
  Abstract           Plant natural products are inti-
mately associated with traits such as qual-
ity, yield, disease resistance, stress tolerance, 
color, and fragrance, in addition to being 
important dietary components and phytomedi-
cines. In spite of the apparent complexity of 
natural product biosynthesis, much of the rich 
chemical diversity of the plant kingdom arises 
from a limited number of chemical scaffold 
types, modified by specific chemical substitu-
tions such as hydroxylation, glycosylation, 
acylation, prenylation, and  O -methylation. 
The molecular genetic basis underlying plant 
natural product chemistry has recently been 
the subject of concerted genomic and genetic 
approaches, facilitated by the fact that many 
of the key enzymatic steps in scaffold forma-
tion and substitution are catalyzed by proteins 
originating from recognizable gene families 
(e.g. polyketide synthase, glucosyltransferase) 
that have undergone significant expansion 
throughout plant evolution. This overview 
summarizes the types of enzymatic reactions 
involved in plant secondary metabolism from 

a pathway organization perspective that high-
lights the entry points from primary metabo-
lism, general scaffold formation and scaffold 
modification (Box 1).       

  The Primary–Secondary Metabolism 
Interface  

  Phenylpropanoids 

 The aromatic amino acid  L -phenylalanine 
(primary metabolite) is directed into the phe-
nylpropanoid pathway leading to hydroxy-
cinnamic acids, lignin and flavonoids by the 
activity of  L -phenylalanine ammonia-lyase 
(PAL), which brings about its nonoxidative 
deamination yielding ammonia and  trans -
cinnamic acid (Fig.  1 ). PAL is one of the 
most studied plant enzymes, and its crystal 
structure has recently been solved  [2] . PAL is 
related to the histidine and tyrosine ammo-
nia-lyases of amino acid catabolism. A class 
of bifunctional PALs found in monocotyle-
donous plants and yeast can also deaminate 
tyrosine  [3] . A single His residue is responsi-
ble for this switch in substrate preference  [3, 
  4] . All three enzymes share a unique MIO 
(4-methylidene-imidazole-5-one) prosthetic 
group at the active site. This is formed auto-
catalytically from the tripeptide Ala-Ser-Gly 
by cyclization and dehydration during a late 
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stage of chain folding  [5] . Two reaction 
mechanisms have been proposed for the 
elimination of ammonia, with a Friedel-
Crafts-like acylation mechanism being most 
favored  [3] . 

 Many plants utilize different PAL isoforms 
for stress responses or for biosynthesis of 
structural components, and these different 
PALs exhibit differential expression in distinct 
tissues. Metabolic channeling may help con-
trol the flux of phenylalanine through PAL 
into the different phenylpropanoid branch 
pathways  [6,   7] .  

  Polyketides 

 Many polyketide-derived plant natural products 
originate in part from acetyl CoA via malonyl 
CoA (Fig.  1 ). For example, the key reaction in 
flavonoid biosynthesis, catalyzed by chalcone 
synthase (CHS) (Fig.  2 ), combines a phenylpro-
panoid-derived moiety, 4-coumaroyl CoA, with 
three molecules of malonyl CoA. Although 
acetyl CoA carboxylase, the enzyme forming 
malonyl CoA, is essentially an enzyme of primary 
metabolism (Fig.  1 ), it is often co-regulated with 
the enzymes of plant polyketide biosynthesis  [8] .   

Box 1 A functional classification of natural product biosynthetic enzymes. 

The immense variety of plant natural products is generated by an equally large and at first sight 
confusing array of enzymes. However, these enzymes catalyze a relatively limited number of 
reaction types  [1] . For the purpose of this survey, the enzymes will be divided into three major 
groups based on their positions in the overall scheme of secondary metabolite biosynthesis:

  •  Enzymes at the interface between primary and secondary metabolism.

   –   A small number of key enzymes catalyze the first committed steps which direct com-
pounds from primary into secondary metabolism (Fig.  1 ). They control flux into natural 
products without depleting pools of primary metabolites, and must therefore act quickly 
and efficiently in response to developmental or environmental cues. For this reason they 
are often regulated both transcriptionally and post-transcriptionally.     

•   Enzymes forming plant secondary metabolite scaffolds

   –   This group of enzymes directs flux into the major classes of plant natural products: e.g. 
polyketides (including flavonoids), alkaloids and terpenes. The initially formed scaffold 
molecules then enter different branch pathways as precursors for further downstream 
modifications.     

 •  Enzymes for modification of scaffold structures

   –   Modification reactions create the enormous diversity of plant natural products, provid-
ing new molecules with different biological activities from the basic scaffolds outlined 
above. The plant kingdom contains a large number of enzymes that catalyze hydroxyla-
tion, epoxidation, aryl migration, glycosylation, methylation, sulfation, acylation, pre-
nylation, and reduction of secondary metabolite skeletons. Figure  6  shows how a single 
molecule (the isoflavone genistein) can be converted to a range of different products by 
such enzymes.      
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  Fig. 1    The interface between primary and secondary metabolism in plants. GAP, glyceraldehyde 3-phos-
phate; IPP, isopentenyl diphosphate; DMAPP, dimethylallyl diphosphate; MEP, methylerythritol phos-
phate; MVA, mevalonic acid; TCA, tricarboxylic       

  Fig. 2    Reaction types catalyzed by plant type III polyketide synthases. PS, pyrone synthase; CHS, chalcone 
synthase; STS, stilbene synthase; VPS, valerophenone synthase: ACS, acridone synthase; BPS, benzophe-
none synthase       
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6   Terpenoids 

 The interface between primary and secondary 
metabolism is less easy to define in the case of 
terpene (isoprenoid-derived) metabolites, because 
terpene units are also found in many compounds 
associated with primary metabolism, such as 
hormones and vitamins. The precursors of all 
isoprenoids, isopentenyl pyrophosphate (IPP) 
and its allylic isomer dimethylallyl pyrophos-
phate (DMAPP), are synthesized in higher plants 
by two independent pathways (Fig.  1 ). The 
mevalonic acid (MVA) pathway is localized in 
the cytosol and starts with the condensation of 
three molecules of acetyl-CoA. In plastids, IPP is 
formed from pyruvate and glyceraldehyde-3-
phosphate via the methylerythritol phosphate 
(MEP) pathway  [9] . MEP pathway enzymes are 
nuclear-encoded and imported into plastids 
 [10] . In flowers of snapdragon ( Antirrhinum 
majus ), plant volatiles are assembled from IPP 
units originating from the MEP pathway, and flux 
through this pathway in controlled by a circa-
dian clock following a diurnal rhythm  [11] . 
Archaebacteria, fungi and animals synthesize 
isoprenoids exclusively through the MVA path-
way, whereas plants employ both pathways  [9] . 

