
Chapter 3
Robust Principal Component Analysis

. . . any statistical procedure . . . should be robust in the sense that small deviations from
the model assumptions should impair its performance only slightly . . . Somewhat larger
deviations from the model should not cause a catastrophe.

—Peter J. Huber

In the previous chapter, we considered the PCA problem under the assumption
that all the sample points are drawn from the same statistical or geometric model:
a low-dimensional subspace. In practical applications, it is often the case that
some entries of the data points can be missing or incomplete. For example, the
2-dimensional trajectories of an object moving in a video may become incomplete
when the object becomes occluded. Sometimes, it could be the case that some
entries of the data points are corrupted by gross errors and we do not know a priori
which entries are corrupted. For instance, the intensities of some pixels of the face
image of a person can be corrupted when the person is wearing glasses. Sometimes it
could also be the case that a small subset of the data points are outliers. For instance,
if we are trying to distinguish face images from non-face images, then we can model
all face images as samples from a low-dimensional subspace, but non-face images
will not follow the same model. Such data points that do not follow the model of
interest are often called sample outliers and should be distinguished from the case
of samples with some corrupted entries, also referred to as intrasample outliers.
The main distinction to be made is that in the latter case, we do not want to discard
the entire data point, but only the atypical entries.

In this chapter, we will introduce several techniques for recovering a low-
dimensional subspace from missing or corrupted data. We will first consider the
PCA problem with missing entries, also known as incomplete PCA or low-rank
matrix completion (for linear subspaces). In Section 3.1, we will describe several
representative methods for solving this problem based on maximum likelihood esti-
mation, convex optimization, and alternating minimization. Such methods are fea-
tured due to their simplicity, optimality, or scalability, respectively. In Section 3.2,

© Springer-Verlag New York 2016
R. Vidal et al., Generalized Principal Component Analysis, Interdisciplinary
Applied Mathematics 40, DOI 10.1007/978-0-387-87811-9_3

63

64 3 Robust Principal Component Analysis

we will consider the PCA problem with corrupted entries, also known as the
robust PCA (RPCA) problem. We will introduce classical alternating minimization
methods for addressing this problem as well as convex optimization methods
that offer theoretical guarantees of correctness. Finally, in Section 3.3, we will
consider the PCA problem with sample outliers and describe methods for solving
this problem based on classical robust statistical estimation techniques as well as
techniques based on convex relaxations. Face images will be used as examples to
demonstrate the effectiveness of these algorithms.

3.1 PCA with Robustness to Missing Entries

Recall from Section 2.1.2 that in the PCA problem, we are given N data points
X :D fxj 2 R

DgN
jD1 drawn (approximately) from a d-dimensional affine subspace

S
:D fx D � C Uyg, where � 2 R

D is an arbitrary point in S, U 2 R
D�d is a basis

for S, and Y D fyj 2 R
dgN

jD1 are the principal components.
In this section, we consider the PCA problem in the case that some of the

given data points are incomplete. A data point x D Œx1; x2; : : : ; xD�> is said to be
incomplete when some of its entries are missing or unspecified. For instance, if
the ith entry xi, of x is missing, then x is known only up to a line in R

D, i.e.,

x 2 L
:D ˚

Œx1; : : : ; xi�1; xi; xiC1; : : : ; xD�>; xi 2 R
�

D ˚
x�i C xiei; xi 2 R

�
;

(3.1)

where x�i D Œx1; : : : ; xi�1; 0; xiC1; : : : ; xD�> 2 R
D is the vector x with its ith

entry zeroed out and ei D Œ0; : : : ; 0; 1; 0; : : : ; 0�> 2 R
D is the ith basis vector.

More generally, if the point x has M missing entries, without loss of generality

we can partition it as

�
xU

xO

�
, where xU 2 R

M denotes the unobserved entries and

xO 2 R
D�M denotes the observed entries. Thus, x is known only up to the following

M-dimensional affine subspace:

x 2 L
:D

��
0

xO

�
C

�
IM

0

�
xU; xU 2 R

M

�
: (3.2)

Incomplete PCA When the Subspace Is Known
Let us first consider the simplest case, in which the subspace S is known. Then we
know that the point x belongs to both L and S. Therefore, given the parameters � and
U of the subspace S, we can compute the principal components y and the missing
entries xU by intersecting L and S. In the case of one missing entry (illustrated in
Figure 3.1), the intersection point can be computed from

3.1 PCA with Robustness to Missing Entries 65

x
y

z

S

L

•
x

Fig. 3.1 Given a point x 2 R
D with one unknown entry xi, the point x is known only up to a line

L. However, if we also know that x belongs to a subspace S, we can find the unknown entry by
intersecting L and S, provided that L is not parallel to S.

x D x�i C xiei D � C Uy H) �
U �ei

� �
y
xi

�
D x�i � �: (3.3)

Note that a necessary condition for this linear system to have a unique solution is
that the line L is not parallel to the principal subspace, i.e., ei 62 span.U/.

In the case of M missing entries, we can partition the point � D
�
�U

�O

�
and the

subspace basis U D
�

UU

UO

�
according to x D

�
xU

xO

�
. Then, the intersection of L and

S can be computed from

�
xU

xO

�
D

�
�U

�O

�
C

�
UU

UO

�
y H)

�
UU �IM

UO 0

� �
y

xU

�
D

� ��U

xO � �O

�
: (3.4)

A necessary condition for the linear system in (3.4) to have a unique solution is that
the matrix on the left-hand side be of full column rank d C M � D. This implies
that ei 62 span.U/ for each missing entry i. This also implies that M � D � d; hence
we need to have at least d observed entries in order to complete a data point. When
the data point x is not precise and has some noise, we can compute y and xU as the
solution to the following optimization problem:

min
y;xU

kx � � � Uyk2: (3.5)

It is easy to derive that the closed-form solution to the unknowns y and xU is given by

y D .I � U>U UU/�1U>O .xO � �O/ D .U>O UO/�1U>O .xO � �O/;

xU D �U C UUy D �U C UU.U>O UO/�1U>O .xO � �O/:
(3.6)

66 3 Robust Principal Component Analysis

We leave the derivation to the reader as an exercise (see Exercise 3.1). Notice that
this solution is simply the least squares solution to (3.4), and that in order for
UO to be of full rank (so that U>O UO is invertible), we need to know at least d
entries. Interestingly, the solution for y is obtained from the observed entries (xO)
and the part of the model corresponding to the observed entries (�O and UO). Then
the missing entries (xU) are obtained from the part of the model corresponding to
the unobserved entries (�U and UU) and y.

Incomplete PCA as a Well-Posed Problem
In practice, however, we do not know the subspace S (neither � nor U) a priori.
Instead, we are given only N incomplete samples, which we can arrange as the
columns of an incomplete data matrix X D Œx1; x2; : : : ; xN � 2 R

D�N . Let W 2 R
D�N

be the matrix whose entries fwijg encode the locations of the missing entries, i.e.,

wij D
(

1 if xij is known;

0 if xij is missing;
(3.7)

and let W ˇ X denote the Hadamard product of two matrices, which is defined
as the entrywise product .W ˇ X/ij D wijxij. The goal of PCA with missing data,
also known as matrix completion, is to find the missing entries .11> � W/ ˇ X,
the point �, the basis U, and the matrix of low-dimensional coordinates Y D
Œy1; y2; : : : ; yN � 2 R

d�N from the known entries W ˇ X.
Obviously, we cannot expect to always be able to find the correct solution to this

problem. Whether the correct complete matrix X can be recovered depends on:

1. Which entries are missing or observed;
2. How many entries are missing or observed.

To see why the location of missing entries matters, suppose the first entry of
all data points is missing. Then we cannot hope to be able to recover the first row
of X at all. Likewise, suppose that all the entries of one data point are missing.
While in this case we can hope to find the subspace from the other data points,
we cannot recover the low-dimensional representation of the missing point. These
two examples suggest that the location of missing entries should not have any
conspicuous patterns.

Now suppose that the matrix X is

X D e1e>1 D

2

666
4

1 0 � � � 0

0 0 � � � 0
:::

: : :

0 0 � � � 0

3

777
5

; (3.8)

which is a rank-one matrix. In this case, we cannot hope to recover X even if a
relatively large percentage of its entries are given, because most entries are equal
to zero, and we will not be able to distinguish X from the zero matrix from many

3.1 PCA with Robustness to Missing Entries 67

observed entries. This suggests that if we want to recover a low-rank data matrix
from a small portion of its entries, the matrix itself should not be too sparse.

Thus, to avoid ambiguous solutions due to the above situations, we must require
that the locations of the missing entries be random enough so that the chance that
they form a conspicuous pattern is very low; and in addition, we must restrict our
low-rank matrices to those that are not particularly sparse. The following definition
gives a set of technical conditions to impose on a matrix so that its singular vectors
are not too spiky, and hence the matrix itself is not too sparse.

Definition 3.1 (Matrix Incoherence with Respect to Sparse Matrices). A matrix
X 2 R

D�N is said to be �-incoherent with respect to the set of sparse matrices if

max
i

kuik2 � �
p

dp
D

; max
j

kvjk2 � �
p

dp
N

; kUV>k1 � �
p

dp
DN

; (3.9)

where d is the rank of X, X D U†V> is the compact SVD of X, and ui, and vj are
the ith row of U and jth row V, respectively.

Notice that since U is orthonormal, the largest absolute value of the entries of
U 2 R

D�d is equal to 1, which happens when a column of U is 1-sparse, i.e.,
when a column of U has only one nonzero entry. On the other hand, if each column
of U is so dense that all its entries are equal to each other up to sign, then each
entry is equal to ˙1=

p
D, and the norm of each row is

p
d=D. Therefore, when

� < 1, the first condition above controls the level of sparsity of U. Similarly, the
other two conditions control the levels of sparsity of V and UV>, respectively. From
a probabilistic perspective, these conditions are rather mild in the sense that they
hold for almost all generic matrices—a random (say Gaussian) matrix satisfies these
conditions with high probability when the dimension of the matrix is large enough.
As we will see, incoherence is indeed a very useful technical condition to ensure
that low-rank matrix completion is a meaningful problem.

Regarding the number of entries required, notice that in order to specify a
d-dimensional subspace S in R

D together with N points on it, we need to specify
D C dD C dN � d2 independent entries in �, U, and Y .1 That is, it is necessary to
observe at least this number of entries of X in order to have a unique solution for X.
However, the sufficient conditions for ensuring a unique and correct solution highly
depend on the approach and method one uses to recover X.

Incomplete PCA Algorithms
In what follows, we discuss a few approaches for solving the PCA problem with
missing entries. The first approach (described in Section 3.1.1) is a simple extension

1If U 2 R
D�d and V 2 R

N�d , then U and V have dD C dN degrees of freedom in general.
However, to specify the subspace, it suffices to specify UV>, which is equal to UAA�1V> for
every invertible matrix A 2 R

d�d; hence the matrix UV> has dDC dN � d2 degrees of freedom.

68 3 Robust Principal Component Analysis

of geometric PCA (see Section 2.1) in which the sample mean and covariance are
directly computed from the incomplete data matrix. However, this approach has
a number of disadvantages, as we shall see. The second approach (described in
Section 3.1.2) is a direct extension of probabilistic PCA (see Section 2.2) and uses
the expectation maximization (EM) algorithm (see Appendix B.2.1) to complete
the missing entries. While this approach is guaranteed to converge, the solution
it finds is not always guaranteed to be the global optimum, and hence it is not
necessarily the correct solution. The third approach (described in Section 3.1.3)
uses convex relaxation and optimization techniques to find the missing entries of
the low-rank data matrix X. Under the above incoherent conditions and with almost
minimal observations, this approach is guaranteed to return a perfect completion of
the low-rank matrix. However, this approach may not be scalable to large matrices,
since it requires solving for as many variables as the number of entries in the data
matrix. The fourth and final approach (described in Section 3.1.4) alternates between
solving for �, U, and Y given a completion of X, and solving for the missing entries
of X given �, U, and Y . Since this method uses a minimal parameterization of the
unknowns, it is more scalable. While in general, this approach is not guaranteed
to converge to the correct solution, we present a variant of this method that is
guaranteed to recover the missing entries correctly under conditions similar to those
for the convex relaxation method.

3.1.1 Incomplete PCA by Mean and Covariance Completion

Recall from Section 2.1.2 that the optimization problem associated with geometric
PCA is

min
�;U;fyjg

NX

jD1

		xj � � � Uyj

		2
s.t. U>U D Id and

NX

jD1

yj D 0: (3.10)

We already know that the solution to this problem can be obtained from the mean
and covariance of the data points,

O�N D 1

N

NX

jD1

xj and O†N D 1

N

NX

jD1

.xj � O�N/.xj � O�N/>; (3.11)

respectively. Specifically, � is given by the sample mean O�N , U is given by the top
d eigenvectors of the covariance matrix O†N , and yj D U>.xj � �/. Alternatively,
an optimal solution can be found from the rank-d SVD of the mean-subtracted data
matrix Œx1 � O�N ; : : : ; xN � O�N �, as shown in Theorem 2.3.

When some entries of each xj are missing, we cannot directly compute O�N or
O†N as in (3.11). A straightforward method for dealing with missing entries was

3.1 PCA with Robustness to Missing Entries 69

introduced in (Jolliffe 2002). It basically proposes to compute the sample mean and
covariance from the known entries of X. Specifically, the entries of the incomplete
mean and covariance can be computed as

O�i D

NP

jD1

wijxij

NP

jD1

wij

and O�ik D

NP

jD1

wijwkj.xij � O�i/.xkj � O�k/

NP

jD1

wijwkj

; (3.12)

where i; k D 1; : : : ; D. However, as discussed in (Jolliffe 2002), this simple
approach has several disadvantages. First, the estimated covariance matrix need not
be positive semidefinite. Second, these estimates are not obtained by optimizing
any statistically or geometrically meaningful objective function (least squares,
maximum likelihood, etc.) Nonetheless, estimates O�N and O†N obtained from the
naive approach in (3.12) may be used to initialize the methods discussed in
the next two sections, which are iterative in nature. For example, we may initialize
the columns of U as the eigenvectors of O†N associated with its d largest eigenvalues.
Then given O�N and OU, we can complete each missing entry as described in (3.6).

3.1.2 Incomplete PPCA by Expectation Maximization

In this section, we derive an EM algorithm (see Appendix B.2.1) for solving the
PPCA problem with missing data. Recall from Section 2.2 that in the PPCA model,
each data point is drawn as x � N .�x; †x/, where �x D � and †x D BB>C �2ID,
where � 2 R

D, B 2 R
D�d, and � > 0. Recall also from (2.56) that the log-likelihood

of the PPCA model is given by

L D �ND

2
log.2�/�N

2
log det.†x/�1

2

NX

jD1

trace.†�1
x .xj��/.xj��/>/; (3.13)

where fxjgN
jD1 are N i.i.d. samples of x. Since the samples are incomplete, we can

partition each point x and the parameters �x and †x as

�
xU

xO

�
D Px;

�
�U

�O

�
D P�; and

�
†UU †UO

†OU †OO

�
D P†xP>: (3.14)

Here xO is the observed part of x, xU is the unobserved part of x, and P is any
permutation matrix that reorders the entries of x so that the unobserved entries
appear first. Notice that P is not unique, but we can use any such P. Notice also
that the above partition of x, �x, and †x could be different for each data point,
because the missing entries could be different for different data points. When strictly
necessary, we will use xjU and xjO to denote the unobserved and observed parts of

70 3 Robust Principal Component Analysis

point xj, respectively, and Pj to denote the permutation matrix. Otherwise, we will
avoid using the index j in referring to a generic point.

In what follows, we derive two variants of the EM algorithm for learning the
parameters � D .�; B; �/ of the PPCA model from incomplete samples fxjgN

jD1. The
first variant, called Maximum a Posteriori Expectation Maximization (MAP-EM),
is an approximate EM method whereby the unobserved variables are given by their
MAP estimates (see Appendix B.2.2). The second variant is the exact EM algorithm
(see Appendix B.2.1), where we take the conditional expectation of L over the
incomplete entries. Interestingly, both variants lead to the same estimate for �x,
though the estimates for †x are slightly different. In our derivations, we will use the
fact that the conditional distribution of xU given xO is Gaussian. More specifically,
xU j xO � N .�UjO; †UjO/, where

�UjO D �U C †UO†�1
OO.xO � �O/ and †UjO D †UU � †UO†�1

OO†OU:

We leave this fact as an exercise to the reader (see Exercise 3.2).

