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This chapter continues a theme explored in earlier research (Horwitz & Christie, 
2000) related to the use of a computer-based manipulative called “GenScope” for 
teaching high school genetics. The major finding from that work was that although 
GenScope proved immensely popular among both students and teachers,1 the learning 
results associated with its use were initially disappointing and only improved after 
the software was accompanied by a customized curriculum and extensive profes-
sional development (Hickey, Kindfield, Horwitz, & Christie, 2003; Hickey, Kruger, 
& Zuiker, 2003). In the present chapter we focus on the changes that were made to 
GenScope in response to these findings, and describe research and development 
efforts toward and with a “new and improved” version of the software called 
BioLogica. One of the main thrusts of the research we report on here has been the 
addition to GenScope of logging tools that enable us to: (1) monitor students’ 
actions, including but not limited to their answers to embedded assessment ques-
tions, and (2) analyze them to make inferences concerning their content knowledge 
and model-based reasoning. The results of these fine-grained analyses were mainly 
used to inform our research, but in future could form the basis for timely, insightful 
reports on student learning, targeted for teachers and students, respectively.
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The GenScope Project (Horwitz, Neumann, & Schwartz, 1996; Horwitz, Schwartz, 
& Neumann, 1998; Hickey, Kindfield, Horwitz, & Christie, 1999; Horwitz & Christie, 
2000; Hickey, Kindfield et al., 2003) developed a computer-based model of 
inheritance genetics consisting of six interacting levels representing, respectively, 
DNA, chromosomes, cells, organisms, pedigrees, and populations.2 The levels are 
linked so that changes made at any one of them will affect the others as dictated by 
the underlying genetic model. Thus, a change at the DNA level (i.e., a mutation) 
will usually3 create a new allele that, alone or in combination with a similar allele 
on the homologous chromosome, may give rise to a new phenotype, thus affecting 
not only the chromosome and cell levels, but the organism level as well. The new 
phenotype, in turn, will be inherited in a stochastic but deterministic way that can 
be studied at the pedigree level, and the new allele may or may not prove adaptive 
in a given environment, which will govern its subsequent increase or decrease in 
frequency at the population level.

GenScope provides a powerful and extensible model of genetics,4 but it lacks 
explicit pedagogical guidance. For example, one study tested it using three high school 
classes: a traditionally taught class that served as the control group, and two GenScope 
classes, one in which the students exclusively used GenScope, and one in which the 
students used GenScope less intensively, but added a set of pencil-and-paper activi-
ties to the treatment (for a review of this study see Hickey, Kindfield et al. (1999)). 
Both GenScope classes outperformed the traditional class on the posttest, but the 
GenScope class that also did the paper-and-pencil instructional activities outper-
formed the GenScope-only class. These and other findings highlighted the need for 
a system that would include instructional activities with the software, guiding 
students’ interactions with the genetics model, posing questions, and making 
explicit the connections between the behavior of the computer model and corre-
sponding real-world processes.

In addition, our experience with GenScope led us to believe that the software 
might be designed to interpret and react to students’ actions using context-sensitive 
algorithms, thereby providing individualized instruction. With this as a starting 
point, we were able to formalize the components and characteristics that would be 
needed in a more adaptive program. Two key features of such a system are:

•	 Student feedback. The students should receive context-sensitive assistance from 
the software, so that they need not rely entirely on the teacher, either to help 
them use the software effectively or to guide them to draw appropriate conclusions 
from their investigations.

2 The population level was not used in the research described in Horwitz and Christie (2000).
3 So-called silent mutations, which do not alter the encoded sequence of amino acids, have no 
effect in GenScope or in the real world.
4 The model includes recombinant processes – such as crossing over between homologous chro-
mosomes during meiosis – as well as interspecific interactions such as predator–prey and competitive 
relationships.
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•	 Teacher feedback. The teacher should receive feedback about the students’ use 
of the software in order to identify who is “getting it” and who is “stuck.” This 
is important because it is difficult even for an exceptionally well-prepared 
teacher to determine what each student in the class is doing during online learning 
activities and to react accordingly.

Addressing these issues required us to depart from the open-ended discovery 
approach underlying GenScope in favor of explicitly scaffolding students’ learning 
activities (more on this later). In order to accomplish this goal, we created an infra-
structure that monitored students’ actions and reacted to them in real time. By logging 
and subsequently analyzing these actions, we were able to create reports from the 
formative and summative interactive assessments for use by the researchers. Only 
limited reports, consisting primarily of students’ answers to embedded assessment 
questions, were available to teachers. The technology required to do both the scaf-
folding and the assessment is what we have come to call a “hypermodel.”

Hypermodels

Hypermodels (Horwitz et al., 1996) occupy a position in the educational technology 
spectrum somewhere between the highly linear, explicitly didactic approach char-
acterized by the term “computer-assisted instruction” or CAI (Suppes, 1969; 
Steinberg, 1977; Kinzie, Sullivan, & Berdel, 1988), and the more open-ended, 
student-centered technologies often termed “constructivist” (Magoon, 1977; Papert, 
1980; Driver & Oldham, 1986; Blais, 1988). The development of hypermodels was 
motivated by perceived drawbacks at the two extremes. CAI technologies, though 
they have been demonstrated to be effective in enhancing procedural skills, are less 
successful at teaching higher-order thinking and eliciting students’ mental models 
(White & Frederiksen, 1998). On the other hand, the research literature has shown 
that students who use open-ended constructivist tools with little or no structure may 
become proficient in using the tool, but they often fail to convert that success 
into deep understanding of the subject domain (Horwitz 1999; Horwitz & Christie, 
2000; Hickey, Kindfield et al., 2003; Hickey, Kruger & Zuiker, 2003; Kirschner, 
Sweller, & Clark, 2006).

