
Chapter II

Probability Spaces

A probability space is a triplet (Ω, H, P) where Ω is a set, H is a σ-algebra
on Ω, and P is a probability measure on (Ω, H). Thus, mathematically, a
probability space is a special measure space where the measure has total
mass one.

But, our attitude and emotional response toward one is entirely different
from those toward the other. On a measure space everything is deterministic
and certain, on a probability space we face randomness and uncertainty.

A probability space (Ω, H, P) is a mathematical model of a random ex-
periment, an experiment whose exact outcome cannot be told in advance.
The set Ω stands for the collection of all possible outcomes of the experi-
ment. A subset H is said to occur if the outcome of the experiment happens
to belong to H . Given our capabilities to measure, detect, and discern, and
given the nature of answers we seek, only certain subsets H are distinguished
enough to be of concern whether they occur. The σ-algebra H is the collec-
tion of all such subsets whose occurrence are noteworthy and decidable; the
elements of H are called events. From this point of view, the conditions for H

to be a σ-algebra are logical consequences of the interpretation of the term
“event”. Finally, for each event H , the chances that H occurs is modeled to
be the number P(H), called the probability that H occurs.

The actual assignment of probabilities to events is the primary task of
the probabilist. It requires much thought and experience, it is rarely explicit,
and it determines the quality of the probability space as a model of the
experiment involved. Once the probability space is fixed, the main task is to
evaluate various integrals of interest by making adroit use of those implicitly
defined probabilities. Often, the results are compared against experience, and
the probability space is altered for a better fit.

Our aim in this chapter is to introduce the language and notation of prob-
ability theory. Implicit in the language are whole sets of attitudes, prejudices,
and desires with which we hope to infect the reader.
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1 Probability Spaces and Random Variables

Let (Ω, H, P) be a probability space. The set Ω is called the sample space;
its elements are called outcomes. The σ-algebra H may be called the grand
history; its elements are called events. We repeat the properties of the prob-
ability measure P; all sets here are events:

1.1 Norming: P(∅) = 0, P(Ω) = 1.

Monotonicity: H ⊂ K ⇒ P(H) ≤ P(K).

Finite additivity: H ∩ K = ∅ ⇒ P(H ∪ K) = P(H) + P(K).

Countable additivity: (Hn) disjointed ⇒ P(
⋃

n Hn) =
∑

n P(Hn).

Sequential continuity: Hn ↗ H ⇒ P(Hn) ↗ P(H),
Hn ↘ H ⇒ P(Hn) ↘ P(H).

Boole’s inequality: P(
⋃

n Hn) ≤ ∑
n P(Hn).

All of these are as before for arbitrary measures, except for the sequential
continuity under decreasing limits, which is made possible by the finiteness
of P: If H1 ⊃ H2 ⊃ . . . and limHn =

⋂
Hn = H , then the complements

Hc
n increase to Hc, which implies that P(Hc

n)↗P(Hc) by the sequential
continuity of measures under increasing limits, and we have P(H)= 1−P(Hc),
and similarly for each Hn, by the finite additivity and norming of P.

Negligibility, completeness

The concepts are the same as for arbitrary measures: A subset N of Ω
is said to be negligible if there exists an event H such that N ⊂ H and
P(H) = 0. The probability space is said to be complete if every negligible set
is an event.

Improbable events do not bother the probabilist. Negligible sets should
not either, but if a negligible set does not belong to H then we are not able
to talk of its probability, which thing is bothersome. So, it is generally nicer
to have (Ω, H, P) complete. If it is not, it can be completed using Proposi-
tion I.3.10.

Almost surely, almost everywhere

An event is said to be almost sure if its probability is one. If a proposition
holds for every outcome ω in an almost sure event, then we say that the
proposition holds almost surely or almost everywhere or for almost every ω
or with probability one. Obviously, the concept is equivalent to having the
proposition fail only over a negligible set.
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Random variables

Let (E, E) be a measurable space. A mapping X : Ω �→ E is called
a random variable taking values in (E, E) provided that it be measurable
relative to H and E, that is, if

X−1A = {X ∈ A} = {ω ∈ Ω : X(ω) ∈ A}1.2

is an event for every A in E. Of course, it is sufficient to check the condition
for A in a collection that generates E. It is customary to denote random
variables by capital letters.

If the σ-algebra E is understood from context, then we merely say that X
takes values in E or that X is E-valued. This is especially the case if E is R

or R
d or some Borel subset of some such space and E is the Borel σ-algebra

on E.
The simplest random variables are indicators of events; we use the usual

notation 1H for the indicator of H . A random variable is simple if it takes
only finitely many values, all in R. It is said to be discrete if it is elementary,
that is, if it takes only countably many values.

Distribution of a random variable

Let X be a random variable taking values in some measurable space
(E, E). Let μ be the image of P under X (see section I.5 for image measures),
that is,

μ(A) = P(X−1A) = P{X ∈ A}, A ∈ E,1.3

where the last member is read as “the probability that X is in A”. Then, μ
is a probability measure on (E, E); it is called the distribution of X .

In view of Proposition I.3.7, to specify the distribution μ, it is sufficient to
specify μ(A) for all A belonging to a p-system that generates E. In particular,
if E = R̄ and E = BE , the intervals [−∞, x] with x in R form a convenient
p-system; consequently, in this case, it is enough to specify

c(x) = μ[−∞, x] = P{X ≤ x}, x ∈ R.1.4

The resulting function c : R �→ [0, 1] is called the distribution function of X .
Distribution functions are used extensively in elementary probability theory
in order to avoid measures. We shall have little use for them. A review of
some salient facts are put as exercises for the sake of completeness.

Functions of random variables

Let X be a random variable taking values in (E, E). Let (F, F) be another
measurable space, and let f : E �→ F be measurable relative to E and F.
Then, the composition Y = f ◦ X of X and f , namely,

Y (ω) = f ◦ X(ω) = f(X(ω)), ω ∈ Ω,1.5
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is a random variable taking values in (F, F); this follows from Proposition
I.2.5 that measurable functions of measurable functions are measurable. If μ
is the distribution of X , then the distribution ν of Y is ν = μ ◦ f−1:

ν(B) = P{Y ∈ B} = P{X ∈ f−1B} = μ(f−1B), B ∈ F.1.6

Joint distributions

Let X and Y be random variables taking values in measurable spaces
(E, E) and (F, F) respectively. Then, the pair Z = (X, Y ) : ω �→ Z(ω) =
(X(ω), Y (ω)) is measurable relative to H and the product σ-algebra
E ⊗ F, that is, Z is a random variable taking values in the product space
(E × F, E ⊗ F).

The distribution of Z is a probability measure π on the product space
and is also called the joint distribution of X and Y . Since E⊗F is generated
by the p-system of measurable rectangles, in order to specify π it is sufficient
to specify

π(A × B) = P{X ∈ A, Y ∈ B}, A ∈ E, B ∈ F,1.7

the right side being the probability that X is in A and Y is in B, that is, the
probability of {X ∈ A} ∩ {Y ∈ B}. In the opposite direction, given the joint
distribution π, for A in E and B in F, we have

μ(A) = P{X ∈ A} = π(A × F ), ν(B) = P{Y ∈ B} = π(E × B).1.8

In this context, the probability measures μ and ν are called the marginal
distributions of X and Y respectively. These terms are used, with obvious
generalizations, for any finite number of random variables.

Independence

Let X and Y be random variables taking values in (E, E) and (F, F)
respectively, and let μ and ν be their respective (marginal) distributions.
Then, X and Y are said to be independent if their joint distribution is the
product measure formed by their marginals, that is, if the distribution of the
pair (X, Y ) is the product measure μ × ν, or in still other words,

P{X ∈ A, Y ∈ B} = P{X ∈ A}P{Y ∈ B}, A ∈ E, B ∈ F.1.9

In probability theory, independence is used often as a primitive concept
to be decided by considerations based on the underlying experiment and the
way X and Y are defined. And, once it is decided upon, independence of
X and Y becomes a convenient tool for specifying the joint distribution via
its marginals. We shall return to these matters in Chapter IV for a rigorous
treatment. For the present we mention an extension or two.
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A finite collection {X1, . . . , Xn} of random variables is said to be an
independency, or the variables X1, . . . , Xn are said to be independent, if
the distribution of the random vector (X1, . . . , Xn) has the product form
μ1 × · · · × μn where μ1, . . . , μn are probability measures. Then, necessarily,
μi is the distribution of Xi for each i. An arbitrary collection (countable or
uncountable) of random variables is said to be an independency if every finite
sub-collection of it is an independency.

Stochastic processes and probability laws

Let (E, E) be a measurable space. Let T be an arbitrary set, countable or
uncountable. For each t in T , let Xt be a random variable taking values in
(E, E). Then, the collection {Xt : t ∈ T } is called a stochastic process with
state space (E, E) and parameter set T .

For each ω in Ω, let X(ω) denote the function t �→ Xt(ω) from T into
E; then, X(ω) is an element of ET . By Proposition I.6.27, the mapping
X : ω �→ X(ω) from Ω into ET is measurable relative to H and ET . In other
words, we may regard the stochastic process {Xt : t ∈ T } as a random
variable X that takes values in the product space (F, F) = (ET , ET ).

The distribution of the random variable X , that is, the probability mea-
sure P ◦X−1 on (F, F), is called the probability law of the stochastic process
{Xt : t ∈ T }.

Recall that the product σ-algebra F is generated by the finite-dimensional
rectangles and, therefore, a probability measure on (F, F) is determined by
the values it assigns to those rectangles. It follows that the probability law
of X is determined by the values

P{Xt1 ∈ A1, . . . , Xtn ∈ An}1.10

with n ranging over N
∗, and t1, . . . , tn over T , and A1, . . . , An over E. Much

of the theory of stochastic processes has to do with computing integrals con-
cerning X from the given data regarding 1.10.

Examples of distributions

The aim here is to introduce a few distributions that are encountered often
in probabilistic work. Other examples will appear in the exercises below and
in the section next.

1.11 Poisson distribution. Let X be a random variable taking values in
N = {0, 1, . . .}; it is to be understood that the relevant σ-algebra on N is
the discrete σ-algebra of all subsets. Then, X is said to have the Poisson
distribution with mean c if

P{X = n} =
e−c cn

n!
, n ∈ N.
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Here, c is a strictly positive real number. The corresponding distribution is
the probability measure μ on N defined by

μ(A) =
∑

n∈A

e−ccn

n!
, A ⊂ N.

1.12 Exponential distributions. Let X be a random variable with values
in R+; the relevant σ-algebra on R+ is B(R+). Then, X is said to have
the exponential distribution with scale parameter c if its distribution μ has
the form

μ(dx) = dx ce−cx , x ∈ R+,

where dx is short for Leb(dx). Here, c > 0 is a constant, and we used the form
I.5.8 to display μ. In other words, μ is absolutely continuous with respect to
the Lebesgue measure on R+ and its density function is p(x) = ce−cx, x ∈ R+.
When c = 1, this distribution is called the standard exponential.

1.13 Gamma distributions. Let X be a random variable with values in R+. It
is said to have the gamma distribution with shape index a and scale parameter
c if its distribution μ has the form

μ(dx) = dx
caxa−1e−cx

Γ(a)
, x ∈ R+.

Here, a > 0 and c > 0 are constants and Γ(a) is the so-called gamma function.
The last is defined so that μ is a probability measure, that is,

Γ(a) =
ˆ ∞

0

dx xa−1e−x.

Incidentally, the density function for μ takes the value +∞ at x = 0 if
a < 1, but this is immaterial since Leb{0} = 0; or, in probabilistic terms,
X ∈ R

∗
+ = (0,∞) almost surely, and it is sufficient to define the density on

R
∗
+. In general, Γ(a) = (a − 1)Γ(a − 1) for a > 1. This allows one, together

with Γ(1
2 ) =

√
π and Γ(1) = 1, to give an explicit expression for Γ(a) when

a > 0 is an integer or half-integer. In particular, when a = 1, the gamma
distribution becomes the exponential; and when c = 1

2 and a = n
2 for some

integer n ≥ 1, it is also called the Chi-square distribution with n degrees
of freedom. Finally, when c = 1, we call the distribution standard gamma
distribution with shape index a.