 The cytosolic MVA pathway provides pre-
cursors for sterols and the side chain of ubiq-
uinone, whereas synthesis of monoterpenes, 
certain sesquiterpenes, diterpenes, caroten-
oids, and the side chains of chlorophylls and 
plastoquinone is carried out in plastids  [12] . 
Cross-talk occurs between the MVA and MEP 
pathways, and appears to be mainly unidirec-
tional from plastids to cytosol, although lim-
ited import of intermediates into the plastid 
has been observed  [13] . 

 The initial reactions of terpene biosynthesis 
are catalyzed by short-chain prenyltransferases 
belonging to the class of  trans-  or  cis-  isoprenyl 
pyrophosphate synthases that catalyze chain 
elongation of allylic pyrophosphate substrates 
with IPP to generate linear polymers with 
defined chain length. Geranyl pyrophosphate 

synthase (GPPS), farnesyl pyrophosphate syn-
thase (FPPS) and geranylgeranyl pyrophosphate 
synthase (GGPPS) catalyze formation of the 
linear precursors of monoterpenes (C10), 
sesquiterpenes (C15) and diterpenes (C20), 
respectively. GPPS is a plastidic, homo- or 
hetero-dimeric enzyme that catalyzes the head-
to-tail condensation of one IPP molecule and 
one DMAPP molecule to form  trans -GPP (C10) 
 [14] .  Trans -GGPP is produced in plastids by 
GGPPS, which sequentially adds three IPP mole-
cules to a DMAPP molecule  [15] . The biosynthesis 
of  trans -FPP occurs in the cytosol, where FPPS 
combines two IPP molecules with DMAPP.  

  Alkaloids 

 Most alkaloids are derived from amino acids 
(Fig.  3 ) and the first reaction in the otherwise 
independent pathways is the decarboxylation of 
the respective amino acid by an amino acid 
decarboxylase (AADC) (Figs.  1  and  3 ); this 
step is often under complex regulation. Plant 
and animal AADCs share high amino acid iden-
tity, with significant similarities in subunit 
structure and kinetic characteristics. In contrast 
to their mammalian and insect counterparts, plant 
AADCs exhibit high specificity for their respec-
tive substrates. The reaction is pyridoxal-5’-
phosphate (PLP)-dependent.  

 Plant aromatic  L -amino acid decarboxylases 
(AADCs) catalyze the initial reactions in the 
formation of terpenoid indole alkaloids (TIAs) 
such as quinine and strychnine, and benzyliso-
quinoline alkaloids (BIAs) such as morphine 
and codeine (Fig.  3 ).  L -tryptophan decarboxy-
lase (TDC) initiates TIA synthesis with the for-
mation of tryptamine. TDC is encoded by two 
genes in  Cola accuminata ;  TDC1  is expressed 
as part of a developmentally regulated chemical 
defense system, whereas  TDC2  is induced after 
elicitation with yeast extract or methyl jas-
monate (MJ). 
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  L -tyrosine decarboxylase (TYDC) converts 
tyrosine and  L -DOPA to tyramine and dopamine, 
respectively, the precursors for BIA biosynthe-
sis  [16] . TYDC is encoded by a single-copy 
gene in  Arabidopsis  (which does not produce 
BIAs), but a  TYDC  gene family of about 15 
members divided into two subgroups is present 
in opium poppy ( Papaver somniferum )  [16] . 
The Arabidopsis  TYDC  gene contains 12 
introns, whereas all other plant  AADC  genes 
described to date lack introns. TYDC is induced 
during plant defense responses, where it is 
involved in the synthesis of cell wall-bound 
hydroxycinnamic amides that provide a physi-
cal barrier against pathogens. 

 Lysine decarboxylase (LDC) catalyzes the 
formation of cadaverine by decarboxylation of 

lysine (Fig.  3 ). As an enzyme participating in 
polyamine biosynthesis, LDC links primary 
metabolism with biosynthesis of quinolizidine 
alkaloids like lupinine, which occurs in meso-
phyll chloroplasts of legumes. LDC is assumed 
to be the rate-limiting step in the biosynthesis of 
anabasine (Fig.  3 ), a pyridine alkaloid produced 
by tobacco species  [17] . 

 Ornithine decarboxylase (ODC) and arginine 
decarboxylase (ADC) are the first enzymes 
involved in the formation of tropane alkaloids 
(TPAs) such as atropine and cocaine (Fig.  3 ). 
Decarboxylation of ornithine yields putrescine, 
whereas arginine is converted to agmatine, 
which is metabolized to putrescine via a second 
route. ADC is assumed to play the primary role 
in TPA synthesis  [18] .   

  Fig. 3    Primary precursor–end product relationships in alkaloid biosynthesis. Color codes: blue, terpene 
indole alkaloids; green, benzophenanthridine alkaloids; gray, benzylisoquinoline alkaloids; red, quinolizi-
dine alkaloids; yellow, pyridine alkaloids; pink, tropane alkaloids       
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  Scaffold Formation  

  Polyketides 

 Type III polyketide synthases (PKS) form the 
primary scaffolds for the synthesis of a range of 
secondary metabolites including flavonoids, 
stilbenes, bibenzyls, xanthones and pyrones 
 [19]  (Fig.  2 ). They catalyze a reaction similar 
to their fatty acid synthase (FAS) ancestors by 
facilitating the sequential head-to-tail addition 
of two-carbon acetate units to a growing 
polyketide chain. Type III PKSs differ from 
their type I and type II relatives by a simpler 
structure and the use of a CoA thioester sub-
strate instead of an acyl carrier protein (ACP)-
linked substrate  [19] . 

 CHS (Fig.  2 ), the most studied member of 
the type III PKS family, is a ubiquitous enzyme 
in plants that catalyzes the first committed step 
in flavonoid biosynthesis, the elongation of the 
starter molecule 4-coumaroyl-CoA by addition 
of three acetate units derived from three mole-
cules of malonyl-CoA  [19] . After binding of the 
4-coumaroyl moiety to the active site Cys164, 
sequential polyketide chain elongation is initi-
ated by the decarboxylation of malonyl-CoA to 
form an acetyl-CoA carbanion, followed by an 
intramolecular Claisen condensation step and 
subsequent cyclization and aromatization, 
yielding chalcone  [20] . 

