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What is an “advanced design” of a technology for learning?

For some researchers, the word “advanced” may conjure images of the latest 
technology. Indeed, it is a common pattern in learning technology research to 
undertake design studies that investigate the learning potential of the novel tech-
nologies (Bell, Hoadley, & Linn, 2004; Barab & Squire, 2004; Dede, 2004). Often 
the long-term residue of this research lies in its contribution to learning theory 
(diSessa & Cobb, 2004; Edelson, 2002); contributions to large-scale practice tend 
to be short lasting and infrequently adopted (Roschelle & Jackiw, 2000).

We argue that the failure of much design research to contribute to large-scale 
practice emerges from a design flaw: designers fail to notice the infrastructural 
character of technology and form an unrealistic image of how infrastructure trans-
forms classroom practice. We overestimate the power of technology alone and the 
proportion of teachers who can realize its potential without extensive guidance. Our 
minds too often race with thoughts of the power of technology to change classroom 
practice and underestimate the powerful set of forces in classrooms that conspire to 
marginalize technological potential (Kaput & Thompson, 1994).

In this chapter, we suggest a different meaning of “advanced design” that is arising 
in our long-term program of research and development within the SimCalc research 
program. We suggest that an “advanced design” should offer a plan for bridging the 
gap between new technological affordances and what most teachers need and can 
use. We draw attention to three different foci of design in two different SimCalc 
projects: (a) design of representational and communicative infrastructure (b) design 
of curricular activity systems, and (c) design of new classroom practices and routines. 
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We particularly emphasize curricular activity systems because we are finding that 
attention to this focus of design has been critically important in our ability to 
measure learning outcomes at the scale of hundreds of teachers. (Classroom 
practices and routines are very important too, but research has yet to reduce the vast 
number of free parameters to a comprehensible design space for replicable class-
room practices).

Our chapter begins by briefly reviewing the mission and progress of the SimCalc 
research program (Roschelle, Kaput, & Stroup, 2000). An important theoretical 
trend in the project has been the identification of its core technological aims as 
“infrastructural” (Kaput, Noss, & Hoyles, 2002; Kaput & Hegedus, 2007; Kaput & 
Schorr, 2008). We review the meaning of this term and the implausibility of jumping 
from infrastructural technology to scalable, robust effects in classroom practice. We 
then introduce the concept of a “curricular activity system” as a design emphasis 
that has emerged in our work on scaling up. To illustrate these concepts, we 
describe two different curricular activity systems at play within the research program; 
each supports a different classroom realization of the SimCalc vision (and is funded 
as a separate project). In closing, we recommend that researchers who aspire to 
“advanced designs” adopt a view that allows for focused work at the infrastructural, 
curricular, and classroom routine levels.

About the SimCalc Research Program

The mission of the SimCalc program is to “democratize access to the mathematics 
of change and variation” (Kaput, 1994). In a chapter in the prior book in this series 
(Roschelle et al., 2000), we argued that “change” will be a central phenomena of 
the twenty-first century and therefore that the mathematics of change and variation 
will become a centrally important strand of mathematics for all students to learn. 
We argued that the present “layer cake” approach to the mathematics curriculum, 
in which these important mathematical ideas are restricted to a Calculus layer that 
is icing on the layer cake of high school algebra, geometry and trigonometry layers 
is problematic. New approaches are needed and these approaches must introduce 
the mathematics of change and variation earlier, taking advantage of results in the 
learning science and the affordances of new technology.

The main software product of the SimCalc program is called SimCalc MathWorlds® 
(hereon referred to as MathWorlds) and is available at http://kaputcenter.umassd.edu. 
MathWorlds supports learning about rate and accumulation (Roschelle & Kaput, 
1996) by connecting students’ experience of animated motion to mathematical func-
tions, which are portrayed in algebraic, graphical, verbal, and tabular representations 
(Kaput & Roschelle, 1998). A distinctive feature of MathWorlds is that students can 
define piecewise linear functions graphically and then “execute” the functions result-
ing in observed motion in an animated “world.” The characters and background in the 
world can contextualize students’ experience within familiar experiences and can 
provide a setting in which mathematical phenomena have more meaning for learners. 

http://kaputcenter.umassd.edu
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As is the case with other “dynamic mathematics” products, such as The Geometer’s 
Sketchpad, TinkerPlots, Fathom, and Cabri Geometre, the software design is strongly 
rooted in the nature of the mathematics and draws upon “direct manipulation” 
human–computer interaction paradigms to achieve executable, interactive visualiza-
tions of important mathematical concepts (Hegedus, Moreno, & Dalton, 2007).

Our earlier chapter (Roschelle et al., 2000) referred to the representational 
features of MathWorlds as emerging from a triangulation of perspectives on student 
learning, technological capabilities, and mathematical epistemology. From detailed 
development work on student learning, we focused on students’ strong abilities to 
connect graphs to motions, their facility in reasoning intervals of time in graphs and 
motions, and the power of story telling to inform mathematics learning. The techni-
cal capabilities of MathWorlds include most importantly the ability to create 
“executable representations” (Hegedus, Moreno et al., 2007), representations that 
control animations and thus have easily perceived links between actions and conse-
quence. Related to this, MathWorlds links representations dynamically (“hot 
links”) so that when a student makes a change in one representation (e.g., increasing 
the slope of a position graph) they instantly see the corresponding change in 
another representation (e.g., the rate increases on a velocity graph). From the 
perspective of mathematical epistemology, the SimCalc team took an approach of 
“reconstructing subject matter” (Roschelle et al., 2000) – for example, by introduc-
ing piecewise functions much earlier in the curriculum, increasing the status and 
role of graphs (vis-à-vis more traditional algebraic symbols), and returning the 
phenomenology of motion to its historic place in the development of the mathe-
matics of change and variation. Later, in the section on networked MathWorlds, we 
will see how these three perspectives were revisited and expanded with the incor-
poration of network connectivity as an infrastructural element.

The SimCalc research program and its software have been evolving over more 
than a decade of research, spanning at least eight major funded research projects. 
In order to contextualize what we have learned about “advanced design for learning 
technologies,” it is worthwhile to recall where we began. In particular, in the early 
practice of SimCalc design and research, there was a rapid (one might even say 
feverish) interplay between levels we will soon define as separate. Jim Kaput, the 
project founder, might describe a new software feature to the developers one 
morning, write a new curricular lesson plan to exploit the feature that evening, and 
spontaneously engage in a new pedagogical practice with the lesson plan and 
feature in class the next day. When watching Jim work, it was easy to see the trans-
formative potential of technology; Jim himself was a whirlwind of transformation 
that cut across his technological, curricular, and teaching practices. It goes without 
saying that Jim was fairly unique in this regard; it would be very unrealistic to 
expect most teachers to follow Jim’s model. Further, because the SimCalc Project 
is deeply committed to scaling up, it has been important to figure out how to 
design for lasting and democratic access to the mathematical learning opportunities 
Jim so powerfully envisioned. This involved stabilization of opportunistic develop-
ment without constraining the ability to generate new activities in the future. Such 
decision could be said to stabilize the element of the infrastructure.
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Representational, Display, and Connectivity Infrastructure

As the SimCalc Project engaged with more and more teachers, Kaput and his 
colleagues came to articulate the role of the software as infrastructural, stating that 
their goal was:

…to provide a framework that helps us to understand the gradual, manifold evolution of 
the roles of technology in mathematics education. The underlying idea is that changes over 
the long term amount to a process in which technology is gradually becoming “infrastruc-
tural.” (Kaput & Hegedus, 2007, p. 173)

Their framework focused on the affordances of “ubiquitous forms of technology 
in schools” including graphing calculators, sensors and probes, laptop and desktop 
computers, and digital display technologies such as projectors. Indeed, these forms 
of technology are becoming fairly common in mathematics classrooms across the 
world. The SimCalc team also considered networking technologies to be on the 
cusp of becoming ubiquitous in classrooms such that teachers and students could 
instantly exchange mathematical objects appearing on their individual devices.

