
Chapter VIII

Brownian Motion

This chapter is on Brownian motions on the real line R with a few asides
on those in R

d. We concentrate on the Wiener process, the standard Brownian
motion.

Section 1 introduces Brownian motions, indicates their connections to
martingales, Lévy processes, and Gaussian processes, and gives several ex-
amples of Markov processes closely related to Brownian motions. Section 2 is
on the distributions of hitting times and on the arcsine law for the probabil-
ity of avoiding the origin. Section 3 treats the hitting times as a process; the
process turns out to be an increasing pure-jump Lévy process that is stable
with index 1/2.

The Wiener process W and its running maximum M are studied jointly
in Section 4; it is shown that M − W is a reflected Brownian motion and
that 2M −W is a Bessel process. The relationship of M to M −W is used to
introduce the local time process for W ; this is put in Section 5 along with the
features of the zero-set for W . Brownian excursions are taken up in Section 6;
the Poisson random measure of excursions is described, and the major arcsine
law (on time spent on the positive half-line) is derived as an application.

Section 7 is on the fine properties of Brownian paths: total variation,
quadratic variation, Hölder continuity, and the law of the iterated logarithm.
Finally, in Section 8, we close the circle by showing that Brownian motions do
exist; we give two constructions, one due to Lévy and one using Kolmogorov’s
theorem on continuous modifications.

1 Introduction

The aim is to introduce Brownian motions and Wiener processes. We
start with an elementary definition and enhance it to its modern version.
We shall also consolidate some results from the chapters on martingales
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380 Brownian Motion Chap. 8

and Lévy processes. Finally we describe several Markov processes which are
closely related to Brownian motions. Throughout, (Ω, H, P) is the probability
space in the background.

1.1 Definition. A stochastic process X = (Xt)t∈R+ with state space
(R, BR) is called a Brownian motion if it is continuous and has stationary
independent increments. A process W = (Wt)t∈R+ is called a Wiener process
if it is a Brownian motion with

W0 = 0, E Wt = 0, Var Wt = t, t ∈ R+.1.2

Let X be a Brownian motion. Then, (Xt −X0)t∈R+ is a continuous Lévy
process. It follows from the characterization of such processes (see Theorem
VII.4.2) that X has the form

Xt = X0 + at + bW t, t ∈ R+,1.3

where a and b are constants in R and W = (Wt) is a Wiener process inde-
pendent of X0. The constant a is called the drift rate, and b the volatility
coefficient. The case b = 0 is degenerate and is excluded from further consid-
eration.

Gaussian connection

Let W be a Wiener process. Its every increment Ws+t − Ws has the
Gaussian distribution with mean 0 and variance t:

P{Ws+t − Ws ∈ B} = P{Wt ∈ B} =
ˆ

B

dx
e−x2/2t

√
2πt

, t > 0;1.4

see Theorem VII.4.2 et seq. This implies, via the independence of the incre-
ments over disjoint intervals, that the random vector (Wt1 , . . . , Wtn) has the
n-dimensional Gaussian distribution with

E Wti = 0, Cov(Wti , Wtj ) = ti, 1 ≤ i ≤ j ≤ n,

for arbitrary integers n ≥ 1 and times 0 ≤ t1 < · · · < tn. Conversely, if
(Wt1 , . . . , Wtn) has the n-dimensional Gaussian distribution described, then
the increments Wt1 , Wt2 −Wt1 , . . . , Wtn −Wtn−1 are independent Gaussian
variables with mean 0 and respective variances t1, t2 − t1, . . . , tn − tn−1.
These remarks prove the following.

1.5 Theorem. Let W = (Wt) be a process with state space R. It is a
Wiener process if and only if it is continuous and is a Gaussian process with
mean 0 and

Cov (Ws, Wt) = s ∧ t, s, t ∈ R+.
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The preceding theorem is often useful in showing that a given process is
Wiener; see the next theorem for an instance of its use. It also raises an inter-
esting question: Does Brownian motion exist? After all, the probability law
of a Gaussian process is determined completely by its mean and covariance
functions; how do we know that we can satisfy the further condition that its
paths be continuous? We shall give two proofs of its existence in Section 8.

Symmetry, scaling, time inversion

1.6 Theorem. Let W be a Wiener process. Then, the following hold:

a) Symmetry. The process (−Wt)t∈R+ is again a Wiener process.
b) Scaling. Ŵ = (c−1/2Wct)t∈R+ is a Wiener process for each fixed c in

(0,∞), that is, W is stable with index 2.
c) Time inversion. Putting W̃0 = 0 and W̃t = tW 1/t for t > 0 yields a

Wiener process W̃ = (W̃t)t∈R+ .

Proof. Symmetry and scaling properties are immediate from Definition 1.1
for Wiener processes. To show (c), we start by noting that {W̃t : t > 0} is
a continuous Gaussian process with mean 0 and Cov(W̃s, W̃t) = s ∧ t for
s, t > 0. Thus, the claim (c) will follow from Theorem 1.5 once we show that
W̃ is continuous at time 0, that is, almost surely,

lim
t↓0

t W 1/t = 0.1.7

Equivalently, we shall show that Wt/t → 0 almost surely as t → ∞.
To this end, we start by noting that, if n ≥ 0 is an integer and n < t ≤ n+1,

∣
∣
∣
∣
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t

Wt

∣
∣
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|Wn + (Wt − Wn)| ≤

∣
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∣
∣
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∣
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∣
+

1
n

sup
0≤s≤1

|Wn+s − Wn| .1.8

By the strong law of large numbers, Wn/n → 0 almost surely, since Wn is
the sum of n independent copies of W1, and E W1 = 0. On the other hand,
by Kolmogorov’s inequality in continuous time (Lemma VII.1.39),

P

{
1
n

sup
0≤s≤1

|Wn+s − Wn| > ε

}

≤ 1
n2ε2

E |Wn+1 − Wn|2 =
1

n2ε2

for each fixed ε > 0. Since Σ 1/n2 is finite, Borel–Cantelli lemma (III.2.6)
applies to show that, as n → ∞, the very last term in 1.8 goes to 0 al-
most surely. Hence, Wt/t → 0 almost surely as t → ∞, and the proof is
complete. �

In connection with the stability property 1.6b, we recall from Exercise
VII.2.36 the following converse: if a continuous Lévy process is stable with
index 2, then it necessarily has the form cW for some fixed constant c and
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some Wiener process W . As to the property 1.6c, time inversion, we remark
at least two of its uses: first, the oscillatory behavior of a Wiener process
near the time origin can be translated to its behavior for large times; second,
conditioning on future values can be translated to become conditioning on
the past. The following illustrates the latter point.

1.9 Example. Let W be a Wiener process. For 0 < s < t, consider
the conditional distribution of Ws given that Wt = x. Instead of the direct
approach, it is easier to use the time inversion property: The conditional
distribution sought is that of sW 1/s

given that tW 1/t
= x, which is the same

as the distribution of s(W1/s
− W1/t

) + sx
t , which is Gaussian with mean sx/t

and variance s2(1/s −1/t) = s(1 − s/t). See Exercise 1.29 also.

Martingale connection

Let F = (Ft)t∈R+ be a filtration over (Ω, H, P), and let W = (Wt)t∈R+

be a continuous process, adapted to F, and having W0 = 0. Recall Definition
V.2.15: the process W is Wiener with respect to F if, for every t and u in
R+, the increment Wt+u − Wt is independent of Ft and has the Gaussian
distribution with mean 0 and variance u.

If W is Wiener with respect to F, then it is such in the sense of Definition
1.1 as well. Conversely, if W is Wiener in the sense of 1.1, then it is Wiener
with respect to the filtration Go generated by itself, and also with respect to
the filtration G, the augmentation of Go.

The following collects together characterizations in Proposition V.2.17
and Theorem V.2.19; see also Proposition V.6.21, Lemma V.6.22, and all
the proofs. Recall that W is continuous, has W0 = 0, and is adapted to the
filtration F.

1.10 Theorem. The following are equivalent:

a) W is a Wiener process with respect to F.
b) For each r in R, the process {exp(rWt − 1/2r

2t) : t ∈ R+} is an
F-martingale.

c) The processes W and
{

W 2
t − t : t ∈ R+

}

are F-martingales.
d) For every twice-differentiable function f : R 	→ R that is bounded

along with its first derivative f ′ and second derivative f ′′, the process

Mt = f ◦ Wt − 1
2

ˆ t

0

ds f ′′ ◦ Ws, t < R+,

is an F-martingale.

The preceding theorem is on the characterization of Wiener processes as
martingales. Indeed, the connections between them run deep in both direc-
tions. In particular, it is known that every continuous martingale is obtained
from a Wiener process by a random time change.
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Wiener on a stochastic base

This is to re-introduce Wiener processes in the modern setup for Lévy
processes; this is a repetition of Definitions VII.3.1 and VII.3.3 et seq. for
this particular case.

Recall that a stochastic base is a collection (Ω, H, F, θ, P), where (Ω, H, P)
is a complete probability space, F = (Ft) is an augmented right-continuous
filtration, and θ = (θt) is a semigroup of shift operators on Ω (each θt maps
Ω into Ω, we have θ0ω = ω for all ω, and θu ◦θt = θt+u for all t and u in R+).

1.11 Definition. A process W = (Wt) is said to be Wiener on a stochas-
tic base (Ω, H, F, θ, P) if it is a Wiener process with respect to F and is addi-
tive with respect to θ, the latter meaning that

Wt+u = Wt + Wu ◦ θt, t, u ∈ R+.

The shift operators and additivity are useful for turning heuristic feelings
into rigorous statements; for instance, Wu◦θt is the increment over the future
interval of length u when the present time is t, and the future is totally
independent of the past. The right-continuity of F is essential for certain times
to be F-stopping times; augmentedness is for technical comfort. There is no
loss of generality in all this: Every Wiener process in the sense of Definition 1.1
is equivalent to one in the sense of the preceding definition.

Brownian motions X on a stochastic base are defined similarly, except for
the way the shifts work:

Xu ◦ θt = Xt+u, t, u ∈ R+.1.12

This is equivalent to the additivity of W in the characterization 1.3 for X .
See Figure 9 on page 341 for additivity.

Strong Markov property

Let (Ω, H, F, θ, P) be a stochastic base, and W a Wiener process over it.
Let Go = (Go

t ) be the filtration generated by W , and G the augmentation
of Go. Recall from Theorem VII.3.20 that G is right-continuous in addition
to being augmented; it can replace F if needed. In particular, Blumenthal’s
zero-one law holds: every event in G0 has probability zero or one.

The following is the strong Markov property, Theorem VII.3.10, for the
special Lévy process W , we re-state it here for reasons of convenience. As
usual, we write ET for E(·|FT ).

1.13 Theorem. Let T be an F-stopping time. Then, for every bounded
variable V in G∞,

ET (V ◦ θT )1{T<∞} = (EV )1{T<∞}.

In particular, if T < ∞, the process W ◦ θT = (WT+u − WT )u∈R+ is inde-
pendent of FT and is again a Wiener process.



384 Brownian Motion Chap. 8

Let U be a random time determined by the past FT and consider
WT+U − WT . Since W ◦ θT is independent of FT , we may treat U as if it is
fixed. We list the result next and give a direct proof. The heuristic idea is
simpler, but requires some sophistication in its execution; see Exercise 1.31.

1.14 Theorem. Let T be an F-stopping time, and let U be a positive
real-valued variable belonging to FT . Let f be a bounded Borel function on R,
and define g(u) = Ef ◦ Wu, u ∈ R+. Then,

ET f (WT+U − WT ) 1{T<∞} = g(U) 1{T<∞}.1.15

Proof. a) The collection of f for which 1.15 holds is a monotone class.
Thus, it is enough to show 1.15 for f that are bounded continuous. Fix f
such, and note that the corresponding g is bounded and continuous in view of
the continuity of W and the bounded convergence theorem for expectations.

b) Suppose that U is simple, say, with values in a finite subset D of R+.
Since U is FT -measurable, {U = u} is in FT for each u in D. Thus,

ET f (WT+U − WT ) 1{U=u,T<∞}

= ET 1{U=u,T<∞} f(WT+u − WT ) = g(u)1{U=u}1{T<∞},

where we used the strong Markov property 1.13 at the last step. Summing
both sides over all u in D yields 1.15. So, 1.15 holds for simple U .

c) In general, U is the limit of an increasing sequence (Un) of simple
variables in FT . Write 1.15 for Un and take limits on both sides as n → ∞. On
the right side, the continuity of g shows that the limit is the right side of 1.15.
On the left side, the continuity of W and f , together with the boundedness
of f , imply that the limit is the left side of 1.15. �

Wiener and Brownian motion in R
d

Let W = (Wt) be a process with state space R
d. It is called a d-

dimensional Wiener process, or a Wiener process in R
d, if its components

W (1), . . . , W (d) are independent Wiener processes. Then, W is a continuous
Lévy process in R

d whose every increment Ws+t −Ws has the d-dimensional
Gaussian distribution with mean 0 and covariance matrix tI, the matrix I
being the identity matrix in d-dimensions. So, for Borel subsets B of R

d,

P {Ws+t − Ws ∈ B} =
ˆ

B

dx
e−|x|2/2t

(2πt)d/2
,1.16

where |x| is the length of the vector x in R
d, and the integral is with respect

to the Lebesgue measure on R
d.
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The properties of symmetry, 2-stability, and time inversion remain true
for the d-dimensional case. Moreover, symmetry is extended to isotropy, in-
variance of the law of W under rotations and reflections: the probability laws
of W and gW are the same for every orthogonal matrix g.

Brownian motions in R
d are defined as the ones in R, except that the

state space is R
d now. Every Brownian motion X in R

d is related to a Wiener
process in R

d by the formula 1.3, but here a is a fixed vector in R
d and b is

a fixed d × d matrix.

Markov processes

Brownian motions are the fundamental objects from which all continuous
Markov processes are constructed. Several examples occur naturally as parts
of the theory of Brownian motions. It will be convenient to provide a working
definition for our current purposes and give several examples; see the next
chapter for more.

Over some probability space (Ω, H, P), let X = (Xt)t∈R+ be a stochastic
process with some state space (E, E) and suppose that it is adapted to some
filtration Fo = (Fo

t ). For each t, let Pt be a markovian kernel on (E, E), that
is, a transition kernel from (E, E) into (E, E) with Pt(x, E) = 1 for every x
in E. Then, X is said to be an Fo-Markov process with transition semigroup
(Pt)t∈R+ if

P {Xs+t ∈ B |Fo
s} = Pt (Xs, B) , s, t ∈ Rt, B ∈ E.1.17

The term “Markov process” without the mention of a filtration refers to the
case where Fo is the filtration generated by the process itself.

The condition 1.17 implies that the Markovian kernels Pt, t ∈ R+, do
indeed form a semigroup: Ps Pt = Ps+t for s, t in R+, or, more explicitly,

Ps+t(x, B) =
ˆ

E

Ps(x, dy)Pt(y, B), s, t ∈ R+, x ∈ E, B ∈ E.1.18

Imagine a particle whose motion in E is represented by the process X .
The defining property 1.17 means, in particular, that

Pt(x, B) = P{Xs+t ∈ B |Xs = x}, x ∈ E, B ∈ E.

The independence of this conditional probability from the time parameter s
is referred to as time-homogeneity for X . Repeated use of 1.17 implies that,
given the past Fo

s , the conditional law of the future motion {Xs+t : t ∈ R+}
depends only on the present state Xs. A similar reasoning shows that the
probability law of the process X is determined by its transition semigroup
and its initial distribution (the distribution of X0).
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Examples

1.19 Brownian motion in R
d. Let Xt = X0 + Wt, t ∈ R+, where W is a

Wiener process in R
d independent of X0. Then, X is a Markov process with

state space R
d. Its transition semigroup is given as (see 1.16)

Pt(x, dy) = dy
e−|y−x|2/2t

(2πt)d/2
, x, y ∈ R

d.1.20

In particular, W is a Markov process (with initial state W0 = 0) with the
same transition semigroup.

1.21 Reflected Brownian motion. Let X = X0 + W be a standard Brownian
motion in R, with initial state X0. Define R = |X |, that is, Rt is the absolute
value of Xt. Then, R is a Markov process with state space R+. To compute
its transition semigroup (Pt), we start by noting that (see 1.20 with d = 1)

P {Rs+t ∈ dy|Xs = x} = dy

[

e−(y−x)2/2t

√
2πt

+
e−(−y−x)2/2t

√
2πt

]

for x in R and y in R+. The right side remains the same whether x is positive
or negative. Thus,

Pt(x, dy) = dy

[

e−(y−x)2/2t

√
2πt

+
e−(y+x)2/2t

√
2πt

]

, x, y ∈ R+.

1.22 Bessel processes of index d. This is the generalization of the preceding
to higher dimensional Brownian motions. Let W be a Wiener process in R

d

and define R = |W |, that is,

Rt =

√
(

W
(1)
t

)2

+ · · · +
(

W
(d)
t

)2

, t + R+.

Then, we call R a Bessel process of index d ; some authors call it a Bessel
process of order ν = d/2 − 1, or radial Brownian motion in R

d. It is a Markov
process with state space R+; we shall show this. The case d = 3 plays an
interesting role in describing the excursions of the one-dimensional Wiener
away from the origin; we shall compute its transition semigroup explicitly.

