
Chapter 10 

Super Efficiency 
 

 
 

10.1 Super-efficiency DEA Models 

When a DMU under evaluation is not included in the reference set of the 
envelopment models, the resulting DEA models are called super-efficiency 
DEA models. Charnes, Haag, Jaska and Semple (1992) use a super-
efficiency model to study the sensitivity of the efficiency classifications. Zhu 
(1996) and Seiford and Zhu (1998) develop a number of new super-
efficiency models to determine the efficiency stability regions (see Chapter 
11). Andersen and Petersen (1993) propose using the CRS super-efficiency 
model in ranking the efficient DMUs. Also, the super-efficiency DEA 
models can be used in detecting influential observations (Wilson, 1995) and 
in identifying the extreme efficient DMUs (Thrall, 1996). Seiford and Zhu 
(1999) study the infeasibility of various super-efficiency models developed 
from the envelopment models in Table 1.2. Chapter 11 presents other super-
efficiency models that are used in sensitivity analysis. 

Table 10.1 presents the basic super-efficiency DEA models based upon 
the envelopment DEA models. Based upon Table 10.1, we see that the 
difference between the super-efficiency and the envelopment models is that 
the oDMU  under evaluation is excluded from the reference set in the super-
efficiency models. i.e., the super-efficiency DEA models are based on a 
reference technology constructed from all other DMUs. 

Consider the example in Table 1.1. If we measure the (CRS) super 
efficiency of DMU2,  then DMU2 is evaluated against point A on the new 
facet determined by DMUs 1 and 3 (see Figure 10.1). To calculate the (CRS) 
super efficiency score for DMU2, we use the spreadsheet model shown in 
Figure 10.2. 
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Table 10.1. Super-efficiency DEA Models 
Frontier 
Type 

Input-Oriented Output-Oriented 
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Figure 10.1. Super-efficiency 

 Cell E9 indicates the DMU under evaluation which is excluded from the 
reference set. Cells F2:F6 are reserved for jλ  (j = 1, 2, 3, 4, 5),  and cell F10 
is reserved for the super-efficiency score ( upersθ ). 
 Cells B11:B13 contain the following formulas 
 
Cell B11 =SUMPRODUCT(B2:B6,F2:F6) 
Cell B12 =SUMPRODUCT(C2:C6,F2:F6) 
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Cell B13 =SUMPRODUCT(E2:E6,F2:F6) 
 

 

Figure 10.2. Input-oriented CRS Super-efficiency Spreadsheet Model 

 

Figure 10.3. Solver Parameters for Input-oriented CRS Super-efficiency 

 Note that in the above formulas, the DMU under evaluation is included in 
the reference set. In order to exclude the DMU under evaluation from the 
reference set, we introduce the following formula into cell B14 
 
Cell B14 =INDEX(F2:F6,E9,1) 
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which returns the jλ  for the DMUj under evaluation. In the Solver 
parameters shown in Figure 10.3, we set cell B14 equal to zero. 
 Cells D11:D13 contain the following formulas 
 
Cell D11 =$F$10*INDEX(B2:B6,E9,1) 
Cell D12 =$F$10*INDEX(C2:C6,E9,1) 
Cell D13 =INDEX(E2:E6,E9,1) 
 
 Based upon Figure 10.2 and Figure 10.3, the super-efficiency score for 
DMU2 is 1.357, and the non-zero jλ  in cells F2 and F4 indicate that DMU1 
and DMU3 form a new efficient facet. 
 DMU3 is evaluated against B on the new facet determined by DMUs 2 
and 4. If we change the value of cell E9 to 3, we obtain the super-efficiency 
score for DMU3 using the Solver parameters shown in Figure 10.3. The 
score is 1.25 (see cell G4 in Figure 10.4). 