Hypermodels are intended to respond to the demands placed on teachers when 
they use open-ended inquiry tools like GenScope. These demands often present 
significant barriers to the successful implementation of such technologies in real 
classroom settings. Although open-ended applications such as GenScope often 
“demo well,” the practical difficulties of using them in the classroom may over-
whelm the teacher, who must keep track of what students are doing, guide them 
through difficulties, encourage and praise them when they succeed, and help them 
reflect on the broader significance of what they are doing (Aulls, 2002).

As previously stated, hypermodels are designed to alleviate these problems by 
combining the best aspects of the CAI and constructivist approaches. Properly 
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used, they give students the freedom to engage in open-ended investigations, while 
monitoring their actions and reacting to them in contextually meaningful ways – 
offering suggestions, asking questions, and using text or multimedia materials to 
link the computer activities to real-world analogs. Hypermodels integrate text, 
audio, animations, or video materials with a manipulable model of the subject 
domain, using each medium as a tool for navigating the other. The association with 
“hypertext” is intentional: just as clicking on a word, phrase, or graphic serves to 
navigate through a website, students’ manipulation of a computer-based model can 
be used to navigate in an interactive model-based inquiry environment – triggering 
the presentation of a video clip, for instance, or bringing up a relevant question. In 
turn, students’ answers to questions or choices of multimedia presentations can 
affect the configuration of the model.

Hypermodels are scriptable by curriculum developers and researchers, and thus 
provide a flexible tool for the creation of a wide variety of activities that can chal-
lenge students to solve problems, and then monitor and react to their actions. The 
activities structure students’ investigations of a domain and offer metacognitive 
prompts as well as links to real-world science at appropriate “teachable moments.”

Since hypermodels monitor students’ interactions with the learning environment, 
they can also log them. The raw data produced by this process is too fine-grained to 
be of immediate practical use, but it can be analyzed and summarized so as to 
produce insightful progress reports for teachers, researchers, and the students them-
selves. We use these data to assess students’ understanding of the subject matter, as 
well as to provide indices of their model-based inquiry within a domain. Logging 
students’ data in this way provides researchers with a “bird’s eye view into the black 
box” (Gobert, 2005), permitting a different lens on human learning than think alouds 
(Ericsson & Simon, 1980), which are often used to “get at” real-time learning pro-
cesses. Logging students’ interactions in this way provides us a trace of what 
students are doing without the face validity problems that can be encountered when 
using think aloud protocols (Nisbett & DeCamp Wilson, 1977). Additionally, logging 
complements think aloud protocols in that the two sources of data can be triangulated; 
in fact, early in the design phase of BioLogica, think aloud protocols were collected 
as indices of what the students were thinking as they proceeded through the activi-
ties. Think aloud data provided us some critical information about what scaffolding 
would be needed for students.

The first hypermodel we produced, and the one to be described in this paper, was 
BioLogica, a scriptable version of GenScope written in Java so as to run on the 
Windows, Macintosh, and Linux operating systems. In contrast to GenScope, 
BioLogica was designed as a more tightly scaffolded sequence of activities designed 
to teach students about Mendelian genetics through their interactions with the soft-
ware. This scaffolding was intended to not only improve the students’ model-based 
learning (Gobert & Buckley, 2000), but also to strengthen their inquiry skills in the 
context of their exploration of the underlying genetics model. Next we describe in 
more detail the theoretical framework underlying our activities and scaffolding.
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Theoretical Framework: Model-Based Learning

The theoretical framework that guided the development of BioLogica activities and 
the scaffolding implemented in the Modeling Across the Curriculum (MAC) 
project stems from a synthesis of research in cognitive psychology and science 
education. As shown in Fig. 3.1, model-based learning (MBL) is a dynamic, recur-
sive process of learning by constructing mental models (Gobert & Buckley, 2000). 
In the MAC project, it occurs through the interaction with the hypermodels of each 
domain. Model-based reasoning (MBR) involves the formation, testing, and rein-
forcement, revision, or rejection of mental models during interaction with hyper-
models and other representations. MBL requires modeling skills and reasoning 
during which mental models are used to create and/or understand representations, 
generate predictions and explanations, transform knowledge from one representa-
tion to another, analyze data, and solve problems. It is analogous to the hypothesis 
development and testing observed among scientists (Clement, 1989).

In the classroom many factors influence the learner’s mental models including 
characteristics of students and teachers such as their understanding of the nature of 
scientific models (Justi & Gilbert, 2002; Lederman, 2006; Gobert, O’Dwyer, 
Horwitz, Buckley, Levy, & Wilensky, revisions submitted). We now discuss evi-
dence that students’ use of hypermodels such as BioLogica can provide important 
information about both classroom usage and student learning.

Using a progressive model-building approach (White & Frederiksen, 1998), we 
developed 12 BioLogica activities that guide students through interaction with 
basic models of meiosis and fertilization and progress through increasingly elabo-
rate models of inheritance.

Fig. 3.1 Model-based learning framework
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Scaffolding Model-Based Learning

In the MAC project we formalized the scaffolding that guides feedback to students. 
General scaffolds are based on a large research base in educational psychology and 
include: (a) advance organizers to evoke prior knowledge and provide students with 
a structure to fill in the concepts, (b) orienting tasks to give the student a cognitive 
goal for the task, (c) post organizers to encourage students to reflect on and concretize 
what they have just learned, and (d) a glossary of terms.

We implemented five model-based scaffolding elements to support the knowledge 
acquisition and reasoning required for progressive model-building (Gobert, Buckley, 
& Clarke, 2004).

•	 Representational assistance to guide students’ understanding of representations 
or domain-specific conventions.

•	 Model pieces acquisition to focus students’ attention on the perceptual compo-
nents of the representations and to support their learning of one or more aspects 
(spatial, causal, functional, temporal) of the phenomenon or process under study.

•	 Model pieces integration to help students combine model components in order to 
come to a deeper understanding of how they work together as a causal system.

•	 Model-based reasoning to guide students’ reasoning with their models.
•	 Reconstruct, Reify, and Reflect to encourage students to refer back to what they have 

learned, reinforce it, and then reflect to move to a deeper level of understanding.

