
Chapter I

Measure and Integration

This chapter is devoted to the basic notions of measurable spaces,
measure, and integration. The coverage is limited to what probability theory
requires as the entrance fee from its students. The presentation is in the
form and style attuned to the modern treatments of probability theory and
stochastic processes.

1 Measurable Spaces

Let E be a set. We use the usual notations for operations on subsets of E:

A ∪ B, A ∩ B, A \ B1.1

denote, respectively, the union of A and B, the intersection of A and B,
and the complement of B in A. In particular, E \ B is called simply the
complement of B and is also denoted by Bc. We write A ⊂ B or B ⊃ A to
mean that A is a subset of B, that is, A is contained in B, or equivalently,
B contains A. Note that A = B if and only if A ⊂ B and A ⊃ B. For an
arbitrary collection {Ai : i ∈ I} of subsets of E, we write

⋃

i∈I

Ai,
⋂

i∈I

Ai1.2

for the union and intersection, respectively, of all the sets Ai, i ∈ I.
The empty set is denoted by ∅. Sets A and B are said to be disjoint if

A ∩ B = ∅. A collection of sets is said to be disjointed if its every element
is disjoint from every other. A countable disjointed collection of sets whose
union is A is called a partition of A.

A collection C of subsets of E is said to be closed under intersections if
A ∩ B belongs to C whenever A and B belong to C. Of course, then, the
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2 Measure and Integration Chap. 1

intersection of every non-empty finite collection of sets in C is in C. If the
intersection of every countable collection of sets in C is in C, then we say that
C is closed under countable intersections. The notions of being closed under
complements, unions, and countable unions, etc. are defined similarly.

Sigma-algebras

A non-empty collection E of subsets of E is called an algebra on E provided
that it be closed under finite unions and complements. It is called a σ-algebra
on E if it is closed under complements and countable unions, that is, if

1.3 a) A ∈ E ⇒ E \ A ∈ E,
b) A1, A2, . . . ∈ E ⇒ ⋃

n An ∈ E.

Since the intersection of a collection of sets is the complement of the union
of the complements of those sets, a σ-algebra is also closed under countable
intersections.

Every σ-algebra on E includes E and ∅ at least. Indeed, E = {∅, E} is
the simplest σ-algebra on E; it is called the trivial σ-algebra. The largest
is the collection of all subsets of E, usually denoted by 2E; it is called the
discrete σ-algebra on E.

The intersection of an arbitrary (countable or uncountable) family of
σ-algebras on E is again a σ-algebra on E. Given an arbitrary collection
C of subsets of E, consider all the σ-algebras that contain C (there is at least
one such σ-algebra, namely 2E); take the intersection of all those σ-algebras;
the result is the smallest σ-algebra that contains C; it is called the σ-algebra
generated by C and is denoted by σC.

If E is a topological space, then the σ-algebra generated by the collection
of all open subsets of E is called the Borel σ-algebra on E; it is denoted byBE

or B(E); its elements are called Borel sets.

p-systems and d-systems

A collection C of subsets of E is called a p-system if it is closed under
intersections; here, p is for product, the latter being an alternative term for
intersection, and next, d is for Dynkin who introduced these systems into
probability. A collection D of subsets of E is called a d-system on E if

1.4 a) E ∈ D,
b) A, B ∈ D and A ⊃ B ⇒ A \ B ∈ D,
c) (An) ⊂ D and An ↗ A ⇒ A ∈ D.

In the last line, we wrote (An) ⊂ D to mean that (An) is a sequence of
elements of D and we wrote An ↗ A to mean that the sequence is increasing
with limit A in the following sense:

A1 ⊂ A2 ⊂ . . . , ∪nAn = A.1.5
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It is obvious that a σ-algebra is both a p-system and a d-system, and the
converse will be shown next. Thus, p-systems and d-systems are primitive
structures whose superpositions yield σ-algebras.

1.6 Proposition. A collection of subsets of E is a σ-algebra if and only
if it is both a p-system and a d-system on E.

Proof. Necessity is obvious. To show the sufficiency, let E be a collection
of subsets of E that is both a p-system and a d-system. First, E is closed
under complements: A ∈ E ⇒ E \ A ∈ E, since E ∈ E and A ⊂ E and E is a
d-system. Second, it is closed under unions: A, B ∈ E ⇒ A ∪ B ∈ E, because
A∪B = (Ac ∩Bc)c and E is closed under complements (as shown) and under
intersections by the hypothesis that it is a p-system. Finally, this closure
extends to countable unions: if (An) ⊂ E, then B1 = A1 and B2 = A1 ∪ A2

and so on belong to E by the preceding step, and Bn ↗ ⋃
n An, which together

imply that
⋃

n An ∈ E since E is a d-system by hypothesis. �

The lemma next is in preparation for the main theorem of this section.
Its proof is left as an exercise in checking the conditions 1.4 one by one.

1.7 Lemma. Let D be a d-system on E. Fix D in D and let

D̂ = {A ∈ D : A ∩ D ∈ D}
Then, D̂ is again a d-system.

Monotone class theorem

This is a very useful tool for showing that certain collections are
σ-algebras. We give it in the form found most useful in probability theory.

1.8 Theorem. If a d-system contains a p-system, then it contains also
the σ-algebra generated by that p-system.

Proof. Let C be a p-system. Let D be the smallest d-system on E that
contains C, that is, D is the intersection of all d-systems containing C. The
claim is that D ⊃ σC. To show it, since σC is the smallest σ-algebra containing
C, it is sufficient to show that D is a σ-algebra. In view of Proposition 1.6, it
is thus enough to show that the d-system D is also a p-system.

To that end, fix B in C and let

D1 = {A ∈ D : A ∩ B ∈ D}.
Since C is contained in D, the set B is in D; and Lemma 1.7 implies that D1

is a d-system. It also contains C: if A ∈ C then A∩B ∈ C since B is in C and
C is a p-system. Hence, D1 must contain the smallest d-system containing C,
that is, D1 ⊃ D. In other words, A ∩ B ∈ D for every A in D and B in C.

Consequently, for fixed A in D, the collection

D2 = {B ∈ D : A ∩ B ∈ D}
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contains C. By Lemma 1.7, D2 is a d-system. Thus, D2 must contain D.
In other words, A ∩ B ∈ D whenever A and B are in D, that is, D is a
p-system. �

Measurable spaces

A measurable space is a pair (E, E) where E is a set and E is a σ-algebra on
E. Then, the elements of E are called measurable sets . When E is topological
and E = BE , the Borel σ-algebra on E, then measurable sets are also called
Borel sets.

Products of measurable spaces

Let (E, E) and (F, F) be measurable spaces. For A ⊂ E and B ⊂ F , we
write A× B for the set of all pairs (x, y) with x in A and y in B; it is called
the product of A and B. If A ∈ E and B ∈ F, then A × B is said to be a
measurable rectangle. We let E⊗F denote the σ-algebra on E×F generated by
the collection of all measurable rectangles; it is called the product σ-algebra.
The measurable space (E × F, E ⊗ F) is called the product of (E, E) and
(F, F), and the notation (E, E) × (F, F) is used as well.

Exercises

1.9 Partition generated σ-algebras.
a) Let C = {A, B, C} be a partition of E. List the elements of σC.
b) Let C be a (countable) partition of E. Show that every element of

σC is a countable union of elements taken from C. Hint: Let E be the collection
of all sets that are countable unions of elements taken from C. Show that E

is a σ-algebra, and argue that E = σC.
c) Let E = R, the set of all real numbers. Let C be the collection of

all singleton subsets of R, that is, each element of C is a set that consists of
exactly one point in R. Show that every element of σC is either a countable
set or the complement of a countable set. Incidentally, σC is much smaller
than B(R); for instance, the interval (0, 1) belongs to the latter but not to
the former.
1.10 Comparisons. Let C and D be two collections of subsets of E. Show the
following:

a) If C ⊂ D then σC ⊂ σD

b) If C ⊂ σD then σC ⊂ σD

c) If C ⊂ σD and D ⊂ σC, then σC = σD

d) If C ⊂ D ⊂ σC, then σC = σD

1.11 Borel σ-algebra on R. Every open subset of R = (−∞, +∞), the real
line, is a countable union of open intervals. Use this fact to show that BR is
generated by the collection of all open intervals.
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1.12 Continuation. Show that every interval of R is a Borel set. In particular,
(−∞, x), (−∞, x], (x, y], [x, y] are all Borel sets. For each x, the singleton
{x} is a Borel set.

1.13 Continuation. Show that BR is also generated by any one of the following
(and many others):

a) The collection of all intervals of the form (−∞, x].
b) The collection of all intervals of the form (x, y].
c) The collection of all intervals of the form [x, y].
d) The collection of all intervals of the form (x,∞).

Moreover, in each case, x and y can be limited to be rationals.

1.14 Lemma 1.7. Prove.

1.15 Trace spaces . Let (E, E) be a measurable space. Fix D ⊂ E and let

D = E ∩ D = {A ∩ D : A ∈ E}.
Show that D is a σ-algebra on D. It is called the trace of E on D, and (D, D)
is called the trace of (E, E) on D.

1.16 Single point extensions. Let (E, E) be a measurable space, and let Δ be
an extra point, not in E. Let Ē = E ∪ {Δ}. Show that

Ē = E ∪ {A ∪ {Δ} : A ∈ E}
is a σ-algebra on Ē; it is the σ-algebra on Ē generated by E.

1.17 Product spaces. Let (E, E) and (F, F) be measurable spaces. Show that
the product σ-algebra E ⊗ F is also the σ-algebra generated by Ê ∪ F̂, where

Ê = {A × F : A ∈ E}, F̂ = {E × B : B ∈ F}.
1.18 Unions of σ-algebras. Let E1 and E2 be σ-algebras on the same set E.
Their union is not a σ-algebra, except in some special cases. The σ-algebra
generated by E1∪E2 is denoted by E1∨E2. More generally, if Ei is a σ-algebra
on E for each i in some (countable or uncountable) index set I, then

EI =
∨

i∈I

Ei

denotes the σ-algebra generated by
⋃

i∈I Ei (a similar notation for intersection
is superfluous, since

⋂
i∈I Ei is always a σ-algebra). Let C be the collection of

all sets A having the form
A =

⋂

i∈J

Ai

for some finite subset J of I and sets Ai in Ei, i ∈ J . Show that C contains
all Ei and therefore

⋃
I Ei. Thus, C generates the σ-algebra EI . Show that C

is a p-system.
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2 Measurable Functions

Let E and F be sets. A mapping or function f from E into F is a rule that
assigns an element f(x) of F to each x in E, and then we write f : E → F
to indicate it. If f(x) is an element of F for each x in E, we also write
f : x → f(x) to name the mapping involved; for example, f : x → x2 + 5 is
the function f from R into R+ satisfying f(x) = x2 + 5. Given a mapping
f : E → F and a subset B of F , the inverse image of B under f is

f−1B = {x ∈ E : f(x) ∈ B}.2.1

We leave the proof of the next lemma as an exercise in ordinary logic.

2.2 Lemma. Let f be a mapping from E into F . Then,

f−1∅ = ∅, f−1F = E, f−1(B \ C) = (f−1B) \ (f−1C),

f−1
⋃

i

Bi =
⋃

i

f−1Bi, f−1
⋂

i

Bi =
⋂

i

f−1Bi

for all subsets B and C of F and arbitrary collections {Bi : i ∈ I} of subsets
of F .

Measurable functions

Let (E, E) and (F, F) be measurable spaces. A mapping f : E → F is
said to be measurable relative to E and F if f−1B ∈ E for every B in F. The
following reduces the checks involved.

2.3 Proposition. In order for f : E → F to be measurable relative to E

and F, it is necessary and sufficient that, for some collection F0 that generates
F, we have f−1B ∈ E for every B in F0.

Proof. Necessity is trivial. To prove the sufficiency, let F0 be a collection
of subsets of F such that σF0 = F, and suppose that f−1B ∈ E for every B
in F0. We need to show that

F1 = {B ∈ F : f−1B ∈ E}
contains F and thus is equal to F. Since F1 ⊃ F0 by assumption, once we
show that F1 is a σ-algebra, we will have F1 = σF1 ⊃ σF0 = F as needed.
But checking that F1 is a σ-algebra is straightforward using Lemma 2.2. �

Composition of functions

Let (E, E), (F, F), and (G, G) be measurable spaces. Let f be a mapping
from E into F , and g a mapping from F into G. The composition of f and
g is the mapping g◦f from E into G defined by

g◦f(x) = g(f(x)), x ∈ E.2.4



Sec. 2 Measurable Functions 7

The next proposition will be recalled by the phrase “measurable functions of
measurable functions are measurable”.

2.5 Proposition. If f is measurable relative to E and F, and g relative
to F and G, then g ◦ f is measurable relative to E and G.

Proof. Let f and g be measurable. For C in G, observe that (g ◦
f)−1C = f−1(g−1C). Now, g−1C ∈ F by the measurability of g and,
hence, f−1(g−1C) ∈ E by the measurability of f . So, g ◦ f is measurable. �

Numerical functions

Let (E, E) be a measurable space. Recall that R = (−∞, +∞), R̄ =
[−∞, +∞], R+ = [0, +∞), R̄+ = [0, +∞]. A numerical function on E is a
mapping from E into R̄ or some subset of R̄. If all its values are in R, it is
said to be real-valued. If all its values are in R̄+, it is said to be positive.