1.14 Gaussian distributions. Let X be a real-valued random variable. It is
said to have the Gaussian (or normal) distribution with mean a and variance
b if its distribution μ has the form

μ(dx) = dx
1√
2πb

e−(x−a)2/2b, x ∈ R.

Here, a ∈ R and b > 0, both constant. If a = 0 and b = 1, then μ is called
the standard Gaussian distribution.
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1.15 Independent gamma variables. Let γa denote the standard gamma dis-
tribution with shape index a; this is the probability measure μ of Example
1.13 above but with c = 1. Let X have the distribution γa, and Y the dis-
tribution γb; here a > 0 and b > 0. Suppose that X and Y are independent.
Then, the joint distribution of X and Y is the product measure γa × γb, that
is, the distribution of the pair (X, Y ) is the probability measure π on R+×R+

given by

π(dx, dy) = γa(dx) γb(dy) = dx dy
e−x xa−1

Γ(a)
· e−y yb−1

Γ(b)
.

1.16 Gaussian with exponential variance. Let X and Y be random variables
taking values in R+ and R respectively. Suppose that their joint distribution
π is given by

π(dx, dy) = dx dy ce−cx 1√
2πx

e−y2/2x , x ∈ R+, y ∈ R.

Note that π has the form π(dx, dy) = μ(dx) K(x, dy), where μ is the expo-
nential distribution with scale parameter c, and for each x, the distribution
B �→ K(x, B) is Gaussian with mean 0 and variance x. Indeed, K is a tran-
sition kernel from R+ into R, and π is an instance of the measure appearing
in Theorem I.6.11. It is clear that the marginal distribution of X is the expo-
nential distribution μ. The marginal distribution ν of Y has the form ν = μK
introduced in Theorem I.6.3:

ν(B) = π(R+ × B) =
ˆ

R+

μ(dx) K(x, B) , B ∈ BR.

It is seen easily that ν is absolutely continuous with respect to the Lebesgue
measure on R, that is, ν has the form ν(dy) = dy · n(y), and the density
function is

n(y) =
ˆ ∞

0

dx ce−cx e−y2/2x

√
2πx

= 1
2 b e−b|y| , y ∈ R,

with b =
√

2c. Incidentally, this distribution ν is called the two-sided ex-
ponential distribution with parameter b. Finally, we note that π is not the
product μ × ν, that is, X and Y are dependent variables.

Exercises and complements

1.17 Distribution functions. Let X be a random variable taking values in
R̄ = [−∞, +∞]. Let μ be its distribution, and c its distribution function,
defined by 1.4. Then, c is a function from R into [0, 1]. It is increasing and
right-continuous as indicated in Exercise I.5.14.
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a) Since c is increasing, the left-hand limit

c(x−) = lim
y↑x

c(y)

exists for every x in R. Similarly, the limits

c(−∞) = lim
x↓−∞

c(x) c(+∞) = lim
x↑∞

c(x)

exist. Show that

c(x−) = P{X < x}, c(x) − c(x−) = P{X = x}
c(−∞) = P{X = −∞}, c(+∞) = P{X < ∞} = 1 − P{X = ∞}.
b) Let D be the set of all atoms of the distribution μ. Then, D consists

of all x in R for which c(x) − c(x−) > 0, plus the point −∞ if c(−∞) > 0,
plus the point +∞ if c(∞) < 1. Of course, D is countable. Define Dx =
D ∩ (−∞, x] and

a(x) = c(−∞) +
∑

y∈Dx

[c(y) − c(y−)] , b(x) = c(x) − a(x)

for x in R. Then, a is an increasing right-continuous function that increases
by jumps only, and b is increasing continuous. Show that a is the distribution
function of the measure

μa(B) = μ(B ∩ D) , B ∈ B(R̄),

and b is the distribution function of the measure μb = μ − μa. Note that μa

is purely atomic and μb is diffuse. The random variable X is almost surely
discrete if and only if μ = μa, that is, a = c.

1.18 Quantile functions. Let X be real-valued, let c be its distribution func-
tion. Note that, then, c(−∞) = 0 and c(+∞) = 1. Suppose that c is contin-
uous and strictly increasing, and let q be the functional inverse of c, that is,
q(u) = x if and only if c(x) = u for u in (0, 1). The function q : (0, 1) �→ R

is called the quantile function of X since

P{X ≤ q(u)} = u , u ∈ (0, 1).

Let U be a random variable having the uniform distribution on (0, 1), that
is, the distribution of U is the Lebesgue measure on (0, 1). Show that, then,
the random variable Y = q ◦ U has the same distribution as X . In general,
Y �= X .

1.19 Continuation. This is to re-do the preceding exercise assuming that c :
R �→ [0, 1] is only increasing and right-continuous. Let q : (0, 1) �→ R̄ be the
right-continuous functional inverse of c, that is,

q(u) = inf{x ∈ R : c(x) > u}



Sec. 2 Expectations 57

with the usual conventions that inf R = −∞, inf ∅ = +∞. We call q the
quantile function corresponding to c by analogy with the preceding exercise.
Recall from Exercise I.5.13 that q is increasing and right-continuous, and that
c is related to q by the same formula with which q is related to c. Note that
q is real-valued if and only if c(−∞) = 0 and c(+∞) = 1. See also Figure 1.
Show that c(x−) ≤ u if and only if q(u) ≥ x, and, by symmetry, q(u−) ≤ x
if and only if c(x) ≥ u.

1.20 Construction of probability measures on R̄. Let c be a cumulative dis-
tribution function, that is, c : R �→ [0, 1] is increasing and right-continuous.
Let q : (0, 1) �→ R̄ be the corresponding quantile function. Let λ denote the
Lebesgue measure on (0, 1) and put μ = λ ◦ q−1. Show that μ is a proba-
bility measure on R̄. Show that μ is the distribution on R̄ corresponding to
the distribution function c. Thus, to every distribution function c on R there
corresponds a unique probability measure μ on R̄ and vice-versa.

1.21 Construction of random variables. Let μ be a probability measure on R̄.
Then, there exists a probability space (Ω, H, P) and a random variable
X : Ω �→ R̄ such that μ is the distribution of X : Take Ω = (0, 1), H = B(0,1),
P = Leb, and define X(ω) = q(ω) for ω in Ω, where q is the quantile function
corresponding to the measure μ (via the cumulative distribution function).
See Exercise I.5.15 for the extension of this construction to abstract spaces.
This setup is the theoretical basis of Monte-Carlo studies.

1.22 Supplement on quantiles. Literature contains definitions similar to that
in 1.19 for q, but with slight differences, one of the popular ones being

p(u) = inf{x ∈ R : c(x) ≥ u} , u ∈ (0, 1).

Some people prefer supremums, but there is nothing different, since q(u) =
sup{x : c(x) ≤ u} and p(u) = sup{x : c(x) < u}. In fact, there is close
relationship between p and q: we have p(u) = q(u−) = limv↗u q(v). The
function q is right-continuous, whereas p is left-continuous. We prefer q over
p, because q and c are functional inverses of each other. Incidentally, in the
constructions of 1.20 and 1.21 above, the minor difference between p and q
proves unimportant: Since q is increasing and right-continuous, p(u) = q(u−)
differs from q(u) for at most countably many u; therefore, Leb{u : p(u) �=
q(u)} = 0 and, hence, λ◦q−1 = λ◦p−1 with λ =Leb on (0, 1).

2 Expectations

Throughout this section (Ω, H, P) is a probability space and all random
variables are defined on Ω and take values in R̄, unless stated otherwise.

Let X be a random variable. Since it is H-measurable, its integral with
respect to the measure P makes sense to talk about. That integral is called
the expected value of X and is denoted by any of the following
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10

EX

PX

X

Figure 2: The integral PX is the area under X , the expected value EX is the
constant “closest” to X .

EX =
ˆ

Ω

P(dω) X(ω) =
ˆ

Ω

X dP = PX.2.1

The expected value EX exists if and only if the integral does, that is, if and
only if we do not have EX+ = EX− = +∞. Of course, EX exists whenever
X ≥ 0, and EX exists and is finite if X is bounded.

We shall treat E as an operator, the expectation operator corresponding
to P, and call EX the expectation of X from time to time. The change in
notation serves to highlight the important change in our interpretation of
EX : The integral PX is the “area under the function” X in a generalized
sense. The expectation EX is the “weighted average of the values” of X , the
weight distribution being specified by P, the total weight being P(Ω) = 1.
See Figure 2 above for the distinction.

Except for this slight change in notation, all the conventions and notations
of integration are carried over to expectations. In particular, X is said to be
integrable if EX exists and is finite. The integral of X over an event H
is EX1H . As before with integrals, we shall state most results for positive
random variables, because expectations exist always for such, and because
the extensions to arbitrary random variables are generally obvious.

Properties of expectation

The following is a rapid summary of the main results on integrals stated
in probabilistic terms. Here, X, Y , etc. are random variables taking values in
R̄, and a, b, etc. are positive constants.

2.2 Positivity: X ≥ 0 ⇒ EX ≥ 0 .

Monotonicity: X ≥ Y ≥ 0 ⇒ EX ≥ EY .

Linearity: X, Y ≥ 0 ⇒ E(aX + bY ) = aEX + bEY .
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Insensitivity: X, Y ≥ 0, X = Y almost surely ⇒ EX = EY .

Monotone convergence: Xn ≥ 0, Xn ↗ X ⇒ EXn ↗ EX
Xn ≥ 0, ⇒ E

∑
Xn =

∑
EXn .

Fatou’s Lemma: Xn ≥ 0 ⇒ E lim inf Xn ≤ lim inf EXn .

Dominated convergence: |Xn| ≤ Y, Y integrable, limXn exists
⇒ E lim Xn = lim EXn .

Bounded convergence: |Xn| ≤ b, b < ∞, lim Xn exists
⇒ E lim Xn = lim EXn .

2.3 Remarks. a) Positivity can be added to: for X ≥ 0, we have
EX = 0 if and only if X = 0 almost surely.

b) Monotonicity can be extended: if X ≥ Y , then E X ≥ E Y provided
that both E X and E Y exist (infinite values are allowed); if X ≥ Y and either
EX or EY is finite, then both EX and EY exist and EX ≥ EY .

c) Insensitivity can be extended likewise: if X = Y almost surely and
either EX or EY exists, then so is the other and EX = EY .

d) The preceding two remarks have a useful partial converse: If
E X1H ≥ E Y 1H for every event H , then X ≥ Y almost surely. To show
this, we use the remark above on monotonicity and the assumed inequality
with H = {X < q < r < Y }, where q and r are rational numbers with q < r.
This yields

qP(H) = E q1H ≥ E X1H ≥ E Y 1H ≥ E r1H = rP(H),

which is possible with q < r only if P(H) = 0. Hence, the event {Y > X} has
probability zero, via Boole’s inequality, since it is the union of events like H
over all rationals q and r with q < r.

e) Convergence theorems have various generalizations along the lines
indicated for integrals. For example, an easy consequence of the monotone
convergence theorem is that if Xn ≤ Y for all n for some integrable Y , and
if Xn ↘ X , then EXn ↘ EX .

f) Convergence theorems have almost sure versions similar to almost
everywhere versions with integrals.

g) If a mapping X : Ω �→ R̄ is equal to a random variable Y almost
surely, and even if X(ω) is specified only for almost every ω, the expected
value of X is defined to be EY .

Expectations and integrals

The following relates expectations, which are integrals with respect to P,
to integrals with respect to distributions. This is the work horse of computa-
tions. Recall that E+ is the collection of all positive E-measurable functions
(from E into R̄+).
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2.4 Theorem. Let X be a random variable taking values in some mea-
surable space (E, E). If μ is the distribution of X, then

E f ◦X = μf2.5

for every f in E+. Conversely, if 2.5 holds for some measure μ and all f in
E+, then μ is the distribution of X.

