
Chapter 2

Modeling Feasibility and Dynamics

That man is prudent who neither hopes nor fears anything from the
uncertain events of the future.
– Anatole France

As was illustrated in our News Mix example in Chap. 1, it is not straight-
forward to pass from a deterministic to a stochastic formulation. We need
to rethink the whole model, very often by changing both variables and con-
straints. Although many reformulations may make sense mathematically, they
may in fact be rather peculiar in terms of interpretations. The purpose of this
section is to discuss some of these issues, partly in terms of examples. The goal
is not to declare some formulations generally superior to others, but rather
to help you think carefully about how you rewrite your problems in light of
uncertainty.

2.1 The Knapsack Problem

As an example, let us look at the knapsack problem. The problem is simple
to write down:

maximize

n∑

i=1

cixi

such that

⎧
⎨

⎩

∑n
i=1 wixi ≤ b,

xi ∈ {0, 1} , i = 1, . . . , n,

(2.1)

where

ci is the value of item i
wi its weight and
b is the capacity of the knapsack

A.J. King and S.W. Wallace, Modeling with Stochastic Programming,
Springer Series in ORFE, DOI 10.1007/978-0-387-87817-1 2,
© Springer Science+Business Media New York 2012

33

34 2 Modeling Feasibility and Dynamics

The goal is to fill the knapsack with as many valuable items as possible, but
without exceeding the weight limit. Of course, wi might also be viewed as
“size,” in which case the volume of the knapsack is the capacity in question.

Assume now that the weights are uncertain, so that, in fact, we are fac-
ing a vector of random variables [w1, . . . ,wn]. How are we to interpret this
situation? The first question to be asked is always:

What is the inherent stage structure, and how many stages are there?

A clear clue to the stage structure is when will we learn the weight of an
item? Obvious suggestions are:

1. We learn the weight of each item just before we decide whether or not to
put it into the knapsack.

2. We learn the weight of each item just after putting it into the knapsack.
3. We learn the weight of the full set of items just after we decide what items

to put into the knapsack.

The first two interpretations can lead to both inherently two-stage problems
and inherently multistage problems with as many stages as there are items. The
last interpretation will normally lead to an inherently two-stage formulation,
in that we first decide which items to put in and only thereafter observe
if they in fact fit. An additional aspect of stage structure is how potential
infeasibilities are handled. After all, even though weights are uncertain, the
capacity of the knapsack is fixed.

2.1.1 Feasibility in the Inherently Two-Stage Knapsack Problem

Let us list some potential ways of handling these stage-structure questions. For
the moment we limit our discussion to the inherently two-stage cases where
all items are picked (or listed in a specific order) before we learn anything
about their weights.

1. We may require that the chosen set of items must always fit in the knapsack.
2. We may list the items in a certain order and pick them up until we come

to one that does not fit. Then we stop. (So the decision is the list.)
3. We may do as described above, but if a later item fits (as it is light enough),

then we take it.
4. We may list the items and keep adding items until we have added one that

does not fit. We then pay a penalty for the overweight.
5. We may pick a set of items such that if the items do not fit in the knap-

sack after we have learned their weights, we pay a penalty for the total
overweight.

6. We may pick a set of items of maximal value so that the probability that
the items will not fit in the knapsack is below a certain level.

2.1 The Knapsack Problem 35

There are certainly more variations, but let us stop here for now. You
should think about what these cases imply before reading on. One way to
structure the analysis is to ask a central question: When do we learn the
weights of the items?

In Case 2 above, we list the items and stop putting them into the knapsack
when we find one that does not fit. This implies that we learn the weight of an
item before it is actually put into the knapsack. Case 3 is a variant of Case 2
since it amounts to stopping when an item does not fit and then continuing
down the list until we find ones that do fit. Case 4 implies that we need to
actually put the item into the knapsack before observing its weight. So the
second and fourth cases represent quite different interpretations of when we
learn the weights. In Case 5 we learn the weights after we have decided on the
selection of items.

Note that putting items into the knapsack is a very passive action in these
cases since we have already decided on the order in which items will be picked
up (for Case 5 we simply pick them all up). If we want the order to depend
on the actual observed sizes, then we end up with an inherently multistage
formulation, which we will discuss a bit later.

Cases 2, 3, and 4 result in inherently two-stage models since we define the
lists before we start putting items into the knapsack. Stage 1 is to find the
list of items, whereas Stage 2 is to passively put them into the knapsack until
the stopping rules are satisfied. But to set up the lists, you must anticipate
the different situations that can occur. Hence the models will be multistage
with an inherently two-stage structure.

Case 5 is also an inherently two-stage formulation, leading to an inherently
two-stage model. The model will have only two actual stages as there is no
question of ordering the items.

Case 6 results in a chance-constrained formulation that we will discuss
shortly.

Case 1, requiring the chosen set of items to always fit in the knapsack,
corresponds to a worst-case analysis. Since we need to find a set of items that
always fit in the knapsack, we can replace the random variables wi by their
maximal values. Of course, this formulation makes sense only if there is an
upper bound on the weights.

The worst-case analysis corresponds to a very “pessimistic” view of the
world: we can never accept overweight. Whether or not this is reasonable is
a modeling question. We must look at the situation in which the model is
being used and ask ourselves if it is really the case that we cannot handle an
overweight item.

If we plan to put an item into the knapsack, is there nothing we can do
to get it to “fit”? If the knapsack is a truck, and the items are the loads we
plan to send, could we not send some items with the next truck? Maybe we
could put a package in the passenger seat? Maybe we could send it by mail?

36 2 Modeling Feasibility and Dynamics

Requiring feasibility in this way is extremely strong, and we must be sure we
really wish to imply a worst-case situation.

Finally, of course, our estimates of the maximal weights may be incorrect.
This may lead to an actual situation with overweight, even if the model said
it would not happen! Then what will we do? Will the world end? Will the
company go broke for sure? Probably not. But if we can handle overweight
when it really happens, then why did we model the problem as if it could not
be allowed to happen under any circumstances? You should really be able to
answer these questions if you wish to use worst-case analysis.

2.1.2 Two-Stage Models

So some of the models, while being inherently two-stage, are multistage in
nature. Those that are not are the worst-case analysis (which is always
particularly risky to use if the worst case is not well defined) and the last
two cases—the one with a penalty for total overweight and the one looking at
the probability of overweight. Let us first look at a penalty case.

Let S be the set of scenarios describing the uncertainty in an appropriate
way. Then we obtain

max

n∑

i=1

cixi − d
∑

s∈S
pszs

such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑n
i=1 w

s
i xi − zs ≤ b, ∀s ∈ S,

zs ≥ 0, ∀s ∈ S,

xi ∈ {0, 1}, 1 = 1, . . . , n,

(2.2)

where d is the unit penalty for overweight. A more general penalty could be
a function f(zs) describing a nonlinear dependence on the total overweight.
This model might be good or bad, depending on how well it describes our case.
It has, however, a clear interpretation, as it has a clear information structure
(we learn about the weights after having decided which items to use), it has
a clear description of the goal (to maximize the value of the items selected
minus the expected penalty for overweight), and it states what happens if
we get it wrong—we pay a penalty. The penalty may mean exactly that, a
financial penalty for being wrong. But it may also mean a cost for sending
an item with a later truck, the extra cost of using a competitor, or possibly a
rejection cost.