A numerical function on E is said to be E-measurable if it is measurable
relative to E and B(R̄), the latter denoting the Borel σ-algebra on R̄ as
usual. If E is topological and E = B(E), then E-measurable functions are
called Borel functions.

The following proposition is a corollary of Proposition 2.3 using the fact
that B(R̄) is generated by the collection of intervals [−∞, r] with r in R. No
proof seems needed.

2.6 Proposition. A mapping f : E → R̄ is E-measurable if and only if,
for every r in R, f−1[−∞, r] ∈ E.

2.7 Remarks. a) The proposition remains true if [−∞, r] is replaced
by [−∞, r) or by [r,∞] or by (r,∞], because the intervals [−∞, r) with r in
R generate B(R̄) and similarly for the other two forms.

b) In the particular case f : E → F , where F is a countable subset of R̄,
the mapping f is E-measurable if and only if f−1{a} = {x ∈ E : f(x) = a}
is in E for every a in F .

Positive and negative parts of a function

For a and b in R̄ we write a ∨ b for the maximum of a and b, and a ∧ b
for the minimum. The notation extends to numerical functions naturally: for
instance, f ∨ g is the function whose value at x is f(x) ∨ g(x). Let (E, E) be
a measurable space. Let f be a numerical function on E. Then,

f+ = f ∨ 0, f− = −(f ∧ 0)2.8

are both positive functions and f = f+ − f−. The function f+ is called the
positive part of f , and f− the negative part.

2.9 Proposition. The function f is E-measurable if and only if both f+

and f− are.
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Proof is left as an exercise. The decomposition f = f+ − f− enables
us to obtain many results for arbitrary f from the corresponding results for
positive functions.

Indicators and simple functions

Let A ⊂ E. Its indicator, denoted by 1A, is the function defined by

1A(x) =
{

1 if x ∈ A,
0 if x /∈ A.

2.10

We write simply 1 for 1E. Obviously, 1A is E-measurable if and only if A ∈ E.
A function f on E is said to be simple if it has the form

f =
n∑

1

ai1Ai2.11

for some n in N
∗ = {1, 2, . . .}, real numbers a1, . . . , an, and measurable sets

A1, . . . , An (belonging to the σ-algebra E). It is clear that, then, there exist
m in N

∗ and distinct real numbers b1, . . . , bm and a measurable partition
{B1, . . . , Bm} of E such that f =

∑m
1 bi1Bi ; this latter representation is

called the canonical form of the simple function f .
It is immediate from Proposition 2.6 (or Remark 2.7b) applied to the

canonical form that every simple function is E-measurable. Conversely, if f
is E-measurable, takes only finitely many values, and all those values are real
numbers, then f is a simple function. In particular, every constant is a simple
function. Finally, if f and g are simple, then so are

f + g, f − g, fg, f/g, f ∨ g, f ∧ g,2.12

except that in the case of f/g one should make sure that g is nowhere zero.

Limits of sequences of functions

Let (fn) be a sequence of numerical functions on E. The functions

inf fn, sup fn, lim inf fn, lim sup fn2.13

are defined on E pointwise: for instance, the first is the function whose value
at x is the infimum of the sequence of numbers fn(x). In general, limit inferior
is dominated by the limit superior. If the two are equal, that is, if

lim inf fn = lim sup fn = f,2.14

say, then the sequence (fn) is said to have a pointwise limit f and we write
f = lim fn or fn → f to express it.
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If (fn) is increasing, that is, if f1 ≤ f2 ≤ . . ., then lim fn exists and is
equal to sup fn. We shall write fn ↗ f to mean that (fn) is increasing and
has limit f . Similarly, fn ↘ f means that (fn) is decreasing and has limit f .

The following shows that the class of measurable functions is closed under
limits.

2.15 Theorem. Let (fn) be a sequence of E-measurable functions. Then,
each one of the four functions in 2.13 is E-measurable. Moreover, if it exists,
lim fn is E-measurable.

Proof. We start by showing that f = sup fn is E-measurable. For every x
in E and r in R, we note that f(x) ≤ r if and only if fn(x) ≤ r for all n.
Thus, for each r in R,

f−1[−∞, r] = {x : f(x) ≤ r} =
⋂

n

{x : fn(x) ≤ r} =
⋂

n

f−1
n [−∞, r].

The rightmost member belongs to E: for each n, the set f−1
n [−∞, r] ∈ E by

the E-measurability of fn, and E is closed under countable intersections. So,
by Proposition 2.6, f = sup fn is E-measurable.

Measurability of inf fn follows from the preceding step upon observing
that inf fn = − sup(−fn). It is now obvious that

lim inf fn = sup
m

inf
n≥m

fn, lim sup fn = inf
m

sup
n≥m

fn

are E-measurable. If these two are equal, the common limit is the definition
of lim fn, which is E-measurable. �

Approximation of measurable functions

We start by approximating the identity function on R̄+ by an increasing
sequence of simple functions of a specific form (dyadic functions). We leave
the proof of the next lemma as an exercise; drawing dn for n = 1, 2, 3
should do.

2.16 Lemma. For each n in N
∗, let

dn(r) =
n2n∑

k=1

k − 1
2n

1[ k−1
2n , k

2n )(r) + n1[n,∞](r), r ∈ R̄+.

Then, each dn is an increasing right-continuous simple function on R̄+, and
dn(r) increases to r for each r in R̄+ as n → ∞.

The following theorem is important: it reduces many a computation about
measurable functions to a computation about simple functions followed by
limit taking.
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2.17 Theorem. A positive function on E is E-measurable if and only if
it is the limit of an increasing sequence of positive simple functions.

Proof. Sufficiency is immediate from Theorem 2.15. To show the necessity
part, let f : E → R̄+ be E-measurable. We are to show that there is a sequence
(fn) of positive simple functions increasing to f . To that end, let (dn) be as in
the preceding lemma and put fn = dn ◦ f . Then, for each n, the function fn

is E-measurable, since it is a measurable function of a measurable function.
Also, it is positive and takes only finitely many values, because dn is so. Thus,
each fn is positive and simple. Moreover, since dn(r) increases to r for each
r in R̄+ as n → ∞, we have that fn(x) = dn(f(x)) increases to f(x) for each
x in E as n → ∞.

Monotone classes of functions

Let M be a collection of numerical functions on E. We write M+ for the
subcollection consisting of positive functions in M, and Mb for the subcollec-
tion of bounded functions in M.

The collection M is called a monotone class provided that it includes the
constant function 1, and Mb is a linear space over R, and M+ is closed under
increasing limits; more explicitly, M is a monotone class if

2.18 a) 1 ∈ M,
b) f, g ∈ Mb and a, b ∈ R ⇒ af + bg ∈ M,
c) (fn) ⊂ M+, fn ↗ f ⇒ f ∈ M.

The next theorem is used often to show that a certain property holds for
all E-measurable functions. It is a version of Theorem 1.8, it is called the
monotone class theorem for functions.

2.19 Theorem. Let M be a monotone class of functions on E. Suppose,
for some p-system C generating E, that 1A ∈ M for every A in C. Then,
M includes all positive E-measurable functions and all bounded E-measurable
functions.

Proof. We start by showing that 1A ∈ M for every A in E. To this end, let

D = {A ∈ E : 1A ∈ M}.
Using the conditions 2.18, it is easy to check that D is a d-system. Since
D ⊃ C by assumption, and since C is a p-system that generates E, we must
have D ⊃ E by the monotone class theorem 1.8. So, 1A ∈ M for every A in E.

Therefore, in view of the property 2.18b, M includes all simple functions.
Let f be a positive E-measurable function. By Theorem 2.17, there exists

a sequence of positive simple functions fn increasing to f . Since each fn is in
M+ by the preceding step, the property 2.18c implies that f ∈ M.

Finally, let f be a bounded E-measurable function. Then f+ and f− are
in M by the preceding step and are bounded obviously. Thus, by 2.18b, we
conclude that f = f+ − f− ∈ M. �
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Standard measurable spaces

Let (E, E) and (F, F) be measurable spaces. Let f be a bijection from
E onto F , and let f̂ denote its functional inverse (f̂(y) = x if and only if
f(x) = y). Then, f is said to be an isomorphism of (E, E) and (F, F) if f is
measurable relative to E and F and f̂ is measurable relative to F and E. The
measurable spaces (E, E) and (F, F) are said to be isomorphic if there exists
an isomorphism between them.

A measurable space (E, E) is said to be standard if it is isomorphic to
(F, BF ) for some Borel subset F of R.

The class of standard spaces is surprisingly large and includes almost all
the spaces we shall encounter. Here are some examples: The spaces R, R

d,
R

∞ together with their respective Borel σ-algebras are standard measurable
spaces. If E is a complete separable metric space, then (E, BE) is standard.
If E is a Polish space, that is, if E is a topological space metrizable by a
metric for which it is complete and separable, then (E, BE) is standard. If E
is a separable Banach space, or more particularly, a separable Hilbert space,
then (E, BE) is standard. Further examples will appear later.

Clearly, [0, 1] and its Borel σ-algebra form a standard measurable space;
so do {1, 2, . . . , n} and its discrete σ-algebra; so do N = {0, 1, . . .} and its
discrete σ-algebra. Every standard measurable space is isomorphic to one of
these three (this is a deep result).

Notation

We shall use E both for the σ-algebra and for the collection of all the
numerical functions that are measurable relative to it. Recall that, for an ar-
bitrary collection M of numerical functions, we write M+ for the subcollection
of positive functions in M, and Mb for the subcollection of bounded ones in M.
Thus, for instance, E+ is the collection of all E-measurable positive functions.

A related notation is E/F which is used for the class of all functions
f : E → F that are measurable relative to E and F. The notation E/F is
simplified to E when F = R̄ and F = B(R).

Exercises and complements

2.20 σ-algebra generated by a function. Let E be a set and (F, F) a measur-
able space. For f : E → F , define

f−1F = {f−1B : B ∈ F}
where f−1B is as defined in 2.1. Show that f−1F is a σ-algebra on E. It is
the smallest σ-algebra on E such that f is measurable relative to it and F.
It is called the σ-algebra generated by f . If (E, E) is a measurable space, then
f is measurable relative to E and F if and only if f−1F ⊂ E; this is another
way of stating the definition of measurability.
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2.21 Product spaces. Let (E, E), (F, F), (G, G) be measurable spaces. Let
f : E → F be measurable relative to E and F, and let g : E → G be
measurable relative to E and G. Define h : E → F × G by

h(x) = (f(x), g(x)), x ∈ E.

Show that h is measurable relative to E and F ⊗ G.

2.22 Sections. Let f : E × F → G be measurable relative to E ⊗ F and G.
Show that, for fixed x0 in E, the mapping h : y → f(x0, y) is measurable
relative to F and G. (Hint: Note that h = f ◦ g where g : F → E × F is
defined by g(y) = (x0, y) and show that g is measurable relative to F and
E ⊗ F.) The mapping h is called the section of f at x0.

2.23 Proposition 2.9. Prove.

2.24 Discrete spaces. Suppose that E is countable and E = 2E , the discrete
σ-algebra on E. Then, (E, E) is said to be discrete. Show that every function
on E is E-measurable.

2.25 Suppose that E is generated by a countable partition of E. Show that,
then, a numerical function on E is E-measurable if and only if it is constant
over each member of that partition.

2.26 Elementary functions. A function f on E is said to be elementary if it
has the form

f =
∞∑

1

ai1Ai ,

where ai ∈ R̄ and Ai ∈ E for each i, the Ai being disjoint. Show that every
such function is E-measurable.

2.27 Measurable functions. Show that a positive function f on E is
E-measurable if and only if it has the form

f =
∞∑

1

an1An ,

for some sequence (an) ⊂ R̄+ and some sequence (An) ⊂ E, disjointedness
not required.

2.28 Approximation by simple functions. Show that a numerical function f
on E is E-measurable if and only if it is the limit of a sequence (fn) of simple
functions. Hint: For necessity, put fn = f+

n − f−
n , where f+

n = dn ◦ f+ and
f−

n = dn ◦ f− with dn as in Lemma 2.16.

2.29 Arithmetic operations. Let f and g be E-measurable. Show that, then,
each one of

f + g, f − g, f · g, f/g

is E-measurable provided that it be well-defined (the issue arises from the
fact that +∞−∞, (+∞)(−∞), 0/0, ∞/∞ are undefined). Recall, however,
that 0 · ∞ = 0 is defined.
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2.30 Continuous functions. Suppose that E is topological. Show that every
continuous function f : E → R̄ is a Borel function. Hint: If f is continuous,
then f−1B is open for every open subset of R̄.
2.31 Step functions, right-continuous functions. a) A function f : R+ → R̄

is said to be a right-continuous step function if there is a sequence (tn) in
R+ with 0 = t0 < t1 < · · · and lim tn = +∞ such that f is constant over
each interval [tn, tn+1). Every such function is elementary and, thus, Borel
measurable. b) Let f : R+ → R̄ be right-continuous, that is, f(rn) → f(r)
whenever (rn) is a sequence decreasing to r. Show that f is Borel measurable.
Hint: Note that f = lim fn, where fn = f ◦ d̄n for n in N

∗ with

d̄n(r) =
∞∑

k=1

k

2n
1[k−1

2n , k
2n )(r), r ∈ R+.

