
Chapter 2
Embedded Memory Architecture for Low-Power
Application Processor

Hoi Jun Yoo and Donghyun Kim

2.1 Memory Hierarchy

2.1.1 Introduction

Currently, the state-of-the-art high-end processors operate at 3–4 GHz frequency
whereas even the fastest off-chip memory operates at just around 600 MHz [1–6].
In decades, along with advances in processor technology, the speed gap between
processors and memories has become intolerably large [7], and this speed gap has
driven the processor designers to introduce a memory hierarchy into the processor
architecture. For processors, it is ideal to have indefinitely large memory with no
access latencies [8]. However, implementing large-capacity memory with fast oper-
ation speed is infeasible due to the physical limitations of the electrical circuits.
Thus, the capacity is usually traded off with the operation speed in memory designs.
For example, on-chip L1 caches are able to operate as fast as the state-of-the-art
processor cores but have at most few kilobytes capacity. On the other hand, off-chip
DRAMs are capable of storing few gigabytes though their operation frequencies are
just around hundreds of megahertz.

The memory hierarchy is an arrangement of different types of memories with
different capacities and operation speeds to approximate the ideal memory behav-
ior in a cost-efficient way. The idea of memory hierarchy comes from observing
two common characteristics of the memory accesses in the wide range of programs,
namely temporal locality and spatial locality. When a program accesses a certain
data address repeatedly for a while, it is temporal locality. Spatial locality means
that the memory accesses occur within a small region of memory for a short dura-
tion. Due to these localities, embedding a small but fast memory is sufficient to pro-
vide a processor with frequently required data for a short period of time. However,

H.J. Yoo (B)
KAIST

K. Zhang (ed.), Embedded Memories for Nano-Scale VLSIs, Series on Integrated
Circuits and Systems, DOI 10.1007/978-0-387-88497-4 2,
C© Springer Science+Business Media, LLC 2009

7

8 H.J. Yoo and D. Kim

large-capacity memory to store the entire working set of a program and other nec-
essary data such as the operating system is also necessary. In this case, the former is
usually an L1 cache and the latter is generally realized by external DRAMs or hard
disk drives in conventional computer systems. Since the speed difference between
these two memories is at least more than four orders of magnitude, more levels of
the memory hierarchy are required to hide and reduce long access latencies result-
ing from the small number of levels in the memory hierarchy. In typical computer
systems, more than four levels of the memory hierarchy are widely adopted, and a
memory at the higher level is realized as a smaller and faster memory than those of
the lower levels. Figure 2.1 describes typical arrangement of the memory hierarchy.

2.1.2 Advantages of the Memory Hierarchy

The advantage of adopting the memory hierarchy is threefold. The first advantage
is to reduce cost of implementing a memory system. In many cases, faster memo-
ries are more expensive than slower memories. For example, SRAMs require higher
cost per unit storage capacity than DRAMs because a 6-transistor cell in the SRAMs
consumes more silicon area than a single transistor cell of the DRAMs. Similarly,
DRAMs are more costly than hard disk drives or flash memories for the same capac-
ity. Flash memory cells consume less silicon area and platters of the hard disk drives
are much cheaper than silicon die in a mass production. A combination of different
types of memories in the memory system enables a trade-off between performance
and cost. By storing infrequently accessed data in the slow but low-cost memories,
the overall system cost can be reduced.

The second advantage is an improved performance. Without the memory hierar-
chy, a processor should directly access the lowest level memory that operates very
slowly and contains all required data. In this case, every memory access results in

Fig. 2.1 Memory hierarchy

2 Embedded Memory Architecture for Low-Power Application Processor 9

processor stalls to wait for the required data to be available from the memory. Such
drawback is resolved by embedding a small memory that runs as fast as a proces-
sor core inside the chip. By maintaining an active working set inside the embedded
memory, no processor stalls due to memory accesses occur as long as a program is
executed within the working set. However, the processor could stall when a work-
ing set replacement is performed. This overhead can be reduced by pre-fetching the
next working set in the additional in-between level of memory which is easier to
access than the lowest level memory. In this way, the memory hierarchy builds up
so that the number of levels and types of memories in the memory hierarchy are
properly adjusted to minimize average wait cycles for memory accesses. However,
finding the optimum configuration of the memory hierarchy requires sophisticated
investigation of target application, careful consideration of processor core features,
and exhaustive design space exploration. Therefore, design of the memory hierarchy
has been one of the most active research fields from the emergence of the computer
architecture.

The third advantage of the memory hierarchy is reducing power consumption of a
memory system. Accessing an external memory consumes more power than access-
ing an on-chip memory because off-chip wires have larger parasitic capacitance due
to their bigger dimensions. Charging and discharging such large parasitic capaci-
tors result in significant power overhead of off-chip memory accesses. Adopting the
memory hierarchy is advantageous to reduce the number of external memory trans-
actions, thus also reducing the power overhead. In a program execution, dynamic
data are divided into two categories. One of them is temporary data used to calcu-
late and produce output data of a program execution, and the other is result data
that are used by other programs or I/O devices. The result data need to be stored
in an off-chip memory such as a main memory or hard disk drive for later reuse
of the data. However, temporary data do not need to be stored outside of the chip.
Embedding on-chip memories inside the processor enables keeping the temporary
data inside the chip during program execution. This reduces the chance of reading
or writing of the temporary data in the external memory, which is very costly in
power consumption.

2.1.3 Components of the Memory Hierarchy

This section briefly describes different types of memories that construct typical
memory hierarchy in conventional computer architectures.

2.1.3.1 Register File

A register file constructs the highest level of the memory hierarchy. A register file
is an array of registers embedded in the processor core and is tightly coupled to
datapath units to provide an immediate storage for the operands to be calculated.
Each entry of the register file is directly accessible without address calculation in
the arithmetic and logic unit (ALU) and is defined in an instruction set architecture

10 H.J. Yoo and D. Kim

(ISA) of the processor. The register file is usually implemented using SRAM cells,
and the I/O width is determined to match the datapath width of the processor core.
The register file usually has larger number of read ports than conventional SRAMs
to provide an ALU with required number of operands in a single cycle. In the case of
superscalar processors or very long instruction word (VLIW) processors, the register
file is equipped with more than two write ports to support multiple register writes
resulting from parallel execution of multiple instructions. Typical number of entries
in a register file is around a few tens, and the operation speed is the same as the
processor core in most cases.

2.1.3.2 Cache

A cache is a special type of memory that autonomously pre-fetches a subset of
temporary duplicated data from lower levels of the memory hierarchy. The caches
are the principal part of the memory hierarchy in most computer architectures, and
there is a hierarchy among the caches as well. Level 1 (L1) and level 2 (L2) caches
are widely adopted and level 3 (L3) cache is usually optional. The L1 cache has the
smallest capacity and the lowest access latency. On the other hand, the L3 cache
has the largest capacity and the longest access latency. Because the caches maintain
duplicated copy of data, cache controllers to manage consistency and coherency
schemes are also required to prevent the processing core fetching outdated copies
of the data. In addition, the cache includes a tag memory to look up which address
regions are stored in the cache.

