
Chapter 12 

Identifying Critical Measures in DEA 
 

 
 

12.1 Introduction 

Since each DMU has its own inherent tradeoffs among the multiple 
measures that significantly influence the performance, it is extremely 
important for the management to know the critical measures. The current 
chapter introduces the approach of Chen and Zhu (2003) for identifying the 
critical measures to DMUs’ performance. Note that once the DEA evaluation 
is done, the management needs to either (i) maintain the best practice for the 
efficient DMUs or (ii) achieve the best practice for the inefficient DMUs. 
Thus, when a set of multiple performance measures is determined, measures 
that are influential to maintaining and achieving the best practice should be 
regarded as critical to the performance of DMUs. Also, it is believed that a 
critical measure is signaled by whether changes in its value affect the 
performance, not by whether inclusion or exclusion of the measure affects 
the performance. Under the framework of DEA sensitivity analysis, Chen 
and Zhu (2003) develop an alternative approach, which is independent of 
identifying DEA weights or DEA multipliers, to identify such critical 
measures. 

12.2 Performance Evaluation and DEA 

Regression-based methods can be used in evaluating performance of a set 
of DMUs. However, they are limited to only one dependent variable. For 
example, 
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where iβ  are estimated coefficients which can be used to determine whether 
an independent variable has a positive effect on the dependent variable or 
makes an important contribution. i.e., by estimating the coefficients, we may 
identify the critical performance measures under the context of average 
behavior. Also, the estimated regression line can be served as the benchmark 
in performance evaluation. 

In fact, formula (12.1) can be viewed as a performance frontier or 
tradeoff curve where ix  are inputs and y is the output. However, we are very 
likely to have multiple outputs ry  (r = 1, …, s). We may rewrite (12.1) as 
(Wilkens and Zhu, 2001) 
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where ru  and iv  are unknown weights representing the relative importance 
or tradeoffs among ry  and ix . 
 Suppose we can estimate ru  and iv , then for each jDMU , we can define 
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as a performance index, where xij, (i = 1, 2, ..., m) are multiple inputs, yrj, (r 
= 1, 2, ..., s) are multiple outputs for jDMU  (j = 1, 2, …, n). 

In order to estimate ru  and iv , and further evaluate the performance of 
oj th DMU, (denoted as oDMU ) by (12.2), DEA uses the following linear 

fractional programming problem 
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ru , iv  > 0   ∀  r, i 
 
where, iox  and roy  are respectively the ith input and rth output for oDMU  
under evaluation. 

When *
oh  = 1, oDMU  is efficient or on the performance frontier. 

Otherwise, if *
oh  > 1, then oDMU  is inefficient. All the efficient DMUs 

constitute the performance frontier. 
Note that when *

oh  = 1, we have 
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where (*) represents optimal values in model (12.4). That is, DEA estimates 
the “coefficients” in (12.2). It can be seen that while (12.1) estimates one set 
of coefficients, DEA model (12.4) estimates one set of coefficients for each 
DMU, resulting a piecewise linear tradeoff curve represented by several 
(12.5)-like equations associated with efficient DMUs. Equation (12.5) is 
theoretically available, but very difficult to obtain empirically. 

Obviously, *
ru  and *

iv  represent the tradeoffs among various outputs and 
inputs. If we can obtain the exact information on *

ru  and *
iv , the critical 

performance measures can be easily identified. However, the exact 
information on *

ru  and *
iv  cannot be obtained because of multiple optimal 

solutions in the multiplier models. 
 
However, in order to solve model (4), the following transformation is 

used 
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, iω  = t iv , oω  = tα , rμ  = t ru    (12.6) 

Based upon (12.6), model (12.4) is solved in the following equivalent 
linear programming problem (VRS multiplier model, see chapter 1) 
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rμ , iω  > 0   ∀  r, i 
or the dual to model (12.7) (VRS envelopment model, see chapter 1) 
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Based upon (12.6), we have 
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*
iω  are not the exact weights representing the tradeoffs in model (4). In 

addition, for efficient DMUs, model (12.7) often yields multiple optimal 
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may only represent supporting hyperplanes rather than the performance 
frontier in empirical studies. This further leads to an incomplete tradeoff 
information. Because of possible multiple optimal solutions in (12.7) and the 
transformation in (12.6), it is very difficult to back out the tradeoffs 
represented by *

ru  and *
iv  in model (12.4), i.e., the performance frontier 

expressed by (12.5) is very difficult to obtain in empirical applications. Chen 
and Zhu (2003) therefore develop an alternative approach to identifying the 
critical measures. 