Proof. The first statement is a re-phrasing of Theorem I.5.2 on integration
with respect to image measures: if μ = P◦X−1, then μf = P(f◦X) = E f◦X
at least for f in E+. Conversely, if 2.5 holds for all f in E+, taking f = 1A in
particular, we see that

μ(A) = μ 1A = E 1A ◦ X = P{X ∈ A},
that is, μ is the distribution of X . �

In the preceding theorem, the restriction to positive f is for reasons of
convenience. For f in E, the formula 2.5 holds for f+ and f− respectively,
and hence for f , provided that either the expectation E f ◦X or the integral
μf exists (then so does the other). The converse statement is useful for figur-
ing out the distribution of X in cases where X is a known function of other
random variables whose joint distribution is known. In such cases, it encom-
passes the formula 1.6 and is more intuitive; we shall see several illustrations
of its use below.

Obviously, for a measure μ to be the distribution of X it is sufficient to
have 2.5 hold for all f having the form f = 1A with A in E, or with A in
some p-system generating E. When E is a metrizable topological space and
E = B(E), it is also sufficient to have 2.5 hold for all f that are bounded,
positive, and continuous; see Exercise 2.36 in this connection.

Means, variances, Laplace and Fourier transforms

Certain expected values have special names. Let X be a random variable
taking values in R̄ and having the distribution μ. The expected value of the
nth power of X , namely EXn, is called the nth moment of X . In particular,
EX is also called the mean of X . Assuming that the mean is finite (that is,
X is integrable), say EX = a, the nth moment of X − a is called the nth

centered moment of X . In particular, E(X − a)2 is called the variance of X ,
and we shall denote it by VarX ; note that

Var X = E (X − a)2 = EX2 − (EX)2,2.6

assuming of course that a = EX is finite.
Assuming that X is positive, for r in R+, the random variable e−rX takes

values in the interval [0, 1], and its expectation

μ̂r = E e−rX =
ˆ

R+

μ(dx) e−rx2.7
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is a number in [0, 1]. The resulting function r �→ μ̂r from R+ into [0, 1] is called
the Laplace transform of the distribution μ, and by an abuse of language, also
the Laplace transform of X .

It can be shown that the Laplace transform determines the distribution:
if μ and ν are distributions on R̄+, and μ̂r = ν̂r for all r in R+, then μ = ν:
see Exercise 2.36 below.

Suppose that X is real-valued, that is, X takes values in R. For r in R,
eirX = cos rX+i sin rX is a complex-valued random variable (here i =

√−1),
and the notion of expected value extends to it naturally:

μ̂r = E eirX =
ˆ

R

μ(dx) eirx =
ˆ

R

μ(dx) cos rx + i

ˆ
R

μ(dx) sin rx.2.8

The resulting complex-valued function r �→ μ̂r from R into the complex plane
is called the Fourier transform of the distribution μ, or the characteristic
function of the random variable X . As with Laplace transforms, the Fourier
transform determines the distribution.

Finally, if X takes values in N̄ = {0, 1, . . . , +∞}, then

E zX =
∞∑

n=0

zn
P{X = n} , z ∈ [0, 1],2.9

defines a function from [0, 1] into [0, 1] which is called the generating function
of X . It determines the distribution of X : in a power series expansion of it,
the coefficient of zn is P{X = n} for each n in N.

Examples

2.10 Gamma distribution. Fix a > 0 and c > 0, and let γa,c be the gamma
distribution with shape index a and scale parameter c; see Example 1.13. Let
X have γa,c as its distribution. Then, X has finite moments of all orders.
Indeed, for every p in R+,

E Xp =
ˆ ∞

0

γa,c(dx) xp =
ˆ ∞

0

dx
ca xa−1 e−cx

Γ(a)
xp

=
Γ(a + p)
cp Γ(a)

ˆ ∞

0

dx
ca+p xa+p−1 e−cx

Γ(a + p)
=

Γ(a + p)
Γ(a)

c−p,

since the last integral is γa+p,c(R+) = 1. Finally, to explain the term “scale
parameter” for c, we show that cX has the standard gamma distribution
with shape index a (to understand the term “shape index” draw the density
function of γa for a < 1, a = 1, a > 1). To this end, we use Theorem 2.4. Let
f be a positive Borel function on R+. Then,

Ef(cX) =
ˆ ∞

0

dx
ca xa−1 e−cx

Γ(a)
f(cx) =

ˆ ∞

0

dy
ya−1 e−y

Γ(a)
f(y),

which means that cX has the distribution γa, the standard gamma with
shape index a.
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2.11 Gamma and gamma and beta. Let X and Y be as in Example 1.15,
that is, X and Y are independent, X has the standard gamma distribution
γa with shape index a, and Y has the standard gamma distribution γb with
shape index b. We now show that

a) X + Y has the standard gamma distribution γa+b,
b) X/(X + Y ) has the distribution

βa,b(du) = du
Γ(a + b)
Γ(a)Γ(b)

ua−1 (1 − u)b−1 , 0 < u < 1,

which is called the beta distribution with index pair (a, b), and
c) X + Y and X/(X + Y ) are independent, that is, their joint distri-

bution π is the product measure γa+b × βa,b.

We show all this by using the method of Theorem 2.4. Let f be a positive
Borel function on R+ × [0, 1] and consider the integral πf :

πf = E f(X + Y,
X

X + Y
)

=
ˆ ∞

0

dx
xa−1 e−x

Γ(a)

ˆ ∞

0

dy
yb−1 e−y

Γ(b)
f(x + y,

x

x + y
)

=
ˆ ∞

0

dz

ˆ 1

0

du
za+b−1 e−z

Γ(a) Γ(b)
ua−1 (1 − u)b−1 f(z, u),

where the last line is obtained by replacing x with uz and y with (1−u)z, and
noting that the Jacobian of the transformation is equal to z. There remains
to note that the last expression is equal to (γa+b × βa,b)f , which proves all
three claims together.

2.12 Laplace transforms and distributions and Pareto. Let X be a random
variable taking values in R+. Then, the Laplace transform r �→ E e−rX is a
decreasing continuous function on R+ with value 1 at r = 0. Hence, there is
a positive random variable R such that

P{R > r} = E e−rX , r ∈ R+.

We now show that, in fact, we may take

R = Y/X,

where Y is independent of X and has the standard exponential distribution:
Letting μ denote the distribution of X , for r in R+,

P{R > r} = P{Y > rX}
=
ˆ

R+

μ(dx)
ˆ

R+

dy e−y 1(rx,∞)(y)

=
ˆ

R+

μ(dx) e−rx = E e−rX
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as was to be shown. In particular, if X has the gamma distribution with
shape index a and scale c, then

P{R > r} = E e−rX =
(

c

c + r

)a

, r ∈ R+,

according to the Laplace transform computation above in 2.11. Then, R is
said to have the Pareto distribution with shape index a and scale parameter c.
Since R = Y/X and X is “small” in the sense that all its moments are finite,
R should be big in the sense that its distribution should have a heavy tail.

Exercises and complements

Some of these are re-statements of results on integrals served up in proba-
bilistic terms. Some are elementary facts that are worth recalling. And some
are useful complements. Throughout, X , Y , etc. are random variables.

2.13 Finiteness. If X ≥ 0 and EX < ∞, then X < ∞ almost surely. More
generally, if X is integrable then it is real-valued almost surely. Show.

2.14 Moments of positive variables. If X ≥ 0, then for every p in R+,

EXp =
ˆ ∞

0

dx p xp−1
P{X > x}.

Show this, using Fubini’s theorem with the product measure P × Leb, after
noting that

Xp(ω) =
ˆ X(ω)

0

dx pxp−1 =
ˆ ∞

0

dx pxp−1 1{X>x}(ω).

In particular, if X takes values in N̄ = {0, 1, . . . , +∞}, then

EX =
∞∑

n=0

P{X > n}, EX2 = 2
∞∑

n=0

n P{X > n} + E X.

2.15 Optimality of EX . Define

f(a) =
ˆ

Ω

P(dω) (X(ω) − a)2, a ∈ R,

that is, f(a) is the “weighted sum of errors squared” if X is estimated to be
the constant a. Show that f is minimized by a = EX and that the minimum
value is Var X .

2.16 Variance. Suppose that X is integrable. Show that, for a and b in R,

Var (a + bX) = b2Var X.
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2.17 Markov’s inequality. For X ≥ 0,

P{X > b} ≤ 1
b

EX

for every b > 0. Show this by noting that X ≥ b 1{X>b}.

2.18 Chebyshev’s inequality. Suppose that X has finite mean. Apply Markov’s
inequality to (X − EX)2 to show that

P{|X − EX | > ε} ≤ 1
ε2

Var X, ε > 0.

2.19 Markov’s inequality generalized. Let X be real-valued. Let f : R �→ R+

be increasing. Show that, for every b in R,

P{X > b} ≤ 1
f(b)

E f ◦X.

2.20 Jensen’s inequality. Let X have finite mean. Let f be a convex function
on R, that is, f = sup fn for some sequence of functions fn having the form
fn(x) = an + bnx. Show that

E f(X) ≥ f(EX).

2.21 Gamma distribution. This is to generalize Example 2.12 slightly by the
use of the remark on “scale parameter” in Example 2.10. Let X and Y be
independent, let X have distribution γa,c and Y the distribution γb,c. Then,
show that, X + Y has the distribution γa+b,c, and X/(X + Y ) has the same
old distribution βa,b, and the two random variables are independent.

2.22 Gaussian variables. Show that X has the Gaussian distribution with
mean a and variance b if and only if X = a +

√
bZ for some random variable

Z that has the standard Gaussian distribution. Show that

E Z = 0, Var Z = 1, E eirZ = e−r2/2,

E X = a, Var X = b, E eirX = eira−r2b/2.

2.23 Gamma-Gaussian connection. a) Let Z have the Gaussian distribution
with mean 0 and variance b. Show that, then, X = Z2 has the gamma
distribution with shape index a = 1/2 and scale parameter c = 1/2b. Hint:
Compute E f◦X = E g◦Z with g(z) = f(z2) and use Theorem 2.4 to identify
the result.

b) Let Z1, . . . , Zn be independent standard Gaussian variables. Show
that the sum of their squares has the gamma distribution with shape index
n/2 and scale 1/2.
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2.24 Uniform distribution. Let a < b be real numbers. Uniform distribution
on (a, b) is the Lebesgue measure on (a, b) normalized to have mass one,
that is, 1

b−aLeb. The standard case is where a = 0 and b = 1. Since the
Lebesgue measure puts no mass at points, the uniform distribution on [a, b]
is practically the same as that on (a, b). Let U have the standard uniform
distribution on (0, 1); let q be a quantile function. Then q◦U is a random
variable having q as its quantile function.

2.25 Uniform and exponential. Let U have the uniform distribution on (0, 1).
Let X = − 1

c log U . Show that X has the exponential distribution with scale
parameter c.

2.26 Exponential-Gaussian-Uniform. Let U and V be independent and uni-
formly distributed on (0, 1). Let R =

√−2 logU , so that R2 has the ex-
ponential distribution with scale parameter 1/2, that is, R2 has the same
distribution as the sum of the squares of two independent standard Gaussian
variables.Define

X = R cos 2πV, Y = R sin 2πV.

Show that X and Y are independent standard Gaussian variables. Show that,
conversely, if X and Y are independent standard Gaussian variables, then the
polar coordinates R and A of the random point (X, Y ) in R

2 are independent,
R2 has the exponential distribution with scale parameter 1/2, and A has the
uniform distribution on [0, 2π].

2.27 Cauchy distribution. Let X and Y be independent standard Gaussian
variables. Show that the distribution μ of Z = X/Y has the form

μ(dz) = dz
1

π(1 + z2)
, z ∈ R.

It is called the Cauchy distribution. Note that, if a random variable Z has the
Cauchy distribution, then so does 1/Z. Also, show that, if A has the uniform
distribution on (0, 2π), then tanA and cotA are both Cauchy distributed.

2.28 Sums and transforms. Let X and Y be independent positive random
variables. Show that the Laplace transform for X + Y is the product of the
Laplace transforms for X and Y . Since the Laplace transform of a distribution
determines the distribution, this specifies the distribution of X + Y , at least
in principle. When X and Y are real-valued (instead of being positive), the
same statements hold for characteristic functions.