2.1.3.3 Scratch Pad Memory

A scratch pad memory is an on-chip memory under the management of a user pro-
gram. The scratch pad memory is usually adopted as a storage of frequently and
repeatedly accessed data to reduce the external memory transactions. The size of
the scratch pad memory is in the range of tens or hundreds of kilobytes and its phys-
ical arrangements, such as number of ports, bank, and cell types, are application-
specific. The scratch pad memory is generally adopted for real-time embedded
systems to guarantee the predictability in program execution time. In cache-based
systems, it is hard to guarantee worst execution time, because behaviors of caches
are not under the control of a user program and vary dynamically depending on the
dynamic status of the memory system.

2.1.3.4 Off-Chip RAMs

The random access memory (RAM) is a type of memory that allows a read/write
access to any address in a constant time. The RAMs are mainly divided into dynamic
RAM (DRAM) and static RAM (SRAM) according to their internal cell structures.
The term RAM does not specify a certain level in the memory hierarchy, and most
of the memories such as cache, scratch pad memory, and register files in the mem-
ory hierarchy are classified as RAMs. However, a RAM implemented in a separate

2 Embedded Memory Architecture for Low-Power Application Processor 11

package usually specifies a certain level in the memory hierarchy, which is lower
than the caches or scratch pad memories. In the perspective of a processor, such
RAMs are referred to as off-chip RAMs. The process technologies used to imple-
ment off-chip RAMs are optimized to increase memory cell density rather than fast
logic operation. The off-chip SRAMs are used as L3 caches or main memory of
handheld systems due to their fast operation speed and low-power consumption
compared to the off-chip DRAMs. The off-chip DRAMs are used as main mem-
ory of a computer system because of their large capacity. In the DRAMs, the whole
working set of a program that does not fit into the on-chip cache or scratch pad
memory is stored. The DRAMS are usually sold in a single or dual in-line memory
module (SIMM or DIMM) that is assembled with a number of DRAM packages on
a single printed circuit board (PCB) to achieve large capacity up to few gigabytes.

2.1.3.5 Mass Storages

The lowest level of the memory hierarchy consists of mass storage devices such as
hard disk drives, optical disk, and back-up tapes. The mass storage devices have the
longest access latencies in the memory hierarchy but provide the largest capacity
sufficient to store entire working set as well as other peripheral data such as operat-
ing system, device drivers, and result data of program executions for future use. The
mass storage devices are usually non-volatile memories able to retain internal data
without power supply.

2.2 Memory Access Pattern Related Techniques

In this and following sections, low-power techniques applicable to embedded mem-
ory system are described based on the background knowledge of the previous sec-
tion. First, this section covers memory architecture design issues regarding memory
access patterns.

If the system designers understand the memory access pattern of the system oper-
ation and it is possible to modify the memory interface, the system performance as
well as power consumption can be enhanced by removing or reducing unnecessary
memory operations. For some applications having predictable memory access pat-
terns, it is possible to improve effective memory bandwidth with no cost overhead
by understanding the intrinsic characteristics of the memory device. And sometimes
the system performance is increased by modifying the memory interface. The fol-
lowing case studies show how the system performance and power efficiency are
enhanced by understanding the memory access pattern.

2.2.1 Bank Interleaving

When accessing a DRAM, a decoded row address activates a word line and corre-
sponding bit-line sense amplifiers so that the cells connected to the activated word

12 H.J. Yoo and D. Kim

line are ready to transfer or accept data. And then the column address decides which
cell in the activated row is connected to the data-bit (DB) sense amplifier or write
driver. After accessing data, data signals such as bit lines and DB lines are pre-
charged for the next access. Thus, a DRAM basically needs “row activation,” “read
or write,” and “pre-charge” operations to access data. The sum of their operation
times decides the access time. The “row activation” and “pre-charge” operations
occupy most of the access time and they are not linearly shrunk according to the
process downscaling, whereas the operation time of “read or write” is sufficiently
reduced to be completed in one clock cycle even with the faster clock frequency
of smaller scale process technologies, as shown in Fig. 2.2. In the case of the cell
array arranged in a single bank, these operations should be executed sequentially
and cannot be overlapped. On the other hand, by dividing the cell array into two
or more banks, it is possible to scatter sequential addresses into multiple banks by
modulo N operations as shown in Fig. 2.3(b), where N is the number of memory

Fig. 2.2 Timing diagram of DRAM read operations without bank interleaving

Fig. 2.3 Structures of non-interleaved and interleaved memory systems

2 Embedded Memory Architecture for Low-Power Application Processor 13

banks. And this contributes to hiding the “row activation” or “pre-charge” time of
the cell array.

Bank interleaving exploits the independency of the row activations in the differ-
ent memory banks. Bank is the unit of the cell array which shares the same row and
column addresses. By dividing the memory cells into multiple banks, we can obtain
the following advantages [9, 10]:

• It hides the amount of time to pre-charge or activate the arrays by accessing one
during pre-charging or activating the others, which means that high bandwidth is
obtained with low-speed memory chip.

• It can save the power consumption by activating only a subset of cell array at a
time.

• It keeps the size of each cell array smaller and limits the number of row and
column address pins, and this results in cost reduction.

Figure 2.3 shows the memory configurations with and without bank interleaving.
The configuration in Fig. 2.3(a) consists of two sections with each section covering
1-byte data. After it accesses one word, namely addresses 2N and 2N+1, it needs
pre-charge time to access the next word, addresses 2N+2 and 2N+3. And the row
activation for the next access cannot be overlapped. The configuration in Fig. 2.3(b),
however, consists of two banks and it can activate the row for the addresses 2N+2
and 2N+3 while the row for the addresses 2N and 2N+1 is pre-charged.

Figure 2.4 shows the timing diagram of read operation with interleaved memory
structure. Figures 2.2 and 2.4 both assume that column address strobe (CAS) latency
is 3 and burst length is 4. On comparing with Fig. 2.2, interleaved memory structure
generates 8 data in 12 clock cycles, while non-interleaved memory structure needs
additional 5 clock cycles.

Fig. 2.4 Timing diagram of DRAM read operations with bank interleaving

14 H.J. Yoo and D. Kim

2.2.2 Address Alignment Logic in KAIST RAMP-IV

In 3D graphics applications, rendering engine requires large memory bandwidth
to render high-quality 3D images in real time. To obtain large memory band-
width, the memory system needs wide data bus or fast clock frequency. Other-
wise, we can virtually enlarge the bandwidth by reusing data which had been
accessed.

The address alignment logic (AAL) [11] in the 3D rendering engine exploits
the access pattern of the texture pixel (texel) from the texture memory. Generally a
pixel is calculated using four texels as shown in Fig. 2.5. And corresponding four
memory accesses are required. Observing the address of the four texels, they are
normally neighbored to each other because of their spatial correlation. If the ren-
dering engine is able to recognize which address it had accessed before, it does
not need to access it again, because it has already fetched the data. Figure 2.6(a)
shows the block diagram of the AAL. It checks the texel addresses spatially and
temporally. If the address had been accessed before and is still available in the logic
block, it does not generate the data request to texture memory. Although the addi-
tional check operation increases the cycle time, the average number of the texture
memory accesses is reduced to less than 30% of the memory access count without
the AAL. Figure 2.6(b) shows the energy reduction by the AAL; 68% of the total
energy consumption is reduced by understanding and exploiting the memory access
pattern.

