
Chapter VII

Lévy Processes

This chapter is on Lévy processes with state space R
d, their structure and

general properties. Section 1 introduces them and gives a constructive survey
of the range of behaviors. Section 2 illustrates those constructions in the case
of stable processes, a special class.

Section 3 re-introduces Lévy processes in a modern setting, discusses the
Markov and strong Markov properties for them, and shows the special nature
of the filtrations they generate. Section 4 characterizes the three basic pro-
cesses, Poisson, compound Poisson, and Wiener, in terms of the qualitative
properties of the sample paths. Section 5 is on the famous characterization
theorem of Itô and Lévy, showing that every Lévy process has the form con-
structed in Section 1; we follow Itô’s purely stochastic treatment.

Section 6 is on the use of increasing Lévy processes in random time
changes, an operation called subordination with many applications. Finally,
in Section 7, we describe some basic results on increasing Lévy processes;
these are aimed at applications to theories of regeneration and Markov
processes.

The special case of Wiener processes is left to the next chapter for a
deeper treatment.

1 Introduction

Let (Ω,H,P)be a probability space. Let F = (Ft)t∈R+ be a filtration on
it. Let X = (Xt)t∈R+ be a stochastic process with state space R

d; here, d ≥ 1
is the dimension, and the relevant σ-algebra on R

d is the Borel one.

1.1 Definition. The process X is called a Lévy process in R
d with re-

spect to F if it is adapted to F and

a) for almost every ω, the path t �→ Xt(ω) is right-continuous and
left-limited starting from X0(ω) = 0, and
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b) for every t and u in R+, the increment Xt+u − Xt is independent
of Ft and has the same distribution as Xu.

Let G = (Gt)t∈R+ be the filtration generated by X . If X is a Lévy process
with respect to F, then it is such with respect to G automatically. It is called
a Lévy process, without mentioning a filtration, if it is such with respect to G.

In the preceding definition, the first condition is on the regularity of paths.
The second condition implies that X has stationary and independent incre-
ments : Xt+u − Xt has the same distribution for all t, and the increments
Xt1 − Xt0 , Xt2 − Xt1 , . . . , Xtn − Xtn−1 are independent for all choices of
n ≥ 2 and times 0 ≤ t0 < t1 < · · · < tn. Conversely, if X has stationary and
independent increments, then it fulfills the condition 1.1b with F = G.

Every constant multiple of a Lévy process in R
d is again Lévy. The sum

of a finite number of independent Lévy processes in R
d is again Lévy. Given

a Lévy process X in R
d and a d′ × d matrix c, the process cX is a Lévy

process in R
d′ ; in particular, every linear combination of the components of

X is a Lévy process in R; every component of X is a Lévy process in R - the
components generally depend on each other.

1.2 Example. The simplest (and trivial) Lévy process in R
d is the pure-

drift: it has the form Xt = bt where b is a fixed vector in R
d. Next, we recall

the definitions of some Lévy processes introduced in earlier chapters.

a) According to Definition V.2.15, a Wiener process W is a Lévy
process in R that has continuous paths and has the Gaussian distribution
with mean 0 and variance u for its increments Wt+u −Wt. It is the basic
continuous Lévy process: The most general continuous Lévy process in R has
the form

Xt = bt+ cWt, t ∈ R+,

where b and c are constants in R. A similar result holds for processes in
R
d, in which case b is a vector in R

d, and c is a d × d′ matrix, and W is a
d′-dimensional Wiener process (whose components are independent Wiener
processes). See Theorem 4.3.

b) Poisson processes. The initial definition was given in Definition
V.2.20: a Poisson process N with rate c is a Lévy process that is a count-
ing process having the Poisson distribution with mean cu for its increments
Nt+u − Nt. A list of characterizations were given in Section 5 of the pre-
ceding chapter, and also a martingale characterization in Theorem V.6.13.
We shall add one more in Section 4: a Lévy process whose increments are
Poisson distributed is necessarily a counting process (and, hence, is a Poisson
process).

c) Compound Poisson process. These were introduced in Section 3 of
the preceding chapter as follows. Let N be a Poisson process. Independent of
it, let (Yn) be an independency of identically distributed R

d-valued random
variables. Define

Xt =
∞∑

n=1

Yn1{n≤Nt}, t ∈ R+.
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Then, X is a Lévy process in R
d. Its every path is a step function; its jumps

occur at the jump times ofN , and the sizes of successive jumps are Y1, Y2, . . . .
We shall show in Theorem 4.6 that, conversely, every Lévy process whose
paths are step functions is a compound Poisson process.

d) Increasing Lévy processes. According to Definition VI.4.5, these are
Lévy processes in R whose paths are increasing. Equivalently, they are Lévy
processes with state space R+, because the positivity of Xu and the station-
arity of Xt+u − Xt imply that every increment is positive. Every Poisson
process is an increasing Lévy process. So is every compound Poisson process
with positive jumps (with R+-valued Yn in the preceding remark). So are
gamma processes, so are stable processes with indices in (0, 1); see 4.9, 4.10,
4.19, 4.20 of Chapter VI for these, and also Propositions 4.6 and 4.14 there for
general constructions. It will become clear that every increasing Lévy process
has the form given in Proposition VI.4.6; see Remark 5.4b to come.

Infinite divisibility, characteristic exponent

Recall that a random variable is said to be infinitely divisible if, for every
integer n, it can be written as the sum of n independent and identically dis-
tributed random variables. Let X be a Lévy process in R

d. For t > 0 fixed and
n ≥ 1, lettting δ = t/n, we can write Xt as the sum of the increments over the
intervals (0, δ], (δ, 2δ], · · · , (nδ− δ, nδ], and those increments are independent
and identically distributed. Thus, Xt is infinitely divisible for every t, and so
is every increment Xt+u − Xt. It follows that the characteristic function of
X has the form

E eir·Xt = etψ(r), t ∈ R+, r ∈ R
d ;1.3

here, on the left, r · x = r1x1 + · · · + rdxd, the inner product of r and x in
R
d. On the right side, ψ is some complex-valued function having a specific

form; it is called the characteristic exponent of X. Its form is given by the
Lévy-Khinchine formula; see 1.31 and 1.33 below. Its derivation is basically
a corollary to Itô-Lévy decomposition of Theorem 5.2 to come.

Means and variances

Let X be a Lévy process in R
d. It is possible that EXt does not exist; this

is the case, for instance, if X is a compound Poisson process as in Example
1.2c and the Yn do not have expected values. Or, it is possible that EXt is well-
defined but is equal to infinity in some components. However, if the means
and variances of the components of the random vector Xt are well-defined,
then they must be linear in t, that is,

E Xt = at, VarXt = vt, t ∈ R+.1.4

This is a consequence of the stationarity and independence of the increments;
a is a fixed vector in R

d, and VarXt is notation for the covariance matrix of
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Xt, and v is a fixed symmetric d× d matrix that is positive definite, that is,
vij = vji for all i and j, and r · vr ≥ 0 for every r in R

d.

Continuity in distribution

Consider 1.3 and note its continuity in t. Recall that the convergence in
distribution is equivalent to the convergence of the corresponding characteris-
tic functions; see Corollary III.5.19. Thus, (Xtn) converges in distribution to
Xt for every sequence (tn) with limit t. The following is the same statement
using the definition of convergence in distribution.

1.5 Proposition. Suppose that X is a Lévy process in R
d. Then, t �→

E f ◦Xt is continuous for every bounded continuous function f : R
d �→ R.

Probability law of X

Suppose that X is Lévy. Then, its probability law is determined by the
distribution πt of Xt for any one t > 0, or equivalently, by the characteristic
exponent ψ appearing in 1.3. To see this, first note that the Fourier transform
of πt is etψ; if it is known for one t, then it is known for all t.

Next, consider the finite-dimensional distributions of X : consider the dis-
tribution of (Xs, Xt, . . . , Xu, Xv) for finitely many times, 0 < s < t < · · · <
u < v. That distribution is determined by the distribution of (Xs, Xt −
Xs, . . . , Xv−Xu), and the latter is the product measure πs×πt−s×· · ·×πv−u
in view of the independence and stationarity of the increments.

Regularity of the paths and jumps

Suppose that X is a Lévy process in R
d. Fix an outcome ω for which the

regularity properties 1.1a hold. This means that the limits

Xt−(ω) = lim
s↑t

Xs(ω), Xt+(ω) = lim
u↓t

Xu(ω)1.6

exist for every t in R+ (with the convention that Xt−(ω) = 0 for t = 0),
the limits belong to R

d, and Xt+(ω) = Xt(ω) by right-continuity. If the two
limits differ, then we say that the path X(ω) jumps from its left-limit Xt−(ω)
to its right-hand value Xt(ω) = Xt+(ω). The difference

ΔXt(ω) = Xt(ω) −Xt−(ω),1.7

if non-zero, is called the size of the jump at time t and its length |ΔXt(ω)|
is called the jump magnitude. The path X(ω) can have no discontinuities
other than the jump-type described.

Let Dω be the discontinuity set for the path X(ω), that is,

Dω = {t > 0 : ΔXt(ω) �= 0}.1.8
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If X is continuous, then Dω is empty for almost every ω. If X is Poisson
or compound Poisson plus some continuous process, then, for almost every
ω, the set Dω is an infinite countable set, but Dω ∩ (s, u) is finite for all
0 ≤ s < u < ∞. For all other processes X , for almost every ω, the set
Dω is still infinite but with the further property that Dω ∩ (s, u) is infinite
for all 0 ≤ s < u < ∞. This last property is apparent for gamma and
stable processes of Example VI.4.9 and VI.4.10, and will follow from Itô-Lévy
decomposition in general; see Theorem 5.2.

1.9 Remark. However, for every ε > 0, there can be at most finitely
many t in Dω ∩ (s, u) for which the magnitude |ΔXt(ω)| exceeds ε. For,
otherwise, if there were infinitely many such jump times for some ε > 0, then
Bolzano-Weierstrass theorem would imply that there must exist a sequence
(tn) of such times that converges to some point t in [s, u], and then at least
one of the limits 1.6 must fail to exist.

Pure-jump processes

These are processes in R
d where Xt is equal to the sum of the sizes of its

jumps during [0, t]; more precisely, for almost every ω,

Xt(ω) =
∑

s∈Dω∩[0,t]

ΔXs(ω), t ∈ R+,1.10

where the sum on the right side converges absolutely, that is, where

Vt(ω) =
∑

s∈Dω∩[0,t]

|ΔXs(ω)| <∞.1.11

Indeed, every such process has bounded variation over bounded intervals,
and Vt(ω) is the total variation of the path X(ω) over [0, t].

Every increasing Lévy process without drift is a pure-jump Lévy process,
so is the difference of two such independent processes. The following con-
structs such processes in general. We shall see later that every pure-jump
Lévy process in R

d has the form given in this theorem.

1.12 Theorem. Let M be a Poisson random measure on R+ × R
d with

mean measure Leb× λ, where the measure λ on R
d has λ{0} = 0 and

ˆ
Rd

λ(dx)(|x| ∧ 1) <∞.1.13

Then, for almost every ω, the integral

Xt(ω) =
ˆ

[0,t]×Rd

Mω(ds, dx)x1.14
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converges absolutely for every t, and the path X(ω) has bounded variation
over [0, t] for every t in R+. The process X is a pure-jump Lévy process in
R
d, and its characteristic exponent is

ψ(r) =
ˆ

Rd

λ(dx)(eir·x − 1), r ∈ R
d.1.15

1.16 Remark. Lévy measure. The measure λ determines the probability
laws of M and X . It is called the Lévy measure of X . It regulates the
jumps: for every Borel subset A of R

d with λ(A) < ∞, the jump times
of X with corresponding sizes belonging to A form the counting process
t �→ M((0, t] × A), and the latter is a Poisson process with rate λ(A). The
condition that λ{0} = 0 is for reasons of convenience: to prevent linguistic
faults like “jumps of size 0,” and also to ensure that X(ω) and Mω determine
each other uniquely for almost every ω. The condition 1.13 is essential. It is
satisfied by every finite measure. More interesting are infinite measures that
satisfy it; to such measures there correspond pure-jump processes that have
infinitely many jumps during every interval (s, t) with s < t; but, of those
jumps, only finitely many may exceed ε in magnitude however small ε > 0
may be; see Remark 1.9.

Proof. Let M̂ be the image of M under the mapping (s, x) �→ (s, |x|) from
R+ × R

d into R+ × R+, and λ̂ the image of λ under the mapping x �→ |x|.
Then, M̂ is Poisson random measure on R+ × R+ with mean Leb× λ̂. Note
that λ̂{0} = 0 and 1.13 is equivalent to

ˆ
R+

λ̂(dv)(v ∧ 1) <∞,1.17

which, in particular, implies that λ̂(ε,∞) <∞ for every ε > 0.
Thus, by Proposition VI.2.18, we can select an almost sure event Ω′ such

that, for every ω in it, the measure M̂ω is a counting measure, has no atoms
in {0}×R+ and no atoms in R+×{0}, and has at most one atom in {t}×R+

no matter what t is.
On the other hand, for each time t,

Vt =
ˆ

[0,t]×R+

M̂(ds, dv)v =
ˆ

[0,t]×Rd

M(ds, dx)|x|1.18

is positive and real-valued almost surely in view of 1.17 and Proposition
VI.2.13. Let Ωt be the almost sure event involved, and define Ω′′ to be the
intersection of Ωt over t in N.

Fix an outcome ω in the almost sure event Ω′ ∩Ω′′. The mapping t �→
Vt(ω) from R+ into R+ is right-continuous and increasing starting from the
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origin; and it has a jump of size v at time s if and only if Mω has an atom
(s, x) with |x| = v. It follows that the integral in 1.14 converges absolutely
for all times t, and we have

∑

s≤t
|ΔXs(ω)| = Vt(ω),

∑

s≤t
ΔXs(ω) = Xt(ω).

Hence, X is of the pure-jump type and is right-continuous and left-limited
starting from the origin, and its total variation over [0, t] is equal to Vt.

It is immediate from 1.14 and the Poisson character of M that X has
stationary and independent increments. The form 1.15 for the characteristic
exponent follows from 1.3, 1.14, and Theorem VI.2.9. �

1.19 Remark. Total variation. The preceding proof has shown, in addi-
tion, that the total variation process V is defined by 1.18 as well, and that
it is a pure-jump increasing Lévy process. Its Lévy measure is the image of
λ under the mapping x �→ |x|. The path X(ω) has a jump of some size x at
time t if and only if V (ω) has a jump of size |x| at the same time t.

1.20 Remark. Poisson and compound Poisson. If the dimension d = 1,
and λ = cδ1 (recall that δx is Dirac at x), then X of the last theorem becomes
a Poisson process with rate c. For arbitrary d, if λ is a finite measure on R

d,
then 1.13 holds automatically and X is a compound Poisson process as in
Example 1.2c: its jump times form a Poisson process N with rate c = λ(Rd),
and the sizes Yn of its jumps are independent of N and of each other and have
the distribution μ = 1

cλ on R
d. Its total variation process V is an increasing

compound Poisson process in R+; the jump times of V form the same Poisson
process N , but the jump sizes are the |Yn|.

1.21 Example. Gamma, two-sided and symmetric. Recall Example
VI.4.6, the gamma process with shape rate a and scale parameter c. It is an
increasing pure-jump Lévy process in R+. Its Lévy measure has the density
ae−cx/x for x in (0,∞) and puts no mass elsewhere. Its value at t has the
gamma distribution with shape index at and scale c.

Let X+ and X− be independent gamma processes. Then,

X = X+ −X−

is a pure-jump Lévy process in R; the distribution of Xt is not gamma;
nevertheless, X may be called a two-sided gamma process; see Exercises 1.47
and 1.48 for some observations. In the special case where X+ and X− have
the same law, that is, if they have the same shape rate a and the same scale
parameter c, then the Lévy measure of X is given by

λ(dx) = dx a
e−c|x|

|x| , x ∈ R\{0},
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with λ{0} = 0; in this case, we call X a symmetric gamma process with
shape rate a and scale parameter c. The distribution of Xt is not gamma and
cannot be expressed explicitly; however, the characteristic function is

E eirXt =
(

c

c− ir

)at(
c

c+ ir

)at
=

(
c2

c2 + r2

)at
, r ∈ R.

The total variation process V = X++X− is a gamma process with shape rate
2a and scale parameter c. See Exercise 1.48 and also 6.26 for d-dimensional
analogs of X .

Compensated sums of jumps

This is to introduce Lévy processes driven by Poisson random measures
as above, but whose paths may have infinite total variation over every time
interval of strictly positive length. As remarked in 1.9, there can be at most
finitely many jumps of magnitude exceeding ε > 0 during a bounded time
interval. Thus, intricacies of paths are due to the intensity of jumps of small
magnitude. To concentrate on those essential issues, the next construction is
for processes whose jumps are all small in magnitude, say, all less than unity.
We write B for the unit ball in R

d and Bε for the complement in B of the
ball of radius ε, that is,

B = { x ∈ R
d : |x| ≤ 1 }, Bε = { x ∈ R

d : ε < |x| ≤ 1 }.1.22

1.23 Theorem. Let M be a Poisson random measure on R+ × B with
mean Leb× λ, where the measure λ on B satisfies λ{0} = 0 and

ˆ
B

λ(dx)|x|2 <∞.1.24

For ε in (0, 1), define

Xε
t (ω) =

ˆ
[0,t]×Bε

Mω(ds, dx)x − t

ˆ
Bε

λ(dx)x, ω ∈ Ω, t ∈ R+.1.25

Then, there exists a Lévy process X such that, for almost every ω,

lim
ε↓0

Xε
t (ω) = Xt(ω),

the convergence being uniform in t over bounded intervals. The characteristic
exponent for X is

ψ(r) =
ˆ

B

λ(dx)(eir·x − 1 − ir · x), r ∈ R
d.1.26
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1.27 Notation. For future purposes, it is convenient to write

Xt =
ˆ

[0,t]×B

[M(ds, dx) − dsλ(dx)] x,

the exact meaning of the right side being the almost sure limit described in
the preceding theorem.