Maximum a Posteriori Expectation Maximization (MAP-EM)
The MAP-EM algorithm (see Appendix B.2.2) is a simplified version of the EM
algorithm (see Appendix B.2.1) that alternates between the following two steps:

MAP-step: Complete each data point x by replacing the unobserved variables xU

with their MAP estimates, arg maxxU
p�k .xU j xO/, where � k is an estimate for

the model parameters at iteration k.
M-step: Maximize the complete log-likelihood with respect to � , with xU given

as in the MAP-step.

During the MAP step, the MAP estimate of the unobserved variables can be
computed in closed form as

arg max
xU

p�k .xU j xO/ D �k
UjO D �k

U C †k
UO.†k

OO/�1.xO � �k
O/: (3.15)

Therefore, we can complete each data point as xk D P>
"

�k
UjO
xO

#

. Letting xk
j be the

completion of xj at iteration k, we obtain the complete log-likelihood as

L D �ND

2
log.2�/� N

2
log det.†x/� 1

2

NX

jD1

.xk
j ��/>†�1

x .xk
j ��/: (3.16)

During the M-step, we need to maximize L with respect to � . Since the
data are already complete, we can update the model parameters as described in
Theorem 2.9, i.e.,

�kC1 D 1

N

NX

jD1

xk
j ; BkC1 D U1

ƒ1 � .� k/2I

�1=2
R; and .� k/2 D

DP

iDdC1

�i

D � d
;

3.1 PCA with Robustness to Missing Entries 71

where U1 2 R
D�d is the matrix whose columns are the top d eigenvectors of the

complete sample covariance matrix

O†kC1
N D 1

N

NX

jD1

.xk
j � �kC1/.xk

j � �kC1/>; (3.17)

ƒ1 2 R
d�d is a diagonal matrix with the top d eigenvalues of O†kC1

N , R 2 R
d�d is

an arbitrary orthogonal matrix, and �i is the ith-largest eigenvalue of O†kC1
N . We can

then update the covariance matrix as †kC1
x D BkC1.BkC1/> C .� k/2I.

Expectation Maximization (EM)
The EM algorithm (see Appendix B.2.1) alternates between the following steps:

E-step: Compute the expectation Q.� j � k/
:D ExU ŒL j xO; � k� of the complete

log-likelihood L with respect to the missing entries xU given the observed
entries xO and an estimate � k of the parameters at iteration k.

M-step: Maximize the expected completed log-likelihood ExU ŒL j xO; � k� with
respect to � .

Observe from (3.13) that to compute the expectation of L , it suffices to compute
the following matrix for each incomplete data point x:

Sk D ExU Œ.x � �/.x � �/> j xO; � k� D P>
�

Sk
UU Sk

UO

Sk
OU Sk

OO

�
P: (3.18)

Each block of this matrix can be computed as

Sk
OO DEŒ.xO��O/.xO��O/>j xO; � k�D.xO��k

O/.xO��k
O/>;

Sk
UO DEŒ.xU ��U/.xO��O/>j xO; � k�D.�k

UjO��k
U/.xO��k

O/>D.Sk
OU/>;

Sk
UU DEŒ.xU ��U/.xU ��U/>j xO; � k�

DEŒ.xU ��k
UjO/.xU ��k

UjO/>j xO; � k�C
2EŒ.�k

UjO � �U/.xU � �k
UjO/> j xO; � k� C .�k

UjO��U/.�k
UjO��U/>

D†k
UjO C .�k

UjO��U/.�k
UjO��U/>:

Let Sk
j denote the matrix Sk associated with point xj and let O†k

N D 1
N

PN
jD1 Sk

j . Then
the expected complete log-likelihood is given by

Q.� j � k/ D �ND

2
log.2�/ � N

2
log det.†x/ � N

2
trace.†�1

x
O†k

N/: (3.19)

In the M-step, we need to maximize this quantity with respect to � . Notice that
this quantity is almost identical to that in (2.56), except that the sample covariance

72 3 Robust Principal Component Analysis

matrix O†N is replaced by O†k
N . Thus, if O†k

N did not depend on the unknown parameter
�, we could immediately compute B and � from Theorem 2.9. Therefore, all we
need to do is to show how to compute �. To this end, notice that

@

@�
trace.†�1

x Sk/ D @

@�
EŒ.x � �/>†�1

x .x � �/ j xO; � k� (3.20)

D �2†�1
x EŒx � � j xO; � k� D �2†�1

x .xk � �/; (3.21)

where xk D P>
"

�k
UjO
xO

#

is the complete data point. Therefore,

@

@�
Q.� j � k/ D �1

2

@

@�

NX

jD1

trace.†�1
x Sk

j / D
NX

jD1

†�1
x .xk

j � �/ D 0; (3.22)

and so the optimal � is

�kC1 D 1

N

NX

jD1

xk
j : (3.23)

Notice that this solution is the same as that of the MAP-EM algorithm. That is, the
optimal solution for � is the average of the complete data. We can then form the
matrix O†k

N and compute BkC1 and � kC1 as before. Notice, however, that O†k
N is not

the covariance of the complete data. The key difference is in the term Sk
UU , which

contains an additional term †k
UjO.

The EM algorithm for PPCA with missing data is summarized in Algorithm 3.1.
In step 2 of the algorithm, the missing entries of X are filled in with zeros, and an
initial estimate of � and †x is obtained from the zero-filled X. Alternatively, one
may use other initialization methods, such as the mean and covariance completion
method described in Section 3.1.1. In step 7, the missing entries of each xj are filled
in according to the initial estimates of mean and covariance in step 2, while the
observed entries are kept intact. This corresponds to the MAP step of the MAP-EM
algorithm, and is an intermediate calculation for the E-step of the EM algorithm.
Next, steps 9 and 10 update the mean and covariance of the PPCA model. Step 9
is common to both the MAP-EM and EM algorithms, while step 10 is slightly
different: the MAP-EM algorithm uses only the first term on the right-hand side of
step 10, while the EM algorithm uses both terms. Steps 11–14 update the parameters
of the PPCA model and correspond to the M-step of both the MAP-EM and
EM algorithms. Finally, step 16 computes the probabilistic principal components.
Recall from Section 2.2, equation (2.78), that given the parameters of the PPCA
model .�; B; �/, the probabilistic principal components of a vector x are given by
y D .B>B C �2I/�1B>.x � �/.

3.1 PCA with Robustness to Missing Entries 73

Algorithm 3.1 (Incomplete PPCA by Expectation Maximization)

Input: Entries xij of a matrix X 2 R
D�N for .i; j/ 2 	 and dimension d.

1: initialize

2: xij 0 for .i; j/ 62 	, � 1
N

NP

jD1

xj, and † 1
N

NP

jD1

.xj � �/.xj � �/>.

3: Pj any permutation matrix that sorts the entries of the jth column of X, xj, so that its
unobserved entries (as specified in) appear first.

4:

"
xj

U

xj
O

#

 Pjxj,

"
�

j
U

�
j
O

#

 Pj�, and

"
†

j
UU †

j
UO

†
j
OU †

j
OO

#

 Pj†P>

j .

5: repeat
6: for all j D 1; : : : ; N do

7: xj P>

j

"
�

j
U C†

j
UO.†

j
OO/�1.xj

O � �
j
O/

xj
O

#

.

8: end for

9: � 1
N

NP

jD1

xj and † 1
N

NP

jD1

.xj � �/.xj � �/>.

10: S †C P>

j

"
†

j
UU �†

j
UO.†

j
OO/�1†

j
OU 0

0 0

#

Pj.

11: U1 top d eigenvectors of S.
12: ƒ1 top d eigenvalues of S.
13: �2 1

D�d

PD
iDdC1 �i.S/.

14: B U1.ƒ1 � �2I/1=2R, where R 2 R
d�d is an arbitrary orthogonal matrix.

15: until convergence of � and S.
16: Y .B>BC �2I/�1B>.X � �1>/.

Output: �, B, and Y .

3.1.3 Matrix Completion by Convex Optimization

The EM-based approaches to incomplete PPCA discussed in the previous section
rely on (a) explicit parameterizations of the low-rank factors and (b) minimization of
a nonconvex cost function in an alternating minimization fashion. Specifically, such
approaches alternate between completing the missing entries given the parameters
of a PPCA model for the data and estimating the parameters of the model
from complete data. While simple and intuitive, such approaches suffer from two
important disadvantages. First, the desired rank of the matrix needs to be known
in advance. Second, due to the greedy nature of the EM algorithm, it is difficult to
ensure convergence to the globally optimal solution. Therefore, a good initialization
of the EM-based algorithm is critical for converging to a good solution.

In this section, we introduce an alternative approach that solves the low-rank
matrix completion problem via a convex relaxation. As we will see, this approach
allows us to complete a low-rank matrix by minimizing a convex objective function,
which is guaranteed to have a globally optimal minimizer. Moreover, under rather

74 3 Robust Principal Component Analysis

benign conditions on the missing entries, the global minimizer is guaranteed to be
the correct low-rank matrix, even without knowing the rank of the matrix in advance.

A rigorous justification for the correctness of the convex relaxation approach
requires a deep knowledge of high-dimensional statistics and geometry that is
beyond the scope of this book. However, this does not prevent us from introducing
and summarizing here the main ideas and results, as well as the basic algorithms
offered by this approach. Practitioners can apply the useful algorithm to their data
and problems, whereas researchers who are more interested in the advanced theory
behind the algorithm may find further details in (Cai et al. 2008; Candès and Recht
2009; Candès and Tao 2010; Gross 2011; Keshavan et al. 2010a; Zhou et al. 2010a).

Compressive Sensing of Low-Rank Matrices
The matrix completion problem can be considered a special case of the more general
class of problems of recovering a high-dimensional low-rank matrix X from highly
compressive linear measurements B D P.X/, where P is a linear operator that
returns a set of linear measurements B of the matrix X. It is known from high-
dimensional statistics that if the linear operator P satisfies certain conditions, then
the rank minimization problem

min
A

rank.A/ s.t. P.A/ D B (3.24)

is well defined, and its solution is unique (Candès and Recht 2009). However, it is
also known that under general conditions, the task of finding such a minimal-rank
solution is in general an NP-hard problem.

To alleviate the computational difficulty, instead of directly minimizing the
discontinuous rank function, we could try to relax the objective and minimize its
convex surrogate instead. More precisely, we could try to solve the following relaxed
convex optimization problem

min
A

kAk� s.t. P.A/ D B; (3.25)

where kAk� is the nuclear norm of the matrix A (i.e., the sum of all singular
values of A). The theory of high-dimensional statistics (Candès and Recht 2009;
Gross 2011) shows that when X is high-dimensional and the measurement operator
P.�/ satisfies certain benign conditions,2 the solution to the convex optimization
problem (3.25) coincides with that of the rank minimization problem in (3.24).

In what follows, we illustrate how to apply this general approach to the low-rank
matrix completion problem, derive a simple algorithm, and give precise conditions
under which the algorithm gives the correct solution.

Exact Low-Rank Matrix Completion with Minimum Number of Measurements

2Such conditions typically require that the linear measurements and the matrix X be in some sense
incoherent.

3.1 PCA with Robustness to Missing Entries 75

Let X 2 R
D�N be a matrix whose columns are drawn from a low-dimensional

subspace of RD of dimension d � D. Assume that we observe only a subset of
the entries of X indexed by a set 	, i.e.,

	 D f.i; j/ W xij is observedg: (3.26)

Let P	 W RD�N ! R
D�N be the orthogonal projector onto the span of all matrices

vanishing outside of 	 so that the .i; j/th component of P	.X/ is equal to xij if
.i; j/ 2 	 and zero otherwise. As proposed in (Candès and Recht 2009), we may
complete the missing entries in X by searching for a complete matrix A 2 R

D�N that
is of low rank and coincides with X in 	. This leads to the following optimization
problem:

min
A

rank.A/ s.t. P	.A/ D P	.X/: (3.27)

As we have discussed before in Section 3.1, in order for this problem to have
a unique solution, we must require that the matrix X be nonsparse, or incoherent
according to Definition 3.1. In addition, the missing entries should be random
enough and should not fall into any special pattern.

Regarding the minimal number of entries needed, let us assume D D N for
simplicity. An N�N matrix X of rank d has 2Nd�d2 degrees of freedom.3 Therefore,
one should not expect to complete or recover a rank-d matrix uniquely with fewer
than O.dN/ entries, since in general, there will be infinitely many rank-d matrices
that have the same given entries.

The question is how many more entries are needed in order for the above
problem to have a unique solution and, even more importantly, for the solution to
be found efficiently. Since the above rank-minimization problem is NP-hard (even
if the solution exists and is unique), inspired by the compressive sensing story, we
consider the following convex relaxation:

min
A

kAk� s.t. P	.A/ D P	.X/; (3.28)

where kAk� D P
�i.A/ is the sum of the singular values of A, which is the convex

envelope of the rank function rank.A/.
The seminal work of (Candès and Recht 2009; Candès and Tao 2010; Gross

2011) has established that when the low-rank matrix X is incoherent and the
locations of the known entries are sampled uniformly at random, the minimizer to
the problem (3.28) is unique and equal to the correct matrix X even if the number of
given entries is barely above the minimum. More specifically, the minimum number
of measurements that are needed in order for the convex optimization to give the

3X can be factorized as X D UAA�1V>, where U; V 2 R
N�d have Nd entries each, and A 2 R

d�d

is an invertible matrix.

76 3 Robust Principal Component Analysis

correct solution with high probability is very close to the number of degrees of
freedom of the unknowns. The following theorem summarizes the results.

Theorem 3.2 (Low-Rank Matrix Completion by Convex Optimization). Let X be
a D�N matrix of rank d, with N � D. Assume that X is �-incoherent with respect to
the set of sparse matrices according to Definition 3.1. Let M be the expected number
of observed entries, whose locations are sampled independently and uniformly at
random.4 Then there is a numerical constant c such that if

M � c �4d N.log.N//2; (3.29)

then X is the unique solution to the problem in (3.28) with probability at least 1 �
N�3; that is, the program (3.28) recovers all the entries of X with no error.

Notice that for a general rank-d matrix, this bound is already very tight. To see
this, recall from our previous discussion that the minimum number of required
measurements is O.d N/. In essence, the theorem states that with only a polylog
factor5 of extra measurements, i.e., O.d N polylog.N//, we can obtain the unique
correct solution via convex optimization. This bound can be strengthened under
additional assumptions. For instance, if d D O.1/ (i.e., if X is a matrix whose rank
does not increase with its dimension), then the minimum number of entries needed
to guarantee the exact completion of X reduces to M � N log.N/ (Keshavan et al.
2010a). It is worth mentioning that the above statement is not limited to matrix
completion. As shown in (Gross 2011), the same bound and statement hold for the
compressive sensing of low-rank matrices with general linear observations P.X/,
i.e., for the problem (3.25), as long as the linear operator P is “incoherent” with the
matrix X.

Low-Rank Matrix Completion via Proximal Gradient
The work of (Cai et al. 2008) proposes to find the solution to the optimization
problem in (3.28) by solving the following problem:

min
A

kAk� C 1

2
kAk2

F s.t. P	.A/ D P	.X/; (3.30)

4Previously, we have used M to denote the number of observed entries in a specific matrix X.
Notice that here, M is the expected number of observed entries under a random model in which the
locations are sampled independently and uniformly at random. Thus, if p is the probability that an
entry is observed, then the expected number of observed entries is pDN. Therefore, one can state
the result either in terms of p or in terms of the expected number of observed entries, as we have
done. For ease of exposition, we will continue to refer to M as the number of observed entries in
the main text, but the reader is reminded that all the theoretical results refer to the expected number
of observed entries, because the model for the observed entries is random.
5A polylog factor means a polynomial in the log function, i.e., O.polylog.N// means O.log.N/k/

for some integer k.

3.1 PCA with Robustness to Missing Entries 77

in which the nuclear norm is augmented with a quadratic penalty term on A. As we
will see, the additional quadratic term leads to a very simple algorithm. Furthermore,
one can show that as the weight
 > 0 increases, the solution of this regularized
program converges to that of (3.28) (Cai et al. 2008).