Extend this to f : R → R̄ by symmetry on R \ R+. Similarly, every left-
continuous function is Borel.
2.32 Increasing functions. Let f : R → R̄ be increasing. Show that f is Borel
measurable.
2.33 Measurability of sets defined by functions. We introduce the notational
principle that {f ∈ B}, {f > r}, {f ≤ g}, etc. stand for, respectively,

{x ∈ E : f(x) ∈ B}, {x ∈ E : f(x) > r}, {x ∈ E : f(x) ≤ g(x)},
etc. For instance, {f ≤ g} is the set on which f is dominated by g.

Let f and g be E-measurable functions on E. Show that the following sets
are in E:

{f > g}, {f < g}, {f �= g}, {f = g}, {f ≥ g}, {f ≤ g}.
Hint: {f > g} is the set of all x for which f(x) > r and g(x) < r for some
rational number r.
2.34 Positive monotone classes. This is a variant of the monotone class the-
orem 2.19: Let M+ be a collection of positive functions on E. Suppose that

a) 1 ∈ M+

b) f, g ∈ M+ and a, b ∈ R and af + bg ≥ 0 ⇒ af + bg ∈ M+

c) (fn) ⊂ M+, fn ↗ f ⇒ f ∈ M+.
Suppose, for some p-system C generating E that 1A ∈ M+ for each A in C.
Then, M+ includes every positive E-measurable function. Prove.
2.35 Bounded monotone classes. This is another variant of the monotone
class theorem. Let Mb be a collection of bounded functions on E. Suppose
that

a) 1 ∈ Mb,
b) f, g ∈ Mb and a, b ∈ R ⇒ af + bg ∈ Mb,
c) (fn) ⊂ Mb, fn ≥ 0, fn ↗ f, and f is bounded ⇒ f ∈ Mb.

Suppose, for some p-system C generating E that 1A ∈ Mb for each A in C.
Then, Mb includes every bounded E-measurable function. Prove.
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3 Measures

Let (E, E) be a measurable space, that is, E is a set and E is a σ-algebra
on E. A measure on (E, E) is a mapping μ : E → R̄+ such that

3.1 a) μ(∅) = 0,
b) μ(

⋃
n An) =

∑
n μ(An) for every disjointed sequence (An) in E.

The latter condition is called countable additivity. Note that μ(A) is al-
ways positive and can be +∞; the number μ(A) is called the measure of A;
we also write μA for it.

A measure space is a triplet (E, E, μ), where (E, E) is a measurable space
and μ is a measure on it.

Examples

3.2 Dirac measures. Let (E, E) be a measurable space, and let x be a fixed
point of E. For each A in E, put

δx(A) =
{

1 if x ∈ A,
0 if x /∈ A.

Then, δx is a measure on (E, E). It is called the Dirac measure sitting at x.
3.3 Counting measures. Let (E, E) be a measurable space. Let D be a fixed
subset of E. For each A in E, let ν(A) be the number of points in A ∩ D.
Then, ν is a measure on (E, E). Such ν are called counting measures. Often,
the set D is taken to be countable, in which case

ν(A) =
∑

x∈D

δx(A), A ∈ E.

3.4 Discrete measures. Let (E, E) be a measurable space. Let D be a
countable subset of E. For each x in D, let m(x) be a positive number.
Define

μ(A) =
∑

x∈D

m(x) δx(A), A ∈ E.

Then, μ is a measure on (E, E). Such measures are said to be discrete. We
may think of m(x) as the mass attached to the point x, and then μ(A) is
the mass on the set A. In particular, if (E, E) is a discrete measurable space,
then every measure μ on it has this form.
3.5 Lebesgue measures. A measure μ on (R, BR) is called the Lebesgue mea-
sure on R if μ(A) is the length of A for every interval A. As with most
measures, it is impossible to display μ(A) for every Borel set A, but one can
do integration with it, which is the main thing measures are for. Similarly, the
Lebesgue measure on R

2 is the “area” measure, on R
3 the “volume”, etc. We

shall write Leb for them. Also note the harmless vice of saying, for example,
Lebesgue measure on R

2 to mean Lebesgue measure on (R2, B(R2)).
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Some properties

3.6 Proposition. Let μ be a measure on a measurable space (E, E).
Then, the following hold for all measurable sets A, B, and A1, A2, . . .:

Finite additivity: A ∩ B = ∅ ⇒ μ(A ∪ B) = μ(A) + μ(B).

Monotonicity: A ⊂ B ⇒ μ(A) ≤ μ(B).

Sequential continuity: An ↗ A ⇒ μ(An) ↗ μ(A).

Boole’s inequality: μ(
⋃

n An) ≤ ∑
n μ(An).

Proof. Finite additivity is a particular instance of countable additivity of
μ: take A1 = A, A2 = B, A3 = A4 = . . . = ∅ in 3.1b. Monotonicity follows
from finite additivity and the positivity of μ: for A ⊂ B, we can write B as
the union of disjoint sets A and B \ A, and hence

μ(B) = μ(A) + μ(B \ A) ≥ μ(A),

since μ(B \ A) ≥ 0. Sequential continuity follows from countable additivity:
Suppose that An ↗ A. Then, B1 = A1, B2 = A2\A1, B3 = A3\A2, . . .
are disjoint, their union is A, and the union of the first n is An. Thus, the
sequence of numbers μ(An) increases and

lim μ(An) = limμ(∪n
1 Bi) = lim

n∑

1

μ(Bi) =
∞∑

1

μ(Bi) = μ(A).

Finally, to show Boole’s inequality, we start by observing that

μ(A ∪ B) = μ(A) + μ(B \ A) ≤ μ(A) + μ(B)

for arbitrary A and B in E. This extends to finite unions by induction:

μ(∪n
1 Ai) ≤

n∑

1

μ(Ai).

Taking limits on both sides completes the proof since the left side has limit
μ(∪∞

1 Ai) by sequential continuity. �

Arithmetic of measures

Let (E, E) be a measurable space. If μ is a measure on it and c > 0 is a
constant, then cμ is again a measure on it. If μ and ν are measures on it,
then so is μ + ν. If μ1, μ2, . . . are measures, then so is

∑
n μn; this can be

checked using the elementary fact that, if the numbers amn are positive,
∑

m

∑

n

amn =
∑

n

∑

m

amn.
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Finite, σ-finite, Σ-finite measures

Let μ be a measure on a measurable space (E, E). It is said to be finite
if μ(E) < ∞; then μ(A) < ∞ for all A in E by the monotonicity of μ. It is
called a probability measure if μ(E) = 1. It is said to be σ-finite if there exists
a measurable partition (En) of E such that μ(En) < ∞ for each n. Finally,
it is said to be Σ-finite if there exists a sequence of finite measures μn such
that μ =

∑
n μn. Every finite measure is obviously σ-finite. Every σ-finite

measure is Σ-finite; see Exercise 3.13 for this point and for examples.

Specification of measures

Given a measure on (E, E), its values over a p-system generating E deter-
mine its values over all of E, generally. The following is the precise statement
for finite measures. Its version for σ-finite measures is given in Exercise 3.18.

3.7 Proposition. Let (E, E) be a measurable space. Let μ and ν be mea-
sures on it with μ(E) = ν(E) < ∞. If μ and ν agree on a p-system generating
E, then μ and ν are identical.

Proof. Let C be a p-system generating E. Suppose that μ(A) = ν(A)
for every A in C, and μ(E) = ν(E) < ∞. We need to show that, then,
μ(A) = ν(A) for every A in E, or equivalently, that

D = {A ∈ E : μ(A) = ν(A)}

contains E. Since D ⊃ C by assumption, it is enough to show that D is
a d-system, for, then, the monotone class theorem 1.8 yields the desired
conclusion that D ⊃ E. So, we check the conditions for D to be a d-system.
First, E ∈ D by the assumption that μ(E) = ν(E). If A, B ∈ D, and A ⊃ B,
then A \ B ∈ D, because

μ(A \ B) = μ(A) − μ(B) = ν(A) − ν(B) = ν(A \ B),

where we used the finiteness of μ to solve μ(A) = μ(B) + μ(A \ B) for
μ(A \ B) and similarly for ν(A \ B). Finally, suppose that (An) ⊂ D and
An ↗ A; then, μ(An) = ν(An) for every n, the left side increases to μ(A) by
the sequential continuity of μ, and the right side to ν(A) by the same for ν;
hence, μ(A) = ν(A) and A ∈ D. �

3.8 Corollary. Let μ and ν be probability measures on (R̄, B(R̄)).
Then, μ = ν if and only if μ[−∞, r] = ν[−∞, r] for every r in R.

Proof is immediate from the preceding proposition: μ(R̄) = ν(R̄) = 1
since μ and ν are probability measures, and the intervals [−∞, r] with r in
R form a p-system generating the Borel σ-algebra on R̄.
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Atoms, purely atomic measures, diffuse measures

Let (E, E) be a measurable space. Suppose that the singleton {x} belongs
to E for every x in E; this is true for all standard measurable spaces. Let μ
be a measure on (E, E). A point x is said to be an atom of μ if μ{x} > 0.
The measure μ is said to be diffuse if it has no atoms. It is said to be purely
atomic if the set D of its atoms is countable and μ(E \D) = 0. For example,
Lebesgue measures are diffuse, a Dirac measure is purely atomic with one
atom, discrete measures are purely atomic.

The following proposition applies to Σ-finite (and therefore, to finite and
σ-finite) measures. We leave the proof as an exercise; see 3.15.

3.9 Proposition. Let μ be a Σ-finite measure on (E, E). Then,

μ = λ + ν,

where λ is a diffuse measure and ν is purely atomic.

Completeness, negligible sets

Let (E, E, μ) be a measure space. A measurable set B is said to be neg-
ligible if μ(B) = 0. An arbitrary subset of E is said to be negligible if it is
contained in a measurable negligible set. The measure space is said to be com-
plete if every negligible set is measurable. If it is not complete, the following
shows how to enlarge E to include all negligible sets and to extend μ onto the
enlarged E. We leave the proof to Exercise 3.16. The measure space (E, Ē, μ̄)
described is called the completion of (E, E, μ). When E = R and E = BR and
μ = Leb, the elements of Ē are called the Lebesgue measurable sets.

3.10 Proposition. Let N be the collection of all negligible subsets of E.
Let Ē be the σ-algebra generated by E ∪ N. Then,

a) every B in Ē has the form B = A ∪ N , where A ∈ E and N ∈ N,
b) the formula μ̄(A ∪N) = μ(A) defines a unique measure μ̄ on Ē, we

have μ̄(A) = μ(A) for A ∈ E, and the measure space (E, Ē, μ̄) is complete.

Almost everywhere

If a proposition holds for all but a negligible set of x in E, then we say
that it holds for almost every x, or almost everywhere. If the measure μ used
to define negligibility needs to be indicated, we say μ-almost every x or μ-
almost everywhere. If E is replaced by a measurable set A, we say almost
everywhere on A. For example, given numerical functions f and g on E, and
a measurable set A, saying that f = g almost everywhere on A is equivalent
to saying that {x ∈ A : f(x) �= g(x)} is negligible, which is then equivalent
to saying that there exists a measurable set M with μ(M) = 0 such that
f(x) = g(x) for every x in A \ M .
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Exercises and complements

3.11 Restrictions and traces. Let (E, E) be a measurable space, and μ a
measure on it. Let D ∈ E.

a) Define ν(A) = μ(A∩D), A ∈ E. Show that ν is a measure on (E, E);
it is called the trace of μ on D.

b) Let D be the trace of E on D (see 1.15). Define ν(A) = μ(A) for
A in D. Show that ν is a measure on (D, D); it is called the restriction of μ
to D.

3.12 Extensions. Let (E, E) be a measurable space, let D ∈ E, and let (D, D)
be the trace of (E, E) on D. Let μ be a measure on (D, D) and define ν by

ν(A) = μ(A ∩ D), A ∈ E.

Show that ν is a measure on (E, E). This device allows us to regard a “measure
on D” as a “measure on E”.

3.13 σ-and Σ-finiteness

a) Let (E, E) be a measurable space. Let μ be a σ-finite measure on
it. Then, μ is Σ-finite. Show. Hint: Let (En) be a measurable partition of E
such that μ(En) < ∞ for each n; define μn to be the trace of μ on En as in
Exercise 3.11a; show that μ =

∑
n μn.

b) Show that the Lebesgue measure on R is σ-finite.
c) Let μ be the discrete measure of Example 3.4 with (E, E) discrete.

Show that it is σ-finite if and only if m(x) < ∞ for every x in D. Show that
it is always Σ-finite.

d) Let E = [0, 1] and E = B(E). For A in E, define μ(A) to be 0 if
Leb A = 0 and +∞ if LebA > 0. Show that μ is not σ-finite but is Σ-finite.

e) Let (E, E) be as in (d) here. Define μ(A) to be the counting measure
on it (see Example 3.3 and take D = E). Show that μ is neither σ-finite nor
Σ-finite.

3.14 Atoms. Show that a finite measure has at most countably many atoms.
Show that the same is true for Σ-finite measures. Hint: If μ(E) < ∞ then
the number of atoms with μ{x} > 1

n is at most nμ(E).

3.15 Proof of Proposition 3.9. Let D be the set of all atoms of the given Σ-
finite measure μ. Then, D is countable by the preceding exercise and, thus,
measurable by the measurability of singletons. Define

λ(A) = μ(A \ D), ν(A) = μ(A ∩ D), A ∈ E.