2.29 Characteristic functions. Let X and Y be independent gamma dis-
tributed random variables with respective shape indices a and b, and the
same scale parameter c. Compute the characteristic functions of X , Y , X+Y ,
X−Y . Note, in particular, that X+Y has the gamma distribution with shape
index a + b and scale c.
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2.30 Gaussian with gamma variance. Let X and Y be independent, X having
the gamma distribution γa,c (with shape index a and scale parameter c),
and Y having the standard Gaussian distribution. Recall that

√
bY has the

Gaussian distribution with mean 0 and variance b > 0. We now replace b
with X : let Z =

√
X Y . Show that

E eirZ = E e−r2X/2 =
(

2c

2c + r2

)a

, r ∈ R.

Let U and V be independent with the distribution γa,
√

2c for both. Show that

E eir(U−V ) = E eirZ , r ∈ R.

Conclude that
√

X Y has the same distribution as U −V . (Was the attentive
reader able to compute the density in Example 1.16? Can he do it now?)

2.31 Laplace transforms and finiteness. Recall that 0 · x = 0 for all x ∈ R

and for x = +∞. Thus, if μ̂r = E e−rX for some positive random variable
X , then μ̂0 = 1. Show that r �→ μ̂r is continuous and decreasing on (0,∞).
Its continuity at 0 depends on whether X is almost surely finite: show that

lim
r↓0

μ̂r = P{X < +∞}.

Hint: For r > 0, e−rX = e−rX1{X<∞} ↗ 1{X<∞} as r ↓ 0.

2.32 Laplace transforms and moments. Let r �→ μ̂r be the Laplace trans-
form for a positive and almost surely finite random variable X . Use Fubini’s
theorem for the product measure P×Leb to show that

ˆ ∞

r

dq E Xe−qX = μ̂r, r ∈ R+.

This shows, when EX is finite, that the Laplace transform μ̂ is differentiable
on R

∗
+ = (0,∞), and

d

dr
μ̂r = −E Xe−rX, r ∈ R

∗
+;

in particular, then, the dominated convergence theorem yields

lim
r↓0

d

dr
μ̂r = −EX.

A similar result holds for higher moments: if EXn < ∞,

lim
r↓0

dn

drn
μ̂r = (−1)n

EXn.
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2.33 Characteristic functions and moments. Let μ̂ be the characteristic
function of a real-valued random variable X . Then, similar to the results of
2.32,

lim
r→0

dn

drn
μ̂r = in EXn, n ∈ N,

provided that Xn be integrable, that is, provided that E |X |n < ∞. Generally,
the equality above fails when E |X |n = ∞. However, for n even, if the limit
on the left is finite, then the equality holds.

2.34 Uniqueness of distributions and Laplace transforms. Let X and Y be
positive random variables. Show that the following are equivalent:

a) X and Y have the same distribution.
b) E e−rX = E e−rY for every r in R+.
c) E f ◦X = E f ◦Y for every f bounded continuous.
d) E f ◦X = E f ◦Y for every f bounded Borel.
e) E f ◦X = E f ◦Y for every f positive Borel.

Hint: Show that (a) ⇒ (b) ⇒ (c) ⇒ (a) ⇐⇒ (e) ⇐⇒ (d). The difficult
parts are (b) ⇒ (c) and (c) ⇒ (a). For (c) ⇒ (a), start by showing that the
indicator of an open interval is the limit of an increasing sequence of bounded
continuous functions, and use the fact that open intervals form a p-system
that generates the Borel σ-algebra on R. For showing (b) ⇒ (c), it is useful
to recall the following consequence of the Stone-Weierstrass theorem: Let F
be the collection of all functions f on R̄+ having the form

f(x) =
n∑

i=1

cie
−rix

for some integer n ≥ 1, constants c1, . . . , cn in R, and constants r1, . . . , rn in
R+. For every continuous function f on an interval [a, b] of R+ there exists a
sequence in F that converges to f uniformly on [a, b].

2.35 Uniqueness and characteristic functions. Let X and Y be real-valued
random variables. The statements (a)-(e) in the preceding exercise remain
equivalent, except that (b) should be replaced with

b’) E eirX = E eirY for every r in R.

2.36 Random vectors. Let X = (X1, . . . , Xd) be a random variable taking
values in R

d, here d ≥ 1 is an integer. The expected value of X is defined to
be the vector

EX = (EX1, . . . , EXd).

The characteristic function of X is defined to be

E eir·X , r ∈ R
d,
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where r · x = r1x1 + · · · + rdxd, the inner product of r and x. When the
components Xi are positive, Laplace transform of the distribution of X is
defined similarly: E e−r·X , r ∈ R

d
+. As in the one-dimensional case, the

characteristic function determines the distribution of X , and similarly for
the Laplace transform. The equivalences in Exercises 2.34 and 2.35 remain
true with the obvious modifications: in 2.34(b) and 2.35(b’), r should be in
R

d
+ and R

d respectively, and the functions alluded to should be defined on
R

d
+ and R

d respectively.

2.37 Covariance. Let X and Y be real-valued random variables with finite
variances. Then, their covariance is defined to be

Cov(X, Y ) = E (X − EX)(Y − EY ) = E XY − EX EY,

which is well-defined, is finite, and is bounded in absolute value by
√

Var X√
Var Y ; see Schwartz inequality in the next section. Show that

Var(X + Y ) = Var X + Var Y + 2Cov(X, Y ). If X and Y are indepen-
dent, then Cov(X, Y ) = 0. The converse is generally false.

2.38 Orthogonality. Let X and Y be as in 2.37 above. They are said to be
orthogonal, or uncorrelated, if E XY = EX EY . So, orthogonality is the
same as having vanishing covariance. Show that, if X1, . . . , Xn are pairwise
orthogonal, that is, Xi and Xj are orthogonal for i �= j, then

Var(X1 + · · · + Xn) = Var X1 + · · · + Var Xn.

2.39 Multi-dimensional Gaussian vectors. Let X be a d-dimensional random
vector; see 2.36 above. It is said to be Gaussian if r ·X = r1X1 + · · ·+ rdXd

has a Gaussian distribution for every vector r in R
d. It follows that the

characteristic function of X has the form

E eir·X = eia(r)−b(r)/2, r ∈ R
d,

where a(r) = E r · X and b(r) = Var r · X . Let

a = (a1, . . . , ad) = (E X1, . . . , E Xd) = E X,

and let v = (vij) be the d× d matrix of covariances vij = Cov(Xi, Xj). Note
that the diagonal entries are variances.

a) Show that a(r) = a · r and b(r) = r · vr where vr is the vector
obtained when v is multiplied by the column vector r. Conclude that the
distribution of a Gaussian vector X is determined by its mean vector a and
covariance matrix v.

b) Show that v is necessarily symmetric and positive definite, that is,
vij = vji for all i and j, and

r · vr =
d∑

i=1

d∑

j=1

rivijrj ≥ 0

for every r in R
d.
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2.40 Independence. Let X be a Gaussian random vector in R
d with mean

vector a and covariance matrix v. Show that Xi and Xj are independent
if and only if vij = 0. More generally, if I and J are disjoint subsets of
{1, . . . , d}, the random vectors (Xi)i∈I and (Xj)j∈J are independent if and
only if vij = 0 for every pair (i, j) in I × J . Show.

2.41 Gaussian distribution. Let X be a Gaussian vector in R
d with mean a

and covariance matrix v. Then, its characteristic function is given by

E eir·X = eia·r−(r·vr)/2, r ∈ R
d.

If v is invertible, that is, if the rank of v is d, the distribution μ of X is
absolutely continuous with respect to the Lebesgue measure on R

d, and the
corresponding density function is

1
√

det(2πv)
exp[−1

2
(x − a) · v−1(x − a)], x ∈ R

d,

where v−1 is the inverse of v and detm is the determinant of m; note that
det(2πv) = (2π)d det v.

If v is singular, that is, if the rank d′ of v is less than d, then at least one
entry of the vector X is a linear combination of the other entries. In that
case, the distribution μ is no longer absolutely continuous with respect to
the Lebesgue measure on R

d. Instead, μ puts its mass on some hyperplane
of dimension d′ in R

d.

2.42 Continuation. Let Z1 and Z2 be independent standard Gaussian vari-
ables (with means 0 and variances 1). Define a random vector X in R

3 by
letting X = cZ, where

X =

⎡

⎣
X1

X2

X3

⎤

⎦ , c =

⎡

⎣
1 2
−1 3
4 1

⎤

⎦ , Z =
[

Z1

Z2

]

Each Xi is a linear combination of Z1 and Z2, therefore every linear com-
bination of X1, X2, X3 is also a linear combination of Z1, Z2. So, X is a
3-dimensional Gaussian random vector. Show that its covariance matrix is
v = ccT , where cT is the transpose of c, that is, vij =

∑2
k=1 cikcjk. Show that

X3 is a linear combination of X1 and X2. Show that Z1 and Z2 are linear
combinations of X1 and X2; find the coefficients involved.

2.43 Representation of Gaussian vectors. Every Gaussian random vector X
in R

d has the form
X = a + cZ,

where a is in R
d, and c is a d × d′ matrix, and Z is a random vector in

R
d′

whose coordinates are independent one-dimensional standard Gaussian
variables. Then, X has mean a and covariance matrix v = ccT .
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3 Lp
-spaces and Uniform Integrability

Let (Ω, H, P) be a probability space. Let X be a real-valued random vari-
able. For p in [1,∞), define

‖X‖p = (E |X |p)1/p,3.1

and for p = ∞ let

‖X‖∞ = inf{b ∈ R+ : |X | ≤ b almost surely}.3.2

It is easy to see that

‖X‖p = 0 ⇒ X = 0 almost surely,3.3

‖cX‖p = c ‖X‖p , c ≥ 0;3.4

and it will follow from Theorem 3.6a below with Y = 1 that

0 ≤ ‖X‖p ≤ ‖X‖q ≤ +∞ if 1 ≤ p ≤ q ≤ +∞.3.5

For each p in [1,∞], let Lp denote the collection of all real-valued random
variables X with ‖X‖p < ∞. For p in [1,∞), X is in Lp if and only if |X |p
is integrable; and X is in L∞ if and only if X is almost surely bounded. For
X in Lp, the number ‖X‖p is called the Lp-norm of X ; in particular, ‖X‖∞
is called the essential supremum of X . Indeed, the properties 3.4 and 3.5
together with Minkowski’s inequality below imply that each Lp is a normed
vector space provided that we identify X and Y in Lp as one random variable
if X = Y almost surely.

Inequalities

The following theorem summarizes the various connections. Its proof will
be put after a lemma of independent interest.

3.6 Theorem. a) Hölder’s inequality: For p, q, r in [1,∞) with
1
p + 1

q = 1
r ,

‖XY ‖r ≤ ‖X‖p ‖Y ‖q.

In particular, Schwartz’s inequality holds: ‖XY ‖1 ≤ ‖X‖2 ‖Y ‖2.

b) Minkowski’s inequality: For p in [1,∞],

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p

3.7 Lemma. Jensen’s inequality. Let D be a convex domain in R
d. Let f :

D �→ R be continuous and concave. Suppose that X1, . . . , Xd are integrable
random variables and that the vector (X1, . . . , Xd) belongs to D almost surely.
Then,

E f(X1, . . . , Xd) ≤ f(EX1, . . .EXd).
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Proof. Since D is convex and X = (X1, . . . , Xd) is in D almost surely, the
vector a = EX = (EX1, . . . EXd) belongs to D. Let c1, . . . , cd be the direction
cosines of a hyperplane in R

d+1 lying above the surface f and passing through
the point (a, f(a)) in R

d × R. Then,

f(x) ≤ f(a) +
d∑

1

(xi − ai) ci x ∈ D.

Replacing x with X and taking expectations yields the desired result. �

In preparation for the proof of Theorem 3.6, we leave it as an exercise to
show that, for b in (0, 1],

f(u, v) = ub v1−b, g(u, v) = (ub + vb)
1
b3.8

define functions that are continuous and concave on R
2
+. Thus, by the pre-

ceding lemma,

E U bV 1−b ≤ (EU)b (EV )1−b, E (U b + V b)
1
b ≤ [(EU)b + (EV )b]

1
b ,3.9

provided that U and V be positive integrable random variables.