 

Figure 10.4. Super-efficiency Scores 

 If we remove DMU4 or DMU 5 from the reference set, the frontier 
remains the same. Therefore,  the super-efficiency score for DMU4 (DMU5) 
equals to the input-oriented CRS efficiency score (see Figure 10.4). 
 If we measure the super-efficiency of DMU1, DMU1 is evaluated against 
C on the frontier extended from DMU2 (see Figure 10.5). It can be seen that 
C is a weakly efficient DMU in the remaining four DMUs 2, 3, 4 and 5. In 
fact, we may want to adjust such a super-efficiency score (see Zhu (2001b) 
and Chen and Sherman (2002)). 
 Although the super-efficiency models can differentiate the performance of 
the efficient DMUs, the efficient DMUs are not compared to the same 
“standard”. Because the frontier constructed from the remaining DMUs 
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changes for each efficient DMU under evaluation. In fact, the super-
efficiency should be regarded the potential input savings or output surpluses 
(see Chen (2002)). 
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Figure 10.5. Super-efficiency and Slacks 

10.2 Infeasibility of Super-efficiency DEA Models 

Consider the input-oriented VRS super-efficiency model shown Figure 
10.6. In fact, this is the spreadsheet model for the input-oriented VRS 
envelopment model except that we introduce the formula “=INDEX(I2:I16, 
E18,1)” into cell B26. This formula is used to exclude the DMU under 
evaluation from the reference set. That is, one needs to add an additional 
constraint of “$B$26=0” into the Solver parameters for the input-oriented 
VRS envelopment spreadsheet model, as shown in Figure 10.7. 

Once we set up the Solver parameters, the calculation is performed by the 
VBA procedure “SuperEfficiency”. 
 
Sub SuperEfficiency() 

Dim i As Integer 
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For i = 1 To 15 

Range("E18") = i 

SolverSolve UserFinish:=True 

If SolverSolve(UserFinish:=True) = 5 Then 

Range("J" & i + 1) = "Infeasible" 

Else 

Range("J" & i + 1) = Range("F19") 

End If 

Next 

End Sub 

 

Figure 10.6. Input-oriented VRS Super-efficiency Spreadsheet Model 

It can be seen that the input-oriented VRS super-efficiency model is 
infeasible for three VRS efficient companies (Mitsubishi, General Motors, 
and Royal Dutch/Shell Group). Note that in the VBA procedure 
“SuperEfficiency”, a VBA statement on infeasibility check is added. 

If we consider the output-oriented VRS super-efficiency model, we have 
the spreadsheet shown in Figure 10.8. Figure 10.8 is based upon the output-
oriented VRS envelopment with an additional formula in cell B26 “=INDEX 
(I2:I16,E18,1)”. To calculate the output-oriented super-efficiency scores, we 
need to change the “Min” to “Max” in the Solver parameters shown in 
Figure 10.7. 



Infeasibility of Super-efficiency DEA Models 211
 

Based upon Figure 10.8, the output-oriented VRS super-efficiency model 
is infeasible for five output-oriented VRS efficient companies (Itochu, 
Sumitomo, Marubeni, Wal-Mart, and Nippon Life Insurance). 

 

Figure 10.7. Solver Parameters for Input-oriented VRS Super-efficiency 

 

Figure 10.8. Output-oriented VRS Super-efficiency Spreadsheet Model 

Thrall (1996) shows that the super-efficiency CRS model can be 
infeasible. However, Thrall (1996) fails to recognize that the output-oriented 
CRS super-efficiency model is always feasible for the trivial solution which 
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has all variables set equal to zero. Moreover, Zhu (1996) shows that the 
input-oriented CRS super-efficiency model is infeasible if and only if a 
certain pattern of zero data occurs in the inputs and outputs. 