Fig. 2.5 Pixel rendering with texture mapping

2 Embedded Memory Architecture for Low-Power Application Processor 15

Fig. 2.6 Block diagram of address alignment logic (AAL) (a) and its effects (b)

2.2.3 Read–Modify–Write (RMW) DRAM

Read–modify–write (RMW) is a special case in which a memory location is first
read and then re-written again. It is useful for 3D graphics rendering applications,
especially for frame buffer and depth buffer. Frame buffer stores an image data to be
displayed, and depth buffer stores the depth information of each pixel. Both of them
are accessed by 3D graphics processor, and data are compared and modified. In the
depth comparison operations, for example, depth buffer data are accessed and the
depth information is modified. If the depth information of stored pixel is screened
by newly generated pixel, it needs to be updated. And the frame buffer is refreshed
every frame. Both memory devices require three commands: read, modify, and
write. From the memory point of view, modify is just waiting. If the memory con-
sists of DRAM cells, it needs to carry out “Row Activation–Read–Pre-charge–Nop
(Wait)–Row Activation–Write–Pre-charge” sequences to the same address. If it sup-
ports RMW operations, the command sequence can be reduced to “Row Activation–
Read–Wait–Write–Pre-charge” as shown in Fig. 2.7, which is compact with no
redundant operations. The RMW operation shows that the data bandwidth and con-
trol complexity can be reduced by modifying the command sequences regarding the
characteristics of memory accesses.

16 H.J. Yoo and D. Kim

Fig. 2.7 Read–modify–write operation timing diagram

2.3 Embedded Memory Architecture Case Studies

In the design of low-power system-on-chip (SoC), architecture of the embedded
memory system has significant impact on the power consumption and overall perfor-
mance of the SoC. In this section, three embedded memory architectures are covered
as case studies. The first example is a Marvell PXA 300 processor which represents
a general-purpose application processor. The second example is an IMAGINE pro-
cessor aimed at removing bandwidth bottleneck in stream processing applications.
The last example is the memory-centric network-on-chip (NoC) which adopts co-
design of memory architecture and NoC for efficient execution of pipelined tasks.

2.3.1 PXA300 Processor

The PXA series processors were first released by Intel in 2002. The PXA processor
series were sold to Marvell technology group in 2006, and PXA3XX series proces-
sors are in mass production currently. The PXA300 processor is a general-purpose
SoC which incorporates a processor core and other peripheral hardware blocks [12].
The processor core based on an ARM instruction set architecture (ISA) is integrated
for general-purpose applications. The SoC is also featured with a 2D graphic pro-
cessor, video/JPEG acceleration hardware, memory controllers, and an LCD con-
troller. Figure 2.8 shows simplified block diagram of the PXA300 processor [13]. As

2 Embedded Memory Architecture for Low-Power Application Processor 17

Fig. 2.8 Block diagram of PXA300 processor

shown in Fig. 2.8, the memory hierarchy of the PXA300 is rather simple. The pro-
cessor core is equipped with L1 instruction/data caches, and both caches are sized
to 32 KB. Considering relatively small difference in the operation speed of pro-
cessor core and the main memory provided by an off-chip double data rate (DDR)
SDRAM, absence of an L2 cache is a reasonable design choice. The operation speed
of the DDR memory is in the range of 100–200 MHz, and the clock frequency of
the processor core is designed to be just around 600 MHz for low-power consump-
tion. Besides the L1 caches, a 256 KB on-chip SRAM is incorporated to provide
frame buffer for video codec support. Because the frame buffer requires continuous
update of its context and consumes large memory bandwidth, integrating the on-
chip SRAM and LCD controller contributes to reducing the external memory trans-
actions. The lowest level of the memory hierarchy consists of flash memories such
as NAND/NOR flash memories and secure digital (SD) cards to adapt for handheld
devices. Since the PXA300 processor is targeted for general-purpose applications,
it is hard to tailor the memory system for low-power execution of a specific applica-
tion. Therefore, the memory hierarchy of the PXA300 processor is designed similar
to those of conventional computer systems with some modifications appropriate for

18 H.J. Yoo and D. Kim

handheld devices. Instead, low-power technique is applied for the entire processor
so that operation frequency of the chip is varied according to the workload.

2.3.2 Imagine

In contrast to the general-purpose PXA300 processor, the IMAGINE is more
focused on applications having streamed data flow [14, 15]. The IMAGINE pro-
cessor has customized memory architecture to maximize the available bandwidth
among on-chip processing units that consist of 48 ALUs. The memory architecture
of the IMAGINE is tiered into three levels so that the memory hierarchy leverages
the available bandwidth from the outside of the chip to the internal register files.
In this section, the architecture of the IMAGINE processor is briefly described, and
then the architectural benefits for efficient stream processing are discussed.

Figure 2.9 shows the overall architecture of the IMAGINE processor. The pro-
cessor consists of a streaming memory system, a 128 KB streaming register file
(SRF), and 48 ALUs divided into 8 ALU clusters. In each ALU cluster, 17 local
register files (LRFs) are fully connected to each other through a crossbar switch
and the LRFs provide operands for the 6 ALUs, a scratch pad memory, and a com-
munication unit as shown in Fig. 2.10. The lowest level of the memory hierarchy
in the IMAGINE is the streaming memory system, which manages four indepen-
dent 32-bit wide SDRAMs operating at 167 MHz to achieve 2.67 GB/s bandwidth
between external memories and the IMAGINE processor. The second level of the
memory hierarchy consists of the SRF including a 128 KB SRAM divided into 1024
blocks. All accesses to the SRF are performed through 22 stream buffers and they

Fig. 2.9 Block diagram of the IMAGINE processor

2 Embedded Memory Architecture for Low-Power Application Processor 19

Fig. 2.10 Block diagram of an ALU cluster in the IMAGINE processor

are partitioned into 5 groups to interact with different modules of the processor. By
pre-fetching the SRAM data into the stream buffers or utilizing the stream buffers as
write buffers, the single-ported SRAM is virtualized as a 22-ported memory, and the
peak bandwidth between the SRF and the LRF is 32 GB/s when the IMAGINE oper-
ates at 500 MHz. In this case, the 32 GB/s bandwidth is not a sustained bandwidth
but a peak bandwidth because the stream buffers for the LRF accesses are man-
aged in time-multiplexed fashion. Finally, the first level of the memory hierarchy is
realized by the number of LRFs and crossbar switches. As shown in Fig. 2.10, the
fully connected 17 LRFs in each ALU cluster provide a vast amount of bandwidth
among the ALUs in each cluster. In addition, eight ALU clusters are able to com-
municate with each other throughout the SRF or inter-cluster network. The aggre-
gated inter-ALU bandwidth among the 48 ALUs of the 8 ALU clusters reaches up
to 544 GB/s.

The architectural benefits of the IMAGINE are found by observing character-
istics of the stream processing applications. Stream processing refers to perform-
ing series of computation kernels repeatedly on a streamed data flow. In practical
designs, the kernel has a set of instructions to be executed for a certain type of
function. In stream processing applications such as video encoding/decoding, image
processing, and object recognition, major portion of the input data is in the form of
video streams. To process vast amount of pixels in a video stream with sufficiently
high frame rate, stream processing usually requires intensive computation. Fortu-
nately, in many applications, it is possible to process separate regions of the input
data stream independently, and this allows exploiting data parallelism for stream
processing. In addition, little reuse of input data and producer consumer locality are
the other characteristics of stream processing.