This formulation can be viewed as replacing a constraint with a penalty
since it can be written as

2.1 The Knapsack Problem 37

max
xi∈{0,1}

n∑

i=1

cixi − d
∑

s∈S
ps

[
n∑

i=1

ws
i xi − b

]

+

, (2.3)

where [x]+ is equal to x if x ≥ 0, and zero otherwise. We call this a penalty
formulation.

Case 1 in our listing, the worst-case analysis, can be formulated as ensuring
that each item’s maximal weight wmax will fit into the knapsack:

max
x

n∑

i=1

cixi

such that

⎧
⎨

⎩

∑n
i=1 w

max
i xi ≤ b,

xi ∈ {0, 1}, 1 = 1, . . . , n.

There is not much to say about this one. It is very pessimistic, and the
model is, technically speaking, deterministic. Of course, in some cases, this
is exactly what we need, so the model may be appropriate. Note, however,
as mentioned above, that this is a very sensitive model unless wmax is well
understood. Therefore, although mathematically well defined, this model may
be pessimistic and risky at the same time. So in general, this model is hard to
defend. On the one hand, we claim that the items must fit in the knapsack;
on the other hand, we risk that they do not unless we know wmax precisely.
The average behavior of the solution coming from this model might be bad,
as we do not attempt to control it.

2.1.3 Chance-Constrained Models

Let us pass to Case 6 in our listing, a model that tries to get around the prob-
lem of feasibility by requiring that the items fit in the knapsack with a certain
probability. The standard model in this case within stochastic programming
is a chance-constrained model. It would take the following form:

max
xi∈{0,1}

n∑

i=1

cixi

such that

⎧
⎨

⎩

∑
s∈W (x) p

s ≥ α,

W (x) = {s : ∑n
i=1 w

s
i xi ≤ b},

(2.4)

where α is the required probability of feasibility. This model is clear with
respect to the objective function and how to treat infeasibilities.

Chance-constrained models say nothing about what happens if we have
overweight. In a sense, a chance-constrained problem is a slight relaxation of
a worst-case analysis. In the truck example, this model means that we plan
which items to put on the truck and we require that our plans work out α

38 2 Modeling Feasibility and Dynamics

percent of the time. What we do when the items do not fit is not clear. Perhaps
we ship them off on another slower channel, and the probability level is in fact
a service level for a quick transfer.

If the monetary cost is reasonably well connected to α, we also have
controlled the costs. But a danger with this formulation is that the costs
associated with lack of feasibility may be connected to the size of the viola-
tion, not just the probability, and a chance-constrained model does not have
any control over this aspect of the solution.

2.1.4 Stochastic Robust Formulations

Chance-constrained problems (particularly with discrete variables) can be
hard to solve. That is especially so for problems more complicated than what
we discuss here. Stochastic robust optimization (discussed in Sect. 1.8.3.1)
offers an alternative. The worst-case analysis discussed above is a type of
robust formulation—we are looking for the most profitable solution that is
always feasible. However, there are more sophisticated formulations with a
trade-off between loss in income and increase in probability of feasibility.
Also in these models we totally disregard what lack of feasibility actually
costs. Let us write the model in a way that is reasonably easy to under-
stand, although this is not the format we would use to solve it. Let there be
N items available, such that item i has a weight coming from a symmetric
distribution over [wi − ŵi, wi + ŵi], and let Γ be an integer between 1 and N .
Let N = {1, 2, . . . , N}. The following formulation will give us the set of items
with maximal value under the constraint that if at most Γ of the random
weights work against us, we still have a feasible solution, i.e., we can still fit
the items in the knapsack, whatever values these weights take. The general
probability of feasibility is also high. Bounds are complicated but are given in
the underlying paper by Bertsimas and Sim [5]:

max
x∈{0,1}

n∑

i=1

cixi

such that

⎧
⎪⎨

⎪⎩

∑n
i=1 wixi + ψ(x,Γ) ≤ b,

ψ(x,Γ) = max
S⊂N ,|S|=Γ

∑

i∈S
ŵixi.

As we increase Γ, we get closer and closer to a worst-case situation. Also
in this model, there is no statement about what actually happens when items
do not fit. As before, that might or might not be a problem.

A major reason these robust models do not control average profits is, of
course, that they do not use probabilities at all, just supports of the random
variables (or, generally, intervals over which we wish to be protected). In its
own right that may be good, but it certainly carries with it potential surprises
when solutions are implemented. The combination of considering neither the
costs of overweight nor the probabilities thereof is not without potential risks.

2.2 Overhaul Project Example 39

Note that the worst-case formulation given earlier and the preceding case
with Γ = N are not the same, as the x variables are not defined in exactly
the same way.

2.1.5 Two Different Multistage Formulations

When making the knapsack problem stochastic, there are two different
multistage settings; one is inherently two-stage, the other inherently mul-
tistage. In one case, we ask for a decision rule of the following type: items
i1, i2, . . . , ik have been added and the weights turned out to be w1, w2, . . . , wk,
so which item should I put in next? This problem is inherently multistage.
This is an extremely difficult problem if you require optimality.

The alternative multistage problem is as follows. Give me the (ordered)
list of items and follow certain rules for stopping. Here we do not change
our minds on the order as we fit them in based on observations, but we
take uncertainty into account when setting up the list. This formulation is
inherently two-stage. A good test for you is to formulate this latter problem
as a decision-tree problem under the assumption that each item has only a
limited number of possible weights. Try it!

2.2 Overhaul Project Example

This example is taken from Anderson et al., Sect. 10.4. Let us first repeat
the problem and the analysis as given in the reference. We have an overhaul
project with five activities, labeled A–E. The example is as given in Table 2.1.
The activity-on-arc network for this little project is given in Fig. 2.1.

Table 2.1: Activity names, expected durations, and immediate predeces-
sors

Immediate Expected duration

Activity Description predecessor (days)

A Overhaul machine I – 7

B Adjust machine I A 3

C Overhaul machine II – 6

D Adjust machine II C 3

E Test system B,D 2

40 2 Modeling Feasibility and Dynamics

1

2

3

4 5
A,7

C,6

B,3

D,3
E,2

Fig. 2.1: Example network for overhaul example; each arc is labeled with
its activity code and duration

The longest path through this network is given by the sequence of activities
A, B, and E with a completion time of 12. This path is called the critical
path as any delay on an activity on this path will delay the whole project.
The partial sequence C–D has a slack of 1, indicating that if either activity
(but not both!) is delayed by 1 day, the project completion will not be delayed.