More specifically, using the method of Lagrange multipliers described in
Appendix A, we can write the Lagrangian function of (3.30) as

L .A; Z/ D
kAk� C 1

2
kAk2

F C hZ;P	.X/ � P	.A/i; (3.31)

where Z 2 R
D�N is a matrix of Lagrange multipliers. The optimal solution is

given by the saddle point of the Lagrangian, i.e., the solution to the problem
maxZ minA L .A; Z/, which can be found by iterating the following two steps:

(
Ak D arg minA L .A; Zk�1/;

Zk D Zk�1 C ˇ @L
@Z .Ak; Zk�1/;

(3.32)

where ˇ > 0 is the step size. It is very easy to see that @L
@Z .Ak; Zk�1/ D P	.X/ �

P	.Ak/. To compute the optimal A given Zk�1, notice that hZ;P	.X/ � P	.A/i D
hP	.Z/; X � Ai, and by completing squares, we have

arg min
A

L .A; Z/ D arg min
A

kAk� C 1

2
kA � P	.Z/k2

F: (3.33)

The minimizer to this problem is given by the so-called proximal operator of the
nuclear norm: A� D D
 .P	.Z//, where D
 is the singular value thresholding
operator defined in (2.95). We have left the derivation as Exercise 2.16.

Hence, starting from Z0 D 0, the Lagrangian objective maxZ minA L .A; Z/

can be optimized via Algorithm 3.2. This is also known as the proximal gradient
descent method. Even though the objective function (3.31) is not smooth, this
method is known to converge as fast as the regular gradient descent method for
smooth functions, with a rate of O.1=k/. If one wants to obtain the solution to the
problem (3.28), one can repeat the algorithm with an increasing sequence of
 ’s and
at each run, initialize A with the value previously obtained.

Algorithm 3.2 (Low-Rank Matrix Completion by Proximal Gradient)

Input: Entries xij of a matrix X 2 R
D�N for .i; j/ 2 	 and parameter
 > 0.

1: Initialize Z 0.
2: repeat
3: A D
 .P	.Z//:

4: Z ZC ˇ.P	.X/� P	.A//:

5: until convergence of Z.

Output: Matrix A.

78 3 Robust Principal Component Analysis

Example 3.3 (Completing Face Images with Missing Pixels by Convex Opti-
mization) As we have seen in Chapter 2, under certain idealized circumstances
(such as Lambertian reflectance), images of the same object taken under different
illumination conditions lie near an approximately nine-dimensional linear subspace
known as the harmonic plane (Basri and Jacobs 2003). In this example, we exploit
such a low-dimensional structure to recover face images from the extended Yale
B data set that have been corrupted so that the intensity values of some pixels are
missing. The data matrix is formed by taking frontal face images of subject 20 under
all 64 different illumination conditions. Each image is down-sampled to size 96�84.
To synthesize a matrix with missing entries, a fraction of pixels from each image is
randomly selected as the missing entries. We apply the proximal gradient algorithm
described in Algorithm 3.2 to complete such “missing” entries. Figure 3.2 shows the
results of image completion for different parameters
 for varying levels of missing
entries (from 30% missing entries to 90%). Notice that with a proper choice of the
parameter
 (around
 D 4 � 105 in this case), the convex optimization method is
able to recover up to 80% of missing entries.

3.1.4 Incomplete PCA by Alternating Minimization

Although the convex-optimization-based approach can ensure correctness of the
low-rank solution for the matrix completion problem, it requires solving a convex
program of the same size as the matrix. When the data matrix X is very large,
parameterizing the low-rank solution A and Lagrange multipliers Z with two
matrices of the same size as X seems rather demanding, actually redundant. At least
the low-rank solution A could be parameterized more economically with its low-
rank factors. Hence, if scalability of the algorithm is a serious concern, it makes
sense to look for the low-rank factors of the solution matrix directly.

To this end, we introduce in this section an alternating minimization algorithm
for solving the geometric PCA problem with missing data. The main idea behind
this approach, which was probably first proposed in (Wiberg 1976), is to find �, U,
and Y that minimize the error kX ��1>�UYk2

F considering only the known entries
of X in the set 	 D f.i; j/ W wij D 1g, i.e.,

kP	.X � �1> � UY/k2
F D kW ˇ .X � �1> � UY/k2

F

D
DX

iD1

NX

jD1

wij.xij � �i � u>i yj/
2;

(3.34)

where xij is the .i; j/th entry of X, �i is the ith entry of �, u>i is the ith row of U, and
yj is the jth column of Y . Notice that this cost function is the same as that in (3.10),
except that the errors "ij D xij � u>i yj associated with the missing entries (wij D 0)
are removed.

3.1 PCA with Robustness to Missing Entries 79

Fig. 3.2 Matrix completion via convex optimization for face image completion. We take frontal
face images (size 96 � 84) of subject 20 from the extended Yale B data set and randomly select a
fraction of pixels as missing entries. Each column corresponds to input or result under a different
percentage of missing entries. The first row is the input images, and other rows show the completion
results by convex optimization with different values of
 for the algorithm. Each image shows one
typical example of the recovered 64 images.

80 3 Robust Principal Component Analysis

In what follows, we will derive an alternating minimization algorithm for
minimizing the cost function in (3.34). For the sake of simplicity, we will first
derive the algorithm in the case of zero-mean and complete data. In this case, the
problem in (3.34) reduces to a low-rank matrix approximation problem, which can
be solved using the SVD, as described in Theorem 2.3. The alternating minimization
algorithm to be derived provides an alternative to the SVD solution, which, however,
can be more easily extended to the case of incomplete data, as we will see. Moreover,
the algorithm can also be extended to the more challenging PCA problem with
missing entries, as we will see.

Matrix Factorization by Alternating Minimization
In the case of complete, zero-mean data, the optimization problem in (3.34) reduces
to the low-rank matrix approximation problem based on explicit factorization
minU;Y kX � UYk2

F. As we have seen in Chapter 2, this problem can be solved
from the SVD of X. Here, we consider an alternative method based on the
orthogonal power iteration method (Golub and Loan 1996) for computing the top d
eigenvectors of a square matrix.

Suppose that A 2 R
N�N is a symmetric positive semidefinite matrix with

eigenvectors fuigN
iD1 and eigenvalues f�igN

iD1 sorted in decreasing order. Suppose
that �1 > �2 and let u0 2 R

N be an arbitrary vector such that u>1 u0 ¤ 0. One can
show (see Exercise 3.3) that the sequence of vectors

ukC1 D Auk

kAukk (3.35)

converges to the top eigenvector of A up to sign, i.e., uk ! ˙u1, and that the rate
of convergence is �2

�1
. This method for computing the top eigenvector of a matrix is

called the power method.
More generally, assume that �d > �dC1 and let U0 2 R

N�d be an arbitrary matrix
whose column space is not orthogonal to the subspace fuigd

iD1 spanned by the top d
eigenvectors. One can show (see Exercise 3.3) that the sequence of matrices

UkC1 D AUk.Rk/�1; (3.36)

where QkRk D AUk is the QR decomposition of AUk, converges to a matrix U
whose columns are the top d eigenvectors of A and that the rate of convergence is
�dC1

�d
. This method for computing the top d eigenvectors of a matrix is called the

orthogonal power iteration method or Lanczos method (Lanczos 1950).
Power Factorization (PF) (Hartley and Schaffalitzky 2003) is a generalization

of the orthogonal power iteration approach for computing the top d singular
vectors of a (possibly) nonsquare matrix X. The main idea behind PF is that
given Y 2 R

d�N , an optimal solution for U 2 R
D�d that minimizes kX � UYk2

F
is given by XY>.YY>/�1. As before, such a matrix can be made orthogonal by

3.1 PCA with Robustness to Missing Entries 81

Algorithm 3.3 (Complete Matrix Factorization by Power Factorization)

Input: Matrices X 2 R
D�N and Y0 2 R

d�N .

1: initialize Y Y0.
2: repeat
3: Given Y , find U Q, where QR D XY>.YY>/�1.
4: Given U, find Y U>X.
5: until convergence of the product UY .

Output: Matrices U and Y .

replacing U by the Q factor of the QR decomposition of XY>.YY>/�1. Then, given
an orthogonal U, the optimal Y that minimizes kX � UYk2

F is U>X. The PF
algorithm (see Algorithm 3.3) then iterates between these two steps till convergence
is achieved. The method is guaranteed to converge to the rank-d approximation of
X, as stated in the following theorem, whose proof is left as an exercise to the reader
(see Exercise 3.4).

Theorem 3.4 (Power Factorization). Let Xd be the best rank-d approximation of X
according to the Frobenius norm. Let �i be the ith singular value of X. If �d > �dC1,
then there exists a constant c > 0 such that for all k � 0,

kXd � UkYkk2
F � c

��dC1

�d

2k
; (3.37)

where Uk and Yk are the values at iteration k of the matrices U and Y in
Algorithm 3.3.

Matrix Completion by Alternating Minimization
Let us now consider the matrix factorization problem with incomplete, zero-mean
data, i.e., the problem in (3.34) with � D 0. Taking the derivatives of the cost
function in (3.34) with respect to ui and yj and setting them to zero leads to

� NX

jD1

wijyjy
>
j

ui D

NX

jD1

wijxijyj; i D 1; : : : ; D; (3.38)

� DX

iD1

wijuiu>i

yj D
DX

iD1

wijxijui; j D 1; : : : ; N: (3.39)

Therefore, given Y , the optimal U can be computed linearly from (3.38). As before,
the constraint U>U D I can be enforced by replacing U by the Q factor of the QR
decomposition of U D QR. Then, given U, the optimal Y can be computed linearly
from (3.39). This leads to the PF algorithm for matrix factorization with missing
entries summarized in Algorithm 3.4.

82 3 Robust Principal Component Analysis

Algorithm 3.4 (Matrix Completion by Power Factorization)

Input: Matrices W ˇ X 2 R
D�N and Y0 2 R

d�N .

1: initialize Y Y0.
2: repeat
3: Given Y D �

y1; : : : ; yN

�
, solve min

U
kW ˇ .X � UY/k2F as

U D

2

6
6
4

u>

1

:
:
:

u>

D

3

7
7
5 ; ui

� NX

jD1

wijyjy
>

j

�1

NX

jD1

wijxijyj; i D 1; : : : ; D:

4: Normalize U UR�1, where QR D U.

5: Given U D

2

6
6
4

u>

1

:
:
:

u>

D

3

7
7
5, solve min

Y
kW ˇ .X � UY/k2F as

YD�
y1; : : : ; yN

�
; yj

� DX

iD1

wijuiu>

i

�1

DX

iD1

wijxijui; j D 1; : : : ; N:

6: until convergence of the sequence UY .

Output: U and Y .

Incomplete PCA by Alternating Minimization
Let us now consider the PCA problem in the case of incomplete data, i.e., the
problem in (3.34), where we want to recover both the mean � and the subspace basis
U. As in the case of complete data, the solution to this problem need not be unique,
because if .�; U; Y/ is an optimal solution, then so is .� � Ub; UA; A�1Y/ for all
b 2 R

d and A 2 R
d�d. To handle this issue, we usually enforce the constraints

U>U D I and Y1 D 0. For the sake of simplicity, we will forgo these constraints
for a moment, derive an algorithm for solving the unconstrained problem, and then
find a solution that satisfies the constraints.

To solve the unconstrained problem, let us take the derivatives of the cost function
in (3.34) with respect to �i, ui, and yj and set them to zero. This leads to

� NX

jD1

wij

�i D

NX

jD1

wij.xij � u>i yj/; i D 1; : : : ; D; (3.40)

� NX

jD1

wijyjy
>
j

ui D

NX

jD1

wij.xij � �i/yj; i D 1; : : : ; D; (3.41)

� DX

iD1

wijuiu>i

yj D
DX

iD1

wij.xij � �i/ui; j D 1; : : : ; N: (3.42)

3.1 PCA with Robustness to Missing Entries 83

Algorithm 3.5 (Incomplete PCA by Power Factorization)

Input: Matrix W, entries xij of .i; j/ such that wij D 1, and dimension d.

1: initialize

2

66
4

u>

1

:
:
:

u>

D

3

77
5 U0 2 R

D�d and
�
y1; : : : ; yN

� Y0 2 R
d�N .

2: repeat

3: �i
PN

jD1 wij.xij�u>

i yj/
PN

jD1 wij
.

4: ui
� NP

jD1

wijyjy
>

j

�1 NP

jD1

wij.xij � �i/yj.

5: U D

2

66
4

u>

1

:
:
:

u>

D

3

77
5 UR�1, where QR D

2

66
4

u>

1

:
:
:

u>

D

3

77
5.

6: Y D �
y1; : : : ; yN

�
where yj

� DP

iD1

wijuiu>

i

�1 DP

iD1

wij.xij � �i/ui.

7: until convergence of �1> C UY .

Output: �C 1
N UY1, U and Y.I � 1

N 11>/.

Therefore, given U and Y , the optimal � can be computed from (3.40). Likewise,
given � and Y , the optimal U can be computed linearly from (3.41). Also, given �

and U, the optimal Y can be computed linearly from (3.42).
As before, we can enforce the constraint U>U D I by replacing U by the Q

factor of the compact QR decomposition of U D QR. Also, we can enforce the
constraint Y1 D 0 by replacing � by � C 1

N UY1, and Y by Y.I � 1
N 11>/. This leads

to the alternating minimization approach for PCA with missing entries summarized
in Algorithm 3.5.

A similar alternating minimization approach was proposed in (Shum et al. 1995),
in which the steps in (3.40) and (3.41) are combined into a single step

NX

jD1

wij

�
yj

1

� �
yj

1

�> �
ui

�i

�
D

NX

jD1

wijxij

�
yj

1

�
; i D 1; : : : ; D: (3.43)

This leads to an alternating minimization scheme whereby given Y , one solves for
� and U from (3.43), and given � and U, one solves for Y from (3.42).

Ensuring Global Optimality of Alternating Minimization for Matrix Completion
According to Theorem 3.4, when the data matrix X 2 R

D�N is complete,
the alternating minimization method in Algorithm 3.3 is guaranteed to converge
exponentially to the optimal rank-d approximation of X as long as �dC1=�d < 1.
In the case of incomplete data, the alternating procedure in Algorithm 3.4 is
perhaps the simplest and most natural extension of Algorithm 3.3. However, since
the objective function is nonconvex, there is no guarantee that the algorithm will

84 3 Robust Principal Component Analysis

converge. Thus, a natural question is whether there are conditions on the rank of
X and the number of observed entries M under which the alternating minimization
approach is guaranteed to converge. Now, even if the algorithm were to converge,
there is no guarantee that it would converge to the globally optimal low-rank factors,
or that the product of the factors would give the optimal rank-d approximation of X.
Thus, another natural question is whether there are conditions on the rank of X
and the number of observed entries M under which the alternating minimization
approach is guaranteed to converge to the globally optimal rank-d approximation of
X, and hence perfectly complete X when it has rank d. According to Theorem 3.2,
the nuclear norm minimization approach in (3.28) is able to complete most rank-
d matrices from M � O.d N log.N/2/ entries. Thus, a natural conjecture is that
the alternating minimization approach should be able to complete a rank-d matrix
from a number of entries that depends on d, Npolylog.N/, and some ratio of
the singular values of X. However, while alternating minimization methods for
matrix completion have been used for many years, theoretical guarantees for the
convergence and optimality of such methods have remained elusive.

Nonetheless, recent progress in low-rank matrix factorization (Burer and Mon-
teiro 2005; Bach 2013; Haeffele et al. 2014) has shown that under certain conditions,
local minimizers for certain classes of matrix factorization problems are global
minimizers. Moreover, recent progress in low-rank matrix completion (Jain et al.
2012; Keshavan 2012; Hardt 2014; Jain and Netrapalli 2014) has shown that under
certain benign conditions, certain alternating minimization methods do converge to
the globally optimal solution with high probability when the matrix is of sufficiently
high dimension. While a detailed explanation of such results is far beyond the scope
of this book, we provide here a brief introduction with two purposes in mind. First,
the analytical conditions required for optimality provide good intuition as to when
we should expect low-rank matrix completion to work well in general. Second, some
of the proposed algorithms introduce some modifications to the above alternating
minimization methods, which may inspire readers to develop even better algorithms
in the future.