 Other CHS-like PKSs accept different starter 
molecules, vary the length of the polyketide 
chain, or achieve molecular diversity through 
alteration of cyclization regiospecificity (Fig.  2 ). 
For example, stilbene synthase (STS) catalyzes 
a reaction similar to that of CHS in the initial 
stages, but the tetraketide intermediate under-
goes a different cyclization reaction involving 
an intramolecular aldol condensation, hydroly-
sis from Cys164 and an additional decarboxyla-
tion step during formation of resveratrol. The 
structural bases for the differences in starter 
molecule, control of chain length, and overall 

cyclization mechanism (i.e. CHS- vs STS-type 
reactions) are now understood, and product for-
mation has been altered rationally by point 
mutation to convert chalcone synthase to either 
stilbene synthase or pyrone synthase (Fig.  2 ) 
 [21–  23] . 

 Phlorisovalerophenone synthase (VPS) from 
flower cones of hop ( Humulus lupulus  L.) 
utilizes isovaleryl-CoA or isobutyryl-CoA as 
starter molecules  [24]  (Fig.  2 ). Three molecules 
of malonyl-CoA are added to these starters to 
form phlorisovalerophenone or phorisobuty-
rophenone, respectively, precursors for the bio-
synthesis of hop bitter acids. The first committed 
step of cannabinoid biosynthesis in glandular 
trichomes of  Cannabis sativa  is catalyzed by a 
stilbene synthase carboxylate-like (STCSL) 
polyketide synthase using n-hexanoyl-CoA as 
starter molecule, yielding olivetolic acid  [25] .  

  Terpenoids 

 One group of terpene synthases (TPSs) use 
GPP, FPP or GGPP as substrates to form 
monoterpene (C10), sesquiterpene (C15) or 
diterpene (C20) scaffold molecules, respec-
tively, which then undergo a variety of sec-
ondary modifications. This family of synthases 
is structurally distinct from triterpene (C30) 
or tetraterpene (C40) synthases  [26] . The scaf-
folds produced are themselves highly diver-
gent due to different folding patterns prior to 
cyclization (Fig.  4 ). TPSs fall into two major 
groups with regard to their modes of cycliza-
tion. Type A cyclization begins with the 
ionization of the polyprenyl pyrophosphate 
molecule, whereas type B cyclizations start 
with protonation at the terminal double bond. 
Both types of reactions are followed by cycli-
zation and rearrangement ending with depro-
tonation of the final carbocation  [27] .  

 The sequence of reactions catalyzed by the 
type A limonene synthase (monoterpene cyclase) 
(Fig.  4 ) is initiated by ionization-isomerization 
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of GPP to form the intermediate linalyl pyro-
phosphate in order to overcome the  trans -geom-
etry of the C2-C3 double bond, which prevents 
direct cyclization. This intermediate then under-
goes an ionization-cyclization step resulting in a 
( 4R )- or ( 4S )- a -terpinyl carbocation • pyrophos-
phate anion pair and subsequent termination 
reactions  [28] . Many sesquiterpene and diter-
pene synthases employ type A cyclization  [26] . 

 5- epi -Aristolochene synthase (EAS) is one 
of the most studied sesquiterpene synthases. It 
catalyzes the conversion of FPP to 5- epi -aris-
tolochene, an intermediate in the formation of 
sesquiterpene phytoalexins in tobacco, having 
(+) germacrene A and eudesmyl carbocation as 
intermediates  [29] . EAS was the first terpene 
synthase for which a reaction mechanism could 
be confirmed by determination of the enzyme’s 
crystal structure  [30] . 

 The diterpene synthase copalyl diphosphate 
synthase (CDP) is one of the most studied type 
B synthases. It forms the bicyclic intermediate 
(-)-copalyl pyrophosphate ((-)-CPP) or its 
diastereomer (+)-copalyl pyrophosphate ((+)-
CPP) from GGPP. Several CDPs are expressed 
in rice; OsCyc1 forms (+)-CPP, while OsCyc2 
and OsCPS1 form (-)-CPPs. OsCPS1 is 
believed to be involved in gibberellin bio-
synthesis and OsCyc2 in diterpene phyto-
alexin biosynthesis  [31] . 

 The abietadiene synthase from grand fir 
( Abies grandis ) catalyzes two cyclization reac-
tions at separate but interdependent active sites. 
The enzyme first converts GGPP in a type-B 
cyclization at one active site to (+)-CPP, which 
then undergoes a type A cyclization and addi-
tional reactions at the second active site to form 
a mixture of abietadiene isomers  [26,   32] . 

  Fig. 4    Selected reactions catalyzed by monoterpene cyclases, illustrating the diversity of products that can 
be formed from a single precursor molecule (GPP, geranyl pyrophosphate)       
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6 Abietadiene is the main diterpenoid resin acid 
of oleoresin, which is secreted in response to 
wounding and herbivore attack. 

 The diterpene taxol from Pacific yew is one 
of the most powerful anticancer agents in thera-
peutic use today. In a series of seminal discov-
eries, the group of Croteau has dissected the 
pathway to this complex molecule at the enzy-
matic and molecular genetic levels, leading to 
recent success in partial reconstruction of the 
pathway in yeast  [33] . The diterpene synthase 
taxadiene synthase catalyzes the cyclization of 
GGPP as the first committed step in taxol for-
mation  [34] . 

 Several terpene synthases appear to be 
multi-functional. For example, a sesquiter-
pene synthase from  Zea mays  produces a com-
plex mixture of terpene volatiles. The closely 
related TPS4 and TPS5 from different maize 
varieties each synthesize the same comple-
ments of sesquiterpenes from FPP, but in dif-
ferent proportions as a result of the different 
ratios of ( S )- versus ( R )-bisabolyl cation for-
mation. This difference in stereoselectivity is 
determined by four amino acid residues in the 
active site  [35] . 

 Oxidosqualene cyclases (OSCs) or triter-
pene synthases convert oxidosqualene to one or 
more cyclic triterpene alcohols which are the 
precursors of sterols, steroids and saponins  [36] . 
The reaction catalyzed is mechanistically simi-
lar to those of monoterpene, sesquiterpene and 
diterpene synthases, but the enzymes are phylo-
genetically distinct  [37] .  