Kaput and colleagues were careful to distinguish between the raw materials and 
the capabilities that form an infrastructure. By analogy, roads and rails – not concrete 
and iron – form our transportation infrastructure. They viewed “infrastructure” as 
the foundational facilities needed for the functioning of a community, in this case, 
for the function of the classroom mathematical community. Three aspects of the 
technological infrastructure were highlighted (Kaput & Hegedus, 2007):

1. Representational infrastructure, which provides new ways for students to express, 
visualize, compute, and interact with mathematical objects.

2. Display infrastructure, which allows for both private (e.g., on a handheld) and 
public (e.g., projected) views of mathematical representations.

3. Connectivity infrastructure, which allows for rapid communication of mathe-
matical objects among classroom participants and supports operations that 
distribute, collect, and aggregate student work.

Over time, new capabilities were added to MathWorlds software to integrate these 
three aspects. These capabilities assume that the students have a personal display 
and the teacher has a projected display. The new connectivity features of 
MathWorlds (Hegedus & Kaput, 2003; Kaput & Hegedus, 2002; Hegedus, Dalton, 
Moniz, & Roschelle, 2007) give teachers flexible capabilities to:

Set up a classroom roster and cluster students into groups.•	
Distribute a configured document to students, giving them a particular “setup” •	
for an activity.
Control which mathematical functions and representations can be viewed and •	
edited by participants on their handheld or laptop devices.
Collect (or have students submit) their work to the teacher’s machine.•	
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Hide and show student contributions on the public display, often in meaningful •	
clusters (e.g., by group or by the role in a group).
Yield control of the main display to a particular students’ device.•	

Each of these infrastructure elements is important because of its deep linkage to the 
architecture of learning. Display infrastructure is essential for creating shared atten-
tion to mathematical objects, and shared attention is a precondition for learning in 
any social setting, such as a classroom (Barron, 2000). Representational infrastruc-
ture is important because how people think (cognition) and come to know (episte-
mology) are deeply conditioned by the available representations (Kaput, 1992). 
Papert (2004), for example, has pointed out how difficult it would be to teach 
students multiplication if we still represented numbers using Roman Numerals; 
multiplication is much more tractable in the Arabic place value system. Connectivity 
infrastructure is important because it supports classroom discourse and participation 
(Hegedus, Moreno et al., 2007), and learning sciences researchers emphasize the 
importance of discourse and participation in students’ development of mathematical 
meaning (Cazden & Beck, 2003; Cobb, Yackel, & McClain, 2002; Hicks, 1995).

Finally, it is important to note that the MathWorlds infrastructure supports the 
construction of more specific curricula by way of software documents. A document 
is a software file that users can “open” or “save.” Documents configure all the ele-
ments of the infrastructure to enable the enactment of a particular activity while 
minimizing the amount of time teachers and students spend in preparation. 
Documents also avoid the need for teachers to master the full set of capabilities of 
the software, by presenting a narrower set of features, a set tuned to the specific 
learning goals of an activity. Documents give MathWorlds the advantages of a more 
open-ended tool (like a graphic calculator) while also appearing ready-at-hand to 
teachers, like very specific virtual manipulatives or applets.

The Character and Limits of Infrastructural Design Research

Educational researchers who want to study the “advanced design” of learning 
technologies face the challenge of justifying work that will not have immediate 
impact. Describing such work as aimed at infrastructure helps to set appropriate 
expectations. Research on new infrastructure is never undertaken for immediate 
benefit. Over the long term, however, infrastructural changes can yield sweeping 
transformations when cleverly exploited through additional layers of design and 
change in practice.

In infrastructural research with network capabilities, the SimCalc Project’s core 
philosophy was to focus on mathematical content, asking: what types of mathe-
matics can be discovered in new and innovative ways using classroom connec-
tivity? This research attends to the principle that “technologies and tools 
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co-constitute both the material on which they operate and the conditions, particularly 
social conditions, within which such operations occur” (Kaput & Hegedus, 
2007, p. 173). Hence, design research clarifies the most fertile and generative 
aspects of the technology; less useful capabilities are pruned. Simultaneously, 
curricular targets are refined.

Infrastructural research can also have the theory-building character often attributed 
to design research (e.g., Edelson, 2002; diSessa & Cobb, 2004). Hence, SimCalc 
researchers have theorized about the importance of “identity” in connected class-
rooms (Hegedus & Kaput, 2004; Hegedus & Penuel, 2008; Kaput & Hegedus, 
2002): students can project their mathematical object (and, hence, something that 
represents themselves) into a public display space. Vahey, Tatar, and Roschelle 
(2007) examined the importance of transactions between private spaces (only visible 
to a student) and public spaces (visible to the whole classroom). Stroup advanced 
the notion that classroom connectivity makes mathematics learning more playful 
and generative (Stroup, Ares, & Hurford, 2005).

A limit in infrastructural research is that its usefulness depends greatly on the 
skills and knowledge of teacher users, as well as the particular classroom routines 
those teachers are comfortable employing (Fishman, 2006). For a new infrastructure 
to result in transformation of how mathematics is taught in a society, teacher-user 
communities have to inhabit the infrastructure and fill it with the activities worth 
doing. They are unlikely to do so if the infrastructure clashes with the comfort zone 
of their classroom routines and mathematical knowledge.

Although we see the view of technology as infrastructure as empowering, we 
also worry about two design traps. The first trap is imagining that infrastructure 
itself will transform educational practice. The trap arises because infrastructure 
dramatically underspecifies what happens in a classroom among teachers and 
learners. This can result in false conclusions that the infrastructure “doesn’t work” 
when in fact, a particular realization of classroom activity around the infrastructure 
did not work. Designers who stop at the infrastructure level, however, have very 
little control over the classroom realization of their intentions.

The second trap is relying on the availability of “reform-oriented” teachers, who 
presumably will be ready to tap the potential of new infrastructure. A vast amount of 
money is directed toward teacher professional development and one might imagine that 
once teachers have grown through this process, they will be ready to seize new infra-
structural affordances and transform their classrooms. Unfortunately, this approach 
has problems. For instance, it is unclear that there is a single concept of a reform-
oriented teacher; rather the goals of teacher professional development tend to loosely 
overlap around weakly specified beliefs, attitudes, and practices (Ball et al., 2009; 
Cohen & Ball, 1999). It is thus unlikely that coupling an infrastructure with a particu-
lar pool of “reform-oriented” teachers will result in a particular direction of transforma-
tion when new technological infrastructure becomes available. In addition, designing 
effective curricula is hard. Although it is true that a small percentage of teachers can 
design effective curricula, many more teachers lack either the time or skill to do so.

Thus, we argue that infrastructural design and research, alone, is unlikely to produce 
desired impacts across a wide variety of classrooms, even if teachers have been pre-
pared through good quality but general-purpose teacher professional development.
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The Need for Curricular Activity Systems

Kaput was fond of saying “new technology without new curriculum isn’t worth the 
silicon it’s written in” (Halverson, Shaffer, Squire, & Steinkuhler, 2006). Similarly, 
we find that teachers are increasingly attuned to the accountability demands of their 
environment. Simply put, new technologies must address the core curriculum or 
face certain marginalization. Infrastructures, however, are not particularly “curricu-
lar” in character; they may be designed to a view of the subject matter that tran-
scends the peculiar “school” notions of mathematics of a particular educational 
regime. Such was the case with MathWorlds; it was designed to address the “math-
ematics of change and variation” which we argued was important mathematics even 
if it was not directly obvious in today’s school mathematics standards (Kaput & 
Roschelle, 1998). Curriculum is thus required to bridge the chasm between infra-
structure and what teachers need (Ball & Cohen, 1996).

The word “curriculum” connotes either a framework of teaching objectives or a 
specific textbook that fulfills such a framework. As the work of the SimCalc Project 
has evolved, we have begun to design “curriculum” in both senses to complement 
the representational, display, and connectivity infrastructure, and also to bias teach-
ing and learning with MathWorlds in the right directions.