1.28 Remarks. The proof of the preceding theorem is left to the end of
this section because of its length and technical nature. For the present, here
are some comments on its meaning.

a) The process Xε has the form

Xε
t = Y εt − aεt

where Y ε is a compound Poisson process in R
d and the drift rate aε is a fixed

vector in R
d. To see this, we start by defining

bε =
ˆ

Bε

λ(dx)|x|, cε =
ˆ

Bε

λ(dx)|x|2, 0 ≤ ε < 1,

and note that ε2λ(Bε) ≤ εbε ≤ cε ≤ c0 since ε2 ≤ ε|x| ≤ |x|2 for x in Bε.
The condition 1.24 means that c0 < ∞, which implies that λ(Bε) < ∞ and
bε <∞ for every ε > 0. Since λ(Bε) <∞, the first integral on the right side
of 1.25 converges absolutely, and the second defines a vector aε in R

d. Hence,
the claimed form for Xε.

b) The claim of the theorem is the existence of a Lévy process X such
that, for almost every ω,

lim
ε↓0

sup
0≤t≤u

|Xε
t (ω) −Xt(ω)| = 0

for every u in R+.
c) Recall the notation introduced in Remark (a) above. If b0 <∞, then

λ satisfies 1.13, and Theorem 1.12 shows that

Yt = lim
ε↓0

Y εt =
ˆ

[0,t]×B

M(ds, dx)x, t ∈ R+,

is a pure-jump Lévy process with Lévy measure λ. In this case,

a = lim
ε↓0

ˆ
Bε

λ(dx)x =
ˆ

B

λ(dx)x

is also well-defined, and we have

Xt = Yt − at, t ∈ R+.
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d) The novelty of the theorem, therefore, occurs when b0 = +∞ and
c0 < ∞, that is, 1.13 fails but 1.24 holds. Then, aε fails to converge as
ε → 0, and Y εt fails to converge as ε → 0, but the difference Xε

t = Y εt − aεt
converges. The limit process X has infinite variation over every time interval
(s, t), however small t− s > 0 may be.

e) Every Xε
t is a compensated sum of jumps: the sum of the sizes of

jumps during (0, t] is equal to Y εt , the corresponding compensator term is
equal to aεt, and the resulting process Xε is a d-dimensional martingale. For
this reason, the limit X is said to be a compensated sum of jumps.

Construction of general Lévy processes

The next theorem introduces Lévy processes of a general nature. In
Section 5, Itô-Lévy decomposition theorem will show that, conversely, every
Lévy process in R

d has this form. In the next section, there are several
concrete examples.

Recall the notation B for the closed unit ball in R
d, and write B

c for its
complement, R

d\B. We shall use notation 1.27 again.

1.29 Theorem. Let b be a vector in R
d, and c a d× d′ matrix, and λ a

measure on R
d satisfying λ{0} = 0 and

ˆ
Rd

λ(dx) (|x|2 ∧ 1) <∞.1.30

Let W be a d′-dimensional Wiener process and, independent of it, let M be
a Poisson random measure on R+ × R

d with mean Leb× λ. Then,

Xt = bt+cWt+
ˆ

[0,t]×B

[M(ds, dx)−dsλ(dx)]x+
ˆ

[0,t]×Bc

M(ds, dx)x,1.31

defines a Lévy process in R
d, and the characteristic exponent of X is, with

v = ccT ,

ψ(r) = ir·b− 1
2r·vr +

ˆ
B

λ(dx)(eir·x − 1 − ir·x)1.32

+
ˆ

Bc

λ(dx)(eir·x − 1), r ∈ R
d.

Proof. Let Xb, Xc, Xd, Xe denote the processes defined by the four terms
on the right side of 1.31 in the order they appear; then,

X = Xb +Xc +Xd +Xe.1.33

The first term is trivially Lévy. The second, Xc, is a continuous Lévy process,
since it is the product of the matrix c with the continuous Lévy process W .
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The condition 1.30 is equivalent to requiring the condition 1.24 together with
λ(Bc) < ∞. Thus, Theorem 1.23 shows that Xd is a Lévy process. And, as
remarked in 1.20, Xe is a compound Poisson process. So, all four are Lévy.

The processes Xd and Xe are independent because the traces of the
Poisson random measure M on R+ × B and on R+ × B

c are independent.
And Xc is independent of Xd and Xe by the assumed independence of W
and M . Since sums of independent Lévy processes is Lévy, X is Lévy. The
formula for the characteristic exponent follows from the independence of the
four terms, results in Theorem 1.12 and 1.23, and the well-known formula for
E eiZ , where Z = r · cWt =

∑
i

∑
j ricijW

(j)
t is Gaussian with mean 0 and

variance (r · vr)t. �

1.34 Remarks. a) Lévy-Khinchine formula. This refers to the formula
1.32. If Z is an R

d-valued infinitely divisible variable, then E eir·Z = eψ(r)

for some b in R
d, some d× d symmetric positive definite matrix v, and some

measure λ on R
d satisfying 1.30.

b) Characteristics for X . This refers to the triplet (b, v, λ) which deter-
mines the probability law of X .

c) Semimartingale connection. The decomposition 1.31–1.33 shows that
X is a semimartingale (see Definition V.5.18): The drift termXb is continuous
and has locally bounded variation, the Gaussian term Xc is a continuous
martingale, Xd is a discontinuous martingale, and Xe is a step process whose
every jump exceeds unity in magnitude. Thus, Xc+Xd is the martingale part
of X , and Xb +Xe the part with locally bounded variation.

The following is immediate from Theorem 1.12 for pure-jump Lévy
processes, but we state it here as a special case of the last theorem.

1.35 Corollary. In the last theorem, suppose that λ satisfies the con-
dition 1.13. Then, the integral

a =
ˆ

B

λ(dx)x

converges absolutely, and the process X takes the form

Xt = (b− a)t+ cWt +
ˆ

[0,t]×Rd

M(ds, dx)x, t ∈ R+,1.36

with the last term defining a pure-jump Lévy process. Accordingly, the char-
acteristic exponent becomes

ψ(r) = ir · (b− a) − 1
2
r · vr +

ˆ
Rd

λ(eir·x − 1), r ∈ R
d.

Proof. When λ satisfies 1.13, the integral defining a converges absolutely,
and λ satisfies 1.30 since |x|2 ≤ |x| for x ∈ B. So, the conclusions of the
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last theorem hold. In addition, Remark 1.28c applies and Xd
t = Yt − at in

the notation there. Now, writing Yt + Xe
t as one integral, we obtain 1.36

from 1.31. �

Proof of Theorem 1.23
This will be through a series of lemmas. We start with an easy extension

of Kolmogorov’s inequality, Lemma III.7.1, to R
d-valued variables. This is a

discrete-time result, but we state it in continuous-time format.

1.37 Lemma. Let {Z(t) : t ∈ R+ } be a process with state space R
d and

E Z(t) = 0 for all t. Suppose that it has independent increments. Then, for
every finite set D ⊂ [0, 1] and every ε > 0,

P{ sup
t∈D

|Z(t)| > ε } ≤ d

ε2
E |Z(1)|2.

Proof. Let Zi(t) denote the i-coordinate of Z(t). Obviously,

sup
D

|Z(t)|2 = sup
D

d∑

i=1

|Zi(t)|2 ≤
d∑

i=1

sup
D

|Zi(t)|2,

and the left side exceeds ε2 only if at least one term on the right exceeds
ε2/d. Thus,

P{ sup
D

|Z(t)| > ε } ≤
d∑

i=1

P{ sup
D

|Zi(t)| > ε√
d
}

≤
d∑

i=1

d

ε2
E |Zi(1)|2 =

d

ε2
E |Z(1)|2,

where Kolmogorov’s inequality justifies the second inequality. �

For processes Z with right-continuous and left-limited paths, we introduce
the norm

‖Z‖ = sup
0≤t≤1

|Z(t)|.1.38

The following extends Kolmogorov’s inequality to continuous-time processes;
we state it for Lévy processes even though the stationarity of increments is
not needed.

1.39 Lemma. Let Z be a Lévy process in R
d with mean 0. For every

ε > 0,

P{ ‖Z‖ > ε } ≤ d

ε2
E |Z(1)|2.

Proof. Let q0, q1, . . . be an enumeration of the rational numbers in [0, 1].
Let Dn = { q0, . . . , qn }. By the right-continuity of Z, the supremum of |Z(t)|
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over t in Dn increases to ‖Z‖ as n→ ∞. Thus, by the monotone convergence
theorem,

P{ ‖Z‖ > ε } = lim
n

P{ sup
t∈Dn

|Z(t)| > ε };

and the proof is completed via Lemma 1.37 above. �

1.40 Lemma. Let Z1, . . . , Zm be processes with state space R
d and paths

that are right-continuous and left-limited. Suppose that Z1, Z2−Z1, . . . , Zm−
Zm−1 are independent. Then, for every ε > 0,

P{ max
k≤m

‖Zk‖ > 3ε } ≤ 3 max
k≤m

P{ ‖Zk‖ > ε }.1.41

Proof. Let H be the event on the left side, and let 3δ denote the right
side; we need to show that

P(H) ≤ 3δ.1.42

Put Z0 = 0 and let Hk = {maxj≤k−1 ‖Zj‖ ≤ 3ε < ‖Zk‖ } for k = 1, . . . ,m;
these events form a partition of H . Since ‖Zm−Zk‖+‖Zm‖ ≥ ‖Zk‖, we have

Hk ∩ { ‖Zm − Zk‖ ≤ 2ε } ⊂ Hk ∩ { ‖Zm‖ > ε }.

The two events on the left side are independent for each k by the assumed
independence of the increments of k �→ Zk . The union over k of the right
side yields a subset of { ‖Zm‖ > ε }, and the latter’s probability is at most δ.
Thus,

m∑

k=1

P(Hk) P{ ‖Zm − Zk‖ ≤ 2ε } ≤ δ.1.43

Since ‖Zm − Zk‖ ≤ ‖Zm‖ + ‖Zk‖, on the set { ‖Zm − Zk‖ > 2ε } we have
either ‖Zm‖ > ε or ‖Zk‖ > ε. Hence,

1 − P{ ‖Zm − Zk‖ ≤ 2ε } ≤ P{‖Zm‖ > ε} + P{‖Zk‖ > ε} ≤ 2δ.

Putting this into 1.43 and recalling that (Hk) is a partition of H , we get

(1 − 2δ)P(H) ≤ δ.

If δ < 1/3, then 1−2δ ≥ 1/3 and we get P(H)/3 ≤ δ as needed to show 1.42.
If δ ≥ 1/3, then 1.42 is true trivially. �

Proof of Theorem 1.23
Recall the setup and assumptions of the theorem. Recall the norm 1.38.

Let (εn) be a sequence in (0, 1) strictly decreasing to 0. For notational sim-
plicity, we define

Bn = Bεn , Zn(t) = Xεn
t =

ˆ
[0,t]×Bn

M(ds, dx)x − t

ˆ
Bn

λ(dx)x.1.44
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We shall show that, almost surely,

lim
n→∞ sup

i,j≥n
‖Zi − Zj‖ = 0.1.45

Assuming this, the rest of the proof is as follows: 1.45 means that (Zn) is
Cauchy for almost sure convergence in the norm ‖·‖. Hence, there is a process
X such that ‖Zn −X‖ → 0 almost surely, and it is obvious that the limit X
does not depend on the sequence (εn) chosen. So, in the notation of Theorem
1.23, we see that, for almost every ω, Xε

t (ω) �→ Xt(ω) uniformly in t ≤ 1 as
ε → 0. The uniformity of convergence implies that X(ω) is right-continuous
and left limited on the interval [0, 1], since each Xε is such. Since almost sure
convergence implies convergence in distribution for (Xε

t1 , . . . , X
ε
tk

), and since
Xε has stationary and independent increments, the process X has stationary
and independent increments, over [0, 1]. Repeating the whole procedure for
the processes { Xε

k+t − Xε
k : 0 ≤ t ≤ 1 } with k = 1, 2, . . . completes the

proof of the theorem, except for showing 1.45.
Each Zn defined in 1.44 is a Lévy process with E Zn(t) = 0. Moreover,

the processes Z1, Z2 − Z1, . . . are independent (and Lévy), because they are
defined by the traces of M over the disjoint sets R+ ×B1,R+ × (B2\B1), · · ·
respectively, and M is Poisson.

Fix ε > 0. Applying Lemma 1.40 with processes Zn+1−Zn, . . . , Zn+m−Zn
and then using Lemma 1.39 with well-known formulas for the moments of
Poisson integrals, we obtain

P{ max
k≤m

‖Zn+k − Zn‖ > 3ε } ≤ 3 max
k≤m

P{ ‖Zn+k − Zn‖ > ε }

≤ 3 max
k≤m

d

ε2
E |Zn+k(1) − Zn(1)|2

≤ 3d
ε2

max
k≤m

ˆ
Bn+k\Bn

λ(dx)|x|2

≤ 3d
ε2

ˆ
B0\Bn

λ(dx)|x|2

On the left, the random variable involved increases as m does, and the limit
dominates 1

2‖Zi − Zj‖ for all i, j ≥ n. Thus,

P{ sup
i,j≥n

‖Zi − Zj‖ > 6ε } ≤ 3d
ε2

ˆ
B0\Bn

λ(dx)|x|2.

On the right side, the integrability condition 1.24 allows the use of the domi-
nated convergence theorem as n→ ∞, and the limit is 0 since B0\Bn shrinks
to the empty set. Hence, since the supremum over i, j ≥ n decreases as n in-
creases,

P{ lim
n

sup
i,j≥n

‖Zi − Zj‖ > 6ε } = lim
n

P{ sup
i,j≥n

‖Zi − Zj‖ > 6ε } = 0.

Since ε > 0 is arbitrary, this proves that 1.45 holds almost surely.
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Exercises and complements

1.46 Simple random walk in continuous time. Let X be a pure-jump Lévy
process in R with Lévy measure

λ = aδ1 + bδ−1,

where δx is Dirac at x, and a and b are positive numbers. Show thatX = X+−
X− where X+ and X− are independent Poisson processes with respective
rates a and b. Describe the total variation process V . Show that at every
time of jump for V , the process X jumps either upward or downward with
respective probabilities a/(a+ b) and b/(a+ b).

1.47 Processes with discrete jump size. Let λ be a purely atomic finite measure
in R

d. Let X be a compound Poisson process with λ as its Lévy measure.
Show that X can be decomposed as

X =
∞∑

1

akN
(k)

where (ak) is a sequence in R
d, and the N (k) are independent Poisson pro-

cesses. Identify the ak and the rates of the N (k).

1.48 Two-sided gamma processes. As in Example 1.21, let X+ and X− be
independent gamma processes and define X = X+ −X−. Suppose that X+

and X− have the same scale parameter c, and respective shape rates a and b.
Let V = X+ +X−.

a) Compute the Lévy measures of X and V .
b) Show that the distribution πt of Xt is given by

πtf=
ˆ

R+

dx
e−cxcatxat−1

Γ(at)

ˆ
R+

dx
e−cxcbtxbt−1

Γ(bt)
f(x− y), f ∈ B(R).

c) For fixed t, show that X+
t /Vt and Vt are independent. What are

their distributions?

1.49 Symmetric gamma distribution. Let ka denote the density function of
the symmetric gamma distribution with shape index a and scale parameter
1, that is, ˆ

R

dx ka(x) eirx =
(

1
1 + r2

)a
, r ∈ R.

a) The density for the same distribution with scale parameter c is the
function x �→ cka(cx). Show.

b) For a = b in 1.48, show that πt(dx) = ckat(cx) dx.
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1.50 Alternative constructions. Let N be a standard Poisson random measure
on R+ × R+ (with mean Leb× Leb). Let j : R+ �→ R

d be a Borel function
satisfying ˆ

R+

dx (|j(x)| ∧ 1) <∞.

a) Show that

Xt =
ˆ

[0,t]×R+

N(ds, dx)j(x), t ∈ R+,

defines a pure-jump Lévy process.
b) Compute the Lévy measure corresponding to j(x) = e−cx, x ∈ R+.

1.51 Continuation. Let N be as in the preceding exercise. Let j : R+ �→ R
d

be such that ˆ
R+

dx (|j(x)|2 ∧ 1) <∞,

and put D = { x ∈ R+ : |j(x)| ≤ 1 } and Dc = R+\D. Let

Xd
t =
ˆ

[0,t]×D
[N(ds, dx) − ds dx ] j(x),

with the exact meaning to be in accord with Notation 1.27. Then, Xd is a
Lévy process. So is

Xe
t =
ˆ

[0,t]×Dc

N(ds, dx) j(x).

1.52 Continuation. Let j1 and j2 be Borel functions from R+ into R, and
suppose that they both satisfy the condition on j of 1.50. Define

X
(1)
t =

ˆ
[0,t]×R+

N(ds, dx) j1(x), X
(2)
t =

ˆ
[0,t]×R+

N(ds, dx) j2(x).

Show that X(1) and X(2) are Lévy processes in R, and X = (X(1), X(2)) is
a Lévy process in R

2; all three are of the pure-jump type; X(1) and X(2) are
dependent.

1.53 Spherical coordinates. Each point x in R
d can be represented as x = vu

by letting v = |x| and u = x/|x|; obviously, v is the length of x, and u is its
direction represented as a point on the unit sphere

S = { x ∈ R
d : |x| = 1 }.

Let ρ be a σ-finite measure on R+ and let σ be a transition probability kernel
from R+ into S. Define the measure λ on R

d by the integral formula

λf =
ˆ

Rd

λ(dx) f(x) =
ˆ

R+

ρ(dv)
ˆ
S

σ(v, du)f(vu)
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for f : R
d �→ R+ Borel. Then, ρ is called the radial part of λ, and σ the

spherical part.

a) Show that
´

Rd λ(dx) (|x|2 ∧ 1) <∞ ⇔ ´
R+
ρ(dv)(v2 ∧ 1) <∞.

b) Show that
´

Rd λ(dx) (|x| ∧ 1) <∞ ⇔ ´
R+
ρ(dv)(v ∧ 1) <∞.

c) Let h : R
d �→ R+ be the mapping x �→ |x|. Show that ρ = λ◦h−1. If

λ is given somehow, one can find ρ and σ such that ρ is the radial part and
σ the spherical part.

1.54 Continuation. Let λ, ρ, σ be as in the preceding exercise 1.53, and sup-
pose that ρ-integral of (v ∧ 1) is finite as in part (b) of 1.53. Let M be a
Poisson random measure on R+ ×R+ with mean Leb× ρ. Let (Ti, Vi), i ∈ N,
be a labeling of its atoms. For each i, let Ui be a random point on the sphere
S such that

P{ Ui ∈ B | Ti = t, Vi = v } = σ(v,B)

free of t, and assume that Ui is conditionally independent of
{ (Tj , Vj , Uj) : j �= i } given Vi. Show that

Xt =
∑

i∈N

Vi Ui 1{Ti≤1}, t ∈ R+,

defines a pure-jump Lévy process X in R
d whose Lévy measure is λ.