Show that λ is a diffuse measure, ν purely atomic, and μ = λ + ν. Note that
ν has the form in Example 3.4 with m(x) = μ{x} for each atom x.

3.16 Proof of Proposition 3.10. Let F be the collection of all sets having
the form A ∪ N with A in E and N in N. Show that F is a σ-algebra on
E. Argue that F = Ē, thus proving part (a). To show (b), we need to show
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that, if A ∪ N = A′ ∪ N ′ with A and A′ in E and N and N ′ in N, then
μ(A) = μ(A′). To this end pick M in E such that μ(M) = 0 and M ⊃ N ,
and pick M ′ similarly for N ′. Show that A ⊂ A′ ∪ M ′ and A′ ⊂ A ∪ M . Use
this, monotonicity of μ, Boole’s inequality, etc. several times to show that
μ(A) = μ(A′).

3.17 Measurability on completions. Let (E, E, μ) be a measure space, and
(E, Ē, μ̄) its completion. Let f be a numerical function on E. Show that f
is Ē-measurable if and only if there exists an E-measurable function g such
that f = g almost everywhere. Hint: For sufficiency, choose M in E such
that μ(M) = 0 and f = g outside M , and note that {f ≤ r} = A ∪ N
where A = {g ≤ r} \ M and N ⊂ M . For necessity, assuming f is positive
Ē-measurable, write f =

∑∞
1 an1An with An ∈ Ē for each n (see Exercise 2.27)

and choosing Bn in E such that An = Bn ∪Nn for some negligible Nn, define
g =

∑∞
1 an1Bn , and show that {f �= g} ⊂ ⋃

n Nn = N , which is negligible.

3.18 Equality of measures. This is to extend Proposition 3.7 to σ-finite mea-
sures. Let μ and ν be such measures on (E, E). Suppose that they agree on
a p-system C that generates E. Suppose further that C contains a partition
(En) of E such that μ(En) = ν(En) < ∞ for each n. Then, μ = ν. Prove this.

3.19 Existence of probability measures. Let E be a set, D an algebra on it,
and put E = σD. Suppose that λ : D → [0, 1] is such that λ(E) = 1 and
λ(A ∪ B) = λ(A) + λ(B) whenever A and B are disjoint sets in D. Is it
possible to extend λ to a probability measure on E? In other words, does
there exist a measure μ on (E, E) such that μ(A) = λ(A) for every A in D?
If such a measure exists, then it is unique by Proposition 3.7, since D is a
p-system that generates E.
The answer is provided by Caratheodory’s extension theorem, a classical re-
sult. Such a probability measure μ exists provided that λ be countably addi-
tive on D, that is, if (An) is a disjointed sequence in D with A =

⋃
n An ∈ D,

then we must have λ(A) =
∑

n λ(An), or equivalently, if (An) ⊂ D and
An ↘ ∅ then we must have λ(An) ↘ 0.

4 Integration

Let (E, E, μ) be a measure space. Recall that E stands also for the col-
lection of all E-measurable functions on E and that E+ is the sub-collection
consisting of positive E-measurable functions. Our aim is to define the “in-
tegral of f with respect to μ” for all reasonable functions f in E. We shall
denote it by any of the following:

μf = μ(f) =
ˆ

E

μ(dx)f(x) =
ˆ

E

f dμ.4.1
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As the notation μf suggests, integration is a kind of multiplication; this will
become clear when we show that the following hold for all a, b in R+ and
f, g, fn in E+:

4.2 a) Positivity: μf ≥ 0; μf = 0 if f = 0.
b) Linearity: μ(af + bg) = a μf + b μg.
c) Monotone convergence theorem: If fn ↗ f , then μfn ↗ μf .

We start with the definition of the integral and proceed to proving the prop-
erties 4.2 and their extensions. At the end, we shall also show that 4.2 char-
acterizes integration.

4.3 Definition. a) Let f be simple and positive. If its canonical form
is f =

∑n
1 ai1Ai , then we define

μf =
n∑

1

ai μ(Ai).

b) Let f ∈ E+. Put fn = dn ◦ f , where the dn are as in Lemma 2.16.
Then each fn is simple and positive, and the sequence (fn) increases to f
as shown in the proof of 2.17. The integral μfn is defined for each n by the
preceding step, and the sequence of numbers μfn is increasing (see Remark
4.4d below). We define

μf = limμfn.

c) Let f ∈ E. Then, f+ = f ∨ 0 and f− = −(f ∧ 0) belong to E+, and
their integrals μ(f+) and μ(f−) are defined by the preceding step. Noting that
f = f+ − f−, we define

μf = μ(f+) − μ(f−)

provided that at least one term on the right side be finite. Otherwise, if
μ(f+) = μ(f−) = +∞, then μf is undefined.

4.4 Remarks. Let f, g, etc. be simple and positive.

a) The formula for μf remains the same even when f =
∑

ai 1Ai is
not the canonical representation of f . This is easy to check using the finite
additivity of μ.

b) If a and b are in R+, then af + bg is simple and positive, and the
linearity property holds:

μ(af + bg) = a μf + b μg.

This can be checked using the preceding remark.
c) If f ≤ g then μf ≤ μg. This follows from the linearity property

above applied to the simple positive functions f and g − f :

μf ≤ μf + μ(g − f) = μ(f + g − f) = μg.

d) In step (b) of the definition, we have f1 ≤ f2 ≤ . . .. The preceding
remark on monotonicity shows that μf1 ≤ μf2 ≤ . . .. Thus, limμfn exists as
claimed (it can be +∞).
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Examples

a) Discrete measures. Fix x0 in E and consider the Dirac measure δx0

sitting at x0. Going through the steps of the definition of the integral, we
see that δx0f = f(x0) for every f in E. This extends to discrete measures: if
μ =

∑
x∈D m(x)δx for some countable set D and positive masses m(x), then

μf =
∑

x∈D

m(x) f(x)

for every f in E+. A similar result holds for purely atomic measures as well.
b) Discrete spaces. Suppose that (E, E) is discrete, that is, E is

countable and E = 2E. Then, every numerical function on E is E-measurable,
and every measure μ has the form in the preceding example with D = E and
m(x) = μ{x}. Thus, for every positive function f on E,

μf =
∑

x∈E

μ{x}f(x).

In this case, and especially when E is finite, every function can be thought
as a vector, and similarly for every measure. Further, we think of functions
as column vectors and of measures as row vectors. Then, the integral μf is
seen to be the product of the row vector μ and the column vector f . So, the
notation is well-chosen in this case and extends to arbitrary spaces in a most
suggestive manner.

c) Lebesgue integrals. Suppose that E is a Borel subset of R
d for some

d ≥ 1 and suppose that E = B(E), the Borel subsets of E. Suppose that μ
is the restriction of the Lebesgue measure on R

d to (E, E). For f in E, we
employ the following notations for the integral μf :

μf = LebE f =
ˆ

E

Leb(dx) f(x) =
ˆ

E

dx f(x),

the last using dx for Leb(dx) in keeping with tradition. This integral is called
the Lebesgue integral of f on E.

If the Riemann integral of f exists, then so does the Lebesgue integral, and
the two integrals are equal. The converse is false; the Lebesgue integral exists
for a larger class of functions than does the Riemann integral. For example,
if E = [0, 1], and f is the indicator of the set of all rational numbers in E,
then the Lebesgue integral of f is well-defined by 4.3a to be zero, but the
Riemann integral does not exist because the discontinuity set of f in E is E
itself and Leb E = 1 �= 0 (recall that a Borel function is Riemann integrable
over an interval [a, b] if and only if its points of discontinuity in [a, b] form a
set of Lebesgue measure 0).

Integrability

A function f in E is said to be integrable if μf exists and is a real num-
ber. Thus, f in E is integrable if and only if μf+ < ∞ and μf− < ∞, or
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equivalently, if and only if the integral of |f | = f++f− is a finite number. We
leave it as an exercise to show that every integrable function is real-valued
almost everywhere.

Integral over a set

Let f ∈ E and let A be a measurable set. Then, f1A ∈ E, and the
integral of f over A is defined to be the integral of f1A. The following nota-
tions are used for it:

μ(f1A) =
ˆ

A

μ(dx)f(x) =
ˆ

A

f dμ.4.5

The following shows that, for each f in E+, the set function A → μ(f1A) is
finitely additive. This property extends to countable additivity as a corollary
to the monotone convergence theorem 4.8 below.

4.6 Lemma. Let f ∈ E+. Let A and B be disjoint sets in E with union
C. Then

μ(f1A) + μ(f1B) = μ(f1C).

Proof. If f is simple, this is immediate from the linearity property of
Remark 4.4b. For arbitrary f in E+, putting fn = dn ◦ f as in Definition
4.3b, we get

μ(fn1A) + μ(fn1B) = μ(fn1C)

since the fn are simple. Observing that fn1D = dn ◦ (f1D) for D = A, B, C
and taking limits as n → ∞ we get the desired result through Definition
4.3b. �

Positivity and monotonicity

4.7 Proposition. If f ∈ E+, then μf ≥ 0. If f and g are in E+ and
f ≤ g, then μf ≤ μg.

Proof. Positivity of μf for f positive is immediate from Definition 4.3. To
show monotonicity, let fn = dn ◦f and gn = dn ◦g as in step 4.3b. Since each
dn is an increasing function (see Lemma 2.16), f ≤ g implies that fn ≤ gn

for each n which in turn implies that μfn ≤ μgn for each n by Remark 4.4c.
Letting n → ∞, we see from Definition 4.3b that μf ≤ μg. �

Monotone Convergence Theorem

This is the main theorem of integration. It is the key tool for interchanging
the order of taking limits and integrals. It states that the mapping f → μf
from E+ into R̄+ is continuous under increasing limits. As such, it is an
extension of the sequential continuity of measures.

4.8 Theorem. Let (fn) be an increasing sequence in E+. Then,

μ(lim fn) = limμfn.
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Proof. Let f = lim fn; it is well-defined since (fn) is increasing. Clearly,
f ∈ E+, and μf is well-defined. Since (fn) is increasing, the integrals μfn

form an increasing sequence of numbers by the monotonicity property shown
by Proposition 4.7. Hence, lim μfn exists. We want to show that the limit
is μf . Since f ≥ fn for each n, we have μf ≥ μfn by the monotonicity
property. It follows that μf ≥ lim μfn. The following steps show that the
reverse inequality holds as well.

a) Fix b in R+ and B in E. Suppose that f(x) > b for every x in
the set B. Since the sets {fn > b} are increasing to {f > b}, the sets Bn =
B ∩ {fn > b} are increasing to B, and

lim μ(Bn) = μ(B)4.9

by the sequential continuity of μ. On the other hand,

fn1B ≥ fn1Bn ≥ b1Bn ,

which yields via monotonicity that

μ(fn1B) ≥ μ(b1Bn) = bμ(Bn).

Taking note of 4.9 we conclude that

lim μ(fn1B) ≥ bμ(B).4.10

This remains true if f(x) ≥ b for all x in B: If b = 0 then this is trivially
true. If b > 0 then choose a sequence (bm) strictly increasing to b; then, 4.10
holds with b replaced by bm; and letting m → ∞ we obtain 4.10 again.

b) Let g be a positive simple function such that f ≥ g. If g =
∑m

1 bi1Bi

is its canonical representation, then f(x) ≥ bi for every x in Bi, and 4.10
yields

lim
n

μ(fn1Bi) ≥ biμ(Bi), i = 1, . . . , m.

Hence, by the finite additivity of A → μ(fn1A) shown in Lemma 4.6,

lim
n

μfn = lim
n

m∑

i=1

μ(fn1Bi) =
m∑

i=1

lim
n

μ(fn1Bi) ≥
m∑

i=1

biμ(Bi) = μg.4.11

c) Recall that μf = limμ(dk ◦ f) by Definition 4.3b. For each k, the
function dk ◦ f is simple and f ≥ dk ◦ f . Hence, taking g = dk ◦ f in 4.11, we
have

lim
n

μfn ≥ μ(dk ◦ f)

for all k. Letting k → ∞ we obtain the desired inequality that
limμfn ≥ μf . �
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Linearity of integration

4.12 Proposition. For f and g in E+ and a and b in R+,

μ(af + bg) = a μf + b μg.

The same is true for integrable f and g in E and arbitrary a and b in R.

Proof. Suppose that f, g, a, b are all positive. If f and g are simple, the
linearity can be checked directly as remarked in 4.4b. If not, choose (fn)
and (gn) to be sequences of simple positive functions increasing to f and g
respectively. Then,

μ(afn + bgn) = a μfn + b μgn,

and the monotone convergence theorem applied to both sides completes the
proof. The remaining statements follow from Definition 4.3c and the linearity
for positive functions after putting f = f+ − f− and g = g+ − g−. �

Insensitivity of the integral

We show next that the integral of a function remains unchanged if the
values of the function are changed over a negligible set.

4.13 Proposition. If A in E is negligible, then μ(f1A) = 0 for every f
in E. If f and g are in E+ and f = g almost everywhere, then μf = μg. If
f ∈ E+ and μf = 0, then f = 0 almost everywhere.