Figure 10.9 illustrates how the VRS super-efficiency model works and 
the infeasibility for the case of a single output and a single input case. We 
have three VRS frontier DMUs, A, B and C. AB exhibits IRS and BC 
exhibits DRS. The VRS super-efficiency model evaluates point B by 
reference to B′ and B′′ on section AC through output-reduction and input-
increment, respectively. In an input-oriented VRS super-efficiency model, 
point A is evaluated against A′. However, there is no referent DMU for point 
C for input variations. Therefore, the input-oriented VRS super-efficiency 
model is infeasible at point C. Similarly, in an output-oriented VRS super-
efficiency model, point C is evaluated against C′. However, there is no 
referent DMU for point A for output variations. Therefore, the output-
oriented VRS super-efficiency model is infeasible at point A. Note that point 
A is the left most end point and point B is the right most end point on this 
frontier. 
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Figure 10.9. Infeasibility of Super-efficiency Model 

As in Charnes, Cooper and Thrall (1991), the DMUs can be partitioned 
into four classes E, E', F and N described as follows. First, E is the set of 
extreme efficient DMUs. Second, E' is the set of efficient DMUs that are not 
extreme points. The DMUs in set E' can be expressed as linear combinations 
of the DMUs in set E. Third, F is the set of frontier points (DMUs) with non-



Infeasibility of Super-efficiency DEA Models 213
 
zero slack(s). The DMUs in set F are usually called weakly efficient. Fourth, 
N is the set of inefficient DMUs. 

For example, DMUs 1, 2, and 3 in Figure 10.1 are extreme efficient (in 
set E), DMU4 is in set F, and DMU5 is in set N. 

Thrall (1996) shows that if the CRS super-efficiency model is infeasible, 
or if the super-efficiency score is greater than one for input-oriented model 
(less than one for output-oriented model), then oDMU ∈E. This result can 
also be applied to other super-efficiency models. i.e., the extreme efficient 
DMUs can be identified by the super-efficiency models. This finding is 
important in empirical applications. For example, in the slack-based 
congestion measures discussed in Chapter 9, if we can know that the data set 
consists of only extreme efficient DMUs, then the congestion slacks are 
equal to the DEA slacks. 

Note that if a specific oDMU ∈E', F or N and is not included in the 
reference set, then the efficient frontiers (constructed by the DMUs in set E) 
remain unchanged. As a result, the super-efficiency DEA models are always 
feasible and equivalent to the original DEA models when oDMU ∈E', F or 
N. Thus we only need to consider the infeasibility when DMU o ∈E. 

We next study the infeasibility of the VRS, NIRS and NDRS super-
efficiency models, where we assume that all data are positive. 

From the convexity constraint (∑ ≠oj jλ  = 1) on the intensity lambda 
variables, we immediately have 
 
Proposition 10.1 oDMU ∈E under the VRS model if and only if oDMU ∈E 
under the NIRS model or NDRS model. 
 

Thus in the discussion to follow, we limit our consideration to 
DMU o ∈E under the VRS model. We have 

 
Proposition 10.2 Let *superθ  and *superφ  denote, respectively, optimal values 
to the input-oriented and output-oriented super-efficiency DEA models when 
evaluating an extreme efficient DMU o , then 
(i) Either *superθ  > 1 or the specific input-oriented super-efficiency DEA 
model is infeasible. 
(ii) Either *superφ  < 1 or the specific output-oriented super-efficiency DEA 
model is infeasible. 
 

Based upon Seiford and Zhu (1999), we next (i) present the necessary 
and sufficient conditions for the infeasibility of various super-efficiency 
DEA models in a multiple inputs and multiple outputs situation, and (ii) 
reveal the relationship between infeasibility and RTS classification. (Note 
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that, in Figure 10.9, point A is associated with IRS and point C is associated 
with DRS.) 

10.2.1 Output-oriented VRS Super-efficiency Model 

 Suppose each jDMU  (j = 1, 2, ..., n) consumes a vector of inputs, jx , to 
produce a vector of outputs, jy . We have 
 
Theorem 10.1 For a specific extreme efficient oDMU  = ( ox , oy ), the 
output-oriented VRS super-efficiency model is infeasible if and only if 
( ox ,δ oy ) is efficient under the VRS envelopment model for any 0< δ ≤ 1. 
 