Proof of Theorem 3.6

a) Hölder’s inequality. Assume that ‖X‖p and ‖Y ‖q are finite; other-
wise, there is nothing to prove. When p = ∞, we have |XY | ≤ ‖X‖p |Y |
almost surely, and hence the inequality is immediate; similarly for q = ∞.
Assuming that p and q are both finite, the inequality desired follows from
the first inequality in 3.9 with b = r

p , U = |X |p, V = |Y |q.
b) Minkowski’s inequality. Again, assume that ‖X‖p and ‖Y ‖p are fi-

nite. If p = ∞, the inequality is immediate from the definition 3.2 (and in
fact, becomes an equality). For p in [1,∞), the inequality follows from the
second inequality in 3.9 with b = 1

p , U = |X |p, V = |Y |p. �

Uniform integrability

This concept plays an important role in martingale theory and in the
convergence of sequences in the space L1. We start by illustrating the issue
involved in the simplest setting.

3.10 Lemma. Let X be a real-valued random variable. Then, X is inte-
grable if and only if

lim
b→∞

E |X | 1{|X|>b} = 0.3.11
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Proof. Let Zb denote the variable inside the expectation in 3.11. Note
that it is dominated by |X | and goes to 0 as b → ∞. Thus, if X is inte-
grable, the dominated convergence yields that limb→∞ E Zb = 0, which
is exactly 3.11. Conversely, if 3.11 holds, then we can choose b large
enough to have E Zb ≤ 1, and the inequality |X | ≤ b + Zb shows that
E |X | ≤ b + 1 < ∞. �

For a collection of random variables X , the uniform integrability of the col-
lection has to do with the possibility of taking the limit in 3.11 uniformly in X :

3.12 Definition. A collection K of real-valued random variables is said
to be uniformly integrable if

k(b) = sup
X∈K

E |X | 1{|X|>b}

goes to 0 as b → ∞.

3.13 Remarks. a) If K is finite and each X in it is integrable, then
K is uniformly integrable. For, then, the limit over b, of k(b), can be passed
inside the supremum, and Lemma 3.10 does the rest.

b) If K is dominated by an integrable random variable Z, then it is
uniformly integrable. Because, then, |X | ≤ Z for every X in K, which yields
k(b) ≤ E Z 1{Z>b}, and that last expectation goes to 0 by Lemma 3.10
applied to Z.

c) Uniform integrability implies L1-boundedness, that is, if K is uni-
formly integrable then K ⊂ L1 and

k(0) = sup
K

E |X | < ∞.

To see this, note that E |X | ≤ b + k(b) for all X and use the uniform inte-
grability of K to choose a finite number b such that k(b) ≤ 1.

d) But L1-boundedness is insufficient for uniform integrability. Here
is a sequence K = {Xn : n ≥ 1} that is L1-bounded but not uniformly
integrable. Suppose that Ω = (0, 1) with its Borel σ-algebra for events and
the Lebesgue measure as P. Let Xn(ω) be equal to n if ω ≤ 1/n and to 0
otherwise. Then, E Xn = 1 for all n, that is, K is L1-bounded. But k(b) = 1
for all b, since E Xn 1{Xn>b} = E Xn = 1 for n > b.

e) However, if K is Lp-bounded for some p > 1 then it is uniformly
integrable. This will be shown below: see Proposition 3.17 and take f(x) = xp.

The following ε-δ characterization is the main result on uniform integra-
bility: over every small set, the integrals of the X are uniformly small.

3.14 Theorem. The collection K is uniformly integrable if and only if it
is L1-bounded and for every ε > 0 there is δ > 0 such that, for every event H,

P(H) ≤ δ ⇒ sup
X∈K

E |X | 1H ≤ ε.3.15
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Proof. We assume that all X are positive; this amounts to working with
|X | throughout. Since X 1H ≤ b 1H +X 1{X>b} for every event H and every
b in R+,

sup
X∈K

E X 1H ≤ bP(H) + k(b), b ∈ R+.3.16

Suppose that K is uniformly integrable. Then, it is L1-bounded by Remark
3.13c. Also, since k(b) → 0, for every ε > 0 there is b < ∞ such that
k(b) ≤ ε/2, and setting δ = ε/2b we see that 3.15 holds in view of 3.16.

Conversely, suppose that K is L1-bounded and that for every ε > 0 there
is δ > 0 such that 3.15 holds for all events H . Then, Markov’s inequality 2.17
yields

sup
X∈K

P{X > b} ≤ 1
b

sup
X∈K

E X =
1
b
k(0),

which shows the existence of b such that P{X > b} ≤ δ for all X , and, then,
for that b we have k(b) ≤ ε in view of 3.15 used with H = {X > b}. In
other words, for every ε > 0 there is b < ∞ such that k(b) ≤ ε, which is the
definition of uniform integrability. �

The following proposition is very useful for showing uniform integrability.
In particular, as remarked earlier, it shows that Lp-boundedness for some
p > 1 implies uniform integrability.

3.17 Proposition. Suppose that there is a positive Borel function f on
R+ such that limx→∞ f(x)/x = ∞ and

sup
X∈K

E f ◦|X | < ∞.3.18

Then, K is uniformly integrable.

Proof. We may and do assume that all X are positive. Also, by replacing
f with f ∨ 1 if necessary, we assume that f ≥ 1 in addition to satisfying the
stated conditions. Let g(x) = x/f(x) and note that

X 1{X>b} = f ◦X g◦X 1{X>b} ≤ f ◦X sup
x>b

g(x).

This shows that, with c denoting the supremum in 3.18,

k(b) ≤ c sup
x>b

g(x),

and the right side goes to 0 as b → ∞ since g(x) → 0 as x → +∞. �

We supplement the preceding proposition by a converse and give another
characterization.
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3.19 Theorem. The following are equivalent:

a) K is uniformly integrable.
b) h(b) = supK

´∞
b

dy P{|X | > y} → 0 as b → ∞.
c) supK E f ◦|X | < ∞ for some increasing convex function f on R+

with limx→∞ f(x)/x = +∞.

Proof. The preceding proposition shows that (c) ⇒ (a). We now show
that (a) ⇒ (b) ⇒ (c), again assuming, as we may, that all the X in K are
positive.

Assume (a). For every X in K,

E X 1{X>b} =
ˆ ∞

0

dy P{X 1{X>b} > y}

=
ˆ ∞

0

dy P{X > b ∨ y} ≥
ˆ ∞

b

dy P{X > y}.

Thus, k(b) ≥ h(b) for every b, and the uniform integrability of K means that
k(b) → 0 as b → ∞. Hence, (a) ⇒ (b).

Assume (b). Since h(b) → 0 as b → ∞, we can pick 0 = b0 < b1 < b2 < · · ·
increasing to +∞ such that

h(bn) ≤ h(0)/2n, n ∈ N;

note that h(0) is finite since h(0) ≤ b + h(b) and h(b) can be made as small
as desired. Define

g(x) =
∞∑

n=0

1[bn,∞)(x), f(x) =
ˆ x

0

dy g(y), x ∈ R+.

Note that g ≥ 1 and is increasing toward +∞, which implies that f is in-
creasing and convex and limx→∞ f(x)/x = +∞. Now,

E f ◦X = E

ˆ X

0

dy g(y)

=
∞∑

n=0

E

ˆ ∞

bn

dy 1{X>y} ≤
∞∑

n=0

h(bn) ≤ 2h(0) < ∞.

This being true for all X in K, we see that (b) ⇒ (c). �

Exercises and complements

3.20 Concavity. Show that the functions f and g defined by 3.8 are con-
tinuous and concave. Hint: Note that f(cu, cv) = c f(u, v) for every c > 0;
conclude that it is sufficient to show that x �→ f(x, 1 − x) from [0, 1] into
R+ is continuous and concave; and show the latter by noting that the second
derivative is negative. Similarly for g.
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3.21 Continuity of the norms. Fix a random variable X . Define f(p) = ‖X‖p

for p in [1,∞]. Show that the function f is continuous except possibly at one
point p0, where p0 is such that

f(p) < ∞ for p < p0 , f(p) = +∞ for p > p0 ,

and f is left-continuous at p0.

3.22 Integrals over small sets. Let X be positive and integrable. Let (Hn) be
a sequence of events. If P(Hn) → 0, then EX1Hn → 0. Show.

3.23 Uniform integrability. Let (Xi) and (Yi) be uniformly integrable. Show
that, then,

a) (Xi ∨ Yi) is uniformly integrable,
b) (Xi + Yi) is uniformly integrable.

3.24 Comparisons. If |Xi| ≤ |Yi| for each i, and (Yi) is uniformly integrable,
then so is (Xi). Show.

4 Information and Determinability

This section is on σ-algebras generated by random variables and measura-
bility with respect to them. Also, we shall argue that such a σ-algebra should
be thought as a body of information, and measurability with respect to it
should be equated to being determined by that information. Throughout,
(Ω, H, P) is a probability space.

Sigma-algebras generated by random variables

Let X be a random variable taking values in some measurable space
(E, E). Then,

σX = X−1E = {X−1A : A ∈ E}4.1

is a σ-algebra (and is a subset of H by the definition of random variables).
It is called the σ-algebra generated by X , and the notation σX is preferred
over the others. Clearly, σX is the smallest σ-algebra G on Ω such that X is
measurable with respect to G and E; see Exercise I.2.20.

Let T be an arbitrary index set, countable or uncountable. For each t in T
let Xt be a random variable taking values in some measurable space (Et, Et).
Then,

σ{Xt : t ∈ T } =
∨

t∈T

σXt4.2

denotes the σ-algebra on Ω generated by the union of the σ-algebras σXt,
t ∈ T ; see Exercise I.1.18. It is called the σ-algebra generated by the collection
{Xt : t ∈ T }. It is the smallest σ-algebra G on Ω such that, for every t in
T , the random variable Xt is measurable with respect to G and Et; obviously,
G ⊂ H.
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In view of Proposition I.6.27, we may regard the collection {Xt :
t ∈ T } as one random variable X taking values in the product space
(E, E)= ⊗t∈T (Et, Et) by defining X(ω) to be the point (Xt(ω))t∈T in the
“function” space E for each ω. Conversely, if X is a random variable taking
values in the product space (E, E), we denote by Xt(ω) the value of the
function X(ω) at the point t in T ; the resulting mapping ω �→ Xt(ω) is
a random variable with values in (Et, Et) and is called the t-coordinate of
X . It will be convenient to write X = (Xt)t∈T and consider X both as
the E-valued random variable and as the collection of random variables Xt,
t ∈ T . This causes no ambiguity for σX :

4.3 Proposition. If X = (Xt)t∈T , then σX = σ{Xt : t ∈ T }.

Proof. Proof is immediate from that of Proposition I.6.27. Let H there be
σX to conclude that σX ⊃ σ{Xt : t ∈ T }, and then let H be σ{Xt : t ∈ T }
to conclude that σ{Xt : t ∈ T } ⊃ σX . �

Measurability

The following theorem is to characterize the σ-algebra σX . It shows that a
random variable is σX-measurable if and only if it is a deterministic measur-
able function of X . In other words, with the usual identification of a σ-algebra
with the collection of all numerical mappings that are measurable relative to
it, the collection σX of random variables is exactly the set of all measurable
functions of X .

4.4 Theorem. Let X be a random variable taking values in some mea-
surable space (E, E). A mapping V : Ω → R̄ belongs to σX if and only if

V = f ◦ X

for some deterministic function f in E.

Proof. Sufficiency. Since X is measurable with respect to σX and E, and
since measurable functions of measurable functions are measurable, every V
having the form f ◦ X for some f in E is σX-measurable.

Necessity. Let M be the collection of all V having the form V = f ◦ X
for some f in E. We shall use the monotone class theorem I.2.19 to show
that M ⊃ σX , which is the desired result. We start by showing that M is a
monotone class of functions on Ω.

i) 1 ∈ M since 1 = f ◦ X with f(x) = 1 for all x in E.

ii) Let U and V be bounded and in M, and let a and b be in R. Then,
U = f ◦X and V = g ◦X for some f and g in E, and thus, aU + bV = h ◦X
with h = af + bg. Since h ∈ E, it follows that aU + bV ∈ M.
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iii) Let (Vn) ⊂ M+ and Vn ↗ V . For each n, there is fn in E such that
Vn = fn ◦ X . Then, f = sup fn belongs to E and since Vn ↗ V ,

V (ω) = sup
n

Vn(ω) = sup
n

fn(X(ω)) = f(X(ω)) , ω ∈ Ω,

which shows that V ∈ M.