 
Suppose that we obtain the performance frontier. In this case, for 

example *
kv  > *

iv  indicates that the kth input measure is more influential in 
order for oDMU  to achieve the best-practice. i.e., the kth input is more 
important to oDMU ’s performance which is characterized by the efficiency 
score ( *

oh ). Note also that the DEA model (12.4) always tries to assign larger 
iv  and ru  to smaller iox  and larger roy  respectively in order to achieve the 

optimality. This indicates that when a set of multiple performance measures 
(inputs and outputs) is determined, the relative importance or tradeoffs is 
determined by the magnitudes of the inputs and outputs. 

It can be seen from model (12.4) that for a specific DMU under 
evaluation, when a specific input increases, the associated input weight will 
not increase and when a specific output decreases, the associated output 
weight will not increase. Consider the frontier represented by ABC in Figure 
1 with two inputs and a single output. In Figure 12.1, 1v  > 2v  remains true 
for facet AB if DMU A’s 2x  (uncritical one) changes its value, and 2v  > 1v  
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remains true for facet BC if DMU C’s 1x  (uncritical one) changes its value. 
Meanwhile, DMUs A and C remain efficient when the uncritical inputs 
changes their value, respectively1. However, if we increase the 1x  of DMU 
A or 2x  of DMU C to a certain level, DMU A or DMU C becomes 
inefficient. 

The example in Figure 12.2 indicates that (a) for efficient DMUs, the 
performance is determined and characterized by the best-practice status, and 
(b) for inefficient DMUs, the performance is determined and characterized 
by the distance to the frontier. Thus, a measure that is critical to the 
performance should be characterized by whether the measure is critical to (i) 
maintaining the best-practice for efficient DMUs and (ii) achieving the best-
practice for inefficient DMUs. 
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Figure 12.1. Critical Measures and Tradeoffs 

The example in Figure 12.1 indicates that (a) for efficient DMUs, the 
performance is determined and characterized by the best-practice status, and 
(b) for inefficient DMUs, the performance is determined and characterized 
by the distance to the frontier. Thus, a measure that is critical to the 
performance should be characterized by whether the measure is critical to (i) 
maintaining the best-practice for efficient DMUs and (ii) achieving the best-
practice for inefficient DMUs. 

 
1 Note that for example, if the second input of DMU A decreases its current level to 3, the 

level used by DMU B, then we no longer have the efficient facet AB. Since DMU B 
becomes inefficient. 
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Because a set of multiple performance measures is given prior to the 
evaluation, a critical measure is signaled by whether changes in its value 
affect the performance, not by whether inclusion or exclusion of the measure 
affects the performance. 

 
Definition 12.1 When a set of multiple performance measures is given, a 
specific measure is said to be critical if changes in its value may alter the 
efficiency status of a specific DMU. 
 
 For efficient DMUs, the performance is determined and characterized by 
the best practice status. For inefficient DMUs, the performance is 
determined and characterized by the distance to the frontier. Thus, a 
measure that is critical to the performance should be characterized by 
whether the measure is critical to (i) maintaining the best practice for 
efficient DMUs and (ii) achieving the best practice for inefficient DMUs. 

12.3 Identifying Critical Output Measures 

Consider the following super-efficiency model where the dth output is 
given the pre-emptive priority to change 
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Four possible cases are associated with (12.6): (i) *

dσ  > 1, (ii) *
dσ  = 1, 

(iii) *
dσ  < 1 and (iv) model (12.6) is infeasible. When *

dσ  > 1, oDMU  has 
inefficiency in its dth output, since potential output increase can be achieved 
by oDMU . Cases (ii), (iii) and (iv) indicate that no inefficiency exists in dth 
output. 
 Now, we consider the efficient DMUs and assume that oDMU  is 
efficient. Based upon model (12.6) the set of s outputs can be grouped into 
two subsets: set O = {d: *

dσ  < 1} and set O  = {d: model (12.6) is infeasible 
for dth output}. 
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 We have when model (12.6) is infeasible, the magnitude of the dth output 
across all DMUs has nothing to do with the efficiency status of oDMU . 

