
Chapter IX

Markov Processes

A stochastic process is said to have the Markov property if, at every
instant, given the past until that instant, the conditional probability law
governing its future depends only on its present state. This property is the
probabilistic generalization of the classical notion that, if the present state of a
physical system is described in sufficient detail, the system’s future evolution
would be determined by the present state, without regard to how the system
arrived at that state.

The definitions of “time” and “state” depend on the application at hand
and on the demands of mathematical tractability. Otherwise, if such practical
considerations are ignored, every stochastic process can be made Markovian
by enhancing its state space sufficiently.

The theory of Markov processes is the most extensively developed part
of probability theory. It covers, in particular, Poisson processes, Brownian
motions, and all other Lévy processes. Our aim is to introduce the basic
concepts and illustrate them with a few examples and counter-examples. No
attempt is made at completeness.

Section 1 is on the Markov property in general. There are examples of
Markov chains (discrete-time), of Markov processes (continuous-time), and
of anomalous processes lacking the strong Markov property.

Sections 2 and 3 are on two important classes of processes: Itô diffusions
and jump-diffusions. They are introduced as solutions to stochastic integral
equations. Markov and strong Markov properties are proved directly, gener-
ators and resolvents are calculated, and forward and backward equations of
Kolmogorov are derived. A quick introduction to stochastic differential equa-
tions is given as an appendix in Section 7 for the needs of these sections.
These sections can be omitted if the interest is on the general theory.

Markov processes are re-introduced in Section 4 within a modern ax-
iomatic setting. Their Markov property is discussed once more, Blumenthal’s
zero-one law is proved, the states are classified as holding versus instanta-
neous, and the behavior at holding states is clarified.
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Section 5 continues the axiomatic treatment by introducing Hunt
processes and Feller processes. The meaning of quasi-left-continuity is ex-
plained, the total unpredictability of jump times is given, and the effects of
strong Markov property are illustrated.

Section 6 is on resolvents and excessive functions, the connections between
them, and their relationships to martingales. It is almost independent of the
earlier sections and can be read after Section 2 if desired.

1 Markov Property

Throughout this section, T is a subset of R; its elements are called times; it
will mostly be R+ and sometimes N. Throughout, (Ω, H, P) is a probability
space, and F = (Ft)t∈T is a filtration over it.

Let X = (Xt)t∈T be a stochastic process with some state space (E, E) and
adapted to the filtration F. We let Go = (Go

t )t∈T
be the filtration generated

by it and put Gt
∞ = σ{Xu : u ≥ t, u ∈ T}, its future after time t.

1.1 Definition. The process X is said to be Markovian relative to F if,
for every time t, the past Ft and the future Gt∞ are conditionally independent
given the present state Xt.

If X is Markovian relative to F, then it is such relative to Go as well,
because Go

t ⊂ Ft by the adaptedness of X to F. It is said to be Markovian,
without mentioning a filtration, if it is such relative to Go.

A similar notion, the strong Markov property, is said to hold if the fixed
times t in the preceding definition can be replaced by stopping times. Most
Markovian processes are strong Markov, but there are exceptions (see the
Examples 1.28 and 1.29).

Characterization

The next theorem uses the definition of conditional independence and
properties of repeated conditioning. We use the common shorthand for con-
ditional expectations.

1.2 Theorem. The following are equivalent:

a) The process X is Markovian relative to F.
b) For every time t and time u > t and function f in E+,

E (f ◦ Xu |Ft) = E (f ◦ Xu |Xt) .1.3

c) For every time t and positive variable V in Gt∞,

E (V |Ft) = E (V |Xt) .1.4

d) For every time t and positive variable V in Gt∞,

E (V |Ft) ∈ σXt.1.5
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1.6 Remark. i) The statement (d) is the closest to the intuitive mean-
ing of the Markov property: estimate of a variable determined by the future
is a deterministic function of the present state only (regardless of all the past
information) – recall that σXt is the σ-algebra generated by Xt.

ii) The collection of all f for which 1.3 holds is a monotone class. Thus,
the theorem remains true, when, in the statement (b), the condition 1.3 holds
for every f in Eb (bounded E-measurable), or every f in Eb+, or every indica-
tor f = 1A with A in E, or every indicator f = 1A with A in some p-system
generating E.

iii) Similarly, by monotone class arguments again, the theorem remains
true if 1.4 (or, equivalently, 1.5) is required only for V having the form

Vn = f1 ◦ Xu1 · · · fn ◦ Xun1.7

with some integer n ≥ 1, some times t ≤ u1 < u2 < . . . < un, and some
functions f1, . . . , fn in E+. Moreover, the functions fi can be restricted further
as in the preceding remark.

Proof. (a) ⇔ (c) by the definition of conditional independence; (c) ⇒ (b)
trivially; and we shall show that (b) ⇒ (d) ⇒ (c). The last implication is
easy: assuming 1.5,

E (V |Ft) = E (E (V |Ft) |Xt) = E (V |Xt) .

To prove that (b) ⇒ (d), assume (b). By Remark 1.6 iii, it is enough to show
1.5 for V having the form 1.7. We do this by induction. For n = 1, we have
1.5 from (b). Assume that 1.5 holds for every Vn having the form 1.7. Note
that

E (Vn+1|Fun) = Vn E
(
fn+1 ◦ Xun+1 |Fun

)
= Vn · g ◦ Xun = V̂n

for some g in E+ in view of (b). Since V̂n has the form 1.7 with gf n replacing
fn, the induction hypothesis applies to V̂n to yield

E (Vn+1|Ft) = E

(
V̂n|Ft

)
∈ σXt.

Thus, 1.5 holds for Vn+1 as well. �

Transition functions

Recall that a Markov kernel on (E, E) is a transition probability kernel
from (E, E) into (E, E); see I.6.5 et seq. Let (Pt,u) be a family of Markov
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kernels on (E, E) indexed by pairs of times t ≤ u. It is said to be a Markovian
transition function on (E, E) if

Ps,t Pt,u = Ps,u, 0 ≤ s < t ≤ u.1.8

The preceding is called the Chapman-Kolmogorov equation.
The Markovian process X is said to admit (Pt,u) as a transition function if

E (f ◦ Xu|Xt) = (Pt,uf) ◦ Xt, t < u, f ∈ E+.1.9

Obviously, it is sufficient to check 1.9 for f that are indicators. This provides
the intuitive meaning for the kernels:

Pt,u (x, A) = P {Xu ∈ A|Xt = x} .1.10

1.11 Remark. There are Markov processes that have no transition func-
tions. Here is an example. Suppose that T = R+, and E = R+ × Ω, and E

consists of subsets A of E such that the section {ω ∈ Ω : (t, ω) ∈ A} belongs
to Ft for every t. Suppose, further, that Xt(ω) = (t, ω) for t in R+ and ω
in Ω. Then, X = (Xt)t∈R+ is a stochastic process with state space (E, E) and
is adapted to F. Note that the σ-algebra generated by Xt is exactly Ft, and,
hence, the condition 1.3 holds automatically. This Markovian process has no
transition function. It is also devoid of interest, since there is nothing further
to be said about it.

1.12 Remark. The preceding example illustrates that every process can
be made Markovian, but at the cost of mathematical tractability. Begin with
a process X0 with some state space (D, D). Let F be the filtration generated
by it. Define (E, E) and X as in the preceding remark. Now, the “state” of X
at time t is the whole history of X0 until t. By this device, X0 is converted
to the Markovian process X .

Time-homogeneity

Suppose that X is Markovian and admits (Pt,u) as its transition function.
It is said to be time-homogeneous if, for every time t and time u > t, the
dependence of Pt,u on the pair (t,u) is through u − t only, that is, if

Pt,u = Pu−t1.13

for some Markov kernel Pu−t. Theoretically, there is no loss of generality
in assuming time-homogeneity: if X is not, then it can be studied through
X̂ = (t, Xt), and X̂ is Markovian and time-homogeneous. Note that this trick
makes time a part of the state description. See Exercise 1.40.

Chains and Processes

Suppose that X is Markovian and time-homogeneous. We call it a Markov
chain if T = N, and Markov process if T = R+.
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Suppose that X is a Markov chain. Then, Q = Pt,t+1 is free of t, and the
Chapman-Kolmogorov equation 1.8 yields

Pt,u = Qn, t ∈ N, u − t = n ∈ N.1.14

This is expressed by saying that X is a Markov chain with transition kernel Q.
Suppose that X is a Markov process. Then, the Markov kernels Pt, t ∈

R+, must satisfy the semigroup property

Pt Pu = Pt+u, t, u ∈ R+,1.15

this being the Chapman-Kolmogorov equation in view of 1.13. Then, it is
usual to call (Pt) a transition semigroup and to say that X is a Markov
process with transition function (Pt).

For a chain, since the time-set has only one limit point, the analysis
required is more straight forward and has more to do with limits in distribu-
tion of Xn as n → ∞. For a process, the mathematical treatment has greater
ties to classical analysis and semigroups and partial differential equations.
We shall concentrate on processes; an analogous program for chains can be
carried out without difficulty. However, as a way of displaying the Markov
property in its most direct form, we give examples of chains next.

Markov chains

Every Markov chain encountered in applications is constructed from a
sequence of independent and identically distributed random variables through
a deterministic transformation. In fact, if the state space (E, E) is standard,
we may construct every Markov chain in this fashion; see Exercise 1.38 for
an illustration with E = R. Interestingly, this form shows that every Markov
chain (and, by extension, every Markov process) is a Lévy chain (or Lévy
process) in an abstract sense.

Let (E, E) and (D, D) be measurable spaces. Let ϕ : E × D �→ E be
measurable with respect to E⊗D and E. Let X0 be a random variable taking
values in (E, E) and, independent of it, let (Zn)n∈N be an independency of
identically distributed variables taking values in (D, D). Define

Xn+1 = ϕ (Xn, Zn+1) , n ∈ N.1.16

Together with X0, this defines a Markov chain X = (Xn)n∈N with state space
(E, E) and transition kernel

Q(x, A) = P {ϕ(x, Z0) ∈ A} , x ∈ E, A ∈ E.1.17

The formula 1.16 encapsulates the essence of Markov chains: the next state
Xn+1 is a deterministic function of the present state Xn and the next random
influence Zn+1. The deterministic function ϕ remains the same over all time;
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this is time-homogeneity. In this context, ϕ is called the structure function
and the Zn are the driving variables. Here are some examples and implications
of this construction.

1.18 Random walks. Suppose that E = D = R
d with the attendant Borel

σ-algebras E and D. Take ϕ(x, z) = x + z. The resulting Markov chain is
called a random walk on R

d.

1.19 Gauss-Markov chains. Let E = D = R
d again. Suppose that the Zn

have the d-dimensional standard Gaussian distribution. Take

ϕ(x, z) = Ax + Bz, x, z ∈ R
d,

where A and B are some d × d matrices. The resulting chain X is called a
Gauss–Markov chain. If X0 is fixed or has some Gaussian distribution, then
the chain (Xn) is Gaussian; this can be seen by noting that

Xn = AnXo + An−1B Z1 + · · · + AB Zn−1 + B Zn.

1.20 Products of random matrices. Suppose that E = D = R
d×d, the space of

d×d matrices with real entries. Then, the Zn are independent and identically
distributed random matrices. Take ϕ(x, z) = zx, the matrix x multiplied on
the left by the matrix z. The resulting chain is given by Xn = Zn · · ·Z1X0;
it is a “left random walk” on the set of d × d matrices. Similarly, taking
ϕ(x, z) = xz yields a “right random walk”.

1.21 Continuation. Suppose that E = R
d and D = R

d×d; and take ϕ(x, z) =
zx, the product of the matrix z and the column vector x, Then, the chain
(Xn) becomes the orbit of the random point X0 under successive applications
of the random linear transformations represented by the matrices Z1, Z2, . . . .

1.22 Random dynamical systems. This is to give a different interpretation to
1.16. Leave (E, E) arbitrary. Define, for each n, a random transformation Φn

from E into E by letting

Φω
n(x) = ϕ (x, Zn(ω)) , ω ∈ Ω, x ∈ E.

Then, Φ1, Φ2, . . . are independent and identically distributed random trans-
formations from (E, E) into (E, E), and Xn+1 = Φn+1 (Xn). So, the chain
X is obtained by successive applications of independent and identically dis-
tributed random transformations.

1.23 Continuation. Let ϕω
m,n be the composition of the transformations

Φω
m+1, . . . , Φ

ω
n , that is, define

ϕω
m,n =

{
identity if m = n,
(Φω

n) ◦ · · · ◦ (
Φω

m+1

)
if m < n,

for 0 ≤ m ≤ n < ∞. For each ω, the family
{
ϕω

m,n : 0 ≤ m ≤ n < ∞}
is a

flow, that is, the flow equation

ϕω
m,n

(
ϕω

k,m(x)
)

= ϕω
k,n(x), 0 ≤ k ≤ m ≤ n,
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is satisfied. And, the Markov chain X is the path of X0 under the action of
the random flow ϕ = (ϕm,n)0≤m≤n<∞.

Regarding ϕm,n as the “increment” of ϕ over the interval (m, n], we see
that ϕ has stationary and independent increments. Thus, the Markov chain
X is, in this abstract sense, a discrete-time Lévy process in the space of
transformations.

Examples of Markov processes

Brownian motion is a Markov process. A number of Markov pro-
cesses related to it were given in Chapter VIII on Brownian motion; see
Examples VIII.1.19, VIII.1.21, VIII.1.22. The following examples are to
forge some connections, and also give some pathological (see 1.28) and
fascinating (see 1.29) cases where the strong Markov property fails.

1.24 Lévy processes. Suppose that E = R
d and E = B(Rd), and assume that

Xt = X0 + Yt, t ∈ R+, where Y = (Yt) is a Lévy process independent of X0.
Let πt be the distribution of Yt, and recall that A − x = {y − x : y ∈ A}.
Then, X is a Markov process with transition function

Pt(x, A) = πt(A − x), x ∈ E, A ∈ E, t ∈ R+.1.25

In other words, X is both time-homogeneous and spatially homogeneous.
Conversely, if X is such, that is, if X is a Markov process whose transition
semigroup (Pt) has the form 1.25, then X = X0+Y for some Lévy process Y .

1.26 Markov chains subordinated to Poisson. Let (Yn)n∈N be a Markov chain
with state space (E, E) and transition kernel Q. Let (Nt) be a Poisson process,
with rate c, independent of the chain (Yn). Suppose that

Xt = YNt , t ∈ R+.

Then, X is a Markov process with state space (E, E) and transition function
(Pt), where

Pt(x, A) =
∞∑

n=0

e−ct(ct)n

n!
Qn(x, A).1.27

1.28 Delayed uniform motion. The state space is E = R+. The process
depicts the motion of a particle that is at the origin initially, stays there
an exponentially distributed amount T of time, and then moves upward at
unit speed:

Xt = (t − T )+ , t ∈ R+.

This X is a Markov process. Its transition function (Pt) is easy to compute
by using the working formula

Ptf(x) = E (f ◦ Xs+t|Xs = x) :
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If x > 0, then Xs+t = x + t. If x = 0, the particle’s sojourn at 0 has not
ended yet, that is, T > s. By the exponential nature of T , then, the remaining
sojourn time T − s has the same exponential distribution as T itself. Letting
c be the parameter of that exponential distribution, we get

Ptf(x) =
{

f(x + t) if x > 0,

e−ct f(0) +
´ t

0
du ce−cu f(t − u) if x = 0.

Suppose now that the filtration F is taken to be
(
Go

t+

)
. Then, T is a stopping

time of F, and XT = X0 = 0. If X were strong Markov, the future after T
would have the same law as the future at t = 0. But it is not so; future at
t = 0 starts with a sojourn of some length at 0, whereas the future at T is
that of immediate motion. So, this process is not strong Markov.

Intuitive notion of the Markov property is that the present state de-
termines the law of the future; and this is tacitly extended to cases where
“the present time” is allowed to be a stopping time. The present example
is cautionary. At the same time, it displays the reason for the failure of the
strong Markov property: the state 0 is allowed to play two different roles: as
a point of sojourn, and as a launching pad for the motion. If we re-define the
process as

X̂t(ω) =
{ −1 if t < T (ω),

t − T (ω) if t ≥ T (ω),

then we have a strong Markov process X̂ with state space {−1} ∪ R+.

1.29 Lévy’s increasing continuous process. This is an example, due to Lévy, of
another process whose Markov property does not extend to stopping times.
Moreover, it illustrates the importance of choosing the correct state space
and the correct construction of the process. As a by-product, it shows the
advantages of concentrating on the dynamics of the random motion, instead
of the analytic machinery of transition functions and the like.

The canonical process has state space R+. Started at 0, its paths are
increasing continuous with limit +∞ as time goes to +∞. Every rational
number in R+ is a holding point, that is, the process has an exponential
sojourn there before resuming its upward creep. The process spends no time
in the set of irrationals. By re-labeling the states, we shall get a bizarre
Markov process with state space N̄ = {0, 1, . . . , +∞}.

Let Q+ denote the set of rational numbers in R+. Over the probability
space (Ω, H, P), we suppose that {Zq : q ∈ Q+} is an independency of R+-
valued exponential random variables with Zq having the mean m(q), where

∑

q∈Q+∩[0,1)

m(q) = 1,

and, for each integer n ≥ 1, we have m(q) = m(q − n) for q in [n, n + 1).
We are thinking of a particle that moves upward in R+, having a sojourn
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of length Zq at each rational q, and spending no time elsewhere. Thus, the
cumulative time it spends in the set [0,x] is

Sx =
∑

q∈Q+∩[0, x]

Zq, x ∈ R+,1.30

and, therefore, the particle’s position at time t is

Xt = inf {x ∈ R+ : Sx > t} , t ∈ R+.1.31

In view of the way the means m(q) are chosen, for almost every ω, we have
Sx(ω) < ∞ for all x in R+, but with limit +∞ as x → ∞. Clearly, x �→ Sx(ω)
is right-continuous and strictly increasing, which implies that t �→ Xt(ω) is
continuous increasing. Moreover, since the path S(ω) is of the pure-jump type,

Leb {t ∈ R+ : Xt(ω) �∈ Q+} = 0.1.32

The process (Sx)x∈R+ is a pure-jump process with independent (but non-
stationary) increments; see Exercise VI.4.24. It jumps at every rational q
by the exponential amount Zq. Thus, X = (Xt)t∈R+ is a Markov process
(time-homogeneous) with a transition function (Pt) that can be specified, see
Exercise 1.39; it is Markov relative to

(
Go

t+

)
as well.

Heuristically, given that Xt = x and x ∈ Q+, then, the particle will stay
at x a further amount of time that is exponential with mean m(x) and then
start its upward motion. This is for fixed time t. But, when t is replaced by
the random time T at which the particle departs the fixed rational point x,
the future looks different. Thus, X lacks the strong Markov property.

Next, we take advantage of 1.32 to define a Markov process with a discrete
state space. Let b be a bijection from Q+ onto N; this is just a re-labeling of
the rationals by integers. Define

Yt(ω) =
{

b ◦ Xt(ω) if Xt(ω) ∈ Q+,
+∞ otherwise.1.33

Then, Y = (Yt) is a Markov process with state space N̄. Its paths are difficult
to describe directly: if Yt = i, then the particle stays there an exponential
time, but there is no “next” integer state to go. The state +∞ is “fictitious”;
the total amount of time spent there by Y is zero by 1.32. The paths have
discontinuities of the second kind. We may define

Qt(i, A) = P {Ys+t ∈ A|Ys = i} , t ∈ R+, i ∈ N, A ⊂ N,

to obtain a Markov transition semigroup, that is, QtQu = Qt+u and
Qt(i, N) = 1 for each i. For this reason, Y is said to have N as its min-
imal state space. This process is a good example of inadequacy of transition
functions (and generators to come) as the base to build the theory on. Despite
this sentiment, we continue with . . .
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Probability Laws

We return to the general case with index set T and suppose that X is
Markovian and admits (Pt,u) as its transition function. Suppose, further,
that T ⊂ R+ and 0 ∈ T. Let μ0 be the distribution of X0. Then, for times
0 = t0 < t1 < · · · < tn,

P {Xt0 ∈ dx0, Xt1∈ dx1, Xt2 ∈ dx2, . . . , Xtn ∈ dxn}
= μt0(dx0)Pt0,t1(x0, dx1)Pt1,t2(x1, dx2) · · ·Ptn−1,tn (xn−1, dxn) .1.34

This follows from repeated applications of the Markov property. It shows, as
well, that the probability law of X is determined by the initial distribution
μ0 and the transition function (Pt,u). Modern theory treats (Pt,u) as fixed,
but μ0 as a variable; it is usual to write P

μ for P when μ0 = μ, and P
x when

μ0 = δx, Dirac at x.

Existence and construction

Let μ be a probability measure and (Pt,u) a Markov transition function,
both on some measurable space (E, E). If T = N, then Theorem IV.4.7 shows
the existence of a probability space (Ω, H, Pμ) and a process X = (Xt)t∈T

such that X is Markovian with initial distribution μ and transition function
(Pt,u), that is, such that 1.34 holds. If T = R+, the same existence result
follows from the Kolmogorov extension theorem, IV.4.18, under a slight con-
dition on (E, E). We refer to Chapter IV, Sections 4 and 5, for the details
as well as for a discussion of some special cases and issues regarding “time”
and “space”.

In practice, however, one rarely has (Pt,u) specified from the start. Instead,
X is constructed from well-known objects, and (Pt,u) is defined implicitly
from X . For instance, the example 1.28 is constructed from one exponential
variable, and the example 1.29 from a countable independency of exponen-
tials. As we know, Wiener processes and Poisson random measures on R

2

can be constructed from a countable independency of uniform variables, and
Lévy processes are constructed from Wiener processes and Poisson random
measures. Similarly, most Markov processes are constructed from a countable
independency of uniform variables via Wiener processes and Poisson random
measures; the constructions are sometimes direct, and often by means of
stochastic integral equations. Sections 2 and 3 illustrate the method.

Exercises and complements

1.35 Processes with discrete state spaces. Suppose that X is a Markov pro-
cess (time-set R+, time-homogeneous) with state space (E, E) and transition
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function (Pt). Suppose that (E, E) is discrete, that is, E is countable and
E = 2E , the discrete σ-algebra on E. Then, each Pt has the form

Pt(x, A) =
∑

y∈A

pt(x, y), x ∈ E, A ∈ E,

and we may regard y �→ pt(x, y) as the density of the measure A �→ Pt(x, A)
with respect to the counting measure on (E, E). Of course, then, we may
identify the kernel Pt with the matrix whose entries are the probabilities
pt(x, y). We shall do this without further comment.

1.36 Continuation. Suppose that E consists of two elements, a and b. Let

Pt =
[

q + pe−ct p − pe−ct

q − qe−ct p + qe−ct

]
, t ≥ 0,

where p and q are numbers in [0,1] with p + q = 1, and c is a number in R+.
Show that the matrices Pt satisfy P0 = I and PtPu = Pt+u. When E consists
of two states, this is the most general form of a transition function (Pt). The
case c = 0 is degenerate (what happens then?). Describe the paths in the
cases p = 0 or q = 0.

1.37 Subordination of Markov to Lévy. Let X be a Markov process with state
space (E, E) and transition function (Pt). Let S = (St) be an increasing Lévy
process independent of X , and with distribution πt for St. Define

X̂t = XSt , t ∈ R+.

Show that X̂ is again a Markov process with state space (E, E). Compute its
transition function (P̂t) in terms of (Pt) and (πt).

1.38 Markov chains. Let Q be a Markov kernel on (R, BR). For each x in R,
define

ϕ (x, u) = inf {y ∈ R : Q(x, (−∞, y]) > u} , u ∈ (0, 1).

Then, u �→ ϕ(x, u) is increasing and right-continuous.

a) Show that x �→ ϕ(x, u) is Borel measurable for each u. Conclude that
ϕ is a Borel function on R × (0, 1).

b) Let (Zn) be an independency of uniform variables taking values in
(0,1). Suppose X0 is independent of (Zn), and define (Xn) by 1.16. Show that
(Xn) is a Markov chain with transition kernel Q.

1.39 Lévy’s example. Let X be as in Example 1.29. Let (Pt) be its transition
function. Show that, for real numbers 0 ≤ x ≤ y,

Pt(x, (y,∞)) = P

⎧
⎨

⎩

∑

x≤q≤y

Zq < t

⎫
⎬

⎭
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where the sum is over the rationals q in the interval [x, y]. Show that
ˆ ∞

0

dt e−ptPt (x, (y,∞)) =
1
p

∏

x≤q≤y

1
1 + m(q)p

, p ∈ R+.

This specifies (Pt), at least in principle.

1.40 Time-homogeneity. Suppose that X is Markovian with state space
(E, E) and admits (Pt,u) as its transition function (we do not assume time-
homogeneity). Define

X̂t = (t, Xt) , t ∈ R+.

