the exercise can be found by using the following instructions in
MATLAB. It is supposed that the variables x, y and class used in the Exercise 7
are still in memory.

>> ntrain = 200;
>> xtrain = x;
>> ytrain = y;
>> ctrain = class;
>> [x,y] = generate(500,0);
>> [class] = knn(500,x,y,2,ntrain,xtrain,ytrain,ctrain);
>> plotp(500,x,y,class)

The call to the function plotp generates Figure 10.10.

10 If it is supposed that all the variables used in Exercise 7 are still in memory, such
as the condensed and reduced subsets, then the following code can be used:
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Fig. 10.8 A random set of 200 points partitioned in two clusters.

>> [class] = knn(500,x,y,2,ntcnn,xtcnn,ytcnn,ctcnn);
>> plotp(500,x,y,class)
>> [class] = knn(500,x,y,2,ntrnn,xtrnn,ytrnn,ctrnn);
>> plotp(500,x,y,class)

The two calls to the function plotp generate Figure 10.11.

10.4 Problems of Chapter 5

1 A multilayer perceptron having one input neuron, two hidden neurons on only one
hidden layer and one output neuron has the structure shown in Figure 10.12. For the
labels assigned to each neuron and weight, refer to the figure. The network has to be
trained so that it is able to model the equation

y = 2x.

For simplicity, the function Oj assigned to each active neuron is the identity function,
which can be expressed by the equation y = x. For training the network, let us
consider a subset of couples of independent variables x and dependent variables y

satisfying the equation y = 2x. For instance, the points

(1, 2), (−1, −2), (2, 4)

satisfy the equation. Let us start considering the first point: (1, 2). A network trained
as required should be able to provide 2 when 1 is fed. When x = 1 is fed, this signal
is sent from the input neuron A to both the neurons of the hidden layer, B and C.
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Fig. 10.9 The condensed and reduced set obtained in Exercise 7: (a) the condensed set corresponding
to the set in Figure 10.8; (b) the reduced set corresponding to the set in Figure 10.8.

These two neurons compute their activation levels using the weights assigned to the
links connecting them to the input neuron. In general, the activation level in B is
w11x and the activation level in C is w12x. Hence, in this case, the activation in B
is w11 and the activation in C is w12. The function Oj is the identity function, and
therefore the neurons B and C do not modify the activation values, which are sent
as they are to the output neuron. The activation level in D is w11w21 + w12w22. As
before, Oj is the identity function, and hence this is the final output provided by
the network. Since the network has to mimic the equation y = 2x, the following
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Fig. 10.10 The classification of a random set of points by using a training set of 200 points.

condition has to be satisfied:

w11w21 + w12w22 = 2. (10.1)

If the point (−1, −2) is considered, and −1 is fed to the network, the output from
the network is −2 if the condition

− (w11w21 + w12w22) = −2

is satisfied. Similarly, if (2, 4) is considered, the condition

2 (w11w21 + w12w22) = 4

is obtained. Note that all these conditions depend on each other, and hence only one
of them can be considered and the others discarded. If other points are considered,
and other conditions obtained, they would be dependent on these ones. Let us take
in account the condition (10.1). There are 4 unknown weights in only one condition,
and therefore there is an infinite number of combinations of the 4 weights that satisfy
such condition. For instance the weights

w11 = 1, w21 = 1, w12 = 2, w22 = 1

satisfy the condition (10.1). The network with these weights works as the equation
y = 2x.

2 It is needed to prove that a multilayer perceptron having one input neuron, two
hidden neurons on only one hidden layer and one output neuron having the structure in
Figure 10.12 cannot model the equation y = 2x+1 exactly. In the previous exercise,
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Fig. 10.11 The classification of a random set of points by using (a) the condensed set of the set in
Figure 10.8; (b) the reduced set of the set in Figure 10.8.

the network has been fed with different points satisfying the equation y = 2x. Let
us consider now the generic point satisfying the equation y = 2x + 1:

(x, 2x + 1).

