
Chapter 13 

Returns-to-Scale 
 

 
 

13.1 Introduction 

 As demonstrated in Figure 1.3, the VRS envelopment model identifies the 
VRS frontier with DMUs exhibiting IRS (increasing returns to scale), CRS 
(constant returns to scale), and DRS (decreasing returns to scale). In fact, the 
economic concept of RTS (returns to scale) has been widely studied within 
the framework of DEA. RTS have typically been defined only for single 
output situations. DEA generalizes the notion of RTS to the multiple-output 
case. This, in turn, further extended the applicability of DEA. 
 Seiford and Zhu (1999a) demonstrate that there are at least three 
equivalent basic methods of testing a DMU's RTS nature which have 
appeared in the DEA literature. Based upon the VRS multiplier models, the 
sign of the optimal free variable (μ* or ν*) indicates the RTS (Banker, 
Charnes and Cooper, 1984). Based upon the CRS envelopment models, the 
magnitude of optimal ∑n

j j
*λ  indicates the RTS (Banker, 1984). These two 

methods may fail when DEA models have alternate optimal solutions. The 
third method is based upon the scale efficiency index (Färe, Grosskopf and 
Lovell, 1994). The scale efficiency index method does not require 
information on μ* or ν* or ∑n

j j
*λ , and is robust even when there exist 

multiple optima. However, the scale efficiency index method requires the 
calculation of three DEA models. 
 Seiford and Zhu (1999b) and Seiford and Zhu (2005) study the sensitivity 
of RTS classification. Seiford and Zhu (1999c) provide a use of RTS 
sensitivity analysis in improving performance of a two-stage process. 
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13.2 RTS Regions 

It is meaningful to discuss RTS for DMUs located on the VRS frontier. 
We discuss the RTS for non-frontier DMUs by their VRS efficient targets as 
indicated in Table 1.1. Because a VRS envelopment model can be either 
input-oriented or output-oriented, we may obtain different efficient targets 
and RTS classifications for a specific non-frontier DMU. 
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Figure 13.1. RTS and VRS Efficient Target 

 Suppose we have five DMUs, A, B, C, D, and H as shown in Figure 13.1. 
Ray OBC is the CRS frontier. AB, BC and CD constitute the VRS frontier, 
and exhibit IRS, CRS and DRS, respectively. B and C exhibit CRS. On the 
line segment AB, IRS prevail to the left of B. On the line segment CD, DRS 
prevail to the right of C. 
 Consider non-frontier DMU H. If the input-oriented VRS envelopment 
model is used, then H′ is the efficient target, and the RTS classification for H 
is IRS. If the output-oriented VRS envelopment model is used, then H″is the 
efficient target, and the RTS classification for H is DRS. 
 However some IRS, CRS and DRS regions are uniquely determined no 
matter which VRS model is employed. They are region ‘I’ – IRS, region ‘II’ 
– CRS, and region ‘III’ – DRS. In fact, we have six RTS regions as shown in 



RTS Regions  291
 
Figure 13.2. Two RTS classifications will be assigned into the remaining 
regions IV, V and VI. Region ‘IV’ is of IRS (input-oriented) and of CRS 
(output-oriented). Region ‘V’ is of CRS (input-oriented) and of DRS 
(output-oriented). Region ‘VI’ is of IRS (input-oriented) and of DRS 
(output-oriented). 
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Figure 13.2. RTS Region 

The RTS regions can provide a DMU classification. See also Gregoriou 
and Zhu (2005). 

 

13.3 RTS Estimation 

3.3.1 VRS and CRS RTS Methods 

Let *μ  represent the optimal value of µ in the input-oriented VRS 
multiplier model, and *ν  the optimal value of ν in the output-oriented VRS 
multiplier model, then we have the VRS RTS method. 
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Theorem 13.1 
(i) If *μ  = 0 (or *ν  = 0) in any alternate optima, then CRS prevail on 

oDMU . 
(ii) If *μ  > 0 (or *ν  < 0) in all alternate optima, then IRS prevail on oDMU . 
(iii) If *μ  < 0 (or *ν  > 0) in all alternate optima, then DRS prevail on 

oDMU . 
 