Then, X̂ is Markovian with state space (Ê, Ê) = (R+ × E, BR+ ⊗ E). Show
that it is time-homogeneous. Show that its transition function (P̂t) is given
by, for positive f in Ê,

P̂tf (x̂) =
ˆ

E

Ps,s+t(x, dy)f(s + t, y), x̂ = (s, x) ∈ Ê.

1.41 Processes with independent increments. Let X be a process in R
d having

independent increments, but without stationarity of increments. Then, X is
Markovian, but without time-homogeneity; we have

Pt,u(x, A) = P {Xu ∈ A|Xt = x} = P {Xu − Xt ∈ A − x} = πt,u (A − x) .

Define X̂t = (t, Xt) as in the preceding example. Then, X̂ is a time-
homogeneous Markov process. Compute its transition function (P̂t) in terms
of πs,t. Note that X̂ has independent increments, but still without the
stationarity of increments.

1.42 Expanded filtrations. Suppose that X is Markovian relative to the fil-
tration F. Let H0 be a sub-σ-algebra of H that is independent of F∞. Put
F̂t = H0 ∨ Ft for each time t. Then, X is Markovian relative to F̂ as well.
Show. This is helpful when X is being studied in the presence of other pro-
cesses that are independent of X .

1.43 Entrance laws. Suppose that X is Markovian with time-set T and
transition function (Pt,u). Suppose that T does not have an initial element;
T = (0,∞) or T = (−∞, +∞) for instance. Let μt be the distribution of Xt.
Then, the formula 1.34 holds for times t0 < t1 < . . . < tn in T. Note that,
necessarily,

ˆ

E

μt(dx)Pt,u (x, A) = μu (A) , t < u, A ∈ E.1.44

In general, if a family (μt) of probability measures satisfies 1.44 for some
transition function (Pt,u), then (μt) is said to be an entrance law for (Pt,u).
If T has an initial element t0, then μt = μt0 Pt0,t, t ≥ t0, defines an entrance
law (μt) from the initial law μt0 .
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2 Itô Diffusions

Itô diffusions are continuous strong Markov processes satisfying certain
stochastic differential equations. They are generalizations of Brownian mo-
tions in the following way.

Over some probability space, let X be a Brownian motion on R. It has
the form Xt = X0 + at + b Wt, where W is a Wiener process, and a and b
constants. The dynamics of the motion is expressed better in the classical
fashion:

dXt = a dt + b dW t,

that is, velocity is equal to a constant a perturbed by some “noise.” We notice
that X will remain Markovian in the more general case where a is replaced
with a(Xt), some function of the current position Xt, and the noise multiplier
b is replaced with b(Xt), some function of Xt. The result is

dXt = a ◦ Xt dt + b ◦ Xt dW t2.1

or, equivalently, in the formal language of integrals,

Xt = X0 +
ˆ t

0

a ◦ Xs ds +
ˆ t

0

b ◦ Xs dW s.2.2

But there arises a problem: the second integral does not have a conventional
meaning, because the paths t �→ Wt have infinite total variation over every
interval [s, s + u] with u > 0. Fortunately, it is possible to give a meaning to
such integrals, called stochastic integrals of Itô to distinguish them from the
ordinary ones.

This section can be read without previous exposure to stochastic calculus
if one is willing to take some results on faith. Nevertheless, we put a summary
of stochastic integration, as an appendix, in Section 7.

Stochastic base

The motion of interest will be a continuous process with state space
(E, E), where E = R

d for some fixed dimension d ≥ 1 and E = B(Rd).
The process will be the solution of a stochastic differential equation driven
by a multi-dimensional Wiener process.

Throughout this section, (Ω, H, P) is a complete probability space,
F = (Ft)t∈R+ is an augmented right-continuous filtration, and W =
(W 1, . . . , Wm) is an m-dimensional Wiener process adapted to F; the integer
m will remain fixed. In addition, X0 is an E-valued random variable in F0

and is, thus, independent of W . We let (x, H) �→ P
x(H) be a regular version

of the conditional probabilities

P
x(H) = P (H |X0 = x) .2.3
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Equation of motion

The deterministic data are some vector fields u0, . . . , um on E = R
d, that

is, each un is a mapping from E into E. Throughout, we assume that the
following condition of Lipschitz continuity holds; here |x| is the length of the
vector x for each x in E.

2.4 Condition. There is a constant c in R+ such that

|un(x) − un(y)| ≤ c |x − y| , x, y ∈ E, 0 ≤ n ≤ m. �

This condition ensures that the following equation of motion makes sense
and has a unique solution (see Theorem 2.13 below):

Xt = X0 +
ˆ t

0

u0 ◦ Xs ds +
m∑

n=1

ˆ t

0

un ◦ Xs dW n
s ;2.5

here, the integrals involving the Wn are to be understood as Itô integrals of
stochastic calculus (see Section 7, Appendix).

Somewhat more explicitly, writing X i
t for the i-component of Xt, and

ui
n(x) for the i-component of the vector un(x), the stochastic integral equa-

tion 2.5 becomes

X i
t = X i

0 +
ˆ t

0

ui
0 ◦ Xs ds +

m∑

n=1

ˆ t

0

ui
n ◦ Xs dWn

s , 1 ≤ i ≤ d.2.6

Again equivalently, 2.5 can be written as a stochastic differential equation:

dXt = u0 ◦ Xt dt +
m∑

n=1

un ◦ Xt dWn
t .2.7

The looks of the preceding line can be simplified: put a(x) = u0(x) and let
b(x) be the d × m matrix whose (i,n)-entry is ui

n(x); then 2.7 becomes

dXt = a ◦ Xt dt + b ◦ Xt dW t,2.8

which looks exactly like 2.1, and 2.5 gets to look like 2.2. But, 2.5 and 2.7 are
better at conveying the role of each Wn: the effect of Wn is carried to the
motion by the vector field un; this issue becomes important when we consider
a cloud of particles whose motions satisfy the same differential equation 2.7.

Examples

2.9 Geometric Brownian motion. With d = m = 1, and b and c constants in
R, consider the geometric Brownian motion

Xt = X0 exp (bW t + ct) , t ∈ R+.
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Using Itô’s formula (Theorem 7.20), we see that X is the solution to

dXt = aXt dt + bXt dW t,

where a = c + 1/2 b2. In particular, when a = 0, we obtain the exponential
martingale Xt = Xo exp(bWt − 1/2b

2t) as the solution to dXt = bXt dWt.

2.10 Ornstein–Uhlenbeck process. In 2.8, suppose that a(x) = Ax and b(x) =
B, where A and B are matrices of dimensions d × d and d × m respectively;
we get

dXt = AXt dt + B dW t,

which is also called the Langevin equation. The solution is

Xt = etAX0 +
ˆ t

0

e(t−s)AB dW s,

where etA =
∑∞

k=0

(
tk/k!

)
Ak. In the particular case where d = m = 1, the

matrices reduce to real numbers; and assuming that A is a negative constant,
say A = −c and B = b, we obtain

Xt = e−ctX0 + b

ˆ t

0

e−c(t−s) dW s, t ∈ R+.

This is the one-dimensional velocity process in the model of Ornstein and
Uhlenbeck for the physical Brownian motion; see Exercise 2.60 also.

2.11 Brownian motion on the unit circle. This is the motion X , on the unit
circle in R

2, whose components are

X1
t = cosWt, X2

t = sin Wt,

where W is a Wiener process; one can think of it as the complex-valued
motion exp(iWt). Using Itô’s formula, Theorem 7.20, we see that X satisfies
(here d = 2 and m = 1)

dXt = a ◦ Xt dt + b ◦ Xt dW t

where a(x) = −1/2(x1, x2) and b(x) = (−x2, x1) for x = (x1, x2).

2.12 Correlated Brownian motions. With d = 1 and m = 2, consider the
equation 2.7 with u0 = 0, u1 = sin, u2 = cos, that is, consider

dXt = (sin Xt) dW 1
t + (cosXt) dW 2

t .

This process X is a continuous martingale and its quadratic variation has
the differential (see Example 7.5, Theorem 7.15, and Lemma 7.22 for these)

(dXt)
2 = (sin Xt)

2
dt + (cosXt)

2
dt = dt.

It follows from Theorem 7.24 that X −X0 is a Wiener process. For studying
X , then, writing X = X0 + Ŵ would be simpler. But this simple description



458 Markov Processes Chap. 9

is inadequate for describing two motions under the same regime. For instance,
in addition to X with X0 = x, let Y satisfy the same equation with Y0 = y,
that is, with the same W 1 and W 2 as for X ,

dY t = (sinYt) dW 1
t + (cosYt) dW 2

t .

Then, X and Y are standard Brownian motions, but they depend on each
other. Their correlation structure is specified by the cross variation process
〈X, Y 〉, which is given by (in differential form)

dXt dYt = (sin Xt) (sin Yt) dt + (cosXt) (cosYt) dt = cos (Xt − Yt) dt.

Existence and uniqueness

Consider the stochastic integral equation 2.5 under Condition 2.4 on the
vector fields un. As with deterministic differential equations, Lipschitz con-
tinuity 2.4 ensures the existence of a unique solution (in the sense to be
explained shortly). The method of solution is also the same as in the deter-
ministic case, namely, Pickard’s method of successive approximations. The
result is listed next; its proof is delayed to 2.52.

2.13 Theorem. The equation 2.5 has a pathwise unique solution X; the
process X is continuous.

2.14 Remark. The proof 2.52 will also show that X is a strong solution
in the following sense, thus explaining pathwise uniqueness : There exists a
unique mapping

ϕ : E × C (R+ �→ R
m) �→ C (R+ �→ E)

such that, for almost every ω, the paths X(ω) : t �→ Xt(ω) and W (ω) : t �→
Wt(ω) =

(
W 1

t (ω), . . . , Wm
t (ω)

)
satisfy

X(ω) = ϕ (X0(ω), W (ω)) .

Markov property

The next theorem shows that X is a (time-homogeneous) Markov process
with state space E and transition function (Pt), where

Ptf(x) = E
x f ◦ Xt, x ∈ E, f ∈ E+, t ∈ R+.2.15

2.16 Theorem. For each t in R+, the process X̂ = (Xt+u)u∈R+ is con-
ditionally independent of Ft given Xt; moreover, given that Xt = y, the
conditional law of X̂ is the same as the law of X under P

y.

2.17 Remark. The claim of the theorem is that, for every integer k ≥ 1
and positive Borel function f on Ek,

E
x (f (Xt+u1 , . . . , Xt+uk

) |Ft) = E
Xtf (Xu1 , . . . , Xuk

) ,
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where the right side stands for g ◦ Xt with g(y) = E
yf(Xu1 , . . . , Xuk

). Of
course, as in Theorem 1.2, this is also equivalent to

E
x (f ◦ Xt+u|Ft) = Puf ◦ Xt, x ∈ E, f ∈ E+, t, u ∈ R+.

Proof. Fix t and let Ŵ = (Wt+u − Wt)u∈R+ . Note that, in the notation
system of 2.8,

X̂u = Xt +
ˆ t+u

t

a ◦ Xs ds +
ˆ t+u

t

b ◦ Xs dWs

= X̂0 +
ˆ u

0

a ◦ X̂s ds +
ˆ u

0

b ◦ X̂s dŴs.

Thus, with ϕ defined as in Remark 2.14,

X = ϕ (X0, W ) , X̂ = ϕ
(
X̂0, Ŵ

)
.

By the Lévy nature of W , the process Ŵ is independent of Ft and is again a
Wiener process just as W . Thus, X̂ is conditionally independent of Ft given
X̂0 = Xt. Moreover, given that Xt = X̂o = y, the conditional law of X̂ is the
law of ϕ(y, Ŵ ), which is in turn the same as the law of ϕ(y, W ), namely, the
law of X given X0 = y. �

Strong Markov property

The preceding theorem remains true when the deterministic time t is
replaced with a stopping time T , provided that we make provisions for the
possibility that T might take the value +∞. To that end we introduce the
following.

2.18 Convention. Let ∂ be a point outside E; put Ē = E ∪ {∂}, and
let Ē be the σ-algebra on Ē generated by E. We define X∞(ω) = ∂ for all
ω. Every function f : E �→ R is extended onto Ē by setting f(∂) = 0. If the
original f is in E+, for instance, then the extended function is in Ē+, but
we still write f ∈ E+. The convention applies to the function Ptf as well:
Ptf(∂) = 0. Finally, F∞ = limFt = ∨tFt as usual.

2.19 Theorem. The process X is strong Markov: For every stopping
time T of F, the variable XT is FT – measurable, and the process X̂ =
(XT+u)u∈R+ is conditionally independent of FT given XT ; moreover, for y

in E, on the event {XT = y}, the conditional law of X̂ given XT is the same
as the law of X under P

y.

Proof. Since X is continuous and adapted to F, the random variable XT

is measurable with respect to FT and Ē. The rest of the proof follows that
of the last theorem: replace t by T throughout to handle the conditional
expectations on the event {T < ∞}. On the event {T = ∞}, we have XT+u =
∂ for all u, and the claim holds trivially in view of the conventions 2.18. �
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Generator

We introduce a differential operator which will describe the differential
structure of the transition function (Pt). First, some notation: We put

C = C(E �→R), CK = CK (E �→R) , C2 = C2(E �→R), C2
K = C2 ∩ CK ;2.20

Thus, C is the set of all continuous functions f : E �→ R, and CK is the set
of such f with compact support, and C2 is the set of such f that are twice
differentiable with continuous derivatives of first and second order. For f in
C2, we write ∂if for the partial derivative with respect to the ith argument,
and ∂ijf for the second order partial derivative with respect to the ith and
jth arguments; the classical notations are ∂i = ∂

∂xi
and ∂ij = ∂2

∂xi∂xj
. When

d = 1, these become f ′, the derivative, and f ′′, the second derivative. With
these notations, we introduce the operator G on C2 by

Gf(x) =
d∑

i=1

ui
0(x)∂if(x)+

1
2

d∑

i=1

d∑

j=1

m∑

n=1

ui
n(x)uj

n(x) ∂ijf(x), x ∈ E.2.21

When d = 1 (and more generally with proper interpretation, in the notation
system of 2.8) this becomes

Gf(x) = a(x)f ′(x) + 1/2 b(x)2 f ′′ (x) .

2.22 Example. Brownian motion. Suppose that X is a standard Brownian
motion in R

d, that is, take m = d and put u0(x) = 0 and let ui
n(x) be free of

x and equal to 1 or 0 according as i = n or i �= n. Then

Gf =
1
2

d∑

i=1

∂iif, f ∈ C2;

thus, Gf = 1/2Δf , where Δ is the Laplacian operator of classical analysis.

Itô’s formula

The equation 2.5 of motion shows that X is a semimartingale. Applying
to it Itô’s formula, Theorem 7.20, yields the following.

2.23 Theorem. For every f in C2
K ,

Mt = f ◦ Xt − f ◦ X0 −
ˆ t

0

ds Gf ◦ Xs, t ∈ R+,2.24

is a martingale; it is given by

Mt =
m∑

n=1

d∑

i=1

ˆ t

0

(
ui

n ◦ Xs

)
(∂if ◦ Xs) dW n

s .
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Proof. We use Itô’s formula, Theorem 7.20:

d (f ◦ Xt) =
d∑

i=1

(∂if ◦ Xt) dX i
t +

1
2

d∑

i=1

d∑

j=1

(∂ijf ◦ Xt) dX i
t dXj

t .

In view of 2.6 for X i
t , this yields the claim once we note that

dX i
t dXj

t =
m∑

n=1

(
ui

n ◦ Xt

) (
uj

n ◦ Xt

)
dt

in view of the rules of Theorem 7.19 and Lemma 7.22. �

2.25 Corollary. Let f ∈ C2
K . Then, Gf ∈ CK , and

E
x f ◦ Xt = f(x) + E

x

ˆ t

0

ds Gf ◦ Xs, x ∈ E, t ∈ R+.

Proof. The vector fields un are continuous by Condition 2.4. Thus, for f in
C2

K , the formula 2.21 shows that Gf is continuous and has compact support.
The claimed formula is now immediate from the preceding theorem, since
E

xMt = 0. �

Moreover, in the preceding corollary, since Gf ∈ CK and thus is bounded,
we may change the order of integration and expectation (by Fubini’s theo-
rem). Recalling 2.15, then, we obtain the following.

2.26 Corollary. Let f ∈ C2
K . Then, Gf ∈ CK and

Ptf(x) = f(x) +
ˆ t

0

ds Ps Gf(x), x ∈ E, t ∈ R+.

Dynkin’s formula

This is essentially Corollary 2.25, but with a stopping time replacing the
deterministic time.

2.27 Theorem. Let f ∈ C2
K . Let T be an F-stopping time. For fixed x

in E, suppose that E
xT < ∞; then,

E
x f ◦ XT = f(x) + E

x

ˆ T

0

ds Gf ◦ Xs.

Proof. Let f , T , x be as described. By Theorem 2.23, the proof is reduced
to showing that E

xMT = 0 for the martingale M there. Since M is a sum
of finitely many martingales, it is enough to show that E

xM̂T = 0 for one of
the terms there, say, for the martingale

M̂t =
ˆ t

0

g ◦ Xs dŴs,

where, for fixed i and n, we put g = ui
n∂if and Ŵ = Wn.
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Since f has compact support, and since ∂if and ui
n are continuous, the

function g is continuous and bounded, say by c. Thus, applying 7.6 with F
there taken as the bounded left-continuous process s �→ (g ◦ Xs)1{s≤T},

E
x

(
M̂T∧t

)2

= Ex

(ˆ t

0

g ◦ Xs 1{s≤T} dŴs

)2

= E
x

ˆ t

0

(g ◦ Xs)
2 1{s≤T} ds ≤ E

xc2T < ∞

by theassumption thatE
xT <∞. So, on (Ω, H, Px), themartingale (M̂T∧t)t∈R+

isL2-boundedand, therefore, is uniformly integrable.ByTheoremV.5.14, then,
M̂ is a Doob martingale on [0,T], which implies that E

xM̂T = E
xM̂0 = 0 as

needed. �

Infinitesimal generator

This is an extension of the operator G defined by 2.21. We keep the same
notation, but we define it anew.

Let DG be the collection of functions f : E �→ R for which the limit

Gf(x) = lim
t↓0

1
t

[Ptf(x) − f(x)]2.28

exists for every x in E. Then, G is called the infinitesimal generator of X ,
and DG is called its domain.

2.29 Lemma. Let f ∈ C2
K . Then, f ∈ DG, and the limit in 2.28 is given

by 2.21.

Proof. Let f ∈ C2
K , define Gf by 2.21. By Corollary 2.26, then, Gf is

continuous and bounded, which implies that PsGf(x) = E
x Gf◦Xs goes to

Gf(x) as s → 0; this is by the bounded convergence theorem and the conti-
nuity of X . Thus, from the formula of 2.26, Gf(x) is equal to the limit on the
right side of 2.28. �

Forward and backward equations

2.30 Theorem. Let f ∈ C2
K . Then, f ∈ DG, Gf is given by 2.21, and

d

dt
Ptf(x) = PtGf(x), x ∈ E, t ∈ R+.2.31

Moreover, for f in C2
K again, Ptf ∈ DG and, with G as in 2.28,

d

dt
Ptf(x) = GP tf(x), x ∈ E, t ∈ R+.2.32
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2.33 Remark. The equation 2.31 is called Kolmogorov’s forward equa-
tion, because G is in front of Pt. By the same logic, 2.32 is called Kolmogorov’s
backward equation. Writing u(t, x) for Ptf(x) for fixed f , the backward equa-
tion can be re-written as

d

dt
u = Gu, u(0, x) = f(x),

with the understanding that G applies to the spatial variable, that is, to
x �→ u(t, x). This sets up a correspondence between diffusions and partial dif-
ferential equations, since functions in DG can be approximated by sequences
of functions in C2

K .

Proof. The first statement is mostly in Lemma 2.29 and Corollary 2.26:
Let f ∈ C2

K . Then, Gf is given by 2.21, belongs to DG, and s �→ Gf ◦ Xs

is continuous and bounded. Thus, by the bounded convergence theorem,
s �→ PsGf(x) = E

x Gf ◦ Xs is continuous and bounded. Hence, in the
equation for Ptf given in Corollary 2.26, the integral on the right side defines
a differentiable function in t; and, taking derivatives on both sides yields 2.31.

For f in C2
K , we have just shown that t �→ Ptf(x) is differentiable. Thus,

since PsPt = Pt+s, the limit

GP tf(x) = lim
s→0

1
s

[PsPtf(x) − Ptf(x)]

= lim
s→0

1
s

[Pt+sf(x) − Ptf(x)] =
d

dt
Ptf(x)

exists, that is, Ptf ∈ DG and 2.32 holds. �

Potentials, resolvent

Let f ∈ Eb and p > 0. By the continuity of X , the mapping (t, ω) �→ Xt(ω)
is measurable relative to BR+ ⊗ H and B(Rd). Thus, the following defines a
function in Eb:

Upf(x) = E
x

ˆ ∞

0

dt e−pt f ◦ Xt =
ˆ ∞

0

dt e−pt Ptf(x), x ∈ E.2.34

The function Upf is called the p-potential of f , and Up is called the p-potential
operator, and the family (Up)p>0 is called the resolvent of (Pt) or of X . Of
course, 2.34 makes sense for f in E+ and p ≥ 0 as well. The next theorem
relates the resolvent to the infinitesimal generator: the operators Up and p−G
are inverses of each other.

2.35 Theorem. For p > 0 and f ∈ C2
K ,

Up(p − G)f = (p − G) Upf = f.
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Proof. Fix p and f such. From Corollary 2.26, then,

pUpf =
ˆ ∞

0

dt pe−pt f +
ˆ ∞

0

dt pe−pt

ˆ t

0

ds Ps Gf = f + UpGf

by a change in the order of integration over s and t. Thus, Up(pf −Gf) = f .
For the other claim, we start by noting that, since PsPt = Ps+t and f is
bounded,

PsUpf =
ˆ ∞

0

dt e−pt Ps+t f = eps Upf − eps

ˆ s

0

dt e−pt Ptf.

In the rightmost integral, the integrand goes to f as t → 0. Thus,

GUpf = lim
s→0

1
s

(PsUpf − Upf)

= lim
s→0

eps − 1
s

Upf − lim
s→0

1
s

eps

ˆ s

0

dt e−pt Ptf = pUpf − f.

Thus, (p − G)Upf = f as well. �

Interpretations

Fix f in Eb and p > 0. Let Tp be a random variable having the exponential
distribution with parameter p. Suppose that Tp is independent of X . Since
P{Tp > t} = e−pt, we may express 2.34 as

Upf(x) = E
x

ˆ ∞

0

dt 1{Tp>t}f ◦ Xt = E
x

ˆ Tp

0

dt f ◦ Xt,2.36

which is the expected earnings during (0, Tp) if the rate of earnings is f(y)
per unit of time spent at y. A related interpretation is that

pUpf(x) = E
x

ˆ ∞

0

dt pe−pt f ◦ Xt = E
x f ◦ XTp ,2.37

and, equivalently, writing PTpf(x) for g ◦ Tp with g(t) = Ptf(x),

pUpf(x) = E PTp f(x).2.38

These show, in particular, that pUp is a Markov kernel on (E, E). Moreover,
noting that T = pTp is standard exponential, and since 1

pT → 0 as p → ∞,
it follows from 2.38 that

lim
p→∞ pUp f(x) = f(x)2.39

provided that limt→0 Ptf(x) = f(x), for instance, if f is continuous in addi-
tion to being bounded.



Sec. 2 Itô Diffusions 465

Resolvent equation

2.40 Theorem. For p > 0 and q > 0, we have UpUq = Uq Up, and

Up + p Up Uq = Uq + q Uq Up.2.41

Proof. Let f ∈ Eb. Let Tp and Tq be independent of each other and of
X , both exponential variables, with respective parameters p and q. Since
PsPt = PtPs, it follows from 2.38 that

pq UpUqf(x) = E PTp PTq f(x) = E PTq PTp f(x) = qp UqUpf(x),

that is, Up Uq = Uq Up. To show the resolvent equation 2.41, we start with
the ordinary Markov property:

E
x

ˆ s+t

0

du f ◦ Xu = E
x

ˆ s

0

du f ◦ Xu + E
x

ˆ t

0

du f ◦ Xs+u

= E
x

ˆ s

0

du f ◦ Xu +
ˆ

E

Ps(x, dy) E
y

ˆ t

0

du f ◦ Xu.

Since Tp and Tq are independent of X , we may replace s with Tp, and t with
Tq. Then, using the interpretations 2.36 and 2.38, we get

E
x

ˆ Tp+Tq

0

du f ◦ Xu = Upf(x) + p UpUqf(x).