The architecture of the IMAGINE is designed to take advantage of knowledge
about the memory access patterns and to exploit intrinsic parallelism of stream pro-
cessing. Since fixed set of kernels are repeatedly performed on an input data stream,
memory access patterns of stream processing are predictable and scheduling of the
memory accesses from the multiple ALU is also possible. Therefore, pre-fetching
data from the lower level of memory hierarchy, i.e., the streaming memory system

20 H.J. Yoo and D. Kim

or SRF, is effective for hiding latencies of accessing the off-chip SDRAMS from
the ALU clusters. In the IMAGINE, all data transfers are explicitly managed by
the stream controller shown in Fig. 2.9. Once pre-fetched data are prepared in the
SRF, the large 32 GB/s bandwidth between the SRF and the LRFs is efficiently
utilized to provide the 48 ALUs with multiple data simultaneously. After that, back-
ground pre-fetch operation of the next data is scheduled while the ALU clusters
are computing fetched data. However, in the case of general-purpose applications,
large peak bandwidth of the IMAGINE is not always available because scheduling
of data pre-fetching is impossible for some applications with non-predictable data
access patterns.

Another aspect of the stream processing, data parallelism, is also considered in
the architecture of the IMAGINE, hence the eight ALU clusters are integrated to
exploit data parallelism. The eight clusters perform computations on a divided part
of the working set in parallel, and the six ALUs in each cluster compute kernels in
a VLIW fashion. Large bandwidth among the ALUs and LRFs is provided for effi-
cient forwarding of the operands and reuse of partial data calculated in the process of
computing the kernels. Finally, producer–consumer locality is the key characteristic
of stream processing, which is practical for reducing external memory transactions.
In stream processing, a series of computation kernels are executed on an input data
stream and large amounts of intermediate data are transacted between the adjacent
kernels. If these intermediate data are only produced by a specific kernel and only
consumed by a consecutive kernel, there is a producer–consumer locality between
the kernels. In this case, it is not necessary to share these intermediate data globally
and to maintain them in the off-chip memory for later reuse. In the IMAGINE, the
SRF provides temporary storage for such intermediate data, thus reducing external
memory transactions. In addition the stream buffers facilitate parallel data transac-
tions between the producer and the consumer kernels computed in parallel.

In summary, the IMAGINE is an implementation of the customized memory hier-
archy based on the common characteristics of memory transactions in the stream
applications. Regarding the predictability in the memory access patterns, the mem-
ory hierarchy is designed so that peak bandwidth is gradually increased from outside
of the chip to the ALU clusters. The increased peak bandwidth is fully utilizable by
explicit management of the data transactions and also practical for facilitating par-
allel executions of the eight ALU clusters. The SRF of the IMAGINE is designed
to store intermediate data having producer–consumer locality, and this is useful for
reducing power consumption because unnecessary off-chip data transactions can be
reduced. The other feature helpful for low-power consumption is the LRFs in the
ALU clusters which maintain frequently reused intermediate data close to the pro-
cessing units.

2.3.3 Memory-Centric NoC

In this section, the memory-centric Network-on-Chip (NoC) [16, 17] is introduced
as a more application-specific implementation of the memory hierarchy. A target

2 Embedded Memory Architecture for Low-Power Application Processor 21

application of the memory-centric NoC is the scale-invariant feature transform
(SIFT)-based object recognition. The SIFT algorithm [18] is widely adopted for
autonomous navigation of mobile intelligent robots [19–22]. Due to vast amount of
computation and limited power supply of the mobile robots, power-efficient com-
puting of object recognition is demanded. The memory-centric NoC was proposed
to achieve power-efficient object recognition by reducing external memory transac-
tions of temporary data and overhead of data sharing in the multi-processor architec-
ture. In addition, special-purpose memory is also integrated into the memory-centric
NoC to further reduce power consumption by replacing complex operation with sim-
ple memory read operation. In this section, target application of the memory-centric
NoC is described first to discover characteristics of the memory transactions. After
that, architecture, operation, and benefits of the memory-centric NoC to implement
power-efficient object recognition processor are explained.

2.3.3.1 SIFT Algorithm

The scale-invariant feature transform (SIFT) object recognition [18] involves a num-
ber of image processing stages which repeatedly perform complex computations on
the entire pixels of the input image. Based on the SIFT, points of human interest are
extracted from the input image and converted into vectors that describe the distinc-
tive features of the object. The vectors are then compared with the other vectors in
the object database to find the matched object. The overall flow of the SIFT compu-
tation is divided into key-point localization and descriptor vector generation stages
as shown in Fig. 2.11. For the key-point localization, Gaussian filtering with varying
coefficients is performed repeatedly on the input image. Then, subtractions among
the filtered images are executed to yield the difference of Gaussian (DoG) images.
By performing the DoG operation, the edges of different scales are detected from
the input image. After that, 3×3 search window is traversed over all DoG images to
decide the locations of the key points by finding the local maximum pixels inside the
window. The pixels having a local maximum value greater than a given threshold
become the key points.

The next stage of the key-point localization is the descriptor vector generation.
For each key-point location, N ×N pixels of the input image are sampled first, and
then the gradient of the sampled image is calculated. The sample size N is decided
according to the DoG image where the key-point location is selected. Finally, a
descriptor vector is generated by computing the orientation and magnitude his-
tograms over M × M subregions of the sampled input image. The number of key
points detected for each object is about a few hundreds.

As shown in Fig. 2.11, each task of the key-point localization consumes and
produces a large amount of intermediate data, and the data should be transferred
between the tasks. The data transaction between tasks has significant impact on the
overall object recognition performance. Therefore, the memory hierarchy design
should account for characteristics of the data transactions. Here, we note two impor-
tant characteristics of the data transaction in the key-point localization stage of the
SIFT calculation.

22 H.J. Yoo and D. Kim

(a) Key-point localization

(b) Descriptor vector generation

Fig. 2.11 Overall flow of the SIFT computation

The first point is regarding the data dependency between the tasks. As illustrated
in Fig. 2.11(a), the processing flow is completely pipelined; thus data transactions
only occur between two adjacent tasks. This implies that the data transaction of the
SIFT object recognition has producer–consumer locality as well, and the memory
hierarchy should be adjusted for tasks, organizing a task-level pipeline. The second
point is concerning the number of initiators and targets in the data transaction. In
the multi-processor architecture, each task such as Gaussian filtering or DoG will
be mapped to a group of processors, and the number of processors involved in each
task can be adjusted to balance the execution time. For example, the Gaussian fil-
tering in Fig. 2.11(a), having the highest computational complexity due to the 2D
convolution, could use four processors to filter operations with different filter coef-
ficients, whereas all of the DoG calculation is executed on a single processor. Due
to the flexibility in task mapping, the resulting data of one processor is transferred
to multiple processors of subsequent task or the results from multiple processors are
transferred to one processor. This implies that the data transaction will occur in the
forms of not only 1-to-1 but also 1-to-N and M-to-1, as shown in Fig. 2.11(a).

2 Embedded Memory Architecture for Low-Power Application Processor 23

By regarding the characteristics of the data transactions discussed, the memory-
centric NoC realizes the memory hierarchy that supports efficient 1-to-N and M-to-1
data transactions between the pipelined tasks. Therefore the memory-centric NoC
facilitates configuring of variable types of pipelines in the multi-processor architec-
tures.