Let us feed x to the network. The activation level in B is w11x and the activation
level in C is w12x. The function Oj is the identity function, and then these two
activation levels are sent as they are to the output neuron. In D, the activation level
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Fig. 10.12 The structure of the network considered in Exercise 1.

is w11w21x + w12w22x. Therefore, the following condition has to be satisfied if the
network has to approximate the equation y = 2x + 1:

(w11w21 + w12w22) x = 2x + 1.

It follows that:
(w11w21 + w12w22 − 2) x = 1,

and this implies that the weights must depend on x for satisfying the equation. There
are no possible choices for the weights that satisfy the condition for all the x, and
for this reason this network cannot model the equation y = 2x + 1 exactly.

3 A multilayer perceptron having one hidden layer with 2 neurons has to be trained
for the AND classification problem. Given two logical variables, X and Y, X AND
Y must be the answer of the classification rule. As known, the AND logical operator
works in accordance with the following table.

X Y X AND Y
True True True
True False False
False True False
False False False

In the exercise, the logical value ‘true’ is indicated by 0, and the logical value ‘false’
is indicated by 1. In this way, the previous table can be written in terms of 0 and 1.
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X Y X AND Y
0 0 0
0 1 1
1 0 1
1 1 1

The network is trained so that, when X and Y are fed, the corresponding X AND Y
value is given as output. The network has two input neurons, one corresponding to
X and the other corresponding to Y, and it has only one output value, where X AND
Y is provided. The hidden neurons on one hidden layer are 2. The structure of this
network is in Figure 10.13: refer to the figure for the labels given to the neurons and
the weights.

Let us feed the network with a generic couple (X,Y). The signal containing X starts
from the neuron A and reaches the neuron C. The activation level of the neuron C is
then w11X. Similarly, the signal containing Y starts from the neuron B and reaches
the neuron D. The activation level of the neuron D is then w12Y. Successively, both
neurons C and D send their signal to the input neuron E. The activation level on E is

w11w21X + w12w22Y.

Therefore, the network is able to provide the following results:

X Y Network output
0 0 0
0 1 w12w22

1 0 w11w21

1 1 w11w21 + w12w22

Fig. 10.13 The structure of the network considered in Exercise 3.
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The network works as theAND classifier if all the weights are set to 1 and the function

Oj =
⎧⎨
⎩

0 −→ 0
1 −→ 1
2 −→ 1

is associated to the neuron E.

4 The network considered in this exercise has the same structure as the one in
Exercise 3. Its structure is provided in Figure 10.13. All the weights are set to 1, and
the sigmoid function

Oj = sigmoid(x) = 1

1 + e−x

is associated to the output neuron. Let us feed the network with (6, 1). The signal
containing 6 starts from the neuronAand arrives at the neuron C unaltered. Similarly,
the signal containing 1 starts from the neuron B and arrives at the neuron D unaltered.
These signals start from the neurons C and D and arrive at E. The activation level in E
is the weighted sum of the received signals, and therefore it is 6 + 1 = 7. Associated
to E is the sigmoid function, and hence the output value of the network is

sigmoid(7) = 1

1 + e−7 .

If instead (−1, −1) is fed to the network, the output value of the network is

sigmoid(−2) = 1

1 + e2
.

5 In this exercise, the considered network has the same structure as the one in
Figure 10.13. All the weights are equal to 2 and the logistic function is associated to
the neuron E. When the signal propagates from one neuron to another it is doubled in
value. Since there is only one hidden layer, the original signal is sent from the input
layer to the hidden layer, and then from the hidden layer to the output neuron. In
total, therefore, the original signal is amplified four times when it passes the network.
When the neuron E receives its inputs, it sums them and applies the logistic function
to the result. Thus, if (1, 1) is fed to the network, then the output provided by the
network is

logistic(4 + 4) = 1

1 + e− 8
2

.

The same result can be obtained when (0, 2) is fed:

logistic(0 + 8) = 1

1 + e− 8
2

.

6 Two networks having the same structure as shown in Figure 10.13 are considered.
The first network has all the weights equal to 1 and the sigmoid function associated
to the output neuron. The second one has all the weights equal to 2 and the logistic



10.5 Problems of Chapter 6 211

Fig. 10.14 The structure of the network considered in Exercise 7.

function associated to the output neuron. The first network can have the hidden layer
removed without changing the its outputs, because the weights related to the hidden
neurons are equal to 1 and no functions are associated to them. Such neurons actually
do not have any effect.