For arbitrary dimension d, fixed, let B denote the closed unit ball in R
d

and S its boundary, the unit sphere. For r in R+, then, Br = {xr : x ∈ B}
is the closed ball of radius r centered at the origin. From 1.16, we get

P {Ws+t ∈ Br |Ws = x} =
ˆ

Br

dy
e−|y−x|2/2t

(2πt)d/2
.

The left side remains unchanged if x, B, W are replaced with gx, gB, gW
respectively, where g is some orthogonal transformation. But gB = B since
B is a ball centered at the origin, and gW has the same law as W by isotropy.



Sec. 1 Introduction 387

Hence, if |x| = q, choosing g such that gx = (q, 0, . . . , 0), we see that the
left side is a function of |x| = q only. Since |Ws| = Rs and {Ws+t ∈ Br} =
{Rs+t ≤ r}, we have shown that

P {Rs+t ≤ r |Rs = q } =
ˆ

Br

dy
e−|y−x|2/2t

(2πt)d/2
, q, r ∈ R+,1.23

with x = (q, 0, . . . , 0) on the right side. Moreover, Rs+t is conditionally inde-
pendent of (Wu)u≤s given Ws, and (Wu)u≤s determines (Ru)u≤s. Thus, Rs+t

is conditionally independent of (Ru)u≤s given Ws, and we have just seen that
the conditional distribution of Rs+t given Ws is determined by |Ws| = Rs.
Hence, R is Markov.

To evaluate the integral on the right side of 1.23, we turn to spherical
coordinates. Write y = ru with u = (u1, . . . , ud) on the unit sphere S. For
x = (q, 0, . . . , 0), then, |y − x|2 = q2 + r2 − 2qr u1. Hence,

Pt (q, dr) = dr rd−1 e−(q2+r2)/2t

(2πt)d/2

ˆ
S

σ (du) eqru1/t,1.24

where σ is the surface measure on S. The integral over S can be expressed in
terms of modified Bessel functions (see Exercises 1.33 and 1.34), and hence
the term Bessel process for R.

The surface integral is easy to evaluate when d = 3. We recall a result
from elementary geometry: For spherical zones between two parallel planes
that cut through S, the area is proportional to the distance h between the
planes. So,

ˆ
S

σ (du) epu1 = 2π

ˆ 1

−1

dh eph =
2π

p

(

ep − e−p
)

for p > 0, and the integral is the surface area 4π for p = 0. Putting this into
1.24 with p = qr/t, we see that, when d = 3,

Pt (q, dr) = dr
r

q

[

e−(r−q)2/2t

√
2πt

− e−(r+q)2/2t

√
2πt

]

if q > 0, r ≥ 0,1.25

and

Pt (q, dr) = dr · 2r2e−r2/2t

√
2πt3

if q = 0, r ≥ 0,1.26

We shall see later that, for almost every ω, we have Rt(ω) > 0 for all t > 0;
see 4.17 and thereabouts.

Exercises and complements

1.27 Time reversal. Let W be a Wiener process (on R). Show that the prob-
ability laws of {Wt : 0 ≤ t ≤ 1} and {W1 − W1−t : 0 ≤ t ≤ 1} are the same.
Hint: They are both Gaussian processes.
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1.28 Brownian bridge. Let W be a Wiener process and define

Xt = Wt − tW1, 0 ≤ t ≤ 1.

Observe that X0 = X1 = 0 and hence the name for the process X = {Xt :
0 ≤ t ≤ 1}. Obviously, X is a continuous Gaussian process. Compute its
covariance function.

1.29 Continuation. Show that the probability law of X is the same as the
conditional law of {Wt : 0 ≤ t ≤ 1} given that W1 = 0. In other words, show
that, for 0 < t1 < . . . < tn < 1,

P {Wt1 ∈ dx1, . . . , Wtn ∈ dxn|W1 = 0} = P {Xt1 ∈ dx1, · · · , Xtn ∈ dxn} .

Hint: Use time inversion (see Example 1.9) to show that the left side is an
n-dimensional Gaussian distribution just as the right side, and compare their
covariance matrices.

1.30 Wiener space. This is a special case of Exercise VII.3.24. Let W be a
Wiener process on some probability space (Ω, H, P). Let C = C(R+ 	→ R),
the space of continuous functions from R+ into R. On it, we put the topology
of uniform convergence on compacts: a sequence (wn) in C converges to w in
C in this topology if sups≤t |wn(s)−w(s)| → 0 as n → ∞ for every t < ∞. It
can be shown that the Borel σ-algebra BC corresponding to this topology is
the same as the σ-algebra generated by the coordinate process {Xt : t ∈ R+},
where Xt(w) = w(t) for every w in C. Let G0∞ be the σ-algebra generated by
{Wt : t ∈ R+}.

For each ω in Ω, the path W (ω) : t 	→ Wt(ω) is a point in C. Show that
the mapping ω 	→ W (ω) is measurable with respect to Go

∞ and BC .
Let Q = P◦W−1, the distribution of W , where W is regarded as a random

variable taking values in (C, BC). Then, Q is the probability law of the Wiener
process W . The probability space (C, BC , Q) is called the Wiener space, and
Q the Wiener measure. Finally, X is a Wiener process on (C, BC , Q) and is
called the canonical Wiener process.

1.31 Alternative proof for Theorem 1.14. Assume that T < ∞. Define Yt =
Wt ◦ θT = WT+t −WT . By the strong Markov property, the process Y = (Yt)
is independent of FT and is a Wiener process. Regard Y as a random variable
taking values in (C, BC), and consider YU = WT+U − WT . Since U is in FT

and Y is independent of FT , Exercise IV.2.27 is applicable. Conclude that
1.15 holds since

g(u) = E f(Wu) = E f(Yu).

1.32 Geometric Brownian motion. Let W be a Wiener process and put

Xt = X0 exp(at + bWt), t ∈ R+,

for fixed constants a and b in R. Show that X is a Markov process.
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1.33 Bessel process of index d = 2 . Let R be as in Example 1.22 but with
d = 2. It is a Markov process with state space R+. To compute its semigroup
(Pt), we use 1.24 with d = 2, in which case S becomes the unit circle in
R

2. Since
ˆ

S

σ(du)epu1 =
ˆ 2π

0

da ep cos a = 2π

∞∑

k=0

(p/2)2k

(k!)2
= 2π I0(p),

one obtains

Pt(q, dr) = dr
r

t
e−(q2+r2)/2t I0

(qr

t

)

, q, r ≤ 0.

Here, I0 is called the modified Bessel function of order 0, and hence the
alternative name “Bessel process of order 0” for this R.

1.34 Bessel processes. Let R be as in Example 1.22 with arbitrary index d ≥ 2.
For q > 0 and r ≥ 0, the formula 1.24 yields

Pt(q, dr) = dr · q

t

(
r

q

)d/2

e−(q2+r2)/2t Id/2−1

(qr

t

)

,

where Iν is the modified Bessel function of order ν:

Iν (p) =
∞∑

k=0

(p/2)2k+ν

k!Γ(k + ν + 1)
, p ≥ 0.

1.35 Ornstein-Uhlenbeck process. Let W be a Wiener process and write W (t)
for Wt. Let a and b be strictly positive constants, and define

Xt = X0 e−at + b e−at W
(

e2at − 1
)

, t ∈ R+,1.36

where X0 is independent of W.
a) Show that X defined by 1.36 is a Markov process with state space R.

It is also a Gaussian process if X0 = x fixed, or if X0 is Gaussian.

b) Show that, as t → ∞, the distribution of Xt converges weakly to the
Gaussian distribution with mean 0 and variance b2. If X0 is Gaussian with
mean 0 and variance b2, and X0 is independent of W , then Xt has the same
distribution as X0 for all t.

2 Hitting Times and Recurrence Times

Let (Ω, H, F, θ, P) be a stochastic base, and W a Wiener process on it; see
Definition 1.11. By redefining t 	→ Wt(ω) for a negligible set of ω if necessary,
we may and do assume that W0(ω) = 0 and t 	→ Wt(ω) is continuous for
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every ω in Ω. As before, we let Go be the filtration generated by W , and G

its augmentation. We are interested in the hitting times

Ta(ω) = inf {t > 0 : Wt(ω) > a} , a ∈ R+, ω ∈ Ω.2.1

It follows from general theorems that each Ta is a stopping time of G, and its
Laplace transform can be obtained by martingale techniques; see Chapter V
for these. However, it is enjoyable to do the treatment once more and obtain
the distribution directly by Markovian techniques.

Fix a in R+. For ω in Ω and t > 0, we have Ta(ω) < t if and only
if Wr(ω) > a for some rational number r in (0,t); this is because W is
continuous and W0 = 0. Since Wr is in G0

t for each such r, it follows that
the event {Ta < t} belongs to G0

t . Hence, by Theorem V.7.4, Ta is a stopping
time of the filtration

(

G0
t+

)

and, therefore, of the finer filtrations G = (Gt)
and F = (Ft).

Behavior at the origin

According to Blumenthal’s zero-one law, every event in G0 has probability
zero or one. The following is an application of it.

2.2 Proposition. Almost surely, T0 = 0.

Proof. The event {T0 = 0} belongs to G0 and, thus, has probability 0 or 1.
To decide which, note that {Wt > 0} has probability 1/2 and implies the event
{T0 < t} for every t > 0. Thus, P{T0 < t} ≥ 1/2 for every t > 0, and letting
t → 0 concludes the proof. �

The preceding proposition is deeper than it appears. Considering the def-
inition 2.1 for a = 0 carefully, we see that the following picture holds for
almost every ω: For every ε > 0 there is u < ε such that Wu(ω) > 0; there is
also s < ε such that Ws(ω) < 0, this being by symmetry (see 1.6a). Taking
ε of the second phrase to be the time u of the preceding one, and recall-
ing the continuity of the paths, we conclude that for every ε > 0 there are
0 < s < t < u < ε such that Ws(ω) < 0, Wt(ω) = 0, Wu(ω) > 0. Iterating
the argument with s replacing ε yields the following.

2.3 Corollary. For almost every ω, there are times u1 > t1 > s1 >
u2 > t2 > s2 > . . . with limit 0 such that, for each n,

Wun(ω) > 0, Wtn(ω) = 0, Wsn(ω) < 0.

Thus, the Wiener path W (ω) is highly oscillatory. Starting with
W0 (ω) = 0, the path spends no time at 0; it crosses over and under 0
at least infinitely many times during the time interval (0, ε), however small
ε > 0 may be. This statement has an interesting counterpart for large times
obtained by time inversion, by applying 2.3 to the Wiener process of 1.6c.
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2.4 Corollary. For almost every ω there exist times u1 < t1 < s1 <
u2 < t2 < s2 < . . . with limit +∞ such that

lim Wsn(ω) = −∞, lim Wun(ω) = +∞,

and Wtn(ω) = 0 for every n; in particular, the set {t ∈ R+ : Wt(ω) = 0} is
unbounded.

We shall see shortly that the Wiener particle touches every point a in R,
and its path oscillates in the vicinity of a just as it does in the vicinity of the
point 0.

Distribution of Ta

We start with a useful formula based on the strong Markov property and,
more particularly, on Theorem 1.14. For its statement, it will be convenient
to introduce the Gaussian kernel

G (t, B) = P {Wt ∈ B} =
ˆ

B

dx
e−x2/2t

√
2πt

, t ∈ R+, B ∈ BR,2.5

with G(0, B) interpreted as I(0, B) since W0 = 0. Recall that x + yB is the
set of points x + yz in R with z in B.

2.6 Lemma. For t and a in R+, and B a Borel subset of R,

P {Ta ≤ t, Wt ∈ B} = E G (t − Ta, B − a) 1{Ta≤t}.

Proof. The case a = 0 follows from Proposition 2.2; the case a > 0 and
t = 0 is trivially true. Fix a > 0 and t > 0 and B Borel, and write T for Ta.
On the event {T ≤ t}, we have WT = a by the continuity of W and, thus,

Wt = WT+U − WT + a, where U = (t − T )1{T≤t}.

Hence, by Theorem 1.14 with f = 1B−a and, therefore, g(u) = G(u, B − a),

ET 1{T≤t} 1B(Wt) = ET 1B−a (WT+U − WT ) 1{T≤t}
= G (t − T, B − a) 1{T≤t}.

Taking expectations on both sides completes the proof. �

2.7 Proposition. For a and t in R+, and B Borel,

P {Ta ≤ t, Wt ∈ B} = G(t, 2a − B), B ⊂ (−∞, a) .

Proof. Since W is symmetric, we have G(u, B − a) = G(u, a − B) =
G(u, (2a − B) − a); thus, by the preceding lemma,

P {Ta ≤ t, Wt ∈ B} = P {Ta ≤ t, Wt ∈ 2a − B} .

If B ⊂ (−∞, a), then 2a − B ⊂ (a,∞), and Wt(ω) > a implies that
Ta(ω) ≤ t. So, for B ⊂ (−∞, a), the right side becomes P{Wt ∈ 2a − B} =
G(t, 2a − B). �
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The preceding proposition is the basic computational formula. The
restriction of B to subsets of (−∞, a) is without harm: we may re-state the
result as

P {Ta > t, Wt ∈ B} = G(t, B) − G(t, 2a − B), B ⊂ (−∞, a),2.8

and now the restriction on B is entirely logical, since the left side vanishes
for subsets B of [a,∞).

In particular, taking B = (−∞, a) in 2.8, the event on the left side be-
comes {Ta > t}. So, since 2a − B = (a,∞) then, 2.8 becomes

P {Ta > t} = P {|Wt| ≤ a} = 2
ˆ a/

√
t

0

dx
e−x2/2

√
2π

.2.9

The following collects together various interpretations of this formula.

2.10 Proposition. Let a > 0. Then, 0 < Ta < ∞ almost surely, but
ETa = +∞. The distribution of Ta is the same as that of a2/Z2, where Z is
standard Gaussian. The distribution admits a continuous density function:

P {Ta ∈ dt} = dt
ae−a2/2t

√
2πt3

, t > 0.2.11

Proof. Let Z have the standard Gaussian distribution. Then, Wt has the
same distribution as

√
t Z. So, from 2.9,

P {Ta > t} = P

{√
t |Z| ≤ a

}

= P

{( a

Z

)2

≥ t

}

= P

{
a2

Z2
> t

}

,

which means that Ta and a2/Z2 have the same distribution. Since Z ∈ R\{0}
almost surely, it follows that Ta ∈ (0,∞) almost surely. The density function
in 2.11 is obtained by differentiating the last member of 2.9. It is seen from
2.11 that ETa = +∞, since the integral of 1/

√
t over (1,∞) is infinity. �

The distribution in 2.11 appeared before in connection with stable pro-
cesses with index 1/2; see VI.4.10 and also Chapter VII. Indeed, we shall see
in the next section that (Ta)a∈R+ is a stable Lévy process with index 1/2.
For the present we note the corresponding Laplace transform (see Exercise
2.23 for one method, and 3.9 for a painless computation):

E e−pTa = e−a
√

2p, p ∈ R+.2.12

Hitting times of points

The preceding Laplace transform appeared earlier, in Proposition V.5.20,
for the time of entrance to [a,∞). The following is the reason for coincidence.
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2.13 Proposition. Fix a in (0,∞); define

Ta− = inf {t > 0 : Wt ≥ a} = inf {t > 0 : Wt = a} .

Then, Ta− is a stopping time of Go, and Ta− = Ta almost surely.

Proof. Write T for Ta−. It is obviously a Go-stopping time. Clearly, T ≤
Ta. By Proposition 2.10, Ta < ∞ almost surely. Thus, T < ∞ almost surely,
and W◦ θT is again Wiener by the strong Markov property at T . Thus, by
Proposition 2.2, we have T0◦θT = 0 almost surely, which completes the proof
since Ta = T + T0 ◦ θT . �

Indeed, as the notation indicates, Ta− is the left-limit at a of the increasing
process b 	→ Tb. To see this, let (an) be a strictly increasing sequence with
limit a. For each n, then, Tan < ∞ almost surely and W is at the point an

at time Tan . Since W is continuous, it must be at the point a at the time
T = lim Tan . So, the limit T is equal to Ta−.

Hitting times of negative points

All the results above extend, by the symmetry of W , to hitting times of
(−∞, a) with negative a:

Ta = inf {t > 0 : Wt < a} , a ≤ 0.2.14

For a = 0, the hitting times of (0,∞) and (−∞, 0) are both equal to 0 almost
surely, and T0 acquires an unambiguous double-meaning.

By the symmetry of W , each Ta has the same distribution as T|a|. Thus,
Ta has the same distribution as a2/Z2, where Z is standard Gaussian; this is
for every a in R.