Furthermore, M includes every indicator variable in σX : if H ⊂ Ω is in
σX , then H = X−1A for some set A in E, and 1H = 1A ◦X ∈ M. Therefore,
by the monotone class theorem, M contains all positive random variables
in σX .

Finally, let V in σX be arbitary. Then, V + ∈ σX and is positive, and
hence, V + = g ◦ X for some g in E; similarly, V − = h ◦ X for some h in E.
Thus, V = V + − V − = f ◦ X , where

f(x) =
{

g(x) − h(x) if g(x) ∧ h(x) = 0,
0 otherwise.

This completes the proof since f ∈ E. �

4.5 Corollary. For each n in N
∗, let Xn be a random variable taking

values in some measurable space (En, En). A mapping V : Ω �→ R̄ belongs to
σ{Xn : n ∈ N

∗} if and only if

V = f(X1, X2, . . .)

for some f in ⊗nEn.

Proof. Proof is immediate from the preceding theorem upon putting X =
(X1, X2, . . .) and using Proposition 4.3. �

The preceding corollary can be generalized to uncountable collections
{Xt : t ∈ T } by using the same device of regarding the collection as one
random variable. In fact, there is a certain amount of simplification, reflect-
ing the fact that uncountable products of σ-algebras Et, t ∈ T , are in fact
generated by the finite-dimensional rectangles.

4.6 Proposition. Let T be arbitrary. For each t in T , let Xt be a random
variable taking values in some measurable space (Et, Et). Then, V : Ω �→ R̄

belongs to σ{Xt : t ∈ T } if and only if there exists a sequence (tn) in T and
a function f in ⊗nEtn such that

V = f(Xt1 , Xt2 , . . .).4.7

Proof. Sufficiency of the condition is trivial: if V has the form 4.7, then
V ∈ σ{Xtn : n ≥ 1} = Ĝ by the corollary above, and Ĝ ⊂ G = σ{Xt : t ∈ T }
obviously.



78 Probability Spaces Chap. 2

To show the necessity, we use the monotone class theorem I.2.19 together
with Proposition 4.3. To that end, let M be the collection of all V having the
form 4.7 for some sequence (tn) in T and some f in ⊗Etn . It is easy to check
that M is a monotone class. We shall show that M includes the indicators
of a p-system G0 that generates G. Then, by the monotone class theorem, M

includes all positive V in G and, therefore, all V in G since V = V + − V − is
obviously in M if V + and V − are in M. Hence, M ⊃ G as desired.

By Proposition 4.3, G = σX where X = (Xt)t∈T takes values in (E, E)=⊗
(Et, Et). Recall that E is generated by the p-system of all finite-dimensional

measurable rectangles. Therefore, the inverse images X−1A of those rectan-
gles A form a p-system G0 that generates G. Thus, to complete the proof, it
is sufficient to show that the indicator of X−1A = {X ∈ A} belongs to M for
every such rectangle A.

Let A be such a rectangle, that is, A = ×t At with At = Et for all t
outside a finite subset S of T and At ∈ Et for every t in S (and therefore for
all t in T ). Then,

1{X∈A} = 1A ◦ X =
∏

t∈S

1At ◦ Xt,

which has the form 4.7, that is, belongs to M. �

Heuristics

Our aim is to use the foregoing to argue that a σ-algebra on Ω is the
mathematically precise equivalent of the everyday term “information”. And,
random quantities that are determined by that information are precisely the
random variables that are measurable with respect to that σ-algebra.

To fix the ideas, consider a random experiment that consists of a sequence
of trials, at each of which there are five possible results labeled a, b, c, d, e.
Each possible outcome of this experiment can be represented by a sequence
ω = (ω1, ω2, . . .) where ωn ∈ E = {a, . . . , e} for each n. The sample space
Ω, then, consists of all such sequences ω. We define X1, X2, . . . to be the
coordinate variables, that is Xn(ω) = ωn for every n and outcome ω. We
let H be the σ-algebra generated by {Xn : n ∈ N

∗}. The probability P is
unimportant for our current purposes and we leave it unspecified.

Consider the information we shall have about this experiment at the end
of the third trial. At that time, whatever the possible outcome ω may be,
we shall know X1(ω), X2(ω), X3(ω), and nothing more. In other words, the
information we shall have will specify the results ω1, ω2, ω3 but nothing more.
Thus, the information we shall have will determine the values V (ω), for every
possible ω, provided that the dependence of V (ω) on ω is through ω1, ω2, ω3,
that is, provided that V = f(X1, X2, X3) for some deterministic function f
on E×E×E. Based on these arguments, we equate “the information available
at the end of third trial” to the σ-algebra G consisting of all such numerical
random variables whose values are determined by that body of information.
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In this case, the information G is generated by {X1, X2, X3} in the sense that
knowing X1, X2, X3 is equivalent to knowing the information G.

Going back to an arbitrary probability space (Ω, H, P) and a sub-σ-algebra
G of H, we may heuristically equate G to the information available to someone
who is able to tell the value V (ω) for every possible ω and every random vari-
able V that is G-measurable. Incidentally, this gives a mathematical definition
for the imprecise everyday term “information”.

Often, there are simpler ways of characterizing the information G. If there
is a random variable X such that the knowledge of its value is sufficient
to determine the values of all the V in G, then we say that X generates
the information G and write G = σX . This is the heuristic content of the
definition of σX .

Of course, embedded in the heuristics is the basic theorem of this section,
Theorem 4.4, which now becomes obvious: if the information G consists of the
knowledge of X , then G determines exactly those variables V that are deter-
ministic functions of X . Another result that becomes obvious is Proposition
4.3: in the setting of it, since knowing X is the same as knowing Xt for all t in
T , the information generated by X is the same as the information generated
by Xt, t ∈ T .

Filtrations

Continuing with the heuristics, suppose that we are interested in a random
experiment taking place over an infinite expanse of time. Let T = R+ or
T = N be the time set. For each time t, let Ft be the information gathered
during [0, t] by an observer of the experiment. For s < t, we must have
Fs ⊂ Ft. The family F = {Ft : t ∈ T }, then, depicts the flow of information
as the experiment progresses over time. The following definition formalizes
this concept.

4.8 Definition. Let T be a subset of R. For each t in T , let Ft be a sub-
σ-algebra of H. The family F = {Ft : t ∈ T } is called a filtration provided
that Fs ⊂ Ft for s < t.

In other words, a filtration is an increasing family of sub-σ-algebras of H.
The simplest examples are the filtrations generated by stochastic processes:
If X = {Xt : t ∈ T } is a stochastic process, then putting Ft = σ{Xs : s ≤ t,
s ∈ T } yields a filtration F = {Ft : t ∈ T }. The reader is invited to ponder
the meaning of the next proposition for such a filtration. Of course, the aim
is to approximate eternal variables by random variables that become known
in finite time.

4.9 Proposition. Let F = {Fn : n ∈ N} be a filtration and put F∞ =∨
n∈N

Fn. For each bounded random variable V in F∞ there are bounded
variables Vn in Fn, n ∈ N, such that

lim
n

E |Vn − V | = 0.
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Remark. Note that E|Vn −V | = ‖Vn −V ‖1 in the notation of section 3;
thus, the approximation here is in the sense of L1-space. Also, we may add
to the conclusion that EVn → EV ; this follows from the observation that
|EVn − EV | ≤ E|Vn − V |.

Proof. Let C =
⋃

n Fn. By definition, F∞ = σC. Obviously C is a p-system.
To complete the proof via the monotone class theorem, we start by letting Mb

be the collection of all bounded variables in F∞ having the approximation
property described. It is easy to see that Mb includes constants and is a vector
space over R and includes the indicators of events in C. Thus, Mb will include
all bounded V in F∞ once we check the remaining monotonicity condition.

Let (Uk) ⊂ Mb be positive and increasing to a bounded variable V in F∞.
Then, for each k ≥ 1 there are Uk,n in Fn, n ∈ N, such that E|Uk,n −Uk| → 0
as n → ∞. Put n0 = 0, and for each k ≥ 1 choose nk > nk−1 such that
Ûk = Uk,nk

satisfies

E|Ûk − Uk| <
1
k

.

Moreover, since (Uk) is bounded and converges to V , the bounded conver-
gence implies that E|Uk − V | → 0. Hence,

E |Ûk − V | ≤ E |Ûk − Uk| + E |Uk − V | → 04.10

as k → ∞. With n0 = 0 choose V0 = 0 and put Vn = Ûk for all integers n in
(nk, nk+1]; then, Vn ∈ Fnk

⊂ Fn, and E|Vn − V | → 0 as n → ∞ in view of
4.10. This is what we need to show that V ∈ Mb. �

In the preceding proposition, the Vn are shown to exist but are unspecified.
A very specific version will appear later employing totally new tools; see the
martingale convergence theorems of Chapter V and, in particular, Corollary
V.3.30 there.

Exercises and complements

4.11 p-systems for σX . Let T be an arbitrary index set. Let X = (Xt)t∈T ,
where Xt takes values in (Et, Et) for each t in T . For each t, let Ct be a
p-system that generates Et. Let G0 be the collection of all G ⊂ Ω having the
form

G =
⋂

t∈S

{Xt ∈ At}

for some finite S ⊂ T and At in Ct for every t in S. Show that G0 is a p-system
that generates G = σX .

4.12 Monotone class theorem. This is a generalization of the monotone class
theorem I.2.19. We keep the setting and notations of the preceding exercise.
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Let M be a monotone class of mappings from Ω into R̄. Suppose that M

includes every V : Ω �→ [0, 1] having the form

V =
∏

t∈S

1At◦Xt , S finite, At ∈ Ct for every t in S.

Then, every positive V in σX belongs to M. Prove.

4.13 Special case. In the setting of the exercises above, suppose Et = R and
Et = BR for all t. Let M be a monotone class of mappings from Ω into R̄.
Suppose that M includes every V of the form

V = f1 ◦ Xt1 · · · fn ◦ Xtn

with n ≥ 1 and t1, . . . , tn in T and f1, . . . , fn bounded continuous functions
from R into R. Then, M contains all positive V in σX . Prove. Hint: Start
by showing that, if A is an open interval of R, then 1A is the limit of an
increasing sequence of bounded continuous functions.

4.14 Determinability. If X and Y are random variables taking values in
(E, E) and (D, D), then we say that X determines Y if Y = f ◦ X for some
f : E �→ D measurable with respect to E and D. Then, σX ⊃ σY obviously.
Heuristically, X determines Y if knowing X(ω) is sufficient for knowing Y (ω),
this being true for every possibility ω. To illustrate the notion in a simple
setting, let T be a positive random variable and define a stochastic process
X = (Xt)t∈R+ by setting, for each ω

Xt(ω) =
{

0 if t < T (ω),
1 if t ≥ T (ω).

Show that X and T determine each other. If T represents the time of failure
for a device, then X is the process that indicates whether the device has
failed or not. That X and T determine each other is intuitively obvious, but
the measurability issues cannot be ignored altogether.

4.15 Warning. A slight change in the preceding exercise shows that one
must guard against raw intuition. Let T have a distribution that is absolutely
continuous with respect to the Lebesgue measure on R+; in fact, all we need
is that P{T = t} = 0 for every t in R+. Define

Xt(ω) =
{

1 if t = T (ω)
0 otherwise.

Show that, for each t in R+, the random variable Xt is determined by T .
But, contrary to raw intuition, T is not determined by X = (Xt)t∈R+ . Show
this by following the steps below:

a) For each t, we have Xt = 0 almost surely. Therefore, for every
sequence (tn) in R+, Xt1 = Xt2 = . . . = 0 almost surely.
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b) If V ∈ σX , then V = c almost surely for some constant c. It follows
that T is not in σX .

4.16 Arrival processes. Let T = (T1, T2, . . .) be an increasing sequence of
R+-valued variables. Define a stochastic process X = (Xt)t∈R+ with state
space N by

Xt =
∞∑

n=1

1(0,t]◦Tn , t ∈ R+.

Show that X and T determine each other. If Tn represents the n-th arrival
time at a store, then Xt is the number of customers who arrived during (0, t].
So, X and T are the same phenomena viewed from different angles.