We call the object of our design efforts a “curricular activity system.” In this 
phrase, the word “curricular” is meant to convey that we take seriously the need for 
a learning progression that addresses important mathematics. The progression has 
to occur over a meaningful number of instructional hours and cover mathematical 
constructs that lead the learner onward. We chose the word “activity” because the 
object of our design is not a “lesson” or a “presentation” or a “problem set” – the 
commonplace objects of curricular design. Instead we design activities that we 
intend teachers and students to enact and participate in. The responsibility for sup-
porting such activities is distributed across software, paper curriculum, teacher 
guides, and teacher training workshops. We are appropriately cautious in realizing 
that we cannot control the exact enactment of an activity. By activity, thus, we do 
not mean the colloquial sense of “what students and teachers are doing,” but rather 
we think of an activity in terms of its objective (for the participants), available 
materials, the intended use of tools, the roles of different participants, and the key 
things we would like the participants to do and notice. Finally, we use the word 
“system” because our design aims to engineer an aligned set of related components 
that coherently support the desired curricular activities. Thus teacher training, cur-
riculum materials, software documents, and so on are all designed together with a 
singular eye toward enabling classroom realization of our intended activities.

The need to design a curricular activity system has been emergent in our work, 
particularly as we have attempted to go from small-scale implementation of 
SimCalc designs (e.g., by Kaput himself or with a few teachers) to implementations 
involving tens and hundreds of teachers. Building on the work of David Cohen and 
colleagues (Cohen, Raudenbush, & Ball, 2003), we realized that an ambitious but 
weakly specified innovation would have little chance of success at scale. While 
some teachers might understand and implement our intentions, many others might 
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distort the intended use of our infrastructure such that the intended learning gains 
become unlikely. Indeed, even within a curricular activity system, teachers do not 
“implement” classroom activities uniformly and unfortunate choices may occur 
(e.g., we had one teacher who decided that students did not need any hands-on 
experience with the MathWorlds software). Nonetheless our success in getting 
quantifiable results with curricular activity systems encourages us to think that this 
is an important target of design (Roschelle et al., 2007; Tatar et al., 2008).

The “target” of design follows from the learning science principles related to each 
infrastructural technology (see Table 9.1). Displays afford shared attention, but 
shared attention to what? We argue that a curricular activity system should afford 
shared attention to rich mathematical tasks. Hence, one facet of curricular activity 
system design should be the specification of rich mathematical tasks. We see the rep-
resentational capabilities of technology as critical to emphasizing mathematical 
connections. These connections are (a) between students’ prior knowledge and math-
ematical abstractions; (b) among representations of mathematics; and (c) forward and 
backward along learning progressions within mathematics. The design facet should 
therefore be knowledge building and learning progressions. Connectivity mediates 
participation and discourse, relating to a curricular activity system design facet that seeks 
to foster mathematical argumentation and participation in mathematical practices.

Below, we document examples of two curricular activity systems, each of which 
builds on the SimCalc technological infrastructure in different ways and is funded 
as a separate research project. The first draws on the representational and display 
infrastructure; the latter includes these infrastructural components and adds an 
emphasis on connectivity infrastructure. In both, we emphasize the rich mathemati-
cal tasks, the orientation to learning progressions and knowledge building, and the 
opportunities for mathematical argumentation and rich mathematical practices.

Example 1: Scaling Up SimCalc

The Scaling Up SimCalc research project investigated, through a randomized 
experiment, whether a wide variety of teachers could use SimCalc to support their 
students’ learning of conceptually complex mathematics (Roschelle, Tatar, 

Table 9.1 Design approach connects technological capability to research on learning

Technological capability Design approach Research on learning

Projected displays Deep mathematical tasks Enabling shared attention
Linked multiple 

representations, including 
animations

Learning progression from 
more experiential to more 
abstract mathematics

Emphasizing mathematical 
connections

Classroom connectivity Overlapping social and 
mathematical structures

Engaging student participation 
in mathematical 
argumentation



2419 From New Technological Infrastructures to Curricular Activity Systems

Shechtman, & Knudsen, 2008). This project used MathWorlds in its computer soft-
ware (not the graphing calculator application) form and did not use the connectivity 
infrastructure, as this was still under development. Because we were interested in 
scaling up to a wide variety of teachers, we planned to work simultaneously with 
over 100 teachers each year. To avoid the “assumption of reform teachers” pitfall, 
our materials needed to provide supports for teachers who were weak in some areas 
and they needed to be compatible with pedagogies considered “traditional” as well 
as “reform oriented.” We expected that many of these teachers would be first time 
users of technology and that pedagogical styles would vary on the spectrum from 
“traditional” to “reform-oriented.” We also wanted to avoid the design trap of 
under-specifying our intervention by relying too heavily on the representational 
infrastructure to carry the curriculum. So the complementary resources – student 
and teacher materials and professional development – had to do much of the speci-
fying, while still providing rich mathematical tasks in which students could experi-
ence and be expressive with SimCalc’s dynamic representations. These requirements 
led to the basic components of our curricular activity system: a 2-week replacement 
unit with a student workbook, brief teacher notes, and software files correlated to 
the workbook pages. We decided to focus on a replacement unit because replace-
ment units are relatively easy to adopt and offer more breadth and depth than a 
single lesson. Professional development completed the Scaling Up curricular activ-
ity system. Just defining these components helped us in clearly specifying the 
experiment’s “treatment.”

Mathematics Content and Learning Progression

The SimCalc representational and display infrastructure has been tested in design 
experiments with mathematics content ranging in level from middle school through 
first-year university courses and including topics in algebra, trigonometry, precalculus 
and calculus courses. A first step in going from an infrastructure to a curricular 
activity system is to choose a more focused curricular target.

Consideration of the needs of our intended study participants, students and 
teachers in Texas, led to the selection of a curricular focus. Texas teachers needed 
materials that addressed their state’s accountability requirements, were consistent 
with locally recommended practices, and used the technology available to them. In 
Texas’ high-stakes testing environment, our curriculum needed to address impor-
tant state standards – and not just any of the standards, but the ones teachers 
focused on in preparing students to pass the state test. Because many teachers were 
following rapidly paced instructional calendars, our unit needed to be short enough 
to fit in. Texas also has a diversity of students and so we needed to factor in con-
siderations for their needs as well. For example, we needed to lower typical barriers 
for students who were learning English and for students with low reading levels.

Finding the best intersection of Texas needs and SimCalc offerings was not easy. 
A signature feature of earlier SimCalc work was exploring the representation of 
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rate in both velocity and position graphs. Prior research gave us strong reasons to 
believe that we could produce a large learning gain by focusing learning on this 
SimCalc sweet spot. However, velocity graphs do not fit into Texas middle school 
standards; it would be hard to convince teachers to spend time teaching velocity 
graphs and hard to define a fair control condition. After much discussion, we dis-
carded the idea of including velocity graphs and instead focused on a function-
based approach to rate and proportionality.

Traditionally, rate and proportionality are taught as separate topics each clearly 
in the middle school “number” strand. Students are taught to choose appropriate 
values from a word problem to set up an equation of the form a/b = c/d. By filling 
in three numbers, a fourth can be found using cross multiplication. But implicit in 
this proportional relationship – and explicit in “rate” problems – is a rate of change 
which can define a function of the form y = kx where k is the constant of proportion-
ality. With this approach, students are preparing for entry into algebra and later on 
into calculus, where rates of change are a central topic and are treated algebraically. 
Moreover, this approach follows naturally from MathWorld’s dynamically linked 
representations of objects in motion and their distances. Rates of change can be 
identified with slopes of lines that represent the object’s speed. This approach leads 
to a qualitative comparison of different speeds, which can then support analysis of 
functions tied to their algebraic form.

Fortunately, education leaders in Texas were already advocating that teachers 
use a function-based approach to teaching proportionality. Texas leaders were also 
providing professional development, helping teachers consider the standard propor-
tion word problems in a new light. So our curriculum and mathematical approach 
clearly helped Texas education leaders with one of their goals while remaining true 
to SimCalc’s focus on the mathematics of change and the representation of rate in 
graphs, tables, equations, and narrative.