Arcsine laws

We recall some elementary facts. Let X and Y be independent standard
Gaussian variables. Then, X2 and Y 2 are independent gamma distributed
with shape index 1/2 and scale index 1/2. It follows that A = X2/(X2 + Y 2)
has the beta distribution with index pair (1/2, 1/2). This particular beta is
called the arcsine distribution, because

P {A ≤ u} =
ˆ u

0

dv
1

π
√

v(1 − v)
=

2
π

arcsin
√

u, 0 ≤ u ≤ 1.2.15

Since C = Y/X has the Cauchy distribution, we also have the connection
to Cauchy distribution via A = 1/(1+C2). Another connection can be noted
by recalling that C has the same distribution as tan B, where the angle B has
the uniform distribution on (0, 2π); thus, A = (sin B)2 where B is uniform
on (0, 2π), which explains 2.15 above.
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The following arcsine law for the Wiener process is about the probability
that W does not touch 0 during the time interval [s, u]. A more interesting
arcsine law will be given later as Theorem 6.22. For 0 ≤ s < u < ∞,

P {Wt ∈ R\ {0} for all t ∈ [s, u]} =
2
π

arcsin
√

s

u
.2.16

We shall show this as a consequence of results on the recurrence times for
the point 0; see Remark 2.22 below.

Backward and forward recurrence times

Thinking of the Wiener particle, let Gt be the last time before t, and Dt

the first time after t, that the particle is at the origin: for t in R+,

Gt = sup {s ∈ [0, t] : Ws = 0} , Dt = inf {u ∈ (t,∞) : Wu = 0} .2.17

For t > 0 fixed, Wt differs from 0 almost surely, which implies that
Gt < t < Dt almost surely. Also, in view of Corollaries 2.3 and 2.4 on
the zeros of W for small and large times, it is evident that 0 < Gt and
Dt < ∞ almost surely. Finally, note that Dt is a stopping time, but Gt is
not; see Exercise 2.27 also.

2.18 Proposition. Let A have the arcsine distribution as in 2.15. For
each t in R+, then, Gt has the same distribution as tA, and Dt has the same
distribution as t/A.

Proof. Let X and Y be independent standard Gaussian variables. Recall
that Ta ≈ a2/Y 2 for every a, where the symbol “≈” stands for “has the same
distribution as”.

Consider Rt = Dt − t. If Wt(ω) = x, then Rt(ω) is the hitting time of
the point −x by the path W (θtω). Since W ◦ θt is Wiener independent of Ft,
and similarly for (−W ) ◦ θt by symmetry, we conclude that Rt ≈ Wt

2/Y 2,
where Y is independent of Wt. Thus, we may replace Wt with

√
tX ; we obtain

Rt ≈ t X2/Y 2. Hence,

Dt = t + Rt ≈ t
(

X2 + Y 2
)

/Y 2 ≈ t/A

as claimed. Finally, Gt ≈ t A since, for s in (0, t),

P {Gt < s} = P {Ds > t} = P

{ s

A
> t

}

= P {tA < s} . �

The terms forward and backward recurrence times refer to the variables

Rt = Dt − t, Qt = t − Gt.2.19

within the proof, it is shown that Rt ≈ t X2/Y 2 = t C2, where C has the
standard Cauchy distribution. The distribution of Qt is the same as that
of Gt:

P {Gt ≤ s} = P {Qt ≤ s} =
2
π

arcsin
√

s

t
, 0 ≤ s ≤ t;2.20
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this is because A and 1 − A have the same distribution. Various joint
distributions can be obtained from the observation that

{Gu < s} = {Ds > u} = {Gt < s, Dt > u} , 0 ≤ s < t < u.2.21

We put some such as exercises.

2.22 Remark. Arcsine law 2.16 is a consequence of the arcsine distribu-
tion for Gt, because the event on the left side of 2.16 is the same as {Gu < s}.

Exercises

2.23 Laplace transform for Ta. This is to avoid a direct computation using
the distribution 2.11. First, use 2.9 to show that

E e−pTa =
ˆ ∞

0

dt pe−pt
P {Ta ≤ t} = P {|WS | > a} , p ≥ 0,

where S is independent of W and has the exponential distribution with pa-
rameter p. Recall that, then, WS has the same distribution as S1−S2, where
S1 and S2 are independent exponential variables with parameter

√
2p. Con-

clude that 2.12 holds.

2.24 Potentials. Let X = X0 + W be the standard Brownian motion with
initial state X0. Write E

x for the expectation operator given that X0 = x.
For Borel f : R 	→ R+, define

Upf(x)=E
x

ˆ ∞

0

dt e−pt f ◦ Xt

=E

ˆ ∞

0

dt e−pt f(x + Wt), p ∈ R+, x ∈ R.

The function Upf is called the p-potential of f . Show that, for p > 0,

Upf(x) =
ˆ

R

dy up(x − y) f (y) ,

where

up(x) =
ˆ ∞

0

dt e−pt e−x2/2t

√
2πt

=
1√
2p

e−
√

2px2
, x ∈ R.

2.25 Zeros to left and right. With Gt and Dt defined by 2.17, show that, for
0 < s < t < u,

P {Gt ∈ ds} = ds 1

π
√

s(t−s)
, P {Dt ∈ du} = du t

πu
√

t(u−t)
,

P {Gt ∈ ds, Dt ∈ du} = ds du 1

2π
√

s(u−s)3
.
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2.26 Recurrence times. For Rt and Qt defined by 2.19, show that, for 0 < q < t
and r ≥ 0,

P {Qt ∈ dq} = dq
1

π
√

q(t − q)
, P {Rt ∈ dr|Qt = q} =

1
2

√
q

(q + r)3
.

2.27 No stopping at Gt. Of course, Gt is not a stopping time. This is to show
that, moreover, Gt has no chance of coinciding with a stopping time: Let S
be a stopping time of F. We shall show that

P {S = Gt} = 0.

By replacing S with S ∧ t, we may assume that S ≤ t.

a) Show that T0 ◦ θS = 0 almost surely; this is by the strong Markov
property coupled with Proposition 2.2.

b) Show that, for almost every ω and every ε > 0, there is u in the interval
(S(ω), S(ω) + ε) such that Wu(ω) = 0.

c) Show that the preceding statement is incompatible with the definition
of Gt for ω in {S = Gt}.

3 Hitting Times and Running Maximum

The setup is as in the preceding section. We are interested in the pro-
cess T = (Ta)a∈R+ of hitting times and its relationship to the process M =
(Mt)t∈R+ of running maximum, where

Mt(ω) = max0≤s≤t Ws(ω), t ∈ R+, ω ∈ Ω.3.1

The definition 2.1 of Ta(ω) remains true when Wt(ω) there is replaced with
Mt(ω). Indeed, the paths a 	→ Ta(ω) and t 	→ Mt(ω) are functional inverses
of each other:

Ta(ω) = inf {t > 0 : Mt(ω) > a} , Mt(ω) = inf {a > 0 : Ta(ω) > t} .3.2

This relationship, together with the previous results on the Ta, shows that the
following holds; see Figure 11 below as well. No further proof seems needed.

3.3 Lemma. For almost every ω, the path a 	→ Ta(ω) is right-continuous,
strictly increasing, real-valued, and with To(ω) = 0 and lima→∞ Ta(ω) = +∞.
For almost every ω, the path t 	→ Mt(ω) is increasing, continuous, real-valued,
and with Mo(ω) = 0 and limt→∞ Mt(ω) = +∞.

In particular, Ta(ω) < t if and only if Mt(ω) > a, this being true for every
a and t in R+. Thus, the formula 2.9 may be re-stated as follows.
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a

Ta− Ta

M

Figure 11: The path M is increasing and continuous; Ta is the time it hits
the interval (a,∞).

3.4 Proposition. For every a and t in R+,

P {Ta < t} = P {Mt > a} = P {|Wt| > a} .

3.5 Remark. The preceding implies that Mt has the same distribution
as |Wt| for each t; thus, E Mt =

√

2t/π and E M2
t = t in particular. The

probability law of the process M , however, is very different from that of
|W |. The law of M is specified by the relationship 3.2 and the law of the
process (Ta).

Hitting time process is stable Lévy

3.6 Theorem. The process T = (Ta)a∈R+ is a strictly increasing pure-
jump Lévy process. It is stable with index 1/2, and its Lévy measure is

λ(dt) = dt
1√
2πt3

, t > 0.3.7

Proof. Fix a and b in (0,∞). In order for the process W to hit the interval
(a+b,∞), it must hit (a,∞) first, and, then, the future process W ◦θTa must
hit (b,∞); in short,

Ta+b = Ta + Tb ◦ θTa .

Since Ta < ∞ almost surely, the process W ◦ θTa is independent of FTa

and is again a Wiener process; this is by the strong Marker property at
Ta. Thus, Ta+b − Ta = Tb ◦ θTa is independent of FTa and has the same
distribution as Tb. Together with Lemma 3.3, this shows that the process T
is a strictly increasing Lévy process over the stochastic base (Ω, H, F̂, θ̂, P),
where F̂a = FTa and θ̂a = θTa ; see Definition VII.3.3.
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The distribution of Ta is the same as that of a2T1; this is by Proposition
2.10. Thus, the Lévy process T is stable with index 1/2. Every such process is
of the pure-jump type, and its Lévy measure has the form λ(dt) = dt c/t

3/2;
see Example VII.2.1. Finally, the constant c must be equal to 1/

√
2π in this

case, since VII.2.1 and 2.12 imply

E e−pTa = exp− a

ˆ
R+

λ(dt)
(

1 − e−pt
)

= exp− a
√

2p.
�

Poisson jump measure

We use the preceding theorem to clarify the fine structure of the pro-
cesses T and M . Recall the Itô-Lévy decomposition for Lévy processes;
see Theorem VII.5.2 and VII.5.14 and et seq. The following needs no fur-
ther proof.

3.8 Theorem. Let N be the random measure on R+ × R+ defined by

N(ω, B) =
∑

a

1B

(

a, Ta(ω) − Ta−(ω)
)

, ω ∈ Ω, B ∈ B (R+ × R+) ,

where the sum is over all a for which Ta(ω) > Ta−(ω). Then, N is Poisson
with mean measure Leb × λ, where λ is as given by 3.7. Conversely,

Ta(ω) =
ˆ

(0,a]×R+

N(ω; db, du) u, a ∈ R+, ω ∈ Ω.

The relationship between the random measure N and the processes M
and T are shown in the Figure 12 below. We describe some of the features:

M(w)

Ta(w)Ta−(w)

a

u

Figure 12: Big sized atoms of N(ω, ·) are marked with little circles on the
graph left. Corresponding to the atom (a, u), there is a jump of size u from
Ta−(ω) to Ta−(ω) + u = Ta(ω), the path M(ω) stays constant at level a
during the time interval [Ta−(ω), Ta(ω)].
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The following holds for almost every ω: A point (a, u) is an atom of the
counting measure N(ω, ·) if and only if the path M(ω) has a flat stretch of
length u at the level a, and then, the hitting time Ta(ω) of the interval (a,∞)
is exactly u time units later than the hitting time Ta−(ω) of the point a. Since
N(ω, ·) has only countably many atoms, this situation occurs at countably
many a only. Since there are infinitely many atoms in the set (a, b)× (0,∞),
the path M(ω) stays flat at infinitely many levels on its way from a to b;
however, for ε > 0 however small, only finitely many of those sojourns exceed
ε in duration.

The situation at a fixed level a is simpler. For a > 0 fixed, almost surely,
there are no atoms on the line {a} × R+; therefore, Ta = Ta− almost surely.

Exercises

3.9 Time change. Show that, for every p in R+,

ˆ
R+

e−pt dM t =
ˆ

R+

da e−pTa .

This suggests a painless way of computing the Laplace transform for Ta. Since
(Ta) is Lévy, the Laplace transform has the form e−aϕ(p). Hence, the expected
value of the right side above is equal to 1/ϕ(p). Whereas, the expected value
of the left side is easy to compute using E Mt =

√

2t/π; the result is 1/
√

2p.
So, ϕ(p) =

√
2p, confirming 2.12 once more.

3.10 Cauchy connection. Let X be a Wiener process independent of W and,
thus, independent of (Ta). Show that (XTa)a∈R+ is a Cauchy process; see
Example VII.2.14 for Cauchy.

3.11 Continuation. Let (Xt, Yt)t∈R+ be a standard Brownian motion in R
2

with initial state (X0, Y0) = (0, y) for some fixed y > 0. Let S be the first
time that the motion (X, Y ) touches the x-axis. Find the distribution of XS ,
the point touched on the x-axis.

4 Wiener and its Maximum

The setup and notations are as before in Sections 2 and 3. Our aim is to
examine the joint law of the Wiener process W and its running maximum
M defined by 3.1. We shall see that M − W is a reflected Brownian motion
and that it determines both M and W . As a supplement, we mention that
2M − W is a Bessel process of index 3, that is, it has the same law as the
radial Brownian motion in dimension 3. These results will lead to excursions
and local times in the next sections.



400 Brownian Motion Chap. 8

Distribution of M and W at a fixed time

4.1 Proposition. For fixed times t > 0,

P {Mt ∈ da, Mt − Wt ∈ db} = da db
2(a + b)e−(a+b)2/2t

√
2πt3

, a, b ∈ R+.

Proof. Recall that Ta(ω) < t if and only if Mt(ω) > a, and that the
distribution of Ta is diffuse. Thus, we may re-write Proposition 2.7 in the form

P {Mt > a, Wt ≤ x} = P {Wt > 2a − x} =
ˆ ∞

2a−x

dy
e−y2/2t

√
2πt

, x ≤ a,

Differentiating this with respect to a and x, and putting a − x = b, we see
that the claimed expression holds. �

In the preceding proposition, it is worth noting the symmetry with respect
to the arguments a and b. It follows that Mt − Wt and Mt have the same
marginal distribution, and the distribution of the latter is the same as that
of |Wt|; see 3.4. This proves the following.

4.2 Corollary. For fixed t, the variables Mt, |Wt|, and Mt − Wt have
the same distribution.

As a process, M is very different from |W | and M − W . But, the latter
two are alike: they have the same law; see 4.6 below.

Construction of M from the zeros of M − W

Fix an outcome ω. The set

Dω = {t ∈ R+ : Mt(ω) − Wt(ω) > 0}4.3

is open, since it is the inverse image of the open set (0,∞) under the contin-
uous mapping t 	→ Mt(ω)−Wt(ω). Thus, Dω is a countable union of disjoint
open intervals. For ε > 0, let Nt(ω, ε) be the number of those open intervals
contained in [0, t] and having lengths exceeding ε.

4.4 Theorem. For almost every ω,

lim
ε↓0

√
2πε Nt(ω, ε) = 2Mt(ω), t ∈ R+.

Remark. This shows that M is determined by N , which is in turn deter-
mined by the zero-set of M −W . Interestingly, thus, M −W determines both
M and W .
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Proof. In terms of the Poisson random measure N described by
Theorem 3.8,

Nt(ω, ε) = N(ω, (0, Mt(ω)) × (ε,∞)).

Thus, it is sufficient to show that, for each a in R+, almost surely,

lim
ε↓0

√
2πε N ((0, a) × (ε,∞)) = 2a.4.5

Recalling the mean measure of N (see 3.7 and 3.8), we have

E N

(

(0, a) ×
(

1
k2

,∞
))

= a

ˆ ∞

1/k2
dt

1√
2πt3

=
2 a√
2π

k.

Thus, since N is Poisson, the right side of the expression

N

(

(0, a) ×
(

1
n2

,∞
))

=
n∑

k=1

N

(

(0, a) ×
(

1
k2

,
1

(k − 1)2

])

is the sum of n independent and identically distributed random variables with
mean 2a/

√
2π each. Hence, by the strong law of large numbers,

lim
n→∞

1
n

N

(

(0, a) ×
(

1
n2

,∞
))

=
2a√
2π

almost surely. This proves 4.5 and completes the proof of 4.4. �

The preceding theorem can be strengthened: For almost every ω, the
convergence shown is indeed uniform in t over compacts.

Process M − W is a reflected Wiener

The following is the main result of this section. We shall prove it by
constructing a Wiener process V such that |V | = M –W .

4.6 Theorem. The processes M–W and |W | have the same law.

4.7 Remark. This theorem is a corollary to Theorem 4.8 below, where
we show the existence of a Wiener process V such that M –W = |V |. We
start by analyzing the problem of constructing V .

Observing Mt(ω) and Wt(ω) yields only the absolute value |Vt(ω)|; to
obtain Vt(ω) we need to supply the sign. To see how this should be done,
we examine Figure 13 below. Note that the path W (ω) coincides with the
path M(ω) at all times except those belonging to the open set Dω defined
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M

W

V

Figure 13: The path M(ω) is increasing continuous; W (ω) hangs like a sta-
lactite from each flat stretch of M(ω). To construct V (ω), each stalactite is
made to stand up or hang down from the time axis, the two choices being
equally likely.

by 4.3. Over each component of Dω, the path M(ω) stays flat and the path
W (ω) hangs from M(ω) like a stalactite. Over the same interval, then, V (ω)
will have to be either a stalactite hanging from the time axis, or a stalagmite
standing up, the two possibilities being equally likely. Thus, we need to assign
a sign, either positive or negative, to each stalactite hanging from M(ω).

To provide the needed signs, we need, independent of W , a countable
independency of Bernoulli variables taking the values +1 and −1 with equal
probabilities. If (Ω, H, P) does not support such a sequence (Bi)i∈N, we en-
large it as follows: Let D = {+1,−1}, D = 2D, μ = 1

2 δ1 + 1
2 δ−1 with δx

being Dirac at x as usual; replace (Ω, H, P) with
(

Ω̂, Ĥ, P̂
)

= (Ω, H, P) × (D, D, μ)N ,

and, for ω̂ = (ω, ω′) in Ω̂, define Ŵt(ω̂) = Wt(ω) and let Bi(ω̂) be the i-
coordinate of ω′. In the next theorem, we shall assume that this enlargement,
if needed, is done already. Theorem 4.6 is a corollary of the next theorem.

