

Chapter 2

Multiplier and Slack-based Models

2.1 Multiplier Model with Weight Restrictions

The dual linear programming problems to the envelopment models are
called multiplier models as shown in Table 2.1.

The dual variables iν and rμ are called multipliers. A DMU is on the
frontier if and only if ∑ =

s
r ror y1 μ + μ = 1 (or ∑ =

m
i ioi x1ν + ν = 1) in optimality.

The ε in the envelopment model essentially requires that iν and rμ are
positive in the multiplier models. The constraint ∑ =

m
i ioi x1ν = 1 (or ∑ =

s
r ror y1 μ

= 1) is known as a normalization constraint. In DEA, the weighted input and
output of ∑ =

m
i iji x1ν and ∑ =

s
r rjr y1 μ are called virtual input and virtual output,

respectively. See Seiford and Thrall (1990) for a detailed discussion on these
models.

Table 2.1. Multiplier Models
Frontier Type Input-Oriented Output-Oriented

)(0,
1

0
osubject t

max

1

11

1

ενμ
ν

μνμ

μμ

≥
=∑

≤+∑−∑

+∑

=

==

=

ir

m

i
ioi

m

i
iji

s

r
rjr

s

r
ror

x

xy

y

)(0,
1

0
osubject t

min

1

11

1

ενμ
μ

νμν

νν

≥
=∑

≥+∑−∑

+∑

=

==

=

ir

s

r
ror

s

r
rjr

m

i
iji

m

i
ioi

y

yx

x

CRS where μ = 0 where ν = 0
VRS where μ free where ν free
NIRS where μ < 0 where ν > 0
NDRS where μ > 0 where ν < 0

44 Multiplier and Slack-based Models

Note that ενμ ≥ir , . This set of constraints ensures that a DMU with an
efficiency score of one must be efficient. If a DMU’s efficiency score equals
one with non-zero slacks in an envelopment model, then this DMU must
have a score less than one in the above related multiplier model (with ε).
That is, if we impose ενμ ≥ir , in the multiplier models, the two-stage
process in the envelopment models is automatically carried out in the
calculation. However, note that ε is a very small positive value and usually
is set equal to 10-6, and such choice does not always work. It is also possible
that the multiplier model with can be infeasible because the ε is not
correctly selected.

In the DEA literature, a number of approaches have been proposed to

introduce additional restrictions on the values that the multipliers can
assume.

Some of the techniques for enforcing these additional restrictions include
imposing bounds on ratios of multipliers (Thompson et al., 1990), appending
multiplier inequalities (Wong and Beasley, 1990), and requiring multipliers
to belong to given closed cones (Charnes et al., 1989), among others.

We here present the assurance region (AR) approach of Thompson et al.
(1990). To illustrate the AR approach, suppose we wish to incorporate
additional inequality constraints of the following form into the multiplier
DEA models as given in Table 2.1:

sr

mi
v
v

r
r

r
r

i
i

i
i

o

o

,...,1 ,

,...,1 ,

=≤≤

=≤≤

γ
μ
μδ

βα
 (AR)

Here,
oi

v and
or

μ represent multipliers which serve as “numeraires” in
establishing the upper and lower bounds represented here by iα , iβ , and by

rδ , rγ for the multipliers associated with inputs i =1, …, m and outputs r =
1, …, s where

oi
α =

oi
β =

or
δ =

or
γ = 1. The above constraints are called

Assurance Region (AR) constraints as in Thompson et al. (1990).
 Uses of such bounds are not restricted to prices. For example, Zhu (1996)
uses an assurance region approach to establish bounds on the weights
obtained from uses of Analytic Hierarchy Processes in Chinese textile
manufacturing in order to reflect how the local government in measuring the
textile manufacturing performance.
 For example, we can include the following AR constraints

5.21 ≤≤
Assets

Employee

v
v

Multiplier Model with Weight Restrictions 45

35.1 ≤≤
Equity

Employee

v
v

43
Re

≤≤
venue

eMarketValu

μ
μ

The first AR constraint indicates that Employee input should be at most
2.5 times as important as the Assets input, but at least as important as the
Assets input.