As before, we are interested in finding a rank-d factorization UY , with factors
U 2 R

D�d and Y 2 R
d�N , that best approximates the data matrix X 2 R

D�N given
the observed entries W ˇ X specified by the matrix W 2 f0; 1gD�N , i.e.,

min
U;Y

kW ˇ .X � UY/k2
F: (3.44)

The alternating minimization algorithm for solving this problem (Algorithm 3.4)
uses all of the observed entries of X at each iteration in order to update the factors. In
contrast, the work of (Jain et al. 2012) proposes a modified alternating minimization
algorithm (see Algorithm 3.6) that uses only a partition of the observed entries at
each iteration, whence the name partition alternating minimization. Specifically, the
set of observed entries W is partitioned into 2KC1 randomly chosen nonoverlapping
and equally sized subsets, denoted by W0; W1; : : : ; W2K . Then the updates of
the original alternating minimization algorithm, Algorithm 3.4, are applied using

3.1 PCA with Robustness to Missing Entries 85

Algorithm 3.6 (Matrix Completion by Partition Alternating Minimization)

Input: Observed matrix W ˇ X and partition matrices W1; : : : ; W2K .
1: initialization
2: U0 top d left singular vectors of the matrix 1

p W0 ˇ X.

3: U0 Q, where QR D U0 �H 2�
p

d
p

N

.U0/.

4: end initialization
5: for k D 0; 1; : : : ; K � 1 do
6: YkC1 arg minY jjWkC1 ˇ .UkY � X/k2F .
7: UkC1 arg minU jjWKCkC1 ˇ .UYkC1 � X/k2F .
8: end for

Output: Matrix UKYK .

the observed entries specified by WkC1 to update Y and the observed entries
specified by WKCkC1 to update U, for each k D 0; : : : ; K � 1, instead of those
specified by W. The second main difference between Algorithm 3.6 and the original
alternating minimization algorithm, Algorithm 3.4, is the way in which the factor
U is initialized. While in Algorithm 3.4, U is typically initialized at random, in
Algorithm 3.6, the factor U is initialized using the observed entries. Specifically, let
p be the probability that an entry is observed, and let M D pDN be the expected
number of observed entries. Let U be the top d singular vectors of 1

p W0 ˇ X, and
� > 0 the incoherence parameter for X according to Definition 3.1. We clip entries

of U that have magnitude greater than 2�
p

dp
N

to be zero and let the initial U0 be the
orthonormalized version of such U obtained via QR decomposition.

In short, there are two major differences between Algorithm 3.6 and Algo-
rithm 3.4: the initialization based on the singular vectors of 1

p W0 ˇ X and the update
in each iteration using only a subset of the observations. It is surprising that these
small modifications to the basic alternating minimization method can ensure that
the new procedure approximates the globally optimal solution as described by the
following theorem. A complete proof and explanation of this theorem is beyond the
scope of this book. We refer interested readers to (Jain et al. 2012).

Theorem 3.5 (Partition Alternating Minimization for Matrix Completion). Let X
be a D � N matrix of rank d, with N � D. Assume that X is �-incoherent with
respect to the set of sparse matrices according to Definition 3.1. Let M be the
expected number of observed entries, whose locations are sampled independently
and uniformly at random. If there exists a constant c > 0 such that

M � c �2
��1

�d

4

d4:5N log.N/ log
�dkXkF

"

; (3.45)

then with high probability, for K D C0 log.kXkF="/ with some constant C0 > 0, the
outputs of Algorithm 3.6 satisfy kX � UKYKkF � ".

86 3 Robust Principal Component Analysis

In words, the alternating minimization procedure guarantees to recover X up to
precision " in O.log.1="// steps given that the number of observations is of order
O.d4:5N log.N/ log.d//. This result is in perfect agreement with our conjecture that
the sample complexity of alternating minimization for matrix completion should
depend on d, Npolylog.N/, and some ratio of the singular values of X. However,
by comparing this result with the one for the convex optimization approach, M �
O.�2dN log.N/2/, we see that this comes at the cost of an increase of the sample
complexity as a function of d from linear to polynomial. This has motivated the
development of modified versions of Algorithm 3.6 that are guaranteed to recover
X up to precision " under either incomparable or weaker conditions. For example,
the method proposed in (Keshavan 2012) requires the expected number of observed
entries to satisfy (for some constant c)

M � c �
��1

�d

8

dN log
�N

"

; (3.46)

which is superior when the matrix has a small condition number, while the method
in (Hardt 2014) requires the expected number of observed entries to satisfy (for
some constant c)

M � c �
��1

�d

2

d2
�

d C log

N

"

�
N; (3.47)

which reduces the exponent of both the ratio of the singular values as well as the
subspace dimension.

Observe also that the results of (Jain et al. 2012; Hardt 2014) are of a slightly
different flavor from that of results for convex optimization-based methods, since
the minimum number of observed entries depends not only on the dimension of the
subspace d, but also on the condition number �1=�d, which could be arbitrarily large,
and the desired accuracy ". In particular, to achieve perfect completion (" D 0), we
would need to observe the whole matrix. To address this issue, the work of (Jain
and Netrapalli 2014) proposes a factorized version of the singular value projection
algorithm of (Jain et al. 2010), called stagewise singular value projection, which
is guaranteed to complete a rank-d matrix X exactly, provided that the expected
number of observed entries satisfies (for some constant c)

M � c �4d5N.log.N//3: (3.48)

Evidently, this result is worse than that for the nuclear norm minimization approach,
which has sample complexity O.�2dN log.N/2/. But this comes at the advantage of
improving the computational complexity from O.N3 log. 1

"
// for the nuclear norm

minimization approach to O.�4d7N log3.N/ log. 1
"
// for the stagewise singular value

projection.
In summary, there is currently great interest in trying to develop alternating

minimization algorithms for matrix completion with theoretical guarantees of

3.2 PCA with Robustness to Corrupted Entries 87

convergence to the optimal rank-d matrix. Such algorithms are computationally less
expensive that the nuclear minimization approach, but this comes at the cost of
tolerating a smaller number of missing entries. However, as of the writing of this
book, existing results do not directly apply to the basic alternating minimization
procedure given in Algorithm 3.4. We conjecture that this procedure should be able
to correctly complete a matrix under conditions similar to those presented in this
section. Having such a result would be important, because in practice, it may be
preferable to use Algorithm 3.4 because it is simpler and easier to implement.

Example 3.6 (Completing Face Images with Missing Pixels by Power Factor-
ization) In Example 3.3, we applied the convex optimization approach (Algo-
rithm 3.2) to complete face images in the extended Yale B data set with missing
pixels. In this example, we apply the PF method for incomplete PCA (Algo-
rithm 3.5) to the same images. Figure 3.3 shows the results for different values
of the subspace dimension d. We see that for a proper choice of d (in this case from
2 to 9), the PF method works rather well up to 70% of random missing entries.
However, PF fails completely for higher percentages of missing entries. This is
because PF can become numerically unstable when some of the matrices are not
invertible. Specifically, since there are only N D 64 face images, it is likely that
for some rows of the data matrix, the number of observed entries is less than d;
thus the matrix

PN
jD1 wijyjy

>
j in line 4 of Algorithm 3.5 becomes rank-deficient. We

also observed that as expected, PF is faster than the convex approach. Specifically,
in this example, PF took 1.48 seconds in MATLAB, while the convex optimization
approach took 10.15 seconds.

3.2 PCA with Robustness to Corrupted Entries

In the previous section, we considered the PCA problem in the case that some entries
of the data points are missing. In this section, we consider the PCA problem in the
case that some of the entries of the data points have been corrupted by gross errors,
known as intrasample outliers. The additional challenge is that we do not know
which entries have been corrupted. Thus, the problem is to simultaneously detect
which entries have been corrupted and replace them by their uncorrupted values. In
some literature, this problem is referred to as the robust PCA problem (De la Torre
and Black 2004; Candès et al. 2011).

Let us first recall the PCA problem (see Section 2.1.2) in which we are given N
data points X D fxj 2 R

DgN
jD1 drawn (approximately) from a d-dimensional affine

subspace S D fx D � C Uyg, where � 2 R
D is an arbitrary point in S, U 2 R

D�d

is a basis for S, and fyj 2 R
dgN

jD1 are the principal components. In the robust PCA
problem, we assume that the ith entry xij of a data point xj is obtained by corrupting
the ith entry `ij of a point `j lying perfectly on the subspace S by an error eij, i.e.,

xij D `ij C eij; or xj D `j C ej; or X D L C E; (3.49)

88 3 Robust Principal Component Analysis

Fig. 3.3 Power factorization for recovering face images. We take frontal face images (size 96�84)
of subject 20 from the extended Yale B data set and randomly select a fraction of pixels as missing
entries. Each column corresponds to input or result under a different percentage of missing entries.
The first row is the input images, and other rows are the results obtained by power factorization
with different values of d used. Each image shows one typical example of the recovered 64 images.

3.2 PCA with Robustness to Corrupted Entries 89

where X; L; E 2 R
D�N are matrices with entries xij, `ij, and eij, respectively. Such

errors can have a huge impact on the estimation of the subspace. Thus it is very
important to be able to detect the locations of those errors,

	 D f.i; j/ W eij ¤ 0g; (3.50)

as well as correct the erroneous entries before applying PCA to the given data.
As discussed before, a key difference between the robust PCA problem and the

incomplete PCA problem is that we do not know the location of the corrupted
entries. This makes the robust PCA problem harder, since we need to simultaneously
detect and correct the errors. Nonetheless, when the number of corrupted entries is
a small enough fraction of the total number of entries, i.e., when j	j < � � DN for
some � < 1, we may still hope to be able to detect and correct such errors. In the
remainder of this section, we describe methods from robust statistics and convex
optimization for addressing this problem.

3.2.1 Robust PCA by Iteratively Reweighted Least Squares

One of the simplest algorithms for dealing with corrupted entries is the iteratively
reweighted least squares (IRLS) approach proposed in (De la Torre and Black 2004).
In this approach, a subspace is fit to the corrupted data points using standard PCA.
The corrupted entries are detected as those that have a large residual with respect to
the identified subspace. A new subspace is estimated with the detected corruptions
down-weighted. This process is then repeated until the estimated model stabilizes.

The first step is to apply standard PCA to the given data. Recall from Section
2.1.2 that when the data points fxj 2 R

DgN
jD1 have no gross corruptions, an optimal

solution to PCA can be obtained as

O� D 1

N

NX

jD1

xj and Oyj D OU>.xj � �/; (3.51)

where OU is a D � d matrix whose columns are the top d eigenvectors of

O†N D 1

N

NX

jD1

.xj � O�/.xj � O�/>: (3.52)

When the data points are corrupted by gross errors, we may improve the
estimation of the subspace by recomputing the model parameters after down-
weighting samples that have large residuals. More specifically, let wij 2 Œ0; 1� be
a weight assigned to the ith entry of xj such that wij 	 1 if xij is not corrupted,

90 3 Robust Principal Component Analysis

and wij 	 0 otherwise. Then a new estimate of the subspace can be obtained by
minimizing the weighted sum of the least-squares errors between a point xj and its
projection � C Uyj onto the subspace S, i.e.,

DX

iD1

NX

jD1

wij.xij � �i � u>i yj/
2; (3.53)

where �i is the ith entry of �, u>i is the ith row of U, and yj is the vector of
coordinates of the point xj in the subspace S.

Notice that the above objective function is identical to the objective function
in (3.34), which we used for incomplete PCA. The only difference is that in
incomplete PCA, wij 2 f0; 1g denotes whether xij is observed or unobserved, while
here wij 2 Œ0; 1� denotes whether xij is corrupted or uncorrupted. Other than that, the
iterative procedure for computing �, U, and Y given W is the same as that outlined
in Algorithm 3.5.

Given �, U, and Y , the main question is how to update the weights. A simple
approach is to set the weights depending on the residual "ij D xij � �i � u>i yj. Our
expectation is that when the residual is small, xij is not corrupted, and so we should
set wij 	 1. Conversely, when the residual is large, xij is corrupted, and so we should
set wij 	 0. Maximum-likelihood-type estimators (M-Estimators) define the weights
to be

wij D �."ij/="2
ij (3.54)

for some robust loss function �.�/. The objective function then becomes

DX

iD1

NX

jD1

�."ij/: (3.55)

Many loss functions �.�/ have been proposed in the statistics literature (Huber 1981;
Barnett and Lewis 1983). When �."/ D "2, all weights are equal to 1, and we obtain
the standard least-squares solution, which is not robust. Other robust loss functions
include the following:

1. L1 loss: �."/ D j"j;
2. Cauchy loss: �."/ D "2

0 log.1 C "2="2
0/;

3. Huber loss (Huber 1981): �."/ D
(

"2 if j"j < "0;

2"0j"j � "2
0 otherwiseI

4. Geman–McClure loss (Geman and McClure 1987): �."/ D "2

"2C"2
0

,

where "0 > 0 is a parameter. Following the work of (De la Torre and Black 2004),
we use the Geman–McClure loss scaled by "2

0, which gives

3.2 PCA with Robustness to Corrupted Entries 91

Algorithm 3.7 (Robust PCA by Iteratively Reweighted Least Squares)

Input: Data matrix X, dimension d, and parameter "0 > 0.

1: initialize Œ�; U; Y� D PCA.X/ using PCA from Chapter 2.
2: repeat
3: "ij xij � �i � u>

i yj.

4: wij "2
0

"2
ijC"2

0

.

5: �i
PN

jD1 wij.xij�u>

i yj/
PN

jD1 wij
.

6: ui
� NP

jD1

wijyjy
>

j

�1 NP

jD1

wij.xij � �i/yj.

7: U D

2

6
6
4

u>

1

:
:
:

u>

D

3

7
7
5

2

6
6
4

u>

1

:
:
:

u>

D

3

7
7
5 R�1, where QR D

2

6
6
4

u>

1

:
:
:

u>

D

3

7
7
5.

8: Y D �
y1; : : : ; yN

�
where yj

� DP

iD1

wijuiu>

i

�1 DP

iD1

wij.xij � �i/ui.

9: until convergence of �1> C UY .

10: � �C 1
N UY1, Y Y.I � 1

N 11>/, L UY , and E X � L.
Output: �, U, Y , L and E.

wij D "2
0

"2
ij C "2

0

: (3.56)

The overall algorithm for PCA with corruptions is summarized in Algorithm 3.7.
This algorithm initializes all the weights to wij D 1. This gives an initial estimate
for the subspace, which is the same as that given by PCA. Given this initial estimate
of the subspace, the weights wij are computed from the residuals as in (3.56). Given
these weights, one can reestimate the subspace using the steps of Algorithm 3.5. One
can then iterate between computing the weights given the subspace and computing
the subspace given the weights.

Example 3.7 (Face Shadow Removal by Iteratively Reweighted Least Squares)
As we have seen in Chapter 2, the set of images of a convex Lambertian
object obtained under different lighting conditions lies close to a nine-dimensional
linear subspace known as the harmonic plane (Basri and Jacobs 2003). However,
since faces are neither perfectly convex nor Lambertian, face images taken under
different illuminations often suffer from several nuances such as self-shadowing,
specularities, and saturations in brightness. Under the assumption that the images of
a person’s face are aligned, the above robust PCA algorithm offers a principled way
of removing the shadows and specularities, because such artifacts are concentrated
on small portions of the face images, i.e., they are sparse in the image domain.
In this example, we use the frontal face images of subject 20 under 64 different

92 3 Robust Principal Component Analysis

Fig. 3.4 Removing shadows and specularities from face images using IRLS for PCA with
corrupted data. We apply Algorithm 3.7 to 64 frontal face images of subject 20 from the extended
Yale B data set. Each image is of size 96� 84. (a) Four out of 64 representative input face images.
(b) Recovered images from the low-rank component L (first row) and sparse errors E (second row).

illumination conditions. Each image is down-sampled to size 96�84. We then apply
the IRLS method (Algorithm 3.7) with "0 D 1 and d D 4 to remove the shadows
and specularities in the face images. The results in Figure 3.4 show that the IRLS
method is able to do a reasonably good job of removing some of the shadows and
specularities around the nose and eyes area. However, the error image in the third
column shows that the recovered errors are not very sparse, and the method could
confuse valid image signal due to darkness with true errors (caused by shadows,
etc.)

3.2.2 Robust PCA by Convex Optimization

Although the IRLS scheme for robust PCA is very simple and efficient to imple-
ment, and widely used in practice, there is no immediate guarantee that the method
converges. Moreover, even if the method were to converge, there is no guarantee that
the solution to which it converges corresponds to the correct low-rank matrix. As we
have seen in the low-rank matrix completion problem, we should not even expect
the problem to have a meaningful solution unless proper conditions are imposed on
the low-rank matrix and the matrix of errors.