  Alkaloids 

 A key reaction in assembly of scaffolds for 
several classes of alkaloid is the coupling of the 
amine derived by decarboxylation of an amino 
acid with a second molecule, the product of 
which then serves as the precursor for second-
ary modifications. Strictosidine synthase (STR) 
catalyzes the formation of strictosidine, the pre-
cursor for monoterpenoid indole alkaloids such 

as quinine (Fig.  3 )  [38] . The reaction involves 
the condensation of tryptamine and the monot-
erpenoid secologanin, a unique reaction called a 
Pictet-Spengler-type reaction. Formation of a 
Schiff base between the aldehyde group of 
secologanin and the primary amine group of 
tryptamine is followed by electrophilic cycliza-
tion between the iminium ion and carbon 2 of 
tryptamine. The crystal structure of STR1 from 
 Rauvolfia serpentina  has been elucidated and 
consists of a six-bladed four-stranded  b -propel-
ler fold  [38] . The protein has a signal peptide 
that directs it to the vacuole. STR activity has 
been detected in several members of the 
Apocynaceae and Rubiaceae  [39] . Interestingly, 
 Arabidopsis thaliana  contains a number of  STR -
like genes, but none has been ascribed a func-
tion in alkaloid biosynthesis to date  [40] . 

 Norcoclaurine synthase (NCS) catalyzes the 
condensation of dopamine and 4-hydroxyphe-
nylacetaldehyde (4-HPAA), the first committed 
step in BIA biosynthesis (Fig.  3 ). The reaction 
mechanism is an asymmetric Pictet-Spengler 
reaction, similar to that of STR although no 
sequence homology exists between the two pro-
teins. Deacetylipecoside synthase is the third 
enzyme known to utilize this reaction type, 
facilitating the condensation of dopamine and 
secologanin. It has been purified from  Alangium 
lamarchii   [41] . The homodimeric NCS from 
meadow rue ( Thalictrum flavum ) exhibits posi-
tive cooperativity towards dopamine but not 
4-HPAA  [42] . NCS belongs to the PR10 (patho-
genesis-related) and Betv1 protein family  [43] . 
 Coptis japonica  contains both a PR10-like NCS 
activity and an additional enzyme, with amino 
acid sequence similarity to 2-oxoglutarate-depend-
ent dioxygenases (see below) (but lacking the 
2-oxoglutarate binding domain), that likewise 
catalyzes formation of norcoclaurine from 
dopamine and 4-HPAA  [44] . 

 ( S )-reticuline is a central branch-point metabo-
lite in BIA biosynthesis (Fig.  3 ). It serves as a 
precursor for sanguinarine after conversion to 
( S )-scoulerine by the berberine bridge enzyme 
(BBE), originally purified from  Berberis beaniana  
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 [45] . The unique reaction catalyzed by BBE com-
prises the conversion of the  N -methyl moiety of 
( S )-reticuline into the berberine bridge carbon of 
( S )-scoulerine through oxidative cyclization with 
a methylene iminium ion as reaction intermediate 
 [45] . The enzyme uses FAD as cofactor, bi-cova-
lently bound to the protein via a histidine and a 
cysteine residue. An N-terminal signal peptide 
targets the protein to the ER, and an adjacent vac-
uolar sorting determinant then directs BBE into 
the vacuole, where sanguinarine (Fig.  3 ) accumu-
lates after elicitation with fungal elicitor in opium 
poppy. The low vacuolar pH suggests that alka-
loid synthesis is completed before the ER-derived 
vesicles fuse with the vacuole  [46] .   

  Modifications of Secondary Metabolite 
Scaffolds  

 Modification reactions create the enormous diver-
sity of plant natural products, providing new mol-
ecules with different biological activities from the 
basic scaffolds outlined above. The plant kingdom 
contains a large number of enzymes that catalyze 
hydroxylation, epoxidation, aryl migration, glyco-
sylation, methylation, sulfation, acylation, pre-
nylation, oxidation and reduction of secondary 
metabolite skeletons, examples of which are 
reviewed below, and illustrated, for phenylpropa-
noid and flavonoid biosynthesis, in Fig.  5 . Figure  6  

  Fig. 5    Schematic representation of enzymatic reactions responsible for the modification of plant-derived 
secondary metabolite scaffolds, using phenylpropanoids/flavonoids as an example. Glc, glucose residue; 
2-ODD, 2-oxoglutarate-dependent dioxygenase;  O -GT,  O -glycosyltransferase; OMT,  O -methyltransferase; 
P450, cytochrome P450 monooxygenase; ST, sulfotransferase       



152 L.V. Modolo et al.

6

shows how a single molecule (in this case the 
isoflavone genistein) can be converted to a range 
of different products.  

  Oxygenation Reactions Catalyzed by 
Cytochrome P450s 

 Cytochromes P450 (CYPs) are versatile bio-
catalysts. Their name derives from the fact that 
they contain a cytochrome (heme-protein)  p ig-
ment that exhibits maximum absorption at 450 
nm upon binding of CO. These enzymes form 
the largest family of plant proteins (  http://drnel-
son.utmem.edu/CytochromeP450.html    ) . 

NADPH-dependent regio- and stereo-specific 
oxygenations of lipids, phenolics, terpenoids and 
alkaloids catalyzed by P450 enzymes include 
simple hydroxylation or epoxidation, dealkyla-
tion, isomerization and aryl migration  [47] . 

 Hydroxylation reactions are very common in 
the biosynthesis of phenylpropanoid/polyketide, 
alkaloid and terpenoid secondary metabolites. 
The most abundant plant cytochrome P450 is 
the cinnamate 4-hydroxylase (CYP73A family) 
that catalyzes the second committed step of the 
central phenylpropanoid pathway (Fig.  5 ) lead-
ing to hydroxycinnamic acids, flavonoids and 
lignin  [48] . CYP84A1 is responsible for the 
5-hydroxylation of coniferaldehyde during lignin 

  Fig. 6    Enzymatic modifications of the isoflavone genistein       
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biosynthesis ,  and the  Arabidopsis thaliana  EMS 
mutant  fah I  defective in CYP84A1 expression 
has altered lignin composition and suppressed 
sinapoyl malate accumulation  [49] . CYP75A1 
is a flavonoid 3’,5’-hydroxylase involved in the 
biosynthesis of anthocyanin pigments  [50]  (Fig.  5 ). 
Two mutant alleles of this gene in Petunia ( Hf1  
and  Hf2 ) exhibit altered flower color (from blue 
to pink) as a result of loss of delphinidin and 
residual pigmentation from cyanidin or pelargo-
nidin  [50] . 

 Geraniol 10-hydroxylase (CYP76B6) from 
 Catharanthus roseus  is a key regulatory 
enzyme in the synthesis of the terpene indole 
alkaloid vindoline  [51] . Alkaloids such as vin-
cristine and vinblastine (derived from vindo-
line) are used in modern medicine as 
anti-neoplastic agents (Fig.  3 ). 