With our topic specified, we began to design a learning progression, beginning 
with simple motion and linear functions, and then developing rich tasks that could 
develop cognitively complex concepts and skills. The unit had two halves, united 
by a theme, Managing the Soccer Team. Within this theme, lesson-specific activities 
provided support for understanding the mathematics.

The first half addressed constant speed, comparing simple line graphs and their 
associated representations. The unit’s first activity introduces a single character mov-
ing at a constant speed. The character’s motion is linked to a graph of time versus 
position so that as the character moves, the graph builds – with the graph’s steepness 
representing the rate of change or speed of the character. Over the next several activi-
ties, complexity develops: Students analyze graphs of characters moving at different 
speeds and from different starting positions; they recognize faster runs, earlier start-
ing times and races that end in ties through their graphical representations. Students 
build from the connection between the graph and the situation, to include tables and 
equations. Culminating this first half, students are asked to translate among graphical, 
tabular, symbolic and narrative representations of functions of the form, y = kx, where 
time is x, a character’s position at time x is y, and the character’s speed is k.

The second half moved on to multirate linear functions, where characters in the 
simulation took on more interesting behavior – e.g., stopping, running backward, 
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and then forward again – all controlled by piecewise linear graphs. The tasks in this 
half present more challenging mathematics – characters moving at different speeds 
in a single trip, represented by multisegment line graphs. It was at this point that we 
moved beyond the state standards for seventh grade. Students learn to interpret 
horizontal as a stopped motion and a negative slope as a “backward” motion. 
Through a set of problem-solving activities, students are asked to predict what a 
simulation or graph will look like, to check their prediction by running the soft-
ware, and to explain the results in light of the prediction – a routine used across 
many SimCalc activities.

Overall Support for Teachers and Students

Going from an infrastructure to a curricular activity system requires providing 
much more support to teachers and students and aligning this support around the 
key mathematical ideas.

Several features of Managing the Soccer Team were aimed at helping a wide 
variety of teachers to implement the unit. In prior work, we found that teachers 
often use student materials as their main lesson guide. So we made sure that any 
crucial information for teachers was not buried in a teaching guide that they might 
never open. Instead, the student workbook prompts can serve as a kind of “script” 
for the lesson, though not a prescriptive one. The teacher, then, is not required to 
develop a sequence of questions and activities to support a learning progression that 
is likely new to her – but she is free to adapt, edit, and add to the lesson.

Although we did not count on teachers using them, our teaching notes provided 
simple lesson plans to complement the structure built into the unit – including a page-
by-page guide for the “big” mathematical idea for each lesson. Suggested timelines 
helped teachers figure out how to complete the unit to fit their pacing chart require-
ments. Lesson planning documents helped teachers make a more detailed “map” of 
what they intended to do, including specifying what material in their regular cur-
riculum they would “replace” with our unit. In addition, to help the teachers, the 
Texas standards covered by the unit were listed in the front of the teacher book.

Other features of the unit were designed to address the needs of a wide variety 
of students. Numbers used in the activities were, for the most part, realistic, so that 
students could use their knowledge of speed and prices in the real world to gage the 
correctness of their answers. The text used simple sentence structure and consistent 
vocabulary, never going beyond a fifth grade reading level, in order to accommo-
date those with low-level reading skills and to assist English learners in making 
sense of the context and the mathematics. To help guide and organize students’ 
activities, the workbook used graphical conventions to indicate various kinds of 
activities and content. For example, definitions appeared inside boxes on the page, 
as did other critical content information. The amount of white space left after a 
question indicated the type and length of an expected answer. Simple graphics 
served as implicit indices for the activities. Even the fact that the workbook con-
tained all the student activities physically bound together provided another organizational 



244 J. Roschelle et al.

aid to students. Lastly, we used as much color as we could afford in reproducing 
thousands of workbooks, an attempt to appeal to the aesthetic sense of youth who 
live in a media rich – and colorful – world.

A 3-day teacher workshop was designed to support teachers’ effective imple-
mentation of the unit. We did not try to change teachers’ practices, but instead 
aimed at providing teachers with a mental image of the unit as a whole and a 
detailed experience of the unit as learners. The workshop used a standard “teacher-
as-learner” approach, providing teachers with an opportunity to experience our 
intended activities for themselves. We modeled and highlighted use of “predict, 
check, explain” with students and encouraged teachers to let students use the soft-
ware. In addition, the workshops provided time for teachers to practice and “play” 
with the software, to boost their comfort with computer technology. We gave par-
ticular focus to the “mathematics knowledge for teaching” that underlies and goes 
a bit beyond the mathematics students are to learn. Although teachers are familiar 
with the procedures for calculating using proportional relationships, many middle 
school teachers are less aware of the critical connections among proportionality and 
rate, the connections across representations, and how exploring proportionality can 
become a first step toward algebra.

Design Decisions: From Infrastructure to a Curricular  
Activity System

A comparison of a “traditional” SimCalc activity with an activity from the Scaling 
Up unit will illustrate some of our design decisions as we adapted core SimCalc 
activities for our Scaling Up curricular activity system.

“Sack Race” is a widely used SimCalc activity in which students are asked to 
create a graph that represents “an exciting sack race” and produce a narrative 
matching their graph. Using a MathWorlds file that has one character traveling at a 
constant speed over the course of the race, students create graphs for another char-
acter so that it slows down, speeds up, goes backward, and catches up – or any 
combination of these. By creating different graphs in the software, and trying them 
out in the simulation, students can explore how different parts of a “multirate linear 
function” affect the speed and direction of the character. Playfulness is encouraged 
in students’ narration of their race. For example, as their character’s race is played 
out, students often say something like: “Now he has fallen down and can’t get up. 
Finally he struggles to his feet but takes off much more slowly than before.”

The resources supporting this activity can be downloaded from the SimCalc 
website and include one MathWorlds file, an activity sheet and several pages of 
teacher notes. The original description of Sack Race was follows:

This is our first ‘performance’ activity. Its primary focus should be on slope as rate of 
change and piecewise functions. This activity allows exploration of multiple types of slope; 
i.e., positive slope, negative slope, or zero slope for students to build their understanding 
of varying rate. This activity also allows for exploration of intersections of linear functions 
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leading to an understanding of solutions to systems of equations. There is no one correct 
answer to this activity and students should focus on what conditions determine a correct 
answer…Students’ creativity will set the tone for the discussion. You may choose specific 
students to display their graph and discuss their story one at a time. You want students to 
pick out the correlation between the action and the function. For example, if someone reads 
a story where his or her Actor stops, there should be a segment with a zero slope. Students 
will be excited to share even when their stories are incorrect, be sure to encourage a posi-
tive environment for corrections.

The original teacher notes for this SimCalc activity provide guidance in how to 
structure the lesson for this activity. There are three parts to the lesson: a whole 
class introduction, individual or group work time, and a whole class discussion of 
a sampling of students’ work. For the introduction, teachers are told to “…decide 
on as much or as little detail as you wish for an introduction. You should at least 
introduce adding and manipulating segments to control Actor B’s function…” For 
individual or group work time, the teacher is advised: “This is your opportunity to 
monitor group progress and determine what students are thinking and/or struggling 
with. Try not to answer questions directly, give students ways of using the motion 
to answer their questions.”

Teachers create their own lesson plan aligned with this advice. Creating a lesson 
plan of this sort requires extensive teacher knowledge, some of which would likely 
be developed over time when using SimCalc materials. Just creating the demonstra-
tion MathWorlds file requires design decisions that invoke knowledge of mathemat-
ics, theories of learning, and knowledge of students’ current levels of understanding. 
For example, one point of this lesson is that “backward” motion is represented in the 
graph by segments with negative slope. How should this idea figure into the whole 
class introduction? Should the teacher leave it out altogether so that students can 
discover it later? Should it be present in the teachers’ demonstration MathWorlds 
file, without a lot of explicit discussion? Or should the teacher demonstrate and 
elicit an explanation of backward motion before students do their own work? If so, 
what is the right introduction? Should the teacher show a segment that is “slanting 
downward” and ask students what it could mean? Or should she show a backward 
motion and ask what it is?