5 Independence

This section is about independence, a truly probabilistic concept. For
random variables, the concept reduces to the earlier definition: they are inde-
pendent if and only if their joint distribution is the product of their marginal
distributions.

Throughout, (Ω, H, P) is a probability space. As usual, if G is a sub-σ-
algebra of H, we regard it both as a collection of events and as the collection
of all numerical random variables that are measurable with respect to it.
Recall that σX is the σ-algebra on Ω generated by X , and X here can be a
random variable or a collection of random variables. Finally, we write FI for∨

i∈I Fi as in I.1.8 and refer to it as the σ-algebra generated by the collection
of σ-algebras Fi, i ∈ I.

Definitions

For a fixed integer n ≥ 2, let F1, . . . Fn be sub-σ-algebras of H. Then,
{F1, . . .Fn} is called an independency if

E V1 · · ·Vn = EV1 · · ·EVn5.1

for all positive random variables V1, . . . , Vn in F1, . . . , Fn respectively. The
term “independency” is meant to suggest a realm governed by the indepen-
dence of its constituents.

Let T be an arbitrary index set. Let Ft be a sub-σ-algebra of H for each t
in T . The collection {Ft : t ∈ T } is called an independency if its every finite
subset is an independency.

In general, elements of an independency are said to be independent, or
mutually independent if emphasis is needed. In loose language, given some
objects, the objects are said to be independent if the σ-algebras generated by
those objects are independent. The objects themselves can be events, random
variables, collections of random variables, σ-algebras on Ω, or collections of
such, and so on, and they might be mixed. For example, a random variable
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X and a stochastic process {Yt : t ∈ T } and a collection {Fi : i ∈ I} of
σ-algebras on Ω are said to be independent if

G1 = σX , G2 = σ{Yt : t ∈ T } , G3 = FI =
∨

i∈I

Fi

are independent, that is, if {G1, G2, G3} is an independency.

Independence of σ-algebras

Since a collection of sub-σ-algebras of H is an independency if and only
if its every finite subset is an independency, we concentrate on the indepen-
dence of a finite number of sub-σ-algebras of H. We start with a test for
independence.

5.2 Proposition. Let F1, . . . , Fn be sub-σ-algebras of H, n ≥ 2. For
each i ≤ n, let Ci be a p-system that generates Fi. Then, F1, . . . , Fn are
independent if and only if

P(H1 ∩ · · · ∩ Hn) = P(H1) · · ·P(Hn)5.3

for all Hi in C̄i = Ci ∪ {Ω}, i = 1, . . . , n.

Proof. Necessity is obvious: take the Vi in 5.1 to be the indicators of the
events Hi. To show the sufficiency part, assume 5.3 for Hi in C̄i, i = 1, . . . , n.
Fix H2, . . . , Hn in C̄2, . . . , C̄n respectively, and let D be the set of all events
H1 in F1 for which 5.3 holds. By assumption, D ⊃ C1 and Ω ∈ D, and the
other two conditions for D to be a d-system on Ω are checked easily. It follows
from the monotone class theorem that D ⊃ σC1 = F1. Repeating the proce-
dure successively with H2, . . . , Hn we see that 5.3 holds for all H1, . . . , Hn in
F1, . . . , Fn respectively. In other words, 5.1 holds when the Vi are indicators.
This is extended to arbitrary positive random variables Vi in Fi by using
the form Vi =

∑∞
j=1 aij1Hij (see Exercise I.2.27) and applying the monotone

convergence theorem repeatedly. �

Independence of collections

The next proposition shows that independence survives groupings.

5.4 Proposition. Every partition of an independency is an independency.

Proof. Let {Ft : t ∈ T } be an independency. Let {T1, T2, . . .} be a par-
tition of T . Then, the subcollections FTi = {Ft : t ∈ Ti}, i ∈ N

∗, form
a partition of the original independency. The claim is that they are inde-
pendent, that is, {FT1 , . . . , FTn} is an independency for each n. This follows
from the preceding proposition: let Ci be a p-system of all events having the
form of an intersection of finitely many events chosen from

⋃
t∈Ti

Ft. Then,
Ci generates FTi and Ω ∈ Ci, and 5.3 holds for the elements of C1, . . . , Cn by
the independence of the Ft, t ∈ T . Thus, FT1 , . . . , FTn are independent, and
this is for arbitrary n. �
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Pairwise independence

A collection of objects (like σ-algebras, random variables) are said to be
pairwise independent if every pair of them is an independency. This is, of
course, much weaker than being mutually independent. But independence
can be checked by repeated checks for pairwise independence. We state this
for a sequence of σ-algebras; it holds for a finite sequence as well, and therefore
can be used to check the independency for arbitrary collections.

5.5 Proposition. The sub-σ-algebras F1, F2, . . . of H are independent if
and only if F{1,...,n} and Fn+1 are independent for all n ≥ 1.

Proof. Necessity is immediate from the last proposition. For sufficiency,
suppose that Gn = F{1,...,n} =

∨n
i=1 Fi and Fn+1 are independent for all n.

Then, for H1, . . . , Hm in F1, . . . , Fm respectively, we can see that 5.3 holds
by repeated applications of the independence of Gn and Fn+1 for n = m− 1,
m− 2, . . . , 1 in that order. Thus, F1, . . . , Fm are independent by Proposition
5.2, and this is true for all m ≥ 2. �

Independence of random variables

For each t in some index set T , let Xt be a random variable taking values
in some measurable space (Et, Et). According to the general definitions above,
the variables Xt are said to be independent, and the collection {Xt : t ∈ T }
is called an independency, if {σXt : t ∈ T } is an independency.

Since a collection is an independency if and only if its every finite subset
is an independency, we concentrate on the independence of a finite number
of them, which amounts to taking T = {1, 2, . . . , n} for some integer n ≥ 2.

5.6 Proposition. The random variables X1, . . . , Xn are independent if
and only if

E f1◦X1 · · · fn◦Xn = E f1◦X1 · · ·E fn◦Xn5.7

for all positive functions f1, . . . , fn in E1, . . . , En respectively.

Proof. We need to show that 5.1 holds for all positive V1, . . . , Vn in
σX1, . . . , σXn respectively if and only if 5.7 holds for all positive f1, . . . , fn

in E1, . . . , En respectively. But this is immediate from Theorem 4.4: Vi ∈ σXi

if and only if Vi = fi ◦ Xi for some fi in Ei. �

Let π be the joint distribution of X1, . . . , Xn, and let μ1, . . . , μn be the
corresponding marginals. Then, the left and the right sides of 5.7 are equal
to, respectively, ˆ

E1×···×En

π(dx1, . . . , dxn) f1(x1) · · · fn(xn)

and ˆ
E1

μ1(dx1) f1(x1)
ˆ

E2

· · ·
ˆ

En

μn(dxn) fn(xn)
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The equality of these two expressions for all positive f1, . . . , fn is equivalent
to saying that π = μ1 × · · · × μn. We state this next.

5.8 Proposition. The random variables X1, . . . , Xn are independent
if and only if their joint distribution is the product of their marginal
distributions.

Finally, a comment on functions of independent variables. In the language
of Exercise 4.14, let Y1, . . . , Yn be determined by X1, . . . , Xn respectively.
Then σYi ⊂ σXi for i = 1, . . . , n, and it follows from the definition of inde-
pendency that Y1, . . . , Yn are independent if X1, . . . , Xn are independent. We
state this observation next.

5.9 Proposition. Measurable functions of independent random vari-
ables are independent.

Sums of independent random variables

Let X and Y be R
d-valued independent random variables with distribu-

tions μ and ν respectively. Then, the distribution of (X, Y ) is the product
measure μ × ν, and the distribution μ ∗ ν of X + Y is given by

(μ ∗ ν)f = Ef(X + Y ) =
ˆ

R

μ(dx)
ˆ

R

ν(dy) f(x + y),5.10

This distribution μ ∗ ν is called the convolution of μ and ν. See exercises
below for more. Of course, since X + Y = Y + X , we have μ ∗ ν = ν ∗ μ. The
convolution operation can be extended to any number of distributions.

Sums of random variables and the limiting behavior of such sums as the
number of summands grows to infinity are of constant interest in probabil-
ity theory. We shall return to such matters repeatedly in the chapters to
follow. For the present, we describe two basic results, zero-one laws due to
Kolmogorov and Hewitt-Savage.

Kolmogorov’s 0-1 law

Let (Gn) be a sequence of sub-σ-fields of H. We think of Gn as the infor-
mation revealed by the nth trial of an experiment. Then, Tn =

∨
m>n Gm is

the information about the future after n, and T =
⋂

n Tn is that about the
remote future. The last is called the tail-σ-algebra; it consists of events whose
occurrences are unaffected by the happenings in finite time.

5.11 Example. Let X1, X2, . . . be real valued random variables, put
Gn = σXn and Sn = X1 + · · · + Xn.

a) The event {ω : limn Sn(ω) exists} belongs to Tn for every n and,
hence, belongs to the tail-σ-algebra T.
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b) Similarly, {lim sup 1
nSn > b} is unaffected by the first n variables,

and this is true for all n, and hence this event belongs to T.
c) But, {lim sup Sn > b} is not in T.
d) Let B be a Borel subset of R. Let {Xn ∈ B i.o.}, read Xn is in B

infinitely often, be the set of ω for which
∑

n 1B ◦Xn(ω) = +∞. This event
belongs to T.

e) The event {Sn ∈ B i.o.} is not in T.

The following theorem, called Kolmogorov’s 0-1 law, implies in particular
that, if the Xn of the preceding example are independent, then each one of
the events in T has probability equal to either 0 or 1.

5.12 Theorem. Let G1, G2, . . . be independent. Then, P(H) is either 0 or
1 for every event H in the tail T.

Proof. By Proposition 5.4 on partitions of independencies, {G1, . . . , Gn,
Tn} is an independency for every n, which implies that so is {G1, . . . , Gn, T} for
every n, since T ⊂ Tn. Thus, by definition, {T, G1, G2, . . .} is an independency,
and so is {T, T0} by Proposition 5.4 again. In other words, for H in T and
G ∈ T0, we have P(H ∩ G) = P(H) · P(G), and this holds for G = H as well
because T ⊂ T0. Thus, for H in T, we have P(H) = P(H) ·P(H), which means
that P(H) is either 0 or 1. �

As a corollary, assuming that the Gn are independent, for every random
variable V in the tail-σ-algebra there is a constant c in R̄ such that V =
c almost surely. Going back to Example 5.11, for instance, lim supSn/n is
almost surely constant. In the same example, the next theorem will imply that
the events {lim sup Sn > b} and {Sn ∈ B i.o.} have probability 0 or 1, even
though they are not in the tail T, provided that we add to the independence
of Xn the extra condition that they have the same distribution.

Hewitt-Savage 0-1 law

Let X = (X1, X2, . . .), where the Xn take values in some measurable
space (E, E). Let F = (F1, F2, . . .) be the filtration generated by X , that
is, Fn = σ(X1, . . . , Xn) for each n. Put F∞ = limFn =

∨
n Fn, and recall

from Theorem 4.4 and its sequel that F∞ consists of random variables of the
form V = f ◦X with f in E∞, and Fn consists of the variables of the form
Vn = fn(X1, . . . , Xn) = f̂n◦X with fn in En (and appropriately defined f̂n).

By a finite permutation p is meant a bijection p : N
∗ �→ N

∗ such that
p(n) = n for all but finitely many n. For such a permutation p, we write

X ◦ p = (Xp(1), Xp(2), . . .),5.13

which is a re-arrangement of the entries of X . The notation extends to arbi-
trary random variables V in F∞: if V = f ◦X then V ◦p = f ◦ (X ◦p). It will
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be useful to note that, if the Xn are independent and identically distributed,
the probability laws of X and X ◦p are the same, and hence, the distributions
of V and V ◦ p are the same.

A random variable V in F∞ is said to be permutation invariant if V ◦p = V
for every finite permutation p. An event in F∞ is said to be permutation
invariant if its indicator is such. These are variables like V = lim sup Sn

or events like {Sn ∈ B i.o.} in Example 5.11; they are unaffected by the
re-arrangements of the entries of X by finite permutations.