Suppose that it has become evident that the overhaul project must be
completed within 10 days. With the data presented in Table 2.1, this is not
possible, and the company is willing to invest money to reduce the project
duration. The company may reduce the durations of the activities for a cost.
For each activity, the reduction costs and the maximum possible reductions
are given in Table 2.2.

Table 2.2: Maximum possible reduction and corresponding costs

Maximal Cost

Activity Description reduction per day

A Overhaul machine I 3 100

B Adjust machine I 1 150

C Overhaul machine II 2 200

D Adjust machine II 2 175

E Test system 1 250

Let yA denote the number of days by which we reduce the duration of ac-
tivity A, which will cost 100yA. With variables for the other activities similarly
defined, the following linear program can be used to determine the minimum
cost of reducing the project duration to 10 days, as required. The variable xi
denotes the time at which event i begins. For example, event 4 is the time
when both activities D and B have finished and, hence, E is ready to start.

2.2 Overhaul Project Example 41

min 100yA + 150yB + 200yC + 175yD + 250yE

such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2 ≥ x1 + 7− yA,

x3 ≥ x1 + 6− yC,

x4 ≥ x2 + 3− yB,

x4 ≥ x3 + 3− yD,

x5 ≥ x4 + 2− yE,

x1 = 0,

x5 ≤ 10,

yA ≤ 3,

yB ≤ 1,

yC ≤ 2,

yD ≤ 2,

yE ≤ 1,

x, y ≥ 0.

(2.5)

The minimal investment necessary to complete the project within 10days
is 350 and is obtained by setting yA = 1 and yE = 1 with all other investments
zero. All activities are now on a critical path. This is a typical result from this
type of model. Our investment results in a large number of critical paths, and
the extreme case is what we observed here: all activities sit on critical paths.
The new network is given in Fig. 2.2.

1

2

3

4 5
A,6

C,6

B,3

D,3
E,1

Fig. 2.2: Example network after investments in activity durations; all
paths are critical

2.2.1 Analysis

How are we to interpret this result? At a cost of 350 we have reduced the
project duration to 10, as required, and all activities have become critical.
What does that mean? Does it mean that any delay in any activity will cause
a project delay? The answer depends on the nature of the data presented in
Tables 2.1 and 2.2.

42 2 Modeling Feasibility and Dynamics

Suppose that the activity durations given in Figs. 2.1 (before investments)
and 2.2 (after investments) are not really deterministic. Although many pos-
sibilities exist, let us assume that the given numbers are expected durations
and that the distributions are independent and as indicated in Table 2.3. That
is, suppose that with the exception of activity E, all activity durations will
be their expected values, plus one of three values, {−1, 0, 1}, with all values
being equally likely. Activity E is assumed to have a deterministic duration.

Table 2.3: Probability distribution for activity durations relative to mean

Probability of deviation from expected value

Activity Description −1 0 +1

A Overhaul machine I 1
3

1
3

1
3

B Adjust machine I 1
3

1
3

1
3

C Overhaul machine II 1
3

1
3

1
3

D Adjust machine II 1
3

1
3

1
3

E Test system 0 1 0

Given that activity durations are random variables, the project duration
is also a random variable. Since this is such an easy network, we can calculate
the distribution of the project duration exactly. We begin by calculating the
distribution of the duration of activities A and B together and then do the
same for C and D. Event 4 will then take place when the last of (A and B)
and (C and D) is finished. Finally, we add the duration of E.

Since the duration of A (after investments) is 5, 6, or 7, while that of B
is 2, 3, or 4, activities A and B will have finished after 7, 8, 9, 10, or 11days.
The distribution can be found by examining all possible combinations of the
completion times:

Duration of A 5 5 5 6 6 6 7 7 7

Duration of B 2 3 4 2 3 4 2 3 4

Duration of A and B 7 8 9 8 9 10 9 10 11

Each of these events occurs with probability 1
3 × 1

3 = 1
9 . Hence, the distri-

bution for the duration of A and B is given by

Duration of A and B 7 8 9 10 11

Probability 1
9

2
9

3
9

2
9

1
9

2.2 Overhaul Project Example 43

This is also the duration of C and D. Event 4, which corresponds to the
start of activity E, occurs when all of the first four activities have finished.
Formally, we may state that

Start time for event 4 = max{Duration of A and B, Duration of C and D}

To calculate the distribution of this maximization, we simply look at all 25
combinations of durations of (A and B) and (C and D). The project duration
is simply the start time for event 4, plus the duration of activity E (which
is 1 day). Thus, we obtain the following distribution for the duration of the
project:

Duration of project 8 9 10 11 12

Probability 1
81

8
81

27
81

28
81

17
81

The expected project duration is therefore 10.642, well above the required
duration of 10. In fact, there is a probability of 56% that the project will take
longer than 10. Hence, it seems that our investment of 350 has not brought
the duration down to 10. It has not even brought the expected duration down
to 10.

At this point you should worry about the sequencing of decisions and about
the information that is available as individual decisions are made. Our initial
analysis assumed that all activities ended up with their expected duration
and that all decisions were made initially. That is, our initial analysis focused
exclusively on one scenario that had a probability of 1

81 of occurring.

2.2.2 A Two-Stage Version

In the preceding discussion, we solved a problem where all activities were
assumed to have an average duration in order to find a possible investment.
Thereafter, we checked how this solution/investment would behave in a ran-
dom environment. But when searching for the solution, we did not consider
the uncertainty in the activity durations. As a result, one of the effects was
that we did not even achieve an expected project duration of 10.

Let us now reconsider the investment, this time recognizing the uncertainty
in the activity durations. Suppose that the investment must be determined
before the actual durations can be known. This is inherently two-stage. Let
dsA be the duration of activity A in scenario s, and let the other durations be
defined accordingly. Since the duration of activity E is not subject to uncer-
tainty, we do not define such an entity for this activity. Let the investment
variables, y, be defined as before, and let xsi be the time of event i if scenario s
occurs. We have now 34 = 81 equally likely scenarios corresponding to the 81
possible realizations of durations of activities A–D.

44 2 Modeling Feasibility and Dynamics

A question that occurs at this time is what we are to mean by the project
taking 10 days. Is it going to be an average of 10days, or is 10 days a hard
constraint? Or maybe 10 days is the goal, but, at a penalty, we are allowed to
be late? In reality, of course, this type of constraint is not hard. We can never
guarantee that a project cannot be late. We could certainly find an investment
that, with our 81 scenarios, guaranteed that we were never late, but reality
will always be different. Hence, let us instead assume that if we are late, a
penalty of 275 per day is incurred.

Note first that if we had added the possibility of being late at a penalty of
275 to the deterministic problem, the solution would not have changed, as it
is cheaper to invest in reducing activity durations than to pay the penalties.
Also, note that the expected cost associated with the deterministic solution
is now the initial investment of 350 plus an expected penalty for being late
of 210, at a total of 560. So the initial cost estimate of 350 was far off the
actual cost.