It is noted that the AR constraints in the above form are non-linear,
however, they can be converted into linear restrictions, namely

sr

mivvv

oo

oo

rrrrr

iiiii

,...,1 ,

,...,1 ,

=≤≤

=≤≤

μγμμδ
βα

or

sr

sr

mivv

mivv

o

o

o

o

rrr

rrr

iii

iii

,...,1 ,

,...,1 ,

,...,1 ,

,...,1 ,

=≤

=≤

=≤

=≤

μγμ
μμδ

β
α

2.2 Multiplier Models in Spreadsheets

Figure 2.1 presents the input-oriented CRS multiplier spreadsheet model.
We name the cells C2:E16 containing the inputs as “InputUsed” and the
cells G2:H16 containing the outputs as “OutputProduced”. Cells C19:E19
and G19:H19 are reserved for the decision variables – input and output
multipliers, and are named “InputMultiplier” and “OutputMultiplier”,
respectively. Cells A2:A16 are reserved for DMU numbers which are used
in the formulas in cells I2:I16.

Cell I2 contains the formula “= SUMPRODUCT(OutputMultiplier,
INDEX (OutputProduced,A2,0))-SUMPRODUCT(InputMultiplier,INDEX
(InputUsed,A2,0))” which represents the difference between weighted output
and weighted input for DMU1. This value will be set as non-negative in the
Solver parameters.

The function INDEX(array,row number,0) returns the entire row in the
array. For example, the value for cell A2 is one, therefore
INDEX(OutputProduced,A2,0) returns all the outputs for DMU1, i.e., cells
G2:H2.

46 Multiplier and Slack-based Models

Figure 2.1. Input-oriented CRS Multiplier Spreadsheet Model

Figure 2.2. Premium Solver Parameters for Input-oriented CRS Multiplier Model

The formula in cell I2 is then copied into cells I3:I16. Cells I2:I16 are
named “ConstraintDMUj”.

The formula for cell I17 is “= SUMPRODUCT (InputMultiplier, INDEX
(InputUsed,DMU,0))”, where DMU is a range name for cell C20, indicating
the DMU under evaluation. The value of cell I17 will be set equal to one in
the Solver parameters. Cell I17 is named “DMUWeightedInput”.
 The target cell is C21 which represents the efficiency – weighted output
for the DMU under evaluation. The cell C21 is named “Efficiency”. Its

Multiplier Models in Spreadsheets 47

formula is “= SUMPRODUCT(OutputMultiplier,INDEX(OutputProduced,
DMU,0))”.

Note that initial values of one are entered into the cells for the
multipliers. As a result, some of the constraints are violated, and the value in
cell C21 (efficiency) is greater than one. However, once the Solver solves,
these values will be replaced by optimal solutions.

Figure 2.2 shows the Premium Solver parameters for the spreadsheet
model in Figure 2.1. If one uses the Premium Solver, one should select
“Standard LP/Quadratic” solver engine. In the Options, check the “Assume
Non-Negative” box.

Figure 2.3. Input-oriented CRS Multiplier Efficiency

Figure 2.3 shows the optimal solutions for DMU1 with an efficiency of
0.66283. To calculate the CRS efficiencies for the remaining DMUs, we
insert a VBA procedure “MultiplierCRS” to automate the computation, as
shown in Figure 2.4. Note that the name of the module is changed to
“MultiplierDEA”. This VBA procedure works for other sets of DMUs when
setting the “NDMUs”, “NInputs”, and “NOutputs” equal to proper values. In
the current example, this VBA procedure takes the efficiency in cell C21 and
places it into cells J2:J16, and also takes the optimal multipliers and places
them into cells K2:M16 and O2:P16 for 15 DMUs. Select and run the macro
“MultiplierCRS” in the Run Macro dialog box will generate the efficiency
results. You may also create a button in Forms toolbar and assign macro
“MultiplierCRS” to the button (see file “multiplier spreadsheet.xls” in the
CD).

48 Multiplier and Slack-based Models

Sub MultiplierCRS()
Dim NDMUs As Integer, NInputs As Integer, NOutputs As Integer
 NDMUs = 15
 NInputs = 3
 NOutputs = 2
 Dim i As Integer
 For i = 1 To NDMUs
 Range("DMU") = i
 SolverSolve UserFinish:=True
'record the efficiency scores
 Range("A1").Offset(i, NInputs + NOutputs + 4) = Range("Efficiency")
'record the optimal multipliers
 Range("InputMultiplier").Copy
 Range("A1").Offset(i, NInputs + NOutputs + 5).Select
 Selection.PasteSpecial Paste:=xlPasteValues
 Range("OutputMultiplier").Copy
 Range("A1").Offset(i, 2 * NInputs + NOutputs + 6).Select
 Selection.PasteSpecial Paste:=xlPasteValues

 Next i
End Sub

Figure 2.4. VBA Code for Input-oriented CRS Multiplier Model

Spreadsheets for other multiplier models can be set up in a similar
manner. For example, Figure 2.5 shows a spreadsheet model for the input-
oriented VRS multiplier model.