4.8 Theorem. There exists (on a possibly enlarged probability space) a
Wiener process V such that M − W = |V |.

Proof. We may and do assume that there is, independent of W , an in-
dependency (Bi)i∈N of variables taking the values +1 and −1 with equal
probabilities.
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a) Let N be the Poisson random measure described by Theorem 3.8, and
let (Ai, Ui)i∈N be a labeling of its atoms. Then, the triplets (Ai, Ui, Bi) are
the atoms of a Poisson random measure N̂ ; see Corollary VI.3.5.

Fix ω, and let (a, u, b) be an atom of N̂(ω, ·). Corresponding to that atom,
M(ω) remains equal to a over the time interval (s, s+u) = (Ta−(ω), Ta(ω));
we define

Vt(ω) = (Mt(ω) − Wt(ω)) b, t ∈ (s, s + u) .4.9

Doing this for every atom, we obtain Vt(ω) for every t for which Mt(ω) =
Wt(ω); for all other t, we define Vt(ω) = Mt(ω) − Wt(ω) = 0.

For fixed t, we remarked in Corollary 4.2 that Mt −Wt has the same dis-
tribution as |Wt|. Thus, in view of 4.9 and the independence of the Bernoulli
variables Bi from W,

P {Vt ∈ A} = P {Wt ∈ A} = G (t, A) , A ∈ BR,4.10

with the same notation 2.5 for the Gaussian kernel G.

b) It is obvious that V is continuous and starts from V0 = 0. To show
that it is Wiener, we shall show that

P

{

Vs+t − Vs ∈ A | F̂s

}

= G(t, A), s, t ∈ R+, A ∈ BR,4.11

where F̂s is the σ-algebra generated by the union of Fs and σ{Vr : r ≤ s}.
This is obvious if s = 0 or t = 0. For the remainder of the proof, we fix s > 0
and t > 0 and define

D = inf {u > s : Wu = Ms} , R = D − s.

Observe that D is a stopping time of F and, thus, of F̂; moreover, almost
surely, D < ∞, WD = MD = Ms, VD = 0. It is clear that, in view of 4.10,

P {VD+u − VD ∈ A} = P {Vu ∈ A} = G(u, A).4.12

c) On the event {R ≤ t, Vs = x}, we have s < D ≤ s + t and VD = 0 and

Vs+t = VD+(t−R) − VD.

Thus, as in Theorem 1.14, it follows from 4.12 that

P

{

R ≤ t, Vs+t − Vs ∈ A | F̂D

}

= G(t − R, A + x)1{R≤t}

on {Vs = x}, on which we also have R = Ta ◦ θs with a = |x|. Hence,
conditioning both sides on F̂s, since F̂s ⊂ F̂D and Ta ◦ θs is independent of
F̂s and has the same distribution as Ta, we get

P

{

R ≤ t, Vs+t − Vs ∈ A | F̂s

}

= f ◦ Vs4.13
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where

f(x) = E G (t − Ta, A + x) 1{Ta≤t}, x ∈ R, a = |x| .4.14

d) On {R > t, Vs = x}, the variable Vs+t has the same sign as x, and

R = Ta ◦ θs, Vs+t − Vs = −b Wt ◦ θs with a = |x| , b = sgn x.

Thus, by the Markov property of W ,

P

{

R > t, Vs+t − Vs ∈ A | F̂s

}

= g ◦ Vs,4.15

where

g(x) = P {Ta > t, −bW t ∈ A} , x ∈ R, a = |x|, b = sgn x.

We use Lemma 2.6 and the symmetry of G(u, ·) to evaluate g(x):

g(x) = P {Wt ∈ −bA} − P {Ta ≤ t, Wt ∈ −bA}4.16

= G(t, A) − E G(t − Ta,−bA − a)1{Ta≤t}

= G(t, A) − E G(t − Ta, A + x)1{Ta≤t},

where the last equality is justified by noting that −bA− a is equal to −A−x
if x ≥ 0 and to A + x if x ≤ 0.

e) It follows from 4.14 and 4.16 that f(x)+g(x) = G(t, A), and we obtain
4.11 by putting 4.13 and 4.15 together. �

Process 2M − W is a Bessel with index d = 3

Let R = 2M −W . Since M −W ≥ 0, we have R ≥ M . Recalling that M
is increasing and strictly positive on (0,∞) and with limit equal to +∞ as
t → ∞, we conclude the following: For almost every ω, we have

R0(ω) = 0, Rt(ω) > 0 for every t > 0, limt→∞ Rt(ω) = +∞.4.17

For each ω, the path R(ω) is obtained by reflecting the path W (ω) at its run-
ning maximum M(ω), that is, each stalactite of W (ω) hanging from M(ω)
is made into a stalagmite sitting on M(ω). From this picture, it is now evi-
dent that

Mt(ω) = inf
u≥t

Ru(ω), t ∈ R+.4.18

Thus, the path R(ω) defines the path M(ω) and, hence, the path W (ω) =
2M(ω) − R(ω).

Recall from Example 1.22 that a Bessel process of index d = 3 is a Markov
process whose law is identical to that of |X |, where X is a 3-dimensional
Wiener process. The proof of the following will be sketched in Exercises 4.27.
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4.19 Theorem. The process R = 2M − W is a Bessel process of index
d = 3.

The preceding clarifies the recurrence properties of Wiener processes in
R

d for d ≥ 3. Let X be a Wiener process in R
3. According to the preceding

theorem, its radial part |X | has the same law as R = 2M − W . It follows
from 4.17 that, for almost every ω,

|X0(ω)| = 0, |Xt(ω)| > 0 for every t, lim
t→∞ |Xt(ω)| = +∞.4.20

Thus, the Wiener particle X in R
3 starts from the origin, and never returns

to the origin, and the set of times spent in a bounded Borel set B is bounded.
The process X is transient in this sense. The same statements are true for a
Wiener process X in R

d with d > 3, since every choice of three components
of X define a Wiener process in R

3.

Exercises

4.21 Arcsine law for M .
a) Fix t. Show that, for almost every ω, Wt(ω) = Mt(ω) if and only if

Mt+ε(ω) > Mt(ω) for every ε > 0.

b) Show that, for 0 < s < t, the event {Ms = Mt} and the event
{Wu < Mu, s < u < t} have the same probability.

c) Show that P{Ms = Mt} = 2
π arcsin

√

s/t.

4.22 Continuation. For t > 0, let Ĝt = sup{s ≤ t : Ws = Ms}. Compute the
distribution of Ĝt.

4.23 Some joint distributions. It will be convenient to introduce

ht(a) =
a e−a2/2t

√
2πt3

, kt(x, y) =
e−(x−y)2/2t

√
2πt

− e−(x+y)2/2t

√
2πt

for t > 0, a > 0, and x and y real. Note that t 	→ ht(a) is the density for the
distribution of Ta, the hitting time of a; thus

ˆ t

0

ds hs(a) ht−s(b) = ht(a + b), a, b > 0.

a) Show that, for a and b in (0,∞),

ˆ t

0

ds
a e−a2/2s

√
2πs3

· e−b2/2(t−s)

√

2π(t − s)
=

e−(a+b)2/2t

√
2πt

.



406 Brownian Motion Chap. 8

b) Show that, for a and x in (0,∞),

P {Ta > t, Wt ∈ a − dx} = dx kt(a, x),
P {Mt ∈ da, Wt ∈ a − dx} = da dx 2 ht(a + x).

c) Another interpretation for kt(x, y): show that

P {Ws+t ∈ dy; Wu = 0 for u ∈ (s, s + t)|Ws = x} = dy kt(x, y)

provided that x and y are either both positive or both negative.

4.24 The process Y = (M, M –W ). This is clearly a Markov process with
state space R+ × R+: for s, t in R+ and B in B(R+ × R+)

P {Ys+t ∈ B|Fs} = Pt(Ys, B).

The transition kernel Pt can be computed explicitly: in terms of ht and kt

introduced above, for a, b, y in (0,∞) and x ≥ a,

Pt (a, b; dx, dy)
= P {Ms+t ∈ dx, Ms+t − Ws+t ∈ dy | Ms = a, Ms − Ws = b}
= P {Tb > t, b − Wt ∈ dy} I(a, dx)

+
ˆ t

0

P {Tb ∈ t − du} P {a + Mu ∈ dx, Mu − Wu ∈ dy}
= I(a, dx) dy kt(b, y) + dx dy 2ht(x − a + b + y).

4.25 A martingale. For fixed p in R+,

Zt = e−pMt [1 + p(Mt − Wt)] , t ∈ R+,

is an F-martingale. Show this via the following steps.
a) Use 4.1 to show directly that E Zt = 1 for every t.

b) In terms of the process Y of 4.24, note that Zt = f◦Yt, where f(x, y) =
e−px(1 + py) for x, y in R+. Use the Markov property for Y to show that Z
is a martingale if Ptf = f , that is, if f is harmonic for Y .

c) Use part (a) here and some of the stages in 4.24 to show that

Ptf(a, b) = e−pa
E(1 + p(b − Wt))1{Tb>t}

+
ˆ t

0

P {Tb ∈ t−du} E e−p(a+Mu)(1 + p(Mu − Wu))

= e−pa + pe−pa
E(b − Wt)1{Tb>t}.
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d) To conclude that Ptf(a, b) = f(a, b), show that

E(b − Wt)1{Tb>t} = E(b − Wt) + E(Wt − b)1{Tb≤t} = b + 0 = b.

4.26 The process (M, 2M – W ). Define R = 2M − W as in Theorem 4.19.
In preparation for the proof of 4.19, we consider the process (M , R). It is
obvious that (M , R) is a Markov process whose state space is the region of
R+ × R+ above the diagonal. Of course, M0 = R0 = 0.

Show that, for t > 0,

μt(dx, dy) = P {Mt ∈ dx, Rt ∈ dy} = dx dy 2ht(y), 0 ≤ x ≤ y.

Qt(a, b; dx, dy) = P {Ms+t ∈ dx, Rs+t ∈ dy|Ms = a, Rs = b}
= I(a, dx) dy kt(b−a, y−x)+dx dy 2ht(b + y − 2a)

for 0 < a ≤ b, a ≤ x ≤ y. In particular, given that Rt = y, the conditional
distribution of Mt is uniform on (0, y).

4.27 Proof of Theorem 4.19. For the process R = 2M −W , the results of the
preceding exercise can be used to compute that

νt(dx) = P {Rt ∈ dx} = dx 2 x ht(x)

Pt(x, dy) = P {Rs+t ∈ dy|Rs = x} = dy
y

x
kt(x, y)

for t > 0 and x, y > 0, of course, R0 = 0. These results coincide with their
counterparts in Example 1.22 (see 1.25 and 1.26) for the Bessel process with
index d = 3. To show that R = 2M − W is a Bessel process with index 3,
there remains to show that R is a Markov process. There does not seem to be
an elegant proof. A direct proof, elementary but computationally intensive,
can be obtained as follows.

Fix an integer n ≥ 2, and a positive Borel function on R
n
+. For times

0 < t1 < t2 < . . . < tn, by the Markov property of (M, R), we have

Ef(Rt1 , . . . , Rtn)

=
ˆ

μt1(dx1, dy1)
ˆ

Qt2−t1(x1, y1; dx2, dy2)
ˆ

· · ·
ˆ

Qtn−tn−1 (xn−1, yn−1; dxn, dyn) f(y1, y2, . . . , yn)

We need to show that the right side is as it should be, that is, that the right
side is equal to
ˆ

νt1(dy1)
ˆ

Pt2−t1(y1, dy2)
ˆ

· · ·
ˆ

Ptn−tn−1 (yn−1, dyn) f (y1, . . . , yn) .
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5 Zeros, Local Times

We keep the setup and notations of the previous sections: W = (Wt) is
a Wiener process, M = (Mt) is its running maximum, and T = (Ta) is the
process of hitting times. We are interested in the Cantor set like features of
the set C of times at which W is at 0, and in the existence of a random
measure whose support is C, called the local time measure.

Closed and perfect sets

This is to review some terminology. Let C be a closed subset of R+. Then,
its complement R+\C is open and, therefore, is a countable union of disjoint
open intervals. Those open intervals are said to be contiguous to C. A point
of C is isolated if it is the common end point of two distinct contiguous
intervals, or, if it is zero and is the left-end point of a contiguous interval.
The set C is dense in itself if it has no isolated points, that is, if every point
of C is a limit point of C.

A perfect set is a closed set with no isolated points. The simplest example
is a union of finitely many disjoint closed intervals. Another example, closer
to our present concerns, is the Cantor set. Every perfect set has the power of
the continuum, that is, there exists an injection of R+ into C; see I.5.22 for
this with the Cantor set.

Zeros of W

We are interested in the qualitative features of the set

Cω = {t ∈ R+ : Wt(ω) = 0} , ω ∈ Ω,5.1

the set of zeros of W . For fixed ω, it is the inverse image of the closed set
{0} under the continuous mapping t 	→ Wt(ω) from R+ into R; thus, it is
closed, and its complement is the union of a countable collection of disjoint
open intervals, called contiguous intervals.

Fix the integers m and n in N
∗. Consider those intervals contiguous to

Cω whose lengths belong to the interval
[

1
m , 1

m−1

)

. Going from left to right,

let (Gm,n(ω), Dm,n(ω)) be the nth such interval if it exists; otherwise, put
Gm,n(ω) = Dm,n(ω) = +∞ and note that the interval becomes empty. Fi-
nally, to lighten the notation, use a bijection (m, n) 	→ i from N

∗ × N
∗ onto

N to re-label these intervals as (Gi(ω), Di(ω)). Thus,

R+\Cω =
⋃

i∈N

(Gi(ω), Di(ω)) , ω ∈ Ω.5.2

Clearly, each Di is a stopping time. Stability and recurrence properties
of W imply that each Di is almost surely finite. Incidentally, each Gi is a
random variable but not a stopping time; see Exercise 2.27 for the reasoning.
The following shows the Cantor set like features of the zero-set C.
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5.3 Theorem. For almost every ω, the set Cω is perfect and unbounded,
its interior is empty, its Lebesgue measure is zero, and it has the power of
the continuum.

Proof. We have already seen that Cω is closed. It is unbounded for almost
every ω in view of Corollary 2.4. Its Lebesgue measure is zero for almost
every ω, since

E Leb C = E

ˆ
R+

dt 1{0} ◦ Wt =
ˆ

R+

dt P {Wt = 0} = 0.

This implies that the interior of Cω is empty for almost every ω, because
no set of zero Lebesgue measure can contain an open interval. To complete
the proof, there remains to show that, for almost every ω, the set Cω has no
isolated points; then, the closed set Cω is perfect and has the power of the
continuum necessarily.

We start by recalling that T0 = 0 almost surely. Thus, as mentioned in
Corollary 2.3, there is an almost sure set Ω00 such that, for every ω in it,
there is a strictly decreasing sequence (tk) in Cω with limit 0, that is, the
point 0 of Cω is a limit point of Cω for every ω in Ω00.

Similarly, for each i in N, the stopping time Di is almost surely finite, and
the strong Markov property yields that

T0 ◦ Di = 0 almost surely.

Thus, there is an almost sure event Ωi such that Di(ω) is a limit point of
Cω for every ω in Ωi. Consider, finally, the intersection Ω′ of the events
Ω00, Ω0, Ω1, . . .. For ω in it, neither 0 nor any Di(ω) is isolated. In view of
5.2, then, Cω is perfect for every ω in the almost sure event Ω′. �
5.4 Remarks. a) It will be convenient to introduce here the almost sure
event Ω∗ = Ω′ ∩ Ω′′, where Ω′ is as in the proof above, and where Ω′′ is the
set of ω for which the claims of the preceding theorem hold in addition to
the regularity properties of the path W (ω).

b) We shall see in Corollary 5.11 below that there is a strictly increasing
function a 	→ Sa(ω) from R+ into R+ such that Sa(ω) belongs to Cω for
every a. This shows, directly, that Cω has at least “as many points” as R+.

Local time at zero

Imagine a clock whose mechanism is so rigged that the clock advances
when and only when the Wiener particle is at the origin. We shall show that
such a clock exists; it will be called the local time at zero.

First, some generalities. Let c : R+ 	→ R+ be increasing and continuous
with c(0) = 0. Think of it as a clock: when the standard time is t, the clock
shows c(t). The clock may remain stationary during some periods of time,
that is, the function is not forced to be strictly increasing. The set of times
of increase for c is defined to be

Incr c = {t ∈ R+ : c(t − ε) < c(t + ε) for every ε > 0} ,5.5
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where we use the convention that c(t − ε) = 0 for t < ε. Corresponding to c
there is a unique measure on R+ whose “distribution” function is c. The set
Incr c is also called the support of this measure, namely, the smallest closed
set whose complement has measure zero. We shall show next the existence
of a random measure on R+ whose support is the zero-set C defined by 5.1.
This is interesting especially since C has zero as its Lebesgue measure.