The collection of all permutation invariant events is a σ-algebra which
contains the tail-σ-algebra of X . The following, called Hewitt-Savage 0-1
law, shows that it is almost surely trivial (just as the tail) provided that the
Xn are identically distributed in addition to being independent.

5.14 Theorem. Suppose that X1, X2, . . . are independent and identically
distributed. Then, every permutation invariant event has probability 0 or 1.
Also, for every permutation invariant random variable V there is a constant
c in R̄ such that V = c almost surely.

Proof. It is sufficient to show that if V : Ω �→ [0, 1] is a permutation
invariant variable in F∞, then E(V 2) = (EV )2. Let V be such. By Proposition
4.9 there are Vn in Fn, n ≥ 1, such that each Vn takes values in [0, 1] and

lim E|V − Vn| = 0 lim
n

EVn = EV,5.15

the second limit being a consequence of the first.
Fix n. Let p be a finite permutation. The assumption about X implies

that X and X ◦p have the same probability law, which in turn implies that U
and U ◦ p have the same distribution for every U in F∞. Taking U = V −Vn,
noting that U ◦ p = V ◦ p − Vn ◦ p = V − Vn ◦ p by the invariance of V , we
see that

E|V − Vn ◦ p| = E|V − Vn|.5.16

This is true, in particular, for the permutation p̂ that maps 1, . . . , n to
n + 1, . . . , 2n and vice-versa, leaving p̂(m) = m for m > 2n. We de-
fine V̂n = Vn ◦ p̂ and observe that, if Vn = fn(X1, . . . , Xn), then
V̂n = fn(Xn+1, . . . , X2n), which implies that Vn and V̂n are independent
and have the same distribution. Together with 5.16, this yields

EVnV̂n = (EVn)2 , E|V − V̂n| = E|V − Vn|,5.17

which in turn show that

|E(V 2)−(EVn)2| = |E(V 2−VnV̂n)| ≤ E|V 2−VnV̂n| ≤ 2E|V −Vn|,5.18

where the final step used (recalling |V | ≤ 1 and |Vn| ≤ 1)

|V 2 − VnV̂n| = |(V − Vn)V + (V − V̂n)Vn| ≤ |V − Vn| + |V − V̂n|,
and 5.17. Applying 5.15 to 5.18 yields the desired result that
EV 2 = (EV )2. �
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5.19 Example. Random walks. This is to provide a typical application
of the preceding theorem. Returning to Example 5.11, assume further that
X1, X2, . . . have the same distribution. Then, the stochastic process (Sn) is
called a random walk on R. The avoid the trivial case where S1 = S2 = . . . = 0
almost surely, we assume that P{X1 = 0} < 1. Then, concerning the limiting
behavior of the random walk, there are three possibilities, exactly one of
which is almost sure:

i) limSn = +∞,

ii) lim Sn = −∞,

iii) lim inf Sn = −∞, and lim sup Sn = +∞.

Here is the argument for this. By the preceding theorem, there is a constant
c in R̄ such that lim supSn = c almost surely. Letting Ŝn = Sn+1 − X1

yields another random walk (Ŝn) which has the same law as (Sn). Thus,
lim sup Ŝn = c almost surely, which means that c = c−X1. Since we excluded
the trivial case when P{X1 = 0} = 1, it follows that c is either +∞ or −∞.
Similarly, lim inf Sn is either almost surely −∞ or almost surely +∞. Of the
four combinations, discarding the impossible case when lim inf Sn = +∞ and
lim sup Sn = −∞, we arrive at the result.

If the common distribution of the Xn is symmetric, that is, if X1 and
−X1 have the same distribution (like the Gaussian with mean 0), then (Sn)
and (−Sn) have the same law, and it follows that the cases (i) and (ii) are
improbable. So then, case (iii) holds almost surely.

Exercises

5.20 Independence and functional independence. Suppose that (Ω, H, P) =
(B, B, λ) × (B, B, λ), where B = [0, 1], B = B(B) and λ is the Lebesgue
measure on B. For each ω = (ω1, ω2) in Ω, let X(ω) = f(ω1) and Y (ω) =
g(ω2) for some Borel functions f and g on B. Show that X and Y are
independent.

5.21 Independence and transforms. Let X and Y be positive random vari-
ables. Then, X and Y are independent if and only if their joint Laplace
transform is the product of their Laplace transforms, that is, if and only if

Ee−pX−qY = Ee−pX
Ee−qY , p, q ∈ R+.

Show this recalling that the joint Laplace transforms determine the joint
distributions. A similar result holds for X and Y real-valued, but with char-
acteristic functions. Obviously, these results can be extended to any finite
number of variables.

5.22 Sums of independent variables. Let X and Y be independent real-valued
random variables. Show that the characteristic function of X + Y is the
product of their characteristic functions. When X and Y are positive, the



Sec. 5 Independence 89

same is true with Laplace transforms. When X and Y are positive integers,
the same holds with generating functions. Use these to show the following.

a) If X has the Poisson distribution with mean a, and Y the Poisson
distribution with mean b, then X +Y has the Poisson distribution with mean
a + b.

b) If X has the gamma distribution with shape index a and scale
parameter c, and Y has the gamma distribution with shape index b and the
same scale parameter c, then X + Y has the gamma distribution with shape
index a + b and scale c.

c) If X has the Gaussian distribution with mean a and variance b and
Y has the Gaussian distribution with mean c and variance d, then X +Y has
the Gaussian distribution with mean a + c and variance b + d.

5.23 Convolutions

a) Let μ and ν be probability measures on R, and let π = μ ∗ ν be
defined by 5.10. Show that

π(B) =
ˆ

R

μ(dx) ν(B − x) , B ∈ BR,

where B − x = {y − x : y ∈ B}.
b) Let λ be the Lebesgue measure on R. Suppose that μ(dx) =

λ(dx) p(x) and ν(dx) = λ(dx) q(x), x ∈ R, for some positive Borel functions
p and q. Show that, then, π(dx) = λ(dx) r(x), where

r(x) =
ˆ

R

dy p(y) q(x − y) , x ∈ R.

Historically, then, r is said to be the convolution of the functions p and q,
and the notation r = p ∗ q is used to indicate it.

c) Let μ and ν be as in the preceding case, but be carried by R+.
Then, p and q vanish outside R+, and

r(x) =
ˆ x

0

dy p(y) q(x − y) , x ∈ R+,

with r(x) = 0 for x outside R+.

Complements: Bernoulli sequences

5.24 Bernoulli variables. These are random variables that take the values 0
and 1 only. Each such variable is the indicator of an event, the event being
named “success” to add distinction. Thus, if X is a Bernoulli variable, p =
P{X = 1} is called the success probability, and then, q = P{X = 0} = 1 − p
becomes the failure probability. Show that

E X = E X2 = · · · = p, Var X = pq, E zX = q + pz.
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5.25 Bernoulli trials. Let X1, X2, . . . be Bernoulli variables. It is usual to
think of Xn as indicating the result of the nth trial in a sequence of trials:
Xn(ω) = 1 means that a “success” has occurred at the nth trial corresponding
to the sequence described by the outcome ω. Often, it is convenient to assume
that the trials occur at times 1, 2, 3, . . .. Then,

Sn = X1 + · · · + Xn

is the number of successes occuring during the time interval [1, n]. Assuming
that X1, X2, . . . are independent and have the same success probability p
(and the same failure probability q = 1 − p), show that

P{Sn = k} =
n!

k!(n − k)!
pkqn−k, k = 0, 1, . . . , n.

Hint: First compute E zSn using 5.24, and recall the binomial expansion
(a + b)n =

∑n
k=0

n!
k!(n−k)!a

kbn−k. For this reason, the distribution of Sn is
called the binomial distribution.

5.26 Times of successes. Let X1, X2, . . . be independent Bernoulli variables
with the same success probability p. Define, for each k in N

∗, the time of kth

success by
Tk(ω) = inf{n ≥ 1 : Sn(ω) ≥ k}, ω ∈ Ω.

Note that this yields Tk(ω) = +∞ if Sn(ω) < k for all n. Show that Tk is a
random variable for each k in N

∗. Show that, for integers n ≥ k,

P{Tk = n} =
(n − 1)!

(k − 1)!(n − k)!
pkqn−k, P{Tk ≤ n} =

n∑

j=k

n!
j!(n − j)!

pjqn−j .

Show, in particular, that Tk < ∞ almost surely and, therefore, that lim Sn =
+∞ almost surely.

5.27 Waits between successes. Let the Xn be as in 5.26. For k ∈ N
∗, define

the waiting time Wk(ω) between the (k − 1)th and kth successes by letting
T0(ω) = 0 and

Wk(ω) =
{

Tk(ω) − Tk−1(ω) if Tk(ω) < ∞,
+∞ otherwise.

For integers i1, . . . , ik in N
∗, express the event {W1 = i1, . . . , Wk = ik} in

terms of the variables Xk, compute the probability of the event in question,
and conclude that W1, W2, . . . , Wk are independent random variables with
the same distribution

P{Wk = i} = pqi−1, i ∈ N
∗.

This distribution on N
∗ is called the geometric distribution with success prob-

ability p. Compute

E Wk, Var Wk, E Tk, Var Tk.
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5.28 Multinomial trials. Let X1, X2, . . . be mutually independent random
variables taking values in a finite set D, say D = {a, . . . , d}, with

P{Xn = x} = p(x), x ∈ D.

For each x in D and ω in Ω, let Sn(ω, x) be the number of times that x
appears in (X1(ω), . . . , Xn(ω)). Then, Sn(x) : ω �→ Sn(ω, x) is a random
variable for each n in N

∗ and each point x in D. Show that

P{Sn(a) = k(a), . . . , Sn(d) = k(d)} =
n!

k(a)! · · · k(d)!
p(a)k(a) · · · p(d)k(d)

for all k(a), . . . , k(d) in N with k(a) + · · · + k(d) = n. This defines a
probability measure on the simplex of all vectors (k(a), . . . , k(d)) with
k(a) + · · · + k(d) = n; it is called a multinomial distribution.

5.29 Empirical distributions. Let X1, X2, . . . be mutually independent ran-
dom variables taking values in some measurable space (E, E)and having the
same distribution μ. Define

Sn(ω, A) =
n∑

i=1

1A◦Xi(ω), n ∈ N, ω ∈ Ω, A ∈ E.

Then, A �→ Sn(ω, A) is a counting measure on (E, E)whose atoms are the
locations X1(ω), . . . , Xn(ω), and 1

nSn(ω, A) defines a probability measure on
(E, E), called the empirical distribution corresponding to X1(ω), . . . , Xn(ω).
Writing Sn(A) for the random variable ω �→ Sn(ω, A), show that

P{Sn(A1) = k1, . . . , Sn(Am) = km} =
n!

k1! · · ·km!
μ(A1)k1 · · ·μ(Am)km

for every measurable partition (A1, . . . , Am) of E and integers k1, . . . , km ≥ 0
summing to n.

5.30 Inclusion-exclusion principle. Let X1, . . . , Xj be Bernoulli variables.
Show that

P{X1 = · · · = Xj = 0} = E

∑

Y

Y1 · · ·Yj

where the sum is over all j-tuples Y = (Y1, . . . , Yj) with each Yi being either
1 or −Xi. Hint: The left side is the expectation of (1 − X1) · · · (1 − Xj).

5.31 Continuation. For X1, . . . , Xk Bernoulli, show that

P{X1 = · · · = Xj = 0, Xj+1 = · · · = Xk = 1} = E

∑

Y

Y1 · · ·YjXj+1 · · ·Xk

where the sum is over all Y as in 5.30.
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5.32 Probability law of a collection of Bernoullis. Let I be an arbitrary index
set. For each i in I, let Xi be a Bernoulli variable. Show that the probability
law of X = {Xi : i ∈ I} is specified by

E

∏

i∈J

Xi, J ⊂ I, J finite ;

in other words, knowing these expectations is enough to compute

P{Xi = bi, i ∈ K}

for every finite subset K of I and binary numbers bi, i ∈ K.

5.33 Independence of Bernoullis. Show that X in 5.32 is an independency if
and only if, for every finite J ⊂ I,

E

∏

i∈J

Xi =
∏

i∈J

E Xi.
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