Because we have a decision variable that is free in sign, we need to
introduce two variables in cells I19 and J19. The free variable in the VRS
multiplier model is represented by cell J18 with a formula of “=I19-J19”. In
the Solver parameters, cells I19 and J19 (not cell J18) along with cells
C19:E19 and G19:H19 are changing cells.

The formula for cell I2 is

Cell I2 =SUMPRODUCT(G2:H2,G19:H19)-
SUMPRODUCT(C2:E2,C19:E19)+I19-J19

Cells for the multipliers and free variables are used as absolute references

indicated by the dollar sign. This allows us to copy the formula in cell I2 to
cells I3:I16. Figure 2.6 shows the Solver parameters for the input-oriented
VRS multiplier spreadsheet model.

Multiplier Models in Spreadsheets 49

Figure 2.5.. Input-oriented VRS Multiplier Spreadsheet Model

Figure 2.6.Solver Parameters for Input-oriented CRS Multiplier Model

Insert the VBA procedure “MultiplierVRS” shown in Figure 2.7 into the
existing module “MultiplierDEA”. The macro records the efficiency score in
cells J2:J16, optimal free variable in cells K2:K16, and optimal multipliers in
cells L2:N16 and P2:Q16 for 15 DMUs (see file “multiplier spreadsheet.xls”
in the CD).

50 Multiplier and Slack-based Models

Figure 2.7. VBA Code for the Input-oriented VRS Multiplier Model

Figure 2.8. CRS AR Multiplier Model

We next incorporate 5.21 ≤≤
Assets

Employee

v
v

 into the CRS multiplier model

shown in Figure 2.3. The following two additional constraints are needed
EmployeeAssets vv ≤1 and AssetsEmployee vv 5.2≤

Multiplier Models in Spreadsheets 51

Cells G22:G23 contains the left-hand-side of the above two constraints and
cells I22:I23 contains the right-hand-side of the above two constraints, as
shown in Figure 2.8. In the Solver parameters, we need to add these two
additional constraints, as shown in Figure 2.9.

Figure 2.9. Solver Parameters for CRS AR Model

2.3 Slack-based Model

The input-oriented DEA models consider the possible (proportional)
input reductions while maintaining the current levels of outputs. The output-
oriented DEA models consider the possible (proportional) output
augmentations while keeping the current levels of inputs. Charnes, Cooper,
Golany, Seiford and Stutz (1985) develop an additive DEA model which
considers possible input decreases as well as output increases
simultaneously. The additive model is based upon input and output slacks.
For example,

 0,,

;,...,2,1

;,...,2,1
osubject t

max

1

1

11

≥

==−∑

==+∑

∑+∑

+−

+

−

=

=

+

=

−

rij

ror

n

j=
rjj

ioi

n

j
ijj

s

r
r

m

i
i

ss

srysy

mixsx

ss

λ
λ

λ (2.1)

Note that model (2.1) assumes equal marginal worth for the nonzero

input and output slacks. Therefore, caution should be excised in selecting the

52 Multiplier and Slack-based Models

units for different input and output measures. Some a priori information may
be required to prevent an inappropriate summation of non-commensurable
measures. Previous management experience and expert opinion, which prove
important in productivity analysis, may be used (see, e.g., Seiford and Zhu
(1998)).

Model (2.1) therefore is modified to a weighted CRS slack-based model
as follows (Ali, Lerme and Seiford, 1995).

;,...,2,1
osubject t

max

1

11

mixsx

swsw

ioi

n

j
ijj

s

r
rr

m

i
ii

==+∑

∑+∑

−

=

=

++

=

−−

λ
 (2.2)

 0,,

;,...,2,1
1

≥

==−∑
+−

+

rij

ror

n

j=
rjj

ss

srysy

λ
λ

where −

iw and +
rw are user-specified weights obtained through value

judgment. The oDMU under evaluation will be termed efficient if and only
if the optimal value to (2.2) is equal to zero. Otherwise, the nonzero optimal

*−
is identifies an excess utilization of the ith input, and the non-zero optimal

*+
rs identifies a deficit in the rth output. Thus, the solution of (2.2) yields the

information on possible adjustments to individual outputs and inputs of each
DMU. Obviously, model (2.2) is useful for setting targets for inefficient
DMUs with a priori information on the adjustments of outputs and inputs.