In the Scaling Up unit, we include an activity with similar mathematical goals 
to those of “Sack Race.” This activity, called “On the Road” (see Fig. 9.1), differs 
from the original by being substantially more structured for the teacher and her 
students. In “On the Road,” students are presented with a series of trips between 
Abilene and Dallas, Texas. Each trip is made by bus and van and each trip is fraught 
with difficulties: bus breakdowns, forgotten items and bad traffic. The first problem 
in the activity, shown in Figs. 9.1 and 9.2, asks students to compare the trip of a bus 
and a van by comparing their graphs on a by-then familiar time versus position 
graph. This problem introduces a single object moving at two different speeds, but 
constrains the direction of motion to the familiar moving forward.

The next two problems introduce horizontal lines and then downward slanting 
lines (all without a formal definition of slope). Once these three ideas have been 
introduced sequentially, then students work in groups on problems of greater com-
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Fig. 9.1 A portion of the stu-
dent workbook page for the 
“On the Road” activity

Fig. 9.2 More of the “On the 
Road” activity, from the stu-
dent workbook

plexity, combining these different types of motion and their representation graphs. 
The most complex of these is shown in Fig. 9.2, below.

Relative to the original “Sack Race,” we see that designing a curricular activity 
system involved several additional layers of specification. Both activities fit our 
notion of a “rich mathematical task,” in that comparing the two motions draws forth 
a set of connected mathematical ideas about slope and rate. But whereas “Sack 
Race” leaves it to the teacher to find appropriate times and questions to address all 
the relevant mathematics, “On the Road” sequences the mathematics to start with a 
simpler situation and build toward the more complex situation. The sequence is 
structured to direct the teacher’s and students’ shared attention to relevant aspects 
of the task in a manageable progression. For example, question 4.a “What did the 
van do after traveling for one and a half hours?” directs attention to the contrast 
between positive and negative slopes.
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Both activities also engage multiple representations, including narrative, graphs, 
and motions. The “On the Road” version, however, specifically cues useful knowl-
edge building practices. For example, question 2.a. asks the students to make pre-
dictions from the graph before they run it. Note that the question specifically asks 
students to think about “speed.” One problem with a rich context (e.g., the sack 
race) is that children tend to dwell on aspects of the story that are irrelevant to the 
mathematics. In the original, teachers are left to direct students to the mathemati-
cally relevant features; the curricular activity system version supports the teacher 
by including a specific prompt to look at speed. Further, in both questions 2 and 4, 
the prompts also support the SimCalc routine, “predict, verify, explain.” Student 
discussion is also specifically scaffolded by prompts in the teacher guide. 
Mathematical argumentation is encouraged by prompts in the teacher guide, by the 
questions asked of the students, and by the training that was given to teachers in the 
summer workshop.

Results

Overall, in our Scaling Up SimCalc project we collected data from 95 seventh 
grade teachers, half in the control group and half in the SimCalc group. We found 
statistically significant differences between classrooms that used SimCalc and 
those that used existing curriculum for the topic of rate and proportionality 
(Roschelle et al., 2007). Students in classrooms where teachers used SimCalc’s 
integration of curriculum, software, and professional development had higher 
learning gains. The gains were higher, specifically on the more advanced aspects of 
mathematical understand that SimCalc sought to cultivate; students learned about 
the same amount on the simpler mathematics measured on the Texas state test.

Our findings for both the seventh and eighth grade experiments are presented in 
detail elsewhere (Roschelle et al., 2007; Roschelle, Tatar, Shechtman, Hegedus 
et al., 2008). Here, we focus on the specific indicators of the success of the “On the 
Road” activity in the seventh grade curriculum. Teachers overwhelmingly rated 
“On the road” their favorite lesson in the unit. In postunit debriefing interviews, we 
also found that teachers frequently talked about this activity as a highlight. Further, 
we found high learning gains on test items that are closely related to “On the Road.” 
Consider the test item in Fig. 9.3

This item targets a common misconception – that the point of intersection on a 
graph is the time at which the objects are traveling at the same speed. Choosing 
answer B is an indicator that a student may have this misconception. The correct 
answer is C, because the objects have the same speed when their graphs have the 
same slope. On the pretest, only 23% of students got this item correct – and this is 
about the percentage that would be produced by random guessing. On the posttest, 
55% of students who had been in classrooms using SimCalc got the item right, a 
statistically significant gain. In comparison, only 38.5% of students in non-SimCalc 
classrooms got the item right at posttest and more students (55%) chose the mis-
conception-based distracter, answer B.
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Fig. 9.3 A test item targeting the concept that parallel slopes (not an intersection point) indicate 
when two objects travel the same speed

On the basis of these results, we argue that the design of the curricular activity 
system around the “On the Road” activity worked with a wide variety of teachers 
and students.

Example 2: SimCalc Classroom Connectivity Project

Continuing in the learning progression described in Example 1 (e.g., proportionality 
and linear function), the next set of mathematical topics occurs in Algebra I (e.g., 
writing and manipulating linear functions, solving simultaneous equations, etc.). 
A look at SimCalc’s “advanced technology” for Algebra I, however, affords more 
than a look at additional content because the team working on Algebra I also used 
new infrastructural capabilities. Consequently, this second example provides a look 
at a different embodiment of a curricular activity system. It is also different because 
students used graphing calculator hardware – not computers – connected by the 
TI-Navigator wireless network.

In addition to two infrastructural aspects of technology leveraged previously, 
representations and public displays, the SimCalc Classroom Connectivity Project 
(Hegedus, Dalton et al., 2007) leverages network connectivity among students’ 
devices and the teacher’s public display. Within-classroom networks are empha-
sized rather than connecting to outside-of-class resources over the Internet. Thus, 
the roots of SimCalc’s approach to connectivity are more closely related to prior 
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work on student response systems (a.k.a. “clickers”) than to other forms of net-
worked eLearning (Hegedus & Penuel, 2008). Like the work on clickers, the 
SimCalc Classroom Connectivity Project builds on the opportunity to connect stu-
dents within a classroom so that they may respond in real-time to a teacher’s que-
ries and have their “responses” instantly (and often anonymously) collected and 
posted to a public display, where they become the focus of classroom discussion. 
As in certain response system work (Roschelle, Penuel, & Abrahamson, 2004), the 
major focus is on transforming classroom participation to dramatically increase 
students’ roles in a meaningful classroom discourse. Unlike most of the work on 
clickers, however, which is content-neutral (the clickers accept only multiple choice 
responses), the SimCalc connectivity work depends on richer functionality to allow 
students to construct and contribute mathematical objects, not just select from pre-
determined multiple-choice responses. These capabilities lead to a participation 
infrastructure, permeated by mathematical considerations, that complements and 
extends the earlier representational infrastructure.

The rationale for attending to participation infrastructure draws upon the three 
perspectives (learner, technological, and epistemological) in parallel to the earlier 
rationale provide for representational infrastructure.

From a learner-centered perspective, the rationale for focusing on participation 
infrastructure aims to address the sense of alienation that many students experience 
in typical mathematics courses. Rather than feeling empowered by their inclusion 
in Algebra classes under the banner of “Algebra for All,” many students experience 
Algebra as affirming their disenfranchisement from mathematics. This outcome, 
obviously, runs counter to the SimCalc mission of democratizing access to impor-
tant mathematics.

Ethnographical studies of high school students (Davidson & Phelan, 1999; 
Phelan, Davidson, & Yu, 1998) reveal a world of alienation with strongly negative 
responses to standard practices (Meece, 1991) and strong sensitivity to interactions 
with teachers and their strategies (Davidson, 1999; Johnson, Crosnoe, & Elder, 
2001; Skinner & Belmont, 1993; Turner, Thorpe, & Meyer, 1998). Negative 
responses, particularly as they are intimately connected with self image and sense of 
personal efficacy, can be deeply debilitating, both in terms of performance variables 
(Abu-Hilal, 2000) as well as in the ability to use help when it is available (Harter, 
1992; Newman & Goldin, 1990; Ryan & Pintrich, 1997). On the other hand, students 
exhibit consistently positive responses to alternative modes of instruction and 
content (Ames, 1992; Boaler, 2002; Mitchell, 1993). A recent review by the National 
Mathematics Advisory Panel (Geary et al., 2008) focused attention on the connec-
tion between participation structures and the achievement gap. Evidence suggests 
that Black and Hispanic students learn particularly well in classrooms that stress a 
more communitarian outlook and in which they experience the teachers as caring 
about each child personally (e.g., Fullilove & Treisman, 1990; Ladson-Billings, 
1995). More interactive and social classroom participation structures, thus, are seen 
as a potentially important tool for closing achievement gaps.