[Proof]: Suppose that the output-oriented VRS super-efficiency model is 
infeasible and that ),( o

o
o yx δ  is inefficient, where 10 ≤< oδ . Then 
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has a solution of )(* ojj ≠λ , *

oλ  = 0, *super
oφ  > 1. Since 0* =oλ , we have that 

model (10.1) is equivalent to an output-oriented VRS super-efficiency model 
and thus the output-oriented VRS super-efficiency model is feasible. A 
contradiction. This completes the proof of the only if part. 

To establish the if part, we note that if the output-oriented VRS super-
efficiency model is feasible, then *superφ  < 1 is the maximum radial reduction 
of all outputs preserving the efficiency of oDMU . Therefore, δ cannot be 
less than *superφ . Otherwise, oDMU  will be inefficient under the output-
oriented VRS envelopment model. Thus, the output-oriented VRS super-
efficiency model is infeasible. ■ 
 
Theorem 10.2 The output-oriented VRS super-efficiency model is infeasible 
if and only if * , where *  > 1 is the optimal value to (10.2). 
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[Proof]: We note that for any )( ojj ≠λ  with ∑ ≠oj jλ  = 1, the constraint 

ojoj j yy superφλ ≥∑ ≠  always holds. Thus the output-oriented super-efficiency-
VRS is infeasible if and only if there exists no )( ojj ≠λ  with ∑ ≠oj jλ  = 1 
such that ojoj j xx ≤∑ ≠ λ  holds. This means that the optimal value to (10.2) is 
greater than one, i.e., *  > 1. ■ 

 

Figure 10.10. Spreadsheet for Infeasibility Test (Output-oriented VRS Super-efficiency) 

 

Figure 10.11. Solver Parameters for Infeasibility Test (Output-oriented) 
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 Figure 10.10 shows the spreadsheet model for model (10.2) where the 
output-oriented VRS super-efficiency scores are reported in cells I2:I16. 
 The spreadsheet shown in Figure 10.10 is obtained by removing the 
output constraints from the spreadsheet shown in Figure 10.6. Figure 10.11 
shows the Solver parameters. It can be seen that *  > 1 if and only if model 
(10.2) is infeasible for a company. 

Further, note that the oDMU  is also CRS efficient if and only if CRS 
prevail . Therefore, if IRS or DRS prevail, then oDMU  must be CRS 
inefficient. Thus, in this situation, the CRS super-efficiency model is 
identical to the CRS envelopment model. Based upon Chapter 13, IRS or 
DRS on oDMU  can be determined by 
 
Lemma 10.1 The RTS for oDMU  can be identified as IRS if and only if 
∑ ≠0

* j jλ  < 1 in all optima for the CRS super-efficiency model and DRS if 
and only if ∑ ≠0

* j jλ  in all optima for the CRS super-efficiency  model. 
 
Lemma 10.2 If oDMU  exhibits DRS, then the output-oriented VRS super-
efficiency model is feasible and *superφ  < 1, where *superφ  is the optimal value 
to the output-oriented VRS super-efficiency model. 
 
[Proof]: The output-oriented VRS super-efficiency model is as follows 
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Let θ  = 1/ superφ . Multiplying all constraints in (10.3) by θ  yields 
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where )( ~ ojjj ≠= θλλ . 

Since oDMU  exhibits DRS, then by Lemma 10.1, ∑ ≠0
* j jλ  > 1 in all 

optima to the following CRS super-efficiency model 
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Let ∑ ≠0

* j jλ  = θ . Obviously superθθ >  is a feasible solution to (10.5). 
This in turn indicates that )( * ojj ≠λ  and θ  is a feasible solution to (10.4). 
Therefore, (10.3) is feasible. Furthermore by Proposition 10.2, we have that 

*superφ  < 1, where *superφ  is the optimal value to (10.3). ■ 
 
Theorem 10.3 If the output-oriented VRS super-efficiency model is 
infeasible, then oDMU  exhibits IRS or CRS. 
 