2 Stable Processes

Stable processes form an important subclass of Lévy processes. This sec-
tion is to introduce them and point out the explicit forms of their charac-
teristic exponents and Lévy measures. Section 6 on subordination will have
further results clarifying the relationships among them.

Let a be a number in R+. Let X = (Xt)t∈R+ be a Lévy process in R
d.

Then X is said to be a-stable, or stable with index a, or self-similar with
index a if the process X̂ = (s−1/aXst)t∈R+ has the same probability law as
X for every s in (0,∞). Since the law of a Lévy process X is determined by
the distribution of X1, and since X̂ is also Lévy, the condition of a-stability
is equivalent to the condition that s−1/aXs have the same distribution as X1

for every s in (0,∞), or that Xt and t1/aX1 have the same distribution.
If X = 0 almost surely, then it is a-stable for every a in R+; we exclude

this degenerate case from now on; then a > 0 necessarily. Exercises 2.34 and
2.35 show that the index a cannot exceed 2. If X = W or X = cW with W
Wiener and c a constant, then X is stable with index 2; see Exercise 2.36.
All other stable processes have indices in the interval (0, 2).

For stable processes in R, we shall see the following. If the index a is
in (0, 1), then the process is necessarily a pure-jump Lévy process whose
Lévy measure is infinite and has a specific form. If a is in (1, 2), then the
Lévy measure is again infinite and has a specific form, and the paths have
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infinite variation over every time interval and cannot be pure-jump type. If
a = 1, there are three possibilities: the process can be pure drift and thus
deterministic; or it can be a Cauchy process, the paths having the same
qualitative features as in the case of indices in (1, 2), but each increment
having a Cauchy distribution; or it can be a Cauchy process plus some drift.

Stable processes with index in (0, 1)

The process introduced in Example VI.4.10 is an increasing pure-jump
Lévy process which is stable with index a in (0, 1). It will serve as the total
variation process (see 1.12 et seq.) for a-stable processes in R

d. We review
the example in a form suited to our current agenda.

2.1 Example. Increasing stable processes. Fix a in (0, 1) and c in (0,∞).
Let

λ(dv) = dv
c

va+1
1(0,∞)(v), v ∈ R.

This λ satisfies the condition 1.13 of Theorem 1.12. Let V be the pure-jump
Lévy process associated. Then V is strictly increasing, all its jumps are up-
ward, and it has infinitely many jumps in every time interval of some length;
the last is because λ(0,∞) = +∞. The process V is a-stable; conversely,
every increasing stable process has this form. Recall from VI.4.10 that, for
p ≥ 0,

E e −pVt = exp− t

ˆ
R+

dv
c

va+1
(1 − e−pv) = exp− tc

Γ(1 − a)
a

pa.2.2

We show next that the corresponding characteristic function is

E eirVt = exp t
ˆ

R+

dv
c

va+1
(eirv − 1)

= exp− tca|r|a [1 − i(tan 1
2πa) sgn r],2.3

r ∈ R, where

ca = c
Γ(1 − a)

a
cos 1

2πa, sgn r = 1R+(r) − 1R+(−r).2.4

We start by claiming that, for every complex number z whose real part is
zero or less,ˆ

R+

dv
c

va+1
(ezv − 1) = −cΓ(1 − a)

a
(−z)a = −cΓ(1 − a)

a
|z|a eia Arg(−z),

2.5

where Arg z is the principal value (in the interval (−π, π]) of the argument of
z. This claim follows from noting that 2.5 holds for all negative real z in view
of 2.2, and that both sides of 2.5 are regular in the interior of the left-hand
plane and are continuous on the boundary. Taking z = ir in 2.5 we obtain
2.3, since Arg (−ir) = − 1

2π sgn r.



Sec. 2 Stable Processes 331

2.6 Example. Stable processes in R
d with index in (0, 1). Fix a in (0, 1)

and c in (0,∞). Let S = { x ∈ R
d : |x| = 1 }, the unit sphere in R

d, and let
σ be a probability measure on it. Define a measure λ on R

d by the integral
formula

λf =
ˆ

Rd

λ(dx) f(x) =
ˆ

R+

dv
c

va+1

ˆ
S

σ(du) f(vu), f ≥ 0 Borel;2.7

see Exercise 1.53; note that the radial part of λ is the Lévy measure of the
preceding example. When f(x) = |x| ∧ 1, we have f(vu) = |vu| ∧ 1 = v ∧ 1
for u in S, and it follows that λf < ∞ since a ∈ (0, 1). Thus λ satisfies the
condition 1.13.

LetX be the process constructed in Theorem 1.12 for this Lévy measure λ.
Then,X is a pure-jump Lévy process in R

d. Its total variation process V is the
increasing pure-jump Lévy process of the preceding example. The processes
X and V have the same jump times, infinitely many in every open interval.
Moreover, 2.7 implies the following conditional structure for X given V : given
that V has a jump of size v at time t, the process X has a jump of size vU
at the same time t, where U is a random variable with distribution σ on the
sphere S ; see Exercise 1.54 for the same description in more detail.

Consequently, the a-stability of V implies the a-stability of X : for fixed
s in (0,∞), the transformation that takes the sample path t �→ Xt(ω) to
the sample path t �→ X̂t(ω) = s−1/aXst(ω) merely alters the times and
magnitudes of the jumps, which are totally determined by t �→ Vt(ω). The
a-stability of X can also be deduced by noting that t1/aX1 and Xt have the
same characteristic function; for, with the notations 2.4, it follows from 2.3
and 2.7 that, with ca as in 2.4,

E eir·Xt = exp t
ˆ
S

σ(du)
ˆ

R+

dv
c

va+1
(eivr·u − 1)2.8

= exp− tca

ˆ
S

σ(du)|r·u|a[1 − i(tan 1
2πa) sgn r·u], r ∈ R

d.

2.9 Example. Symmetric stable processes with index in (0, 1). A Lévy
process X is said to be symmetric if −X has the same law as X . This is
equivalent to having the characteristic exponent ψ symmetric, that is, to
having ψ(r) = ψ(−r) for every r in R

d. In the case of a pure-jump Lévy
process, in view of 1.14 defining X , symmetry is equivalent to having the
law of M invariant under the transformation (t, x) �→ (t,−x) of R+ × R

d

onto itself. These imply, together with 2.7 and 2.8, that the following four
statements are equivalent for the process X of Example 2.6:

a) The process X is symmetric.
b) The Lévy measure λ is symmetric, that is, λ(B) = λ(−B) for Borel

B ⊂ R
d.

c) The distribution σ is symmetric, that is, σ(B) = σ(−B) for Borel
B ⊂ S.
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d) The exponent of X is real-valued, that is, 2.8 reduces to

E e ir·Xt = exp− tca

ˆ
S

σ(du) |r·u|a, r ∈ R
d.2.10

2.11 Example. Isotropic stable processes with index in (0, 1). A Lévy
process X in R

d is said to be isotropic, or rotationally invariant, if its law
is invariant under all orthogonal transformations of R

d. This is equivalent to
saying that X and gX have the same law for every orthogonal matrix g of
dimension d. If d = 1, isotropy is the same as symmetry; in higher dimensions,
isotropy implies symmetry and more.

Let X be as in Example 2.6. Thinking of the jumps, it is clear that X
is isotropic if and only if the law governing the jump directions is isotropic,
that is, the measure σ on S is the uniform distribution on S. And then, the
characteristic function 2.8 becomes even more specific than 2.10 (see Exercises
2.40 and 2.41 for the computations):

E e ir·Xt = exp− tcad |r|a, r ∈ R
d,2.12

where the constant cad depends on a, c, and d; with ca as in 2.4,

cad =
Γ(a+1

2 )Γ(d2 )
Γ(a+d2 )Γ(1

2 )
ca.2.13

Stable processes with index 1

If a Lévy process X is 1-stable, then Xt and tX1 have the same dis-
tribution. The meaning of stability is striking: X5, for instance, which is
the sum of 5 independent copies of X1, has the same distribution as 5X1.
The simplest example is the pure-drift process Xt = bt, t ∈ R+. If X is
1-stable, then so is X̂ = (Xt + bt) ; but, if X̂ is to be symmetric, X has to
be symmetric and b = 0. From now on we concentrate on processes without
drift.

2.14 Example. Standard Cauchy process in R. This is a symmetric sta-
ble process with index 1. Its canonical decomposition 1.33 is X = Xd + Xe

and the Lévy measure defining its law is

λ(dx) = dx
1
πx2

, x ∈ R.2.15

This Lévy measure satisfies 1.30 but not 1.13. We shall show that

E e irXt = e−t |r|, r ∈ R,2.16

which makes it apparent that X is 1-stable. The corresponding distribution is

P{ Xt ∈ dx } = dx
t

π(t2 + x2)
, x ∈ R,2.17
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which is called the Cauchy distribution with scale parameter t, because it is
the distribution of tX1 and the distribution of X1 is the standard Cauchy
distribution; see II.2.27. For this reason, X is said to be a standard Cauchy
process.

The symmetry of λ simplifies the construction of X . Going over Theorems
1.23 and 1.29, we observe that the λ-integral in 1.25 vanishes and thus
the term Xd is a limit of pure-jump (compound Poisson) processes. Thus,
X = Xd +Xe can be written as

Xt =
ˆ

[0,t]×R

M(ds, dx) x,2.18

the precise meaning of which is as follows: with Rε = R \ (−ε, ε), for almost
every ω,

Xt(ω) = lim
ε↓0

ˆ
[0,t]×Rε

Mω(ds, dx)x,2.19

the convergence being uniform in t over bounded intervals. It follows from
this, or from 1.32 and the mentioned vanishing of the λ-integral on the right
side of 1.25, that

E e irXt = exp t lim
ε↓0

ˆ
Rε

λ(dx) (eirx − 1)

= exp− 2t
ˆ

R+

dx
1
πx2

(1 − cos rx) = e−t|r|, r ∈ R,

as claimed in 2.16.
The Cauchy process X is not a pure-jump process despite the looks of

2.18. Indeed, sinceˆ
(0,1)

λ(dx) x =
ˆ

(−1,0)

λ(dx) (−x) = + ∞,

it follows from Proposition VI.2.13 on the finiteness of Poisson integrals thatˆ
(s,t)×(0,1)

Mω(du, dx) x =
ˆ

(s,t)×(−1,0)

Mω(du, dx) (−x) = + ∞

for almost every ω for s < t. In other words, over every interval (s, t), the
path X(ω) has infinitely many upward jumps whose sizes sum to +∞, and
infinitely many downward jumps whose sizes sum to −∞. In particular, the
total variation over (s, t) is equal to +∞ always.

Nevertheless, the small jumps are small enough, and the positive and
negative jumps balance each other well, that removing the big jumps yields
a martingale. Employing a notation similar to 2.18 with precise meaning
analogous to 2.19,

Zt =
ˆ

[0,t]×[−b,b]
M(ds, dx) x, t ∈ R+,
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defines a martingale Z for each b in (0,∞). Indeed, Z is a Lévy process with
EZt = 0 and VarZt = 2bt/π ; it is not a stable process.

The process X is not a martingale for the simple reason that EXt does
not exist, which is because the jumps exceeding b in magnitude are very big
in expectation:

E

ˆ
[0,t]×(b,∞)

M(ds, dx)x = t

ˆ
(b,∞)

λ(dx)x = ∞ ,

and similarly for the integral over [0, t] × (−∞,−b) . This fact about EXt

is often expressed by saying that the Cauchy distribution has fat tails; the
account above is more revealing.

2.20 Example. Half-Cauchy. This is a Lévy processX that is not stable,
and the distribution of Xt is not Cauchy. We give it here to clarify the role
of symmetry in the 1-stability of Cauchy processes. Let X be a Lévy process
in R whose canonical decomposition is X = Xd + Xe and whose Lévy
measure is

λ(dx) = dx
1
x2

1(0,∞)(x), x ∈ R.

This λ is, up to a constant multiple, the one-sided version of the Lévy measure
in the preceding example.

All jumps of X are upward, but X is not constrained to R+ ; for t > 0,
the distribution of Xt puts strictly positive mass on every interval (x, y) with
−∞ < x < y <∞. In particular, all the jumps of Xd are upward, the jumps
over (s, t) are infinitely many and their sizes sum to +∞. Thus, Xd is truly
a compensated sum of jumps; it is the limit of the processes Xε with upward
jumps and downward drift.

The characteristic function for Xt is, in view of 1.32, and the form of λ
here,

E eirXt = exp t
[ˆ 1

0

dx
1
x2

(eirx − 1 − irx) +
ˆ ∞

1

dx
1
x2

(eirx − 1)
]

2.21

= exp− t
[

1
2π|r| − ic0r + ir log |r| ] ,

where

c0 =
ˆ 1

0

dx
1
x2

(sinx− x) +
ˆ ∞

1

dx
1
x2

sinx.

It is checked easily that it is impossible for Xt and t1/aX1 to have the same
characteristic function for some a > 0. So, X is not stable at all.

2.22 Example. Cauchy and other 1-stable processes in R
d. Let S be the

unit sphere in R
d, and let σ be a probability measure on S satisfying

ˆ
S

σ(du) u = 0.2.23
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For example, if d = 2, we obtain such a measure by putting equal weights at
the vertices of a regular pentagon circumscribed by the unit circle S.

Let c be a constant in (0,∞), and let λ be the measure on R
d given by

λf =
ˆ

Rd

λ(dx) f(x) =
ˆ

R+

dv
c

v2

ˆ
S

σ(du) f(vu), f ≥ 0 Borel.2.24

This λ satisfies 1.30; for f(x) = |x|2 ∧ 1, we get λf = 2c <∞. But λ fails to
satisfy 1.13.

Let X be the Lévy process whose canonical decomposition is X = Xd+
Xe in the notations of 1.31 and 1.33 and whose Lévy measure is the current
λ. Its sample path behavior is similar to that of Example 2.6, except that it
is not a pure-jump process and has infinite variation over every interval. The
magnitudes of its jumps are regulated by the radial part of λ, and the latter
is a constant multiple of the Lévy measure in Example 2.20, the half-Cauchy
process. The characteristic function of Xt can be obtained using 2.21:

E e ir·Xt = exp t

ˆ
S

σ(du)
ˆ

R+

dv
c

v2
[ eivr·u − 1 − ivr·u 1B(vu) ]2.25

= exp− tc

ˆ
S

σ(du) [ 1
2π |r·u| − ic0r·u+ ir·u log |r·u| ]

= exp− tc

ˆ
S

σ(du) [ 1
2π|r·u| + ir·u log |r·u| ] ;

here, we noted that 1B(vu) = 1[0,1](v) for the unit ball B and the unit
vector u, and then used 2.21 with r there replaced by r · u and finally the
assumption 2.23. Replacing r by tr and using 2.23 once more, we see that the
characteristic functions of Xt and tX1 are the same. Hence, X is 1-stable.

When d = 1, the unit “sphere” consists of the two points +1 and −1,
and the condition 2.23 makes σ symmetric. Thus, when d = 1, the process is
symmetric necessarily and is a Cauchy process (equal to (1/2)πcZ where Z
is standard Cauchy). In higher dimensions, symmetry and isotropy require
further conditions on σ. For example, the pentagonal σ mentioned above
yields a 1-stable process X in R

2 that is not symmetric.
When d ≥ 2, the process X is symmetric if and only if σ is symmetric,

and then 2.23 holds automatically and 2.25 becomes

E eir·Xt = exp−
1
2πct

´
S σ(du) |r·u|, r ∈ R

d.2.26

Moreover, X is isotropic if and only if σ is the uniform distribution on S, in
which case the integral over the sphere can be computed as in Exercise 2.41,
and we get

E eir·Xt = exp− ĉt|r|, r ∈ R
d,2.27

where ĉ = 1
2c
√
πΓ(d2 )/Γ(d+1

2 ). This Fourier transform is invertible (see
Example 6.8 for a direct computation)

P{Xt ∈ dx } = dx ĉtΓ
(
d+1
2

)
/[πĉ2t2 + π|x|2 ](d+1)/2, x ∈ R

d.
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This is called the d-dimensional Cauchy distribution with scale factor ĉt ; thus,
Xt has the same distribution as ĉtZ, where Z has the standard d-dimensional
Cauchy distribution; see Exercise 2.42 for the definition.

Stable processes with index in (1, 2)

These processes are similar to the stable ones with index in (0, 1), except
that they cannot have bounded variation over intervals.

Fix a in (1, 2) and c in (0,∞). Let S be the unit sphere in R
d, and let σ

be a probability measure on it. Define a measure λ on R
d by

λf =
ˆ

R+

dv
c

va+1

ˆ
S

σ(du) f(vu), f ≥ 0 Borel.

This λ is the same as that in 2.7 but the shape index a is now in the interval
(1, 2) ; this λ satisfies 1.30 but not 1.13. Thus, the process we are about to
introduce will have infinitely many jumps over every interval and, further, it
will have infinite variation over every interval.

Theorem 1.29 shows the existence of a Lévy process Xd+Xe whose Lévy
measure is λ. Consider the compound Poisson process Xe whose every jump
exceeds unity in magnitude; it has a well-defined mean: since a > 1,

E Xe
t = t

ˆ ∞

1

dv
c

va+1
v

ˆ
S

σ(du) u = t
c

a− 1

ˆ
S

σ(du) u = bt

with an apparent definition for the vector b in R
d. We define the process X

to have the canonical decomposition X = Xb+Xd+Xe with Xb
t = −bt. In

other words, in the spirit of Notation 1.27, and with M Poisson with mean
Leb × λ,

Xt =
ˆ

[0,t]×Rd

[M(ds, dx) − ds λ(dx) ] x.2.28

It is clear that X is a Lévy process in R
d, and its every component is a

martingale. It follows from 2.28 that

E e ir·Xt = exp t

ˆ
Rd

λ(dx) (eir·x − 1 − ir·x)2.29

= exp t

ˆ
S

σ(du)
ˆ

R+

dv
c

va+1
(eivr·u − 1 − ivr·u).

It is now easy to check that Xt and t1/aX1 have the same characteristic
function; thus, X is a-stable.