Consider Figure 13 on page 402, and concentrate on the relationship of
M to the Wiener process V there; recall that |V | = M −W . For every ω, the
path M(ω) is increasing and continuous; and it increases at a time t if only
if Vt(ω) = 0, more precisely,

Incr M(ω) = {t ∈ R+ : Vt(ω) = 0} .5.6

Moreover, it follows from Theorem 4.4 that the time-set on the right side
determines the path M(ω).

Since W is a Wiener process just as V , there must be a process L that
is related to W just as M is to V . We state this conclusion next; there is
nothing new to prove. The process L = (Lt)t∈R+ is called the local time of
W at zero.

5.7 Theorem. There exists an increasing continuous process L that has
the same law as M and is such that

Incr L(ω) = Cω = {t ∈ R+ : Wt(ω) = 0} , ω ∈ Ω.

Inverse of the local time is a stable Lévy process

Heuristically, the local time process L is a random clock that advances
when and only when W is at the point 0. When the standard time is t, the
local time at 0 is Lt; conversely,

Sa = inf {t ∈ R+ : Lt > a}5.8

is the standard time when the local time is just about to pass a.

5.9 Theorem. The process S = (Sa)a∈R+ has the same law as the hitting
time process T = (Ta)a∈R+ . It is a strictly increasing pure-jump Lévy process;
it is stable with index 1/2; its Lévy measure is

λ(ds) = ds
1√

2πs3
, s > 0,

Proof. By comparing 5.8 and 3.2, we note that S bears the same relation
to L as T does to M . By the last theorem, L and M have the same law.
Hence, S and T have the same law. The statement about S as a Lévy process
is the same as Theorem 3.6 about T . �
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In terms of S, the local time L is defined as the functional inverse of S:

Lt = inf {a : Sa > t} , t ∈ R+;5.10

This is immediate from 5.8. The following is to clarify some further relation-
ships.

5.11 Corollary. For almost every ω, with Gi(ω) as in 5.2,

{Sa(ω) : a ∈ R+} = Cω\ {Gi(ω) : i ∈ N} .

Proof. Take ω such that L(ω) is continuous and S(ω) strictly increasing.
Fix a in R+ and let Sa(ω) = t. Then, 5.8 and the continuity of L(ω) imply that

Sa(ω) = t ⇔ Lt(ω) = a, Lt+ε(ω) > a for every ε > 0.5.12

Next, note that the set of t for which the right side holds for some a is exactly
the set (Incr L(ω))\Ĝω, where Ĝω is the countable set consisting of the left-
end-points of the intervals contiguous to Incr L(ω). The proof is complete,
since Cω = Incr L(ω) by Theorem 5.7 and, thus, Ĝω = {Gi(ω) = i ∈ N}
by 5.2. �

Local times elsewhere

Fix a point x in R. Consider the hitting time Tx defined by 2.1 or 2.14. It
is almost rurely finite; the Wiener particle is at x at that time; and the point
x becomes the point 0 of the new Wiener process W ◦ θTx . With L as defined
earlier, L ◦ θTx is the local time at 0 for W ◦ θTx ; using it, we introduce the
following definition for every outcome ω and time t:

Lx
t (ω) =

⎧

⎨

⎩

0 if t < Tx(ω),

Lt−s(θsω) if t ≥ s = Tx(ω).
5.13

It is immediate from Theorem 5.7 that

Incr Lx(ω) = {t ∈ R+ : Wt(ω) = x} .5.14

Thus, the process Lx = (Lx
t)t∈R+

is called the local time at x for W . Note
that L0 = L.

For x = 0, the path Lx(ω) stays at 0 during [0, Tx] and, then, starts
increasing just as L did at 0. All computations regarding Lx can be reduced
to computations about L, but with special consideration for the delay at the
start; see Exercise 5.19 for an example.

Master theorem on equivalence

The essential argument underlying the results of this section is that L
bears the same relationship to W as M does to V . We put this observation
next and supplement it by recalling that |V | = M − W . This is a summary
of the results above; there is nothing new to prove.
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5.15 Theorem. The three-dimensional process (W , L, S) has the same
law as (V , M , T ). Further, (|W |, L, S) has the same law as (M − W , M ,
T ), and L − |W | has the same law as W .

Exercises

5.16 Minimum of W. Define mt(ω) = min0≤s≤t Ws(ω). Obviously, the pro-
cess (−mt) has the same law of (Mt). Show that |W | has the same law as
W − m.

5.17 Local time measure. For each ω, let A 	→ L(ω, A) be the unique mea-
sure on (R+, BR+) whose distribution function is the increasing continuous
function t 	→ Lt(ω). Show that the support of that measure is exactly the
set Cω of zeros of W (ω)–the support of a measure μ on R+ is the smallest
closed subset of R+ whose complement has μ-measure 0. Obviously, L(ω, ·)
is singular with respect to the Lebesgue measure, and

L(ω, [0, t]) = L(ω, Cω ∩ [0, t]) = Lt(ω).

5.18 Computing the local time. This is to relate L to the zero-set C. For
every ω and every ε > 0, let N̂t(ω, ε) be the number of intervals that are
contiguous to Cω, are contained in [0,t], and whose lengths exceed ε. Show
that, for almost every ω,

lim
ε↓0

√
2πε N̂t(ω, ε) = 2 Lt(ω).

5.19 Local time at x. Note that Lx and L−x have the same law for every x in
R. Fix x > 0. Compute P {Lx

t = 0}. Show that, for a > 0,

P {Lx
t ∈ da} =

ˆ
[0,t]

P {Tx ∈ ds}P {Lt−s ∈ da} = da
2e−(x+a)2/2t

√
2πt

.

5.20 Inverse of the local time at x. Fix x in R. Define Sx
a from Lx as Sa is

defined from L in 5.8. Show that the process (Sx
a )a∈R+

has the same prob-

ability law as (Tx + Ŝa)a∈R+ , where (Ŝa) is independent of Tx and has the
same law as the stable Lévy process (Sa) described in Theorem 5.9.

5.21 Occupation times. For x in R and t in R+, define

At(ω, x) =
ˆ t

0

ds 1(−∞,x] ◦ Ws(ω),

the amount of time spent in (−∞, x] by W (ω) during [0, t]. Show that
x 	→ At(ω, x) is equal to 0 on (−∞, mt(ω)], and to t on [Mt(ω), +∞), and
is continuous and strictly increasing on [mt(ω), Mt(ω)]; what are mt(ω) and
Mt(ω)?
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5.22 Local times as derivatives. It can be shown that, for almost every ω, x 	→
At(ω, x) is differentiable, and its derivative at the point x is Lx

t (ω), that is,

Lx
t (ω) = lim

ε↓0
1
2ε

ˆ t

0

ds 1(x−ε,x+ε) ◦ Ws(ω).

5.23 Occupation measure. This is the name for the measure on R whose
distribution function is x 	→ At(x). Letting it be denoted by Kt, we see from
5.21 and 5.22 that

Kt(ω, B) =
ˆ t

0

ds 1B ◦ Ws(ω) =
ˆ

B

dx Lx
t (ω), B ∈ BR,

or, for f positive Borel on R,

Ktf(ω) =
ˆ t

0

ds f ◦ Ws(ω) =
ˆ

R

dx f(x) Lx
t (ω).

5.24 Continuity of local times. It is known that, for almost every ω, the
mapping

(x, t) 	→ Lx
t (ω)

from R × R+ into R+ is continuous.

6 Excursions

We continue with the setup and notations of the previous sections: W is
the Wiener process under consideration, C is its set of zeros, L is its local
time process at 0, and S is the inverse local time. Recall the almost sure
event introduced in Remark 5.4a; we take it to be the new Ω in order to avoid
boring repetitions of “almost every.” We are interested in the excursions of W
outside the point 0, that is, basically, in the path segments over the intervals
contiguous to C.

Excursion space

The path segments in question are continuous functions that start from 0,
stay away from 0 for some strictly positive time, and return to 0 some finite
time later. It is convenient to let each such function remain at zero forever
after the return to 0. The following is the space of such functions.

We define E to be the collection of all continuous functions x : R+ 	→ R

such that

ζ (x) = inf {t > 0 : x(t) = 0}6.1
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Figure 14: At the local time a there is an excursion x of duration u. There are
infinitely many excursions, one for each flat stretch of the local time clock.

is a strictly positive real number, and x vanishes outside (0, ζ(x)). Each ele-
ment x of E is called an excursion; ζ(x) is its duration; note that x is either
a positive function or negative. We let E be the Borel σ-algebra on E corre-
sponding to the topology of uniform convergence on compacts. Then, (E, E)
is called the excursion space.

Excursions of W

Fix an outcome ω. Let a be a point on the local time axis (see Figure 14
below) at which S(ω) has a jump, say, from s = Sa−(ω) to s+u = Sa(ω), with
u > 0. During the interval [s, s+u] the local time L(ω) stays constant at the
value a, and the Wiener path W (ω) has an excursion x defined formally by

x(t) =

⎧

⎨

⎩

Ws+t(ω) if 0 ≤ t ≤ u

0 if t > u.
6.2

This x is called the excursion of W (ω) at the local time a. It is an element
of E, and its duration is

ζ(x) = u = Sa(ω) − Sa−(ω),6.3

which is strictly positive and finite by the way a is chosen. Each excursion
corresponds to a local time at which S(ω) jumps.

Poisson random measure for excursions

The next theorem is fundamental. The measure ν on (E, E) describing the
mean here is called the Itô measure of excursions. We shall specify it later.

6.4 Theorem. For every ω, let N(ω, ·) be the counting measure on
(R+×E, BR+ ⊗ E) whose atoms are the pairs (a, x), where x is an excursion
of W (ω), and a the corresponding local time. Then, N is a Poisson random
measure whose mean has the form Leb× ν, where ν is a σ-finite measure on
the excursion space (E, E).
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Proof. Fix ε > 0. Let A1, A2, . . . be the successive points of jump for
a 	→ Sa with jump sizes exceeding ε. By Theorem 5.9, these Ai form a Poisson
random measure on R+ with mean cε Leb, where cε = λ(ε,∞) = 2/

√
2πε.

Corresponding to the local time Ai, let Xi be the excursion, and Di = SAi

the right-end point of the contiguous interval over which the local time is
Ai. Each Xi is a random variable taking values in (E, E). Each Di is a
finite stopping time with WDi = 0. Since 0 < A1 < A2 < . . ., we have
0 < D1 < D2 < . . ., and A1, X1, . . . , Ai, Xi belong to the past FDi . By the
strong Markov property at Di, then, the pair (Ai+1−Ai, Xi+1) is independent
of FDi and, therefore, of {A1, X1, . . . , Ai, Xi}, and has the same distribution
as (A1, X1). Noting further that A1 and X1 are independent, we conclude
the following: (Ai) forms a Poisson random measure on R+ with mean
cε Leb; (Xi) is independent of it and is an independency of variables with
some distribution με on (E, E) in common. It follows from Corollary VI.3.5
that the pairs (Ai, Xi), i ≥ 1, form a Poisson random measure Nε on
R+×E whose mean measure is Leb×νε, where νε = cε με is a finite measure
on (E, E).

Observe that, for every ω, the atoms (Ai(ω), Xi(ω)) are those atoms
(a, x) of N(ω, ·) with ζ(x) > ε. Thus, the Poisson random measure Nε is the
trace of N on R+ × Eε, where Eε = {x ∈ E : ζ(x) > ε}. Letting ε → 0,
we conclude that N is a Poisson random measure on R+ × E whose mean
measure is Leb × ν, where ν is the measure defined by

νf = lim
ε→0

νεf, f ∈ E+.

Since ν(Eε) = νε(E) = cε < ∞ for every ε > 0, the measure ν is σ-finite. �

Excursions determine W

We have constructed the Poisson random measure N above, ω by ω, from
the Wiener process W . This can be reversed: N determines W .

Recall from 6.3 that the duration ζ(x) of an excursion x is the jump size
for S(ω) at the local time corresponding to that excursion. Thus, for every ω,

Sa(ω) =
ˆ

[0,a]×E

N (ω; db, dx) ζ(x), a ∈ R+,6.5

and L(ω) is the functional inverse of S(ω); and

Wt(ω) =
ˆ

[0,Lt(ω)]×E

N (ω; da, dx)x (t − Sa−(ω)) , t ∈ R+.6.6

In fact, the last integral is a countable sum with at most one non-zero term,
namely, the term corresponding to a = Lt(ω) if Sa−(ω) < Sa(ω).

Extents of excursions

In preparation for characterizing Itô’s measure ν on the excursion space
(E, E), we describe next the law it imparts on the extents of excursions.
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For an excursion x in E, we define the extent of x to be the point touched
by x that is at maximum distance from 0, that is,

m(x) =
{

maxt∈R+ x(t) if x is positive,
mint∈R+ x(t) if x is negative;6.7

recall that x is either positive or negative. The next theorem shows that the
local times and extents of excursions form a Poisson random measure on
R+ × R with an explicit mean measure.

6.8 Theorem. Let h be the mapping (a, x) 	→ (a, m(x)) from R+ × E
into R+ × R. Then, N̂ = N ◦ h−1 is a Poisson random measure on R+ × R

whose mean has the form Leb × ν̂, where

ν̂(db) = db
1

2b2
, b ∈ R.

Remark. It is curious that ν̂ is the Lévy measure of a Cauchy process,
namely, (1/2πYt) where Y is standard Cauchy process; see Example VII.2.14.

Proof. a) Since m : E 	→ R is continuous, the mapping h is measurable
with respect to the Borel σ-algebras on R+×E and R+×R. Since N is Poisson
on R+ × E with mean Leb × ν, it follows that N̂ is Poisson on R+ × R with
mean Leb× ν̂, where ν̂ = ν ◦m−1. By the symmetry of W , the measure ν̂ on
R must be symmetric. Thus, for every b > 0,

ν̂(b,∞) = ν̂(−∞,−b) =
1
2

[ν̂(b,∞) + ν̂(−∞,−b)] =
1
2
ν(Eb),6.9

where

Eb = {x ∈ E : |m(x)| > b} .

To complete the proof, we shall show that ν(Eb) = 1/b.

b) Fix b > 0 and define

τ = inf {t : |Wt| > b} ;

recall that Eτ = b2. Consider Lτ , the local time at the standard time τ . Note
that it is also the local time corresponding to the first excursion belonging
to Eb. Thus, for every ω,

Lτ(ω)(ω) > a ⇔ N(ω, [0, a]× Eb) = 0.

Since N is Poisson with mean Leb × ν, then,

P {Lτ > a} = exp a ν(Eb), a ∈ R+.6.10

c) For the same b > 0, define

σ = inf {t : Mt − Wt > b} .
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Since (|W |, L) has the same law as (M−W , M) by Theorem 5.15, we deduce
that (τ, Lτ ) has the same distribution as (σ, Mσ). Hence,

E σ = E τ = b2, E Mσ = E Lτ = 1/ν(Eb),6.11

the last equality being a consequence of 6.10. Since σ < ∞ almost surely,
Mσ −Wσ = b by the definition of σ and the continuity of M −W . Hence, to
complete the proof via 6.11 and 6.9, there remains to show that

E Wσ = 0.6.12

d) Consider the martingale X =
(

W 2
t − t

)

t∈R+
. For each t, it is Doob on

[0, t] by V.5.6, and thus, EXσ∧t = 0. Hence,

E W 2
σ∧t = E (σ ∧ t) ≤ E σ = b2, t ∈ R+,

which shows that the martingale (Wσ∧t)t∈R+
is L2-bounded and, thus, uni-

formly integrable (see Remark II.3.13e). By Theorem V.5.14, this is equiva-
lent to saying that the martingale W is Doob on [0, σ]. Hence, 6.12. �

Itô measure on excursions

Recall the Poisson random measure N of excursions; see Theorem 6.4.
Its mean measure on R+ × E is the product measure Leb × ν, where ν is a
σ-finite measure on (E, E). Our aim is to state a characterization for ν, the
Itô measure.

Let (Ai, Xi), i ∈ N, be an enumeration of the atoms of N, that is, the
pairs (Ai, Xi) are random variables taking values in R+ ×E, and they form
N . Then, the pairs (Ai, m◦Xi) are the atoms of the Poisson random measure
N̂ described in Theorem 6.8. Finally, the triplets (Ai, m ◦ Xi, Xi) must
form a Poisson random measure Ñ , namely, Ñ = N ◦ h−1 where h(a, x) =
(a, m(x), x). The following is immediate from Theorems 6.4 and 6.8; no
proof is needed.

6.13 Proposition. The mean μ of the Poisson random measure Ñ is
given by

μ(da, db, dx) = da db
1

2 b2
Q(b, dx), a ∈ R+, b ∈ R, x ∈ E,6.14

where Q is the transition probability kernel from (R, BR) into (E, E) de-
fined by

Q(b, D) = P {Xi ∈ D|m ◦ Xi = b} , b ∈ R, D ∈ E.6.15

6.16 Corollary. Itô measure ν for excursions is given by

ν(D) =
ˆ

R

db
1

2 b2
Q(b, D), D ∈ E.
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Figure 15: Excursion Xb with a given extent b > 0. Run a bessel process R
upward until it hits b; then run a new Bessel process R′ downward from b
until it hits 0.

Proof is immediate from the form 6.14 for the mean of Ñ , since N =
Ñ ◦ h−1 with h(a, b, x) = (a, x), which implies that Leb× ν = μ ◦ h−1. �

The preceding corollary reduces the task of characterizing the Itô measure
ν to that of characterizing the probability measure Q(b, ·) for each b, namely,
the probability law of an excursion whose extent is given to be b.