 In recent years, a range of cytochrome P450 
enzymes involved in cyclic terpene hydroxyla-
tion has been characterized at the molecular 
level. These include monoterpene hydroxylases 
involved in the biosynthesis of essential oils in 
commercial mint  [52] , a sesquiterpene hydrox-
ylase performing successive hydroxylations of 
5- epi -aristolochene in the biosynthesis of the 
tobacco phytoalexin capsidiol  [53] , diterpene 
hydroxylases involved in the formation of taxol 
 [54,   55] , and triterpene hydroxylases involved 
in the biosynthesis of saponins  [56]  and brassi-
nosteroids  [57] . 

 Lutein, the most abundant carotenoid in 
photosynthetic tissues, is produced via hydrox-
ylation of the  e -ring of zeionoxanthin catalyzed 
by CYP97C1  [58] . CYP707A1 and CYP707A2 
are critical for the control of seed dormancy and 
germination in Arabidopsis by hydroxylating 
abscisic acid at the C-8’ position for catabolism 
of this carotenoid-related phytohormone  [59] . 

 DIMBOA (2,4-dihydroxy-7-methoxy-1,4-
benzoxazin-3-one) is a cyclic hydroxamic acid 
produced by members of the Gramineae as a 
defense against herbivores or microbial 
pathogens  [60] . Maize CYP71C1 catalyzes the 
hydroxylation of indolin-2-one at the 3-position 

to form the precursor molecule for DIMBOA 
biosynthesis  [61] . Transposon-tagged mutations 
( Bx3::Mu ) in  CYP71C1  suppress the production 
of DIMBOA and make maize plants more suscep-
tible to pathogens  [61] .  

  Epoxidation Reactions of P450 
Monooxygenases 

 Oxylipins are biologically active signaling 
compounds of structural diversity generated by 
the coordinated action of lipases, lipoxygenases 
and P450s specialized in the metabolism of 
hydroperoxy fatty acids. CYP74A, CYP74B, 
and CYP74C catalyze epoxidation of the 9- 
and/or 13-hydroperoxides of linoleic and lino-
lenic acid  [62,   63] . CYP74C displays specificity 
toward 9-hydroperoxy fatty acid derivatives 
 [62]  while CYP74A and CYP74B are more 
selective for 13-hydroperoxy derivatives lead-
ing to the synthesis of the wound signal jas-
monic acid (JA)  [63] . Knock-out mutation in 
the  CYP74A  gene of Arabidopsis causes male 
sterility and impaired wound signal transduc-
tion due to suppression of JA production  [64] . 

 Hairy root cultures of  Catharanthus roseus  
can synthesize tabersonine, a precursor of vin-
doline  [65] . Methyl jasmonate induces the tab-
ersonine 6,7-epoxidase P450 that converts 
tabersonine into lochnericine  [65] . 

 CYP714D1 (a catabolic enzyme) catalyzes 
16 a ,17-epoxidation of non-13-hydroxylated 
gibberellins, and over-expression of this gene in 
 Oryza sativa  leads to a dwarf phenotype due to 
gibberellin deficiency  [66] .  

  Non-oxygenation Reactions Catalyzed by P450s 

 In isoquinoline alkaloid biosyntheses, several 
unique P450 reactions have been reported, such 
as methylenedioxy bridge formation, intramo-
lecular C–C phenol-coupling and intermolecular 
C–O phenol-coupling reactions. Salutaridine 
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6 synthase, involved in the conversion of ( R )-
reticuline to salutaridine during the formation 
of morphine (Fig.  3 ), is a cytochrome P450 that 
catalyzes an intramolecular phenol-coupling 
reaction that does not involve incorporation of 
oxygen into the substrate  [67] . Recently, heter-
ologous expression in yeast has indicated that 
CYP80G2 from  Coptis japonica  likewise exhib-
its intramolecular C–C phenol-coupling activity 
to produce ( S )-corytuberine (aporphine-type 
alkaloid) from ( S )-reticuline (benzylisoquino-
line type)  [68] . Methylenedioxy-bridge forming 
cytochrome P450s have been described in alka-
loid  [69]  and isoflavonoid  [70]  biosynthesis.  

  Hydroxylation/Aryl Migration Catalyzed by 
P450 Monooxygenases 

 Isoflavonoids are widely produced by legumes 
and function in defense against pathogen attack 
and attraction of symbiotic microbes. An unu-
sual aryl migration reaction constitutes the first 
committed step in their biosynthesis  [71] . 
Isoflavone synthase (IFS, more correctly known 
as 2-hydroxyisoflavanone synthase) is a mem-
ber of the CYP93C family that catalyzes migra-
tion of the B-ring of the flavanones liquiritigenin 
and naringenin from C-2 to C-3 leading to the 
isoflavones daidzein and genistein (Fig.  5 ) 
respectively  [71,   72] . The reaction proceeds by 
abstraction of a hydrogen at C-3 followed by 
B-ring migration and subsequent hydroxylation 
of the resulting C-2 radical; dehydration with 
loss of the C-2 hydroxyl to yield isoflavone 
occurs enzymatically  in vivo  and non-enzymati-
cally  in vitro . The enzyme is stereo-selective 
and recognizes only 2 S -flavanones as substrates. 
Down-regulation of IFS in soybean hairy roots 
compromises defense against  Fusarium solani  f. 
sp.  glycinea  by suppressing accumulation of the 
glyceollins, daidzein-derived phytoalexins  [73] . 

 Isoflavones are not limited to the Legu-
minosae. For example, sugarbeet (Chenop-
odiaceae) produces isoflavones in response to 

pathogen attack. Two IFS cDNAs from sugar-
beet share higher than 95% similarity to IFS1 
from soybean  [74] . 

 Phenylphenalenones are polycyclic natural 
products of the Haemodoraceae, Musaceae and 
Strelitziaceae. The biosynthetic pathway for 
8-phenylphenalenone production in the water 
hyacinth  Eichhornia crassipes  may occur via 
the formation of diarylheptanoid and 9-phenyl-
phenalenone as intermediates, and includes a 
1,2-aryl migration reaction that may follow a 
mechanism similar to that of IFS  [75] . However, 
no P450 enzyme able to catalyze this reaction 
has been reported to date.  

  2-Oxoglutarate-Dependent Dioxygenases 
(2-ODDs) 

 Plant 2-oxoglutarate-dependent dioxygenases 
(2-ODDs) are cytosolic, non-heme iron-con-
taining enzymes that utilize an oxoacid to oxi-
dize a target metabolite. Ascorbate is required 
 in   vitro,  probably to maintain the iron moiety in 
the reduced form (Fe 2+ ). 2-ODD enzymes are 
involved in the biosynthesis of some amino 
acids, hormones, signaling molecules, and a 
large number of secondary metabolites  [76] . 