7 The structure of the network considered in this exercise is shown in Figure 10.14.
The weights on the links are assigned as specified in the figure. Let us feed the
network with an arbitrary input (1, 2). The signal containing 1 propagates from A
and the signal containing 2 propagates from B. In C the signal is 0.1, in D it is 0.2,
and it is 0.1 in E. The signal in the output neuron is 0.12. It is easy to verify that, if
the link between A and C is removed, then the neuron C remains inactive. Similarly,
E remains inactive if the link between B and E is removed. If only one of the other
links is removed, no neurons remain inactive.

8 A network having the features required by the exercise is given in Figure 10.15.

10.5 Problems of Chapter 6

1 The set of points
(A, B, C)

whose components can have 0 or 1 as value are separated in the two classes
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Fig. 10.15 The structure of the network required in Exercise 8.

C0 = {(A, B, C) : A AND B AND C = 0} ,

and
C1 = {(A, B, C) : A AND B AND C = 1} .

The aim of the exercise is to check if the two classes are linearly separable or not. Note
that the points (A, B, C) lie on the vertices of a three-dimensional cube. Suppose
that 0 stands for ‘true’ and that 1 stands for ‘false.’ From the definition of the AND
operator it follows that only the point (0, 0, 0) belongs to the class C0 and all the
others belong to the class C1. Therefore, the two classes are linearly separable.

2 The classes

C0 = {(A, B, C) : NOT A AND B = 0}
C1 = {(A, B, C) : NOT A AND B = 1}

are linearly separable since they can be separated by the place having equation
B − A ≥ 1. The classes

C0 = {(A, B, C) : (A OR B) AND (A AND C) = 0}
C1 = {(A, B, C) : (A OR B) AND (A AND C) = 1}

are linearly separable as well. The plane 2A + B + C ≥ 2 separates the two classes.
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Fig. 10.16 The classes C+ and C− in Exercise 3.

3 A set of points and their classifications in two classes C+ and C− are specified as
follows: (

(0, 0), C−) , (
(0, 1), C+) , (

(1, 0), C+) , (
(1, 1), C−) .

As it is possible to see from Figure 10.16, the classes C+ and C− are not linearly
separable.

4 The same set of points and the same classification described in Exercise 3 are
considered in this exercise. Figure 10.16 gives a geometric representation of these
points. In this exercise, the transformation

�(x1, x2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1√
2x1√
2x2

x2
1

x2
2√

2x1x2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

has to be applied in order to get the two classes C+ and C− linearly separable. The
transformation is applied point by point:

(0, 0) =⇒ (1, 0, 0, 0, 0, 0)

(0, 1) =⇒ (1, 0,
√

2, 0, 1, 0)

(1, 0) =⇒ (1,
√

2, 0, 1, 0, 0)

(1, 1) =⇒ (1,
√

2,
√

2, 1, 1,
√

2).
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Note that the first component of the transformed points is always 1, and therefore it can
be discarded. Moreover, the components 2 and 3 and the components 4 and 5 of the
transformed points satisfy a particular symmetry property. Indeed, the components
2 and 3 are

(0, 0), (0,
√

2), (
√

2, 0), (
√

2,
√

2),

and the components 4 and 5 are

(0, 0), (0, 1), (1, 0), (1, 1).

Thus, these two couples of components have the same coefficients in the separating
hyperplane equation because of the symmetry. Simplifying, the given points are
transformed in:(
(0, 0, 0), C−) , (

(
√

2, 1, 0), C+) ,
(
(
√

2, 1, 0), C+) ,
(
(2

√
2, 2,

√
2), C−) .

The second and the third point are identical, and therefore only three points are
considered. There is always a plane in the three-dimensional space that can separate
a point by other two different points, and therefore the obtained points belong to
classes that are linearly separable.

5 The optimization problem to be solved for training a support vector machine related
to the set of points in the transformed space considered in the previous exercise is

min
w

1

2

(
w2

1 + w2
2 + w2

3

)
subject to

b ≤ −1√
2w1 + w2 + b ≥ 1

2
√

2w1 + 2w2 + √
2w3 + b ≤ 1.