This proves 2.41 since Tp + Tq = Tq + Tp. �

Killing the diffusion

This is to describe an operation that yields an absorbing Markov process
that coincides with X over an initial interval of time. Here X is the diffusion
(described by Theorem 2.5 and examined above) with state space E = R

d.
Let k be a positive Borel function on E. Let T be independent of the

process X and have the standard exponential distribution (with mean 1).
Define, for t in R+ and ω in Ω,

X̂t(ω) =
{

Xt(ω) if T (ω) >
´ t

0
ds k ◦ Xs(ω),

∂ otherwise,
2.42

where ∂ is a point outside E. This defines a stochastic process X̂ with state
space Ē = E ∪ {∂}. We think of ∂ as the cemetery; it is a trap, and

ζ = inf
{
t ∈ R+ : X̂t = ∂

}
2.43

is the time X is killed. It follows from 2.42 and the assumptions on T that,
with exp−x = e−x and G0∞ = σ{Xs = s ∈ R+},

P
{
ζ > t |G0

∞
}

= exp−

ˆ t

0

ds k ◦ Xs.2.44
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Thus, in the language of Chapter VI, the particle X is killed at the time ζ of
first arrival in a conditionally Poisson process with random intensity process
k ◦ X . It is common to refer to X̂ as the process obtained from X by killing
X at the rate k(x) when at x.

The process X̂ is Markov with state space (Ē, Ē); its living space is (E, E).
We adopt the conventions 2.18 regarding the trap ∂; recall that every f in
E+ is extended onto Ē by setting f(∂) = 0. Thus, the transition function of
X̂ is determined by

P̂tf (x) = E
x f ◦ X̂t2.45

= E
x f ◦ Xt 1{ζ>t} = E

x (f ◦ Xt)
(

exp−

ˆ t

0

ds k ◦ Xs

)
,

with f in E+ and t in R+ and x in E. The Markov property of X̂ implies that
(P̂t) is a transition semigroup. Each P̂t is a sub-Markov kernel on (E, E); the
defect 1 − P̂t(x, E) being P

x{ζ ≤ t}. The following relates (P̂t) to (Pt).

2.46 Proposition. Let t ∈ R+, x ∈ E, f ∈ E+. Then,

Ptf(x) = P̂tf(x) +
ˆ t

0

ds

ˆ

E

P̂s (x, dy) k(y) Pt−sf(y).2.47

Proof. We condition on whether killing occurs before or after time t, and
we use the Markov property of X :

Ptf(x) = E
x f ◦ Xt 1{ζ>t} + E

x f ◦ Xt 1{ζ≤t}

= E
x f ◦ X̂t +

ˆ

[0,t]×E

P
x {ζ ∈ ds, Xζ ∈ dy}Pt−s f(y).

This yields the claim via 2.45 and the observation that

P
x {ζ ∈ ds, Xζ ∈ dy} = ds P̂s(x, dy) k(y). �

Let (Ûp) denote the resolvent of the semigroup (P̂t), and recall the resol-
vent (Up) of (Pt). Taking Laplace transforms on both sides of 2.47 we get

Upf(x) = Ûpf(x) +
ˆ

E

Ûp(x, dy) k(y) Upf(x).2.48

We use this to obtain the generator Ĝ corresponding to (P̂t) from the gen-
erator G of (Pt); see 2.21 and 2.28; in particular, Ĝ is defined by 2.28 from
(P̂t).

Let f ∈ C2
K . Recall Theorem 2.35 to the effect that f = Up(p−G)f . Thus,

in view of 2.48,

f = Ûp(p − G) f + Ûp(kf) = Ûp(p − Ĝ)f
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where

Ĝf(x) = Gf(x) − k(x)f(x), f ∈ C2
K , x ∈ E.2.49

In words, every f in C2
K is in the domain of Ĝ, and Ĝ is related to G and

k through 2.49. Considering the relationship 2.28 for Ĝ and (P̂t), and con-
sidering the formula 2.45 for P̂t, we obtain the following. This is known as
Feynman-Kac formula.

2.50 Proposition. Let f ∈ C2
K and put

u(t, x) = E
x (f ◦ Xt)

(
exp−

ˆ t

0

ds k ◦ Xs

)
, t ∈ R+, x ∈ E.

Then, u satisfies the partial differential equation

∂

∂t
u = Gu − ku, u (0, ·) = f.

Proof of existence and uniqueness

We start the proof of Theorem 2.13 with a lemma on some approxima-
tions. We omit time subscripts that are variables of integration. Condition
2.4 is in force throughout.

2.51 Lemma. Let Y and Z be continuous processes with state space E =
R

d, put

At =
ˆ t

0

(u0 ◦ Y − u0 ◦ Z) ds, Mt =
m∑

n=1

ˆ t

0

(un ◦ Y − un ◦ Z) dWn.

Then,

E sup
s≤t

|As + Ms|2 ≤ (2t + 8m) c2

ˆ t

0

E |Y − Z|2 ds.

Proof. By ordinary considerations, using the Lipschitz condition 2.4,

E |At|2 ≤ t

ˆ t

0

|u0 ◦ Y − u0 ◦ Z|2 ds ≤ tc2

ˆ t

0

E |Y − Z|2 ds.

Applying the rule 7.6 to each component of the d-dimensional martingale M ,
recalling that the Wn are independent, we get

E |Mt|2 =
m∑

n=1

ˆ t

0

|un ◦ Y − un ◦ Z|2 ds ≤ mc2

ˆ t

0

E |Y − Z|2 ds,

where the last step used the Lipschitz condition. From these, we obtain

E sup
s≤t

|As|2 ≤ tc2

ˆ t

0

E |Y − Z|2 ds,

E sup
s≤t

|Ms|2 ≤ 4 E |Mt|2 ≤ 4 mc2

ˆ t

0

E |Y − Z|2 ds,
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where we used the Doob-Kolmogorov inequality in the last line. These two
last expressions yield the lemma. �

2.52 Proof of Theorem 2.13. Consider the equation 2.5 with X0 = x for some
fixed x in E. We define a sequence of continuous processes X(k) by setting
X

(0)
t = x for all t, and by letting

X
(k+1)
t = x +

ˆ t

0

u0 ◦ X(k)
s ds +

m∑

n=1

ˆ t

0

un ◦ X(k)
s dWn

s2.53

for k ≥ 0. Then, X(k+1) − X(k) = A + M , where A and M are as in the
preceding lemma with Y = X(k) and Z = X(k−1). Fix τ in R+ and put
α = (2τ + 8 m)c2. It follows from the lemma that

E sup
s≤t

∣
∣
∣X(k+1)

s − X(k)
s

∣
∣
∣
2

≤ α

ˆ t

0

E

∣
∣
∣X(k)

s − X(k−1)
s

∣
∣
∣
2

ds2.54

for every t ≤ τ and k ≥ 1. Whereas, by the lemma again, this time with
Y = X(1) and Z = X(0) = x,

E

∣
∣
∣X(1)

t − X
(0)
t

∣
∣
∣
2

= E

∣
∣
∣
∣
∣
u0(x)t +

m∑

n=1

un(x)Wn
t

∣
∣
∣
∣
∣

2

2.55

= |u0(x)|2 t2 +
m∑

n=1

|un(x)|2 t ≤ β

where β = (τ2+mτ) c2(1 + |x|)2 in view of Condition 2.4.
We put the bound 2.55 into 2.54 with k = 1, put the resulting inequality

back into 2.54 with k = 2, and continue recursively. We get

E sup
s≤τ

∣
∣∣X(k+1)

s − X(k)
s

∣
∣∣
2

≤ β αkτk/k!,

which, via Markov’s inequality, yields

P

{
sup
s≤τ

∣
∣
∣X(k+1)

s − X(k)
s

∣
∣
∣
2

>
1
2k

}
≤ β (4ατ)k

/k!.2.56

The right side is summable over k. By the Borel–Cantelli lemma, then,
there is an almost sure event Ωτ such that, for every ω in Ωτ , the sequence(
X

(k)
t (ω)

)

k∈N

is convergent in E = R
d uniformly for t in [0, τ ]. We define

Xt(ω) to be the limit for ω in Ωτ and put Xt(ω) = x for all other ω.
It follows from the uniformity of convergence and the continuity of X(k)

that X is continuous on [0, τ ]. It follows from 2.53 that X satisfies the equa-
tion 2.5 for t ≤ τ . And, τ is arbitrary.
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There remains to show the uniqueness. Let X and X̂ be solutions to 2.5
with X0 = X̂0 = x. Then, X − X̂ = A + M in the notation of Lemma 2.51
with Y = X and Z = X̂. Thus, for fixed τ in R+, we have

E sup
s≤t

∣∣
∣Xs − X̂s

∣∣
∣
2

≤ (2τ + 8m) c2

ˆ t

0

E

∣∣
∣Xs − X̂s

∣∣
∣
2

ds

for all t ≤ τ . It now follows from Gronwall’s inequality (see Exercise 2.70)
that the left side vanishes. Thus, almost surely, Xt = X̂t for all t ≤ τ ; and τ
is arbitrary. �

Dependence on the initial position

Let Xt(ω, x) denote the position Xt(ω) when X0 = x. The next proposi-
tion shows that the dependence of Xt on x is continuous in the L2-space of
(Ω, H, P) and, hence, in probability.

2.57 Proposition. For each t in R+,

lim
x→y

E |Xt(x) − Xt(y)|2 = 0.

Proof. Fix x and y in E. Note that Xt(x) − Xt(y) = x − y + At + Mt

in the notation of Lemma 2.51 with Yt = Xt(x) and Zt = Xt(y). Thus with
fixed τ < ∞ and α = (2τ + 8m)c2, we have

E |Xt(x) − Xt(y)|2 ≤ 2 |x − y|2 + 2α

ˆ t

0

E |Xs(x) − Xs(y)|2 ds

for all t ≤ τ . Via Gronwall’s inequality (see 2.70), this implies that

E |Xt(x) − Xt(y)|2 ≤ 2 |x − y|2 e2αt, 0 ≤ t ≤ τ.

The claim is immediate since τ is arbitrary. �

The preceding proposition implies that Xt(x) → Xt(y) in probability as
x → y in E = R

d. Thus, for f : E �→ R bounded and continuous, as x → y,

Ptf(x) = E f ◦ Xt(x) → E f ◦ Xt(y) = Ptf(y)2.58

as in Theorem III.1.6. In other words, if f is bounded continuous, then so is
Ptf for each t. This is called the Feller property for (Pt); it will show that
Itô diffusions form a subset of Hunt processes to be introduced in Section 5.

Exercises and complements

2.59 Differential operator. Specify the operator G defined by 2.21 for

a) the geometric Brownian motion of Example 2.9,
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b) Ornstein-Uhlenbeck process of 2.10,
c) Brownian motion on the unit circle, Example 2.11.

2.60 Ornstein-Uhlenbeck model. Let V be the Ornstein–Uhlenbeck velocity
process for the physical Brownian motion on R; it satisfies

dV t = −cV t dt + b dW t,

where c > 0 and b > 0 are constants, and W is Wiener. Then, the particle
position process X satisfies dXt = Vt dt. Write the equation of motion for
the R

2-valued motion (Vt, Xt). What is the corresponding generator G on
C2

K(R2 �→ R)? show that V and X are Gaussian processes assuming that
V0 = v and X0 = x are fixed.
Hint: Write the solution for V , and use integration by parts to express V as
an ordinary integral of W .

2.61 Graphs. Let X be an Itô diffusion satisfying 2.5. Put Yt = (t, Xt). Write
Itô’s formula for f ◦ Yt with f in C2

K(R × R
d �→ R). Show that Y is an Itô

diffusion that satisfies

dY t =
m∑

n=0

vn ◦ Yt d Zn
t ,

where Zo
t = t and Zn

t = Wn
t for n ≥ 1 and the vector fields v0, . . . , vm on

R
d+1 chosen appropriately. Specify the vn.

2.62 Applications to Brownian motion. Here and in Exercises 2.63–2.66 be-
low, X is a standard Brownian motion in E = R

d as in Example 2.22. For
Borel subsets D of E define τD to be the time of exit from D, that is,

τD = inf {t ∈ R+ : Xt �∈ D} .

Recall that, when d = 1 and D = (−r, r), we have E
0τD = r2. Show that, in

general, E
xτD < ∞ for x in D, for D bounded.

Hint: If D is bounded, it is contained in an open ball of some radius r <
∞ centered at x, and that ball is contained in the cylinder C = (x1 − r,
x1 + r) × R

d−1 if x = (x1, . . . , xd). Then, τD ≤ τC , and E
xτC = r2.

2.63 Continuation. Let D be a ball of radius r centered at the origin. Show
that, for x in D,

E
x τD =

r2 − |x|2
d

Hint: Use Dynkin’s formula, Theorem 2.27, with f in C2
K chosen so that

f(x) = |x|2 for x in D.

2.64 Hitting of spheres. For r ≥ 0, let Tr be the time that Brownian motion
X hits the sphere of radius r centered at the origin of R

d. For 0 < q < |x| < r,
consider the probability

α = P
x {Tq < Tr} ,

that is, the probability that X exits D = {x ∈ E : q < |x| < r} by touching
the inner sphere.
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a) For d = 1, X is a Doob martingale on [0, τD]; use this to show that
α = (r − |x|)/(r − q).

b) Let d = 2. Show that α = (log r − log |x|)/(log r − log q).

Hint: Let f ∈ C2
K such that f(x) = log |x| for x in D. Use Dynkin’s formula

for such f and stopping time τD.

c) Let d = 3. Show that

α =
(
r2−d − |x|2−d

)/(
r2−d − q2−d

)
.

Hint: use Dynkin’s formula with f in C2
K such that f |x| = |x|2−d for x in D.

2.65 Recurrence properties. For d = 1, the Brownian motion X will hit every
point y repeatedly without end; see Chapter VIII.

a) Let d = 2. Let r → ∞ in 2.64b to show that

P
x {Tq < ∞} = 1, 0 < q < |x| ,

however small the disk of radius q is. Show, however, that

P
x {T0 < ∞} = 0, |x| > 0.

b) Let d = 3 and 0 < q < |x|. Show that

P
x {Tq < ∞} = (q/|x|)d−2 .

In summary, standard Brownian motion is “point recurrent” for d = 1,
fails to be point recurrent but is “disk recurrent” for d = 2, and is “transient”
for d ≥ 3.

2.66 Bessel processes with index d ≥ 2. Let X = X0 + W , a standard
Brownian motion in R

d. Define R = |X |. Started at x �= 0, the process X
never visits the point 0; see 2.65a. Thus, the true state space for R is (0,∞).
Since d ≥ 2, the function f : x �→ |x| is twice differentiable everywhere except
the origin.

a) Use Itô’s formula on R = f ◦ X to show that

dRt =
d − 1
2 Rt

dt +
d∑

i=1

1
Rt

X i
t dW i

t =
d − 1
2Rt

dt + dŴt

with an obvious definition for Ŵ .
b) Show that Ŵ is a continuous local martingale with Ŵ0 = 0. Show,

using 7.24, that Ŵ is a Wiener process (one-dimensional).

2.67 Bessel with index 2. Let d = 2 in the preceding exercise, and let R0 =
r > 0 be fixed. Define

Yt = log Rt, t ∈ R+.
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a) Show that Y is a continuous local martingale with Y0 = log r.
b) Let τ be the time of exit for R from the interval (p, q), where 0 <

p < r < q. Show that τ < ∞ almost surely and that Y is bounded on [0, τ ].
Show that, as in 2.64b,

P {Rτ = p} =
log q − log r

log q − log p
.

2.68 Continuation. a) Show that C = 〈Y, Y 〉 is given by

Ct =
ˆ t

0

ds e−2Ys .

Use Theorem 7.27 to conclude that

Yt = log r + W̃Ct

for some Wiener process W̃ .

b) Solve the last equation for Y by expressing Ct in terms of W̃ .
c) Conclude that the Bessel process R is a time-changed geometric

Brownian motion: R = ZC , where

Zs = reW̃s , Su =
ˆ u

0

ds (Zs)2, Ct = inf {u > t : Su > t} .

2.69 Bessel with index d ≥ 3 . Take d = 3 in 2.66 and fix R0 = r > 0.

a) Show that Y = R2−d is a local martingale.
b) Use Theorem 7.27 to show that Y = Y0 + W̃C , where W̃ is a Wiener

process and C = 〈Y, Y 〉. Thus,

Yt = ZCt ,

where Zu = r2−d + W̃u, u ≥ 0, a Brownian motion.
c) Show that C is the functional inverse of S, where

Su = (d − 2)−2

ˆ u

0

(Zs)
(2−2d)/(d−2)

ds.

Conclude that R is a deterministic function of a random time-changed
Brownian motion:

Rt = (ZCt)
−1/(d−2) .

2.70 Gronwall’s inequality. Let f and g be positive continuous functions on
R+. Suppose that, for some c in R,

f(t) ≤ g(t) + c

ˆ t

0

f(s)ds.
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show that, then,

f(t) ≤ g(t) + c

ˆ t

0

ec(t−s) g(s) ds.

Hint: First show that

e−ct

ˆ t

0

f(s) ds ≤
ˆ t

0

e−cs g(s) ds.

3 Jump-Diffusions

Jump-diffusions are processes that are Itô diffusions between the jumps.
The jump times form a point process, and the diffusions and jumps interact.
The treatment uses notions from Itô diffusions and Poisson random measures.

The motion of interest is a right-continuous, piecewise continuous process
with state space E = R

d and the attendant σ-algebra E = B(Rd). Through-
out, (Ω, H, P) is a complete probability space, and F is an augmented right-
continuous filtration. Adapted to F, and independent of each other, W is an
m-dimensional Wiener process and M is a standard Poisson random measure
on R+ × R+ (with mean Leb× Leb). In addition, X0 is an E-valued random
variable in F0; it will often be treated as a deterministic parameter. As before,
(x, H) �→ P

x(H) is a regular version of the conditional probabilities 2.3.

The motion

The deterministic data are some vector fields u0, . . . , um on E and a Borel
function j : E × R+ �→ E. The vector fields are as in the preceding section;
the function j rules the jump sizes. The motion X of interest satisfies the
following stochastic integral equation:

Xt = X0+
ˆ t

0

a ◦Xs ds+
ˆ t

0

b ◦Xs dWs+
ˆ

[0,t]×R+

M (ds, dv) j(Xs−, v).

3.1
Here, a = u0 and b is the d × m matrix whose columns are u1, . . . , um; see
2.5–2.8 for various equivalent ways of expressing the first two integrals. Unless
stated otherwise, the next condition is in force throughout.

3.2 Condition. a) Lipschitz condition 2.4 holds. b) There is a constant c
in R+ such that j(x, v) = 0 for v > c for all x in E.

This condition is sufficient to ensure the existence and uniqueness of a
piecewise continuous solution to 3.1. The condition on j makes the last in-
tegral in 3.1 to be effectively over [0, t] × [0, c], which means that the jump
times of X form a subset of the arrival times in a Poisson process with rate c.
Between two successive jumps, the motion is an Itô diffusion satisfying

dX̄t = a ◦ X̄t dt + b ◦ X̄t dW t.3.3
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In particular, the initial segment (before the first jump) of X coincides with
the Itô diffusion X̄ satisfying 3.3 with the initial condition X̄0 = X0.

Obviously, if j = 0, then X = X̄ ; this was the subject of the preceding
section. At the other extreme is the case u0 = · · · = um = 0, in which case X
is piecewise constant, that is, each path X(ω) is a step function; the reader
is invited to take this to be the case on a first reading; we shall treat this
special case toward the end of this section. In the middle, there is the case
where u1 = · · · = um = 0, in which case X is piecewise deterministic.

Construction of X

The next theorem describes X under the standing condition 3.2. The
proof is constructive and is helpful for visualizing the paths.

3.4 Theorem. The equation 3.1 has a pathwise unique solution X that
is piecewise continuous, right-continuous, and locally bounded.

Proof. For fixed x in E and s in R+, let (t, ω) �→ X̄s,t(ω, x) be the process
that is the solution X̄t to 3.3 with t ≥ s and X̄s = x. Under the Lipschitz
condition 2.4, Theorem 2.13 applies, and t �→ X̄s,t(ω, x) is pathwise unique
and continuous for almost every ω. Under condition 3.2b, the last integral
in 3.1 is over [0, t] × [0, c] effectively. Since M is standard Poisson, its atoms
over R+ × [0, c] can be labeled (Sn, Vn) so that, for almost every ω,

0 < S1(ω) < S2(ω) < · · · , lim Sn(ω) = +∞.3.5

By eliminating from Ω a negligible event, we assume that these properties
(on X̄ and M) hold for every ω.

Fix ω, put S0(ω) = 0, and suppose that Xt(ω) is specified for all t ≤ s,
where s = Sn(ω) for some n ≥ 0. We proceed to specify it for t in (s,u], where
we put u = Sn+1(ω). Since Mω has no atoms in (s, u)× [0, c], the equation 3.1
implies that

Xt(ω) = X̄s,t(ω, Xs(ω)), s ≤ t < u.

Since t �→ X̄s,t(ω, x) is continuous and bounded on the interval [s,u], we have

Xu−(ω) = lim
t↗u

Xt(ω) = X̄s,u(ω, Xs(ω)),

which point is in E. Now, 3.1 implies that

Xu(ω) = Xu−(ω) + j (Xu−(ω), Vn+1(ω)) .

This completes the specification of Xt(ω) for t ≤ Sn+1(ω), and therefore for
all t in R+, by recursion, in view of 3.5. The other claims of the theorem are
immediate from this construction. �

In the proceding proof, the times Sn are the arrival times of the Poisson
process t �→ M([0, t]× [0, c]). The proof shows that the path X(ω) is contin-
uous except possibly at times Sn(ω). Generally, not every Sn(ω) is a jump
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time for X(ω). See Exercise 3.88 for an example where X has at most finitely
many jumps, and, in fact, there is a strictly positive probability that it has
no jumps.

Markov and strong Markov properties

The process X has both. The proofs follow the same lines as those for
diffusions: uniqueness of solutions to 3.1, and the Markov and strong Markov
properties for W and M .

3.8 Theorem. For each time t, the process X̂ = (Xt+u)u∈R+ is condi-
tionally independent of Ft given Xt; given that Xt = y, the conditional low
of X̂ is the same as the law of X under P

y.

Proof. Analogous to the proof of Theorem 2.16, we have

X̂u = X̂0 +
ˆ u

0

a ◦ X̂s ds+
ˆ u

0

b ◦ X̂s dŴs +
ˆ

[0,u]×R+

M̂ (ds, dv) j
(
X̂s−, v

)
,

where Ŵ = (Wt+u − Wt)u∈R+ and M̂ = {M(Bt) : B ∈ B(R+ × R+)} with
Bt = {(t + u, z) : (u, z) ∈ B}. Note that Ŵ and M̂ are independent of Ft and
of each other, Ŵ is Wiener just as W , and M̂ is Poisson just as M. Finally, the
uniqueness shown in Theorem 3.4 implies that X̂ is obtained from (X̂0, Ŵ , M̂)
by the same mechanism as X is obtained from (X0, W, M). Hence, the
claim. �

The strong Markov property is shown next; the wording repeats Theorem
2.19; the conventions 2.18 are in force regarding the end of time.

3.9 Theorem. The process X is strong Markov: For every F-stopping
time T , the variable XT is FT -measurable, and X̂ = (XT+u)u∈R+ is con-
ditionally independent of FT given XT ; moreover, for y in E, on the event
{XT = y}, the conditional law of X̂ given XT is the same as the law of X
under P

y.

Proof. The measurability claimed for XT is via Theorem V.1.14 and the
right-continuity of X , and the adaptedness to F. On {T = +∞}, the claims
regarding the conditional law given FT are immediate from the conventions
2.18. On {T < ∞}, the claims are proved as in the preceding proof: replace
t with T , recall that Ŵ is again Wiener by the strong Markov property for
W (see Theorem VII.3.10), and use the next lemma.

3.10 Lemma. Let T be an F-stopping time. For ω in {T < ∞}, define
M̂(ω, B) = M(ω, BT (ω)), where Bt = (t, 0) + B, B ∈ B(R+ × R+). Then,
on {T < ∞}, the conditional law of M̂ given FT is the law of the standard
Poisson random measure M .



476 Markov Processes Chap. 9

Proof. Define h(v) = v−2 for v > 0. Note that the lebesgue integral of
h ∧ 1 over R+ is equal to 2, a finite number. It follows, since M is Poisson,
adapted to F, and with mean Leb × Leb on R+ × R+, that

Zt =
ˆ

[0,t]×(0,∞)

M (ds, dv) h(v)

defines an increasing pure-jump Lévy process adapted to F; in fact, Z is
stable with index 1/2. By Theorem VII.3.10, then, Z is strong Markov: on
the event {T < ∞}, the conditional law of Ẑ = (ZT+u − ZT )u∈R+ given FT

is the same as the law of Z.
Since h is a homeomorphism of (0,∞) onto (0,∞), the measure Mω

and the path Z(ω) determine each other for almost every ω. Similarly, on
{T < ∞}, the measure M̂ω and the path Ẑ(ω) determine each other. Obvi-
ously, M̂ bears the same relationship to Ẑ, as M does to Z. Thus, the claim
follows from the strong Markov property of Z. �

Lévy kernel for jumps

This is a transition kernel from (E, E) into (E, E). It gives the rates and
effects of jumps. It is defined by, for x in E and B in E,

L (x, B) = Leb {v ≥ 0 : j(x, v) �= 0, x + j(x, v) ∈ B} .3.11

Note that L(x, {x}) = 0. In a sense to be made precise by the next theorem,
L(x, B) is the rate of jumps from x into B per unit of time spent at x. If X
were a Lévy process with a Lévy measure λ for its jumps, then j(x, v) would
be free of x, and L(x, B) would be equal to λ(B −x). Hence, the term “Lévy
kernel” for L.