The following two-stage model will minimize the expected cost of achieving
a project duration of 10, provided all investment decisions are made before
the project starts and we are allowed to be late. Lateness in scenario s is
measured by ts.

min 100yA + 150yB + 200yC + 175yD + 250yE +
275

81

81∑

s=1

ts

such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xs2 ≥ xs1 + dsA − yA for all s,

xs3 ≥ xs1 + dsC − yC for all s,

xs4 ≥ xs2 + dsB − yB for all s,

xs4 ≥ xs3 + dsD − yD for all s,

xs5 ≥ xs4 + 2− yE for all s,

xs1 = 0 for all s

xs5 − ts ≤ 10 for all s,

yA ≤ 3,

yB ≤ 1,

yC ≤ 2,

yD ≤ 2,

yE ≤ 1,

x, y ≥ 0,

ts ≥ 0 for all s.

(2.6)

2.2 Overhaul Project Example 45

What distinguishes Problem (2.6) from Problem (2.5) is found in the
representation of the constraint on the project duration. In (2.5), this was
represented by

x5 ≤ 10.

In (2.6), we have
xs5 − ts ≤ 10,

indicating that the duration should be at most 10 but can be allowed to be
longer. Furthermore, all constraints that are used to calculate the event times,
such as

xs2 ≥ xs1 + 7− yA,

are now indexed by scenario. Solving this we find yA = 1 as the only
investment. The cost is 100. The expected penalty for delays is as high as
455, yielding a total of 555, a reduction of 5 from the expected value of the
deterministic solution. (As this is just an artificial example, the numbers
themselves are not important; the main point is that we obtain a different
and cheaper solution.)

What happened here is that as we realized explicitly that the world was
stochastic and that delays were in fact feasible (at a cost), we ended up invest-
ing much less initially to reduce the project duration. Instead, we preferred to
pay the penalty for being late. With yA = 1 as the only investment, there is a
probability that event 4 will take place later than time 8 (so that we finish the
whole project later than 10) of 89%. Hence, the penalty is incurred in 89%
of the cases. As 89% of 275 equals less than 250 (the unit investment cost in
activity E), we prefer the penalty cost. So in this case, there was flexibility
in waiting. Instead of securing the project duration initially, it was better to
wait and see what happened.

This formulation is an inherently two-stage formulation, leading to a
two-stage model, as we first make investments, then observe the activity du-
rations, and finally (Stage 2) calculate the project duration and delay costs.

2.2.3 A Different Inherently Two-Stage Formulation

The ideal formulation of this project scheduling problem is to take into account
the actual float of information. Initially, we must decide on yA and yC. Then,
yB is decided when activity A is finished and yD when activity C is finished.
However, we do not know which of these events will occur first. Modelingwise,
this creates a lot of difficulty if we are to formulate the problem as a stochastic
programming problem. It makes us unable to define stages. Stage 1 is to define
yA and yC, but what is Stage 2? It is to define yB if A finishes before C, but to
define yD if B finishes before A. And which of these will happen first depends
on both the randomness and our first-stage decisions. Stage 4 is in any case
to determine yE.

46 2 Modeling Feasibility and Dynamics

Hence, let us analyze a somewhat simpler case. Let us assume that
investments in activities A–D must be determined initially, but that activity
E can wait until the activity is to start. This will make yE scenario dependent.
In addition, we can be late at a penalty.

min 100yA + 150yB + 200yC + 175yD +
250

81

81∑

s=1

ysE +
275

81

81∑

s=1

ts

such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xs2 ≥ xs1 + dsA − yA for all s,

xs3 ≥ xs1 + dsC − yC for all s,

xs4 ≥ xs2 + dsB − yB for all s,

xs4 ≥ xs3 + dsD − yD for all s,

xs5 ≥ xs4 + 2− ysE for all s,

xs1 = 0 for all s,

xs5 − ts ≤ 10 for all s,

yA ≤ 3,

yB ≤ 1,

yC ≤ 2,

yD ≤ 2,

ysE ≤ 1 for all s,

x, y ≥ 0,

ts ≥ 0 for all s.

(2.7)
Based on what we have learned so far, it is a challenge to guess what

the solution will be. Without calculations, you should be able to see that
the investment will be yA = 1 as the only investment. Furthermore, since
investments in E can be delayed until we are ready to start the activity,
we will choose to invest in E if we start later than time 8. This is so since
the cost of investing in E is lower than the penalty cost of being late. If we
are ready to start activity E later than time 9, we will invest in a one-unit
decrease in E and take the rest of the delay as a penalty. The total expected
cost is down to 533.

2.2.4 Worst-Case Analysis

An obvious way to make sure the duration is at most 10 (in fact, the only way)
is to perform a worst-case analysis. We then resolve (2.5), but with maximal
durations rather than average durations. Hence, the durations of activities

2.2 Overhaul Project Example 47

A, B, C, and D will increase by one. The result will be yA = 3, yB = 0,
yC = 0, yD = 2, and yE = 1, with a total cost of 900. Of course, in this
case the expected delay cost is zero. But be aware that this is assured only
if our description of uncertainty is correct. Hence, worst-case analysis can be
both conservative and risky at the same time; we are careful, pay a lot to
be sure that we are always feasible, but then, due to errors in estimating
the data, we are not so sure after all. Worst-case solutions do not handle
measurement errors.

2.2.5 A Comparison

There are a few points to be made here. The first concerns feasibility. In the
deterministic model, it was reasonable and meaningful to say that we had to
finish in ten time periods. But if we kept that requirement in the stochastic
setting, we were brought to a worst-case analysis. If we have an inherently two-
stage model (i.e., all investments are made before the project is started), the
only way to guarantee a duration of ten time periods is to plan as if everything
were against you. We saw that the cost would be 900. Very often, such strict
interpretations of feasibility are not reasonable. Instead, it is necessary to ask
if a constraint is really hard? Very often the answer is no. If the softness
that is therefore brought into the model can be described by penalties, then
we end up with a recourse model. We gave two examples of such models.
In a two-stage setting with penalties, we ended up with expected costs down
from 900 to 555. If, in addition, we allowed the second stage to also contain
a genuine investment, the expected cost dropped to 533. The latter drop is
simply caused by the new investment opportunity’s being cheaper than the
delay cost. If we solved the deterministic model, it claimed that the investment
cost would be 350, whereas, in fact, the total expected cost was 560. With
a strict interpretation of feasibility, the deterministic solution was infeasible
with a probability of 0.56.

In addition to the issue of feasibility, we observe that there is again a value
for delaying decisions. We saw that the total expected cost depended on how
we defined these possible delays. We cannot say that one model is better than
the other unless we actually know the real decision context. But we see how
the modeling choices affect decisions and costs.