6 The experiments discussed in Section 6.6 regard the use of the freeware software
LIBSVM. In the quoted section, a training test and a testing set have been generated
randomly by using the MATLAB function generate4libsvm. In the experiments, a
support vector machine has been trained by using a sigmoidal kernel. In the following,
two different support vector machines are trained by using the same training set but
two different kernel functions.

LIBSVM>svmtrain -t 1 trainset.txt
*
optimization finished, #iter = 35
nu = 0.584346
obj = -47.033541, rho = -0.249598
nSV = 61, nBSV = 58
Total nSV = 61

LIBSVM>svmpredict testset.txt trainset.txt.model
testresult-polynomial-kernel.txt

Accuracy = 82.6% (826/1000) (classification)

LIBSVM>svmtrain -t 2 trainset.txt
*
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optimization finished, #iter = 17
nu = 0.175650
obj = -11.319766, rho = 0.030302
nSV = 20, nBSV = 16
Total nSV = 20

LIBSVM>svmpredict testset.txt trainset.txt.model
testresult-polynomial-kernel.txt

Accuracy = 98.6% (986/1000) (classification)

These experiments show that the kernel that performs better on the considered prob-
lem is the radial basis kernel, which is specified by ‘2’ when the option ‘-t’ of the
procedure svmtrain is used.

7 This exercise uses the same notations introduced in Section 6.1. For instance, w

and b are the parameters of the general equation of the hyperplane:

wT x + b = 0.

As known, the two parameters w and b can be normalized so that wT x+b = +1 is the
hyperplane that goes through the support vectors of the class C+, and wT x+b = −1
is the hyperplane that goes through the support vectors of the class C−. If x+ is a
sample on the hyperplane C+ and x− is the sample closest to x+ on the hyperplane
C−, then the margin between the two hyperplanes can be written as:

M = |x+ − x−|.
The aim of this exercise is to prove that the margin M between the two classes can
be also written as:

M = 2√
wT w

.

Since w is orthogonal to both C+ and C−, then

x+ = x− + λw

for some real λ. The following system of conditions⎧⎪⎪⎨
⎪⎪⎩

wT x+ + b = +1
wT x− + b = −1
x+ = x− + λw

M = |x+ − x−|
implies that

wT (x− + λw) = 1

=⇒ wT x− + b + λwT w = 1

=⇒ −1 + λwT w = 1

=⇒ λ = 2

wT w
.
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Therefore,

M = |x+ − x−| = |λw| = λ|w| = λ
√

wT w,

and thus

M = 2√
wT w

,

and hence the proof is completed.

10.6 Problems of Chapter 7

1 The matrix

A =

⎛
⎜⎜⎜⎜⎝

1 2 3 −4 5
1 1 0 0 1
0 1 2 2 0

−1 3 1 0 2
3 −1 1 2 1

⎞
⎟⎟⎟⎟⎠

represents a set of samples and features that can be partitioned in biclusters. Each
column of the matrix represents a sample, each row of A represents instead a feature.
A possible bicluster with constant row values is

CA =
(

0 0
2 2

)
,

where CA can be obtained by A by extracting its second and third rows and its third
and fourth column.

2 The set of points:

x1 = (7, 0, 0), x2 = (5, 0, 0), x3 = (0, 1, 0),

x4 = (0, 3, 0), x5 = (0, 0, 1), x6 = (0, 0, 5)

is given and their partition is assigned as follows:

x1 ∈ S1, x2 ∈ S1, x3 ∈ S2, x4 ∈ S2, x5 ∈ S3, x6 ∈ S3.