3.2 PCA with Robustness to Corrupted Entries 93

In this section, we will derive conditions under which the robust PCA problem
is well posed and admits an efficient solution. To this end, we will formulate
the robust PCA problem as a (nonconvex and nonsmooth) rank minimization
problem in which we seek to decompose the data matrix X as the sum of a low-
rank matrix L and a matrix of errors E. Similar to the matrix completion case,
we will study convex relaxations of the rank minimization problem and resort
to advanced tools from high-dimensional statistics to show that under certain
conditions, the convex relaxations can effectively and efficiently recover a low-rank
matrix with intrasample outliers as long as the outliers are sparse enough. Although
the mathematical theory that supports the correctness of these methods is far beyond
the scope of this book, we will introduce the key ideas and results of this approach
to PCA with intrasample outliers.

More specifically, we assume that the given data matrix X is generated as the sum
of two matrices

X D L0 C E0: (3.57)

The matrix L0 represents the ideal low-rank data matrix, while the matrix E0

represents the intrasample outliers. Since many entries of X are not corrupted
(otherwise, the problem would not be well posed), many entries of E0 should
be zero. As a consequence, we can pose the robust PCA problem as one of
decomposing a given matrix X as the sum of two matrices L C E, where L is of
low rank and E is sparse. This problem can be formulated as

min
L;E

rank.L/ C �kEk0 s.t. X D L C E; (3.58)

where kEk0 is the number of nonzero entries in E, and � > 0 is a tradeoff parameter.

Robust PCA as a Well-Posed Problem
At first sight, it may seem that solving the problem in (3.58) is impossible. First of
all, we have an underdetermined system of DN linear equations in 2DN unknowns.
Among the many possible solutions, we are searching for a solution .L; E/ such that
L is of low rank and E is sparse. However, such a solution may not be unique. For
instance, if x11 D 1 and xij D 0 for all .i; j/ ¤ .1; 1/, then the matrix X is both of
rank 1 and sparse. Thus, if � D 1, we can choose .L; E/ D .X; 0/ or .L; E/ D .0; X/

as valid solutions. To avoid such an ambiguity, as suggested by the results for matrix
completion, the low-rank matrix L0 should be in some sense “incoherent” with the
sparse corruption matrix E0. That is, the low-rank matrix L0 itself should not be
sparse. To capture this, we will assume that L0 is an incoherent matrix according to
Definition 3.1. Second of all, as suggested also by results for matrix completion, if
we want to recover the low-rank matrix L0 correctly, the locations of the corrupted
entries should not fall into any conspicuous pattern. Therefore, as in the matrix
completion problem, we will assume that the locations of the corrupted entries are
distributed uniformly at random so that the chance that they form any conspicuous
pattern is very low.

94 3 Robust Principal Component Analysis

As we will see, under the above condition of incoherence and random corrup-
tions, the problem in (3.58) will become well posed for most matrices X. However,
to be able to state the precise conditions under which the solution to (3.58) coincides
with .L0; E0/, we first need to study the question of how to efficiently solve the
problem in (3.58).

Recovering a Low-Rank Matrix or a Sparse Vector by Convex Relaxation
Observe that even if the conditions above could guarantee that the problem in (3.58)
has a unique globally optimal solution, another challenge is that the cost function
to be minimized is nonconvex and nondifferentiable. In fact, it is well known that
the problem of recovering either a low-rank matrix C or a sparse signal c from
undersampled linear measurements B or b, i.e.,

min
C

rank.C/ s.t. P.C/ D B; or min
c

kck0 s.t. Ac D b; (3.59)

is in general NP-hard (Amaldi and Kann 1998).
As we have seen for the low-rank matrix completion problem, the difficulty of

solving the rank minimization on the left-hand side of (3.59) can be alleviated by
minimizing the convex envelope of the rank function, which is given by the matrix
nuclear norm kCk� and gives rise to the following optimization problem:

min
C

kCk� s.t. P.C/ D B: (3.60)

As it turns out, convex relaxation works equally well for finding the sparsest
solution to a highly underdetermined system of linear equations Ac D b, which
is the problem on the right-hand side of (3.59). This class of problems is known
in the literature as compressed or compressive sensing (Candès 2006). Since this
linear system is underdetermined, in general there could be many solutions c to the
equation Ac D b. This mimics the matrix completion problem, where the number
of given measurements is much less than the number of variables to be estimated
or recovered (all the entries of the matrix). Hence we want to know under what
conditions the sparsest solution to Ac D b is unique and can be found efficiently.

To this end, we briefly survey results from the compressive sensing literature
(see (Candès and Tao 2005; Candès 2008) and others). Without loss of generality,
let us assume that A is an m � n matrix with m � n whose columns have unit
norm. Let b D Ac0, where c0 is k-sparse, i.e., c0 has at most k nonzero entries. Our
goal is to recover c0 by solving the optimization problem on the right-hand side
of (3.59). Notice that if A has two identical columns, say columns 1 and 2, then
Qc0 D Œ1; �1; 0; : : : ; 0�> satisfies AQc0 D 0. Thus, if c0 is a sparse solution to Ac D b,
then so is c0 C Qc0. More generally, if A has very sparse vectors in its (right) null
space, then sparse solutions to Ac D b are less likely to be unique. Hence, to ensure
the uniqueness of the sparsest solution, we typically need the measurement matrix
A to be mutually incoherent, as defined next.

3.2 PCA with Robustness to Corrupted Entries 95

Definition 3.8 (Mutual Coherence). The mutual coherence of a matrix A 2 R
m�n

is defined as

�.A/ D max
i¤jD1;:::;n

ja>i ajj: (3.61)

A matrix is said to be mutually incoherent with parameter � if �.A/ < �.

This definition of incoherence is not to be confused with that in Definition 3.1.
Definition 3.8 tries to capture whether each column of A is incoherent with other
columns so that no sparse number of columns can be linearly independent, whence
the name mutual coherence. This notion is useful for finding a sparse solution to a set
of linear equations, as we will see in Theorem 3.10. On the other hand, Definition 3.1
tries to capture whether the matrix as a whole is incoherent with respect to sparse
missing entries or sparse corruptions, whence the name incoherence with respect
to sparse matrices. This notion of incoherence is useful for solving the matrix
completion problem, as we saw in Theorem 3.2, and will be useful for solving the
robust PCA problem, as we will see in Theorem 3.66.

Another property of a matrix that is typically used to characterize the conditions
under which it is possible to solve a linear system is the notion of restricted isometry,
as defined next.

Definition 3.9. Given an integer k, the restricted isometry constant of a matrix A
is the smallest number ık.A/ such that for all c with kck0 � k, we have

.1 � ık.A//kck2
2 � kAck2

2 � .1 C ık.A//kck2
2: (3.62)

The remarkable results from compressive sensing have shown that if the mea-
surement matrix A is sufficiently incoherent or the restricted isometry constant is
small enough, then to find the correct sparsest solution to Ac D b, we can replace
the `0 norm in (3.59) by its convex envelope, the `1 norm, which gives rise to the
following optimization problem:

min
c

kck1 s.t. b D Ac: (3.63)

More precisely, we have the following result:

Theorem 3.10 (Sparse Recovery under Incoherence or Restricted Isometry). If the
matrix A is incoherent, i.e., if �.A/ < 1

2k�1
, or if it satisfies the restricted isometry

property (RIP) ı2k.A/ <
p

2�1, then the optimal solution c� to the `1-minimization
problem in (3.63) is the correct sparsest solution, i.e., c� D c0.

In other words, when the matrix A is incoherent enough, the sparsest solution to the
linear system Ac D b can be obtained by solving a convex `1-minimization problem
as opposed to an NP-hard `0-minimization problem.

96 3 Robust Principal Component Analysis

Robust PCA by Convex Relaxation
Inspired by the above convex relaxation techniques, for the robust PCA problem
in (3.58) we would expect that under certain conditions on L0 and E0, we can
decompose X as L0 C E0 by solving the following convex optimization problem:

min
L;E

kLk� C �kEk1 s.t. X D L C E; (3.64)

where kLk� D P
i �i.L/ is the nuclear norm of L, i.e., the sum of its singular values,

and kEk1 D P
i;j jeijj is the `1 norm of E viewed as a vector. This convex program

is known as principal component pursuit (PCP).
The following theorem gives precise conditions on the rank of the matrix and

the percentage of outliers under which the optimal solution of the above convex
program is exactly .L0; E0/ with overwhelming probability.

Theorem 3.11 (Robust PCA by Principal Component Pursuit (Candès et al. 2011)).
Let X D L0 C E0. Assume that L0 D U†V> is �-incoherent with respect to the set
of sparse matrices according to Definition 3.1. Assume also that the support of E0

is uniformly distributed among all the sets of cardinality D � N. If

rank.L0/ � �d minfD; Ng
�2 log2

maxfD; Ng� and kE0k0 � �sND (3.65)

for some constant �d; �s > 0, then there is a constant c such that with probability
at least 1 � c maxfN; Dg�10, the solution .L�; E�/ to (3.64) with � D 1p

maxfN;Dg is
exact, i.e.,

L� D L0 and E� D E0: (3.66)

A complete proof and explanation for this theorem is beyond the scope of this
book; interested readers are referred to (Candès et al. 2011). But this does not
prevent us from understanding its implications and using it to develop practical
solutions for real problems. The theorem essentially says that as long as the low-rank
matrix is incoherent and its rank is bounded almost linearly from its dimension, the
PCP program can correctly recover the low-rank matrix even if a constant fraction
of its entries are corrupted. Other results show that under some additional benign
conditions, say the signs of the entries of E0 are random, the convex optimization
can correct an arbitrarily high percentage of errors if the matrix is sufficiently large
(Ganesh et al. 2010).

Alternating Direction Method of Multipliers for Principal Component Pursuit
Assuming that the conditions of Theorem 3.66 are satisfied, the next question is how
to find the global minimum of the convex optimization problem in (3.64). Although
in principle, many convex optimization solvers can be used, we introduce here an
algorithm based on the augmented Lagrange multiplier (ALM) method suggested
by (Candès et al. 2011; Lin et al. 2011).

3.2 PCA with Robustness to Corrupted Entries 97

The ALM method operates on the augmented Lagrangian

L .L; E; ƒ/ D kLk� C �kEk1 C hƒ; X � L � Ei C ˇ

2
kX � L � Ek2

F: (3.67)

A generic Lagrange multiplier algorithm (Bertsekas 1999) would solve PCP
by repeatedly setting .Lk; Ek/ D arg minL;E L .L; E; ƒk/ and then updating the
Lagrange multiplier matrix by ƒkC1 D ƒk C ˇ.X � Lk � Ek/. This is also known as
the exact ALM method.

For our low-rank and sparse decomposition problem, we can avoid having to
solve a sequence of convex programs by recognizing that minL L .L; E; ƒ/ and
minE L .L; E; ƒ/ both have very simple and efficient solutions. In particular, it is
easy to show that

arg min
E

L .L; E; ƒ/ D S�ˇ�1 .X � L C ˇ�1ƒ/; (3.68)

where S
 .X/ is the soft-thresholding operator defined in (2.96) applied to each entry
x of the matrix X as S
 .x/ D sign.x/ max.jxj �
; 0/. Similarly, it is not difficult to
show that (see Exercise 2.16)

arg min
L

L .L; E; ƒ/ D Dˇ�1 .X � E C ˇ�1ƒ/; (3.69)

where D
 .X/ is the singular value thresholding operator defined in (2.95) as
D
 .X/ D US
 .†/V�, where U†V� is any singular value decomposition of X.

Thus, a more practical strategy is first to minimize L with respect to L (fixing E),
then minimize L with respect to E (fixing L), and then finally update the Lagrange
multiplier matrix ƒ based on the residual X � L � E, a strategy that is summarized
as Algorithm 3.8 below.

Algorithm 3.8 is a special case of a general class of algorithms known as
alternating direction method of multipliers (ADMM), described in Appendix A.
The convergence of these algorithms has been well studied and established (see
e.g., (Lions and Mercier 1979; Kontogiorgis and Meyer 1989) and the many
references therein, as well as discussion in (Lin et al. 2011; Yuan and Yang 2009)).
Algorithm 3.8 performs excellently on a wide range of problems: relatively small
numbers of iterations suffice to achieve good relative accuracy. The dominant cost
of each iteration is computing LkC1 by singular value thresholding. This requires us
to compute the singular vectors of X � Ek C ˇ�1�k whose corresponding singular
values exceed the threshold ˇ�1. Empirically, the number of such large singular
values is often bounded by rank.L0/, allowing the next iterate to be computed
efficiently by a partial SVD.6 The most important implementation details for this

6Further performance gains might be possible by replacing this partial SVD with an approximate
SVD, as suggested in (Goldfarb and Ma 2009) for nuclear norm minimization.

98 3 Robust Principal Component Analysis

Algorithm 3.8 (Principal Component Pursuit by ADMM (Lin et al. 2011))

1: initialize: E0 D ƒ0 D 0; ˇ > 0.
2: while not converged do
3: compute LkC1 D Dˇ�1 .X � Ek C ˇ�1ƒk/.
4: compute EkC1 D S�ˇ�1 .X � LkC1 C ˇ�1ƒk/.
5: compute ƒkC1 D ƒk C ˇ.X � LkC1 � EkC1/.
6: end while
7: output: L; E.

algorithm are the choice of ˇ and the stopping criterion. In this work, we simply
choose ˇ D ND=4kXk1, as suggested in (Yuan and Yang 2009).

Some Extensions to PCP
In most practical applications, there is also small dense noise in the data. So a more
realistic model for robust PCA can be X D L C E C Z, where Z is a Gaussian matrix
that models small Gaussian noise in the given data. In this case, we can no longer
expect to recover the exact solution to the low-rank matrix (which is impossible
even if there are no outliers). Nevertheless, one can show that the natural convex
extension

min
L;E

kLk� C �kEk1 s.t. kX � L � Ek2
2 � "2; (3.70)

where " is the known noise variance, gives a stable estimate to the low-rank and
sparse components L and E, subject to a small residual proportional to the noise
variance (Zhou et al. 2010b).

Another extension is to recover a low-rank matrix from both corrupted and
compressive measurements. In other words, we try to recover the low-rank and
sparse components .L; E/ of X D L C E from only some of its linear measurements:
PQ.X/, where PQ.�/ could be a general linear operator. The special case in which
the operator represents a subset of the entries has been covered in the original work
of principal component pursuit (Candès et al. 2011). It has been shown that under
similar conditions as in Theorem 3.66, one can correctly recover the low-rank and
sparse components by the following optimization:

min
L;E

kLk� C �kEk1 s.t. P	.X/ D P	.L C E/; (3.71)

where as in matrix completion, P	.�/ represents projection onto the observed
entries.

The case of a more general linear operator PQ.�/ for projecting onto an arbitrary
subspace Q has also been studied in (Wright et al. 2013) and is known as
compressive principal component pursuit (CPCP). It has been shown that under
fairly broad conditions (so that Q is in some sense “incoherent” to L and E), the

3.3 PCA with Robustness to Outliers 99

low-rank and sparse components can be correctly recovered by the following convex
program:

min
L;E

kLk� C �kEk1 s.t. PQ.X/ D PQ.L C E/: (3.72)

We leave as an exercise for the reader (see Exercise 3.8) to derive an algorithm for
solving the above problems using ideas from Lagrangian methods and alternating
direction minimization methods (please refer to Appendix A).

Example 3.12 (Face Shadow Removal by PCP) As we have seen in Example 3.7,
robust PCA can be used to remove shadows and specularities in face images that are
typically sparse in the image domain. In this example, we apply the PCP method
to the same face images in Example 3.7, which correspond to frontal face images
of subject 20 under 64 different illuminations (see Figure 3.5). As before, each
image is down-sampled to size 96 � 84. We solve the PCP problem using both
the exact ALM method and the inexact method via ADMM (Algorithm 3.8). We
set the parameter � according to Theorem 3.66. The exact and the inexact ALM
methods give almost identical results, but the latter is much faster than the former:
2.68 seconds for inexact ALM versus 42.0 seconds for exact ALM in MATLAB
on a typical desktop computer. As a comparison, the IRLS method in Example 3.7
takes 2.68 seconds on average. Comparing with the results in Figure 3.4 obtained
by the IRLS method, the results given by PCP are qualitatively better in the sense
that the recovered errors are indeed sparse and correspond better to true corruptions
in the face images due to shadows and specularities. In particular, we can appreciate
a significant improvement in the third image. This technique is potentially useful
for preprocessing training images in face recognition systems to remove such
deviations from the linear model. We leave the implementation of the algorithms
as a programming exercise to the reader (see Exercise 3.10).