Heuristically, then, the “rate” of jumps when at x is

k(x) = L(x, E) = Leb {v ≥ 0 : j(x, v) �= 0} , x ∈ E.3.12

Clearly, k is a positive Borel function on E. The general theory allows k(x) =
+∞ for some or for all x; Condition 3.2b implies that k is bounded by the
constant c of 3.2b, and then, L is a bounded kernel. The next theorem does
not assume 3.2b.

3.13 Theorem. Let f be a positive Borel function on E ×E. Let F be a
positive left-continuous process adapted to F. Then, for every x in E,

E
x

∑

s∈R+

Fs f ◦ (Xs−, Xs) 1{Xs− �=Xs}3.14

= E
x

ˆ

R+

ds Fs

ˆ

E

L(Xs, dy) f ◦ (Xs, y).
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3.15 Remarks. a) The proof below will show that this theorem holds
without condition 3.2; all that is needed is that X be right-continuous and
have left-limits in E, and that X satisfy the equation 3.1.

b) On the left side of 3.14, the sum is over the countably many times s
of jumps. On the right side, we may replace Xs by Xs− since the integration
over s will wash away the difference; the result with Xs− is closer to intuition.

c) Take F to be the indicator of [0, t] for some fixed t, and let f be
the indicator of a Borel rectangle A × B. The sum on the left side of 3.14
becomes the number Nt(A × B) of jumps, during [0, t], from somewhere in
A to somewhere in B. Thus,

E
xNt(A × B) = E

x

ˆ t

0

ds (1A ◦ Xs−)L (Xs−, B) .3.16

This is the precise meaning of the heuristic phrase that L(y, B) is the
rate of jumps from y into B. The phrase is short for the statement that
s �→ (1A ◦ Xs−)L(Xs−, B) is the random intensity for the point process
s �→ Ns(A × B) in the sense employed in Chapter IV, Section 6.

c) In particular, for the total number Nt(E×E) of jumps X makes during
[0, t], we see from 3.16 that

E
x Nt(E × E) = E

x

ˆ t

0

ds k ◦ Xs− = E
x

ˆ t

0

ds k ◦ Xs.3.17

Proof. Since X satisfies 3.1, the sum on the left side of 3.14 is equal to

ˆ

R+×R+

M(ds, dv) Fs f̂ (Xs−, Xs− + j(Xs−, v))

where f̂(y, z) = f(y, z) for y �= z, and f̂(y, z) = 0 for y = z. Here, the
integrand is a process (ω, s, v) �→ G(ω, s, v) that satisfies the predictability
conditions of Theorem VI.6.2 on Poisson integrals: F is left-continuous, s �→
Xs− is left-continuous, both are adapted to F, and f̂ and j are Borel. It follows
from that theorem that the left side of 3.14 is equal to

E
x

ˆ

R+×R+

ds dv Fs f̂ (Xs−, Xs− + j (Xs−, v))

= E
x

ˆ

R+

ds Fs

ˆ

E

L (Xs−, dy) f(Xs−, y),

where we used the definition 3.11 of L to evaluate the integral over v. The
last expression is equal to the right side of 3.14 since Xs− differs from Xs for
only countably many s. �

Under Condition 3.2b, the kernel L is bounded, as k(x) = L(x, E) ≤ c.
We repeat this, and add a consequence:
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3.18 Corollary. The kernel L is bounded. For every bounded Borel
function f on E × E,

mt =
∑

s≤t

f ◦ (Xs−, Xs) 1{Xs− �=Xs} −
ˆ t

0

ds

ˆ

E

L (Xs, dy) f(Xs, y), t ≥ 0,

is an F-martingale with m0 = 0.

Proof. Fix 0 ≤ t < u, fix f bounded and positive. For an event H in Ft,
put Fs = 1H 1(t,u](s). Then, F is left-continuous and adapted, and it follows
from the preceding theorem that

E
x 1H

∑

t<s≤u

f (Xs−, Xs) 1{Xs− �=Xs} = E
x1H

ˆ u

t

ds

ˆ

E

L(Xs, dy) f(Xs, y).

Since f is bounded, and L is a bounded kernel, the right side is real-valued;
passing it to the left, we see that

E
x 1H · (mu − mt) = 0.

That is, (mt) is a martingale when f is bounded positive Borel. For f bounded
Borel, the same conclusion holds obviously. �

Generator

Recall the Itô diffusion X̄, which is the solution to 3.3 with X̄0 = X0. Let
Ḡ be its generator, that is, Ḡf(x) is given by the right side of 2.21 for f in
C2

K = C2
K(E �→ R). We introduce (condition 3.2 is in force)

Gf(x) = Ḡf(x) +
ˆ

E

L (x, dy) [f(y) − f(x)] , f ∈ C2
K .3.19

This integro-differential operator is the generator for X :

3.20 Theorem. For every f in C2
K ,

Mt = f ◦ Xt − f ◦ X0 −
ˆ t

0

ds Gf ◦ Xs, t ∈ R+,

is an F-martingale.

Proof. a) Fix f in C2
K . Put T0 = 0, and let T1, T 2, . . . be the successive

jump times of X , defined recursively via Tn+1 = inf{t > Tn : Xt− �= Xt}
with n ≥ 0. On the event {Tn ≤ t < Tn+1} consider the telescoping sum

f ◦ Xt − f ◦ X0 =
n∑

i=1

(
f ◦ XTi − f ◦ XT

i−
)

3.21

+
n∑

i=1

(
f ◦ XTi− − f ◦ XTi−1

)
+ f ◦ Xt − f ◦ XTn

= A + B + C.
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b) The term A is a sum over the jump times during [0,t]. By
Corollary 3.18,

A =
∑

s≤t

(f ◦ Xs − f ◦ Xs−) = mt +
ˆ t

0

ds

ˆ

E

L (Xs, dy) [f(y) − f(Xs)] .3.22

c) We now prepare to evaluate B + C. Let S and T be stopping times,
chosen so that, on the event {T < ∞}, we have S < T and X continuous
over the interval (S, T). Thus, on {T < ∞}, the process X coincides over
(S, T) with some diffusion satisfying 3.3; and, since that diffusion has the
generator Ḡ,

f ◦ XT− − f ◦ XS = m̄T − m̄S +
ˆ T

S

ds Ḡf ◦ Xs,3.23

by Theorem 2.23, with m̄ as the martingale on the right side of 2.24.
d) Apply 3.23 repeatedly, with S = Ti−1 and T = Ti for i = 1, . . . , n,

and with S = Tn and T = t. We see that, on the event {Tn ≤ t < Tn+1}

B + C = m̄t +
ˆ t

0

ds Ḡf ◦ Xs.3.24

Finally, put 3.22 and 3.24 into 3.21, recall the definition 3.19 of G, and put
M = m + m̄. The result is the claim, since the union of the events {Tn ≤ t <
Tn+1} is the event {lim Tn = +∞}, and the latter event is almost sure in
view of Condition 3.2b. �

Transition function, forward equation

The transition function (Pt) for X is defined, as usual, by

Ptf(x) = E
xf ◦ Xt, x ∈ E, f ∈ E+.3.25

It follows from the preceding theorem that, for f in C2
K ,

Ptf(x) = f(x) + E
x

ˆ t

0

ds Gf ◦ Xs3.26

= f(x) +
ˆ t

0

ds PsGf(x),

where the interchange of expectation and integration is justified by noting
that Gf is bounded: For f in C2

K , Corollary 2.25 shows that Ḡf is bounded
continuous, and L is a bounded kernel under the standing condition 3.2.

The equation 3.26 is the integrated form of Kolmogorov’s forward equa-
tion; see Corollary 2.26 and Theorem 2.30 for the diffusion case. Indeed, a
formal differentiation of 3.26 yields the counterpart of the differential equa-
tions 2.31. The differentiability here, however, requires some continuity for the
jump function j (in addition to Lipschitz continuity for the velocity fields un).
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3.27 Theorem. Suppose that x �→ j(x, v) is continuous for every v in
R+. Then, for f ∈ C2

K , Gf is bounded and continuous, and

d

dt
Ptf = PtGf.3.28

Proof. Fix f in C2
K . As mentioned in Corollary 2.25, then, Ḡf ∈ CK

and thus bounded continuous. On the other hand, by the definition of L, and
by 3.2b,

ˆ

E

L (x, dy) [f(y) − f(x)] =
ˆ c

0

dv [f(x + j(x, v)) − f(x)].3.29

Since f is bounded continuous, and x �→ j(x, v) is continuous by assumption,
the integral on the right side yields a bounded continuous function (via the
bounded convergence theorem). Adding 3.29 to Ḡf , we see that Gf is bounded
continuous.

Consequently, by the right-continuity of X ,

lim
s→0

Pt+sGf(x) = lim
s→0

E
x Gf ◦ Xt+s = E

x Gf ◦ Xt = PtGf(x).

Hence, with the help of 3.26, we get

lim
u→0

1
u

[Pt+uf(x) − Ptf(x)] = lim
u→0

1
u

ˆ u

0

ds Pt+sGf(x) = PtGf(x). �

The first jump time

We return to the master equation 3.1. Define R to be the time of first
jump:

R = inf {t > 0 : Xt− �= Xt} .3.30

We show next that R is the lifetime of the diffusion X̄ killed at the rate k(x)
when at x; recall X̄ of 3.3 with X̄0 = X0, and recall the notation exp− x
for e−x.

3.31 Lemma. P{R > t|X̄} = exp−
´ t

0
ds k ◦ X̄s, t ∈ R+.

Proof. Pick an outcome ω. Note that R(ω) > t if and only if Xs(ω) =
X̄s(ω) for all s ≤ t, which is in turn equivalent to having

M (ω, Dω) = 0 for Dω =
{
(s, v) ∈ R+ × R+ : s ≤ t, j

(
X̄s−(ω), v

) �= 0
}

.

The diffusion X̄ is determined by W , and M is independent of W . Thus,
since M is Poisson with mean μ = Leb × Leb,

P
{
R > t|X̄}

= P
{
M(D) = 0|X̄}

= e−μ(D).

Finally, it follows from the definition 3.12 of k that

μ(Dω) =
ˆ t

0

ds k ◦ X̄s(ω). �
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3.32 Remark. The preceding lemma is without conditions on the jump
function. As a result, all values in [0,∞] are possible for R. When Condition
3.2b is in force, k is bounded and, thus, R > 0 almost surely. But R can take
+∞ as a value, that is, it is possible that there are no jumps; see Exercise 3.88
for an example.

3.33 Proposition. Let x ∈ E, f ∈ E+, t ∈ R+. Then,

E
xf ◦ Xt 1{R>t} = E

x f ◦ X̄t exp−

ˆ t

0

ds k ◦ X̄s,

where X̄ is the diffusion that is the solution to 3.3 with X̄0 = X0 = x.

Proof. On the left side, we may replace Xt with X̄t, since they are the
same on the event {R > t}. Now, conditioning on X̄ and applying the last
lemma yield the claim. �

The preceding proposition establishes a connection to the Feynman-Kac
formula discussed earlier. Define

P̂tf(x) = E
x f ◦ X̄t exp−

ˆ t

0

ds k ◦ X̄s, x ∈ E, f ∈ E+, t ∈ R+,3.34

which is the right side of the formula in the preceding proposition. Then, (P̂t)
is the sub-Markov transition semigroup of the Markov process X̂ obtained
from the diffusion X̄ by killing the latter at the rate k(x) when at x. See 2.42–
2.50 for these matters, the semigroup, computational results for it, and the
associated resolvant and generator. At this point, we regard (P̂t) as known.

Regeneration at R

Heuristically, R is the killing time of X̄. On the event that the killing
succeeds, it occurs at the location X̄R = XR−, and a new diffusion is born
at the point XR. We think of R as the time of first regeneration for X .

3.35 Theorem. For every x in E,

P
x{R ∈ ds, XR− ∈ dy, XR ∈ dz} = ds P̂s (x, dy)L(y, dz), s ∈ R+, y ∈ E, z ∈E.

Proof. The claim is equivalent to the more precise claim that

E
x g ◦R f ◦ (XR−, XR) =

ˆ

R+

ds g(s)
ˆ

E

P̂s (x, dy)
ˆ

E

L(y, dz) f(y, z)3.36

for f positive Borel on E × E and g positive continuous and with compact
support in R+. Fix f and g such. Let Fs = g(s) 1{s≤R} in Theorem 3.13.
On the left side of 3.14, the sum consists of a single term, namely, g ◦ R
f ◦(XR−, XR); this is because the only jump time s in [0, R(ω)] is at s = R(ω)
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if R(ω) < ∞, and g ◦ R(ω) = 0 if R(ω) = +∞ since g has compact support.
Hence, 3.14 becomes

E
x g◦R f ◦ (XR−, XR) = E

x

ˆ

R+

ds g(s) 1{s≤R}

ˆ

E

L (Xs, dz) f(Xs, z).

On the right side, we may replace {s ≤ R} with {R > s} without altering
the integral. The result is the right side of 3.36 in view of Proposition 3.33
and the definition 3.34. �

3.37 Remark. With k as defined by 3.12, we let K be a Markov kernel
on (E, E) that satisfies

L(x, B) = k(x) K (x, B) , x ∈ E, B ∈ E.

If k(x) > 0, then this defines K(x, ·) uniquely; when k(x) = 0, it matters
little how K(x, ·) is defined, we choose K(x, {x}) = 1 in that case, note that
K(x, {x}) = 0 if k(x) > 0. Replacing L(y, dz) with k(y) K(y, dz) yields the
following heuristic explanation of the preceding theorem: Suppose that the
particle is started at x. It survives until t and moves as a diffusion to arrive
at dy; this has probability P̂t(x, dy). Then, it gets killed during dt; this has
probability k(y) dt. Finally, it is reborn in dz; this has probability K(y, dz).

The process at its jumps

This is to describe X at its successive jumps. We do it under the standing
condition 3.2, although much of this requires less.

Put T0 = 0 and let T1, T 2, . . . be the successive jump times, that is,

Tn+1 = inf {t > Tn : Xt− �= Xt} , n ∈ N.3.38

we have T1 = R as in 3.30. Condition 3.2b implies that R > 0 almost surely,
which implies, through the strong Markov property at Tn, that Tn+1 > Tn

almost surely on {Tn < ∞}. Moreover, as the construction in Theorem 3.4
makes clear,

lim Tn = +∞ almost surely;3.39

in other words, for almost every ω, for every t in R+ there is n (depending
on t and ω) such that Tn(ω) ≤ t < Tn+1(ω); it is possible that Tn+1(ω) = ∞.
Finally, with the conventions in 2.18, we define

Yn = XTn , n ∈ N.3.40

The strong Markov property at the stopping times Tn implies that
(Y, T ) = (Yn, Tn)n∈N is a Markov chain with state space Ē × R̄+. It has a
special structure: For A in E and B in BR+,

P {Yn+1 ∈ A, Tn+1 − Tn ∈ B |FTn} = Q (Yn, A × B) ,3.41
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that is, given (Yn), the conditional law of (Tn) is that of an increasing process
with independent increments. The process (Y, T) is called a Markov renewal
chain, and the times Tn are said to be regeneration times for X .

The kernel Q is specified by Theorem 3.35: take n = 0 in 3.41 and recall
that Y0 = X0 and T1 − T0 = R. So,

Q(x, A × B) =
ˆ

B

ds

ˆ

E

P̂s(x, dy)L (y, A) =
ˆ

B

ds P̂sL (x, A) .3.42

It specifies the finite dimensional distributions of (Y, T) via 3.41. In partic-
ular, we have the iterative formula

Qn(x, A × B) = P
x {Yn ∈ A, Tn ∈ B}3.43

=
ˆ

E×R+

Q (x, dy, ds)Qn−1 (y, A × (B − s))

for n ≥ 1, and obviously, Q1 = Q and Q0(x, A×B) = I(x, A)δ0(B). Compu-
tationally, in terms of the Laplace transforms

Qn
p (x, A) =

ˆ

R+

Qn (x, A × ds) e−ps = E
x e−pTn1A ◦ Yn,3.44

we see from 3.43 and 3.42 that Q1
p = Qp, and Q◦

p = I, and

Qp = ÛpL, Qn
p = (Qp)n, n ∈ N, p ∈ R+,3.45

where (Ûp) is the resolvent of the semigroup (P̂t).

Transition function

This is to give an explicit formula for the transition function (Pt) in terms
of the known objects P̂t, L, and Qn. The result is made possible by 3.39, that
is, by the fact (guaranteed by 3.2b) that there can be at most finitely many
jumps during [0, t].

3.46 Theorem. Let x ∈ E, f ∈ E+, t ∈ R+. Then,

Ptf(x) =
∞∑

n=0

ˆ

E×[0,t]

Qn(x, dy, ds) P̂t−sf(y).

Proof. By the strong Markov property at Tn,

E
x f ◦ Xt 1{Tn≤t<Tn+1}

=
ˆ

E×[0,t]

P
x {Yn ∈ dy, Tn ∈ ds}E

yf ◦ Xt−s 1{R>t−s}

=
ˆ

E×[0,t]

Qn(x, dy, ds) P̂t−sf(y),
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where we used the definition of Qn in 3.43, and Proposition 3.33 for the
meaning of P̂t. Summing both sides over n in N yields the claimed formula
since lim Tn = ∞; see 3.39 et seq. �

The formula in the preceding theorem gives the unique solution of the
integro-differential equation 3.28 for (Pt). The uniqueness follows from 3.39.
By avoiding generators, we have also avoided the continuity condition on j
used in Theorem 3.27.

Nevertheless, it may be useful to characterize (Pt) as the unique solution
to something resembling the backward equations.

3.47 Theorem. Let x ∈ E, f ∈ E+, t ∈ R+. Then,

Ptf(x) = P̂tf(x) +
ˆ t

0

ds P̂sLPt−sf(x).

Proof. We use the so-called renewal argument at the time R of first jump:

Ptf(x) = E
xf ◦ Xt · 1{R>t} + E

xf ◦ Xt 1{R≤t}

= P̂tf(x) +
ˆ

[0,t]×E

P
x {R ∈ ds, XR ∈ dz}E

z f ◦ Xt−s

= P̂tf(x) +
ˆ t

0

ds

ˆ

E

P̂s(x, dy)
ˆ

E

L(y, dz)Pt−sf(z)

where we used the strong Markov property at R followed by the distribution
provided by Theorem 3.35. �

Resolvent

Let (Up) be the resolvent of (Pt), defined by 2.34, but for the present
X and (Pt). Taking Laplace transforms on both sides of 3.26, assuming the
same conditions hold, we get

p Upf = f + Up Gf, t ∈ C2
K .3.48

with the generator as defined by 3.19. It is usual to write this in the form
Up(p − G)f = f , thus emphasizing that Up is the inverse of p − G.

We can avoid differentials by using the probabilistic derivations for (Pt).
With Qp = ÛpL as in 3.45, we see from Theorems 3.46 and 3.47 that

Upf =
∞∑

n=0

(Qp)
n

Ûpf, f ∈ E+,3.49

Upf = Ûp f + Qp Upf, f ∈ E+.3.50

Indeed, 3.49 is the unique solution to the integral equation 3.50.
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3.51 Proposition. Let p > 0 and f ∈ Eb+. Then, g = Upf given by 3.49
is the unique bounded solution to

g = Ûpf + Qpg.

Proof. Replace g on the right side with Ûpf + Qpg repeatedly. With the
notation of 3.45, we get

g = Ûpf + Qp g

= Ûpf + QpÛpf + Q2
p g = · · · =

(
I + Qp + · · · + Qn

p

)
Ûpf + Qn+1

p g.

In the last member, the first term is increasing to Upf given by 3.49. Thus,
there remains to show that

lim
n→∞Qn

p g = 0.

for every g bounded positive, say, bounded by b. But, then,

Qn
p g(x) ≤ b Qn

p (x, E) = b E
x e−pTn → 0

as n → ∞, because p > 0 and Tn → ∞ almost surely. �

Simple step processes

These are pure-jump processes obtained by setting the vector fields
u0, . . . , um equal to zero, and keeping the condition 3.2b on the jump func-
tion j. Then, the Wiener processes Wn have no rôle to play, and the diffusion
X̄ satisfying 3.3 becomes motionless: X̄t = X0 for all t. Thus, the process X
is a right-continuous step process with a bounded Lévy kernel. In the next
subsection, we shall discuss dropping the boundedness condition on the Lévy
kernel and thus weakening the condition 3.2b.

The Markov and strong Markov properties remain unchanged.
Theorem 3.13 on the Lévy kernel L stays the same, as is Corollary 3.18.
The generator G is simpler: since X̄ is motionless, Ḡ disappears;

Gf(x) =
ˆ

E

L (x, dy) [f(y) − f(x)] , f ∈ Eb.3.52

Theorem 3.20 becomes stronger; the claim holds for every f in Eb. Similarly,
3.26 holds for every f in Eb. Theorem 3.27 is stronger:

d

dt
Ptf = PtGf, f ∈ Eb,3.53

without the continuity assumption on j. That assumption was used in the
proof to show that s �→ Gf ◦ Xs is bounded and right-continuous; we have
boundedness via 3.52 and the boundedness of f and L; and s �→ Gf ◦ Xs
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is right-continuous because s �→ Xs is a right-continuous step function (and
thus s �→ g ◦ Xs is a right-continuous step function for arbitrary g).

Since X̄ is motionless, killing it becomes simpler. For the time R of first
jump, since Xt = X̄t = X0 on {R > t}, Lemma 3.31 and 3.33 and 3.34
become

P
x {R > t} = e−k(x)t, P̂tf(x) = E

xf ◦ Xt 1{R>t} = e−k(x)t f(x),

and Theorem 3.35 becomes elementary (we drop XR− = X0 and use the
notation of Remark 3.37)

P
x {R ∈ ds, XR ∈ dy} = (ds k(x) e−k(x)s)K(x, dy).

3.54 Heuristics. Suppose that the initial state is x. The particle stays there
an exponential amount of time with parameter k(x), and, independent of
that amount, jumps to a new point y with probability K(x, dy); then, it has
a sojourn at y of exponential duration with parameter k(y), followed by a
jump to a new point chosen in accord with the probability law K(y, ·); and so
on. It is possible that, somewhere along its path, the particle lands at a point
z with k(z) = 0; that z is a trap, and the particle stays there forever after.

For the transition function (Pt) and the resolvent (Up), it is possible to
give explicit and easy to interpret formulas. Heuristically, instead of the jumps
of X , the idea is to concentrate on the kicks by the atoms of the Poisson M .
Some kicks cause jumps, some not. If the particle is at x when it is kicked
by an atom (s, v), it jumps to x + j(x, v) if j(x, v) �= 0, and it stays put
if j(x, v) = 0. Following this reasoning as in the proof of Theorem 3.4, we
obtain (with c as a bound for k)

Pt(x, A) =
∞∑

n=0

e−ct(ctn)
n!

Qn(x, A), t ∈ R+, x ∈ E, A ∈ E,3.55

where Qn is the nth power of the Markov kernel Q on (E, E) given by

Q(x, A) =
(

1 − k(x)
c

)
I(x, A) +

k(x)
c

K(x, A).3.56

Thus, X has the form of a Markov chain subordinated to a Poisson process;
see 1.26. The corresponding resolvent is

Up =
1

c + p

∞∑

n=0

(
c

c + p

)n

Qn, p > 0.3.57

Step processes and extensions

We continue with the vector fields un set to zero, and we weaken condition
3.2b: instead of assuming that the Lévy kernel is bounded, we shall assume
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only that it is finite. The classical examples are the processes with discrete
state spaces.

The process X of interest has state space E = R
d as before. It is adapted

to the filtration F, it is right-continuous and has left-limits in E, and it
satisfies

Xt = X0 +
ˆ

[0,t]×R+

M (ds, dv) j(Xs−,v),3.58

with the same Poisson random measure M as before. Theorem 3.13 remains
true (as remarked in 3.15a) with the Lévy kernel L defined by 3.11. We
assume throughout that the following holds.

3.59 Condition. The Lévy kernel L is finite.

In other words, k(x) = L(x, E) < ∞ for every x in E. Further, we may
assume that j(x, v) �= 0 for 0 ≤ v ≤ k(x) only. Then, 3.58 is easier to visualize;
see Exercise 3.84 also.

The process X has well-defined times T1, T2, . . . of the first jump, the
second jump, . . .. It is a step process if and only if

Tα = lim
n

Tn3.60

is almost surely equal to +∞. Otherwise, t �→ Xt is a step function only over
the interval [0, Tα). In either case, the evolution of X over [0, Tα) is as de-
scribed in 3.54. The following two examples are instructive; see Exercises 3.90
and 3.91 as well.