 Flavanone 3 b -hydroxylase (F3H) converts 
the basic flavonoid skeleton flavanone to dihy-
droflavonol through hydroxylation at the 3-posi-
tion  [77] , a critical early step in anthocyanin 
flower pigment biosynthesis. Flavonol synthase 
(FLS) is a 2-ODD that catalyzes the formation 
of a double bond between C-2 and C-3 in dihy-
droflavonols  [78] . Flavonol 6-hydroxylase 
(F6H) is also a 2-ODD  [79] . 

 Anthocyanidin synthase (ANS), the key 
enzyme in the biosynthesis of anthocyanins, cat-
alyzes oxidation of leucoanthocyanidin (flavan-
3,4-diol) to a 2-flaven-3,4-diol that spontaneously 
isomerizes to 3-flaven-2,3-diol (anthocyanidin) 
(Fig.  5 ). This is subsequently glycosylated at 
C-3, transported to the vacuole, and finally con-
verted to the colored flavilium cation at the acidic 
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pH of the vacuole  [77] . The first biochemical 
evidence for ANS being a 2-ODD came from 
studies with the recombinant enzyme from 
 Perilla   [80] . A catalytic mechanism has been 
proposed in which ANS promotes hydroxylation 
at C-3 as the initial step in anthocyanidin biosyn-
thesis, and this is supported by structural data for 
ANS from Arabidopsis  [81] . 

 Hyoscyamine 6  b  -hydroxylase (H6 b H) is a 
2-ODD enzyme that catalyzes a critical step 
in the biosynthesis of the tropane alkaloid 
scopolamine (Fig.  3 ) in members of the 
Solanaceae  [82] .  

  Reductases 

 Several NADPH-dependent reductase enzymes 
play key roles in the biosynthesis of flavonoids. 
Isoflavone reductase (IFR), which is a member 
of the Reductase-Epimerase-Dehydrogenase 
(RED) family of proteins, catalyzes the stere-
ospecific reduction of isoflavone to the corre-
sponding (3 R )-isoflavanone (Fig.  6 ), a key 
reaction in the biosynthesis of antimicrobial pte-
rocarpan phytoalexins such as medicarpin in 
legumes. IFR from alfalfa catalyzes formation 
of (3 R )-vestitone from 2’-hydroxyformononetin 
for the biosynthesis of medicarpin  [83] . The IFR 
from soybean has activity toward 2’-hydroxy-
daidzein, 2’-hydroxyformononetin, and 2’-hydrox-
ygenistein  [84]  while the IFRs from pea and 
chickpea recognize 7,2’-dihydroxy-4’,5’-meth-
ylenedioxyisoflavone and 2’-hydroxyformonon-
etin, respectively  [85,   86] .  

 IFRs belong to a large protein family that 
includes IFR-like proteins from non-legume 
plants. IFR-like proteins have high sequence 
identity to legume IFRs, but the functions of 
many are still unclear. Some clearly catalyze 
reduction reactions in pathways other than iso-
flavonoid biosynthesis. For example, pinoresi-
nol-lariciresinol reductase and phenylcoumaran 
benzylic ether reductase are IFR-like proteins 
involved in the formation of lignans in  Forsythia 

intermedia  and  Pinus taeda , respectively  [87, 
  88] , and it is thought that pinoresinol reductases 
may represent the progenitors of the IFRs. 

 Dihydroflavonol 4-reductase (DFR) is 
involved in the biosynthesis of anthocyanins and 
proanthocyanidins (PAs). DFRs catalyze the 
stereospecific reduction of (2 R ,3 R )-dihydrofla-
vonols to (2 R ,3 R ,4 S )-leucoanthocyanidins  [77]  
(Fig.  5 ). Petunia possesses three different  DFR  
genes ( dfrA-C ), but only  dfrA  is transcribed in 
floral tissues. DFR-A does not accept dihy-
drokaempferol, the precursor for the synthesis of 
pelar-gonidin-type anthocyanins. Consequently, 
no orange-colored petunia flowers are found in 
nature  [89] . Dihydroquercetin and dihydromyrice-
tin are also substrates for DFRs and provide leu-
cocyanidin and leucodelphinidin, respectively. 

 Leucoanthocyanidin reductase (LAR), which 
is related to the isoflavone reductase group of 
plant enzymes, catalyzes the reduction of leu-
coanthocyanidins to (+)-afzelechin, (+)-cate-
chin, and (+)-gallocatechin, building blocks for 
PA biosynthesis  [77]  (Fig.  5 ). The above cate-
chin series of flavan-3-ols possess 2,3- trans  
stereochemistry. The corresponding ( epi )-cate-
chin series with 2,3- cis  stereochemistry is 
formed by a different mechanism involving an 
unrelated reductase (ANR) that acts at the level 
of anthocyanidin  [90]  (Fig.  5 ). 

 Reduction of a coenzyme a ester to the cor-
responding aldehyde, catalyzed by cinnamoyl 
CoA reductases (CCRs), is an important reac-
tion in lignin biosynthesis (Fig.  5 ). Plants con-
tain small  CCR  gene families  [91]  encoding 
enzymes with differences in overall specificity 
for monolignol precursors with different aro-
matic ring substitution patterns.  

  Glycosyltransferases 

 Among the reactions for the modification of 
secondary metabolite scaffolds, glycosylation 
plays a particularly important role in plants, 
contributing to the biosynthesis and storage of 
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6 secondary metabolites, regulation of hormone 
homeostasis, detoxification of xenobiotics, 
enhancement of a molecules’ solubility, and 
plant defense  [92] . Glycosyltransferases of 
small molecules (UGTs) catalyze the transfer 
of sugar residues from uridine diphosphate 
sugars to an acceptor. The sugar moiety can be 
transferred to oxygen, nitrogen, or sulfur atoms 
of different classes of natural products  [92] . 
UGTs comprise a superfamily of enzymes ubiq-
uitous in living organisms (  http://afmb.cnrsmrs.
fr/CAZY/fam/acc_GT.html    ), the number of which 
in the plant kingdom is likely comparable to 
that of the cytochrome P450 enzymes. 

 The most common reaction catalyzed by 
UGTs is the transfer of sugar residues to oxygen 
atoms. Several plant UGT crystal structures 
have been reported in the literature, all for 
 O- glucosyltransferases  [93–  95] . Glucose is the 
commonest sugar attached to plant secondary 
metabolites, although galactose, glucuronic 
acid and other “common” monosaccharides are 
also found; this contrasts to the situation in 
prokaryotes, where more “exotic” sugars are 
often found attached to secondary metabolites 
(e.g. in antibiotics). 