It is obvious that Q(b, D) = Q(−b, −D) for b < 0, with −D = {−x : x ∈
D}; this is by the symmetry of W . It is also obvious that, if b > 0, then Q(b, ·)
must put all its mass on the set of positive excursions. Thus, the following
characterization specifies Q completely, and via the last corollary, Itô measure
ν. See Figure 15 as well. This theorem of D. Williams’s is put here without
proof; see the notes for this chapter.

6.17 Theorem. Let R and R′ be independent Bessel processes with index
3. Let τb be the hitting time of the level b > 0 by R, and τ ′

b the same for R′.
Define, for ω in Ω and t in R+,

Xb
t (ω) =

⎧

⎨

⎩

Rt(ω) if 0 ≤ t ≤ τb(ω)
b − R′

t−τb(ω)(ω) if τb(ω) ≤ t ≤ τb(ω) + τ ′
b(ω)

0 if t > τb(ω) + τ ′
b(ω).

6.18

Then, Q(b, ·) is the probability law of the process Xb.

The preceding theorem together with Corollary 6.16 characterizes the
Itô measure in terms of well-understood operations. For Bessel processes see
Example 1.22; recall that R here is the radial part of a three-dimensional
Wiener process. See also Theorem 4.19, which shows that R has the same
law as 2M − W .
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Local times of some hits

This is to expand on the observation, within the proof of Theorem 6.8,
that the local time Lτ at the time τ of exit from (−b, b) has the exponential
distribution with mean b. Recall that Ta is the time W hits (a,∞) if a ≥ 0,
and is the time of hitting (−∞, a) if a ≤ 0.

6.19 Proposition. Let a, b > 0. Then, LTa and LT−b
are independent

and exponentially distributed with means 2a and 2b respectively. Moreover,
LTa∧T−b

is equal to LTa∧LT−b
and has the exponential distribution with mean

2ab/(a + b).

Proof. In terms of the Poisson random measure N of excursions, we have
{

LTa > u, LT−b
> v

}

= {N ([0, u] × A) = 0} ∩ {N ([0, v] × B) = 0}6.20

where

A = {x ∈ E : m(x) > a} , B = {x ∈ E : m(x) < −b} .

Since A and B are disjoint, the right side of 6.20 is the intersection of two
independent events. Hence, by 6.4,

P
{

LTa > u, LT−b
> v

}

= e−uν(A)e−vν(B), u, v ∈ R+,

where, by Theorem 6.8,

ν(A) = 1/2a, ν(B) = 1/2b.

This proves the first statement. The second is immediate from it and the
computation ν(A) + ν(B) = (a + b)/2ab. �

The arcsine law

As another illustration of the uses of excursion theory, we prove next the
arcsine law, the most celebrated of the arcsine laws. It specifies the distribu-
tion of

At =
ˆ

[0,t]

ds 1R+ ◦ Ws, t ∈ R+,6.21

and is the main ingredient in computations about occupation times and Brow-
nian quantiles; see Exercises 6.41–6.47.

6.22 Theorem. The distribution of At is the same as that of tA, where
A has the arcsine distribution as in 2.15.

6.23 Remark. In view of the (simpler to obtain) arcsine law given in
Proposition 2.18, we see that Gt and At have the same distribution. See
Exercise 6.40 for the underlying reasons.
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Proof. Consider the standard time Sa corresponding to the local time a.
It is obtained via 6.5 from the Poisson random measure N of excursions.
Then, (Sa) is a pure-jump Lévy process whose Lévy measure λ is given by
(see 6.5 and 5.9)

λf =
ˆ ∞

0

ds
1√

2πs3
f(s) =

ˆ
E

ν(dx) f(ζ(x)),6.24

where ν is the Itô measure of excursions. We now decompose S as

S = S+ + S−,

where S+
a is the time spent on positive excursions during [0, Sa], and S−

a is
that on negative excursions:

S+
a =

ˆ
[0,a]×E+

N(db, dx) ζ(x), where E+ = {x ∈ E : x ≥ 0} ,6.25

and S− is defined similarly but with E− = {x ∈ E : x ≤ 0}.
Since E+ and E− are disjoint, and since N is Poisson, the processes S+

and S− are independent. Comparing 6.25 with 6.5, we see that S+ and, by
symmetry, S− are pure-jump Lévy processes with the same Lévy measure,
namely, 1/2λ. We conclude that S+

a and S−
a are independent and have the

same distribution as Sa/2, that is,

P
{

S+
a ∈ du, S−

a ∈ dv
}

= du dv
a e−a2/8u

2
√

2πu3
· a e−a2/8v

2
√

2πv3
.

Hence, for positive Borel functions f on R+×R+, an easy computation yields

E

ˆ
R+

da f
(

S+
a , S−

a

)

=
ˆ

R+

du

ˆ
R+

dv
1

√

2π(u + v)3
f(u, v).6.26

b) It follows from the scaling property of W that At has the same distri-
bution as tA1. Thus, we concentrate on the distribution of A1.

Fix a > 0; for almost every ω, the counting measure N(ω, ·) has exactly
one atom (a, x) such that Sa−(ω) ≤ 1 < Sa(ω) = Sa−(ω) + ζ(x), and, then,

A1(ω) =
{

S+
a−(ω) if x ∈ E−,

1 − S−
a−(ω) if x ∈ E+.

In other words, for Borel f : R+ 	→ R+,

f(A1) =
ˆ

R+×E

N(da, dx) g(S+
a−, S−

a−, x)6.27

where

g(u, v, x) = 1[0,1](u + v) 1(1,∞)(u + v + ζ(x))[f(u)1E+(x) + f(1 − v)1E−(x)].
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Applying Theorem VI.6.2 to the Poisson integral in 6.27, recalling that
the mean of N is Leb × ν, we see that

Ef(A1) = E

ˆ
R+

da

ˆ
E

ν(dx) g
(

S+
a , S−

a , x
)

=
ˆ

E

ν(dx)
ˆ

R+

du

ˆ
R+

dv
1

√

2π(u + v)3
g(u, v, x),6.28

where we used 6.26 at the last step. In view of 6.24,

ˆ
E

ν(dx)g(u, v, x) = 1[0,1](u + v)
ˆ ∞

0

ds
1√

2πs3
1(1,∞)(u + v + s)

× [1/2f(u) + 1/2f(1 − v)
]

= 1[0,1](u + v)
1

√

2π(1 − u − v)
[f(u) + f(1 − v)] .

Putting this into 6.28 we obtain, with s = u + v and r = u/s,

Ef(A1) =
ˆ 1

0

ds
1

π
√

s(1 − s)

ˆ 1

0

dr
[
1/2f(sr) + 1/2 f(1 − s + sr)

]

= E
[
1/2f(AU) + 1/2 f(1 − A + AU)

]

,6.29

where A and U are independent, A has the arcsine distribution as in 2.15,
and U is uniform on (0, 1).

It is easy to show that, then, AU has the beta distribution with parameter
(1/2, 3/2), and so does A − AU = A(1 − U) since 1 − U is also uniform on
(0, 1); see Exercise 6.39. Hence, 6.29 yields

E f(A1) =
´ 1

0
dv 2

π v−
1/2(1 − v)

1/2
[
1/2 f(v) + 1/2 f(1 − v)

]

=
´ 1

0 du 1

π
√

u(1−u)
f(u).

This proves that A1 has the arcsine distribution as does A in 2.15, which
completes the proof since At and tA1 have the same distribution. �

Exercises

Notation: W , M , T , L, S, N , V retain the meanings they had within
the present section and earlier. Below, for random variables X and Y (or
processes X and Y ), we write X ≈ Y to mean that X and Y have the same
distribution. Throughout, A will denote a random variable having the arcsine
distribution as in 2.15.
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6.30 Skew Brownian motion. Recall the Itô measure ν regulating the excur-
sions, and the sets E+ and E− of positive and negative excursions. Let ν+

be the trace of 2ν on E+, and ν− the trace of 2ν on E−. Then,

ν(D) = ν(D ∩ E+) + ν(D ∩ E−) =
1
2
ν+(D) +

1
2
ν−(D), D ∈ E.

This is a precise expression of the heuristic that each excursion is positive
with probability 1/2 and negative with 1/2. Define, for 0 < p < 1 and q = 1−p,
a new measure on (E, E). Let

ν∗ = p ν+ + q ν−,

and let N∗ be the Poisson random measure on R+ × E with mean measure
Leb × ν∗. Define W ∗ from N∗ as W is defined from N through 6.5 and 6.6.
The resulting process W ∗ is called skew Brownian motion; it is a Markov
process. It is not symmetric, its increments are not independent. Find the
distribution of W ∗

t . Compute its transition function (Pt).

6.31 Random time changes. Many interesting Markov processes are obtained
from Wiener processes by random time changes. Here is the general setup.
Let H = (Ht) be a random clock; assume that t 	→ Ht(ω) is increasing and
continuous, starting from H0(ω) = 0. We think of Ht as the clock time when
the standard time is t. Then,

τu = inf {t : Ht > u}

is the standard time when the clock reads u, and

Xu = Wτu

is the position of the Wiener particle at that time. The simplest case is
when t 	→ Ht is deterministic, strictly increasing, and continuous, then X
has (possibly non-stationary) independent increments. Following are some
special cases.

6.32 Reflected Brownian motion. In 6.31, Suppose that

Ht =
ˆ t

0

ds 1R+ ◦ Ws.

show that X is a reflected Brownian motion, that is, X ≈ |W |.
Hint: The net effect of the time change on the picture of W is to remove the
negative excursions. Modify the excursion measure N accordingly.

6.33 Processes with two states. Fix b > 0, Let

Ht = L◦
t + Lb

t ,
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where L0 = L is the local time at 0, and Lb at b. Show that X = Wτ is a
process with only two states, 0 and b.

a) Show that its jump times form a Poisson process with rate 1/2b,
and that the successive jump sizes are +b, −b, +b, −b, . . .. Hint: use
proposition 6.19.

b) Compute

pt(x, y) = P {Xs+t = y|Xs = x}
for x, y ∈ {0, b}.
6.34 Processes with three states. Let a < 0 < b be fixed. Put

Ht = L◦
t + La

t + Lb
t .

Show that X is a Markor process whose state space is D = {0, a, b}. Of
course, X0 = 0. Show that the successive states visited by X is a Markov
chain (Yn)n∈N with Y0 = 0 and transition probability matrix (with states
ordered as 0, a, b)

P =

⎡

⎣

0 q p
1 0 0
1 0 0

⎤

⎦

where p = P{Yn+1 = b|Yn = 0} = −a/(−a + b), and q = 1 − p. Describe X
completely by specifying the distributions of

P {Rn ∈ dt|Yn = x} , x ∈ D,

for the time Rn between the nth and (n + 1)th jumps (which is the sojourn
time in Yn).

6.35 Process on the integers. Recall that Z is the set of all integers, positive
and negative. Define

Ht =
∑

x∈Z

Lx
t .

For fixed t and ω, show that Ht(ω) is in fact a finite sum of finite quantities;
so, Ht < ∞ almost surely for all t in R+. Show that X = Wτ is a compound
Poisson process, whose jump times form a Poisson process with rate 1 and
whose every jump has size ±1 with equal probabilities.

6.36 Brownian motion with sticky 0. Let

Ht = t + Lt.

The process X is Markov with state space R. It goes through the same states
as W does, and in the same order. Show thatˆ u

0

ds 1{0} ◦ Xs = Lτu ,
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which is strictly positive for u > 0 and increases to +∞ as u → ∞. Describe
a method for recovering the path W (ω) given the path X(ω).
6.37 Distribution of AU. Let A and U be independent, A with the arcsine
distribution, and U the uniform on (0,1). Let X , Y , Z be independent gamma
variables with shape indices 1/2,

1/2, 1 respectively, and with the same scale
parameter. Show that

A =
X

X + Y
, U =

X + Y

X + Y + Z

satisfy the assumptions on A and U . Conclude that AU has the beta distri-
bution with the index pair (1/2, 3/2).

6.38 Joint distribution of G and AG. Write G = G1. In the notation of the
proof of Theorem 6.22, similar to 6.27, we can write

f(G, AG) =
ˆ

R+×E

N (da, dx) h
(

S+
a−, S−

a−, x
)

where

h(u, v, x) = f(u + v, u)1[0,1](u + v)1(1,∞)(u + v + ζ(x)).

Show that

E f(G, AG) =
ˆ 1

0

ds
1

π
√

s(1 − s)

ˆ 1

0

dr f(s, sr).

Thus, G has the arcsine distribution (as we already know from 2.18); and,
given G, the variable AG has the uniform distribution on [0, G].

6.39 Occupation times. For t in R+ and r in R, define

At(r) =
ˆ t

0

ds 1(−∞,r] ◦ Ws.

By Theorem 6.22, then, t−At(0) ≈ tA, where A has the arcsine distribution
as before. Show that

At(r) ≈ t A1

(
r√
t

)

, A1(−r) ≈ 1 − A1(r).

In view of these, it is enough to concentrate on A(r) = A1(r) for r > 0.

6.40 Distribution of A(r). Fix r > 0. Show that

A(r, ω) =

{

1 if Tr(ω) ≥ 1,

Tr(ω) + A1−Tr(ω)

(

θTr(ω)ω
)

if Tr(ω) < 1.

Show that, with A independent of Tr,

A(r) ≈ 1{Tr≥1} + [Tr + (1 + Tr)A] 1{Tr<1}.
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Conclude that, for u ≤ 1,

P {A(r) < u} =
ˆ u

0

ds
re−r2/2s

√
2π s3

P {s + (1 − s)A < u} .

6.41 Continuation. This is mere calculus. For u < 1, show that

P {A(r) ∈ du} = du

ˆ u

0

ds
re−r2/2s

√
2πs3

1
π
√

(1 − u)(u − s)

= du
1

π
√

u(1 − u)

ˆ u

0

ds
re−r2/2s

√

2πs3(1 − s/u)
= du

e−r2/2u

π
√

u(1 − u)
.

Hint: In the last integral, replace s with u/(1 + v); the integral becomes
ˆ ∞

0

dv
re−r2(1+v)/2u

√
2πuv

= e−r2/2u

ˆ ∞

0

dv
e−cvcava−1

r(a)
= e−r2/2u,

where we recognize the gamma density with a = 1/2 and c = r2/2u.

6.42 Continuation. To sum up, with Z standard Gaussian, show that

P {A(r) ∈ du} = du
e−r2/2u

π
√

u(1 − u)
1(0,1)(u) + δ1(du)P {|Z| ≤ r} .

6.43 Gamma tails and Laplace transforms. It follows from the preceding com-
putation that

E e−r2/2A =
ˆ 1

0

du
e−r2/2u

π
√

u(1 − u)
= P {|Z| > r} .

Taking r =
√

2p and recalling that 1/2 Z2 has the standard gamma distribu-
tion with shape index 1/2, we obtain

E e−p/A = P

{
1
2
Z2 > p

}

=
ˆ ∞

p

dy
e−y y−1/2

Γ(1/2)
.

In other words, the tail of the gamma distribution with shape index 1/2 is
the Laplace transform of 1/A, where A has the arcsine distribution.

6.44 Brownian Quantiles. The mapping r 	→ A(r) is the cumulative distri-
bution function of a random probability measure on R. We define the corre-
sponding quantile function by

Qu = inf {r ∈ R : A(r) > u} , 0 < u < 1.

Obviously, {Qu > r} = {A(r) < u}, and the probabilities of these events
can be obtained by using the results of Exercises 6.41–6.42. In particular, for
r > 0, show that

P {Qu ∈ dr} =
ˆ u

0

dv
r e−r2/2v

π
√

v3(1 − v)
.
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6.45 Continuation. It is possible to give a simpler formula for the preceding
expression: Since u < 1, and r > 0, in view of 6.40,

P {Qu > r} = P {A + Tr · (1 − A) < u}
= P

{

A < u, Tr <
u − A

1 − A

}

=
ˆ u

0

dv
1

π
√

v(1 − v)

ˆ ∞

r

dz
2 e−z2(1−v)/2(u−v)

√

2π(u − v)/(1 − v)

since Tr ≈ r2/Z2, with Z standard Gaussian. Some elementary opera-
tions give

P {Qu ∈ dr} =
2√
2π

ˆ u

0

dv
1

π
√

v(u − v)
exp−

r2

2
1 − v

u − v

=
2√
2π

ˆ 1

0

dx
1

π
√

x(1 − x)
exp−

r2

2

(

1 +
(

1 − u

u

)

· 1
v

)

=
2√
2π

e−r2/2
E exp−

r2(1 − u)
2u

· 1
A

.

The last expectation can be evaluated using 6.43 to obtain

P {Qu ∈ dr} =
2√
2π

e−r2/2
P

{

|Z| > r

√

1 − u

u

}

.

7 Path Properties

This section is on the oscillatory behavior of Brownian paths. We shall
see that, for almost every ω, the following are true for the Wiener path
t 	→ Wt(ω): The path is continuous, but nowhere differentiable. Over every
interval, it has infinite total variation, but finite quadratic variation; thus,
the path is highly oscillatory, but the oscillations are of small amplitude.
In addition to clarifying these points, we shall discuss Hölder continuity of
the paths, describe the exact modulus of continuity, and give the law of
the iterated logarithm. These help to visualize the paths locally in terms of
deterministic functions.