Scaffolding of each type was implemented in the form of questions, assigned 
tasks, or explanations that focused on a phase of model-based learning, followed by 
feedback. The nature of the feedback varied according to the pedagogical purpose 
of the scaffolding. For example, we sometimes taught learners how to check their 
own answers, and we also used students’ actions or answers to tailor the feedback 
that they received.

Activity Description

In all, we developed 12 BioLogica activities. Here we present a detailed description 
of the introductory activity. The remaining activities are described briefly in the 
appendix to this chapter.

The first activity in the BioLogica sequence is intended to introduce students to 
the idea that observed differences among organisms may be due to their genes. As 
we did with GenScope, we illustrate this and other concepts using dragons as a 
fictitious species.5 The introductory activity starts off with a blank screen and just 
two buttons: one for creating male dragons, the other for creating females. Once the 
students have created their first dragon, they are asked to describe it, and then to 
make enough additional dragons to fill up the screen. BioLogica’s dragons can dif-
fer in several ways: presence or absence of horns or wings, shape of tail, number of 
legs, color, and ability to breathe fire among others. These physical traits (which 
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represent the dragon’s phenotype) are randomly chosen each time a dragon is cre-
ated, so the dragons on the computer screen tend to look quite different from one 
another. The students are asked to describe these differences. They are then intro-
duced to some vocabulary, following which they are requested to “Click a dragon 
to see that dragon’s genotype.” (See Fig. 3.2.)

The students are then shown representations of chromosomes as box-like objects 
with lines drawn across them to represent the locations of genes. This depiction of 
chromosomes is common in biology textbooks and is intended to represent the 
linear nature of the DNA molecule that is at the core of the chromosome. 
BioLogica’s chromosomes differ from the ones in the textbook, however, as they 
are “active”: that is, one can alter the form of their genes and immediately observe 
the effect of the change, if any, on the organism. Most of the genes in the fictional 
dragon genome are actually modeled on those Mendel investigated in his famous 
pea experiments. They come in only two variants, or “alleles,” and these combine 
according to Mendel’s First Law.6 The students are not told this, however. Rather, 
they are led to uncover this pattern, as well as the more complicated patterns of the 
other genes, by direct experimentation.7 Once the students have made a certain 
number of changes in their dragons, BioLogica takes them back to the screen where 
they made the original eight dragons. It requests that they click on a dragon of the 
opposite sex, monitors to make sure they have done so, then puts up a new screen 
in which the students can compare the chromosomes of the two genders of dragon, 
and discover for themselves the differences between them.

After some questions and simple tasks, this introductory BioLogica activity 
eventually challenges the students to match their manipulable dragons to a “target” 
dragon of fixed phenotype. We explicitly chose not to mention that this can only be 
done with one of the dragons (because male and female dragons are different col-
ors), but instead allow the students to uncover this fact independently.

All data collected by a BioLogica activity (which, in addition to students’ 
answers to questions, can include the number of times they change a gene from one 
allele to another, or whether or not they examine the chromosomes of a particular 
organism using the “chromosome tool”) is stored and made available for research. 
It is very easy, for example, to administer pre- and posttests in this way and to col-
lect and score the data automatically. Indeed, from a software point of view, the 
assessments that were administered to the students were simply BioLogica activi-

5 We use dragons for two reasons: (a) since everyone knows that they are imaginary, we can simplify 
their genetics without doing violence to the complexity of real organisms, and (b) by avoiding 
even a vague reference to real organisms (e.g., humans), we are able to postpone discussions of 
ethical and legal issues until the students have learned the science underlying them.
6 One of the alleles is “dominant,” the other “recessive.” If an organism inherits one or two copies 
of the dominant allele it will exhibit the dominant trait; if it has two copies of the recessive allele 
it will exhibit the recessive trait.
7 Note that this kind of computer activity is not a “simulation”; that is, even if one could alter an 
organism’s genes, one would not expect the organism itself to react to the change.
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ties consisting entirely of questions, which were made to look just like traditional 
paper-and-pencil items. It is important to note that for all BioLogica activities, 
answers to open-response questions are not parsed or analyzed in any way by the 
computer. The reason for including such questions, therefore, is not to influence 
future actions on the part of the computer, but to give students a chance to explain 
their state of knowledge, and to encourage them to reflect on what they have learned. 
All freestyle answers to essay questions are recorded by BioLogica, however, and 
made available to the teacher (as well as to researchers). This enables the answers 
to be evaluated and used as a component of the student’s grade.8

Throughout all the BioLogica activities, we scaffolded students’ interactions 
with the hypermodels as they worked their way through increasingly complex 
tasks. Within each activity we faded the scaffolding as they progressed. In the fol-
lowing section we describe the technological infrastructure underlying BioLogica, 
which permits fine-grained monitoring and logging of students’ interactions within 
the activities.

Fig. 3.2 A screen shot from the Introduction activity
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Technological Details

To understand how a hypermodel works, it is helpful to take a look at the structure 
of the software itself. Hypermodels consist of three separate software layers 
embedded in an architecture designed to separate functions relating to domain con-
tent from more general ones relating to pedagogy (see Fig. 3.3).

At the lowest level of the hypermodel architecture is the domain content engine. 
This consists of a set of loosely coupled components, or views, which may be com-
bined and integrated in a variety of ways. For instance, in the BioLogica hypermodel 
described above, the chromosome view and the organism view share a common 
database that contains, among other things, the genotype of every organism created 
so far. One of these views uses this information to display alleles on chromosomes, 
whereas the other, operating with a set of built-in rules, determines and displays the 
phenotype of each organism. Manipulations performed in the chromosome view that 
change a gene, say from a dominant to a recessive form, will be reflected, as appropriate, 
as changes in an organism’s phenotype, represented in the organism view by, for 
example, the presence or absence of horns on a graphic of a dragon. Each view in 
BioLogica is implemented as a Java class, and each is capable of saving its state 
using the XML markup language. BioLogica’s views are purposely kept quite simple. 
They are incapable of operating independently, but must be placed on the screen and 
configured by the next level up in the hierarchy, Pedagogica.