2.3.3.2 Architecture of the Memory-Centric NoC

The overall architecture of the object recognition processor incorporating the
memory-centric NoC is shown in Fig. 2.12. The main components of the proposed
processor are the processing elements (PEs), eight visual image processing (VIP)
memories, and an ARM-based RISC processor. The RISC processor controls the
overall operation of the processor by initiating the task execution of each PE. After
initialization, each PE fetches and executes an independent program for parallel exe-
cution of multiple tasks. The eight VIP memories provide communication buffers
between the PEs and accelerate the local maximum pixel search operation. The
memory-centric NoC is integrated to facilitate inter-PE communications by dynam-
ically managing the eight VIP memories. The memory-centric NoC is composed of
five crossbar switches, four channel controllers, and a number of network interface
modules (NIMs).

Fig. 2.12 Architecture of the memory-centric NoC

24 H.J. Yoo and D. Kim

The topology of the memory-centric NoC is decided by considering the char-
acteristics of the on-chip data transactions. For efficient support of the 1-to-N and
M-to-1 data transactions shown in Fig. 2.11(a), using the VIP memory as a shared
communication buffer is practical for removing the redundant data transfer when
multiple PEs require the same data. Because the data flow through the pipelined
tasks, each PE accesses only a subset of the VIP memories to receive the source data
from its former PEs and send the resulting data to its following PEs. This results in
localized data traffic, which allows tailoring of the NoC topology for low power
and area reduction. There has been a research concerning power consumption and
silicon area of the NoC in relation to NoC topologies [23], which concluded that
a hierarchical star topology is the most efficient in case of interconnecting a few
tens of on-chip modules with localized traffics. Therefore, the memory-centric NoC
is configured in a hierarchical star topology instead of a regular mesh topology.
By adopting a hierarchical star topology for the memory-centric NoC, the architec-
ture of the proposed processor is able to be determined so that average hop counts
between each PE and the VIP memories are reduced at the expense of a large direct
PE-to-PE hop count, which is fixed to 3. This is also advantageous because most
data transactions are performed between the PEs and the VIP memories, and direct
PE-to-PE data transactions rarely occur. In addition, the VIP memory adopts dual
read/write ports to facilitate short-distance interconnections between the ten PEs and
the eight VIP memories. The NIMs are placed at each component of the processor
to perform packet generation and parsing.

2.3.3.3 Memory-Centric NoC Operation

The operation of the memory-centric NoC is divided into two parts. The first part
is to manage the utilization of the communication buffers, i.e., the VIP memo-
ries, between the producer and the consumer PEs. The other part is to support the
memory transaction control after the VIP memory is assigned for the shared data
transactions. The former operation removes the overhead of polling-available buffer
spaces and the latter one reduces the overhead of waiting for valid data from the
producer PE.

The overall procedure of the communication buffer management in the memory-
centric NoC is shown in Fig. 2.13. Throughout the procedure, we assume that PE 1
is the producer PE and PEs 3 and 4 are consumer PEs. This is an example case of
representing the 1-to-N (N=2) data transaction. The transaction is initiated by PE 1
writing an open channel command to the channel controller connected to the same
crossbar switch (Fig. 2.13(a)). The open channel command is a simple memory-
mapped write and transfers using a normal packet. In response to the open channel
command, the channel controller reads the global status register of the VIP mem-
ories to check the utilization status. After selecting an available VIP memory, the
channel controller updates the routing look-up tables (LUTs) in the NIMs of PEs
1, 3, and 4, so that the involved PEs read the same VIP memory for data transac-
tions (Fig. 2.13(b)). The routing LUT update operation is performed by the channel
controller sending the configuration (CFG) packets. At each PE, read/write accesses

2 Embedded Memory Architecture for Low-Power Application Processor 25

Fig. 2.13 Communication buffer management operation of the memory-centric NoC

for shared data transaction are blocked by the NIMs until the routing LUT update
operation finishes. Once the VIP memory assignment is completed, a shared data
transaction is executed using the VIP memory as a communication buffer. Read and
write accesses to the VIP memory are performed using normal read/write packets
that consist of an address and/or data fields (Fig. 2.13(c)). After the shared data
transaction completes, PE 1 sends a close channel command, and PEs 2 and 3 send
end channel commands to the channel controller. After that, the channel controller
sends CFG packets to the NIMs of PEs 1, 3, and 4 to invalidate the corresponding
routing LUT entries and to free up the used VIP memory (Fig. 2.13(d)).

From the operation of communication buffer management, efficient 1-to-N
shared data transaction is clearly visible. Compared with the 1-to-1 shared data
transaction, the required overhead is only sending additional (N–1) CFG packets
at the start/end of the shared data transaction without making additional copy of
shared data. In addition, an M-to-1 data transaction is also easily achieved by the
consumer PE simply reading M VIP memories assigned to M producer PEs.

The previous paragraphs dealt with how the memory-centric NoC manages the
utilization of VIP memories. In this paragraph, the memory transaction control
scheme for efficient shared data transfer is explained. In the memory-centric NoC
operation, no explicit loop is necessary to prevent consumer PEs reading the shared
data too early before the producer PE writes valid data. To support the memory

26 H.J. Yoo and D. Kim

transaction control, the memory-centric NoC tracks every write access to the VIP
memory from the producer PE after the VIP memory is assigned to shared data
transactions. This is realized by integrating a valid bit array and valid check logic
inside the VIP memory. In the VIP memory, every word has a 1-bit valid bit entry
that is dynamically updated. The valid bit array is initialized when a processor resets
or at every end of shared data transactions. By the write access from the producer
PE, the valid bit of the corresponding address is set to HIGH. When an empty mem-
ory address with a LOW valid bit is accessed by the consumer PEs, the valid bit
check logic asserts an INVALID signal to prevent reading false data. Figure 2.14
illustrates the overall procedure of the proposed memory transaction control. We
assume again that PE 1 is the producer PE, and PEs 3 and 4 are consumer PEs. In
the example data transaction, PE 3 reads the shared data at address 0×0 and PE 4
reads the shared data at address 0×8, whereas PE 1 writes the valid data only at
address 0×0 of the VIP memory (Fig. 2.14(a)). Because the valid bit array has a
HIGH bit for the address 0×0 only, the NIM of PE 4 obtains an INVALID packet
instead of normal packets with valid data (Fig. 2.14(b)). Then, the NIM of PE 4
periodically retires reading valid data at address 0×8 until PE 1 also writes valid
data at address 0×8 (Fig. 2.14(c)). Meanwhile, the operation of PE 4 is in a hold
state. After reading the valid shared data from the VIP memory, the operation of the
PE continues (Fig. 2.14(d)).

The advantages of the memory transaction control are reduced NoC traffic and
PE activity, which contribute to a low-power operation. For consumer PE polls
on the valid shared data, receiving INVALID notification rather than barrier value
reduces the number of flits traversed through the NoC because the INVLAID noti-
fication does not have address/data fields. In addition, no polling loops are required
for waiting valid data because the memory-centric NoC automatically blocks the

Fig. 2.14 Memory transaction control of the memory-centric NoC

2 Embedded Memory Architecture for Low-Power Application Processor 27

access to the unwritten data. This results in reduced processor activity which is
helpful for low-power consumption.

2.4 Low-Power Embedded Memory Design

At the start of this chapter, the concept of memory hierarchy was introduced first to
draw a comprehensive map of memories in the computer architecture. After that, we
discussed memory implementation techniques for low-power consumption regard-
ing memory access patterns. Then, we discussed about the way of architecting the
memory hierarchy considering the data flow of target applications for low-power
consumption. As a wrap-up of this chapter, other low-power techniques applicable
for memory design independent of data access pattern or data flow are introduced
in this section. By using such techniques with application-specific optimizations,
further reduction in power consumption can be achieved.