This indicates that the outputs in set O  are not critical to the efficiency 
status of oDMU , since changes in the outputs in set O  do not change the 
efficiency classification of oDMU . The efficiency classification of oDMU  
is stable to any changes in the dth output across all DMUs when d belongs to 
set O . 
 However, decreases in outputs in set O to certain magnitudes result in a 
change of efficiency status (performance) of oDMU . For example, when the 
dth output of oDMU  is decreased from the current level doy to a level which 
is less than *

dσ doy  ( *
dσ  < 1), then oDMU  becomes inefficient. This in turn 

indicates that the outputs in set O are critical to the performance of oDMU . 
 Now, let *dΡ  = }max{ *

dσ  for the outputs in set O. From the above 
discussion, we conclude that the d*th output is the most critical output 
measure to the efficiency of oDMU . Because, oDMU ’s efficiency status is 
most sensitive to changes in the d*th output. 
 Next, we consider inefficient DMUs and assume that oDMU  is 
inefficient. For inefficient DMUs, the issue is how to improve the 
inefficiency to achieve the best practice. Since the focus here is how each 
individual output measure contributes to the performance of oDMU , we 
solve model (12.6) for each d and obtain *

dσ  > 1 (d = 1, …, d), where *
dσ  

measures how far oDMU  is from the frontier in terms of dth output. 
 As a matter of fact, model (12.6) provides an alternative way to 
characterize the inefficiency of oDMU . Each *

dσ  indicates possible 
inefficiency existing in each associated output when other outputs and inputs 
are fixed at their current levels. We then can rank the inefficiency by each 
optimal *

dσ . Let *dG  = min{ *
dσ }. That is, the d*th output indicates the least 

inefficiency. If the oDMU  is to improve its performance through single 
output improvement, the d*th output will yield the most effective way. 
Because *dG  represents the shortest path onto the best practice frontier when 
each output is given the pre-emptive priority to improve. We therefore 
define that the d*th output is the most critical output to reach the 
performance frontier and to oDMU ’s performance. 

In summary, the critical output is identified as the output associated with 
max }{ *

dσ  for efficient DMUs and min{ *
dσ } for inefficient DMUs. 

12.4 Identifying Critical Input Measures 

 Consider the following super-efficiency model when the kth input 
measure is of interest. 
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 Based upon model (12.7), we have (i) *

kτ  < 1, (ii) *
kτ  = 1, (iii) *

kτ  > 1, and 
(iv) (12.7) is infeasible. Case (i) indicates that inefficiency exists in oDMU ’s 
kth input, since oDMU  needs to decrease its kth input to *

kτ kox  in order to 
reach the performance frontier. Cases (ii), (iii) and (iv) indicate that no 
inefficiency exists in oDMU ’s kth input. 
 Now, suppose oDMU  is efficient. Based upon model (12.7), the set of m 
inputs can be grouped into two subsets: set I = {k: *

kτ  > 1} and set I  = {k: 
model (12.7) is infeasible for kth input}.  

We have when model (12.7) is infeasible, the magnitude of the kth input 
across all DMUs has nothing to do with the efficiency status of oDMU . 

This indicates that the inputs in set I  are not critical to the efficiency 
status of oDMU , since changes in the inputs in set I  do not change the 
efficiency classification of oDMU . Let *kΤ  = min }{ *

kτ  for inputs in set I . 
We conclude that the k*th input is the most critical input measure to the 
efficiency of oDMU . Because, oDMU ’s efficiency status is most sensitive 
to changes in the k*th input. 
 Next, suppose oDMU  is inefficient. We solve model (12.7) for each k and 
obtain *

kτ  < 1 (k = 1, …, m), where *
kτ  measures how far oDMU  is from the 

frontier in terms of kth input. Each *
kτ  indicates possible inefficiency 

existing in each associated input when other inputs and outputs are fixed at 
their current levels. We then can rank the inefficiency by each optimal *

kτ . 
Let *kH  = 

k
max { *

kτ }. Similar to the discussion on identifying the critical 
output measure, we say that the *k th input is the most critical input to reach 
the performance frontier and to oDMU ’s performance, since the k*th input 
indicates the least inefficiency. 
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In summary, the critical input is identified as the input associated with 
min }{ *

kτ  for efficient DMUs and max{ *
kτ } for inefficient DMUs. 

