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Preface  

 
 

 
 

Managers are often under great pressure to improve the performance of 
their organizations. To improve performance, one needs to constantly 
evaluate operations or processes related to producing products, providing 
services, and marketing and selling products. Performance evaluation and 
benchmarking are a widely used method to identify and adopt best practices 
as a means to improve performance and increase productivity, and are 
particularly valuable when no objective or engineered standard is available 
to define efficient and effective performance. For this reason, benchmarking 
is often used in managing service operations, because service standards 
(benchmarks) are more difficult to define than manufacturing standards. 

Benchmarks can be established but they are somewhat limited as they 
work with single measurements one at a time. It is difficult to evaluate an 
organization’s performance when there are multiple inputs and outputs to the 
system. The difficulties are further enhanced when the relationships between 
the inputs and the outputs are complex and involve unknown tradeoffs. It is 
critical to show benchmarks where multiple measurements exist. The current 
book introduces the methodology of data envelopment analysis (DEA) and 
its uses in performance evaluation and benchmarking under the context of 
multiple performance measures. 

DEA uses mathematical programming techniques and models to evaluate 
the performance of peer units (e.g., bank branches, hospitals and schools) in 
terms of multiple inputs used and multiple outputs produced. DEA examines 
the resources available to each unit and monitors the “conversion” of these 
resources (inputs) into the desired outputs. Researchers in a number of fields 
have quickly recognized that DEA is an excellent methodology for modeling 
operational processes. DEA’s empirical orientation and absence of a priori 
assumptions have resulted in its use in a number of studies involving 
efficient frontier estimation in the nonprofit sector, in the regulated sector, 
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and in the private sector. DEA applications involve a wide range of contexts, 
such as education, health care, banking, armed forces, auditing, market 
research, retail outlets, organization effectiveness, transportation, public 
housing, and manufacturing. 

The motivation for this book is three-fold. First, as DEA is being applied 
to a variety of efficiency evaluation problems, managers may want to 
conduct performance evaluation and analyze decision alternatives without 
the help of sophisticated modeling programs. For this purpose, spreadsheet 
modeling is a suitable vehicle. In fact, spreadsheet modeling has been 
recognized as one of the most effective ways to evaluate decision 
alternatives. It is easy for the managers to apply various DEA models in 
spreadsheets. The book introduces spreadsheet modeling into DEA, and 
shows how various conventional and new DEA approaches can be 
implemented using Microsoft® Excel and Solver. With the assistant of the 
developed DEA spreadsheets, the user can easily develop new DEA models 
to deal with specific evaluation scenarios. 

Second, new models for performance evaluation and benchmarking are 
needed to evaluate business operations and processes in a variety of 
contexts. After briefly presenting the basic DEA techniques, the current 
book introduces new DEA models and approaches. For example, a context-
dependent DEA measures the relative attractiveness of competitive 
alternatives. Sensitivity analysis techniques can be easily applied, and used 
to identify critical performance measures. Two-stage DEA models deal with 
multi-stage efficiency evaluation problems. DEA benchmarking models 
incorporate benchmarks and standards into DEA evaluation. 

All these new models can be useful in benchmarking and analyzing 
complex operational efficiency in manufacturing organizations as well as 
evaluating processes in banking, retail, franchising, health care, e-business, 
public services and many other industries. 

Third, although the spreadsheet modeling approach is an excellent way to 
build new DEA models, an integrated easy-to-use DEA software can be 
helpful to managers, researchers, and practitioners. Therefore the current 
version includes a DEAFrontier software for both Excel 97-2003 and Excel 
2007. DEAFrontier is a DEA Add-In for Microsoft Excel and offers the user 
the ability to perform a variety of DEA models and approaches – it provides 
a custom Excel menu which calculates more than 150 different DEA models. 

This second edition improves a number of DEA spreadsheet models and 
provides a DEAFrontier software for use with Excel 2007. Several new DEA 
models and approaches are added. For example, a new DEA-based supply 
chain model (chapter 8) and DEA models for two-stage processes (Chapter 
14) are new additions to the book. Models with restricted multipliers are also 
discussed and added into the DEAFrontier software. A detailed use of 
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 sensitivity analysis in identifying critical measures under DEA is provided. 
A demonstration of how to use the DEAFrontier software is provided at the 
end of related chapters. 

I would like to offer my sincere thanks to my mentor, friend and 
collaborator, Dr. Lawrence M. Seiford who helped and enabled me to 
contribute to dual areas of DEA methodology and applications, and to Dr. 
William W. Cooper who constantly supports my DEA research. I also want 
to thank Dr. Frederick S. Hiller – the series Editor, and Gary Folven and 
Carolyn Ford of Springer for their support in publishing this edition of the 
book. 

I would also like to thank Dr. Timothy Anderson, David B. Learner and 
Bao-cheng Zhang for pointing some of the errors in the first edition. 
However, any errors in this edition are entirely my responsibility, and I 
would be grateful if anyone would bring any such errors to my attention. 

 
 

Joe Zhu, February 2008. 



Chapter 1 

Envelopment DEA Models 

 
 

1.1 Performance Evaluation, Tradeoffs, and DEA 

All business operations/processes involve transformation – adding values 
and changes to materials and turning them into goods and services that 
customers want. The transformation involves the use of inputs made up of 
labor, materials, energy, machines, and other resources, and the generation 
of outputs of finished products, services, customer satisfaction, and other 
outcomes. Consider hospital operations, for example. The inputs include 
doctors, nurses, medical supplies, equipment, laboratories, beds and others, 
and outputs include number of patients treated, number of interns and 
residents trained, and others. Managers are often interested in evaluating 
how efficiently various processes operate with respect to multiple 
performance measures (or inputs and outputs). For example, in a buyer-seller 
supply chain, the buyer may be interested in comparing the performance of 
several sellers with respect to response time, costs, flexibility, customer 
service, quality, and customization. Eliminating or improving inefficient 
operations decreases the cost of inputs and increases productivity. 
Performance evaluation and benchmarking help business 
operations/processes to become more productive and efficient. 

Performance evaluation is an important continuous improvement tool for 
staying competitive and plays an important role in the high-technology 
world of computers and telecommunications where competition is intense 
and grows more so each day. Performance evaluation and benchmarking 
positively force any business unit to constantly evolve and improve in order 
to survive and prosper in a business environment facing global competition. 
Through performance evaluation, one can (i) reveal the strengths and 
weaknesses of business operations, activities, and processes; (ii) better 
prepare the business to meet its customers’ needs and requirements; and (iii) 
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identify opportunities to improve current operations and processes, and 
create new products, services and processes. 

Single-measure based gap analysis is often used as a fundamental method 
in performance evaluation and benchmarking. However, as pointed out by 
Camp (1995), one of the dilemmas that we face is how to show benchmarks 
where multiple measurements exist. It is rare that one single measure can 
suffice for the purpose of performance evaluation. The single output to input 
financial ratios, such as, return on investment (ROI) and return on sales 
(ROS), may be used as indices to characterize the financial performance. 
However, they are unsatisfactory discriminants of “best-practice”, and are 
not sufficient to evaluate operating efficiency. Since a business unit’s 
performance is a complex phenomenon requiring more than a single 
criterion to characterize it. For example, as pointed out by Sherman (1984), a 
bank branch may be profitable when profit reflects the interest and the 
revenues earned on funds generated by the branch less the cost of these 
funds and less the costs of operating the branch. However, this profit 
measure does not indicate whether the resources used to provide customer 
services are being managed efficiently. 

Further, the use of single measures ignores any interactions, substitutions 
or tradeoffs among various performance measures. Each business operation 
has specific performance measures with tradeoffs. For example, consider the 
tradeoff between total supply chain cost and supply chain response time, 
measured by the amount of time between an order and its corresponding 
delivery. Figure 1.1 illustrates alternate supply chain operations S1, S2, S3, 
and S, and the efficient frontier or tradeoff curve determined by them. A 
supply chain whose performance (or strategy) is on the efficient frontier is 
non-dominated (efficient) in the sense that no alternate supply chain’s 
performance is strictly better in both cost and response time. Through 
performance evaluation, the efficient frontier that represents the best practice 
is identified, and an inefficient strategy (e.g., point S) can be improved 
(moved to the efficient frontier) with suggested directions for improvement 
(to S1, S2, S3 or other points along the frontier). 

Optimization techniques can be used to estimate the efficient frontier if 
we know the functional forms for the relationships among various 
performance measures. For example, stockout levels and inventory turns are 
two mutually dependent variables with performance tradeoffs. Technological 
and process innovations can shift the cost tradeoff curves by reducing the 
cost of achieving lower inventories at a particular stockout level or the cost 
of achieving lower stockouts at a particular inventory level. Unfortunately, 
such information is usually not completely available. 

Without a priori information on the tradeoffs, the functional forms 
cannot be specified. Consequently, we cannot fully characterize the business 
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operations and processes. Note that the objective of performance evaluation 
is to evaluate the current business operation internally and to benchmark 
against similar business operations externally to identify the best practice. 
Thus, such best-practices can be empirically identified. We can empirically 
estimate the efficient frontier based upon observations on one business 
operation/process over time or similar business operations at a specific time 
period. 
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Figure 1.1. Efficient Frontier of Supply Chain Operations 

Throughout the book, we use decision making units (DMUs) to represent 
business operations or processes . Each DMU has a set of inputs and outputs, 
representing multiple performance measures. Consider a set of n 
observations on the DMUs. Each observation, jDMU  (j = 1, …, n), uses m 
inputs ijx  (i = 1, 2, …, m) to produce s outputs rjy  (r = 1, 2, …, s). 

The (empirical) efficient frontier or best-practice frontier is determined by 
these n observations. The following two properties ensure that we can 
develop a piecewise linear approximation to the efficient frontier and the 
area dominated by the frontier. 
 
Property 1.1 Convexity. ∑ =

n
j j1 λ ijx  (i = 1, 2, …, m) and ∑ =

n
j j1 λ rjy  (r = 1, 2, 

…, s) are possible inputs and outputs achievable by the DMUj, where jλ  (j 
=1, …, n) are nonnegative scalars such that ∑ =

n
j j1 λ  = 1. 
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Property 1.2 Inefficiency. The same rjy  can be obtained by using ijx̂ , where 

ijx̂  > ijx  (i.e., the same outputs can be produced by using more inputs); The 
same ijx  can be used to obtain rjŷ , where rjŷ  < rjy  (i.e., the same inputs 
can be used to produce less outputs). 
 

Consider Figure 1.1 where total supply chain cost and supply chain 
response time represent two inputs. Applying Property 1.1 to S1, S2, and S3 
yields the piecewise linear approximation to the curve shown in Figure 1.1. 
Applying both properties expands the line segments S1S2 and S2S3 into the 
area dominated by the curve. 

For specific ix  (i = 1, 2, …, m) and iy  (r = 1, 2, …, s), we have 
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The next step is to estimate the empirical (piecewise linear) efficient 

frontier characterized by (1.1). Data Envelopment Analysis (DEA) 
introduced by Charnes, Cooper and Rhodes (1978) has been proven an 
effective tool in identifying such empirical frontiers and in evaluating 
relative efficiency. DEA uses mathematical programming to implicitly 
estimate the tradeoffs inherent in the empirical efficient frontier. 

DEA was designed to measure the relative efficiency where market 
prices are not available (see, e.g., Charnes, Cooper and Rhodes, 1981; 
Johnson and Zhu, 2002). However, by its ability to model multiple-input and 
multiple-output relationships without a priori underlying functional form 
assumption, DEA has also been widely applied to other areas. For example, 
Bank failure prediction (Barr and Siems, 1997), electric utilities evaluation 
(Färe, Grosskopf, Logan and Lovell, 1985), textile industry performance 
(Zhu, 1996), steel industry productivity (Ray, Seiford and Zhu, 1998), 
highway maintenance efficiency (Cook, Roll and Kazakov, 1990), health 
care (Chilingerian and Sherman, 2004), software development (Banker and 
Kemerer, 1989), spatial efficiency (Desai and Storbeck, 1990), sports 
(Anderson and Sharp, 1997), logistics systems (Kleinsorge, Schary and 
Tanner, 1989) among others. See Charnes, Cooper, Lewin and Seiford 
(1994) for a collection of DEA applications and Cooper, Seiford and Zhu 
(2004) for surveys in particular application areas. Such previous DEA 
studies provide useful managerial information on improving the 
performance. In particular, DEA is an excellent tool for improving the 
productivity of service businesses (Sherman and Zhu, 2006). 
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In the current book, we present various DEA approaches that can be used 
in empirical efficient frontier estimation and further in performance 
evaluation and benchmarking. For readers who are interested in detailed 
discussion on fundamental DEA, please refer to Cooper, Seiford and Tone 
(2000), Cooper, Seiford and Zhu (2004), Zhu and Cook (2007), and Cook 
and Zhu (2008). 

1.2 Envelopment Model 

1.2.1 Envelopment Models with Variable Returns to Scale 

Two alternative approaches are available in DEA to determine the 
efficient frontier characterized by (1.1). One is input-oriented, and the other 
output-oriented. 

The following DEA model is an input-oriented model where the inputs 
are minimized and the outputs are kept at their current levels (Banker, 
Charnes and Cooper, 1984) 
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1

;,...,2,1        
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               (1.2) 

 
where oDMU  represents one of the n DMUs under evaluation, and iox  and 

roy  are the ith input and rth output for oDMU , respectively. 
 Since θ  = 1 is a feasible solution to (1.2), the optimal value to (1.2), *θ  < 
1. If *θ  = 1, then the current input levels cannot be reduced (proportionally), 
indicating that oDMU  is on the frontier. Otherwise, if *θ  < 1, then oDMU  
is dominated by the frontier. *θ  represents the (input-oriented) efficiency 
score of oDMU . 
 Consider a simple numerical example shown in Table 1.1 where we have 
five DMUs (supply chain operations). Within a week, each DMU generates 
the same profit of $2,000 with a different combination of supply chain cost 
and response time. 
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Table 1.1. Supply Chain Operations Within a Week 
DMU Cost ($100) Response time (days) Profit ($1,000)

1 1 5 2 
2 2 2 2 
3 4 1 2 
4 6 1 2 
5 4 4 2 

 
Figure 1.2 presents the five DMUs and the piecewise linear frontier. 

DMUs 1, 2, 3, and 4 are on the frontier. If we calculate model (1.2) for 
DMU5, 

Min θ 
Subject to 
1 λ1 + 2λ2 +4λ3 +6λ4 +4λ5 < 4θ 
5 λ1 + 2λ2 +1λ3 + 1λ4 +4λ5 < 4θ 
2 λ1 + 2λ2 +2λ3 +2λ4 +2λ5 > 2 
λ1 + λ2 +λ3 +λ4 +λ5 = 1 
λ1, λ2, λ3,λ4, λ5 > 0 

 
we obtain a set of unique optimal solutions of *θ  = 0.5, *

2λ  = 1, and *
jλ  = 0 

(j ≠ 2), indicating that DMU2 is the benchmark for DMU5, and DMU5 
should reduce its cost and response time to the amounts used by DMU2. 
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Figure 1.2. Five Supply Chain Operations 
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Now, if we calculate model (1.2) for DMU4, we obtain *θ  = 1, *
4λ  = 1, 

and *
jλ  = 0 (j ≠ 4), indicating that DMU4 is on the frontier. However, Figure 

1.2 indicates that DMU4 can still reduce its response time by 2 days to reach 
DMU3. This individual input reduction is called input slack. 

In fact, both input and output slack values may exist in model (1.2). 
Usually, after calculating (1.2), we have 
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where −

is  and +
rs  represent input and output slacks, respectively. An 

alternate optimal solution of *θ  = 1 and *
3λ  = 1 exists when we calculate 

model (1.2) for DMU4. This leads to −
1s  = 2 for DMU4. However, if we 

obtain *θ  = 1 and *
4λ  = 1 from model (1.2), we have all zero slack values. 

i.e., because of possible multiple optimal solutions, (1.3) may not yield all 
the non-zero slacks. 
 Therefore, we use the following linear programming model to determine 
the possible non-zero slacks after (1.2) is solved. 
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 For example, applying (1.4) to DMU4 yields 
 

Max −
1s + −

2s + +
1s  

Subject to 
1 λ1 + 2λ2 +4λ3 +6λ4 +4λ5 + −

1s = 6 *θ  = 6 
5 λ1 + 2λ2 +1λ3 + 1λ4 +4λ5 + −

2s  = *θ  = 1 
2 λ1 + 2λ2 +2λ3 +2λ4 +2λ5 - +

1s = 2 
λ1 + λ2 +λ3 +λ4 +λ5 = 1 
λ1, λ2, λ3,λ4, λ5, −

1s , −
2s , +

1s  > 0 
 
with optimal slacks of *

1
−s  = 2, *

2
−s = *

1
+s  = 0. 
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oDMU  is efficient if and only if *θ  = 1 and *−
is  = *+

rs  = 0 for all i and r. 
oDMU  is weakly efficient if *θ  = 1 and *−

is  ≠ 0 and (or) *+
rs  ≠ 0 for some i 

and r. In Figure 1.2, DMUs 1, 2, and 3 are efficient, and DMU 4 is weakly 
efficient. (The slacks obtained by (1.4) are called DEA slacks, see Definition 
9.2 in Chapter 9.) 

In fact, models (1.2) and (1.4) represent a two-stage DEA process 
involved in the following DEA model. 
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             (1.5) 

 
The presence of the non-Archimedean ε in the objective function of (1.5) 

effectively allows the minimization over θ  to preempt the optimization 
involving the slacks, −

is  and +
rs . Thus, (1.5) is calculated in a two-stage 

process with maximal reduction of inputs being achieved first, via the 
optimal *θ  in (1.2); then, in the second stage, movement onto the efficient 
frontier is achieved via optimizing the slack variables in (1.4). 

In fact, the presence of weakly efficient DMUs is the cause of multiple 
optimal solutions. Thus, if weakly efficient DMUs are not present, the 
second stage calculation (1.4) is not necessary, and we can obtain the slacks 
using (1.3). However, priori to calculation, we usually do not know whether 
weakly efficient DMUs are present. 

Note that the frontier determined by model (1.5) exhibits variable returns 
to scale (VRS). Model (1.5) is called input-oriented VRS envelopment 
model. (see Chapter 13 for a detailed discussion on DEA and Returns-to-
Scale (RTS).) 

Consider Figure 1.3 where we have 5 DMUs (A, B, C, D, and E) with one 
input and one output. The VRS frontier consists of DMUs A, B, C, and D. 
AB exhibits increasing RTS (IRS), B exhibits constant RTS (CRS), and BC 
and CD exhibit decreasing RTS (DRS). 

Based upon (1.5), DMU E is inefficient and is compared to F (a convex 
combination of A and B) on the VRS frontier, i.e., E should reduce its input 
to F, or F is the efficient target for E. If we use an output-oriented model, E 
is compared to C by increasing output. 
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Figure 1.3. VRS Frontier 

The output-oriented VRS envelopment model can be expressed as 
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Model (1.6) is also calculated in a two-stage process. First, we calculate 

*φ  by ignoring the slacks, and then we optimize the slacks by fixing the *φ  
in the following linear programming problem. 



10 Envelopment DEA Models
 

.,...,2,1                             0
1

;,...,2,1      

;,...,2,1           
osubject  t

max

1

*

1

1

11

nj

srysy

mixsx

ss

j

n

j=
j

ror

n

j=
rjj

ioi

n

j
ijj

s

r
r

m

i
i

=≥
=∑

==−∑

==+∑

∑+∑

+

−

=

=

+

=

−

λ
λ

φλ

λ
             (1.7) 

 
 oDMU  is efficient if and only if *φ  = 1 and *−

is  = *+
rs  = 0 for all i and r. 

oDMU  is weakly efficient if *φ  = 1 and *−
is  ≠ 0 and (or) *+

rs  ≠ 0 for some i 
and r. If weakly efficient DMUs are not present, then we need not to 
calculate (1.7), and we can obtain the slacks via 
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Note that *φ  > 1, and *φ  = 1 if and only if *θ  = 1. This indicates that 
models (1.5) and (1.6) identify the same frontier. Also, *θ  = 1/ *φ  (see 
Lemma 3.2 in Chapter 13). 

Figure 1.2 shows an input efficient frontier when outputs are fixed at 
their current levels. Similarly, we can obtain an output efficient frontier 
when inputs are fixed at their current levels. Consider the four DMUs shown 
in Figure 1.4 where we have two outputs. 

DMU1 (6,2)

DMU2 
(5,3.5)

DMU3 (2,5)
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(3,3.5)
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Figure 1.4. Output Efficient Frontier 
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In Figure 1.4, DMUs 1, 2 and 3 are efficient. If we calculate model (1.6) 
for DMU4, we have 
 

Max φ 
Subject to 
λ1 + λ2 +λ3 +λ4 < 1 
6λ1 + 5λ2 +2λ3 +3λ4 > 3φ 
2λ1 + 3.5λ2 +5λ3 + 3.5λ4 > 3.5φ 
λ1 + λ2 +λ3 +λ4 = 1 
λ1, λ2, λ3,λ4 > 0 

 The optimal solution is φ* = 1.2, *
2λ = 8/15, and *

3λ  = 7/15. i.e., DMU4 is 
inefficient and is compared to G in Figure 1.4, or DMU4 should increase its 
two output levels to G. 

1.2.2 Other Envelopment Models 

 The constraint on ∑ =
n
j j1 λ  actually determines the RTS type of an efficient 

frontier. If we remove ∑ =
n
j j1 λ  = 1 from models (1.5) and (1.6), we obtain 

CRS envelopment models where the frontier exhibits CRS. Figure 1.5 shows 
an CRS frontier – ray OB. Based upon this CRS frontier, only B is efficient. 

A

B

C
D

E

0

1

2

3

4

5

0 1 2 3 4 5 x

y

 

Figure 1.5. CRS Frontier 
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If we replace ∑ =
n
j j1 λ  = 1 with ∑ =

n
j j1 λ  < 1, then we obtain non-increasing 

RTS (NIRS) envelopment models. In Figure 1.6, the NIRS frontier consists 
of DMUs B, C, D and the origin. 

If we replace ∑ =
n
j j1 λ  = 1 with ∑ =

n
j j1 λ  > 1, then we obtain non-decreasing 

RTS (NDRS) envelopment models. In Figure 1.7, the NDRS frontier 
consists of DMUs, A, B, and the section starting with B on ray OB. 
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Figure 1.6. NIRS Frontier 
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Figure 1.7. NDRS Frontier 
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Table 1.2 summarizes the envelopment models with respect to the 
orientations and frontier types. The last row presents the efficient target 
(DEA projection) of a specific DMU under evaluation. 

Table 1.2. Envelopment Models 
Frontier 
Type 

Input-Oriented Output-Oriented 
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The interpretation of the envelopment model results can be summarized 

as 
 
i) If *θ  = 1 or *φ  = 1, then the DMU under evaluation is a frontier point. 
i.e., there is no other DMUs that are operating more efficiently than this 
DMU. Otherwise, if *θ  < 1 or *φ  > 1, then the DMU under evaluation is 
inefficient. i.e., this DMU can either increase its output levels or decrease its 
input levels. 
 
ii) The left-hand-side of the envelopment models is usually called the 
“Reference Set”, and the right-hand-side represents a specific DMU under 
evaluation. The non-zero optimal *

jλ  represent the benchmarks for a specific 
DMU under evaluation. The Reference Set provides coefficients ( *

jλ ) to 
define the hypothetical efficient DMU. The Reference Set or the efficient 
target shows how inputs can be decreased and outputs increased to make the 
DMU under evaluation efficient. 
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1.3 Envelopment Models in Spreadsheets 

Table 1.3 presents 15 companies from the top Fortune Global 500 list in 
1995. We have three inputs: (1) number of employees, (2) assets ($ 
millions), and (3) equity ($ millions), and two outputs: (1) profit ($ millions), 
and (2) revenue ($ millions). 

1.3.1 Input-oriented VRS Envelopment Spreadsheet Model 

The input-oriented VRS envelopment model (model (1.5)) requires 15 
calculations – one for each company. We illustrate how to formulate this 
efficiency evaluation problem in a spreadsheet, and then illustrate how Excel 
Solver can be used to calculate the efficiency scores for the 15 companies. 

We begin by organizing the data in Table 1.3 in a spreadsheet (see Figure 
1.8). A spreadsheet model of an envelopment model contains the following 
four major components: (1) cells for the decision variables (e.g., jλ  and θ ); 
(2) cell for the objective function (efficiency) (e.g., θ ); (3) cells containing 
formulas for computing the DEA reference set (the right-hand-side of the 
constraints) (∑ =

n
j j1 λ ijx ,∑ =

n
j j1 λ rjy , and ∑ =

n
j j1 λ ); and (4) cells containing 

formulas for computing the DMU under evaluation (left-hand-sided of the 
constraints) (e.g., θ iox  and roy ). 

Table 1.3. Fortune Global 500 Companies 
Company Assets Equity Employees Revenue Profit 
Mitsubishi 91920.6 10950 36000 184365.2 346.2 
Mitsui 68770.9 5553.9 80000 181518.7 314.8 
Itochu 65708.9 4271.1 7182 169164.6 121.2 
General Motors 217123.4 23345.5 709000 168828.6 6880.7 
Sumitomo 50268.9 6681 6193 167530.7 210.5 
Marubeni 71439.3 5239.1 6702 161057.4 156.6 
Ford Motor 243283 24547 346990 137137 4139 
Toyota Motor 106004.2 49691.6 146855 111052 2662.4 
Exxon 91296 40436 82000 110009 6470 
Royal Dutch/Shell Group 118011.6 58986.4 104000 109833.7 6904.6 
Wal-Mart 37871 14762 675000 93627 2740 
Hitachi 91620.9 29907.2 331852 84167.1 1468.8 
Nippon Life Insurance 364762.5 2241.9 89690 83206.7 2426.6 
Nippon Telegraph & Telephone 127077.3 42240.1 231400 81937.2 2209.1 
AT&T 88884 17274 299300 79609 139 
 

In Figure 1.8, cells I2 through I16 represent jλ  (j = 1, 2, …, 15). Cell 
F19 represents the efficiency score θ  which is the objective function. 
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For the DEA reference set (left-hand-side of the envelopment model), we 
enter the following formulas that calculate the weighted sums of inputs and 
outputs across all DMUs, respectively. 
 

Cell B20 =SUMPRODUCT(B2:B16,$I$2:$I$16) 
Cell B21 =SUMPRODUCT(C2:C16,$I$2:$I$16) 
Cell B22 =SUMPRODUCT(D2:D16,$I$2:$I$16) 
Cell B23 =SUMPRODUCT(F2:F16,$I$2:$I$16) 
Cell B24 =SUMPRODUCT(G2:G16,$I$2:$I$16) 
For the DMU under evaluation (DMU1: Mitsubishi), we enter the 

following formulas into cells D20:D24. 
 
Cell D20 =$F$19*INDEX(B2:B16,E18,1) 
Cell D21 =$F$19*INDEX(C2:C16,E18,1) 
Cell D22 =$F$19*INDEX(D2:D16,E18,1) 
Cell D23 =INDEX(F2:F16,E18,1) 
Cell D24 =INDEX(G2:G16,E18,1) 

 

Figure 1.8. Input-oriented VRS Envelopment Spreadsheet Model 

Finally, we enter the formula for ∑ =
n
j j1 λ  = 1 into cells B25 

(=SUM(I2:I16)) and D25 (=1), respectively. 
Cell E18 is reserved to indicate the DMU under evaluation. The function 

INDEX(array,row number,column number) returns the value in the specified 
row and column of the given array. Because cell E18 contains the current 
value of 1, the INDEX function in cell D23 returns the value in first row and 
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first column of the Revenue array F2:F16 (or the value in cell F2, the 
Revenue output for DMU1). When the value in cell E18 changes from 1 to 
15, the INDEX functions in cells D20:D24 return the input and output values 
for a specific DMU under evaluation. This feature becomes obvious and 
useful when we provide the Visual Basic for Applications (VBA) code to 
automate the DEA computation. 

1.3.2 Using Solver 

After the DEA model is set up in the spreadsheet, we can use Solver to 
find the optimal solutions. First, we need to invoke Solver in Excel by using 
the Solver command which is available in the Data tab as shown in Figure 
1.9. 

 

Figure 1.9. Display Solver Parameters Dialog Box 

 

Figure 1.10. Solver Add-In 
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If Solver does not exist, you need to do the followings: 
1. Click the Microsoft Office Button        , and then click Excel Options.  
2. Click Add-Ins, and then in the Manage box, select Excel Add-ins.  
3. Click Go.  
4. In the Add-Ins available box, select the Solver Add-in check box, and 
then click OK. (If Solver Add-in is not listed in the Add-Ins available 
box, click Browse to locate the add-in. If you get prompted that the Solver 
Add-in is not currently installed on your computer, click Yes to install it.)  

 
Now, you should see the Solver Parameters dialog box shown in Figure 

1.11. 

 

Figure 1.11. Solver Parameters Dialog Box 
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1.3.3 Specifying the Target Cell 

 

Figure 1.12. Specifying Target Cell and Changing Cells 
Set Target Cell indicates the objective function cell in the spreadsheet, 

and whether its value should be maximized or minimized. In our case, the 
target cell is the DEA efficiency represented by cell F19, and its value 
should be minimized, because we use the input-oriented VRS envelopment 
model (1.5) (see Figure 1.12). 

1.3.4 Specifying Changing Cells 

Changing Cells represent the decision variables in the spreadsheet. In our 
case, they represent the jλ  (j = 1,2, …, 15) and θ , and should be cells 
I2:I16 and F19, respectively (see Figure 1.12). 

1.3.5 Adding Constraints 

Constraints represent the constraints in the spreadsheet. In our case, they 
are determined by cells B20:B25 and D20:D25. For example, click the Add 
button shown in Figure 1.12, you will see the Add Constraint dialog box 
shown in Figure 1.13. 
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Figure 1.13. Adding Constraints 

In the spreadsheet model shown in Figure 1.8, we have six constraints. 
The “Cell Reference” corresponds to the DEA Reference Set, and 
“Constraint” corresponds to the DMU under evaluation. The first three 
constraints are related to the three inputs (see Figure 1.13). Click the Add 
button to add additional constraints (output constraints and ∑ =

n
j j1 λ  = 1), and 

click the OK button when you have finished adding the constraints. The set 
of the constraints are shown in Figure 1.15. 

1.3.6 Non-Negativity and Linear Model 

Note that jλ  and θ  are all non-negative, and the envelopment model is a 
linear programming problem. This can be achieved by clicking the Option 
button in Figure 1.12, and then checking the Assume Non-Negative and 
Assume Linear Model boxes, as shown in Figure 1.14. This action should be 
performed for each DEA model. In the rest of the book, we will not show the 
Solver Options dialog box. 

When the Assuming Linear Model option is checked, Solver conducts a 
number of internal tests to see if the model is truly linear. When the data are 
poorly scaled, Solver may show that the conditions for linearity are not 
satisfied. To circumvent this, we may check the box of “Use Automatic 
Scaling” in the Solver Options dialog box. 
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Figure 1.14. Non-Negative and Linear Model 

1.3.7 Solving the Model 

Now, we have successfully set up the Solver Parameters dialog box, as 
shown in Figure 1.15. Click the Solve button to solve the model. When 
Solver finds an optimal solution, it displays the Solver Results dialog box, as 
shown in Figure 1.16. 

 

Figure 1.15. Solver Parameters for Input-oriented VRS Envelopment Model 
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Figure 1.16. Solver Results Dialog Box 

1.3.8 Automating the DEA Calculation 

To complete the analysis for the remaining 14 companies, one needs to 
manually change the value in cell E18 to 2, 3, …, 15 and use Solver to re-
optimize the spreadsheet model for each company and record the efficiency 
scores (in column J, for instance). When the number of DMUs becomes 
large, the manual process is apparently cumbersome. Note that exactly the 
same Solver settings will be used to find the optimal solutions for the 
remaining DMUs. This allows us to write a simple VBA code to carry out 
the process automatically. 

Before we write the VBA code, we need to set a reference to Solver Add-
In in Visual Basic (VB) Editor. Otherwise, VBA will not recognize the 
Solver functions and you will get a “Sub or function not defined” error 
message. 

We may follow the following procedure to set the reference. Enter the VB 
Editor by pressing Alt-F11 key combination (or using the Developer Tab1). 
Open the Tools/References menu in the VB Editor. This brings up a list of 
references. One of these should be Solver (Solver.xlam2) (see Figure 1.17). 

To add the reference, simply check its box. If it says “Missing: 
Solver.xla”, then click the Browse button and search for Solver.xlam. If you 
are using Excel 2007, the Solver.xlam is usually located at C:\Program 
Files\Microsoft Office\Office12\Library\ Solver. However, this depends on 
where the Microsoft Office is installed. 

 

 
1 To display the Developer Tab, please check “Show Developer tab in the Ribbon” box under 

the Excel Options. 
2 In Excel 97-2003, the reference is Solver.xla. 
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Figure 1.17. Adding Reference to Solver Add-In 

After the Solver reference is added, we should see “Reference to 
Solver.xlam” under the “References” in the VBA Project Explorer window 
shown in Figure 1.18. (The file “envelopment spreadsheet.xls” in the CD 
contains the spreadsheet model.) 

  

Figure 1.18. Reference to Solver Add-In in VBA Project 

Next, select the Insert/Module menu item in the VB Editor (Figure 1.19). 
This action will add a Module (e.g., Module1) into the Excel file. (You can 
change the name of the inserted module in the Name property of the 
module.) 
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Figure 1.19. Insert a Module 

Now, we can insert the VBA code into the Module1. Type “Sub DEA()” 
in the code window. This generates a VBA procedure called DEA which is 
also the Macro name (see Figure 1.21). Figure 1.20 shows the VBA code for 
automating the DEA calculation. 

The Macro statement “SolverSolve UserFinish:=True” tells the Solver to 
solve the DEA problem without displaying the Solver Results dialog box. 
The “Offset(rowOffset, columnOffset)” property takes two arguments that 
correspond to the relative position from the upper-left cell of the specified 
Range. When we evaluate the first DMU, i.e., DMUNo = 1, 
Range(“J1”).Offset(1,0) refers to cell J2. The statements “With Range(“J1”) 
and “.Offset(DMUNo, 0)=Range(“F19”) take the optimal objective function 
value (efficiency score) in cell F19 and place it in cell J “DMUNo” (that is, 
cell J2, J3, …, J16). 

 

 

Figure 1.20. VBA Code for Input-oriented VRS Envelopment Model 

Enter the Run Macro dialog box by pressing Alt-F8 key combination (or 
using the Developer/Macros tab). You should see “DEA”, as shown in 
Figure 1.21. Select “DEA” and then click the Run button. This action will 
generate the efficiency scores (cells J2:J16) for the 15 companies, as shown 
in Figure 1.22. 
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Figure 1.21. Run "DEA" Macro 

 

Figure 1.22. Input-oriented VRS Envelopment Efficiency 

Ten companies are efficient (on the VRS frontier). For the inefficient 
companies, the non-zero optimal jλ  indicate the benchmarks. For example, 
the efficiency score for AT&T is 0.53354 and the benchmarks for AT&T are 
Sumitoma ( 5λ  = 0.77 in cell I6) and Wal-Mart ( 11λ  = 0.23 in cell I12). 
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The previous macro “DEA” does not record the optimal jλ  in the 
worksheet. This can be done by the adding a VBA procedure named 
“DEA1” into the existing module. 

 
Sub DEA1() 

'Declare DMUNo as integer. This DMUNo represents the DMU under 

'evaluation. In the example, DMUNo goes form 1 to 15 

    Dim DMUNo As Integer 

    For DMUNo = 1 To 15 

'set the value of cell E18 equal to DMUNo (1, 2,..., 15) 

    Range("E18") = DMUNo 

'Run the Solver model. The UserFinish is set to True so that 

'the Solver Results dialog box will not be shown 

    SolverSolve UserFinish:=True 

'Place the efficiency into column J 

    Range("J" & DMUNo + 1) = Range("F19") 

'Select the cells containing the optimal lambdas 

    Range("I2:I16").Select 

'copy the selected lambdas and paste them to row "DMUNo+1" 

'(that is row 2, 3, ..., 16) starting with column K 

Selection.Copy 

Range("K" & DMUNo + 1).Select 

Selection.PasteSpecial Paste:=xlPasteValues, Transpose:=True 

Next DMUNo 

End Sub 
 

In the Run Macro dialog box, select “DEA1” and then click the Run 
button. The procedure “DEA1” will record both the efficiency scores and the 
related optimal values on jλ  (j = 1,2, …, 15) (see file “envelopment 
spreadsheet.xls” in the CD). 

1.3.9 Calculating Slacks 

Based upon the efficiency scores and the optimal values on jλ  (j = 1,2, 
…, 15), we can calculate the slack values using (1.3). However, because of 
possible multiple optimal solutions, we need to use model (1.4) to optimize 
the input and output slacks. 

Figure 1.23 shows the spreadsheet model for calculating the slacks after 
the efficiency scores are obtained. This spreadsheet model is built upon the 
spreadsheet model shown in Figure 1.18 with efficiency scores reported in 
column J. 



26 Envelopment DEA Models
 

 

Figure 1.23. Second-stage Slack Spreadsheet Model 

 

Figure 1.24. Solver Parameters for Calculating Slacks 

Cells F20:F24 are reserved for input and output slacks (changing cells). 
The formulas for cells B25 and D25 remain unchanged. The formulas for 
Cells B20:B24 are changed to 

 
Cell B20 =SUMPRODUCT(B2:B16,$I$2:$I$16)+F20 
Cell B21 =SUMPRODUCT(C2:C16,$I$2:$I$16)+F21 
Cell B22 =SUMPRODUCT(D2:D16,$I$2:$I$16)+F22 
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Cell B23 =SUMPRODUCT(F2:F16,$I$2:$I$16)-F23 
Cell B24 =SUMPRODUCT(G2:G16,$I$2:$I$16)-F24 
 
The formulas for cells D21:D24 are 

 
Cell D20 =INDEX(J2:J16,E18,1)*INDEX(B2:B16,E18,1) 
Cell D21 =INDEX(J2:J16,E18,1)*INDEX(C2:C16,E18,1) 
Cell D22 =INDEX(J2:J16,E18,1)*INDEX(D2:D16,E18,1) 
Cell D23 =INDEX(F2:F16,E18,1) 
Cell D24 =INDEX(G2:G16,E18,1) 

 
After the Solver parameters are set up, as shown in Figure 1.24, the VBA 

procedure “DEASlack” is inserted into the existing module to automate the 
slack calculations for the 15 companies (see file “envelopment 
spreadsheet.xls” in the CD for the results). 

 
Sub DEASlack() 

'Declare DMUNo as integer. This DMUNo represents the DMU under 

'evaluation. In the example, DMUNo goes form 1 to 15 

    Dim DMUNo As Integer 

    For DMUNo = 1 To 15 

'set the value of cell E18 equal to DMUNo (1, 2,..., 15) 

    Range("E18") = DMUNo 

'Run the Slack Solver model 

    SolverSolve UserFinish:=True 

'Select the cells containing the slacks 

    Range("F20:F24").Select 

'copy the selection (slacks) and paste it to row "DMUNo+1" 

'(that is, row 2,3, ...,16) starting column L 

Selection.Copy 

Range("L" & DMUNo + 1).Select 

Selection.PasteSpecial Paste:=xlPasteValues, Transpose:=True 

Next DMUNo 

End Sub 

1.3.10 Other Input-oriented Envelopment Spreadsheet Models 

Figures 1.8 and 1.15 represent the input-oriented VRS envelopment 
model. By changing the constraint on ∑ =

n
j j1λ , we immediately obtain other 

input-oriented envelopment models. 
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Figure 1.25. Solver Parameters for Input-oriented CRS Envelopment Model 

 

Figure 1.26. Input-oriented CRS Envelopment Efficiency 
 
For example, if we select $B$25 = $D$25 and click the Delete button in 

Figure 1.15 (i.e., we remove ∑ =
n
j j1λ  = 1), we obtain the Solver parameters 

for the input-oriented CRS envelopment model, as shown in Figure 1.25. 
If we click the Change button, and replace $B$25 = $D$25 with $B$25 

<= $D$25 (or $B$25 >= $D$25), we obtain the input-oriented NIRS (or 
NDRS) envelopment model. 
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During this process, the spreadsheet shown in Figure 1.15 and the VBA 
procedures remain unchanged. For example, if we run the Macro “DEA” for 
the input-oriented CRS envelopment model, we have the CRS efficiency 
scores shown in Figure 1.26. Seven DMUs are on the CRS efficient frontier. 

1.3.11 Output-oriented Envelopment Spreadsheet Models 

We next consider the output-oriented envelopment models. The 
spreadsheet model should be similar to the one in Figure 1.15, but with a 
different set of formulas for the DMU under evaluation. Figure 1.27 shows a 
spreadsheet for the output-oriented VRS envelopment model. 

To make the spreadsheet more understandable, we use “range names” in 
the formulas. Select a range that needs to be named, and then type the 
desirable range name in the upper left “name box” in the Excel. This “name 
box” is just above the column A heading (see Figure 1.27). For example, we 
select cells B2:D16 containing the inputs, and then type “InputUsed” in the 
“name box” (see Figure 1.27). An alternative way is to use the 
Insert/Name/Define menu item. We can then refer to the inputs by using 
“InputUsed” in stead of cells B2:D16. 

 

Figure 1.27. Output-oriented VRS Envelopment Spreadsheet Model 

We name the cells F2:G16 containing the outputs as “OutputProduced”. 
We also name the changing cells I2:I16 and F19 “Lambdas” and 
“Efficiency”, respectively. As a result, the formulas on ∑ =

n
j j1λ  can be 
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expressed as Cell B25 =SUM(Lambdas), and the formulas for the DEA 
reference set can be expressed as 
 

Cell B20 = SUMPRODUCT(INDEX(InputUsed,0,1),Lambdas) 
Cell B21 = SUMPRODUCT(INDEX(InputUsed,0,2),Lambdas) 
Cell B22 = SUMPRODUCT(INDEX(InputUsed,0,3),Lambdas) 
Cell B23 = SUMPRODUCT(INDEX(OutputProduced,0,1),Lambdas) 
Cell B24 = SUMPRODUCT(INDEX(OutputProduced,0,2),Lambdas) 

 
Note that we use “0” for the “row number” in the INDEX function. This 

returns the whole column in the specified array in the INDEX function. For 
example, INDEX(InputUsed,0,1) returns the first input across all DMUs in 
cells B2:B16. 

We assign a range name of “DMU” to cell E18, the cell representing the 
DMU under evaluation. The formulas for the DMU under evaluation then 
can be expressed as 

 
Cell D20 =INDEX(InputUsed,DMU,1) 
Cell D21 =INDEX(InputUsed,DMU,2) 
Cell D22 =INDEX(InputUsed,DMU,3) 
Cell D23 = Efficiency*INDEX(OutputProduced,DMU,1) 
Cell D24 = Efficiency*INDEX(OutputProduced,DMU,2) 

 

Figure 1.28. Solver Parameters for Output-oriented VRS Envelopment Model 

The cells “B20:B22”, “B23:B24”, “B25”, “D20:D22”, “D23:D24” are 
named as “ReferenceSetInput”, “ReferenceSetOutput”, “SumLambda”, 
“DMUInput”, and “DMUOutput”, respectively. Based upon these range 
names, we obtain the Solver parameters shown in Figure 1.28. Since it is an 
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output-oriented envelopment model, “Max” is selected to maximize the 
efficiency (φ ). 

We can still apply the previous Excel macros (“DEA” or “DEA1”) to this 
spreadsheet model shown in Figure 1.27 with the Solver parameters shown 
in Figure 1.28. We next present an alternative approach to automate the 
DEA calculation. 

First, turn on the ActiveX Controls by clicking the Developer/Insert tab. 
Then click the Command Button (ActiveX Controls) icon on the Insert tab, 
and drag it on to your worksheet (see Figure 1.29). 

 

Figure 1.29. Adding Command Button 

While the command button is selected, you can change its properties by 
clicking the Properties tab. For example, setting the TakeFocusOnClick to 
False leaves the worksheet selection unchanged when the button is clicked. 
You can change the name of this Command Button by changing the Caption 
property with “Output-oriented VRS” (see Figure 1.30). 

Double click the command button. This should launch the VB Editor and 
bring up the code window for the command button’s click event. Insert the 
statements shown in Figure 1.31. 
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The word Private before the macro name “CommandButton1_Click” 
means that this macro will not appear in the Run Macro dialog box. The 
macro is only available to the worksheet “output VRS” containing the model 
(see Figure 1.31). 

 

Figure 1.30. Changing Command Button Properties 
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Figure 1.31. VBA Code for Output-oriented VRS Envelopment Model 

In the macro, we introduce three variables, NDMUs, NInputs, and 
NOutputs, representing the number of DMUs, inputs and outputs, 
respectively. In the current example, NDMUs = 15, NInputs = 3, and 
NOutputs = 2. For a different set of DMUs, set these variables to different 
values, and the macro should still work. 

 

Figure 1.32. Output-oriented VRS Envelopment Efficiency 
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Close the VB Editor and click the Design Mode tab to turn off design 
mode. The selection handles disappear from the command button. The 
macro runs when you click the command button. Figure 1.32 shows the 
results (see file “envelopment spreadsheet.xls” in the CD). 

In a similar manner, we can set up other output-oriented envelopment 
spreadsheet models. For example, if we remove “SumLambda=1” from 
Figure 1.28, we obtain the Solver parameters for output-oriented CRS 
envelopment model. 

 
If one wants to use the macros established for the input-oriented 

envelopment spreadsheet models, one can proceed as follows using the 
Button (Form Controls). 

First, we click the Developer tab and then select the button (the first item 
on the Insert tab) (see Figure 1.29). Drag the button onto your worksheet 
containing the output-oriented CRS envelopment spreadsheet and the Solver 
parameters. You will immediately be asked to assign a macro to this button. 
Select “DEA1”. At this point, the button is selected. You may also want to 
change the caption on the button to “Output-oriented CRS’, for example (see 
Figure 1.33). To run the selected macro, you have to deselect the button by 
clicking anywhere else on the worksheet. You can always assign a different 
macro to the button by right-clicking on the button and selecting “Assign 
Macro”. Figure 1.34 shows the output-oriented CRS efficiency scores. 

 

Figure 1.33. Adding a Button with Macro 
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Figure 1.34. Output-oriented CRS Envelopment Efficiency 
 

1.4 Solving DEA Using DEAFrontier Software 

One can solve the basic DEA models using the spreadsheets and Excel 
Solver. We now demonstrate how to solve the above DEA models using the 
student version of DEAFrontier software supplied with the book3. 
DEAFrontier is an Add-In for Microsoft® Excel and uses the Excel Solver. 
This software requires Excel 20074. This student version can solve up to 100 
DMUs with unlimited number of inputs and outputs. 

To install the software, copy the file “DEAFrontier.xlam”5 to your hard 
drive. 

Please set the Macro Security to Medium Level in the Excel. You need to 
do this in the Trust Center. You may check (1) enable all macros and (2) 
Trust access to the VBA project object model. You may also need to add the 
subdirectory where the DEAFrontier software is located as “Trusted 
Locations”. 

If you run the DEAFrontier and get an error message (as shown in Figure 
1.35), this error message means that the Excel Solver is not found by the 
DEAFrontier software6. To correct this, please use the following steps: 

 
3 See www.deafrontier.com for other versions of the DEAFrontier software. 
4 This book also provides a version for Excel 97-2003. See footnote 2. 
5 This file is for use with Excel 2007. If you are running Excel 97-2003, please copy the file 

“DEAFrontier2003.xla”. 
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 Step 1: Open Excel 
Step 2: Load Excel Solver so that the Excel Solver parameters dialog box 

(Figure 1.12) is displaced. 
Step 3: Close the Excel Solver parameters dialog box. 
Step 4: Load the DEA software by opening (i) “DEAFrontier2003.xla” 

for Excel 97-2003, or (ii) “DEAFrontier.xlam” for Excel 2007. 
 

 
 

Figure 1.35. DEAFrontier Error Message 

To locate the DEA Menu, Office 2007 users select the Add-Ins tab and 
navigate to the DEA menu option. The DEA menus will not always be 
visible, as they were in Office 97-2003.  

 

 
You will see a new Menu item “DEAFrontier” or “DEA”7 in Add-Ins tab. 

(see Figure 1.36.) (Please see the Format for Data Sheet for proper setup of 
data sets.) 
 

                                                                      
6 If the DEAFrontier software is installed in the subdirectory where the Excel Solver is 

installed, this error may not occur. 
7 This depends on the version of the DEAFrontier software you are using. 



Solving DEA Using DEAFrontier Software 37
 

 
Figure 1. 36. DEAFrontier Menu 

1.4.1 Data Sheet Format 

In most of the cases, the data sheet containing the data for DMUs under 
evaluations must be named as “Data”. Other names for the data sheet will be 
used for the other DEA models that will be discussed in later chapters, such 
as, Variable-benchmark models, Fixed-benchmark models, Minimum 
Efficiency models, Malmquist index model, Cost Efficiency, Revenue 
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Efficiency and Profit Efficiency. However, all the data sheets have the same 
format as shown in Figures 1.37 and 1.38. 

 

Figure 1. 37. Data Sheet Format 

 

Figure 1. 38. Example Data Sheet 
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 Leave one blank column between the input and output data. No blank 
columns and rows are allowed within the input and output data. 

Negative or non-numerical data are deemed as invalid data. The software 
checks if the data are in valid form before the calculation. If the data sheet 
contains negative or non-numerical data, the software will quit and locate the 
invalid data (see Figure 1.39). 