A complementary epistemological perspective attends more strongly to mathe-
matics as constructed socially, through argumentation. A watershed event for this 
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perspective with respect to the infrastructure of network connectivity occurred at a 
2002 Psychology in Mathematics Education, North America meeting where Stroup 
led a symposium on the potential interplay of mathematical and social spaces in a 
connected classroom (Stroup et al., 2002). The symposium emphasized the idea of 
aligning how students belong to the classroom as a social collective with how each 
student’s mathematical contributions belong to a higher order mathematical object. 
For example, each student can contribute a single point that fits the equation y = 2x 
and their collective construction, graphed on the shared public display, will be a line 
with a slope of 2. Likewise, each student can contribute a function in the form 
y = 2x + b with a different value for b and their collective construction, graphed on 
the shared public display, will be a family of mathematical functions, all with a slope 
of 2 and parameterized by variation in the y-intercept. An emerging epistemological 
design principle, then is to overlay mathematical variation onto the social structure 
of the classroom – mathematically coherent displays arise from socially coherent 
individual participation. The contrast to the earlier clicker-based approach could not 
be more stark: clickers emphasize an epistemology of consensus on the right answer; 
the newer capabilities emphasize the dialectic emergence of coherent mathematical 
constructions through social argumentation about mathematics that arises from 
systematically varied individual contributions. Just as mathematical considerations 
permeate the design of the representations in the earlier version of MathWorlds, 
mathematical considerations permeate the design of the social infrastructure in the 
connected version of MathWorlds. A classroom experience that interconnects the 
social and the mathematical has the potential for increasing students’ sense of iden-
tity, agency, and belonging because their mathematical contributions remain identifi-
able in the collective, carry their agency, and belong to the larger group construct.

Technologically, therefore, the right infrastructure needs to do more than collect 
and display students’ mathematical contributions in juxtaposition. In particular, it 
must make the contributions part of a collective mathematical construction. The 
newer versions of MathWorlds add a few key features to accomplish this. First, 
connected MathWorlds provides facilities to collect student contributions into a 
common motion animation. For example, if each student contributed a function 
y = 2x + b, the common animation might look a parade of characters moving at the 
same speed but with different starting positions. Second, the representational con-
trasts can be spread out socially in the classroom, for example, so that students 
contribute a function using Algebraic symbols but see their contribution expressed 
on the public display as a graph or an animation. Hence, the principle of multiple 
representations (Goldenberg, 1995) becomes socially distributed in a networked 
classroom rather than distributed over adjacent windows on the same display. 
Third, it provides tools for hiding and showing coherent collectives of student 
work, so that the teacher can focus on comparing and contrasting student work in 
ways that focus on the relevant mathematics.

Per our central argument, this participation infrastructure remains just that – an 
infrastructure. And thus it would be unlikely to see transformation in classrooms, 
even with reform-oriented teachers, without working toward an “advanced design” – that 
is a design which leverages the new infrastructure in appropriate curricular activity 
systems.
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Algebra I Curricular Activity System Overview

The Classroom Connectivity (CC) curriculum activity system for Algebra I builds 
upon the lessons learned from the seventh and eighth grade work reported in Example 
1. As in Example 1, the mathematical learning progression was designed with close 
attention to the overlap between state standards and MathWorlds capabilities. In this 
case, the target state was Massachusetts and about half the topics in the Algebra I 
standards for Massachusetts were directly amenable to a SimCalc focus, so these 
conventional topics became the focus of the learning progression. The learning pro-
gression built on the succession of topics found in textbooks used in Massachusetts, 
such as the progression from graphing linear equations to writing linear equations and 
to solving systems of linear equations. Also, as in the case with the Texas work, the 
“system” included a student curriculum book, a teacher edition and teacher profes-
sional development, with many of the same considerations as discussed earlier.

One new and important element in the CC Algebra I materials is the inclusion 
of more extensive dialog prompts in the teacher edition. Teachers are deliberately 
guided to engage their classroom with questions that focus on (a) the activity (b) 
the connections among multiple representations and (c) the central mathematical 
ideas of key lessons. This practice aligns with the enhanced emphasis on argumen-
tation in the networked SimCalc classroom. Because the logic of the learning 
progression and the teacher supports has already been discussed in Example 1 – and 
not to diminish the role of this logic in the overall curricular activity system – we 
focus Example 2 on three kinds of activity structures that have emerged to leverage 
the connectivity infrastructure and support the epistemological alignment of math-
ematical and social structure in classroom enactment.

The “Where Am I?” Activity

In this activity structure (Hegedus & Kaput, 2002), each student privately con-
structs a mathematical function in one representation (e.g., an expression for a 
linear function) and then contributes their function to a collective class representa-
tion. Students then participate as a group in trying to find their mathematical objects 
in a public, collective representation (e.g., an animation where each dot moves 
according to a student contribution).

Early SimCalc investigations revealed a powerful drive for students to “find 
themselves” in the collective animation, where students see and talk about contrib-
uted functions as extensions of personal identities. Thus, students’ attention is drawn 
to the collective display. Further, the only way to self-identify is to pay attention to 
the mathematically relevant attributes of the animation, such as the start position and 
speed of a moving dot. In a classroom discussion, students might, for instance, 
notice that there is a group of dots that all move at the same speed. The teacher could 
hide all the other dots and focus on these. Using MathWorlds capability to leave 
“marks” at positions that are 1 second apart, the class could work to quantify the 
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speed of this subset of dots and discuss which variable, m or b, is related to the 
speed. This creates a trajectory from (a) self-identification with a mathematical 
object to (b) focus of attention on mathematically relevant attributes of the animation 
and onward to (c) the connection between the perceptual attributes of a motion and 
the mathematical abstractions of slope and intercept. Hence, instantiating systematic 
variation socially in the curricular activity system becomes the organizing structure 
that allows for classroom enactments that personally engage each student, focus 
their attention on the relevant public mathematics, and move from personal to more 
abstract mathematics.

Research analyses of SimCalc activities have conceptualized “identity as a form 
of mediated action” to capture this phenomena (Hegedus & Penuel, 2008). In par-
ticular, classroom conversations have many deictic references that connect a per-
son’s name and a public mathematical object. The aspect of identity highlighted 
here is less one’s attributions to self in relationship to community (a broader, more 
cultural view of identity) and more one’s projections of self in relationship to the 
microcommunity constituted in the classroom. One might think of this as a small 
“i” form of identity that could nonetheless powerfully contribute to a big “I” form 
of Identity as an adult who feels ownership of the cultural tools of algebra. Indeed, 
one case study tracked “X” a student who was initially invisible in class, but who 
became “famous” through the public activity of tracking down his unique identity 
in the animation, and consequently became a more frequent and vocal participant 
in the classroom (Kaput & Hegedus, 2002).

Parameterized Variation Activities

A second genre of networked SimCalc activities systematically organizes mathe-
matical variation in a classroom so that the collection of functions submitted by 
students form a family of functions (Hegedus & Kaput, 2004; Hegedus & Kaput, 
2003; Hegedus & Kaput, 2002; Kaput & Hegedus, 2002). These activities rely on 
a surprisingly simple and robust social idiom, called “counting off” in the United 
States. To “count off,” each student announces a successive number, thus claiming 
that number. Working in groups of 4, for example, students can count off numbers 
from 1 to 4. In some SimCalc activities, groups are also assigned numbers, such 
that each student has a unique pair of numbers, a group number and a count-off 
number. Once students have their numbers, a teacher can begin a networked 
SimCalc activity by asking each student to make a function that uses these uniquely 
assigned numbers (Fig. 9.4).

