Chapter 4

Non-radial DEA Models and DEA with Preference

4.1 Non-radial DEA Models

We can call the envelopment DEA models as radial efficiency measures,
because these models optimize all inputs or outputs of a DMU at a certain
proportion. Fiare and Lovell (1978) introduce a non-radial measure which
allows nonproportional reductions in positive inputs or augmentations in
positive outputs. Table 4.1 summarizes the non-radial DEA models with
respect to the model orientation and frontier type.

Table 4.1. Non-radial DEA Models

Frontier Input-Oriented Output-Oriented
Type
min( I—Z GK—SZSZ') max( lz‘ ¢r+82 s7)
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The slacks in the non-radial DEA models are optimized in a second-stage
model where 8 or ¢, are fixed. For example, under CRS we have

Input Slacks for Output-oriented Non-radial DEA Model
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Output Slacks for Input-oriented Non-radial DEA Model
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Figure 4.1. Efficient Targets
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Note that input slacks do not exist in the input-oriented non-radial DEA
models, and output slacks do not exist in the output-oriented non-radial
DEA models.

Because 8, <1 (¢, >1), L >" 68 <land L 3”6 =1 ifand only if
0 =1foralli (LY ¢  >1and 1Y ¢ =1 ifandonlyif ¢ =1 for all
7). Thus, L ¥7 6" (13 ¢ ) can be used as an efficiency index.

Both the envelopment models and the non-radial DEA models yield the
same frontier, but may yield different efficient targets (even when the
envelopment models do not have non-zero slacks). For example, if we
change the second input from 4 to 3 for DMUS in Table 1.1 (Chapter 1), the
input-oriented CRS envelopment model yields the efficient target of x/ =2.4
and x2 = 1.8 (with 4, = 0.8, A, = 0.2, and all zero slacks). Whereas the
input-oriented CRS non-radial DEA model yields DMU?2 as the efficient
target for DMUS (see Figure 4.1). Note that both models yield the same
target of DMU3 for DMUA4.

4.2 DEA with Preference Structure and Cost/Revenue
Efficiency

Both the envelopment models and the non-radial DEA models yield
efficient targets for inefficient DMUs. However, these targets may not be
preferred by the management or achievable under the current management
and other external conditions. Therefore, some other targets along the
efficient frontier should be considered as preferred ones. This can be done
by constructing preference structures over the proportions by which the
corresponding current input levels (output levels) can be changed. Zhu
(1996) develops a set of weighted non-radial DEA models where various
efficient targets along with the frontier can be obtained.

Let 4 (i=1,2,..,m)and B, (r =1, 2,..., s) be user-specified
preference weights which reflect the relative degree of desirability of the
adjustments of the current input and output levels, respectively. Then we can
have a set of weighted non-radial DEA models based upon Table 4.1 by
changing the objective functions - > 8 and 1>’ @ to X" 46, /3" 4
and >, B ¢./> B, ,respectively.

Further, if we remove the constraint 8, < 1 (¢. > 1), we obtain the
DEA/preference structure (DEA/PS) models shown in Table 4.2 (Zhu,
1996a).

If some 4, =0 (B, =0), then set the corresponding 6, =1 (¢, = 1). But
at least one of such weights should be positive. Note that for example, the
bigger the weight 4, , the higher the priority DMU, is allowed to adjust its
ith input amount to a lower level. i.e., when inefficiency occurs, the more
one wants to adjust an input or an output, the bigger the weight should be
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attached to 6, or ¢.. If we can rank the inputs or outputs according to their
relative importance, then we can obtain a set of ordinal weights. One may
use Delphi-like techniques, or Analytic Hierarchy Process (AHP) to obtain
the weights. However, caution should be paid when we convert the ordinal
weights into preference weights. For example, if an input (output) is
relatively more important and the DMU does not wish to adjust it with a
higher rate, we should take the reciprocal of the corresponding ordinal
weight as the preference weight. Otherwise, if the DMU does want to adjust
the input (output) with a higher rate, we can take the ordinal weight as the
preference weight. Also, one may use the principal component analysis to
derive the information on weights (Zhu, 1998).