3.61 Example. Upward staircase. Take E = R. Let D = {x0, x1, . . .}
where 0 = x0 < x1 < · · · and limxn = 1. Let k(x) ∈ (0,∞) for each x
in D, and put k(1) = 0. If x = xn for some n and v ≤ k(xn), then put
j(x, v) = xn+1 − xn; put j(x, v) = 0 for all other x and v.

If X0 = x0 = 0, then X stays at x0 until T1 and jumps to x1, stay at x1

until T2 and jumps to x2, and so on. The sojourn lengths T1, T2−T1, . . . are in-
dependent exponential variables with respective parameters k(x0), k(x1), . . ..
Their sum is the variable Tα defined by 3.60. So,

E
0 Tα =

∑

x∈D

1
k(x)

.3.62

If E
0Tα < ∞, then Tα < ∞ almost surely, and we let Xt = 1 for t ≥ Tα. We

show next that, if E
0Tα = +∞, then Tα = +∞ almost surely and Xt ∈ D for

all t. In either case, we call X a staircase over [0, Tα) with steps at x0, x1, . . ..
For the main computation, we use 3.16. For fixed n, let A consist of xn,

and B of xn+1; then Nt(A × B) becomes the indicator of {Xt > xn}, and
3.16 yields

P
0 {Xt > xn} =

ˆ t

0

ds P
0 {Xs = xn} k(xn).3.63
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Pass the factor k(xn) to the left side and note that {Tα ≤ t} ⊂ {Xt > xn}.
Thus,

1
k(xn)

P
0 {Tα ≤ t} ≤

ˆ t

0

ds P
0 {Xs = xn}

Sum both sides over all n, note 3.62, and note that the sum of the right side
is at most t. We get

E
0Tα P

0 {Tα ≤ t} ≤ t.

We conclude that, if E
0Tα = +∞ then P

0{Tα ≤ t} = 0 for all t, which means
that Tα = +∞ almost surely.

We re-state the essential content of the preceding example:

3.64 Lemma. Let S be the sum of a countable independency of exponen-
tially distributed random variables. If ES < ∞ then S < ∞ almost surely; if
ES = +∞ then S = +∞ almost surely.

3.65 Example. Let E, D, k, j be as in the last example, but with
∑

x∈D

1
k(x)

= 1.3.66

Let μ be a probability measure on D. We now describe a process that is a
concatenation of staircases.

Started at x = xi for some i, the process is a staircase over [0, Tα) with
steps at xi, xi+1, . . .; in view of 3.66, we have E

xTα ≤ 1, and thus Tα < ∞
almost surely. At Tα, we deviate from Example 3.61: we choose the random
variable XTα independent of FTα according to the distribution μ on D. If
XTα turns out to be xj , we let X form a staircase over [Tα, T2α) with steps
at xj , xj+1, . . .; note that E

xT2α ≤ 2 and thus T2α < ∞ almost surely. We
choose XT2α independent of FT2α and with distribution μ again, and proceed
to form another staircase over [T2α, T3α). And we repeat this over and over.
The result is a process whose jump times can be ordered as

T1, T2, . . . , Tα; Tα+1, Tα+2, . . . , T2α; T2α+1, T2α+2, . . . , T3α; . . . .3.67

Each Tnα is the limit of a strictly increasing sequence of jump times; at each
Tnα the process jumps from its left-limit 1 to its right-hand value XTnα , the
latter being independent of FTnα and having the distribution μ. It follows
that T2α − Tα, T3α − T2α, . . . are independent and identically distributed,
and, hence, lim

n
Tnα = +∞ almost surely. So, Xt is well-defined for every t in

R+; the process X is right-continuous, is left-limited (as a process with state
space E), and satisfies 3.58. Incidentally, this example shows that 3.58 can
have many solutions.

We resume the treatment of the process X of 3.58–3.59, concentrating on
the transition semigroups (Pt) and (P ∗

t ), where

Ptf(x) = E
x f ◦ Xt, P ∗

t f(x) = E
x f ◦ Xt 1{Tα>t}.3.68
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Recall that for the time R = T1 of first jump, we have

Q (x, dy, ds) = P
x {XR ∈ dy, R ∈ ds} = ds k(x)e−k(x)s

K(x, dy),3.69

as with simple step processes; and k(x) < ∞ by assumption. Also as before,
Tn is the time of nth jump and Yn = XTn for n ∈ N, and

Qn(x, dy, ds) = P
x {Yn ∈ dy, Tn ∈ ds} , x, y ∈ E, s ∈R+.3.70

Obviously, Q◦(x, dy, ds) = I(x, dy) δ0(ds) and Q1 = Q, and Qn can be com-
puted recursively via 3.43.

3.71 Proposition. Let x ∈ E, f ∈ E+, t ∈ R+. Then,

P ∗
t f(x) =

∞∑

n=0

ˆ

E×[0,t]

Qn(x, dy, ds) e−k(y)(t−s)f(y).

Proof. This is essentially as in the proof of Theorem 3.46: On the set
{Tα > t} we have Tn ≤ t < Tn+1 for some n in N. Hence,

P ∗
t f(x) =

∞∑

n=0

E
x f ◦ Xt 1{Tn≤t<Tn+1}

=
∞∑

n=0

ˆ

E×[0,t]

P
x {Yn ∈ dy, Tn ∈ ds} f(y) P

y {R > t − s} ,

which is the claim. �

If Tα = +∞ almost surely, then P ∗
t = Pt for all t; see 3.68. A simple

criterion for ensuring this condition is obtained from Lemma 3.64: Since the
sojourn lengths T1, T2 − T1, . . . are conditionally independent given (Yn) and
are conditionally exponential with parameters k ◦Y0, k ◦Y1, . . ., Lemma 3.64
applies to the conditional law of (Tn) given (Yn). The result is put next.

3.72 Proposition. If
∑

n 1/k ◦ Yn = +∞ almost surely, then Tα = +∞
almost surely and Pt = P ∗

t for all t.

The preceding proposition is effective in a number of special situations:
If k is bounded, then Tα = +∞ almost surely. If there is a recurrent point x
for the chain Y , that is, if

P
x {Yn = x for infinitely many n} = 1,

then k ◦ Yn = k(x) for infinitely many n, and hence Tα = +∞ almost surely
under P

x. Similarly, if there is a recurrent set A (which Y visits infinitely
often) and if k is bounded on A, then Tα = +∞ almost surely and P ∗

t = Pt.
The next proposition is a summary of easy observations and a criterion

for deciding whether Tα = +∞ almost surely.
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3.73 Proposition. The following are equivalent:

a) X is a step process, that is, Tα = +∞ almost surely.

b) P ∗
t = Pt for all t.

c) There exists τ > 0 such that P ∗
τ (x, E) = 1 for all x in E.

d) For some (and therefore all) p > 0, the only solution to

h = Qph, 0 ≤ h ≤ 1, h ∈ E,3.74

is h = 0; here Qp(x, A) = k(x)
k(x)+pK(x, A); see 3.69.

Proof. Obviously, (a) ⇔ (b) ⇒ (c). To see that (c) ⇒ (a), fix τ > 0 such,
that is, P ∗

τ 1 = 1. Then, P ∗
s+τ1 = P ∗

s P ∗
τ 1 = P ∗

s 1 for all s. Replacing s with
τ, 2τ, . . . we see that P ∗

nτ1 = 1 for every n, which means that P
x{Tα > nτ} = 1

for all x and n. Hence, Tα = +∞ almost surely.
Finally, we show that (d) ⇔ a. It follows from 3.69, 3.70, 3.43 that, for

fixed p > 0,

h∗(x) = E
x e−pTα = lim

n
E

xe−pTn = lim
n

Qn
p1(x),

where Qn
p = (Qp)n. Thus, Qp h∗ = lim Qn+1

p 1 = h∗, that is, h∗ is a solution
to 3.74. Moreover, it is the maximal solution to it: if h is a solution, then
h ≤ h∗, since

h = Qn
ph ≤ Qn

p1 → h∗.

Hence, h∗ = 0 if and only if h = 0 is the only solution to 3.74. This shows
that (d) ⇔ (a), since h∗ = 0 if and only if Tα = +∞ almost surely. �

The next theorem lists the backward equations for the derivatives of (Pt)
and (P ∗

t ). We re-introduce the generator G:

Gf(x) =
ˆ

E

L (x, dy) [f(y) − f(x)], x ∈ E, f ∈ Eb.3.75

3.76 Theorem. Let f ∈ Eb. We have the backward equations

d

dt
Ptf = GPtf,

d

dt
P ∗

t f = GP ∗
t f.

These equations have a unique solution (and Ptf = P ∗
t f for all t) if and only

if X is a step process.

The proof will be given together with the proof of the following, more
comprehensive, result on the backward equations in integral form.
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3.77 Theorem. Let f ∈ Eb+ . For bounded Borel g : E × R+ �→ R+,
consider the equation

g(x, t) = e−k(x)tf(x) +

ˆ t

0

ds k(x) e−k(x)s
ˆ

E

K(x, dy) g(y, t − s)3.78

for x in E and t in R+. This equation holds for both go and g∗, where

go (x, t) = Ptf(x), g∗(x, t) = P ∗
t f(x).

If X is a step process, then 3.78 has exactly one solution: g = go = g∗.
Otherwise, the uniqueness fails, and g∗ is the minimal solution.

3.79 Remark. If X is not a step process, the backward equation
characterizes P ∗

t f as the minimal solution, but does not specify Ptf . For
instance, for Example 3.65, there are as many solutions as there are choices
of μ. See Exercise 3.91 for the computation of Ptf .

Proof of 3.76, assuming 3.77. We re-write 3.78:

g(x, t) = e−k(x)t
[
f(x) +

ˆ t

0

ds ek(x)s

ˆ

E

L (x, dy) g(y, s)
]
.

On the right side, since g is bounded Borel, the integration over E yields a
bounded Borel function, and the integration over [0, t] yields a continuous
function in t. Thus, on the left, t �→ g(x, t) must be bounded continuous. We
put this back into the right side: since s �→ g(y, s) is bounded continuous,
the integration over E yields a bounded continuous function in s, and the
integration over [0, t] yields a differentiable function in t. So, t �→ g(x, t) is
differentiable. Taking derivatives, we get

∂

∂t
g(x, t) = −k(x)g(x, t)+

ˆ

E

L (x, dy) g(y, t) =
ˆ

E

L (x, dy) [g(y, t) − g(x, t)] .

Assuming Theorem 3.77, then, the functions go and g∗ must satisfy the pre-
ceding; hence the backward equations of Theorem 3.76. The other assertion,
on uniqueness, is immediate from Theorem 3.77. �

Proof of Theorem 3.77
We start by showing that g∗ satisfies 3.78; showing the same for go is

similar and simpler. We use the strong Markov property at the time R of
first jump. Since R < Tα and Xt = X0 on {R > t},

P ∗
t f(x) = E

x f ◦ Xt 1{R>t} + E
x f ◦ Xt 1{R≤t}1{Tα>t}

= e−k(x)t f(x) +
ˆ

E×[0,t]

Q (x, dy, ds)P ∗
t−sf(y),

where Q is as in 3.69. This is the same as 3.78 for g∗.
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Consider the solutions g to 3.78. We employ Laplace transforms with Qp

as in 3.74 (see also 3.69, 3.70, 3.43) and

gp(x) =
ˆ ∞

0

dt e−pt g(x, t), fp(x) =
1

k(x) + p
f(x).

Then, 3.78 becomes
gp = fp + Qp gp.

Replace gp on the right side with fp + Qpgp, and repeat n times. We get

gp =
(
I + Qp + · · · + Qn

p

)
fp + Qn+1

p gp.

Since f is positive, the first term on the right is increasing in n; the limit is,
in view of 3.71,

∞∑

n=0

Qn
pfp =

ˆ ∞

0

dt e−ptP ∗
t f

Hence, g∗ is the minimal solution to 3.78. The uniqueness has to do with

hp = lim
n

Qn
p gp.

We note that hp is bounded, positive, and satisfies

hp = Qp hp.

Thus, the remaining assertions of the theorem follow from Proposition 3.73. �
Forward equations are more sensitive to whether X is a steps process.

The next theorem shows that (P ∗
t ) satisfies the forward equation, but (Pt)

does not. We list a needed result first; see 3.70 and 3.71.

3.80 Lemma.

∑∞
n=1 Qn(x, dy, ds) = ds P ∗

sL(x, dy), y ∈ E, s ∈ R+.

Proof. In view of 3.70, what we need to show can be stated more precisely
as

E
x

∞∑

n=1

1A ◦ Yn 1{Tn≤t} =
ˆ t

0

ds

ˆ

E

P ∗
s (x, dy)L(y, A).

The left side is the same as the left side of 3.14 with Fs = 1{s≤t∧Tα} and
f(x, y) = 1A(y). Thus, the left side is equal to

E
x

ˆ ∞

0

ds 1{s≤t∧Tα}

ˆ

E

L(Xs, dy) 1A(y)

= E
x

ˆ t

0

ds 1{Tα>s}L(Xs, A) =
ˆ t

0

ds

ˆ

E

P ∗
s (x, dy)L(y, A),

where we used the definition of P ∗
t in 3.68 for the last equality. �
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3.81 Theorem. Let f ∈ Eb+ and let the generator G be as in 3.75. Then,
P ∗

t f satisfies the equation

d

dt
P ∗

t f = P ∗
t Gf

and is the minimal solution of it with P ∗
0 f = f . For (Pt) we have

d

dt
Ptf ≥ PtGf ;

the equality holds if and only if X is a step process, and, then, Ptf = P ∗
t f .

Proof. Combining Proposition 3.71 and Lemma 3.80, we have

P ∗
t f(x) = e−k(x)tf(x) +

ˆ t

0

ds

ˆ

E

P ∗
s L(x, dy)e−k(y)(t−s)f(y).3.82

By Theorem 3.76, this is differentiable. Taking derivatives on both sides we
obtain

d
dt P ∗

t f(x)=−k(x)e−k(x)tf(x) + P ∗
t Lf(x)

− ´ t

0 ds P ∗
s L(x, dy)e−k(y)(t−s)k(y)f(y)

=−k(x)e−k(x)tf(x) + P ∗
t Lf(x) − [

P ∗
t (kf)(x) − e−k(x)tk(x)f(x)

]

where we used 3.82 at the last step. Hence, we have

d

dt
P ∗

t f = P ∗
t Lf − P ∗

t (kf) = P ∗
t Gf.3.83

For Ptf , we have differentiability by Theorem 3.76. And,

Pt+s f − Ptf = Pt(Psf − f) ≥ Pt (P ∗
s f − f)

by 3.68 and positivity of f . Thus, using the boundedness of f ,

d

dt
Ptf = lim

s→0

Pt+sf − Ptf

s
≥ lim

s→0
Pt

P ∗
s f − f

s
= Pt Gf,

where we used 3.83 at the last step. The other assertions are repetitions of
some claims in Theorem 3.77. �

Much of the foregoing are classical results for Markov processes with dis-
crete state spaces. We have chosen the state space to be E = R

d. Obviously,
every countable set D with the discrete topology can be embedded in E, but
our requirement of right-continuity for X leaves out an interesting class of
processes which have discrete state spaces but permit discontinuities of the
second kind; see the notes for this chapter.
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Exercises and complements

3.84 Lévy kernel and the jump function. Let L be a finite kernel, that is,
k(x) = L(x, E) < ∞ for every x in E, and take E = R. Suppose that
L(x, {x}) = 0 for each x and define j(x, v) by

x + j(x, v) = inf {y ∈ R : L(x, (−∞, y]) > v}

for v in (0,k(x)), and set j(x, v) = 0 for other v in R+.

a) Show that y �→ L(x, (−∞, y]) and v �→ x + j(x, v) are functional
inverses of each other.

b) Show that L is the Lévy kernel defined from j by 3.11.

3.85 Exponential decay with jumps. Let E = R, let X0 ∈ (0,∞), and let X
satisfy 3.1 with

a(x) = −cx, b(x) = 0, j(x, v) = xv 1(0,1)(xv),

for x > 0. Note that X remains in (0,∞) forever. Plot the atoms of M(ω, ·)
for a typical ω. Draw the path t �→ Xt(ω) corresponding to M(ω, ·) and with
X0(ω) = 1.

3.86 Continuation. In the preceding exercise, replace j with

j(x, v) = j0(v)1(0,3)(v)

for some increasing right-continuous function j0 on (0,3). Describe the evolu-
tion of X with special attention to jump times, jump amounts, dependence
and independence. Show that X satisfies the integral equation

Xt(ω) = X0(ω) − c

ˆ t

0

ds Xs(ω) + Zt(ω), ω ∈ Ω, t ∈ R+,

where Z is a compound Poisson process. Solve this equation for X .

3.87 Piecewise deterministic processes. In 3.1, let b = 0, and let a = u0 satisfy
the Lipschitz condition 2.4, and j satisfy 3.2b. Then, between two consecutive
jumps, the path t �→ Xt(ω) satisfies the ordinary differential equation

d

dt
xt = a(xt),

whose solution is unique and deterministic given its initial condition. Show
that Theorem 3.27 holds with the generator

Gf(x) =
d∑

i=1

ai(x) ∂if(x) +
ˆ ∞

0

dv [f(x + j(x, v)) − f(x)] , f ∈ C1
K .
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3.88 Probably no jumps. This is to give an example of X that has at most
finitely many jumps. Suppose that E = R,

a(x) = −1, b(x) = 1, j(x, v) = −1R+(x)1(0,c)(v).

Note that X̄ of 3.3 is a Brownian motion with downward drift. Show (see
Chapter V for this) that

A = Leb
{
t ≥ 0 : X̄t ∈ R+

}

is almost surely finite. Show that, for the time R of first jump,

P
x
{
R = +∞|X̄}

= e−cA.

Conclude that P
x{R = +∞} = E

xe−cA is strictly positive.

3.89 Brownian motion plus jumps. Let X be as in 3.1–3.2. Suppose that
E = R and X̄ = X0 +W , a standard Brownian motion. Define j(x, v) = −ax
for 0 ≤ v ≤ 1−e−|x|, and j(x, v) = 0 otherwise, where a is a constant in (0,1).

a) Describe the motion X during [0,R) and at R, where R is the time
of first jump.

b) Specify the Lévy kernel L
c) Specify the generator G given by 3.19.

3.90 Downward staircase. Let X satisfy 3.58 with X0 = x0 ∈ (0, 1] and

j(x, v) = x3v 1[0,1](x2v), x ∈ [0, 1], v ∈ R+.

Let T1, T2, . . . be the successive jump times and define Tα = lim Tn.

a) Describe the Markov chain (Yn), where Yn = XTn .
b) Show that Y1, Y 2, . . . are the atoms of a Poisson random measure on

the interval (0, x0). What is the mean measure?
c) Compute E

x0 Tα. Note that Xt = 0 on {t ≥ Tα}.
d) Compute the transition function (Pt) for X .

3.91 Transition function for 3.65. Let X be the process described in
Example 3.65. Let Pt and P ∗

t be as defined by 3.68. In view of Proposition 3.71,
we assume that (P ∗

t ) is known. This is to compute (Pt). We use P
μ =´

D
μ(dx)Px.

a) Show that P
x{Tα ≤ t} = 1 − P ∗

t (x, D). Thus,

ν(B) = P
μ {Tα ∈ B} =

ˆ

D

μ(dx) P
x {Tα ∈ B} , B ∈ BR+ ,

is well-specified. Let νn be the n-fold convolution of ν with itself, with ν0 = δ0

obviously.
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b) Define ρ =
∑∞

n=0 νn. Obviously,

ρ(B) = E
μ

∞∑

n=0

I(Tnα, B).

Show that ρ(B) < ∞ for B compact. Hint:

P
μ {Tnα ≤ t} = P

μ
{
e−Tnα ≥ e−t

} ≤ et
E

μe−Tnα = et (Eμ e−Tα)n.

c) Show that E
μf ◦ Xt =

´
[0,t] ρ(ds)

´
D μ(dx)P ∗

t−sf(x).

d) Show that Ptf(x) = Pt
∗f(x) +

´
[0,t] ν(ds)Eμf ◦ Xt−s.

3.92 Step processes with discrete state spaces. Let D be a countable set; we
identify it with N or a subset of N, and regard D as a subset of E = R. We
use the notational principles mentioned in Exercise 1.35.

Let X be a step process (right-continuous) satisfying 3.58 and whose
values are in D. Then, its Lévy kernel satisfies

L(x, A) =
∑

y∈A

�(x, y), x ∈ D, A ⊂ D

for some positive numbers �(x, y) with

�(x, x) = 0, k(x) =
∑

y∈D

�(x, y) < ∞.

We may assume that the jump function j has the following form: For each
x, let {Axy : y ∈ D} be a partition of [0, k(x)] such that, for each y, the set
Axy is an interval of length �(x, y). Then, put

j(x, v) =
∑

y∈D

(y − x)1Axy (v), x ∈ D, v ∈ R+.

Show that the generator G of X has the form

Gf (x) =
∑

y∈D

g(x, y)f(y), x ∈ D,

and identify the entries g(x, y) of the matrix G. Let pt(x, y) = P
x{Xt = y}

as before in 1.35. show that

d

dt
pt(x, y) =

∑

z∈D

pt(x, z) g(z, y), x, y ∈ D,

and also
d

dt
pt(x, y) =

∑

z∈D

g(x, z) pt(z, y), x, y ∈ D.
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If the kernel L is bounded, that is, if the function k is bounded, then we
have

Pt = etG =
∞∑

n=0

tn

n!
Gn,

where Pt is the matrix whose (x,y)-entry is pt(x, y), and G is the matrix with
entries g(x, y) similarly.

3.93 Semigroups on discrete spaces. Let D be a countable set. Let the ma-
trices Pt = [pt(x, y)] satisfy PtPu = Pt+u. Without reference to a Markov
process, suppose that limt→0 pt(x, x) = 1 for every x in D. Then, it can be
shown that

g(x, y) = lim
t→0

d

dt
pt(x, y), x, y ∈ D,

exist and satisfy g(x, x) = −k(x), with k(x) ∈ [0, +∞], and g(x, y) ∈ [0,∞)
for x �= y, and

∑

y �=x

g(x, y) ≤ k(x). The state x is a trap if k(x) = 0, is holding

(stable is another term for the same) if 0 < k(x) < ∞, and is instantaneous if
k(x) = +∞. (Pt) is said to be conservative

∑
y �=x g(x, y) = k(x) for every x.

3.94 Continuation. Let D = N. For x and y in D, let

pt(x, y) = P {Ys+t = y|Ys = x} ,

where Y is the process defined by 1.33. Show that pt(x, x) → 1 as t → 0.
Show that k(x) ∈ (0,∞) for each x; identify k(x) in terms of the data m(q),
rational q. Show that

g(x, y) = 0, x �= y.

3.95 Itô processes. These are Markov processes X that satisfy a stochastic
integral equation of the form

Xt = X0 +
ˆ t

0

a ◦ Xs ds +
ˆ t

0

b ◦ Xs dW s

+
ˆ

[0,t]×R+

(M(ds, dv) − ds dv)j(Xs−,v)1{j(Xs−,v)≤1}

+
ˆ

[0,t]×R+

M(ds, dv)j(Xs−, v)1{j(Xs− ,v)>1}.

Here, a, b, M, W, j are as in 3.1, but without the condition 3.2, and j must
satisfy ˆ

R+

du
[(

j(x, v)2 ∧ 1
)]

< ∞,

and the third integral is a stochastic integral, defined as a limit in probability.
This class of processes includes all Lévy processes (see Itô-Lévy decomposi-
tion), all Itô diffusions, all jump-diffusions, and more. See the complement
5.51 for more.
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4 Markov Systems

This section is to introduce Markov processes in the modern setting. We
shall introduce a probability measure P

x for each state x; it will serve as
the conditional probability law given that the process X is at x initially. We
shall introduce a shift operator θt for each time t; it will indicate that t is
the present time. And, we shall think of X as the motion of a particle that
lives in E, but might die or be killed at some random time; this will require
an extra point to serve as the cemetery.

The space E will be kept fairly general. Although the Markov property
has nothing to do with the topology of E, the analytical machinery requires
that E be topological and X right-continuous. The reader is invited to take
E = R on a first reading. This section is independent of Sections 2 and 3;
but some familiarity with at least Section 2 would be helpful as motivation.
Also helpful is the formalism of Lévy processes; the connections are spelled
out in Exercises 4.31 and 4.32.

The system

This is to describe the setting for Markov processes. The time-set is R+;
it will be extended to R̄+.

4.1 State space. Let E be a locally compact separable metrizable space, and
E the Borel σ-algebra on it. If E is compact, we let ∂ be an isolated point
outside E. If E is not compact, ∂ will be the “point at infinity” in the one
point compactification of E. We put

Ē = E ∩ {∂} , Ē = σ(E ∪ {
Ē

}
).

4.2 Convention. Every function f : E �→ R̄ is extended onto Ē automatically
by setting f(∂) = 0. Thus, writing f ∈ E indicates also a function in Ē with
f(∂) = 0; otherwise, we write f̄ ∈ Ē to mean that f̄ is defined on Ē and is
Ē-measurable without an assumption on f̄(∂).