[Proof]: Suppose that oDMU  exhibits DRS. By Lemma 10.2, the output-
oriented VRS super-efficiency model  is feasible. A contradiction. ■ 
 

Theorems 10.1 and 10.2 indicate that if the output-oriented VRS super-
efficiency model is infeasible, then oDMU  is one of the endpoints. 
Moreover, if IRS prevail, then oDMU  is a left endpoint (see Figure 10.9). 

 

10.2.2 Other Output-oriented Super-efficiency Models 

Now, consider the output-oriented NIRS and NDRS super-efficiency 
models. Obviously, we have a feasible solution of )( 0 ojj ≠=λ  and superφ  = 
0 in the output-oriented NIRS super-efficiency model. Therefore, we have 
 
Theorem 10.4 The output-oriented NIRS super-efficiency model is always 
feasible. 
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Lemma 10.3 The output-oriented NDRS super-efficiency model is 
infeasible if and only if the output-oriented VRS super-efficiency model is 
infeasible. 
 
[Proof]: The only if part is obvious and hence is omitted. To establish the if 
part, we suppose that the output-oriented NDRS super-efficiency model is 
feasible. i.e., we have a feasible solution with ∑ ≠oj jλ > 1 for the output-
oriented NDRS super-efficiency model. If ∑ ≠oj jλ  = 1, then this solution is 
also feasible for the output-oriented VRS super-efficiency. If ∑ ≠oj jλ  > 1, let 
∑ ≠oj jλ  = d > 1. Then ooj jjoj j xxx ≤∑≤∑ ≠≠ λλ~ , where jλ~  = dj /λ ( oj ≠ ) 
and ∑ ≠oj jλ  = 1. Therefore )( ~ ojj ≠λ  is a feasible solution to the output-
oriented VRS super-efficiency model. Both possible cases lead to a 
contradiction. Thus, the output-oriented NDRS super-efficiency model is 
infeasible if the output-oriented VRS super-efficiency model is infeasible. ■ 
 

 On the basis of Lemma 10.3, we have 
 
Theorem 10.5 For a specific extreme efficient oDMU  = ( ox , oy ), we have 
(i) The output-oriented NDRS super-efficiency model is infeasible if and 
only if ( ox , δ oy ) is efficient under the VRS envelopment model for any 0 < 
δ ≤ 1. 
(ii) The output-oriented NDRS super-efficiency model is infeasible if and 
only if *  > 1, where *  is the optimal value to (10.2). 
 
 If oDMU E∈  for the NDRS model, then oDMU  exhibits IRS or CRS. 
By Proposition 10.1, oDMU  also lies on the VRS frontier that satisfies IRS 
or CRS. i.e., the VRS and NDRS envelopment models are identical for 

oDMU . Thus, ( ox , δ oy ) is also efficient under the NDRS envelopment 
model for any 0 < δ ≤ 1. 
 

10.2.3 Input-oriented VRS Super-efficiency Model 

Theorem 10.6 For a specific extreme efficient oDMU  = ( ox , oy ), the input-
oriented VRS super-efficiency model is infeasible if and only if ),( oo yxχ  is 
efficient under the VRS envelopment model for any +∞<≤ χ1 . 
 
[Proof]: Suppose the input-oriented VRS super-efficiency model is 
infeasible and assume that ),( oo

o yxχ  is inefficient, where +∞<≤ oχ1 . 
Then 
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has a solution of )(* ojj ≠λ , *

oλ  = 0, *super
oθ . Since *

oλ  = 0, model (10.6) is 
equivalent to the input-oriented VRS super-efficiency model. Thus, the 
input-oriented VRS super-efficiency model is feasible. This completes the 
proof of only if part. 