Note that in the DEA/PS models, some & (¢ ) may be greater (less)
than one under certain weight combinations. i.e., the DEA/PS models are
not restricted to the case where 100% efficiency is maintained through the
input decreases or output increases.

Table 4.2. DEA/Preference Structure Models

Frontier Input-Oriented Output-Oriented
Type
i Afef S z¢7 N
min(=———¢£Xs)) max(=——€Ys’)
zAi r=1 ZB’ r=1
i= L=l
subj ect1 to subject to
CRS SAx, =0x, i=12..m XAx +s =x, i=12..m
J=1 Jj=1
Jzzlljyrj _S: R ”=1,2,...,s; jz:]/l/yrf :¢"ym r:1a23---,S;
2,20 j=12,un. 4,20 j=12,..,n.
VRS Add ¥4, =1
NIRS Add 37,4, <1
NDRS Add Y4, >1

Efficient {;ew:e.*xm i=12,..m {x =x,—s i=12...m

T v i . o iqﬁ i
arget yru :yra +S)+ V=1,2,...,S ym :¢)‘yru ]"=1,2,...,S

Now, in order to further investigate the property of DEA/PS models, we
consider the dual program to the input-oriented CRS DEA/PS model.
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max Yu,y,

subject to

Zﬂ V= ZV,xU<O j=1.. (4.1)
vx, =4 /ZA i=1,...,m;

MoV 20

We see that the normalization condition ", v,x, = 1 is also satisfied in
(4.1). The DEA/PS model is actually a DEA model with fixed input
multipliers.

Let p; denote the ith input price for DMU, and X, represents the ith
input that minimizes the cost. Consider the following DEA model for
calculating the “minimum cost”.

min p’X,
i=1
subject to
_Z]/ijx,.j <X, i=l..,m (4.2)
P

iﬂjyrj >y, r=L.,s
~ 7
2.%,20

J b

The dual program to (4.2) is

max Zu V0
sub] ect to

§ﬂry,j 2vx, <0 j=1,. (4.3)
0<v,<p’ i=1,...,m;
M.,v. 20

By the complementary slackness condition of linear programming, we
have that if X, > 0 then p/ = v,. Thus, v, can be interpreted as p; .
Consequently, the input prices can be used to develop the preference
weights.

In the DEA literature, we have a concept called “cost efficiency” which
is defined as

m

2% X,

;p[ 'xio
i=
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The following development shows that the related DEA/PS model can be
used to obtain exact the cost efficiency scores. Because the actual cost —
> plx, 1s a constant for a specific DMU,, cost efficiency can be directly
calculated by the following modified (4.2).

2p/%,
min=——

;pf‘xio
subject to
_Zl/ijxij <x, i=L12,.,m (4.4)
=

i‘;ﬂjy,j 2y, r=12,.s;
pu
4,20 Jj=L2,..n.

Let X, = 6x,. Then (4.4) is equivalent to the input-oriented CRS
DEA/PS model with 4; = p/x, . This indicates that if one imposes a proper
set of preference weights for each DMU under consideration, then the
DEA/PS model yields cost efficiency measure. (see Seiford and Zhu (2002)
for an empirical investigation of DEA efficiency and cost efficiency.)

Similarly, the output-oriented DEA/PS model can be used to obtain the
“revenue efficiency” which is defined as

249,
24, Yy,
where ¢! indicates output price for DMU, and y, represents the rth output
that maximizes the revenue in the following linear programming problem.
max ¥¢'7,
r=1

subject to
SAx, <x.  i=12,..m (4.5)
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subjeéft to
2Ax,<x, i=12,.

s

max 2=

>4V,

Zqu V.o

J=1

élfyrj 2y, r=12,.s;
2,20

j=12,...,

which calculates the revenue efficiency.