Table 2.2. Slack-based Models
Frontier type Slack-based DEA Model
CRS

 0,,

;,...,2,1

;,...,2,1
osubject t

max

1

1

11

≥

==−∑

==+∑

∑+∑

+−

+

−

=

=

++

=

−−

rij

ror

n

j=
rjj

ioi

n

j
ijj

s

r
rr

m

i
ii

ss

srysy

mixsx

swsw

λ
λ

λ

VRS Add ∑ =
n
j j1 λ = 1

NIRS Add ∑ =
n
j j1 λ < 1

NDRS Add ∑ =
n
j j1 λ > 1

One should note that model (2.2) does not necessarily yield results that

are different from those obtained from the model (2.1). In particular, it will

Slack-based Model 53

not change the classification from efficient to inefficient (or vice versa) for
any DMU.

Model (2.1) identifies a CRS frontier, and therefore is called CRS slack-
based model. Table 2.2 summarizes the slack-based models in terms of the
frontier types.

2.4 Slack-based Models in Spreadsheets

Figure 2.10 shows a spreadsheet model for the CRS slack-based model
when DMU1 is under evaluation. Cells I2:I16 are reserved for jλ . Cells
F20:F24 are reserved for input and output slacks. The weights on slacks are
entered into Cells G20:G24. Currently, the weights are all equal to one.

Figure 2.10. CRS Slack-based DEA Spreadsheet Model

Cells B20:B24 contain the following formulas

 Cell B20 =SUMPRODUCT(B2:B16,I2:I16)+F20
 Cell B21 =SUMPRODUCT(C2:C16,I2:I16)+F21
 Cell B22 =SUMPRODUCT(D2:D16,I2:I16)+F22
 Cell B23 =SUMPRODUCT(F2:F16,I2:I16)-F23
 Cell B24 =SUMPRODUCT(G2:G16,I2:I16)-F24

54 Multiplier and Slack-based Models

The input and output values of the DMU under evaluation are placed into
cells D20:D24 via the following formulas

 Cell D20 =INDEX(B2:B16,E18,1)
 Cell D21 =INDEX(C2:C16,E18,1)
 Cell D22 =INDEX(D2:D16,E18,1)
 Cell D23 =INDEX(F2:F16,E18,1)
 Cell D24 =INDEX(G2:G16,E18,1)

Cell F25 is the target cell which represents the weighted slack. The

formula for cell F25 is

Cell F25 =SUMPRODUCT(F20:F24,G20:G24)

Figure 2.11. Solver Parameters for CRS Slack-based Model

Figure 2.11 shows the Solver parameters. Figure 2.12 shows the optimal
slack values when DMU1 is under evaluation. Next, we insert a VBA
procedure “CRSSlack” to calculate the optimal slacks for the remaining
DMUs.

Sub CRSSlack()
Dim i As Integer
 For i = 1 To 15
'set the value of cell E18 equal to i (=1, 2,..., 15)
 Range("E18") = i
'Run the Slack Solver model
 SolverSolve UserFinish:=True
'Select the cells containing the slacks
 Range("F20:F24").Select
'record optimal slacks in cells K2:O16

Slack-based Models in Spreadsheets 55

Selection.Copy
Range("K" & i + 1).Select
Selection.PasteSpecial Paste:=xlPasteValues, Transpose:=True
Next
End Sub

Figure 2.12. CRS Slacks

Figure 2.13. VRS Slack-based Spreadsheet Model

56 Multiplier and Slack-based Models

By adding an additional constraint on ∑ =
n
j j1 λ , we can obtain spreadsheet

models for other slack-based models (see Excel file slack-based
spreadsheet.xls in the CD). For example, Figure 2.13 shows a spreadsheet
model for the VRS slack-based DEA model.

Range names are used in Figure 2.13. Cells B2:D16 are named
“InputUsed” and cells F2:G16 are named “OutputProduced”. We also name
cells I2:I16 “Lambdas”, cells F20:F24 “Slacks”, G20:G24 “Weights”, and
cell E18 “DMU”. Accordingly, we have formulas

Cell B20 = SUMPRODUCT(INDEX(InputUsed,0,1),Lambdas)+Slacks
Cell B21 = SUMPRODUCT(INDEX(InputUsed,0,2),Lambdas)+Slacks
Cell B22 = SUMPRODUCT(INDEX(InputUsed,0,3),Lambdas)+Slacks
Cell B23 = SUMPRODUCT(INDEX(OutputProduced,0,1),Lambdas)-Slacks
Cell B24 = SUMPRODUCT(INDEX(OutputProduced,0,2),Lambdas)-Slacks
Cell B25 = SUM(Lambdas)
Cell F25 = SUMPRODUCT(Slacks,Weights)

We then name cells B20:B24 “ReferenceSet”, cells D20:D24
“DMUEvaluation”, B25 “SumLambda”, and cell F25 “SumSlack”. Figure
2.14 shows the Solver parameters for the VRS slack-based model.