2.2.6 Dependent Random Variables

In Sect. 2.2.1, we assumed that all the random durations were independent.
We then found that using the investment from the deterministic model yA =
yE = 1, the expected cost was not 350, as indicated by the deterministic model,
but rather 560 if the late penalty were set at 275 per day. The probability of
being late was as high as 56%. If the durations had instead been correlated,

48 2 Modeling Feasibility and Dynamics

the deterministic model would have been the same, hence the investments
would have been the same, but the expected costs would have been different,
and so would the probability of delays.

Let us see what would happen if activities A and B were perfectly
negatively correlated and activities C and D perfectly positively correlated.
These are, of course, extreme assumptions, but they serve to illustrate a few
points.

First, the duration of A and B would be deterministically equal to 9. The
perfect negative correlation (correlation coefficient of −1) has removed the
uncertainty on that path. As always, a negative correlation has helped us
control the variation. A negative correlation of −1 is, of course, rather special
(as it implies we have only one random variable, not two), but any negative
correlation between the durations of A and B would reduce overall uncertainty
and be useful to us.

Negative correlations are always potentially useful, and you should
think carefully about how they might help you.

For the other path, a perfect positive correlation would cause the duration
of C and D to be 7, 9, or 11, each with a probability of 1

3 . This is worse
than in the deterministic case in the sense that while the probability of being
above 9 (causing the project to have a duration above 10) has stayed at 1

3 , the
expected delay, given that there is a delay, has increased. Here we see that a
positive correlation has caused us trouble, as it normally does.

So the starting time for event 4 is again the maximum of the duration of
these two paths plus one, leading to the following distribution for the project
duration:

Project duration 10 12

Probability 2
3

1
3

So the probability of being late is now 33% and the expected project
duration 10.67. The expected cost is now 533, down from 560.

The point of this is to understand that there is not just the question of
stochastic/deterministic but also which stochastic model we are facing. Cor-
relations (and other measures of covariation) have no counterparts in deter-
ministic modeling, making several rather different stochastic settings being
represented by the same deterministic model.

So the question is not that one type of stochastics (like the uncorrelated
durations we started out with) is “better” than others. Rather, it is that
the effects of solving a deterministic model depends on the stochastic set-
ting. We saw that when we changed from uncorrelated random variables to
correlated ones (in this one specific way), the expected costs went down, the
expected duration went up, and the probability of delay did not change. Again,

2.3 An Inventory Problem 49

this is not good or bad; it is simply an observation telling us that issues that
do not even come up in deterministic modeling, such as covariation, can be
important in valuing the actual performance of a deterministic model.

2.2.7 Using Sensitivity Analysis Correctly

In this example, we assumed that there was a penalty cost of 275 per day if
we were late. We simply used it as a number. Is that appropriate in the light
of the discussions in this book? You may want to think about that question
for a few minutes!

If the number is a specific estimate of the cost of delay based on market
activities, like a contractual penalty, and nothing else, such as lost image, we
may face two situations:

• If this is an estimate of what the future value of the penalty will be,
based on its present value, then it should be treated as a random variable,
and our approach is not valid in light of our own discussions: we have used
expected values instead of the actual distribution.

• If this is a known entity, which we know will not change during the life of
the project, then our approach is indeed valid.

But most likely, even if there is a contractual penalty for lateness, there
will also be a question of lost goodwill, lost reputation. And the size of that
loss is not really known; it is anybody’s guess. So 275 is our guess, our chosen
value for the overall costs. But it is a guess, a choice, not because we are
facing a random variable but because it is up to us to define the penalty:
the penalty is in its own right a policy parameter for the company. If that is
the case, our approach is appropriate, but it should possibly be accompanied
by a parametric analysis on the level of the penalty.

So the right answer depends on the setting. However, most likely, this is
a case where parametric analysis is appropriate because the penalty is like a
decision variable: it is up to us to set it. We leave it to you to check what
would happen if the penalty were slightly different from 275 (in particular a
bit higher).

2.3 An Inventory Problem

Let us turn to another very classical model. We are responsible for a
production and inventory system where for the next T periods we know
the demand. For practical reasons, we do not like production to vary too
much from one period to the next, so we have defined an upper bound on
changes in production levels �. We are in a setting where demand must be met,
but it can be met from outside sources (which means, technically speaking,

50 2 Modeling Feasibility and Dynamics

that we allow demand to be rejected inside the model). We have formulated
the following inherently multistage production and inventory model for our
situation, not taking uncertainty in demand into account.

min
T∑

t=1

(ctxt + ftIt + btut)

such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

It − It−1 = xt − dt + ut, t = 1, . . . , T,

|xt − xt−1| ≤ �, t = 2, . . . , T,

xt, ut, It ≥ 0 t = 1, . . . , T,

with I0 given. Here It is the inventory at the end of period t, xt the production
of period t (determined at the start of the period), ct the production costs,
ft the unit inventory costs, and dt the demand in period t. The variable ut
represents external orders or the impact of lost sales measured by bt. Of course,
there are other versions of this model, representing backorders, for example.
But the basic model that requires production plus inventory to satisfy demand
is common. The first inequality expresses our requirement that production
must not change by more than � from one period to the next.

Note that such an inequality can be written linearly as

xt − xt−1 + wt − zt = 0,

0 ≤ wt, zt ≤ �.

However, we will continue to use the absolute value formulation for easier
reading.

2.3.1 Information Structure

The first question is always what is random and when do we learn the value
of the random variables? Production costs, inventory costs, demand, and pro-
duction volumes can all be random. For simplicity in this discussion we assume
that the only relevant random variables are the demands. From the perspective
of stages in stochastic programs, and the corresponding modeling, we have two
major choices with respect to when demand becomes known:

1. Demand for a period becomes known before production for that period is
determined.

2. Demand for a period becomes known after production for that period is
determined.

Neither of these is better than the other, and probably both are incor-
rect since most likely we learn little by little. But we need to make a choice
modelingwise, so let us assume we learn the demand before production is
determined. The time line of our interpretation can be found in Table 2.4.

2.3 An Inventory Problem 51

Table 2.4: Time line for our interpretation of the inventory model

t = 1 t = 2 t = 3 · · · t = T − 1 t = T

x0, d1 x1, u1 d2 x2, u2 d3 x3, u3 · · · xT−1, uT−1 dT xT , uT

I0 I1 I2 · · · IT−1 IT

Let S be a scenario tree describing how d develops randomly over time.
(Chap. 4 discusses the making of such trees.) A path of demands in S is called
a scenario, is expressed by ds = (ds1, . . . , d

s
T), and occurs with probability ps.

Similarly, production and inventory are described by xst and Ist . We require
that all variables be implementable (also called nonanticipative—if you can
pronounce that), in the sense that when two scenarios s and σ are such that
dst = dσt for t = 1, 2, . . . , τ , then xsτ = xστ and Isτ = Iστ . The reason is that
since the two scenarios are indistinguishable when the production for period
τ is made, the production and inventory decisions must be the same.