3.3 PCA with Robustness to Outliers

Another issue that we often encounter in practice is that a small portion of the data
points does not fit the subspace as well as the rest of the data. Such points are called
outliers or outlying samples, and their presence can lead to a completely wrong
estimate of the underlying subspace. Therefore, it is very important to develop
methods for detecting and eliminating outliers from the given data.

The true nature of outliers can be very elusive. In fact, there is really no
unanimous definition for what an outlier is.7 Outliers could be atypical samples that
have an unusually large influence on the estimated model parameters. Outliers could

7For a more thorough exposition of outliers in statistics, we recommend the books of (Barnett and
Lewis 1983; Huber 1981).

100 3 Robust Principal Component Analysis

Fig. 3.5 Removing shadows and specularities from face images by principal component pursuit.
We apply Algorithm 3.7 to 64 frontal face images of subject 20 from the extended Yale B database.
Each image is of size 96�84. (a) Four out of 64 representative input face images. (b)-(c) Recovered
images from the low-rank component L (first row) and sparse errors E (second row).

also be perfectly valid samples from the same distribution as the rest of the data that
happen to be small-probability instances. Alternatively, outliers could be samples
drawn from a different model, and therefore they will likely not be consistent with
the model derived from the rest of the data. In principle, however, there is no way to
tell which is the case for a particular “outlying” sample point.

In this section, we will discuss two families of methods for dealing with outliers
in the context of PCA. The first family will include classical methods based on the

3.3 PCA with Robustness to Outliers 101

robust statistics literature described in Appendix B. The second family will include
modern convex optimization techniques similar to those we have described in the
previous two sections for incomplete PCA and robust PCA.

3.3.1 Outlier Detection by Robust Statistics

We begin by discussing three classical approaches from robust statistics for dealing
with outliers in the context of PCA. The first method, called an influence-based
method, detects outliers as points that have a large influence in the estimated
subspace. The second method detects outliers as points whose probability of
belonging to the subspace is very low or whose distance to the subspace is very high.
Interestingly, this latter method leads to an IRLS approach to detecting outliers. The
third method detects outliers by random sample consensus techniques.

Influence-Based Outlier Detection
This approach relies on the assumption that an outlier is an atypical sample that
has an unusually large influence on the estimated subspace. This leads to an outlier
detection scheme whereby the influence of a sample is determined by comparing
the subspace OS D . O�; OU/ estimated with all the samples, and the subspace OS.�j/ D
. O�.�j/; OU.�j// estimated without the jth sample. For instance, one may use a sample

influence function based on some distance between OS and OS.�j/ such as

dist. OS; OS.�j// D †

span. OU/; span. OU.�j//

�
or (3.73)

dist. OS; OS.�j// D k.I � OU OU>/�.�j/k C k.I � OU.�j/ OU>.�j//�k: (3.74)

The first quantity is the largest subspace angle (see Exercise 2.8) between the linear
subspace spanned by OU and the linear subspace spanned by OU.�j/. Such a distance
measures the influence based on comparing only the linear part of the subspaces,
which is appropriate only when the subspaces are linear but may fail otherwise. On
the other hand, the second quantity is based on the orthogonal distance from point
� in OS to the subspace OS.�j/, plus the orthogonal distance from point �.�j/ in OS.�j/

to the subspace OS. This distance is more appropriate for comparing the affine part
of the subspaces and can be combined with the distance between the linear parts to
form a distance between affine subspaces. Given any such distance, the larger the
value of the distance, the larger the influence of xj on the estimate, and the more
likely it is that xj is an outlier. Thus, we may detect sample xj as an outlier if its
influence is above some threshold
 > 0, i.e.,

dist.OS; OS.�j// �
: (3.75)

102 3 Robust Principal Component Analysis

However, this method does not come without extra cost. We need to compute
the principal components (and hence perform SVD) N C 1 times: once with all
the samples together and another N times with one sample eliminated. There have
been many studies that aim to give a formula that can accurately approximate the
sample influence without performing SVD N C 1 times. Such a formula is called
a theoretical influence function (see Appendix B). For a more detailed discussion
about influence-based outlier rejection for PCA, we refer the interested reader to
(Jolliffe 2002).

Probability-Based Outlier Detection: Multivariate Trimming, M-Estimators, and
Iteratively Weighted Recursive Least Squares
In this approach, a subspace is fit to all sample points, including potential outliers.
Outliers are then detected as the points that correspond to small-probability events or
that have large fitting errors with respect to the identified subspace. A new subspace
is then estimated with the detected outliers removed or down-weighted. This process
is then repeated until the estimated subspace stabilizes.

More specifically, recall that in PCA, the goal is to find a low-dimensional
subspace that best fits a given set of data points X :D fxj 2 R

DgN
jD1 by minimizing

the least-squares error

NX

jD1

kxj � � � Uyjk2; (3.76)

between each point xj and its projection onto the subspace � C Uyj, where � 2 R
D

is any point in the subspace, U 2 R
D�d is a basis for the subspace, and yj 2 R

d

are the coordinates of the point in the subspace. If there are no outliers, an optimal
solution to PCA can be obtained as described in Section 2.1.2, i.e.,

O�N D 1

N

NX

jD1

xj and Oyj D OU>.xj � O�N/; (3.77)

where OU is a D � d matrix whose columns are the top d eigenvectors of

O†N D 1

N

NX

jD1

.xj � O�N/.xj � O�N/>: (3.78)

If we adopt the guideline that outliers are samples that do not fit the model well
or have a small probability with respect to the estimated model, then the outliers are
exactly those samples that have a relatively large residual

kxj � O�N � OUOyjk2 or "2
j D .x>j � �N/>†�1

N .x>j � �N/; j D 1; 2; : : : ; N:

(3.79)

3.3 PCA with Robustness to Outliers 103

The first error is simply the distance to the subspace, while the second error is the
Mahalanobis distance,8 which is obtained when we approximate the probability that
a sample xj comes from this model by a multivariate Gaussian

p.xjI �N ; O†N/ D 1

.2�/D=2 det. O†N/1=2
exp

 � 1

2
.x>j � �N/>†�1

N .x>j � �N//:

(3.80)
In principle, we could use p.xj; �N ; O†N/ or either residual "j to determine whether
xj is an outlier. However, the above estimate of the subspace is obtained using all
the samples, including the outliers themselves. Therefore, the estimated subspace
could be completely wrong, and hence the outliers could be incorrectly detected.
In order to improve the estimate of the subspace, one can recompute the model
parameters after discarding or down-weighting samples that have large residuals.
More specifically, let wj 2 Œ0; 1� be a weight assigned to the jth point such that
wj 	 1 if xj is an inlier and wj 	 0 if xj is an outlier. Then, similarly to (2.23), a new
estimate of the subspace can be obtained by minimizing a reweighted least-squares
error:

min
�;U;Y

NX

jD1

wjkxj � � � Uyjk2 s.t. U>U D Id and
NX

jD1

wjyj D 0: (3.81)

It can be shown (see Exercise 3.12) that the optimal solution to this problem is of
the form

O�N D
PN

jD1 wjxj
PN

jD1 wj

and Oyj D OU>.xj � O�N/ 8j s.t. wj > 0; (3.82)

where OU is a D � d matrix whose columns are the top d eigenvectors of

O†N D
PN

jD1 wj.xj � O�N/.xj � O�N/>
PN

jD1 wj

: (3.83)

As a consequence, under the reweighted least-squares criterion, finding a robust
solution to PCA reduces to finding a robust estimate of the sample mean and the
sample covariance of the data by properly setting the weights.

In what follows, we discuss two main approaches for estimating the weights.

8In fact, it can be shown that (Ferguson 1961), if the outliers have a Gaussian distribution of
a different covariance matrix a†, then "i is a sufficient statistic for the test that maximizes the
probability of correct decision about the outlier (in the class of tests that are invariant under linear
transformations). Interested readers may want to find out how this distance is equivalent (or related)
to the sample influence O†.i/

N � O†N or the approximate sample influence given in (B.91).

104 3 Robust Principal Component Analysis

1. Multivariate Trimming (MVT) is a popular robust method for estimating the
sample mean and covariance of a set of points. This method assumes discrete
weights

wj D
(

1 if xj is an inlier;

0 if xj is an outlier;
(3.84)

and chooses the outliers as a certain percentage of the samples (say 10%) that
have relatively large residual. This can be done by simply sorting the residuals
f"jg from the lowest to the highest and then choosing as outliers the desired
percentage of samples with the highest residuals. Once the outliers are trimmed
out, one can use the remaining samples to reestimate the subspace as in (3.82)–
(3.83). Each time we have a new estimate of the subspace, we can recalculate
the residual of every sample and reselect samples that need to be trimmed. We
can repeat the above process until a stable estimate of the subspace is obtained.
When the percentage of outliers is somewhat known, it usually takes only a
few iterations for MTV to converge, and the resulting estimate is in general
more robust. However, if the percentage is wrongfully specified, MVT may not
converge, or it may converge to a wrong estimate of the subspace. In general,
the “breakdown point” of MTV, i.e., the proportion of outliers that it can tolerate
before giving a completely wrong estimate, depends only on the chosen trimming
percentage.

2. Maximum-Likelihood-Type Estimators (M-Estimators) is another popular robust
method for estimating the sample mean and covariance of a set of points. As we
saw in the case of PCA with corrupted entries, this method assumes continuous
weights

wj D �."j/="2
j (3.85)

for some robust loss function �.�/. The objective function then becomes

NX

jD1

�."j/: (3.86)

Many loss functions �.�/ have been proposed in the statistics literature (Huber
1981; Barnett and Lewis 1983). When �."/ D "2, all weights are equal to 1, and
we obtain the standard least-squares solution, which is not robust. Other robust
loss functions include

(a) L1 loss: �."/ D j"j;
(b) Cauchy loss: �."/ D "2

0 log.1 C "2="2
0/;

(c) Huber loss (Huber 1981): �."/ D
(

"2 if j"j < "0;

2"0j"j � "2
0 otherwiseI

(d) Geman–McClure loss (Geman and McClure 1987): �."/ D "2

"2C"2
0

,

3.3 PCA with Robustness to Outliers 105

Algorithm 3.9 (Iteratively Reweighted Least Squares for PCA with Outliers)

Input: Data matrix X, dimension d, and parameter "0 > 0.

1: initialize Œ�; U; Y� D PCA.X/ using PCA from Chapter 2.
2: repeat

3: "j kxj � �� Uyjk2; wj "2
0

"2
j C"2

0

.

4: �
PN

jD1 wj.xj�Uyj/
PN

jD1 wj
; †

PN
jD1 wj.xj� O�N /.xj� O�N />

PN
jD1 wj

.

5: U top d eigenvectors of †.
6: Y U>.X � �1>/.
7: until convergence of �1> C UY .

8: L UY and E X � L� �1>.
Output: �, U, Y , L and E.

where "0 > 0 is a parameter. Given any choice for the weights, one way of
minimizing (3.86) with respect to the subspace parameters is to initialize all the
weights to wj D 1, j D 1; : : : ; N. This will give an initial estimate for the subspace
that is the same as that given by PCA. Given this initial estimate of the subspace, one
may compute the weights as wj D �."j/="2

j using any of the aforementioned robust
cost functions. Given these weights, one can reestimate the subspace from (3.82)–
(3.83). One can then iterate between computing the weights given the subspace and
computing the subspace given the weights. This iterative process is called iteratively
reweighted least squares (IRLS), as in the case of PCA with corrupted entries, and is
summarized in Algorithm 3.9 for the Geman-McClure loss function. An alternative
method for minimizing (3.86) is simply to do gradient descent. This method may be
preferable for loss functions � that are differentiable, e.g., the Geman–McClure loss
function. One drawback of M-estimators is that their breakdown point is inversely
proportional to the dimension of the space. Thus, M-estimators become much less
robust when the dimension is high.

Consensus-Based Outlier Detection
This approach assumes that the outliers are not drawn from the same subspace as
the rest of the data. Hence it makes sense to try to avoid the outliers when we infer
the subspace in the first place. However, without knowing which points are outliers
beforehand, how can we avoid them?

One idea is to fit a subspace to a subset of the data instead of to all the data points.
This is possible when the number of data points required to fit a subspace (k D d for
linear subspace or k D d C 1 for affine subspaces) is much smaller than the size N
of the given data set. Of course, we should not expect that a randomly chosen subset
will have no outliers and always lead to a good estimate of the subspace. Thus, we
should try many different subsets:

X1;X2; : : : ;Xm
 X ; (3.87)

where each subset Xi is independently drawn and contains k � N samples.

106 3 Robust Principal Component Analysis

If the number of subsets is large enough, one of the trials should contain few
or no outliers and hence give a “good” estimate of the subspace. Indeed, if p is
the fraction of valid samples (the “inliers”), one can show that (see Exercise B.8)
with probability q D 1 � .1 � pk/m, one of the above subsets will contain only
valid samples. In other words, if q is the probability that one of the selected subsets
contains only valid samples, we need to randomly sample at least

m � log.1 � q/

log.1 � pk/
(3.88)

subsets of k samples.
Now, given multiple subspaces estimated from multiple subsets, the next question

is how to select a “good” subspace among them. Let OSi be the subspace fit to the set
of points in Xi. If the set Xi is contaminated by outliers, then OSi should be a “bad”
estimate of the true subspace S, and hence few points in X should be well fit by OSi.
Conversely, if the set Xi contains only inliers, then OSi should be a “good” estimate
of the true subspace S, and many points should be well fit by OSi. Thus, to determine
whether OSi is a good estimate of S, we need some criterion to determine when a point
is well fit by OSi and another criterion to determine when the number of points that
are well fit by OSi is sufficiently large. We declare that the subset Xi gives a “good”
estimate OSi of the subspace S if

#
˚
x 2 X W dist.x; OSi/ �

� � Nmin; (3.89)

where # is the cardinality of the set,
 > 0 is the threshold on the distance
from any point x 2 X to the estimated subspace OS used to determine whether
a point is an inlier to OS, and Nmin is a threshold on the minimum number of
inliers needed to declare that the estimated subspace is “good.” If the number
of inliers to the subspace estimated from a given subset of the data points is
too small, then the process is repeated for another sample of points until a good
subspace is found or the maximum number of iterations has been exhausted. Upon
termination, PCA is reapplied to all inliers in order to improve the robustness of the
estimated subspace to noise. This approach to PCA with outliers is called random
sample consensus (RANSAC) (Fischler and Bolles 1981) and is summarized in
Algorithm 3.10.

One of the main advantages of RANSAC is that in theory, it can tolerate more
than 50% outliers; hence it is extremely popular for practitioners who handle grossly
contaminated data sets. Nevertheless, the computational cost of this scheme is
proportional to the number of candidate subsets needed to ensure that the probability
of choosing an outlier-free subset is large enough. This number typically grows
exponentially with the subspace dimension and the number of samples. Hence,
RANSAC is used mostly in situations in which the subspace dimension is low;
in most of the cases we have seen, the subspace dimension does not exceed 10.
Another challenge is that in order to design a successful RANSAC algorithm, one

3.3 PCA with Robustness to Outliers 107

Algorithm 3.10 (Random Sample Consensus for PCA with Outliers)

Input: Data points X , subspace dimension d, maximum number of iterations k, threshold on
fitting error
 , threshold on minimum number of inliers Nmin.

1: initialization i D 0.
2: while i < k do
3: Xi dC 1 randomly chosen data points from X .
4: OSi PCA.Xi/.
5: Xinliers ˚

x 2 X W dist.x; OSi/ �

�
.

6: if jXinliersj � Nmin then
7: i k.
8: else
9: i iC 1.

10: end if
11: end while
Output: Estimated subspace OS PCA.Xinliers/ and set of inliers Xinliers.

needs to choose a few key parameters carefully, such as the size of every subset (or
the subspace dimension), the distance dist and the parameter
 to determine whether
a point is an inlier or outlier, and the threshold Nmin on the minimum number of
inliers to the estimated subspace.

There is a vast amount of literature on RANSAC-type algorithms, especially in
computer vision (Steward 1999). For more details on RANSAC and other related
random sampling techniques, the reader is referred to Appendix B.

3.3.2 Outlier Detection by Convex Optimization

So far, we have presented classical techniques from the robust statistics literature
and shown how they can be used for dealing with outliers in the context of PCA. The
techniques presented so far are generally simple and intuitive. However, they do not
provide clear conditions under which they can guarantee the correctness or global
optimality of their solutions. To address this issue, in what follows we will present
alternative approaches based on convex optimization for dealing with outliers in
the context of PCA. As we will see, when the dimension of the subspace is small
enough and the percentage of outliers is small enough, it is possible to perfectly
recover which data points are inliers and which ones are outliers.