On the right side of 2.29, the integral over R+ can be evaluated through
integration by parts using 2.3. The result is similar to 2.8: for r in R

d,

E e ir·Xt = exp− tca

ˆ
S

σ(du) |r · u|a [1 − i (tan 1
2πa) sgn r · u],2.30
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where

ca = − c
Γ(2 − a)
a (a− 1)

cos 1
2πa ;

note that ca > 0. The formula 2.30 shows that X is symmetric if and only if
σ is symmetric, in which case

E e ir·Xt = exp− tca

ˆ
S

σ(du) |r · u|a, r ∈ R
d.2.31

Further, X is isotropic if and only if σ is the uniform distribution on S, in
which case the result of Exercise 2.41 yields

E e ir·Xt = exp− tcad |r|a, r ∈ R
d,2.32

with cad = ca Γ(a+1
2 )Γ(d2 ) / Γ(a+d2 )Γ(1

2 ) with ca as in 2.30. Note that 2.32
has the same form as in 2.12 and 2.26.

Exercises

2.33 Arithmetics . Fix a > 0. Show the following for Lévy processes X and Y
in R

d.

a) If X is a-stable, then so is cX for every constant c in R.
b) If X and Y are a-stable and independent, then X + Y and X − Y

are a-stable.
c) If X is a-stable, and Y is independent of X and is b-stable for some

b > 0 distinct from a, then X + Y is not stable.

2.34 Stability index . Fix a > 0. Suppose that X is an a-stable non-degenerate
Lévy process in R with characteristic exponent ψ. This is to show that, then,
a ∈ (0, 2] necessarily.

a) Show that tψ(r) = ψ(t1/a r) for t > 0 and r in R. Show that
ψ(r) = c ra for some complex constant c for r in R+.

b) Suppose that X is symmetric, that is, X and −X have the same
law. Then, ψ(r) = ψ(−r) for all r. Show that ψ(r) = c |r|a for all r in R.

c) Show that ec|r|
a

cannot be a characteristic function when a > 2.
Hint: See Exercise II.2.33 about the second moment of X1. Conclude that, if
X is symmetric, then a ∈ (0, 2].

d) If X is not symmetric, let Y be an independent copy of it. Then,
X − Y is symmetric and a-stable. So, a ∈ (0, 2] again.

2.35 Continuation. Let X be a Lévy process in R
d. Suppose that it is not

degenerate. If it is a-stable, then a ∈ (0, 2]. Show.

2.36 Stability with index 2. Let X be a Lévy process in R. Suppose that it is
2-stable. Then Xt has the Gaussian distribution with mean 0 and variance
vt for some constant v. Show.
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2.37 Stable Poissons. Let M be a Poisson random measure on R+ × R with
mean μ = Leb × λ. Let a > 0 be fixed. Suppose that M and M ◦h−1 have
the same law (which means that μ = μ◦h−1) for h : R+ × R → R+ × R

defined by

h(t, x) = (
t

s
, s1/ax),

and that this is true for every s > 0. Show that, then,

λ(dx) = dx |x|−a−1 [ b 1(0,∞)(x) + c 1(−∞,0)(x) ], x �= 0,

for some constants b and c in R+. If λ satisfies 1.13 then a ∈ (0, 1) ; show. If
λ satisfies 1.30, then a ∈ (0, 2); show.

2.38 Stable processes with index in (0, 1) . Let X be as in Example 2.6, but
the dimension is d = 1. Then, the “sphere” S consists of the two points +1
and −1 .

a) Show that λ of 2.7 takes the form

λ(dx) = dx
c

|x|a+1
( p 1(0,∞)(x) + q 1(−∞,0)(x) ),

where p and q are positive numbers with p+ q = 1.
b) Conclude that X = X+ −X−, where X+ and X− are independent

a-stable increasing Lévy processes.
c) Show that the characteristic exponent of X is (see 2.8)

ψ(r)= − ca |r|a [ 1 − i (p− q)(tan 1
2πa) sgn r ], r ∈ R.

2.39 Continuation: symmetric case. When d = 1, symmetry and isotropy are
the same concept. Show that X of the preceding exercise is symmetric if and
only if p = q. Then, the characteristic exponent becomes ψ(r) = −ca |r|a.
Check that 2.10 and 2.12 coincide when d = 1.

2.40 Uniform distribution on S. Let σ be the uniform distribution on the unit
sphere S in R

d. This is to show that, for every s in S and a in R+,
ˆ
S

σ(du) |s · u|a =
Γ(a+1

2 )Γ(d2 )
Γ(a+d2 )Γ(1

2 )
.

The left side is E |s · U |a where U has the uniform distribution on S. The
trick is to recall that, if the random vector Z = (Z1, . . . , Zd) has independent
components each of which has the standard Gaussian distribution, then

Z = RU,

where R = |Z|, and U is independent of R and has the uniform distribution
on S. It follows that, for every s in S,

E |s · Z|a = (E Ra)(E |s · U |a),
and the problem reduces to evaluating the expectations concerning R and
s · Z.
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a) Recall that R2 has the gamma distribution with shape index d/2
and scale index 1/2. Use this to show that

E Ra =
ˆ ∞

0

dx
e−x xd/2−1

Γ(d/2)
(2x)a/2 = 2a/2 Γ(

d+ a

2
)/Γ(d/2).

b) Show that |s · Z| has the same distribution as R but with d put
equal to 1. Thus, E |s · Z|a = 2a/2 Γ(a+1

2 )/Γ(1/2).
c) Show that E |s · U |a is as claimed.

2.41 Continuation. For r in R
d and u in S, we have |r · u| = |r| |s · u| with

s = r/|r| in S. Use this observation to show that:

ˆ
S

σ(du) |r · u|a = |r|a Γ(a+1
2 )Γ(d2 )

Γ(a+d2 )Γ(1
2 )
.

2.42 Cauchy distribution on R
d. Let Z take values in R

d. It is said to have
the standard Cauchy distribution if

P{Z ∈ dx} = dx
d+ 1

2
(

1
π(1 + |x|2) )(d+1)/2, x ∈ R

d.

Then, E eir·Z = e−|r|, r ∈ R
d. Show that Z has the same distribution asX/Y ,

where X = (X1, . . . , Xd) is a d-dimensional standard Gaussian, and Y is a
one-dimensional Gaussian independent of X . Note that each component Zi
has the standard one-dimensional Cauchy distribution, but the components
are dependent. Show that, for every vector v in R

d, the inner product v · Z
has the one-dimensional Cauchy distribution with scale factor |v|, that is,

P{ v · Z ∈ dx } = dx
|v|

π(|v|2 + |x|2) , x ∈ R.

2.43 Stable processes in R with index in (1, 2). Let X be defined by 2.28, but
with d = 1. Show that the Lévy measure λ defining its law has the form

λ(dx) = dx
c

|x|a+1
[ p 1(0,∞)(x) + q 1(−∞,0)(x) ], x ∈ R,

where a ∈ (1, 2) and c ∈ (0,∞) as before, and p and q are positive numbers
with p+ q = 1. All the jumps are upward if p = 1, and all downward if q = 1.
The process is symmetric if and only if p = q = 1/2. In all cases, X is a
martingale. In particular, E Xt = 0. Compute Var Xt. Show that

E
e irXt = exp− tca [ |r|a − i (p− q)(tan

1
2
πa)sgn r ], r ∈ R.

2.44 Continuation. Recall from 2.28 that X has the form X = Xb + Xd +
Xe, where Xb

t = −EXe
t = −(p − q) c

a−1 t. Note that none of the processes
Xb, Xd, Xe, Xd +Xe, Xe +Xb, Xb +Xd is a-stable.
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2.45 Continuation. Show that it is possible to decompose X as

X = Y − Z,

where Y and Z are independent a-stable processes, with Y having only up-
ward jumps, and Z only downward jumps. Define Y and Z carefully from
the same M that defines X .

3 Lévy Processes on Standard Settings

This section is to re-introduce Lévy processes in a modern setting, show
the Markov and strong Markov properties for them, and reconcile the differ-
ences from the earlier definition. The motivation for modernity is two-fold:
First, we prefer filtrations that are augmented and right-continuous, because
of the advantages mentioned in the last section of Chapter V. Second, it
is desirable to have a moving coordinate system for time and space, which
would indicate what time is meant by “present” in a given argument.

Lévy processes over a stochastic base

3.1 Definition. A stochastic base is a collection

B = (Ω,H,F, θ,P)

where (Ω,H,P) is a complete probability space, F = (Ft)t∈R+ is an augmented
right-continuous filtration on it, and θ = (θt)t∈R+ is a semigroup of operators
θt : ω �→ θtω from Ω into Ω with

θ0ω = ω, θu(θtω) = θt+uω, t, u ∈ R+.3.2

Operators θt are called time-shifts.

3.3 Definition. Let X = (Xt)t∈R+ be a stochastic process with state
space R

d. It is called a Lévy process over the stochastic base B if X is adapted
to F and the following hold:

a) Regularity. X is right-continuous and left-limited, and X0 = 0.
b) Additivity. Xt+u = Xt +Xu◦θt for every t and u in R+.
c) Lévy property. For every t and u in R+, the increment Xu◦θt is

independent of Ft and has the same distribution as Xu.

Remark. IfX is a Lévy process over the base B, then it is a Lévy process
in the sense of Definition 1.1 with respect to the filtration F. The difference
between Definitions 1.1 and 3.3 is slight: we shall show in Theorem 3.20 below
(see also Remark 3.21) that starting from a raw Lévy process (in the sense of
Definition 1.1 and with respect to its own filtration G), we can modify H,G,P
to make them fit a stochastic base. The existence of shift operators is easy
to add as well; see Exercise 3.24.
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Shifts

Existence of shift operators is a condition of richness on Ω. In canonical
constructions, it is usual to take Ω to be the collection of all right-continuous
left-limited functions ω : R+ → R

d with ω(0) = 0. Then, we may define θtω
to be the function u �→ ω(t+ u) − ω(t), and setting Xt(ω) = ω(t) we obtain
both the semigroup property 3.2 and the additivity 3.3b.

In general, θt derives its meaning from what it does, which is described
by the additivity condition 3.3b. We interpret it as follows: Xu ◦θt is the
increment over the next period of length u if the present time is t. Thus, θt
shifts the time-space origin to the point (t,Xt) of the standard coordinate
system; see Figure 9 below.

In other words, θ is a moving reference frame pinned on the path X . It is
an egocentric coordinate system: the present is the origin of time, the present
position is the origin of space.

Our usage of shifts is in accord with the established usage in the theory
of Markov processes. We illustrate this with an example and draw attention
to a minor distinction in terms. Let X be a Wiener process, and put

Zt = Z0 +Xt, t ∈ R+.

Then, Z is called a standard Brownian motion with initial position Z0. The
established usage would require that the Markov process Z satisfy

Zu◦θt = Zt+u, t, u ∈ R+ ;

This is called time-homogeneity for Z. It implies that X is additive:

Xu◦θt = Zu◦θt − Z0◦θt = Zt+u − Zt = Xt+u −Xt.

Xs

Xt

Xu°θt

u

st

Figure 9: When the present time is t, the new coordinate system has its origin
at (t,Xt) of the standard coordinate system.
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Indeed, in the terminology of Markov processes, X is an additive functional
of the Markov process Z.

The additivity for X implies certain measurability properties for the
shifts:

3.4 Lemma. Let X be a Lévy process over the base B. Let G be the filtra-
tion generated by it. For each t in R+, the mapping θt : Ω → Ω is measurable
with respect to Gt+u and Gu for every u in R+ ; in particular, θt is measurable
with respect to G∞ and G∞.

Proof. Fix t and u. For every s in [0, u], we have Xs◦θt = Xt+s −Xt by
additivity, and Xt+s −Xt is in Gt+u. Since Gu is generated by Xs, with such
s, this proves the first claim. The “particular” claim is obvious. �

Markov property

For a Lévy process, Markov property is the independence of future
increments from the past at all times. The next theorem is the precise state-
ment. Here, B is the stochastic base in 3.1, and G is the filtration generated
by X . With the filtration F fixed, we write Et for E(·|Ft), the conditional
expectation operator given Ft.

3.5 Theorem. Suppose that X is a Lévy process in R
d over the stochastic

base B. Then, for every time t, the process X ◦θt is independent of Ft and
has the same law as X. Equivalently, for every bounded random variable V
in G∞,

Et V ◦θt = E V, t ∈ R+.3.6

Remark. The restriction to bounded V is for avoiding questions of exis-
tence for expectations. Of course, 3.6 extends to all positive V in G∞ and to
all integrable V in G∞, and further.

Proof. a) We start by observing that the Lévy property 3.3c is equivalent
to saying that, for every bounded Borel function f on R

d,

Et f ◦Xu◦θt = E f ◦Xu, t, u ∈ R+.3.7

b) We show next that 3.6 holds for V having the form V = Vn, where

Vn = f1(Xu1) f2(Xu2 −Xu1) · · · fn(Xun −Xun−1)3.8

for some bounded Borel functions f1, · · · , fn on R
d and some times 0 < u1 <

u2 < · · · < un.
The claim is true for n = 1 in view of 3.7. We make the induction hypothesis
that the claim is true for n and consider it for n + 1. Observe that, with
u = un and v = un+1 − un for simplicity of notation, we have

Vn+1 = Vn ·W ◦θu, where W = fn+1◦Xv.
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Thus, writing Et = Et Et+u and recalling that θu◦θt = θt+u, we get

Et Vn+1◦θt = Et Et+u(Vn◦θt)(W ◦θt+u)
= Et Vn◦θt Et+u W ◦θt+u
= Et Vn◦θt E W = E Vn E W = E Vn+1

where we used 3.7 to justify the third equality sign, induction hypothesis to
justify the fourth, and 3.7 again for the fifth. So 3.6 holds for every V of the
form 3.8.

c) Borel functions f having the form f(x1, · · · , xn) = f1(x1) · · · fn(xn)
generate the Borel σ-algebra on (Rd)n . Thus, by the monotone class theorem,
part (b) of the proof implies that 3.6 holds for every bounded V having the
form

V = f(Xu1 , Xu2 −Xu1 , · · · , Xun −Xun−1) �
for some bounded Borel f and some times 0 < u1 < · · · < un. Since the
increments of X generate the σ-algebra G∞, the proof is completed through
another application of the monotone class theorem.

Strong Markov property

This is the analog of the Markov property where the deterministic time t
is replaced by a stopping time T . The setup is the same, and we write ET for
the conditional expectation E(·|FT ) . However, in formulating 3.6 with T , we
face a problem: if T (ω) = ∞, then θTω = θT (ω)ω makes no sense and X∞(ω)
is not defined. The following is to handle the problem.

3.9 Convention. Suppose that Z(ω) is well-defined for every ω for
which T (ω) < ∞. Then, the notation Z 1{T<∞} stands for the random
variable that is equal to Z on {T <∞} and to 0 on {T = ∞}.

The convention is without ambiguity. If Z is already defined for all ω, then
Z 1{T<∞} is equal to 0 on {T = ∞} since x·0 = 0 for all x in R̄ = [−∞,+∞].
With this convention, the following is the strong Markov property. Here Ḡ∞
is the completion of G∞ in H, that is Ḡ∞ = G∞ ∨N where N is the σ-algebra
generated by the collection of negligible events in H.

3.10 Theorem. Suppose that X is a Lévy process over the base B. Let T
be a stopping time of F. Then, for every bounded random variable V in Ḡ∞,

ET V ◦θT 1{T<∞} = (E V ) 1{T<∞}.3.11

Remark. If T < ∞ almost surely, then 1{T<∞} can be deleted on both
sides. In words, the preceding theorem states the following: on the event
{T < ∞}, the future process X ◦θT is independent of the past FT and has
the same law as X . On the event {T = ∞}, there is no future and nothing
to be said.
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Proof. Let X and T be as hypothesized. In view of the defining property
for ET , it is sufficient to show that

E 1H V ◦θT 1{T<∞} = E 1H∩{T<∞} E V3.12

for every H in FT and bounded positive V in Ḡ∞. Moreover, for every V in
Ḡ∞ there is V0 in G∞ such that V = V0 almost surely, and it is enough to
show 3.12 for V0. Hence, it is enough to prove 3.12 for H in FT and bounded
positive V in G∞. We do this in a series of steps.

a) Assume, further, that T is countably-valued. Let D be its range
intersected with R+. Then, {T <∞} is equal to the union of {T = t} over t
in D, and H ∩ {T = t} ∈ Ft for every t. Thus, starting with the monotone
convergence theorem, the left side of 3.12 becomes

∑

t∈D
E 1H∩{T=t}V ◦θt =

∑

t∈D
E 1H∩{T=t} Et V ◦θt = E 1H∩{T<∞} E V,

where the last equality sign is justified by the Markov property that EtV◦θt =
E V . This proves 3.12 for T countably-valued.

b) Now we remove the restriction on T but assume that

V = f ◦Xu3.13

for some u > 0 and some bounded positive continuous function f on R
d.

Let (Tn) be the approximating sequence of stopping times discussed in
Propositions V.1.20 and V.7.12: each Tn is countably-valued, Tn < ∞ on
{T <∞}, and the sequence decreases to T . Since H ∩{T <∞} ∈ FT ⊂ FTn ,
we get from 3.12 with Tn that

E 1H∩{T<∞} V ◦θTn = E 1H∩{T<∞} E V.3.14

On the event {T <∞}, we have Tn <∞ for every n, and

Xu◦θTn = XTn+u −XTn → XT+u −XT = Xu◦θT
almost surely, since (Tn) is decreasing to T and X is right-continuous. Since
V has the form 3.13 with f continuous and bounded, it follows that V ◦θTn →
V ◦θT almost surely and, thus, the left side of 3.14 converges to the left side
of 3.12 by the bounded convergence theorem. This proves 3.12 for V having
the form 3.13 with f bounded, positive, and continuous.

c) Since continuous f : R
d �→ R generate the Borel σ-algebra on R

d,
and since V satisfying 3.13 is a vector space and a monotone class, it follows
that 3.12 and therefore 3.11 holds for V having the form 3.13 with f bounded,
positive, Borel.

d) There remains to extend 3.11 to arbitrary bounded positive V in
G∞. This is done exactly as in the parts (b) and (c) of the proof of the
Markov property, Theorem 3.5: put T wherever t appears and append the
factor 1{T<∞} on each side of every equation having t in it.
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Processes with bounded jumps

We have seen examples of Lévy processes X with EXt equal to +∞
(increasing stable processes) and also examples where EXt does not exist
(Cauchy processes). As an application of the strong Markov property, we now
show that such anomalies are possible only if X has jumps of unbounded size.
The converse is false: as gamma processes exemplify, X may have jumps of
arbitrarily large size and still have finite moments of all orders.