Pedagogica, as the name suggests, handles all things pedagogical. It is responsible 
for all interface details, including the placement of text boxes, buttons, and domain 
engine views in various locations on the screen. Pedagogica also controls the flow 
of an activity by shifting from one set of views to another in response to student 

Fig. 3.3 Architecture of a hypermodel

8 Without such formal accountability, we have found, students tend to ignore both the question and 
the answer.
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actions. Pedagogica can set up “listeners,” which are software agents that monitor 
views and other objects, and report at runtime on changes in their contents or prop-
erties. This enables the software, for instance, to react whenever a new organism is 
created, or when the student selects a gamete for fertilization. Since Pedagogica can 
communicate with the student through graphics and text, curriculum developers can 
use it to pose multiple-choice, survey, and open-response questions. It also controls 
the collection and storage of data, maintains and controls access to student records, 
and manages the registration and login functions.

Pedagogica is itself controlled by the third software layer, the scripting layer, 
which has the job of interpreting short scripts written in the Javascript language. 
These scripts implement the activities that the students actually see and interact 
with. They introduce the subject matter and configure the domain content engine 
appropriately (for instance, presenting two “parent” organisms with particular 
genotypes). They then monitor the students’ actions, reacting to them as appropri-
ate, and communicating occasionally with the students as they proceed with their 
investigations.

Processing Log Files to Support Research

The BioLogica hypermodels enabled not only just-in-time feedback to students as 
they worked through instructional activities, but also multilevel, longitudinal 
classroom-based research of student learning. The log files generated when students 
used BioLogica activities provided evidence about how BioLogica was used in 
classrooms as well as about students’ developing knowledge and inquiry skills.

In order to do this, we first had to be sure that the data from which we were gen-
erating inferences and conclusions were accurate representations of what students were 
doing as they used BioLogica. This was accomplished by a series of verification and 
reduction steps, beginning with the comparison of log files with video of the com-
puter screen recorded as students used the learning activities (Buckley et al., 2004). 
After we were certain that the log files accurately captured student actions and 
answers, we began the process of reducing them to forms and formats that were use-
ful for reporting data to teachers and for importing data into a statistical package.

By creating activities with objects that automatically logged the same types of 
data each time they were used, we were able to structure the log files to support the 
data reduction algorithms used to make them useful for teachers and researchers. 
Each session generated hundreds of pages of raw log files, which would have been 
intractable were it not for the XML tags used to structure the output. Fig. 3.4 pro-
vides an excerpt depicting the data from a student crossing two dragons while looking 
at the wings pedigree.

As can be seen, data in this form are difficult to read, but can be used to verify 
accuracy. To provide a more accessible format, we processed the raw logs to pro-
duce a chronological report of the student’s actions and answers. The example 
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shown in Fig. 3.5 is the same cross shown in the raw log. This format is much easier 
to read and compare to student actions.

The report provides information in a useful form concerning a single student 
working on a single activity. In order to compare student performances on the same 
activity, we integrated chronological reports across students to produce a summary 
report like the one shown in Fig. 3.6 in which each student’s use of an activity is 
reported in a single row in a table. The excerpt shown includes data about one task 
(T4) during which the student successfully completed the task by performing three 
crosses in 11.3 min. The excerpt also shows the autoscoring of student performance 
(T4cat) and the student’s use of the various tools available for completing the task.

We also generated statistical reports that contained similar information about 
each student’s interaction with each learning activity, but aggregated all of a stu-
dent’s sessions with one activity into one record. Statistical reports concatenated all 
answers and applied the autoscoring algorithms to the aggregated actions.

All of these various data reductions and report formats were useful in developing 
the algorithms for autoscoring and summarizing student actions, and for verifying 
the accuracy of the statistical records. As shown in Fig. 3.7, each raw XML file was 

Fig. 3.4 Example from raw log file depicting data from one cross
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parsed to produce a concise report (the chronological file of student actions and 
answers). After carefully analyzing 6–12 concise reports, we created specifications 
for generating summary records from the raw XML files. To verify that the sum-
mary records were accurate, we compared the summary records of a different set 
of 6–12 logs to their corresponding concise reports. We found that students often 
took unpredictable actions that our original specifications did not adequately 
address. At this point, we corrected any errors in the specifications and in the summary 
report generator. We then analyzed the summary reports for students who had used 
an activity more than once, in order to develop specifications for how to aggregate 
their records to reflect the nature and extent of their interaction with a given activity. 
Pretests and posttests were treated as special cases because their purpose was to 
measure the students’ knowledge and understanding at a given point in time, rather 
than to document their learning process.

We also created an implementation report generator that calculated for each 
student the gap (in days) between their last activity use and when they took the 
posttest9 as well as what percentage of the core activities they had used. We used 
this report to calculate each student’s BioLogica “dose.” We averaged these by class 
as needed for statistical analysis. For a more complete description of the decisions 
that went into the development of summary and statistical records, please see 
(Buckley et al., 2004; Buckley, Gobert et al. (in press)).

Fig. 3.6 Excerpt from Summary Report summarizing student performance on Task 4

Fig. 3.5 Excerpt from Chronological Report depictingv the same cross shown earlier

9 Early in the implementation we found that some teachers delayed administering the posttest until 
they were reminded that they would not receive their stipend for the year until we had their data.
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Fig. 3.7 Log file reductions and verification

Analyses Enabled by Logging Infrastructure

With the data available through the logging infrastructure, we conducted analyses 
that ranged from how many schools, classrooms and students were using our activities 
on any given day to what, for example, Student 32653 did when working on Task 
2 in Monohybrid.

In the Modeling Across the Curriculum (MAC) project over the course of 3 
years and three domains we collected log files generated by the work of 8,342 stu-
dents in 411 classrooms in 61 schools taught by 146 teachers worldwide. For 
BioLogica alone we analyzed data from over 1,200 students in 54 classrooms. Due 
to the popularity of GenScope, we collected data from schools outside the group of 
recruited and supported member schools. Seventeen classrooms, comprising 573 
students, were classified as Contributing Classrooms, which were classrooms 
whose teachers downloaded the software from the website, installed and used it 
with only minimal support from project staff. This very clearly demonstrated the 
scalability of the Modeling Across the Curriculum project.