Throughout this section, W is a Wiener process over some probability
space (Ω, H, P). We assume that the path W (ω) : t 	→ Wt(ω) is continuous
for every ω. By a subdivision of an interval [a, b] we mean a finite collection
of disjoint intervals of the form (s, t] whose union is (a, b]; it is a partition of
(a, b] whose elements are intervals. If A is a subdivision, we write ‖A‖ for its
mesh, defined as ‖A‖ = sup{t − s : (s, t] ∈ A}.
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Quadratic variation

Let f : R+ 	→ R be right-continuous. Fix an interval [a, b] in R+. For
p > 0 and A a subdivision of [a, b], consider

∑

(s,t]∈A

|f(t) − f(s)|p .7.1

The supremum of this over all such subdivisions A is called the true p-
variation of f over [a, b]. For p = 1, the supremum is called the total variation
of f on [a, b], and for p = 2 the true quadratic variation.

These deterministic concepts prove to be too strict when applied to a
typical Wiener path: for almost every ω, if f = W (ω), the total variation
over [a, b] is +∞, and so is the true quadratic variation. However, at least for
the quadratic variation, a probabilistic version proves interesting:

7.2 Theorem. Let the interval [a, b] be fixed. Let (An) be a sequence of
subdivisions of it with ‖An‖ → 0. Then, the sequence of random variables

Vn =
∑

(s,t]∈An

|Wt − Ws|27.3

converges in L2 and in probability to the length b – a.

Proof. Recall that |Wt − Ws|2 has the same distribution as (t − s) Z2,
where Z is standard Gaussian, and that E Z2 = 1, var Z 2 = 2. Since the
intervals (s, t] in An are disjoint, the corresponding increments Wt − Ws are
independent. Thus,

E Vn =
∑

(s,t]∈An

(t − s) = b − a,

Var Vn =
∑

(s,t]∈An

(t − s2) · 2 ≤ 2 · (b − a) · ‖An‖.

Hence, E|Vn − (b−a)|2 = Var Vn → 0 as n → ∞. This shows the convergence
in L2 and implies the convergence in probability. �

The limit in the preceding theorem is called the quadratic variation of
W over [a, b]. Heuristically, it is a sum of squares of the increments over
infinitesimal subintervals. The following clarifies this picture by taking the
limit for each ω separately.

7.4 Proposition. For each n in N, let An be the subdivision of [a, b]
that consists of 2n intervals of the same length. Then, (Vn) defined by 7.3
converges to b − a almost surely.
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Proof. Since each (s, t] in An has length (b−a) ·2−n, we have E Vn = b−a
as before, but Var Vn = 2n · 2 · (b − a)2 · 2−2n. Thus, Chebyshev’s inequality
yields that, for ε > 0,

P {|Vn − (b − a)| > ε} ≤ 1
ε2

· 2 · (b − a)2 · 2−n.

Since the right side is summable in n, Borel-Cantelli lemma I.2.6 applies, and
Vn → b - a almost surely. �

7.5 Remark. a) The preceding proposition can be strengthened. The
conclusion remains true when (An) is an arbitrary nested sequence with
‖An‖ → 0, the term nested meaning that each interval of the subdivision
An+1 is a subset of some interval in An.

b) But, it is essential that (An) be chosen deterministically. Otherwise,
there are counter-examples. For example, for almost every ω there is a
nested sequence (An(ω)) with ‖An(ω)‖ → 0 such that Vn(ω) defined by 7.3
goes to +∞.

Total variation

The following proposition shows that each typical path is highly oscilla-
tory over every interval. But the amplitudes must be small enough that their
squares sum to the finite number called the quadratic variation.

7.6 Proposition. For almost every ω, the path W (ω) has infinite total
variation over every interval [a, b] with a < b.

Proof. In the setting of Proposition 7.4, let Ωab be the almost sure set of
convergence. Pick ω in Ωab, write w for W (ω), and let v∗ ≤ +∞ be the total
variation of w over [a, b]. We observe that, with sums and supremum over all
(s, t] in An,

∑

|wt − ws|2 ≤ (sup |wt − ws|)
∑

|wt − ws| ≤ (sup |wt − ws|) · v∗,
the last inequality being by the definition of v∗ as the supremum over all
subdivisions. Now, let n → ∞. The left side goes to b−a = 0 by the way ω is
picked. On the right side, the supremum goes to 0 by the uniform continuity
of w on [a, b]. It follows that v∗ cannot be finite.

Let Ω0 be the intersection of Ωab over all rationals a and b with 0 ≤ a < b.
The claim of the proposition holds for W (ω) for every ω in the almost sure
event Ω0. �

Hölder continuity, nowhere differentiability

Let α ∈ R+, B ⊂ R+, and f : R+ 	→ R. The function f is said to be
Hölder continuous of order α on B if there is a constant k such that

|f(t) − f(s)| ≤ k · |t − s|α if s, t ∈ B.7.7
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It is said to be locally Hölder continuous of order α if it is such on [0, b] for
every b < ∞. Note that if f is differentiable at some point then it is Hölder
continuous of order 1 on some neighborhood of that point.

The next proposition is another consequence of the finiteness of the
quadratic variation, Proposition 7.4. Its proof is similar to that of
Proposition 7.6.

7.8 Proposition. For almost every ω, the Wiener path W (ω) is Hölder
continuous of order α on no interval for α >1/2. In particular, for almost
every ω, the path is nowhere differentiable.

Proof. Pick ω, write w for W (ω), and suppose that

|wt − ws| ≤ k · |t − s|α

for all s and t in some interval [a, b], a < b, for some α > 1/2 and some constant
k. With An as in Proposition 7.4, with summations and supremum over (s, t]
in An,

∑

|wt − ws|2 ≤ k2
∑

|t − s|2α ≤ k2 · (b − a) · sup |t − s|2α−1 .

As n → ∞, the supremum vanishes since 2α > 1, which means that the left
side vanishes as well. Thus, ω does not belong to the almost sure set Ωab

of convergence in Proposition 7.4. Hence, the claims hold for every ω in the
intersection of Ωab over all rationals a < b. �

7.9 Remark. We shall see shortly that the claim of the preceding propo-
sition remains true for α = 1/2 as well; see Theorem 7.13 below.

By contrast, the following is a positive result. Its proof is based on a
lemma of independent interest; the lemma is put last in this section in order
to preserve the continuity of presentation; see 7.32.

7.10 Proposition. For almost every ω, the path W (ω) is locally Hölder
continuous of order α for every α < 1/2.

Proof. For Z standard Gaussian, cp = E Z2p < ∞, and

E |Wt − Ws|2p = cp |t − s|p , p ≥ 1.

Thus, Lemma 7.32 below applies, and almost every path is Hölder continuous
of order α = (p − 1)/2p = 1/2 − 1/2p on [0,1]. Scaling property allows us to
replace [0,1] with [0,b] for each b < ∞, and the proof is complete since p can
be taken as large as desired. �
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Modulus of continuity

Let f and g be functions from [0,1] into R. The function g is said to be a
modulus of continuity for f if

s, t ∈ [0, 1] , [t − s] ≤ δ ⇒ |f(t) − f(s)| ≤ g(δ)7.11

for every δ > 0 small enough. Of course, then, so is cg for every constant
c ≥ 1. The following theorem, due to Lévy, shows that

g(t) =
√

2t log(1/t), t ∈ [0, 1],7.12

is the exact modulus of continuity for the paths of (Wt)t∈[0,1] in the following
sense: cg is a modulus of continuity for almost every path if c > 1, and is a
modulus of continuity for almost no path if c < 1. The proof will be delayed
somewhat; see 7.26.

7.13 Theorem. Let g be as defined by 7.12. Then, for almost every ω,

lim sup
δ→0

1
g(δ)

sup
0 ≤ s < t ≤ 1

t − s ≤ δ

|Wt(ω) − Ws(ω)| = 1.

As a corollary, since
√

δ/g(δ) goes to 0 as δ goes to 0, we obtain the proof
of Remark 7.9. Details are left as an exercise.

Law of the iterated logarithm

This is about the oscillatory behavior of Wiener paths near the time 0
and for very large times. The name comes from its use of

h(t) =
√

2t log log(1/t), t ∈ [0, 1],7.14

as the control function.

7.15 Theorem. With h as in 7.14, the following hold for almost every ω:

lim sup
t→0

1
h(t)

Wt(ω) = 1, lim inf
t→0

1
h(t)

Wt(ω) = −1.

7.16 Remark. By time inversion, the same results hold when Wt(ω) is
replaced with t W 1/t

(ω). Then, replacing 1/t with t, we obtain that the follow-
ing hold for almost every ω:

lim sup
t→∞

Wt(ω)√
2t log log t

= 1, lim inf
t→∞

Wt(ω)√
2t log log t

= −1.7.17

We know from Lemma 3.3 that the running maximum increases to +∞, and
the running minimum decreases to −∞ in the limit as t → ∞. These are
re-confirmed by 7.17 and are made more precise.
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Proofs. We list here two approximation lemmas before giving the proofs
of the last two theorems.

7.18 Lemma. P

{

sup
t≤1

(

Wt − 1/2 pt
)

> q

}

≤ e−pq for positive p and q.

Proof. Let Xt = exp
(

pWt − 1/2 p2t
)

. The probability in question is

P

{

sup
t≤1

Xt > epq

}

≤ e−pq
E X1 = e−pq,

where the inequality follows from the maximal inequality V.5.33 applied to
the exponential martingale X . �

7.19 Lemma. Let Z be a standard Gaussian variable. Then, for b > 0,

1
4
· b

1 + b2
e−b2/2 < P {Z > b} <

1
2b

e−b2/2.

Proof. Observe thatˆ ∞

b

dx e−x2/2 <

ˆ ∞

b

dx
x

b
e−x2/2 =

1
b

e−b2/2,

and ˆ ∞

b

dx e−x2/2 >

ˆ ∞

b

dx
b2

x2
e−x2/2 = b e−b2/2 − b2

ˆ ∞

b

dx e−x2/2,

the last equality being through integration by parts. The rest is arithmetic.
�

7.20 Proof of Theorem 7.15. a) We show first that, for almost every ω,

α(ω) = lim sup
t→0

1
h(t)

Wt(ω)7.21

is at most 1.
Let 0 < a < 1 < b. Put pn = b h(an)/an and qn = 1/2 h(an). By Lemma

7.18,

P

{

sup
t≤1

(

Wt − 1/2 pnt
)

> qn

}

≤ e−pnqn =
(

n log 1/a
)−b

,

and the right side is summable in n. Thus, by the Borel-Cantelli lemma, there
is an almost sure event Ωab such that for every ω in it there is nω such that

Wt(ω) ≤ qn + 1/2 pnt for every t ≤ 1 and n ≥ nω.7.22

The function h is increasing on [0, e−c], where c = e1/c. Choose n ≥ nω

large enough that an−1 ≤ e−c, and let t ∈ (an, an−1]. By 7.22,

Wt(ω) ≤ qn + 1/2pn an−1 =
1
2
·
(

1 +
b

a

)

h(an) ≤ 1
2

(

1 +
b

a

)

h(t).
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Hence, for ω in Ωab,

α(ω) ≤ 1
2

(

1 +
b

a

)

.7.23

write Ωn for Ωab with a = 1 − (1/n) and b = 1 + (1/n). Now 7.23 implies that
α(ω) ≤ 1 for every ω in the almost sure event ∩nΩn.

b) Next, we prove that α(ω) ≥ 1 for almost every ω. Let ε ∈ (0, 1) and
put tn = ε2n. Observe that h(tn+1) ≤ 2 ε h(tn) for all n large enough. And,
by part(a) applied to the Wiener process (−Wt), there is an almost sure set
Ωo such that 7.21 holds, with −W replacing W , for almost every ω. Thus,

ω ∈ Ω0 ⇒ −Wtn+1(ω) ≤ 2 h(tn+1) ≤ 4 ε h(tn) for all n large enough.
7.24

On the other hand, by Lemma 7.19 applied with b = (1−ε)h(tn)/
√

tn − tn+1,

pn = P
{

Wtn − Wtn+1 > (1 − ε)h(tn)
}

>
1
4

b

1 + b2
e−b2/2,

and e−b2/2 = (2 n log 1/ε)−c, where c = (1 − ε)/(1 + ε) is less than 1. It
follows that Σpn = +∞. Since the increments Wtn −Wtn+1 are independent,
the divergence part of the Borel-Cantelli lemma applies. There is an almost
sure event Ωε such that

ω ∈ Ωε ⇒ Wtn(ω)−Wtn±1(ω) > (1− ε) h(tn) for infinitely many n.7.25

Combining 7.24 and 7.25, we see that

ω ∈ Ω0 ∩ Ωε ⇒ Wtn(ω) > (1 − 5ε) h(tn)

⇒ lim sup
t→0

1
h(t)

Wt(ω) ≥ lim sup
n→∞

1
h(tn)

Wtn(ω) ≥ 1 − 5ε.

For k ≥ 1, put Ωk = Ωo ∧ Ωε with ε = 1/k. Then, for ω in
⋂

Ωk,

lim sup
t→0

1
h(t)

Wt(ω) ≥ 1.

This completes the proof of the statement about the limit superior. The
one about the limit inferior is obtained by recalling that lim inf xn =
− lim sup(−xn) and that −W is again Wiener.

7.26 Proof of Theorem 7.13. a) First we show that

α(ω) = lim sup
δ→0

1
g(δ)

sup
0 ≤ s < t ≤ 1

t − s ≤ δ

|Wt(ω) − Ws(ω)|7.27

is equal to 1 or more for every ω in an almost sure event Ωo.
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Take a in (0,1), put u = 2−n, and recall g from 7.12. Note that g(u)/
√

u =
b
√

n, where b =
√

2 log 2, and e−nb2/2 = 2−n. For Z standard Gaussian, it
follows from Lemma 7.19 that

p = P
{√

u |Z| > a g(u)
}

>
1
2

ab
√

n

1 + a2b2n
e−a2b2n/2 > c 2−na2

/
√

n,

for some constant c depending on a only. Thus, since the increments Wku −
Wku−u are independent and identically distributed as

√
u Z,

P

{

max
1≤k≤2n

|Wku − Wku−u| ≤ a g(u)
}

= (1 − p)2
n ≤ e−p2n ≤ exp

(

−c2n−na2
/
√

n
)

since 1 − p ≤ e−p. The right-most member is summable in n. Hence, by the
Borel-Cantelli lemma, there is an almost sure event Ωa such that

ω ∈ Ωa, u = 2−n ⇒ max
1≤k≤2n

|Wku(ω) − Wku−u(ω)| > a g(u)

for all n large enough, which means that α(ω) > a; see 7.27 for α(ω). Let Ω0

be the intersection of Ωa over a in {1/2,
2/3,

3/4, . . .}; then, Ω0 is almost sure,
and α(ω) ≥ 1 for ω in Ω0.

b) We show next that α(ω) ≤ 1 for almost every ω. Choose b > 1. Put
a = 2/(1 + b). Note that a ∈ (0, 1) and ab > 1. For u in (0, 2−na), since
g(u)/

√
u ≥ √

2 na log 2, it follows from Lemma 7.19 that

P
{√

u |Z| > b g(u)
} ≤ P

{

|Z| > b
√

2 na log 2
}

≤ e−b2 na log 2

b
√

2 na log 2
= c · 2−na b2/

√
n,7.28

where c depends only on b.
Let Bn be the set of all pairs of numbers s and t in the set Dn = {k/2n :

0 ≤ k ≤ 2n} satisfying 0 < t − s < 2−na; there are at most 2na such pairs
(s, t). Using 7.28 with u = t − s, we get

P

{

max
(s,t)∈Bn

1
g(t − s)

|Wt − Ws| > b

}

≤ 2na · c · 2−na b2/
√

n;

and the right side is summable in n, since ab2 − a > b − a > 0. Thus, by the
Borel-Cantelli lemma, there is an almost sure event Ωb such that for every ω
in it there is nω such that

n ≥ nω, (s, t) ∈ Bn ⇒ |Wt(ω) − Ws(ω)| ≤ b g(t − s).7.29

Fix ω in Ωb; write n∗ for nω, and w for W (ω). Let D =
⋃∞

0 Dm, the set of
all dyadic numbers in [0,1]. For s and t in D, put sm = inf Dm ∩ [s, 1] and
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tm = sup Dm∩ [0, t]. Then, (sm) is decreasing, (tm) is increasing, and sm = s
and tm = t for all m large enough. Thus,

wt − ws =
∑

m≥n

(

wtm+1 − wtm

)

+ wtn − wsn +
∑

m≥n

(

wsm − wsm+1

)

.7.30

Suppose that 0 < t − s < 2−n∗a and choose n ≥ n∗ such that

2−na−a ≤ t − s < 2−na < e−1.7.31

Then, s ≤ sn ≤ tn ≤ t, and the times tm+1, tm, sm, sm+1 belong to Bm+1

for every m ≥ n. It follows from 7.29 and 7.30 that

|wt − ws| ≤
∑

m≥n

b g(tm+1 − tm) + b g(t − s) +
∑

m≥n

b g (sm − sm+1) .