4.3

DEA/Preference Structure Models in Spreadsheets

N

n.
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Figure 4.2 shows an input-oriented VRS DEA/PS spreadsheet model.
Cells 12:116 are reserved for A,. Cells F20:F22 are reserved for 6,. These
are the changing cells in the Solver parameters shown in Figure 4.3.

A | B | ¢ | D lE] F | & |H|] 1]
_1 |Company Asgsets Equity Employees Revenue Profit A
2 |Mitsubishi 91920.6 10950 36000 1843652 346.2 1
-3 |Mitsui 68770.9  5553.9 80000 181518.7 3148 0
_4 |ltochu 65708.9 42711 7182 169164.6  121.2 0
_5 |General Motors 2171234 233455 709000 1688286  6880.7 0
_6 | Sumitorno 50268.9 6631 6193 167530.7 2105 0
_ 7 _|Marubeni 714393 52391 6702 1610574 156.6 0
_ 8 |Ford Motor 243283 24547 346990 137137 4139 0
_ 9 |Toyota Motor 1060042 49691.6 146855 111052 26624 0
10 |Exxxon 91296 40436 82000 110009 8470 0
11 |Royal Dutch/Shell Group 1180116 58986.4 104000 1098337 69046 0
12 \wWal-Mart 37871 14762 675000 93627 2740 0
B o 916208 O e ) ey 0
14 |Mippon Life Insurance 364762.5 the DMU under 83weighted sum of 0
15 |Nippon Telegraph & Telephone  127077.3 4Jevaluation. §individual ei 0
16 |ATET 88864 T2 299200 9609 139 0
17
E Reference OMU under 1 | Efficiency
19 |Constraints set Evaluation 3 Weights
20 |Assets 91920.6 = 91920.6 1 1
21 |Equity 10950 = 10950 1 1
22 |Employees 36000 = 36000 1 1
23 |Revenue 184365.2 Ed 184365.2 Changing cells;
24 |Profit 3462 > 346.2 Inckviciuallos
(25 |Eh 1

Figure 4.2. Input-oriented VRS DEA/PS Spreadsheet Model

The target cell is cell F19 which contains the following formula

Cell F19 =SUMPRODUCT(F20:F22,G20:G22)/SUM(G20:G22)
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where cells G20:G22 are reserved for the input weights.

Solver Parameters

Set Target Cell: $F$19 %

s
X

Solve

Equal To: O Max ® Min O Value of: I

Close

~By Changing Cells:
|$152: 51516, $F$20:$F$22

ﬂ Guess |

~Subject to the Constraints:

$BE20:$B$22 = $D$20:$0422
£BE23:1EBE24 == $D$23:$DE24

S
$BF25 =1 Change I
;] Delete I

Options

Reset all

i

Help

Figure 4.3. Solver Parameters for Input-oriented VRS DEA/PS Model
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B | ¢ | o JeE| F | e [H[ | v |k | | M |

i Assets Equity Employees Revenue Profit A Efficiency Assets Equity Zmployees
2 9 sub DERPS () 1 1 1
3| 53 1 1 1 1
4 65 Dim i As Integer 1 1 1 1
5] 217 For i = 1 To 15 1 1 1 1
6| 50 Range ("E18") = i 1 1 1 1

7] 7 Solversolve UserFinish:=True 0.948271 083411 0.9975806| 1.013122
g | o4 Range("J" & i+ 1) = Range("F13") 0561535 0340581 1.1085533 0.23547
T 106 "place the 1gd1v1dual thetas into columns K,L,M 0423575 067587 0400533 0 244377
W Range ("K" & J_ + 1) = Range ("F20") 1 1 1 1

Range ("L" & i + 1) = Range("F21")