We also implemented data quality criteria against which to judge the data 
included in our final analyses. For example, we excluded classrooms in which 
fewer than 50% of the class took both the pretest and posttest, reasoning that the 
data collected in such classrooms were unlikely to be sufficiently representative of 
the class as a whole. We also excluded logs that were less than 5 min in duration, 
on the basis that such a short time does not constitute a learning activity.
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Learning Gains Versus Implementation Variables

We confined our exploration of student learning gains as a function of implementation 
variables to evidence that could be obtained by sifting through the massive amounts 
of log file data available. We considered time on task, but found that criterion to be 
a reliable indicator only in carefully controlled situations. For example, there are 
instances in which the student walks away from the computer without quitting the 
application and the log file isn’t closed until the next time the computer is used 
(possibly as long as over the weekend). There are also the usual variations due to 
students’ reading skills or stopping while a teacher talks; these are factors that we 
cannot tease out of our data.

Many iterations regarding how to conceptualize implementation variables in this 
context resulted in our adopting the following variables:

The percentage of the core (nonoptional) activities used by a student for at least •	
5 min (referred to as %Core).
Length of the intervention (referred to as •	 LOI); calculated by subtracting the 
pretest date from the posttest date.
Number of calendar days that elapsed between the last instructional activity used •	
and the posttest date (referred to as PostTestGap).
Time spent with instructional activities (referred to as •	 netLOI); calculated by 
subtracting the PostTestGap from the LOI.

These variables were computed for each student, and their means and standard 
deviations were computed for each class. Subsequent analyses were done using 
these as predictor variables in order to better understand learning gains. Note that 
as the predictor variables are related to each other and therefore not independent, 
they were entered in the regression models individually.

In Table 3.1, we display the averages for the classes in which students achieved 
significant gains and those classes in which students did not.

From this table, it appears that successful classes used more activities over a 
longer period of time. Since students were clustered within classrooms, a traditional 
OLS regression approach would likely underestimate the standard errors associated 
with the regression coefficients and therefore increase the Type I error rate 
(Raudenbush & Bryk, 2002). We estimated this clustering effect by calculating the 
intraclass correlation coefficient (ICC) and found that approximately 50% of the 
variability in the posttest scores existed between classes. To account for this effect 
we constructed hierarchical linear models using data from 684 students clustered 
within 37 classes and including a random class effect.

Although some teachers taught more than one class, we had insufficient statisti-
cal power to estimate the variability between classrooms within teachers. Out of the 
16 teachers who had their students interact with the hypermodels, four taught one 
class, six taught two classes, three taught three classes, and three taught four 
classes. Although there is a chance that the confounding of the variability among 
classes within teacher could contribute to biased estimates of the standard errors for 
the regression coefficients, we expect this effect to be negligible.
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Upon running multiple regressions, we found that the pretest scores accounted 
for 28.22% of the variance in the posttest scores. Holding pretest constant, %core 
activities accounted for an additional 10.83% of the variance in the posttest scores 
(see Table 3.2). Neither PostTest Gap, LOI, nor net LOI were significant predictors 
of posttest performance, nor did they account for any more of the variance in the 
posttest scores after holding the pretest scores constant.

Since all of our data is collected automatically and online, we are able to conduct 
large-scale research involving potentially tens of thousands of students.10 The only 
issue limiting the scale of the research is the necessity for assuring adequate fidelity of 
implementation across multiple sites that are geographically remote from one another. 
The data reported so far pertains to such fidelity and involves classroom-grained 
variables. However, as we will see in the following section, hypermodels also support 
research at a very small grain size, but still involving very large numbers of students.

Performance Assessments: Information Inferred from Actions

We illustrate this type of research by describing one task in Monohybrid, a core 
activity that is crucial to understanding monohybrid inheritance and Mendelian 
genetics. Monohybrid Task 2 is an embedded, formative assessment that enables us 
to determine whether students:

1. Hold the naïve view of genetics that “like begets like,”
2. Can complete a Punnett square,
3. Know the allele combination that produces dragons with two legs, and
4. Can use the Punnett square to estimate the number of two-legged offspring that 

result from breeding a pair of two-legged parents.

In Task 2 (see beginning screen in Fig. 3.8), we present students with a pair of 
two-legged dragons represented by the half-filled square and circle at the top of 
the window. Note that the cross tool is grayed out, indicating that it is inactive. We 
ask students to predict how many legs their offspring will have when they use the 
cross tool (represented by an X) to breed the two parent dragons. As they have 
previously learned, they can use the cross to breed dragons: selecting it and drag-
ging from one dragon to another of the opposite sex. This opens up a “family tree” 
representation with a predetermined number of offspring generated by the content 
engine according to the rules of inheritance. When students have made a predic-
tion they are required to fill out a Punnett square11 correctly, accessing a tutorial if  

10 The MAC Project ultimately involved over 8,000 students, spanning three different science 
disciplines.
11 A Punnett square is a representation of a cross between two organisms. In its simplest form it 
consists of a two-by-two matrix representing all possible combinatorial outcomes involving the 
transmission of a single gene with two alleles from parents to offspring.
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needed. Students are then asked to identify which cells of the completed Punnett 
square correspond to offspring with two legs and to use that information to estimate 
the number of two-legged offspring resulting from the crossing of two-legged 
parents. At that point the cross tool is enabled and students are directed to use it 
to check their predictions against model-generated “experimental” data.

As students proceed through this task the hypermodel logs their prediction (multiple 
selections are possible), how many times they fill in the Punnett square and the 
alleles they enter for each attempt, how many times they try to select the correct 
alleles in the Punnett square and the alleles in the cells they select, their estimate of 
the offspring that will be produced, and whether they thought their prediction was 
borne out by the data generated when they crossed the dragons. This gives us con-
siderable data regarding the nature of their initial predictions and their procedural 
knowledge for various inquiry skills, including interpreting their data.