2.4.1 General Low-Power Techniques

For high-performance processors, providing data to be processed without bottle-
neck is as important as performing computation in high speed to achieve maximum
performance. For that reason, there have been a number of researches for memory
performance improvement and/or memory power reduction.

The common low-power techniques applicable to both DRAMs and SRAMs are
summarized in [24]. This chapter reviews previously published low-power tech-
niques such as reducing charge capacitance, operating voltage, and dc current,
which focused on reducing power consumed by active memory operations. As the
process technology has scaled down, however, static power consumption is becom-
ing more and more important because the power dissipated due to leakage current of
the on-chip memory starts to dominate the total power consumption in sub-micron
process technology era. Even worse, the ITRS road map predicted that on-chip
memory will occupy about 90% of chip area in 2013 [25] and this implies that
the power issues in on-chip memories need be resolved. As a result, a number of
low-power techniques for reducing leakage current in the memory cell have been
proposed in recent decade. Koji Nii et al. suggested using lower NMOS gate volt-
age to reduce gate leakage current and peripheral circuits [26]. Based on the mea-
sured result that the largest portion of gate leakage current results from the turned
on NMOS in the 6-transistor SRAM cell as shown in Fig. 2.15(a), controlling cell
supply voltage is proposed. By lowering the supply voltage of the SRAM cells when
the SRAM is in idle state, gate leakage current can be reduced without sacrificing
the memory operation speed and this scheme is shown in Fig. 2.15(b). On the other
hand, Rabiul Islam et al. proposed back-bias scheme to reduce sub-threshold leak-
age current of the SRAM cells [27]. This back-bias scheme is also applied when the
SRAM is in idle state, and back-bias voltage is removed in normal operation.

28 H.J. Yoo and D. Kim

Fig. 2.15 Gate leakage model and suppression scheme [26]

More recent researches attempted to reduce leakage current more aggressively.
Segmented virtual ground (SVGND) architecture was proposed to improve both
static and dynamic power consumptions [28]. The SVGND architecture is shown in
Fig. 2.16. The bit line of the SRAM is divided into M+1 segments, where each
segment consists of a number of SRAM cells sharing the same segment virtual
ground (SVG) and each SVG is switched between the real column virtual ground
(CVG) and VL voltage according to the corresponding segment select signals. In
the SVGND architecture, only about 1/3–2/3 of power supply voltage is adaptively
provided to the SRAM cells through the VH and VL signals instead of power and

2 Embedded Memory Architecture for Low-Power Application Processor 29

Fig. 2.16 Concept of SVGND SRAM [28]

ground signals, respectively. In this scheme the VH is fixed and adjusted around two
thirds of the supply voltage and the VL is controlled between about one third of
the supply voltage and the ground. At first, static power reduction is clearly visible.
By reducing voltage across the SRAM cells, both gate and sub-threshold leakage
currents can be kept in very low level. In addition, maintaining the source voltage
of the NMOS (VL) higher than its body bias voltage (Vss) has the effect of reverse
biasing, and this results in further reduction of sub-threshold leakage current. The
dynamic power consumption of the SRAM is also reduced by lower voltage across
the SRAM cells. In the case of write operation, cross-coupled inverter chain in
the SRAM cell can be driven to the desired value more easily. Compared to the
SRAM cells with full supply voltages, the driving forces of SVGND SRAM cells
have lower strength. When the read operation occurs, SVG line of each segment
is pulled down to ground to facilitate sense amplifier operation. The power reduc-
tion in the read operation comes from selective discharge of SVG node, which pre-
vents unnecessary discharge of internal capacitances of the neighboring cells in the
same row.

As the process scales down to deep sub-micron, a more powerful leakage current
reduction scheme is required. In the SRAM implementation using 65 nm process
technology, Yih Wang et al. suggested using a series of leakage reduction techniques
at the same time [29]. In addition to scaling of retention voltage in the SRAM cells,
bit-line floating and PMOS back-gate biasing are also adopted. Lowering the reten-
tion voltage across the SRAM cell is the base for reducing gate and junction leak-
age current. However, there still remains junction leakage current from the bit line
pre-charged to Vdd voltage which is higher than SRAM cell supply voltage. The
bit-line floating scheme is applied to reduce the junction current through the gate
NMOS. Finally, the PMOS back-gate biasing scheme suppresses leakage current
through PMOS transistors in the SRAM cell which results from the lowered PMOS
gate voltage due to retention voltage lowering. Figure 2.17 shows the concepts of
leakage reduction schemes and their application to the SRAM architectures.

2.4.2 Embedded DRAM Design in RAMP-IV

Embedded memory design has advantages to system implementation. One of the
biggest benefits is energy reduction in the memory interface and ease of memory
utilization such as bus width. General system-on-board designs use off-the-shelf

30 H.J. Yoo and D. Kim

Fig. 2.17 SRAM cell leakage reduction techniques and their application to the SRAM [29]

memory devices and they have narrow bus width like 16 bit or 32 bit. For large data
bandwidth, the system needs to increase the clock frequency or the bus width by
using many memory devices in parallel. Figure 2.18 shows examples to realize 6.4
Gbps bandwidth. The first option increases the power consumption and the latter
option occupies large system footprint. And both of them consume large power in
pad drivers between the off chip memory and the processor. Embedded memory
design, on the contrary, is free from the number of the bus width because intercon-
nection between the memory and the processor inside the die occupies a little area.
And the interconnection inside the die does not need large buffers like pad drivers.
Another benefit is that the embedded memory does not need to follow conventional
memory interface which is standard but somewhat redundant. Details will be shown
through the 3D graphics rendering engine design with embedded DRAM memory.

Figure 2.19 shows the architecture of 3D graphics rendering processor [11].
Totally 29 Mb DRAMs are split into three memory modules: frame buffer, depth

Fig. 2.18 Large bandwidth approaches for system-on-board design

2 Embedded Memory Architecture for Low-Power Application Processor 31

Fig. 2.19 Three-dimensional graphics rendering processor with DRAM-based EML approach

buffer, and texture memory. And each memory is physically divided into four mem-
ory modules so that totally 12 memory modules are used. In the pixel processors,
scene or pixel is compared with the previous one. After that it is textured and
blended in the pipeline stages. Each stage needs its own memory access to complete
the rendering operations. And the memory access patterns are each different. For
example, depth comparison and blending needs read–modify–write (RMW) oper-
ation while texturing needs just read operation. If the system is implemented by
off-chip memories, the rendering processor needs 256 data pins and additional con-
trol signal pins, which cause increase in both package size and power consumption
due to the pad driving. The processor shown in this example integrates the memories
on a single chip and eliminates more than 256 pads for memory access.

For operation-optimized memory control, depth buffer and frame buffer are
designed to support the single-cycle RMW operation with separate read and write
buses, whereas the texture memory uses shared read/write bus. In order to pro-
vide the operation-optimized memory control for depth comparison and blending,
the frame buffer and depth buffer support a single-cycle read–modify–write data
transaction using separate read and write buses. It drastically simplifies the mem-
ory interface of the rendering engine and the pipeline, because the data required to
process a pixel are read from the frame and depth buffers, calculated in the pixel
processor, and written back to the buffers within a single clock period without any
latency. Therefore, caching and pre-fetching, which may cause power and area over-
head, are not necessary in the RMW-supporting architecture. The timing diagram of
the RMW operation in the frame buffer is depicted in Fig. 2.20. To realize low-
power RMW operation, command sequence is designed to use “PCG-ATV-READ-
HOLD-WRITE” instead of “ATV-READ-HOLD-WRITE-PCG.” In this case, the
PCG sequence could be skipped in consecutive RMW operations. The write-mask
signal, which is generated by the pixel processor, decides the activation of the write

32 H.J. Yoo and D. Kim

Fig. 2.20 Frame buffer access with read–modify–write scheme

operation. With single-cycle RMW operation, the processor does not need to use
over-clocked frequency, and memory control is simple.