12.5 Numerical Example and Extension 

 To further illustrate the rationale of the approach, consider again the four 
DMUs shown in Figure 12.1. Table 12.1 reports the optimal value to model 
(12.7). It can be seen that for DMU D, the first input is the critical measure 
since DMU D’s efficiency can be easily improved if the first input is given 
the pre-emptive priority to change. For DMU A, the infeasibility associated 
with the second input indicates that the first input is the critical measure. 
Note that the efficient facet AB shows that the first input is more important 
than the second one, since 1v  > 2v . Our approach also indicates that the 
second input is the critical measure to DMU C’s performance. This finding 
is confirmed by the fact that 2v  > 1v  in BC. As for DMU B, since it is 
located at the intersect of AB and BC, it is very difficult to determine which 
input is the critical factor by looking at the coefficients of efficient facets. 
Our approach indicates that the second input is the critical one for DMU B, 
since *

2τ  < *
1τ  (17/12 < 14/9). 

Table 12.1. Critical Measures for the Numerical Example 
DMU *

1τ  *
2τ  

A 3/2 infeasible 
B 14/9 17/12 
C infeasible 2 
D 2/3 3/5 
 

The above discussion assumes that DMUs are able to adjust each input 
and each output while other inputs and outputs are fixed. Situations when 
some measures are strongly related with each other may occur. In that case, a 
set of inputs or outputs has to be adjusted simultaneously and we need to 
consider the measures in groups. We use the following models. 
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where inputs represented by set M and outputs represented by set Q are of 
interest. 

 Similar to the previous discussions, when oDMU  is inefficient, we use 
max{ *

MT } and min{ *
QΩ } to identify the most critical input and output 

measures, respectively. When oDMU  is efficient, infeasibility associated 
with (12.8) and (12.9) indicates the non-critical inputs and outputs. 
 The above discussion is based upon the assumption that the DEA frontier 
exhibits VRS. The development can be applied to other DEA models with 
non-VRS frontiers discussed in Chapter 11. 

12.6 Application to Fortune E-Companies 

To capture the Internet’s effect on the economy, at the end of year 1999, 
Fortune magazine launched the Fortune e-50 index which consists of 50 
corporations who integrate the Internet, computers and enterprise softwares 
to do the business. As stated in the 1999 December Fortune issue, each of 
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the e-50 is or has the potential to be a major player in the Internet economy. 
The list of e-corporation is decided by that a company must have been public 
for at least six months and must have a market capital value that exceeds 
$100 million. Table 12.2 provides the list of the e-50. 