4.3 Transition semigroups. Let (Pt) be a family of sub-Markov kernels on
(E, E) such that PtPu = Pt+u. Each Pt is extended to become a Markov
kernel P̄t on (Ē, Ē) by putting

P̄t(x, B) = Pt(x, B ∩ E) + (1 − Pt(x, E))I(∂, B), x ∈ Ē, B ∈ Ē.

Note that P̄t(∂, B) = I(∂, B) = 1B(∂) by the preceding convention applied to
the function x �→ Pt(x, E) on E, namely, the convention that puts Pt(∂, E) =
0. It is easy to check that P̄tP̄u = P̄t+u.

4.4 Stochastic base. Let (Ω, H) be a measurable space, F = (Ft) a filtration
over it, and θ = (θt) a family of “shift” operators θt : Ω �→ Ω such that
θ0ω = ω and

θu(θtω) = θt+u ω
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for every ω in Ω. We assume that there is a special point ω∂ in Ω, and that
θtω∂ = ω∂ for all t, and θ∞ω = ω∂ for all ω. Finally, let P

• = (Px) be a
family of probability measures P

x on (Ω, H) such that (x, H) �→ P
x(H) is a

transition kernel from (Ē, Ē) into (Ω, H).

4.5 Stochastic process. Let X = (Xt) be a process with state space (Ē, Ē),
adapted to the filtration F, and with the point ∂ as a trap; the last phrase
means that if Xt(ω) = ∂ then Xt+u(ω) = ∂ for all u ≥ 0. We assume that
X0(ω∂) = ∂, and that X∞(ω) = ∂ for all ω, and that

Xu(θtω) = Xt+u(ω), ω ∈ Ω, t, u ∈ R̄+.

We let Go = (Go
t ) be the filtration generated by X , and put Go

∞ = νt Go
t as

usual.

Markov system

Throughout this section and further we are working with the system de-
scribed in 4.1–4.5 above. In conditional expectations and probabilities, we
use the old conventions (see V.2.21 et seq.) and put

P
x
T = P

x(·|FT ), E
x
T = E

x(·|FT ).4.6

The following is the enhanced version of Markovness.

4.7 Definition. The system X = (Ω, H, F, θ, X, P•) is said to be Markov
with living space E and transition semigroup (Pt) if the following hold:

Normality. P
x{X0 = x} = 1 for every x in Ē.

Right-continuity for F. The filtration (Ft) is right-continuous.

Regularity of paths. For every ω, the path t �→ Xt(ω) is right-continuous

and has left-limits as a function from R+ into Ē.

Markov property. For every x in E and every t and u in R+,

E
x
t f ◦Xt+u = Puf ◦Xt, f ∈ E+. �4.8

The normality condition makes P
x the probability measure on (Ω, H)

under which X is started at x. The right-continuity of F enriches the pool of
stopping times and will be of further use with the strong Markov property;
note that Go

t+ ⊂ Ft+ = Ft.

4.9 Remark. In terms of the definitions of Section 1, the Markov prop-
erty of the preceding definition implies the following for each x in Ē: Over the
probability space (Ω, H, Px), the process X is a (time-homogeneous) Markov
process with state space (Ē, Ē) and transition function (P̄t) given in 4.3. This
can be seen by noting that, in view of the conventions, 4.8 implies that

E
x f̄ ◦ Xt+u = P̄uf̄ ◦ Xt, f̄ ∈ Ē+.
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Thus, Definition 4.7 introduces a family of Markov processes, one for each
x in Ē, but all these processes have the same transition function and are
intertwined in a systematic manner.

4.10 Remark. The meaning of Pt is implicit in 4.8. There, putting t = 0,
applying the expectation operator E

x to both sides, and using the normality,

E
x f ◦ Xu = Puf(x), x ∈ E, u ∈ R+, f ∈ E+.4.11

This remains true for x = ∂ as well, because Xu = ∂ almost surely under P
∂ ,

and the conventions yield f(∂) = 0 and Puf(∂) = 0. Hence, we may re-write
the condition 4.8, using Xt+u = Xu ◦ θt as in 4.5, in the form

E
x
t f ◦ Xu ◦ θt = E

Xt f ◦ Xu, f ∈ E+,4.12

but with a cautionary remark: the right side stands for g ◦ Xt where

g(y) = E
yf ◦ Xu = Puf(y).4.13

Almost surely

Since there is a multitude of probability measures P
x, it is convenient

to say “almost surely” to mean “almost surely under P
x for every x in Ē”.

Similarly, a proposition π(ω) for ω is said to hold for almost every ω in H ,
and then we write

π a.e. on H, or, π(ω) for a.e. ω in H,4.14

if H ∈ H and for every x in Ē there is a subset Hx of H in H such that
P

x(H\Hx) = 0 and π(ω) holds for every ω in Hx.

Lifetime of X

According to 4.5, the “boundary” point ∂ is a trap; it is the final resting
place for X . Thus

ζ = inf {t ∈ R+ : Xt = ∂}4.15

is called the lifetime of X . Note that ζ(ω) > u if and only if Xu(ω) ∈ E;
hence the term “living space” for E. When X is Markov, it follows from 4.11
with f = 1E that

P
x {ζ > u} = Pu (x, E) , x ∈ E, u ∈ R+.

This gives meaning to the defect 1 − Pu(x, E) when Pu is sub-Markov. The
process X is said to be conservative if Pt(x, E) = 1 for all x in E, that is, if
every Pt is Markov.
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Markov property

Here we explore the essential condition in Definition 4.7, the Markov
property.

4.16 Remark. The collection of functions f in E for which 4.8 holds
is a monotone class. Thus, in order for 4.8 to hold for all f in E+, it is
sufficient that it hold for the indicators of Borel subsets of E, or for the
indicators of open subsets of E, or for bounded continuous functions on E,
or for continuous functions on E with compact support.

The next theorem captures the essence of Markov property by replacing
f ◦ Xu in 4.12 with an arbitrary functional V of X . Note, for example, that

V = f(Xu1 , . . . , Xun) ⇒ V ◦ θt = f(Xt+u1 , . . . , Xt+un).

Thus, the proof of the next theorem is immediate from Remark 4.10,
Theorem 1.2, and 4.12 above.

4.17 Theorem. (Markov property). Suppose that X is a Markov sys-
tem. Then, for every x in Ē and t in R+ and positive V in Go

∞,

E
x
t V ◦ θt = E

XtV.

4.18 Example. This is to illustrate the preceding theorem with a specific
V . The aim is to clarify some technical matters which are implicit, and also
to re-iterate the heuristics.

a) Let f ∈ Eb, that is, let f : E �→ R be a bounded Borel function. Since
X is right-continuous and each Xt is measurable with respect to Go∞ and Ē,
the mapping (t, ω) �→ Xt(ω) is measurable with respect to BR+ ⊗ Go

∞ and Ē.
Thus, (t, ω) �→ f ◦ Xt(ω) is in BR+ ⊗ Go

∞.
b) Hence, Fubini’s theorem shows that, for fixed p > 0,

V =
ˆ

R+

du e−pu f ◦ Xu

defines a bounded variable V in Go
∞; and

g(y) = E
y V, y ∈ E,

defines a function g in Eb; this is because P
• is a transition kernel, and

g(y) = P
yV in the kernel-function notation. Similarly, and since Xu ◦ θt =

Xt+u by 4.5,

V ◦ θt =
ˆ

R+

du e−pu f ◦ Xt+u

is a well-defined bounded random variable in G◦∞.
c) Now, the heuristic part: g(y) is our estimate of V made at time 0 if

the initial state is y. The initial state of the process X ◦θt is Xt. The variable
V ◦ θt is the same functional of X ◦ θt as V is of X . Thus, our estimate of
V ◦ θt made at time t should be g(Xt) if we think that t is the origin of time
and all the past is past. �
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Blumenthal’s zero-one law

This useful result is a consequence of the normality, the Markov property,
and the right-continuity of the filtration F.

4.19 Theorem. Let X be Markov. Let H be an event in Go
0+. For each x

in Ē, then, P
x(H) is either 0 or 1.

Proof. Put V = 1H . Clearly, V = V · V , and V = V ◦ θ0 since θ0ω = ω
for all ω; hence, V = V · (V ◦ θ0). On the other hand, the filtration (Go

t )
generated by X is coarser than (Ft) by the adaptedness of X to F; and, thus,
Go

t+ ⊂ Ft+ = Ft, the last equality being the definition of right-continuity for
F. This implies, since V ∈ Go

0+ by assumption, that V ∈ F0. It now follows
from the Markov property 4.17 at t = 0 that, since E

x = E
x
E

x
0 ,

E
x V = E

xV · V ◦ θ0 = E
xV E

X0V.

But, by normality, X0 = x with P
x-probability one. Hence, E

xV = E
xV E

xV ,
which implies that E

xV = P
x(H) is either 0 or 1. �

Holding points, instantaneous points

Started at a point x, the process either exits x instantaneously or stays
at x some strictly positive amount of time. This dichotomy is a consequence
of the preceding zero-one law.

Suppose that the system X is Markov. Define

R = inf {t > 0 : Xt �= X0} .4.20

Then, R is a stopping time of
(
Go

t+

)
, and thus, the event {R = 0} belongs to

Go
0+. Hence, for fixed x in Ē, the zero-one law applies to show that

P
x {R = 0}4.21

is either 0 or 1. It this probability is 0, then x is said to be a holding point ; if
it is 1, then x is said to be instantaneous. A holding point x is called a trap,
or an absorbing point, if P

x{R = ∞} = 1.
The point ∂ is a trap; there may be other traps. For step processes of

Section 3, and for Poisson and compound Poisson processes, every point of
E is a holding point. For Brownian motions in E = R

d, every point of E
is instantaneous; similarly for Itô diffusions. For Lévy processes other than
compound Poisson, every point of E = R

d is instantaneous.
Let x be a holding point. Started at x, the process stays there for a strictly

positive amount R of time. The next theorem shows that the distribution of
R is exponential, and the state XR is independent of R. We shall show later
(see 5.23) that when X is strong Markov, it must exist x by a jump.
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4.22 Theorem. Let X be Markov, and let x be a holding point. Then,

P
x {R > t, XR ∈ B} = e−k(x)tK(x, B), t ∈ R+, B ∈ Ē,

for some number k(x) < ∞ and some measure B �→ K(x, B) on (Ē, Ē).

Proof. For every ω, the definition of R implies that

R(ω) > t + u ⇔ R(ω) > t and R(θtω) > u,

and, then,

XR(ω) = Xt+R(θtω)(ω) = XR(θtω) (θtω) = XR(θtω).

Thus, for B in Ē,

P
x {R > t + u, XR ∈ B} = P

x {R > t, R ◦ θt > u, XR ◦ θt ∈ B}4.23
= E

x1{R>t}PXt {R > u, XR ∈ B}
= P

x {R > t}P
x {R > u, XR ∈ B} ;

here, the second equality is justified by the Markov property of 4.17 at time t,
and the third equality by the observation that Xt = X0 on {R > t} followed
by the normality condition.

In 4.23, take B = Ē. The result is

P
x {R > t + u} = P

x {R > t}P
x {R > u}

for all t and u in R+; and t �→ P
x{R > t} is obviously right-continuous and

is equal to 1 at t = 0 (since x is holding). Thus, there exists k(x) in R+

such that

P
x {R > t} = e−k(x)t, t ∈ R+.4.24

Next, put this into 4.23 and set u = 0. Since x is holding, P
x{R > 0} = 1,

and 4.23 becomes

P
x {R > t, XR ∈ B} = e−k(x)t

P
x {XR ∈ B} ,

which has the form claimed. �
4.25 Remark. The point x is a trap if and only if k(x) = 0. In fact, 4.24
holds for instantaneous x as well; then, k(x) = +∞.

Measures Pµ

For each x in Ē, the distribution of X0 under P
x is the Dirac measure δx;

this is by the normality of X. Thus, for an arbitrary probability measure on
(Ē, Ē),

P
μ (H) =

ˆ

E

μ (dx) P
x(H), H ∈ H,4.26

defines a probability measure on (Ω, H), under which X0 has the distri-
bution μ. This follows from Theorem I.6.3 via the hypothesis in 4.4 that
(x, H) �→ P

x(H) is a transition probability kernel.
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Exercises

4.27 Compound Poissons. Let X = X0 +Y , where Y is a compound Poisson
process (with Y0 = 0) whose jump times form a Poisson process with rate c,
and whose jump sizes have the distribution μ. Classify the states as holding
or instantaneous. What are k(x) and K(x, B) of Theorem 4.22 in this case?

4.28 Step processes. Let X be a step process as in Section 3. Show that
every point x in E = R

d is a holding point. Compute k(x) and K(x, B) of
Theorem 4.22 in terms of the Lévy kernel L of X .

4.29 Brownian motion with holding boundary points. Let a < 0 < b be fixed.
Started in the interval (a, b), the motion X is standard Brownian until it
exits the interval; if the exit is at a, then X stays at a an exponential time
with parameter k(a) and then jumps to the point 0; if the exit is at b, then
X stays at b an exponential time with parameter k(b) and then jumps to 0.
Once at 0, the motion resumes its Brownian character, and so on. Classify the
points of E = [a, b]; identify the distributions K(x, ·) for the holding points x.

4.30 Achilles’ run. The living space E is (0,1]; then ∂ = 0 necessarily. Started
at x in E, the particle stays at x an exponential amount of time with mean
x and, then, jumps to y = x/2; at y, it stays an exponential time with mean
y and, then, jumps to z = y/2; and so on. Let T1, T2, . . . be the successive
jump times, put ζ = lim Tn, and define Xt = ∂ = 0 for t in [ζ, +∞]. Show
that all points are holding points. Identify the parameters k(x) and K(x, B).
Compute E

xζ.

4.31 Lévy processes. Let X = (Ω, H, F, θ, X, P•) be a Markov system with
living space E = R

d. Suppose that its transition semigroup (Pt) is such that,
for each t,

Ptf(x) =
ˆ

E

πt(dy) f(x + y), x ∈ E, f ∈ E+.

for some probability measure πt on E. Show that, then, X has stationary
and independent increments under each P

x. More precisely, for each x in E,
the process Y = (Xt − X0)t∈R+ is a Lévy process over the stochastic base
(Ω, H, Fx, θ, Px) in the sense of Definition VII.3.3; here Fx is the augmenta-
tion of F with respect to the probability measure P

x. Show this.

4.32 Continuation. This is a converse to the preceding. Let X and B =
(Ω, H, F, θ, P) be as in Definitions VII.3.1 and VII.3.3. Put E = R

d, E =
B(Rd), and set ∂ to be the “point at infinity.” Define

Ω̂ = Ē × Ω, Ĥ=Ē ⊗ H, F̂t = Ē ⊗ Ft, P̂
x = δx × P

for x in Ē; and, for ω̂ = (x, ω) in Ω̂, put

X̂t(ω̂) = x + Xt(ω), θ̂tω̂ = (X̂t(ω̂), θtω).
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Show that X = (Ω̂, Ĥ, F̂, θ̂, X̂, P̂•) is a Markov system, in the sense of Defini-
tion 4.7, with living space E and transition function (Pt) given by

Pt(x, B) = P {x + Xt ∈ B} .

5 Hunt Processes

These are Markov processes which have almost all the properties desired
of a Markov process. Itô diffusions, jump-diffusions, simple step processes,
and all Lévy processes (including, of course, Poisson and Brownian motions)
are Hunt processes. We choose them to form the central reference system for
the theory; even when a Markov process is not Hunt, it is best to describe it
by telling how it differs from a Hunt process.

Throughout this section, X = (Ω, H, F, θ, X, P•) is a Markov system with
living space E and transition semigroup (Pt); see Definition 4.7 and the setup
4.1–4.6. Recall, in particular, that the filtration F is right-continuous and that
the path t �→ Xt is right-continuous and has left-limits in Ē. Recall also that
(Go

t ) is the filtration generated by X .
In preparation for the definition of strong Markov property next, we note

that f̄ ◦ XT is FT -measurable for every F-stopping time T and every Ē-
measurable f̄ : Ē �→ R̄+. For continuous f̄ , this follows from Theorem V.1.14
via the right-continuity of f̄ ◦ X . Then, a monotone class argument extends
it to all Ē-measurable f̄ . For positive V in Go∞, putting f̄(y) = E

yV yields a
function f̄ that is Ē-measurable; and, then, f̄ ◦XT belongs to FT as required
for it to be a conditional expectation given FT .

5.1 Definition. The Markov system X is said to be strong Markov if,
for every F-stopping time T and every positive random variable V in Go

∞,

E
x
T V ◦ θT = E

XT V, x ∈ E.5.2

It is said to be quasi-left-continuous if, for every increasing sequence (Tn)
of F-stopping times with limit T ,

lim
n

XTn = XT almost surely on {T < ∞}.5.3

It is said to be a Hunt system if it is strong Markov and quasi-left-continuous.

We shall explore the contents of these definitions and their ramifications.
We start with the less familiar concept.

Quasi-left-continuity

If X is continuous, then X is quasi-left-continuous automatically. The
continuity is not necessary. For instance, if X − X0 is a Poisson process,
then X is quasi-left-continuous even though X has infinitely many jumps.
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Similarly, if X − X0 is a Lévy process, or if X is a jump-diffusion or a step
process, then X is quasi-left-continuous. These comments will become clear
shortly.

Recall the notation Xt− for the left-limit of X at t; we put X0− = X0

for convenience. For a random time T , then, XT− is the random variable
ω �→ XT−(ω) = XT (ω)−(ω). Suppose now that (Tn) is an increasing sequence
of F-stopping times with limit T , and pick ω such that T (ω) < ∞. If Tn(ω) =
T (ω) for all n large enough, then limXTn(ω) = XT (ω) trivially. Otherwise, if

Tn(ω) < T (ω) for all n,5.4

then lim XTn(ω) = XT−(ω), and quasi-left-continuity would require that
XT−(ω) = XT (ω), unless ω happens to be in the negligible exceptional set of
5.3. In other words, if X is quasi-left-continuous, then 5.4 is incompatible with

T (ω) < ∞, XT−(ω) �= XT (ω),5.5

except for a negligible set of ω.
We may interpret 5.4 as “predictability” for T (ω), because the sequence of

times Tn(ω) enables the observer to foresee T (ω). So, heuristically, quasi-left-
continuity is about the continuity of paths at predictable times and, equiv-
alently, about the unpredictability of jump times. We make these remarks
precise next.

Predictable times, total unpredictability

We recall some definitions introduced in passing in Chapter V, adapted
to the newer meaning of “almost everywhere” given around 4.14. We shall
use the notation (read T on H)

TH(ω) =
{

T (ω) if ω ∈ H,
+∞ otherwise,5.6

for F-stopping times T and events H in FT ; and, then, TH is also an F-
stopping time.

5.7 Definition. Let T be an F-stopping time. It is said to be predictable
if there exists an increasing sequence (Tn) of F-stopping times with limit T
such that

Tn < T for all n a.e. on {0 < T < ∞} .5.8

It is said to be totally unpredictable if, for every predictable F-stopping
time S,

T = S almost nowhere on {T < ∞} .5.9

For Brownian motion, every hitting time is predictable, and more. For a
Poisson process, Proposition VI.5.20 implies that the first jump time is totally
unpredictable; see also V.7.31. In Example 3.65, the time Tα is predictable,
so are T2α, T3α, etc. The other times in 3.67 are totally unpredictable. The
following enhances the definition.
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5.10 Lemma. Let T be a totally unpredictable F-stopping time. Suppose
that (Tn) is an increasing sequence of F-stopping times with limit T on the
event {T < ∞}. Then, 5.4 fails for almost every ω in {T < ∞}.

Proof. Let Hn = {Tn < T } and H = ∩nHn. We need to show that

P
x (H ∩ {T < ∞}) = 05.11

for every x. Define S = TH , see 5.6, and define Sn similarly from Tn and Hn;
these are all F-stopping times. Since (Tn) is increasing, the sequence (Hn)
is shrinking to H , and (Sn) is increasing to S. Moreover, if ω ∈ H , then
Sn(ω) = Tn(ω) < T (ω) = S(ω). Since {0 < S < ∞} ⊂ H , we conclude that
S is predictable. It follows from the total unpredictability of T that 5.9 holds;
and 5.9 is the same as 5.11 for all x. �

Total unpredictability of jumps

Let T be an F-stopping time. We call T a time of continuity for X if
(recall that X0− = X0)

XT− = XT a.e. on {T < ∞} ,5.12

and a jump time for X if

XT− �= XT a.e. on {T < ∞} .5.13

The following clarifies the true meaning of quasi-left-continuity.

5.14 Theorem. The following are equivalent:

a) The Markov system X is quasi-left-continuous.

b) Every predictable F-stopping time is a time of continuity.

c) Every jump time is totally unpredictable.

Proof. Suppose (a). Let T be predictable. Then, there is (Tn) increasing
to T such that 5.8 holds. Therefore, limXTn = XT− a.e. on {T < ∞}. But
the limit is XT a.e. on {T < ∞} by the assumed quasi-left-continuity. Thus,
5.12 holds. Hence (a) ⇒ (b).

Suppose (b). Let T be a jump time, that is, let 5.13 hold, and let S be
predictable. Then, XT− = XS− = XS = XT almost everywhere on {T =
S, T < ∞} in view of (b) for S. This means, in view of 5.13 for T , that 5.9
holds. Hence, T is totally unpredictable. So, (b) ⇒ (c).

Suppose (c). Let (Tn) be an increasing sequence of F-stopping times with
limit T . On {XT− = XT , T < ∞}, we have lim XTn = XT obviously. To
show quasi-left-continuity at T , we show next that

lim XTn = XT a.e. on H = {XT− �= XT , T < ∞} .5.15
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Define S = TH as in 5.6; it is obviously a jump time. By the assumed
(c), then, S is totally unpredictable. Moreover, limTn = T = S on {S < ∞},
because {S < ∞} = H ⊂ {T < ∞}. It follows from Lemma 5.10 that, almost
surely on {S < ∞} = H , we have Tn = S for all n large enough. Since S = T
on H , we have 5.15. So, (c) ⇒ (a). �

Classification of stopping times

A hasty reading of the last theorem might suggest that a stopping time
is predictable if and only if it is a continuity time. This is false in general;
see Example 5.22. However, it is true provided that we limit ourselves to
the stopping times of

(
Go

t+

)
. We offer this without proof. Note that, when

X = (. . . , F, . . .) is quasi-left-continuous, then so is the Markov system X0 =(
. . . ,

(
Go

t+

)
, . . .

)
; so, half of the statements next follow from the last theorem.

5.16 Theorem. Suppose that X is quasi-left-continuous. Consider a
stopping time of

(
Go

t+

)
. It is predictable if and only if it is a continuity time

for X; it is totally unpredictable if and only if it is a jump time for X. �

5.17 Remark. Let S be an F-stopping time. We call it σ-predictable if
there is a sequence (Sn) of predictable F-stopping times such that, for almost
every ω with S(ω) < ∞, we have S(ω) = Sn(ω) for some n. An arbitrary
F-stopping time R can be written as

R = S ∧ T,5.18

where S is σ-predictable and T totally unpredictable. The preceding the-
orem implies, in particular, that for a quasi-left-continuous system, every
σ-predictable stopping time of

(
Go

t+

)
is necessarily predictable. Hence, every(

Go
t+

)
-stopping time R has the form 5.18 with S predictable and T totally

unpredictable; indeed, in the notation 5.6,

S = R{XR−=XR,R<∞}, T = R{XR− �=XR,R<∞}.

Examples

All continuous Markov processes are obviously quasi-left-continuous. So,
we concentrate on processes with jumps. The reader will see that quasi-left-
continuity at a jump time depends on whether that jump is endogeneous (as
in the first example below) or exogeneous (and is caused by kicks from a
Poisson).

5.19 Brownian motion with jump boundaries. This is a variation on Exer-
cise 4.29. The motion X is Brownian inside the interval (a,b) until the time
T of exit; if XT− is a, then XT has some distribution μa on (a,b); if XT− is
b, then XT has some distribution μb on (a,b). This X is strong Markov; it is
not quasi-left-continuous. To see the latter point, let Tn be the time of exit
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from
(
a + 1/n, b − 1/n

)
; then, (Tn) increases to T , but XT− �= XT . Note that,

in this example, the jumps are triggered by the particle itself. The process of
Example 4.29, by contrast, is quasi-left-continuous; its jumps are exogeneous;
they are caused by kicks from a Poisson.

5.20 Step processes. Suppose that X is a step process. Then X is strong
Markov, we show now that it is quasi-left-continuous. So, X is Hunt.

We start by showing that quasi-left-continuity hold at the time R of first
jump. Let (Rn) be a sequence of stopping times increasing to R. Fix x in E
and recall that, under P

x, the time R has the exponential distribution with
some parameter k(x) < ∞.