Note that the VRS frontier can be expressed as ∑ =
s
r rjr y1 μ  = ∑ =

m
i iji x1ν  - µ 

(or ∑ =
s
r rjr y1 μ  = ∑ =

m
i iji x1ν  + ν). Thus, geometrically, in the case of single 

output, - *μ  (or *ν ) represents the y-intercept on the output axis. Consider 
Figure 13.1. The intercept is positive for line segment CD so *μ  < 0 (or *ν  
> 0) and RTS is decreasing for any DMU on CD (excluding C), whereas the 
intercept is negative for line segment AB so *μ  > 0 (or *ν  < 0) and RTS is 
increasing for any DMU on AB (excluding B). The intercept for line OBC is 
zero so *μ  = 0 (or *ν  = 0) and RTS is constant. However, in computation, 
we may not obtain the unique optimal solution (the frontier), and we may 
obtain supporting hyperplanes at VRS frontier DMUs. Consequently, we 
have to check all optimal solutions as indicated in Theorem 13.1. 

Table 13.1 presents five VRS frontier DMUs with two inputs and one 
output. The last column indicates the RTS classification. 

Table 13.1. DMUs for RTS Estimation 
DMU input 1 (x1) input 2 (x2) output (y) RTS 

1 2 5 2 CRS 
2 2 2 1 CRS 
3 4 1 1 CRS 
4 2 1 1/2 IRS 
5 6 5 5/2 DRS
 

Table 13.2. Optimal Values for RTS Estimation 
DMU *μ ∈ [ −μ , +μ ] *

jλ  
1 [-7, 1] *

1λ  = 1; ∑ =
6

1
*

j jλ  = 1 
2 [0, 1] solution 1: *

2λ  = 1; ∑ =
6

1
*

j jλ  = 1 
solution 2: *

1λ  = 1/3, *
3λ  = 1/3; ∑ =

6
1

*
j jλ  = 2/3 

3 [-5/3, 1] *
3λ  = 1; ∑ =

6
1

*
j jλ  = 1 

4 [1/2, 1] 0< *
1λ  <1/12, *

2λ  = 1/4-3 *
1λ , *

3λ =1/4+ *
1λ  

5/12<∑ =
6

1
*

j jλ <1/2 
5 (-∞, -3/37] *

1λ =35/48 - *
2λ /3, 0< *

2λ <35/16, *
3λ =25/24- *

2λ /3 
85/48<∑ =

6
1

*
j jλ <15/6 

 
The second column of Table 13.2 reports the optimal *μ . *μ  can take all 

the optimal  values in the interval [ −μ , +μ ]. *μ  = 0 is found in DMUs 1, 2, 
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and 3, therefore the three DMUs exhibit CRS. All *μ  are positive and 
negative in DMU5 and DMU6, respectively, therefore IRS and DRS prevail 
on DMU5 and DMU6, respectively. 

 
The above RTS method uses the VRS multiplier models. In fact, we can 

use CRS envelopment models to estimate the RTS classification (Zhu, 
2000a). Let *

jλ  be the optimal values in CRS envelopment models. We have 
 
Theorem 13.2 
(i) If ∑n

j j
*λ  = 1 in any alternate optima, then CRS prevail on oDMU . 

(ii) If ∑n
j j

*λ  < 1 for all alternate optima, then IRS prevail on oDMU . 
(iii) If ∑n

j j
*λ  > 1 for all alternate optima, then DRS prevail on oDMU . 

From Table 13.2, we see that DMU2 has alternate optimal *
jλ . 

Nevertheless, there exists an optimal solution such that ∑n
j j

*λ  = 1 indicating 
CRS. DMU4 exhibits IRS because ∑n

j j
*λ  < 1 in all optima, and DMU5 

exhibits DRS because ∑n
j j

*λ  > 1 in all optima. 