2.4.3 Combination of Processing Units and Memory – Visual
Image Processing Memory

The other memory design technique for low-power consumption is to embed the
processing units inside the memory. According to the target application domains,
this technique is not always applicable in general. In the case of application-specific
processor, however, the memory hierarchy is tailored for the target application and
various types of memories are integrated together. Among them, some application-
specific memories may incorporate the processing ability to improve overall perfor-
mance of the processor. In case, large amount of data are loaded to a processor core
from the memory and fixed operations are repeatedly performed on the loaded data,
integrating the processing unit inside the memory is advantageous for removing the
overhead of loading data into the processor core. A good implementation example
of a memory with processing capability is a visual image processing (VIP) mem-
ory of KAIST [18, 30]. The VIP memory is briefly mentioned in Section 2.3 when
describing the memory-centric NoC. Its function is to read out the address of local
maximum pixel inside the 3×3 window in response to center pixel address of the
3×window.

The VIP memory has two behavioral modes: normal and local-maximum modes.
In normal mode, VIP memory operates as a synchronous dual-port SRAM. It
receives two addresses and control signals from the two ports and reads or writes two
32-bit data independently. While in local-maximum mode, the VIP memory finds

2 Embedded Memory Architecture for Low-Power Application Processor 33

Fig. 2.21 Overall architecture of the VIP memory

the address of the local maximum out of the 3×data window when it receives the
address of the center location of the window. Figure 2.21 shows the overall architec-
ture of the VIP memory. It has a 1.5 KB capacity and consists of three banks. Each
bank is composed of 32 rows and 4 columns and operates in a word unit. Each bit
of four columns shares the same memory peripherals such as write driver and sense
amplifier and the logic circuits for local maximum location search (LMLS). The
LMLS logic is composed of multiplexers and tiny sense amplifiers. And a 3-input
comparator for 32-bit number is embedded within the memory arrays.

Before the LMLS inside a 3×3 window, the pixel data of the image space should
have been properly mapped into the VIP memory. First, the rows of the visual image

34 H.J. Yoo and D. Kim

Fig. 2.22 Data arrangement in the VIP memory

data are interleaved into different banks according to the modulo-3 operation on
the row number as shown in Fig. 2.22. Then, the three 32-bit data from the three
banks form the 3×3 window. In the VIP memory with properly mapped data, LMLS
operation is processed in three steps. First, two successive rows are activated and
three corresponding data are chosen by multiplexers. Second, the 32-bit 3-input
comparators in three banks deduce the three intermediate maximum values among
the respective three numbers of the respective bank. Finally, the top level 32-bit
3-input comparator finds the final maximum value of the 3×3 window from three
bank-level intermediate results and outputs the corresponding address.

The VIP memory is composed of dual-ported storage cell which has eight tran-
sistors, as shown in Fig. 2.23. A word line and a pair of bit lines are added to the
conventional 6-transistor cell. Pull-down NMOS transistors are larger than other
minimum-sized transistors for stability in data retention. A single cell layout occu-
pies 2.92 �m × 5.00 �m in a 0.18-�m process. Bitwise competition logic (BCL) is
devised to implement a fast, low-power, and area-efficient 32-bit 3-input compara-
tor. It just locates the first “1” from the MSB to the LSB of two 32-bit numbers and
decides the larger number between the two 32-bit binary numbers without complex
logics. The BCL enables the 32-bit 3-input comparator to be compactly embedded
in the memory bank. Figure 2.24 describes its circuit diagram and operation. Before
input to BCL comparator, each bit of two numbers are pre-encoded from A[i] and
B[i] into (A[i] · ∼B[i]) and (∼A[i] · B[i]), respectively. Pre-encoding prevents the
occurrence of logic failures in the BCL when both inputs have 1 at the same bit
position. In the BCL, A line and B line are pre-charged to VDD initially. Then,

2 Embedded Memory Architecture for Low-Power Application Processor 35

Fig. 2.23 A dual-ported memory cell of the VIP memory

(a) Bitwise Competition Logic Operation (b) Decision Logic of the BCL

Fig. 2.24 Bitwise competition logic of the VIP memory

36 H.J. Yoo and D. Kim

START signals are activated to trigger each bit of pre-encoded signals sequentially
from MSB to LSB. If any triggered signal is 1, the path from the corresponding line
to GND is opened and its voltage goes down immediately. Then, decision logic, at
the right end of the lines, detects the line that first goes down and keeps the result
until the bit comparisons end. As shown in Fig. 2.24, the circuit of decision logic
is the same as the sense amplifier except transistors N1 and N2. N1 and N2 receive
the feedback signals and disable input of the small number to preserve only the first
decision or the large number. For example, the timing diagram of Fig. 2.24 illus-
trates its operation in case that the two pre-encoded inputs A∗ and B∗ are 00000010
and 00000001. The gray boxes represent the transitions of a few important events in
BCL operation. At box (1), all lines are pre-charged when the START signal is low.
Triggering starts but both lines stay in VDD by the seventh start signal. At the sev-
enth triggering of box (2), A line is dropped to GND because the seventh bit of A is
1. The drop of A line forces the decision logic to turn down Bwin signal of box (3).
Finally, Awin and Bwin, which represent the comparison results, are kept until the
end of the cycle irrespective of B line voltage as shown in box (4). The 32-bit data
comparator is composed of four parallel 8-bit BCLs. The 32-bit comparison results
can be obtained from the four results of the four parallel BCLs by setting higher pri-
ority to the result of the MSB part BCL. As a result, the 32-bit 2-input comparator
with BCL uses only 482 transistors, which are 38% less than the transistor count
of the comparator reported in [31]. The 32-bit 3-input comparator is designed using
three of 32-bit 2-input BCL comparators. Its worst case delay is 1.4 ns, which is
sufficiently small considering the 5-ns timing budget of VIPRAM when operating
at 200 MHz.

References

1. Lu Peng, et al., “Memory Performance and Scalability of Intel’s and AMD’s Dual-Core Pro-
cessors: A Case Study,” IEEE International Performance, Computing, and Communication
Conference, pp.55–64, April, 2007.

2. Dac C. Pham, et al., “Overview of the Architecture, Circuit Design, and Physical Implemen-
tation of a First-Generation Cell Processor,” IEEE Journal of Solid-State Circuits, Vol. 41,
Issue 1, pp.179–196, Jan. 2006

3. Marc Tremblay and Shailender Chaudhry, “A Third-Generation 65 nm 16-Core 32-Thread
Plus 32-Scout-Thread CMT SPARC Processor,” Technical Digest of IEEE International Solid
State Circuits Conference, pp.82–83, February, 2008

4. Seung-Jun Bae, et al., “A 60 nm 6 Gb/s/pin GDDR5 Graphics DRAM with Multifaceted
Clocking and ISI/SSN-Reduced Techniques,” Technical Digest of IEEE International Solid
State Circuits Conference, pp.82–83, February, 2008

5. Kyungwoo Nam, et al., “A 512 Mb 2-Channel Mobile DRAM (oneDRAMTM) with Shared
Memory Array,” IEEE Asian Solid-State Circuits Conference, pp.204–207, November, 2007.