3.15 Proposition. Let X be a Lévy process in R
d over the base B.

Suppose that all its jumps are bounded in magnitude by some fixed constant.
Then, for every t, the variable |Xt| has finite moments of all orders.

Proof. a) Fix a constant b in (0,∞). Suppose that all the jumps (if any)
have magnitudes bounded by b. The claim is that, then, E |Xt|k < ∞ for
every integer k ≥ 1. To prove this, it is enough to show that the distribution
of |Xt| has an exponential tail; indeed, we shall show that there exists a
constant c in (0, 1) such that

P{ |Xt| > (1 + b)n } ≤ et cn, n ∈ N.3.16

b) Let R be the time of exit from the unit ball, that is,

R = inf{ t > 0 : |Xt| > 1 }.

Note that |XR| ≤ 1 + b since the worst that can happen is that X exits
the unit ball by a jump of magnitude b. Moreover, since X0 = 0 and X is
right-continuous, R > 0 almost surely; hence,

c = E e−R < 1.3.17

Finally, note that R < ∞ almost surely. This follows from the impossibility
of containing the sequence (Xm) within the unit ball, since Xm is the sum of
m independent and identically distributed variables.

c) Let T be a finite stopping time of F and consider

T +R◦θT = inf{t > T : |Xt −XT | > 1}.

By the strong Markov property at T , by Theorem 3.10 with V = e−R,

E e−(T+R◦θT ) = E e−T ET e−R◦θT = E e−T E e−R = c E e−T .3.18

d) Put T0 = 0 and define Tn, n ≥ 1, recursively by setting Tn+1 = Tn+
R◦θTn . Since R <∞ almost surely, so is T1 = R and so is T2 = T1 +R◦θT1 ,
and so on. Thus, Tn is an almost surely finite stopping time for each n, and
using 3.18 repeatedly we get

E e−Tn = cn, n ∈ N.3.19
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e) Finally, consider the bound 3.16. Note that Tn+1 is the first time t
after Tn such that |Xt −XTn | > 1. Thus, for fixed t and ω,

|Xt(ω)| > (1 + b)n ⇒ Tn(ω) < t ⇒ e−Tn(ω) > e−t.

Hence, the left side of 3.16 is less than or equal to

P{ e−Tn > e−t } ≤ et E e−Tn = et cn .

by Markov’s inequality and 3.19. This completes the proof. �

On the definitions

Consider Definitions 1.1 and 3.3. They differ at two points: the existence
of shift operators and the conditions of right-continuity and augmentedness
for the filtration F. The shifts are for reasons of convenience and clarity.
For instance, replacing Xu ◦θt with Xt+u − Xt would eliminate the shifts
in Definition 3.3 and in Theorem 3.5 on the Markov property. The same is
true more generally; we can eliminate the shifts entirely, without loss of real
content, but with some loss in brevity; for example, in Theorem 3.10 on the
strong Markov property, we need to replace Xu◦θT = XT+u −XT with X̂u

and, instead of R◦θT , we need to introduce R̂, which is obtained from X̂ by
the same formula that obtains R from X . We use the shifts for the clarity
and economy achieved through their use; see Exercise 3.24 to see that they
can always be introduced without loss of generality.

The conditions on the filtration F are more serious. We illustrate the issue
with an example. Suppose that X is a Wiener process and T is the time of
hitting some fixed level b > 0, that is, T = inf{t > 0 : Xt > b}. Since X is
adapted to F, and F is right-continuous, T is a stopping time of F. If F were
not right-continuous, T might fail to be a stopping time of it. For instance,
T is not a stopping time of G, the filtration generated by X ; this can be
inferred from the failure of Galmarino’s test, Exercise V.1.28.

Nevertheless, the conditions on F of Definition 3.3 are natural in addition
to being advantageous. We show next that, starting with the filtration G

generated by X , we can always use the augmentation Ḡ as the filtration F.

Augmenting the raw process

Let (Ω,H,P) be a probability space, X a stochastic process with state
space R

d, and G the filtration generated by X . Let (Ω, H̄, P̄) be the comple-
tion of (Ω,H,P), and let N be the σ-algebra generated by the collection of
negligible sets in H̄. We denote by Ḡ the augmentation of G in (Ω, H̄, P̄), that
is, Ḡt = Gt ∨ N, the σ-algebra generated by the union of Gt and N. See
Section 7 of Chapter V for these and for the notation Gt+ = ∩ε>0 Gt+ε, and
recall that the right-continuity for Ḡ means that ∩ε>0 Ḡt+ε= Ḡt for every t.
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3.20 Theorem. Suppose that, over (Ω,H,P), the process X is Lévy with
respect to G in the sense of Definition 1.1. Then,

a) over (Ω, H̄, P̄) , the process X is Lévy with respect to Ḡ in the sense
of Definition 1.1, and

b) the filtration Ḡ is augmented and right-continuous.

Before proving this, we note two interesting corollaries; one concerning
Gt+ and the other the special case Ḡ0. Since Gt+ε ⊂ Ḡt+ε, we have
Gt+ ⊂ ∩ε>0 Ḡt+ε, and the last σ-algebra is equal to Ḡt by the preceding
theorem. Since Ḡt = Gt ∨N, we see that Gt+ ⊂ Gt ∨N ; in words, the extra
wisdom gained by an infinitesimal peek into the future consists of events
that are either negligible or almost sure. In particular, since X0 = 0 almost
surely, G0 ⊂ N and we obtain the following corollary, called Blumenthal’s
zero-one law.

3.21 Corollary. Every event in Ḡ0 has probability 0 or 1.

Going back to arbitrary t, we express the finding Gt+ ⊂ Ḡt in terms of
random variables; recall that Ḡt = Gt ∨N, which means that every random
variable in Ḡt differs from one in Gt over a negligible set.

3.22 Corollary. Fix t in R+. For every random variable V in Gt+ there
is a random variable V0 in Gt such that V = V0 almost surely.

Proof of Theorem 3.20

a) We prove the first claim first. Suppose X is as hypothesized. Since
the restriction of P̄ to H is equal to P, the events in H that are P-almost sure
are also events in H̄ that are P̄-almost sure. Thus, the regularity 1.1a of X
over (Ω,H,P) remains as regularity over (Ω, H̄, P̄).

For the Lévy property 1.1b, we first observe that X is such over (Ω,H,P)
with respect to G if and only if

E V f ◦(Xt+u −Xt) = E V E f ◦Xu, t, u ∈ R+,3.23

for every bounded Borel f on R
d and bounded variable V in Gt. Since P̄

coincides with P on H, we may replace E with the expectation operator Ē

with respect to P̄. Finally, if V̄ is a bounded variable in Ḡt = Gt ∨ N, and
f as above, there is V in Gt such that V̄ = V almost surely (under P̄).
Thus, in 3.23, we may replace E with Ē and V with V̄ ; the result is the Lévy
property 1.1b over (Ω, H̄, P̄) with respect to Ḡ.

b) We are working on the complete probability space (Ω, H̄, P̄) to show
that the augmentation Ḡ is also right-continuous. We start at t = 0. Let (εn)
be a sequence decreasing strictly to 0. For n ≥ 1, let

Hn = σ{Xt −Xs : εn ≤ s < t ≤ εn−1}.
Since X is a Lévy process (shown in part (a)), the σ-algebras H1,H2, · · ·
are independent. By Theorem II.5.12, Kolmogorov’s zero-one law, the tail
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σ-algebra defined by (Hn) is trivial, that is, the tail σ-algebra is contained
in N. But, since Hn+1 ∨ Hn+2 ∨ · · · = Gεn , the tail σ-algebra is equal to

∩n Gεn = ∩ε>0 Gε = G0+.

We have shown that G0+ ⊂ N. We use this to show that Ḡ is right-continuous.
Fix t ; let Ĝ be the filtration generated by the process X̂, where X̂u = Xt+u−
Xt for every time u. Since X̂ is a Lévy process, what we have just shown
applies to Ĝ and we have Ĝ0+ ⊂ N. It follows that

∩
ε>0

Ḡt+ε = ∩
ε

(Gt ∨ Ĝε ∨ N) = Gt ∨ N ∨ Ĝ0+ = Gt ∨ N = Ḡt

because Ḡt+ε = Gt+ε∨N and Gt+ε = Gt∨Ĝε. In words, Ḡ is right-continuous
as claimed.

Exercises

3.24 Processes of canonical type. The aim is to introduce the probability law
of a Lévy process in a concrete fashion. As a byproduct, this will show that
every Lévy process is equivalent to a Lévy process of the type in Definition 3.3.
Setup.

i) Let (Ω,H,P) be a probability space, X a Lévy process with state
space R

d in the sense of Definition 1.1, and G the filtration generated by X .
ii) Let W be the collection of all mappings w : R+ �→ R

d with
w(0) = 0. Let Yt be the coordinate mapping with Yt(w) = w(t), and let
θt : W �→ W be defined by θtw(u) = w(t + u) − w(t). Define Kt to be the
σ-algebra on W generated by Ys, s ≤ t, and let K = (Kt).

iii) Define the transformation ϕ : Ω �→ W by letting ϕω to be the
path X(ω) : t �→ Xt(ω).

a) Note that Yt ◦ϕ = Xt for every t. Use this to show that ϕ is
measurable with respect to Gt and Kt for every t, and with respect to G∞
and K∞, and therefore with respect to H and K∞.

b) It follows that Q = P◦ϕ−1 is a probability measure on (W,K∞).
This Q is the distribution of X .

c) Show that, over the probability space (W,K∞,Q), the process Y =
(Yt) is a Lévy process, in the sense of Definition 1.1, with respect to its own
filtration K.

d) Let K̄ be the augmentation of K in the completion (W, K̄∞, Q̄) of
(W,K∞,Q). Show that

B = (W, K̄∞, K̄, θ, Q̄)

is a stochastic base in the sense of Definition 3.1. Show that Y = (Yt) is a
Lévy process over B in the sense of Definition 3.3.
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4 Characterizations for Wiener

and Poisson

Throughout this section B is the stochastic base introduced in Definition 3.1,
andX is a Lévy process over B as in Definition 3.3. The aim is to characterize
the three basic processes in qualitative terms: Poisson, the archetypical pure-
jump process; Wiener, the continuous process par excellence; and compound
Poisson process, whose paths are step functions.

Poisson processes

Recall that a Poisson process is a Lévy process whose increments are
Poisson distributed. A number of characterizations were listed in Theorems
VI.5.5 and VI.5.9. The following is a small addition.

4.1 Theorem. The Lévy process X is Poisson if and only if it is a count-
ing process.

Proof. Sufficiency was shown in Theorem VI.5.9. To show the necessity,
suppose that every increment of the Lévy process X has a Poisson distri-
bution, Xt+u −Xt with mean cu, where c is a constant in R+. Then, every
increment takes values in N almost surely, which implies that almost every
path is an increasing step function taking values in N . To show that X is a
counting process, there remains to show that every jump is of size 1 almost
surely.

Fix t. Let Ht be the event that there is a jump of size 2 or more during
[0, t]. Subdivide the interval [0, t] into n intervals of equal length. The event
Ht implies that, of the increments over those n subintervals, at least one
increment is equal to 2 or more. Thus, by Boole’s inequality,

P (Ht ) ≤ n (1 − e−ct/n − (ct/n) e−ct/n)

since each increment has the Poisson distribution with mean ct/n . Letting
n → ∞ we see that P (Ht ) = 0 . Taking the union of Ht over t = t1, t2, · · ·
for some sequence (tn) increasing to infinity, we see that, almost surely, no
jump exceeds 1 in size. �

In the preceding proof, the sufficiency was by appealing to Theorem
VI.5.9. The bare-hands proof of the latter theorem can be replaced with the
following: Suppose that the Lévy process X is a counting process. Then, all
jumps are bounded in size by 1, and Proposition 3.15 shows that EXt < ∞.
Thus, the stationarity of the increments implies that EXt = ct for some fi-
nite constant c, and the Lévy property implies that Mt = Xt − ct defines a
martingale M . Thus, by Theorem V.6.13, the process X is Poisson.
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Wiener and continuous Lévy processes

According to the earlier definition, the Lévy processX is a Wiener process
if it is continuous and Xt has the Gaussian distribution with mean 0 and
variance t. The following shows that continuity is enough.

4.2 Theorem. Suppose that the Lévy process X is continuous and has
state space R. Then, it has the form

Xt = bt+ cWt, t ∈ R+,

where b and c are constants in R, and W is a Wiener process over the base B.

Proof. Assume X is such. Proposition 3.15 shows that Xt has finite mean
and variance; there exist constants b and c such that EXt = bt and VarXt =
c2t. If c = 0, then there is nothing left to prove. Assuming that c �= 0, define

Wt = (Xt − bt)/c, t ∈ R+.

Then W is a continuous Lévy process over the base B, and the Lévy property
can be used to show thatW is a continuous martingale, and so is (W 2

t −t)t∈R+ ,
both with respect to the filtration F. It follows from Proposition V.6.21 that
W is Wiener. �

The preceding proof is via Proposition V.6.21, and the latter’s proof is
long and difficult. It is possible to give a direct proof using the Lévy property
more fully: Start with W being a Lévy process with EWt = 0 and VarWt = t.
For each integer n ≥ 1,

W1 = Yn,1 + · · · + Yn,n

where Yn,j is the increment of W over the interval from (j − 1)/n to j/n.
SinceW is Lévy, those increments are independent and identically distributed
with mean 0 and variance 1/n. Now the proof of the classical central limit
theorem (III.8.1) can be adapted to show that W1 has the standard Gaussian
distribution. Thus, W is a Wiener process.

Continuous Lévy processes in R
d

IfW 1, . . . ,W d are independent Wiener processes, thenW = (W 1, . . . ,W d)
is a d-dimensional Wiener process. Obviously, it is a continuous Lévy process
in R

d. We now show that, conversely, every continuous Lévy process in R
d is

obtained from such a Wiener process by a linear transformation plus some
drift.

4.3 Theorem. Suppose that the Lévy process X in R
d is continuous.

Then,
Xt = bt+ c Wt, t ∈ R+,

for some vector b in R
d, some d× d′ matrix c, and a d′-dimensional Wiener

process W over the base B.
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Remark. Let v be the covariance matrix for X1. Then, d′ is the rank of
v (of course d′ ≤ d), and v = ccT with cT denoting the transpose of c.

Proof. SupposeX continuous. For r in R
d, consider the linear combination

r ·Xt of the coordinates of Xt. The process r ·X is a continuous Lévy process
in R. It follows from Theorem 4.2 that r ·X1 has a one-dimensional Gaussian
distribution, and this is true for every r in R

d. Thus, X1 has a d-dimensional
Gaussian distribution with some mean vector b in R

d and some d× d matrix
v of covariances.

The matrix v is symmetric and positive definite (that is, v = vT and
r · vr ≥ 0 for every r in R

d). Let d′ be its rank. There exists some d × d′

matrix c of rank d′ such that v = ccT , that is,

vij =
d′∑

k=1

cikcjk, i, j = 1, 2, · · · , d.4.4

We define a matrix a as follows. If d′ = d, put a = c. If d′ < d, the matrix
c has exactly d′ linearly independent rows, which we may assume are the
rows 1, 2, . . . , d′ by re-labeling the coordinates of X ; we let a be the d′ × d′

matrix formed by those first d′ rows of c. Obviously a is invertible; let â be
its inverse. Define, for i = 1, . . . , d′,

W i
t =

d′∑

k=1

âik (Xk
t − bkt), t ∈ R+.4.5

It is clear that W = (W 1, . . . ,W d′) is a continuous Lévy process in R
d′ ,

and Wt has the d′-dimensional Gaussian distribution with mean vector 0 and
covariances

E W i
t W

j
t =

d′∑

m=1

âim

d′∑

n=1

âjn E (Xm
t − bmt)(Xn

t − bnt)

=
d′∑

m=1

d′∑

n=1

âimâjnvmnt

=
d′∑

m=1

d′∑

n=1

âimâjn

d′∑

k=1

amkankt = δijt,

where the third equality follows from 4.4 since cmk = amk and cnk = ank for
m,n ≤ d′. This shows that W is d′-dimensional Wiener. Reversing 4.4 and
4.5 shows that X is as claimed. �

Compound Poisson processes

We adopt the construction in Example 1.2c as the definition for compound
Poisson processes. Several other constructions were mentioned previously in
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this chapter and the last. The following characterization theorem summarizes
the previous results and extends them onto the modern setting. This is basic.

4.6 Theorem. The Lévy process X over the base B is a compound Pois-
son process if and only if one (and therefore all) of the following statements
holds.

a) Almost every path of X is a step function.
b) There is a Poisson process (Nt) over B and, independent of it, an

independency (Yn) of identically distributed R
d-valued variables such that

Xt =
∞∑

n=1

Yn 1{n≤Nt}, t ∈ R+.4.7

c) There is a Poisson random measure M on R+×R
d whose mean has

the form Leb × λ with some finite measure λ on R
d such that

Xt =
ˆ

[0,t]×Rd

M(ds, dx) x, t ∈ R+.4.8

4.9 Remarks. a) The proof will show that the Poisson random measure
M is adapted to the filtration F and is homogeneous relative to the shifts θt,
that is, ω �→M(ω,A) is in Ft for every Borel subset A of [0, t] × R

d, and

M(θtω,B) = M(ω,Bt)

for every Borel subset B of R+×R
d, where Bt consists of the points (t+u, x)

with (u, x) in B.
b) The connection between 4.7 and 4.8 is as follows. Let c = λ(Rd) <∞

and put μ for the distribution (1/c)λ. Finiteness of c implies that the atoms of
M can be labeled as points (Tn, Yn) so that 0 < T1 < T2 < · · · almost surely.
The Tn are the successive jump times of X and form the Poisson process N ,
and the Yn are the variables appearing in 4.7. The jump rate for N is c, and
the distribution common to Yn is μ.

Proof. (a) ⇒ (b). Assume (a). Let Nt be the number of jumps of X over
(0, t]. Since X is adapted to F, so is N ; since X is a step process, N is a
counting process; and since Nu◦θt is the number of jumps of X◦θt over (0, u],
we have the additivity of N with respect to the shifts. Moreover, X ◦θt is
independent of Ft and has the same law as X (this is the Markov property,
Theorem 3.5); thus, Nu◦θt is independent of Ft and has the same distribution
as Nu. In summary, N is a Lévy process over the base B and is a counting
process. By Theorem 4.1, it must be a Poisson process with some rate c.