In principle, these data enable us to provide information to teachers about their 
students’ performances on this task. However, since the data analysis was not complete 
at the time of implementation, such reports were not actually produced in real time, 
though they were eventually made available to researchers. Table 3.3 provides an 
example of how the top level of such a report might appear. It shows the distribution 
of students by response or number of tries. Note that in the prediction column both 
the naïve and correct responses are marked. What this table tells the researchers is 

Fig. 3.8 Task 2 opening screen. The half-filled circle and square represent, respectively, a 
two-legged female and a two-legged male dragon. The icons along the left side represent, from 
top to bottom, the selection tool, the cross tool, the snip tool (used to delete unwanted organisms), 
and the chromosome-observing tool
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that the prediction question has a difficulty level of 0.50 since 50% of the students 
got it right, but that 25% of them still hold the naïve conception that “like begets 
like.” The remainder of the task shows us that a high percentage of the students 
have mastered the procedural skills necessary for the tasks that follow this one. 
A teacher given such a report on the web could double-click on the responses or 
number of tries indicating students having difficulty and get a list of those students 
for follow-up intervention.

For teachers’ grading and our statistical analyses, student performances were 
also autoscored according to a rubric that allotted points for correct answers and 
completing the Punnett squares tasks with few attempts. We examined the relation-
ship between performance on Task 2 (Predict) as represented by the Task 2 score 
and performance on the other Monohybrid tasks (3 and 4) and on the posttest (holding 
the pretest constant). Task 3 (Produce) asks “what parental genotypes would result 
in all the offspring having two legs?”, requiring students to reason from effect to 
cause. Students must set the genotypes of the parents, breed them, and check the 
result. Task 4 (Skip) is an unscaffolded transfer task that asks the students to dem-
onstrate the genetic mechanism that causes traits to appear to skip a generation, 
requiring that students reason over three generations.

Based on data from students who used the Monohybrid activity in 2005–2006 
(including those who took both the pre- and posttests), we conducted correlations 
and found that all three tasks were weakly but significantly correlated with total 
pretest scores; additionally, Task 2 scores were significantly correlated with both 
Task 3 and Task 4 scores (Table 3.4). Further analyses are underway to examine the 
relationships between these three tasks (Buckley et al., in press).

Table 3.3 Report designed for teachers and researchers
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Ba  64 25% 2 9 2 5 B 14
C  10  4% 3 3 3 29 Cb 197
CA  1  0% >3 25 4 3 D 14
CB  13  5% 5 6 E 6
CBAb 127 50% >5 11
BA  34 13%
Total ans 

wers
252 242 247 241

Item difficulty 0.50 0.85 0.78 0.82
aNaïve conception
bCorrect answer
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As shown in the above analyses, students’ interactions with hypermodels provide 
fine-grained data that can be analyzed so that researchers can examine the inquiry 
performances of individual students in a sophisticated way, as well as do this on a 
large scale. Additionally, teacher reports can both summarize and describe the per-
formances of their students, and data can be aggregated to provide large-scale 
measures for administrators and policy makers.

Limitations of This Work

One of the goals of the MAC project was to provide reports on students’ progress 
to the teachers in real time. We succeeded in doing this for the embedded question-
and-answer assessments, however, the analyses and autoscoring of students’ perfor-
mance data was not complete in time for us to provide performance assessment data 
to teachers. For example, we were not able to point out to them, the students who 
consistently filled out Punnett Squares incorrectly, or made aimless crosses in the 
Invisible Dragons task. This was unfortunate because, as we have seen, perfor-
mance data from specific tasks such as these turned out to be predictive of students’ 
posttest learning. There remains an empirical question as to the level of teacher 
professional development that would have been necessary in order for teachers to 
benefit from these performance reports. Some potential barriers and/or difficulties 
here are: implementing inquiry-based activities into instruction (de Jong et al., 
2005), and tailoring instruction for individual students (Fadel et al., 2007). 
Providing teachers with inquiry tasks that are scaffolded for student use, as we did 
with BioLogica, could potentially alleviate implementation difficulties – in fact, 
these were designed for this purpose. Simply providing performance assessment 
reports about students’ learning is likely not enough support for teachers to tailor 
instruction for individual students, rather, these provide a necessary but not suffi-
cient condition for teachers to determine what individual students need. Below we 
describe some recent work that may address these difficulties.

One of the most frustrating limitations of the BioLogica software initially was 
that the computer did not store and recall from one session to the next where the 
student was in an activity. Thus, at the end of a class period students who had not 
completed an activity would not be able to save it, and would be forced to start it 

Table 3.4 Correlations among total pretest scores and task scores

Total score 
pretest

Task  
2 – predict

Task  
3 – produce

Task  
4 – skip

Total score pretest 1.00 – – –
Task 2 – predict 0.29a 1.00 – –
Task 3 – produce 0.29a 0.56a 1.00 –
Task 4 – skip 0.24a 0.34a 0.31a 1.00
a Correlation is significant at the 0.01 level (two-tailed)
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at the beginning the next time they logged on. During the course of the MAC 
Project we were able to provide a partial solution to this problem by breaking the 
activities up into short, semantically meaningful chunks and enabling students to 
navigate directly between these. But the inability to “save state” was nevertheless a 
constant source of annoyance to students and teachers alike. We continue to work 
on this issue in our current research.

Finally, there is the issue of scalability. As a standalone application, BioLogica is 
relatively easy to install,12 though it does require the prior installation of Java 1.4 or 
higher in order to run. However, in this mode the user receives few of the benefits of 
the data logging that have occupied so much of the foregoing discussion. True, the 
versions of BioLogica activities that we have put up on the server do create reports 
automatically whenever the user quits them, but these reports must be separately 
saved and retrieved, and their results are difficult to aggregate across multiple students 
or multiple activities. One reason for this is that when it runs as a standalone activity, 
BioLogica cannot take advantage of a server to use as a central repository for data.