Proof. a) Let A be measurable and negligible. If f ∈ E+ and simple,
then μ(f1A) = 0 by Definition 4.3a. This extends to the non-simple case by
the monotone convergence theorem using a sequence of simple fn increasing
to f : then μ(fn1A) = 0 for all n and μ(f1A) is the limit of the left side. For f
in E arbitrary, we have μ(f+1A) = 0 and μ(f−1A) = 0 and hence μ(f1A) = 0
since (f1A)+ = f+1A and (f1A)− = f−1A.

b) If f and g are in E+ and f = g almost everywhere, then A = {f �= g}
is measurable and negligible, and the integrals of f and g on A both vanish.
Thus, with B = Ac, we have μf = μ(f1B) and μg = μ(g1B), which imply
μf = μg since f(x) = g(x) for all x in B.

c) Let f ∈ E+ and μf = 0. We need to show that the set N = {f > 0}
has measure 0. Take a sequence of numbers εk > 0 decreasing to 0, let
Nk = {f > εk}, and observe that Nk ↗ N , which implies that μ(Nk) ↗ μ(N)
by the sequential continuity of μ. Thus, it is enough to show that μ(Nk) = 0
for every k. This is easy to show: f ≥ εk1Nk

implies that μf ≥ εkμ(Nk), and
since μf = 0 and εk > 0, we must have μ(Nk) = 0. �
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Fatou’s lemma

We return to the properties of the integral under limits. Next is a useful
consequence of the monotone convergence theorem.

4.14 Lemma. Let (fn) ⊂ E+. Then μ(lim inf fn) ≤ lim inf μfn.

Proof. Define gm = infn≥m fn and recall that lim inf fn is the limit of
the increasing sequence (gm) in E+. Hence, by the monotone convergence
theorem,

μ(lim inf fn) = limμgm.

On the other hand, gm ≤ fn for all n ≥ m, which implies that μgm ≤ μfn

for all n ≥ m by the monotonicity of integration, which in turn means that
μgm ≤ infn≥m μfn. Hence, as desired,

lim μgm ≤ lim inf μfn. �

4.15 Corollary. Let (fn) ⊂ E. If there is an integrable function g such
that fn ≥ g for every n, then

μ(lim inf fn) ≤ lim inf μfn.

If there is an integrable function g such that fn ≤ g for every n, then

μ(lim sup fn) ≥ lim sup μfn.

Proof. Let g be integrable. Then, the complement of the measurable set
A = {g ∈ R} is negligible (see Exercise 4.24 for this). Hence, fn1A = fn

almost everywhere, g1A = g almost everywhere, and g1A is real-valued. The
first statement follows from Fatou’s Lemma applied to the well-defined se-
quence (fn1A − g1A) in E+ together with the linearity and insensitivity of
integration. The second statement follows again from Fatou’s lemma, now
applied to the well-defined sequence (g1A−fn1A) in E+ together with the lin-
earity and insensitivity, and the observation that lim sup rn = − lim inf(−rn)
for every sequence (rn) in R̄. �

Dominated convergence theorem

This is the second important tool for interchanging the order of taking
limits and integrals. A function f is said to be dominated by the function g if
|f | ≤ g; note that g ≥ 0 necessarily. A sequence (fn) is said to be dominated
by g if |fn| ≤ g for every n. If so, and if g can be taken to be a finite constant,
then (fn) is said to be bounded.

4.16 Theorem. Let (fn) ⊂ E. Suppose that (fn) is dominated by some
integrable function g. If lim fn exists, then it is integrable and

μ(lim fn) = limμfn.
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Proof. By assumption, −g ≤ fn ≤ g for every n, and both g and −g are
integrable. Thus, both statements of the last corollary apply:

μ(lim inf fn) ≤ lim inf μfn ≤ lim sup μfn ≤ μ(lim sup fn).4.17

If lim fn exists, then lim inf fn = lim sup fn = lim fn, and lim fn is integrable
since it is dominated by g. Hence, the extreme members of 4.17 are finite and
equal, and all inequality signs are in fact equalities. �

If (fn) is bounded, say by the constant b, and if the measure μ is finite,
then we can take g = b in the preceding theorem. The resulting corollary is
called the bounded convergence theorem:

4.18 Theorem. Let (fn) ⊂ E. Suppose that (fn) is bounded and μ is
finite. If lim fn exists, then it is a bounded integrable function and

μ(lim fn) = limμfn.

Almost everywhere versions

The insensitivity of integration to changes over negligible sets enables
us to re-state all the results above by allowing the conditions to fail over
negligible sets. We start by extending the definition of integration somewhat.

4.19 Convention. Let f be a numerical function on E. Suppose that
there exists an E-measurable function g such that f(x) = g(x) for almost ev-
ery x in E. Then, we define the integral μf of f to be the number μg provided
that μg is defined. Otherwise, if μg does not exist, μf does not exist either.

The definition here is without ambiguities: if h is another measurable
function such that f = h almost everywhere, then g = h almost everywhere;
if μg exists, then so does μh and μg = μh by the insensitivity property; if μg
does not exist, then neither does μh.

In fact, the convention here is one of notation making, almost. Let g ∈ E

and f = g almost everywhere. Let (E, Ē, μ̄) be the completion of (E, E, μ).
Then, f ∈ Ē (see Exercise 3.17 for this), and the integral μ̄f makes sense by
Definition 4.3 applied on the measurable space (E, Ē, μ̄). Since E ⊂ Ē, the
function g is Ē-measurable as well, and μ̄g makes sense and it is clear that
μ̄g = μg. Since f and g are Ē-measurable and f = g μ̄-almost everywhere,
μ̄f = μ̄g by insensitivity. So, the convention above amounts to writing μf
instead of μ̄f .

With this convention in place, we now re-state the monotone convergence
theorem in full generality.

4.20 Theorem. Let (fn) be a sequence of numerical functions on E. Sup-
pose that, for each n, there is gn in E such that fn = gn almost everywhere.
Further, suppose for each n that fn ≥ 0 almost everywhere and fn ≤ fn+1

almost everywhere. Then, lim fn exists almost everywhere, is positive almost
everywhere, and μ(lim fn) = limμfn.
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We discuss this fully to indicate its meaning and the issues involved. Let
N denote the collection of all measurable negligible sets, that is, every N
in N belongs to E and μ(N) = 0. Now fix n. To say that fn = gn almost
everywhere is to say that there is Nn in N such that fn = gn outside Nn (that
is, fn(x) = gn(x) whenever x /∈ Nn). Similarly, fn ≥ 0 almost everywhere
means that there is Mn in N such that fn ≥ 0 outside Mn. And, since
fn ≤ fn+1 almost everywhere, there is Ln in N such that fn ≤ fn+1 outside
Ln. These are the conditions. The claim of the theorem is as follows. First,
there is an E-measurable function f , and a set N in N such that lim fn(x)
exists and is equal to f(x) for every x outside N . Also, there is M in N such
that f ≥ 0 outside M . Finally, μf = limμfn, where the μfn are defined by
convention 4.19 to be the numbers μgn.

Proof. Let

N =
∞⋃

n=1

(Ln ∪ Mn ∪ Nn).

Then, N ∈ E and μ(N) = 0 by Boole’s inequality, that is, N ∈ N.
For x outside N , we have

0 ≤ f1(x) = g1(x) ≤ f2(x) = g2(x) ≤ . . . ,

and hence lim fn(x) exists and is equal to lim gn(x). Define

f(x) =
{

lim fn(x) if x /∈ N
0 if x ∈ N

Clearly, f is the limit of the increasing sequence (gn1E\N ) in E+. So, f is in
E+ and we may take M = ∅. There remains to show that μf = limμgn. Now
in fact

μf = μ(lim gn1E\N) = lim μ(gn1E\N) = limμgn,

where we used the monotone convergence theorem to justify the second equal-
ity, and the insensitivity to justify the third. �

The reader is invited to formulate the “almost everywhere version” of the
dominated convergence theorem and to prove it carefully once. We shall use
such versions without further ado whenever the need drives us.

Characterization of the integral

Definition 4.3 defines the integral μf for every f in E+. Thus, in effect,
integration extends the domain of μ from the measurable sets (identified with
their indicator functions) to the space E+ of all positive measurable functions
(and beyond), and hence we may regard μ as the mapping f → μf from E+

into R̄+. The mapping μ : E+ → R̄+ is necessarily positive, linear, and
continuous under increasing limits; these were promised in 4.2 and proved as
Proposition 4.7, Proposition 4.12, and Theorem 4.8. We end this section with
the following very useful converse.
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4.21 Theorem. Let (E, E) be a measurable space. Let L be a mapping
from E+ into R̄+. Then there exists a unique measure μ on (E, E) such that
L(f) = μf for every f in E+ if and only if

4.22 a) f = 0 ⇒ L(f) = 0.
b) f, g ∈ E+ and a, b ∈ R+ ⇒ L(af + bg) = aL(f) + bL(g).
c) (fn) ⊂ E+ and fn ↗ f ⇒ L(fn) ↗ L(f).

Proof. Necessity of the conditions is immediate from the properties of the
integral: (a) follows from the definition of μf , (b) from linearity, and (c) from
the monotone convergence theorem.

To show the sufficiency, suppose that L has the properties (a)-(c). Define

μ(A) = L(1A), A ∈ E.4.23

We show that μ is a measure. First, μ(∅) = L(1∅) = L(0) = 0. Second, if
A1, A2, . . . are disjoint sets in E with union A, then the indicator of

⋃n
1 Ai is∑n

1 1Ai, the latter is increasing to 1A, and hence,

μ(A)= L(1A)= lim
n

L(
n∑

1

1Ai)= lim
n

n∑

1

L(1Ai)= lim
n

n∑

1

μ(Ai)=
∞∑

1

μ(Ai),

where we used the conditions (c) and (b) to justify the second and third
equality signs.

So, μ is a measure on (E, E). It is unique by the necessity of 4.23. Now,
L(f) = μf for simple f in E+ by the linearity property (b) of L and the
linearity of integration. This in turn implies that, for every f in E+, choosing
simple fn ↗ f ,

L(f) = lim L(fn) = limμfn = μf

by condition (c) and the monotone convergence theorem. �

Exercises and complements

4.24 Integrability. If f ∈ E+ and μf < ∞, then f is real-valued almost
everywhere. Show this. More generally, if f is integrable then it is real-valued
almost everywhere.

4.25 Test for vanishing. Let f ∈ E+. Then μf = 0 if and only if f = 0 almost
everywhere. Prove.

4.26 Alternative form of the monotone convergence theorem. If f1, f2, . . . are
in E+ then

μ

∞∑

1

fn =
∞∑

1

μfn.
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4.27 Sums of measures. Recall that if μ1, μ2, . . . are measures on (E, E), so
is μ =

∑
μn. Show that, for every f in E+,

μf =
∑

n

μnf.

4.28 Absolute values. Assuming that μf exists, show that |μf | ≤ μ|f |.
4.29 Mean value theorem. If μ(A) > 0 and a ≤ f(x) ≤ b for every x in A,
then show that

a ≤ 1
μ(A)

ˆ
A

fdμ ≤ b.

4.30 Generalization of the monotone convergence theorem. If fn ≥ g for all
n for some integrable function g, and if (fn) increases to f , then μf exists
and is equal to limμfn. If fn ≤ g for all n for some integrable function g and
if (fn) decreases to f , then μf exists and is equal to lim μfn.

4.31 On dominated convergence. In the dominated convergence theorem, the
condition that (fn) be dominated by an integrable g is necessary. Suppose
that E = (0, 1), E = BE , μ = Leb. Take, for n = 1, 2, . . .,

fn(x) =
{

n if 0 < x < 1
n

0 otherwise.

Then, fn(x) → 0 for every x in E, the integral μfn = 1 for every n, but
0 = μ(lim fn) �= lim μfn = 1.

4.32 Test for σ-finiteness. A measure μ on (E, E) is σ-finite if and only if
there exists a strictly positive function f in E such that μf < ∞. Prove this.
Hint for the sufficiency part: Let En = {f > 1

n} and note that En ↗ E
whereas 1

nμ(En) ≤ μ(f1En) ≤ μf < ∞.

5 Transforms and Indefinite Integrals

This section is about measures defined from other measures via various
means and the relationships among integrals with respect to them.

Image measures

Let (F, F) and (E, E) be measurable spaces. Let ν be a measure on (F, F)
and let h : F → E be measurable relative to F and E. We define a mapping
ν ◦ h−1 from the σ-algebra E into R̄+ by

ν ◦ h−1(B) = ν(h−1B), B ∈ E,5.1

which is well-defined since h−1B ∈ F by the measurability of h. It is easy to
check that ν ◦ h−1 is a measure on (E, E); it is called the image of ν under
h. Other notations current are h ◦ ν, h(ν), ν ◦ h, νh.
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If ν is finite, then so is its image. If ν is Σ-finite, again, so is its image. But,
the image of a σ-finite measure generally fails to be σ-finite (but is Σ-finite).

The following relates integrals with respect to ν ◦ h−1 to integrals with
respect to ν.

5.2 Theorem. For every f in E+ we have (ν ◦ h−1)f = ν(f ◦ h).

Proof. Define L : E+ → R̄+ by setting L(f) = ν(f ◦ h). It can be checked
that L satisfies the conditions of the integral characterization theorem 4.21.
Thus, L(f) = μf for some unique measure μ on (E, E). That μ is precisely
the measure ν ◦ h−1, because

μ(B) = L(1B) = ν(1B ◦ h) = ν(h−1B), B ∈ E. �

The limitation to positive E-measurable functions can be removed: for
arbitrary f in E the same formula holds provided that the integral on one
side be well-defined (and then both sides are well-defined).