One particularly profound use of this capability contrasts functions with the 
same slope versus functions with the same y-intercept. Imagine that each student 
has made a unique linear function f(x) = g × x + c, where g and c are a student’s 
group and count-off numbers, respectively. Using simple networked SimCalc 
capabilities, a teacher can collect these functions, display them in a graph, and 
animate moving actors according to them. Further, the teacher can choose settings 
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Fig. 9.4 Contrasting lines with the same y-intercept versus lines with the same slope

that highlight all students with an equal group number or all students with an equal 
count-off number.

In classroom practice, these capabilities are deployed with opportunities for 
cycles of prediction, reflection, and feedback. For example, before showing a graph 
of all the functions with the group number (and hence, slope) of 2, the teacher 
should ask students to predict what the graph will look like. Likewise, before 
animating these graphs as moving characters, the teacher should ask students to 
predict what the motion will look like. Further, when collecting students’ work it is 
rare that everyone in the classroom made the correct function for their assigned 
numbers. Hence, cycles of reflections and feedback are appropriate.

The visual and animated results of family-of-function constructions are quite 
striking and memorable. A collection of functions with the same slope but dif-
ferent y-intercepts appears as parallel lines and the motion looks like a series of 
actors following each other in lock-step (because they move at the same speed). 
In contrast, a collection of functions with the same y-intercept, but different 
speeds, appears as a “fan” or “spray” of lines emanating from a point. The 
characters start at the same place but spread apart because they move at differ-
ent speeds. Indeed, research data show that students remember and recall these 
patterns. A “fan” can become an iconic representation for “different slopes, 
same intercept” and parallel lines can become an iconic representation for 
“same slope, different intercepts.” Likewise, “spreading apart” and “marching 
in lock-step” can become easily remembered correlates of these icons (Piaget, 
1970, we note, theorized that “speed” arises as a concept for children in rela-
tionship to their perception of “catching up” and “spreading apart” behaviors. 
Hence, these motion representations are likely deeply connected to the relevant 
everyday concepts). For example, the SimCalc CC project reports the case 
study of Erin, who says “we’re sandwiching at 12 feet” when asked to predict 
what would happen if all students make functions with different slopes that 
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intersect at the point (6,12). The same report shows four instances of students’ 
spontaneous gestures in class, using their fingers or other line-like objects to 
show spread or parallelism.

These mnemonics are important because students have difficulty remembering 
the different meanings of m and b in y = mx + b. Increasing either m or b can be 
superficially described as “moving up” which misses the difference between “tilting 
up” and “shifting up.” Notice what has happened here, relative to earlier genera-
tions of dynamic graphing software. In early generations of software, a mouse drag 
could be used so that an individual student could see how a changing parameter 
affected a single line. Now, with networked MathWorlds, a classroom can see how 
systematic variation in a parameter results in a family of functions. Instead of being 
contained within an individual eye-hand coordination loop, a group now partici-
pates in coordinating the production of a family of functions. Further, social param-
eterization produces an iconic figure and animation, making it easier (we think) for 
students to remember the different meanings of “m” and “b.” Research within the 
SimCalc CC Project has begun to quantify the impact of socially distributed param-
eterization by tracking the increased number of student-to-student conversation 
sequences, relative to student-to-teacher sequences (Hegedus & Penuel, 2008). 
Student-to-student conversation sequences would likely increase when variation is 
distributed between students, rather being contained within the control of the only 
student with the mouse.

Mathematical Performance Activities

A third kind of activity, a mathematical performance, engages students in using 
mathematics expressively (Hegedus & Kaput, 2004; Hegedus & Kaput, 2003; 
Hegedus & Kaput, 2002; Kaput & Hegedus, 2002). Working privately at first, students 
create a personally meaningful use of mathematics to express a story. The students can 
then send their mathematics to the teacher via the connectivity infrastructure. The 
teacher can choose particular students to perform (e.g., tell the story) of their mathematics.

In one such activity, a pair of students position their actors a symmetrical dis-
tance away from a meeting point and have to coordinate the creation of a pair of 
linear functions that will result in a motion animation that shows the actors meeting 
at the same time at the designated place (Fig. 9.5). The teacher can show successful 
or unsuccessful meetings and engage students in telling the story of what they had 
to do to arrange a meeting (since the distance and time to the meeting point are the 
same, the students need to create functions that model motions of the same speed 
but opposite direction).

Research on this activity structure suggests that it shares aspects of both prior 
activities. Organizing students’ work as mathematical seems to powerfully engage 
the identity between a student and the public display of his or her work. Further, 
different pairs of students naturally vary in how they solve the problem (e.g., use 
different times and speeds), which can result in mathematical debate among students 
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in the classroom about what was the same and different among their approaches. 
From such a debate, students can generalize the connections among the equation, 
graph, and motion form of functions with the same speed by opposite direction.

Results

Research using the connectivity infrastructure is at an earlier stage than the research 
using only the representational and display infrastructure but is on a similar trajectory 
toward scale. In a pilot quasi-experiment, a district volunteered seven classrooms of 
students (n = 133) to use SimCalc and the remaining eight classrooms of students 
formed a comparison group (n = 184). The main effect was statistically significant and 
showed that students in the SimCalc group had a higher gain on items related to linear 
functions, slope as rate, proportion, linear variation, seeing across representations, 
and graphical interpretation, with a medium effect size (Hegedus, Dalton et al., 2007). 
SimCalc students did especially well, in contrast to the comparison group, on an item 
that asked students to identify how a position graph represents a change in direction 
in the corresponding motion. This gain conceivably follows from mathematical per-
formance activities, such as the one described above, which may powerfully address 
common graph-as-path misconceptions.

The research team is also pursuing classroom changes other than those found via 
assessments of mathematical content knowledge. For example, as described in the 
context of the activities above, the team is also searching for methodological refine-

Fig. 9.5 Graphs of functions that converge at 3 feet, but at different times
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ments that can capture the impact of a networked SimCalc curricular activity system 
on classroom participation, student identity, and mitigation of students’ sense of 
alienation from mathematics (Hegedus & Penuel, 2008). Promising indicators 
include the ratio of student-to-student versus student-to-teacher conversational 
exchanges; an increase in student control of the conversational floor and teacher use 
of “revoicing” and other facilitation moves; use of deictic markers that connect 
personal identity and mathematical abstractions. Further, the team is conducting a 
scale up study looking specifically at longitudinal impacts of participation in net-
worked SimCalc classrooms (using computers and calculators), which might move 
beyond local engagement to influence on students’ proclivity for continuing 
onward in science, mathematics, technology and engineering studies, and careers.

Discussion

We have presented two design examples from the SimCalc Project, arguing that 
elaborating a curricular activity system to leverage infrastructure is what makes 
these designs advanced. In both examples, infrastructure was a target of initial 
research and emerged from the triangulation of learner-centered, technology-centered, 
and discipline- or epistemology-centered perspectives, as recapitulated in Table 9.2. 
An additional common infrastructural element is the use of computer projects to 
allow a shared, public display. Across the two examples, we have described what 
elaborating a curricular activity system entails.