3.3.2 Improved RTS Method 

In real world applications, the examination of alternative optima is a 
laborious task, and one may attempt to use a single set of resulting optimal 
solutions in the application of the RTS methods. However, this may yield 
erroneous results. For instance, if we obtain *

1λ  = *
3λ  = 1/3, or *μ  = 1 for 

DMU2, then DMU2 may erroneously be classified as having IRS because 
∑ *

jλ  < 1 or *μ  > 0 in one particular alternate solution. 
A number of methods have been developed to deal with multiple optimal 

solutions in the VRS multiplier models and the CRS envelopment models. 
Seiford and Zhu (1999a) show the following results with respect to the 
relationship amongst envelopment and multiplier models, respectively. 
 
Theorem 13.3 
(i) The CRS efficiency score is equal to the VRS efficiency score if and only 
if there exists an optimal solution such that ∑n

j j
*λ  = 1. If The CRS efficiency 

score is not equal to the VRS efficiency score, then 
(ii) The VRS efficiency score is greater than the NIRS efficiency score if and 
only if ∑n

j j
*λ  < 1 in all optimal solutions of the CRS envelopment model. 

(iii) The VRS efficiency score is equal to the NIRS efficiency score if and 
only if ∑n

j j
*λ  > 1 in all optimal solutions of the CRS envelopment model. 
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Theorem 13.4 
(i) The CRS efficiency score is equal to the VRS efficiency score if and only 
if there exists an optimal solution *μ  = 0 (or *ν  = 0). If The CRS efficiency 
score is not equal to the VRS efficiency score, then 
(ii) The VRS efficiency score is greater than the NIRS efficiency score if and 
only if *μ  > 0 (or *ν  < 0) in all optimal solutions. 
(iii) The VRS efficiency score is equal to the NIRS efficiency score if and 
only if *μ  < 0 (or *ν  > 0) in all optimal solutions. 

 
Based upon Theorems 13.3 and 13.4, we have 
 

Theorem 13.5 
(i) If oDMU  exhibits IRS, then∑n

j j
*λ  < 1 for all alternate optima. 

(ii) If oDMU  exhibits DRS, then ∑n
j j

*λ  > 1 for all alternate optima. 
 

The significance of Theorem 13.5 lies in the fact that the possible 
alternate optimal *

jλ  obtained from the CRS envelopment models only affect 
the estimation of RTS for those DMUs that truly exhibit CRS, and have 
nothing to do with the RTS estimation on those DMUs that truly exhibit IRS 
or DRS. That is, if a DMU exhibits IRS (or DRS), then ∑n

j j
*λ  must be less 

(or greater) than one, no matter whether there exist alternate optima of jλ . 
Further, we can have a very simple approach to eliminate the need for 

examining all alternate optima. 
 
Theorem 13.6 
(i) The CRS efficiency score is equal to the VRS efficiency score if and only 
if CRS prevail on oDMU . Otherwise, 
(ii) ∑n

j j
*λ  < 1 if and only if IRS prevail on oDMU . 

(iii) ∑n
j j

*λ  > 1if and only if DRS prevail on oDMU . 
 

Thus, in empirical applications, we can explore RTS in two steps. First, 
select all the DMUs that have the same CRS and VRS efficiency scores 
regardless of the value of ∑n

j j
*λ . These DMUs are in the CRS region. Next, 

use the value of ∑n
j j

*λ  (in any CRS envelopment model outcome) to 
determine the RTS for the remaining DMUs. We observe that in this process 
we can safely ignore possible multiple optimal solutions of jλ . 

Similarly, based upon VRS multiplier models, we have 
 

Theorem 13.7 
(i) The CRS efficiency score is equal to the VRS efficiency score if and only 
if CRS prevail on oDMU . Otherwise, 
(ii) *μ  > 0 (or *ν  < 0) if and only if IRS prevail on oDMU . 
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(iii) *μ  < 0 (or *ν  > 0) if and only if DRS prevail on oDMU . 

3.3.3 Spreadsheets for RTS Estimation 

We here develop spreadsheet models for RTS estimation based upon 
Theorem 13.6. The RTS spreadsheet model uses VRS and CRS envelopment 
spreadsheets. Figure 13.3 shows a spreadsheet for the input-oriented CRS 
envelopment model where CRS efficiency scores and the optimal ∑n

j j
*λ  are 

recorded in columns J and K, respectively. The button “Input-oriented CRS 
(RTS)” is linked to a VBA procedure “RTS”. 
 