 

Figure 1. 39. Invalid Data 

1.4.2 Envelopment Model 

 

Figure 1. 40.Envelopment Models 
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To run the envelopment models in Table 1.2, select the “Envelopment 
Model” menu item. You will be prompted with a form for selecting the 
model orientation and frontier type, as shown in Figure 1.40. 

The software performs a two-stage DEA calculation. First, the efficiency 
scores are calculated, and the efficiency scores and benchmarks ( *

jλ ) are 
reported in the “Efficiency” sheet. At the same time, a “Slack” sheet and a 
“Target” sheet are generated based upon the efficiency scores and the *

jλ . 
Then you will be asked whether you want to perform the second-stage 

calculation, i.e., fixing the efficiency scores and calculating the DEA slacks 
(see Figure 1.41). If Yes, then the slack and target sheets will be replaced by 
new ones which report the DEA slacks and the efficient targets defined in 
Table 1.2. 

 

Figure 1. 41. Second Stage DEA Slack Calculation 
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Chapter 2 

Multiplier and Slack-based Models 

 
 

2.1 Multiplier Model with Weight Restrictions 

The dual linear programming problems to the envelopment models are 
called multiplier models as shown in Table 2.1. 

The dual variables iν  and rμ  are called multipliers. A DMU is on the 
frontier if and only if ∑ =

s
r ror y1 μ  + μ = 1 (or ∑ =

m
i ioi x1ν  + ν = 1) in optimality. 

The ε in the envelopment model essentially requires that iν  and rμ  are 
positive in the multiplier models. The constraint ∑ =

m
i ioi x1ν  = 1 (or ∑ =

s
r ror y1 μ  

= 1 ) is known as a normalization constraint. In DEA, the weighted input and 
output of ∑ =

m
i iji x1ν  and ∑ =

s
r rjr y1 μ  are called virtual input and virtual output, 

respectively. See Seiford and Thrall (1990) for a detailed discussion on these 
models. 

Table 2.1. Multiplier Models 
Frontier Type Input-Oriented Output-Oriented 
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CRS where μ = 0 where ν = 0 
VRS where μ free where ν  free 
NIRS where μ < 0 where ν  > 0 
NDRS where μ > 0 where ν  < 0 
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Note that ενμ ≥ir , . This set of constraints ensures that a DMU with an 
efficiency score of one must be efficient. If a DMU’s efficiency score equals 
one with non-zero slacks in an envelopment model, then this DMU must 
have a score less than one in the above related multiplier model (with ε ). 
That is, if we impose ενμ ≥ir ,  in the multiplier models, the two-stage 
process in the envelopment models is automatically carried out in the 
calculation. However, note that ε  is a very small positive value and usually 
is set equal to 10-6, and such choice does not always work. It is also possible 
that the multiplier model with can be infeasible because the ε  is not 
correctly selected. 

 
In the DEA literature, a number of approaches have been proposed to 

introduce additional restrictions on the values that the multipliers can 
assume. 

Some of the techniques for enforcing these additional restrictions include 
imposing bounds on ratios of multipliers (Thompson et al., 1990), appending 
multiplier inequalities (Wong and Beasley, 1990), and requiring multipliers 
to belong to given closed cones (Charnes et al., 1989), among others. 

We here present the assurance region (AR) approach of Thompson et al. 
(1990). To illustrate the AR approach, suppose we wish to incorporate 
additional inequality constraints of the following form into the multiplier 
DEA models as given in Table 2.1: 
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Here, 
oi

v  and 
or

μ  represent multipliers which serve as “numeraires” in 
establishing the upper and lower bounds represented here by iα , iβ , and by 

rδ , rγ  for the multipliers associated with inputs i =1, …, m and outputs r = 
1, …, s where 

oi
α  = 

oi
β  = 

or
δ  = 

or
γ  = 1. The above constraints are called 

Assurance Region (AR) constraints as in Thompson et al. (1990). 
 Uses of such bounds are not restricted to prices. For example, Zhu (1996) 
uses an assurance region approach to establish bounds on the weights 
obtained from uses of Analytic Hierarchy Processes in Chinese textile 
manufacturing in order to reflect how the local government in measuring the 
textile manufacturing performance. 
 For example, we can include the following AR constraints 
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The first AR constraint indicates that Employee input should be at most 
2.5 times as important as the Assets input, but at least as important as the 
Assets input. 
 

It is noted that the AR constraints in the above form are non-linear, 
however, they can be converted into linear restrictions, namely 
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2.2 Multiplier Models in Spreadsheets 

Figure 2.1 presents the input-oriented CRS multiplier spreadsheet model. 
We name the cells C2:E16 containing the inputs as “InputUsed” and the 
cells G2:H16 containing the outputs as “OutputProduced”. Cells C19:E19 
and G19:H19 are reserved for the decision variables – input and output 
multipliers, and are named “InputMultiplier” and “OutputMultiplier”, 
respectively. Cells A2:A16 are reserved for DMU numbers which are used 
in the formulas in cells I2:I16. 

Cell I2 contains the formula “= SUMPRODUCT(OutputMultiplier, 
INDEX (OutputProduced,A2,0))-SUMPRODUCT(InputMultiplier,INDEX 
(InputUsed,A2,0))” which represents the difference between weighted output 
and weighted input for DMU1. This value will be set as non-negative in the 
Solver parameters. 

The function INDEX(array,row number,0) returns the entire row in the 
array. For example, the value for cell A2 is one, therefore 
INDEX(OutputProduced,A2,0) returns all the outputs for DMU1, i.e., cells 
G2:H2. 



46 Multiplier and Slack-based Models
 

 

 

Figure 2.1. Input-oriented CRS Multiplier Spreadsheet Model 

 

Figure 2.2. Premium Solver Parameters for Input-oriented CRS Multiplier Model 

The formula in cell I2 is then copied into cells I3:I16. Cells I2:I16 are 
named “ConstraintDMUj”. 

The formula for cell I17 is “= SUMPRODUCT (InputMultiplier, INDEX 
(InputUsed,DMU,0))”, where DMU is a range name for cell C20, indicating 
the DMU under evaluation. The value of cell I17 will be set equal to one in 
the Solver parameters. Cell I17 is named “DMUWeightedInput”. 
 The target cell is C21 which represents the efficiency – weighted output 
for the DMU under evaluation. The cell C21 is named “Efficiency”. Its 
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formula is “= SUMPRODUCT(OutputMultiplier,INDEX(OutputProduced, 
DMU,0))”. 

Note that initial values of one are entered into the cells for the 
multipliers. As a result, some of the constraints are violated, and the value in 
cell C21 (efficiency) is greater than one. However, once the Solver solves, 
these values will be replaced by optimal solutions. 

Figure 2.2 shows the Premium Solver parameters for the spreadsheet 
model in Figure 2.1. If one uses the Premium Solver, one should select 
“Standard LP/Quadratic” solver engine. In the Options, check the “Assume 
Non-Negative” box. 

 

Figure 2.3. Input-oriented CRS Multiplier Efficiency 

Figure 2.3 shows the optimal solutions for DMU1 with an efficiency of 
0.66283. To calculate the CRS efficiencies for the remaining DMUs, we 
insert a VBA procedure “MultiplierCRS” to automate the computation, as 
shown in Figure 2.4. Note that the name of the module is changed to 
“MultiplierDEA”. This VBA procedure works for other sets of DMUs when 
setting the “NDMUs”, “NInputs”, and “NOutputs” equal to proper values. In 
the current example, this VBA procedure takes the efficiency in cell C21 and 
places it into cells J2:J16, and also takes the optimal multipliers and places 
them into cells K2:M16 and O2:P16 for 15 DMUs. Select and run the macro 
“MultiplierCRS” in the Run Macro dialog box will generate the efficiency 
results. You may also create a button in Forms toolbar and assign macro 
“MultiplierCRS” to the button (see file “multiplier spreadsheet.xls” in the 
CD). 



48 Multiplier and Slack-based Models
 

 

Sub MultiplierCRS() 
Dim NDMUs As Integer, NInputs As Integer, NOutputs As Integer 
    NDMUs = 15 
    NInputs = 3 
    NOutputs = 2 
    Dim i As Integer 
    For i = 1 To NDMUs 
    Range("DMU") = i 
    SolverSolve UserFinish:=True 
'record the efficiency scores 
    Range("A1").Offset(i, NInputs + NOutputs + 4) = Range("Efficiency") 
'record the optimal multipliers 
    Range("InputMultiplier").Copy 
    Range("A1").Offset(i, NInputs + NOutputs + 5).Select 
    Selection.PasteSpecial Paste:=xlPasteValues 
    Range("OutputMultiplier").Copy 
    Range("A1").Offset(i, 2 * NInputs + NOutputs + 6).Select 
    Selection.PasteSpecial Paste:=xlPasteValues 
     
    Next i 
End Sub 

Figure 2.4. VBA Code for Input-oriented CRS Multiplier Model 

Spreadsheets for other multiplier models can be set up in a similar 
manner. For example, Figure 2.5 shows a spreadsheet model for the input-
oriented VRS multiplier model. 

Because we have a decision variable that is free in sign, we need to 
introduce two variables in cells I19 and J19. The free variable in the VRS 
multiplier model is represented by cell J18 with a formula of “=I19-J19”. In 
the Solver parameters, cells I19 and J19 (not cell J18) along with cells 
C19:E19 and G19:H19 are changing cells. 

The formula for cell I2 is 
 
Cell I2 =SUMPRODUCT(G2:H2,$G$19:$H$19)- 
SUMPRODUCT(C2:E2,$C$19:$E$19)+$I$19-$J$19 

 
Cells for the multipliers and free variables are used as absolute references 

indicated by the dollar sign. This allows us to copy the formula in cell I2 to 
cells I3:I16. Figure 2.6 shows the Solver parameters for the input-oriented 
VRS multiplier spreadsheet model. 
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Figure 2.5.. Input-oriented VRS Multiplier Spreadsheet Model 

 

Figure 2.6.Solver Parameters for Input-oriented CRS Multiplier Model 

Insert the VBA procedure “MultiplierVRS” shown in Figure 2.7 into the 
existing module “MultiplierDEA”. The macro records the efficiency score in 
cells J2:J16, optimal free variable in cells K2:K16, and optimal multipliers in 
cells L2:N16 and P2:Q16 for 15 DMUs (see file “multiplier spreadsheet.xls” 
in the CD). 
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Figure 2.7. VBA Code for the Input-oriented VRS Multiplier Model 
 

 

Figure 2.8. CRS AR Multiplier Model 
 

We next incorporate 5.21 ≤≤
Assets

Employee

v
v

 into the CRS multiplier model 

shown in Figure 2.3. The following two additional constraints are needed 
EmployeeAssets vv ≤1  and AssetsEmployee vv 5.2≤  
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Cells G22:G23 contains the left-hand-side of the above two constraints and 
cells I22:I23 contains the right-hand-side of the above two constraints, as 
shown in Figure 2.8. In the Solver parameters, we need to add these two 
additional constraints, as shown in Figure 2.9. 

 

Figure 2.9. Solver Parameters for CRS AR Model 
 

2.3 Slack-based Model 

The input-oriented DEA models consider the possible (proportional) 
input reductions while maintaining the current levels of outputs. The output-
oriented DEA models consider the possible (proportional) output 
augmentations while keeping the current levels of inputs. Charnes, Cooper, 
Golany, Seiford and Stutz (1985) develop an additive DEA model which 
considers possible input decreases as well as output increases 
simultaneously. The additive model is based upon input and output slacks. 
For example, 
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Note that model (2.1) assumes equal marginal worth for the nonzero 

input and output slacks. Therefore, caution should be excised in selecting the 
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units for different input and output measures. Some a priori information may 
be required to prevent an inappropriate summation of non-commensurable 
measures. Previous management experience and expert opinion, which prove 
important in productivity analysis, may be used (see, e.g., Seiford and Zhu 
(1998)). 

Model (2.1) therefore is modified to a weighted CRS slack-based model 
as follows (Ali, Lerme and Seiford, 1995). 
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where −

iw  and +
rw  are user-specified weights obtained through value 

judgment. The oDMU  under evaluation will be termed efficient if and only 
if the optimal value to (2.2) is equal to zero. Otherwise, the nonzero optimal 

*−
is  identifies an excess utilization of the ith input, and the non-zero optimal 

*+
rs  identifies a deficit in the rth output. Thus, the solution of (2.2) yields the 

information on possible adjustments to individual outputs and inputs of each 
DMU. Obviously, model (2.2) is useful for setting targets for inefficient 
DMUs with a priori information on the adjustments of outputs and inputs. 

Table 2.2. Slack-based Models 
Frontier type Slack-based DEA Model 
CRS 

                       0,,

;,...,2,1      

;,...,2,1       
osubject  t

max

1

1

11

≥

==−∑

==+∑

∑+∑

+−

+

−

=

=

++

=

−−

rij

ror

n

j=
rjj

ioi

n

j
ijj

s

r
rr

m

i
ii

ss

srysy

mixsx

swsw

λ
λ

λ

VRS Add ∑ =
n
j j1 λ  = 1 

NIRS Add ∑ =
n
j j1 λ  < 1 

NDRS Add ∑ =
n
j j1 λ  > 1 

 
One should note that model (2.2) does not necessarily yield results that 

are different from those obtained from the model (2.1). In particular, it will 
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not change the classification from efficient to inefficient (or vice versa) for 
any DMU. 

Model (2.1) identifies a CRS frontier, and therefore is called CRS slack-
based model. Table 2.2 summarizes the slack-based models in terms of the 
frontier types. 

2.4 Slack-based Models in Spreadsheets 

Figure 2.10 shows a spreadsheet model for the CRS slack-based model 
when DMU1 is under evaluation. Cells I2:I16 are reserved for jλ . Cells 
F20:F24 are reserved for input and output slacks. The weights on slacks are 
entered into Cells G20:G24. Currently, the weights are all equal to one. 

 

Figure 2.10. CRS Slack-based DEA Spreadsheet Model 

Cells B20:B24 contain the following formulas 
 
 Cell B20 =SUMPRODUCT(B2:B16,$I$2:$I$16)+F20 
 Cell B21 =SUMPRODUCT(C2:C16,$I$2:$I$16)+F21 
 Cell B22 =SUMPRODUCT(D2:D16,$I$2:$I$16)+F22 
 Cell B23 =SUMPRODUCT(F2:F16,$I$2:$I$16)-F23 
 Cell B24 =SUMPRODUCT(G2:G16,$I$2:$I$16)-F24 
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The input and output values of the DMU under evaluation are placed into 
cells D20:D24 via the following formulas 

 
 Cell D20 =INDEX(B2:B16,E18,1) 
 Cell D21 =INDEX(C2:C16,E18,1) 
 Cell D22 =INDEX(D2:D16,E18,1) 
 Cell D23 =INDEX(F2:F16,E18,1) 
 Cell D24 =INDEX(G2:G16,E18,1) 
 
Cell F25 is the target cell which represents the weighted slack. The 

formula for cell F25 is 
 
Cell F25 =SUMPRODUCT(F20:F24,G20:G24) 

 

Figure 2.11. Solver Parameters for CRS Slack-based Model 

Figure 2.11 shows the Solver parameters. Figure 2.12 shows the optimal 
slack values when DMU1 is under evaluation. Next, we insert a VBA 
procedure “CRSSlack” to calculate the optimal slacks for the remaining 
DMUs. 

 
Sub CRSSlack() 
Dim i As Integer 
    For i = 1 To 15 
'set the value of cell E18 equal to i (=1, 2,..., 15) 
    Range("E18") = i 
'Run the Slack Solver model 
    SolverSolve UserFinish:=True 
'Select the cells containing the slacks 
    Range("F20:F24").Select 
'record optimal slacks in cells K2:O16 
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Selection.Copy 
Range("K" & i + 1).Select 
Selection.PasteSpecial Paste:=xlPasteValues, Transpose:=True 
Next 
End Sub 

 

Figure 2.12. CRS Slacks 

 

Figure 2.13. VRS Slack-based Spreadsheet Model 
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By adding an additional constraint on ∑ =
n
j j1 λ , we can obtain spreadsheet 

models for other slack-based models (see Excel file slack-based 
spreadsheet.xls in the CD). For example, Figure 2.13 shows a spreadsheet 
model for the VRS slack-based DEA model. 

Range names are used in Figure 2.13. Cells B2:D16 are named 
“InputUsed” and cells F2:G16 are named “OutputProduced”. We also name 
cells I2:I16 “Lambdas”, cells F20:F24 “Slacks”, G20:G24 “Weights”, and 
cell E18 “DMU”. Accordingly, we have formulas 
 
Cell B20 = SUMPRODUCT(INDEX(InputUsed,0,1),Lambdas)+Slacks 
Cell B21 = SUMPRODUCT(INDEX(InputUsed,0,2),Lambdas)+Slacks 
Cell B22 = SUMPRODUCT(INDEX(InputUsed,0,3),Lambdas)+Slacks 
Cell B23 = SUMPRODUCT(INDEX(OutputProduced,0,1),Lambdas)-Slacks 
Cell B24 = SUMPRODUCT(INDEX(OutputProduced,0,2),Lambdas)-Slacks 
Cell B25 = SUM(Lambdas) 
Cell F25 = SUMPRODUCT(Slacks,Weights) 
 

We then name cells B20:B24 “ReferenceSet”, cells D20:D24 
“DMUEvaluation”, B25 “SumLambda”, and cell F25 “SumSlack”. Figure 
2.14 shows the Solver parameters for the VRS slack-based model. 

 

Figure 2.14. Solver Parameters for VRS Slack-based Model 

Since range names are used in the Solver model, we can modify 
“CRSSlack” into a VBA procedure that can be applied to other data sets. 
The modified VBA procedure is called “Slack”. 
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Sub Slack() 

Dim NDMUs As Integer, NInputs As Integer, NOutputs As Integer 

    NDMUs = 15 

    NInputs = 3 

    NOutputs = 2 

Dim i As Integer 

For i = 1 To NDMUs 

Range("DMU") = i 

SolverSolve UserFinish:=True 

Range("Slacks").Copy 

Range("A1").Offset(i, NInputs + NOutputs + 5).Select 

Selection.PasteSpecial Paste:=xlPasteValues, Transpose:=True 

Next 

End Sub 

 

2.5 Solving DEA Using DEAFrontier Software 

2.5.1 Multiplier Model 

To run the multiplier models, select the “Multiplier Model with Epsilon” 
menu item. You will be prompted with a form for selecting the models 
presented in Table 2.1. As shown in Figure 2.15, the default ε  value = 0. 
The user can specify its own non-zero ε . The results are reported in a sheet 
named “Efficiency Report”. 

 

Figure 2.15. Multiplier Model 
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2.5.2 Restricted Multiplier Model 

We need to set up the sheet “Multiplier” which contains the ARs. For 
example, if we want to include the following ARs 

5.21 ≤≤
Assets

Employee

v
v

 

35.1 ≤≤
Equity

Employee

v
v

 

43
Re

≤≤
venue

eMarketValu

μ
μ  

then the data in the “Multiplier” sheet should be entered as shown in the 
following Figure 2.16. 

 

Figure 2.16. Restrictions (AR) on Multipliers 

 

Figure 2.17. Restricted Multiplier Model 
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To avoid any errors, we suggest copying and pasting the input and output 
names from the “data” sheet when you enter the information into the 
“Multiplier” sheet. If the input (output) names in the two sheets do not 
match, the program will stop. 

Once the “Multiplier” sheet is set up, select the “Restricted Multipliers” 
menu item and you will be prompted to choose a DEA model, as shown in 
Figure 2.17. Figure 2.18 shows the results of the input-oriented CRS 
multiplier model with the above ARs. 

Note that you can also add ARs that link the input and output multipliers 
for the “Restricted Multipliers”. Note also that if the ARs are not properly 
specified, then the related DEA model may be infeasible. If that happens, the 
program will return a value “-9999” for the efficiency score. 

 

Figure 2.18. Restricted Multiplier Model Results 

2.5.3 Slack-based Model 

To run the slack-based models, select the “Slack-based Model” menu 
item. You will be prompted with a form for selecting the models presented 
in Table 2.2, as shown in Figure 2.19. 

If you select “Yes” under the “Weights on Slacks”, you will be asked to 
provide the weights, as shown in Figure 2.10. If you select “No”, then all the 
weights are set equal to one. 

The results are reported in a sheet named “Slack Report” along with a 
sheet named “Efficient Target”. 
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Figure 2.19. Slack-based Models 

 

Figure 2.20. Weights on Slacks 
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Chapter 3 

Measure-specific DEA Models 
 

 
 

3.1 Measure-specific Models 

Although DEA does not need a priori information on the underlying 
functional forms and weights among various input and output measures, it 
assumes proportional improvements of inputs or outputs. This assumption 
becomes invalid when a preference structure over the improvement of 
different inputs (outputs) is present in evaluating (inefficient) DMUs (see 
Chapter 4). We need models where a particular set of performance measures 
is given pre-emptive priority to improve. 

Let I ⊆ {1,2, …, m} and O ⊆ {1,2, …,s} represent the sets of specific 
inputs and outputs of interest, respectively. Based upon the envelopment 
models, we can obtain a set of measure-specific models where only the 
inputs associated with I or the outputs associated with O are optimized (see 
Table 3.1). 

The measure-specific models can be used to model uncontrollable inputs 
and outputs (see Banker and Morey (1986)). The controllable measures are 
related to set I or set O. 

A DMU is efficient under envelopment models if and only if it is 
efficient under measure-specific models. i.e., both the measure-specific 
models and the envelopment models yield the same frontier. However, for 
inefficient DMUs, envelopment and measure-specific models yield different 
efficient targets. 

Consider Figure 1.1. If the response time input is of interest, then the 
measure-specific model will yield the efficient target of S1 for inefficient S. 
If the cost input is of interest, S3 will be the target for S. The envelopment 
model projects S to S2 by reducing the two inputs proportionally. 
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Table 3.1. Measure-specific Models 
Frontier 
Type 
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3.2 Measure-specific Models in Spreadsheets 

Since the measure-specific models are closely related to the envelopment 
models, the spreadsheet models can be modified from the envelopment 
spreadsheet models. 

Figure 3.1 shows an input-oriented VRS measure-specific spreadsheet 
model where the Assets input is of interest. We only need to change the 
formulas in cells D21:D22 (representing Equity and Employee for the DMU 
under evaluation) in the input-oriented VRS envelopment spreadsheet model 
shown in Figure 1.8 to 
 

Cell D21 =INDEX(C2:C16,E18,1) 
Cell D22 =INDEX(C2:C16,E18,1) 

 
The Solver parameters remain the same, as shown in Figure 1.15. All the 

VBA procedures developed for the envelopment models can be used. In 
Figure 3.1, the VBA procedure “DEA1” is assigned to the button “Measure-
Specific”. 

If we apply the same formula changes in the Second-stage Slack 
Spreadsheet Model shown in Figure 1.23, with the same Solver parameters 
shown in Figure 1.24 and with the macro “DEASlack”, we can optimize the 



Performance Evaluation of Fortune 500 Companies 
 

65

slacks for the spreadsheet model shown in Figure 3.1 after we obtain the 
efficiency scores. Figure 3.2 shows the results (see Excel file measure-
specific spreadsheet.xls in the CD). 

 

Figure 3.1. Input-oriented VRS Measure-specific Spreadsheet Model 

 

Figure 3.2. Second-stage Slacks for Input-oriented VRS Measure-specific Model 
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3.3 Performance Evaluation of Fortune 500 Companies 

Fortune magazine analyzes the financial performance of companies by 
eight measures: revenue, profit, assets, number of employees (employees), 
stockholders’ equity (equity), market value (MV), earnings per share (EPS) 
and total return to investors (TRI). 

In order to obtain an overall performance index, Zhu (2000) employs 
DEA to reconcile these eight measures via a two-stage transformation 
process described in Figure 3.3. Each stage is defined by a group of “inputs 
(x)” and “outputs (y)”. 

 

Figure 3.3. Input-output System for Fortune 500 Companies 

The performance in the first stage (stage-1) may be viewed as 
profitability, i.e., a company’s ability to generate the revenue and profit in 
terms of its current labor, assets and capital stock. The performance in the 
second stage (stage-2) may be viewed as (stock) marketability, i.e., a 
company’s performance in stock market by its revenue and profit generated. 

The data of 1995 is used. The DMU numbers correspond to the ranks by 
the magnitude of revenues. Because some data on MV, profit and equity are 
not available for some companies, we exclude these companies, and analyze 
the performance of the 364 companies. 

2.3.1 Identification of Best Practice Frontier 

Because the Fortune 500 list consists of a variety of companies 
representing different industries, we assume that the best-practice frontier 
exhibits VRS. We use the input-oriented VRS envelopment model to 
identify the best-practice. 
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Figure 3.4. Profitability VRS Efficiency Distribution 

 

Figure 3.5. Marketability VRS Efficiency Distribution 

Figures 3.4 and 3.5 report the distributions of VRS efficiency scores. 30 
and 16 DMUs are VRS-efficient in profitability (stage-1) and marketability 
(stage-2), respectively. In stage-1, most VRS scores are distributed over 
[0.27, 0.51]. In stage-2, the VRS scores are almost evenly distributed over 
[0.16, 1]. Only four companies, namely, General Electric (DMU7), Coca-
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Cola (DMU48), Nash Finch (DMU437), and CompUSA (DMU451) are on 
the best-practice frontiers of stage-1 and stage-2. 

2.3.2 Measure-specific Performance1 

Proportional reductions of all inputs are used to determine the best 
practice frontier for the Fortune 500 companies. However, in an evaluation 
of inefficient DMUs, non-proportional input (output) improvement may be 
more appropriate. Therefore, we seek an alternative way to further 
characterize the performance of inefficient companies by measure-specific 
models. 

Because we have already obtained the VRS best-practice frontier and the 
measure-specific models yield the same frontier, we modify the VRS 
measure-specific models for a particular inefficient DMUd, 
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where E and N represent the index sets for the efficient and inefficient 
companies, respectively, identified by the VRS envelopment DEA model. 

 
1 The material in this section is adapted from European Journal of Operational Research, Vol 

123, Zhu, J., Multi-factor Performance Measure Model with An Application to Fortune 
500 Companies, 105-124, 2000, with permission from Elsevier Science. 
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Table 3.2. Profitability Measure-specific Efficiency 
DMU Company                     Profitability  
No. Name employees assets equity revenue profit 
1 General Motors 1.000 1.000 1.000 1.000 1.000 
2 Ford Motors 1.000 1.000 1.000 1.000 1.000 
3 Exxon 1.000 1.000 1.000 1.000 1.000 
4 Wal-Mart Stores 1.000 1.000 1.000 1.000 1.000 
5 AT&T 0.479 0.503 0.653 1.172 41.670 
6 IBM 0.304 0.598 0.573 1.307 1.397 
7 General Electric 1.000 1.000 1.000 1.000 1.000 
8 Mobil 1.000 1.000 1.000 1.000 1.000 
9 Chrysler 0.805 0.735 0.906 1.060 1.381 
10 Philip Morris 1.000 1.000 1.000 1.000 1.000 
13 Du Pont De Nemours 0.933 0.950 0.976 1.015 1.039 
14 Texaco 0.933 0.862 0.936 1.046 2.475 
15 Sears Roebuck 1.000 1.000 1.000 1.000 1.000 
17 Procter & Gamble 0.325 0.743 0.654 1.291 1.413 
18 Chevron 0.493 0.469 0.444 1.716 4.100 
19 Citicorp 0.285 0.096 0.385 2.237 1.415 
20 Hewlett-Packard 0.286 0.772 0.535 1.287 1.443 
Average   0.755 0.808 0.827 1.184 3.784 

Table 3.3. Marketability Measure-specific Efficiency 
DMU Company                     Marketability
No. Name Revenue Profit MV TRI EPS
1 General Motors 0.025 0.010 3.207 9.258 84.743
2 Ford Motors 0.028 0.013 3.314 33.754 170.670
3 Exxon 0.155 0.088 1.284 3.022 41.071
4 Wal-Mart Stores 0.058 0.029 2.011 43.768 447.912
5 AT&T 1.000 1.000 1.000 1.000 1.000
6 IBM 0.114 0.032 1.690 7.235 59.740
7 General Electric 1.000 1.000 1.000 1.000 1.000
8 Mobil 0.068 0.052 2.401 6.494 103.697
9 Chrysler 0.057 0.020 4.388 17.559 115.283
10 Philip Morris 0.239 0.095 1.408 2.465 47.335
13 Du Pont De Nemours 0.122 0.023 2.342 8.748 107.288
14 Texaco 0.080 0.059 3.202 7.863 243.004
15 Sears Roebuck 0.079 0.020 4.737 9.926 135.778
17 Procter & Gamble 0.168 0.127 1.789 5.644 138.595
18 Chevron 0.122 0.059 2.035 11.386 427.273
19 Citicorp 0.118 0.017 3.000 4.154 82.197
20 Hewlett-Packard 0.172 0.111 1.839 3.268 111.866
Average   0.212 0.162 2.391 10.385 136.379

 
Models (3.1) and (3.2) determine the maximum potential decrease of an 

input and increase of an output while keeping other inputs and outputs at 
current levels. 
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Tables 3.2 and 3.3 report the results for the top-20 companies. Recall that 
revenue and profit are two factors served as the two outputs in stage-1 and 
the two inputs in stage-2. Therefore, we have two measure-specific 
efficiency scores for each revenue and each profit. 

Table 3.4. Profitability Measure-specific Industry Efficiency 
Industries Employees Assets Equity Revenue Profit 

Aerospace 0.12 (0.11) 0.30 (0.35) 0.24 (0.23) 1.98 (2.26) 3.85 (4.16) 

Airlines 0.12 (0.12) 0.24 (0.29) 0.24 (0.27) 1.95 (2.37) 4.54 (5.36) 

Beverages 0.34 (0.33) 0.56 (0.46) 0.56 (0.39) 1.71 (2.17) 1.72 (4.96) 

Chemicals 0.46 (0.32) 0.56 (0.46) 0.46 (0.31) 1.91 (2.54) 1.83 (2.46) 

Commercial Banks 0.13 (0.13) 0.06 (0.05) 0.31 (0.24) 3.66 (4.26) 2.62 (3.24) 

Computer and Data Services 0.20 (0.30) 0.57 (0.54) 0.36 (0.31) 2.93 (3.12) 1.69 (2.39) 

Computers, Office Equipment 0.25 (0.26) 0.60 (0.59) 0.48 (0.38) 1.51 (2.00) 1.77 (3.33) 

Diversified Financials 0.15 (0.38) 0.62 (0.39) 0.39 (0.43) 2.46 (3.09) 2.08 (2.40) 

Electric & Gas Utilities 0.30 (0.32) 0.18 (0.18) 0.16 (0.15) 3.73 (3.85) 2.69 (4.03) 

Electronics, Electrical Equipment 0.41 (0.30) 0.86 (0.53) 0.69 (0.38) 1.68 (2.35) 1.57 (3.12) 

Entertainment 0.12 (0.16) 0.20 (0.24) 0.15 (0.25) 3.24 (3.06) 4.33 (7.86) 

Food 0.29 (0.35) 0.45 (0.55) 0.32 (0.43) 1.84 (2.01) 2.49 (6.26) 

Food & Drug Stores 0.35 (0.23) 0.70 (0.64) 0.44 (0.41) 1.49 (1.83) 2.39 (3.34) 

Forest & Paper Products 0.16 (0.17) 0.30 (0.36) 0.21 (0.18) 2.47 (2.83) 3.44 (7.88) 

General Merchandisers 0.65 (0.32) 0.85 (0.65) 0.65 (0.43) 1.35 (2.16) 1.95 (3.52) 

Health Care 0.07 (0.30) 0.34 (0.47) 0.23 (0.32) 2.69 (2.75) 3.61 (4.94) 

Industrial & Farm Equipment 0.14 (0.13) 0.33 (0.36) 0.24 (0.18) 2.43 (2.89) 2.78 (3.59) 

Insurance: Life & Health (stock) 0.15 (0.25) 0.06 (0.07) 0.19 (0.22) 2.57 (2.97) 4.72 (5.23) 

Insurance: Property & Causality (stock) 0.29 (0.37) 0.29 (0.27) 0.47 (0.35) 2.26 (2.76) 1.84 (2.64) 

Metal Products 0.12 (0.11) 0.43 (0.42) 0.19 (0.17) 3.04 (3.28) 2.82 (4.83) 

Motor Vehicles & Parts 0.77 (0.32) 0.92 (0.51) 0.84 (0.39) 1.19 (2.11) 1.36 (2.67) 

Petroleum Refining 0.64 (0.51) 0.71 (0.50) 0.73 (0.44) 1.29 (1.72) 1.85 (6.28) 

Pharmaceuticals 0.38 (0.41) 0.63 (0.64) 0.52 (0.54) 2.02 (2.14) 1.44 (1.59) 

Pipelines 0.63 (0.57) 0.51 (0.44) 0.59 (0.50) 1.76 (1.91) 1.40 (2.64) 

Publishing, Printing 0.13 (0.20) 0.39 (0.43) 0.16 (0.21) 3.35 (3.44) 2.77 (2.84) 

Soaps, Cosmetics 0.40 (0.47) 0.64 (0.64) 0.58 (0.58) 1.40 (1.45) 1.67 (3.00) 

Special Retailers 0.24 (0.27) 0.69 (0.66) 0.35 (0.40) 1.72 (2.11) 2.39 (4.28) 

Telecommunications 0.36 (0.25) 0.41 (0.34) 0.42 (0.33) 1.70 (2.45) 3.72 (10.19) 

Temporary Help 0.50 (0.56) 0.84 (0.87) 0.68 (0.68) 1.30 (1.31) 1.39 (1.31) 

Wholesalers 0.54 (0.58) 0.69 (0.74) 0.38 (0.55) 1.34 (1.46) 2.37 (2.08) 

* The number in parenthesis represents the arithmetic average. 
 

We may use the average measure-specific efficiency scores (optimal 
values to (3.1) or (3.2)) within each industry to characterize the measure-
specific industry efficiency. However, different companies with different 
sizes may exist in each industry. Therefore arithmetic averages may not be a 
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good way to characterize the industry efficiency. Usually, one expects large 
input and output levels, e.g., assets and revenue, form relatively big 
companies. 

Table 3.5. Marketability Measure-specific Industry Efficiency 

Industries Revenue Profit MV TRI EPS 

Aerospace 0.21 (0.29) 0.06 (0.06) 3.44 (4.51) 5.88 (6.39) 102.60 (131.24) 

Airlines 0.35 (0.55) 0.34 (0.38) 4.73 (4.10) 2.66 (5.80) 35.65 (54.23) 

Beverages 0.64 (0.61) 0.80 (0.37) 1.37 (2.67) 4.57 (4.94) 102.55 (95.84) 

Chemicals 0.32 (0.52) 0.06 (0.11) 3.55 (4.16) 9.63 (13.37) 84.31 (100.13) 

Commercial Banks 0.34 (0.51) 0.07 (0.13) 3.94 (4.05) 6.40 (5.98) 85.39 (104.16) 

Computer and Data Services 0.82 (0.85) 0.83 (0.66) 1.20 (1.52) 4.01 (5.68) 38.83 (38.77) 

Computers, Office Equipment 0.24 (0.50) 0.09 (0.02) 2.37 (3.90) 4.28 (8.59) 84.83 (86.03) 

Diversified Financials 0.33 (0.47) 0.13 (0.17) 2.82 (3.79) 5.24 (7.31) 6.88 (117.12) 

Electric & Gas Utilities 0.56 (0.65) 0.08 (0.14) 4.99 (5.00) 10.34 (11.68) 128.75 (126.03) 

Electronics, Electrical Equipment 0.63 (0.54) 0.47 (0.19) 2.14 (3.54) 6.34 (14.22) 86.56 (87.05) 

Entertainment 0.40 (0.50) 0.41 (0.39) 1.49 (1.56) 6.96 (10.07) 248.91 (285.42) 

Food 0.30 (0.42) 0.09 (0.20) 3.42 (3.28) 8.83 (16.35) 145.47 (143.31) 

Food & Drug Stores 0.28 (0.44) 0.10 (0.21) 5.52 (5.31) 6.24 (25.35) 83.66 (86.30) 

Forest & Paper Products 0.49 (0.59) 0.06 (0.16) 4.24 (5.14) 11.63 (26.57) 67.17 (66.03) 

General Merchandisers 0.12 (0.32) 0.04 (0.08) 3.48 (4.33) 17.41 (24.60) 129.62 (152.9) 

Health Care 0.50 (0.66) 0.16 (0.28) 2.68 (2.91) 8.95 (13.56) 98.43 (95.67) 

Industrial & Farm Equipment 0.39 (0.52) 0.08 (0.15) 4.19 (4.20) 7.56 (13.39) 98.35 (103.26) 

Insurance: Life & Health (stock) 0.37 (0.53) 0.10 (0.14) 4.86 (5.16) 6.25 (6.58) 57.71 (65.72) 

Insurance: Property & Causality (stock) 0.28 (0.47) 0.05 (0.08) 4.09 (5.55) 6.42 (8.49) 71.85 (80.33) 

Metal Products 0.63 (0.70) 0.30 (0.36) 2.22 (2.12) 7.47 (8.89) 103.54 (96.76) 

Motor Vehicles & Parts 0.07 (0.32) 0.02 (0.08) 41.19 (5.72) 13.26 (30.38) 77.53 (77.95) 

Petroleum Refining 0.17 (0.36) 0.07 (0.16) 2.41 (4.21) 9.94 (18.53) 102.81 (122.06) 

Pharmaceuticals 0.44 (0.44) 0.33 (0.29) 1.75 (2.00) 4.77 (5.65) 163.58 (193.30) 

Pipelines 0.51 (0.65) 0.07 (0.13) 4.38 (4.22) 5.22 (6.47) 46.10 (103.94) 

Publishing, Printing 0.67 (0.73) 0.21 (0.22) 3.23 (3.19) 14.35 (19.16) 69.09 (73.99) 

Soaps, Cosmetics 0.25 (0.37) 0.13 (0.12) 1.89 (2.23) 10.04 (11.98) 101.42 (109.16) 

Special Retailers 0.40 (0.60) 0.15 (0.30) 3.19 (3.90) 6.79 (20.26) 103.34 (98.36) 

Telecommunications 0.68 (0.44) 0.12 (0.25) 1.85 (2.53) 7.19 (61.16) 188.16 (214.68) 

Temporary Help 0.69 (0.78) 0.32 (0.36) 3.68 (3.52) 18.87 (93.62) 30.83 (30.48) 

Wholesalers 0.37 (0.47) 0.18 (0.30) 3.95 (4.61) 6.64 (8.83) 49.55 (49.33) 

* The number in parenthesis represents the arithmetic average. 
 
Thus, we define weighted measure-specific scores within each industry by 

considering the sizes of the companies. 
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 (size-adjusted) kth input-specific industry efficiency measure for industry F 
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(size-adjusted) qth output-specific industry efficiency measure for industry F 
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where kdx̂  (= kd

k
d x*θ ) and qdŷ  (= qd

q
d y*φ ) are, respectively, the projected 

(potentially efficient) levels for kth input and qth output of DMUd, d∈ F. 

The weights in (3.3) (
∑
∈Fd

kd

kd

x
x , d∈ F ) and (2.4) (

∑
∈Fd

qd

qd

y
y

, d∈ F) are 

normalized, therefore a specific industry F achieves 100% efficiency, i.e., 
F
kI  = 1 and F

qO  = 1, if and only if, all of its companies are located on the 
best-practice frontier. 

Tables 3.4 and 3.5 report the industry efficiency scores for the 30 
selected industries where the number in parenthesis represents the 
corresponding arithmetic mean of measure-specific efficiency scores. 

A relatively large discrepancy between weighted and arithmetic average 
scores is detected for six industries – General Merchandiser, Health Care, 
Motor Vehicles & Parts, Petroleum Refining, Pipelines, and 
Telecommunications. Since (3.3) and (3.4) determine the industry efficiency 
by considering the size of each company, this may imply that efficiency may 
highly correlate with size in these industries. 

2.3.3 Benchmark Share 

Non-zero *
jλ  indicates that DMUj is used as a benchmark. As an efficient 

company, the role it plays in evaluating inefficiency companies is to be of 
interest. One wants to know the importance of each efficient DMU in 
measuring the inefficiencies of inefficient DMUs. Based upon the non-zero 

*
jλ , we develop benchmark-share measures for each efficient company via 

(3.1) and (3.2). 
We define the kth input-specific benchmark-share for each efficient 

DMUj, j ∈E, 
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where λ j

d*  and θd
k*  are optimal values in (3.1). 

We define the qth output-specific benchmark-share for each efficient 
DMUj, j ∈E, 
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where *d

jλ  and *q
dφ  are optimal values in (3.2). 

 The benchmark-share Δ j
k  (or Π j

q ) depends on the values of *d
jλ  and *k

dθ  
(or *d

jλ  and *q
dφ ). Note that kd

k
d x)1( *θ−  and qd

q
d y)1( * −φ  characterize the 

potential decrease on kth input and increase on qth output, respectively. 
k
jΔ  and q

jΠ  are weighted *
jλ  across all inefficient DMUs. The weights, 
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 in (3.6) are normalized. 

Therefore, we have ∑Δ
∈Ej

k
j  = 1 and ∑Π

∈Ej

q
j  = 1. (Note that ∑

∈Ej

d
j
*λ  = 1 in (3.1) 

and (3.2).) 
It is very clear form (3.5) and (3.6) that an efficient company which does 

not act as a referent DMU for any inefficient DMU will have zero 
benchmark-share. The bigger the benchmark-share, the more important an 
efficient company is in benchmarking. 

Table 3.6 reports the benchmark-shares for 12 selected VRS-efficient 
companies. The benchmark-shares for the remaining VRS-efficient 
companies are less than 0.01%. Of the total 60 benchmark-shares, 12 are 
greater than 10%. Particularly, DMU48 (Coca-Cola), DMU156 (General 
Mills) and DMU281 (Bindley Western) have the biggest benchmark-share 
with respect to employees, equity and profit, respectively. This means that, 
e.g., General Mills plays a leading role in setting a benchmark with respect 
to equity input given the current levels of employees and assets. Note that 
General Mills had the highest returns on equity in 1995. 

In Table 2.7, DMU226 (Continental Airlines) and DMU292 (Berkshire 
Hathaway) are two important companies in TRI and EPS benchmarking, 
respectively. (Note that Continental Airlines and Berkshire Hathaway had 
the highest TRI and EPS in 1995.) Although Berkshire Hathaway was 
ranked 18 in terms of MV levels by the Fortune magazine, the benchmark-
share of 39.99% indicates that it had an outstanding performance in terms of 
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MV given other measures at their current levels. This indicates that single 
financial performance alone is not sufficient to characterize a company’s 
performance. 

Finally, note that, e.g., DMU292 and DMU474 both acted as a referent 
DMU in 63% of the inefficient DMUs when measuring the revenue-specific 
efficiency. However, the benchmark-share indicates that DMU474 is more 
important. 

Table 3.6. Benchmark-share for Profitability 
DMU No. Company Name Employees Assets Equity Revenue Profit 
8 Mobil 3.07% 1.51% 0.76% 16.00% 0.15% 
32 Fed. Natl. Mortgage 2.78% 0 2.76% 0.89% 0.10% 
44 Loews 7.17% 0.14% 0 0.95% 1.41% 
48 Coca-Cola 2.58% 12.54% 10.65% 2.88% 40.65% 
94 IBP 0 22.51% 0.07% 13.16% 0.80% 
153 Bergen Brunswig 0.60% 0 0.16% 5.91% 0.17% 
156 General Mills 1.86% 0.01% 60.91% 17.19% 7.85% 
168 Cardinal Health 3.12% 2.82% 0.01% 10.89% 0 
281 Bindley Western 52.91% 4.79% 2.93% 5.97% 2.86% 
419 Micron Technology 0.17% 28.37% 0.24% 0.29% 11.04% 
437 Nash Finch 0 10.16% 0.02% 0.24% 0.27% 
447 Williams 8.68% 0 0 0.02% 8.62% 
Total  82.94% 82.85% 78.51% 74.39% 73.92% 

Table 3.7. Benchmark-share for Marketability 
DMU No. Company Name Revenue Profit MV TRI EPS 

5 AT&T 0 12.33% 6.95% 2.22% 0 
7 IBM 0 0.20% 3.83% 6.39% 0.79% 
48 Coca-Cola 5.44% 0.80% 11.37% 0.13% 0.11% 
78 Kimberly-Clark 0.04% 36.66% 6.96% 0 0.10% 
210 Burlington Northern Santa FE 0.05% 4.29% 6.39% 0 0 
219 Microsoft 8.46% 0 9.97% 0 0 
226 Continental Airlines 0.44% 0.69% 1.30% 81.91% 0.87% 
292 Berkshire Hathaway 23.56% 8.37% 39.99% 0.18% 73.96% 
312 Chiquita Brands International 0.00% 15.49% 0.07% 0.17% 11.41% 
376 Consolidated Natural Gas 0.99% 11.29% 4.89% 0.05% 0.00% 
417 Oracle 0.00% 0.00% 1.37% 0 0 
437 Nash Finch 0.09% 0.51% 0 0 3.56% 
451 CompUSA 1.43% 7.22% 0.88% 8.85% 4.11% 
474 Computer Associates 29.90% 0.04% 1.69% 0.00% 0.00% 
494 Foundation Health 5.21% 2.07% 4.25% 0.07% 2.58% 
495 State Street Boston Corp. 24.39% 0.04% 0.09% 0.03% 2.51% 

Total  100% 100% 100% 100% 100% 
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We here explore the multidimensional financial performance of the 
Fortune 500 companies. Revenue-top-ranked companies do not necessarily 
have top-ranked performance in terms of profitability and (stock) 
marketability. Most companies exhibited serious inefficiencies. The 
measure-specific models enable us to study the performance based upon a 
specific measure while keeping the current levels of other measures. See Zhu 
(2000) for more discussion on measuring the performance of Fortune 500 
companies. 

3.4 Solving DEA Using DEAFrontier Software 

 

Figure 3.6. Measure-specific Models 

To run the measure-specific models, select the “Measure Specific Model” 
menu item. You will be prompted with a form for selecting the models 
presented in Table 3.1, as shown in Figure 3.6. 
 Select the measures that are of interest. If you select all the input or all the 
output measures, then you have the envelopment models. 
 The results are reported in the “Efficiency”, “Slack” and “Target” sheets. 
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Chapter 4 

Non-radial DEA Models and DEA with Preference 
 

 
 

4.1 Non-radial DEA Models 

We can call the envelopment DEA models as radial efficiency measures, 
because these models optimize all inputs or outputs of a DMU at a certain 
proportion. Färe and Lovell (1978) introduce a non-radial measure which 
allows nonproportional reductions in positive inputs or augmentations in 
positive outputs. Table 4.1 summarizes the non-radial DEA models with 
respect to the model orientation and frontier type. 

Table 4.1. Non-radial DEA Models 
Frontier 
Type 

Input-Oriented Output-Oriented 
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The slacks in the non-radial DEA models are optimized in a second-stage 
model where *

iθ  or *
rφ  are fixed. For example, under CRS we have 
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Figure 4.1. Efficient Targets 
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Note that input slacks do not exist in the input-oriented non-radial DEA 
models, and output slacks do not exist in the output-oriented non-radial 
DEA models. 

Because *
iθ  < 1 ( *

rφ  > 1), m
1 ∑ =

m
i i1

*θ  < 1 and m
1 ∑ =

m
i i1

*θ  = 1 if and only if 
*
iθ  = 1 for all i ( ∑ =

s
r rs 1

*1 φ  > 1 and ∑ =
s
r rs 1

*1 φ  = 1 if and only if *
rφ  = 1 for all 

r). Thus, m
1 ∑ =

m
i i1

*θ  ( ∑ =
s
r rs 1

*1 φ ) can be used as an efficiency index. 
Both the envelopment models and the non-radial DEA models yield the 

same frontier, but may yield different efficient targets (even when the 
envelopment models do not have non-zero slacks). For example, if we 
change the second input from 4 to 3 for DMU5 in Table 1.1 (Chapter 1), the 
input-oriented CRS envelopment model yields the efficient target of x1 = 2.4 
and x2 = 1.8 (with *

2λ  = 0.8, *
3λ  = 0.2, and all zero slacks). Whereas the 

input-oriented CRS non-radial DEA model yields DMU2 as the efficient 
target for DMU5 (see Figure 4.1). Note that both models yield the same 
target of DMU3 for DMU4. 

4.2 DEA with Preference Structure and Cost/Revenue 
Efficiency 

Both the envelopment models and the non-radial DEA  models yield 
efficient targets for inefficient DMUs. However, these targets may not be 
preferred by the management or achievable under the current management 
and other external conditions. Therefore, some other targets along the 
efficient frontier should be considered as preferred ones. This can be done 
by constructing preference structures over the proportions by which the 
corresponding current input levels (output levels) can be changed. Zhu 
(1996) develops a set of weighted non-radial DEA models where various 
efficient targets along with the frontier can be obtained. 

Let iA  (i = 1, 2, …, m) and rB  (r = 1, 2,…, s) be user-specified 
preference weights which reflect the relative degree of desirability of the 
adjustments of the current input and output levels, respectively. Then we can 
have a set of weighted non-radial DEA models based upon Table 4.1 by 
changing the objective functions m

1 ∑ =
m
i i1θ  and ∑ =

s
r rs 1

1 φ  to ∑∑ ==
m
i i

m
i ii AA 11 /θ  

and ∑∑ ==
s
r r

s
r rr BB 11 /φ , respectively. 

Further, if we remove the constraint iθ  < 1 ( rφ  > 1), we obtain the 
DEA/preference structure (DEA/PS) models shown in Table 4.2 (Zhu, 
1996a). 