S M8 Range("M® & i + 1) = Range{"F22") 1 1 1 1
2] Next 1 1 1 1
13| 91| Ena sub 0.384513 0.638678 0.4502766  0.064583
14 3647625 22419 89690 §3206.7) 24266 [ © 1 1 1 1
15| 1270773 422401 231400 81937.2| 22091 0 0347781 0498661 04133195 0.131363
16| 88884 17274 239300 79609 139 0 0324338 0565556 0.3867662 0.020692
17

18 | Reference DMU under 15 " Efficiency

19 set Evaluation ] WWeights

.20 502689 = 50268.9 ( 1

21 6681 = G631 1

[22] 6193 = 6193 1 DEAPS

23| 1675307 > 79609

24 2105 > 139

Figure 4.4. Efficiency Result for Input-oriented VRS DEA/PS Model

The formulas for cells B20:B25 are

Cell B20 =SUMPRODUCT(B2:B16,$1$2:$1$16)
Cell B21 =SUMPRODUCT(C2:C16,$1$2:$1$16)
Cell B22 =SUMPRODUCT(D2:D16,$1$2:$1$16)
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Cell B23 =SUMPRODUCT(F2:F16,$1$2:$1$16)
Cell B24 =SUMPRODUCT(G2:G16,81$2:$1$16)
Cell B25 =SUM(12:116)

The formulas for cells D20:D24 are

Cell D20 =F20*INDEX(B2:B16,E18,1)
Cell D21 =F21*INDEX(C2:C16,E18,1)
Cell D22 =F22*INDEX(D2:D16,E18,1)
Cell D23 =INDEX(F2:F16,E18,1)

Cell D24 =INDEX(G2:G16,E18,1)

B | ¢ [ b Jel F T e [H[ 1T Ko L [ M ]
[ 1] Assets Equity Employees Revenue Profit A Efficiency Assets Equity Zmployees
| 2| 919206 10950 36000 1843652 3462 0 1 1 1
T 2ix] (I (I
% Sat Target Call: fre1e % :: 1 1 1
T (2=l $EET 9N © Vake of: Close 1 1 1 1
T By Changing Cells: 1 1 4 1
|5 | [ss2imssesznigesze A Guess 0597152 042628 1 0365176
| 9 | ‘subjectts the Constraints: cptors_| 0423575 062582 0400533 0.244372
| 10| | [se$20:se822 = $D820:80822 =] acid 1 1 1 1
|11 §§§§§:faf24 >= §D$23:50524 — 1 1 1 1
120 lrgangren <= 1 —]g Reset Al ! ! ! !
|13 Delets 0.384513 0638678 04502766 0.064583
14| = Help 1 1 1 1
15| 0347781 0498661 04133195 0131363
[ 16| 888384 17274 299300 79609 139 0 0,324338 0.565556 0.3867662 0.020692

17

| 18  Reference DMU under | 15 | Efficienc
19| set Evaluation | 0.324338 ‘!Weights
[ 20| 502689 = 50268.9 0.565556 1
[21] 6681 = 6681 0386766 1
22 6193 = 6193 0020892 1 DEAPS
|23 1675307 > 79609
| 24 2105 > 139

Figure 4.5. Efficiency Result for Input-oriented VRS Non-radial DEA Model

Figure 4.4 shows the results and the VBA procedure “DEAPS” which
automates the calculation.

Note that the 8, (i = 1,2,3) are not restricted in Figure 4.3. If we add 6, <
1 ($F$20:$F$F22 <=1), then we obtain the results shown in Figure 4.5.

4.4 DEA and Multiple Objective Linear Programming

Charnes, Cooper, Golany, Seiford and Stutz (1985) describe the
relationship between DEA frontier and Pareto-Koopmans efficient empirical
production frontier. This work points out the relation of efficiency in DEA
and pareto optimality in multiple criteria decision making (MCDM) or
Multiple Objective Linear Programming (MOLP). The relationship between
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DEA and MOLP is again raised by Belton and Vickers (1993), Doyle and
Green (1993) and Stewart (1994) in their discussion of DEA and MCDM.
Joro, Korhonen and Wallenius (1998) provide a structure comparison of
DEA and MOLP.