 Eight recombinant  Medicago truncatula  
UGTs display  O -glycosyltransferase activity 
toward (iso)flavonoids at different positions 
 [96] . Recombinant UGT85H2 prefers flavonols 
whereas the substrate specificity of UGT78G1 
is higher for isoflavones  [95,   96] . UGT78G1 is 
regioselective, catalyzing  O -glycosylation at 
C-7 unless the flavonoid has a hydroxyl group 
at the C-3 position (see labeling of naringenin 
in Fig.  5 ), in which case this position is pre-
ferred. UGT78G1 is also able to operate in the 
reverse direction, deglycosylating (iso)flavo-
noid glucoderivatives in the presence of urid-
ine diphosphate  [96] . Similar to grapevine 
 Vv GT1  [94] , UGT78G1 recognizes anthocyani-
dins as substrates  [96] . Snapdragon 4’CGT 
converts chalcone to its 4’- O -glucoside deriva-
tive, an intermediate in the synthesis of yellow 
aurone flower pigments  [97] . 

 Three glucoyltransferases involved in the 
biosynthesis of the sweet diterpene glucosides 
of  Stevia rebaudiana   [98]  and two involved in 
formation of triterpene saponins in  Medicago 
truncatula   [99] , have been identified through 
genomic approaches. Whereas glycosylation 
often inactivates or targets plant natural prod-
ucts for storage, it is important for biological 
activity in the case of the triterpene saponins. 

 Arabidopsis UGT84B1 catalyzes the 
 O -glycosylation of indole-3-acetic acid (IAA), 
and over-expression of  UGT84B1  leads to 
altered root phenotypes as a consequence of 
free IAA depletion  [100] . UGT73C5 from 
Arabidopsis catalyzes the 23- O -glucosylation 
of brassinolide and castasterone, two plant 
steroid hormones. Brassinosteroid accumula-
tion is dramatically reduced in transgenic 
plants over-expressing UGT73C5, and the 
phenotype is consistent with the deprivation of 
free steroid hormones  [101] . UGT76C1 and 
UGT76C2 from  Arabidopsis thaliana  both 
exhibit activity toward cytokinins  [102] . Plants 
over-expressing  UGT76C1  show increased 
accumulation of  trans -zeatin 7- N -glucoside 
when supplemented with  trans -zeatin  [102] . 
Structural studies have recently revealed 
mechanisms controlling  N - as compared to 
 O -glucosylation in UGT72B1, a bifunctional 
N-/O-glucosyltransferase from Arabidopsis 
active in xenobiotic detoxification  [103] . 

 An  S -GT from  Brassica napus  was the first 
thiohydroximate  S -glycosyltransferase of the 
glucosinolate pathway to be partially character-
ized  in vitro   [104] . T-DNA insertions in the cor-
responding gene in Arabidopsis (UGT74B1) 
cause low levels of glucosinolates, leaf vein 
chlorosis, and impaired auxin metabolism  [105] . 

 Despite interest in the anti-microbial and 
anti-insect activities of flavonoid  C -glycosides 
(e.g. from maize), and the potential therapeutic 
value of isoflavone  C -glycosides such as genis-
tein 8- C -glucoside (Fig.  6 ) or puerarin from 
 Pueraria lobata , no plant gene encoding a 
 C -glycosyltransferase has yet been cloned.  
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  Methyltransferases 

  O- Methyltransferases (OMTs) catalyze the 
transfer of a methyl group from S-adenosyl-
L-methionine (SAM) to oxygen atoms of 
hydroxyl groups on an acceptor molecule to 
yield the methyl ether derivative (Figs.  5  and 
 6 ). OMTs are regio- and stereo-selective and 
can collectively mono- or poly-methylate a 
great number of plant natural products  [106] . 
Methylation of flavonoids alters their solubil-
ity and intracellular compartmentalization, 
and can increase their antimicrobial activity 
 [107] . 

 Small molecule OMT enzymes from plants 
are classified in two distinct groups. Group I 
OMTs have molecular weights in the range of 
38–43 KDa and target many acceptors such as 
flavonoids, phenylpropanoids, alkaloids, and 
coumarins. Group II OMTs are of lower molec-
ular weight (23–27 KDa) and are dependent on 
Mg 2+  for activity  [108] . 

  O- Methylation at C-3 of the isoflavonoid 
derivative 6a-hydroxymaackiain by PsHMM 
(group I) is the final step in the production of 
the phytoalexin pisatin in  Pisum sativum ; the 
non-methylated precursor lacks antimicrobial 
activity  [109] . Caffeic acid 3- O -methyltrans-
ferase (group I) and caffeoyl CoA 3- O -methyl-
transferase (group II) (Fig.  5 ) play important 
roles in lignin biosynthesis  [110] . Group II 
OMTs from cell suspension cultures of meadow 
rue are involved in the biosynthesis of the iso-
quinoline alkaloid beberine (Fig.  3 ). The recom-
binant enzymes OMT II 1.1, OMT II 2.2, OMT 
II 3.3, and OMT II 4.4 also recognize a range of 
phenylpropanoids and catechols with different 
specificities  [111] . OMT II 1.1, but not OMT II 
4.4 is active toward the isoquinoline alkaloid 
( R,S )-norcoclaurine, and these enzymes only 
differ from each other at amino acid residue 21 
(Tyr in the former and Cys in the latter)  [111] . 

 Putrescine  N -methyltransferase (PMT) cat-
alyzes the first committed step in TPA and 
nicotine biosynthesis, the   SAM-dependent 

methylation of putrescine (Fig.  3 ). The enzyme 
has a high similarity to mammalian and plant 
spermidine synthase (SPDS), from which it is 
assumed to have evolved. SPDS uses a slightly 
different co-substrate, decarboxylated SAM 
(dcSAM), but can also accept putrescine as 
substrate  [18] . PMT is expressed primarily 
in roots, but has also been detected in 
young potato tuber sprouts and wounded 
leaves of tobacco  [112] . SAM-dependent 
 N- methyltransferases play a key role in caffeine 
biosynthesis, where three steps of methylation 
of nitrogen atoms take place.  

  Sulfo- and Aromatic Prenyl-Transferases 

 Sulfate transfer to flavonoids and glucosinolate 
precursors is catalyzed by a small family of 
soluble sulfotransferases (STs) that use 3’-phos-
phoadenosine 5’-phosphosulfate (PAPS) as sul-
fate donor (Fig.  5 ). Sulfated flavonols may play 
a role in the transport of auxins  [113] . Four 
position-specific flavonol STs are found in 
plants of the genus  Flaveria,  with preferences 
for the 3-position of the flavonoid aglycone, the 
3’ and 4’-positions of 3-sulfate derivatives, and 
the 7-position of 3,3’- or 3,4’-disulfate deriva-
tives  [113]  (Fig.  5 ). 