Sub RTS() 

    Dim i As Integer 

    For i = 1 To 15 

'set the value of cell E18 equal to i (1, 2,..., 15) 

    Range("E18") = i 

'Run the Solver model. The UserFinish is set to True so that 

'the Solver Results dialog box will not be shown 

    SolverSolve UserFinish:=True 

'Place the efficiency into column J 

    Range("J" & i + 1) = Range("F19") 

'Place the sum of lambdas into column K 

     Range("K" & i + 1) = Range("B25") 

    Next i 

End Sub 
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Figure 13.3. Input-oriented RTS Classification Spreadsheet Model 

In order to obtain the RTS classification, we need also to calculate the 
input-oriented VRS envelopment model. This can be achieved by using the 
spreadsheet model shown in Figure 1.8 (Chapter 1). We then copy the VRS 
efficiency scores into column L, as shown in Figure 13.4. Cells M2:M16 
contain formulas based upon Theorem 13.6. The formula for cell M2 which 
is copied into cells M3:M16 is 

 
=IF(J2=L2,"CRS",IF(AND(J2<>L2,K2<1),"IRS",IF(AND(J2<>L2,K2>1),"
DRS"))) 

 
To obtain the output-oriented RTS classification, we use the spreadsheet 

for output-oriented CRS envelopment model. Figure 13.5 shows the 
spreadsheet, and Figure 13.6 shows the Solver parameters. Note that range 
names are used in the spreadsheet shown in Figure 13.5 as in the spreadsheet 
for output-oriented VRS envelopment model shown in Figure 1.27. For 
example, cell E18 is named as “DMU”, cell F19 is named as “Efficiency”, 
and cell B25 is named as “SumLambda”. The button “Output-oriented CRS” 
is linked to a VBA procedure “GeneralRTS” which automates the 
calculation, and records the efficiency score and ∑n

j j
*λ  into columns J and K, 

respectively. 
 

Sub GeneralRTS() 

Dim NDMUs As Integer, NInputs As Integer, NOutputs As Integer 
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    NDMUs = 15 

    NInputs = 3 

    NOutputs = 2 

    Dim i As Integer 

    For i = 1 To NDMUs 

    Range("DMU") = i 

    SolverSolve UserFinish:=True 

Range("A1").Offset(i,NInputs+NOutputs+4) = Range("Efficiency") 

Range("A1").Offset(i, NInputs+NOutputs+5) = Range("SumLambda") 

    Next 

End Sub 
 

 

Figure 13.4. Input-oriented RTS Classification 

Note that we can assign “RTS” to the button “Output-oriented CRS 
(RTS)”. In fact, when the range names are used, Range(“DMU”), 
Range(“Efficiency”), and Range(“SumLambda”) are equivalent to 
Range(“E18”), Range(“F19”), and Range(“B25”), respectively. The 
procedure “GeneralRTS” can be applied to other data sets with the range 
names. 

With the output-oriented VRS efficiency scores and Theorem 13.6, we 
can obtain the output-oriented RTS classification shown in Figure 13.7. 

Based upon Figures 13.4 and 13.7, we obtain the RTS regions (see 
column O in Figure 13.7). 
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Figure 13.5. Output-oriented RTS Classification Spreadsheet Model 

 

Figure 13.6. Solver Parameters for Output-oriented CRS Envelopment Model 
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Figure 13.7. Output-oriented RTS Classification 

13.4 Scale Efficient Targets 

By using the most productive scale size (MPSS) concept (Banker, 1984), 
we can develop linear programming problems to set unique scale efficient 
target. Consider the following linear program when the input-oriented CRS 
envelopment model is solved (Zhu, 2000b). 
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where *θ  is the input-oriented CRS efficiency score. 
 Based upon the optimal values from (13.1) (i.e., ∑ *

jλ ), the MPSS concept 
yields the following scale-efficient target for oDMU  corresponding to the 
largest MPSS 
 

MPSSmax :
⎩
⎨
⎧

∑=
∑=

*

**

/~
/~

jroro

jioio

yy
xx

λ
λθ                 (13.2) 

 
where (~) represents the target value. 
 If we change the objective of (13.1) to maximization, 
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then we have the scale efficient target corresponding to the smallest MPSS. 
 