In fact, as shown in Chen (2005), the DEA/PS models have a strong
relationship with MOLP. To demonstrate this, we use vector presentation of

X, =(x,5X,,) and ¥, = (V)50 V) -
4.4.1 Output-oriented DEA

Consider the following MOLP model

mf_lX(é/l,-yj) = (éljylj,--., éﬂjysj)

s’}lbject to (4.6)
XAx <x, i=l..,m;

J=1

4,20, j=1...,n.

where x, =(x,,,...,x,,) represents the input vector of DMU, among others.
If all DMUs produce only one output, i.e., y, is a scalar rather than a
vector, then (4.6) is a single objective linear programming problem

max(%4,,)
J . J=
snub]ect to 4.7)
YA x, <x, i=Ll..,m;
=7
jﬂ >0, j=L..,n

Let 4,y, = A7, then (4.7) turns into

max 5

S'll.le/eC/‘[ to, (4.8)
2AX; Sx,  i=1,m;

=R

A >0, j=1,..,n

where x) =x,/y, and x,, =x,/,.
As shown in Charnes, Cooper and Rhodes (1978), model (4.8) is
equivalent to the output-oriented CRS envelopment model
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maxz,
j+%o

subject to

;ijyj _Zoyo
/_Z:‘;/ljx,.j <x, i=L..m;
A, 20, j=Ll..n

Next, if y, is a vector with s components, then we define
SAy,=0., (49)
i

As aresult, (4.6) becomes
I};lg?((o-lylo "“’O-.vyso)
subject to
Zﬂjy”j =O-ryro }":1,...,S; (410)
Jj=1
i/ifx[j <x,, i=l.,m
il
2,20, j=ln.
Let W={w|weR*,w, 20 and >, w, =1} be the set of nonnegative

weights. The weighting problem associated with (4.10) is defined for some
we W as

S
max y.w,o,y,,

Aj0r =1

subject to

i:/liy’j :o-rym r=1""’s; (411)
J=t

n
_Zlftjxij <x, i=l.,m
pn

4,20 Jj=L...n.

Furthermore, let w =w y  forallr=1, ..., s, then (4.11) is equivalent to
the following linear programming problem

max Z?‘,WrO',

jOr =1

subject to

Zﬂjyrj =O_ryr0 r=1,...,S; (412)
=

XAx <x, i=l..,m;
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Model (4.12) is exactly the output-oriented CRS DEA/preference model.
However, if we wish output level cannot be decreased to reach the efficient
frontier, we specify (4.13) instead of (4.9).

Zijyrj =0.y, suchthat . > 1 forallr=1,..,s. (4.13)
Jj=1

We see that for a specific DMU,, 4, =1and 4, =0(; #0) is an optimal
solution to (4.12), when 0': =1 for all » =1, ..., s. Note that if some 0': #1,
then 4 = 0 is an optimal solution to (4.12). Therefore, (4.6) can be
interpreted as follows: when x, = (x,,,...,x,,) 1s regarded as resource, if the
resource X, can be used among other DMUSs (associated with /1; #0), then
more desirable or preferred output level y~ is produced and y, is not a
pareto solution to (4.6).

It can be seen that weighted non-radial DEA model (4.12) is equivalent
to an MOLP problem. If we impose an additional on >}, A, in (4.6), then
we obtain other output-oriented DEA models.

4.4.2 Input-oriented DEA

Similar to (4.6), we write the following MOLP model.

n n n
rr}m(zlxljxj) = (leljxlj,..., _leljxmj)
Jj= Jj= Jj=

J

s’}lbject to (4.14)
24,5V, r=1,..,s;

j=1

4,20, j=1,..n.

where y, =(»,,,...,»,,) represents the output vector of DMU . If all DMUs
use only one input, i.e., X, is a scalar, then (4.14) is a single objective linear
programming problem and is equivalent to the input-oriented CRS
envelopment model with single input.