It is worth a few minutes of your time to be sure you understand this way
of formulating a stochastic program. Earlier, in Fig. 1.1, you saw a (simple)
scenario tree. That tree branched each time we learned something, and each
node in the tree had its own decision variables. A scenario is a path in that
tree, and the scenarios interact directly by all scenarios sharing the top node
(Stage 0). But there is an alternative formulation. It is sometimes chosen
because it provides a better way to outline the problem structure, sometimes
because we plan to use a solution method that is based on the formulation. For
this book, we want to emphasize that it might at times be easier to read for
people not used to stochastic programs. Consider Fig. 2.3, where we challenge
you to fill in what is missing.

As you can see, each scenario, represented by a column in Fig. 2.3, has its
own set of variables. The first line shows information that just became known
when we reached this node (incoming inventory and this period’s demand), the
second row what must be determined (production and external orders). That
means that the basic part of the model is as in the deterministic situation—all
information is known. But in addition we impose some requirements. These
are what we call implementability or nonanticipativity constraints. Consider
the first row in the figure. All boxes have been connected by horizontal lines.
That means that decisions in those eight boxes must take on the same values.
In particular:

x11 = x21 = · · · = x71 = x81

and

u11 = u21 = · · · = u71 = u81.

52 2 Modeling Feasibility and Dynamics

ux
Id
1

1

1

1

0

1

1

ux
Id
2

1

2

1

0

2

1

ux
Id
3

1

3

1

0

3

1

ux
Id
5

1

5

1

0

5

1

ux
Id
7

1

7

1

0

7

1

ux
Id
8

1

8

1

0

8

1

ux
Id
8

2

8

2

1

8 8

2

ux
Id
5

2

5

2

1

5 5

2

ux
Id
2

2

2

2

1

2 2

2

ux
Id
1

2

1

2

1

1 1

2

ux
Id
1

3

1

3

2

1 1

3

ux
Id
2

3

2

3

2

2 2

3

ux
Id
8

3

8

3

2

8 8

3

ux
Id
8

4

8

4

3

8 8

4

ux
Id
4

4

4

4

3

4 4

4

ux
Id
2

4

2

4

3

2 2

4

ux
Id
1

4

1

4

3

1 1

4

Fig. 2.3: Information structure of the inventory problem outlined scenario
by scenario for T = 4. A column represents a scenario. Two boxes
with a horizontal line between them must have the same values
for all the variables

The meaning of this is that since at this point in time we cannot know which
of the eight scenarios we are on, we cannot allow decisions to depend on
scenarios. Remember that we assumed that demand became known before
production decisions were made. Hence, in fact, we have assumed that

d11 = d21 = · · · = d71 = d81

and, more obviously, that incoming inventory I0 is the same for all scenarios.
Here you can see the meaning of the two, possibly slightly peculiar, terms

implementability and nonanticipativity. A decision is implementable, i.e., can
be implemented, if it does not depend on values that are not yet revealed.
“Buy IBM stock now if its value goes up next month” is not implementable,
while “Buy IBM stock now” is. In the same way, “Buy IBM stock now if its
value goes up next month” is anticipative, i.e., it anticipates (uses) information
that is not yet known. Nonanticipativity then means that a decision does not
use such unavailable information.

2.3 An Inventory Problem 53

The term nonanticipativity is most used. But be a bit careful about how
you understand it. The whole point of stochastic programming is to be an-
ticipative, that is, to look into the future and consider what might happen.
However, you must not anticipate what will happen.

In the second row in the figure, the four left nodes are connected, as are
the right four. This implies that since d12 = d22 = d32 = d42, all the first four
scenarios must have the same second-stage decisions since we cannot know
which of them we are on. The same applies to the right four nodes. Then, in
the third row, only two and two nodes are connected, and then at the end,
you know exactly which scenario you are on.

So to say that the variables are implementable, or nonanticipative, is to
say that they must satisfy the information structure inherent in Fig. 2.3.
A straightforward formulation then becomes (with xs0 = x0 given for all
s ∈ S):

min
∑

s∈S
ps

T∑

t=1

(ctx
s
t + ftI

s
t + btu

s
t)

such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ist − Ist−1 = xst − dst + ust , t = 1, . . . , T ; s ∈ S,
|xst − xst−1| ≤ �, t = 2, . . . , T ; s ∈ S,
xst , I

s
t , u

s
t ≥ 0, t = 1, . . . , T ; s ∈ S,

xst , I
s
t , u

s
t implementable t = 1, . . . , T ; s ∈ S.

(2.8)

Hopefully you can see that, although Fig. 2.3 is perhaps a bit involved until
you get used to it, the advantage of being able to write down the problem in
terms of scenarios can be substantial in terms of clarity. This is especially true
for multistage problems.

2.3.2 Analysis

Let us now see what this model implies, particularly relative to the
deterministic version. First, the inventory constraint, combined with nonneg-
ativity on inventory, has turned the model into something like a worst-case
model: however high the demand, we must be able to satisfy it. As a modeler,
you might ask: was this what we wanted? Of course, the deterministic model
also had this property, but since demand (most likely) was set at its mean
value, the actual effect was less dramatic.

On the other hand, in light of this we might ask what the deterministic
model means (unless the modeler really thinks the world is deterministic).
The model requires that we must meet average demand and does not allow
for any violation of that requirement. But at the same time, obviously, if the
results from the model are to be used in reality, then a shortage will occur.
The model does not say anything about what will happen then.

54 2 Modeling Feasibility and Dynamics

Observe also that while demands up to the mean must be met at any cost,
demands above that level do not matter at all! Such an arbitrary setup can
lead to rather strange results in terms of behavior in the real world. So we see a
deterministic model that makes good sense in its own setting—a deterministic
world—but that becomes rather strange when we start to think about its use
in a real setting. The problem is that deterministic models often do not answer
major questions about what to do under difficult conditions, simply because
they assume them away.

We also should look at the constraint on variation in production.
As demand now varies more than in the deterministic model, it is now a
much more serious constraint. The model might decide on large inventories
simply to facilitate cases (possibly with very low probabilities) where demand
changes a lot from one period to the next. Was that really the understanding
of the underlying problem? Especially the total combination of all constraints
results in a very special situation: limited ability to change production plus
an absolute need to deliver will give very large inventories, most likely at a
level that users will consider unreasonable.

Of course, the foregoing situation might be the right one. It is not our point
to say it cannot be. But most likely the starting point will be a situation where
shortages (whether they result in lost sales or backorders) are considered bad
and where large changes in production should be avoided. But if demand sud-
denly increases dramatically, it will likely be possible to increase production
by more than �. And if inventory is empty, most likely the company does not
go directly out of business. There are solutions.