To establish the if part, we note that if the input-oriented VRS super-
efficiency model is feasible, then *superθ  > 1 is the maximum radial increase 
of all inputs preserving the efficiency of oDMU . Therefore, χ cannot be 
bigger than *superθ . Otherwise, oDMU  will be inefficient under the input-
oriented VRS envelopment model. Thus, the input-oriented VRS super-
efficiency model is infeasible. ■ 
 
Theorem 10.7 The input-oriented super-efficiency-VRS model is infeasible 
if and only if *g  < 1, where *g  is the optimal value to (10.7). 
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[Proof]: We note that for any )( ojj ≠λ  with ∑ ≠oj jλ  = 1, the constraint 

joj j x∑ ≠ λ  < oxsuperθ  always holds. Thus, the input-oriented VRS super-
efficiency model is infeasible if and only if joj j y∑ ≠ λ  > oy  does not hold for 
any λ j j o ( )≠  with ∑ ≠oj jλ  = 1. This means that the optimal value to 
(10.7) is less than one, i.e., *g  < 1. ■ 
 
 Figure 10.12 shows the spreadsheet model for model (10.7) where the 
input-oriented VRS super-efficiency scores are reported in cells I2:I16. This 
spreadsheet is obtained from the output-oriented VRS super-efficiency 
model shown in Figure 10.8. Figure 10.13 shows the Solver parameters. It 
can be seen that *g  < 1 if and only if model (10.7) is infeasible for a 
company. 
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Figure 10.12. Spreadsheet for Infeasibility Test (Input-oriented VRS Super-efficiency) 

 

Figure 10.13. Solver Parameters for Infeasibility Test (Input-oriented) 

 
Lemma 10.4 If oDMU  exhibits IRS, then the input-oriented VRS super-
efficiency model is feasible and *superθ  > 1, where *superθ  is the optimal value 
to the input-oriented VRS super-efficiency model. 
 
[Proof]: Let ϑ  = 1/ superθ , then the input-oriented VRS super-efficiency 
model becomes 
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where )( ˆ ojjj ≠= ϑλλ . 

Since oDMU  exhibits IRS, then by Lemma 10.1, ∑ ≠0
* j jλ  < 1 in all 

optima to the following output-oriented CRS super-efficiency model 
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Let ∑ ≠0
* j jλ  = ϑ  < 1. Since oDMU  is CRS inefficient, therefore superφ  > 

1 and hence superφ  > ϑ  is a feasible solution to (10.9). This in turn indicates 
that ϑ  and λ j j o* ( )≠  with ∑ ≠0

* j jλ  = ϑ  is a feasible solution to (10.8). 
Therefore, the input-oriented VRS super-efficiency model is feasible. 
Furthermore, by Proposition 10.2, we have that *superφ  > 1, where *superφ  is 
the optimal value to the input-oriented VRS super-efficiency model. ■ 
 
Theorem 10.8 If the input-oriented VRS super-efficiency model is 
infeasible, then oDMU  exhibits DRS or CRS. 
 
[Proof]: If oDMU  exhibits IRS, then by Lemma 10.4, the input-oriented 
VRS super-efficiency model is feasible. A contradiction. ■ 
 

Theorems 10.6 and 10.7 indicate that if the input-oriented VRS super-
efficiency model is infeasible, then oDMU  is one of the endpoints. 
Furthermore, if DRS prevail, then oDMU  is an right endpoint (see Figure 
10.9). 
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10.2.4 Other Input-oriented Super-efficiency Models 

Now, consider the input-oriented NIRS and NDRS super-efficiency 
models. 
 
Theorem 10.9 The input-oriented NDRS super-efficiency model is always 
feasible. 
 
[Proof]: Since∑ ≠oj jλ  > 1 in the input-oriented DNRS super-efficiency 
model, there must exist some jλ~  with ∑ ≠oj jλ~  > 1 such that joj j y∑ ≠ λ~  > oy  
holds. Note that joj j x∑ ≠ λ~  < oxsuperθ  can always be satisfied by a proper 

superθ . Thus, the input-oriented NDRS super-efficiency model is always 
feasible. ■ 
 
Lemma 10.5 The input-oriented NIRS super-efficiency model is infeasible if 
and only if the input-oriented VRS super-efficiency model is infeasible. 
 