If x is a trap, then k(x) = 0 and P
x{R = +∞} = 1, and thus the condition

5.3 holds at R by default. Suppose that x is not a trap. Observe that, on
{Rn < R}, we have R = Rn + R ◦ θRn . Thus,

E
xR = E

x R1{Rn=R} + E
x (Rn + R ◦ θRn) 1{Rn<R}

= E
x Rn1{Rn=R} + E

x Rn1{Rn<R} + E
x1{Rn<R}EX(Rn)R

= E
xRn + E

xR P
x {Rn < R} ;

here, we used the strong Markov properly at Rn and noted that XRn = x on
{Rn < R, X0 = x}. Since (Rn) is increasing to R and E

xR < ∞ (since x is
not a trap), we conclude that

lim
n

P
x {Rn < R} = 0.

But, the events {Rn < R} are shrinking to {Rn < R for all n}. So,

P
x {Rn < R for all n} = 0,

that is, for P
x-almost every ω, we have Rn(ω) = R(ω) for all n large enough,

and hence, limXRn(ω) = XR(ω). Thus, quasi-left-continuity holds at R.
Fix m in N, let T be the (m + 1)th jump time and let (Tn) an increasing

sequence of stopping times with limit T . Let S denote the mth jump time
and put Rn = S ∨ Tn. Then, (Rn) is increasing to T , and S ≤ Rn ≤ T , and
T = S + R ◦ θS with R as before (the time of first jump). The arguments of
the last paragraph apply with the conditional law P

x
S replacing P

x; this is by
the strong Markov property at S. Thus, almost surely on {T < ∞}, Rn = T
for all n large enough and

lim
n

XTn = limXRn = XT .

So, quasi-left-continuity holds at T; and since m is arbitrary and the process
X is a step process, this implies quasi-left-continuity for X.

5.21 Lévy processes. Suppose that X − X0 is a Lévy process; see Exercise
4.31. Then, X is strong Markov. We now show that it is quasi-left-continuous
and, hence, a Hunt process.
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If X is continuous, there is nothing to prove. Suppose that it has jumps.
Fix an integer m ≥ 1, and consider the successive jump times at which X
jumps by an amount whose magnitude is in the interval [1/m, 1/m−1). Those
jump times form a Poisson process N; in fact,

Xm = (Ω, H, F, θ, X0 + N, P•)

is a Markov system and X0 + N is a simple step process. It follows from the
preceding example that Xm is quasi-left-continuous. So, every one of its jump
times is totally unpredictable.

Since this is true for every m ≥ 1, and since all those jump times put
together exhaust all the jump times of X , we conclude that X is quasi-left-
continuous.

5.22 Brown and Poisson. This is to show the necessity, in Theorem 5.16,
of restriction to

(
Go

t+

)
-stopping times. Let X∗ = (Ω, H, F, θ, X∗, P•) be a

Lévy, where X∗ = X0 + W + N , with W Wiener, N Poisson, and W and
N independent. So, X∗ is Hunt. Consider X = (Ω, H, F, θ, X, P•) where X =
X0 + W , which is also a Hunt process. Let T be the time of first jump for
the Poisson process N; it is an F-stopping time and it is totally unpredictable
(since X∗ is Hunt). But, for the Brownian motion X , we have XT− = XT .
This is possible because T is not a stopping time of

(
Go

t+

)
, the filtration of

X itself.

Exiting a holding point

This is to supplement Theorem 4.22 by showing that a strong Markov
process exits a holding point only by a jump.

5.23 Proposition. Suppose that the system X has the strong Markov
property. Let R be the time of exit from X0 as in 4.20. Then, for every
holding point x in E,

P
x {XR− �= XR} = 1.

Proof. If x is a trap in E, then R = ∞ and XR− = X0 = x and XR = ∂
almost surely; thus the claim holds trivially. Suppose that x is a holding point
but not a trap. Observe that, for every ω in {X0 = x},

R(ω) = r, Xr(ω) = x ⇒ R(θrω) = 0

by the definition of R. Thus,

P
x {XR = x, R ◦ θR = 0} = P

x {XR = x} .5.24

On the other hand, R is a stopping time of
(
Go

t+

)
and, therefore, of (Ft). By

the strong Markov property applied at R,

P
x {XR = x, R ◦ θR = 0} = E

x1{XR=x}PXR {R = 0}5.25
= E

x1{XR=x}Px {R = 0} = 0
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since P
x{R = 0} = 0 by the assumption that x is a holding point. It follows

from 5.24 and 5.25 that
P

x {XR = x} = 0,

which proves the claim since P
x{XR− = x} = 1. �

The preceding propositions supplies the rigorous reason for the failure
of strong Markov property for Examples 1.28 and 1.29, the delayed uniform
motion and Lévy’s continuous increasing process. Of course, the proposition
has further implications: for instance, if T is a stopping time, on the event
that XT is a holding point, we have XR ◦θT �= XR− ◦θT = XT almost surely.
A somewhat stronger result is next.

No rest for a continuous strong Markov

5.26 Proposition. Suppose that X is strong Markov, and X continuous.
Then, almost surely, t �→ Xt has no flat segments of finite duration.

Proof. We are to show that, for almost every ω, there exists no interval
[r,t] with 0 ≤ r < t < ∞ such that Xs(ω) = Xt(ω) for all s in [r,t] and
Xu(ω) �= Xt(ω) for some u in (t,∞). Define

Qt(ω) = t − inf {r ≥ 0 : Xs(ω) = Xt(ω) for all s in [r , t ]} .

If there were such an interval, then there would exist t such that Qt(ω) > ε
for some rational number ε > 0 and that R(θtω) < ∞; note that R(θtω) is
the length of the interval from t until the exit from Xt(ω). Hence, with

Tε = inf {t : Qt > ε} , Uε = Tε + R ◦ θTε ,

it is enough to show that, for every x in E and every ε > 0,

P
x {Uε < ∞} = 0.5.27

Fix x and ε such, and drop ε from the notations Tε and Uε. The process
(Qt) is adapted to (G◦

t ); thus, T is a stopping time of
(
G◦

t+

)
and so is U

consequently. Observe that, on the event {U < ∞} we have, by the definitions
of R, T, U ,

T < ∞, R ◦ θT > 0, XT = XU , R ◦ θU = 0,

the last being due to the continuity of X . So,

P
x {U < ∞} = P

x {U < ∞, R ◦ θU = 0} = E
x1{U<∞}PXU {R = 0}

by the strong Markov property at U; and on the event {U < ∞},
P

XU {R = 0} = P
XT {R = 0} = P

x
T {R ◦ θT = 0} = 0

since XU = XT and R ◦ θT > 0 on {U < ∞}. Hence, 5.27 holds. �
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The paths are locally bounded

5.28 Proposition. Suppose that X is quasi-left-continuous. Then, for
almost every ω and every t < ζ(ω), the set {Xs(ω) : 0 ≤ s ≤ t} is contained
in some compact subset Kω of E.

Proof. Since E is locally compact, there is a sequence (Kn) of compact
subsets increasing to E and such that Kn is contained in the interior of
Kn+1 for each n. Let Tn be the time of exit from Kn for each n. Then, (Tn)
is an increasing sequence of

(
G◦

t+

)
-stopping times, and its limit T is again

a stopping time. Thus, by the assumed quasi-left-continuity, limXTn = XT

almost surely on {T < ∞}. By the right-continuity of X and the way the Kn

are picked, XTn+1 is outside Kn for every n. Hence, the limit XT is outside
E on {T < ∞}; in other words, T ≥ ζ on {T < ∞} and, therefore, on Ω
almost surely. Consequently, for almost every ω, if t < ζ(ω), then t < Tn(ω)
for some n, in which case Xs(ω) ∈ Kn for all s ≤ t.

Strong Markov property

In Definition 5.1, the strong Markov property is stated in its most useful,
intuitive form. Several uses of it appeared in the development above. But,
how does one tell whether the given system X is strong Markov?

For primary processes such as Poisson, Brownian, and Lévy, the strong
Markov property was proved directly. For Itô diffusions and jump-diffusions,
its proof exploited the dynamics of the motion and the same property for
Poisson and Wiener. Next we aim at processes X introduced axiomatically;
after some preliminaries, we state a condition on (Pt) that ensures both the
strong Markov property and the quasi-left-continuity, see Definition 5.36.

5.29 Proposition. The Markov system X is strong Markov if and only if

E
x
T f ◦ XT+u = Puf ◦ XT , x ∈ E, u ∈ R+,5.30

for every f in E+ and every stopping time T of F.

Proof. Necessity is obvious. Sufficiency is essentially as in the proof of
Theorem 1.2: It is enough to show that 5.30 implies 5.2 for V having the form

Vn = f1 ◦ Xt1 · · · fn ◦ Xtn

for some n ≥ 1, times 0 ≤ t1 < . . . < tn, and functions f1, . . . , fn in E+. This
is done by induction on n, whose steps are the same as those of the proof of
1.2; basically, replace ui there with T + ti. We leave out the details. �

5.31 Lemma. The system X is strong Markov if and only if

E
x f ◦ XT+u = E

x Pu f ◦ XT , x ∈ E, u ∈ R+,5.32

for every f in E+ and every F-stopping time T .
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Proof. Applying E
x to both sides of 5.30 yields 5.32. For the converse, fix

f and T , let H be an event in FT , and consider the stopping time TH (T on
H defined in 5.6). Assuming 5.32, we get

E
x1H f ◦ XT+u = E

x f ◦ XTH+u

= E
x Puf ◦ XTH = E

x1H Puf ◦ XT .

Since H in FT is arbitrary, this is equivalent to 5.30. �

5.33 Lemma. Let T be an F-stopping time that takes values in a count-
able subset of R̄+. Then, the strong Markov property holds at T .

Proof. For fixed t in R+,

E
x1{T=t} f ◦ Xt+u = E

x1{T=t}Puf ◦ Xt5.34

by the Markov property, since {T = t} ∈ Ft. The same holds (and both sides
vanish) for t = +∞ as well, via the conventions on X∞ and f(∂) and Puf(∂).
Now, summing both sides of 5.34 over the countably many possible values t
for T , we obtain 5.32 via the monotone convergence theorem. �

5.35 Remark. Consider the strong Markov property in the form 5.32.
For an arbitrary F-stopping time T , Proposition V.1.20 provides a sequence
(Tn) of countably-valued stopping times decreasing to T . By the preced-
ing lemma, 5.32 holds for each Tn. By the right-continuity of X , we have
XTn+u → XT+u and XTn → XT as n → ∞. Thus, if f and Puf are continu-
ous and bounded, then 5.32 will hold for T . And, if 5.32 holds for f continuous,
then it will hold for all f in E+ by a monotone class argument, and hence
the strong Markov property. For this program to work, we need an assump-
tion that the function Puf be continuous for f continuous, both regarded as
functions on the compact space Ē. We take this up next.

Feller processes

Let C0 = C0(E �→ R), the set of all continuous functions f : E �→ R with
limx→∂ f(x) = 0. Elements of C0 are called continuous functions vanishing at
infinity. These are functions on E whose automatic extensions (with f(∂) =
0) onto Ē yield continuous functions on Ē. Since Ē is compact, every such
function is bounded. Every continuous function f̄ : Ē �→ R has the form
f̄(x) = f(x) + c for some f in C0 and some constant c, namely, c = f̄(∂).

5.36 Definition. The Markov system X is called a Feller system if

f ∈ C0 ⇒ Ptf ∈ C0 for every t in R+.5.37

5.38 Remark. a) Since X is right-continuous, the condition 5.37
implies that
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f ∈ C0 ⇒ lim
t→0

Ptf(x) = f(x), x ∈ E.5.39

For, as t → 0, we have Xt → X0, and f ◦ Xt → f ◦ X0 by the continuity of
f; thus

Ptf(x) = E
x f ◦ Xt → E

x f ◦ X0 = f(x)

by the bounded convergence theorem and the normality of X.
b) In the absence of X, a sub-Markov semigroup (Pt) is said to satisfy

the Feller condition if 5.37 and 5.39 hold. Given such a semigroup, and given
E as in 4.1, it is possible to construct a system X that satisfies 4.1–4.6 and
is a Markov system in the sense of Definition 4.7. The construction is long
and tedious. Following the modern sensibilities, we have defined the Markov
system X axiomatically, rather than treating the semigroup (Pt) (which is
rarely explicit except for Wiener and Poisson) as the primary object. The
next theorem shows that every Feller process is a Hunt process, that is, it is
strong Markov and quasi-left-continuous.

5.40 Theorem. If X is a Feller system, then it is a Hunt system.

Proof. Suppose that X has the Feller property 5.37, we need to show that,
then, X is strong Markov and quasi-left-continuous.

a) For the first, we follow the program outlined in Remark 5.35. Let T
be an F-stopping time, choose stopping times Tn decreasing to T such that
each Tn is countably-valued. By Lemma 5.33,

E
x f ◦ XTn+u = E

x Pu f ◦ XTn

for f in Eb. Now let f ∈ C0 and let n → ∞. We obtain 5.32 through the
right-continuity of X , the continuity of f and Puf in C0 when extended onto
Ē, and the bounded convergence theorem. Finally, 5.32 extends to f in E+

by a monotone class argument. Thus, X is strong Markov.
b) To show quasi-left-continuity, let T be a stopping time of F, and (Tn)

an increasing sequence of such times with limit T; we need to show that

limXTn = XT almost surely on {T < ∞} .5.41

It is enough to show that it is so almost surely on {T ≤ b} for every b < ∞;
then, letting b → ∞ over the integers yields the desired end. But, on {T ≤ b},
we have T = T ∧ b and Tn = Tn ∧ b, which are all bounded stopping times.
Thus, we may and do assume that T is bounded.

Since X is left-limited in Ē, the limits

L = lim
n

XTn , Lu = lim
n

XTn+u5.42

exist, the latter for every u > 0. For u > 0, we have Tn(ω) + u > T (ω) for
all n large enough; thus, Lu → XT as u → 0, by the right-continuity of X .
Hence, for continuous f̄ and ḡ on Ē,

E
x f̄ ◦ L ḡ ◦ XT = lim

u→0
lim

n→∞ E
x f̄ ◦ XTn ḡ ◦ XTn+u.5.43
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We can write ḡ = c+g, where g ∈ C0 and c = ḡ(∂). Using the already proved
strong Markov property at Tn, we see that the right side of 5.43 is equal to

lim
u→0

lim
n→∞ E

x
(
f̄ ◦ XTn

)
(c + Pug ◦ XTn)

= lim
u→0

E
x

(
f̄ ◦ L

)
(c + Pug ◦ L) ,

where the last equality follows from the bounded continuity of f̄ and Pug,
the latter being through the assumed Feller property 5.37 applied to g in C0.
Thus, using Remark 5.38a to the effect that Pug → g as u → 0, we see that
5.43 becomes,

E
xf̄ ◦ L ḡ ◦ XT = E

x f̄ ◦ L ḡ ◦ L.5.44

Since continuous functions of the form f̄ × ḡ generate the Borel σ-algebra
on Ē × Ē, a monotone class argument applied to 5.44 shows that

E
x h̄ ◦ (L, XT ) = E

x h̄ ◦ (L, L)

for every bounded Borel function h̄ on Ē × Ē. Taking h̄ to be the indicator
of the diagonal of Ē × Ē, and noting the definition of L in 5.42, we obtain
the desired result 5.41. �

Markovian bestiary

Poisson processes are the quintessential Markov processes with jumps.
Brownian motions are the continuous Markov processes par excellence. They
are both Lévy processes.

All Lévy processes are Itô processes; the latter are processes that satisfy
stochastic integral equations like 3.1, but with a further term that define
a compensated sum of jumps; see 3.95. Itô diffusions, jump-diffusions, and
simple processes are special cases of Itô processes.

All Itô processes are Feller processes. The latter are introduced through
their transition functions, with conditions on how the transition kernels Pt

treat continuous functions. From those conditions follow the real objectives:
regularity properties of the sample paths, strong Markov property, quasi-left-
continuity, etc.

All Feller processes are Hunt processes. The latter are introduced ax-
iomatically by saying that we have a process and it has the following desir-
able properties. This is the straightforward approach; it puts the process as
the central object, the axioms can be checked directly in practical situations
or in the case of Itô processes.

All Hunt processes are “standard;” the latter allow quasi-left-continuity to
fail at ζ, at the end of life. Finally, all standard processes are “right processes,”
the latter form a class of Markov processes that is invariant under certain
useful transformations such as killing, time changes, spatial transformations.
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These are the objects of the general theory of Markov processes. (See the
notes for this chapter for references.)

There is a class of processes that is totally outside of all the previous
classes: It consists of Markov processes (in continuous-time) with discrete
state spaces, but without the sample path regularities such as right-continuity.
When the state space is discrete (with the discrete topology), every right-
continuous left-limited path is necessarily a step process; too simple, theoret-
ically. On the other hand, on a general state space, it is impossible to build a
theory without right-continuity etc. for the paths. But, with a discrete state
space, it is possible to create a rich theory that allows sample paths to have
discontinuities of the second type. Such processes should be called Chung
processes.

Exercises and Complements

5.45 Additive functionals. Let X be a Markov system with living space E.
Let f ∈ Eb+ and put

At =
ˆ t

0

ds f ◦ Xs, t ∈ R+.

Show that, for every ω,

At+u(ω) = At(ω) + Au(θtω), t, u ∈ R+;

then, A is said to be additive.

5.46 Continuation. Let X be a Markov system. Let A = (At) be an increasing
right-continuous process with Ao = 0. It is said to be an additive functional
of X if it is additive and is adapted to

(
G◦

t+

)
. The preceding exercise gave an

example of a continuous additive functional. If X is a Brownian motion, the
local time at 0 is another example of a continuous additive functional. If X
is a jump-diffusion as in Section 3, then

At =
∑

s≤t

f ◦ (Xs−, Xs) 1{Xs− �=Xs}, t ∈ R+,

is an additive functional of the pure-jump type.

5.47 Time changes. Let X be a Hunt system with living space E. Let f : E �→
(0, 1) be Borel and define

Ct =
ˆ t

0

ds f ◦ Xs, t ∈ R+.

Then, C is a strictly increasing continuous additive functional. Using C as
a random clock, let S be its functional inverse (that is, Su = inf{t ≥ 0 :
Ct > u}, u ∈ R+). Each St is a stopping time of

(
G◦

t+

)
and of (Ft). Define

X̂t = XSt , θ̂t = θSt , F̂t = FSt , t ∈ R+.
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Show that X̂ = (Ω, H, F̂, θ̂, X̂, P
•) is again a Hunt system with living

space E.
5.48 Increasing continuous processes. Let X be a Hunt system with living
space E = R+. Suppose that t �→ Xt is increasing and continuous, and that
ζ = +∞.

a) Show that t �→ Xt is strictly increasing.
b) Put Ct = Xt − X0. Show that C is an strictly increasing continuous

additive functional of X .
c) Let X̂ be the time-changed process. Note that X̂t = X0 + t, de-

terministic, except for the initial state. Show that (St) is a continuous ad-
ditive functional of X̂. In particular, this means that St is determined by
{X̂s : s ≤ t}.

d) Conclude that (St) and, therefore, (Ct) and (Xt) are deterministic
except for the dependence on X0. Here is the form of X : Let f be a continuous
strictly increasing function on R+ with f(0) = 0. If X0(ω) = x, choose the
unique time t0 such that f(t0) = x; Then Xt(ω) = f(t0 + t) for all t ≥ 0.

5.49 Step processes. Let X be such that X is a step process; let (Yn), (Tn),
and k(x) be as in 3.69 et seq., with no traps. Let

Ct =
ˆ t

0

ds k ◦ Xs, t ∈ R+,

and consider the process X̂ obtained as in 5.47, but from this C.
a) Show that X̂ has the form

X̂t = Yn on
{
T̂n ≤ t < T̂n+1

}
,

where T̂0 = 0, and {T̂n+1 − T̂n : n ∈ N} is an independency of standard
exponential variables that is independent of (Yn). Thus, X̂t = YNt , where N
is a standard Poisson process independent of Y .
5.50 Continuation. Let X be as in Example 5.19 above, where X is a Brow-
nian motion inside (a, b) and has sojourns at a and b before jumping into
(a, b). Define

Ct =
ˆ t

0

ds 1(a,b) ◦ Xs.

Note that C remains flat during sojourns of X . Now, C is still a continuous
additive functional, but not strictly increasing. Define (St) and X̂ as in the
preceding exercise.

a) Show that X̂ is a Markov system with living space [a, b] except that
the normality fails (for P

a and P
b). Of course, the actual state space for X̂ is

the interval (a, b); and X̂ is a Markov system with living space (a, b), since
normality does hold for x in (a, b) and x = ∂.

b) Describe the process X̂ .
c) Is X̂ with living space (a,b) a Hunt process?
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5.51 Semimartingale Hunt processes. Let X be an Itô process; see 3.95. Let
f, C, S, X̂ be as in Exercise 5.47 above. Then, X̂ is a Hunt system as mentioned
in 5.47. Moreover, every component X̂ i of X̂ is a semimartingale.

This has a converse. Every Hunt process X̂ whose components are semi-
martingales has the structure described. Somewhat more explicitly, let X̂
be a Hunt process with state space E = R

d. Then, there are deterministic
measurable functions a, b, j, f and (on an enlargement of the original prob-
ability space) a Wiener process W and a Poisson random measure M such
that X̂t = XSt where X is an Itô process as described in 3.95 and S is defined
from X and f as in 5.47. See the notes for this chapter.

6 Potentials and Excessive Functions

This section is independent of Section 5, and its dependence on the earlier
sections is slight. Throughout, X = (Ω, H, F, θ, X, P•) is a Markov system
with living space E and transition semigroup (Pt); see 4.1–4.6 and Definition
4.7 for these and the attendant conventions.

For f in Eb and p > 0, by the arguments of Example 4.18,

Upf(x) = E
x

ˆ ∞

0

dt e−pt f ◦ Xt, x ∈ E,6.1

defines a function Upf in Eb. The same makes sense for f in E+ and p ≥ 0,
and the result is a function Upf in E+. In both cases,

Upf(x) =
ˆ

E

Up(x, dy) f(y), x ∈ E,6.2

where

Up(x, A) = E
x

ˆ ∞

0

dt e−pt 1A ◦ Xt =
ˆ ∞

0

dt e−pt Pt(x, A).6.3

If p > 0, then Up is a bounded kernel: Up(x, E) ≤ 1/p. When p = 0, writing
the integral over t as a sum of integrals over [n, n + 1) shows that U0 is
Σ-bounded, but generally not σ-finite.

The function Upf is called the p-potential of f, and Up the p-potential
kernel or p-potential operator depending on the role it plays. The family
(Up)p>0 of operators Up : Eb �→ Eb is called the resolvent of the semigroup
(Pt) or of the Markov process X .

6.4 Theorem. a) The resolvent equation

Up − Uq + (p − q)Up Uq = 06.5

holds for p, q > 0; in particular, Up Uq = Uq Up.
b) For each p > 0, the kernel pUp is sub-Markov; and

lim
p→∞ pUp f(x) = f(x)



Sec. 6 Potentials and Excessive Functions 519

for every f in Eb that is continuous at the point x of E.

Proof. Follows from the same arguments as in 2.36–2.39 and Theorem
2.40. �

Potentials and supermartingales

6.6 Theorem. Let p > 0 and f ∈ Eb+. Then, for each x in E,

Mt =
ˆ t

0

ds e−ps f ◦ Xs + e−pt Up f ◦ Xt, t ∈ R+,

is a uniformly integrable F-martingale over (Ω, H, Px).

Proof. Define

At =
ˆ t

0

ds e−ps f ◦ Xs, t ∈ R+.6.7

The process (At) is increasing, and the limit A∞ is a bounded positive vari-
able in G∞ since p > 0 and f is bounded. Note that

A∞ = At +
ˆ ∞

t

ds e−ps f ◦ Xs = At + e−pt A∞ ◦ θt.

Thus, by the Markov property at t,

E
x
t A∞ = At + e−pt

E
Xt A∞ = At + e−pt Upf ◦ Xt = Mt,

since E
yA∞ = Upf(y) by definition. Via Theorem V.5.13, this shows that M

is a uniformly integrable martingale, with respect to F, under every P
x. �

6.8 Corollary. Under each P
x,

Vt = e−pt Upf ◦ Xt, t ∈ R+,

is a positive supermartingale with limt→∞ Vt = 0.

Proof. We have V = M − A with the definitions in 6.6 and 6.7, and the
process A is increasing. Thus, V is a supermartingale. And, limt→∞ Vt = 0,
because, by the martingale convergence theorem,

lim
t→∞ Mt = lim

t
E

x
t A∞ = A∞ = lim

t→∞ At. �

In martingale terminology, the process (Vt) is a potential; see V.4.53. The
decomposition

V = M − A

is an instance of Doob-Meyer decomposition for supermartingales, which is
the continuous-time version of Doob’s decomposition given in Theorem V.3.2.
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Going back to Theorem 6.6, the uniform integrability of M implies that
M is a Doob martingale on [0,∞], and thus

E
x MT = E

xM0 = Upf(x)

for every stopping time T of F. This proves the following corollary to 6.6.