Let Yn be the size of the jump by X at Tn. Then, 4.7 is obvious, and there
remains to show that (Yn) is independent of (Tn) and is an independency of
variables having the same distribution, say, μ on R

d. We start by showing
that R = T1 and Z = Y1 are independent and a bit more. The distribution of
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Z is μ, and the distribution of R is exponential with parameter c ; the latter
is because N is Poisson with rate c. For t in R+ and Borel subset B of R

d,
we now show that

P{ R > t, Z ∈ B } = e−ct μ(B).4.10

Note that, if R(ω) > t, then Z(ω) = Z(θtω). So, by the Markov property
for X , Theorem 3.5, the left side of 4.10 is equal to

P{ R > t, Z◦θt ∈ B } = E 1{R>t} Et 1B◦Z◦θt
= E 1{R>t} E 1B◦Z = e−ct μ(B)

as claimed in 4.10. Next, for n ≥ 1, we note that

Tn+1 − Tn = R◦θTn , Yn+1 = Z◦θTn,

and use the strong Markov property proved in Theorem 3.10 at the almost
surely finite stopping times Tn . We get that

P{ Tn+1 − Tn > t , Yn+1 ∈ B | FTn }4.11

= P{ R◦θTn > t , Z◦θTn ∈ B | FTn } = P{ R > t , Z ∈ B }.

Putting 4.10 and 4.11 together shows that the sequences (Tn) and (Yn) are
independent, and the Yn are independent and have the distribution μ. This
completes the proof that (a) ⇒ (b).

(b) ⇒ (c). Assume (b) and let (Tn) be the sequence of successive jump
times of N . It follows from Corollary VI.3.5 that the pairs (Tn, Yn) form a
Poisson random measure M on R+ × R

d with mean cLeb × μ = Leb × λ,
where λ = cμ is a finite measure on R

d. It is obvious that, then, 4.7 and 4.8
are the same equation served up in differing notations.

(c) ⇒ (a). Assume (c) ; then 4.8 shows that X is a Lévy process; and the
paths are almost surely step functions, because the measure λ is finite. �

The best qualitative definition for compound Poisson processes is that
they are Lévy processes whose paths are step functions. The following pro-
vides another equivalent condition for it. As before, X is a Lévy process in
R
d over the base B. We leave its proof to Exercise 4.14.

4.12 Proposition. Almost every path of X is a step function if and only
if the probability is strictly positive that

R = inf{ t > 0 : Xt �= 0 }
is strictly positive. Moreover, then 0 < R < ∞ almost surely and has the
exponential distribution with some parameter c in (0,∞).
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4.13 Remark. Obviously, R is a stopping time of (Gt+). Thus, the event
{R > 0} belongs to G0+ and, by Blumenthal’s zero-one law (Corollary 3.21),
its probability is either 0 or 1. In other words, either R = 0 almost surely
or R > 0 almost surely; in the former case the point 0 of R

d is said to be
instantaneous, and in the latter case, holding. The preceding can now be re-
stated: X is a compound Poisson process if and only if the point 0 is a holding
point, in which case the holding time has an exponential distribution.

Exercise

4.14 Proof of Proposition 4.12. If the paths are step functions, then R is the
time of first jump and is necessarily strictly positive. The following are steps
leading to the sufficiency part, assuming that R > 0 almost surely in view of
Remark 4.13.

a) Show that, if R(ω) > t, then R(ω) = t+R(θtω). Use the Markov
property to show that the function f(t) = P{R > t}, t ∈ R+, satisfies
f(t+ u) = f(t)f(u).

b) Note that f is right-continuous and bounded; the case f = 1 is
excluded by the standing assumption that X is not degenerate; show that
the case f = 0 is also excluded. Thus, f(t) = e−ct for some constant c in
(0,∞) ; in other words, 0 < R <∞ almost surely and R is exponential.

c) Show that, on the event H = {XR− = XR }, we have XR− =
XR = 0 and R◦θR = 0. Use the strong Markov property to show that

P(H) = P( H ∩ {R◦θR = 0} ) = P(H)P{R = 0} = 0.

Hence, R is a jump time almost surely, obviously the first.
d) Define T1 = R, and recursively put Tn+1 = Tn +R◦θTn . Show that

the Tn form a Poisson process. Conclude that X is a step process.

5 Itô-Lévy Decomposition

This is to show the exact converse to Theorem 1.29: every Lévy process
has the form given there. Throughout, B = (Ω,H,F, θ,P) is a stochastic
base, and X is a stochastic process over it with state space R

d. A random
measure M on R+ ×R

d is said to be Poisson over B with Lévy measure λ if

5.1 a) M(A) is in Ft for every Borel subset A of [0, t] × R
d,

b) M(θtω,B) = M(ω,Bt) for every ω and t and Borel subset B of
R+ × R

d, where Bt = {(t+ u, x) : (u, x) ∈ B}, and
c) M is Poisson with mean Leb × λ, and λ is a Lévy measure, that is,

λ{0} = 0 and ˆ
Rd

λ(dx) (|x|2 ∧ 1) < ∞.
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With this preparation, we list the main theorem of this section next. It is
called the Itô-Lévy decomposition theorem. Its sufficiency part is Theorem
1.29. The necessity part will be proved in a series of propositions of interesting
technical merit. Recall Notation 1.27 and its meaning.

5.2 Theorem. The process X is a Lévy process over B if and only if,
for every t in R+,

Xt = bt+ cWt +
ˆ

[0,t]×B

[M(ds, dx) − dsλ(dx)]x +
ˆ

[0,t]×Bc

M(ds, dx)x

for some vector b in R
d, some d× d′ matrix c, some d′-dimensional Wiener

process W over B, and, independent of W , a random measure M on R+×R
d

that is Poisson over B with some Lévy measure λ.

5.3 Corollary. If X is a Lévy process, then its characteristic expo-
nent is

ψ(r) = ib · r − 1
2r · vr +

ˆ
Rd

λ(dx) (eir·x − 1 − ir · x 1B(x)), r ∈ R
d

for some b in R
d, some d×d matrix v that is symmetric and positive definite,

and some measure λ on R
d that is a Lévy measure. Conversely, if (b, v, λ)

is such a triplet, there is a Lévy process whose characteristic exponent is ψ
above.

The preceding corollary is immediate from Theorems 5.2 and 1.29. This is
basically the Lévy-Khinchine formula stated in stochastic terms. Obviously,
b and λ are as in Theorem 5.2, and v = ccT .

5.4 Remarks. a) Characteristic triplet. This refers to (b, v, λ) ; it de-
fines the law of X by defining the characteristic exponent in the canonical
form given in the preceding corollary.

b) Semimartingaleness. It follows from the theorem above that every
Lévy process is a semimartingale; see Remark 1.34c also.

c) Special cases. Characterizations for Lévy processes with special prop-
erties can be deduced from the theorem above and discussion in Section 1.
See Theorems 4.2 and 4.3 for X continuous, Theorem 4.6 for X step process,
Theorem 1.12 for X pure-jump.

d) Increasing processes. Suppose that the state space is R and X is
increasing. Then, in the theorem above and its corollary, we must have v =
0, λ(−∞, 0] = 0, and, further, λ must satisfy 1.13. It is usual to represent
such X in the form

Xt = at+
ˆ

[0,t]×(0,∞)

M(ds, dx) x, t ∈ R+.

The corresponding characteristic triplet is (b, 0, λ) with λ as noted and

b = a+
ˆ

(0,1]

λ(dx)x.
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Jumps exceeding ε in magnitude

Recall the notation ΔXt = Xt − Xt− and also Remark 1.9 on the
sparseness of jumps exceeding ε > 0 in magnitude.

5.5 Proposition. Suppose that X is a Lévy process over B. For ε > 0,
let

Xε
t =

∑

s≤t
ΔXs 1{|ΔXs|>ε}, t ∈ R+.

Then, Xε is a compound Poisson process over B.

Proof. a) It is clear that Xε is adapted to F and is additive with respect
to shifts. Since Xε

u is G∞-measurable, it follows from the Markov property
(Theorem 3.5) that Xε

u◦θt is independent of Ft and has the same distribution
as Xε

u. Thus, Xε is a Lévy process over the base B.
b) Since the paths of X are right-continuous and left-limited with

X0 = 0, the paths of Xε are step functions; see Remark 1.9. It follows from
the characterization theorem 4.6 that Xε is a compound Poisson process. �

Some independence

This is to show that Xε above is independent of X−Xε. Generally, proofs
of independence are easy consequences of assumptions made beforehand. This
is a rare case where the proof requires serious work.

5.6 Proposition. Suppose that X is a Lévy process over B. For fixed
ε > 0, let Xε be as defined in the preceding proposition. Then, Xε and X−Xε

are independent Lévy processes over B.

Proof. a) The preceding proposition has shown thatXε is a Lévy process
over B and more; part (a) of its proof is easily adapted to show that X−Xε is
a Lévy process over B, and that the pair (Xε, X−Xε) is a Lévy process over
B with state space R

d ×R
d. To show that Xε and X −Xε are independent,

then, is reduced to showing that Xε
t and Xt −Xε

t are independent for every
t. To show the latter, it is enough to show that, for every q and r in R

d,

E exp [ iq ·Xε
t + ir·(Xt−Xε

t ) ] = ( E exp iq ·Xε
t ) ( E exp ir·(Xt−Xε

t ) ) .5.7

b) Fix q and r in R
d . Recall (see 1.3) that the characteristic functions

on the right side of 5.7 have the form etϕ and etψ for some complex numbers
ϕ and ψ depending on q and r respectively. With these notations, the Lévy
property for Xε and, separately, for X −Xε shows that

Lt = 1 − exp (iq ·Xε
t − tϕ), Mt = 1 − exp (ir · (Xt −Xε

t ) − tψ)

define complex-valued F-martingales. We shall show that

E LtMt = 0, t ∈ R+,5.8

thus showing 5.7 and completing the proof.
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c) Fix t > 0. Fix n ≥ 1. Let D be the subdivision of (0, t] into n equi-
length intervals of the type (, ]. For each interval A in D, if A = (u, v], we put
LA = Lv −Lu and MA = Mv −Mu. With this notation, since L0 = M0 = 0,

LtMt =
∑

A∈D

LA
∑

B∈D

MB.

Take expectations on both sides. Note that E LAMB = 0 if A and B are
disjoint; this is by the martingale property for L and M . It follows that

E LtMt = E Rn, where Rn =
∑

A∈D

LAMA.5.9

d) We show now that |Rn| ≤ R where R is an integrable random variable
free of n. First, observe that

|MA| ≤ 2 sup
s≤t

|Ms|, A ∈ D,5.10

and that, by Doob’s norm inequality (V.3.26),

E sup
s≤t

|Ms|2 ≤ 4 E |Mt|2 <∞.5.11

Next, by the definition of L, with Xε
A = Xε

v −Xε
u for A = (u, v],

|LA| = |e iq·Xε
u e −uϕ − e iq·X

ε
v e −vϕ|

= |e −uϕ − e −vϕ + e −vϕ (1 − e iq·X
ε
A )|

≤ |e −uϕ − e −vϕ| + |e −vϕ| · |1 − e iq·X
ε
A |

≤
ˆ
A

aeas ds + 2 eat 1{Xε
A �=0}

where we put a = |ϕ| and observed that |1− e iq·x| is equal to 0 if x = 0 and
is bounded by 2 if x �= 0. Thus,

∑

A∈D

|LA| ≤ eat + 2 eat
∑

A∈D

1{Xε
A �=0} ≤ eat (1 + 2 Kt)5.12

where Kt is the number of jumps Xε has during (0, t]. Since Kt has the
Poisson distribution with some mean ct, and therefore variance ct,

E (1 + 2Kt)2 < ∞.5.13

It follows from 5.10 and 5.12 that

|Rn| ≤ 2 sup
s≤t

|Ms|
∑

A∈D

|LA| ≤ 2 eat (sup
s≤t

|Ms|)(1 + 2Kt) = R

where R is integrable in view of 5.11 and 5.13.
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e) Finally, we let n → ∞ in 5.9. Since Xε is a step process, the mar-
tingale L has finitely many jumps during [0, t] and is smooth between the
jumps. Thus,

lim Rn =
∑

s≤t
(Ls − Ls−)(Ms −Ms−) = 0,

where the sum is over the finitely many jump times s of Xε and the last
equality is because Ms−Ms− = 0 at those times s since X−Xε has no jumps
in common with Xε. In view of part (d) above, the dominated convergence
theorem applies, and we have

lim E Rn = 0.

This proves 5.8 via 5.9 and completes the proof. �

Jump measure

This is to show that jumps of X are governed by a Poisson random mea-
sure. We start by defining the random measure, to be called the jump measure
of X . Recall the notation ΔXt and also the set Dω of discontinuities of the
path X(ω). Let ω ∈ Ω, and A Borel subset of R+ × R

d ; if the path X(ω) is
right-continuous, left-limited, and X0(ω) = 0, we put

M(ω,A) =
∑

t∈Dω

1A(t,ΔXt(ω));5.14

for all other ω, put M(ω,A) = 0. For each ω, this defines a counting measure
on R+ × R

d.

5.15 Proposition. Suppose that X is a Lévy process over B. Then, M
is a Poisson random measure on R+ × R

d with mean Leb × λ, where λ is a
Lévy measure on R

d; that is, 5.1 holds.

Proof. It follows from the definition of M and augmentedness of F that
the condition 5.1a holds. Similarly, 5.1b is satisfied by the additivity of X .
There remains to show 5.1c.

For ε > 0, let Mε be the trace of M on R+ × εBc, where εBc is the set of
all εx with x outside the unit ball B. Comparing 5.14 with the definition of
Xε in Proposition 5.5, we see that Mε is the jump measure of Xε. Since Xε is
compound Poisson, it follows from Theorem 4.6 that Mε is a Poisson random
measure with mean με= Leb × λε, where λε is a finite measure on R

d.
It is obvious that λε puts all its mass outside εB. Define the measure λ on

R
d by letting, for g positive Borel, λg be the increasing limit of λεg as ε > 0

decreases to 0. Put μ = Leb × λ. It is obvious that λ{0} = 0, and that με
is the trace of μ on R+ × εBc.
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Let f be a positive Borel function on R+ × R
d. Then, ω �→ Mεf(ω) is a

random variable for each ε, and Mεf(ω) increases to Mf(ω) as ε→ 0. Thus,
Mf is a random variable, and

E e−Mf = lim
ε↓0

E e−Mεf = lim
ε↓0

exp− με(1 − e−f ) = exp− μ(1 − e−f ).

Thus, M is a Poisson random measure on R+ × R
d with mean μ = Leb × λ.

The proof is complete via the next lemma. �

5.16 Lemma. The measure λ is a Lévy measure.

Proof. We have noted that λ{0} = 0 by definition. Recall that λε is the
Lévy measure for the compound Poisson process Xε. In particular, then, λε
is finite for ε = 1. Thus, to show that the λ-integral of x �→ |x|2 ∧ 1 is finite,
it is sufficient to show that ˆ

B

λ(dx) |x|2 < ∞.5.17

By Proposition 5.6 above, Xε and X −Xε are independent. Thus,

|E eir·Xt | = |E eir·(Xt−Xε
t )

E eir·X
ε
t | ≤ |E eir·X

ε
t |

≤ | exp t

ˆ
εBc

λ(dx) (eir·x − 1)|

≤ exp− t

ˆ
εBc

λ(dx) (1 − cos r·x) ≤ exp−
t

4

ˆ
B\εB

λ(dx) |r·x|25.18

for r in B, where the last step used the observation that εB
c = R

d\εB ⊃ B\εB
and 1 − cos u ≥ u2/4 for |u| ≤ 1. Since the left-most member is free of ε,
we let ε→ 0 in the right-most member to conclude that

ˆ
B

λ(dx) |r·x|2 < ∞

for every r in B; this implies 5.17 as needed. �

Proof of the decomposition theorem 5.2

Suppose that X is a Lévy process. Recall Proposition 5.15 about the jump
measure M . In terms of it, Xe = Xε with ε = 1 is given by

Xe
t =

ˆ
[0,t]×Bc

M(ds, dx) x, t ∈ R+.5.19

Since λ is a Lévy measure, Theorem 1.23 (and using Notation 1.27) yields a
Lévy process Xd over B through

Xd
t =

ˆ
[0,t]×B

[M(ds, dx) − ds λ(dx) ]x, t ∈ R+.5.20
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Poisson nature of M implies that Xd and Xe are independent. The definition
of M shows that X −Xd −Xe has almost surely continuous paths, and the
Markov property for X shows that the latter is a Lévy process over B. Thus,
by Theorem 4.2,

Xt −Xd
t −Xe

t = bt + cWt, t ∈ R,5.21

where b, c,W are as claimed in Theorem 5.2. Putting 5.19, 5.20, and 5.21
together yields the decomposition wanted, and the main claim of the theorem
is proved, except for the independence of W and M .

For ε > 0, the process Xε of 5.5 is determined by Mε, the trace of M on
R+ × εBc, whereas W is determined by X − Xε. Independence of Xε and
X −Xε proved in Proposition 5.6 implies that W and Mε are independent.
This is true for every ε > 0, and Mεf increases to Mf for every positive
Borel f on R+ × R

d. It follows that W and M are independent.

6 Subordination

This is about time changes using increasing Lévy processes as clocks.
In deterministic terms, the operation is as follows. Imagine a clock, something
like the odometer of a car; suppose that, when the clock points to the number
t, the standard time is st. Imagine, also, a particle whose position in R

d is
zs when the standard time is s. Then, when the clock shows t, the particle’s
position is zst .

Let (Ω,H,P) be a probability space. Let S = (St) be an increasing process.
Let Z = (Zs) be a process with state space R

d. Define

Xt(ω) = ZSt(ω)(ω), ω ∈ Ω, t ∈ R+.6.1

Then, X = (Xt) is said to be obtained by subordinating Z to S, and S is
called the subordinator. We write X = ZS to express 6.1.

The concept of subordination can be extended: all that is needed is that
the subordinator’s state space be contained in the parameter set of Z. For
instance, the compound Poisson process X of Example 1.2c is obtained by
subordinating

Zn = Z0 + Y1 + · · · + Yn, n ∈ N, Z0 = 0,

to the Poisson process N = (Nt); this is immediate upon noting Xt = ZNt is
another way of expressing the sum defining Xt in 1.2c. Another such example
is where Z = (Zn)n∈N is a Markov chain with some state space (E,E), and
N = (Nt) is a Poisson process independent of Z; then, X = ZN is a Markov
process (in continuous time) with state space (E,E).