MPSSmin :
⎩
⎨
⎧

∑=
∑=

*
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jioio

yy
xx

λ
λθ                 (13.4) 

 
 Note that models (13.1) and (13.3) are based upon the input-oriented CRS 
envelopment model. However, by using the relationship between the input-
oriented and output-oriented CRS envelopment models (see Lemma 13.2), it 
is trivial to show that MPSSmax (MPSSmin) remains the same under both 
orientations. Consequently, MPSSmax and MPSSmin are uniquely determined 
by *θ  and ∑ *

jλ  (∑ *̂
jλ ). 

 We can select the largest or the smallest MPSS target for a particular 
DMU under consideration based upon the RTS preference over performance 
improvement. For example, one may select the smallest MPSS for an IRS 
DMU and the largest MPSS for a DRS DMU. Further, if the CRS 
envelopment models yield the unique optimal solutions, then the MPSSmax 
and MPSSmin are the same. 

The spreadsheet model for calculating the scale efficient target involves 
(i) calculating CRS envelopment model, and (ii) calculating model (13.1). 
We demonstrate (ii) using the input-oriented CRS envelopment model 
shown in Figure 13.3. 

In Figure 13.8, the target cell is B25, and contains the formula 
“=SUM(I2:I16)”, representing the ∑ *

jλ . Cell F19 is no longer a changing 
cell, and contains the formula “=INDEX(J2:J16,E18,1)”. This formula 
returns the CRS efficiency score of a DMU under evaluation from column J. 

The changing cells are I2:I16. The constraints in the Solver parameters 
for the input-oriented CRS envelopment model shown in Figure 1.24 remain 
the same. Figure 13.8 also shows the Solver parameters for calculating the 
model (13.1). Select “Max” if model (13.3) is used. 
 To automate the computation, we remove the statement Range(“J”& 
i+1)=Range(“F19”) from the procedure “RTS”, and name the new procedure 
“MPSS”. 
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Sub MPSS() 

    Dim i As Integer 
    For i = 1 To 15 

'set the value of cell E18 equal to i (1, 2,..., 15) 

    Range("E18") = i 

'Run the Solver model. The UserFinish is set to True so that 

'the Solver Results dialog box will not be shown 

    SolverSolve UserFinish:=True 

'Place the sum of lambdas into column K 

     Range("K" & i + 1) = Range("B25") 

    Next i 

End Sub 
 

 

Figure 13.8. Largest MPSS Spreadsheet Model 

It can be seen that the maximum ∑ *
jλ  is the same as that obtained from 

the input-oriented CRS envelopment model shown in Figure 13.3. This is 
due to the fact that we have unique optimal solutions on *

jλ . As a result, 
minimum ∑ *̂

jλ  = maximum ∑ *
jλ . We can apply (13.2) or (13.4) to obtain 

the scale efficient targets for the 15 DMUs. 

13.5 Solving DEA Using DEAFrontier Software 

RTS Estimation can be found at the Returns-to-Scale menu item, as 
shown in Figure 13.9. 
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Figure 13.9. Returns-to-Scale Menu 

 

Figure 13.10. RTS Estimation 

The RTS Estimation menu will provide (i) the RTS classifications, and 
(ii) RTS regions as shown in Figure 13.2. (see Figure 13.10). 

If RTS Region is selected, the software will run both the input-oriented 
and output-oriented envelopment models. The results are reported in the 
“RTS Region” sheet. 

If Input-Oriented is selected, then the software will generate the RTS 
classification based upon the input-oriented envelopment models and report 
the results in the sheet “RTS Report”. If Output-Oriented is selected, then 
the software will generate the RTS classification based upon the output-
oriented envelopment models. 
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