If some iA  = 0 ( rB  = 0), then set the corresponding iθ  = 1 ( rφ  = 1). But 
at least one of such weights should be positive. Note that for example, the 
bigger the weight iA , the higher the priority oDMU  is allowed to adjust its 
ith input amount to a lower level. i.e., when inefficiency occurs, the more 
one wants to adjust an input or an output, the bigger the weight should be 
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attached to iθ  or rφ . If we can rank the inputs or outputs according to their 
relative importance, then we can obtain a set of ordinal weights. One may 
use Delphi-like techniques, or Analytic Hierarchy Process (AHP) to obtain 
the weights. However, caution should be paid when we convert the ordinal 
weights into preference weights. For example, if an input (output) is 
relatively more important and the DMU does not wish to adjust it with a 
higher rate, we should take the reciprocal of the corresponding ordinal 
weight as the preference weight. Otherwise, if the DMU does want to adjust 
the input (output) with a higher rate, we can take the ordinal weight as the 
preference weight. Also, one may use the principal component analysis to 
derive the information on weights (Zhu, 1998). 

Note that in the DEA/PS models, some *
iθ  ( *

rφ ) may be greater (less) 
than one under certain weight combinations. i.e., the DEA/PS models are 
not restricted to the case where 100% efficiency is maintained through the 
input decreases or output increases. 

Table 4.2. DEA/Preference Structure Models 
Frontier 
Type 

Input-Oriented Output-Oriented 
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Now, in order to further investigate the property of DEA/PS models, we 

consider the dual program to the input-oriented CRS DEA/PS model. 



DEA with Preference Structure 81
 

0,
;,...,1             /

;,...,1     0
osubject  t

max

1

11

1

≥
=∑=

=≤∑−∑

∑

=

==

=

ir

m

i
iiioi

m

i
iji

s

r
rjr

s

r
ror

miAAx

njxy

yu

νμ
ν

νμ              (4.1) 

 We see that the normalization condition ∑ =
m
i ioi x1ν  = 1 is also satisfied in 

(4.1). The DEA/PS model is actually a DEA model with fixed input 
multipliers. 

Let o
ip  denote the ith input price for oDMU  and iox~  represents the ith 

input that minimizes the cost. Consider the following DEA model for 
calculating the “minimum cost”. 
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The dual program to (4.2) is 
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By the complementary slackness condition of linear programming, we 

have that if *~
iox  > 0 then o

ip  = *
iν . Thus, *

iν  can be interpreted as o
ip . 

Consequently, the input prices can be used to develop the preference 
weights. 

In the DEA literature, we have a concept called “cost efficiency” which 
is defined as 
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The following development shows that the related DEA/PS model can be 
used to obtain exact the cost efficiency scores. Because the actual cost – 

io
m
i

o
i xp∑ =1  is a constant for a specific oDMU , cost efficiency can be directly 

calculated by the following modified (4.2). 
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Let iox~  = ioi xθ . Then (4.4) is equivalent to the input-oriented CRS 

DEA/PS model with Ai = io
o
i xp . This indicates that if one imposes a proper 

set of preference weights for each DMU under consideration, then the 
DEA/PS model yields cost efficiency measure. (see Seiford and Zhu (2002) 
for an empirical investigation of DEA efficiency and cost efficiency.) 

Similarly, the output-oriented DEA/PS model can be used to obtain the 
“revenue efficiency” which is defined as 
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where o

rq  indicates output price for oDMU  and roy~  represents the rth output 
that maximizes the revenue in the following linear programming problem. 
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Let roy~  = ror yφ  and Br = ro

o
r yq  in the output-oriented DEA/PS model. 

We have 
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which calculates the revenue efficiency. 

4.3 DEA/Preference Structure Models in Spreadsheets 

Figure 4.2 shows an input-oriented VRS DEA/PS spreadsheet model. 
Cells I2:I16 are reserved for jλ . Cells F20:F22 are reserved for iθ . These 
are the changing cells in the Solver parameters shown in Figure 4.3. 

 

Figure 4.2. Input-oriented VRS DEA/PS Spreadsheet Model 

The target cell is cell F19 which contains the following formula 
 
Cell F19 =SUMPRODUCT(F20:F22,G20:G22)/SUM(G20:G22) 
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where cells G20:G22 are reserved for the input weights. 

 

Figure 4.3. Solver Parameters for Input-oriented VRS DEA/PS Model 

 

Figure 4.4. Efficiency Result for Input-oriented VRS DEA/PS Model 

The formulas for cells B20:B25 are 
 
Cell B20 =SUMPRODUCT(B2:B16,$I$2:$I$16) 
Cell B21 =SUMPRODUCT(C2:C16,$I$2:$I$16) 
Cell B22 =SUMPRODUCT(D2:D16,$I$2:$I$16) 
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Cell B23 =SUMPRODUCT(F2:F16,$I$2:$I$16) 
Cell B24 =SUMPRODUCT(G2:G16,$I$2:$I$16) 
Cell B25 =SUM(I2:I16) 
 
The formulas for cells D20:D24 are 
 
Cell D20 =F20*INDEX(B2:B16,E18,1) 
Cell D21 =F21*INDEX(C2:C16,E18,1) 
Cell D22 =F22*INDEX(D2:D16,E18,1) 
Cell D23 =INDEX(F2:F16,E18,1) 
Cell D24 =INDEX(G2:G16,E18,1) 

 

Figure 4.5. Efficiency Result for Input-oriented VRS Non-radial DEA Model 

Figure 4.4 shows the results and the VBA procedure “DEAPS” which 
automates the calculation. 

Note that the iθ  (i = 1,2,3) are not restricted in Figure 4.3. If we add iθ  < 
1 ($F$20:$F$F22 <=1), then we obtain the results shown in Figure 4.5. 

4.4 DEA and Multiple Objective Linear Programming 

Charnes, Cooper, Golany, Seiford and Stutz (1985) describe the 
relationship between DEA frontier and Pareto-Koopmans efficient empirical 
production frontier. This work points out the relation of efficiency in DEA 
and pareto optimality in multiple criteria decision making (MCDM) or 
Multiple Objective Linear Programming (MOLP). The relationship between 
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DEA and MOLP is again raised by Belton and Vickers (1993), Doyle and 
Green (1993) and Stewart (1994) in their discussion of DEA and MCDM. 
Joro, Korhonen and Wallenius (1998) provide a structure comparison of 
DEA and MOLP. 

In fact, as shown in Chen (2005), the DEA/PS models have a strong 
relationship with MOLP. To demonstrate this, we use vector presentation of 

),...,( 1 mjjj xx=x  and ),...,( 1 sjjj yy=y . 

4.4.1 Output-oriented DEA 

Consider the following MOLP model 
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where ),...,( 1 mooo xx=x  represents the input vector of oDMU  among others. 
 If all DMUs produce only one output, i.e., jy  is a scalar rather than a 
vector, then (4.6) is a single objective linear programming problem 
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Let jjj y λλ ′= , then (4.7) turns into 
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where jijij yxx /=′  and oioio yxx /=′ . 

As shown in Charnes, Cooper and Rhodes (1978), model (4.8) is 
equivalent to the output-oriented CRS envelopment model 
 



DEA and Multiple Objective Linear Programming 87
 

.,...,1             ,0
;,...,1     

osubject  t
max

1

1

,

nj
mixx

yzy

z

j

ioij

n

j
j

ooj

n

j
j

ozoj

=≥
=≤∑

≥∑

=

=

λ
λ

λ

λ

 

 
Next, if jy  is a vector with s components, then we define 
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As a result, (4.6) becomes 
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Let 0,|{ ≥∈= r

s www RW  and ∑ =
s
r rw1 =1} be the set of nonnegative 

weights. The weighting problem associated with (4.10) is defined for some 
W∈w  as 
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Furthermore, let rorr yww =  for all r = 1, ..., s, then (4.11) is equivalent to 

the following linear programming problem 
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Model (4.12) is exactly the output-oriented CRS DEA/preference model. 
However, if we wish output level cannot be decreased to reach the efficient 
frontier, we specify (4.13) instead of (4.9). 

λ σj
j

n

rj r roy y
=
∑ =

1
 such that σ r ≥ 1 for all r = 1, ..., s.      (4.13) 

We see that for a specific oDMU , *
oλ = 1 and )( 0* ojj ≠=λ  is an optimal 

solution to (4.12), when *
rσ = 1 for all r = 1, ..., s. Note that if some *

rσ ≠ 1, 
then *

oλ = 0 is an optimal solution to (4.12). Therefore, (4.6) can be 
interpreted as follows: when ox  = ),...,( 1 moo xx  is regarded as resource, if the 
resource ox  can be used among other DMUs (associated with 0* ≠jλ ), then 
more desirable or preferred output level *y  is produced and oy  is not a 
pareto solution to (4.6). 

It can be seen that weighted non-radial DEA model (4.12) is equivalent 
to an MOLP problem. If we impose an additional on ∑ =

n
j j1λ  in (4.6), then 

we obtain other output-oriented DEA models. 

4.4.2 Input-oriented DEA 

Similar to (4.6), we write the following MOLP model. 
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where ),...,( 1 sooo yy=y  represents the output vector of oDMU . If all DMUs 
use only one input, i.e., x j  is a scalar, then (4.14) is a single objective linear 
programming problem and is equivalent to the input-oriented CRS 
envelopment model with single input. 

 Let 0,|{ ≥∈= i
m ggg RG  and ∑ =

m
i ig1  = 1 } be the set of nonnegative 

weights. Then model (4.14) can be transformed into the following linear 
programming problem. 
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where ioii xgg =  for all i = 1, …, m, and iτ  is defined in (4.16) or (4.17). 
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Model (4.15) is a weighted non-radial DEA model incorporated with 

preference over the adjustment of input levels. If we use (4.16), then there is 
no restrictions on iτ  and model (4.15) is the input-oriented CRS DEA/PS 
model. 

Note that for a specific oDMU , *
oλ = 1 and )( 0* ojj ≠=λ  is an optimal 

solution to (4.15), when *
iτ = 1 for all i = 1, ..., m. Note also that if some *

iτ ≠ 
1, then *

oλ = 0 is an optimal solution to (4.15). If we impose an additional on 
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j j1λ  in (4.15), then we obtain other input-oriented DEA models. 

4.4.3 Non-Orientation DEA 

Consider the following MOLP model. 
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.,...,1                0
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We have the following equivalent linear programming model 
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Note that 1≥rσ  and 1≤iτ  in (4.19). Therefore, we have −−= iioioi sxxτ  

and ++= rroror syyσ , where −
is , +

rs  ≥  0. Then, (4.19) becomes 
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which is a weighted slack-based DEA model (see chapter 3 and Seiford and 
Zhu (1998)). 
 
 
 

4.5 Solving DEA Using DEAFrontier Software 

4.5.1 Non-radial Models 

To run the non-radial models, select the “Non-radial Model” menu item. 
You will be prompted with a form as shown in Figure 4.6 for selecting the 
models presented in Table 4.1. The Results are reported in “Efficiency”, 
“Slack”, and “Target” sheets. 

 

 
Figure 4.6. Non-radial Models 
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4.5.2 Preference-Structure Models 

To run the preference structure models, select the “Preference Structure 
Model” menu item. Figure 4.6 shows the form for specifying the models. 

If “Yes” is selected under “Restrict Input/Output Change?”, then we have 
weighted non-radial models (see discussion on page 75). If “No” is selected, 
then we have the DEA/PS models presented in Table 4.2. The software will 
then ask you to specify the weights for the inputs or outputs, depending on 
the model orientation. The Results are reported in “Efficiency”, “Slack”, and 
“Target” sheets. 

 

Figure 4.7. Preference Structure Models 

4.5.3 Cost Efficiency, Revenue Efficiency and Profit Efficiency 

These models need information on the input and output prices. Consider 
the Hospital example in Cooper, Tone and Seiford (2000). The input and 
output data are reported in the “Data” sheet (Figure 4.8), input price are 
reported in the “Input Price” sheet (Figure 4.9) and the output price are 
reported in the “Output Price” sheet (Figure 4.10). 
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Figure 4.8. Hospital Data 

 

Figure 4.9. Input Prices 

 

Figure 4.10. Output Price 
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The cost efficiency and revenue efficiency are discussed in section 4.2. 
Table 4.3 summarizes the related models. 

Table 4.3. Cost Efficiency and Revenue Efficiency Models 
Frontier 
Type 

Cost Revenue 
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In Table 4.3, o

ip  and o
rq  are unit price of the input i and unit price of the 

output r of oDMU ,  respectively. These price data may vary from one DMU 
to another. The cost efficiency and revenue efficiency of oDMU  is defined 
as 
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Note that the revenue efficiency is defined as the reciprocal of the one 

defined in section 4.2. As a result, the cost and revenue efficiency scores are 
within the range of 0 and 1. 

The efficiency scores are reported in the “Cost Efficiency” (“Revenue 
Efficiency”) sheet. The optimal inputs (outputs) are reported in the 
“OptimalData Cost Efficiency” (“OptimalData Revenue Efficiency”) sheet. 

Table 4.4 presents the models used to calculate the profit efficiency 
defined as 
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Table 4.4. Profit Efficiency Models 
Frontier 
Type 
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The results are reported in the “Profit Efficiency” and “OptimalData 

Profit Efficiency” sheets. 
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Chapter 5 

Modeling Undesirable Measures 
 

 
 

5.1 Introduction 

Both desirable (good) and undesirable (bad) outputs and inputs may be 
present. For example, the number of defective products is an undesirable 
output. One wants to reduce the number of defects to improve the 
performance. If inefficiency exists in production processes where final 
products are manufactured with a production of wastes and pollutants, the 
outputs of wastes and pollutants are undesirable and should be reduced to 
improve the performance. 

Note that in the conventional DEA models, e.g., the VRS envelopment 
models, it is assumed that outputs should be increased and the inputs should 
be decreased to improve the performance or to reach the best-practice 
frontier. If one treats the undesirable outputs as inputs so that the bad outputs 
can be reduced, the resulting DEA model does not reflect the true production 
process. 

Situations when some inputs need to be increased to improve the 
performance are also likely to occur. For example, in order to improve the 
performance of a waste treatment process, the amount of waste (undesirable 
input) to be treated should be increased rather than decreased as assumed in 
the conventional DEA models. 

Seiford and Zhu (2002) develop an approach to treat undesirable 
input/outputs in the VRS envelopment models. The key to their approach is 
the use of DEA classification invariance under which classifications of 
efficiencies and inefficiencies are invariant to the data transformation. 
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5.2 Efficiency Invariance 

Suppose that the inputs and outputs are transformed to iijij uxx +=  and 
rrjrj vyy += , where iu  and rv  are nonnegative. Then the input-oriented and 

the output-oriented VRS envelopment models become 
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Ali and Seiford (1990) show that oDMU  is efficient under (1.5) or (1.6) 

if and only if oDMU  is efficient under (5.1) or (5.2). This conclusion is due 
to the presence of the convexity constraint ∑ =

n
j j1λ  = 1. This property also 

enables us to treat possible negative inputs and outputs before applying the 
VRS model (see Appendix of this chapter.) 

In general, there are three cases of invariance under data transformation 
in DEA. The first case is restricted to the “classification invariance” where 
the classifications of efficiencies and inefficiencies are invariant to the data  
transformation. The second case is the “ordering invariance” of the 
inefficient DMUs. The last case is the “solution invariance” in which the 
new DEA model (after data translation) must be equivalent to the old one, 
i.e., both mathematical programming problems must have exactly the same 
solution. The method of Seiford and Zhu (2002) is concerned only with the 
first level of invariance – classification invariance. See Pastor (1996) and 
Lovell and Pastor (1995) for discussions in invariance property in DEA. 



Modeling Undesirable Measures 99
 
5.3 Undesirable Outputs 

Let g
rjy  and b

rjy  denote the desirable (good) and undesirable (bad) 
outputs, respectively. Obviously, we wish to increase g

rjy  and to decrease 
b
rjy  to improve the performance. However, in the output-oriented VRS 

envelopment model, both g
rjy  and b

rjy  are supposed to increase to improve 
the performance. In order to increase the desirable outputs and to decrease 
the undesirable outputs, we proceed as follows. 

First, we multiply each undesirable output by “-1” and then find a proper 
value vr to let all negative undesirable outputs be positive. That is, b

rjy  = - b
rjy  

+ vr > 0. This can be achieved by vr = 
j

max { b
rjy } + 1, for example. 

Based upon (5.2), we have 
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Note that (5.3) increases desirable outputs and decreases undesirable 

outputs. The following theorem ensures that the optimized undesirable 
output of b

roy  (=vr - b
royh* ) cannot be negative. 

 
Theorem 5.1 Given a translation vector v, suppose h* is the optimal value to 
(5.3), we have b

royh*  < vr. 
 
[Proof] Note that all outputs now are non-negative. Let *

jλ  be an optimal 
solution associated with h*. Since ∑ =

n
j j1

*λ  = 1, b
royh*  < *

ry , where *
ry  is 

composed from (translated) maximum values among all bad outputs. Note 
that *

ry  = - *
ry  + vr, where *

ry  is composed from (original) minimum values 
among all bad outputs. Thus, b

oyh*  < vr. ■ 
 
 We may treat the undesirable outputs as inputs. However, this does not 
reflect the true production process. We may also apply a monotone 
decreasing transformation (e.g., b

rjy/1 ) to the undesirable outputs and then to 
use the adapted variables as outputs. The current method, in fact, applies a 
linear monotone decreasing transformation. Since the use of linear 
transformation preserves the convexity, it is a good choice for a DEA model. 
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 Figure 5.1 illustrates the method. The five DMUs A, B, C, D and E use an 
equal input to produce one desirable output (g) and one undesirable output 
(b). GCDEF is the (output) frontier. If we treat the undesirable output as an 
input, then ABCD becomes the VRS frontier. Model (5.2) rotates the output 
frontier at EF and obtains the symmetrical frontier. In this case, DMUs A′, 
B′ and C′, which are the adapted points of A, B and C, respectively, are 
efficient.  

 

 

Figure 5.1. Treatment of Bad Output 

 The efficient target for oDMU  is 
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Table 5.1. Vendors 
Vendors Price ($/unit) %Rejects % Late deliveries

1 0.1958 1.2 5 
2 0.1881 0.8 7 
3 0.2204 0 0 
4 0.2081 2.1 0 
5 0.2118 2.3 3 
6 0.2096 1.2 4 

Source: Weber and Desai. (1996). 
 
 We conclude this section by applying the method to the six vendors 
studied in Weber and Desai (1996). Table 5.1 presents the data. The input is 
price per unit, and the outputs are percentage of late deliveries and 
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percentage of rejected units. (See Weber and Desai (1996) for detailed 
discussion on the input and the two outputs.) 
 Obviously, the two outputs are bad outputs. We use an translation vector 
of (3.3%, 8%). (Or one could use (100%, 100%) as in Chapter 7.) Figure 5.2 
shows the translated data and the spreadsheet model. This is actually a 
spreadsheet model for the output-oriented VRS envelopment model. Figure 
5.3 shows the Solver parameters. Column G in Figure 5.2 reports the 
efficiency scores. 

 

Figure 5.2. Bad Outputs Spreadsheet Model 

 

Figure 5.3. Solver Parameters for Bad Outputs Spreadsheet Model 
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 If we do not translate the bad outputs and calculate the regular output-
oriented VRS envelopment model, vendor 5 is classified as efficient, and 
vendor 3 is classified as inefficient. (see Figure 5.4 where 0.0001 is used to 
replace 0.) The same Solver parameters shown in Figure 5.3 are used. 

 

Figure 5.4. Efficiency Scores When Bad Outputs Are Not Translated 

 
 If we treat the two bad outputs as inputs and use the input-oriented VRS 
envelopment model, we obtain the efficiency scores shown in Figure 5.5 
(Figure 5.6 shows the Solver parameters). In this case, we do not have 
outputs. 
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Figure 5.5. Efficiency Scores When Bad Outputs Are Treated As Inputs 

 

Figure 5.6. Solver Parameters When Bad Outputs Are Treated As Inputs 

5.4 Undesirable Inputs 

The above discussion can also be applied to situations when some inputs 
need to be increased rather than decreased to improve the performance. In 
this case, we denote I

ijx  and D
ijx  the inputs that need to be increased and 

decreased, respectively. 
We next multiply I

ijx by “-1” and then find a proper ui to let I
ijx  = - I

ijx + ui 
> 0. Based upon model (5.1), we have 
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where I

ijx  is increased and D
ijx  is decreased for a DMU to improve the 

performance. The efficient target for oDMU  is 
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5.5 Solving DEA Using DEAFrontier Software 

To run the models for treating undesirable measures, select the 
Undesirable-Measure Model menu item. Figure 5.7 shows the form for 
specifying the models. The results are reported in “Efficiency”, “Slack”, and 
“Target” sheets. 

 

Figure 5.7. Undesirable Measure Models 
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APPENDIX: NEGATIVE DATA 

So far, we have assumed that all inputs and outputs are either positive or 
zero. However, we have cases where some inputs and (or) outputs are 
negative. For example, when a company experiences a loss, its profit is 
negative. Similarly, returns on some stocks can be negative. This can be 
easily solved by way of the translation invariance property of the VRS 
models (Ali and Seiford, 1990). Specifically, the VRS frontier remains the 
same if ijx  and rjy  is replaced to ijx  and rjy , respectively. 

Consider the example given in the following Table where we have 10 
DMUs1. We have two inputs 1x  = Standard Deviation and 2x  = PropNeg 
(proportion of negative monthly returns during the year), and three outputs 

1y  = Return (average monthly return), 2y  = Skewness and 3y  = Min 
(minimum return). 

Note that some values for return, skewness and Min are negative. In the 
table the average monthly return, skewness and minimum return are 
displaced by 3.7%, 2, and 26%, respectively so that all the output values are 
positive across all the DMUs. The translation values can be chosen randomly 
as long as the negative values become positive. 

Table A.1  Negative Data Example 
 Original Data 

 
Transformed Data 

rrjr yy π+=ˆ  
DMU x1 = 

Standard 
Deviation

x2 = 
Proportion 
Negative 

y1 =  
Ave. 

Monthly 
Return 

y2 = 
Skewness

y3 = 
Minimum 

Return %7.3
;ˆ

1

1

=π
y

2
;ˆ

2

2

=π
y

%26
;ˆ

3

3

=π
y

1 6.80% 58.30% 0.10% 1.13 -8.10% 3.80% 3.13 17.90% 
2 4.00% 41.70% 0.70% 0.61 -7.90% 4.40% 2.61 18.10% 
3 3.40% 37.50% 0.90% 0.58 -4.00% 4.60% 2.58 22.00% 
4 5.00% 50.00% 0.60% 1.7 -5.60% 4.30% 3.7 20.40% 
5 4.70% 37.50% 1.10% 0.28 -8.20% 4.80% 2.28 17.80% 
6 3.80% 50.00% -0.10% 0.08 -6.30% 3.60% 2.08 19.70% 
7 11.20% 45.80% 3.20% 0.39 -17.10% 6.90% 2.39 8.90% 
8 12.80% 58.30% -1.00% 0.46 -25.70% 2.70% 2.46 0.30% 
9 8.40% 52.20% -1.20% -0.26 -17.10% 2.50% 1.74 8.90% 
9 5.00% 54.50% 0.40% 1.1 -6.70% 4.10% 3.1 19.30% 
10 8.60% 25.00% -3.60% -1.98 -16.50% 0.10% 0.02 9.50% 

 
Since negative data are present only in the outputs, we thus use the input-

oriented VRS model. When DMU1 is under evaluation, we have *
0θ  = 0.75, 

 
1 These DMUs are called commodity trading advisors (CTAs) in Wilkens and Zhu (2001). 
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indicating this DMU is inefficient, and *

3λ  = 0.51 and *
4λ  = 0.49, indicating 

DMU3 and DMU4 are the benchmarks. 
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Chapter 6 

Context-dependent Data Envelopment Analysis 
 

 
 

6.1 Introduction 

Adding or deleting an inefficient DMU or a set of inefficient DMUs does 
not alter the efficiencies of the existing DMUs and the best-practice frontier. 
The inefficiency scores change only if the best-practice frontier is altered. 
i.e., the performance of DMUs depends only on the identified best-practice 
frontier. In contrast, researchers of the consumer choice theory point out that 
consumer choice is often influenced by the context. e.g., a circle appears 
large when surrounded by small circles and small when surrounded by larger 
ones. Similarly a product may appear attractive against a background of less 
attractive alternatives and unattractive when compared to more attractive 
alternatives (Simonson and Tversky, 1992). 

Considering this influence within the framework of DEA, one could ask 
“what is the relative attractiveness of a particular DMU when compared to 
others?” As in Tversky and Simonson (1993), one agrees that the relative 
attractiveness of xDMU  compared to yDMU  depends on the presence or 
absence of a third option, say zDMU  (or a group of DMUs). Relative 
attractiveness depends on the evaluation context constructed from alternative 
options (or DMUs). In the original DEA methodology, each DMU is 
evaluated against a set of frontier DMUs. That is, the original DEA 
methodology can rank the performance of inefficient DMUs with respect to 
the best-practice frontier. However, when xDMU  and yDMU  are members 
of best-practice frontier, DEA cannot identify which of xDMU  and yDMU  
is a better option with respect to zDMU  (or a set of inefficient DMUs). 
Because both xDMU  and yDMU  have an efficiency score of one. Although 
one may use the super-efficiency DEA models (see Chapter 10) to rank the 
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performance of efficient DMUs, the evaluation context or third option (the 
reference set) changes in each evaluation. i.e., xDMU  and yDMU  are not 
evaluated against the same third option by the super-efficiency concept. 

From the above discussion, we see that DEA provides performance 
measures that are absolute in the sense that all DMUs are evaluated against 
the best-practice frontier. In order to obtain the relative attractiveness within 
DEA, Seiford and Zhu (2003) modify the original DEA methodology to a 
situation where the relative performance is defined with respect to a 
particular best-practice context (evaluation context). 

In order to obtain the evaluation contexts, an algorithm is developed to 
remove the (original) best-practice frontier to allow the remaining 
(inefficient) DMUs to form a new second-level best-practice frontier. If we 
remove this new second-level best-practice frontier, a third-level best-
practice frontier is formed, and so on, until no DMU is left. In this manner, 
we partition the set of DMUs into several levels of best-practice frontiers. 

Note that each best-practice frontier provides an evaluation context for 
measuring the relative attractiveness. e.g., the second-level best-practice 
frontier serves as the evaluation context for measuring the relative 
attractiveness of the DMUs located on the first-level (original) best-practice 
frontier. It can be seen that the presence or absence (or the shape) of the 
second-level best-practice frontier affects the relative attractiveness of 
DMUs on the first-level best-practice frontier. A relative attractiveness 
measure is obtained when DMUs having worse performance are chosen as 
the evaluation context. When DMUs in a specific level are viewed as having 
equal performance, the attractiveness measure allows us to differentiate the 
“equal performance” based upon the same specific evaluation context (or 
third option). 

On the other hand, we can measure the performance of DMUs on the 
third-level best-practice frontier with respect to the first or second level best-
practice frontier. We define this type of measure as a progress measure 
where DMUs having better performance are chosen as the evaluation 
context. i.e., we measure the progress of DMUs with respect to best-practice 
frontiers at advanced levels. Note that the original DEA method provides a 
projection function to improve the performance of inefficient DMUs. 
However, it is likely that a particular inefficient DMU is unable to 
immediately improve its performance onto the first-level best-practice 
frontier because of such restrictions as management expertise, available 
resources, etc. Therefore intermediate (and more easily achievable) targets 
may be desirable for an inefficient DMU. By focusing on different levels of 
best-practice frontiers, the progress measure provides incremental 
improvements for a DMU’s performance. i.e., we move the DMU step by 
step onto an attainable best-practice frontier. The resulting intermediate 
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targets are local targets, whereas the targets on the first-level (original) best-
practice frontier are global targets. 

6.2 Stratification DEA Method 

Define },...,1,{1 njDMU j ==J  (the set of all n DMUs) and interactively 
define 1+lJ  = lJ - lE  where }1),( |{ * =∈= klDMU l

k
l θJE , and ),(* klθ  is 

the optimal value to the following input-oriented CRS envelopment model 
when kDMU  is under evaluation 
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where )(F lj J∈  means l

jDMU J∈ , i.e., )(F ⋅  represents the 
correspondence from a DMU set to the corresponding subscript index set. 

When l = 1, model (6.1) becomes the original input-oriented CRS 
envelopment model, and 1E  consists of all the frontier DMUs. These DMUs 
in set 1E  define the first-level best-practice frontier. When l = 2, model (6.1) 
gives the second-level best-practice frontier after the exclusion of the first-
level frontier DMUs. And so on. In this manner, we identify several levels of 
best-practice frontiers. We call lE  the lth-level best practice frontier. The 
following algorithm accomplishes the identification of these best-practice 
frontiers by model (6.1). 
 
Step 1: Set l = 1. Evaluate the entire set of DMUs, 1J , by model (6.1) to 
obtain the first-level frontier DMUs, set 1E  (the first-level best-practice 
frontier). 
Step 2: Exclude the frontier DMUs from future DEA runs. lll EJJ −=+1 . (If 

∅=+1lJ  then stop.) 
Step 3: Evaluate the new subset of "inefficient" DMUs, 1+lJ , by model (6.1) 
to obtain a new set of efficient DMUs 1+lE  (the new best-practice frontier). 
Step 4: Let l = l + 1. Go to step 2. 
Stopping rule: ∅=+1lJ , the algorithm stops. 
 

Thus, model (6.1) yields a stratification of the whole set of DMUs. From 
the algorithm, we know that l goes from 1 to L, where L is determined by the 
stopping rule. Consider Figure 1.2 in Chapter 1. DMUs 1, 2, 3 and 4 form 
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the first-level CRS frontier and DMU5 forms the second-level CRS frontier 
(L = 2). 

It is easy to show that these sets of DMUs have the following properties 
 
(i) ∪L

l
l

1
1

== EJ  and ∅=∩ 'll EE  for 'll ≠ ; 
(ii) The DMUs in 'lE  are dominated by the DMUs in lE  if l’ > l; 
(iii) Each DMU in set lE  is efficient with respect to the DMUs in set E l l+ '  
for all Lll −≤< '0 . 

Table 6.1. Data for the Flexible Manufacturing Systems 
 Inputs Outputs 

FMS TC WIP TT EMP SR VF PF RF 
1 1.19 98 12.33 5 5.30 619 88 2 
2 4.91 297 34.84 14 1.10 841 14 4 
3 4.60 418 16.68 12 6.30 555 39 1 
4 3.69 147 40.83 10 3.80 778 31 2 
5 1.31 377 20.82 3 9.80 628 51 6 
6 3.04 173 38.87 4 1.60 266 13 5 
7 1.83 202 49.67 13 4.30 46 60 4 
8 2.07 533 30.07 14 8.80 226 21 4 
9 3.06 898 27.67 2 3.90 354 86 5 

10 1.44 423 6.02 10 5.40 694 20 3 
11 2.47 470 4.00 13 5.30 513 40 5 
12 2.85 87 43.09 8 2.40 884 17 7 
13 4.85 915 54.79 5 2.40 439 58 4 
14 1.31 852 86.87 3 0.50 401 18 4 
15 4.18 924 54.46 4 6.00 491 27 4 
16 1.99 273 91.08 3 2.50 937 6 3 
17 1.60 983 37.93 13 8.80 709 39 2 
18 4.04 106 23.39 11 2.90 615 91 3 
19 3.76 955 54.98 1 9.40 499 46 3 
20 4.76 416 1.55 9 1.50 58 2 6 
21 3.60 660 3.98 6 3.90 592 29 4 
22 3.24 771 52.26 8 1.60 535 61 1 
23 3.05 318 35.09 4 9.20 124 25 2 
24 1.60 849 62.83 15 7.30 923 60 3 
 
We next use a data set from the DEA Dataset Repository at 

http://java.emp.pdx.edu/etm/dea/dataset/ to illustrate the algorithm. Table 6.1 
presents the data. The data set contains 24 flexible manufacturing systems 
(FMS). Each FMS has five inputs (1) total cost (TC) ($millions), (2) work in 
process (WIP) (units), (3) throughput (TT) (hours/unit), (4) employees 
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(EMP) (persons), and (5) space requirements (SR) (thousands of square 
feet), and three outputs (1) volume flexibility (VF) (average range of 
production capacity per product type), (2) production mix flexibility (PF) 
(product types), and (3) routing flexibility (RF) (average number of 
operations per machining center). 

 

Figure 6.1. First Level CRS Frontier 

Figure 6.1 shows the spreadsheet model for identifying the first level of 
CRS frontier. The target cell is F28, and the changing cells are K2:K25 and 
F28. The formulas for cells B29:B36 are 

 
Cell B29=SUMPRODUCT(B2:B25,K2:K25) 
Cell B30=SUMPRODUCT(C2:C25,K2:K25) 
Cell B31=SUMPRODUCT(D2:D25,K2:K25) 
Cell B32=SUMPRODUCT(E2:E25,K2:K25) 
Cell B33=SUMPRODUCT(F2:F25,K2:K25) 
Cell B34=SUMPRODUCT(H2:H25,K2:K25) 
Cell B35=SUMPRODUCT(I2:I25,K2:K25) 
Cell B36=SUMPRODUCT(J2:J25,K2:K25) 
 
The formulas for cell D29:D36 are 
 
Cell D29=F28*INDEX(B2:B25,E27,1) 
Cell D30=F28*INDEX(C2:C25,E27,1) 
Cell D31=F28*INDEX(D2:D25,E27,1) 
Cell D32=F28*INDEX(E2:E25,E27,1) 
Cell D33=F28*INDEX(F2:F25,E27,1) 
Cell D34=INDEX(H2:H25,E27,1) 
Cell D35=INDEX(I2:I25,E27,1) 
Cell D36=INDEX(J2:J25,E27,1) 
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The button “CRS Level-1” is linked to the VBA procedure “Level1” 
which records the CRS efficiency scores in column L. 

 
Sub Level1() 

    Dim i As Integer 

    For i = 1 To 24 

'set the value of cell E27 equal to i (1, 2,..., 24) 

    Range("E27") = i 

    SolverSolve UserFinish:=True 

'Place the efficiency into column L 

    Range("L" & i + 1) = Range("F28") 

    Next i 

End Sub 
 

Sixteen FMSs are on the first level CRS frontier. They are DMUs 1, 2, 5, 
6, 9, 10, 11, 12, 14, 16, 18, 19, 20, 21, 22, and 24. 

 

Figure 6.2. Second Level CRS Frontier 

Next, we remove those FMSs with efficiency score of one. Because no 
absolute references are used in the formulas in the spreadsheet shown in 
Figure 6.1, the Solver automatically adjusts the parameters as we remove the 
rows related to the FMSs with efficiency score of one. Figure 6.2 shows the 
new spreadsheet. 

Seven FMSs are on the second level CRS frontier. Because only one 
FMS, namely DMU 23, is left, this DMU forms the third level CRS frontier 
(L = 3). 
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6.3 Input-oriented Context-dependent DEA 

The DEA stratification model (6.1) partitions the set of DMUs into 
different frontier levels characterized by lE  (l = 1, ..., L). We present the 
input-oriented context-dependent DEA based upon the evaluation context 

lE . The context-dependent DEA is characterized by an attractiveness 
measure and a progress measure. 

6.3.1 Attractiveness 

Consider a specific ),( qqq yxDMU =  from a specific level olE , ol ∈{1, 
..., L-1}. We have the following model to characterize the attractiveness. 
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Lemma 6.1 For a specific ol

qDMU E∈ , ol ∈{1, ..., L-1}, model (6.2) is 
equivalent to the following linear programming problem 
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[Proof]: Note that ll
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Obviously, 0=jλ  for all )(F dldl ooj ++ −∈ EJ  = )(F 1∪ o olL

dl
ll−

+=
+E  in any 

optimal solutions to (6.4). Otherwise, if some 0≠jλ , then ∩+dloE  
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∅≠−
+=

+ )( 1∪ o olL
dl

llE  (A contradiction). Therefore, )()(~ ** dd qq Ω=Ω  and (6.2) is 
equivalent to (6.3). ■ 
 
Theorem 6.1 For a specific ol

qDMU E∈ , ol ∈{1, ..., L-1}, we have 
(i) )(* gGq  <1 for each g = 1,...,1 −ol . 
(ii) )1(* +dH q  > )(* dH q . 
 
[Proof]: 
(i) Suppose )(* dH q  < 1. 
 If )(* dH q  = 1, then dl

q
oDMU +∈ E . This means that ∅≠∩+ oo ldl EE . A 

contradiction. 
 If )(* dH q  < 1, then qDMU  is dominated by dlo +E . However, dlo +E  is 
dominated by olE . Thus, qDMU  is dominated by olE . This means that 

ol
qDMU E∉ . A contradiction. Therefore, )(* dH q  > 1. 

(ii) )1(* +dH q  is obtained by solving the following problem 
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)(* dH q  is obtained by solving the following problem 
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which is, by Lemma 6.1, equivalent to the following linear programming 
problem 
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It can be seen that any optimal solution to (6.5) is a feasible solution to 
(6.6). Therefore )1(* +dH q  > )(* dH q . However, if )1(* +dH q  = )(* dH q , 
then ∅≠∩ +++ 1dldl oo EE . Thus, )1(* +dH q  > )(* dH q . ■ 
 
Definition 6.1 )(* dH q is called (input-oriented) d-degree attractiveness of 

qDMU  from a specific level olE . 
 

Suppose, e.g., each DMU in the first-level best practice frontier 
represents an option, or product. Customers may compare a specific DMU in 

olE  with other alternatives that are currently in the same level as well as with 
relevant alternatives that serve as evaluation contexts. The relevant  
alternatives are those DMUs, say, in the second or third level best-practice 
frontier, etc. Given the alternatives (evaluation contexts), model (6.2) 
enables us to select the best option – the most attractive one. 

In model (6.2), each best-practice frontier of dlo +E  represents an 
evaluation context for measuring the relative attractiveness of DMUs in olE . 
The larger the value of )(* dH q , the more attractive the qDMU  is. Because 
this qDMU  makes itself more distinctive from the evaluation context dlo +E . 
We are able to rank the DMUs in olE  based upon their attractiveness scores 
and identify the best one. 

 

Figure 6.3. First Degree Attractiveness Spreadsheet Model 
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Figure 6.3 shows a spreadsheet model for the attractiveness measure – 
model (6.2). Cells A1:J17 and A21:J28 store the DMUs in the first and 
second levels, respectively. This spreadsheet model measures the first-
degree attractiveness. Cell G2 is reserved to indicate the DMU under 
evaluation. Cell G5 represents the attractiveness score, and is the target cell 
and a changing cell. Cells K22:K28 are reserved for changing cells of jλ . 

Cells B20:F20, and cells H20:J20 contain formulas for the reference set 
(DMUs in the second level CRS frontier). The formula for cell B20 is 
“=SUMPRODUCT(B22:B28,$K$22:$K$28)” and is copied into cells 
C20:F20 and cells H20:J20. 
 Cells B18:F18, and cells H18:J18 contain formulas for the DMU under 
evaluation (DMUs in the first level CRS frontier). The formula for cell B18 
is “=$G$5*INDEX(B2:B17,$G$2,1)” and is copied into cells C18:F18. The 
formula for cell H18 is “=INDEX(H2:H17,$G$2,1)” and is copied into cells 
I18:J18. 

Figure 6.4 shows the Solver parameters. After solve the model for the 
first DMU, we use the VBA procedure “Attractiveness” to obtain the 
attractiveness scores for the remaining DMUs. 

 
Sub Attractiveness() 
 Dim i As Integer 
    For i = 1 To 16 
'set the value of cell G2 equal to i (1, 2,..., 16) 
    Range("G2") = i 
    SolverSolve UserFinish:=True 
'Place the attractiveness score in cell G5 into column K 
    Range("K" & i + 1) = Range("G5") 
    Next 
End Sub 

 

Figure 6.4. Solver Parameters for First Degree Attractiveness 



Input-oriented Context-dependent DEA 119
 

 

Figure 6.5. Second Degree Attractiveness Spreadsheet Model 

If we change the evaluation background to the third level CRS frontier 
(DMU23),  we obtain the spreadsheet model for measuring the second 
degree attractiveness (see Figure 6.5). This spreadsheet can be obtained via 
replacing the second level CRS frontier by the DMU23 in Figure 6.3. 

Based upon the attractiveness scores shown in Figure 6.3, DMU20 and 
DMU11 are ranked as the top two most attractive systems. However, if we 
change the evaluation context to the third level CRS frontier, DMU11 is 
ranked fifth, and DMU14 becomes the second most attractiveness system. 
This example illustrates that under a different evaluation context, the 
attractiveness of DMUs on the same level may be different. Therefore, the 
context-dependent DEA can differentiate the performance of efficient 
DMUs, or DMUs on the same performance level. 

6.3.2 Progress 

Consider the following linear programming problem for determining the 
progress measure for ol

qDMU E∈ , ol ∈{2, ..., L}. 
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Lemma 6.2 For a specific ol

qDMU E∈ , ol ∈{2, ..., L}, model (6.7) is 
equivalent to the following linear programming problem 
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[Proof]: Note that 1+−−− ∪= glglgl ooo JEJ , since all DMUs in glo −J  are 
dominated by the frontiers constructed by the DMUs in glo −E . Therefore, by 
the nature of DEA method, we know that ))(F( 0 gl

j
oj −∉= Eλ  in any 

optimal solutions to (6.8). Thus, )(~* gGq  = )(* gGq  and (6.7) is equivalent to 
(6.8). ■ 
 
Theorem 6.2 For a specific ol

qDMU E∈ , ol ∈{2, ..., L}, we have 
(i) )(* gGq  <1 for each g = 1,...,1 −ol . 
(ii) )1(* +gGq < )(* gGq . 
 
[Proof]: The proof is similar to that of Theorem 6.1 by using Lemma 6.2 and 
therefore is omitted. ■ 
 
Definition 6.2: )(* gM q  ≡  1/ )(* gGq  is called (input-oriented) g-degree 
progress of qDMU  from a specific level olE . 
 

Obviously )(* gM q  > 1. For a larger )(* gM q , more progress is expected. 
Each best-practice frontier, E l go − , contains a possible target for a specific 
DMU in E lo  to improve its performance. The progress here is a level-by-
level improvement. 

Now consider the following linear programming problem 
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where 1||)(|| gS +  and 1||)(|| gS −  represent L1-norms for )(gS +  = 

))(),...,(( 1 gsgs s
++  and ))(),...,(()( 1 gsgsgS m

−−− = , respectively, i.e., 
1||)(|| gS +  + 1||)(|| gS −  = ∑ =

+s
r r gs1 )(  + ∑ =
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i i gs1 )( . 
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Definition 6.3 (Global Efficient Target and Local Efficient Target). 
The following point 
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is the global efficient target for ol
qDMU E∈ , lo ∈{2, ..., L} if g = ol  - 1; 

Otherwise, if g < ol  - 1, it represents a local efficient target, where )(* gGq  is 
the optimal value to (6.7), and )(* gS +  and )(* gS −  represent the optimal 
values in (6.9). 
 

It can be seen that if the first-level best-practice frontier is chosen as the 
evaluation context (g = ol  - 1), then we obtain the global efficient target, i.e., 
the original DEA efficient target. The local efficient targets are obtained 
when other best-practice frontiers are selected. Although the local efficient 
targets are not non-dominated points compared to the DMUs in 1E , they 
may represent a better alternative and an attainable target for a specific 
inefficient DMU. That is, in the presence of possible external or internal 
restrictions, a DMU may be unable to move itself onto the first-level best-
practice frontier (global efficient target). Thus, our progress measure extends 
the original DEA projection function and enables an inefficient DMU to 
improve its performance at a reasonable and desirable scale. 

 

Figure 6.6. First Degree Progress Spreadsheet Model 

Figure 6.6 shows a spreadsheet for the progress measure where the 
evaluation background is the second level DMUs and the DMU under 
evaluation is the DMU23. 

The formula for cell B4 is “=$K$2*INDEX(B2,$G$2,1), where cell K2 
is the target cell (its reciprocal represents the first-degree progress). This 
formula is copied into cells C4:F4. 
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 The formula for H4 is “=INDEX(H2,$G$2,1)” and is copied into cells 
I4:J4 
 The formula for cell B6 is “=SUMPRODUCT(B8:B14,$K$8:$K$14)” 
and is copied into cells C6:F6, and cells H6:J6. 

Figure 6.7 shows the Solver parameters for the spreadsheet model shown 
in Figure 6.6. In Figure 6.6, the first degree progress score for DMU23 is 
1/0.99175 = 1.0083. The optimal values in cells B6:F6 and cells H6:J6 
represent the local target for DMU23. 

 

Figure 6.7. Solver Parameters for First Degree Progress 

 

Figure 6.8. Second Degree Progress Spreadsheet Model 
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If we replace the second-level DMUs with the first-level DMUs, we 
obtain the second-degree progress measure for DMU23. Figure 6.8 shows 
the spreadsheet. 

This spreadsheet model is actually the input-oriented CRS envelopment 
model when DMU23 is under evaluation. Figure 6.9 shows the Solver 
parameters for the model shown in Figure 6.8. The second degree progress 
score for DMU23 is 1/0.37624 = 2.6579, and the optimal values in cells 
B6:F6 and H6:J6 represent the global target for DMU23 

 

Figure 6.9. Solver Parameters for Second Degree Progress 

 

6.4 Output-oriented Context-dependent DEA 

Similar to the discussion on the input-oriented context-dependent DEA, 
for a specific ),( qqq yxDMU =  from a specific level olE , ol ∈{1, ..., L-1}, 
we have the following model to characterize the output-oriented 
attractiveness 
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Similar to Theorem 6.1, we have 
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Theorem 6.3 For a specific ol

qDMU E∈ , ol ∈{1, ..., L-1}, we have 
(i) )(* dqΩ  < 1 for each d = olL −,...,1 . 
(ii) )()1( ** dd qq Ω<+Ω . 
 
Definition 6.4 )(* dqΑ  ≡ 1/ )(* dqΩ   is called the (output-oriented) d-degree 
attractiveness of qDMU  from a specific level olE . 
 

Note that )(* dqΑ  is the reciprocal of the optimal value to (6.10), 
therefore )(* dqΑ >1. The larger the value of )(* dqΑ , the more attractive the 

qDMU  is. Because this qDMU  makes itself more distinctive from the 
evaluation context dlo +E . We are able to rank the DMUs in olE  based upon 
their attractiveness scores and identify the best one. 

Next, consider the following linear programming problem for 
determining the progress measure for ol

qDMU E∈ , ol ∈{2, ..., L}. 
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Similar to Theorem 6.2, we have 

 
Theorem 6.4 For a specific ol

qDMU E∈ , ol ∈{2, ..., L}, we have 
(i) )(* gPq  > 1 for each g = 1, …, ol -1. 
(ii) )()1( ** gPgP qq >+ . 
 
Definition 6.5 The optimal value to (6.11), i.e., )(* gPq , is called the (output-
oriented) g-degree progress of qDMU  from a specific level E lo . 
 

For a larger )(* gPq , more progress is expected for DMU q . Thus, a 
smaller value of )(* gPq  is preferred. To obtain the efficient target, we 
consider 
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Definition 6.6 (Global Efficient Target and Local Efficient Target) 
The following point 
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is the global efficient target for ol
qDMU E∈ , lo ∈{2, ..., L} if g = lo − 1; 

otherwise, if g < 1−ol , it represents a local efficient target, where )(* gPq  is 
the optimal value to (6.11), and )(* gS +  and )(* gS −  represent the optimal 
values in (6.12). 
 

The relationship between the input-oriented and output-oriented context-
dependent DEA can be summarized in the following Theorem. 
 
Theorem 6.5 )(* dH q  = 1/ )(* dqΩ , and )(* gGq  = 1/ )(* gPq . 
 
 Theorem 6.5 indicates that the output-oriented attractiveness and progress 
measures can be obtained from the input-oriented context-dependent DEA. 
However, Theorem 6.5 is not necessarily true when the frontiers do not 
exhibit CRS. 

 

Figure 6.10. Output-oriented First Degree Attractiveness Spreadsheet Model 

 Figure 6.10 shows the output-oriented spreadsheet for the first-degree 
attractiveness for DMUs in the first-level CRS frontier. This spreadsheet is 
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similar to the one shown in Figure 6.3. The formula for cell B18 is changed 
to 
 
Cell B18 =INDEX(B2:B17,$G$2,1) 
 
and is copied into cells C18:F18. 
 The formula for cell H18 is changed to 
 
Cell H18 =$G$5*INDEX(H2:H17,$G$2,1) 
 
where cell G5 represents the output-oriented attractiveness measure. This 
formula is then copied into cells I18:J18. 
 To obtain the Solver parameters for the model shown in Figure 6.10, we 
change the “Min” to “Max” in Figure 6.4, as shown in Figure 6.11. The 
results are reported in cells K2:K17. Cells L2:L17 report the input-oriented 
attractiveness scores. It can be seen that Theorem 6.5 is true. 

 

Figure 6.11. Solver Parameters for Output-oriented First Degree Attractiveness 

Finally, the discussion in this chapter is based upon CRS frontier. Similar 
discussion can be obtained for other RTS frontiers. However, the related 
context-dependent DEA may be infeasible. See Chapters 7 and 10 for the 
discussion on infeasibility of DEA-type models. The DEAFrontier software 
allows you to calculate the context-dependent DEA under non-CRS 
assumptions. 
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6.5 Solving DEA Using DEAFrontier Software 

The context-dependent DEA consists of three functions: (i) Obtain levels, 
(ii) Calculate context-depend DEA models, and (iii) Unprotect the sheets 
containing the levels (see Figure 6.12). 