For the remainder of this section, Z and S will be independent Lévy pro-
cesses. To keep the setting simple, and also because there are three processes
and two time scales, we use Definition 1.1 for Lévy processes (with respect
to their own filtrations).
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Main results

6.2 Theorem. Let S be an increasing Lévy process. Let Z be a Lévy
process in R

d. Suppose that the two are independent. Then, X = ZS is a
Lévy process in R

d.

Proof. Since S is increasing and the regularity condition 1.1a holds for S
and for Z, the same condition holds for X . We now show that 1.1b holds for
X with F as the filtration generated by X .

Fix times 0 ≤ t0 < t1 < · · · < tn <∞ and let f1, · · · , fn be positive Borel
functions on R

d . Conditioning on the σ-algebra G∞ generated by S, using
the independence of Z and S, and also the Lévy property for Z, we obtain

E

n∏

i=1

fi(Xti −Xti−1 ) = E

n∏

i=1

gi(Sti − Sti−1 ),

where gi(s) = E fi◦Zs. Since S is a Lévy process, the right side is equal to

n∏

i=1

E gi(Sti − Sti−1 ) =
n∏

i=1

E gi(Sti−ti−1).

But, by the definition of gi and the independence of S and Z,

E gi(St) = E fi(ZSt) = E fi(Xt).

We have shown that the increments of X over the intervals (ti−1, ti], 1 ≤ i ≤
n, are independent and stationary. �

In the remainder of this section, we present a number of examples of
subordination and give a characterization of the law of X in terms of the
laws of S and Z . For the present, we list the following useful result without
proof; it is a corollary to Theorem 6.18 to be proved at the end of the section.

6.3 Proposition. Let Z, S, X be as in Theorem 6.2. Suppose that S is
pure-jump with Lévy measure ν . Then, the Lévy measure of X is,

λ(B) =
ˆ

(0,∞)

ν(ds) P{ Zs ∈ B\{0} }, Borel B ⊂ R
d.6.4

The heuristic reasoning behind this is as follows. Since S is an increasing
pure-jump process, St is equal to the sum of the lengths of the intervals
(Su−, Su], u ≤ t . This implies that Xt is equal to the sum of the increments
of Z over those intervals. Now, ν(ds) is the rate (per unit of clock time) of
S-jumps of size belonging to the small interval ds around the value s ; and,
given that an interval (Su−, Su] has length s, the corresponding increment of
Z has the same distribution as Zs . See Theorem 6.18 for more.
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Gamma subordinators

6.5 Example. Wiener subordinated to gamma. In Theorem 6.2, take Z
to be a Wiener process, and let S be a gamma process with shape rate a
and scale parameter c ; see Example 1.21. Then, given St, the conditional
distribution of Xt is Gaussian with mean 0 and variance St ; thus,

E exp irXt = E exp−
1
2
r2St =

(
c

c+ r2/2

)at
=

(
2c

2c+ r2

)at
.

Hence, in the terminology of Example 1.21, X is a symmetric gamma process
with shape rate a and scale parameter

√
2c. As described there, X is the

difference of two independent gamma processes, each with rate a and scale√
2c, say X = X+−X−. Indeed, by the reasoning following Proposition 6.3,

X+
t =

∑

u≤t
(ZSu − ZSu−)+, X−

t =
∑

u≤t
(ZSu − ZSu−)−,

each sum being over the countable set of jump times u of S.
The Lévy measure of X is as given in 1.21 with c there replaced by

√
2c

here. We re-derive it to illustrate 6.4 : for x in R,

λ(dx) = dx

ˆ ∞

0

ds a
e−cs

s
· e

−x2/2s

√
2πs

= dx a
1
|x|
ˆ ∞

0

ds e−cs
|x| e−x2/2s

√
2πs3

= dx a
e−|x|√2c

|x| ,

where we evaluated the last integral by recognizing it as the Laplace transform
of a stable distribution with index 1

2 ; see VI.4.10. See also Exercise 6.26 for
the d-dimensional version of this example.

Stable subordinators

Subordination operation is especially interesting when the subordinator S
is an increasing stable process with index a ; the index must be in (0, 1) since
S is increasing. Exercise 6.29 is an example where Z is a gamma process. The
following is about the case when Z is stable; it shows that the stability of Z
is inherited by X .

6.6 Proposition. Let S, Z, X be as in Theorem 6.2 . Suppose that S is
an increasing a-stable process, a ∈ (0, 1), and that Z is a b-stable process in
R
d, b ∈ (0, 2]. Then, X is a stable process in R

d with index ab.

6.7 Remark. In particular, taking Z to be a Wiener process in R
d, the

subordination yields an isotropic stable process in R
d with index ab = 2a . Ev-

ery isotropic stable process X with index in (0, 2) is obtained in this manner
by taking a such that 2a is equal to the index of X .
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Proof. Let S, Z, X be as assumed. Since X is Lévy by Theorem 6.2 ,
we need to check only its stability; we need to show that Xt has the same
distribution as t1/abX1 . Fix t. Since S is a-stable, St has the same distribution
as t1/aS1, which implies that Xt has the same distribution as ZuS1 with u =
t1/a . On the other hand, since Z is b-stable, Zus has the same distribution as
u1/bZs . Thus, since S and Z are independent, ZuS1 has the same distribution
as u1/bZS1 = t1/abX1 . �

6.8 Example. Cauchy in R
d. This is to illustrate the uses of the pre-

ceding theorem; we shall re-establish the results on Cauchy processes in R
d .

Let Z be a Wiener process in R
d . Independent of it, let S be the increasing

stable process of Example 2.1 with a = 1/2 and c = 1/
√

2π ; then, the Lévy
measure is ν(ds) = ds 1/

√
2πs3, and (see 2.1 and VI.4.10)

E e−pSt = e−t
√

2p , P{ St ∈ ds } = ds
te−t

2/2s

√
2πs3

,6.9

for p and s positive. According to the preceding proposition, X is an isotropic
stable process with index ab = 1

2 · 2 = 1, a Cauchy process.
It follows from the well-remembered formula E exp ir ·Zt = exp− t|r|2/2

and the independence of S and Z that

E eir·Xt = E exp−
1
2
St |r|2 = e−t|r|, r ∈ R

d,6.10

in view of the Laplace transform in 6.9 . So, X is the standard Cauchy process
in R

d . The distribution of Xt can be obtained by inverting the Fourier trans-
form in 6.10 ; we do it directly from the known distributions of St and Zs :

P{ Xt ∈ dx } = dx

ˆ ∞

0

P{St ∈ ds}e
−|x|2/2s

(2πs)d/2

= dx
tΓ

(
d+1
2

)

[πt2 + π|x|2 ](d+1)/2
6.11

here we used 6.9 , replaced 2s with 1/u, and noted that the integral is a
constant times a gamma density.

Comparing 6.10 with 2.27 , we see that the Lévy measure of X is the

measure λ given by 2.24 with c = 2Γ
(
d+1
2

)/
Γ
(
d
2

)
Γ
(

1
2

)
, and σ the uni-

form distribution on the unit sphere. Here is a confirmation of it in Cartesian
coordinates: using Proposition 6.3 ,

λ(dx) = dx

ˆ ∞

0

ds
1√

2πs3
· e

−|x|2/2s

(2πs)d/2
= dx

ĉ

|x|d+1
, x ∈ R

d,6.12

where ĉ = Γ
(
d+1
2

)/
π(d+1)/2 . For d = 1, this reduces to 2.15 as it should.
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6.13 Remark. The preceding exercise contains the distributions of St,
Xt, and Zt, namely, the strictly stable distributions with indices 1/2, 1, and
2. These three seem to be the only stable distributions that can be displayed
explicitly in terms of common functions.

Transformation of laws under subordination

This is to characterize the probability law of X in terms of the laws of
Z and S . To specify the laws of Z and X , we employ characteristic triplets.
In general, for an arbitrary Lévy process X , we shall use the shorthand X ∼
(b, v, λ) to mean that X has (b, v, λ) as its characteristic triplet. We recall
Corollary 5.3 and Remark 5.4a:

X ∼ (b, v, λ) ⇔ E eir·Xt = exp t [ ib · r − 1
2
r · vr + λfr ]6.14

where fr (x) = eir·x − 1 − ir · x1B(x). The following lemma is obvious and
needs no proof.

6.15 Lemma. a) If X is a compound Poisson process with Lévy measure
λ, then X ∼ (λh, 0, λ), where h(x) = x1B(x) for x in R

d.
b) If X ∼ (b, v, λ) and X ′

t = Xat for some fixed a in R+, then X ′ ∼
(ab, av, aλ) .

c) If X ′ ∼ (b′, v′, λ′) and X ′′ ∼ (b′′, v′′, λ′′), and if X ′ and X ′′ are
independent, then X ′ +X ′′ ∼ (b′ + b′′, v′ + v′′, λ′ + λ′′).

The next theorem gives a complete characterization of the law ofX = ZS .
In preparation, we introduce

K(s,B) = P{ Zs ∈ B , Zs �= 0 } , s ∈ R+ , Borel B ⊂ R
d6.16

and note that K is a sub-probability transition kernel. For S we use the
representation

St = at+ Sot , t ∈ R+,6.17

with a in R+ and So pure-jump with Lévy measure ν . This is the general
form of an increasing Lévy process (see Remark 5.4d).

6.18 Theorem. Let Z, S, X be as in Theorem 6.2 . Suppose that Z ∼
(b, v, λ) . Then, with h(x)= x1B(x) for x in Rd,

X ∼ ( ab+ νKh, av, aλ+ νK ).

Proof. a) We write Xt = Z(St) for ease of notation. The process X is
Lévy by Theorem 6.2 ; thus, the claim here is about the characteristic function
of Xt . It follows from 6.17 that, for fixed t,

Xt = Z(at) + [Z(at+ Sot ) − Z(at) ] = X ′
t +X ′′

t ,
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say, where X ′
t and X ′′

t are independent, the former has the same distribution
as Z(at), and the latter as Z(Sot ). By part (b) of the last lemma, X ′ ∼
(ab, av, aλ); and by part (c), the triplet for Xt = X ′

t +X ′′
t is the sum of the

triplets for X ′
t and X ′′

t . Hence, the proof is reduced to showing that

Xo = Z(So) ∼ ( νKh, 0, νK ).6.19

b) Let Sε be the pure-jump process where jumps are those of S with
sizes exceeding ε > 0. Then, Sε is a compound Poisson process, and its
Lévy measure νε is the trace of ν on (ε,∞) . Its successive jump times Tn
form a Poisson process with rate ν (ε,∞), and the corresponding sequence
(Un) of jump sizes is independent of (Tn) and is an independency with the
distribution μ = νε / ν(ε,∞) for each Un . It follows from this picture that

Xε
t = Z(Sεt ) =

∑

n

Yn 1{Tn≤t},

where, with U0 = 0,

Yn = Z(U0 + · · · + Un) − Z(U0 + · · · + Un−1), n ≥ 1.

Note that (Yn) is independent of (Tn) and is an independency with the com-
mon distribution

P{ Y1 ∈ B } =
ˆ

R+

μ(ds) P{ Zs ∈ B }, Borel B ⊂ R
d.

Hence, Xε is a compound Poisson process with Lévy measure νεK ; and we
were careful to exclude the mass at the origin which the distribution of Zs
might have. So, the characteristic exponent of Xε is

ψε(r) =
ˆ

(ε,∞)

ν(ds)
ˆ

Rd

K(s, dx) (eir·x − 1), r ∈ R
d.6.20

c) Let ε → 0. Since So is pure-jump, Sεt increases to Sot , which implies
that Z(Sεt ) → Z(Sot−) by the left-limitedness of Z . But, for fixed s, we have
Zs = Zs− almost surely, and this remains true for s = Sot by the independence
of Z from S. Hence, Xε

t → Xo
t almost surely, and the characteristic exponent

of Xo is

ψo(r) = lim
ε↓0

ψε(r).6.21

d) Let ϕ be the characteristic exponent of Z. For s ≤ 1,
∣∣∣∣
ˆ

Rd

K(s, dx) (eir·x − 1)
∣∣∣∣ =

∣∣∣∣ e
sϕ(r) − 1

∣∣∣∣ ≤ s |ϕ(r)| ;

and ˆ
(0,1]

ν(ds) s <∞
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since ν is the Lévy measure of an increasing process. Thus, the dominated
convergence theorem applies, and

lim
ε↓0

ˆ
(ε,1]

ν(ds)
ˆ

Rd

K(s, dx) (eir·x−1) =
ˆ

(0,1]

ν(ds)
ˆ

Rd

K(s, dx) (eir·x−1).

Putting this together with 6.20 and 6.21 , we get

ψo(r) =
ˆ

(0,∞)

ν(ds)
ˆ

Rd

K(s, dx) (eir·x − 1).6.22

e) We now show that, as 6.22 suggests, the Lévy measure of Xo is νK.
Let M ε be the jump measure of the process Xε . We have shown in part (b)
that it is Poisson with mean Leb × νεK . For positive Borel functions f on
R+ × R

d, it is clear that M εf increases to some limit Mof as ε → 0, and
since

Ee−M
εf = exp−

ˆ
R+

dt

ˆ
(ε,∞)

ν(ds)
ˆ

Rd

K(s, dx) [ 1 − e−f(t,x) ],

we have

Ee−Mf = exp−

ˆ
R+

dt

ˆ
(0,∞)

ν(ds)
ˆ

Rd

K(s, dx) [ 1 − e−f(t,x) ]

by the monotone convergence theorem. Thus Mo is Poisson with mean Leb×
νK . It now follows from part (c) of the proof that Mo is the jump measure
of Xo. Hence, in particular, the Lévy measure of Xo is νK.

f) Since νK is a Lévy measure on R
d,

ψ1(r) =
ˆ

B

νK(dx) (eir·x − 1 − ir·x),

ψ2(r) =
ˆ

Bc

νK(dx) (eir·x − 1)6.23

are well-defined complex numbers for each r in R
d . Writing

ir · x = (eir·x − 1) − (eir·x − 1 − ir·x)

and recalling that h(x) = x1B(x), we see from 6.22 and 6.23 that
∣∣∣∣
ˆ

Rd

νK(dx) r · h(x)
∣∣∣∣ =

∣∣∣∣ ψo(r) − ψ2(r) − ψ1(r)
∣∣∣∣ <∞.

Taking r = ej , the jth unit vector, for j = 1, · · · , d, we see that νKh is a
well-defined vector in R

d, and that

ψo(r) = i (νKh) · r + ψ1(r) + ψ2(r).6.24

In view of 6.23 , this implies through 6.14 that Xo ∼ (νKh, 0, νK) ; hence,
6.19 is true, and the proof is complete. �
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Exercises

6.25 Symmetric gamma. Let ka be as defined in Exercise 1.49 , that is, ka is
the density function for the difference of two independent gamma variables
with the same shape index a and the same scale parameter 1. Let X be as in
Example 6.5.

a) Show that the density function for Xt is
√

2c kat(
√

2c x).
b) Show that

ka(x) =
ˆ ∞

0

du
e−u ua−1

Γ(a)
· e

−x2/4u

√
4πu

, x ∈ R.

This is more appealing than its close relative, the modified Bessel function
Kν . The latter is given by

Kν(x) =
1
2

(x
2

)−ν ˆ ∞

0

du e−u uν−1e−x
2/4u, ν ∈ R , x ∈ R+.

Thus, for a > 0 and x in R,

ka(x) =
|x/2|a−1/2

√
π Γ(a)

Ka−1/2( |x| ).

6.26 Wiener subordinated to gamma. In Theorem 6.2, let Z be a Wiener pro-
cess in R

d, and S a gamma process with shape rate a and scale parameter c . In
view of Example 6.5 , every component ofX = ZS is a symmetric gamma pro-
cess with shape rate a and scale parameter

√
2c . The process X is isotropic.

a) Show that

E eir·Xt =
(

2c
2c+ |r|2

)at
, r ∈ R

d.

b) Let λ be the Lévy measure of X . In spherical coordinates (see 1.52) ,
its spherical part σ is the uniform distribution on the unit sphere in R

d, and
its radial part ρ is given by

ρ(dv) = dv

ˆ ∞

0

ds
ae−cs

s
· 2vd−1 e−v

2/2s

(2s)d/2 Γ(d/2)
, v > 0.

Show this. Show that

ρ(dv) = dv · Γ(d+1
2 ) Γ(1

2 )
Γ(d2 )

· 4a
v
kb(

√
2c v)

with b = d+1
2 ; see the preceding exercise for kb .
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6.27 Stable subordinated to gamma. Let Z be an isotropic a-stable process
in R

d having the characteristic exponent ψ(r) = −|r|a . Let S be a gamma
process with shape rate b and scale parameter c . As usual, we assume that
Z and S are independent. For X = ZS , show that

E eir·Xt =
(

c

c+ |r|a
)bt

, r ∈ R
d.

The distribution of Xt is called Linnik distribution.

6.28 Continuation. Suppose, now, that Z is an increasing stable process with
index a, necessarily, a ∈ (0, 1) . Then, X = ZS is an increasing pure-jump
process. Suppose that the scale parameter is chosen to make Zt have the
Laplace transform e−tp

a

, p ∈ R+.

a) Show that

E e−pXt =
(

c

c+ pa

)bt
, p ∈ R+.

b) Show that, when a = 1/2, the Lévy measure for X is

λ(dx) = dx b
ec

2x

x

ˆ ∞

c
√

2x

du
e−u

2/2

√
2π

, x > 0.

6.29 Gamma subordinated to stable. Let Z be a gamma process with shape
rate b and scale parameter 1. Let S be an increasing stable process with shape
index a and scale c, that is, E exp− pSt = exp− tcp

a for p in R+ ; here c > 0
and a ∈ (0, 1) . Show that, then,

E e−pXt = exp− tc [ b log(1 + p) ]a, p ∈ R+.

7 Increasing Lévy Processes

These processes play an important role in the theories of regeneration and
Markov processes in continuous time. Moreover, they are useful as subordina-
tors and interesting in themselves. In this section, we give a highly selective
survey concentrating on potentials and hitting times.

Throughout, (Ω,H,P) is a complete probability space, F = (Ft) is an
augmented right-continuous filtration, and S = (St) is an increasing Lévy
process relative to F . The assumptions on F are without loss of generality in
view of Theorem 3.20.