Ways around this could be to put the constraints of smoothness in
production into an objective function, with a penalty for all changes or all
changes above �. Also, we should think seriously about modeling backorders
or lost sales unless we really, really must satisfy all possible demand. But if
we do not, we face another problem: are we sure our estimates of maximal
demands are correct? Most likely we are not. And if so, the model is a bit
shaky: while we require feasibility at any cost, at the same time, in reality,
shortages might occur. This does not represent good modeling.

2.3.3 Chance-Constrained Formulation

We can also imagine probabilistic constraints here. With discrete distributions,
one (but certainly not the only) possibility is to replace It ≥ 0 by

∑

s∈Wt(x)

ps ≤ 1− α, Wt(x) = {s|Ist < 0},

expressing that at most 1−α parts of the time inventory may be negative, time
period by time period, in the tree. Apart from obvious problems of solving such
a model (remember that It depends on all previous demands and production

2.3 An Inventory Problem 55

decisions), this model does not really soften the original hard constraints of
zero inventory levels. It simply moves them to certain negative levels and then
requires that these new limited negative levels must be achieved at any cost,
whereas beyond that level, costs are of no concern at all. This is a rather
general observation. Chance constraints may appear to be softer than the
original constraints. But in general they are not; they are simply different,
usually looser, but not softer.

In this example we expressed the chance constraints period by period, so
the requirement is not history dependent. An alternative formulation would
express the inventory constraint node by node in the scenario tree, rather than
period by period.

2.3.4 Horizon Effects

Many problems, particularly those that are inherently multistage, in fact have
infinitely many stages. By that we do not imply that the problems cover
infinitely long time intervals but that it is not known when the problems end.

A production company knows, of course, that eventually a certain product
will go out of production, but they do not know when, so they plan as if the
production will go on forever. A financial investor will, sooner or later, go
out of business, but he plans as if he will not. That is the nature of most
decision problems. We really have no choice but to treat these problems as
if they had infinitely many stages. But there is no way we can, technically
speaking, handle models with infinitely many stages. We need to make some
kind of simplification or approximation to make the model have finitely many
stages—if possible, only two.

There is also a modeling-related reason for this: As the number of stages
gets very large, we approach a kind of steady-state situation. But as was
pointed out previously, stochastic programming is about transient behavior,
not steady-state behavior. We are interested in what to do now, not what
to do when (if) we eventually reach a steady state. So at best we need to
represent the steady state in the model to obtain the right transient behavior.
But what actually to do once we get there is not at all our focus.

2.3.5 Discounting

In problems with many time stages stretching into the distant future, we want
to account for the fact that a payment in the future is less valuable than a
payment today. For example, we could take a dollar today and invest it in
a secure deposit account that pays interest, say, r during each period t. One
dollar invested today in this account for t periods would hold

t∏

τ=1

(1 + r) .

56 2 Modeling Feasibility and Dynamics

The inverse of this value represents the amount we would put into the deposit
account today in order to receive exactly one dollar at time t. This ratio
δ = (1 + r)−1 is called a discount rate. As time passes, discounting progres-
sively lowers the value of a future dollar. For instance, at 15% interest rate
today’s value of a dollar to be received 5 years from now is $0.50, and 10 years
from now it is $0.25.

The discounted present value of a future cash stream f = [f1, . . . , fT] is

T∑

t=1

δtft.

This formula simply adds up the various amounts we would have to put into
our deposit account to generate each term of the payment stream f . As time
goes on, the discounting reduces the impact of the future on present decision
making and imposes a kind of “significance” horizon on comparisons between
future cash streams. Discounting is a very common practice in planning prob-
lems, but we do not intend for you to always accept such smoothing when
it appears. For example, is it sensible to discount global warming or nuclear
conflict? It does not take much of a discount factor to smooth away the impact
of serious events that are far away in time.

2.3.6 Dual Equilibrium: Technical Discussion

So now suppose in the production-inventory problem that there is a time
point t in the future when we will not be too concerned about randomness.
We could just as well use mean values for the costs and demands. Even if
we do not necessarily know what these will be, we do not want the model to
assume that they are zero since this could introduce strange incentives into
the preceding periods. In stochastic programming, for numerical reasons, we
cannot use lots and lots of time stages to gently smooth out the impact of a
shock like that, but we can develop an approach that approximates this kind
of smoothing.

Let us look at the optimization problem to be solved at this final horizon
stage t. The data we have are the decisions from the past stage t− 1 and our
best guesses as to the steady-state costs and demands. Let us also introduce
a time discount factor 0 < δ < 1 that applies to the costs in the horizon
objective function:

ct+τ = δτct,

ft+τ = δτft,

bt+τ = δτbt.

(2.9)

2.3 An Inventory Problem 57

This discounting will have the effect of smoothing the impact of errors in
horizon estimates, which is what we desire for this model:

min
T−t∑

τ=0

δτ (ct+τxt+τ + ft+τ It+τ + bt+τut+τ)

such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

It+τ − It+τ−1 = xt+τ − dt+τ + ut+τ , τ = 0, . . . , T − t,

xt+τ − xt+τ−1 ≤ �, τ = 0, . . . , T − t,

xt+τ − xt+τ−1 ≥ −�, τ = 0, . . . , T − t,

xt+τ , It+τ , ut+τ ≥ 0 τ = 0, . . . , T − t.

(2.10)
Dual equilibrium (due to Grinold [18]) simplifies the horizon problem by

equalizing all future undiscounted shadow prices. Of course, this means that
the shadow prices are not going to be set at the level that guarantees con-
straint satisfaction, so in effect we are choosing to overlook feasibility viola-
tions in order to simplify the horizon problem. This may not be the correct
approach in every modeling situation, so let us think about what it means in
the production-inventory problem. The constraints model the satisfaction of
demand while restricting production variations from one period to another.
If the constraints are not satisfied in some period past the horizon, should we
be concerned? This is problem dependent, of course, but let us proceed as if
this were a reasonable assumption.

To implement the dual-equilibrium assumption in (2.10), we start by
denoting the dual multipliers (shadow prices) for the first, second, and third
constraints in each horizon stage by yτ , z

+
τ , and z−τ , respectively. The first

step in the dual-equilibrium approach assumes that the dual multipliers all
take the form

yτ = δτ yt,

z+τ = δτ z+t ,

z−τ = δτ z−t ,

(2.11)

which, as we can see, has the effect of equalizing the undiscounted shadow
prices for each time stage. If these dual multipliers were actually optimal, then
the primal solution for (2.10) could be recovered by optimizing the following
objective function:

∑T−t
τ=0 δ

τ

[(
ctxt+τ + fτIt+τ + btut+τ

)

+yt
(
It+τ − It+τ−1 − xt+τ + dt+τ + ut+τ

)

+z+t
(
xt+τ − xt+τ−1 − �

)

+z−t
(
xt+τ − xt+τ−1 + �

)]
.