Table 12.2. Fortune’s e-corporations 
 
DMU No. Name 

Revenue 
$ millions

Profits 
$ millionsEmployees

Market Capital
$ millions 

Year 
Founded

E-COMPANIES 
1 America Online 4777 762 12100 164308 1985 
2 Charles Schwab 4113 498 13300 34194 1986 
3 Amazon.com 1015 -291 2100 21202 1994 
4 E*Trade Group  621 -54 1735 8341 1982 
5 Knight/Trimark Group 618 119 446 4389 1995 
6 Yahoo 341 22 803 47946 1995 
7 Ameritrade Holding 301 12 985 3740 1992 
8 EarthLink Network 254 -88 1343 1409 1994 
9 Priceline.com 189 -125 194 7963 1998 
10 CMGI  176 476 1024 12567 1986 
11 Lycos 136 -52 456 5687 1995 
12 Excite@Home 129 -324 570 14647 1995 
13 eBay 125 7 138 17106 1995 
14 DoubleClick 103 -22 482 5947 1996 
15 RealNetworks 89 -4 434 9148 1994 
16 CNet 79 40 491 3481 1995 
17 Healtheon 68 -68 648 2347 1995 
18 eToys  38 -47 306 6276 1996 
19 VerticalNet  8 -21 220 2515 1995 
NET SOFTWARE AND SERVICE COMPANIES 
20 Microsoft 19747 7785 31396 471573 1975 
21 Oracle 9063 1332 44000 85776 1977 
22 Intuit  848 377 3675 5942 1983 
23 Network Associates 785 -127 2700 2871 1992 
24 Cambridge Tech. Partners 628 35 4444 726 1991 
25 TMP Worldwide 585 10 5200 2976 1967 
26 Ariba 45.4 * * * 1996 
27 Citrix Systems 323 93 620 7169 1989 
28 Macromedia 167 24 553 2690 1992 
29 Network Solutions 142 17 385 4801 1979 
30 Concentric Network 110 -82 508 1054 1991 
31 Exodus Communications 108 -82 472 7080 1992 
32 BroadVision 71 10 271 6777 1993 
33 Inktomi  71 -24 185 5709 1996 
34 Security First Technologies 44 -19 312 1345 1995 
35 Razorfish 36 2 414 1896 1995 
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Table 12.2 Fortune’s e-corporations (continued) 
NET HARDWARE COMPANIES 
36 IBM 874487701291067 1675671911
37 Lucent Technologies  383034766153000 2114151995
38 Intel  28194737164500 2858031968
39 Dell Computer 21670175024400 1105301984
40 Cisco Systems 12154209621000 2372151984
41 Sun Microsystems 11726103129700 85861 1982
42 EMC 4459 967 9700 75371 1979
43 Qualcomm  3937 201 11600 43919 1981
44 Network Appliance 335 42 816 6327 1992
45 Broadcom  335 40 436 15994 1991
46 Juniper Networks  31 -30 190 14455 1992
NET COMMUNICATION COMPANIES 
47 AT&T  569686037107800 1547911875
48 MCI WorldCom  30720-883 77000 1624921983
49 Qwest Communications 3424 -5 8700 27404 1997
50 Global Crossing 691 79 10000 26109 1997

 
Market capital, profit, revenue and number of employees are provided by 

the Fortune as the four standard measures to fully characterize the 
performance of the e-50 corporations. We therefore use them as a set of 
multiple performance measures. The data on profit, employee and market 
capital are not available for Ariba (DMU26), and therefore Ariba is excluded 
from the following analysis. 

Because we are interested in the contribution of revenue, profit and 
employee to the market value, we select the market capital as the DEA 
output and the other measures as the DEA inputs. Output-oriented DEA 
model is used, because higher market values are desirable given the current 
levels of revenue, profit and the number of employees. 

The third column of Table 12.3 reports the optimal value to the output-
oriented VRS envelopment model. Ten e-corporations are on the 
performance frontier. 

Next, we apply the newly developed method to identify the critical input 
measures to the market capital under the context of best-practice. Columns 3, 
4 and 5 of Table 12.4 report the results from model (12.7). 

We use the DEAFrontier software to do the calculation. Once the data are 
entered into the “data” sheet, we select “Perform Sensitivity Analysis” and 
then select the input as shown in Figure 12.2. The results are reported in the 
“Sensitivity Report” sheet. We can select one input at a time. 
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Figure 12.2. Critical Measures and Tradeoffs 

 
For example, consider MCI WorldCom (DMU48), model (12.7) is 

infeasible when revenue and employee are under consideration (selected) 
respectively and model (12.7) yields the optimal value of 96.98 when profit 
is under consideration. This indicates that once the three input measures are 
determined, the magnitudes of revenue and employee do not affect the 
efficiency status of MCI WorldCom. However, the value of profit affects 
MCI WorldCom’s efficiency status given the current levels of market value, 
revenue and employee. Thus, profit is the critical factor to MCI WorldCom’s 
performance. 

Consider Charles Schwab (DMU2) which is an inefficient unit. The 
optimal values to model (12.7) indicate that the profit measure is the critical 
one for Charles Schwab to achieve the performance frontier. 