Let G={g|ge R",g, =20 and }" g, =1} be the set of nonnegative
weights. Then model (4.14) can be transformed into the following linear
programming problem.

m
min} g.7,
1171' i=1

subject to
SAx,=Tx, i=l.,m (4.15)
=7

Zl;tjy’j 2y, r=1,...,s;
J=
4,20 j=1,..n.
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where g, =g,x, foralli=1, ..., m,and 7, is defined in (4.16) or (4.17).

S Ax, =1x, (4.16)
J=1

iljxﬁ =7,x, suchthat 7, <1 foralli=1, ..., m. (4.17)

J=1

Model (4.15) is a weighted non-radial DEA model incorporated with
preference over the adjustment of input levels. If we use (4.16), then there is
no restrictions on 7, and model (4.15) is the input-oriented CRS DEA/PS
model.

Note that for a specific DMU,, 4,=1and A, =0(j#0) is an optimal
solution to (4.15), when Tl.* =1 forall i=1, ..., m. Note also that if some T: #
1, then A = 0 is an optimal solution to (4.15). If we impose an additional on
a4, in (4.15), then we obtain other input-oriented DEA models.

4.4.3 Non-Orientation DEA

Consider the following MOLP model.

mfx(é/ijyj) = (élfyw“" é/ljyxj)

rriin(;/ljxj) = (;ljxlj,...,;ﬂjxmj) (4.18)
JJ= J= J=

subject to

4,20 j=1..,n

We have the following equivalent linear programming model

s

max ) w.o, -2 g7,
i=1

4.0y T; p=]

subject to

>XAx, =1T.x, i=1,..,m;

j=1

YAy, =01, r=1..,s; (4.19)
=N

7, <1, i=1,...m;

o, 21, r=1,..,s;

4,20, j=1..,n.

Note that o, =21 and 7, <1 in (4.19). Therefore, we have 7,x, =x,, —s,
and o,y, =y, +s, ,where s;, 57 = 0. Then, (4.19) becomes

¥
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lj,.V; J: r=1

subject to

S m m S
max Y w.s’ + Zigisi - _Z;gi + ler
i= i= r=

n

Z]/ijx,.j+s, =X, i=1,...,m;
J; N

Zl/ijyrj -si=y, r=1,..,s;
iz

5.8, 4, 20.

which is a weighted slack-based DEA model (see chapter 3 and Seiford and
Zhu (1998)).

4.5 Solving DEA Using DEAFrontier Software

4.5.1 Non-radial Models

To run the non-radial models, select the “Non-radial Model” menu item.
You will be prompted with a form as shown in Figure 4.6 for selecting the
models presented in Table 4.1. The Results are reported in “Efficiency”,
“Slack”, and “Target” sheets.

Non-radial Model E\

nce the data (DMUSs, inputs, & outputs) are entered in
he worksheet "Data", please specify:

[ Model Orientation III
@ [Input-Oriented]
_ ancer|

" Output-Oriented

— Frontier Type - Returns to Scale —

® (RS C RS
O NIRS C NDRS
Developed by Joe Zhu

Figure 4.6. Non-radial Models
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4.5.2 Preference-Structure Models

To run the preference structure models, select the “Preference Structure
Model” menu item. Figure 4.6 shows the form for specifying the models.