 Aromatic prenyltransferases (PTs) utilize 
allyl diphosphate for the prenylation of aro-
matic compounds in a process dependent on 
divalent cations (Mg 2+  or Mn 2+ ). The UbiA 
family includes PTs that catalyze the prenyla-
tion of 4-hydroxybenzoate as a key step in the 
formation of ubiquinone (UQ), an electron car-
rier in the respiratory chain  [114] . UbiA PTs 
exhibit a broad substrate specificity accepting 
prenyl pyrophosphates of different chain 
lengths originating from UQ6 in  Saccharomyces 
cerevisae  to UQ10 in tobacco. The  AtPP1  gene 
from Arabidopsis encodes a 4-hydroxyben-
zoate polyprenyl diphosphate transferase 
(4-HPT) and its expression in a yeast mutant 
lacking 4-HPT activity restores ubiquinone 
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6 synthesis as well as the cells’ respiratory abil-
ity  [114] . Disruption of the  AtPP1  gene through 
T-DNA insertion compromises the early stage 
of Arabidopsis embryo development  [114] . PTs 
from soil bacteria also target small aromatic 
molecules catalyzing the production of antibi-
otic compounds. However, these bacterial PTs 
lack the prenyl diphosphate binding motif 
(N/D)DXXD characteristic of aromatic PTs 
from the UBiA family  [115] . 

 Prenylated (iso)flavonoids are relatively 
common antimicrobial compounds in plants 
(e.g. in fruits of Osage orange [ Maclura pomif-
era ] and roots of white lupin) (see wighteone in 
Fig.  6 ). The first characterization of a plant fla-
vonoid PT at the molecular level was recently 
reported; naringenin 8-prenyltransferase from 
 Sophora flavescens  is related to the homoge-
ntisate PTs involved in the formation of toco-
pherols and tocotrienols  [116] .  

  Acyltransferases 

 Acylation of oxygen or nitrogen atoms to gen-
erate esters and amides, respectively, is a com-
mon reaction for natural product scaffold 
modification. Members of the large BAHD 
family of acyltransferases utilize CoA thioesters 
as a source of the acyl group. The term BAHD 
comes from the initials of the first four plant 
acyltransferases biochemically characterized 
( B EAT,  A HCT,  H CBT, and  D AT)  [117] . 
Benzylalcohol  O -acetyltransferase (BEAT) is 
responsible for the production of the floral vola-
tile benzylacetate in  Clarkia breweri , whereas 
deacetylvindoline 4- O -acetyltransferase (DAT) 
participates in the last step in the biosyn-
thesis of vindoline in  Catharanthus roseus . 
 N -hydroxycinnamoyl/benzoyltransferase 
(HCBT) acts in the production of anthramide 
phytoalexins in  Dianthus caryophyllus , and 
anthocyanin  O -hydroxycinnamoyltransferase 
(AHCT) is responsible for the 5- O -acylation of 
anthocyanins in  Gentiana triflora   [117] . Other 

BAHD acyltransferases include CmAAT4 from 
 Charentais melon  that catalyzes the formation 
of volatile medium-chain aliphatic esters, HMT/
HLT, a tigloyltransferase crucial for the biosyn-
thesis of quinolizidine alkaloids in  Lupinus 
albus   [117] , and MtMat1–3, which catalyze the 
malonylation of the sugar residue on isoflavone 
7- O -glucosides in  Medicago truncatula   [118]  
(Fig.  6 ). 

 Plants also possess various serine carbox-
ypeptidase-like (SCPL) enzymes that function 
as acyltransferases  [119] . In contrast to BAHD 
family acyltransferases, SCPL enzymes use 
1- O - b -acyl acetals (most frequently the 1- O - b -
ester of glucose) as the acyl donor. True serine 
carboxypeptidases are exclusively hydrolytic, 
and the discovery of serine carboxypeptidase-
like enzymes with acyltransferase features 
brought a new perspective to gene annotation in 
plant secondary metabolism  [120,   121] . 
Isolation of a cDNA encoding an SCPL protein 
responsible for the synthesis of glucose polyes-
ters has been reported  [120] . These compounds 
are produced in trichomes of  Lycopersicon pen-
nellii  and  Solanum berthaultii  as a defense 
against insect attack. An SCPL enzyme respon-
sible for the formation of UV-protecting 
sinapoyl malate in leaves of the Brassicaceae 
has also been described  [121] .   

  The Challenge of Predicting Enzyme 
Function in Plant Secondary Metabolism  

 The functional annotation of members of gene 
families involved in modification of secondary 
metabolite scaffolds is often challenging, and 
amino acid sequence identity by itself may be 
misleading for prediction of enzyme function. 
For example, although  Medicago truncatula  
UGT71G1 clusters phylogenetically with 
UGT71C1 or UGT71C4 from  Arabidopsis 
thaliana  (enzymes known to glycosylate ben-
zoic acid derivatives), recombinant UGT71G1 
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does not display activity toward benzoic acid 
 [96] . Despite the high activity of recombinant 
UGT71G1 against quercetin, with all hydroxyl 
groups on the molecule being glycosylated, 
and much lower  in vitro  activity toward triter-
penes, UGT71C1 is believed to catalyze the 
glycosylation of triterpenes  in vivo  based on 
correlated transcript and metabolite induction 
patterns, which seem to rule out an  in vivo  role 
in quercetin glycosylation  [96,   99] . Difficulties 
associated with gene annotation have been 
widely discussed for methyltransferases, and 
the overlapping substrate specificities that are 
co-expressed in the same cell types becomes 
an additional issue  [111,   122] . The existence 
of serine carboxypeptidases with acyl transfer 
but not hydrolytic properties, isoflavone 
reductase-like proteins in plants that do not 
synthesize isoflavonoids, and strictisodine 
synthase-like genes in Arabidopsis, clearly 
demonstrate that similarities in amino acid 
sequence  per se  are not enough for determina-
tion of protein function. Studies integrating 
spatially and temporally resolved metabolome 
and transcriptome analysis, together with loss 
of function genetic analysis using insertion/
deletion mutants or transgenic plants (anti-
sense or RNAi lines), will be crucial for eluci-
dating the individual roles of these enzymes  in 
vivo . Gain of function analyses alone may be 
confusing for enzymes with promiscuous  in 
vitro  substrate preferences.      
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