Another, more fundamental, problem arises from the fact that in order to pro-
duce aggregated data across students, BioLogica must have access to those stu-
dents’ identities. If we are to produce a report that summarizes how an entire 
Biology class is doing, for instance, the students in that class must be recognizable 
entities to the software that produces and analyzes the data. This implies that each 
student must have a unique account that is accessible to the software. If the reports 
are to be used to give the students a grade, then they must be continually backed up 
and protected against vandalism and fraud. The difficulty of supporting such a 
complex data storage and retrieval process exceeds the resources of all but the most 
technologically advanced schools.

Next Steps

One of the major goals of our future work will be to “close the loop” by giving 
teachers the kind of detailed and insightful information that the MAC research team 
was only able to glean after months of careful analysis. Researchers at the Concord 
Consortium have started work on a 5-year project, funded by the National Science 
Foundation, called “Logging Opportunities in Online Programs for Science,”13 
which is creating timely, valid, and actionable reports to teachers based on logs of 
student actions generated in the course of using online curriculum materials. These 
reports will enable teachers to make data-informed decisions about alternative 
teaching strategies. An important goal of future research is to observe how teachers 
integrate such reports into their practice.

12 Versions for Windows and MAC OS computers are available for free download at http://mac.
concord.org/downloads/.
13 NSF Project # 0733299.

http://mac.concord.org/downloads/
http://mac.concord.org/downloads/
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One of the unavoidable consequences of moving from an open-ended, constructivist 
technology, as typified by GenScope, to the more tightly structured and scaffolded 
BioLogica activities is that, in their present form at least, the latter cannot easily 
adapt to individual students. Some students demand more structure than others, 
some are intimidated by a challenge that requires them to explore new territory, 
while others become bored when told step by step what to do. One solution to this 
problem would be to create several alternative versions of each activity and to leave 
it up to the teacher and/or the student to decide on which one to choose, or to 
modify the activity in real time as new performance is acquired. Such an approach 
might ultimately result in the creation of a technology capable of dynamically cus-
tomizing itself to suit students’ individual needs and desires. For instance, one can 
imagine an adaptive activity that starts out highly structured and then strips off its 
scaffolding progressively in response to student actions indicating increased under-
standing and self-confidence. The Science ASSISTments projects are developing 
assessments for science inquiry that both instruct and assess14 (Gobert, Heffernan, 
Ruiz, & Kim, 2007; Gobert, Heffernan, Koedinger, & Beck, 2008). The assessment 
modules will examine students’ log files to detect such “buggy” inquiry behavior 
as repeating trials or moving further from the target goal. The system is being 
designed to provide teachers with feedback as to their students’ inquiry skills, as 
aligned to the NSES inquiry standards (National Research Council, 1996), as well 
as to intervene and tutor students on inquiry skills in real time.

Before such advances can be practical in educational terms, however, the pro-
cess of creating sound educational activities must be simplified. It will never be 
trivial to design educationally effective curriculum materials, regardless of their 
technological basis, but the development of hypermodels such as those we have 
described requires a knowledge of programming far exceeding that of most teachers 
or curriculum developers. This severely limits the pool of potential designers of 
hypermodel-based curriculum. With this limitation in mind, the Concord Consortium 
has been experimenting with several alternative authoring environments that we 
expect will someday replace the cumbersome and obsolete Activity Construction 
Editor that forms part of Pedagogica. For example, the Technology Enhanced 
Learning in Science (TELS) Center, a joint project between Concord Consortium 
and the University of California at Berkeley, has worked on a Scalable Architecture 
for Interactive Learning (SAIL) a software environment that, when fully imple-
mented, will support reuse and adaptation of interoperable components, making it 
possible to implement interactive curriculum and assessments by working at a very 
high level (Slotta, 2010).

The Concord Consortium’s Molecular Workbench (MW) tool (http://mw.con-
cord.org) is an example of an easily authorable environment. MW models can be 
embedded in a browser-like environment that links them to other interface objects 
like text boxes and buttons. A simple but increasingly powerful scripting language 

14 The terms “Assistments” was coined by Ken Koedinger for the Math Assistments program that 
was developed by him and Neil Heffernan.

http://mw.concord.org
http://mw.concord.org
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enables an activity author to configure various aspects of the MW model, and offers 
a modest degree of runtime control. Another authoring environment produced by 
Concord Consortium, called DIY (for “Do It Yourself”), generalizes similar capa-
bilities to other educational affordances, such as probeware and third-party interac-
tive applets. We anticipate that all these different technologies will be integrated 
within a few years, making it possible for nonprogrammers to create complex and 
engaging curriculum activities and interactive assessments.

Lastly, none of the technologies discussed in this paper provide direct support to 
students for collaborative work. It would have been very helpful in the MAC 
Project, for instance, if students could have shared their activities as they were 
working on them. This would have enabled them to show their work to each other 
and to ask each other for help when needed. It would also have been useful if the 
teacher could have called up an individual student’s work, either to go over it with 
that student or to show it to the class as a whole. We have been working on ways 
to make all the models and other objects that we use “serializable” – that is, to 
translate them into a set of instructions that will enable a computer to recreate them 
in their current state. Once that goal is accomplished, a student who wishes to share 
any of these objects, either with another student, with the teacher, or with the entire 
class, will be able to do so simply by transmitting instructions that will enable the 
recipient’s computer to recreate the originator’s model.

This brings up the intriguing possibility that students could be prompted by the 
computer to ask for help as they progress through an activity. A classroom server 
would keep track of each student’s or group’s progress and could link up students, 
either automatically or under control of the teacher, in pedagogically productive 
ways. Any communication or object sharing initiated by students using this technol-
ogy would itself be monitored and could be used either by the teacher or as input to 
a research project concerned with the effects of technology-mediated collaboration.