The preceding theorem is a generalization of the change of variable for-
mula from calculus. In more explicit notation, with μ = ν ◦h−1, the theorem
is that ˆ

F

ν(dx)f(h(x)) =
ˆ

E

μ(dy)f(y),5.3

that is, if h(x) is replaced with y then ν(dx) must be replaced with μ(dy).
In calculus, it is often the case that E = F = R

d for some fixed dimension d,
and μ and ν are expressed in terms of the Lebesgue measure on R

d and the
Jacobian of the transformation h. In probability theory, often, the measure ν
is defined implicitly through the formula 5.3 by stating the transformation h
and the corresponding image measure μ. We take up still another use next.

Images of the Lebesgue measure

Forming image measures is a convenient method of creating new measures
from the old, and if the old measure ν is convenient enough as an integrator,
then 5.3 provides a useful formula for the integrals with respect to the new
measure μ. In fact, the class of measures that can be represented as images
of the Lebesgue measure on R+ is very large. The following is the precise
statement; combined with the preceding theorem it reduces integrals over
abstract spaces to integrals on R+ with respect to the Lebesgue measure.

5.4 Theorem. Let (E, E) be a standard measurable space. Let μ be a
Σ-finite measure on (E, E) and put b = μ(E), possibly +∞. Then, there
exists a mapping h from [0, b) into E, measurable relative to B[0,b) and E,
such that

μ = λ ◦ h−1,

where λ is the Lebesgue measure on [0, b).

Proof will be sketched in Exercises 5.15 and 5.16 in a constructive fashion.
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Indefinite integrals

Let (E, E, μ) be a measure space. Let p be a positive E-measurable
function. Define

ν(A) = μ(p1A) =
ˆ

A

μ(dx)p(x), A ∈ E.5.5

It follows from the monotone convergence theorem (alternative form) that
ν is a measure on (E, E). It is called the indefinite integral of p with respect
to μ.

5.6 Proposition. For every f in E+, we have νf = μ(pf).

Proof. Let L(f) = μ(pf) and check that L satisfies the conditions of
Theorem 4.21. Thus, there exists a unique measure μ̂ on (E, E) such that
L(f) = μ̂f for every f in E+. We have μ̂ = ν, since

μ̂(A) = L(1A) = μ(p1A) = ν(A), A ∈ E. �

The formula 5.5 is another convenient tool for creating new measures from
the old. Written in more explicit notation, the preceding proposition becomes

ˆ
E

ν(dx) f(x) =
ˆ

E

μ(dx) p(x) f(x) f ∈ E+,5.7

which can be expressed informally by writing

ν(dx) = μ(dx) p(x), x ∈ E,5.8

once it is understood that μ and ν are measures on (E, E) and that p is
positive E-measurable.

Heuristically, we may think of μ(dx) as the amount of mass put by μ on an
“infinitesimal neighborhood” dx of the point x, and similarly of ν(dx). Then,
5.8 takes on the meaning that p(x) is the mass density, at x, of the measure ν
with respect to μ. For this reason, the function p is called the density function
of ν relative to μ, and the following notations are used for it:

p =
dν

dμ
; p(x) =

ν(dx)
μ(dx)

, x ∈ E.5.9

The expressions 5.5-5.9 are equivalent ways of saying the same thing: ν is the
indefinite integral of p with respect to μ, or p is the density of ν relative to μ.

Radon-Nikodym theorem

Let μ and ν be measures on a measurable space (E, E). Then, ν is said to
be absolutely continuous with respect to μ if, for every set A in E,

μ(A) = 0 ⇒ ν(A) = 0.5.10
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If ν is the indefinite integral of some positive E-measurable function with
respect to μ, then it is evident from 5.5 that ν is absolutely continuous with
respect to μ. The following, called the Radon-Nikodym theorem, shows that
the converse is true as well, at least when μ is σ-finite. We list it here without
proof. We shall give two proofs of it later.

5.11 Theorem. Suppose that μ is σ-finite, and ν is absolutely continuous
with respect to μ. Then, there exists a positive E-measurable function p such
that ˆ

E

ν(dx) f(x) =
ˆ

E

μ(dx) p(x) f(x), f ∈ E+.5.12

Moreover, p is unique up to equivalence: if 5.12 holds for another p̂ in E+,
then p̂(x) = p(x) for μ-almost every x in E.

The function p in question can be denoted by dν/dμ in view of the equivalence
of 5.5-5.9 and 5.12; and the function p is also called the Radon-Nikodym
derivative of ν with respect to μ. See Exercises 5.17-5.20 for some remarks.

A matter of style

When an explicit expression is desired for a measure μ, there are several
choices. One can go with the definition and give a formula for μ(A). Equiv-
alently, and usually with greater ease and clarity, one can display a formula
for the integral μf for arbitrary f in E+. In those cases where μ has a density
with respect to some well-known measure like the Lebesgue measure, it is
better to give the formula for μf or, to be more brief, to give a formula like
μ(dx) = λ(dx) p(x) by using the form 5.8, with λ denoting the Lebesgue mea-
sure. All things considered, if a uniform style is desired, it is best to display
an expression for μf . We shall do either that or use the form 5.8 when the
form of p is important.

Exercises and complements

5.13 Time changes. Let c be an increasing right-continuous function from
R+ into R̄+. Define

a(u) = inf{t ∈ R+ : c(t) > u}, u ∈ R+,

with the usual convention that inf ∅ = ∞.

a) Show that the function a : R+ → R̄+ is increasing and right-
continuous, and that

c(t) = inf{u ∈ R+ : a(u) > t}, t ∈ R+.

Thus, a and c are right-continuous “functional inverses” of each other. See
Figure 1 below.
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a(v−) a(v) a(w)

c(s)

c(t)

c(t−)

u

v

w

s t a(u)

Figure 1: Both c and a are increasing right-continuous. They are functional
inverses of each other.

b) Suppose c(t) < ∞ . Show that a(c(t)) ≥ t , with equality if and only
if c(t + ε) > c(t) for every ε > 0.

Imagine a clock whose mechanism is so rigged that it points to the number
c(t) when the actual time is t. Then, when the clock points to the number
u, the actual time is a(u). Hence the term “time change” for the operations
involved.

5.14 Distribution functions and measures on R+. Let μ be a measure on R+

(with its Borel σ-algebra) such that c(t) = μ[0, t] is finite for every t in R+.
The limit b = c(∞) = limt→∞ c(t) is allowed to be +∞.

a) Show that c is increasing and right-continuous. It is called the
cumulative distribution function associated with μ.

b) Define a(u) as in 5.13 for u ∈ [0, b), let λ denote the Lebesgue
measure on [0, b). Show that

μ = λ ◦ a−1 .

This demonstrates Theorem 5.4 in the case of measures like the present μ.
Incidentally, we have also shown that to every increasing right-continuous
function c from R+ into R+ there corresponds a unique measure μ on R+

whose cumulative distribution function is c.

5.15 Representation of measures: Finite case. Let μ be a finite measure on
a standard measurable space (E, E). We aim to prove Theorem 5.4 in this
case assuming that (E, E) is isomorphic to (D, BD) where D = [0, 1]. The
remaining cases where E is finite or countably infinite are nearly trivial.
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The idea is simple: First, use the isomorphism to carry μ from E into a
measure μ̂ on D. Second, follow the steps of 5.14 to write μ̂ = λ ◦ a−1 where
λ is the Lebesgue measure on B = [0, b) with b = μ̂(D) = μ(E). Finally, use
the inverse of the isomorphism to carry μ̂ back onto E. Here are the details.
Let f : E → D be the isomorphism involved. Let g : D → E be the
functional inverse of f , that is, g(t) = x if and only if f(x) = t. Define
μ̂ = μ ◦ f−1; then μ̂ is a measure on D with total mass μ̂(D) = μ(E) = b.
Put B = [0, b), B = BB and λ the Lebesgue measure on B.
Define c(t) = μ̂[0, t] for t in D. Define a(u) by 5.13 for u in B. Note that
a : B → D is measurable and that μ̂ = λ ◦ a−1. Define h(u) = g ◦ a(u) for u
in B. Observe that λ ◦ h−1 = λ ◦ a−1 ◦ g−1 = μ as needed.

5.16 Continuation: Σ-finite case. Let (E, E) be isomorphic to (D, BD) where
D = [0, 1]. Let μ be Σ-finite on (E, E), say μ =

∑
μn with each μn finite.

Since the case of finite μ is already covered, we assume that b = μ(E) = +∞.
Let B = [0, b) = R+, B = B(R+), and λ the Lebesgue measure on R+. Let
f : E → D and g : D → E as before.
Let Dn = 2n + D = [2n, 2n + 1], n = 0, 1, 2, . . .; note that D0, D1, . . . are
disjoint. Define fn : E → Dn by setting fn(x) = 2n + f(x) and let gn :
Dn → E be the functional inverse of fn, that is, gn(t) = g(t − 2n). Now,
μ̂n = μn ◦ f−1

n is a measure on Dn. Define

μ̂(C) =
∞∑

0

μ̂n(C ∩ Dn), C ∈ B(R+).

This defines a measure μ̂ on (R+, B(R+)) such that c(t) = μ̂[0, t] < ∞ for
every t in R+, as in Exercise 5.14. Let a be defined as in 5.13, and observe
that μ̂ = λ ◦ a−1. Also observe that, by the way a is defined, a(u) belongs to
the set

⋃
n Dn for each u. Finally, put

h(u) = gn ◦ a(u) if a(u) ∈ Dn,

and show that μ = λ ◦ h−1 as claimed.

5.17 Absolute continuity for atomic measures. Let ν be a Σ-finite purely
atomic measure on some measurable space (E, E) such that the singletons
{x} belong to E for each x in E. Let D be the collection of all atoms, and
recall that D is countable. Let μ(A) be the number of points in A∩D. Then,
ν is absolutely continuous with respect to μ. Find the density p = dν/dμ.

5.18 Radon-Nikodym derivatives. Let μ be a measure on (R+, B(R+)) such
that c(t) = μ[0, t] is finite for every t in R+. If μ is absolutely continuous with
respect to the Lebesgue measure λ on R+, then the cumulative distribution
function c is differentiable at λ-almost every t in R+ and

p(t) =
μ(dt)
λ(dt)

=
d

dt
c(t) for λ−almost every t.



Sec. 5 Transforms and Indefinite Integrals 35

5.19 Radon-Nikodym and σ-finiteness. The condition that μ be σ-finite can-
not be removed in general. Let ν be the Lebesgue measure on E = [0, 1],
E = B(E), and let μ(A) be 0 or +∞ according as ν(A) is 0 or strictly posi-
tive, A ∈ E. Then, μ is Σ-finite, and ν is absolutely continuous with respect
to μ. Show that the conclusion of Theorem 5.11 fails in this case.

5.20 On Σ-finiteness. Let μ be a Σ-finite measure on an arbitrary measurable
space (E, E), say with the decomposition μ =

∑
μn, where μn(E) < ∞ for

each n. Define ν(A) =
∑

n μn(A)/2nμn(E), A ∈ E. Show that ν is a finite
measure, and μ is absolutely continuous with respect to ν. Thus, there exists
p ∈ E+ such that

μ(dx) = ν(dx) p(x) , x ∈ E.

If μ is σ-finite, show that p is real-valued ν-almost everywhere. Show that, in
the converse direction, if μ is absolutely continuous with respect to a finite
measure ν, then μ is Σ-finite.

5.21 Singularity. Let μ and ν be measures on some measurable space (E, E).
Then, ν is said to be singular with respect to μ if there exists a set D in E

such that
μ(D) = 0 and ν(E \ D) = 0.

The notion is the opposite of absolute continuity. Show that, if ν is purely
atomic and μ is diffuse then ν is singular with respect to μ. This does not
exhaust the possibilities, however, as the famous example next illustrates.

5.22 Cantor set, Cantor measure. Start with the interval E = [0, 1]. Delete
the set D0,1 = (1

3 , 2
3 ) which forms the middle third of E; this leaves two closed

intervals. Delete the middle thirds of those, that is, delete D1,1 = (1
9 , 2

9 ) and
D1,2 = (7

9 , 8
9 ); there remain four closed intervals. Delete the middle thirds

of those four intervals, and continue in this fashion. At the end, the deleted
intervals form the open set

D =
∞⋃

i=0

2i⋃

j=1

Di,j ,

and the set of points that remain is

C = E \ D.

The closed set C is called the Cantor set.
Next we construct a continuous function c : E → [0, 1] that remains

constant over each interval Di,j and increases (only) on C. Define c(t) = 1
2

for t in D0,1; let c(t) = 1
4 for t in D1,1 and c(t) = 3

4 for t in D1,2; let
c(t) = 1

8 , 3
8 , 5

8 , 7
8 according as t is in D2,1, D2,2, D2,3, D2,4; and so on. This

defines a uniformly continuous increasing function from D into [0, 1]. Since D
is dense in E, we may extend c onto E by continuity. The resulting function
c : E → [0, 1] is called the Cantor function.
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a) Show that Leb(D) = 1, Leb(C) = 0.
b) Let ν be the measure on E corresponding to the (cumulative dis-

tribution) function c, that is, ν = λ ◦ a−1 where λ is the Lebesgue measure
on [0, 1) and a : [0, 1) → E is the inverse of c as in 5.13. We call ν the Cantor
measure. Show that ν(C) = 1 and ν(D) = 0. Conclude that ν is a diffuse
measure on E and that ν is singular with respect to the Lebesgue measure
on E.

c) Show that the range of a is C \ C0 where C0 consists of the point
1 and the countable collection of points that are the left-end-points of the
intervals Di,j . Thus, a is a one-to-one mapping from [0, 1) onto C \ C0, and
it follows that C \ C0 has the power of the continuum. Thus, the Cantor set
has the power of the continuum, even though its Lebesgue measure is 0.

d) The Cantor set is everywhere dense in itself, that is, for every t in
C there exists (tn) ⊂ C \{t} such that t = lim tn. Incidentally, a closed set
that is everywhere dense in itself is said to be perfect.