We let b denote the drift rate and λ the Lévy measure for S. Thus, b is a
constant in R+, and the measure λ on R+ satisfies 1.13 and λ{0} = 0 . More
explicitly,

St = bt+
ˆ

(0,t]×R+

M(ds, dx) x, t ∈ R+,7.1
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where M is Poisson on R+ × R+ with mean Leb × λ . We let πt be the
distribution of St and recall that, for p in R+,

Ee−p St =
ˆ

R+

πt(dx) e−px = exp− t [ bp+
ˆ

R+

λ(dx) (1 − e−px) ].7.2

We exclude from further consideration the trivial case where λ = 0. When
b = 0 and λ finite, S is a compound Poisson process, and its paths are step
functions. Otherwise, S is strictly increasing.

Potential measure

For Borel subsets B of R+, we define

U(B) = E

ˆ
R+

dt 1B◦St =
ˆ

R+

dt πt(B),7.3

the expected amount of time spent in B by S . Then, U is called the potential
measure of S. Explicit computations are rare, but the Laplace transform

ûp =
ˆ

R+

U(dx) e−px =
ˆ

R+

dt E e−pSt7.4

is readily available: in view of 7.2,

[ bp+
ˆ

R+

λ(dx) (1 − e−px) ] ûp = 1, p ∈ (0,∞).7.5

7.6 Example. a) Poisson process. Suppose that S is a Poisson process
with rate c. Then, it spends an exponential amount with mean 1/c at each
positive integer n . So, U = (1/c) (δ0 + δ1 + · · ·), where δx is Dirac at x as
usual.

b) Stable process. Suppose that S is increasing stable with index a ; the
index is necessarily in (0, 1) . Then, the Lévy measure has the density c/xa+1

with respect to Lebesgue on (0,∞) ; see 2.1 . Choosing c = a/Γ(1 − a), the
Laplace transform for St becomes exp− tp

a, and hence

ˆ
R+

U(dx) e−px =
1
pa

=
ˆ

R+

dx
e−px xa−1

Γ(a)
.

It follows that the potential measure is absolutely continuous, and

U(dx) = dx
xa−1

Γ(a)
, x ∈ R+.

7.7 Remark. a) The measure U is diffuse, except when S is compound
Poisson: if S is not compound Poisson, then it is strictly increasing, which
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implies that the amount of time spent in the singleton {x} is equal to zero.
When S is compound Poisson, the point 0 is an atom for U , because S spends
an exponential amount of time at 0 with parameter c = λ(R+) < ∞ ; there
are atoms beyond 0 only if λ has atoms.

b) The potential measure is finite on compacts: For B ⊂ [0, x],

U(B) ≤
ˆ

R+

dt P{ St ≤ x } =
ˆ

R+

dt P{ e−St ≥ e−x }

≤
ˆ

R+

dt ex E e−St = ex û1,

where the inequality is Markov’s; and û1 < ∞ since the first factor on the
left side of 7.5 is strictly positive for p = 1 .

Absolute continuity of the potential

This is a closer examination of the equation 7.5 for the Laplace transform
ûp . We start by introducing a measure ϕ on R+:

ϕ(dx) = b δ0(dx) + dx λ(x,∞) 1(0,∞)(x), x ∈ R+.7.8

Since the Lévy measure λ satisfies 1.13 , its tail x �→ λ(x,∞) is a real-valued
decreasing locally integrable function on (0,∞) . Thus, the measure ϕ is finite
on compacts. Note that its Laplace transform is

ϕ̂p =
ˆ

R+

ϕ(dx) e−px = b+
1
p

ˆ
R+

λ(dx) (1 − e−px), p > 0.

Hence, we may re-write 7.5 as ϕ̂p ûp = 1
p ; in other words, the convolution of

the measures U and ϕ is equal to the Lebesgue measure on R+, that is,
ˆ

R+

ϕ(dx)
ˆ

R+

U(dy) 1B(x+ y) = Leb B,

or equivalently,

b U(B) +
ˆ
B

dx

ˆ
[0,x]

U(dy) λ(x− y,∞) = Leb B, B ∈ BR+ .7.9

7.10 Remark. Suppose that b = 0 . Then, the preceding equation shows
that ˆ

[0,x]

U(dy) λ(x− y,∞) = 17.11

for Lebesgue-almost every x in (0,∞) . It is known that, in fact, this is true
for every x in (0,∞). We shall show this when S is compound Poisson; see
7.25ff. The proof in the remaining case, where b = 0 and λ(R+) = +∞, is
famously difficult; see notes and comments for this chapter.
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7.12 Theorem. Suppose that b > 0 . Then, U is absolutely continuous
and admits a bounded continuous function u : R+ �→ R+ as its density; and

b u(x) +
ˆ x

0

dy u(y) λ(x − y,∞) = 1, x ∈ R+.7.13

Proof. It follows from 7.9 that bU ≤ Leb, which implies via Radon-
Nikodym theorem that U(dx) = dx u(x), x ∈ R+,for some positive Borel
function bounded by 1/b . Then, 7.9 implies that 7.13 holds for Leb-almost
every x . Since u is bounded and x �→ λ(x,∞) is right-continuous and locally
integrable, the second term on the left side of 7.13 is continuous in x. Thus,
we may take u continuous, and 7.13 holds for every x . �

Level crossings

Let Tx denote the time of hitting (x,∞) by S ; we call it also the time of
crossing the level x :

Tx = inf { t ≥ 0 : St > x }, x ∈ R+.7.14

Each Tx is a stopping time of (Gt+), where G is the filtration generated by
S ; it is also a stopping time of F since F is right-continuous. The processes
(St) and (Tx) are functional inverses of each other. If S is compound Poisson,
then T0 > 0 almost surely, and (Tx) is a step process. Otherwise, S is strictly
increasing, and T0 = 0 almost surely, and (Tx) is continuous.

7.15 Proposition. For fixed x and t in R+,

P{ Tx ≤ t } =
{

P{ St > x } if S is compound Poisson,
P{ St ≥ x } otherwise.7.16

In both cases,

E Tx = U [0, x] =
ˆ ∞

0

dt P{ St ≤ x }.

Proof. Pick ω such that the regularity conditions hold for the correspond-
ing path of S . If S is compound Poisson, the path is a step function, and
Tx(ω) ≤ t if and only if St(ω) > x ; this proves 7.16 in this case. Otherwise,
the path is strictly increasing; then, St(ω) ≥ x implies that Tx ≤ t, and the
latter implies that x ≤ S(ω, Tx(ω)) ≤ S(ω, t) ; thus, Tx(ω) ≤ t if and only if
St(ω) ≥ x, and this proves 7.16 in this case.

As to expected values, it follows from 7.16 that

E Tx =
ˆ

R+

dt P{ Tx > t } =
{
U [0, x] if S is compound Poisson,
U [0, x) otherwise .

But if S is not compound Poisson, then U is diffuse (see Remark 7.7a) , and
we have U [0, x) = U [0, x] . �
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Jumping across

In the remainder of this section we shall consider the joint distribution of
Tx and the values of S just before and after Tx . We introduce (G for gauche,
and D for droit)

Gx = STx−, Dx = STx , x ∈ R+,7.17

with the convention that S0− = 0 always; see Figure 10 below. In general,
Gx ≤ x ≤ Dx . Crossing into (x,∞) occur either by drifting across x, which
is the case on the event { Gx = x = Dx }, or by jumping across x, which is
the case on { Gx < Dx } . The following gives the joint distribution in the
jump case.

7.18 Theorem. Let x ∈ (0,∞) . Let f : (R+)3 �→ R+ be Borel. Then,

E f(Tx , Gx , Dx) 1{Gx �=Dx } =
ˆ

R+

dt

ˆ
[0,x]

πt(dy)
ˆ

[x−y,∞)

λ(dz) f(t, y, y+z) .

7.19

7.20 Remark. Case of x = 0 . If S is not compound Poisson, there is
nothing to do, since T0 = 0 and G0 = D0 = 0 . If S is compound Poisson,
then 7.19 remains true for x = 0 : Then, T0 is the time of first jump, which
has the exponential distribution with parameter c = λ(R+) ; and G0 = 0
almost surely; and D0 is the size of the first jump, which is independent of
T0 and has the distribution (1/c)λ ; whereas, πt{0} = e−ct.

Proof. Fix x > 0 and f Borel. Let Z denote the random variable on the
left side of 7.19 . Being increasing, S can cross the level x only once. For
almost every ω, therefore, there is at most one jump time t with St−(ω) ≤
x ≤ St(ω) ; and if t is such, putting z = St(ω) − St−(ω) > 0, we obtain an

St

Dx

X

Gx

Tx
t

Figure 10: Level x is crossed at time Tx by a jump from the point Gx in [0, x]
to the point Dx in (x,∞).
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atom (t, z) of the measure M(ω, ·) defining S(ω) ; see 7.1 . Thus,

Z =
ˆ

R+×(0,∞)

M(dt, dz) f(t, St−, St− + z) 1{St−≤x≤St−+ z } ;

indeed, for almost every ω, the integral is a sum with at most one term,
namely, the term corresponding to t = Tx(ω) if St(ω) − St−(ω) = z > 0. So,
Z is a Poisson integral, and the integrand is predictable (see Theorem VI.6.2)
since t �→ St− is left-continuous and adapted. Hence,

E Z = E

ˆ
R+

dt

ˆ
(0,∞)

λ(dz) f(t, St−, St− + z) 1{St−≤x≤St−+z }

= E

ˆ
R+

dt

ˆ
(0,∞)

λ(dz) f(t, St, St + z) 1{St≤ x≤St+z },

where the last equality is justified by noting that replacing St− with St cannot
alter the Lebesgue integral over t, since St−(ω) differs from St(ω) for only
countably many t . We obtain 7.19 by evaluating the last expectation using
the distribution πt of St and recalling that λ{0} = 0 . �

At the time S crosses x, its left-limit Gx belongs to [0, x] and its right-
hand value Dx belongs to [x,∞) . Thus, if the crossing is by a jump, the jump
is either from somewhere in [0, x] into (x,∞) or from somewhere in [0, x) to
the point x . The following shows that the last possibility is improbable.

7.21 Corollary. For x in (0,∞),

P{ Gx < x = Dx } = 0.

Proof. Fix x. This is obvious when S is compound Poisson, because Dx >
x then. Suppose that S is not compound Poisson, and recall that, then, the
potential measure is diffuse. From the preceding theorem, taking f(t, y, z) =
1[0,x)(y) 1{x}(z), we get

P{ Gx < x = Dx } =
ˆ

[0,x)

U(dy) λ { x− y }.

Since λ is σ-finite, it can have x− y as an atom for at most countably many
y ; let A be the set of such y in [0, x) . We have U(A) = 0 since U is diffuse.
So, the last integral is zero as claimed. �

7.22 Corollary. For every x in R+,

P{ Gx = Dx } = P{ Dx = x } = 1 −
ˆ

[0,x]

U(dy) λ (x − y,∞).7.23
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Proof. For x = 0, this is by direct checking; see Remark 7.20 . Suppose
x > 0 . It follows from the last corollary that, on the event {Dx = x }, we
have Gx = x almost surely; hence,

P{ Dx = x } = P{ Gx = x = Dx } = P{ Gx = Dx }.
This proves the first equality. The second is obtained by computing P{Dx > x}
from 7.19 by taking f(t, y, z) = 1(x,∞)(z). �

Consider the preceding corollary in light of Theorem 7.12 . If b > 0, the
potential measure admits a density u, and comparing 7.13 and 7.23 , we see
that the probability of drifting across x is

P{ Gx = Dx } = P{ Dx = x } = b u(x) , x ∈ R+.7.24

If b = 0 and λ finite, that is, if S is compound Poisson, then Dx > x for every
x ; hence,

P{ Gx = Dx } = P{ Dx = x } = 1−
ˆ

[0,x]

U(dy) λ(x− y,∞) = 0,7.25

for x in R+ ; and we see that 7.11 is true for every x as a by-product. Indeed,
as remarked in 7.10 , it can be shown that 7.25 is true for every x as long as
b = 0 . Here is an example.

7.26 Example. Stable processes. Suppose that S is the increasing stable
process of Example 7.6. Recall that λ(dx) = dx a / xa+1 Γ(1 − a), which
yielded the potential measure U(dx) = dx / x1−a Γ(a) . Then, for 0 ≤ y ≤
x < z, we see from 7.19 that

P{ Gx ∈ dy, Dx ∈ dz } = U(dy) λ(dz − x)

= dy dz
a

Γ(a) Γ(1 − a)y1−a(z − y)1+a

= dy dz
a sinπa

πy1−a(z − y)1+a
.

Integrating over y in [0, x] and z in (x,∞), we get P{Dx > x } = 1, confirming
7.25 and 7.11 once more.

Drifting across

We concentrate here on the distribution of Tx in the event x is crossed by
drifting. Define

μx(A) = P{ Tx ∈ A, Gx = Dx }, x ∈ R+ , A ∈ BR+ .7.27

If b = 0 then this is zero. Suppose that b > 0 . Then, S is strictly increas-
ing, which implies that x �→ Tx is continuous, which in turn implies that
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x �→ μx(A) is Borel measurable for each A in BR+ . Hence, (x,A) �→ μx(A)
is a transition kernel; it is bounded, since μx(R+) = b u(x) in view of 7.24 ,
and u is bounded by 1/b . The following identifies it.

7.28 Theorem. Suppose that b > 0 . Then, μ is a transition kernel from
R+ into R+ which satisfies

dx μx(dt) = dt πt(dx) b, x ∈ R+, t ∈ R+.7.29

Proof. Let f : R+ �→ R+ be Borel. With b > 0, the form 7.1 of S shows
that dSt(ω) = b dt if St−(ω) = St(ω) . Hence,

ˆ
R+

dt b f(t, St) =
ˆ

R+

f(t, St) 1{St−=St }dSt

=
ˆ

R+

dx f(Tx, Dx) 1{Gx=Dx }

=
ˆ

R+

dx f(Tx, x) 1{Gx=Dx },

where we used the time change t = Tx, the definitions 7.17 of G and D, and
the observation that Dx = x on {Gx = Dx } . Next, we take expectations on
both sides; using the definition 7.27 , we get

b

ˆ
R+

dt

ˆ
R+

πt(dx) f(t, x) =
ˆ

R+

dx

ˆ
R+

μx(dt) f(t, x).

This proves 7.29 since f is an arbitrary positive Borel function. �

7.30 Remark. Fix t > 0 . let ν(A) be the expected amount of time that
S spends in the set A during the time interval [0, t] . Then, ν is a measure on
R+ whose total mass is t . According to 7.29, ν is absolutely continuous with
respect to the Lebesgue measure, and

μx [ 0, t ] = b
ν(dx)
dx

, x ∈ R+.

7.31 Example. Suppose that St = bt+Sot , where So is a gamma process
with shape rate a and scale parameter c . Then,

πt(dx) = dx
e−c(x−bt) cat (x− bt)at−1

Γ(at)
, x > bt;

and

μx(dt) = dt
b cat e−c(x−bt) (x− bt)at−1

Γ(at)
1(0,x)(bt).
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Exercises

7.32 Compound Poisson. Suppose that S is a compound Poisson process with
an exponential jump size distribution, that is, its Lévy measure is λ(dx) =
ca e−ax dx for some constants a and c in (0,∞) . Show that the corresponding
potential measure is

U(dx) =
1
c
δ0(dx) +

a

c
dx, x ∈ R+.

7.33 Atoms of πt. Theorem 7.28 might suggest that, when b > 0, the distri-
bution πt is absolutely continuous. This is false: Suppose that St = bt+Nt
where N is Poisson with rate c . For fixed x > 0, then

πt{ x } = P{ St = x } = P{ Nt = x− bt } ,
which is strictly positive if x− bt = n for some integer n ≥ 0 . In the positive
direction, it is known that πt is diffuse whenever the Lévy measure is infinite.

7.34 Poisson with drift. Suppose that St = t + Nt where N is a Poisson
process with rate 1. Fix x > 0 . Show that

{ Dx = x } =
⋃

k

{ Tx = x− k , Nx−k = k } =
⋃

k

{ Nx−k = k }

where the sum is over all integers k in [0, x) . Show that

u(x) = P{ Gx = Dx = x } =
∑

k<x

e−(x−k) (x− k)k

k!
.

Compute

μx[0, t] = P{ Tx ≤ t, Gx = Dx = x }
= P{ Tx ≤ t } − P{ Tx ≤ t, Gx �= Dx }.

7.35 Stable process with index a = 1/2. Suppose that S is stable with index
1/2 ; then, b = 0 and the Lévy measure is λ(dx) = dx (c/xa+1) 1(0,∞)(x) for
some constant c . Show that the distribution of (Gx, Dx ) is free of c . Use
Example 7.26 to show that

P{ Gx ∈ dy, Dx ∈ dz } = dy dz
1

2π
√
y (z − y)3

, y < x < z.

Show that, for y < x < z again,

P{ Gx < y, Dx > z } =
2
π

arcsin
√
y

z
.

In particular, then, for y < x,

P{ Gx < y } = P{ Dy > x } =
2
π

arcsin
√
y

x
.
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The distribution involved here is called the arcsine distribution; it is the beta
distribution with index pair ( 1

2 ,
1
2 ) .

7.36 Drifting. In general, if b > 0, show that

P{ Tx > t, Gx = Dx } = πt [0, x] −
ˆ ∞

t

du

ˆ
[0,x]

πu(dy) λ [x− y,∞ ).

7.37 Laplace transforms. Let ψ(p) = bp +
´
λ(dx) (1 − e−px), the Laplace

exponent for S, for p ≥ 0 . Show that, for p > 0,
ˆ

R+

dx e−px P{ Tx > t } =
1
p
e−tψ(p),

ˆ
R+

dx e−px P{ Tx > t, Gx = Dx } =
b

ψ(p)
e−tψ(p),

ˆ
R+

dx p e−px E Tx =
1

ψ(p)
= û(p).

7.38 Time changes. Let c : R+ �→ R+ be a strictly increasing continuous
function with c(0) = 0 and limt→∞ c(t) = +∞ . Define

Ŝt = Sc(t) , t ∈ R+.

Then, Ŝ is a process with independent increments, but the stationarity of
increments is lost unless c(t) = c0 t . Define T̂ , Ĝ, D̂ from the process Ŝ in
the same manner that T, G, D are defined from S .

a) Show that Ĝx = Gx and D̂x = Dx for all x.
b) Show that c (T̂x) = Tx ; thus, T̂x = a (Tx) where a is the functional

inverse of c .

7.39 Continuation. Observe that the preceding results remain true when c
is replaced by a stochastic clock C whose paths t �→ C(ω, t) satisfy the
conditions on c for every ω.
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