The sixth column of Table 4 reports the critical measure identified on the 
basis of model (12.7). However, for efficient DMUs, it is likely that model 
(12.7) is infeasible for each input measure. Samples can be found in America 
Online (DMU1), Yahoo (DMU6) and Microsoft (DMU20). This may imply 
that some measures must be considered in groups. We therefore employ 
model (12.8) for all possible combinations of the three input measures. The 
last column of Table 4 reports the results based upon model (12.8). Note that 
model (12.8) is not applied to the inefficient DMUs. 
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Table 12.3. Performance evaluation of Fortune’s e-corporations 
DMU No.Name VRS  

1 America Online 1.00000 
2 Charles Schwab 3.83409 
3 Amazon.com 1.05723 
4 E*Trade Group  5.31514 
5 Knight/Trimark Group 7.15192 
6 Yahoo 1.00000 
7 Ameritrade Holding 11.63487 
8 EarthLink Network 25.09020 
9 Priceline.com 1.00000 

10 CMGI  2.39677 
11 Lycos 4.30319 
12 Excite@Home 1.00000 
13 eBay 1.00000 
14 DoubleClick 3.71566 
15 RealNetworks 2.26509 
16 CNet 5.64226 
17 Healtheon 7.23136 
18 eToys  2.32675 
19 VerticalNet  1.00000 
20 Microsoft 1.00000 
21 Oracle 2.31196 
22 Intuit  10.30718 
23 Network Associates 13.81890 
24 Cambridge Tech. Partners 72.12135 
25 TMP Worldwide 16.68021 
27 Citrix Systems 5.50414 
28 Macromedia 10.83562 
29 Network Solutions 5.34769 
30 Concentric Network 19.73886 
31 Exodus Communications 2.90959 
32 BroadVision 2.74452 
33 Inktomi  2.77061 
34 Security First Technologies 11.79142 
35 Razorfish 7.90885 
36 IBM 2.79636 
37 Lucent Technologies  1.72137 
38 Intel  1.59834 
39 Dell Computer 2.03503 
40 Cisco Systems 1.00000 
41 Sun Microsystems 2.24478 
42 EMC 1.94255 
43 Qualcomm  2.22318 
44 Network Appliance 1.93360 
45 Broadcom  7.47555 
46 Juniper Networks  1.00000 
47 AT&T  2.64384 
48 MCI WorldCom  1.00000 
49 Qwest Communications  2.61124 
50 Global Crossing 2.18328 
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Table 12.4. Critical measures for Fortune’s e-corporations 
DMU 
No. Name revenue profit employee Critical measures 

     (12.7) (12.8) 
1 America Online infeasible infeasible infeasible  {profit, revenue} 
2 Charles Schwab 0.0520 0.3619 0.0381 {profit}  
3 Amazon.com 0.5563 0.9817 0.7884 {profit}  
4 E*Trade Group  0.0463 0.6708 0.0945 {profit}  
5 Knight/Trimark 0.0188 0.6297 0.3094 {profit}  
6 Yahoo infeasible infeasible infeasible  {profit,revenue,employee}
7 Ameritrade Holding 0.0344 0.6283 0.1401 {profit}  
8 EarthLink Network 0.1368 0.7066 0.1328 {profit}  
9 Priceline.com infeasible 1.1200 1.5994 {profit} {profit, revenue} 