5.23 Lebesgue-Stieltjes integrals. Let c be an increasing right-continuous func-
tion from R+ into R+. Let μ be the measure on R+ that has c as its cumulative
distribution function (see Exercise 5.14). For each positive Borel function f
on R+, define ˆ

R+

f(t) dc(t) =
ˆ

R+

μ(dt) f(t).

The left side is called the Lebesgue-Stieltjes integral of f with respect to c.
Note that, with the notation of 5.14,

ˆ
R+

μ(dt)f(t) =
ˆ b

0

duf(a(u)).

Replacing f by f1A one obtains the same integral over the interval A.
Extensions to arbitrary Borel functions f on R+ are as usual for μf , namely,
by using the decomposition f = f+ − f−. Extension from the space R+ onto
R is obvious. Finally, extensions to functions c that can be decomposed as
c = c1 − c2 with both c1 and c2 increasing and right-continuous (see the next
exercise) can be done by setting

ˆ
R

f(t) dc(t) =
ˆ

R

f(t) dc1(t) −
ˆ

R

f(t) dc2(t)

for those f for which the integrals on the right make sense and are not both
+∞ or both −∞.

5.24 Functions of bounded variation. Let f be a function from R+ into R.
Think of f(t) as the position, at time t, of an insect moving on the line R. We
are interested in the total amount of traveling done during a finite interval
(s, t]. Here is the precise version.
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A subdivision of [s, t] is a finite collection A of disjoint intervals of the
form (, ] whose union is (s, t]. We define

Vf (s, t) = sup
A

∑

(u,v]∈A

|f(v) − f(u)|

where the supremum is over all subdivisions A of [s, t]. The number Vf (s, t)
is called the total variation of f on (s, t]. The function f is said to be of
bounded variation on [s, t] if Vf (s, t) < ∞.

Show the following:

a) If f is increasing on [s, t], then Vf (s, t) = f(t) − f(s).
b) If f is differentiable and its derivative is bounded by b on [s, t], then

Vf (s, t) ≤ (t − s) · b.
c) Vf (s, t) + Vf (t, u) = Vf (s, u) for s < t < u.
d) Vf+g(s, t) ≤ Vf (s, t) + Vg(s, t). Thus, if f and g are of bounded

variation on [s, t], then so are f + g and f − g.
e) The function f is of bounded variation on [s, t] if and only if f =

g − h for some real-valued positive functions g and h that are increasing on
[s, t].

Hint: To show the necessity, define g(r) and h(r) for r in (s, t] by

2g(r) = Vf (s, r) + f(r) + f(s), 2h(r) = Vf (s, r) − f(r) + f(s)

and show that g and h are increasing and f = g − h.
The class of functions f for which Lebesgue-Stieltjes integrals

´
g df are

defined is the class of f that are of bounded variation over bounded intervals.

6 Kernels and Product Spaces

Let (E, E) and (F, F) be measurable spaces. Let K be a mapping from
E×F into R̄+. Then, K is called a transition kernel from (E, E) into (F, F) if

6.1 a) the mapping x → K(x, B) is E-measurable for every set B in
F, and

b) the mapping B → K(x, B) is a measure on (F, F) for every x
in E.

For example, if ν is a finite measure on (F, F), and k is a positive function
on E × F that is measurable with respect to the product σ-algebra E ⊗ F,
then it will be seen shortly that

K(x, B) =
ˆ

B

ν(dy) k(x, y) , x ∈ E, B ∈ F ,6.2
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defines a transition kernel from (E, E) into (F, F). In the further special case
where E = {1, . . . , m} and F = {1, . . . , n} with their discrete σ-algebras, the
transition kernel K is specified by the numbers K(x, {y}) and can be regarded
as an m by n matrix of positive numbers. This special case will inform the
choice of notations like Kf and μK below (recall that functions are thought
as generalizations of column vectors and measures as generalizations of row
vectors).

Measure-kernel-function

6.3 Theorem. Let K be a transition kernel from (E, E) into (F, F).
Then,

Kf(x) =
ˆ

F

K(x, dy) f(y) , x ∈ E,

defines a function Kf that is in E+ for every function f in F+;

μK(B) =
ˆ

E

μ(dx)K(x, B) , B ∈ F,

defines a measure μK on (F, F) for each measure μ on (E, E); and

(μK)f = μ(Kf) =
ˆ

E

μ(dx)
ˆ

F

K(x, dy) f(y)

for every measure μ on (E, E) and function f in F+.

Proof. a) Let f ∈ F+. Then Kf is a well-defined positive function on
E, since the number Kf(x) is the integral of f with respect to the measure
B → K(x, B). We show that Kf is E-measurable in two steps: First, if f is
simple, say f =

∑n
1 bi1Bi , then Kf(x) =

∑
biK(x, Bi), which shows that Kf

is E-measurable since it is a linear combination of the E-measurable functions
x → K(x, Bi), i = 1, . . . n. Second, if f in F+ is not simple, we choose simple
fn in F+ increasing to f ; then Kf(x) = limn Kfn(x) for each x by the
monotone convergence theorem for the measure B → K(x, B); and, hence
Kf is E-measurable since it is the limit of E-measurable functions Kfn.

b) We prove the remaining two claims together. Fix a measure μ on
(E, E). Define L : F+ → R̄+ by setting

L(f) = μ(Kf).

If f = 0 then L(f) = 0. If f and g are in F+, and a and b in R+, then

L(af + bg) = μ(K(af + bg)) = μ(aKf + bKg)
= aμ(Kf) + bμ(Kg) = aL(f) + bL(g),

where the second equality is justified by the linearity of the integration with
respect to the measure B → K(x, B) for each x, and the third equality by
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the linearity of the integration with respect to μ. Finally, if (fn) ⊂ F+ and
fn ↗ f , then Kfn(x) ↗ Kf(x) by the monotone convergence theorem for
B → K(x, B), and

L(fn) = μ(Kfn) ↗ μ(Kf) = L(f)

by the monotone convergence theorem for μ. Hence, by Theorem 4.21, there
exists a measure ν on (F, F) such that L(f) = νf for every f in F+. Taking
f = 1B, we see that ν(B) = μK(B) for every set B in F, that is, ν = μK. So,
μK is a measure on (F, F), and (μK)f = νf = L(f) = μ(Kf) as claimed.

6.4 Remark. To specify a kernel K from (E, E) into (F, F) it is more
than enough to specify Kf for every f in F+. Conversely, as an extension of
Theorem 4.21, it is easy to see that a mapping f → Kf from F+ into E+

specifies a transition kernel K if and only if

a) K0 = 0,
b) K(af + bg) = aKf + bKg for f and g in F+ and a and b in R+,
c) Kfn ↗ Kf for every sequence (fn) in F+ increasing to f .

Obviously, then, K(x, B) = K1B(x).

Products of kernels, Markov kernels

Let K be a transition kernel from (E, E) into (F, F) and let L be a tran-
sition kernel from (F, F) into (G, G). Then, their product is the transition
kernel KL from (E, E) into (G, G) defined by

(KL)f = K(Lf), f ∈ G+.6.5

Remark 6.4 above can be used to show that KL is indeed a kernel. Obviously,

KL(x, B) =
ˆ

F

K(x, dy) L(y, B) , x ∈ E, B ∈ G.

A transition kernel from (E, E) into (E, E) is called simply a transition
kernel on (E, E). Such a kernel K is called a Markov kernel on (E, E) if
K(x, E) = 1 for every x, and a sub-Markov kernel if K(x, E) ≤ 1 for every x.

If K is a transition kernel on (E, E), its powers are the kernels on (E, E)
defined recursively by

K0 = I, K1 = K, K2 = KK, K3 = KK2, . . . ,6.6

where I is the identity kernel on (E, E):

I(x, A) = δx(A) = 1A(x), x ∈ E, A ∈ E.6.7

Note that If = f , μI = μ, μIf = μf , IK = KI = K always. If K is Markov,
so is Kn for every integer n ≥ 0.



40 Measure and Integration Chap. 1

Kernels finite and bounded

Let K be a transition kernel from (E, E) into (F, F). In analogy with
measures, K is said to be finite if K(x, F ) < ∞ for each x, and σ-finite if
B → K(x, B) is σ-finite for each x. It is said to be bounded if x → K(x, F )
is bounded, and σ-bounded if there exists a measurable partition (Fn) of F
such that x → K(x, Fn) is bounded for each n. It is said to be Σ-finite if
K =

∑∞
1 Kn for some sequence of finite kernels Kn, and Σ-bounded if the Kn

can be chosen to be bounded. In the very special case where K(x, F ) = 1 for
all x, the kernel is said to be a transition probability kernel. Markov kernels
are transition probability kernels. Some connections between these notions
are put in exercises.

Functions on product spaces

We start by re-stating the content of Exercise 2.22: sections of a measur-
able function are measurable.

6.8 Proposition. Let f ∈ E ⊗ F. Then, x → f(x, y) is in E for each y
in F , and y → f(x, y) is in F for each x in E.

Unfortunately, the converse is not true: it is possible that the conclusions
hold, and yet f is not E⊗F-measurable. One needs something stronger than
measurability in at least one of the variables to conclude that f is in E ⊗ F.
See Exercise 6.28 for such an example.

The following is a generalization of the operation f → Kf of Theorem
6.3 to functions f defined on the product space.

6.9 Proposition. Let K be a Σ-finite kernel from (E, E) into (F, F).
Then, for every positive function f in E ⊗ F,

Tf(x) =
ˆ

F

K(x, dy) f(x, y), x ∈ E,6.10

defines a function Tf in E+. Moreover, the transformation T : (E ⊗ F)+ →
E+ is linear and continuous under increasing limits, that is,

a) T (af + bg) = aTf + bT g for positive f and g in E ⊗ F, and a and
b in R+,

b) Tfn ↗ Tf for every positive sequence (fn) ⊂ E ⊗ F with fn ↗ f .

Proof. Let f be a positive function in E ⊗ F. Then, for each x in E,
the section fx : y → f(x, y) is a function in F+ by Proposition 6.8, and
Tf(x) is the integral of fx with respect to the measure Kx : B → K(x, B).
Thus, Tf(x) is a well-defined positive number for each x, and the linearity
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property (a) is immediate from the linearity of integration with respect to
Kx for all x, and the continuity property (b) follows from the monotone
convergence theorem for the measures Kx. There remains to show that Tf
is E-measurable.

We show this by a monotone class argument assuming that K is bounded.
Boundedness of K implies that Tf is well-defined by 6.10 and is bounded for
each bounded f in E ⊗ F, and it is checked easily that

M = {f ∈ E ⊗ F : f is positive or bounded, Tf ∈ E}
is a monotone class. Moreover, M includes the indicator of every measurable
rectangle A × B, since

T 1A×B(x) =
ˆ

F

K(x, dy)1A(x)1B(y) = 1A(x)K(x, B)

and the right side defines an E-measurable function. Since the measurable
rectangles generate the σ-algebra E ⊗ F, it follows from the monotone class
theorem 2.19 that M includes all positive (or bounded) f in E ⊗ F as-
suming that K is bounded. See Exercise 6.29 for extending the proof to
Σ-finite K. �

Measures on the product space

The following is the general method for constructing measures on the
product space (E × F, E ⊗ F).

6.11 Theorem. Let μ be a measure on (E, E). Let K be a Σ-finite tran-
sition kernel from (E, E) to (F, F). Then,

πf =
ˆ

E

μ(dx)
ˆ

F

K(x, dy)f(x, y), f ∈ (E ⊗ F)+6.12

defines a measure π on the product space (E × F, E ⊗ F). Moreover, if μ is
σ-finite and K is σ-bounded, then π is σ-finite and is the unique measure on
that product space satisfying

π(A × B) =
ˆ

A

μ(dx)K(x, B), A ∈ E, B ∈ F.6.13

Proof. In the notation of the last proposition, the right side of 6.12 is
μ(Tf), the integral of Tf with respect to μ. To see that it defines a measure,
we use Theorem 4.21. Define L(f) = μ(Tf) for f in E ⊗ F positive. Then,
L(0) = 0 obviously, L is linear since T is linear and integration is linear, and
L is continuous under increasing limits by the same property for T and the
monotone convergence theorem for μ. Hence, there is a unique measure, call
it π, such that L(f) is the integral of f with respect to π for every positive
f in E ⊗ F. This proves the first claim.
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To prove the second, start by observing that π satisfies 6.13. Supposing
that μ is σ-finite and K is σ-bounded, there remains to show that π is σ-
finite and is the only measure satisfying 6.13. To that end, let π̂ be another
measure satisfying 6.13. Since μ is σ-finite, there is a measurable partition
(Em) of E such that μ(Em) < ∞ for each m. Since K is σ-bounded, there
is a measurable partition (Fn) of F such that x → K(x, Fn) is bounded for
each n. Note that the measurable rectangles Em × Fn form a partition of
E × F and that, by the formula 6.13 for π and π̂,

π(Em × Fn) = π̂(Em × Fn) < ∞

for each m and n. Thus, the measures π and π̂ are σ-finite, they agree on
the p-system of measurable rectangles generating E ⊗ F, and that p-system
contains a partition of E × F over which π and π̂ are finite. It follows from
Exercise 3.18 that π = π̂. �

Product measures and Fubini

In the preceding theorem, if the kernel K has the special form K(x, B) =
ν(B) for some Σ-finite measure ν on (F, F), then the measure π is called the
product of μ and ν and is denoted by μ× ν. The following theorem, generally
referred to as Fubini’s, is concerned with integration with respect to π = μ×ν.
Its main point is the formula 6.15: under reasonable conditions, in repeated
integration, one can change the order of integration with impunity.