Table 9.2 Representational and connective infrastructure from three intersecting perspectives

Perspective Representation infrastructure Connectivity infrastructure

Learner-
centered

Building on learners’ 
strengths including:

•	 Making	sense	of	motion
•	 Reasoning	about	intervals
•	 Connecting	graphical	and	

linguistic representations

Building on learners’ strengths 
including:

•	 Making	sense	of	motions	of	groups	of	
actors

•	 Communicating	with	gestures	and	
informal argument

•	 Identifying	with	one’s	contribution	in	
a collective representation

Technology-
centered

Presenting new cognitive 
experiences using:

•	 Executable	representations
•	 Dynamically	linked	

representations
•	 Simulated	motion

Presenting new social experiences using:
•	 Sharing	mathematical	objects
•	 Spreading	multiple	representations	

across people
•	 Family-of-function-based	aggregations	

of student work
Epistemology-

centered
Developing meaning by 

connecting algebraic 
symbols and:

•	 Graphs
•	 Piecewise	functions
•	 Motions

Developing meaning by connecting 
algebraic symbols and:

•	 Graphs	of	families	of	functions
•	 Relative	motions	among	actors
•	 Parameterized	variation
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At the heart of our design efforts, the first design focus is always the specification 
of rich mathematical tasks with an overall learning progression. In our view, these 
tasks emphasize mathematical connections that are both locally important in terms 
of the specific curricular objectives but also of longitudinal importance in students’ 
ongoing mathematical development. Rich mathematical tasks often involve multiple 
representations and involve students in making meaning across representations. 
Further, within rich mathematical tasks students often have opportunities to prac-
tice earlier mathematical skills (for example, identifying point in a Cartesian graph) 
and procedures (calculating values of mathematical expressions). In the seventh 
grade curriculum used in the Scaling Up SimCalc project, the “On the Road” 
activity was a signature mathematical task. Indeed, teachers often commented on 
this specific activity in the debriefing interviews we conducted after their SimCalc 
teaching was finished for the year. In the Algebra curriculum used in the SimCalc 
CC project, the exploration of families of functions with equal slope versus a 
common point of intersection formed the basis of some of the signature activities. 
In both cases, these specific tasks occurred as part of a longer-term learning pro-
gression that led up to these concepts and built further upon them.

A second design focus is on materials to support teachers and students. It is 
important to note that these materials are often based on very traditional infra-
structure – paper. We continue to find many benefits to a paper workbook to 
accompany our activities. Some representations (e.g., writing equations, making 
tables, sketching graphs) continue to be easier for students and teachers to produce 
in paper form than using a mouse and keyboard. Further, paper extends the real 
estate available for activities. Instead of overcrowding computer screens, work can 
extend to extra work surfaces. Indeed, we find that teachers commonly project the 
MathWorlds display on a screen that is next to their whiteboard, allowing them to 
work across both the computer display and their whiteboard at the front of the classroom. 
It is also easier for teachers to markup and comment on student work in paper 
form. The paper materials provide structure to the activities by introducing the 
activity and highlighting key concepts, terms, and procedures and by organizing 
the activity according to some key driving questions. For the teacher, the teacher 
guide supports enactment of activities by suggesting key questions for classroom 
discussions. In the SimCalc CC work, for example, the teacher guide offers sug-
gestions for different aspects of the classroom dialog, including a focus on the 
meaning of the activity, the connections across multiple representations, and 
essential mathematical ideas of the lesson.

We further consider teacher workshops to be a component of the curricular activ-
ity system design, because these workshops are designed to align with and empha-
size the enactment of the classroom activities. Consequently, much of the time in 
teacher workshops is dedicated to working through the student materials, but with 
commentary and reflection on a teacher level. As these workshops are relatively 
short in duration and tightly scoped, we tend to think of them as teacher training (to 
enact the curricular activity system) rather than teacher professional development 
(with a broader aim in long-term transformation of teaching practice).

The detailed design work involves providing enough structure to enable a broad 
population to enact the activities without draining the opportunity to struggle with 
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important mathematics out of the activities. As Hiebert and Grouws (2007) argue, 
two ways that teachers can make a difference in mathematics teaching is to (a) 
make concepts an explicit focus of classroom discussions and activities, and (b) 
allow students to struggle with important and meaningful mathematics. In the first 
example, our design balanced structure and struggle by organizing a progression 
from simple to more complex mathematics within the activity, but not providing a 
recipe or procedure for solutions. In the second example, we discussed three spe-
cific activity designs, “Where Am I?”, Parameterized Variation, and Mathematical 
Performances, each of which provides substantial structure for classroom enact-
ments but still preserves core conceptual struggles as work for students to do.

We have suggested that recent work in the SimCalc Project has benefited from 
the growing realization that much of our technology is infrastructural in character 
and requires the further design of curricular activity systems in order to yield better 
teaching and learning at scale. The two projects use different combinations of infra-
structural features and curricular design principles, making clear that there is not a 
necessary 1:1 correspondence between a representational infrastructure and a 
curricular activity system. Further, there is not a 1:1 correspondence between 
a curricular activity system and how teaching and learning is enacted in particular 
classrooms. Nonetheless, we have seen that designing a curricular activity system 
on top of an infrastructure yields enough specificity that a wide variety of teachers 
can achieve learning gains for students.

We wish to distinguish a curricular activity system from other forms of midlevel 
design. A curricular activity system is not a web-based repository of teacher-
contributed lessons. While such repositories can allow sharing of favorite lessons, 
they lack the coherent learning progression that we believe is important to strong 
mathematical growth. A curricular activity system is also not a set of lesson plans 
or a set of problems, because the design focus is on enacting a classroom activity, 
not on the content of lessons or practicing problem solving. Finally, a classroom 
activity system is not a technology application. Rather, we have found that the 
necessary system requires a mix of kinds of materials (e.g., software, paper, teacher 
guides) and kinds of processes (including teacher workshops but also forms of 
coaching and peer support) that use the technology infrastructure, but without being 
exclusively technologically reliant.

Before closing this discussion, we also note that we have focused less on the 
design of classroom practices and routines, not because we consider these less 
important but rather because we consider aspects of interventions need much addi-
tional research. We do advocate certain classroom moves, for example, asking 
students to predict what they will see before running the MathWorlds animation or 
asking students to explain their answers. In general, all aspects of the SimCalc 
Project value extended mathematical argumentation in the classroom. Overall, 
however, current research does not provide sufficient guidance to anticipate how to 
design classroom practices and routines that could scale up to larger numbers of 
teachers with bounded quantities of professional development.
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Conclusion

The central contention of our chapter has been that an advanced technology for 
learning earns its label not because it uses “advanced technology” but rather 
because it advances designs for learning. Further, we attend to scaling up as a key 
goal for advanced technology for learning. Thus, the field needs to become aware 
of features of its initial designs that may be workable at a small scale but insuffi-
cient to structure enactment by a wide variety of teachers across a diversity of 
school settings. Our work in the SimCalc program suggests that scaling up requires 
understanding the contributions of different levels of design to successful imple-
mentation. At one level, advanced technologies for learning should begin with the 
identification of new infrastructural capabilities that could profoundly alter students’ 
opportunity to learn. We have argued that these infrastructural capabilities emerge 
from the joint consideration of students’ strengths as learners, specific features of 
technology, and an epistemological quest for more productive learning progres-
sions that nonetheless honor disciplinary subject matter. At another level, advanced 
technologies for learning include the design of curricular activity systems. These 
systems specify rich mathematical tasks within a particular learning progression 
and include key supports beyond the technology that contribute to successful 
enactment. A key tension at the curricular activity system level is providing enough 
structure to make good enactments likely without detracting from a focus on con-
cepts and the opportunity for students to struggle meaningfully with important 
mathematical ideas. At yet another level, we see long-term teacher professional 
development as being dialectically coupled to the design of advanced technology 
for learning. Better enactments are certainly possible when teachers experience 
carefully designed curricular activity systems that contribute to the vitality of 
professional development experiences.

Overall, we doubt that mathematics and science education can be improved 
sufficiently through independently acting, single-factor interventions. Instead, 
compound interventions are needed and these will include elements designed at 
different levels of removal from local contexts. Infrastructure, by its very nature, 
should be designed to provide key capabilities that can be powerfully leveraged in 
ways that will offer value in many different venues over a long period. Infrastructural 
design efforts are both important and incomplete with respect to achieving deep 
educational transformation. We have identified curricular activity systems as 
another level that is somewhat removed from the specifics of each individual 
school, teacher, and student but which can provide common structures that make 
successful enactments likely. Finally, we suspect that improving teaching and 
learning will always also have a profoundly local aspect, which involves professional 
development and leadership development at the school level. Thus, we are not 
recommending an either-or approach to design, but rather that innovators recog-
nize and act more explicitly on their opportunities to create value for teachers 
and learners at multiple, overlapping levels.
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