The lack of technological infrastructure in most schools, as exemplified in the 
limitations section above, poses the major obstacle to using the hypermodel approach 
to instruction and assessment and in particular, scaling up technologies such as ours 
and others mentioned here. The difficulties in scaling up should come as no surprise; 
it is as though we have built a high performance automobile and demonstrated that 
it can go 80 miles/h but there are as yet very few paved roads on which to drive it. 
The situation is by no means hopeless, but the solution may take a while – recall that 
the interstate highway system was not launched until nearly 50 years after the intro-
duction of the first mass-produced cars. We can only hope that the significant poten-
tial impact of computers in education will be achieved in less time than that!

Appendix: Description of the BioLogica Activities

1. Introduction. The Introduction activity, described in detail above, enables the 
students to develop a familiarity with the software as well as with the basic 
concepts of genetics. It provides an initial guiding question: What do dragons 
look like and why?
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2. Rules. The Rules activity introduces students to dominance relationships 
among alleles while helping them learn the rules of inheritance in dragons in 
order to understand how genes affect appearance. The activity is in three 
parts: Dominant and Recessive Relationships Among Alleles focuses on 
which alleles are dominant and therefore mask the presence of other alleles 
for a gene. The students identify all possible combinations of alleles that 
produce a particular trait in an organism. Some Traits are X-Linked focuses 
on genes that are located on the X chromosome. Students investigate the 
impact of different allele combinations for X-linked genes. Color and Fatal 
Combinations examines polygenicity and the affect of lethal alleles using 
the two Color genes of BioLogica’s dragons. Students explore what happens 
when more than one gene contributes to a single characteristic and learn 
about an allelic combination that is lethal.

3. Meiosis. This activity builds on Introduction and Rules and requires students to 
use what they learned about dragon genotypes and phenotypes to complete a 
series of challenges in order to address why members of a family do not always 
look alike. The first subactivity, Introduction to Meiosis, focuses on learning to 
use the meiosis model of BioLogica, understanding how chromosomes and 
alleles participate in meiosis, and linking the meiosis model’s representations 
of gametes and chromosomes with the representations of those objects in the 
chromosome model, introduced previously. The meiosis model simulates the 
process of meiosis in a fashion similar to the diagrams of the phases of meiosis 
found in textbooks. The second subactivity, called Designer Dragons, challenges 
the students to create specific offspring bvy examining the chromosomes in the 
gametes of each parent and selecting those that will produce the desired pheno-
type in the offspring.

4. Horns Dilemma. This optional activity may be used as an enrichment expe-
rience for students who are looking for a challenge or as an assessment of 
students’ models of meiosis and fertilization. It focuses on the inheritance 
of recessive traits, posing the question, “Can two horned parents have a 
hornless baby?” and challenging students to produce a hornless dragon 
from two parents that have horns, using knowledge gained in the previous 
activities.

5. Monohybrid. This activity is at the core of the BioLogica curriculum. It is 
here that students encounter for the first time the intergenerational conse-
quences of the genetic processes they have been studying. The activity is in 
four parts. Introduction to Pedigrees teaches students how to use BioLogica’s 
pedigree level to create and analyze pedigrees. Pedigrees and Punnett 
Squares, Oh My! makes connections between independent assortment in 
meiosis, random selection in fertilization, predictions made with Punnett 
squares, and breeding experiments that use the pedigree level tools. Studying 
Patterns of Inheritance Using Pedigrees and Punnett Squares guides stu-
dents’ reasoning as they determine probabilities for the inheritance of par-
ticular traits. Part four of the activity, An Inheritance Puzzle, challenges 



853 Learning Genetics from Dragons

students to put everything they have learned in the previous three parts 
together in order to solve a puzzle.

 6. X-linkage. This is another core activity in the sequence. It includes three 
sections designed to address the central question: “What difference does it 
make if a gene is located on the X Chromosome?” Introduction to Genes 
that are part of the X Chromosome reviews how a gene is inherited when it 
is part of the X-chromosome. X-Linked Traits uses the fire-breathing gene 
in dragons to demonstrate the inheritance patterns of sex-linked traits from 
one generation to the next. Determining if a Characteristic is X-linked 
focuses on pedigree analysis as a tool for discriminating between autosomal 
and X-linked inheritance.

 7. Mutations. The driving question for this activity is: “What happens when 
you change the DNA?” Students are introduced to mutations through the 
appearance of a novel trait in a pedigree. They then explore the role of DNA 
in mutations, modifying the base pair sequences of particular dragon alleles 
and examining the impact of these newly created alleles on the appearance 
of a dragon.

 8. Mutations 2. This optional activity poses the question: “How are mutations 
inherited?” It builds on Mutations and Monohybrid by enabling students to 
investigate how a novel allele is inherited by offspring and its affect on the 
inheritance of the associated phenotype. It also gives the students more prac-
tice in using Punnett squares to determine the probability of inheriting a 
mutated trait.

 9. Dihybrid Cross. This activity asks the question: “What is the likelihood that 
two traits will be inherited together?” It focuses on the inheritance patterns 
for two traits at a time, and examines the differences that occur when the 
genes for those traits are parts of the same chromosome or parts of different 
chromosomes.

10. Scales. This is another optional activity that challenges students to investigate 
the mode of inheritance of a new trait, posing a series of challenges designed to 
teach students to reason like geneticists.

11.  Plates. This optional activity introduces another novel trait: scaly plates on the 
back of the dragons’ neck. Students are challenged to determine the inheritance 
pattern of this new trait (which is X-linked and incompletely dominant) and the 
location of its gene by a process that approximates the reasoning of profes-
sional geneticists.

12. Invisible Dragons. Invisible Dragons presents a difficult problem for the stu-
dents to solve using all the techniques they have learned throughout this 
series of activities. They must figure out the genetic make-up of two invisi-
ble dragons, one male and one female. They may cross the parent dragons, 
including making backcrosses (crosses between an offspring and parent), 
and view any of the resulting offspring. Their challenge is to deduce the 
parental genotypes by observation of the phenotypes of the offspring, using 
as few crosses as possible.
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