[Proof]: The only if part is obvious and hence is omitted. To establish the if 
part, we suppose that the input-oriented NIRS super-efficiency model is 
feasible. i.e., we have a feasible solution with ∑ ≠oj jλ  < 1 for the input-
oriented NIRS super-efficiency model. If ∑ ≠oj jλ  = 1, then this solution is 
also feasible for the output-oriented VRS super-efficiency model. If ∑ ≠oj jλ  
< 1, let ∑ ≠oj jλ  = e < 1. Then joj j y∑ ≠ λ̂  > joj j y∑ ≠ λ  > oy , where jλ̂  = 

ej /λ  ( oj ≠ ) and ∑ ≠oj jλ̂  = 1. Therefore )(ˆ ojj ≠λ  is a feasible solution to 
the output-oriented VRS super-efficiency model. Both possible cases lead to 
a contradiction. Thus, the output-oriented NIRS super-efficiency model is 
infeasible if the output-oriented VRS super-efficiency model is infeasible. ■ 

 
On the basis of this Lemma 10.5, we have 
 

Theorem 10.10 For a specific extreme efficient oDMU  = ( oo yx , ), we have 
(i) The input-oriented NIRS super-efficiency model is infeasible if and only 
if ),( oo yxχ  is efficient under the VRS envelopment model for any 

+∞<≤ χ1 . 
(ii) The input-oriented NIRS super-efficiency model is feasible if and only if 

*g  < 1, where *g  is the optimal value to (10.7). 
 
 If oDMU E∈  under the NIRS model, then oDMU  exhibits DRS or CRS. 
By Proposition 10.1, the oDMU  also lies on the VRS frontier that satisfies 
DRS or CRS. i.e., the VRS and NIRS envelopment models are identical for 

oDMU . Thus ),( oo yxχ  is also efficient under the NIRS envelopment model 
for any +∞<≤ χ1 . 
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Furthermore, Theorems 10.3 and 10.8 demonstrate that the possible 
infeasibility of the output-oriented and input-oriented VRS super-efficiency 
models can only occur at those extreme efficient DMUs exhibiting IRS (or 
CRS) and DRS (or CRS), respectively. Note that IRS and DRS are not 
allowed in the NIRS and NDRS models, respectively. Therefore, we have 
the following corollary. 
 
Corollary 10.1 
(i) If oDMU ∈E  exhibits DRS, then all output-oriented super-efficiency 
DEA models are feasible. 
(ii) If oDMU ∈E  exhibits IRS, then all input-oriented super-efficiency 
DEA models are feasible. 
 

By Theorems 10.1 and 10.6, we know that infeasibility indicates that the 
inputs of an extreme efficient oDMU  can be proportionally increased 
without limit or that the outputs can be decreased in any positive proportion, 
while preserving the efficiency of oDMU . This indicates that the efficiency 
of oDMU  is always stable under the proportional data changes. 

Models (10.2) and (10.7) are useful in the determination of infeasibility 
while Theorems 10.1 and 10.6 are useful in the sensitivity analysis of 
efficiency classifications. Table 10.2 summarizes the relationship between 
infeasibility and the super-efficiency DEA models. 

Table 10.2. Super-efficiency DEA Models and Infeasibility 
Super-efficiency Models Infeasibility RTS 

Output-oriented VRS Theorem 10.2 (Model (10.2)) DRS 
 NIRS always feasible always feasible 
Input-oriented NDRS Lemma 10.3, Theorem 10.2 Corollary 10.1 (i) 
 VRS Theorem 10.7 (Model (10.7)) IRS 
 NIRS Lemma 10.5, Theorem 7 always feasible 
 NDRS always feasible Corollary 10.1 (ii) 

 
Finally, we note that the super-efficiency VRS models can also be used 

to estimate RTS. This is a possible new usage of the super-efficiency DEA 
models. 

10.3 

To run the super-efficiency models presented in Table 10.1, select the 
“Super-efficiency” menu item. You will be prompted a form shown in 
Figure 10.4 for specifying the super-efficiency models. The results are 
reported in the “Super-efficiency” sheet. 

Solving DEA Using DEAFrontier Software 
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Figure 10.14. Super Efficiency Models 
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