 

Figure 6.12. Context-dependent DEA Menu 

The first function is the stratification model (6.1). It generates all the 
efficient frontiers – levels (Figure 6.13). This function will first delete any 
sheet with a name starting with “Level” and then generate a set of new 
sheets named as “Leveli(Frontier)” where i indicates the level and Frontier 
represents the frontier type. For example, Level1(CRS) means the first level 
CRS frontier. The “level” sheets are protected for use in the context-
dependent DEA. However, they can be unprotected by using the “Unprotect 
the sheets” menu item. The format of these level sheets must not be modified. 
Otherwise, the context-dependent DEA will not run properly and accurately. 

 

Figure 6.13. Obtain Levels 
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Figure 6.14. Context-dependent DEA 

Once the efficient frontiers are obtained, the context-dependent DEA can 
be calculated using the “Context-dependent DEA” submenu item (Figure 
6.14). 

The results are reported in the “Context Dependent Result” sheet. In this 
sheet, the context-dependent scores are the optimal values to model (6.2) (or 
model (6.7), model (6.10), model (6.11)). To obtain the attractiveness or 
progress scores, one has to adjust the context-dependent scores based upon 
Definitions 6.1, 6.2, 6.4, and 6.5. 
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Chapter 7 

Benchmarking Models 
 

 
 

7.1 Introduction 

 Gap analysis is often used as a fundamental method in performance 
evaluation and benchmarking. However, gap analysis only deals one 
measure at a time. It is rare that one single measure can suffice for the 
purpose of performance evaluation (Camp, 1995). As a result, some multi-
factor based gap analysis methods have been developed. e.g., Spider charts, 
AHP maturity index, and Z charts. Although gaps can be identified with 
respect to individual performance measures, it remains a challenging task to 
combine the multiple measures in the final stage. Therefore, benchmarking 
models that can deal with multiple performance measures and provide an 
integrated benchmarking measure are needed.  
 Benchmarking is a process of defining valid measures of performance 
comparison among peer DMUs, using them to determine the relative 
positions of the peer DMUs and, ultimately, establishing a standard of 
excellence. In that sense, DEA can be regarded as a benchmarking tool, 
because the frontier identified can be regarded as an empirical standard of 
excellence. 
 Once the frontier is established, we may compare a set of new DMUs to 
the frontier. However, when a new DMU outperforms the identified frontier, 
a new frontier is generated by DEA. As a result, we do not have the same 
benchmark (frontier) for other (new) DMUs. 
 In the current chapter, we present a number of DEA-based benchmarking 
models where each (new) DMU is evaluated against a set of given 
benchmarks (standards). 
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7.2 Variable-benchmark Model 

 Cook, Seiford and Zhu (2004) develop a set of variable-benchmark 
model. Let *E  represent the set of benchmarks or the best-practice identified 
by the DEA. Based upon the input-oriented CRS envelopment model, we 
have 
 

*
*

*

,0

subject to
min

Ej

yy

xx

j

new
rrj

Ej
j

new
i

CRS
ij

Ej
j

CRS

∈≥

≥∑

≤∑

∈

∈

λ
λ

δλ

δ

                   (7.1) 

 
where a new observation is represented by newDMU  with inputs new

ix  (i = 1, 
…, m) and outputs new

ry  (r = 1, …, s). The superscript of CRS indicates that 
the benchmark frontier composed by benchmark DMUs in set *E  exhibits 
CRS. 
 Model (7.1) measures the performance of newDMU  with respect to 
benchmark DMUs in set *E  when outputs are fixed at their current levels. 
Similarly, based upon the output-oriented CRS envelopment model, we can 
have a model that measures the performance of newDMU  in terms of outputs 
when inputs are fixed at their current levels. 
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Theorem 7.1 *CRSδ  = 1/ *CRSτ , where *CRSδ  is the optimal value to model 
(7.1) and *CRS

oτ  is the optimal value to model (7.2). 
 
[Proof]: Suppose *

jλ  (j ∈ *E ) is an optimal solution associated with *CRSδ  
in model (7.1). Now, let *CRSτ  = 1/ *CRSδ , and jλ′  = *

jλ *CRS
oδ . Then *CRSτ  and 

jλ′  are optimal in model (7.2). Thus, *CRSδ  = 1/ *CRSτ . ■ 
 
 Model (7.1) or (7.2) yields a benchmark for newDMU . The ith input and 
the rth output for the benchmark can be expressed as 
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 Note also that although the DMUs associated with set *E  are given, the 
resulting benchmark may be different for each new DMU under evaluation. 
Because for each new DMU under evaluation, (7.3) may represent a 
different combination of DMUs associated with set *E . Thus, models (7.1) 
and (7.2) represent a variable-benchmark scenario. 
 
Theorem 7.2 
(i) *CRSδ  < 1 or *CRSτ  > 1 indicates that the performance of new

oDMU  is 
dominated by the benchmark in (7.3). 
(ii) *CRSδ  = 1 or *CRSτ  = 1 indicates that newDMU  achieve the same 
performance level of the benchmark in (7.3). 
(iii) *CRSδ  > 1 or *CRSτ  < 1 indicates that input savings or output surpluses 
exist in new

oDMU  when compared to the benchmark in (7.3). 
 
[Proof]: (i) and (ii) are obvious results in terms of DEA efficiency concept. 
 Now, *CRSδ  > 1 indicates that newDMU  can increase its inputs to reach the 
benchmark. This in turn indicates that *CRSδ  - 1 measures the input saving 
achieved by newDMU . Similarly, *CRSτ  < 1 indicates that newDMU  can 
decrease its outputs to reach the benchmark. This in turn indicates that 1 - 

*CRSτ  measures the output surplus achieved by newDMU . ■ 

 

Figure 7.1. Variable-benchmark Model 
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 Figure 7.1 illustrates the three cases described in Theorem 7.2. ABC 
(A'B'C') represents the input (output) benchmark frontier. D, H and G (or D', 
H', and G') represent the new DMUs to be benchmarked against ABC (or 
A'B'C'). We have *CRS

Dδ  > 1 for DMU D ( *
'

CRS
Dτ  < 1 for DMU D') indicating 

that DMU D can increase its input values by *CRS
Dδ  while producing the same 

amount of outputs generated by the benchmark (DMU D' can decrease its 
output levels while using the same amount of input levels consumed by the 
benchmark). Thus, *CRS

Dδ  > 1 is a measure of input savings achieved by 
DMU D and *

'
CRS
Dτ  < 1 is a measure of output surpluses achieved by DMU 

D'. 
 For DMU G and DMU G', we have *CRS

Gδ  = 1 and *
'

CRS
Gτ  = 1 indicating 

that they achieve the same performance level of the benchmark and no input 
savings or output surpluses exist. For DMU H and DMU H', we have *CRS

Hδ  
< 1 and *

'
CRS
Hτ  > 1 indicating that inefficiency exists in the performance of 

these two DMUs. 
 Note that for example, in Figure 7.1, a convex combination of DMU A 
and DMU B is used as the benchmark for DMU D while a convex 
combination of DMU B and DMU C is used as the benchmark for DMU G. 
Thus, models (7.1) and (7.2) are called variable-benchmark models. 
 From Theorem 7.2, we can define *CRSδ  - 1 or 1 - *CRSτ  as the 
performance gap between newDMU  and the benchmark. Based upon *CRSδ  
or *CRSτ , a ranking of the benchmarking performance can be obtained. 
 It is likely that scale inefficiency may be allowed in the benchmarking. 
We therefore modify models (7.1) and (7.2) to incorporate scale inefficiency 
by assuming VRS. 
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  Similar to Theorem 7.2, we have 
 
Theorem 7.3 
(i) *VRSδ  < 1 or *VRSτ  > 1 indicates that the performance of newDMU  is 
dominated by the benchmark in (7.3). 
(ii) *VRSδ  = 1 or *VRSτ  = 1 indicates that newDMU  achieve the same 
performance level of the benchmark in (7.3). 
(iii) *VRSδ  > 1 or *VRSτ  < 1 indicates that input savings or output surpluses 
exist in newDMU  when compared to the benchmark in (7.3). 
 
 Note that model (7.2) is always feasible, and model (7.1) is infeasible 
only if certain patterns of zero data are present (Zhu 1996b). Thus, if we 
assume that all the data are positive, (7.1) is always feasible. However, 
unlike models (7.1) and (7.2), models (7.4) and (7.5) may be infeasible. 
 
Theorem 7.4 
(i) If model (7.4) is infeasible, then the output vector of newDMU  dominates 
the output vector of the benchmark in (7.3). 
(ii) If model (7.5) is infeasible, then the input vector of newDMU  dominates 
the input vector of the benchmark in (7.3). 
 
[Proof]: The proof follows directly from the necessary and sufficient 
conditions for infeasibility in super-efficiency DEA model provided in 
Seiford and Zhu (1999). ■ 
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Figure 7.2. Infeasibility of VRS Variable-benchmark Model 

 The implication of the infeasibility associated with models (7.4) and (7.5) 
needs to be carefully examined. Consider Figure 7.2 where ABC represents 
the benchmark frontier. Models (7.4) and (7.5) yield finite optimal values for 
any newDMU  located below EC and to the right of EA. Model (7.4) is 
infeasible for newDMU  located above ray E''C and model (7.5) is infeasible 
for newDMU  located to the left of ray E'E. 
 Both models (7.4) and (7.5) are infeasible for newDMU  located above E''E 
and to the left of ray EF. Note that if newDMU  is located above E''C, its 
output value is greater than the output value of any convex combinations of 
A, B and C. 
 Note also that if newDMU  is located to the left of E'F, its input value is 
less than the input value of any convex combinations of A, B and C. 
 Based upon Theorem 7.4 and Figure 7.2, we have four cases: 
 
Case I: When both models (7.4) and (7.5) are infeasible, this indicates that 

newDMU  has the smallest input level and the largest output level 
compared to the benchmark. Thus, both input savings and output 
surpluses exist in newDMU . 
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Case II: When model (7.4) is infeasible and model (7.5) is feasible, the 

infeasibility of model (7.4) is caused by the fact that newDMU  has 
the largest output level compared to the benchmark. Thus, we use 
model (7.5) to characterize the output surpluses. 

 
Case III: When model (7.5) is infeasible and model (7.4) is feasible, the 

infeasibility of model (7.5) is caused by the fact that newDMU  has 
the smallest input level compared to the benchmark. Thus, we use 
model (7.4) to characterize the input savings. 

 
Case IV: When both models (7.4) and (7.5) are feasible, we use both of them 

to determine whether input savings and output surpluses exist. 
 
 If we change the constraint ∑ jλ =1 to ∑ jλ  < 1 and ∑ jλ  > 1, then we 
obtain the NIRS and NDRS variable-benchmark models, respectively. 
Infeasibility may be associated with these two types of RTS frontiers, and 
we should apply the four cases discussed above. Table 7.1 summarizes the 
variable-benchmark models. 
 We next use 22 internet companies to illustrate the variable-benchmark 
models. Table 7.2 presents the data. We have four inputs: (1) number of 
website visitors (thousand), (2) number of employees (person), (3) marketing 
expenditure ($ million), and (4) development expenditure ($ million), and 
two outputs: (1) number of customers, and (2) revenue ($ million). 

Table 7.1. Variable-benchmark Models 
Frontier Type Input-Oriented Output-Oriented 
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VRS Add ∑ jλ  = 1 
NIRS Add ∑ jλ  < 1 
NDRS Add ∑ jλ  > 1 
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 Table 7.2. Data for the Internet Companies 
Company 
 

Visitors 
 

Employee 
 

Marketing 
 

Develop- 
ment 

Customers 
 

Revenue 
 

Barnes&Noble 64812 1237 111.55 21.01 4700000 202.57 
Amazon.com 177744 7600 413.2 159.7 16900000 1640 
CDnow 79848 502 89.73 23.42 3260000 147.19 
eBay 168384 300 95.96 23.79 10010000 224.7 
1-800-Flowers 11940 2100 92.15 8.07 7800000 52.89 
Buy.com 27372 255 71.3 7.84 1950000 596.9 
FTD.com 11856 75 29.93 5.29 1800000 62.6 
Autobytel.com 12000 225 44.18 14.26 2065000 40.3 
Beyond.com 17076 250 81.35 10.39 2000000 117.28 
eToys 13896 940 120.46 43.43 1900000 151.04 
E*Trade 29532 2400 301.7 78.5 1551000 621.4 
Garden.com 16344 290 16 4.8 1070000 8.2 
Drugstore.com 19092 408 61.5 14.9 695000 34.8 
Outpost.com 7716 164 41.67 7 627000 188.6 
iPrint 42132 225 8.13 3.54 380000 3.26 
Furniture.com 10668 213 33.949 6.685 260000 10.904 
PlanetRX.com 17124 390 55.18 12.95 254000 8.99 
NextCard 46836 365 24.65 22.05 220000 26.56 
PetsMart.com 18564 72 33.47 2.43 180000 10.45 
Peapod 2076 1020 7.17 3.54 111900 73.13 
Webvan 1680 1000 11.75 15.24 47000 13.31 
CarsDirect.com 15612 702 33.43 2.14 12885 98.56 
 
 Suppose we select the first seven companies (Barnes & Noble, 
Amazon.com, CDnow, eBay, 1-800-Flowers, Buy.com, and FTD.com) as 
the benchmarks. If we apply the output-oriented CRS envelopment model to 
the seven companies, the top three companies (Barnes & Noble, 
Amazon.com, and CDnow) are not on the best-practice frontier, and 
therefore can be excluded. However, if we include them in the benchmark 
set, the benchmarking results will not be affected. Because *

jλ  related to the 
three companies must be equal to zero. 
 The spreadsheet model of the variable-benchmark models is very similar 
to the context-dependent DEA spreadsheet model. In fact, the evaluation 
background now is the selected benchmarks. Figure 7.3 shows the 
spreadsheet model for the output-oriented CRS variable-benchmark model 
where the benchmarks (evaluation background) are entered in rows 2-8. 
 Cell F2 is reserved to indicate the DMU under benchmarking. Cell F4 is 
the target cell which represent the CRS

oτ  in model (7.2). Cells I2:I8 represent 
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the jλ  for the benchmarks. Cell B9 contains the formula “=SUMPRODUCT 
(B2:B8,$I$2:$I$8)”. This formula is then copied into cells C9:E9. Cell G9 
contains the formula “=SUMPRODUCT(G2:G8,$I$2:$I$8)”. This formula 
is then copied into cell H9. 

 

Figure 7.3. Output-oriented CRS Variable-benchmark Spreadsheet Model 

 Cells B11:E11, and Cells G11:H11 contain the formulas for the DMU 
under benchmarking – the right-hand-side of model (7.2). The formula for 
B11 is “=INDEX(B12:B26,$F$2,1)”, and is copied into cells C11:E11. The 
formula for cell G11 is “=$F$4*INDEX(G12:G26,$F$2,1)”, and is copied 
into cell H11. 
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Figure 7.4. Solver Parameters for Output-oriented CRS Variable-benchmark Model 

 Figure 7.4 shows the Solver parameters for the spreadsheet model shown 
in Figure 7.3. A VBA procedure “VariableBenchmark” is used to record the 
benchmarking scores into cells I12:I26. 
 
Sub VariableBenchmark() 

Dim i As Integer 

For i = 1 To 15 

Range("F2") = i 

SolverSolve UserFinish:=True 

Range("I" & i + 11) = Range("F4") 

Next 

End Sub 
 

 Because the model in Figure 7.3 is an output-oriented model, a smaller 
score ( *CRSτ ) indicates a better performance. Thus, Peapod is the best 
company with respective to the specified benchmarks. The non-zero optimal 

*
jλ  indicates the actual benchmark for a company under benchmarking. For 

example, Buy.com is used as the actual benchmark for CarsDirect.com (see 
cell I7 in Figure 7.3). 
 If we use the input-oriented CRS variable-benchmark model, we need 
change the formula for cell B11 in Figure 7.3 to “=$F$4*INDEX 
(B12:B26,$F$2,1)”. This formula is then copied into cells C11:E11. The 
formula for cell G11 is changed to “=INDEX(G12:G26,$F$2,1)” and is 
copied into cell H11. All the other formulas in Figure 7.3 remain unchanged. 
 We also need to change the Solver parameters shown in Figure 7.4 by 
selecting “Min”, as shown in Figure 7.5. Figure 7.6 shows the spreadsheet 
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model for the input-oriented CRS variable-benchmark model and the 
benchmarking scores. It can be seen that Theorem 7.1 is true. 

 

Figure 7.5. Solver Parameters for Input-oriented CRS Variable-benchmark Model 

 

Figure 7.6. Input-oriented CRS Variable-benchmark Spreadsheet Model 

 We now consider the input-oriented VRS variable-benchmark model. We 
need to add a cell representing ∑ jλ  in the spreadsheet shown in Figure 7.6. 
We select cell I9, and enter the formula “=SUM(I2:I8)”. We also need to add 
an additional constraint on ∑ jλ  = 1 in the Solver parameters shown in 
Figure 7.5. This constraint is “$I$9 = 1”, as shown in Figure 7.7. 
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Figure 7.7. Solver Parameters for Input-oriented VRS Variable-benchmark Model 

 

Figure 7.8. Input-oriented VRS Variable-benchmark Spreadsheet Model 

 Figure 7.8 shows the spreadsheet for the input-oriented VRS variable-
benchmark model and the benchmarking scores in cells I12:I26. The button 
“VRS Variable Benchmark” is linked to the VBA procedure 
“VRSVariableBenchmark”. 
 
Sub VRSVariableBenchmark() 

Dim i As Integer 

For i = 1 To 15 
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Range("F2") = i 

SolverSolve UserFinish:=True 

If SolverSolve(UserFinish:=True) = 5 Then 

Range("I" & i + 11) = "Infeasible" 

Else 

Range("I" & i + 11) = Range("F4") 

End If 

Next 

End Sub 
 

 Because of the VRS frontier, the model may be infeasible. The 
SolverSolve function returns an integer value that indicates Solver’s 
“success”. If this value is 5, it means that there are no feasible solutions. This 
is represented by the statement “SolverSolve(UserFinish:=True) = 5”. In the 
procedure, if the Solver returns a value of 5, then the procedure records 
“infeasible”. Otherwise, the procedure records the optimal value in cell F4 of 
Figure 7.8. 

7.3 Fixed-benchmark Model 

 Although the benchmark frontier is given in the variable-benchmark 
models, a newDMU  under benchmarking has the freedom to choose a subset 
of benchmarks so that the performance of newDMU  can be characterized in 
the most favorable light. Situations when the same benchmark should be 
fixed are likely to occur. For example, the management may indicate that 
DMUs A and B in Figure 7.1 should be used as the fixed benchmark. i.e., 
DMU C in Figure 7.1 may not be used in constructing the benchmark. 
 To couple with this situation, Cook, Seiford and Zhu (2004) turn to the 
multiplier models. For example, the input-oriented CRS multiplier model 
determines a set of referent best-practice DMUs represented by a set of 
binding constraints in optimality. Let set B = { jDMU  : j ∈ BI } be the 
selected subset of benchmark set *E . i.e., BI  ⊂ *E . Based upon the input-
oriented CRS multiplier model, we have 
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 By applying equalities in the constraints associated with benchmark 
DMUs, model (7.6) measures newDMU ’s performance against the 
benchmark constructed by set B. At optimality, some DMUj j ∉ BI , may 
join the fixed-benchmark set if the associated constraints are binding. 
 Note that model (7.6) may be infeasible. For example, the DMUs in set B 
may not be fit into the same facet when they number greater than m+s-1, 
where m is the number of inputs and s is the number of outputs. In this case, 
we need to adjust the set B. 
 Three possible cases are associated with model (7.6). *~CRSσ  > 1 indicating 
that newDMU  outperforms the benchmark. *~CRSσ  = 1 indicating that 

newDMU  achieves the same performance level of the benchmark. *~CRSσ  < 1 
indicating that the benchmark outperforms newDMU . 
 By applying RTS frontier type and model orientation, we obtain the fixed-
benchmark models in Table 7.3 

Table 7.3. Fixed-benchmark Models 
Frontier 
Type 

Input-Oriented Output-Oriented 
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CRS where μ = 0 where ν = 0 
VRS where μ free where ν  free 
NIRS where μ < 0 where ν  > 0 
NDRS where μ > 0 where ν  < 0 
 
 newDMU  is not included in the constraints of ∑ =

s
r rjr y1 μ  - ∑ =

m
i iji x1ν  + µ < 

0 ( BI∉j ) (∑ =
m
i iji x1ν  - ∑ =

s
r rjr y1 μ  + ν > 0 ( BI∉j )). However, other peer 

DMUs (( BI∉j ) are included. 
 Figure 7.9 shows the output-oriented CRS fixed-benchmark spreadsheet 
model where 1-800-Flowers and Buy.com are two fixed benchmarks. Cells 
B5:E5 and G5:H5 are reserved for input and output multipliers, respectively. 
They are the changing cells in the Solver parameters. 
 Cell C7 is the target cell and contains the formula “=SUMPRODUCT 
(B5:E5,INDEX(B10:E24,C6,0))”, where cell C6 indicates the DMU under 
evaluation – Autobytel.com. 
 Cell C8 contains the formula representing ∑ =

s
r

new
rr y1 μ  
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Cell C8=SUMPRODUCT(G5:H5,INDEX (G10:H24,C6,0)) 
 
 The formula for cell I2 is “=SUMPRODUCT(B2:E2,$B$5:$E$5)-
SUMPRODUCT(G2:H2,$G$5:$H$5)”, and is copied into cells I3 and 
I10:I24. 

 

Figure 7.9. Output-oriented CRS Fixed-benchmark Spreadsheet Model 

 

Figure 7.10. Solver Parameters for Output-oriented CRS Fixed-benchmark Model 
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 Figure 7.10 shows the Solver parameters for Autobytel.com. Note that we 
have “$I$2:$I$3 = 0” for the two benchmarks. Note also that “$I$11:$I$24 
>=0” does not include the DMU under evaluation, Autobytel.com. 
 To solve the remaining DMUs, we need to set up different Solver 
parameters. Because the constraints change for each DMU under evaluation. 
For example, if we change the value of cell C6 to 15, i.e., we benchmark 
CarsDirect.com, we obtain a set of new Solver parameters by removing 
“$I$24>=0” from the Solver parameters shown in Figure 7.10 and then 
adding “$I$10>=0”, as shown in Figure 7.11. 
 Because different Solver parameters are used for different DMUs under 
benchmarking, a set of sophisticated VBA codes is required to automate the 
calculation. We here do not discuss it, and suggest using the “DEA Excel 
Solver” – a DEA Add-In for Microsoft Excel described in Chapter 12 to 
obtain the scores (see cells J10:J24 in Figure 7.11). 

 

Figure 7.11. Output-oriented CRS Fixed-benchmark Scores for Internet Companies 

7.4 Fixed-benchmark Model and Efficiency Ratio 

 A commonly used measure of efficiency is the ratio of output to input. For 
example, profit per employee measures the labor productivity. When 
multiple inputs and outputs are present, we may define the following 
efficiency ratio 
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where iv  and ru  represent the input and output weights, respectively. 
 DEA calculate the ratio efficiency without the information on the weights. 
In fact, the multiplier DEA models can be transformed into linear fractional 
programming problems. For example, if we define iν  = t iv  and rμ  = t ru , 
where t = 1/∑ ioi xν , the input-oriented CRS multiplier model can be 
transformed into 
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 The objective function in (7.7) represents the efficiency ratio of a DMU 
under evaluation. Because of the constraints in (7.7), the (maximum) 
efficiency cannot exceed one. Consequently, a DMU with an efficiency 
score of one is on the frontier. It can be seen that no additional information 
on the weights or tradeoffs are incorporated into the model (7.7). 
 If we apply the input-oriented CRS fixed-benchmark model to (7.7), we 
obtain 
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 It can be seen from (7.8) that the fixed benchmarks incorporate implicit 
tradeoff information into the efficiency evaluation. i.e., the constraints 
associated with BI  can be viewed as incorporation of tradeoffs or weight 
restrictions in DEA. Model (7.8) yields the (maximum ) efficiency under the 
implicit tradeoff information represented by the benchmarks. 
 As more DMUs are selected as fixed benchmarks, more complete 
information on the weights becomes available. For example, if we add 
FTD.com to the fixed-benchmark set, the benchmarking score for 
Autobytel.com becomes 1.1395, as shown in Figure 7.12. As expected, the 
performance of those internet companies becomes worse when the set of 
fixed benchmarks expands. 

 

Figure 7.12. Spreadsheet Model and Solver Parameters for Fixed-benchmark Model 

 Similarly, the output-oriented CRS fixed-benchmark model is equivalent 
to 
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 Note that we may define an ideal benchmark whose rth output ideal

ry  is the 
maximum output value across all DMUs, and ith input ideal

ix  the minimum 
input value across all DMUs. If we replace the fixed-benchmark set by the 
ideal benchmark, we have 
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 Because the ideal benchmark dominates all DMUs (unless DMUj is one of 
the ideal benchmark), the optimal value to (7.9) must not be greater than 
one. Further, ∑ rjr yu /∑ iji xv  < 1 are redundant,  and model (7.9) can be 
simplified as 
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 Model (7.10) is equivalent to the following linear programming problem 
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 Model (7.10) or (7.11) calculate the maximum efficiency of a specific 
DMU under evaluation given that the efficiency of the ideal benchmark is 
set equal to one. If we introduce RTS frontier type and model orientation 
into (7.10), we obtain other ideal-benchmark models, as shown in Table 7.4. 

Table 7.4. Ideal-benchmark Models 
Frontier 
Type 

Input-Oriented Output-Oriented 
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CRS where μ = 0 where ν = 0 
VRS where μ free where ν  free 
NIRS where μ < 0 where ν  > 0 
NDRS where μ > 0 where ν  < 0 
 

7.5 Minimum Efficiency Model 

 Note that the fixed-benchmark models yield the maximum efficiency 
scores when the tradeoffs are implicitly defined by the benchmarks. If we 
change the objective function of model (7.8) into minimization, we have 
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 We refer to (7.12) as the input-oriented CRS minimum efficiency model. 
Although the benchmarks implicitly define the tradeoffs amongst inputs and 
outputs, the exact tradeoffs are still unavailable to us. Thus, the optimal 
value to (7.12) gives the lower efficiency bound for newDMU . The optimal 
value to (7.8) yields the upper efficiency bound. The true efficiency of 

newDMU  lies in-between the bounds. 
 In fact, model (7.12) describes the worst efficiency scenario whereas 
model (7.8) describe the best efficiency scenario. The minimum efficiency 
for the original input-oriented DEA models (e.g., model (7.7)) is zero, and 
for the original output-oriented DEA models is infinite. 
 Similarly, we can obtain the output-oriented CRS minimum efficiency 
model, 
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 Recall that a smaller score indicates a better performance in the output-
oriented DEA models. Therefore, the output-oriented CRS minimum 
efficiency score (optimal value to model (7.13) is greater than or equal to the 
efficiency score obtained from the output-oriented CRS fixed-benchmark 
model. 
 The linear program equivalents to (7.12) and (7.13) are presented in Table 
7.5 which summarizes the minimum efficiency models. 
 The spreadsheet models for the minimum efficiency models are similar to 
the fixed-benchmark spreadsheet models. We only need to change the 
“Max” to “Min” in the Solver parameters for the input-oriented models, and 
change the “Min” to “Max” for the output-oriented models. For example, 
consider the output-oriented CRS fixed-benchmark model shown in Figure 
7.9. Figure 7.13 shows the corresponding minimum efficiency spreadsheet 
model. 
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Table 7.5. Minimum Efficiency Models 
Frontier 
Type 

Input-Oriented Output-Oriented 
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CRS where μ = 0 where ν = 0 
VRS where μ free where ν  free 
NIRS where μ < 0 where ν  > 0 
NDRS where μ > 0 where ν  < 0 

 

Figure 7.13. Output-oriented CRS Minimum Efficiency Spreadsheet Model 

 Under the tradeoffs characterized by the two benchmarks, the true 
efficiency of Autobytel.com lies in [0.6681, 5.9446]. Cells J10:J24 report the 
“minimum efficiency” for the 15 internet companies. The scores are 
calculated by the DEA Excel Solver discussed in Chapter 12. 
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 If we introduce the ideal benchmark into the minimum efficiency models, 
we obtain, for example, the input-oriented VRS ideal-benchmark minimum 
efficiency model 
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 Table 7.6 presents the ideal-benchmark minimum efficiency models. 

Table 7.6. Ideal-benchmark Minimum Efficiency Models 
Frontier 
Type 

Input-Oriented Output-Oriented 

 

.0,
1

 0
subject to
min

1

11

1

≥
=∑

=+∑−∑

+∑

=

=

ir

m

i

new
ii

s

i=

ideal
ii

s

r=

ideal
rr

s

r

new
rr

x

xy

y

νμ
ν

μνμ

μμ

 

0,
1

0
subject to
max

1

11

1

≥
=∑

=+∑−∑

+∑

=

=

ir

s

r

new
rr

s

r=

ideal
rr

s

i=

ideal
ii

m

i

new
ii

y

yx

x

νμ
μ

νμν

νν

 

CRS where μ = 0 where ν = 0 
VRS where μ free where ν  free 
NIRS where μ < 0 where ν  > 0 
NDRS where μ > 0 where ν  < 0 
 

7.6 Buyer-seller Efficiency Model 

 As pointed out by Wise and Morrison (2000), one of the major flaws in 
the current business-to-business (B2B) model is that it focuses on price-
driven transactions between buyers and sellers, and fails to recognize other 
important vendor attributes such as response time, quality and customization. 
In fact, a number of efficiency-based negotiation models have been 
developed to deal with multiple attributes – inputs and outputs. For example, 
DEA is used by Weber and Desai (1996) to develop models for vendor 
evaluation and negotiation. The fixed-benchmark models and the minimum 
efficiency models can better help the vendor in evaluating and selecting the 
vendors. 
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 Talluri (2002) proposes a buyer-seller game model that evaluates the 
efficiency of alternative bids with respect to the ideal target set by the buyer. 
Zhu (2004) shows that this buyer-seller game model is closely related to 
DEA and can be simplified as the models presented in Tables 7.4 and 7.6. 

We next use the data in Table 5.1 to demonstrate the use of DEA 
benchmarking models. A Fortune 500 pharmaceutical company was 
involved in the implementation of a Just-in-Time manufacturing system. 
Therefore, price, delivery performance, and quality were considered to be 
the three most important criteria in evaluating and selecting vendors. In 
Weber and Desai (1996), the price criterion is measured by the total 
purchase price based on a per unit contract delivered price, the delivery 
criterion is measured by the percentage of late deliveries, and the quality 
criterion is measured by the percentage of units rejected. Obviously, the 
measures for delivery and quality are bad outputs. Therefore, we re-define 
the delivery and quality by percentage on-time deliveries and percentage of 
accepted units, respectively. (Otherwise, we should use the method 
described in Chapter 5.) 

Table 7.7. Data for the Six Vendors 

Vendor Price ($/unit) % accepted units % on-time deliveries 
1 0.1958 98.8 95 
2 0.1881 99.2 93 
3 0.2204 100 100 
4 0.2081 97.9 100 
5 0.2118 97.7 97 
6 0.2096 98.8 96 

Table 7.8. Input-oriented CRS Efficiency and Efficient Target for Vendors 
Vendor Efficiency Price ($/units) % acceptance % on-time deliveries

1 0.981 0.192145 101.3333 95 
2 1 0.1881 99.2 93 
3 0.918 0.202258 106.6667 100 
4 0.972 0.202258 106.6667 100 
5 0.926 0.19619 103.4667 97 
6 0.926 0.194168 102.4 96 

The results are based upon the input-oriented CRS envelopment model. 
 
 Table 7.7 presents the data for six vendors that are obtained from the data 
presented in Table 5.1. The second column reports the input, and the third 
and forth columns report the two outputs. We next need to determine the 
frontier type. Because the outputs are measured in percentages, we assume 
the vendors form a VRS frontier. Otherwise, unreasonable results may be 
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obtained if we assume CRS frontier. For example, Table 7.8 reports the 
input-oriented CRS efficiency scores (second column) with the efficient 
targets. It can be seen that the efficient targets on percentage of accepted 
units are impossible to achieve. 
 If we use the input-oriented VRS envelopment model, vendors 2, 3, and 4 
are efficient, and can be selected. However, if we specify an ideal 
benchmark by the minimum input value and the maximum output values, as 
shown in Figure 7.14, we can further characterize the six vendors. 

 

Figure 7.14. Input-oriented VRS Ideal-benchmark Spreadsheet Model 

 Figure 7.14 shows the spreadsheet for the input-oriented VRS ideal-
benchmark model. Cell C4 and cells D4:E4 are reserved for the input and 
output multipliers. The free variable is represented by cell G3 which 
contains the formula “=F4-G4”. Cells F4:G4 are specified as changing cells 
in the Solver parameters (see Figure 7.15). 
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Figure 7.15. Solver Parameters for Input-oriented VRS Ideal-benchmark Model 

 Cell F2 contains the formula for the ideal benchmark, that is 
 
Cell F2=SUMPRODUCT(D2:E2,D4:E4)-B2*B4+G3 
 
 Cell C5 is reserved to indicate the vendor under evaluation. The 
(maximum) efficiency is presented in cell C6 which contains the formula 
 
Cell C6=SUMPRODUCT(D4:E4,INDEX(D9:E14,C5,0))+G3 
 
 Cell C7 is the weighted input and contains the formula 
 
Cell C7=B4*INDEX(B9:B14,C5,1) 
 
 The Solver parameters shown in Figure 7.15 remain the same for all the 
vendors, and the calculation is performed by the VBA procedure 
“IdealBenchmark”. 
 
Sub IdealBenchmark() 

Dim i As Integer 

For i = 1 To 6 

Range("C5") = i 

SolverSolve UserFinish:=True 

Range("F" & i + 8) = Range("C6") 

Next 

End Sub 

 
 Based upon the scores in cells F9:F14 in Figure 7.14, vendor 2 has the 
best performance. 
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Figure 7.16. Solver Parameters for VRS Ideal-benchmark Minimum Efficiency Model 

 Next, we turn to the ideal-benchmark minimum efficiency model (7.14). 
The spreadsheet is the same as the one shown in Figure 7.14. However, we 
need to change “Max” to “Min” in the Solver parameters shown in Figure 
7.15. Figure 7.16 shows the result. Figure 7.17 shows the minimum 
efficiency scores in cells F9:F14. The minimum efficiency model also 
indicates that vendor 2 is the best one. 

 

Figure 7.17. Minimum Efficiency Scores for the Six Vendors 
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7.7 Solving DEA Using DEAFrontier Software 

7.7.1 Variable-benchmark Models 

To run the variable-benchmark models presented in Table 7.1, we need 
set up the data sheets. Store the benchmarks in a sheet named “Benchmarks” 
and the DMUs under evaluation in a sheet named “DMUs”. The format for 
these two sheets is the same as that shown in Figure 12.3. Then select the 
Variable Benchmark Model menu item. You will be prompted a form for 
selecting the model orientation and the frontier type as shown in Figure 7.18. 
Note that if you select a frontier type other than CRS, the results may be 
infeasible. The benchmarking results are reported in the sheet 
“Benchmarking Results”. 

 

Figure 7.18. Variable Benchmark Models 

7.7.2 Fixed-benchmark Models 

To run the fixed-benchmark models presented in Table 7.3, we store the 
benchmarks in a sheet named “Benchmarks” and the DMUs under 
evaluation in a sheet named “DMUs”. Then select the Fixed-Benchmark 
Model menu item. You will be prompted a form for selecting the model 
orientation and the frontier type. The results are reported in the “Efficiency 
Report” sheet. If the benchmarks are not properly selected, you will have 
infeasible results and need to adjust the benchmarks. 

The Ideal-benchmark Models in Table 7.4 should be calculated using the 
Fixed-Benchmark Model menu item. The data for the ideal benchmark is 
stored in the “Benchmarks” sheet. 
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7.7.3 Minimum Efficiency Models 

To run the minimum efficiency models presented in Table 7.5, we store 
the benchmarks in a sheet named “Benchmarks” and the DMUs under 
evaluation in a sheet named “DMUs”. Then select the Minimum Efficiency 
Model menu item. You will be prompted a form for selecting the model 
orientation and the frontier type. The results are reported in the “Minimum 
Efficiency” sheet. 

 The Ideal-benchmark Minimum Efficiency Models in Table 7.6 should 
be calculated using the Minimum Efficiency menu item. The data for the 
ideal benchmark is stored in the “Benchmarks” sheet. 
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Chapter 8 

Models for Evaluating Supply Chains 
 

 
 

8.1 Supply Chain Efficiency 

 So far, the value-added processes or systems have been treated as a 
“black-box”. We examine the resources available to the processes or systems 
and monitor the “conversions” of these resources (inputs) into the desired 
outputs. However, each process or system can include many subprocesses. 
For example, if the process is to make a car, then important subprocesses 
include assembling and painting. If we evaluate the efficiency of a supply 
chain system, then we need to measure the performance of each individual 
supply chain components, including suppliers, manufacturers, retailers, and 
customers. 
 While there are studies on supply chain performance using the 
methodology of data envelopment analysis (DEA), the research has been 
focused on a single member of the supply chain. 

Within the context of DEA, there are a number of methods that have the 
potential to be used in supply chain efficiency evaluation. Seiford and Zhu 
(1999a) and Chen and Zhu (2004) provide two approaches in modeling 
efficiency as a two-stage process. Färe and Grosskopf (2000) develop the 
network DEA approach to model general multi-stage processes with 
intermediate inputs and outputs. Golany, Hackman and Passy (2006) provide 
an efficiency measurement framework for systems composed of two 
subsystems arranged in series that simultaneously compute the efficiency of 
the aggregate system and each subsystem. 

Note that an effective management of the supply chain requires knowing 
the performance of the overall chain rather than simply the performance of 
the individual supply chain members. Each supply chain member has is own 
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strategy to achieve efficiency, however, what is best for one member may 
not work in favor of another member. Sometimes, because of the possible 
conflicts between supply chain members, one member’s inefficiency may be 
caused by another’s efficient operations. For example, the supplier may 
increase its raw material price to enhance its revenue and to achieve an 
efficient performance. This increased revenue means increased cost to the 
manufacturer. Consequently, the manufacturer may become inefficient 
unless it adjusts its current operating policy. Measuring supply chain 
performance becomes a difficult and challenging task because of the need to 
deal with the multiple performance measures related to the supply chain 
members, and to integrate and coordinate the performance of those 
members. 

Two hurdles are present in measuring the performance of value chains. 
One is the existence of multiple measures that characterize the performance 
of each member in a supply chain. The other is the existence of conflicts 
between supply chain members with respect to specific measures. 
 Consider three supplier-manufacturer supply chains presented in Table 
8.1 where the supplier has two inputs (shipping cost and labor) and one 
output (revenue from selling the raw materials to the manufacturer), and the 
manufacture has one input (raw material cost which is the supplier’s 
revenue) and one output (profit). 
 Applying the input-oriented VRS envelopment model to the suppliers and 
the manufacturers indicate that the suppliers in supply chains A and B, and 
the manufacturer in supply chain C are efficient. Now, if we ignore the 
intermediate measure of revenue (raw material cost) and apply the input-
oriented VRS envelopment model, the last column of Table 8.1 indicates that 
all supply chains are efficient. 

Table 8.1. Simple Supplier-Manufacturer Example 
   Manufacturer    
 Supplier     

Supply Chain Shipping Costs Labor Revenue Profit Supplier Manufacturer Overall 
   Material costs  efficiency efficiency efficiency

A 7 9 4 16 1 0.75 1 
B 9 4 6 14 1 0.5 1 
C 11 6 3 23 0.791 1 1 

 
 This simple numerical example indicates that the conventional DEA fails 
to correctly characterize the performance of supply chain. Since an overall 
DEA efficient performance does not necessarily indicate efficient 
performance in individual components in the supply chain. Consequently, 
improvement to the best-practice can be distorted. i.e., the performance 
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improvement of one member affects the efficiency status of the other, 
because of the presence of intermediate measures. Seiford and Zhu (1999a) 
develop a procedure for value chain performance improvement by using 
returns to scale (RTS) sensitivity analysis (Seiford and Zhu, 1999b). In this 
chapter, we present models that can directly evaluate the performance of 
supply chains or value chains that have more than one members/components. 
 

8.2 Supply Chain Efficiency 

Supply chain management has been proven a very effective tool to 
provide prompt and reliable delivery of high-quality products and services at 
the least cost. To achieve this, performance evaluation of entire supply chain 
is extremely important, since it means utilizing the combined resources of 
the entire supply chain in the most efficient way possible to provide market-
wining and cost-effective products and services. However, a lack of 
appropriate performance measurement systems has been a major obstacle to 
an effective supply chain management (Lee and Billington, 1992). 

This is due to the fact that the concept of supply chain management 
requires the performance of overall supply chain rather than only the 
performance of the individual supply chain members. Each supply chain 
member has is own strategy to achieve 100% efficiency. One supply chain 
member’s 100% efficiency does not necessarily mean another’s 100% 
efficiency. Sometimes, because of the possible conflicts between supply 
chain members, one member’s inefficiency may be caused by another’s 
efficient operations. For example, the supplier may increase its raw material 
price to increase its revenue and to achieve an efficient performance. This 
increased revenue means increased cost to the manufacturer. Consequently, 
the manufacturer may become inefficient unless the manufacturer adjusts it 
current operating policy. 

As demonstrated in Table 8.1, some measures linked to related supply 
chain members cannot be simply classified as “outputs” or “inputs” of the 
supply chain. For example, the supplier’s revenue is not only an output of 
the supplier (the supplier wishes to maximize it), but also an input to the 
manufacturer (the manufacturer wishes to minimize it). Simply minimizing 
the total supply chain cost or maximizing the total supply chain revenue 
(profit) does not model and solve the conflicts. Therefore, the meaning of 
supply chain efficiency needs to be carefully defined and studied, and we 
need models that can both define and measure the efficiency of supply chain 
as well as supply chain members. 

Methods have been developed to estimate the exact performance of 
supply chain members based upon single performance measures (e.g., 
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Cheung and Hausman, 2000). However, no attempts have been made to 
identify the best practice of the supply chain. No solid mathematical models 
have been developed to simultaneously (i) define and measure the whole 
supply chain performance with possible conflicts on specific measures, (ii) 
evaluate the performance of supply chain members, and (iii) identify the best 
practice and provide directions to achieve the supply chain best practice. 

The new DEA model measures the efficiency of supply chain system as a 
whole as well as each supply chain member, and provides directions for 
supply chain improvement to reach the best practice. This eliminates the 
needs for unrealistic assumptions in typical supply chain optimization 
models and probabilistic models, e.g., a typical EOQ model assumes 
constant and known demand rate and lead-time for delivery. 

8.2.1 Supply Chain as an Input-Output System 

A typical supply chain can be presented in Figure 8.1 with four echelons 
– suppliers, manufacturers, distributors, and retailers. The traditional 
objective of supply chain management is to minimize the total supply chain 
cost to meet the customer needs through coordination efforts among supply 
chain members. To achieve this objective, timely and accurate assessment of 
the supply chain system and individual member performance is of extreme 
importance. Because an effective performance evaluation system (i) provides 
the basis to understand the supply chain operations, (ii) monitors and 
manages supply chain performance through identifying the best-practice 
supply chain operations, and (iii) provides directions for further supply chain 
improvement. 

Supply chain systems can be viewed as an integrated input-output system 
where each supply chain member uses inputs to produce. Consequently, we 
may classify supply chain member’s performance measures into inputs and 
outputs. Caution should be paid when we classify the performance measures 
into inputs and outputs based upon specific supply chain members, since 
incorrect classification may lead to false conclusion on the efficiency of 
supply chain members as well as supply chain. The classification can be 
based upon the material and information flows in a supply chain system. 

Let ΔI  and ΔR  represent the input and output subscript sets for a supply 
chain member Δ , respectively. We denote Δ

ix  (i ∈  ΔI ) and Δ
ry  (r ∈  ΔR ) 

the inputs and outputs associated with each supply chain member, 
respectively. Now, let Δx  and Δy  be the vectors consisting of Δ

ix  (i ∈  ΔI ) 
and Δ

ry  (r ∈  ΔR ), respectively. The following Pareto-Koopmans efficiency 
is used to define an efficient supply chain member. 
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Definition 8.1 (Efficient Supply Chain Member) A supply chain member 
Δ  is efficient if ( Δx , Δy ) is not dominated. 
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Figure 8.1. Supply Chain 

Some measures are associated with a specific supply chain member only. 
We call these measures the “direct” inputs and outputs. For example, labor 
and manufacturing lead time are two direct inputs to the manufacturer. These 
direct inputs and outputs of supply chain members can be viewed as the 
inputs and outputs of the supply chain. 

We also have “intermediate” inputs/outputs associated with two supply 
chain members. For example, the number of finished products shipped from 
the manufacturer to the retailer and the distributor represent outputs of the 
manufacturer. These outputs then become inputs to the distributor and the 
retailer (see Figure 8.1). These intermediate measures cannot be simply 
treated as inputs or outputs of the supply chain, although they are 
inputs/outputs of specific supply chain members. 

In supply chain management, it is believed that values of intermediate 
measures should be determined through coordination among related supply 
chain members (Parlar and Weng, 1997; Thomas and Griffin, 1996). 
Because such intermediate measures are usually cost to one supply chain 
member and benefit to the other. Simply minimizing the total supply chain 
cost or maximizing the supply chain revenue does not model situations with 
intermediate measures. This poses a challenge to defining and measuring the 
supply chain efficiency. 
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To facilitate our discussion, let ΔDI  and ΔDR  represent the direct input 
and direct output subscript sets for a supply chain member Δ , respectively. 
We then use the following notions to represent intermediate inputs and 
outputs, Δ

ix  (i ∉ ΔDI  ⊆  ΔI ) and Δ
ry  (r ∉ ΔDR  ⊆  ΔR ), 

 
MS

tz −  = tth intermediate output from the supplier to manufacturer, t = 1, …, 
T; 

SM
mz −  = mth intermediate output from the manufacturer to the supplier, m = 

1, …, M; 
DM

fz −  = fth intermediate output from the manufacturer to the distributor, f = 
1, …, F; 

MD
gz −  = gth intermediate output from the distributor to the manufacturer, g = 

1, …, G; 
RM

lz −  = lth intermediate output from the manufacturer to the retailer, l = 1, 
…, L; 

MR
qz −  = qth intermediate output from the retailer to the manufacturer, q = 1, 

…, Q; 
RD

ez −  = eth intermediate output from the distributor to the retailer, e = 1, …, 
E; 

DR
nz −  = nth intermediate output from the retailer to the distributor, n = 1, …, 

N. 
 
Note that only intermediate outputs are defined, since each such output 

also represents an input to an associated supply chain member. For example, 
MS

tz −  (output of the supplier) also represents an input to the manufacturer. 

8.2.2 Supply Chain Efficiency Model 

 Suppose we have J observations associated with each supply chain 
member. i.e., we have observed input and output values of Δ

ijx  (i ∈ ΔI ) and 
Δ
rjy  (r ∈ ΔR ), where j = 1, …, J. The efficiency of supply chain member Δ 

can be measured by the following DEA model – input-oriented CRS 
envelopment model 
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If *Δθ  = 1, then a supply chain member Δ  is efficient (including weakly 
efficient). Also, for inefficient performance, model (8.1) provides projection 
paths onto the efficient frontier via the optimal values of Δ

=
Δ∑ ij

J
j j x1

*φ  and 
∑ =

ΔΔJ
j rjj y1

*φ . 
Because of the possible conflicts represented by the intermediate 

measures between associated supply chain members, the supply chain’s 
performance cannot be simply defined and characterized by non-dominancy 
through using model (8.1). Let iw  be the user-specified weights reflecting 
the preference over supply chain member’s performance (operation). We 
establish the following liner programming problem for the supply chain 
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Additional constraints can be added into model (8.2). For example, if 
DM

fz −  represents the number of product f shipped from the manufacturer to 
the distributor, and if the capacity of this manufacturer in producing product 
f is fC , then we may add DM

fz −~  < fC . 
 
 Obviously, if *Ω  = 1, then there must exists an optimal solution such that 

*
oj

λ  = *
oj

β  = *
oj

δ  = *
oj

γ  = 1, where (*) represents optimal value in model 
(8.2). Further, if *Ω  = 1, then *Δθ  = 1, where *Δθ  is the optimal value to 
model (8.1). i.e., when *Ω  = 1, all supply chain members are efficient. 
 If *Ω  ≠ 1, then we immediately have the following result 
 
All supply chain members are efficient with respect to supplier*

1 oijxΩ  (i ∈ 
supplierDI ), ermanufactur

ijo
x*

2Ω  (i ∈ ermanufacturDI ), rdistributo
ijo

x*
3Ω  (i ∈ rdistributoDI ), 

retailer
ijo

x*
4Ω  (i ∈ retailerDI ), supplier

orjy  (r ∈ supplierDR ), ermanufactur
rjo

y  (r ∈ ermanufacturDR ), 
rdistributo

rjo
y  (r ∈ rdistributoDR ), retailer

rjo
y  (r ∈ retailerDR ), *~ MS

tjo
z −  (t = 1, …, T), *~ SM

mjo
z −  

(m = 1,…, M), *~ DM
fjo

z −  (f = 1, … ,F), *~ MD
gjo

z −  (g = 1, …, G), *~ RM
ljo

z −  (l = 1, …, 
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L), *~ MR

qjo
z −  (q = 1, …, Q), *~ RD

ejo
z −  (e = 1, …, E), where (*) represents optimal 

value in model (8.2). 
 