Outlier Detection by `1 Minimization
Let X D fxjgN

jD1 be a collection of points in R
D. Assume that Nin � N points are

drawn from a linear subspace S
 R
D of dimension d � D and that the remaining

Nout D N � Nin data points do not belong to S. We thus have N D Nin C Nout

data points, where Nin points are inliers and Nout points are outliers. Assume also
that there are d linearly independent data points among the inliers. Then every point

108 3 Robust Principal Component Analysis

x 2 S can be written as a linear combination of the inliers. In fact, every point x 2 S
can be written as a linear combination of at most d inliers. More generally, we can
write x 2 S as a linear combination of all N data points as

x D
NX

jD1

xjcj D Xc where X D �
x1; x2; : : : ; xN

� 2 R
D�N ; (3.90)

and set cj D 0 whenever xj is an outlier. Hence, there exists a solution c of x D
Xc with at most d nonzero entries, which correspond to any d inliers that span S.
Therefore, an optimal solution c� to the following optimization problem

min
c

kck0 s.t. x D Xc (3.91)

should be d-sparse, i.e., it should have at most d nonzero entries, i.e., kc�k0 � d.
Assume now that there are D linearly independent data points among both the

inliers and outliers. Assume also that x does not belong to the subspace S. Then we
can still express x as a linear combination of all data points as x D Xc. However,
when x is an arbitrary point in R

D, we no longer expect c to be d-sparse. In fact, in
general, we expect at least D entries of c to be nonzero, i.e., kck0 � D. Of course,
in some rare circumstances it could be the case that x is a linear combination of two
outliers in the data, in which case we can choose c such that kck0 D 2. However,
such cases occur with extremely low probability.

The above discussion suggests a simple procedure to determine whether a point
x is an inlier: we try to express x as a linear combination of the data points in
X with the sparsest possible coefficients c, as in (3.91). If the optimal solution
c� is d-sparse, then x is an inlier; otherwise, x is an outlier. In practice, however,
we face a couple of challenges that prevent us from implementing this simple
strategy.

1. The optimization problem in (3.91) is NP-hard (Amaldi and Kann 1998).
Intuitively this is because there are numerous choices of d out of N nonzero
entries in c, and for each such choice, we need to check whether a linear system
has a solution or not.

2. While in general we expect that kck0 � d when x is an outlier, this may not
always be the case. Thus, we may be interested in characterizing whether for
some distribution of the outliers we can guarantee that kck0 � d with high
probability. Moreover, since the subspace dimension d may not be known a
priori, we may want to declare x an outlier if kck0 > �D for some � < 1.
This may require some mechanism for determining �.

3. In practice, we are not trying to determine whether a generic data point x is an
inlier or an outlier, but rather whether one of the given data points, say xj, is an
inlier or an outlier. Trivially, xj has a 1-sparse representation with respect to X,
i.e., xj Dxj. Thus, we need a mechanism to prevent this trivial solution.

3.3 PCA with Robustness to Outliers 109

To address the first issue, as we have learned from the brief survey of compressive
sensing in Section 3.2.2, an effective technique to obtain a sparse solution is to
replace the `0-minimization problem in (3.91) by the `1-minimization problem

min
c

kck1 s.t. x D Xc: (3.92)

In particular, it follows from Theorem 3.10 that if X D �
x1; x2; : : : ; xN

� 2 R
D�N

is an arbitrary matrix whose columns are of unit norm, i.e., kxjk2 D 1 for all j D
1; : : : ; N and c0 2 R

N is a d-sparse vector, then given x D Xc0, we can recover c0

by solving the optimization problem in (3.92) when the matrix X is incoherent or
satisfies the RIP. In other words, the sparsest solution to the linear system Xc D x
can be obtained by solving the convex `1-minimization problem in (3.92) as opposed
to the NP-hard `0-minimization problem in (3.91).

The fundamental question is whether the conditions under which the solution
to (3.92) coincides with that of (3.91) are satisfied by a data matrix X with Nin

data points in a linear subspace of dimension d and Nout points not in the subspace.
Unfortunately, this is not the case: the matrix of inliers Xin cannot be incoherent
according to Definition 3.8, because it is not of full column rank. For instance, if
rank.Xin/ D 1, then X has maximum coherence �.Xin/ D 1.

Does this mean that we cannot use `1-minimization? As it turns out, we can
still use `1 minimization to recover a sparse representation of a point x 2 S. The
reason is that the conditions in Theorem 3.10 aim to guarantee that we can recover
a unique sparse solution, while here the solution for c is not always unique, and thus
we cannot hope for the `1-minimization problem to give us a unique sparse solution
to begin with. Indeed, if x 2 S and Nin > d, then there may be many ways in which
we may express a point in S as a linear combination of d inliers. Therefore, our
goal is not to find a unique representation of x in terms of d inliers, but rather to
find any representation of x in terms of any d inliers. As a consequence, we do not
need the matrix of inliers to be incoherent. All we need is for the set of inliers to be
incoherent with the set of outliers. More precisely, if Iin is the set of inliers and Iout

is the set of outliers, all we need is that

max
j2Iin

max
k2Iout

jx>j xkj <
1

2d � 1
: (3.93)

This is in contrast to the classical condition on the mutual coherence of X in
Definition 3.8, which is given by maxj¤k jx>j xkj < 1

2d�1
.

To address the second issue, we assume from now on that all N points are of
unit norm, i.e., they lie in the D � 1 dimensional sphere S

D�1. We assume also that
the outliers are drawn uniformly at random from S

D�1. Moreover, since we will
be solving an `1 minimization problem, we may want to use the `1 norm of c to
determine whether x is an inlier or outlier. More specifically, when x is an inlier,
we expect kck0 D d; hence we expect kck1 D p

d. Likewise, when x is an outlier,

110 3 Robust Principal Component Analysis

we expect kck0 D D, and then we expect kck1 D p
D. Therefore, we may want to

declare x an outlier if kck1 > �
p

D for some �.
The third issue is relatively easy to address. When we find the sparse solution

for the point xj with respect to X, we need to enforce only that the jth entry of c
is zero, so that xj is not represented by itself. This leads to the following convex
optimization problem:

min
c

kck1 s.t. xj D Xc and cj D 0; (3.94)

which can be solved easily using existing `1-minimization techniques.
The following result, which follows as a direct corollary of (Soltanolkotabi

and Candès 2013, Theorem 1.3) (see also Theorem 8.27), shows how the optimal
solution to (3.94) can be used to distinguish inliers from outliers.

Theorem 3.13. Let S be a randomly chosen subspace of R
D of dimension d.

Suppose there are Nin D �d C 1 inlier points chosen independently and uniformly
at random in S \ S

D�1, where � > 1. Suppose there are Nout points chosen
independently and uniformly at random in S

D�1. Let xj 2 S
D�1 be the jth data point

and let c 2 R
N be the solution to the `1-minimization problem in (3.94). Declare xj

to be an outlier if kck1 > �./
p

D, where D N�1
D , N D Nin C Nout, and

�./ D
8
<

:

q
2
�

1p

; 1 � � e

q
2

�e
1p

log
; � e:

(3.95)

If the number of outliers is such that

Nout <
1

D
exp.c1

p
D/ � Nin (3.96)

for some constant c1 > 0, then the method above detects all the outliers with
probability at least 1 � Nout exp.�c2D= log.Nin C Nout// for some constant c2 > 0.
Moreover, if the number of outliers is such that

Nout < D�c3
D
d � Nin (3.97)

for some constant c3 > 0, then the method above does not detect any point in
S as an outlier with probability at least 1 � Nout exp.�c4D= log.Nin C Nout// �
Nin exp.�p

�d/ for some constant c4 > 0.

Outlier Detection by `2;1 Minimization
An alternative approach to outlier detection in PCA is based on the observation that
the data matrix X can be seen as a low-rank matrix with sparsely corrupted columns
that correspond to the outliers. More specifically, the matrix X can be decomposed as

X D L0 C E0: (3.98)

3.3 PCA with Robustness to Outliers 111

The jth column of L0 is equal to xj if it is an inlier to the subspace and is equal to
0 otherwise. Therefore, L0 is of rank d and spans the same subspace as the inliers.
Conversely, the jth column of E0 is equal to xj if it is an outlier to the subspace and
is equal to 0 otherwise. Therefore, the nonzero columns of E0 contain the outliers.
If we assume that the fraction of outliers is small, then the matrix E0 is column
sparse.

Obviously, such a decomposition is ill posed (at least ambiguous) if the matrix X
or L0 is also column sparse. Therefore, in order for the decomposition to be unique,
the matrix L0 cannot be column sparse on the .1 � /N columns on which it can be
nonzero. To ensure that this is the case, we need to introduce a column incoherence
condition:

Definition 3.14 (Matrix Incoherence with Respect to Column Sparse Matrices).
A rank-d matrix L 2 R

D�N with compact SVD L D U†V> and .1 � /N
nonzero columns is said to be �-incoherent with respect to the set of column sparse
matrices if

max
j

kvjk2 � �d

.1 � /N
; (3.99)

where vj is the jth row of V.

Following the discussion after Definition 3.1, notice that since V 2 R
N�d is

orthonormal, the largest absolute value of the entries of V is equal to 1, which
happens when a column of V is 1-sparse. On the other hand, if all columns of V
are so dense that all their .1 � /N nonzero entries are equal to each other up
to sign, then each entry is equal to ˙1=

p
.1 � /N, and the norm of each row isp

d=.1 � /N. Therefore, when � < 1, the condition above controls the level of
sparsity of V . As argued before, from a probabilistic perspective, this condition is
rather mild in the sense that it holds for almost all generic matrices: a random (say
Gaussian) matrix satisfies this condition with high probability when the dimension
of the matrix is large enough. As we will see, incoherence with respect to column
sparse matrices is a very useful technical condition to ensure that outlier detection
is a meaningful problem.

Now, even though the incoherence condition may ensure that the above low-rank
plus column-sparse decomposition problem is well posed, there is no guarantee that
one can find the correct decomposition efficiently. As before, we may formulate the
problem of recovering L0 and E0 as a rank minimization problem:

min
L;E

rank.L/ C �kEk2;0 s.t. X D L C E; (3.100)

where kEk2;0 D PN
jD1 1.kejk2 ¤ 0/ is the number of nonzero columns in the matrix

of outliers E D Œe1; : : : ; eN �. However, since this problem is NP-hard, we need to
resort to a proper relaxation. For this purpose, we can use a norm that promotes
columnwise sparsity, such as the `2;1 norm of E:

112 3 Robust Principal Component Analysis

kEk2;1 D
NX

jD1

kejk2; (3.101)

which is the sum of the `2 norms of all the columns of E. Notice that if we collect
all the `2 norms of the columns of E as a vector e D Œke1k2; : : : ; keNk2�>, then the
above norm is essentially the `1 norm of the vector, kek1; hence it measures how
sparse the columns are. Notice also that kEk2;0 D kek0.

Similar to the PCP optimization problem in (3.64) for PCA with robustness to
intrasample outliers, we can use the convex optimization

min
L;E

kLk� C �kEk2;1 s.t. X D L C E (3.102)

to decompose sparse column outliers in the data matrix X from the low-rank
component. This convex program is called outlier pursuit.

One can rigorously show that under certain benign conditions, the outlier pursuit
program can correctly identify the set of sparse (column) outliers.

Theorem 3.15 (Robust PCA by Outlier Pursuit (Xu et al. 2010)). Let X D L0 C
E0 be a given D � N matrix. Assume that L0 is �-incoherent with respect to the
set of column-sparse matrices according to Definition 3.14. Assume also that E0 is
supported on at most N columns. If

rank.L0/ � c1.1 � /

�
; (3.103)

where c1 D 9
121

, then the solution .L�; E�/ to the outlier pursuit program (3.102)
with � set to be 3

7
p

N
recovers the low-dimensional column space of L0 exactly and

identifies exactly the indices of columns corresponding to outliers not lying in the
column space.

If the data also contain small noise X D L0 C E0 C Z, where Z is a random
Gaussian matrix that models small noise in the data, then we can modify the outlier
pursuit program as

min
L;E

kLk� C �kEk2;1 s.t. kX � L � Ek2
2 � "2; (3.104)

where " is the noise variance. It can be shown that under conditions similar to those
in the above theorem, this program gives a stable estimate of the correct solution.
For more details, we refer the reader to (Xu et al. 2010).

Using optimization techniques introduced in Appendix A, one can easily develop
ALM- or ADMM-based algorithms to solve the above convex optimization prob-
lems. We leave that to the reader as an exercise (see Exercise 3.8).

3.4 Bibliographic Notes 113

Fig. 3.6 Example images taken from the Caltech 101 data set. These images are then resized to
96� 84 and used as outliers for the experiments below.

Example 3.16 (Outlier Detection among Face Images) Sometimes a face image
data set can be contaminated by images of irrelevant objects, like many imperfectly
sorted data sets in the Internet. In this case, it would be desirable to detect and
remove such irrelevant outliers from the data set. In this example, we illustrate how
to do this with the outlier detection methods introduced in this section.

As in previous experiments, we take as inliers the frontal face images of subject
20 under 64 different illumination conditions in the extended Yale B data set. For
outlier images, we randomly select some pictures from the Caltech 101 data set
(Fei-Fei et al. 2004) and merge them into the face image data set. Some typical
examples of such pictures are shown in Figure 3.6. All the inlier and outlier images
are normalized to size 96 � 84.

We use the outlier pursuit method, which is based on solving (3.102), to
decompose the data matrix into a low-rank part L and a sparse-column term E.
In this experiment, we set the parameter of the method according to Theorem 3.15
with a multiplication factor of 3, i.e., we set � D 3 � �0 where �0 D 3

7
p

N
.

Ideally, columns of E with large magnitude correspond to outliers. To show how
the method performs, we apply it to data sets with increasing percentages of outliers.
We compute for each column of E its `2 norm to measure whether it is an outlier.
True outliers are marked in red. The results for varying percentages of outliers are
shown in Figure 3.7. As we can see from the results, up to nearly 50% outliers, the
outliers have significantly larger norm than the inliers.

3.4 Bibliographic Notes

PCA with Robustness to Missing Entries
The problem of completing a low-rank matrix with missing entries has a very long
and rich history. Starting with the original work of (Wiberg 1976), one can refer to
(Johnson 1990) for a survey on some of the early developments on this topic.

Since then, this problem has drawn tremendous interest, particularly in computer
vision and pattern recognition, where researchers needed to complete data with
missing entries due to occlusions. For instance, many algorithms were proposed

114 3 Robust Principal Component Analysis

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000
Inliers
Outliers

5% outliers

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000
Inliers
Outliers

10% outliers

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Inliers
Outliers

20% outliers

0 10 20 30 40 50 60 70
0

2000

4000

6000

8000

10000
Inliers
Outliers

35% outliers

0 10 20 30 40 50 60 70
0

2000

4000

6000

8000

10000

12000
Inliers
Outliers

50% outliers

0 10 20 30 40 50 60 70
0

2000

4000

6000

8000

10000

12000
Inliers
Outliers

70% outliers

(a) (b) (c)

(d) (e) (f)

Fig. 3.7 Outlier detection among face images. In each experiment, we use 64 images, in which
a certain percentage of images are selected randomly from the Caltech 101 data set as outliers,
and the rest are taken randomly from the 64 illuminations of frontal face images of subject 20 in
extended Yale B. We plot the column `2 norm of the matrix E given by the convex optimization
method, with ground truth outliers marked as red.

to solve matrix completion problems in the late 1990s and early 2000s, including
(Shum et al. 1995; Jacobs 2001; H.Aanaes et al. 2002; Brandt 2002) for the purpose
of reconstructing a 3D scene from a collection of images. The power factorization
method featured in this chapter was proposed in (Hartley and Schaffalitzky 2003)
for the same purpose, while a variant of the EM algorithm we described appeared
in (Gruber and Weiss 2004). Also, the work of (Ke and Kanade 2005) proposed the
use of the `1 norm for matrix completion and recovery, which extends the original
Wiberg method(Wiberg 1976) from the `2 to the `1 norm. A survey and evaluation
of state-of-the-art methods for solving the matrix completion problem can be found
in (Buchanan and Fitzgibbon 2005).