6. Samsung High Speed SRAM product page, http://www.samsung.com/global/business/
semiconductor/products/sram/Products HighSpeedSRAM.html, 2008

7. International Technology Roadmap for Semiconductors, Interconnect, 2003 Edition, Semi-
conductors Industry Assoc. and SEMATECH.

8. John L. Hennessy and David A. Patterson, “Computer Architecture – A Quantitative
Approach,” third edition, pp.390–392, San Francisco, USA, Morgan Kaufmann Publishers,
2003.

2 Embedded Memory Architecture for Low-Power Application Processor 37

9. Satoru Tanoi, et al., “A 32 Bank 256 Mb DRAM with Cache and TAG,” Technical Digest of
IEEE International Solid State Circuits Conference, Feb., 1994.

10. Barth J.E., Jr., et al., “A 500-MHz Multi-Banked Compliable DRAM Macro with Direct
Write and Programmable Pipelining,” IEEE Journal of Solid-States Circuits, Vol. 40,
Jan. 2005.

11. Ramchan Woo, et al., “A 210-mW Graphics LSI Implementing Full 3-D Pipeline with 264
Mtexels/s Texturing for Mobile Multimedia Applications,” IEEE Journal of Solid-States Cir-
cuits, Vol. 39, Feb., 2004

12. Marvell technology product page, http://www.marvell.com/products/cellular/applications.jsp,
2008.

13. Marvell technology, “PXA300 Product Brief,” http://www.marvell.com/files//products/
cellular/ application/PXA300 PB R4.pdf, 2008

14. Brucek Khailany, et al., “IMAGINE: Media Processing with Streams,” IEEE Micro, Volume
21, Issue 2, pp. 35–46, Mar.-Apr., 2001.

15. William J. Dally, et al., “Stream Processors: Programmability with Efficiency,” ACM Queue,
Vol. 2, Issues 1, pp. 52–62, 2004

16. Donghyun Kim, et al., “Solutions for Real Chip Implementation Issues of NoC and
Their Application to Memory-Centric NoC,” IEEE/ACM 1st International Symposium on
Networks-on-Chip, pp. 30–39, May, 2007.

17. Donghyun Kim, et al., “An 81.6 GOPS Object Recognition Processor Based on NoC
and Visual Image Processing Memory,” IEEE Custom Integrated Circuits Conference,
pp. 443–446, Sept. 2007.

18. David G. Lowe, “Distinctive Image Features from Scale-Invariant Key points,” ACM Intl.
Journal of Computer Vision, Vol. 60, Issue 2, pp. 91–110, 2004.

19. Sunghwan Ahn, et al., “Data Association Using Visual Object Recognition for EKF-SLAM
in Home Environment,” Proceedings of IEEE Intl. Conf. on Intelligent Robots and Systems,
pp. 2760–2765, 2006.

20. Patric Jensfelt, et al., “Augmenting SLAM with Object Detection in a Service Robot Frame-
work,” IEEE Intl. Symposium on Robot and Human Interactive Communication, pp. 741–746,
2006.

21. Bertolli F., Jensfelt P., Christensen H.I., ”SLAM using Visual Scan-Matching with Distin-
guishable 3D Points,” IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 4042–4047, Oct., 2006.

22. Zhang Nan, Li Maohai, Hong Bingrong, ”Active Mobile Robot Simultaneous Localization
and Mapping,” IEEE International Conference on Robotics and Biomimetics, pp. 1671–1681,
Dec., 2006.

23. Kangmin Lee, Se-Joong Lee and Hoi-Jun Yoo, “Low-power network-on-chip for high-
performance SoC design,” IEEE Transactions on Very Large Scale Integration Systems,
Vol. 14, Issue 2, pp. 148–160, Feb., 2006.

24. Kiyoo Itoh, Katsuro Sasaki, and Yoshinobu Nakagome, “Trends in Low-Power RAM Circuit
Technologies,” IEEE Digest of Technical Papers of Symposium on Low Power Electronics,
pp. 84–87, Oct., 1994.

25. International Technology Roadmap for Semiconductors, 2001 Update, Semiconductors Indus-
try Assoc. and SEMATECH.

26. Koji Nii, et al., “A 90-nm Low-Power 32-kB Embedded SRAM with Gate Leakage Suppres-
sion Circuit for Mobile applications,” IEEE Journal of Solid-State Circuits, Vol. 39, Issue 4,
pp. 684–693, Apr., 2004.

27. Rabiul Islam, Adam Brand, and Dave Lippincott, “Low Power SRAM Techniques for Hand-
held Products,” IEEE Proceedings of the 2005 International Symposium on Low Power Elec-
tronics and Design (ISLPED), pp. 198–202, Aug., 2005.

28. Mohammad Sharifkhani, and Majog Sachdev, “Segmented Virtual Ground Architecture for
Low-Power Embedded SRAM,” IEEE Transactions on Very Large Scale Integration Systems
(TVLSI), pp. 196–205, Feb., 2007.

38 H.J. Yoo and D. Kim

29. Yih Wang, et al., “A 1.1 GHz 12 uA/Mb-Leakage SRAM Design in 65 nm Ultra-Low-Power
CMOS Technology with Integrated Leakage Reduction for Mobile Applications,” IEEE Jour-
nal of Solid-State Circuits, Vol. 43, Issue 1, pp. 172–179, Jan., 2008.

30. Joo-Young Kim, et al., “Visual Image Processing RAM for Fast 2-D Data Location Search,”
IEEE European Solid State Circuits Conference, pp. 324–327, Sept., 2007.

31. Shun-Wen Cheng, “A High-Speed Magnitude Comparator with Small Transistor Count,”
IEEE Proceedings of International Conference on Electronics, Circuits and Systems, Vol. 3,
pp. 1168–1171, Dec., 2003.

	to 2 Embedded Memory Architecture for Low-Power Application Processor
	2.1 Memory Hierarchy
	2.1.1 Introduction
	2.1.2 Advantages of the Memory Hierarchy
	2.1.3 Components of the Memory Hierarchy
	2.1.3.1 Register File
	2.1.3.2 Cache
	2.1.3.3 Scratch Pad Memory
	2.1.3.4 Off-Chip RAMs
	2.1.3.5 Mass Storages

	2.2 Memory Access Pattern Related Techniques
	2.2.1 Bank Interleaving
	2.2.2 Address Alignment Logic in KAIST RAMP-IV
	2.2.3 Read--Modify--Write (RMW) DRAM

	2.3 Embedded Memory Architecture Case Studies
	2.3.1 PXA300 Processor
	2.3.2 Imagine
	2.3.3 Memory-Centric NoC
	2.3.3.1 SIFT Algorithm
	2.3.3.2 Architecture of the Memory-Centric NoC
	2.3.3.3 Memory-Centric NoC Operation

	2.4 Low-Power Embedded Memory Design
	2.4.1 General Low-Power Techniques
	2.4.2 Embedded DRAM Design in RAMP-IV
	2.4.3 Combination of Processing Units and Memory -- Visual Image Processing Memory

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