Definition 8.2 (Efficient Supply Chain) A supply chain is efficient if *Ω  = 
1, where *Ω  is the optimal value to model (8.2). 
 

*Δθ  measures the efficiency of supply chain member Δ  under the 
context of supply chain member best practice. *

iΩ  can actually be used as a 
new efficiency measure for a specific supply chain member under the 
context of supply chain best practice. We have 
 
Definition 8.3 *

iΩ  is called supply-chain-best-practice-dependent efficiency 
score for a specific supply chain member. 
 

Note that *Ω  can be viewed as an index for input or cost savings for 
(inefficient) supply chains. The smaller the *Ω , more savings could be 
achieved to reach the best practice. The same observation can also be applied 
to *Δθ  in the context of supply chain member best practice. Let 

∑+++ =
4

1
*retailer

4
*rdistributo

3
*ermanufactur

2
*supplier

1 /)( i iwwwww θθθθ  represent the 
index for input savings achievable by all supply chain members combined. 
The following Theorem indicates that supply chain as a whole has potential 
to achieve more input savings and a better performance 
 
Theorem 8.1 *Ω  < ∑+++ =

4
1

*retailer
4

*rdistributo
3

*ermanufactur
2

*supplier
1 /)( i iwwwww θθθθ . 

 

8.2.3 An example 

We establish a spreadsheet model for a numerical example constructed as 
follows. For the supplier, we use labor and operating cost as two direct 
inputs, and revenue as the intermediate output. This revenue becomes an 
intermediate input of the manufacturer. 

For the manufacturer, we use manufacturing cost and manufacturing lead 
time as two direct inputs, in addition to the intermediate input – supplier’s 
revenue. We also have three intermediate manufacturer outputs: number of 
products shipped to the distributor, number of products shipped to the 
retailer, and distributor’s fill rate. These outputs then become inputs to the 
distributor and the retailer. Note that the distributor’s fill rate is actually a 
cost measure to the distributor, since the fill rate is associated with inventory 
holding cost and the amount of products required from the manufacturer. 
The distributor’s fill rate implies benefit to the manufacturer, since more 
products are needed from the manufacturer (meaning more revenue to the 
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manufacturer) if the distributor wishes to maintain a higher fill rate. Thus, 
the distributor’s fill rate is treated as an output from the manufacturer and an 
input to the distributor. From a distributor’s point of view, the distributor 
always tries to meet the needs of its customer while maintaining a fill rate as 
low as possible, because unnecessary high fill rate incurs additional cost to 
the distributor. 

For the distributor, we use inventory cost and distribution cost as two 
direct inputs in addition to the above intermediate inputs linked with the 
manufacturer. Two intermediate outputs from the distributor are the number 
of products shipped from the distributor to the retailer, and the percentage of 
on-time delivery. 

For the retailer, in addition to the intermediate inputs from the 
manufacturer and the distributor, we have one direct input of number of 
backorders, and one direct output of profit. Figure 8.2 presents the data with 
ten observations, i.e., J = 10. 
 In Figure 8.8, cells D18:M21 represents jλ , jβ , jδ , and jγ . Cell B25 
indicates the observation under evaluation. Cells D23:D26 represents iΩ  (i 
= 1, 2, 3, 4). Cell C25 is the objective function of model (8.2), and contains 
the formula “= (D23+D24+D25+D26)/4”. 
 Cells B27:B40 record the performance measures for a specific 
observation under evaluation. Cell B27 contains the formula “=INDEX 
(D2:M2,1,$B$25) which is copied into cell B28:B40. 
 Cells D27:D39 are used to represent the decision variables. The formulas 
used in the rest of the spreadsheet model shown in Figure 8.2 are 
 
Cell F27=$D$23*B27 
Cell F28=$D$23*B28 
Cell F30=$D$24*B30 
Cell F31 =$D$24*B31 
Cell F32 =$D$25*B32 
Cell F33 =$D$25*B33 
Cell F39 =$D$26*B39 
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Figure 8.2. Supply Chain Efficiency Spreadsheet Model 

 
Cell G27=SUMPRODUCT($D$18:$M$18,D2:M2) 
Cell G28 =SUMPRODUCT($D$18:$M$18,D3:M3) 
Cell G29 =SUMPRODUCT($D$18:$M$18,D4:M4) 
 
Cell I29=SUMPRODUCT($D$19:$M$19,D4:M4) 
Cell I30=SUMPRODUCT($D$19:$M$19,D5:M5) 
Cell I31 =SUMPRODUCT($D$19:$M$19,D6:M6) 
Cell I34 =SUMPRODUCT($D$19:$M$19,D9:M9) 
Cell I36 =SUMPRODUCT($D$19:$M$19,D11:M11) 
Cell I37 =SUMPRODUCT($D$19:$M$19,D12:M12) 
Cell I38 =SUMPRODUCT($D$19:$M$19,D13:M13) 
 
Cell K32 =SUMPRODUCT($D$20:$M$20,D7:M7) 
Cell K33=SUMPRODUCT($D$20:$M$20,D8:M8) 
Cell K34 =SUMPRODUCT($D$20:$M$20,D9:M9) 
Cell K35 =SUMPRODUCT($D$20:$M$20,D10:M10) 
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Cell K36 =SUMPRODUCT($D$20:$M$20,D11:M11) 
Cell K38 =SUMPRODUCT($D$20:$M$20,D13:M13) 
 
Cell M35 =SUMPRODUCT($D$21:$M$21,D10:M10) 
Cell M36 =SUMPRODUCT($D$21:$M$21,D11:M11) 
Cell M37 =SUMPRODUCT($D$21:$M$21,D12:M12) 
Cell M39 =SUMPRODUCT($D$21:$M$21,D14:M14) 
Cell M40 =SUMPRODUCT($D$21:$M$21,D15:M15) 

 

Figure 8.3. Solver Parameters for Supply Chain Efficiency 

 Figure 8.3 shows the Solver parameters for the spreadsheet shown in 
Figure 8.2 where cells D18:M21 and cells D23:D39 are changing cells. In 
this case, two additional constraints are added into model (8.2). One is “fill 
rate < 100%”, and the other “percentage of on-time delivery < 100%”. The 
constraints include 
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Table 8.2. Supply Chain Efficiency 

 Member Efficiency Supply Chain Efficiency 
 Supplier Manufacturer Distributor Retailer AverageSupply ChainSupplierManufacturerDistributor Retailer

Observation *supplierθ *ermanufacturθ *rdistributoθ  *retailerθ  *Ω  *
1Ω *

2Ω  *
3Ω  *

4Ω
1 0.865 1 1 1 0.966 0.933 0.918 0.970 0.843 1 
2 0.881 1 0.880 0.673 0.859 0.669 0.599 0.624 0.465 0.714
3 0.964 1 1 0.810 0.944 0.791 0.720 0.747 0.747 0.948
4 0.870 0.856 1 0.754 0.870 0.576 0.518 0.460 0.658 0.667
5 0.895 1 1 0.820 0.929 0.795 0.688 0.768 0.768 0.954
6 0.937 0.999 1 0.673 0.902 0.613 0.529 0.579 0.625 0.717
7 1 1 1 1 1 1 1 1 1 1 
8 1 1 0.811 1 0.953 0.943 1 1 0.770 1 
9 0.994 0.904 1 0.856 0.938 0.783 0.696 0.694 0.874 0.868
10 1 0.986 1 1 0.997 0.992 1 0.968 1 1 
 

Table 8.2 reports the efficiency scores, optimal values to models (8.1) 
and (8.2) with iw  = 1 (i = 1, …, 4).  

Columns 2-5 characterize the performance of supply chain members 
based upon model (8.1). The sixth column reports the average efficiency 
score of the supply chain members. The supply chain performance is 
reported in the seventh column with *

iΩ  reported in the last four columns. 
Although a number of observations on supply chain members are 

efficient, only one supply chain performance (observation 7) is efficient. i.e., 
the observation 7 represents the best practice of the supply chain system. 
Note that in this case, all supply chain members are efficient. 

We observe that the average supply chain member efficiency score 
(column 6) is greater than the supply chain efficiency score ( *Ω ). For 
example, consider observation 5 where two supply chain members 
(manufacturer and distributor) are efficiently operating. The average supply 
chain member efficiency score is 0.79456 and the supply chain efficiency 
score is 0.79456, indicating that the supply chain system could achieve more 
input savings. 

Model (8.2) yields optimal values on the performance measures for (an 
inefficient) supply chain to reach the best practice. Consider observation 1 in 
Figure 8.8 where a set of optimal solutions is shown in cells D27:D39. Since 

*
4Ω  = 1 indicating the retailer is efficient, no adjustments for measures 
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related to the retailer are required. However, in order to reach the best 
practice, the supplier, the manufacturer and the distributor should reduce 
their “direct inputs” based upon *

iΩ  (i = 1, 2, 3). In addition, the supplier and 
the manufacturer should reach an agreement on the selling price of raw 
materials to increase the supplier’s revenue by 6%. The distributor’s fill rate 
should be increased to 90.95% (from the current rate of 70%). The products 
shipped from the manufacturer to the distributor should be reduced by 39%. 
This solution indicates that based upon the best practice, the distributor 
should be able to maintain the fill rate of 90.95% while the manufacturer 
reduces its shipment to the distributor. 

Additional managerial information is available from the optimal values 
of *

jλ , *
jβ , *

jδ , and *
jγ , since they provide information on which 

observations of supply chain members are used as benchmarks. For example, 
when the observation 1 is under evaluation by model (8.2), we have (i) *

7λ  = 
0.884, indicating that the supplier in observation 7 is used as the benchmark; 
(ii) *

2β  = 1.011, indicating that the manufacturer in observation 2 is used as 
the benchmark; (iii) *

3δ  = 0.08 and *
9δ  = 0.893, indicating that the 

distributor in observations 3 and 9 is used as the benchmark; and (iv) *
1γ  = 1, 

indicating that the retailer in observation 1 is efficient and itself is used as 
the benchmark. 

Some supply chains may choose to operate with high cost and high 
availability while others are lean with lower levels of service. The notion of 
DEA efficiency (i) provides an approach for characterizing and measuring 
the efficiency of supply chain as well as supply chain members, and (ii) 
makes it clear that two supply chains may have different input-output mix 
yet both may be efficient. Model (8.2) enables supply chain members to 
collectively improve the supply chain performance. Through the use of 
model (8.2), any supply chains can find ways to achieve best-practice 
performance and to gain a competitive edge. The approach also provides 
information on which supply chain members are used as a benchmark when 
a specific supply chain observation is under evaluation. 

8.3 Cooperative and Non-Cooperative Approaches 

In this section, we present several models due to Liang, Feng, Cook and 
Zhu (2006) that directly evaluate the performance of the supply chain as well 
as its members, while considering the relationship between the buyer and the 
seller. The modeling processes are based upon the concept of non-
cooperative and cooperative games (see, e.g., Simaan and Cruz, 1973; Li, 
Huang and Ashley, 1995; Huang 2000). 
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Suppose there are N similar supply chains or N observations on one 
supply chain. Consider a buyer-seller supply chain as described in Figure 
8.4, where for j = 1, …, N, XA =( A

ijx , i = 1, …, I ) is the input vector of the 
seller, and YA =( A

rjy , r=1,…., R ) is the seller’s output vector. YA is also an 
input vector of the buyer. The buyer also has an input vector XB =(  

B
s jx , s = 

1,…., S ) and the output vector for the buyer is YB (= B
t jy , t=1, …, T ). 

 

 

Figure 8.4. Seller-Buyer Supply Chain 

8.3.1 The Non-cooperative Model 

We propose the seller-buyer interaction be viewed as a two-stage non-
cooperative game with the seller as the leader and the buyer as the follower. 
First, we use the CRS (ratio) model to evaluate the efficiency of the seller as 
the leader: 
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This model is equivalent to the following standard CRS multiplier model: 
Maximize AAE  =  01
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Suppose we have an optimal solution of model (8.4) *A
rμ , *

 
A
iω , *

AAE  (r=1, 
…, R , i = 1, …, I), and denote the seller’s efficiency as *

AAE . We then use 
the following model to evaluate the buyer’s efficiency: 
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Note that in model (8.5), we try to determine the buyer’s efficiency given 

that the seller’s efficiency remains at *
AAE . Model (8.5) is equivalent to the 

following non-linear model: 
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Note that   0  01 1

1R SA A B B
r r s sr s

d y xμ ω
= =

× + =∑ ∑  and  01

R A A
r rr

yμ
=∑ = *

AAE . 
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Thus, we have 0 <   01

1 R A A
r rr

d yμ
=

< ∑ = *1 AAE . i.e, we have the upper and  

lower bounds on d . Therefore, d  can be treated as a parameter, and model 
(8.6) can be solved as a parametric linear program. 

In computation, we set the initial d value as the upper bound, namely, 0d  

= *1 AAE , and solve the resulting linear program. We then start to decrease 

d  according to *1t AAd E tε= − ×  for each step t, where ε  is a small 
positive number1. We solve each linear program of model (8.6) 
corresponding to td  and denote the optimal objective value as *

BAE ( td ). 

Let )(**
tBAtBA dEMaxE = . Then we obtain a best heuristic search solution  

*
BAE  to model (8.6)2. This *

ABE  represents the buyer’s efficiency when the 
seller is given the pre-emptive priority to achieve its best performance. The 
efficiency of the supply chain can then be defined as 

ABe = )(
2
1 ∗∗ + ABAA EE  

Similarly, one can develop a procedure for the situation when the buyer 
is the leader and the seller the follower. For example, in the October 6, 2003 
issue of the Business Week, its cover story reports that Walmart dominates 
its suppliers and not only dictates delivery schedules and inventory levels, 
but also heavily influences product specifications. 

We first evaluate the efficiency of the buyer using the standard CRS ratio 
model: 
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(8.7) 
 

 
1 In the current study, we set ε  = 0.01. If we use a smaller ε , the difference only 

shows in the fourth decimal place in the current study. 
2 The obtained solution can be regarded as the global solution using a heuristic 

technique, as it searches through the entire feasible region of d when d is 
decreased from its upper bound to lower bound of zero. It is likely that estimation 
error exists. The smaller the decreased step, the better the heuristic search 
solution will be. 
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 r=1, …, R, t=1, …, T , s = 1,…., S 

 
Model (8.7) is equivalent to the following standard CRS multiplier 

model: 
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Let *
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BBE ( r=1, …, R, t=1, …, T , s = 1,…., S) be an 
optimal solution from model (8.8), where *

BBE  represents the buyer’s 
efficiency score. To obtain the seller’s efficiency given that the buyer’s 
efficiency is equal to *

BBE , we solve the following model: 
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Model (8.9) is equivalent to the following non-linear program: 
 

Maximize BAE  =   01

R A A
r rr

u yμ
=

×∑  
subject to 

 
 
 



Supply Chain Efficiency 179
 

      1 1
0I RA A A A

i i j r r ji r
x u yω μ

= =
− × ≥∑ ∑                          j = 1, …, N 

  01
1I A A

i ii
xω

=
=∑  

*
 01

T B B
t t BBt

y Eμ
=

=∑  

       1 1 1
0R S TA A B B B B

r r j s s j t t jr s t
y x yμ ω μ

= = =
+ − ≥∑ ∑ ∑        j = 1, …, N 

  0  01 1
1R SA A B B

r r s sr s
y xμ ω

= =
+ =∑ ∑  

 
A
iω ,  

A
rμ ,  

B
tμ , s 

Bω , 0u ≥  
 r=1, …, R, t=1, …, T, i = 1, …, I, s = 1,…., S 

 
 

(8.10) 
 

 
This model (8.10) is similar to model (8.6) and can be treated as a linear 

program with u  as the parameter. We next show how to select the initial 
value of this parameter. 

We first solve the following model: 

Maximize BAEF  = 
*
  01

  01

R A A
r rr

I A A
i ii

U y

v x

μ
=

=

×∑
∑

 

subject to 
*
   1

   1

1
R A A

r r jr
I A A

i i ji

U y

v x

μ
=

=

×
≤∑

∑
                                            j = 1, …, N 

 , 0A
iv U ≥    i = 1, …, I 

 
 
 

 
 (8.11) 

 

where *
 

A
rμ (r=1, …, R) is an optimal solution from model (8.8).  

Model (8.11) is equivalent to the following linear program: 
 
 
 

Maximize BAEF  = *
  01

R A A
r rr

u yμ
=

×∑  
subject to 

*
      1 1

0I RA A A A
i i j r r ji r

x u yω μ
= =

− × ≥∑ ∑                          j = 1, …, N 

   01
1I A A

i ii
xω

=
=∑  

 , 0A
i uω ≥  i = 1, …, I 

 
 
 

(8.12) 
 

 
Let * * *

 , ,A
i BAu EFω (i = 1, …, I) be an optimal solution from model 

(8.12).  Note that the optimal value to model (8.12), *
BAEF , may not be the 

maximum value for the seller because of possible multiple optima in model 
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(8.8). We have *
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BAEFu ≥ . We then utilize *
BAEF  as the lower bound for the parameter u  

when solving for seller’s efficiency using model (8.10). However, this lower 
bound can be converted into an upper bound as follows. 

Let   
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where 0 < *1 BAg EF≤  can be treated as a parameter. 
We solve model (8.13) for the seller’s efficiency. The computational 

procedure is similar to the one used in model (8.6). Denote the heuristic 
search solution to (8.13) as *

BAE . Then the efficiency of the supply chain can 
be defined as 

e BA = )(
2
1 ∗∗ + BBBA EE  

Table 8.3. Numerical Example 
DMU Ax1  Ax2  Ay1  Ay2  Bx  

By  

1 8 50 20% 10 8 100 
2 10 18 10% 15 10 70 
3 15 30 10% 20 8 95 
4 8 25 20% 25 10 80 
5 10 40 15% 20 15 85 
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Table 8.4. Leader-follower Results 

DMU Model 
(8.4) 
Seller 

Model 
(8.6) 

Buyer 

ABe  Model 
(8.8) 

Buyer 

Model 
(8.13) 
Seller 

BAe  

1 1 1 1 1 1 1 
2 0.833 0.56 0.697 0.875 0.766 0.821 
3 0.667 0.95 0.808 1 0.546 0.773 
4 1 0.653 0.827 0.653 1 0.827 
5 0.64 0.453 0.547 0.756 0.621 0.688 

 
We now illustrate the above DEA procedures with five supply chain 

operations (DMUs) given in Table 8.3. The seller has two inputs, Ax1 (labor) 
and Ax2  (cost) and two outputs, Ay1  (buyer’s fill rate) and Ay2  (number of 
product shipped). The buyer has another input Bx  (labor) and one 
output: By . 

Table 8.4 reports the efficiency scores obtained from the supply chain 
efficiency models. 

When the seller is treated as the leader, two seller operations in DMUs 1 
and 4 are efficient with only one efficient buyer operation in DMU1. This 
indicates that only DMU1 is the efficient supply chain. 

When the buyer is treated as the leader, model (8.8) shows that three 
buyer operations are inefficient and model (8.13) shows that only two seller 
operations are efficient. This also implies that only DMU1 is efficient. 

 

20 40 60 80 100 120

0.6
0.6
0.6
0.6
0.6
0.7

t

Optimal value 
to Model (6) 

 

Figure 8.5. Solving Non-Cooperative Model for DMU2 

Figure 8.5 shows how the best heuristic search is obtained when solving 
model (8.6) for DMU2. We set *1 0.01t AAd E t= − × , where *

AAE  = 0.833 
and t = 0, …, 120. Note that when t = 120, the parameter d  = 0, the lower 
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bound, and the optimal value to model (8.6) is 0.650. Therefore, we have 
completed the search over the entire feasible region of d and the best 
solution is obtained at t = 0, that is *

ABE  = 0.697. 

8.3.2 The Cooperative Model 

In game theory, when the buyer-seller relation was treated as leader-
follower, the buyer does not have control over the seller, and the seller 
determines the optimal strategy (optimal weights for the intermediate 
measures). Recent studies however have demonstrated that many retailers 
(buyers) have increased their bargaining power relative to the manufactures’ 
(sellers) bargaining power (Porter, 1974; Li, Huang and Ashley, 1996). The 
shift of power from manufacturers to retailers is one of the most significant 
phenomena in manufacturing and retailing. Walmart is an extreme case 
where the manufacturer becomes a “follower”. Therefore, it is in the best 
interest of the supply chain to encourage cooperation. This section considers 
the case where both the seller and buyer have the same degree of power to 
influence the supply chain system. Our new DEA model seeks to maximize 
both the seller’s and buyer’s efficiency, subject to a condition that the 
weights on the intermediate measures must be equal: 
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(8.14) 
 

 
We call model (8.14) the cooperative efficiency evaluation model, 

because it maximizes the joint efficiency of the buyer and seller, and forces 
the two players to agree on a common set of weights on the intermediate 
measures3. 

We apply the following Charnes-Cooper transformation to model (8.14): 

 
3 In cooperative game theory, the joint profit of seller and buyer is maximized. 
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(15) 
 

 
Model (8.15) is a non-linear programming problem, and can be converted 

into the following model: 
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Note also that the optimal *
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R A A
r rr

c y
=∑  in model (8.15) will not be less than 

*
BAE  in model (8.10). Thus, we have 0 < *1 BAk E< .  That is, model (8.15) 

can be treated as a parametric linear program, and we can obtain a heuristic 
search solution using the procedure developed for models (8.6) and (8.13). 

At the optima, let ∗
Aθ  = *

  01

R A A
r rr

c y
=∑  and ∗

Bθ  = *
01

T B B
t tt

yμ
=∑  represent 

the efficiency scores for the seller and buyer respectively. The following two 
remarks show that in general, the supply chain efficiency under the 
assumption of cooperation will not be less than the efficiency under the 
assumption of non-cooperation. 
Remark 8.1: If we set *

  01

R A A
r r AAr

c y E
=

=∑  as a constraint in model (8.15), 
then the feasible region of model (8.15) is the same as that of model (8.6). 
Therefore, ABP eV =* . 

Remark 8.2: If we set *
 01

T B B
t t BBt

y Eμ
=

=∑  as a constraint in model (8.15), 

then the feasible region of model (8.15) is the same as that of model (8.13). 
Therefore, BAP eV =* . 

We consider again the numerical example in Table 8.3. Table 8.6 reports 
the results from model (8.15), where columns 2 and 3 report the efficiency 
scores for the seller and buyer respectively, and the last column reports the 
optimal value to model (8.15), the supply chain efficiency. 
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Table 8.5. Cooperative structure results 

DMU ∗
Aθ  ∗

Bθ  Supply chain 

1 1 1 1 
2 0.766 0.875 0.821 
3 0.667 0.95 0.808 
4 1 0.653 0.827 
5 0.621 0.756 0.688 

Table 8.6. Comparison of Non-cooperative and Cooperative results 

DMU 
ABe  BAe  Model (15) 

1 1 1 1 
2 0.697 0.821 0.821 
3 0.808 0.773 0.808 
4 0.827 0.827 0.827 
5 0.547 0.688 0.688 

 
Table 8.7 compares the efficiency scores for the cooperative and non-

cooperative assumptions. In this numerical example, for all DMUs, one of 
the two leader-follower models achieves efficiency under the cooperative 
assumption. This indicates that no better solution can be found to yield a 
higher efficiency in the cooperative assumption. However, in other 
examples, the supply chain is likely to show a better performance when 
assuming cooperative operation. 
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Chapter 9 

Congestion 
 

 
 

9.1 Congestion Measure 

Congestion, as used in economics, refers to situations where reductions in 
one or more inputs generate an increase in one or more outputs. Examples 
can be found in underground mining and agriculture. For example, too much 
fertilizer applied to a given plot could reduce the overall output. We here 
adopt the following definition of congestion from Cooper, Thompson and 
Thrall (1996). 
 
Definition 9.1 (Congestion) Evidence of congestion is present when 
reductions in one or more inputs can be associated with increases in one or 
more outputs – or, proceeding in reverse, when increases in one or more 
inputs can be associated with decreases in one or more outputs – without 
worsening any other input or output. 
 

Färe and Grosskopf (1983) apply this concept to DEA using strong and 
weak input disposabilities. The envelopment DEA models discussed in 
Chapter 1 are strong input/output disposability models. We re-write the VRS 
envelopment models as 
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If we assume weak disposability of inputs and outputs in models (9.1) 

and (9.2), respectively, we obtain 
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 Note that, for example, the difference between models (9.1) and (9.3) is 
that input inequalities are changed into input equalities. If we apply weak 
disposability to other envelopment models, we obtain the weak disposability 
DEA models shown in Table 9.1. 
 The input and output congestion measures are then defined as C( *θ , *~θ ) 
= *θ / *~θ , and C( *φ , *~φ ) = *φ / *~φ , respectively. Note that we must have *θ  
≤ *~θ  because the latter is associated with equalities. As shown by Färe, 
Grosskopf and Lovell (1994), we can use C( *θ , *~θ ) (or C( *φ , *~φ )) as a 
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measure of congestion with the following properties. If C( *θ , *~θ ) = 1 
(C( *φ , *~φ )  = 1), then input (output) is not congested; alternatively, if C( *θ , 

*~θ ) < 1 (C( *φ , *~φ ) > 1), then input (output) congestion is present. 

Table 9.1. Weak Disposability DEA Models 
Frontier 
Type 

Weak Input Disposability Weak Output Disposability 
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Figure 9.1. VRS Weak Input Disposability Spreadsheet Model 
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 Byrnes, Färe and Grosskopf (1984) study the congestion of 15 Illinois 
coal mines. Figure 9.1 presents the 15 mines with one output (thousands 
tons) and five inputs, namely, labor (thousand miner-days), dragline capacity 
(K1) (cubic yards), power-shovel capacity (K2) (cubic yards), thickness of 
first-seam mined (T1) (feet), and reciprocal of depth to first-seam mined 
(1/D1) (D1 in feet). 
 In Figure 9.1, cells B20:B26 contain the formulas 
 
Cell B20 =SUMPRODUCT(B2:B16,$I$2:$I$16) 
Cell B21 =SUMPRODUCT(C2:C16,$I$2:$I$16) 
Cell B22 =SUMPRODUCT(D2:D16,$I$2:$I$16) 
Cell B23 =SUMPRODUCT(E2:E16,$I$2:$I$16) 
Cell B24 =SUMPRODUCT(F2:F16,$I$2:$I$16) 
Cell B25 =SUMPRODUCT(H2:H16,$I$2:$I$16) 
Cell B26 =SUM(I2:I16) 
 
where cells I2:I16 represent the changing cells, jλ  (j = 1, …, 15). 

 

Figure 9.2. Solver Parameters for VRS Weak Input Disposability Model 

 Cells D20:D25 contain the formulas 
 
D20 =$F$19*INDEX($B$2:$F$16,$E$18,1) 
D21 =$F$19*INDEX($B$2:$F$16,$E$18,2) 
D22 =$F$19*INDEX($B$2:$F$16,$E$18,3) 
D23 =$F$19*INDEX($B$2:$F$16,$E$18,4) 
D24 =$F$19*INDEX($B$2:$F$16,$E$18,5) 
D25 =INDEX(H2:H16,$E$18,1) 
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where F19 is the target cell (θ~ ), and cell E18 indicates the DMU under 
evaluation. 
 Figure 9.2 shows the Solver parameters for model (9.3) shown in Figure 
9.1. 
 The optimal value to model (9.3) in this case is equal to one across all 
DMUs. i.e., each mine is on the frontier. To obtain the congestion measure, 
we also need to calculate model (9.1). Figure 9.3 shows the results. Figure 
9.3 is the input-oriented VRS envelopment model where the inputs are 
strongly disposable. The related Solver parameters can be obtained by 
changing the equalities to inequalities in Figure 9.2, as shown in Figure 9.4. 
The efficiency scores are reported in cells J2:J16. The efficiency scores for 
weak input disposability are reported in cells K2:K16. It can be seen that 
congestion is present at DMUs 6 and 8. 

 

Figure 9.3. Congestion Measure For 15 Mines 
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Figure 9.4. Solver Parameters for Input-oriented VRS Strong Input Disposability Model 

When input congestion is present, we need to identify sources and 
amounts of congestion. Färe, Grosskopf and Lovell (1994) suggest a 
procedure for identifying input measure responsible for the input congestion. 
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where ⊆Α  {1, 2, …, m} and Α  is the complement. Using *~θ  and *α  for 
each ⊆Α  {1, 2, …, m}, if C( *θ , *~θ ) < 1, and *θ  = *α , as obtained from 
(9.1) and (9.5), the components of the subvectors associated with Α  (= {i | i 
∉ Α }) then identify sources and amounts of congestion. Similar models can 
be established for different RTS frontier and orientation assumptions. For 
example, if we remove ∑ jλ  = 1, we obtain the model under VRS. 

The suggested route requires additional computation which can be 
onerous because it involves obtaining solutions over all possible partitions of 
Α . In fact, the route followed by Färe, Grosskopf and Lovell (1994) 
emphasizes efficiency measurements with identification of sources and 
amounts of inefficiencies to be undertaken as an additional job. 
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9.2 Congestion and Slacks 

 We first provide the following definition. 
 
Definition 9.2 (DEA Slacks) An optimal value of si

−  and sr
+  in (1.4) (or 

(1.7), which we represent by si
−*  and sr

+* , are respectively called DEA input 
and output slack values. i.e., we refer to the slacks obtained in the second 
stage of DEA calculation as DEA slacks. 
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Figure 9.5. Congestion at point C 

To illustrate the nature of congestion. Figures 9.5 and 9.6 plot an input 
isoquant. The input isoquant bends at point A in Figure 9.5 because of the 
weak input disposability. As a result, AC is part the frontier, and for C, the 
optimal value to model (9.3) is one. However, for C, the optimal value to 
model (9.1) is less than one. Thus, input congestion is presented at C in 
Figure 9.5. 

In Figure 9.6, the isoquant bends at point D. Because of the existence of 
D, the optimal values to models (9.1) and (9.3) are equal. Thus, input 
congestion is absent at C in Figure 9.6. 

Furthermore, note that if the efficient reference set consists of A, point C 
will have a positive DEA slack value for the second input x2. Because of the 
presence of the weakly efficient point D (a frontier point with non-zero DEA 
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slacks), if the efficient reference set consists of points A and D, point C will 
not have slack values. (The (input) slacks do not necessarily represent DEA 
slack values.) 

However, if all frontier DMUs are extreme efficient, e.g., A and B, in 
Figure 9.5, then the input slacks are the same as the DEA slack values. In 
Figure 9.6, because C can be compared to a convex combination of D 
(weakly efficient) and A, no input slack is detected. 
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Figure 9.6. No Congestion at Point C 

Theorem 9.1 Input congestion as defined by C( *θ , *~θ ) is not present in the 
performance of oDMU  if and only if an optimal solution is associated with 
referent frontier DMUs such that non-zero input slack values are not 
detected in model (9.1). 
 
[Proof]: Recall that the only difference between (9.1) and (9.3) is that the 
input inequalities are changed to equalities. The referent frontier DMUs are 
those in the basis when calculating the strong disposability model (9.1). If 
we have some referent DMUs such that no non-zero input slack values are 
detected for DMUo , then we have, at optimality, 
 

ioij
Bj

j xx ** θλ =∑
∈

 for i = 1, …,m 
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where B represents the set of referent DMUs, B={j| *

jλ >0}. Obviously, *
jλ  

and *θ  are also optimal for (9.3). Therefore *θ  = *β . Thus, no input 
congestion occurs. This completes the if part. 

To establish the only if part, we note that if no input congestion is 
identified when an optimum is associated with a basis B' such that 

ioioijBj j xxx **
'

* θβλ ==∑ ∈ , then this same optimum provides referent DMUs 
such that the input constraints are binding in (9.1). Therefore no non-zero 
input slack values are detected by reference to those DMUs in B'. ■ 
 

It is well know that in the single input and the single output situation, no 
input or output slack will occur for CRS envelopment models, whereas non-
zero slack values may occur for VRS models. That is to say, in the single 
input and the single output situation, congestion will never occur with CRS 
but can possibly happen with VRS. 

Based upon Theorem 9.1, we have 
 
Corollary 9.1 If the observed values on the efficient frontier are composed 
only of extreme efficient DMUs, then congestion can occur if and only if 
non-zero DEA slack values are detected. Furthermore, the sources of 
congestion can then only be found in these non-zero DEA slack values. 
 
 Corollary 9.1 can be important in real world applications, since the 
frontiers in most real world data sets contain only the extreme efficient 
DMUs. Consequently, the congestion and its amount can simply be 
represented by the DEA slacks (see Ray, Seiford and Zhu, 1998). 
 The discussion here is based upon the VRS envelopment model and input 
congestion measure. The discussion for output congestion measures is the 
same. 

9.3 Slack-based Congestion Measure 

 The previous section indicates that there is a strong relationship between 
(input) slacks and the measure of (input) congestion. In fact, Brockett, 
Cooper, Shin and Wang (1998) develop a new slack-based approach to 
capture input congestion and identify its sources and amounts. Cooper, 
Seiford and Zhu (2000) study the relationship between these two DEA 
congestion approaches, and show that the work of Brockett, Cooper, Shin 
and Wang (1998) improves upon the work of Färe, Grosskopf and Lovell 
(1994) in that it not only (i) detects congestion but also (ii) determines the 
amount of congestion, and simultaneously, (iii) identifies factors responsible 
for congestion and distinguishes congestion amounts from other components 
of inefficiency. 
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 The following model is employed by Brockett, Cooper, Shin and Wang 
(1998) after solving the input-oriented VRS envelopment model 
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where θ *  is obtained from (9.1) while si

−*  and sr
+*  are obtained from (1.4). 

The amount of congestion in each input can then be determined by the 
difference between each pair of *−

is  and *+
iδ , where *+

iδ  are optimal values 
in (9.6). That is, 
 

c
is  = *−

is  - *+
iδ , i = 1, 2, …m                (9.7) 

 
Definition 9.3 (Congestion Slacks) c

is  defined in (9.7) are called input 
congestion slacks. 
 
 Similarly, we can calculate the output congestion slacks by 
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where *φ  is obtained from (9.2) while si

−*  and sr
+*  are obtained from (1.7). 

To establish the relationship between model (9.6) and C( *θ , *~θ ), we 
proceed as follows. Let x ( c

is ) be an input subvector in which its ith 
component corresponds to c

is  ≠ 0, i.e., x ( c
is ) is a congesting subvector. Next, 

let XC be the set of all congesting subvectors obtained via (9.5). We have 
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Theorem 9.2 x ( c

is ) ∈ XC. Furthermore, if (9.6) yields a unique optimal 
solution, then  XC= {x ( c

is )}. 
 
[Proof]: Let A = {i | c

is  = 0} and A  = {i | c
is  ≠ 0}. Then the constraints of 

(9.6) become 
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where *θ  is the optimal value to (9.1). This implies that *θ  is a feasible 
solution to (9.5). Thus, ≤*α  *θ , where α *  is the optimal value to (9.5) 
associated with A and A . On the other hand, any optimal solution to (9.5) is 
a feasible solution (1), therefore ≥*α  *θ . Thus, *θ  = *α  indicating that the 
input subvector associated with A , x ( c

is ), is a source of congestion. 
Therefore, x ( c

is ) ∈ XC. 
 Moreover, if (9.6) yields a unique optimal solution, then the solution in 
(9.8) is also unique. This means that *θ  = *α  does not hold for other input 
subvectors. Thus, XC= {x ( c

is )}.  ■ 
 

Theorem 9.2 indicates that under the condition of uniqueness, congestion 
will occur in the Brockett, Cooper, Shin and Wang (1998) approach if and 
only if it appears in Färe, Grosskopf and Lovell (1994) approach. However, 
the Brockett, Cooper, Shin and Wang (1998) approach identifies technical or 
mix inefficiencies and distinguishes these from congestion components via 
(9.7). 

We observe that the use of (9.5) may result in different congestion factors 
because of possible multiple optimal solutions. Theorem 9.2 indicates that 
the results from (9.6) then yield one of the congesting subvectors obtained 
from (9.5). As a result, the procedure by Färe, Grosskopf and Lovell (1994) 
for detecting the factors responsible for the congestion may be replaced by 
model (9.6) and one can more easily find and identify congestion and its 
sources without having to conduct a series of solutions as required for (9.5). 
 Consider the mine example again. Before we solve model (9.6), ,we need 
to determine the DEA slacks for the spreadsheet shown in Figure 9.3. i.e., 
we need to perform the second stage calculation for the input-oriented VRS 
envelopment model. 
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 Figure 9.7 shows the spreadsheet for calculating the DEA slacks. Cells 
F20:F25 and F26 represent the input slacks and output slack, respectively. 
Cell F19 represent the sum of slacks and is the target cell in the Solver 
parameters shown in Figure 9.8. 

 

Figure 9.7. DEA Slacks for 15 Mines 

 

Figure 9.8. Solver Parameters for Calculating DEA Slacks for 15 Mines 

 The formulas for cells B20:B25 are 
 
Cell B20 =SUMPRODUCT(B2:B16,$I$2:$I$16)+F20 
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Cell B21 =SUMPRODUCT(C2:C16,$I$2:$I$16)+F21 
Cell B22 =SUMPRODUCT(D2:D16,$I$2:$I$16)+F22 
Cell B23 =SUMPRODUCT(E2:E16,$I$2:$I$16)+F23 
Cell B24 =SUMPRODUCT(F2:F16,$I$2:$I$16)+F24 
Cell B25 =SUMPRODUCT(H2:H16,$I$2:$I$16)-F25 
 
 Cell F26 represents the sum of jλ  (=SUM(I2:I16)). Cells D20:D25 
contains 
 
D20 =INDEX(J2:J16,E18,1)*INDEX($B$2:$F$16,$E$18,1) 
D21 =INDEX(J2:J16,E18,1)*INDEX($B$2:$F$16,$E$18,2) 
D22 =INDEX(J2:J16,E18,1)*INDEX($B$2:$F$16,$E$18,3) 
D23 =INDEX(J2:J16,E18,1)*INDEX($B$2:$F$16,$E$18,4) 
D24 =INDEX(J2:J16,E18,1)*INDEX($B$2:$F$16,$E$18,5) 
D25 =INDEX(H2:H16,$E$18,1) 
 
 The DEA slack calculation is performed by the VBA procedure 
“DEASlack” 
 
Sub DEASlack() 

Dim i As Integer 

For i = 1 To 15 

Range("E18") = i 

SolverSolve UserFinish:=True 

Range("F20:F25").Copy 

Range("L" & i + 1).Select 

Selection.PasteSpecial Paste:=xlPasteValues, Transpose:=True 

Next i 

End Sub 
 

 We next calculate model (9.6) for DMUs 6 and 8. Based upon the DEA 
slacks in cells L2:Q16, Figure 9.9 shows the spreadsheet for calculating the 
congestion slacks. 
 Cells F20:F24 now represent +

iδ . Cell F19 contains the formula “=SUM 
(F20:F24)”, and is the target cell. We change the formulas for cells B20:B25 
and D20:D25 to 
 
Cell B20 =SUMPRODUCT(B2:B16,$I$2:$I$16)-F20 
Cell B21 =SUMPRODUCT(C2:C16,$I$2:$I$16)-F21 
Cell B22 =SUMPRODUCT(D2:D16,$I$2:$I$16)-F22 
Cell B23 =SUMPRODUCT(E2:E16,$I$2:$I$16)-F23 
Cell B24 =SUMPRODUCT(F2:F16,$I$2:$I$16)-F24 
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Cell B25 =SUMPRODUCT(H2:H16,$I$2:$I$16) 
D20 =INDEX(J2:J16,E18,1)*INDEX($B$2:$F$16,$E$18,1)-

INDEX(L2:L16,E18,1) 
D21 =INDEX(J2:J16,E18,1)*INDEX($B$2:$F$16,$E$18,2)-

INDEX(M2:M16,E18,1) 
D22 =INDEX(J2:J16,E18,1)*INDEX($B$2:$F$16,$E$18,3)-

INDEX(N2:N16,E18,1) 
D23 =INDEX(J2:J16,E18,1)*INDEX($B$2:$F$16,$E$18,4)-

INDEX(O2:O16,E18,1) 
D24 =INDEX(J2:J16,E18,1)*INDEX($B$2:$F$16,$E$18,5)-

INDEX(P2:P16,E18,1) 
D25 =INDEX(H2:H16,$E$18,1)+INDEX(Q2:Q16,E18,1) 

 

Figure 9.9. Congestion Slack Spreadsheet Model 

 Cells H20:H24 represent the DEA slacks for a DMU under evaluation and 
return the DEA slacks reported in cells L2:Q16. The formulas are 
 
Cells H20 =INDEX(L2:L16,E18,1) 
Cells H21 =INDEX(M2:M16,E18,1) 
Cells H22 =INDEX(N2:N16,E18,1) 
Cells H23 =INDEX(O2:O16,E18,1) 
Cells H24 =INDEX(P2:P16,E18,1) 
 
 Figure 9.10 shows the Solver parameters for calculating the congestion 
slacks. The congestion slacks are reported in cells I20:I24. In this example, 
the congestion slacks are equal to the DEA slacks for DMUs 6 and 8, 
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because +

iδ  = 0 in optimality. For example, for DMU 6,  the congestion 
factor is labor with a congestion slack of 5.384. 

 

Figure 9.10. Solver Parameters for Calculating Congestion Slacks 

 

9.4 

 
To run the weak disposability models presented in Table 9.1, select the 

“Weak Disposability” menu item. The results are reported in the 
“Efficiency” sheet. 
 

To calculate the congestion slacks, select the “Congestion” menu item. 
The Congestion will use the Slack and Target sheets. If there exist a slack 
sheet and a target sheet that are generated by the same envelopment model, 
you will be prompted a form shown in Figure 9.11. 

Solving DEA Using DEAFrontier Software 
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Figure 9.11. Congestion 

If you choose Yes, then the software will calculate the congestion slacks 
based upon the information stored in the “Slack”, “Target” and “Data” 
sheets. 

If you choose No, then the software will ask you to select an 
envelopment model. Then, the software will calculate the specified 
envelopment model, generate the “Slack” and “Target” sheets, and report the 
congestion slacks in “Congestion Slacks” sheet. The same procedure will be 
applied if there do not exist the “Slack” sheet and the “Target” sheet, or the 
“Slack” and “Target” sheets are generated by different envelopment models. 
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Chapter 10 

Super Efficiency 
 

 
 

10.1 Super-efficiency DEA Models 

When a DMU under evaluation is not included in the reference set of the 
envelopment models, the resulting DEA models are called super-efficiency 
DEA models. Charnes, Haag, Jaska and Semple (1992) use a super-
efficiency model to study the sensitivity of the efficiency classifications. Zhu 
(1996) and Seiford and Zhu (1998) develop a number of new super-
efficiency models to determine the efficiency stability regions (see Chapter 
11). Andersen and Petersen (1993) propose using the CRS super-efficiency 
model in ranking the efficient DMUs. Also, the super-efficiency DEA 
models can be used in detecting influential observations (Wilson, 1995) and 
in identifying the extreme efficient DMUs (Thrall, 1996). Seiford and Zhu 
(1999) study the infeasibility of various super-efficiency models developed 
from the envelopment models in Table 1.2. Chapter 11 presents other super-
efficiency models that are used in sensitivity analysis. 

Table 10.1 presents the basic super-efficiency DEA models based upon 
the envelopment DEA models. Based upon Table 10.1, we see that the 
difference between the super-efficiency and the envelopment models is that 
the oDMU  under evaluation is excluded from the reference set in the super-
efficiency models. i.e., the super-efficiency DEA models are based on a 
reference technology constructed from all other DMUs. 

Consider the example in Table 1.1. If we measure the (CRS) super 
efficiency of DMU2,  then DMU2 is evaluated against point A on the new 
facet determined by DMUs 1 and 3 (see Figure 10.1). To calculate the (CRS) 
super efficiency score for DMU2, we use the spreadsheet model shown in 
Figure 10.2. 
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Table 10.1. Super-efficiency DEA Models 
Frontier 
Type 

Input-Oriented Output-Oriented 
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Figure 10.1. Super-efficiency 

 Cell E9 indicates the DMU under evaluation which is excluded from the 
reference set. Cells F2:F6 are reserved for jλ  (j = 1, 2, 3, 4, 5),  and cell F10 
is reserved for the super-efficiency score ( upersθ ). 
 Cells B11:B13 contain the following formulas 
 
Cell B11 =SUMPRODUCT(B2:B6,F2:F6) 
Cell B12 =SUMPRODUCT(C2:C6,F2:F6) 
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Cell B13 =SUMPRODUCT(E2:E6,F2:F6) 
 

 

Figure 10.2. Input-oriented CRS Super-efficiency Spreadsheet Model 

 

Figure 10.3. Solver Parameters for Input-oriented CRS Super-efficiency 

 Note that in the above formulas, the DMU under evaluation is included in 
the reference set. In order to exclude the DMU under evaluation from the 
reference set, we introduce the following formula into cell B14 
 
Cell B14 =INDEX(F2:F6,E9,1) 
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which returns the jλ  for the DMUj under evaluation. In the Solver 
parameters shown in Figure 10.3, we set cell B14 equal to zero. 
 Cells D11:D13 contain the following formulas 
 
Cell D11 =$F$10*INDEX(B2:B6,E9,1) 
Cell D12 =$F$10*INDEX(C2:C6,E9,1) 
Cell D13 =INDEX(E2:E6,E9,1) 
 
 Based upon Figure 10.2 and Figure 10.3, the super-efficiency score for 
DMU2 is 1.357, and the non-zero jλ  in cells F2 and F4 indicate that DMU1 
and DMU3 form a new efficient facet. 
 DMU3 is evaluated against B on the new facet determined by DMUs 2 
and 4. If we change the value of cell E9 to 3, we obtain the super-efficiency 
score for DMU3 using the Solver parameters shown in Figure 10.3. The 
score is 1.25 (see cell G4 in Figure 10.4). 

 

Figure 10.4. Super-efficiency Scores 

 If we remove DMU4 or DMU 5 from the reference set, the frontier 
remains the same. Therefore,  the super-efficiency score for DMU4 (DMU5) 
equals to the input-oriented CRS efficiency score (see Figure 10.4). 
 If we measure the super-efficiency of DMU1, DMU1 is evaluated against 
C on the frontier extended from DMU2 (see Figure 10.5). It can be seen that 
C is a weakly efficient DMU in the remaining four DMUs 2, 3, 4 and 5. In 
fact, we may want to adjust such a super-efficiency score (see Zhu (2001b) 
and Chen and Sherman (2002)). 
 Although the super-efficiency models can differentiate the performance of 
the efficient DMUs, the efficient DMUs are not compared to the same 
“standard”. Because the frontier constructed from the remaining DMUs 
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changes for each efficient DMU under evaluation. In fact, the super-
efficiency should be regarded the potential input savings or output surpluses 
(see Chen (2002)). 
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Figure 10.5. Super-efficiency and Slacks 

10.2 Infeasibility of Super-efficiency DEA Models 

Consider the input-oriented VRS super-efficiency model shown Figure 
10.6. In fact, this is the spreadsheet model for the input-oriented VRS 
envelopment model except that we introduce the formula “=INDEX(I2:I16, 
E18,1)” into cell B26. This formula is used to exclude the DMU under 
evaluation from the reference set. That is, one needs to add an additional 
constraint of “$B$26=0” into the Solver parameters for the input-oriented 
VRS envelopment spreadsheet model, as shown in Figure 10.7. 

Once we set up the Solver parameters, the calculation is performed by the 
VBA procedure “SuperEfficiency”. 
 
Sub SuperEfficiency() 

Dim i As Integer 
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For i = 1 To 15 

Range("E18") = i 

SolverSolve UserFinish:=True 

If SolverSolve(UserFinish:=True) = 5 Then 

Range("J" & i + 1) = "Infeasible" 

Else 

Range("J" & i + 1) = Range("F19") 

End If 

Next 

End Sub 

 

Figure 10.6. Input-oriented VRS Super-efficiency Spreadsheet Model 

It can be seen that the input-oriented VRS super-efficiency model is 
infeasible for three VRS efficient companies (Mitsubishi, General Motors, 
and Royal Dutch/Shell Group). Note that in the VBA procedure 
“SuperEfficiency”, a VBA statement on infeasibility check is added. 

If we consider the output-oriented VRS super-efficiency model, we have 
the spreadsheet shown in Figure 10.8. Figure 10.8 is based upon the output-
oriented VRS envelopment with an additional formula in cell B26 “=INDEX 
(I2:I16,E18,1)”. To calculate the output-oriented super-efficiency scores, we 
need to change the “Min” to “Max” in the Solver parameters shown in 
Figure 10.7. 
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Based upon Figure 10.8, the output-oriented VRS super-efficiency model 
is infeasible for five output-oriented VRS efficient companies (Itochu, 
Sumitomo, Marubeni, Wal-Mart, and Nippon Life Insurance). 

 

Figure 10.7. Solver Parameters for Input-oriented VRS Super-efficiency 

 

Figure 10.8. Output-oriented VRS Super-efficiency Spreadsheet Model 

Thrall (1996) shows that the super-efficiency CRS model can be 
infeasible. However, Thrall (1996) fails to recognize that the output-oriented 
CRS super-efficiency model is always feasible for the trivial solution which 
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has all variables set equal to zero. Moreover, Zhu (1996) shows that the 
input-oriented CRS super-efficiency model is infeasible if and only if a 
certain pattern of zero data occurs in the inputs and outputs. 