10 CMGI  0.1555 0.4180 0.1348 {profit}  
11 Lycos 0.1736 0.7581 0.3700 {profit}  
12 Excite@Home infeasible 1.4459 infeasible {profit} {profit, revenue} 
13 eBay infeasible infeasible 1.7284 {employee} infeasible 
14 DoubleClick 0.1419 0.7375 0.3361 {profit}  
15 RealNetworks 0.2335 0.7661 0.3639 {profit}  
16 CNet 0.1248 0.7460 0.3329 {profit}  
17 Healtheon 0.3937 0.8759 0.3337 {profit}  
18 eToys  0.6037 0.9469 0.6886 {profit}  
19 VerticalNet  3.8750 infeasible infeasible {revenue} {profit, revenue} 
20 Microsoft infeasible infeasible infeasible  {profit,revenue,employee}
21 Oracle 0.1968 0.3002 0.0803 {profit}  
22 Intuit  0.0172 0.4408 0.0376 {profit}  
23 Network Associates 0.0641 0.7296 0.0733 {profit}  
24 Cambridge Tech. 0.0127 0.6063 0.0311 {profit}  
25 TMP Worldwide 0.0152 0.6238 0.0265 {profit}  
27 Citrix Systems 0.0525 0.5797 0.2226 {profit}  
28 Macromedia 0.0499 0.6331 0.2496 {profit}  
29 Network Solutions 0.0874 0.7455 0.3584 {profit}  
30 Concentric Network 0.2942 0.7667 0.3922 {profit}  
31 Exodus Comm. 0.3326 0.7938 0.4261 {profit}  
32 BroadVision 0.2283 0.8749 0.6195 {profit}  
33 Inktomi  0.5639 0.9775 0.9381 {profit}  
34 Security First Tech. 0.1818 0.9023 0.5859 {profit}  
35 Razorfish 0.2222 0.8968 0.4523 {profit}  
36 IBM 0.0564 0.0185 0.0324 {revenue}  
37 Lucent Technologies  0.1846 0.2452 0.0824 {profit}  
38 Intel  0.3794 0.4202 0.2788 {profit}  
39 Dell Computer 0.1258 0.3242 0.2181 {profit}  
40 Cisco Systems infeasible 1.0754 infeasible {profit} {profit, revenue} 
41 Sun Microsystems 0.1524 0.2609 0.1192 {profit}  
42 EMC 0.3110 0.4847 0.2870 {profit}  
43 Qualcomm  0.0772 0.5508 0.0617 {profit}  
44 Network Appliance 0.1351 0.7314 0.3165 {profit}  
45 Broadcom  0.0458 0.6096 0.1691 {profit}  
46 Juniper Networks  3.5327 infeasible infeasible {revenue} {profit, revenue} 
47 AT&T  0.0775 0.0025 0.0790 {employee}  
48 MCI WorldCom  infeasible 96.9787 infeasible {profit} {profit, revenue} 
49 Qwest Comm.  0.0441 0.5771 0.0443 {profit}  
50 Global Crossing 0.2010 0.6601 0.0332 {revenue}  
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For Yahoo and Microsoft, model (12.8) is feasible (has optimal solutions) 
when only all three inputs are in set M. For America Online, model (12.7) is 
feasible (has optimal solutions) when profit and revenue are in set M. 

Model (12.8) is also applied to the remaining 7 efficient e-corporations, 
namely, Excite@Home (DMU12), Vertical Net (DMU19), Cisco System 
(DMU40), Juniper Networks (DMU46) and MCI WorldCom (DMU48). 
Model (12.7) is feasible when profit and revenue are in set M. 

Except for America Online, Yahoo, eBay, Vertical Net, Microsoft, IBM, 
Juniper Networks, AT&T and Global Crossing, all the e-corporations 
indicate profit as their critical measure. This confirms that for the majority of 
the e-corporations that are rely on the Internet for business, revenue does not 
necessarily mean profit. In fact, about 40% of the e-corporations had 
negative profit in year 1999. (The negative values are treated by the 
translation invariance property in DEA. See Chapter 5’s Appendix.) 

A closer look at Table 4 indicates that America Online, Yahoo and 
Microsoft have distinguished themselves from the e-corporations, because 
the results from model (12.8) imply that their high revenue means profit. 
Note that among the inefficient units, employee is identified as the critical 
measure for eBay and AT&T, and revenue is identified as the critical 
measure for IBM. 

The e-corporations actually represent the 21st century new economy 
where the electronic and information technologies are heavily used. To 
further illustrate the approach, we next apply models (12.7) and (12.8) to the 
Fortune 1000 companies in 1995 who represent old economy where the 
companies design, build and deliver physical, molecular-based products to 
customer. The purpose is to see whether the new economy e-corporations 
behave differently compared to the old economy companies in terms of the 
critical measures. 

Since the e-corporations belong to computer and telecommunication 
industries, we exclude all those Fortune’s 1000 companies who are in the 
computer and telecommunication industries from the analysis. We also 
exclude those Fortune 1000 companies who do not have complete data on 
the four performance measures. As a result, we have 51 industries with 760 
companies which are different from the e-corporations (see the first column 
in Table 12.5). 