However, all of the work described so far has focused primarily on developing
algorithms for completing a matrix, without any guarantees of correctly recovering
the original low-rank matrix. The seminal work of (Recht et al. 2010; Candès and
Recht 2009) has shown that under broad conditions, one can correctly recover
a low-rank matrix with a significant percentage of missing entries using convex
optimization (i.e., minimizing the nuclear norm of the matrix). This has inspired a
host of work on developing ever stronger conditions and more efficient algorithms
for low-rank matrix completion (Cai et al. 2008; Candès and Tao 2010; Keshavan
et al. 2010b; Gross 2011; Keshavan et al. 2010a; Zhou et al. 2010a), including work
that extends to the case of noisy data (Candès and Plan 2010).

3.5 Exercises 115

PCA with Robustness to Corrupted Entries and Outliers
Regarding the robust recovery of a low-rank matrix, it was first proposed by (Wright
et al. 2009a; Chandrasekaran et al. 2009) to use the convex relaxation (3.64) to solve
the robust PCA problem. This formulation was soon followed by a rather strong
theoretical justification (Candès et al. 2011) and efficient algorithms (Lin et al.
2011). This has made convex relaxation a very successful and popular technique
for robust low-rank matrix recovery or outlier rejection, leading to extensions to
many different settings and more scalable convex optimization algorithms.

Revival of the Factorization Approach
Due to the advent of large data sets and large-scale problems, there has been
a revival of factorization (alternating minimization) approaches with theoretical
guarantees of correctness for low-rank matrix completion and recovery, including
the very interesting work of (Jain et al. 2012; Keshavan 2012; Hardt 2014; Jain and
Netrapalli 2014). The more recent work of (Udell et al. 2015) further generalizes
the factorization framework to situations in which the factors are allowed to have
additional structures; and (Haeffele and Vidal 2015) combines factorization with
certain nonlinear mappings typically used in a deep learning framework.

3.5 Exercises

Exercise 3.1 (Data Completion with the Subspace Known). Show that the solu-
tion to the problem (3.5) is given by the formula in (3.6).

Exercise 3.2. For the PPCA model with missing data discussed in Section 3.1.2,
show that the conditional distribution of xU given xO is Gaussian with the following
mean vector and covariance matrix:

�UjO D �U C †UO†�1
OO.xO � �O/ and †UjO D †UU � †UO†�1

OO†OU:

Exercise 3.3 (Orthogonal Power Iteration Method). Let A 2 R
N�N be a

symmetric positive semidefinite matrix with eigenvectors fuigN
iD1 and eigenvalues

f�igN
iD1 sorted in descending order. Assume that �1 > �2 and let u0 be an arbitrary

vector not orthogonal to u1, i.e., u>1 u0 ¤ 0. Consider the sequence of vectors

ukC1 D Auk

kAukk : (3.105)

1. Show that there exist f˛igN
iD1 with ˛1 ¤ 0 such that

uk D Aku0 D
NX

iD1

˛i�
k
i ui: (3.106)

116 3 Robust Principal Component Analysis

2. Use this expression to show that uk converges to ˛1j˛1ju1 with rate �2

�1
. That is, show

that there exists a constant C > 0 such that for all k � 0,

	
		uk � ˛1

j˛1ju1

	
		 � C

��2

�1

k
: (3.107)

3. Assume that �d > �dC1 and let U0 2 R
N�d be an arbitrary matrix whose column

space is not orthogonal to the subspace fuigd
iD1 spanned by the top d eigenvectors

of A. Consider the sequence of matrices

UkC1 D AUk.Rk/�1; (3.108)

where QkRk D AUk is the QR decomposition of AUk. Show that Uk converges to
a matrix U whose columns are the top d eigenvectors of A. Moreover, show that
the rate of convergence is �dC1

�d
.

Exercise 3.4 (Convergence of Orthogonal Power Iteration). Prove Theo-
rem 3.4.

Exercise 3.5 (Properties of the `1 Norm). Let X be a matrix.

1. Show that the `1 norm f .X/ D kXk1 D P
ij jXijj of X is a convex function of X.

2. Show that the subgradient of the `1 norm is given by

@kXk1 D sign.X/ C W; (3.109)

where W is a matrix such that maxij jWijj � 1.
3. Show that the optimal solution of

min
A

1

2
kX � Ak2

F C
kAk1 (3.110)

is given by A D S
 .X/, where S
 .x/ D sign.x/ max.jxj �
; 0/ is the soft-
thresholding operator applied entrywise to X.

Exercise 3.6 (Properties of the Weighted Nuclear Norm). Consider the follow-
ing optimization problem:

min
A

1

2
kX � Ak2

F C
�.A/; (3.111)

where �.A/ D Pr
iD1 wi�i.A/ is the weighted sum of singular values of A with

wi � 0. Show that

1. �.A/ is convex when wi is monotonically decreasing. Please derive the optimal
solution under this condition.

2. Is �.A/ still convex if wi is an increasing sequence of weights? Why?

3.5 Exercises 117

Exercise 3.7 (Properties of the `2;1 Norm).

1. Let x be a vector. Show that the subgradient of the `2 norm is given by

@kxk2 D
(

x
kxk2 if x ¤ 0;

w W kwk2 � 1g if x D 0:
(3.112)

2. Let X be a matrix. Show that the `2;1 norm f .X/ D kXk2;1 D P
j kX�;jk2 D

P
j

qP
i X2

ij of X is a convex function of X.

3. Show that the subgradient of the `2;1 norm is given by

.@kXk2;1/ij D
(

Xij

kX�;jk2 X�;j ¤ 0

Wij W kW�;jk2 � 1 X�;j D 0:
(3.113)

4. Show that the optimal solution of

min
A

1

2
kX � Ak2

F C
kAk2;1 (3.114)

is given by A D XS
 .diag.x//diag.x/�1, where x is a vector whose jth entry is
given by xj D kX�;jk2, and diag.x/ is a diagonal matrix with the entries of x along
its diagonal. By convention, if xj D 0, then the jth entry of diag.x/�1 is also zero.

Exercise 3.8. Let X D L0 C E0 be a matrix formed as the sum of a low-rank matrix
L0 and a matrix of corruptions E0, where the corruptions can be either outlying
entries (gross errors) or outlying data points (outliers).

1. (PCA with robustness to outliers). Assuming that the matrix X is fully observed
and that the matrix E0 is a matrix of outliers, propose an algorithm for solving
the outlier pursuit problem (3.102):

min
L;E

kLk� C �kEk2;1 s.t. X D L C E: (3.115)

2. (PCA with robustness to missing entries and gross errors). Assuming that
you observe only a fraction of the entries of X as indicated by a set 	 and that
the matrix E0 is a matrix of gross errors, propose an algorithm for solving the
following optimization problem:

min
L;E

kLk� C �kEk1 s.t. P	.X/ D P	.L C E/: (3.116)

Exercise 3.9 (Implementation of Power Factorization (PF), Expectation Maxi-
mization (EM), and Low-Rank Matrix Completion (LRMC)). Implement the
functions below using as few lines of MATLAB code as possible. Compare the

118 3 Robust Principal Component Analysis

performance of these methods: which method works better and which regime is best
(e.g., depending on the percentage of missing entries, subspace dimension d=D)?

Function [mu,U,Y]=pf(X,d,W)
Parameters
X D � N data matrix.
d Number of principal components.
W D � N binary matrix denoting known (1) or missing (0) entries

Returned values
mu Mean of the data.
U Orthonormal basis for the subspace.
Y Low-dimensional representation (or principal components).

Description
Finds the d principal components of a set of points from the data X
with incomplete entries as specified in W using the power factorization
algorithm.

Function [mu,U,sigma]=emppca(X,d,W)
Parameters

X D � N data matrix.
d Number of principal components.
W D � N binary matrix denoting known (1) or missing (0) entries

Returned values
mu Mean of the data.
U Basis for the subspace (does not need to be orthonormal).

sigma Standard deviation of the noise.
Description
Finds the parameters of the PPCA model � and † D UU> C �2I from
the data X with incomplete entries as specified in W using the expectation
maximization algorithm.

Function A=lrmc(X,tau,W)
Parameters
X D � N data matrix.

 Parameter of the augmented Lagrangian.
W D � N binary matrix denoting known (1) or missing (0) entries
Returned values
A Low-rank completion of the matrix X.
Description
Finds the low-rank approximation of a matrix X with incomplete entries as
specified in W using the low-rank matrix completion algorithm based on
the augmented Lagrangian method.

3.5 Exercises 119

Exercise 3.10 (Implementation of IRLS and ADMM Methods for Robust
PCA). Implement Algorithms 3.7 and 3.8 for the functions below using as few
lines of MATLAB code as possible. Compare the performance of these methods:
which method works better and which regime is best (e.g., depending on percentage
of corrupted entries (or corrupted data points), subspace dimension d=D)?

Function [mu,U,Y]=rpca_irls(X,d,sigma)
Parameters
X D � N data matrix.
d Number of principal components.

Returned values
mu Mean of the data.
U Basis for the subspace.

Description
Finds the parameters of the PCA model � and U and the low-dimensional
representation using reweighted least squares with weights w.e/ D �2

e2C�2 .

Function [L,E]=rpca_admm(X,tau,’method’)
Parameters

X D � N data matrix.

 Parameter of the augmented Lagrangian.

method ’L1’ for gross errors or ’L21’ for outliers
Returned values

L Low-rank completion of the matrix X.
E Matrix of errors.

Description
Solves the optimization problem min

L;E
kLk� C �kEk` subject to X D L C E

where ` D `1 or ` D `2;1 using the ADMM algorithm.

Exercise 3.11 (Robust Face Recognition with Varying Illumination). In this
exercise, you will use a small subset of the Yale B data set9 that contains photos of
ten individuals under various illumination conditions. Specifically, you will use only
images from the first three individuals under ten different illumination conditions.
Divide these images into two sets: Training Set (images 1–5 from individuals 1
to 3) and Test Set (images 6–10 from individuals 1–3). Notice also that there are
five nonface images (accessible as images 1–5 from individual 4). We will refer to
these as the Outlier Set. Download the file YaleB-Dataset.zip. This file contains the
images along with the MATLAB function loadimage.m. Decompress the file and
type help loadimage at the MATLAB prompt to see how to use this function.
The function operates as follows.

9http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html.

http://www.vision.jhu.edu/teaching/learning/data/YaleB-Dataset.zip
http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html

120 3 Robust Principal Component Analysis

Function img=loadimage(individual,condition)
Parameters
individual Number of the individual.
condition Number of the image for that individual.

Returned values
img The pixel image loaded from the database.

Description
Read and resize an image from the data set. The database (directory images)
must be in the same directory as this file.

1. Face completion. Remove uniformly at random 0%, 10%, 20%, 30%, and 40%
of the entries of all images of individual 1. Apply the low-rank matrix completion
(LRMC) algorithm in Exercise 3.9 to these images to compute the mean face and
the eigenfaces as well as to fill in the missing entries. Note that LRMC does
not compute the mean face, so you will need to modify the algorithm slightly.
Plot the mean face and the top three eigenfaces and compare them to what you
obtained with PCA in Chapter 2. Plot also the completed faces and comment on
the quality of completion as a function of the percentage of missing entries by
visually comparing the original images (before removing the missing entries) to
the completed ones. Plot also the error (Frobenius norm) between the original
images and the completed ones as a function of the percentage of missing entries
and comment on your results. Repeat for individuals 2 and 3.

2. Face recognition with missing entries. Remove uniformly at random 0%,
10%, 20%, 30%, and 40% of the entries of all images in the Training Set and
Test Set. Apply the low-rank matrix completion (LRMC) algorithm that you
implemented in part (a) to the images in the Training Set. Plot the projected
training images y 2 R

d for d D 2 and d D 3 using different colors for the
different classes. Do faces of different individuals naturally cluster in different
regions of the low-dimensional space? Classify the faces in the Test Set using
1-nearest-neighbor. That is, label an image x as corresponding to individual i if
its projected image y is closest to a projected image yj of individual i. Notice that
you will need to develop new code to project an image with missing entries x
onto the face subspace you already estimated from the Training Set, which you
can do as described in Section 3.1 of this book. Report the percentage of correctly
classified face images for d D 1; : : : ; 10 and the percentage of missing entries
f0; 10; 20; 30; 40g%.

3. Face correction. Remove uniformly at random 0%, 10%, 20%, 30%, and 40%
of the entries of all images of individual 1 and replace them by arbitrary
values chosen uniformly at random from Œ0; 255�. Apply the PCP algorithm,
Algorithm 3.8, for corrupted entries that you implemented in Exercise 3.10 to
these images to compute the mean face and the eigenfaces as well as correct the
corrupted entries. Note that RPCA does not compute the mean face, so you will

3.5 Exercises 121

need to modify the algorithm accordingly. Plot the mean face and the top three
eigenfaces and compare them to what you obtained with PCA from Chapter 2.
Plot also the corrected faces and comment on the quality of correction as a
function of the percentage of corrupted entries by visually comparing the original
images (before removing the missing entries) to the completed ones. Plot also the
error (Frobenius norm) between the original images and the corrected ones as a
function of the percentage of corrupted entries and comment on your results.
Repeat for individuals 2 and 3.

4. Face recognition with corrupted entries. Remove uniformly at random 0%,
10%, 20%, 30%, and 40% of the entries of all images of individual 1 and replace
them by arbitrary values chosen uniformly at random from Œ0; 255�. Apply the
RPCA algorithm for corrupted entries that you implemented in part (a) to the
images in the Training Set. Plot the projected training images y 2 R

d for d D 2

or d D 3 using different colors for the different classes. Do faces of different
individuals naturally cluster in different regions of the low-dimensional space?
Classify the faces in the Test Set using 1-nearest-neighbor. That is, label an image
x as corresponding to individual i if its projected image y is closest to a projected
image yj of individual i. Notice that you will need to develop new code to project
an image with corrupted entries x onto the face subspace you already estimated
from the Training Set. Report the percentage of correctly classified face images
for d D 1; : : : ; 10 and the percentage of missing entries f0; 10; 20; 30; 40g%.

5. Outlier detection. Augment the images of individual 1 with those from an
Outlier Set. Apply the RPCA algorithm for data corrupted by outliers that you
implemented in Exercise 3.10 to these images to compute the mean face and the
eigenfaces as well as detect the outliers. Note that RPCA does not compute the
mean face, so you will need to modify your code accordingly. Plot the mean face
and the top three eigenfaces and compare them to what you obtained with PCA.
Report the percentage of correctly detected outliers.

6. Face recognition with corrupted entries. Apply the RPCA algorithm for data
corrupted by outliers that you implemented in part (e) to the images in Training
Set [Outlier Set. Plot the projected training images y 2 R

d for d D 2 or d D 3

using different colors for the different classes. Do faces of different individuals
naturally cluster in different regions of the low-dimensional space? Classify the
faces in the Test Set using 1-nearest-neighbor. That is, label an image x as
corresponding to individual i if its projected image y is closest to a projected
image yj of individual i. Report the percentage of correctly detected outliers and
the percentage of correctly classified face images for d D 1; : : : ; 10 and compare
your results to those using PCA in Chapter 2.

Exercise 3.12 Show that the optimal solution to the PCA problem with robustness
to outliers

min
�;U;Y

NX

jD1

wjkxj � � � Uyjk2 s.t. U>U D Id and
NX

jD1

wjyj D 0; (3.117)

122 3 Robust Principal Component Analysis

where wj 2 Œ0; 1� is large when point xj is an inlier and small otherwise, is given by

O�N D
PN

jD1 wjxj
PN

jD1 wj

and Oyj D OU>.xj � O�N/ 8j s.t. wj > 0; (3.118)

where OU is a D � d matrix whose columns are the top d eigenvectors of

O†N D
PN

jD1 wj.xj � O�N/.xj � O�N/>
PN

jD1 wj

: (3.119)

	3 Robust Principal Component Analysis
	3.1 PCA with Robustness to Missing Entries
	3.1.1 Incomplete PCA by Mean and Covariance Completion
	3.1.2 Incomplete PPCA by Expectation Maximization
	3.1.3 Matrix Completion by Convex Optimization
	3.1.4 Incomplete PCA by Alternating Minimization

	3.2 PCA with Robustness to Corrupted Entries
	3.2.1 Robust PCA by Iteratively Reweighted Least Squares
	3.2.2 Robust PCA by Convex Optimization

	3.3 PCA with Robustness to Outliers
	3.3.1 Outlier Detection by Robust Statistics
	3.3.2 Outlier Detection by Convex Optimization

	3.4 Bibliographic Notes
	3.5 Exercises