Figure 10.9 illustrates how the VRS super-efficiency model works and 
the infeasibility for the case of a single output and a single input case. We 
have three VRS frontier DMUs, A, B and C. AB exhibits IRS and BC 
exhibits DRS. The VRS super-efficiency model evaluates point B by 
reference to B′ and B′′ on section AC through output-reduction and input-
increment, respectively. In an input-oriented VRS super-efficiency model, 
point A is evaluated against A′. However, there is no referent DMU for point 
C for input variations. Therefore, the input-oriented VRS super-efficiency 
model is infeasible at point C. Similarly, in an output-oriented VRS super-
efficiency model, point C is evaluated against C′. However, there is no 
referent DMU for point A for output variations. Therefore, the output-
oriented VRS super-efficiency model is infeasible at point A. Note that point 
A is the left most end point and point B is the right most end point on this 
frontier. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A′ 

B′ 

A 

B′′ 
B 

C′ 

C 

Left-end point 

right-end point 

Infeasibility 

Infeasibility 

Input 

Output 

 

Figure 10.9. Infeasibility of Super-efficiency Model 

As in Charnes, Cooper and Thrall (1991), the DMUs can be partitioned 
into four classes E, E', F and N described as follows. First, E is the set of 
extreme efficient DMUs. Second, E' is the set of efficient DMUs that are not 
extreme points. The DMUs in set E' can be expressed as linear combinations 
of the DMUs in set E. Third, F is the set of frontier points (DMUs) with non-
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zero slack(s). The DMUs in set F are usually called weakly efficient. Fourth, 
N is the set of inefficient DMUs. 

For example, DMUs 1, 2, and 3 in Figure 10.1 are extreme efficient (in 
set E), DMU4 is in set F, and DMU5 is in set N. 

Thrall (1996) shows that if the CRS super-efficiency model is infeasible, 
or if the super-efficiency score is greater than one for input-oriented model 
(less than one for output-oriented model), then oDMU ∈E. This result can 
also be applied to other super-efficiency models. i.e., the extreme efficient 
DMUs can be identified by the super-efficiency models. This finding is 
important in empirical applications. For example, in the slack-based 
congestion measures discussed in Chapter 9, if we can know that the data set 
consists of only extreme efficient DMUs, then the congestion slacks are 
equal to the DEA slacks. 

Note that if a specific oDMU ∈E', F or N and is not included in the 
reference set, then the efficient frontiers (constructed by the DMUs in set E) 
remain unchanged. As a result, the super-efficiency DEA models are always 
feasible and equivalent to the original DEA models when oDMU ∈E', F or 
N. Thus we only need to consider the infeasibility when DMU o ∈E. 

We next study the infeasibility of the VRS, NIRS and NDRS super-
efficiency models, where we assume that all data are positive. 

From the convexity constraint (∑ ≠oj jλ  = 1) on the intensity lambda 
variables, we immediately have 
 
Proposition 10.1 oDMU ∈E under the VRS model if and only if oDMU ∈E 
under the NIRS model or NDRS model. 
 

Thus in the discussion to follow, we limit our consideration to 
DMU o ∈E under the VRS model. We have 

 
Proposition 10.2 Let *superθ  and *superφ  denote, respectively, optimal values 
to the input-oriented and output-oriented super-efficiency DEA models when 
evaluating an extreme efficient DMU o , then 
(i) Either *superθ  > 1 or the specific input-oriented super-efficiency DEA 
model is infeasible. 
(ii) Either *superφ  < 1 or the specific output-oriented super-efficiency DEA 
model is infeasible. 
 

Based upon Seiford and Zhu (1999), we next (i) present the necessary 
and sufficient conditions for the infeasibility of various super-efficiency 
DEA models in a multiple inputs and multiple outputs situation, and (ii) 
reveal the relationship between infeasibility and RTS classification. (Note 
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that, in Figure 10.9, point A is associated with IRS and point C is associated 
with DRS.) 

10.2.1 Output-oriented VRS Super-efficiency Model 

 Suppose each jDMU  (j = 1, 2, ..., n) consumes a vector of inputs, jx , to 
produce a vector of outputs, jy . We have 
 
Theorem 10.1 For a specific extreme efficient oDMU  = ( ox , oy ), the 
output-oriented VRS super-efficiency model is infeasible if and only if 
( ox ,δ oy ) is efficient under the VRS envelopment model for any 0< δ ≤ 1. 
 
[Proof]: Suppose that the output-oriented VRS super-efficiency model is 
infeasible and that ),( o

o
o yx δ  is inefficient, where 10 ≤< oδ . Then 
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has a solution of )(* ojj ≠λ , *

oλ  = 0, *super
oφ  > 1. Since 0* =oλ , we have that 

model (10.1) is equivalent to an output-oriented VRS super-efficiency model 
and thus the output-oriented VRS super-efficiency model is feasible. A 
contradiction. This completes the proof of the only if part. 

To establish the if part, we note that if the output-oriented VRS super-
efficiency model is feasible, then *superφ  < 1 is the maximum radial reduction 
of all outputs preserving the efficiency of oDMU . Therefore, δ cannot be 
less than *superφ . Otherwise, oDMU  will be inefficient under the output-
oriented VRS envelopment model. Thus, the output-oriented VRS super-
efficiency model is infeasible. ■ 
 
Theorem 10.2 The output-oriented VRS super-efficiency model is infeasible 
if and only if * , where *  > 1 is the optimal value to (10.2). 
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[Proof]: We note that for any )( ojj ≠λ  with ∑ ≠oj jλ  = 1, the constraint 

ojoj j yy superφλ ≥∑ ≠  always holds. Thus the output-oriented super-efficiency-
VRS is infeasible if and only if there exists no )( ojj ≠λ  with ∑ ≠oj jλ  = 1 
such that ojoj j xx ≤∑ ≠ λ  holds. This means that the optimal value to (10.2) is 
greater than one, i.e., *  > 1. ■ 

 

Figure 10.10. Spreadsheet for Infeasibility Test (Output-oriented VRS Super-efficiency) 

 

Figure 10.11. Solver Parameters for Infeasibility Test (Output-oriented) 
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 Figure 10.10 shows the spreadsheet model for model (10.2) where the 
output-oriented VRS super-efficiency scores are reported in cells I2:I16. 
 The spreadsheet shown in Figure 10.10 is obtained by removing the 
output constraints from the spreadsheet shown in Figure 10.6. Figure 10.11 
shows the Solver parameters. It can be seen that *  > 1 if and only if model 
(10.2) is infeasible for a company. 

Further, note that the oDMU  is also CRS efficient if and only if CRS 
prevail . Therefore, if IRS or DRS prevail, then oDMU  must be CRS 
inefficient. Thus, in this situation, the CRS super-efficiency model is 
identical to the CRS envelopment model. Based upon Chapter 13, IRS or 
DRS on oDMU  can be determined by 
 
Lemma 10.1 The RTS for oDMU  can be identified as IRS if and only if 
∑ ≠0

* j jλ  < 1 in all optima for the CRS super-efficiency model and DRS if 
and only if ∑ ≠0

* j jλ  in all optima for the CRS super-efficiency  model. 
 
Lemma 10.2 If oDMU  exhibits DRS, then the output-oriented VRS super-
efficiency model is feasible and *superφ  < 1, where *superφ  is the optimal value 
to the output-oriented VRS super-efficiency model. 
 
[Proof]: The output-oriented VRS super-efficiency model is as follows 
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Let θ  = 1/ superφ . Multiplying all constraints in (10.3) by θ  yields 
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where )( ~ ojjj ≠= θλλ . 

Since oDMU  exhibits DRS, then by Lemma 10.1, ∑ ≠0
* j jλ  > 1 in all 

optima to the following CRS super-efficiency model 
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Let ∑ ≠0

* j jλ  = θ . Obviously superθθ >  is a feasible solution to (10.5). 
This in turn indicates that )( * ojj ≠λ  and θ  is a feasible solution to (10.4). 
Therefore, (10.3) is feasible. Furthermore by Proposition 10.2, we have that 

*superφ  < 1, where *superφ  is the optimal value to (10.3). ■ 
 
Theorem 10.3 If the output-oriented VRS super-efficiency model is 
infeasible, then oDMU  exhibits IRS or CRS. 
 
[Proof]: Suppose that oDMU  exhibits DRS. By Lemma 10.2, the output-
oriented VRS super-efficiency model  is feasible. A contradiction. ■ 
 

Theorems 10.1 and 10.2 indicate that if the output-oriented VRS super-
efficiency model is infeasible, then oDMU  is one of the endpoints. 
Moreover, if IRS prevail, then oDMU  is a left endpoint (see Figure 10.9). 

 

10.2.2 Other Output-oriented Super-efficiency Models 

Now, consider the output-oriented NIRS and NDRS super-efficiency 
models. Obviously, we have a feasible solution of )( 0 ojj ≠=λ  and superφ  = 
0 in the output-oriented NIRS super-efficiency model. Therefore, we have 
 
Theorem 10.4 The output-oriented NIRS super-efficiency model is always 
feasible. 
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Lemma 10.3 The output-oriented NDRS super-efficiency model is 
infeasible if and only if the output-oriented VRS super-efficiency model is 
infeasible. 
 
[Proof]: The only if part is obvious and hence is omitted. To establish the if 
part, we suppose that the output-oriented NDRS super-efficiency model is 
feasible. i.e., we have a feasible solution with ∑ ≠oj jλ > 1 for the output-
oriented NDRS super-efficiency model. If ∑ ≠oj jλ  = 1, then this solution is 
also feasible for the output-oriented VRS super-efficiency. If ∑ ≠oj jλ  > 1, let 
∑ ≠oj jλ  = d > 1. Then ooj jjoj j xxx ≤∑≤∑ ≠≠ λλ~ , where jλ~  = dj /λ ( oj ≠ ) 
and ∑ ≠oj jλ  = 1. Therefore )( ~ ojj ≠λ  is a feasible solution to the output-
oriented VRS super-efficiency model. Both possible cases lead to a 
contradiction. Thus, the output-oriented NDRS super-efficiency model is 
infeasible if the output-oriented VRS super-efficiency model is infeasible. ■ 
 

 On the basis of Lemma 10.3, we have 
 
Theorem 10.5 For a specific extreme efficient oDMU  = ( ox , oy ), we have 
(i) The output-oriented NDRS super-efficiency model is infeasible if and 
only if ( ox , δ oy ) is efficient under the VRS envelopment model for any 0 < 
δ ≤ 1. 
(ii) The output-oriented NDRS super-efficiency model is infeasible if and 
only if *  > 1, where *  is the optimal value to (10.2). 
 
 If oDMU E∈  for the NDRS model, then oDMU  exhibits IRS or CRS. 
By Proposition 10.1, oDMU  also lies on the VRS frontier that satisfies IRS 
or CRS. i.e., the VRS and NDRS envelopment models are identical for 

oDMU . Thus, ( ox , δ oy ) is also efficient under the NDRS envelopment 
model for any 0 < δ ≤ 1. 
 

10.2.3 Input-oriented VRS Super-efficiency Model 

Theorem 10.6 For a specific extreme efficient oDMU  = ( ox , oy ), the input-
oriented VRS super-efficiency model is infeasible if and only if ),( oo yxχ  is 
efficient under the VRS envelopment model for any +∞<≤ χ1 . 
 
[Proof]: Suppose the input-oriented VRS super-efficiency model is 
infeasible and assume that ),( oo

o yxχ  is inefficient, where +∞<≤ oχ1 . 
Then 
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has a solution of )(* ojj ≠λ , *

oλ  = 0, *super
oθ . Since *

oλ  = 0, model (10.6) is 
equivalent to the input-oriented VRS super-efficiency model. Thus, the 
input-oriented VRS super-efficiency model is feasible. This completes the 
proof of only if part. 

To establish the if part, we note that if the input-oriented VRS super-
efficiency model is feasible, then *superθ  > 1 is the maximum radial increase 
of all inputs preserving the efficiency of oDMU . Therefore, χ cannot be 
bigger than *superθ . Otherwise, oDMU  will be inefficient under the input-
oriented VRS envelopment model. Thus, the input-oriented VRS super-
efficiency model is infeasible. ■ 
 
Theorem 10.7 The input-oriented super-efficiency-VRS model is infeasible 
if and only if *g  < 1, where *g  is the optimal value to (10.7). 
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[Proof]: We note that for any )( ojj ≠λ  with ∑ ≠oj jλ  = 1, the constraint 

joj j x∑ ≠ λ  < oxsuperθ  always holds. Thus, the input-oriented VRS super-
efficiency model is infeasible if and only if joj j y∑ ≠ λ  > oy  does not hold for 
any λ j j o ( )≠  with ∑ ≠oj jλ  = 1. This means that the optimal value to 
(10.7) is less than one, i.e., *g  < 1. ■ 
 
 Figure 10.12 shows the spreadsheet model for model (10.7) where the 
input-oriented VRS super-efficiency scores are reported in cells I2:I16. This 
spreadsheet is obtained from the output-oriented VRS super-efficiency 
model shown in Figure 10.8. Figure 10.13 shows the Solver parameters. It 
can be seen that *g  < 1 if and only if model (10.7) is infeasible for a 
company. 
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Figure 10.12. Spreadsheet for Infeasibility Test (Input-oriented VRS Super-efficiency) 

 

Figure 10.13. Solver Parameters for Infeasibility Test (Input-oriented) 

 
Lemma 10.4 If oDMU  exhibits IRS, then the input-oriented VRS super-
efficiency model is feasible and *superθ  > 1, where *superθ  is the optimal value 
to the input-oriented VRS super-efficiency model. 
 
[Proof]: Let ϑ  = 1/ superθ , then the input-oriented VRS super-efficiency 
model becomes 
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where )( ˆ ojjj ≠= ϑλλ . 

Since oDMU  exhibits IRS, then by Lemma 10.1, ∑ ≠0
* j jλ  < 1 in all 

optima to the following output-oriented CRS super-efficiency model 
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Let ∑ ≠0
* j jλ  = ϑ  < 1. Since oDMU  is CRS inefficient, therefore superφ  > 

1 and hence superφ  > ϑ  is a feasible solution to (10.9). This in turn indicates 
that ϑ  and λ j j o* ( )≠  with ∑ ≠0

* j jλ  = ϑ  is a feasible solution to (10.8). 
Therefore, the input-oriented VRS super-efficiency model is feasible. 
Furthermore, by Proposition 10.2, we have that *superφ  > 1, where *superφ  is 
the optimal value to the input-oriented VRS super-efficiency model. ■ 
 
Theorem 10.8 If the input-oriented VRS super-efficiency model is 
infeasible, then oDMU  exhibits DRS or CRS. 
 
[Proof]: If oDMU  exhibits IRS, then by Lemma 10.4, the input-oriented 
VRS super-efficiency model is feasible. A contradiction. ■ 
 

Theorems 10.6 and 10.7 indicate that if the input-oriented VRS super-
efficiency model is infeasible, then oDMU  is one of the endpoints. 
Furthermore, if DRS prevail, then oDMU  is an right endpoint (see Figure 
10.9). 
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10.2.4 Other Input-oriented Super-efficiency Models 

Now, consider the input-oriented NIRS and NDRS super-efficiency 
models. 
 
Theorem 10.9 The input-oriented NDRS super-efficiency model is always 
feasible. 
 
[Proof]: Since∑ ≠oj jλ  > 1 in the input-oriented DNRS super-efficiency 
model, there must exist some jλ~  with ∑ ≠oj jλ~  > 1 such that joj j y∑ ≠ λ~  > oy  
holds. Note that joj j x∑ ≠ λ~  < oxsuperθ  can always be satisfied by a proper 

superθ . Thus, the input-oriented NDRS super-efficiency model is always 
feasible. ■ 
 
Lemma 10.5 The input-oriented NIRS super-efficiency model is infeasible if 
and only if the input-oriented VRS super-efficiency model is infeasible. 
 
[Proof]: The only if part is obvious and hence is omitted. To establish the if 
part, we suppose that the input-oriented NIRS super-efficiency model is 
feasible. i.e., we have a feasible solution with ∑ ≠oj jλ  < 1 for the input-
oriented NIRS super-efficiency model. If ∑ ≠oj jλ  = 1, then this solution is 
also feasible for the output-oriented VRS super-efficiency model. If ∑ ≠oj jλ  
< 1, let ∑ ≠oj jλ  = e < 1. Then joj j y∑ ≠ λ̂  > joj j y∑ ≠ λ  > oy , where jλ̂  = 

ej /λ  ( oj ≠ ) and ∑ ≠oj jλ̂  = 1. Therefore )(ˆ ojj ≠λ  is a feasible solution to 
the output-oriented VRS super-efficiency model. Both possible cases lead to 
a contradiction. Thus, the output-oriented NIRS super-efficiency model is 
infeasible if the output-oriented VRS super-efficiency model is infeasible. ■ 

 
On the basis of this Lemma 10.5, we have 
 

Theorem 10.10 For a specific extreme efficient oDMU  = ( oo yx , ), we have 
(i) The input-oriented NIRS super-efficiency model is infeasible if and only 
if ),( oo yxχ  is efficient under the VRS envelopment model for any 

+∞<≤ χ1 . 
(ii) The input-oriented NIRS super-efficiency model is feasible if and only if 

*g  < 1, where *g  is the optimal value to (10.7). 
 
 If oDMU E∈  under the NIRS model, then oDMU  exhibits DRS or CRS. 
By Proposition 10.1, the oDMU  also lies on the VRS frontier that satisfies 
DRS or CRS. i.e., the VRS and NIRS envelopment models are identical for 

oDMU . Thus ),( oo yxχ  is also efficient under the NIRS envelopment model 
for any +∞<≤ χ1 . 
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Furthermore, Theorems 10.3 and 10.8 demonstrate that the possible 
infeasibility of the output-oriented and input-oriented VRS super-efficiency 
models can only occur at those extreme efficient DMUs exhibiting IRS (or 
CRS) and DRS (or CRS), respectively. Note that IRS and DRS are not 
allowed in the NIRS and NDRS models, respectively. Therefore, we have 
the following corollary. 
 
Corollary 10.1 
(i) If oDMU ∈E  exhibits DRS, then all output-oriented super-efficiency 
DEA models are feasible. 
(ii) If oDMU ∈E  exhibits IRS, then all input-oriented super-efficiency 
DEA models are feasible. 
 

By Theorems 10.1 and 10.6, we know that infeasibility indicates that the 
inputs of an extreme efficient oDMU  can be proportionally increased 
without limit or that the outputs can be decreased in any positive proportion, 
while preserving the efficiency of oDMU . This indicates that the efficiency 
of oDMU  is always stable under the proportional data changes. 

Models (10.2) and (10.7) are useful in the determination of infeasibility 
while Theorems 10.1 and 10.6 are useful in the sensitivity analysis of 
efficiency classifications. Table 10.2 summarizes the relationship between 
infeasibility and the super-efficiency DEA models. 

Table 10.2. Super-efficiency DEA Models and Infeasibility 
Super-efficiency Models Infeasibility RTS 

Output-oriented VRS Theorem 10.2 (Model (10.2)) DRS 
 NIRS always feasible always feasible 
Input-oriented NDRS Lemma 10.3, Theorem 10.2 Corollary 10.1 (i) 
 VRS Theorem 10.7 (Model (10.7)) IRS 
 NIRS Lemma 10.5, Theorem 7 always feasible 
 NDRS always feasible Corollary 10.1 (ii) 

 
Finally, we note that the super-efficiency VRS models can also be used 

to estimate RTS. This is a possible new usage of the super-efficiency DEA 
models. 

10.3 

To run the super-efficiency models presented in Table 10.1, select the 
“Super-efficiency” menu item. You will be prompted a form shown in 
Figure 10.4 for specifying the super-efficiency models. The results are 
reported in the “Super-efficiency” sheet. 

Solving DEA Using DEAFrontier Software 
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Figure 10.14. Super Efficiency Models 
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Chapter 11 

Sensitivity Analysis 
 

 
 

11.1 DEA Sensitivity Analysis 

One important issue in DEA which has been studied by many DEA 
researchers is the efficiency sensitivity to perturbations in the data. Some 
DEA sensitivity studies focus on the sensitivity of DEA results to the 
variable and model selection, e.g., Ahn and Seiford (1993). Most of the DEA 
sensitivity analysis studies focus on the misspecification of efficiency 
classification of a test DMU. However, note that DEA is an extremal method 
in the sense that all extreme points are characterized as efficient. If data 
entry errors occur for various DMUs, the resulting isoquant may vary 
substantially. We say that the calculated frontiers of DEA models are stable 
if the frontier DMUs that determine the DEA frontier remain on the frontier 
after particular data perturbations are made. 

By updating the inverse of the basis matrix associated with a specific 
efficient DMU in a DEA linear programming problem, Charnes, Cooper, 
Lewin, Morey and Rousseau (1985) study the sensitivity of DEA model to a 
single output change. This is followed by a series of sensitivity analysis 
articles by Charnes and Neralic in which sufficient conditions preserving 
efficiency are determined (see, e.g. Charnes and Neralic (1990)). 

Another type of DEA sensitivity analysis is based on super-efficiency 
DEA models. Charnes, Haag, Jaska and Semple (1992), Rousseau and 
Semple (1995) and Charnes, Rousseau and Semple (1996) develop a super-
efficiency DEA sensitivity analysis technique for the situation where 
simultaneous proportional change is assumed in all inputs and outputs for a 
specific DMU under consideration. This data variation condition is relaxed 
in Zhu (1996) and Seiford and Zhu (1998a) to a situation where inputs or 
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outputs can be changed individually and the entire (largest) stability region 
which encompasses that of Charnes, Haag, Jaska and Semple (1992) is 
obtained. As a result, the condition for preserving efficiency of a test DMU 
is necessary and sufficient. 

The DEA sensitivity analysis methods we have just reviewed are all 
developed for the situation where data variations are only applied to the test 
efficient DMU and the data for the remaining DMUs are assumed fixed. 
Obviously, this assumption may not be realistic, since possible data errors 
may occur in each DMU. Seiford and Zhu (1998b) generalize the technique 
in Zhu (1996) and Seiford and Zhu (1998a) to the worst-case scenario where 
the efficiency of the test DMU is deteriorating while the efficiencies of the 
other DMUs are improving. In their method, same maximum percentage 
data change of a test DMU and the remaining DMUs is assumed and 
sufficient conditions for preserving an extreme efficient DMU’s efficiency 
are determined. Note that Thompson, Dharmapala and Thrall (1994) use the 
SCSC (strong complementary slackness condition) multipliers to analyze the 
stability of the CRS model when the data for all efficient and all inefficient 
DMUs are simultaneously changed in opposite directions and in same 
percentages. Although the data variation condition is more restrictive in 
Seiford and Zhu (1998b) than that in Thompson, Dharmapala and Thrall, 
(1994), the super-efficiency based approach generates a larger stability 
region than the SCSC method. Also, the SCSC method is dependent upon a 
particular SCSC solution, among others, and therefore the resulting analysis 
may vary (see Cooper, Li, Seiford, Thrall and Zhu, 2001). 

Seiford and Zhu (1999) (Chapter 10) develop the necessary and sufficient 
conditions for infeasibility of various super-efficiency DEA models. 
Although the super-efficiency DEA models employed in Charnes, Haag, 
Jaska and Semple (1992) and Charnes, Rousseau and Semple (1996) do not 
encounter the infeasibility problem, the models used in Seiford and Zhu 
(1998a) do. Seiford and Zhu (1998a) discover the relationship between 
infeasibility and stability of efficiency classification. That is, infeasibility 
means that the efficiency of the test DMU remains stable to data changes in 
the test DMU. Furthermore, Seiford and Zhu (1998b) show that this 
relationship is also true for the simultaneous data change case and other 
DEA models, such as the VRS model and the additive model of Charnes, 
Cooper, Golany, Seiford and Stutz (1985). This finding is critical since 
super-efficiency DEA models in Seiford and Zhu (1998b) are frequently 
infeasible for real-world data sets, indicating efficiency stability with 
respective to data variations in inputs/outputs associated with infeasibility. 

Zhu (2001) extends the results in Seiford and Zhu (1998a; b) to a 
situation when different data variations are applied to the test DMU and the 
remaining DMUs, respectively. 
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In this chapter, we focus on the DEA sensitivity analysis methods based 
upon super-efficiency DEA models that are developed by Zhu (1996; 2001) 
and Seiford and Zhu (1998a;b). For the DEA sensitivity analysis based upon 
the inverse of basis matrix, the reader is referred to Neralic (1994). 

Since an increase of any output or a decrease of any input cannot worsen 
the efficiency of oDMU , we restrict our attention to decreases in outputs and 
increases in inputs for oDMU . We consider proportional increases of inputs 
or proportional decreases of outputs of the form 
 

1      ˆ ≥= iioiio xx ββ , i = 1, …, m              (11.1) 
10ˆ      ≤<= rrorro yy αα , r = 1, …, s             (11.2) 

 
where iox  (i = 1, 2,..., m) and roy  (r = 1, ..., s) are respectively, the inputs 
and outputs for a specific extreme efficient 

ojo DMUDMU =  among n 
DMUs. 

Zhu (1996) provides a super-efficiency model to compute a stability 
region in which oDMU  remains efficient. Specifically, for an increase in 
inputs of form (11.1), this model is given by 
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where ijx  and rjy  are the ith input and rth output of jDMU  (j =1, ..., n), 
respectively. It can be seen that model (11.3) is developed from the input-
oriented measure-specific model – CRS kth input-specific model. 

Zhu's (1996) approach requires two assumptions: (i) the hyperplane 
constructed by the m hypothetical observations obtained from model (11.3) 
is not dominated by other DMUs and (ii) model (11.3) is feasible. However, 
in real word situations, these two assumptions may not be satisfied. 

Note that any increase of input or any decrease of output will cause the 
DMUs in set E' (efficient but not extreme efficient) to become inefficient. 
For those DMUs in set F (weakly efficient with non-zero slacks), the amount 
of inputs (or outputs) which have non-zero slacks can be increased (or 
decreased) without limit, and these DMUs will remain in the set F. However, 
for inputs and outputs which have no slack, any input increase of (11.1) or 
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any output decrease of (11.2) will cause these DMUs to become inefficient. 
Therefore, the sensitivity issue of DMUs in set E' or F is straightforward if 
not trivial. Thus, we first focus on the efficiency of the DMUs in set E, i.e., 
the extreme efficient DMUs. 

11.2 Stability Regiona 

11.2.1 Input Stability Region 

For oDMU E∈ , we first suppose that (11.3) is feasible for each input 
and consider input changes of form (11.1). As shown in Zhu (1996), the 
optimal value to (11.3), *o

kβ , gives the maximum possible increase for each 
individual input which allows oDMU  to remain efficient with the other 
inputs and all outputs held constant. Also, (11.3) provides m hypothetical 
frontier points  (efficient DMUs) when oDMU  is excluded from the 
reference set. The kth point is generated by increasing the kth input from 

kox to ko
o
k x*β  and holding all other inputs and outputs constant. We denote 

these k hypothetical observations by 
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Consider the following linear programming problem 
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This model determines the smallest summation of the proportions to 

move oDMU  to the boundary of the convex hull of the other DMUs. 
 
Lemma 11.1 Denote the optimal solution for (11.5) by *o

iρ  (i = 1, 2,..., m). 
For i = 1, 2,..., m, we have 1** ≥≥ o

i
o
i ρβ . 

[Proof]: Suppose for some oi , ** o
i

o
i oo

ρβ < , then oi
o
ioi

o
iijoj j oooo

xxx ** ρβλ <≤∑ ≠ . 
Therefore, any optimal solution to (11.3) is a feasible solution to (11.5). 
Thus, m-1+ *

1
** 1 o

i
m
i

o
i

o
i oo

m βρβ +−>∑≥ = . A contradiction. ■ 
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Associated with *o
iρ  (i = 1, 2,..., m), m additional points (or DMUs) can 

be generated as 
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1
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k yyxxxDMU ρρ =          (11.6) 

 
Theorem 11.1 For oDMU  = ),...,,,...,( 11 soomoo yyxx , denote an increase of 
inputs of form (11.1) by oDMU ),...,( 1 mββ  = ),...,,,...,( 111 soomomo yyxx ββ  
and define },...,1,1  |),...,{( *

1 mio
iim

o =≤≤=Ω ρβββ . If o
m Ω∈),...,( 1 ββ , 

then oDMU ),...,( 1 mββ  remains efficient. 
 
[Proof]: Suppose o

m Ω∈)~,...,~( 1 ββ  and oDMU  with inputs of ioi xβ~  (I = 1,..., 
m) is inefficient. In fact, (11.5) is equivalent to the following linear 
programming problem where o

iioio
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i xx δρ +=  (and iioioi xx δβ ~~ +=  in which 

*~0 o
ii δδ ≤≤ ) 

.0,

,...,1            

,...,1     
subject to
min

1

1

1

≥

=≥∑

=≤−∑

∑

≠
=

≠
=

=

j
o
i

ro

n

oj
j

rjj

io
o
i

n

oj
j

ijj

m

i

o
i

sryy

mixx

λδ

λ

δλ

δ

 

 
∑ =

m
i

o
i1δ  is ∑ =

m
i

o
i1

*δ  at optimality when ∑ =
m
i

o
i1 ρ  = ∑ =

m
i

o
i1

*ρ , and there exist 
0 , ),0( ≥≠ +−

rij ssjλ  that satisfy 
 

njss

srysy

mixsx

rij

ror

n

oj
j

rjj

iioi

n

oj
j

ijj

,...,1                    0,,

,...,1            

,...,1       ~

1

1

=≥

==−∑

=+=+∑

+−

+

≠
=

−

≠
=

λ

λ

δλ

 

violating the optimality of ∑ =
m
i

o
i1

*δ . Thus, oDMU ),...,( 1 mββ  with inputs of 
ioi xβ~  (i = 1,..., m) is efficient. ■ 

 
Definition 11.1 A region of allowable input increases is called an Input 
Stability Region if and only if oDMU  remains efficient after such increases 
occur. 

The input stability region (ISR) determines by how much all of oDMU ’s 
inputs can be increased before oDMU  is within the convex hull of the other 
DMUs. From Lemma 11.1 and Theorem 11.1 we know that (i) Ωo  is only a 
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subset of ISR and (ii) the sets }1|{ *o

iii βββ ≤≤  i = 1, ..., m, form part of the 
boundary of ISR. 

If the input hyperplane constructed by the m points, )( *o
kDMU β , 

associated with the optimal values to (11.3), is not dominated by other 
DMUs except oDMU , i.e., that input hyperplane is a new efficient facet 
when excluding oDMU , then the following set Γo  is precisely the ISR (Zhu, 
1996b) 
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where oB1 , ..., o

mB  are parameters determined by the following system of 
equations 
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 Zhu (1996) shows the following result 
 
Theorem 11.2 In the case of input increases of form (11.1), for any extreme 
efficient oDMU , if the m points, )( *o

kDMU β , which are associated with the 
optimal β values to (11.3), determine an efficient input hyperplane, then 

oDMU  remains efficient if and only if o
m Γ∈),...,( 1 ββ . 

 
Next, suppose that the hyperplane constructed by the m points in (11.4) is 

dominated by some other DMUs which are inefficient when including 
oDMU . In this case, the ISR is no longer the set of Γo . Thus, we develop 

the following procedure. 
 

Initiation (t = 0). Solve model (11.3) for each k, k =1, ..., m. If the input 
hyperplane, which is determined by the m points of )( *o

kDMU β  in (11.4), is 
not dominated by other DMUs, then we obtain the ISR defined by oΓ . 
Otherwise solve model (11.5). Associated with the optimal solutions to 
(11.5), *o

iρ , we obtain m new points, DMU i
o( )*ρ  (i = 1, 2,..., m) as given in 

(11.6) and oΩ . 
 
Iteration t = 1, 2, ..., T. At iteration t, for each point of iteration t-1, say 
point p, which is associated with the optimal ρ values to (11.5), we solve 
model (11.3) at each new kth input, k = 1, 2, ..., m and apply the Stopping 
Rule. (a) If the rule is satisfied for a particular point p, then we have a similar 
set Γp

t  determined by the optimal β values, say *p
kβ , k = 1, ..., m. We 
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continue for the remaining points. (b) Otherwise solve model (11.5) for point 
p to obtain m new points and a similar set t

pΩ  determined by the optimal ρ 
values, say *p

kρ . Apply iteration t+1 to each of these m new points. 
 
Stopping Rule. If the input hyperplane determined by the m points that are 
associated with the m optimal β values is not dominated by other DMUs, 
then iteration stops. 
 

From the above procedure, we see that if a Γ-like set is obtained, then the 
iteration stops at a specific point. i.e., the Γ-like set indicates the termination 
of the iteration. 
 
Theorem 11.3 The input stability region is a union of oΩ  and some t

pΩ  and 
some t

pΓ . 
 
[Proof]: Obviously, oDMU  remains efficient when its input increases 

),...,( 1 mββ  belong to oΩ or any of the t
pΩ  or t

pΓ . Conversely, from the 
iterations we know that the ISR is connected. Since the input increases 
occurred in Ω-like sets, oDMU  is first moved to a particular point p which is 
used to construct a Γ-like set. By Theorem 11.2, we know that the sets of Γp

t  
are the boundary sets of the ISR. This means that if further input increases 
are not in this kind of set, then oDMU  will become inefficient. Therefore, if 

oDMU  remains efficient, then the input increase of form (11.1) must be in 
oΩ or any of the t

pΩ  or t
pΓ . ■ 

11.2.2 Output Stability Region 

Similarly, Seiford and Zhu (1998a) develop a sensitivity analysis 
procedure for output decreases of (11.2). For a specific extreme efficient 
DMUo , we consider the following linear program (Zhu, 1996) 
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Model (11.7) is a super-efficiency model based upon the CRS kth output 
specific model. The optimal values to (11.7), *o

kα , k = 1, ..., s, give s 
hypothetical frontier points (or DMUs) and a set Λo  defined as follows 
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in which the parameters of o

rA  are determined by the following system of 
equations 
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Here, we rewrite the result of Zhu (1996) as the following theorem 

 
Theorem 11.4 In the case of output decreases of form (11.2), for any 
extreme efficient oDMU , if the s points, )( *o

kDMU α , which are associated 
with the optimal α values to (11.7), determine an efficient output 
hyperplane, then oDMU  remains efficient if and only if o

s Λ∈),...,( 1 αα . 
 
Definition 11.2 A region of allowable output decreases is called an Output 
Stability Region if and only if oDMU  remains efficient after such decreases 
occur. 
 

Now, suppose that the output hyperplane constructed by the s points, 
)( *o

kDMU α , is dominated by some other DMUs which are originally 
inefficient, then the output stability region (OSR) is not the set oΛ . We 
consider the following linear programming problem 
 

.1,0

,...,1         

1   
subject to
max

1

1

1

≤≥

=≤∑

≥∑

∑

≠
=

≠
=

=

o
rj

io

n

oj
j

ijj

ro
o
r

n

oj
j

rjj

s

r

o
r

mixx

,...,s r=yy

ϕλ

λ

ϕλ

ϕ

                (11.8) 

 
Similar to Theorem 11.1, we have 

 
Theorem 11.5 For a decrease in outputs of form (11.2), if 
 



Stability Region 235
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then DMUo  remains efficient. 
 

We also have the following s new points that associated with the optimal 
solutions, *o

rϕ , of (11.8) 
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To obtain the output stability region, we apply model (11.7) and model 

(11.8) at each iteration in the procedure for input stability region until no Λ-
like sets can be obtained. Similarly, we have 
 
Theorem 11.6 The output stability region is a union of Λ-like sets and Ψ-
like sets. 

11.2.3 Geometrical Presentation of Input Stability Region 

We now illustrate the sensitivity analysis procedure geometrically for the 
following five DMUs with a single output and two inputs. For convenience, 
we suppose the five DMUs produce an equal amount of output and thus omit 
the output quantities in the following discussion. With the help of Figure 
11.1, we will see how to keep track of newly generated points (DMUs) by 
the procedure. 

Table 11.1. DMUs for Illustration of Input Stability Region 
DMU 1 ( 1X ) 2 ( 2X ) 3 ( 3X ) 4 ( 4X ) 5 ( 5X ) 
input 1 x1  5 2 1 5/2 9/4 
input 2 x2  1 2 5 5/2 11/4 

 
It is obvious that DMUs 1, 2, and 3 are extreme efficient, and DMUs 4 

and 5 are inefficient. Let oDMU  = DMU2 ( 2,2 2010 == xx ), i.e., we 
consider the robustness of the efficiency of DMU2 when the two inputs 
increase. 
Initiation (t=0). First we solve model (11.3) for oDMU  (point 2X ), that is 
 

subject to
min 1
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Figure 11.1. Geometrical Presentation of Input Stability Region 

 Figure 11.2 shows the spreadsheet model. Cell D8 is reserved to indicate 
the DMU under consideration, and is equal to 2 now, indicating DMU2. 
Cells F2:F6 are reserved to indicate λj. Cell E9 represents β1. This 
spreadsheet model is developed from the spreadsheet model for measure-
specific models. The formulas for the spreadsheet shown in Figure 11.2 are 
 
Cell B10=SUMPRODUCT(B2:B6,F2:F6) 
Cell B11=SUMPRODUCT(C2:C6,F2:F6) 
Cell B12=SUMPRODUCT(E2:E6,F2:F6) 
Cell B13=INDEX(F2:F6,D8,1) 
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Cell D10=E9*INDEX(B2:B6,D8,1) 
Cell D11=INDEX(C2:C6,D8,1) 
Cell D12=INDEX(E2:E6,D8,1) 
Cell D13=0 

 

Figure 11.2. Spreadsheet for Input Stability Region (Input 1) 

 Figure 11.3 shows the Solver parameters for the spreadsheet shown in 
Figure 11.2. We have *

1
oβ  = 5/3 (see cell E9 in Figure 11.2). For k = 2, we 

have the spreadsheet model shown in Figure 11.4. The formulas for cells 
B10:B13 and cells D12:D13 remain the same. We need to change the 
formulas in cells D10:D11 to 
 
Cell D10=INDEX(B2:B6,D8,1) 
Cell D11=E9*INDEX(C2:C6,D8,1) 
 
 Using the Solver parameters shown in Figure 11.3, we obtain *

2
oβ  = 8/5 

(see cell F9 in Figure 11.4). Furthermore, we have the following two newly 
generated points associated with the optimal β values (cells D10:D11 in 
Figures 11.2 and 11.4) 
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Figure 11.3. Solver Parameters for Input Stability Region 

 

Figure 11.4. Spreadsheet for Input Stability Region (Input 2) 

Obviously, the input hyperplane (line segment AB) constructed by A and 
B is dominated by DMU4 and DMU5. Thus, we solve model (11.5) for 

oDMU , that is 
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Figure 11.5 shows the spreadsheet model for model (11.5). Cell E9 and 
Cell F9 represent ρ1 and ρ2, respectively. The target cell G9 (=E9+F9) 
represents the objective function of model (11.5). We change the formulas of 
cells D10:D11 to  
Cell D10=E9*INDEX(B2:B6,D8,1) 
Cell D11=F9*INDEX(C2:C6,D8,1) 

 

Figure 11.5. Spreadsheet for Input Stability Region (Model (11.5)) 

 

Figure 11.6. Solver Parameters for Model (11.5) 



240 Sensitivity Analysis
 

Figure 11.6 shows the Solver parameters for model (11.5). We obtain 
*

2
*

1
oo ρρ =  = 5/4. Moreover, we have 121 1 |),{( βββ ≤=Ωo  < 5/4, 

}4/51 2 ≤≤ β  as shown in Figure 11.1 and obtain the following two 
additional points associated with optimal ρ values 
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Iteration: t=1. For the first point C, we solve model (11.3) 
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We have *

1
Cβ  = 4/3. Similarly, *

2
Cβ  = 5/4. The two corresponding new 

points are as follows 
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The input hyperplane constructed by these two points (line segment 
A 4X ) is not dominated by other DMUs, therefore the iteration for point C 
stops and we have the following results. 

Let 10
*

1110110ˆ xcxcx oC β==  and 20220220ˆ xcxcx C == . By Zhu (1996b), we 
have 

}1  and  2,1,1 |),{( 2211
*

21
1 ≤+=≤≤=Γ cBcBkccc CCC

kkc β  
 

where CB1  and CB2  are determined as follows 
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Let *
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oc ρβ =  and 22 c=β . Then ,3/54/5|),{( 121

1 ≤≤=Γ βββc  
}1053,4/51 212 ≤+≤≤ βββ . 
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Next, for the second point D, solving model (11.3) when k = 1 and k = 2 
yields *

1
Dβ  = 5/4 and *

2
Dβ  = 32/25, respectively. Associated with these two 

optimal β values, we have two new points 
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The input hyperplane determined by these two points ( 4X  and B) is 
dominated by DMU5, therefore we compute model (11.5) for point D, 
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We have *
1
Dρ  = 9/8 and *

2
Dρ  = 11/10. Next we compute 1

DΩ . 
First, let 10110110ˆ xdxdx D ==  and 20

*
2220220ˆ xdxdx oD ρ== . By Theorem 

11.1, we have 
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and further }8/114/5,8/91|),{( 2121

1 ≤≤≤≤=Ω ββββD . 
Associated with the two optimal values of *

1
Dρ  and *

2
Dρ , we now have 

the following two points 
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Iteration t = 2. For the point E generated from the point D in the first 
iteration, we obtain, by solving model (11.3), *

1
Eβ  = 10/9, *

2
Eβ  = 11/10, and 

two corresponding points 
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The input hyperplane constructed by the two points of 4X  and 5X  is not 
dominated by other DMUs, therefore the iteration stops. 
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Let 10
*

1110
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1110110ˆ xexexex DDDE ρρ ===  and 20
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2220220220ˆ xexexex oDE ρ=== . 
Similar to oΓ , we have *
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2 1|),{( E

kkE eee β≤≤=Γ , k = 1, 2 and 11 eB E  + 
22 eB E  < 1} in which EB1  and EB2  are determined by 
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For the point F, we have *
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Fβ  = 9/8 and *

2
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The input hyperplane constructed by these two points of 5X  and B is not 
dominated by other DMUs, therefore the iteration stops. 

Let 10110110ˆ xfxfx F ==  and 20
*

2
*

2220
*

2220220ˆ xfxfxfx oDDDF ρρρ === . Similar 
to oΓ , we have }1  and  2,1,1|),{( 2211

*
21

2 ≤+=≤≤=Γ fBfBkfff FFF
kkF β  in 

which FB1  and FB2  are the solutions to the following system of equations 
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Thus, 5/88/11   ,8/91 |),{( 2121

2 ≤≤≤≤=Γ ββββF , }1759 21 ≤+ ββ . 
Finally, we obtain the following input stability region for DMU2 (point 2X ) 
as shown in Figure 11.1. 

ISR = 2211
FECD

o ΓΓΓΩΩ ∪∪∪∪  

11.3 Infeasibility and Stability 

The previous sensitivity analysis procedure is developed under the 
assumption that model (11.3) (or model (11.7)) is feasible. However, this 
may not be always the case. For example, if we calculate (11.3) for DMU3 
in Table 11.1, then we have *

1β  = 2 for the first input but infeasibility for the 
second input. If we calculate (11.3) for DMU1, then we have infeasibility for 
the first input. Figure 11.7 presents the results for the three efficient DMUs 
1, 2, and 3. The calculation is performed by a VBA procedure 
“InputStabilityRegion”. 
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Sub InputStabilityRegion() 

Dim i As Integer 

For i = 1 To 3 

Range("D8") = i 

SolverSolve UserFinish:=True 

If SolverSolve(UserFinish:=True) = 5 Then 

Range("G" & i + 1) = "Infeasible" 

Else 

Range("G" & i + 1) = Range("E9") 

End If 

Next 

End Sub 
 

Note that, in fact, we can increase infinitely the amount of DMU3's 
second input (DMU1’s first input) while maintaining the efficiency of 
DMU3. 

 

Figure 11.7. Optimal β 
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Theorem 11.7 For an efficient oDMU , an increase of the kth input only, 
model (11.3) is infeasible, if and only if, the amount of kth input of oDMU  
can be increased without limitation while maintaining the efficiency of 

oDMU . 
 
[Proof]: The if part is obvious from the fact that if (11.3) is feasible, then the 
optimal value to (11.3) gives the maximum increase proportion of the kth 
input. Therefore, the amount of kth input cannot be infinitely increased. 

To establish the only if part we suppose that the kth input is increased by 
M > 1 and DMUo  is inefficient. By substituting DMUo  into CRS 
envelopment model, we obtain an optimal solution *θ  < 1, )(,0 ** ojjo ≠= λλ , 
in which *θ  < 1 implies FDMUo ∈ . Therefore, 
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This means that Moj kj

** ),( θβλ =≠  is a feasible solution to (11.3) and 
leads to a contradiction. Since M is arbitrary, the amount of the kth input can 
be infinitely increased while maintaining oDMU ’s efficiency. ■ 
 

As the Theorem 11.7 indicates, if (11.3) is infeasible, then +∞=*o
kβ . 

Thus, in this situation, we must modify the sensitivity analysis procedure. 
Because we are unable to express the new frontier point associated with 

+∞=*o
kβ , and further, to apply the stopping rule. Note that if we here 

assume that all data are positive, then model (11.5) is always feasible. But in 
the case of infeasibility, (11.5) does not perform well. For example, if we 
apply (11.5) to DMU3, we obtain *

1ρ  = 2 and *
2ρ  = 1. i.e., *o

iρ  = 1 relative 
to the unbounded input i. Consequently, we are unable to determine the 
stability region. Thus, from a computational point of view, in this situation, 
we apply model (11.5) with ),...,1( mio

o
i == θρ . That is, 
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At each point, in each iteration, we first apply (11.9) when (11.3) is 
infeasible, and then, for the newly generated points, we apply (11.3). If 
(11.3) is feasible, we use the procedure suggested previously. If (11.3) is still 
infeasible, then apply (11.9) again (go to next iteration). We can, in fact, 
regard infeasibility as the rejection of the stopping rule, and then we 
calculate model (11.9) instead of (11.5) to generate new frontier DMUs for 
the next iteration. In this situation, the set oΩ  obtained from (11.9) 
corresponds to the norm−∞  in Charnes, Haag, Jaska and Semple (1992). 

This general procedure for the infeasibility case is stated below 
 

Step 1: Solve model (11.9). 
Step 2: Solve (11.3) for the newly generated points by (11.9): 

),...,,,...,,...,()( 1
*

1
*

soomokoooo yyxxxDMU θθ = , k=1,...,m. 
(a) If (11.3) is feasible, then go to the procedure given in section 11.2.1; 
(b) If (11.3) is infeasible, then go to step 1. 

 
Note that infeasibility often occurs in real world situations. In theory, one 

can always use this general procedure to determine the ISR. However, in 
practice one may use this procedure to approximate the ISR due to the fact 
that some inputs’ amount can be infinitely increased. For example, it is 
obvious that the IRS for DMU3 in Table 11.1 is 
 

}1  ,21 |) ,{( 2121 +∞<≤<≤= ββββISR            (11.10) 
which is the shaded region shown in Figure 11.1. Furthermore, we have 
 
Theorem 11.8 For the two-input case, one of the two optimal β values in 
(11.3) is equal to the corresponding optimal value to (11.9), if and only if, 

}2,1,1 |) ,{( *
21 =<≤= iISR o

ii ββββ , where one of the *o
iβ  is finite and the 

other is ∞+ . 
 
[Proof]:Without loss of generality, assume that *

1
oβ  is finite and +∞=*

2
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oββ = , 
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o xx ββ  is a frontier point. Therefore *
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o βθ = . 

This completes the proof of the if part. 
Suppose *
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o βθ = . Obviously, if oDMU  with inputs of ) ,( 2211 oo xx ββ is 

in set E, then }1  ,1|),{(),( 2
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112121 +∞<≤=<≤=∈ βθββββββ o
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Next, note that the original oDMU  belongs to set E, therefore *
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Therefore, if ISR∈),( 21 ββ , then oDMU  preserves its efficiency. This 
completes the only if part. ■ 
 

By the proof of Theorem 11.8 and the result of Theorem 11.7, we can 
easily obtain 
 
Corollary 11.1 For the two-input case, if one of the two optimal β values in 
(11.3) is equal to the corresponding optimal value to (11.9), then (11.3) is 
infeasible for the other input. 
 

Note that equality is not held in the right hand side of the inequalities in 
(11.10) of iβ . Otherwise, oDMU  will be in set F. For instance, if 1β  = 2 in 
(11.10), then DMU3 (X3) is moved into set F. However, if we only consider 
weak efficiency, then the equality can be imposed. Because the efficiency 
ratings are equal to one for the DMUs in set F. 

Finally, the above discussion and development holds for the output case 
when (11.7) is infeasible. That is, 
 
Theorem 11.9 For an efficient oDMU , an increase of the kth output only, 
model (11.7) is infeasible, if and only if, the amount of kth output of oDMU  
can be increased without limitation while maintaining the efficiency of 

oDMU .  
Theorems 11.7 and 11.9 indicate that if model (11.3) or (11.7) is 

infeasible, then the test DMU remains efficient when data variations are 
applied to the specific input or output. This conclusion is also true when the 
data variations are applied to both the test DMU and the remaining DMUs. 

11.4 Simultaneous Data Changeb 

Zhu (2001) shows that a particular super-efficiency score can be 
decomposed into two data perturbation components of a particular test DMU 
and the remaining DMUs. Also, necessary and sufficient conditions for 
preserving a DMU’s efficiency classification are developed when various 
data changes are applied to all DMUs. As a result, DEA sensitivity analysis 
can be easily applied if we employ various super-efficiency DEA models. 

We rewrite the input-oriented CRS envelopment model and its dual as 
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 We also present the input-oriented and output-oriented CRS super-
efficiency models 
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In order to simultaneously consider the data changes for other DMUs, we 

suppose increased output and decreased input for all other DMUs. i.e., our 
discussion is based on a worst-case scenario in which efficiency of oDMU  
declines and the efficiencies of all other jDMU  ( oj ≠ ) improve. 