6.9 Theorem. Let p > 0 and f ∈ Eb+. Then, for every x in E,

Upf(x) = E
x

ˆ T

0

ds e−ps f ◦ Xs + E
x e−pT Upf ◦ XT

for every F-stopping time T . In particular, if f ◦ Xs = 0 on {s < T }, then

E
x e−pT Up f ◦ XT = Up f(x), x ∈ E.

The particular case is useful in computing the distributions of T and XT

by choosing f appropriately. The theorem is the potential counterpart of
Dynkin’s formula using generators; see Theorem 2.27 for Dynkin’s formula
for Itô diffusions.

Excessive functions

6.10 Definition. Let p ∈ R+. A function f in E+ is said to be p-
excessive if

a) f ≥ e−pt Ptf for every t in R+, and

b) limt→0 e−pt Ptf(x) = f(x) for every x in E.

The condition (a) is called the p-supermedian property for f ; other terms
in use are p-super-mean-valued, p-superaveraging. It implies, via the semi-
group property PtPu = Pt+u, that the mapping t �→ e−ptPtf(x) is decreas-
ing. Hence, the limit in (b) is an increasing limit, and the condition (b) can
be written as

sup
t

e−pt Pt f(x) = f(x).6.11

If the conditions (a) and (b) hold for Borel f , without requiring that f be
positive, then f is said to be p-superharmonic. In all this, when p = 0, it is
dropped both from notation and terminology. The following is the connection
to supermartingales.

6.12 Proposition. Let p ≥ 0. Let f be p-supermedian. Then, for each x
in E with f(x) < ∞, the process

Yt = e−pt f ◦ Xt, t ∈ R+,

is an F-supermartingale over (Ω, H, Px).
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Proof. Obviously, Y is adapted to F. Fix x such that f(x) < ∞. Then,
since f is p-supermedian,

f(x) ≥ e−pt Ptf(x) = E
x e−pt f ◦ Xt = E

x Yt,

showing that Yt is integrable under P
x. And, by the Markov property of X ,

E
x
t Yt+u = e−p(t+u)

E
x
t f ◦ Xt+u

= e−pt e−pu Pu f ◦ Xt ≤ e−pt f ◦ Xt = Yt,

where the inequality is via the p-supermedian property of f . �

In the preceding proposition, if f is p-excessive, it can be shown that Y is
right-continuous. Thus, p-excessive functions are, roughly speaking, continu-
ous over the paths of X .

Potentials are excessive

6.13 Proposition. Let p ≥ 0 and f ∈ E+. Then, Upf is p-excessive.

Proof. Clearly, Upf ∈ E+. Also, by Fubini’s theorem,

e−pt Pt Up f = e−pt

ˆ ∞

0

du e−pu Pt Pu f =
ˆ ∞

t

ds e−ps Psf.

The last integral is dominated by Upf and increases to Upf as t decreases
to 0. Hence, Upf is p-excessive. �

The following is one-half of a theorem characterizing excessive functions
in terms of the resolvent. But it is sufficient for our purposes.

6.14 Proposition. Let p ≥ 0 and let f be p-supermedian. Then q �→
qUp+qf is increasing and dominated by f . Its limit is f as q → ∞ if f is
p-excessive.

Proof. Fix p ≥ 0. For q > 0,

q Up+q f =
ˆ ∞

0

dt q e−qt e−pt Ptf =
ˆ ∞

0

du e−ue−pu/q Pu/q f.

As q increases, u/q decreases and the integrand increases by the
p-supermedian property of f . By the same property, the last integrand
is dominated by e−uf , and hence, the integral is dominated by f . Finally, if
f is p-excessive, the integrand increases to e−uf as q → ∞, and the monotone
convergence theorem implies that the integral becomes f in the limit. �
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Approximation by bounded potentials

Let f be p-excessive. Then, for each n, the function nUp+nf = Up+n(nf)
is a potential, and as n → ∞ the limit is f . So, every p-excessive function is
the limit of an increasing sequence of potentials. The following sharpens the
result when p > 0.

6.15 Theorem. Let p > 0. Let f be p-excessive. Then, there exists a
sequence (gn) in Eb+ such that the sequence (Upgn) increases to f.

Proof. For each integer n ≥ 1, put fn = f ∧ n; each fn is bounded and
p-supermedian (since f is such and the constant n is such a function). By the
resolvent equation 6.5,

Up+q fn = Up fn − q Up Up+q fn;

the right side is well-defined as the difference of two bounded functions since
fn is bounded and p > 0. Thus, with gn = n(fn − nUp+nfn), we have

nUp+n fn = Up gn.6.16

Since fn is p-supermedian, Proposition 6.14 yields fn ≥ nUp+nfn, and
hence gn ∈ Eb+ for every n. There remains to show that the left side of
6.16 increases to f as n → ∞. To that end, we note that (fn) is increasing
to f , and that qUp+qfn is increasing in q, since fn is p-supermedian (see
Proposition 6.14). Thus, the left side of 6.16 is increasing in n, and

lim
n

nUp+n fn = lim
q

lim
n

qUp+q fn = lim
q

q Up+q f = f,

the last equality being via Proposition 6.14 applied to the p-excessive func-
tion f . �

Supermedian property at stopping times

This is essentially Doob’s stopping theorem for the supermartingale Y
of Proposition 6.12. See Exercises 6.23–6.26 for its interpretation in optimal
stopping games.

6.17 Theorem. Let p ≥ 0. Let f be p-excessive. Then, for every
F-stopping time T ,

f(x) ≥ E
x e−pT f ◦ XT , x ∈ E.6.18

Proof. Suppose that p > 0. Let (gn) be as in Theorem 6.15, so that
Upgn ↗ f . By Theorem 6.9,

Up gn(x) ≥ E
x e−pT Upgn ◦ XT .

Letting n → ∞ we obtain 6.18 when p > 0.
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If p = 0 and f is excessive, then f is p-excessive for every p > 0, and
thus 6.18 holds for every p > 0. Let p decrease to 0 strictly. By the monotone
convergence theorem,

f(x) ≥ lim
p→0

E
x e−pT f ◦ XT = E

x 1{T<∞}f ◦ XT = E
x f ◦ XT ,

since XT = ∂ on {T = ∞} and f(∂) = 0.

Exercises

6.19 Poisson process. Let X = X0 + N where N is a Poisson process with
rate c; we take E = R+. Show that

Uf (x) = E
x

ˆ ∞

0

dt f ◦ Xt =
1
c

∞∑

j=0

f(x + j), x ∈ E,

for every f positive Borel, more generally, for p ≥ 0, show that

Upf(x) =
1

c + p

∞∑

j=0

(
c

c + p

)j

f (x + j) .

6.20 Stable processes. Suppose that X = X0 + S, where S is an increasing
stable process with index a in (0,1). Suppose that its Lévy measure is given
as λ(dx) = (c/xa+1)dx, with c = a/Γ(1 − a); see Example VII.7.6b. Show
that, with E = R+,

Uf (x) =
1

Γ(a)

ˆ ∞

x

dy (y − x)a−1 f(y), x ∈ E.

6.21 Brownian motion. Suppose that X = X0 + W , the standard Brownian
motion in R

d.

a) For d = 1 or d = 2, show that

Uf (x) = +∞, x ∈ R
d,

for every f positive Borel on R
d, except for f = 0 in which case Uf = 0.

b) Show, if d ≥ 3, that

Uf(x) =
Γ

(
d
2 − 1

)

2 πd/2

ˆ

Rd

dy |y − x|2−d f(y)

for all x in R
d and positive Borel f on Rd. Thus, except for multiplication by

a constant, Uf is the Newtonian potential of f in classical potential theory.

6.22 Excessive functions. For the Markov system X, prove the following.

a) If f = c for some constant c ≥ 0, then f is p-excessive for every
p ≥ 0.
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b) If f is p-excessive, then it is q-excessive for every q ≥ p.
c) If f is p-excessive and c ≥ 0 is a constant, then cf is p-excessive. If

f and g are p-excessive, then so is f + g.
d) If (fn) is an increasing sequence of p-excessive functions with limit

f , then f is p-excessive. Hint: e−pt Pt fn is increasing in n, and increasing
with decreasing t.

e) If f and g are p-supermedian, then so is f ∧ g.

6.23 Brownian motion on R. Let X be a standard Brownian motion on R.
Let f be excessive (p = 0). Show that f = c for some constant c ≥ 0. Hint:
Use 6.18 with T = Ty, the hitting time of the point y.

6.24 Continuation. Let X̂ be a standard Brownian motion on R, and let
Xt = X̂τ∧t, where τ is the time of exit for X̂ from the fixed interval (a,b).
Thus, X lives in E = [a, b], and the boundary points a and b are traps. Show
that every excessive function for X is a concave function on [a,b]. Hint: Recall
the formula for E

x f ◦ XT for y < x < z and T the time of exit from the
interval (y, z) ⊂ [a, b]. Fix y and z, take x = αy + (1 − α)z for 0 ≤ α ≤ 1.

6.25 Optimal stopping. We are to receive a one-time reward of f ◦XT dollars
if we choose time T to ask for the reward. We want to choose a stopping time
To that maximizes

E
x e−rT f ◦ XT , T is an F-stopping time,

if possible, or, if this proves impossible, come close to the value

v(x) = sup
T

E
x e−rT f ◦ XT ,

where the supremum is over all F-stopping times. Here, f is a positive Borel
function on E, called the payoff function. We interpret r as the interest rate,
and v is called the value of the game.

a) If f is r-excessive, then v = f and T0 = 0 is an optimal stopping time.
b) In general, v is the minimal r-excessive function that dominates f .

6.26 Continuation. Suppose that X is the standard Brownian motion on R.
Let f be a bounded positive function on R, and take r = 0. Show that v = c,
no computations needed, where

c = sup
y∈R

f(y).

If the supremum is attained, that is, there exists x∗ in R such that f(x∗) = c,
then the time T0 of hitting x∗ is an optimal stopping time. If f(x) = 1− e−x

for x > 0 and is 0 otherwise, then v(x) = c = 1 for all x in R; but there is
no optimal stopping time; recall that X∞ = ∂ and f(∂) = 0 – the dead pay
nothing. As this example indicates, there might be no optimal stopping time.
But, for every ε > 0 there is a stopping time Tε such that

E
x f ◦ XTε ≥ v(x) − ε.
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7 Appendix: Stochastic Integration

This is a quick introduction to stochastic calculus. It is driven by the
needs of Section 2 on Itô diffusions. We limit ourselves mostly to continuous
processes and omit almost all proofs.

Throughout, (Ω, H, P) is a complete probability space, and F = (Ft) is an
augmented right-continuous filtration. All processes are adapted to this F,
without further mention. Also, all processes have the state space (R, BR). We
introduce the term Stieltjes process as a short substitute for a process whose
almost every path is right-continuous, is left-limited, and has bounded total
variation over every bounded interval. Then, to repeat Definition V.5.18, a
process X is a semimartingale if it can be written as the sum of a local
martingale and a Stieltjes process.

Stochastic integrals

For our current purposes, we call σ = (ti) a subdivision of R+ if 0 =
t0 < t1 < · · · and lim tn = +∞. A subdivision of [0,t] is a finite sequence
σ = (t0, t1, . . . , tn) with 0 = t0 < t1 < · · · < tn = t. In both cases, ‖σ‖ =
sup

i
(ti+1 − ti) is called the mesh of σ.

Let F be a left-continuous process, and X continuous. For every subdivi-
sion σ = (ti) of R+, we define a new process Y σ by putting Y σ

0 = 0 and

Y σ
t =

j∑

i=1

Fti−1 .
(
Xti − Xti−1

)
+ Ftj ·

(
Xt − Xtj

)
if tj < t ≤ tj+1.7.1

Then, Y σ is a continuous process. Note the resemblance to V.3.4, the integral
in discrete time. We omit the proof of the following fundamental result.

7.2 Theorem. Let F be a left-continuous process, and X a continuous
semimartingale. Then, there exists a unique process Y such that

lim
‖σ‖→0

P

{
sup

0≤t≤u
|Y σ

t − Yt| > ε

}
= 0

for every ε > 0 and u < ∞. The process Y is a continuous
semimartingale. �

7.3 Definition. The process Y of the preceding theorem is called the
stochastic integral of F with respect to X, and the notations

ˆ
F dX and

ˆ t

0

Fs dXs

are used, respectively, for the process Y and the random variable Yt.



526 Markov Processes Chap. 9

7.4 Remark. a) The theorem can be re-phrased: as ‖σ‖ → 0, Y σ
t → Yt

in probability, uniformly in t over compacts. The uniqueness of Y is up to
indistinguishability.

b) If X is a Stieltjes process, then the stochastic integral coincides with
the path-by-path ordinary integral, that is, for almost every ω, the number
Yt(ω) is the Riemann-Stieltjes integral of the function s �→ Fs(ω) with respect
to the bounded variation function s �→ Xs(ω) over the interval [0,t]. Of course,
then Y is a continuous Stieltjes process.

c) If X is not Stieltjes, if X = W Wiener for instance, then Yt(ω) is not
the limit of Y σ

t (ω) with ω held fixed. In fact, in most cases, lim‖σ‖→0 Yt
σ(ω)

will not exist.

7.5 Example. Wiener driven integrals. Suppose that F is left-continuous
and bounded, and X = W , a Wiener process. Then, Y is an L2-martingale and

E|
ˆ t

0

Fs dWs|2 = E

ˆ t

0

|Fs|2 ds.7.6

Here is the explanation. Given a subdivision σ = (ti), define the left-
continuous step process F σ by letting F σ

t = Fti−1 for ti−1 < t ≤ ti, and
F σ

0 = F0. Note that, in fact, Y σ is the integral of F σ with respect to X by
every reasonable definition of integration. It is evident from 7.1 that Y σ is
now a martingale with

E |Y σ
t |2 = E

ˆ t

0

|F σ
s |2 ds;7.7

this is an easy computation recalling that the increments Wti − Wti−1 are
independent with mean 0 and variances ti− ti−1. In fact, since F is bounded,
Y σ

t → Yt in the sense of L2-convergence as ‖σ‖ → 0. And, F σ → F by the
left-continuity of F . Thus, letting ‖σ‖ → 0 on both sides of 7.7 we obtain 7.6.

Arithmetic of integration

Stochastic integrals are the same as ordinary integrals in linearity etc.
The next proposition shows them; proofs are immediate from 7.1–7.3.

7.8 Theorem. Let F and G be left-continuous processes, X and Y con-
tinuous semimartingales, and a and b constants. Then,

ˆ
(aF + b G) dX = a

ˆ
F dX + b

ˆ
G dX,

ˆ
F d(aX + bY ) = a

ˆ
F dX + b

ˆ
F dY ,

Y =
ˆ

F dX ⇒
ˆ

G dY =
ˆ

(F · G) dX.
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7.9 Remark. Let X be a continuous semimartingale. Then,

X = L + V,7.10

where L is a continuous local martingale and V is a continuous Stieltjes
process. For F left-continuous, then

ˆ
F dX =

ˆ
F dL +

ˆ
F dV ,7.11

and, on the right side, the first term is a continuous local martingale, and the
second is a continuous Stieltjes. In particular, if L is a martingale and F is
bounded, then the first term is a martingale; Example 7.5 is a special case.

Cross variation, quadratic variation

Given processes X and Y , and a subdivision σ = (ti) of R+, let

Cσ
t =

∑

ti<t

(
Xti+1 − Xti

) (
Yti+1 − Yti

)
, t ∈ R+.7.12

When X = Y = W , Wiener, we have seen in Theorem VIII.7.2 that Cσ
t → t

in probability as ‖σ‖ → 0. The following is the general case.

7.13 Theorem. Let X and Y be continuous semimartingales. Then,
there is a continuous Stieltjes process C such that Cσ

t → Ct in probability for
every t in the limit as ‖σ‖ → 0. �

The process C of the preceding theorem is called the cross variation of
X and Y , and the notation 〈X, Y 〉 is employed for it, that is,

〈X, Y 〉t = Ct, t ∈ R+.7.14

In particular, 〈X, X〉 is called the quadratic variation for the continuous semi-
martingale X; it is an increasing process in view of 7.12. The approximation
7.12 shows as well that

〈X + Y, X + Y 〉 = 〈X, X〉 + 2〈X, Y 〉 + 〈Y, Y 〉.7.15

Solving this for 〈X, Y 〉, since all other terms are increasing processes, we see
that 〈X, Y 〉 is indeed the difference of two increasing processes (as a Stieltjes
process must be).

7.16 Proposition. Let X and Y be continuous semimartingales; if X or
Y is Stieltjes, then 〈X, Y 〉 = 0. In particular, if X = L + V as in 7.10, then
〈X, X〉 = 〈L, L〉.

Proof. Suppose Y is Stieltjes. From 7.12, we have

|Cσ
t | ≤ sup

tj<t

∣
∣ Xtj+1 − Xtj

∣
∣
∑

ti<t

∣
∣Yti+1 − Yti

∣
∣ .
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As ‖σ‖ → 0, the supremum goes to 0 by the continuity of X, and the sum goes
to the total variation of Y over [0,t]. The latter is finite since Y is assumed
to be Stieltjes. Thus, Cσ

t → 0, that is, 〈X, Y 〉 = 0. The particular statement
follows from 7.15 for 〈L + V, L + V 〉, because 〈L, V 〉 = 〈V, V 〉 = 0 since V is
continuous Stieltjes.

Stochastic differentials

In analogy with ordinary calculus, we write

dY = F dX ⇔ Yt = Y0 +
ˆ t

0

Fs dXs, t ∈ R+.7.17

Similarly, in view of 7.12–7.14, we introduce the notation

dX dY = d〈X, Y 〉.7.18

In particular, dX dX = (dX)2 becomes the notation for the differential of
the increasing continuous process 〈X, X〉. Next are the rules of stochastic
differential calculus.

7.19 Theorem. Let F and G be left-continuous processes, X and Y con-
tinuous semimartingales, and a and b constants. Then,

a) d(aX + bY ) = a dX + b dY ,

b) F · (dX + dY ) = F dX + b dY ,

c) (aF + b G) dX = a F dX + b G dX,

d) F · (G dX) = (F · G) dX,

e) (F dX)(G dY ) = (F · G) dX dY , and

f) if X or Y is Stieltjes, then dX dY = 0.

Proof. (a) is direct from the definitions; (b), (c), (d) are the differential
versions of the properties listed in Theorem 7.8; (e) follows by a simple com-
putation from 7.12 upon replacing X there with

´
F dX , and Y with

´
G dY ;

finally, (f) is a re-statement of Proposition 7.16.

Itô’s formula

This is the chain rule of differentiation for stochastic calculus. Recall that
C2(Rd �→ R) is the class of function f : R

d �→ R that are twice continu-
ously differentiable, and that we write ∂if(x) for ∂

∂xi
f(x), and ∂ijf(x) for

∂2

∂xi∂xj
f(x). When d = 1, we write f ′ for the first derivative, and f ′′ for the

second. The next is Itô’s formula for continuous semimartingales.
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7.20 Theorem. Let X1, . . . , Xn be continuous semimartingales, and put
X = (X1, . . . , Xn). For f in C2(Rn �→ R), then, f ◦ X is a semimartingale,
and

d(f ◦ X) =
n∑

i=1

(∂if ◦ X) dXi +
1
2

n∑

i=1

n∑

j=1

(∂ijf ◦ X) dXi dXj .

7.21 Remark. a) For n = 1, Itô’s formula becomes

d(f ◦ X) = (f ′ ◦ X) dX +
1
2

(f ′′ ◦ X) (dX)2 .

b) If X1, . . . , Xn are continuous Stieltjes processes, then dX i dXj = 0
for all i and j, and Itô’s formula becomes the chain rule of differential calculus:

d (f ◦ X) =
n∑

i=1

(∂if ◦ X) dX i.

c) We re-state the conclusion of the theorem above in the formal nota-
tion of stochastic integrals:

f◦Xt = f◦X0+
n∑

i=1

ˆ t

0

(∂if ◦ Xs) dXi
s+

1
2

n∑

i=1

n∑

j=1

ˆ t

0

(∂ijf ◦ Xs) d〈X i, Xj〉s.

d) Taking n = 2 and f(x, y) = xy in the preceding formula, we obtain
the following formula for integration by parts for continuous semimartingales
X and Y :

XtYt = X0Y0 +
ˆ t

0

Xs dY s +
ˆ t

0

Ys dXs + 〈X, Y 〉t.

Wiener driven integrals

7.22 Lemma. Let X and Y be independent Wiener processes. Then,
dX dY = 0.

Proof. We have 〈X, X〉t = 〈Y, Y 〉t = t by Theorem VIII.7.2. By the same
theorem, since X+Y =

√
2W for some Wiener W, we have 〈X+Y, X+Y 〉t =

2t. The claim now follows from 7.15. �

Adding the preceding lemma to Itô’s formula proves the following.

7.23 Theorem. Let W 1, . . . , Wn be independent Wiener processes and
put W = (W 1, . . . , Wn). For f in C2(Rn �→ R), then,

d (f ◦ Wt) =
n∑

i=1

(∂if ◦ Wt) dW i
t +

1
2

n∑

i=1

(∂iif ◦ Wt) dt.
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Characterizations for Wiener processes

Recall the martingale characterization for Wiener processes; see
Theorem V.2.19 and Proposition V.6.21: The processes W and Y =

(
W 2

t − t
)

are continuous martingales with W0 = Y0 = 0 if and only if W is a Wiener
process. Itô’s formula in 7.20 with n = 1 and f(x) = x2 identifies the
process Y ,

W 2
t − t = 2

ˆ t

0

Ws dW s,

and shows, furthermore, that
(
W 2

t − t
)

is a martingale if and only if
〈W, W 〉t = t. This last property characterizes Wiener processes among all
continuous local martingales:

7.24 Theorem. Let X be a continuous local martingale with X0 = 0.
Then, X is a Wiener process if and only if 〈X, X〉t = t for all t ≥ 0.

Proof. Necessity is by Theorem VIII.7.2. We show the sufficiency next.
Suppose that 〈X, X〉t = t for all t. Then, by Itô’s formula with n = 1 and f
in C2(R �−→ R),

f ◦ Xt = f(0) +
ˆ t

0

(f ′ ◦ Xs) dXs +
1
2

ˆ t

0

(f ′′ ◦ Xs) ds.

Assuming further that f, f ′, f ′′ are bounded, the stochastic integral term
on the right side defines a martingale. This is the content of Lemma V.6.22,
and the proof of Proposition V.6.21 applies to show that X is a Wiener
process. �

The next theorem is the n-dimensional version of the preceding. The ne-
cessity part of its proof is by Lemma 7.22; we omit the proof of sufficiency
(it is similar to that of V.6.21).

7.25 Theorem. Let X1, . . . , Xn be continuous local martingales with
X i

0 = 0 for every i. Then, X1, . . . , Xn are independent Wiener processes if
and only if

〈X i, Xj〉t = I (i, j) t, t ∈ R+,

where I is the identity matrix in n-dimensions.

Itô’s formula and the characterization above in terms of cross variations
form a summary of stochastic integrals driven by Wiener processes.

Local martingales as stochastic integrals

If dX = F dW , then (dX)2 = F 2 (dW )2 = F 2 dt. The following theorem
provides a converse as well.

7.26 Theorem. Let X be a continuous local martingale. Suppose that
(dXt)2 = (Ft)2 dt for some left-continuous process F . Then, there is a
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Wiener process W (possibly on an enlargement of the original probability
space) such that

Xt = X0 +
ˆ t

0

Fs dW s

Proof. For the case F > 0. Then, since 1/F is left-continuous,

dW =
1
F

dX, W0 = 0,

defines a continuous local martingale W . Since (dW )2 = (1/F )2 (dX)2 = dt
by the assumption on (dX)2, we see from the characterization theorem 7.24
that W is Wiener. Obviously, dX = F dW as claimed. �

Local martingales are time changed Wieners

7.27 Theorem. Let X be a continuous local martingale. Let C = 〈X, X〉.
Then, there is a Wiener process W such that

Xt = X0 + WCt , t ∈ R+.

Proof is omitted, but its essentials can be seen in Figure 17 below. If time
is reckoned with the random clock C = 〈X, X〉, then X − X0 appears as a
Wiener process.

Su

Su

C  t

Xt

Xo

t

t

Wu

u

a

a

b

b

u

Figure 17: Using C = 〈X, X〉 as a random clock converts the local martingale
X into a Wiener process. Conversely, X is obtained from the Wiener process
by reversing the procedure.
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For the outcome ω pictured in Figure 17, the path t �→ Ct(ω) remains flat
over the interval [a(ω), b(ω)], and then, t �→ Xt(ω) = WCt(ω)(ω) must remain
constant over the same interval. This observation proves the following.

7.28 Proposition. Let X be a continuous local martingale. Suppose that
it is also a Stieltjes process. Then, for almost every ω, we have Xt(ω) = X0(ω)
for all t ≥ 0. �

To put it another way, if X is a continuous local martingale and shows
some signs of life, then its total variation must be infinite over some intervals.
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