Table 5 summarizes the results from the new approach. The second 
column reports the number of companies in each industry. The third, fourth 
and fifth columns report how many companies indicate revenue, profit and 
employee as their critical measures respectively. For example, the second 
row in Table 5 indicates that (i) there are 4 companies in the advertising and 
marketing industry, and (ii) revenue is identified as the critical measure for 
all companies. In the motor vehicle industry, only two companies (General 
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Motor and Ford) (9.52%; two out of 21) indicate that profit is the critical 
measure while other 19 companies indicate that revenue is the critical 
measure. 

Our approach indicates that revenue is the critical factor to 95% of the 
760 companies in the Fortune’s top 1000 list. In fact, these “old-economy” 
companies sever relatively mature market or command a lead in markets 
where they compete. Our finding is consistent with the belief that revenue 
means a stable proportion of the profit for the old economy companies. Also, 
our approach does indicate that the e-corporations and the Fortune’s 1000 
companies behave differently. 

 

Table 12.5. Critical measures for Fortune’s 1000 companies 
Industry Companies Revenue Profit Employee 
Advertising, marketing 4 100% 0% 0% 
Aerospace 11 90.91% 9.09% 0% 
Airlines 9 100% 0% 0% 
Apparel 5 100% 0% 0% 
Beverages 7 100% 0% 0% 
Brokerage 7 100% 0% 0% 
Building materials, glass 4 100% 0% 0% 
Chemicals 39 97.44% 2.56% 0% 
Commercial banks 55 98.18% 1.82% 0% 
Diversified financials 14 92.86% 7.14% 0% 
Electric and gas utilities 73 98.63% 0% 1.37% 
Electronics, electrical equipment 41 95.12% 4.88% 0% 
Engineering, construction 11 90.91% 0% 9.09% 
Entertainment 3 33.33% 33.33% 33.33% 
Food 27 92.59% 0% 7.41% 
Food and drug stores 20 100% 0% 0% 
Food services 5 80.00% 20.00% 0% 
Forest and paper products 30 100% 0% 0% 
Furniture 5 100% 0% 0% 
General merchandisers 16 87.50% 12.50% 0% 
Health care 18 100% 0% 0% 
Hotels, casinos, resorts 7 100% 0% 0% 
Industrial and farm equipment 27 100% 0% 0% 
Insurance: life & health 19 94.74% 5.26% 0% 
Insurance: prop. & casualty 24 87.50% 12.50% 0% 
Mail, package and freight delivery 3 100% 0% 0% 
Marine services 2 100% 0% 0% 
Metal products 11 100% 0% 0% 
Metals 21 100% 0% 0% 
Mining, crude-oil production 7 100% 0% 0% 
Motor vehicles and parts 21 90.48% 9.52% 0% 
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Table 12.5 Critical measures for Fortune’s 1000 companies (continued) 
Industry Companies Revenue Profit Employee 
Petroleum refining 18 50.00% 33.33% 16.67% 
Pharmaceuticals 14 85.71% 14.29% 0% 
Pipelines 10 80.00% 0% 20.00% 
Publishing, printing 17 100% 0% 0% 
Railroads 5 100% 0% 0% 
Rubber and plastic products 8 100% 0% 0% 
Savings institutions 8 100% 0% 0% 
Scientific, photo., control equip. 18 94.44% 5.56% 0% 
Soaps, cosmetics 8 87.50% 12.50% 0% 
Specialist retailers 30 100% 0% 0% 
Temporary help 5 100% 0% 0% 
Textiles 6 100% 0% 0% 
Tobacco 4 75.00% 25.00% 0% 
Toys, sporting goods 3 100% 0% 0% 
Transportation equipment 5 100% 0% 0% 
Truck leasing 2 100% 0% 0% 
Trucking 3 100% 0% 0% 
Waste management 3 100% 0% 0% 
Wholesalers 40 90.00% 0% 10.00% 
Miscellaneous 7 100% 0% 0% 
Total 760 94.61% 3.55% 1.84% 
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