If “Yes” is selected under “Restrict Input/Output Change?”, then we have
weighted non-radial models (see discussion on page 75). If “No” is selected,
then we have the DEA/PS models presented in Table 4.2. The software will
then ask you to specify the weights for the inputs or outputs, depending on
the model orientation. The Results are reported in “Efficiency”, “Slack”, and

“Target” sheets.
Preference Structure ME‘

nce the data (DMUs, inputs, & outputs) are entered in
e worksheet "Data", please specify:

~ Model Orientation —

[oc |
Cancel

" Output-Oriented

Frontier Type - Returns fo Scale

® RS C RS

C NIRS C NDRS

P

Restrict Input/Output Change =
’_(5 Yes  No

Developed by Joe Zhu I

Figure 4.7. Preference Structure Models

4.5.3 Cost Efficiency, Revenue Efficiency and Profit Efficiency

These models need information on the input and output prices. Consider
the Hospital example in Cooper, Tone and Seiford (2000). The input and
output data are reported in the “Data” sheet (Figure 4.8), input price are
reported in the “Input Price” sheet (Figure 4.9) and the output price are
reported in the “Output Price” sheet (Figure 4.10).
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A B | ¢ | D E | F
1 |Hospital Doctor Murse Outpat. Inpat.
2 A 20 151 100 90
'3 B 19 131 150 50
4 | C 25 160 160 55
' 5 D 27 168 180 72
6 E 22 158 o4 66
7 F 55 255 230 90
8 | G 33 235 220 88
19 H 31 206 152 80
10 | | 30 244 190 100
11 J 50 268 250 100
12 K 53 306 260 147
13 L 38 284 250 120
Figure 4.8. Hospital Data
Bl e i s
B Doctor Nurse
2 A 500 100
3B 350 80
4 |c 450 90
5D 600 120
6 |E 300 70
ilF 450 80
'8 G 500 100
9 |H 450 85
110 1 380 76
1] v 410 75
112 K 440 80
113 L 400 70
Figure 4.9. Input Prices
A BL L el e E
1 [Hospital __loutpat. Inpat.
2 A 550 2010
(3 B 400 1800
' 4 | C 480 2200
' 5 |D 600 3500
(6 | E 400 3050
7 |F 430 3900
(8 |G 540 3300
9 |H 420 3500
(10 1 350 2900
11| J 410 2600
(12| K 540 2450
13| L 295 3000

Figure 4.10. Output Price
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The cost efficiency and revenue efficiency are discussed in section 4.2.
Table 4.3 summarizes the related models.

Table 4.3. Cost Efficiency and Revenue Efficiency Models

Frontier Cost Revenue

Type
mmZpl » max Zq Vo
subject to subject to

CRS Zﬂjx,./. <x, i=12,..m; Zﬁ.x.. <x, i=12,.,m
A !
iﬂjyrj 2y, r=12,.,s; Zﬂ V2V, =12,
=
A,%,20 ﬂ,ym 0

VRS Add Y4, =1

NIRS Add Y, /1 <1

NDRS Add 2,71/1 >1

In Table 4.3, p/ and ¢, are unit price of the input i and unit price of the
output  of DMU , respectively. These price data may vary from one DMU
to another. The cost efficiency and revenue efficiency of DMU, is defined
as

Xpx, X4y,
i;l and r=1
>p/x, Zq,” oo

Note that the revenue efficiency is defined as the reciprocal of the one
defined in section 4.2. As a result, the cost and revenue efficiency scores are
within the range of 0 and 1.

The efficiency scores are reported in the “Cost Efficiency” (“Revenue
Efficiency”) sheet. The optimal inputs (outputs) are reported in the
“OptimalData Cost Efficiency” (“OptimalData Revenue Efficiency”) sheet.

Table 4.4 presents the models used to calculate the profit efficiency
defined as

m

Z]q:yro - Z]ptoxm

Sk noow
Z‘;qryro - Z;pl 'xi()
r= i=
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Table 4.4. Profit Efficiency Models

Frontier
Type
max 3q'3, - p/%,
subject to
CRS YAx,<F,  i=12.,m
j=1
Zﬂ‘jyr/ 2.y/o r_l’z’ ’S
~ :
Jflo - xto’.)’\}lro - y;o
/1}. >
VRS Add >4, =1
NIRS Add > /’Lj <1
NDRS Add >4, >1

The results are reported in the “Profit Efficiency” and “OptimalData
Profit Efficiency” sheets.
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