(2.12)

58 2 Modeling Feasibility and Dynamics

Of course, these dual-equilibrium multipliers are not likely to be the op-
timal ones for (2.10). For one thing, there are only three dual multipliers
left, so the model only has three constraints! The next step in the dual-
equilibrium procedure is to collect terms in expression (2.12) to see what
these constraints are.

To see the constraints, we need to add up all three sets of terms that involve
the three dual multipliers (yt, z

+
t , z

−
t) multiplied by the discount factor δτ .

To simplify these expressions, let us introduce “integrated” primal variables
and right-hand sides as follows:

d∗t :=
∑T−t

τ=0 δ
τ dt+τ ,

�∗t :=
∑T−t

τ=0 δ
τ �,

x∗t :=
∑T−t

τ=0 δ
τ xt+τ ,

I∗t :=
∑T−t

τ=0 δ
τ It+τ ,

u∗t :=
∑T−t

τ=0 δ
τ ut+τ .

What can these integrated expressions mean? Interpreting these
expressions really gets us to the heart of the dual-equilibrium approach.
By assuming the form (2.11) for the dual-variables structure, we are essen-
tially going to add up (or integrate) all the future demands and production
constraints out to the horizon and then choose production, inventory, and
external order decisions that satisfy the integrated demand and production
constraints. The “integration” incorporates the discount factor, as it should,
in order to appropriately scale the impact of the future periods back to the
horizon period.

Using the integrated primal variables and right-hand sides you can verify
that (2.12) transforms into the following expression:

ctx
∗
t + ftI

∗
t + btu

∗
t

+yt
(
I∗t − δ(It−1 + I∗t) + δT−tIT − x∗t + d∗t + u∗t

)

+z+t
(
x∗t − δ(xt−1 + x∗t) + δT−txT − �∗t

)

+z−t
(
x∗t − δ(xt−1 + x∗t) + δT−txT + �∗t

)
.

(2.13)

We performed the following calculation:

T−t∑

τ=0

δτxτ−1 = δ(xt−1 + x∗t)− δT−txT .

Is that really correct? We think it is, but it will help you to understand what
is going on if you try to verify it yourself. If we assume that T is so large that

2.4 Summing Up Feasibility 59

δT−t is practically zero and drop the asterisks on the primal variables, then
the dual-equilibrium horizon problem is

min ctxt + ftIt + btut

such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1− δ)It − δIt−1 = xt − d∗t + ut,

|(1− δ)xt − δxt−1| ≤ �∗t ,

xt, It, ut ≥ 0.

(2.14)

The variables (xt, It, ut) in the horizon problem can be interpreted as the
amounts required to satisfy the integrated demand and production constraints
out to the horizon.

Dual equilibrium is a general approach to the modeling of horizon
constraints. It can be applied to many types of problems. However, like
any general approach, there are assumptions made and the solution must be
checked to understand if the assumptions are reasonable.

So, in total, we end up with the following extension of (2.8). Notice that
T has changed interpretation from the development of the dual-equilibrium
horizon model. T is now the period in which we apply the horizon model.

min
∑

s∈S
ps

T∑

t=1

(ctx
s
t + ftI

s
t + btu

s
t)

such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ist − Ist−1 = xs
t − dst + us

t , t = 1, . . . , T − 1; s ∈ S ,
(1− δ)IsT − δIsT−1 = xs

T − d∗T + us
T , s ∈ S ,

|xs
t − xs

t−1| ≤ �, t = 2, . . . , T − 1; s ∈ S ,
|(1− δ)xs

T − δxs
T−1| ≤ �∗T , s ∈ S ,

xs
t , I

s
t , u

s
t ≥ 0, t = 1, . . . , T ; s ∈ S ,

xs
t , I

s
t , u

s
t implementable , t = 1, . . . , T ; s ∈ S .

As before, “implementable” refers to the structure discussed in Fig. 2.3.

2.4 Summing Up Feasibility

The three examples, together with the news vendor example from Sect. 1.2,
show many different aspects of modeling stochastic decision problems. How-
ever, much of the discussion, one way or another, concerns feasibility. Let us
try to sum up what we have seen.

What we notice here is that although many deterministic models can be
made stochastic, the steps cannot be automated. We must think about what
the constraints actually imply in the stochastic setting, and we must be par-
ticularly concerned about the handling of feasibility. Very often feasibility is
not as strict as we imply by our modeling, and using penalties is better.

Feasibility in this context has two components. First, constraints that
seem reasonable in a deterministic setting turn into worst-case analysis in

60 2 Modeling Feasibility and Dynamics

a stochastic environment. Although that might be what we want, it is rarely
the case. The difficulty is simply that in a deterministic setting, where param-
eters normally are expected values, the constraints seem reasonable, even if
they in fact represent goals that might be violated. After all, the model only
handles the average case.

But in a stochastic setting, if the constraints actually represent wishes
or goals and violations can be allowed, though possibly at a high cost, the
constraints should be moved into the objective function with a penalty. Ex-
cept for what we might call bookkeeping constraints—inventory out equals
inventory in plus production minus sales—not using constraints in stochastic
models should be avoided.

Constraints that remain constraints in the problem formulation are called
hard constraints, while those moved into the objective function are called soft
constraints. Our claim is that from a modeling perspective, most constraints
are soft.

The second component of feasibility is that many, if not all, deterministic
models lack a proper stage structure. Even though a deterministic model may
include time periods, the variables are not properly adjusted. A side effect
of this is that when the information structure of an event tree is added to a
problem, the variables must be redefined. For example, in the news vendor
example of Sect. 1.2, we had the same variable for orders and sales. This might
be fine in a deterministic world where you never produce something you will
not need, but in a stochastic model, you must realize that production and
sales belong to different stages of the model and cannot be represented by
the same variables. A more straightforward example was seen in the overhaul
project example in Sect. 2.2, where we had to impose a scenario index on some
variables. That amounts to defining new variables, even though we continued
to use the old variable name.

	Chapter
2 Modeling Feasibility and Dynamics
	2.1 The Knapsack Problem
	2.1.1 Feasibility in the Inherently Two-Stage KnapsackProblem
	2.1.2 Two-Stage Models
	2.1.3 Chance-Constrained Models
	2.1.4 Stochastic Robust Formulations
	2.1.5 Two Different Multistage Formulations

	2.2 Overhaul Project Example
	2.2.1 Analysis
	2.2.2 A Two-Stage Version
	2.2.3 A Different Inherently Two-Stage Formulation
	2.2.4 Worst-Case Analysis
	2.2.5 A Comparison
	2.2.6 Dependent Random Variables
	2.2.7 Using Sensitivity Analysis Correctly

	2.3 An Inventory Problem
	2.3.1 Information Structure
	2.3.2 Analysis
	2.3.3 Chance-Constrained Formulation
	2.3.4 Horizon Effects
	2.3.5 Discounting
	2.3.6 Dual Equilibrium: Technical Discussion

	2.4 Summing Up Feasibility