Let I and O denote respectively the input and output subsets in which we 
are interested. i.e., we consider the data changes in set I and set O. Then the 
simultaneous data perturbations in input/output of all jDMU  ( oj ≠ ) and 

oDMU  can be written as 
 

Percentage data perturbation (variation) 
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For jDMU  ( oj ≠ ) 
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where (^) represents adjusted data. Note that the data perturbations 
represented by iδ  and iδ~  (or rτ  and rτ~ ) can be different for each I∈i  (or 

O∈r ). 
 
Lemma 11.2 Suppose oDMU  ∈ set F with non-zero input/output slack 
values associated with set I/set O. Then oDMU  with inputs of iox̂  and 
outputs of yro  as defined above still belongs to set F when other DMUs are 
fixed. 
 
[Proof]: Applying the complementary slackness theorem for models (11.10) 
and (11.11), we have **

ii vs−  = **
rr us+  = 0. Since ≠−*

is  0 for I∈i  and ≠+*
rs  0 

for O∈r , we have *
iv  = 0 for I∈i  and *

ru  = 0 for O∈r . Therefore, *
iv  and 

*
ru  is a feasible solution to (11.11) for oDMU  with inputs of iox̂  and outputs 

of roŷ . Note that ro
s
r r yu ˆ1

*∑ =  = ror r yu ˆ*∑ ∉O  = ror r yu∑ ∉O
*  = 1 indicating that the 

maximum value of 1 is achieved. Therefore, oDMU  still belongs to set F. ■ 

11.4.1 Sensitivity Analysis Under CRS 

We first modify models (11.12) and (11.13) to the following two super-
efficiency DEA models that are based upon the measure-specific models 
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and 
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If I = {k}, k∈{1, ..., m} and O = {l}, l∈{1, ..., s}, then optimal values of 

*o
Iθ  = ( *o

kθ ) (k = 1, ..., m) and *o
Oφ  = ( *o

lφ ) (l = 1, ..., s) are the optimal values 
to models (11.3) and (11.7), respectively. 

Table 11.2. Sample DMUs 
DMU y x1 x2 *super

oθ  = *
}2,1{

o
=Iθ  *

}1{
o
=Iθ  *

}2{
o
=Iθ  

A 1 2 5 15/13 5/4 7/5 
B 1 3 3 26/21 14/9 17/12 
C 1 6 2 3/2 infeasible 3/2 
D 1 2 7 1 1 5/7 

 

Figure 11.8. Super-efficiency and Sensitivity Analysis 
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Models (11.14) and (11.15) measure the maximum increase rate of inputs 
associated with I and the maximum decrease rate of outputs associated with 
O, respectively, required for oDMU  to reach the frontier of jDMU  ( oj ≠ ) 
when other inputs and outputs are kept at their current levels. For example, 
consider B in Table 11.2 (Figure 11.8) and model (11.14). If I = {1}, *

}1{
Bθ  = 

14/9 indicates that B reaches B1 by changing its x1 to 3/143)9/14( =× . If I 
= {2}, *

}2{
Bθ  = 17/12 indicates that B reaches B2 by changing its x2 to 

14/173)12/17( =× . If I = {1, 2}, *sup*
}2,1{

er
B

B θθ =  = 26/21 gives the input 
increase rate for B in order to reach B′. 

Associated with the optimal values in models (11.12), (11.13), (11.14) 
and (11.15), we have 
 
Lemma 11.3 
(i) If er

o
supθ  = 1, then *o

Iθ  ≤ 1. 
(ii) If φo

ersup *  = 1, then *o
Oφ  ≥ 1. 

 
[Proof]: The proof is obvious from the fact that er

o
supθ  = 1 is a feasible 

solution to (11.4) and *super
oφ  = 1 is a feasible solution to (11.5). ■ 

 
Lemma 11.4 
(i) If er

o
supθ  = 1 and *o

Iθ  < 1, then oDMU  ∈ F. 
(ii) If *super

oφ  = 1 and *o
Oφ  > 1, then oDMU  ∈ F. 

 
[Proof]: (i) er

o
supθ  = 1 indicates that oDMU  ∈ E′∪F. *o

Iθ  < 1 further 
indicates that there are non-zero slack values in iox  for i ∈I . Thus, oDMU  
∈ F. 
(ii) The proof is similar to that of (i). ■ 
 
Theorem 11.10 
(i) If er

o
supθ  = 1 and *o

Iθ  < 1, then for any iδ  ≥ 1 and iδ~  ≥ 1 ( i ∈I ), oDMU  
remains in set F. 
(ii) If *super

oφ  = 1 and *o
Oφ  > 1, then for any 0 < rτ  ≤ 1 and 0 < rτ~  ≤ 1 

( O∈r ), oDMU  remains in set F. 
 
[Proof]: (i) From Lemma 11.4, we know that oDMU  ∈ F with non-zero 
slack values in iox  for I∈i . Based upon Lemma 11.2 and the proof of 
Lemma 11.2, we know that for any iδ  ≥ 1 and iδ~  ≥ 1, with an objective 
function value of 1, *

iv  and *
ru  is a feasible solution to (11.11) in which 

inputs are replaced by xij  for I∈i  and ijx  for I∉i . Thus, oDMU  remains 
in set F after input data changes set I in all DMUs. 
(ii) The proof is similar to that of (i). ■ 
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In fact, Lemma 11.2 and Theorem 11.10 indicate that the classification of 
DMUs in set F is stable under any data perturbations in all DMUs occurred 
in inputs (outputs) which have non-zero slack values in DMUo . For 
example, if I = {2}, then model (11.14) yields *

}2{
Dθ  = 5/7 < 1 for D indicating 

that D has non-zero slack value in its second input. From Figure 11.8, it is 
clear that D can increase its x2 to any amount and still belongs to set F while 
other DMUs, A, B and C decrease their amount of x2. This finding is very 
useful for the sensitivity analysis of the DMUs in set F. 

Theorem 11.10 gives the sufficient condition for oDMU  ∈ set F to 
preserve its efficiency classification. By Lemma 11.3, we immediately have  
Corollary 11.2 
(i) If for any iδ  ≥ 1 and iδ~  ≥ 1 ( I∈i ), oDMU  remains in set F, then (a) 
θo

ersup  = 1 and *o
Iθ  < 1, or (b) er

o
supθ  = 1 and *o

Iθ  = 1. 
(ii) If for any 0 < rτ  ≤ 1 and 0 < rτ~  ≤ 1 ( O∈r ), oDMU  remains in set F, 
then (a) *super

oφ  = 1 and *o
Oφ  > 1, or (b) *super

oφ  = 1 and *o
Oφ  = 1. 

 
Corollary 11.2 implies that for oDMU  ∈ set F, some inputs without slack 

values may also be increased while preserving the efficiency of oDMU . For 
example, consider two DMUs: DMU1 = (y, x1, x2, x3) and DMU2 = (y, x1, x2, 
πx3), where π > 1, a constant. Obviously, DMU1 ∈ set E and DMU2 ∈ set F 
with non-zero slack value on the third input. Now, let I = {2, 3}. We have 
that DMU2 with (y, x1, δx2, δπx3) (δ > 1) remains in set F while DMU1 is 
changed to (y, x1, δ~/2x , δ~/3x ) ∈ set E (δ~  > 1). In this situation, *2

}3,2{θ  = 1 
in (11.14). 

From Lemma 11.3, we know that *o
Iθ  or *o

Oφ  may also be equal to one. 
Obviously, in this situation, oDMU  ∈ set E′ or set F and our approach 
indicates that no data variations are allowed in oDMU  and other DMUs. In 
fact, any data perturbation defined above will change the efficiency 
classification of DMUs in set E′. Note also that *

}1{
Dθ  = 1 for D in Table 11.2. 

Thus, any data variation in the first input will let D become non-frontier 
point (see Figure 11.8). 

Furthermore, from Lemma 11.3, we have 
 
Corollary 11.3 Infeasibility of model (11.14) or model (11.15) can only be 
associated with extreme efficient DMUs in set E. 
 
[Proof]: Lemma 11.3 implies that models (11.14) and (11.15) are always 
feasible for DMUs in set E′ or set F. Also, models (11.14) and (11.15) are 
always feasible for non-frontier DMUs. Therefore, infeasibility of models 
(11.14) and (11.15) may only occur for extreme efficient DMUs in set E. ■ 
 



252 Sensitivity Analysis
 
 Seiford and Zhu (1998b) show that infeasibility of a super-efficiency 
DEA model means stability of the efficiency classification of oDMU  with 
respect to the changes of corresponding inputs and (or) outputs in all DMUs. 
We summarize Seiford and Zhu’s (1998b) finding as the following theorem. 
 
Theorem 11.11 
(i) If a specific super-efficiency DEA model associated with set I is 
infeasible, if and only if for any iδ  ≥ 1 and iδ~  ≥ 1 ( I∈i ), oDMU  remains 
extreme efficient. 
(ii) If a specific super-efficiency DEA model associated with set O is 
infeasible, if and only if for any 0 < rτ  ≤ 1 and 0 < rτ~  ≤ 1 ( O∈r ), oDMU  
remains extreme efficient. 
 
 Theorem 11.11 indicates that, for example, if mode (11.14) is infeasible, 
then oDMU  will still be extreme efficient no matter how much its inputs 
associated with set I are increased while the corresponding inputs of other 
DMUs are decreased. Consider C in Table 11.2. If I = {1}, then model 
(11.14) is infeasible. (Note that model (11.12) is feasible for C.) From Figure 
11.8, it is clear that C will remain extreme efficient if its first input is 
increased to any amount while DMUs A, C, and D decrease their amount of 
x1. 
 In the discussion to follow, we assume that super-efficiency DEA models 
(11.14) and (11.15) are feasible. Otherwise, the efficiency classification of 

oDMU  is stable to data perturbations in all DMUs by Theorem 11.11. 
 
Lemma 11.5 
(i) If model (11.14) is feasible and er

o
supθ  > 1 then *o

Iθ  > 1. 
(ii) If model (11.15) is feasible and *super

oφ  < 1 then *o
Oφ  < 1. 

 
[Proof]: (i) Suppose *o

Iθ  ≤ 1. Then the input constraints of (11.14) turn into 
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which indicates that er

o
supθ  = 1 is a feasible solution to (11.12). Therefore, 

*super
oθ  ≤ 1. A contradiction. Thus, *o

Iθ  > 1. 
(ii) The proof is similar to that of (i). ■ 
 

Lemma 11.5 indicates that if oDMU  ∈ set E and model (11.14) (or 
model (11.15)) is feasible, then *o

Iθ  must be greater than one (or *o
Oφ  must be 
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less than one). We next study the efficiency stability of extreme efficient 
DMUs and we relax the assumption that same percentage change holds for 
data variation of oDMU  and jDMU  ( oj ≠ ) and generalize the results in 
Seiford and Zhu (1998b). 
 
Theorem 11.12 Suppose *super

oθ  > 1 and *super
oφ  < 1, then 

(i) If 1 ≤ iδ iδ~  < *o
Iθ  for i ∈I , then oDMU  remains extreme efficient. 

Furthermore, if equality holds for iδ iδ~  = *o
Iθ , i.e., 1 ≤ iδ iδ~  ≤ *o

Iθ , then 
oDMU  remains on the frontier, where *o

Iθ  is the optimal value to (11.14). 
(ii) If *o

Oφ  < rτ rτ~  ≤ 1 for O∈r , then oDMU  remains extreme efficient. 
Furthermore, if equality holds for rτ rτ~  = *o

Oφ , i.e., *o
Oφ  ≤ rτ rτ~  ≤ 1, then 

oDMU  remains on the frontier, where *o
Oφ  is the optimal value to (11.15). 

 
[Proof]: (i) Note that from Lemma 11.5, *o

Iθ  > 1. Now suppose 1 ≤ o
iδ o

iδ~  < 
*o

Iθ , and oDMU  is not extreme efficient when io
o
iio xx δ=ˆ  and o

iijij xx δ~/ˆ = , 
I∈i . Then, there exist 0)( ≥≠ ojjλ  and *super

oθ  ≤ 1 in (11.12) such that 
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This means that 0)( ≥≠ ojjλ  and *super

oθ o
iδ o

iδ~  is a feasible solution to 
(11.14). But *super

oθ o
iδ o

iδ~  < *super
oθ  *o

Iθ  ≤ *o
Iθ  violating the optimality of *o

Iθ . 
Thus, if 1 ≤ o

iδ o
iδ~  < *o

Iθ , then oDMU  remains extreme efficient. 
Next, if o

iδ o
iδ~  = *o

Iθ , then we assume oDMU  is not a frontier when 
io

o
iio xx δ=ˆ  and o

iijij xx δ~/ˆ = , I∈i . Thus, we have *super
oθ  < 1 in (11.12). 

Now we have *super
oθ o

iδ o
iδ~  ≤ *super

oθ  *o
Iθ  < *o

Iθ  violating the optimality of 
*o

Iθ . Thus, if 1 ≤ o
iδ o

iδ~  ≤ *o
Iθ , then oDMU  remains on the frontier. 

(ii) The proof is similar to (i), but is based upon (11.13) and (11.15). ■ 
 

Theorem 11.12 indicates that the optimal value to a super-efficiency 
DEA model can actually be decomposed into a data perturbation component 
( e ) for oDMU  and a data perturbation component ( e~ ) for the remaining 
DMUs, jDMU  ( oj ≠ ). Define 
 

oΩ = 
⎩
⎨
⎧

==
==

ττφ
δδθ
~~   and     if    

~~   and     if    
*

*

ee
ee

o

o

O

I  

 
Then, the data perturbation can be expressed in a quadratic function, 
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e e~  = oΩ                       (11.16) 
 

Function (11.16) gives an upper boundary for input changes and a lower 
boundary for output changes. Figures 11.9 and 11.10 illustrate the admissible 
regions for e  and e~ . For example, in Figure 11.9, since δ  ≥ 1 and δ~  ≥ 1, 
only part of the function δ δ~  = *o

Iθ  forms the upper boundary of a 
admissible region for δ  and δ~ . Any data variations fall below MN and 
above lines δ  = 1 and δ~  = 1 will preserve the frontier status of oDMU . 
The bigger the *o

Iθ  (or the smaller the *o
Oφ ), the larger the input (output) 

variation regions will be. In fact, the function given by (11.16) defines the 
maximum percentage change rates for oDMU  and jDMU  ( oj ≠ ). 

Theorem 11.12 gives sufficient conditions for preserving efficiency. The 
following theorem implies necessary conditions for preserving efficiency of 
an extreme efficient oDMU . 

 

Figure 11.9. Input Variations 
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Figure 11.10. Output Variations 

Theorem 11.13 Suppose *super
oθ  > 1 and *super

oφ  < 1, then 
(i) If iδ iδ~  > *o

Iθ  for I∈i , then oDMU  will not be extreme efficient, where 
*o

Iθ  is the optimal value to (11.14). 
(ii) If rτ rτ~  < *o

Oφ  for O∈r , then oDMU  will not be extreme efficient, 
where *o

Oφ  is the optimal value to (11.15). 
 
[Proof]: (i) We assume that oDMU  remains extreme efficient after the data 
changes in all DMUs with iδ iδ~  > *o

Iθ . Consider the input constraints 
associated with set I in (11.14), 

ioi
o

n

oj
j

i

ij
j x

x
δθ

δ
λ Î~

1
≤∑

≠
=

, i ∈I                 (11.17) 

where o
Iθ̂  is the objective function in (11.14). 

 Equation (11.17) is equivalent to 
 

ioii
on

oj
j

ijj xx δδθλ ~ˆ
1

I≤∑
≠
=

, i ∈I  
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Let *ˆo
Iθ  be the optimal value. Obviously, *ˆo

Iθ  = ii
o δδθ ~/*
I  < 1 where *o

Iθ  
is the optimal value to (11.14). On the basis of Lemma 11.5 (i), *ˆo

Iθ  must be 
greater than one in (11.14) with input constraints of (11.17). A contradiction. 
(ii) The proof is similar to (i), but is based upon (11.17). ■ 
 

Theorem 11.13 indicates that input (output) data perturbations in all 
DMUs beyond the variation regions prescribed by function (11.16) will 
change the efficiency classification of extreme efficient DMUs. 

Note that iδ iδ~  = *o
Iθ  (or rτ rτ~  = *o

Oφ ) may or may not keep the 
efficiency classification of an extreme efficient oDMU . For example, in 
Figure 11.8, A remains extreme efficient if 2δ 2

~δ  = *
}2{

Aθ  = 7/5. (In this 
situation, A coincides D and both become extreme efficient.) However, if we 
consider C and if C’s second input is increased to *

}2{
Cθ Cx2  = (3/2) × 2 = 3, 

then C becomes a member of set F along the ray BB1 in Figure 11.8. (In this 
situation, we assume 2δ  = *

}2{
Cθ  = 3/2 for C and 2

~δ  = 1 for the remaining 
DMUs of A, B and D.) 

Turning to point A again. If we are only interested in whether a DMU 
remains on the frontier, rather than in its original efficiency classification, 
then we may still increase A’s second input after A coincides D. We can find 
this “extra” data perturbation by applying a very small data perturbation to 
the changed oDMU  and then applying model (11.14) or (11.15). For 
example, we apply a data perturbation of ε  to x A2  which is the new input 
value when 2δ 2

~δ  = *
}2{

Aθ  = 7/5. If we use models (11.12) and (11.14), then 
we know that this changed DMU A with it second input equal to Ax2ˆ  + ε  is 
now in set F, and therefore A can still increase it x2 to any amount larger 
than 7 and remains on the frontier. Note that, in this case, A may no longer 
be extreme efficient. In fact, 2δ 2

~δ  = *
}2{

Aθ  = 7/5 prescribes a point on line 
segment AB including A and B. If 2δ 2

~δ  > 7/5, then A and D switch their 
positions. Namely, A becomes a weakly efficient DMU and D becomes an 
extreme efficient DMU. 

Above developments consider the input changes or output changes in all 
DMUs. Next we consider the following modified DEA model for 
simultaneous variations of inputs and outputs 
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If I = {1, 2, ..., m} and O = {1, 2, ..., s}, then (11.18) is identical to the 

model of Charnes, Rousseau and Semple (1996) when variations in the data 
are only applied to oDMU . Note that if oDMU  is a frontier point , then 
Γ ≥ 0 . 
 
Theorem 11.14 Suppose oDMU  is a frontier point. If 1 ≤ iδ iδ~  ≤ *1 Γ+ and 

*1 Γ−  ≤ rτ rτ~  ≤ 1, then oDMU  remains as a frontier point, where *Γ  is the 
optimal value to (11.18). 
 
[Proof]: Equivalently we prove that if iδ iδ~  = *1 Γ+  and rτ rτ~  = *1 Γ− , 
then oDMU  still remains on the frontier. We assume that after the data 
changes, oDMU  is a nonfrontier point, and therefore can be enveloped by 
the adjusted oDMU  ( oj ≠ ). Thus, 
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This means that the adjusted oDMU  with iox)1( *Γ+  ( I∈i ), iox  ( I∉i ), 

roy)1( *Γ−  ( O∈r ) and roy  ( O∉r ) can be enveloped by the original 
)( ojDMU j ≠ . However, by Charnes, Rousseau and Semple (1996), we 

know that proportional changes to inputs and outputs respectively within the 
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computed values of )1( *Γ+  and )1( *Γ−  cannot change the efficiency of 

oDMU  when the remaining jDMU  ( oj ≠ ) are fixed. Therefore, this leads 
to a contradiction and completes the proof. ■ 
 

The result in Theorem 11.14 generalizes the finding of Charnes, 
Rousseau and Semple (1996) to the situation where variations in the data are 
applied to all DMUs. Similar to Theorem 11.13, for an extreme efficient 

oDMU , if iδ iδ~  > *1 Γ+ and rτ rτ~  < *1 Γ− , then oDMU  will not remain 
extreme efficient. 

11.4.2 Sensitivity Analysis under VRS 

It is obvious that the results in the previous section hold for the VRS 
frontier DMUs if we add the additional constraint of ∑ ≠oj jλ  = 1 into models 
(11.12), (11.13), (11.14) and (11.15), respectively. 

Because of the translation invariance property resulted from the convex 
constraint of ∑ ≠oj jλ  = 1 in the VRS models, we are able to discuss the 
simultaneous absolute data changes in all DMUs. That is, 
 

Absolute Data Perturbations (Variations) 
For oDMU  
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For jDMU  ( oj ≠ ) 
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where (^) represents adjusted data. Note that the data changes defined above 
are not only applied to all DMUs, but also different in various inputs and 
outputs. In this case the sensitivity analysis results are also suitable to the 
slack-based models. 
 We modify model (11.18) to the following linear programming problem 
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If I = {1, 2, ..., m} and O = {1, 2, ..., s}, then model (11.19) is used by 

Charnes, Haag, Jaska and Semple (1992) to study the sensitivity of 
efficiency classifications in the additive model via ∞L  norm when variations 
in the data are only applied to oDMU . 
 
Theorem 11.5 Suppose oDMU  is a frontier point. If *~0 γαα ≤+≤ ii  ( I∈i ), 

*~0 γββ ≤+≤ rr  ( O∈r ), then oDMU  remains as a frontier point, where *γ  
is the optimal value to (11.19). 
 
[Proof]: The proof is similar to that of Theorem 11.13 by noting that ∑ ≠oj jλ  
= 1. ■ 
 

If ∅=O , then (11.19) only considers absolute changes in inputs. If 
∅=I , then (10) only considers absolute changes in output. For different 

choices of subsets I and O, we can determine the sensitivity of oDMU  to the 
absolute changes of different sets of inputs or (and) outputs when oDMU 's 
efficiency is deteriorating and jDMU 's ( oj ≠ ) efficiencies are improving. 

 We may change the objective function of (11.19) to “minimize 
∑+∑ ∈

+
∈

−
OI r ri ir γ ” and obtain the following super-efficiency DEA model 
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We then obtain a generalized model under 1L  norm. The results in 
Charnes, Haag, Jaska and Semple (1992) are generalized to the situation of 
data changes in all DMUs by the following Theorem. 
 
Theorem 11.16 Suppose oDMU  is a frontier point. If *~0 −≤+≤ iii γαα  
( I∈i ), *~0 +≤+≤ rrr γββ  ( O∈r ), then oDMU  remains as a frontier point, 
where *−

iγ  ( I∈i ) and *+
rγ  ( O∈r ) are optimal values in (11.20). 

 
[Proof]: The proof is similar to that of Theorem 11.13 and is omitted. ■ 
 

Similar to Theorem 11.13, for an extreme efficient oDMU , if 
*~ −>+ iii γαα  and *~ +>+ rrr γββ then oDMU  will not remain extreme 

efficient. 

11.4.3 Spreadsheet Models for Sensitivity Analysis 

The current chapter presents a new approach for the sensitivity analysis 
of DEA models by using various super-efficiency DEA models. The 
sensitivity analysis approach simultaneously considers the data perturbations 
in all DMUs, namely, the change of the test DMU and the changes of the 
remaining DMUs. The data perturbations in the test DMU and the remaining 
DMUs can be different when all remaining DMUs work at improving their 
efficiencies against the deteriorating of the efficiency of the test efficient 
DMU. It is obvious that larger (smaller) optimal values to the input-oriented 
(output-oriented) super-efficiency DEA models presented in the current 
study correspond to greater stability of the test DMU in preserving efficiency 
when the inputs and outputs of all DMUs are changed simultaneously and 
unequally. 

By using super-efficiency DEA models based upon the measure-specific 
models, the sensitivity analysis of DEA efficiency classification can be 
easily achieved. Since the approach uses optimal values to various super-
efficiency DEA models, the results are stable and unique. By the additional 
constraint on ∑ ≠oj jλ , the approach can easily be modified to study the 
sensitivity of other DEA models. Table 11.3 presents the measure-specific 
super-efficiency DEA models. 

The stability measure is actually the optimal value to a specific 
measure-specific super-efficiency DEA model. Thus, the sensitivity 
analysis can be performed based upon the spreadsheets for related measure-
specific models discussed in Chapter 3. 

Figure 11.11 shows an input-oriented VRS measure-specific super-
efficiency model where I = {Assets, ,Equity}. i.e., we are interested in the 
sensitivity of VRS efficiency to the (proportional) data changes in Assets 
and Equity. 
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Table 11.3. Measure-specific Super-efficiency DEA Models 
Frontier Type  

Input-Oriented 
 

Output-Oriented 
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Figure 11.11. Input Sensitivity Analysis Spreadsheet Model 

In Figure 11.11, cell F19 represents o
Iθ . The formulas for this 

spreadsheet are 
 
Cell B20 =SUMPRODUCT(B2:B16,$I$2:$I$16) 
Cell B21 =SUMPRODUCT(C2:C16,$I$2:$I$16) 
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Cell B22 =SUMPRODUCT(D2:D16,$I$2:$I$16) 
Cell B23 =SUMPRODUCT(F2:F16,$I$2:$I$16) 
Cell B24 =SUMPRODUCT(G2:G16,$I$2:$I$16) 
Cell B25 =SUM(I2:I16) 
Cell B26 =INDEX(I2:I16,E18,1) 
 
Cell D20 =$F$19*INDEX(B2:B16,E18,1) 
Cell D21 =$F$19*INDEX(C2:C16,E18,1) 
Cell D22 =INDEX(D2:D16,E18,1) 
Cell D23 =INDEX(F2:F16,E18,1) 
Cell D24 =INDEX(G2:G16,E18,1) 

 

Figure 11.12. Solver Parameters for Input Sensitivity Analysis 

Figure 11.12 shows the Solver parameters for the spreadsheet shown in 
Figure 11.11. If the optimal value in cell F19 is less than one, then this 
means that the associated company is VRS inefficient. The infeasibility in 
cells J2, J4:J7, J10:J11, and J14:J15 indicates that the corresponding 
companies remain VRS efficient to any simultaneous data changes in Assets 
and Equity across all DMUs. For DMU2 (Mitsui), we have the super-
efficiency score of 1.75, indicating this DMU remains VRS efficient as long 
as the data variations satisfying e e~  = 1.75. 

Next, we consider output changes. Figure 11.13 shows the spreadsheet 
for output-oriented VRS measure-specific super-efficiency model where O = 
{Revenue}. In this spreadsheet, range names are used. They are, cells 
B2:D16 – “InputUsed”, cells F2:G16 – “OutputProduced”, cells I2:I16 – 
“Lambdas”, cells B20:B22 – “ReferenceSetInput”, cells B23:B24 – 
“ReferenceeSetOutput”, cell B25 – “SumLambdas”, cell B26 – “DMUo”, 
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cells D20:D22 – “DMUInput”, cells D23:D24 – “DMUOutput”, cell E18 – 
“DMU”, and cell F19 – “SuperEfficiency”. 

 

Figure 11.13. Output Sensitivity Analysis Spreadsheet Model 

 

Figure 11.14. Solver Parameters for Output Sensitivity Analysis 

Based upon these range names, we have the following formulas for the 
spreadsheet shown in Figure 11.13. 
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Cell B20 =SUMPRODUCT(INDEX(InputUsed,0,1),Lambdas) 
Cell B21 =SUMPRODUCT(INDEX(InputUsed,0,2),Lambdas) 
Cell B22 =SUMPRODUCT(INDEX(InputUsed,0,3),Lambdas) 
Cell B23 =SUMPRODUCT(INDEX(OutputProduced,0,1),Lambdas) 
Cell B24 =SUMPRODUCT(INDEX(OutputProduced, 0,2),Lambdas) 
Cell B25 =SUM(Lambdas) 
Cell B26 =INDEX(Lambdas,DMU,1) 
 
Cell D20 =INDEX(InputUsed,DMU,1) 
Cell D21 =INDEX(InputUsed,DMU,2) 
Cell D22 =INDEX(InputUsed,DMU,3) 
Cell D23 =SuperEfficiency*INDEX(OutputProduced,DMU,1) 
Cell D24 =INDEX(OutputProduced,DMU,2) 

 
Figure 11.14 shows the Solver parameters for the spreadsheet shown in 

Figure 11.13. The calculation is performed by the following VBA procedure 
that can be applied to other data sets once the proper range names are 
defined. 

 
Sub SensitivityGeneral() 

Dim NDMUs As Integer, NInputs As Integer, NOutputs As Integer 

NDMUs = 15 

NInputs = 3 

NOutputs = 2 

Dim i As Integer 

For i = 1 To NDMUs 

Range("DMU") = i 

SolverSolve UserFinish:=True 

If SolverSolve(UserFinish:=True) = 5 Then 

Range("A1").Offset(i, NInputs + NOutputs + 4) = "Infeasible" 

Else 

Range("A1").Offset(i,NInputs+NOutputs+4)=Range("SuperEfficiency") 

End If 

Next i 

End Sub 

 

11.5 Solving DEA Using DEAFrontier Software 

To perform the sensitivity analysis, select the “Perform Sensitivity 
Analysis” menu item. You will be prompted a form shown in Figure 11.15. 
(You will select a model from Table 11.3.) The measures that are selected 
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will be studied for sensitivity analysis. For example, in Figure 11.5, Assets 
and Employees are selected (for input-oriented CRS model). The resulting 
super-efficiency score measures the efficiency stability with respect to 
changes in both Assets and Employees. 

 

 

Figure 11.15. Solver Parameters for Output Sensitivity Analysis 

 
The results are reported in the “Sensitivity Report” sheet which records 

the optimal values to the related measure-specific super-efficiency model. 
Based upon the discussion in this chapter, we can convert these super-

efficiency scores into measures for efficiency stability. 
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Chapter 12 

Identifying Critical Measures in DEA 
 

 
 

12.1 Introduction 

Since each DMU has its own inherent tradeoffs among the multiple 
measures that significantly influence the performance, it is extremely 
important for the management to know the critical measures. The current 
chapter introduces the approach of Chen and Zhu (2003) for identifying the 
critical measures to DMUs’ performance. Note that once the DEA evaluation 
is done, the management needs to either (i) maintain the best practice for the 
efficient DMUs or (ii) achieve the best practice for the inefficient DMUs. 
Thus, when a set of multiple performance measures is determined, measures 
that are influential to maintaining and achieving the best practice should be 
regarded as critical to the performance of DMUs. Also, it is believed that a 
critical measure is signaled by whether changes in its value affect the 
performance, not by whether inclusion or exclusion of the measure affects 
the performance. Under the framework of DEA sensitivity analysis, Chen 
and Zhu (2003) develop an alternative approach, which is independent of 
identifying DEA weights or DEA multipliers, to identify such critical 
measures. 

12.2 Performance Evaluation and DEA 

Regression-based methods can be used in evaluating performance of a set 
of DMUs. However, they are limited to only one dependent variable. For 
example, 

y  = oβ  + ∑
=

m

i
ii x

1
β  + ε                  (12.1) 
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where iβ  are estimated coefficients which can be used to determine whether 
an independent variable has a positive effect on the dependent variable or 
makes an important contribution. i.e., by estimating the coefficients, we may 
identify the critical performance measures under the context of average 
behavior. Also, the estimated regression line can be served as the benchmark 
in performance evaluation. 

In fact, formula (12.1) can be viewed as a performance frontier or 
tradeoff curve where ix  are inputs and y is the output. However, we are very 
likely to have multiple outputs ry  (r = 1, …, s). We may rewrite (12.1) as 
(Wilkens and Zhu, 2001) 

∑
=

s

r
rr yu

1
 = ∑+

=

m

i
ii xv

1
α                    (12.2) 

where ru  and iv  are unknown weights representing the relative importance 
or tradeoffs among ry  and ix . 
 Suppose we can estimate ru  and iv , then for each jDMU , we can define 
 

jh  = 
∑

∑+

=

=
s

r
rjr

m

i
iji

yu

xv

1

1
α

                     (12.3) 

 
as a performance index, where xij, (i = 1, 2, ..., m) are multiple inputs, yrj, (r 
= 1, 2, ..., s) are multiple outputs for jDMU  (j = 1, 2, …, n). 

In order to estimate ru  and iv , and further evaluate the performance of 
oj th DMU, (denoted as oDMU ) by (12.2), DEA uses the following linear 

fractional programming problem 

ri uv ,,
min
α ∑

∑+

=

=
s

r
ror

m

i
ioi

yu

xv

1

1
α

 

subject to                      (12.4) 

∑

∑+

=

=
s

r
rjr

m

i
iji

yu

xv

1

1
α

 > 1, j = 1, …, n 

ru , iv  > 0   ∀  r, i 
 
where, iox  and roy  are respectively the ith input and rth output for oDMU  
under evaluation. 

When *
oh  = 1, oDMU  is efficient or on the performance frontier. 

Otherwise, if *
oh  > 1, then oDMU  is inefficient. All the efficient DMUs 

constitute the performance frontier. 
Note that when *

oh  = 1, we have 
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∑
=

s

r
ror yu

1

*  = *α  + ∑
=

m

i
ioi xv

1

*                  (12.5) 

 
where (*) represents optimal values in model (12.4). That is, DEA estimates 
the “coefficients” in (12.2). It can be seen that while (12.1) estimates one set 
of coefficients, DEA model (12.4) estimates one set of coefficients for each 
DMU, resulting a piecewise linear tradeoff curve represented by several 
(12.5)-like equations associated with efficient DMUs. Equation (12.5) is 
theoretically available, but very difficult to obtain empirically. 

Obviously, *
ru  and *

iv  represent the tradeoffs among various outputs and 
inputs. If we can obtain the exact information on *

ru  and *
iv , the critical 

performance measures can be easily identified. However, the exact 
information on *

ru  and *
iv  cannot be obtained because of multiple optimal 

solutions in the multiplier models. 
 
However, in order to solve model (4), the following transformation is 

used 

t = 

∑
=

s

r
ror yu

1

1
, iω  = t iv , oω  = tα , rμ  = t ru    (12.6) 

Based upon (12.6), model (12.4) is solved in the following equivalent 
linear programming problem (VRS multiplier model, see chapter 1) 

rio μωω ,,
min oω  + ∑

=

m

i
ioi x

1

ω  

subject to 

0
11

≤−−∑∑
==

oij

m

i
irj

s

r
r xy ωωμ  ∀  j   (12.7) 

∑
=

s

r
ror y

1

μ  = 1 

rμ , iω  > 0   ∀  r, i 
or the dual to model (12.7) (VRS envelopment model, see chapter 1) 
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Based upon (12.6), we have 
k

i

ω
ω

 = 
k

i

v
v

 and 
d

r

μ
μ

 = 
d

r

u
u

. Thus, *
rμ  and 

*
iω  are not the exact weights representing the tradeoffs in model (4). In 

addition, for efficient DMUs, model (12.7) often yields multiple optimal 

solutions on multipliers rμ  and iω . Also, *

1

*

1

*
oij

m

i
irj

s

r
r xy ωωμ −−∑∑

==

 = 0 

may only represent supporting hyperplanes rather than the performance 
frontier in empirical studies. This further leads to an incomplete tradeoff 
information. Because of possible multiple optimal solutions in (12.7) and the 
transformation in (12.6), it is very difficult to back out the tradeoffs 
represented by *

ru  and *
iv  in model (12.4), i.e., the performance frontier 

expressed by (12.5) is very difficult to obtain in empirical applications. Chen 
and Zhu (2003) therefore develop an alternative approach to identifying the 
critical measures. 

 
Suppose that we obtain the performance frontier. In this case, for 

example *
kv  > *

iv  indicates that the kth input measure is more influential in 
order for oDMU  to achieve the best-practice. i.e., the kth input is more 
important to oDMU ’s performance which is characterized by the efficiency 
score ( *

oh ). Note also that the DEA model (12.4) always tries to assign larger 
iv  and ru  to smaller iox  and larger roy  respectively in order to achieve the 

optimality. This indicates that when a set of multiple performance measures 
(inputs and outputs) is determined, the relative importance or tradeoffs is 
determined by the magnitudes of the inputs and outputs. 

It can be seen from model (12.4) that for a specific DMU under 
evaluation, when a specific input increases, the associated input weight will 
not increase and when a specific output decreases, the associated output 
weight will not increase. Consider the frontier represented by ABC in Figure 
1 with two inputs and a single output. In Figure 12.1, 1v  > 2v  remains true 
for facet AB if DMU A’s 2x  (uncritical one) changes its value, and 2v  > 1v  
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remains true for facet BC if DMU C’s 1x  (uncritical one) changes its value. 
Meanwhile, DMUs A and C remain efficient when the uncritical inputs 
changes their value, respectively1. However, if we increase the 1x  of DMU 
A or 2x  of DMU C to a certain level, DMU A or DMU C becomes 
inefficient. 

The example in Figure 12.2 indicates that (a) for efficient DMUs, the 
performance is determined and characterized by the best-practice status, and 
(b) for inefficient DMUs, the performance is determined and characterized 
by the distance to the frontier. Thus, a measure that is critical to the 
performance should be characterized by whether the measure is critical to (i) 
maintaining the best-practice for efficient DMUs and (ii) achieving the best-
practice for inefficient DMUs. 

0
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0 1 2 3 4 5 6 7
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C (6,2)
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v1 > v2

 

Figure 12.1. Critical Measures and Tradeoffs 

The example in Figure 12.1 indicates that (a) for efficient DMUs, the 
performance is determined and characterized by the best-practice status, and 
(b) for inefficient DMUs, the performance is determined and characterized 
by the distance to the frontier. Thus, a measure that is critical to the 
performance should be characterized by whether the measure is critical to (i) 
maintaining the best-practice for efficient DMUs and (ii) achieving the best-
practice for inefficient DMUs. 

 
1 Note that for example, if the second input of DMU A decreases its current level to 3, the 

level used by DMU B, then we no longer have the efficient facet AB. Since DMU B 
becomes inefficient. 
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Because a set of multiple performance measures is given prior to the 
evaluation, a critical measure is signaled by whether changes in its value 
affect the performance, not by whether inclusion or exclusion of the measure 
affects the performance. 

 
Definition 12.1 When a set of multiple performance measures is given, a 
specific measure is said to be critical if changes in its value may alter the 
efficiency status of a specific DMU. 
 
 For efficient DMUs, the performance is determined and characterized by 
the best practice status. For inefficient DMUs, the performance is 
determined and characterized by the distance to the frontier. Thus, a 
measure that is critical to the performance should be characterized by 
whether the measure is critical to (i) maintaining the best practice for 
efficient DMUs and (ii) achieving the best practice for inefficient DMUs. 

12.3 Identifying Critical Output Measures 

Consider the following super-efficiency model where the dth output is 
given the pre-emptive priority to change 
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                (12.6) 

 
Four possible cases are associated with (12.6): (i) *

dσ  > 1, (ii) *
dσ  = 1, 

(iii) *
dσ  < 1 and (iv) model (12.6) is infeasible. When *

dσ  > 1, oDMU  has 
inefficiency in its dth output, since potential output increase can be achieved 
by oDMU . Cases (ii), (iii) and (iv) indicate that no inefficiency exists in dth 
output. 
 Now, we consider the efficient DMUs and assume that oDMU  is 
efficient. Based upon model (12.6) the set of s outputs can be grouped into 
two subsets: set O = {d: *

dσ  < 1} and set O  = {d: model (12.6) is infeasible 
for dth output}. 
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 We have when model (12.6) is infeasible, the magnitude of the dth output 
across all DMUs has nothing to do with the efficiency status of oDMU . 

This indicates that the outputs in set O  are not critical to the efficiency 
status of oDMU , since changes in the outputs in set O  do not change the 
efficiency classification of oDMU . The efficiency classification of oDMU  
is stable to any changes in the dth output across all DMUs when d belongs to 
set O . 
 However, decreases in outputs in set O to certain magnitudes result in a 
change of efficiency status (performance) of oDMU . For example, when the 
dth output of oDMU  is decreased from the current level doy to a level which 
is less than *

dσ doy  ( *
dσ  < 1), then oDMU  becomes inefficient. This in turn 

indicates that the outputs in set O are critical to the performance of oDMU . 
 Now, let *dΡ  = }max{ *

dσ  for the outputs in set O. From the above 
discussion, we conclude that the d*th output is the most critical output 
measure to the efficiency of oDMU . Because, oDMU ’s efficiency status is 
most sensitive to changes in the d*th output. 
 Next, we consider inefficient DMUs and assume that oDMU  is 
inefficient. For inefficient DMUs, the issue is how to improve the 
inefficiency to achieve the best practice. Since the focus here is how each 
individual output measure contributes to the performance of oDMU , we 
solve model (12.6) for each d and obtain *

dσ  > 1 (d = 1, …, d), where *
dσ  

measures how far oDMU  is from the frontier in terms of dth output. 
 As a matter of fact, model (12.6) provides an alternative way to 
characterize the inefficiency of oDMU . Each *

dσ  indicates possible 
inefficiency existing in each associated output when other outputs and inputs 
are fixed at their current levels. We then can rank the inefficiency by each 
optimal *

dσ . Let *dG  = min{ *
dσ }. That is, the d*th output indicates the least 

inefficiency. If the oDMU  is to improve its performance through single 
output improvement, the d*th output will yield the most effective way. 
Because *dG  represents the shortest path onto the best practice frontier when 
each output is given the pre-emptive priority to improve. We therefore 
define that the d*th output is the most critical output to reach the 
performance frontier and to oDMU ’s performance. 

In summary, the critical output is identified as the output associated with 
max }{ *

dσ  for efficient DMUs and min{ *
dσ } for inefficient DMUs. 

12.4 Identifying Critical Input Measures 

 Consider the following super-efficiency model when the kth input 
measure is of interest. 
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 Based upon model (12.7), we have (i) *

kτ  < 1, (ii) *
kτ  = 1, (iii) *

kτ  > 1, and 
(iv) (12.7) is infeasible. Case (i) indicates that inefficiency exists in oDMU ’s 
kth input, since oDMU  needs to decrease its kth input to *

kτ kox  in order to 
reach the performance frontier. Cases (ii), (iii) and (iv) indicate that no 
inefficiency exists in oDMU ’s kth input. 
 Now, suppose oDMU  is efficient. Based upon model (12.7), the set of m 
inputs can be grouped into two subsets: set I = {k: *

kτ  > 1} and set I  = {k: 
model (12.7) is infeasible for kth input}.  

We have when model (12.7) is infeasible, the magnitude of the kth input 
across all DMUs has nothing to do with the efficiency status of oDMU . 

This indicates that the inputs in set I  are not critical to the efficiency 
status of oDMU , since changes in the inputs in set I  do not change the 
efficiency classification of oDMU . Let *kΤ  = min }{ *

kτ  for inputs in set I . 
We conclude that the k*th input is the most critical input measure to the 
efficiency of oDMU . Because, oDMU ’s efficiency status is most sensitive 
to changes in the k*th input. 
 Next, suppose oDMU  is inefficient. We solve model (12.7) for each k and 
obtain *

kτ  < 1 (k = 1, …, m), where *
kτ  measures how far oDMU  is from the 

frontier in terms of kth input. Each *
kτ  indicates possible inefficiency 

existing in each associated input when other inputs and outputs are fixed at 
their current levels. We then can rank the inefficiency by each optimal *

kτ . 
Let *kH  = 

k
max { *

kτ }. Similar to the discussion on identifying the critical 
output measure, we say that the *k th input is the most critical input to reach 
the performance frontier and to oDMU ’s performance, since the k*th input 
indicates the least inefficiency. 
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In summary, the critical input is identified as the input associated with 
min }{ *

kτ  for efficient DMUs and max{ *
kτ } for inefficient DMUs. 

12.5 Numerical Example and Extension 

 To further illustrate the rationale of the approach, consider again the four 
DMUs shown in Figure 12.1. Table 12.1 reports the optimal value to model 
(12.7). It can be seen that for DMU D, the first input is the critical measure 
since DMU D’s efficiency can be easily improved if the first input is given 
the pre-emptive priority to change. For DMU A, the infeasibility associated 
with the second input indicates that the first input is the critical measure. 
Note that the efficient facet AB shows that the first input is more important 
than the second one, since 1v  > 2v . Our approach also indicates that the 
second input is the critical measure to DMU C’s performance. This finding 
is confirmed by the fact that 2v  > 1v  in BC. As for DMU B, since it is 
located at the intersect of AB and BC, it is very difficult to determine which 
input is the critical factor by looking at the coefficients of efficient facets. 
Our approach indicates that the second input is the critical one for DMU B, 
since *

2τ  < *
1τ  (17/12 < 14/9). 

Table 12.1. Critical Measures for the Numerical Example 
DMU *

1τ  *
2τ  

A 3/2 infeasible 
B 14/9 17/12 
C infeasible 2 
D 2/3 3/5 
 

The above discussion assumes that DMUs are able to adjust each input 
and each output while other inputs and outputs are fixed. Situations when 
some measures are strongly related with each other may occur. In that case, a 
set of inputs or outputs has to be adjusted simultaneously and we need to 
consider the measures in groups. We use the following models. 
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where inputs represented by set M and outputs represented by set Q are of 
interest. 

 Similar to the previous discussions, when oDMU  is inefficient, we use 
max{ *

MT } and min{ *
QΩ } to identify the most critical input and output 

measures, respectively. When oDMU  is efficient, infeasibility associated 
with (12.8) and (12.9) indicates the non-critical inputs and outputs. 
 The above discussion is based upon the assumption that the DEA frontier 
exhibits VRS. The development can be applied to other DEA models with 
non-VRS frontiers discussed in Chapter 11. 

12.6 Application to Fortune E-Companies 

To capture the Internet’s effect on the economy, at the end of year 1999, 
Fortune magazine launched the Fortune e-50 index which consists of 50 
corporations who integrate the Internet, computers and enterprise softwares 
to do the business. As stated in the 1999 December Fortune issue, each of 
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the e-50 is or has the potential to be a major player in the Internet economy. 
The list of e-corporation is decided by that a company must have been public 
for at least six months and must have a market capital value that exceeds 
$100 million. Table 12.2 provides the list of the e-50. 

Table 12.2. Fortune’s e-corporations 
 
DMU No. Name 

Revenue 
$ millions

Profits 
$ millionsEmployees

Market Capital
$ millions 

Year 
Founded

E-COMPANIES 
1 America Online 4777 762 12100 164308 1985 
2 Charles Schwab 4113 498 13300 34194 1986 
3 Amazon.com 1015 -291 2100 21202 1994 
4 E*Trade Group  621 -54 1735 8341 1982 
5 Knight/Trimark Group 618 119 446 4389 1995 
6 Yahoo 341 22 803 47946 1995 
7 Ameritrade Holding 301 12 985 3740 1992 
8 EarthLink Network 254 -88 1343 1409 1994 
9 Priceline.com 189 -125 194 7963 1998 
10 CMGI  176 476 1024 12567 1986 
11 Lycos 136 -52 456 5687 1995 
12 Excite@Home 129 -324 570 14647 1995 
13 eBay 125 7 138 17106 1995 
14 DoubleClick 103 -22 482 5947 1996 
15 RealNetworks 89 -4 434 9148 1994 
16 CNet 79 40 491 3481 1995 
17 Healtheon 68 -68 648 2347 1995 
18 eToys  38 -47 306 6276 1996 
19 VerticalNet  8 -21 220 2515 1995 
NET SOFTWARE AND SERVICE COMPANIES 
20 Microsoft 19747 7785 31396 471573 1975 
21 Oracle 9063 1332 44000 85776 1977 
22 Intuit  848 377 3675 5942 1983 
23 Network Associates 785 -127 2700 2871 1992 
24 Cambridge Tech. Partners 628 35 4444 726 1991 
25 TMP Worldwide 585 10 5200 2976 1967 
26 Ariba 45.4 * * * 1996 
27 Citrix Systems 323 93 620 7169 1989 
28 Macromedia 167 24 553 2690 1992 
29 Network Solutions 142 17 385 4801 1979 
30 Concentric Network 110 -82 508 1054 1991 
31 Exodus Communications 108 -82 472 7080 1992 
32 BroadVision 71 10 271 6777 1993 
33 Inktomi  71 -24 185 5709 1996 
34 Security First Technologies 44 -19 312 1345 1995 
35 Razorfish 36 2 414 1896 1995 
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Table 12.2 Fortune’s e-corporations (continued) 
NET HARDWARE COMPANIES 
36 IBM 874487701291067 1675671911
37 Lucent Technologies  383034766153000 2114151995
38 Intel  28194737164500 2858031968
39 Dell Computer 21670175024400 1105301984
40 Cisco Systems 12154209621000 2372151984
41 Sun Microsystems 11726103129700 85861 1982
42 EMC 4459 967 9700 75371 1979
43 Qualcomm  3937 201 11600 43919 1981
44 Network Appliance 335 42 816 6327 1992
45 Broadcom  335 40 436 15994 1991
46 Juniper Networks  31 -30 190 14455 1992
NET COMMUNICATION COMPANIES 
47 AT&T  569686037107800 1547911875
48 MCI WorldCom  30720-883 77000 1624921983
49 Qwest Communications 3424 -5 8700 27404 1997
50 Global Crossing 691 79 10000 26109 1997

 
Market capital, profit, revenue and number of employees are provided by 

the Fortune as the four standard measures to fully characterize the 
performance of the e-50 corporations. We therefore use them as a set of 
multiple performance measures. The data on profit, employee and market 
capital are not available for Ariba (DMU26), and therefore Ariba is excluded 
from the following analysis. 

Because we are interested in the contribution of revenue, profit and 
employee to the market value, we select the market capital as the DEA 
output and the other measures as the DEA inputs. Output-oriented DEA 
model is used, because higher market values are desirable given the current 
levels of revenue, profit and the number of employees. 

The third column of Table 12.3 reports the optimal value to the output-
oriented VRS envelopment model. Ten e-corporations are on the 
performance frontier. 

Next, we apply the newly developed method to identify the critical input 
measures to the market capital under the context of best-practice. Columns 3, 
4 and 5 of Table 12.4 report the results from model (12.7). 