The matrix A associated to this set of data is

A =
⎛
⎝7 5 0 0 0 0

0 0 1 3 0 0
0 0 0 0 1 5

⎞
⎠

and then the features are represented by the three 6-dimensional points:

f1 = (7, 5, 0, 0, 0, 0)

f2 = (0, 0, 1, 3, 0, 0)

f3 = (0, 0, 0, 0, 1, 5).
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Let us compute the centers of the three clusters S1, S2 and S3:

cS
1 = x1 + x2

2
= (7, 0, 0) + (5, 0, 0)

2
= (6, 0, 0) = (cS

11, c
S
21, c

S
31)

cS
2 = x3 + x4

2
= (0, 1, 0) + (0, 3, 0)

2
= (0, 2, 0) = (cS

12, c
S
22, c

S
32)

cS
3 = x5 + x6

2
= (0, 0, 1) + (0, 0, 5)

2
= (0, 0, 3) = (cS

13, c
S
23, c

S
33).

By applying the rule (7.2), it follows that

cS
11 > cS

12 and cS
11 > cS

13 =⇒ f1 ∈ F1

cS
22 > cS

21 and cS
22 > cS

23 =⇒ f2 ∈ F2

cS
33 > cS

31 and cS
33 > cS

32 =⇒ f3 ∈ F3.

Thus, the partition in biclusters is

B = {(x1, x2, f1), (x3, x4, f2), (x5, x6, f3)} .

3 In this exercise, the partition in biclusters obtained in the previous exercise must be
checked for consistency. In such a partition, each feature is contained in a different
bicluster, and therefore each center cF

r equals the rth feature fr :

cF
1 = f1, cF

2 = f2, cF
3 = f3.

The rule (7.3) can be applied:

cF
11 > cF

12 and cF
11 > cF

13 =⇒ x1 ∈ Ŝ1

cF
21 > cF

22 and cF
21 > cF

23 =⇒ x2 ∈ Ŝ1

cF
32 > cF

31 and cF
32 > cF

33 =⇒ x3 ∈ Ŝ2

cF
42 > cF

41 and cF
42 > cF

43 =⇒ x4 ∈ Ŝ2

cF
53 > cF

51 and cF
53 > cF

52 =⇒ x5 ∈ Ŝ3

cF
63 > cF

61 and cF
63 > cF

62 =⇒ x6 ∈ Ŝ3.

The partition found in clusters Ŝr is equal to the partition in clusters Sr . Thus, the
partition in biclusters is consistent.

4 The samples xi and the features fi related to this exercise can be summarized in
the matrix

A =
⎛
⎝1 2 3 4

2 3 4 5
3 4 2 1

⎞
⎠ .
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The columns of the matrix represent the 4 points in the three-dimensional space to
which a partition in cluster is already assigned: the first two columns belong to the
cluster S1, whereas the last two columns belong to the cluster S2. Let us compute the
centers of these two clusters:

cS
1 = x1 + x2

2
= (1, 2, 3) + (2, 3, 4)

2
=
(

3

2
,

5

2
,

7

2

)

cS
2 = x3 + x4

2
= (3, 4, 2) + (4, 5, 1)

2
=
(

7

2
,

9

2
,

3

2

)
.

Let us apply the rule (7.2):

cS
11 > cS

12 =⇒ f1 = (1, 2, 3, 4) ∈ F1

cS
21 > cS

22 =⇒ f2 = (2, 3, 4, 5) ∈ F1

cS
31 < cS

32 =⇒ f3 = (3, 4, 2, 1) ∈ F2.

Then, the partition in biclusters is

B = {(x1, x2, f1, f2), (x3, x4, f3)} .

Let us now check if the obtained partition B is consistent. The centers of the clusters
Fr are

cF
1 = f1 + f2

2
= (1, 2, 3, 4) + (2, 3, 4, 5)

2
=
(

3

2
,

5

2
,

7

2
,

11

2

)

cF
2 = f3 = (3, 4, 2, 1).

The rule (7.3) is applied:

cF
11 < cF

12 =⇒ x1 = (1, 2, 3) ∈ Ŝ2

cF
21 < cF

22 =⇒ x2 = (2, 3, 4) ∈ Ŝ2

cF
31 > cF

32 =⇒ x3 = (3, 4, 2) ∈ Ŝ1

cF
41 > cF

42 =⇒ x4 = (4, 5, 1) ∈ Ŝ1.

The partitions in biclusters Sr and Ŝr are different, and therefore the obtained biclus-
tering B is not consistent.

5 Impossible. Every α-consistent biclustering, for any α, is also consistent.
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