Figure 2.14. Solver Parameters for VRS Slack-based Model

Since range names are used in the Solver model, we can modify
“CRSSlack” into a VBA procedure that can be applied to other data sets.
The modified VBA procedure is called “Slack”.

Slack-based Models in Spreadsheets 57

Sub Slack()

Dim NDMUs As Integer, NInputs As Integer, NOutputs As Integer

 NDMUs = 15

 NInputs = 3

 NOutputs = 2

Dim i As Integer

For i = 1 To NDMUs

Range("DMU") = i

SolverSolve UserFinish:=True

Range("Slacks").Copy

Range("A1").Offset(i, NInputs + NOutputs + 5).Select

Selection.PasteSpecial Paste:=xlPasteValues, Transpose:=True

Next

End Sub

2.5 Solving DEA Using DEAFrontier Software

2.5.1 Multiplier Model

To run the multiplier models, select the “Multiplier Model with Epsilon”
menu item. You will be prompted with a form for selecting the models
presented in Table 2.1. As shown in Figure 2.15, the default ε value = 0.
The user can specify its own non-zero ε . The results are reported in a sheet
named “Efficiency Report”.

Figure 2.15. Multiplier Model

58 Multiplier and Slack-based Models

2.5.2 Restricted Multiplier Model

We need to set up the sheet “Multiplier” which contains the ARs. For
example, if we want to include the following ARs

5.21 ≤≤
Assets

Employee

v
v

35.1 ≤≤
Equity

Employee

v
v

43
Re

≤≤
venue

eMarketValu

μ
μ

then the data in the “Multiplier” sheet should be entered as shown in the
following Figure 2.16.

Figure 2.16. Restrictions (AR) on Multipliers

Figure 2.17. Restricted Multiplier Model

Solving DEA Using DEAFrontier Software 59

To avoid any errors, we suggest copying and pasting the input and output
names from the “data” sheet when you enter the information into the
“Multiplier” sheet. If the input (output) names in the two sheets do not
match, the program will stop.

Once the “Multiplier” sheet is set up, select the “Restricted Multipliers”
menu item and you will be prompted to choose a DEA model, as shown in
Figure 2.17. Figure 2.18 shows the results of the input-oriented CRS
multiplier model with the above ARs.

Note that you can also add ARs that link the input and output multipliers
for the “Restricted Multipliers”. Note also that if the ARs are not properly
specified, then the related DEA model may be infeasible. If that happens, the
program will return a value “-9999” for the efficiency score.

Figure 2.18. Restricted Multiplier Model Results

2.5.3 Slack-based Model

To run the slack-based models, select the “Slack-based Model” menu
item. You will be prompted with a form for selecting the models presented
in Table 2.2, as shown in Figure 2.19.

If you select “Yes” under the “Weights on Slacks”, you will be asked to
provide the weights, as shown in Figure 2.10. If you select “No”, then all the
weights are set equal to one.

The results are reported in a sheet named “Slack Report” along with a
sheet named “Efficient Target”.

60 Multiplier and Slack-based Models

Figure 2.19. Slack-based Models

Figure 2.20. Weights on Slacks

Solving DEA Using DEAFrontier Software 61

REFERENCES

1. Ali, A. I., C.S. Lerme and L.M. Seiford (1995), Components of efficiency
evaluation in data envelopment analysis, European Journal of
Operational Research, 80, 462-473.

2. Charnes, A., W.W. Cooper, B. Golany, L.M. Seiford and J. Stutz (1985),
Foundations of data envelopment analysis for Pareto-Koopman's
efficient empirical production functions, J. of Econometrics, 30, 1-17.

3. Seiford, L.M. and R.M. Thrall (1990), Recent developments in DEA: the
mathematical programming approach to frontier analysis, Journal of
Econometrics, 46, 7-38.

4. Seiford, L.M. and J. Zhu (1998), Identifying excesses and deficits in
Chinese industrial productivity (1953-1990): a weighted data
envelopment analysis approach, OMEGA, 26, No. 2, 279-269.

5. Thompson, R. G., L. N. Langemeier, C. T. Lee, E. Lee, R. M. Thrall
(1990), The role of multiplier bounds in efficiency analysis with
application to Kansas farming. J. Econometrics 46, 93–108.

6. Wong, Y-H. B., and J. E. Beasley (1990), Restricting weight flexibility in
data envelopment analysis, Journal of Operational Research Society
41/9, 829-835.

7. Zhu, J. (1996), Data envelopment analysis with preference structure,
Journal of Operational Research Society, 47, 136-150.