We use the DEAFrontier software to do the calculation. Once the data are 
entered into the “data” sheet, we select “Perform Sensitivity Analysis” and 
then select the input as shown in Figure 12.2. The results are reported in the 
“Sensitivity Report” sheet. We can select one input at a time. 

 



Application to Fortune E-Companies 281
 

 
Figure 12.2. Critical Measures and Tradeoffs 

 
For example, consider MCI WorldCom (DMU48), model (12.7) is 

infeasible when revenue and employee are under consideration (selected) 
respectively and model (12.7) yields the optimal value of 96.98 when profit 
is under consideration. This indicates that once the three input measures are 
determined, the magnitudes of revenue and employee do not affect the 
efficiency status of MCI WorldCom. However, the value of profit affects 
MCI WorldCom’s efficiency status given the current levels of market value, 
revenue and employee. Thus, profit is the critical factor to MCI WorldCom’s 
performance. 

Consider Charles Schwab (DMU2) which is an inefficient unit. The 
optimal values to model (12.7) indicate that the profit measure is the critical 
one for Charles Schwab to achieve the performance frontier. 

The sixth column of Table 4 reports the critical measure identified on the 
basis of model (12.7). However, for efficient DMUs, it is likely that model 
(12.7) is infeasible for each input measure. Samples can be found in America 
Online (DMU1), Yahoo (DMU6) and Microsoft (DMU20). This may imply 
that some measures must be considered in groups. We therefore employ 
model (12.8) for all possible combinations of the three input measures. The 
last column of Table 4 reports the results based upon model (12.8). Note that 
model (12.8) is not applied to the inefficient DMUs. 
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Table 12.3. Performance evaluation of Fortune’s e-corporations 
DMU No.Name VRS  

1 America Online 1.00000 
2 Charles Schwab 3.83409 
3 Amazon.com 1.05723 
4 E*Trade Group  5.31514 
5 Knight/Trimark Group 7.15192 
6 Yahoo 1.00000 
7 Ameritrade Holding 11.63487 
8 EarthLink Network 25.09020 
9 Priceline.com 1.00000 

10 CMGI  2.39677 
11 Lycos 4.30319 
12 Excite@Home 1.00000 
13 eBay 1.00000 
14 DoubleClick 3.71566 
15 RealNetworks 2.26509 
16 CNet 5.64226 
17 Healtheon 7.23136 
18 eToys  2.32675 
19 VerticalNet  1.00000 
20 Microsoft 1.00000 
21 Oracle 2.31196 
22 Intuit  10.30718 
23 Network Associates 13.81890 
24 Cambridge Tech. Partners 72.12135 
25 TMP Worldwide 16.68021 
27 Citrix Systems 5.50414 
28 Macromedia 10.83562 
29 Network Solutions 5.34769 
30 Concentric Network 19.73886 
31 Exodus Communications 2.90959 
32 BroadVision 2.74452 
33 Inktomi  2.77061 
34 Security First Technologies 11.79142 
35 Razorfish 7.90885 
36 IBM 2.79636 
37 Lucent Technologies  1.72137 
38 Intel  1.59834 
39 Dell Computer 2.03503 
40 Cisco Systems 1.00000 
41 Sun Microsystems 2.24478 
42 EMC 1.94255 
43 Qualcomm  2.22318 
44 Network Appliance 1.93360 
45 Broadcom  7.47555 
46 Juniper Networks  1.00000 
47 AT&T  2.64384 
48 MCI WorldCom  1.00000 
49 Qwest Communications  2.61124 
50 Global Crossing 2.18328 
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Table 12.4. Critical measures for Fortune’s e-corporations 
DMU 
No. Name revenue profit employee Critical measures 

     (12.7) (12.8) 
1 America Online infeasible infeasible infeasible  {profit, revenue} 
2 Charles Schwab 0.0520 0.3619 0.0381 {profit}  
3 Amazon.com 0.5563 0.9817 0.7884 {profit}  
4 E*Trade Group  0.0463 0.6708 0.0945 {profit}  
5 Knight/Trimark 0.0188 0.6297 0.3094 {profit}  
6 Yahoo infeasible infeasible infeasible  {profit,revenue,employee}
7 Ameritrade Holding 0.0344 0.6283 0.1401 {profit}  
8 EarthLink Network 0.1368 0.7066 0.1328 {profit}  
9 Priceline.com infeasible 1.1200 1.5994 {profit} {profit, revenue} 

10 CMGI  0.1555 0.4180 0.1348 {profit}  
11 Lycos 0.1736 0.7581 0.3700 {profit}  
12 Excite@Home infeasible 1.4459 infeasible {profit} {profit, revenue} 
13 eBay infeasible infeasible 1.7284 {employee} infeasible 
14 DoubleClick 0.1419 0.7375 0.3361 {profit}  
15 RealNetworks 0.2335 0.7661 0.3639 {profit}  
16 CNet 0.1248 0.7460 0.3329 {profit}  
17 Healtheon 0.3937 0.8759 0.3337 {profit}  
18 eToys  0.6037 0.9469 0.6886 {profit}  
19 VerticalNet  3.8750 infeasible infeasible {revenue} {profit, revenue} 
20 Microsoft infeasible infeasible infeasible  {profit,revenue,employee}
21 Oracle 0.1968 0.3002 0.0803 {profit}  
22 Intuit  0.0172 0.4408 0.0376 {profit}  
23 Network Associates 0.0641 0.7296 0.0733 {profit}  
24 Cambridge Tech. 0.0127 0.6063 0.0311 {profit}  
25 TMP Worldwide 0.0152 0.6238 0.0265 {profit}  
27 Citrix Systems 0.0525 0.5797 0.2226 {profit}  
28 Macromedia 0.0499 0.6331 0.2496 {profit}  
29 Network Solutions 0.0874 0.7455 0.3584 {profit}  
30 Concentric Network 0.2942 0.7667 0.3922 {profit}  
31 Exodus Comm. 0.3326 0.7938 0.4261 {profit}  
32 BroadVision 0.2283 0.8749 0.6195 {profit}  
33 Inktomi  0.5639 0.9775 0.9381 {profit}  
34 Security First Tech. 0.1818 0.9023 0.5859 {profit}  
35 Razorfish 0.2222 0.8968 0.4523 {profit}  
36 IBM 0.0564 0.0185 0.0324 {revenue}  
37 Lucent Technologies  0.1846 0.2452 0.0824 {profit}  
38 Intel  0.3794 0.4202 0.2788 {profit}  
39 Dell Computer 0.1258 0.3242 0.2181 {profit}  
40 Cisco Systems infeasible 1.0754 infeasible {profit} {profit, revenue} 
41 Sun Microsystems 0.1524 0.2609 0.1192 {profit}  
42 EMC 0.3110 0.4847 0.2870 {profit}  
43 Qualcomm  0.0772 0.5508 0.0617 {profit}  
44 Network Appliance 0.1351 0.7314 0.3165 {profit}  
45 Broadcom  0.0458 0.6096 0.1691 {profit}  
46 Juniper Networks  3.5327 infeasible infeasible {revenue} {profit, revenue} 
47 AT&T  0.0775 0.0025 0.0790 {employee}  
48 MCI WorldCom  infeasible 96.9787 infeasible {profit} {profit, revenue} 
49 Qwest Comm.  0.0441 0.5771 0.0443 {profit}  
50 Global Crossing 0.2010 0.6601 0.0332 {revenue}  
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For Yahoo and Microsoft, model (12.8) is feasible (has optimal solutions) 
when only all three inputs are in set M. For America Online, model (12.7) is 
feasible (has optimal solutions) when profit and revenue are in set M. 

Model (12.8) is also applied to the remaining 7 efficient e-corporations, 
namely, Excite@Home (DMU12), Vertical Net (DMU19), Cisco System 
(DMU40), Juniper Networks (DMU46) and MCI WorldCom (DMU48). 
Model (12.7) is feasible when profit and revenue are in set M. 

Except for America Online, Yahoo, eBay, Vertical Net, Microsoft, IBM, 
Juniper Networks, AT&T and Global Crossing, all the e-corporations 
indicate profit as their critical measure. This confirms that for the majority of 
the e-corporations that are rely on the Internet for business, revenue does not 
necessarily mean profit. In fact, about 40% of the e-corporations had 
negative profit in year 1999. (The negative values are treated by the 
translation invariance property in DEA. See Chapter 5’s Appendix.) 

A closer look at Table 4 indicates that America Online, Yahoo and 
Microsoft have distinguished themselves from the e-corporations, because 
the results from model (12.8) imply that their high revenue means profit. 
Note that among the inefficient units, employee is identified as the critical 
measure for eBay and AT&T, and revenue is identified as the critical 
measure for IBM. 

The e-corporations actually represent the 21st century new economy 
where the electronic and information technologies are heavily used. To 
further illustrate the approach, we next apply models (12.7) and (12.8) to the 
Fortune 1000 companies in 1995 who represent old economy where the 
companies design, build and deliver physical, molecular-based products to 
customer. The purpose is to see whether the new economy e-corporations 
behave differently compared to the old economy companies in terms of the 
critical measures. 

Since the e-corporations belong to computer and telecommunication 
industries, we exclude all those Fortune’s 1000 companies who are in the 
computer and telecommunication industries from the analysis. We also 
exclude those Fortune 1000 companies who do not have complete data on 
the four performance measures. As a result, we have 51 industries with 760 
companies which are different from the e-corporations (see the first column 
in Table 12.5). 

Table 5 summarizes the results from the new approach. The second 
column reports the number of companies in each industry. The third, fourth 
and fifth columns report how many companies indicate revenue, profit and 
employee as their critical measures respectively. For example, the second 
row in Table 5 indicates that (i) there are 4 companies in the advertising and 
marketing industry, and (ii) revenue is identified as the critical measure for 
all companies. In the motor vehicle industry, only two companies (General 
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Motor and Ford) (9.52%; two out of 21) indicate that profit is the critical 
measure while other 19 companies indicate that revenue is the critical 
measure. 

Our approach indicates that revenue is the critical factor to 95% of the 
760 companies in the Fortune’s top 1000 list. In fact, these “old-economy” 
companies sever relatively mature market or command a lead in markets 
where they compete. Our finding is consistent with the belief that revenue 
means a stable proportion of the profit for the old economy companies. Also, 
our approach does indicate that the e-corporations and the Fortune’s 1000 
companies behave differently. 

 

Table 12.5. Critical measures for Fortune’s 1000 companies 
Industry Companies Revenue Profit Employee 
Advertising, marketing 4 100% 0% 0% 
Aerospace 11 90.91% 9.09% 0% 
Airlines 9 100% 0% 0% 
Apparel 5 100% 0% 0% 
Beverages 7 100% 0% 0% 
Brokerage 7 100% 0% 0% 
Building materials, glass 4 100% 0% 0% 
Chemicals 39 97.44% 2.56% 0% 
Commercial banks 55 98.18% 1.82% 0% 
Diversified financials 14 92.86% 7.14% 0% 
Electric and gas utilities 73 98.63% 0% 1.37% 
Electronics, electrical equipment 41 95.12% 4.88% 0% 
Engineering, construction 11 90.91% 0% 9.09% 
Entertainment 3 33.33% 33.33% 33.33% 
Food 27 92.59% 0% 7.41% 
Food and drug stores 20 100% 0% 0% 
Food services 5 80.00% 20.00% 0% 
Forest and paper products 30 100% 0% 0% 
Furniture 5 100% 0% 0% 
General merchandisers 16 87.50% 12.50% 0% 
Health care 18 100% 0% 0% 
Hotels, casinos, resorts 7 100% 0% 0% 
Industrial and farm equipment 27 100% 0% 0% 
Insurance: life & health 19 94.74% 5.26% 0% 
Insurance: prop. & casualty 24 87.50% 12.50% 0% 
Mail, package and freight delivery 3 100% 0% 0% 
Marine services 2 100% 0% 0% 
Metal products 11 100% 0% 0% 
Metals 21 100% 0% 0% 
Mining, crude-oil production 7 100% 0% 0% 
Motor vehicles and parts 21 90.48% 9.52% 0% 
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Table 12.5 Critical measures for Fortune’s 1000 companies (continued) 
Industry Companies Revenue Profit Employee 
Petroleum refining 18 50.00% 33.33% 16.67% 
Pharmaceuticals 14 85.71% 14.29% 0% 
Pipelines 10 80.00% 0% 20.00% 
Publishing, printing 17 100% 0% 0% 
Railroads 5 100% 0% 0% 
Rubber and plastic products 8 100% 0% 0% 
Savings institutions 8 100% 0% 0% 
Scientific, photo., control equip. 18 94.44% 5.56% 0% 
Soaps, cosmetics 8 87.50% 12.50% 0% 
Specialist retailers 30 100% 0% 0% 
Temporary help 5 100% 0% 0% 
Textiles 6 100% 0% 0% 
Tobacco 4 75.00% 25.00% 0% 
Toys, sporting goods 3 100% 0% 0% 
Transportation equipment 5 100% 0% 0% 
Truck leasing 2 100% 0% 0% 
Trucking 3 100% 0% 0% 
Waste management 3 100% 0% 0% 
Wholesalers 40 90.00% 0% 10.00% 
Miscellaneous 7 100% 0% 0% 
Total 760 94.61% 3.55% 1.84% 
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Chapter 13 

Returns-to-Scale 
 

 
 

13.1 Introduction 

 As demonstrated in Figure 1.3, the VRS envelopment model identifies the 
VRS frontier with DMUs exhibiting IRS (increasing returns to scale), CRS 
(constant returns to scale), and DRS (decreasing returns to scale). In fact, the 
economic concept of RTS (returns to scale) has been widely studied within 
the framework of DEA. RTS have typically been defined only for single 
output situations. DEA generalizes the notion of RTS to the multiple-output 
case. This, in turn, further extended the applicability of DEA. 
 Seiford and Zhu (1999a) demonstrate that there are at least three 
equivalent basic methods of testing a DMU's RTS nature which have 
appeared in the DEA literature. Based upon the VRS multiplier models, the 
sign of the optimal free variable (μ* or ν*) indicates the RTS (Banker, 
Charnes and Cooper, 1984). Based upon the CRS envelopment models, the 
magnitude of optimal ∑n

j j
*λ  indicates the RTS (Banker, 1984). These two 

methods may fail when DEA models have alternate optimal solutions. The 
third method is based upon the scale efficiency index (Färe, Grosskopf and 
Lovell, 1994). The scale efficiency index method does not require 
information on μ* or ν* or ∑n

j j
*λ , and is robust even when there exist 

multiple optima. However, the scale efficiency index method requires the 
calculation of three DEA models. 
 Seiford and Zhu (1999b) and Seiford and Zhu (2005) study the sensitivity 
of RTS classification. Seiford and Zhu (1999c) provide a use of RTS 
sensitivity analysis in improving performance of a two-stage process. 
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13.2 RTS Regions 

It is meaningful to discuss RTS for DMUs located on the VRS frontier. 
We discuss the RTS for non-frontier DMUs by their VRS efficient targets as 
indicated in Table 1.1. Because a VRS envelopment model can be either 
input-oriented or output-oriented, we may obtain different efficient targets 
and RTS classifications for a specific non-frontier DMU. 
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Figure 13.1. RTS and VRS Efficient Target 

 Suppose we have five DMUs, A, B, C, D, and H as shown in Figure 13.1. 
Ray OBC is the CRS frontier. AB, BC and CD constitute the VRS frontier, 
and exhibit IRS, CRS and DRS, respectively. B and C exhibit CRS. On the 
line segment AB, IRS prevail to the left of B. On the line segment CD, DRS 
prevail to the right of C. 
 Consider non-frontier DMU H. If the input-oriented VRS envelopment 
model is used, then H′ is the efficient target, and the RTS classification for H 
is IRS. If the output-oriented VRS envelopment model is used, then H″is the 
efficient target, and the RTS classification for H is DRS. 
 However some IRS, CRS and DRS regions are uniquely determined no 
matter which VRS model is employed. They are region ‘I’ – IRS, region ‘II’ 
– CRS, and region ‘III’ – DRS. In fact, we have six RTS regions as shown in 
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Figure 13.2. Two RTS classifications will be assigned into the remaining 
regions IV, V and VI. Region ‘IV’ is of IRS (input-oriented) and of CRS 
(output-oriented). Region ‘V’ is of CRS (input-oriented) and of DRS 
(output-oriented). Region ‘VI’ is of IRS (input-oriented) and of DRS 
(output-oriented). 
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Region ‘I’ – IRS 
Region ‘II’ – CRS 
Region ‘III’ – DRS; 
Region ‘IV’ is IRS (input-oriented) and CRS (output-oriented) 
Region ‘V’ is CRS (input-oriented) and DRS (output-oriented) 
Region ‘VI’ is IRS (input-oriented) and DRS (output-oriented) 

 

Figure 13.2. RTS Region 

The RTS regions can provide a DMU classification. See also Gregoriou 
and Zhu (2005). 

 

13.3 RTS Estimation 

3.3.1 VRS and CRS RTS Methods 

Let *μ  represent the optimal value of µ in the input-oriented VRS 
multiplier model, and *ν  the optimal value of ν in the output-oriented VRS 
multiplier model, then we have the VRS RTS method. 
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Theorem 13.1 
(i) If *μ  = 0 (or *ν  = 0) in any alternate optima, then CRS prevail on 

oDMU . 
(ii) If *μ  > 0 (or *ν  < 0) in all alternate optima, then IRS prevail on oDMU . 
(iii) If *μ  < 0 (or *ν  > 0) in all alternate optima, then DRS prevail on 

oDMU . 
 

Note that the VRS frontier can be expressed as ∑ =
s
r rjr y1 μ  = ∑ =

m
i iji x1ν  - µ 

(or ∑ =
s
r rjr y1 μ  = ∑ =

m
i iji x1ν  + ν). Thus, geometrically, in the case of single 

output, - *μ  (or *ν ) represents the y-intercept on the output axis. Consider 
Figure 13.1. The intercept is positive for line segment CD so *μ  < 0 (or *ν  
> 0) and RTS is decreasing for any DMU on CD (excluding C), whereas the 
intercept is negative for line segment AB so *μ  > 0 (or *ν  < 0) and RTS is 
increasing for any DMU on AB (excluding B). The intercept for line OBC is 
zero so *μ  = 0 (or *ν  = 0) and RTS is constant. However, in computation, 
we may not obtain the unique optimal solution (the frontier), and we may 
obtain supporting hyperplanes at VRS frontier DMUs. Consequently, we 
have to check all optimal solutions as indicated in Theorem 13.1. 

Table 13.1 presents five VRS frontier DMUs with two inputs and one 
output. The last column indicates the RTS classification. 

Table 13.1. DMUs for RTS Estimation 
DMU input 1 (x1) input 2 (x2) output (y) RTS 

1 2 5 2 CRS 
2 2 2 1 CRS 
3 4 1 1 CRS 
4 2 1 1/2 IRS 
5 6 5 5/2 DRS
 

Table 13.2. Optimal Values for RTS Estimation 
DMU *μ ∈ [ −μ , +μ ] *

jλ  
1 [-7, 1] *

1λ  = 1; ∑ =
6

1
*

j jλ  = 1 
2 [0, 1] solution 1: *

2λ  = 1; ∑ =
6

1
*

j jλ  = 1 
solution 2: *

1λ  = 1/3, *
3λ  = 1/3; ∑ =

6
1

*
j jλ  = 2/3 

3 [-5/3, 1] *
3λ  = 1; ∑ =

6
1

*
j jλ  = 1 

4 [1/2, 1] 0< *
1λ  <1/12, *

2λ  = 1/4-3 *
1λ , *

3λ =1/4+ *
1λ  

5/12<∑ =
6

1
*

j jλ <1/2 
5 (-∞, -3/37] *

1λ =35/48 - *
2λ /3, 0< *

2λ <35/16, *
3λ =25/24- *

2λ /3 
85/48<∑ =

6
1

*
j jλ <15/6 

 
The second column of Table 13.2 reports the optimal *μ . *μ  can take all 

the optimal  values in the interval [ −μ , +μ ]. *μ  = 0 is found in DMUs 1, 2, 
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and 3, therefore the three DMUs exhibit CRS. All *μ  are positive and 
negative in DMU5 and DMU6, respectively, therefore IRS and DRS prevail 
on DMU5 and DMU6, respectively. 

 
The above RTS method uses the VRS multiplier models. In fact, we can 

use CRS envelopment models to estimate the RTS classification (Zhu, 
2000a). Let *

jλ  be the optimal values in CRS envelopment models. We have 
 
Theorem 13.2 
(i) If ∑n

j j
*λ  = 1 in any alternate optima, then CRS prevail on oDMU . 

(ii) If ∑n
j j

*λ  < 1 for all alternate optima, then IRS prevail on oDMU . 
(iii) If ∑n

j j
*λ  > 1 for all alternate optima, then DRS prevail on oDMU . 

From Table 13.2, we see that DMU2 has alternate optimal *
jλ . 

Nevertheless, there exists an optimal solution such that ∑n
j j

*λ  = 1 indicating 
CRS. DMU4 exhibits IRS because ∑n

j j
*λ  < 1 in all optima, and DMU5 

exhibits DRS because ∑n
j j

*λ  > 1 in all optima. 

3.3.2 Improved RTS Method 

In real world applications, the examination of alternative optima is a 
laborious task, and one may attempt to use a single set of resulting optimal 
solutions in the application of the RTS methods. However, this may yield 
erroneous results. For instance, if we obtain *

1λ  = *
3λ  = 1/3, or *μ  = 1 for 

DMU2, then DMU2 may erroneously be classified as having IRS because 
∑ *

jλ  < 1 or *μ  > 0 in one particular alternate solution. 
A number of methods have been developed to deal with multiple optimal 

solutions in the VRS multiplier models and the CRS envelopment models. 
Seiford and Zhu (1999a) show the following results with respect to the 
relationship amongst envelopment and multiplier models, respectively. 
 
Theorem 13.3 
(i) The CRS efficiency score is equal to the VRS efficiency score if and only 
if there exists an optimal solution such that ∑n

j j
*λ  = 1. If The CRS efficiency 

score is not equal to the VRS efficiency score, then 
(ii) The VRS efficiency score is greater than the NIRS efficiency score if and 
only if ∑n

j j
*λ  < 1 in all optimal solutions of the CRS envelopment model. 

(iii) The VRS efficiency score is equal to the NIRS efficiency score if and 
only if ∑n

j j
*λ  > 1 in all optimal solutions of the CRS envelopment model. 

 
 
 
 



294 Returns-to-Scale
 
Theorem 13.4 
(i) The CRS efficiency score is equal to the VRS efficiency score if and only 
if there exists an optimal solution *μ  = 0 (or *ν  = 0). If The CRS efficiency 
score is not equal to the VRS efficiency score, then 
(ii) The VRS efficiency score is greater than the NIRS efficiency score if and 
only if *μ  > 0 (or *ν  < 0) in all optimal solutions. 
(iii) The VRS efficiency score is equal to the NIRS efficiency score if and 
only if *μ  < 0 (or *ν  > 0) in all optimal solutions. 

 
Based upon Theorems 13.3 and 13.4, we have 
 

Theorem 13.5 
(i) If oDMU  exhibits IRS, then∑n

j j
*λ  < 1 for all alternate optima. 

(ii) If oDMU  exhibits DRS, then ∑n
j j

*λ  > 1 for all alternate optima. 
 

The significance of Theorem 13.5 lies in the fact that the possible 
alternate optimal *

jλ  obtained from the CRS envelopment models only affect 
the estimation of RTS for those DMUs that truly exhibit CRS, and have 
nothing to do with the RTS estimation on those DMUs that truly exhibit IRS 
or DRS. That is, if a DMU exhibits IRS (or DRS), then ∑n

j j
*λ  must be less 

(or greater) than one, no matter whether there exist alternate optima of jλ . 
Further, we can have a very simple approach to eliminate the need for 

examining all alternate optima. 
 
Theorem 13.6 
(i) The CRS efficiency score is equal to the VRS efficiency score if and only 
if CRS prevail on oDMU . Otherwise, 
(ii) ∑n

j j
*λ  < 1 if and only if IRS prevail on oDMU . 

(iii) ∑n
j j

*λ  > 1if and only if DRS prevail on oDMU . 
 

Thus, in empirical applications, we can explore RTS in two steps. First, 
select all the DMUs that have the same CRS and VRS efficiency scores 
regardless of the value of ∑n

j j
*λ . These DMUs are in the CRS region. Next, 

use the value of ∑n
j j

*λ  (in any CRS envelopment model outcome) to 
determine the RTS for the remaining DMUs. We observe that in this process 
we can safely ignore possible multiple optimal solutions of jλ . 

Similarly, based upon VRS multiplier models, we have 
 

Theorem 13.7 
(i) The CRS efficiency score is equal to the VRS efficiency score if and only 
if CRS prevail on oDMU . Otherwise, 
(ii) *μ  > 0 (or *ν  < 0) if and only if IRS prevail on oDMU . 
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(iii) *μ  < 0 (or *ν  > 0) if and only if DRS prevail on oDMU . 

3.3.3 Spreadsheets for RTS Estimation 

We here develop spreadsheet models for RTS estimation based upon 
Theorem 13.6. The RTS spreadsheet model uses VRS and CRS envelopment 
spreadsheets. Figure 13.3 shows a spreadsheet for the input-oriented CRS 
envelopment model where CRS efficiency scores and the optimal ∑n

j j
*λ  are 

recorded in columns J and K, respectively. The button “Input-oriented CRS 
(RTS)” is linked to a VBA procedure “RTS”. 
 
Sub RTS() 

    Dim i As Integer 

    For i = 1 To 15 

'set the value of cell E18 equal to i (1, 2,..., 15) 

    Range("E18") = i 

'Run the Solver model. The UserFinish is set to True so that 

'the Solver Results dialog box will not be shown 

    SolverSolve UserFinish:=True 

'Place the efficiency into column J 

    Range("J" & i + 1) = Range("F19") 

'Place the sum of lambdas into column K 

     Range("K" & i + 1) = Range("B25") 

    Next i 

End Sub 
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Figure 13.3. Input-oriented RTS Classification Spreadsheet Model 

In order to obtain the RTS classification, we need also to calculate the 
input-oriented VRS envelopment model. This can be achieved by using the 
spreadsheet model shown in Figure 1.8 (Chapter 1). We then copy the VRS 
efficiency scores into column L, as shown in Figure 13.4. Cells M2:M16 
contain formulas based upon Theorem 13.6. The formula for cell M2 which 
is copied into cells M3:M16 is 

 
=IF(J2=L2,"CRS",IF(AND(J2<>L2,K2<1),"IRS",IF(AND(J2<>L2,K2>1),"
DRS"))) 

 
To obtain the output-oriented RTS classification, we use the spreadsheet 

for output-oriented CRS envelopment model. Figure 13.5 shows the 
spreadsheet, and Figure 13.6 shows the Solver parameters. Note that range 
names are used in the spreadsheet shown in Figure 13.5 as in the spreadsheet 
for output-oriented VRS envelopment model shown in Figure 1.27. For 
example, cell E18 is named as “DMU”, cell F19 is named as “Efficiency”, 
and cell B25 is named as “SumLambda”. The button “Output-oriented CRS” 
is linked to a VBA procedure “GeneralRTS” which automates the 
calculation, and records the efficiency score and ∑n

j j
*λ  into columns J and K, 

respectively. 
 

Sub GeneralRTS() 

Dim NDMUs As Integer, NInputs As Integer, NOutputs As Integer 
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    NDMUs = 15 

    NInputs = 3 

    NOutputs = 2 

    Dim i As Integer 

    For i = 1 To NDMUs 

    Range("DMU") = i 

    SolverSolve UserFinish:=True 

Range("A1").Offset(i,NInputs+NOutputs+4) = Range("Efficiency") 

Range("A1").Offset(i, NInputs+NOutputs+5) = Range("SumLambda") 

    Next 

End Sub 
 

 

Figure 13.4. Input-oriented RTS Classification 

Note that we can assign “RTS” to the button “Output-oriented CRS 
(RTS)”. In fact, when the range names are used, Range(“DMU”), 
Range(“Efficiency”), and Range(“SumLambda”) are equivalent to 
Range(“E18”), Range(“F19”), and Range(“B25”), respectively. The 
procedure “GeneralRTS” can be applied to other data sets with the range 
names. 

With the output-oriented VRS efficiency scores and Theorem 13.6, we 
can obtain the output-oriented RTS classification shown in Figure 13.7. 

Based upon Figures 13.4 and 13.7, we obtain the RTS regions (see 
column O in Figure 13.7). 
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Figure 13.5. Output-oriented RTS Classification Spreadsheet Model 

 

Figure 13.6. Solver Parameters for Output-oriented CRS Envelopment Model 



RTS Estimation  299
 

 

Figure 13.7. Output-oriented RTS Classification 

13.4 Scale Efficient Targets 

By using the most productive scale size (MPSS) concept (Banker, 1984), 
we can develop linear programming problems to set unique scale efficient 
target. Consider the following linear program when the input-oriented CRS 
envelopment model is solved (Zhu, 2000b). 
 

,...,n.,j
sryy

mixx

j

ro

n

j=
rjj

io

n

j
ijj

n

j
j

21                .0
;,...,2,1       

;,...,2,1     
osubject  t

min

1

*

1

1

=≥
=≥∑

=≤∑

∑

=

=

λ
λ

θλ

λ

               (13.1) 

 
where *θ  is the input-oriented CRS efficiency score. 
 Based upon the optimal values from (13.1) (i.e., ∑ *

jλ ), the MPSS concept 
yields the following scale-efficient target for oDMU  corresponding to the 
largest MPSS 
 

MPSSmax :
⎩
⎨
⎧

∑=
∑=

*

**

/~
/~

jroro

jioio

yy
xx

λ
λθ                 (13.2) 

 
where (~) represents the target value. 
 If we change the objective of (13.1) to maximization, 
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then we have the scale efficient target corresponding to the smallest MPSS. 
 

MPSSmin :
⎩
⎨
⎧

∑=
∑=

*

**

ˆ/~
ˆ/~

jroro

jioio

yy
xx

λ
λθ                 (13.4) 

 
 Note that models (13.1) and (13.3) are based upon the input-oriented CRS 
envelopment model. However, by using the relationship between the input-
oriented and output-oriented CRS envelopment models (see Lemma 13.2), it 
is trivial to show that MPSSmax (MPSSmin) remains the same under both 
orientations. Consequently, MPSSmax and MPSSmin are uniquely determined 
by *θ  and ∑ *

jλ  (∑ *̂
jλ ). 

 We can select the largest or the smallest MPSS target for a particular 
DMU under consideration based upon the RTS preference over performance 
improvement. For example, one may select the smallest MPSS for an IRS 
DMU and the largest MPSS for a DRS DMU. Further, if the CRS 
envelopment models yield the unique optimal solutions, then the MPSSmax 
and MPSSmin are the same. 

The spreadsheet model for calculating the scale efficient target involves 
(i) calculating CRS envelopment model, and (ii) calculating model (13.1). 
We demonstrate (ii) using the input-oriented CRS envelopment model 
shown in Figure 13.3. 

In Figure 13.8, the target cell is B25, and contains the formula 
“=SUM(I2:I16)”, representing the ∑ *

jλ . Cell F19 is no longer a changing 
cell, and contains the formula “=INDEX(J2:J16,E18,1)”. This formula 
returns the CRS efficiency score of a DMU under evaluation from column J. 

The changing cells are I2:I16. The constraints in the Solver parameters 
for the input-oriented CRS envelopment model shown in Figure 1.24 remain 
the same. Figure 13.8 also shows the Solver parameters for calculating the 
model (13.1). Select “Max” if model (13.3) is used. 
 To automate the computation, we remove the statement Range(“J”& 
i+1)=Range(“F19”) from the procedure “RTS”, and name the new procedure 
“MPSS”. 
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Sub MPSS() 

    Dim i As Integer 
    For i = 1 To 15 

'set the value of cell E18 equal to i (1, 2,..., 15) 

    Range("E18") = i 

'Run the Solver model. The UserFinish is set to True so that 

'the Solver Results dialog box will not be shown 

    SolverSolve UserFinish:=True 

'Place the sum of lambdas into column K 

     Range("K" & i + 1) = Range("B25") 

    Next i 

End Sub 
 

 

Figure 13.8. Largest MPSS Spreadsheet Model 

It can be seen that the maximum ∑ *
jλ  is the same as that obtained from 

the input-oriented CRS envelopment model shown in Figure 13.3. This is 
due to the fact that we have unique optimal solutions on *

jλ . As a result, 
minimum ∑ *̂

jλ  = maximum ∑ *
jλ . We can apply (13.2) or (13.4) to obtain 

the scale efficient targets for the 15 DMUs. 

13.5 Solving DEA Using DEAFrontier Software 

RTS Estimation can be found at the Returns-to-Scale menu item, as 
shown in Figure 13.9. 
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Figure 13.9. Returns-to-Scale Menu 

 

Figure 13.10. RTS Estimation 

The RTS Estimation menu will provide (i) the RTS classifications, and 
(ii) RTS regions as shown in Figure 13.2. (see Figure 13.10). 

If RTS Region is selected, the software will run both the input-oriented 
and output-oriented envelopment models. The results are reported in the 
“RTS Region” sheet. 

If Input-Oriented is selected, then the software will generate the RTS 
classification based upon the input-oriented envelopment models and report 
the results in the sheet “RTS Report”. If Output-Oriented is selected, then 
the software will generate the RTS classification based upon the output-
oriented envelopment models. 
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Chapter 14 

DEA Models for Two-Stage Processes 

 
 

14.1 Introduction 

While the definition of a DMU is generic and DMUs can be in various 
forms such as hospitals, products, universities, cities, courts, business firms, 
and others, DMUs can have a two-stage structure in many cases. For 
example, banks use labor and assets to generate deposits which are in turn 
used to generate load incomes. Seiford and Zhu (1999) use a two-stage 
process to measure the profitability and marketability of US commercial 
banks. In their study, profitability is measured using labor and assets as 
inputs, and the outputs are profits and revenue. In the second stage for 
marketability, the profits and revenue are then used as inputs, while market 
value, returns and earnings per share are used as outputs. Chilingerian and 
Sherman (2004) describe another two-stage process in measuring physician 
care. Their first stage is a manager-controlled process with inputs including 
registered nurses, medical supplies, and capital and fixed costs. These inputs 
generate the outputs or intermediate measures (inputs to the second stage), 
including patient days, quality of treatment, drug dispensed, among others. 
The outputs of the second (physician controlled) stage include research 
grants, quality of patients, and quantity of individuals trained, by specialty.  

In these settings, a DMU represents a two-stage process and intermediate 
measures exist in-between the two stages. The first stage uses inputs to 
generate outputs which become the inputs to the second stage. The first stage 
outputs are therefore called intermediate measures. The second stage then 
uses these intermediate measures to produce outputs. A key feature here is 
that the first stage’s outputs are the only inputs to the second stage. i.e., in 
addition to the intermediate measures, the first stage does not have its own 
outputs and the second stage does not have its own inputs. 
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These two-stage processes are different from the supply chains discussed 
in chapter 8 where the second stage also has its own independent inputs. An 
usual attempt to deal with such two-stage processes is to apply the standard 
DEA model to each stage (see, e.g., Seiford and Zhu (1999)).  However, as 
noted in chapter 8 and Chen and Zhu (2004), such an approach may 
conclude that two inefficient stages lead to an overall efficient DMU with 
the inputs of the first stage and outputs of the second stage. Consequently, 
improvement to the DEA frontier can be distorted. i.e., the performance 
improvement of one stage affects the efficiency status of the other, because 
of the presence of intermediate measures. 

Based upon the variable returns to scale (VRS) envelopment model, 
Chen and Zhu (2004) develop a linear DEA type model where each stage’s 
efficiency is defined on its own production possibility set. The two 
production possibility sets are linked with the intermediate measures which 
are set as decision variables for each DMU under evaluation. Chen and 
Zhu’s (2004) model guarantees an overall efficient two-stage process when 
each stage is efficient. For inefficient DMUs, Chen and Zhu’s (2004) model 
provides a DEA projection with a set of optimal intermediate measures. 

Kao and Hwang (2008), on the other hand, modify the standard DEA 
model by taking into account the series relationship of the two stages within 
the whole process. Under their framework, the efficiency of the whole 
process can be decomposed into the product of the efficiencies of the two 
sub-processes. Yet, their approach cannot be directly applied to the VRS 
assumption. 

Chen, Liang and Zhu (2008) develop an equivalence between Chen and 
Zhu (2004) and Kao and Hwang (2008) under the condition of constant 
returns to scale (CRS). 

The current chapter presents the models of Chen and Zhu (2008) and 
Kao and Hwang (2008) and their relations. 

14.2 VRS Two-Stage Model 

 Chen and Zhu (2004) consider the indirect impact of information 
technology (IT) on firm performance where IT directly impacts certain 
intermediate measures which in turn are transformed to realize firm 
performance. Figure 14.1 describes the indirect impact of IT on firm 
performance where the first stage uses inputs ix  (i =1, …, m) to produce 
outputs dz  ( d = 1, …, D), and then these dz  are used as inputs in the second 
stage to produce outputs ry  (r = 1, …, s). It can be seen that dz  
(intermediate measures) are outputs in stage 1 and inputs in stage 2. The first 
stage is viewed as an IT-related value-added activity where deposit is 
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generated and then used as the input to the second stage where revenue is 
generated. 

 
 
 

 

 
Stage 1 

 
Stage 2Inputs ( ix ) Intermediate 

measures ( dz ) Outputs ( ry ) 

• Fixed assets 
• Employees 
• IT investment 
• … 

• Deposit 

• … 

• Profit 
• Loan recovered 

• …

 

Figure 14.1. IT Impact on Firm Performance 

 
 Based upon the VRS envelopment model, Chen and Zhu (2004) develop 
the following model  
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where 1w  and 2w  are user-specified weights reflecting the preference over 
the two stages’ performance, and symbol “~” represents unknown decision 
variables. 
 The rationale of model (14.1) is as follows: (i) when we evaluate the 
impact of IT investment on the intermediate measures, we want to minimize 
the input usage given the intermediate measures. For example, given the 
deposits generated, our objective is to examine whether a bank can reduce its 
input consumption (including IT investment) compared to the best practice, 
and (ii) when we evaluate the firm performance as a result of the 
intermediate measures, we want to maximize the performance given the 
intermediate measures. For example, given the deposits it generated, our 
objective is to examine whether a bank can increase its profit. Model (14.1) 
characterizes the indirect impact of IT on firm performance in a single linear 
programming problem. 
 If *α  = *β  = 1, the two-stage achieves efficient performance when the 
two-stage process is viewed as a whole. 
 If *α  = 1 and *β  > 1 (or *α  < 1 and *β  = 1), then model (14.1) indicates 
that one of the stages can achieve 100% efficiency given a set of optimal 
intermediate measures. 

A DMU must be a frontier point in both stages with respect to 
oijx*α  (i = 

1, …, m), *~
odjz  (d = 1,…, D), and 

orjy*β  (r = 1, …, s), where (*) represents 
optimal value in model (14.1). 
 
 In model (14.1), the intermediate measures for a specific oDMU  under 
evaluation are set as unknown decision variables, 

odjz~ . As a result, additional 
constraints can be imposed on the intermediate measures. This can further 
help in correctly characterizing the indirect impact of IT on firm 
performance. 
 To illustrate model (14.1), Figure 14.2 shows the spreadsheet model of 
(14.1) with the data in Table 8.1 (chapter 8). Since the intermediate measures 
are set as decision variables, cell E6 is reserved to represent the Revenue 
variable. Cell D7 indicates the DMU under evaluation. Cells E8 and F8 
represent α and β, respectively. Cell G8 is the objective function and 
contains the formula “=E8-F8”. 
 The changing cells are cells H2:H4, cells I2:I4, cells E8:F8, ,and cell E6. 
The formulas for cells B9:B15 are 
 
Cell B9 =SUMPRODUCT(B2:B4,H2:H4) 
Cell B10 =SUMPRODUCT(C2:C4,H2:H4) 
Cell B11 =SUMPRODUCT(E2:E4,H2:H4) 
Cell B12 =SUMPRODUCT(E2:E4,I2:I4) 
Cell B13 =SUMPRODUCT(G2:G4,I2:I4) 
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Cell B14 =SUM(H2:H4) 
Cell B15 =SUM(I2:I4) 

 

Figure 14.2. Spreadsheet Model for Model (14.1) 

 

Figure 14.3. Solver Parameters for Model (14.1) 

 The formulas for cells D9:D13 are 
 
Cell D9 =E8*INDEX(B2:B4,D7,1) 
Cell D10 =E8*INDEX(C2:C4,D7,1) 
Cell D11 =E6 
Cell D12 =E6 
Cell D13 =F8*INDEX(G2:G4,D7,1) 
 
 Figure 14.3 shows the Solver parameters for the spreadsheet model shown 
in Figure 14.2. We have “$E$8 <=1” and “$F$8 >=1” in the Constraints, 
representing α < 1 and β > 1, respectively. 
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 In Figure 14.2, cells J2:K4 record the efficiency scores. Cells L2:L4 
report the optimal values on Revenue. Since optimal Revenue values are 
equal to the original values, α∗ and β∗ must be equal to the *θ  and *φ  of the 
VRS envelopment models, respectively. In this case, multiple optimal 
solutions on Revenue exist. (Click the “Run” button several time, you may 
get a set of different optimal values on Revenue.) 
 

We next apply model (14.1) to 15 DMUs in a data set used by Wang, 
Gopal and Zionts (1997) which consists observations on 22 firms in the 
banking industry in the years 1987 – 19891. The data can be found in the file 
“two stage spreadsheet.xls”. The inputs, intermediate measure and outputs 
are given in the Figure 14.1. 

 

Figure 14.4. IT Spreadsheet Model 

Figure 14.4 shows the spreadsheet. Range names are used in the 
spreadsheet shown in Figure 14.4. Cells B2:D16 are named as 
“Stage1Input”. Cells F2:F16 are named as “Intermediate”. Cells I2:J16 are 
named as “Stage2Output”. These cells represent the performance measures 
for the 15 banks. 
 Cells K2:K16 are named as “Lambdas” and cells L2:L16 are named as 
“Mus”. These cells are changing cells in the Solver parameters. Other 
changing cells include cell F19 – “Deposits”, representing the decision 

 
1 There are 36 observations in Wang, Gopal and Zionts (1997). The data on IT budgets are 

obtained from the annual survey by Computer World on top 100 effective users of 
information systems. The data on the percentage of loans recovered and the dollar value of 
deposits are generated from Standard and Poor’s Industry Surveys. The remaining data are 
obtained from the Compustat database. 
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variables for the intermediate measures, cell F20 – “Efficiency1”, and cell 
G20 – “Efficiency2”, representing α  and β  in model (14.1). 
 Cell I20 is the objective function of model (14.1). It contains the formula 
“=Efficiency1-Efficiency2”, i.e., “=F20-G20”. Cell I20 is named as 
“Efficiency”. 
 Based upon these range names and the related cells, we have the formulas 
for the constraints 
Cell B21 =SUMPRODUCT(Lambdas,INDEX(Stage1Inputs,0,1)) 
Cell B22 =SUMPRODUCT(Lambdas,INDEX(Stage1Inputs,0,2)) 
Cell B23 =SUMPRODUCT(Lambdas,INDEX(Stage1Inputs,0,3)) 
 
Cell B25 =SUMPRODUCT(Lambdas,INDEX(Intermediate,0,1)) 
Cell B26 =SUMPRODUCT(Mus,INDEX(Intermediate,0,1)) 
 
Cell B28 =SUMPRODUCT(Mus,INDEX(Stage2Outputs,0,1)) 
Cell B29 =SUMPRODUCT(Mus,INDEX(Stage2Outputs,0,2)) 
Cell B30 =SUM(Lambdas) 
Cell B31 =SUM(Mus) 
 
Cell D21 =Efficiency1*INDEX(Stage1Inputs,E19,1) 
Cell D22 =Efficiency1*INDEX(Stage1Inputs,E19,2) 
Cell D23 =Efficiency1*INDEX(Stage1Inputs,E19,3) 
 
Cell D25 =Deposits 
Cell D26 =Deposits 
 
Cell D28 =Efficiency2*INDEX(Stage2Outputs,E19,1) 
Cell D29 =Efficiency2*INDEX(Stage2Outputs,E19,2) 
 
 We then apply the following range names to the constraints 
 
Cells B21:B23 – ReferenceSetInput 
Cells B25 – ReferenceSetInter1 
Cells B26 – ReferenceSetInter2 
Cells B28:B29 – ReferenceSetOutput 
Cell B30 – SumLambda 
Cell B31 – SumMu 
Cells D21:D23 – DMUInput 
Cells D25 – DMUInter1 
Cells B26 – DMUInter2 
Cells D28:D29 – DMUOutput 
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Figure 14.5. Solver Parameters for IT Spreadsheet 

Figure 15.5 shows the Solver Parameters. (“SumLambda=1” and 
“SumMu=1” are not shown in Figure 8.5.) The calculation is performed by 
the following VBA procedure 
 
Sub IT() 

Dim i As Integer 

For i = 1 To 15 

Range("E19") = i 

SolverSolve UserFinish:=True 

'Place the efficiency into column J and column K 

Range("M" & i + 1) = Range("Efficiency1") 

Range("N" & i + 1) = Range("Efficiency2") 

Next i 

End Sub 

14.3 CRS Two-Stage Model 

Based upon the CRS DEA model, the efficiency scores of the two-
stage process and the two individual stages can be expressed as 
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∑
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where iv , dw , dw~ , and ru  are unknown non-negative weights. Note that 

dw  can be equal to dw~ . 
Note that the intermediate measures of djz  do not appear in jθ . Kao and 

Hwang (2008) assume that dw  = dw~ . As a result, for a specific 
0j

DMU , 

1
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∑
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 which is the overall efficiency defined in the 

Kao and Hwang (2008) model: 
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..ts  1
jθ  < 1 and 2

jθ  < 1 for all j    (14.3) 

       dw  = dw~  for all d 
Model (14.3) indicates an efficiency decomposition. That is, efficiency of 

the whole process can be decomposed into the product of the efficiencies of 
the two sub-processes 

Note that model (14.3) is an input-oriented model. The equivalent output-
oriented model can be expressed as 

Min 
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       dw  = dw~  for all d 
Model (14.4) is equivalent to the following linear program 
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The above model is an output-oriented version of Kao and Hwang’s 

(2008) model. 
 
We next present the Chen and Zhu (2004) under the CRS assumption by 

removing the convexity constraints of ∑ jλ  = ∑ jμ  = 1. We obtain 
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Chen, Liang and Zhu (2008) show (i) that model (14.6) is equivalent to 

the Kao and Hwang (2008) model (14.5), and (ii) at optimality *α  = 1 and 
*β  is the optimal value to model (14.5), representing the overall efficiency. 

 
To establish the equivalence between models (14.5) and (14.6), Chen, 

Liang and Zhu (2008) first consider the following linear program 
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Chen, Liang and Zhu (2008) then show that model (14.7)’s optimal 
solutions are optimal in model (5). 

Let 
α
λ

λ j
j =' , 

α
μ

μ j
j =' , and αβσ /= , then model (14.7) becomes 
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Next, consider the following model 
)1( −σαMax  

..ts
0

'
ijijj xx ≤∑λ                       (14.9) 

   
0
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   0)( '' ≥−∑ djjj zμλ  

0, '' ≥jj μλ ， 1,1 ≥≤ σα  
The only difference between models (14.8) and (14.9) is that model 

(14.9) sets α  = 1 in the constraint of 1≥ασ  in model (14.8). We have 
Model (14.9) optimal solutions are optimal in model (14.8) (see Chen, Liang 
and Zhu (2008).) 

Note that 1≤α  does not appear in other constraints of model (14.9). 
Therefore, at optimality, *α  = 1 and model (14.9) is equivalent to the 
following linear program 

σMax  

..ts
0

'
ijijj xx ≤∑λ      i = 1, 2, …, m 

   
0

'
rjrjj yy σμ ≥∑      r = 1, 2, …, m   (14.10) 

   0)( '' ≥−∑ djjj zμλ    d = 1, 2, …, D 

0, '' ≥jj μλ ， 1≥σ  
 
Model (14.10) is actually the dual to the model (14.5). Therefore, we 

have that at optimality *α  = 1 and *β  = *σ , where *α  and *β  are 
optimal values of α  and β  in model (14.6) and *σ  is the optimal 
value of σ  in model (14.10). 

This further indicates that the optimal *α  and *β  in model (14.6) do 
not represent the efficiency scores of individual stages under the CRS 
condition. In fact, *α  is always equal to unity and *β  represents the overall 
efficiency of the two-stage process. i.e., model (14.5) can be used to measure 
the overall efficiency of the two-stage process under the CRS condition. 
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We finally note that under the VRS condition 1
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θ • 2
0j

θ  no longer equals 
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, because of the free variable in the related DEA model. As a 

result, the VRS version of Kao and Hwang’s (2008) model cannot be 
modeled as in model (14.3). The proven equivalence between the two 
approaches sheds lights on possible ways to developing the VRS version of 
Kao and Hwang’s (2008) model. 

14.4 Solving DEA Using DEAFrontier Software 

Since intermediate measures are present, the DMUs in the data sheet are 
set in a format shown in Figure 14.6. The inputs are entered first and 
followed by a blank column, and then the intermediate measures are entered 
followed by a blank column and the outputs. 

Select the “Two Stage (VRS)” menu item to calculate the model (14.1). 
The results are reported in the “Efficiency1” (for stage 1), “Efficiency2” (for 
stage 2) and “Intermediate” (for optimal intermediate measures) sheets. 

 

Figure 14.6. Data Sheet Format For Two-Stage 
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