Moreover, g is increasing on [0, e−1], and tm+1 − tm ≤ 2−m−1 ≤ e−1 and
sm − sm+1 ≤ 2−m−1 ≤ e−1 for m ≥ n by the way n is chosen. So,

|wt − ws| ≤ b g(t − s) + 2b
∑

m≥n

g(2−m−1).

Also,
∑

m>n

g(2−m) = g(2−n)
∑

m>n

√

2−m+nm/n ≤ g(2−n)
∑

p≥1

√

2p 2−p

and

g
(

2−n
) ≤ g(t − s)g(2−n)/g(2−na−a) ≤ g(t − s)

√

2−n(1−a) · 2a/a

in view of 7.31. Combining the last three expressions, we see that

|wt − ws| ≤ b g(t − s) + 2bc g(t − s)
√

2−n(1−a)

with c chosen appropriately. This was for s and t in D satisfying 7.31; by
the continuity of w, the same holds for all s and t in [0,1] satisfying 7.31.
Consequently, letting n → ∞ and recalling that 1 − a > 0, we see for α(ω)
of 7.27 that α(ω) ≤ b for the arbitrarily fixed ω in Ωb. Thus, α(ω) ≤ 1 for
every ω in

⋂
Ωb, where the intersection is over b in {1 + 1/n : n ≥ 1}. This

completes the proof. �

Kolmogorov’s moment condition

The next lemma was used to prove Hölder continuity in Proposition 7.10.
It is the main part of Kolmogorov’s theorem on the existence of continuous
modifications. These are stated in a form that will be of use in the next
section. Recall that D is the set of all dyadic numbers in [0,1]. Here, X =
(Xt)t∈[0,1] is a process with state space R.
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7.32 Lemma. Suppose that there exist constants c, p, q in (0,1) such that

E |Xt − Xs|p ≤ c · |t − s|1+q , s, t ∈ [0, 1].7.33

Then, for every α in [0,q/p) there is a random variable K such that E Kp is
finite and

|Xt − Xs| ≤ K · |t − s|α , s, t ∈ D.7.34

If X is also continuous, then 7.34 holds for all s, t in [0,1].

Proof. Fix α in [0, q/p). Let

K = sup
s,t∈D, s=t

|Xt − Xs|
|t − s|α .7.35

Since D×D is countable, this defines a random variable. Now, 7.34 is obvious,
and it extends to s, t in [0,1] when X is continuous, since D is dense in [0,1].
Thus, the proof reduces to showing that

E Kp < ∞.7.36

a) Let Mn = sup |Xt − Xs|, where the supremum is over all pairs of
numbers s and t in Dn with t − s = 2−n. Since there are 2n such pairs, the
assumption 7.33 implies that

E Mp
n ≤ 2n · c · (2−n)1+q = c · 2−nq.7.37

b) For s and t in D, let sn = inf Dn ∩ [s, 1] and tn = sup Dn ∩ [0, t].
Then, (sn) is decreasing, (tn) is increasing, and sn = s and tn = t for all n
large enough. Thus,

Xt − Xs =
∑

n≥m

(

Xtn+1 − Xtn

)

+ Xtm − Xsm +
∑

n≥m

(

Xsn − Xsn+1

)

.

If 0 < t − s ≤ 2−m, then tm − sm is either 0 or equal to 2−m; hence,

|Xt − Xs| ≤
∑

n≥m

Mn+1 + Mm +
∑

n≥m

Mn+1 ≤ 2
∑

n≥m

Mn.7.38

c) Consider 7.35. Take the supremum there first over s and t with 2−m−1 <
|t − s| ≤ 2−m and then over m. In view of 7.38, we get

K ≤ sup
m

(

2m+1
)α · 2

∑

n≥m

Mn ≤ 21+α
∑

n≥0

2nαMn.

If p ≥ 1, letting ‖ · ‖ denote the Lp-norm, we see from 7.37 that

‖K‖ ≤ 21+α
∑

n

2nα c1/p 2−nq/p < ∞
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since α < q/p. If p < 1, then (x + y)p ≤ xp + yp for positive x and y, and

EKp ≤ (21+α)p
∑

n

2nαpc · 2−nq < ∞

again. Thus, 7.36 holds in either case, as needed to complete the proof. �

The following is Kolmogorov’s theorem on modifications. Recall that X̃
is a modification of X if for every t there is an almost sure event Ωt on which
X̃t = Xt.

7.39 Theorem. Suppose that 7.33 holds for some constants, c, p, q in
(0,∞). Then, for every α in [0, q/p] there is a modification X̃ of X such that
the path X̃(ω) is Hölder continuous of order α on [0, 1] for every ω.

Proof. Fix α as described. Let K be as in Lemma 7.32. Since E Kp < ∞,
the event Ω0 = {K < ∞} is almost sure. For ω outside Ω0, put X̃(ω) = 0
identically. For ω in Ω0, Lemma 7.32 ensures that X(ω) is Hölder continuous
of order α on D. Thus, putting

X̃t(ω) = lim
s → t
s ∈ D

Xs(ω), t ∈ [0, 1], ω ∈ Ω0,7.40

we obtain a path X̃(ω) that is Hölder continuous of order α on [0,1]. The
same property holds trivially for X̃(ω) with ω ∈ Ω0. Finally, for each t in
[0,1], we have Xt = X̃t almost surely in view of 7.40 and 7.33. �

Exercises

7.41 p-variation. Let An be the subdivision of [0,1] that consist of (0, δ],
(δ, 2δ], . . . , (1 − δ, 1] with δ = 1/n. Show that, for p > 0,

1
n

√
np

∑

(s,t]∈An

|Wt − Ws|p

converges, as n → ∞, to E|Z|p in probability, where Z is standard Gaussian.
Hint: Use time inversion and the weak law of large numbers.

7.42 Monotonicity. For almost every ω, the Wiener path is monotone in no
interval. Show. Hint: Compare Proposition 7.6 with Exercise I.5.24.

7.43 Local maxima. Let f : [0, 1] 	→ R be continuous. It is said to have a
local maximum at t if there is ε > 0 such that f(s) ≤ f(t) for every s in
(t− ε, t + ε). Suppose that f is monotone in no interval. Show the following:

a) f has a local maximum.

b) If f has local maxima at s and at t, then it has a local maximum at
some point u in (s, t).

c) The set of all local maxima is dense in [0,1].
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7.44 Exponential inequality. This is similar to Lemma 7.18. Let Mt =
maxs≤t Ws. Show that, for a > 0,

P {Mt > at} ≤ e−a2t/2.

Hint: Recall that Mt ≈
√

t|Z|. So, M2
t ≈ t Z2 ≤ t(Z2 + Y 2) ≈ 2tX, where Y

and Z are independent standard Gaussians, and X is standard exponential.

8 Existence

This is to end the chapter by completing the circle, by showing that
Brownian motions do exist. The question of existence is mathematical: Does
there exist a probability space, and a process defined over it, such that the
process is continuous and appropriately Gaussian.

We give two very different constructions. The first is via Kolmogorov’s
extension theorem and existence of continuous modifications; here, the com-
plexities of the Wiener process are built into the probability measure in an
abstract fashion. By contrast, the second, due to Lévy, uses a very simple
probability space, and the intricacies of the process are built explicitly into
the paths.

First construction

The basic ingredients are Theorem IV.4.18, the Kolmogorov extension
theorem, and Theorem 7.39 on the existence of continuous modifications.

8.1 Theorem. There exist a probability space (Ω, H, P) and a stochastic
process W = (Wt)t∈R+ such that W is a Wiener process over (Ω, H, P).

Proof. We follow the setup of Theorem IV.4.18. Let Ω be the set of all
mappings from R+ into R. For t in R+ and ω in Ω, put Xt(ω) = ω(t). Let
H be the σ-algebra on Ω generated by {Xt : t ∈ R+}. For each finite subset
J of R+, if J has n ≥ 1 elements, let πJ be the n-dimensional Gaussian
distribution on R

J with mean 0 and covariances s ∧ t for s and t in J .
These finite-dimensional distributions πJ form a consistent family. Thus, by
Theorem IV.4.18, there exists a probability measure P on (Ω, H) such that
the distribution of (Xt)t∈J under P is given by πJ for every finite subset J of
R+. It follows that the process X = (Xt)t∈R+ has stationary and independent
increments, has X0 = 0 almost surely, and every increment Xt − Xs has the
Gaussian distribution with mean 0 and variance t − s.

Consider (Xt)t∈[0,1]. Note that the condition 7.33 holds, for instance, with
p = 4, q = 1, c = 3. Thus, Theorem 7.39 applies: there is a modifica-
tion (X̃t)t∈[0,1] that is continuous. Applying 7.39 repeatedly to (Xt)t∈[n,n+1],

n ∈ N, we obtain a process X̃ = (X̃t)t∈R+ that is continuous and has the
same finite-dimensional distributions as X . Thus, X̃ is the Wiener process
W sought. �
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Lévy’s construction

This starts with a probability space on which there is defined a countable
independency of standard Gaussian variables Zq, one for each q in the set D
of all dyadic numbers in [0,1]. This is easy to do; see the next theorem, and
also the exercises below which show that the probability space can be taken
to be ((0,1), B(0,1), Leb).

The object is to construct X = {X(t) : t ∈ [0, 1]} such that X is a Wiener
process on [0,1]. It will be obtained as the limit of a sequence of piecewise
linear continuous processes Xn. The initial process is defined as

X0(t) = t Z1, t ∈ [0, 1].8.2

By the nth step, the variables X(t) will have been defined for t in Dn =
{k/2n : k = 0, 1, . . . , 2n}, and the process Xn = {Xn(t) = t ∈ [0, 1]} is
the piecewise linear continuous process with Xn(t) = X(t) for t in Dn. At
the next step, X(t) is specified for t in Dn+1\Dn and Xn+1 is defined to be
the piecewise linear continuous process with Xn+1(t) = X(t) for t in Dn+1.
See Figure 16.

To implement this plan, we need to specify X(q) for q in Dn+1\Dn

consistent with the values X(t) for t in Dn. This problem is solved by
Example 1.9 since X is to be Wiener: Given X(p) and X(r) for adjacent
points p and r in Dn, the conditional distribution of X(q) at the mid-
point q of [p, r] must be Gaussian with mean 1/2X(p) + 1/2X(r) and variance
2−n−2; note that the conditional mean is exactly Xn(q); thus, we should put
X(q) = Xn+1(q) = Xn(q) +

√
2−n−2 Zq. Finally, piecewise linearity of Xn

and Xn+1 require that we put

Xn+1(t) = Xn(t) +
∑

q∈Dn+1\Dn

hq(t) Zq, n ≥ 0, t ∈ [0, 1],8.3

where

hq(t) =
√

2−n−2
(

1 − |t − q| · 2n+1
)+

, q ∈ Dn+1\Dn.8.4

p q r

Xn+1

Xn

Figure 16: Approximation Xn+1 coincides with Xn at the points p and r in
Dn and differs from Xn at the midpoint q by an amount Zq/

√
2n+2.
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8.5 Remarks. a) For q in Dn+1\Dn, the function hq achieves its maxi-
mum

√
2−n−2 at the point q and vanishes outside the interval of length 2−n

centered at q. Thus, in particular, for each t, the sum in 8.3 has at most one
non-zero term.

b) Note that all the hq are re-scaled translations of the “mother wavelet”
h(t) = (1 − |t|)+, t ∈ [−1, 1].

The following is the formal construction and the proof that the sequence
of process Xn converges to a Wiener process.

8.6 Theorem. Let μ be the standard Gaussian distribution on (R, BR).
Define

(Ω, H, P) = (R, BR, μ)D
,8.7

and let Zq, q ∈ D, be the coordinate variables. Let X0, X1, . . . be defined by
8.2 and 8.3. Then, there exists a process X = {X(t) : t ∈ [0, 1]} such that,
for almost every ω in Ω,

lim
n→∞ sup

t∈[0,1]

|Xn(ω, t) − X(ω, t)| = 0;8.8

and the process X is a Wiener process with parameter set [0,1].

Proof. a) Existence and construction of the probability space of 8.7 is
immediate from Theorem IV.4.7; see IV.5.1 et seq. as well. It is clear that
{Zq : q ∈ D} is an independency of standard Gaussian variables.

b) For f : [0, 1] 	→ R, let ‖f‖ = supt |f(t)|, the supremum norm. We shall
show that (Xn) is Cauchy for almost sure convergence in the norm ‖ · ‖. This
implies the existence of a continuous process X such that ‖Xn − X‖ → 0
almost surely, and there remains to show that X is Gaussian with mean 0
and covariance s∧ t for X(s) and X(t). To that end, we observe from 8.2 and
8.3 that {Xn(t) : t ∈ Dn} is Gaussian with mean 0 and covariance s∧ t; and
the same is true for {Xn+k(t) : t ∈ Dn} for every k, since Xn+k(t) = Xn(t)
for t ∈ Dn. Hence, {X(t) : t ∈ Dn} is Gaussian with mean 0 and variance
s ∧ t, which means that the same is true for {X(t) : t ∈ D}. In view of
the continuity of X , approximating X(t) by X(q), q ∈ D, we see that X is
Gaussian as desired, thus completing the proof.

c) Fix n ≥ 8. Put ε = 2−(n+2)/4. In view of 8.3 and Remark 8.5a, noting
that the maximum of hq is ε2, we see that ‖Xn+1 − Xn‖ = ε2M , where M
is the maximum of |Zq| as q ranges over the set Dn+1\Dn of cardinality 2n.
Since the Zq are independent copies of the standard Gaussian Z0,

P {‖Xn+1 − Xn‖ > ε} = P
{

ε2M > ε
}

≤ 2n
P
{|Z0| > 1/ε

} ≤ 2n · ε · e−1/2ε2
,

the last inequality being by Lemma 7.19. Since (1/2ε2) =
√

2n ≥ 2n for
n ≥ 8, and since e−2n ≤ 2−2n, we conclude that, with εn = 2−(n+2)/4,

∑

n

P {‖Xn+1 − Xn‖ > εn} < ∞,
∑

n

εn < ∞.8.9
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By the Borel-Cantelli lemma, then, there exists an almost sure event Ω0 such
that, for every ω in it there is nω with

‖Xn+1(ω, ·) − Xn(ω, ·)‖ ≤ εn for all n ≥ nω.

Thus, for ω in Ω0, if i, j ≥ n ≥ nω,

‖Xi(ω, ·) − Xj · (ω, ·) ‖ ≤
∞∑

k=n

εk,

and the right side goes to 0 as n → ∞ since (εk) is summable. So, for ω
in Ω0, the sequence (Xn(ω, ·)) is Cauchy for convergence in the norm and,
hence, has a limit X(ω, ·) in the norm. We re-define X(ω, ·) = 0 identically
for ω not in Ω0. This X is the process that was shown to be Wiener in part
(b) above. �

Exercises

8.10 Construction on [0,1] with its Lebesgue measure. This is to show that,
in Lévy’s construction, we can take (Ω, H, P) to be ([0, 1], B[0,1], Leb). This
is tedious but instructive.

Let A = {0, 1}, A = 2A, and α the measure that puts weight 1/2 at the
point 0, and 1/2 at the point 1; then (A, A, α) is a model for the toss of a
fair coin once. Thus,

(Ω, H, P) = (A, A, α)N
∗

is a model for an infinite sequence of tosses, independently. We know that
(Ω, H, P) is basically the same as ([0,1], B[0,1], Leb).

Let b : N
∗ × N

∗ 	→ N
∗ be a bijection, and define

Ui(ω) =
∞∑

j=1

2−jωb(i,j) if ω = (ω1, ω2, · · ·) .

Show that U1, U2, . . . are independent and uniformly distributed on [0,1].
Let h be the quantile function (inverse functional) corresponding to the
cumulative distribution function for the standard Gaussian. Then, Y1 =
h ◦ U1, Y 2 = h ◦ U2, . . . are independent standard Gaussian variables. Fi-
nally, let g : D 	→ N

∗ be a bijection, and put Zq =Yg(q) for q ∈ D. Then,
{Zq : q ∈ D} is an independency of standard Gaussian variables over
the probability space (Ω, H, P). Lévy’s construction yields a Wiener path
Wt(ω), t ∈ [0, 1], for each sequence ω of zeros and ones.
88.11 Lévy’s construction, an alternative. Start with the probability space
(Ω, H, P) and the standard Gaussians Zq, q ∈ D. Put W0 = 0, W1 = Z1.
Having defined Wp for every p in Dn, put

Wq =
1
2

(Wp + Wr) +
√

2−n−2 Zq, q ∈ Dn+1\Dn,

where p = sup Dn ∩ [0, q] and r = inf Dn ∩ [q, 1].
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a) Show that {Wt : t ∈ D} is a Gaussian process; specify its mean and
covariance function.,

b) Show that the condition 7.33 is satisfied (with p =4, q = 1) for
{Wt : t ∈ D} with s, t in D. Then 7.34 holds. Show that this implies
that, for almost every ω, the function t 	→ Wt(ω) from D into R is uniformly
continuous; let t 	→ W̄t(ω) be its continuous extension onto [0, 1]. For the
negligible set of ω remaining, put W̄t(ω) = 0. Show that W̄ is a Wiener
process on [0,1].
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