6.14 Theorem. Let μ and ν be Σ-finite measures on (E, E) and (F, F),
respectively.

a) There exists a unique Σ-finite measure π on (E × F, E ⊗ F) such
that, for every positive f in E ⊗ F,

πf =
ˆ

E

μ(dx)
ˆ

F

ν(dy) f(x, y) =
ˆ

F

ν(dy)
ˆ

E

μ(dx) f(x, y).6.15

b) If f ∈ E ⊗ F and is π-integrable, then y → f(x, y) is ν-integrable
for μ-almost every x, and x → f(x, y) is μ-integrable for ν-almost every y,
and 6.15 holds again.

6.16 Remark. a) Since we have more than one measure, for notions like
integrability and negligibility, one needs to point out the measure associated.
So, π-integrable means “integrable with respect to the measure π”.

b) It is clear from 6.15 that

π(A × B) = μ(A)ν(B), A ∈ E, B ∈ F,6.17

and for this reason we call π the product of μ and ν and we use the notation
π = μ × ν.
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c) If both μ and ν are σ-finite, then Theorem 6.11 applies with
K(x, B) = ν(B) and implies that π is the only measure satisfying 6.17. Other-
wise, it is possible that there are measures π̂ satisfying π̂(A×B) = μ(A)ν(B)
for all A in E and B in F but with π̂f differing from πf for some positive f
in E ⊗ F.

Proof. a) Let πf be defined by the first integral in 6.15. Taking
K(x, B) = ν(B) in Theorem 6.11 shows that this defines a measure π
on the product space. Since μ =

∑
μi and ν =

∑
νj for some finite measures

μi and νj , we have

πf =
∑

i

∑

j

ˆ
E

μi(dx)
ˆ

F

νj(dy) f(x, y) =
∑

i,j

(μi × νj)f

by Exercise 4.27 and the monotone convergence theorem. Thus, π =
∑

i,j μi×
νj and, arranging the pairs (i, j) into a sequence, we see that π =

∑
πn for

some sequence of finite measures πn.
b) To prove the equality of the integrals in 6.15, we start by observing

that the second integral is in fact an integral over F×E: defining f̂ : F×E →
R̄+ by f̂(y, x) = f(x, y), the second integral is

π̂f̂ =
ˆ

F

ν(dy)
ˆ

E

μ(dx) f̂(y, x) =
∑

j

∑

i

ˆ
F

νj(dy)
ˆ

E

μi(dx) f̂ (y, x)

=
∑

i,j

(νj × μi) f̂ .

Hence, to prove that πf = π̂f̂ , it is sufficient to show that (μi × νj)f =
(νj × μi)f̂ for each pair of i and j. Fixing i and j, this amounts to showing
that

πf = (μ × ν)f = (ν × μ)f̂ = π̂f̂

under the assumption that μ and ν are both finite.
c) Assume μ and ν finite. Let h : E × F → F × E be the transposition

mapping (x, y) → (y, x). It is obviously measurable relative to E ⊗ F and
F ⊗ E. For sets A in E and B in F,

π ◦ h−1(B × A) = π(A × B) = μ(A)ν(B) = π̂(B × A),

which implies via Proposition 3.7 that π̂ = π◦h−1. Hence, π̂f̂ = (π◦h−1)f̂ =
π(f̂ ◦ h) = πf since f̂ ◦ h(x, y) = f̂(y, x) = f(x, y).

d) Let f be π-integrable. Then 6.15 holds for f+ and f− separately,
and πf = πf+ − πf− with both terms finite. Hence, 6.15 holds for f . As
to the integrability of sections, we observe that the integrability of f implies
that x → ´

F
ν(dy) f(x, y) is real-valued for μ-almost every x, which in turn

is equivalent to saying that y → f(x, y) is ν-integrable for μ-almost every x.
By symmetry, the finiteness for the second integral implies that x → f(x, y)
is μ-integrable for ν-almost every y.
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Finite products

The concepts and results above extend easily to products of finitely many
spaces. Let (E1, E1), . . . ,(En, En) be measurable spaces. Their product is de-
noted by any of the following three:

n⊗

i=1

(Ei, Ei) = (
n×

i=1
Ei,

n⊗

i=1

Ei) = (E1 × · · · × En, E1 ⊗ · · · ⊗ En),6.18

where E1 × · · · × En is the set of all n-tuples (x1, . . . , xn) with xi in Ei for
i = 1, . . . , n, and E1 ⊗ · · · ⊗ En is the σ-algebra generated by the measurable
rectangles A1 × · · · × An with Ai in Ei, i = 1, . . . n.

Let μ1, . . . , μn be Σ-finite measures on (E1, E1), . . . , (En, En) respectively.
Then, their product π = μ1×· · ·×μn is the measure defined on the measurable
product space by analogy with Theorem 6.14: for positive functions f in

⊗
Ei,

πf =
ˆ

E1

μ1(dx1)
ˆ

E2

μ2(dx2) · · ·
ˆ

En

μn(dxn) f(x1, . . . , xn).6.19

It is usual to denote the resulting measure space
n⊗

i=1

(Ei, Ei, μi).6.20

Fubini’s theorem is generalized to this space and shows that, if f is positive
or π-integrable, the integrals on the right side of 6.19 can be performed in
any order desired.

More general measures can be defined on the product space 6.18 with the
help of kernels. We illustrate the technique for n = 3: Let μ1 be a measure
on (E1, E1), let K2 be a transition kernel from (E1, E1) into (E2, E2), and let
K3 be a transition kernel from (E1 ×E2, E1 ⊗E2) into (E3, E3). Consider the
formula

πf =
ˆ

E1

μ1(dx1)
ˆ

E2

K2(x1, dx2)
ˆ

E3

K3((x1, x2), dx3) f(x1, x2, x3)6.21

for positive f in E1 ⊗ E2 ⊗ E3. Assuming that K2 and K3 are Σ-finite, re-
peated applications of Theorem 6.11 show that this defines a measure π on
(E1 × E2 × E3, E1 ⊗ E2 ⊗ E3).

In situations like this, we shall omit as many parentheses as we can and
use a notation analogous to 5.8. For instance, instead of 6.21, we write

π(dx1, dx2, dx3) = μ1(dx1)K2(x1, dx2)K3(x1, x2, dx3).6.22

The notation

π = μ1 × K2 × K36.23

is also used for the same thing and is in accord with the notation for product
measures.
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Infinite products

Let T be an arbitrary set, countable or uncountable. It will play the role
of an index set; we think of it as the time set. For each t in T , let (Et, Et)
be a measurable space. Let xt be a point in Et for each t in T . Then we
write (xt)t∈T for the resulting collection and think of it as a function on T ;
this is especially appropriate when (Et, Et) = (E, E) for all t, because, then,
x = (xt)t∈T can be regarded as the mapping t → xt from T into E. The set
F of all such functions x = (xt)t∈T is called the product space defined by
{Et : t ∈ T }; and the notation ×t∈T Et is used for F .

A rectangle in F is a subset of the form

×
t∈T

At = {x ∈ F : xt ∈ At for each t in T }6.24

where At differs from Et for only a finite number of t. It is said to be measur-
able if At ∈ Et for every t (for which At differs from Et). The σ-algebra on
F generated by the collection of all measurable rectangles is called the prod-
uct σ-algebra and is denoted by

⊗
t∈T Et. The resulting measurable space is

denoted variously by

⊗

t∈T

(Et, Et) = (×
t∈T

Et,
⊗

t∈T

Et).6.25

In the special case where (Et, Et) = (E, E) for all t, the following notations
are also in use for the same:

(E, E)T = (ET , ET )6.26

Although this is the logical point to describe the construction of mea-
sures on the product space, we shall delay it until the end of Chapter IV, at
which point the steps involved should look intuitive. For the present, we list
the following proposition which allows an arbitrary collection of measurable
functions to be thought as one measurable function. It is a many-dimensional
generalization of the result in Exercise 2.21.

6.27 Proposition. Let (Ω, H) be a measurable space. Let (F, F) =
⊗t∈T (Et, Et). For each t in T , let ft be a mapping from Ω into Et. For each
ω in Ω, define f(ω) to be the point (ft(ω))t∈T in F . Then, the mapping
f : Ω → F is measurable relative to H and F if and only if ft is measurable
relative to H and Et for every t in T .

Proof. Suppose that f is measurable relative to H and F. Then, {f ∈
B} ∈ H for every B in F. In particular, taking B to be the rectangle in
6.24 with At = Et for all t except t = s for some fixed s, we see that
{f ∈ B} = {fs ∈ As} ∈ H for As in Es. Thus, fs is measurable relative to H

and Es for every s fixed.
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Suppose that each ft is measurable relative to H and Et. If B is a
measurable rectangle in F , then {f ∈ B} is the intersection of finitely many
sets of the form {ft ∈ At} with At in Et, and hence, {f ∈ B} ∈ H. Since mea-
surable rectangles generate the product σ-algebra F, this implies via Propo-
sition 2.3 that f is measurable relative to H and F. �

Exercises

6.28 Measurability in the product space. Suppose that E = R and E = B(R),
and let (F, F) be arbitrary. Let f : E × F → R̄ be such that y → f(x, y) is
F-measurable for each x in E and that x → f(x, y) is right-continuous (or
left-continuous) for each y in F . Show that, then, f is in E ⊗ F.

6.29 Image measures and kernels. Let (E, E) and (F, F) be measurable
spaces. Let h : E → F be measurable relative to E and F. Define

K(x, B) = 1B ◦ h(x), x ∈ E, B ∈ F.

Show that K is a transition probability kernel. Show that, in the measure-
kernel-function notation of Theorem 6.3,

Kf = f ◦ h, μK = μ ◦ h−1, μKf = μ(f ◦ h).

6.30 Transition densities. Let ν be a σ-finite measure on (F, F), and let k be
a positive function in E⊗F. Define K by 6.2, that is, in differential notation,

K(x, dy) = ν(dy) k(x, y).

Show that K is a transition kernel. Then, k is called the transition density
function of K with respect to ν.

6.31 Finite spaces. Let E = {1, . . . , m}, F = {1, . . . , n}, G = {1, . . . , p} with
their discrete σ-algebras. Functions on such spaces can be regarded as column
vectors, measures as row vectors, and kernels as matrices. Show that, with
these interpretations, the notations Kf , μK, μKf , KL used in Theorem
6.3 and Definition 6.5 are in accord with the usual notations used in linear
algebra.

6.32 Finite and bounded kernels. Let K be a finite transition kernel from
(E, E) into (F, F). Define

h(x) =
{

K(x, F ) if K(x, F ) > 0,
1 if K(x, F ) = 0,

and define H by solving

K(x, B) = h(x)H(x, B).

Show that h ∈ E+ and that H is a bounded kernel.
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6.33 Proof of Proposition 6.9. Complete the proof. Hint: Use the preceding
exercise to extend the proof from the bounded kernels to finite ones, and
finally extend it to Σ-finite kernels.

6.34 Fubini and Σ-finiteness. In general, in order for 6.15 to hold, it is nec-
essary that μ and ν be Σ-finite. For instance, let E = F = [0, 1] with their
Borel σ-algebras, and let μ be the Lebesgue measure on E, and ν the count-
ing measure on F (that is, ν(A) is the number of points in A). Then, for
f(x, y) = 1 if x = y and 0 otherwise, the first integral in 6.15 is equal to 1,
but the second is equal to 0.

Complements

6.35 Product and Borel σ-algebras. For each t in some index set T , let Et

be a topological space and let Et = B(Et), the Borel σ-algebra on Et. Let
(F, F) =

⊗
T (Et, Et) be the product measurable space. The product space

F can be given the product topology, and let B(F ) be the Borel σ-algebra
corresponding to that topology on F .

In general, B(F ) ⊃ F. If T is countable and if every Et has a countable
open base, then F = B(F ). In particular, R

n and R
∞ = R

N are topological
spaces and their Borel σ-algebras coincide with the appropriate product σ-
algebras; more precisely

(BR)T = B(RT )

for T = {1, 2, . . . , n} for every integer n ≥ 1 and also for T = N
∗ = {1, 2, . . .}.

This equality fails when T is uncountable, B(RT ) being the larger then.

6.36 Standard measurable spaces. Let (E1, E1), (E2, E2), . . . be standard
measurable spaces, and let (F, F) be their product. Then, (F, F) is also
standard.
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