
Chapter 14
Item Parameter Estimation and Item
Fit Analysis

Cees A.W. Glas

14.1 Introduction

Computer-based testing (CBT), as computerized adaptive testing (CAT), is based
on the availability of a large pool of calibrated test items. Usually, the calibration
process consists of two stages.

(1) A pretesting stage: In this stage, subsets of items are administered to subsets of
respondents in a series of pretest sessions, and an item response theory (IRT)
model is fit to the data to obtain item parameter estimates to support computer-
ized test administration.

(2) An online stage: In this stage, data are gathered in a computerized assessment
environment, proficiency parameters for examinees are estimated, and the in-
coming data may also be used for further item parameter estimation.

The topic of this chapter is the estimation of the item parameters and the evaluation
of item fit, both in the pretest phase and in the online phase. Especially differ-
ences in item parameter values in the pretest and online stages are of interest. Such
differences are often named parameter drift. Evaluation of parameter drift boils
down to checking whether the pretest and online data comply with the same IRT
model. Parameter drift may have different sources. Security is one major problem
in adaptive testing. If adaptive testing items are administered to examinees on an
almost daily basis, after a while some items may become known to new exami-
nees. In an attempt to reduce the risk of overexposure, several exposure control
methods have been developed. All these procedures prevent items from being ad-
ministered more often than desired. Typically, this goal is reached by modifying the
item selection criterion so that “psychometrically optimal” items are not always
selected. Examples of methods of exposure control are the random-from-best-n
method (see, e.g., Kingsbury & Zara, 1989, pp. 369–370), the count-down random
method (see, e.g., Stocking & Swanson, 1993, pp. 285–286), and the method of
Sympson and Hetter (1985; see also Stocking, 1993). With relatively low exposure
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rates, items will probably become known later than with high exposure rates. Still,
sooner or later some items may become known to some future examinees.

Differences between the pretest and the online stages may also result in other
forms of parameter drift. One might, for instance, think of differences in item diffi-
culty resulting from the different modes of presentation (computerized or paper-and-
pencil administration) or resulting from a changing curriculum. Also, differences in
motivation of the examinees between the pretest and online stages might result in
subtle shifts of the proficiency that is measured by the test. Response behavior
in these stages might not be properly modeled by the same set of IRT parameters
when examinees in the pretest stage are significantly less motivated than those in
the high-stakes online stage.

In this chapter, two methods for the evaluation of parameter drift are proposed.
The first method is based on a global item-oriented test for parameter drift using a
Lagrange multiplier statistic. The method can be viewed as a generalization to adap-
tive testing of the modification indices for the 2PL model and the nominal response
model introduced by Glas (1998, 1999; also see, Glas & Suarez-Falcon, 2003). The
second method is targeted at parameter drift due to item disclosure. It addresses
the one-sided hypothesis that the item is becoming easier and is losing its discrim-
inative power. The test for this hypothesis is based on a so-called cumulative sum
(CUSUM) statistic. Adoption of this approach in the framework of IRT-based adap-
tive testing was first suggested by Veerkamp (1996) for use with the Rasch model.
The present method is a straightforward generalization of this work.

This chapter is organized as follows. First, the most common method of item
calibration, marginal maximum likelihood, will be explained. Then the Lagrange
multiplier test and the CUSUM test for parameter drift will be explained. Finally,
the power of the two classes of tests will be examined in a number of simulation
studies.

14.2 Item Parameter Estimation

14.2.1 MML Estimation

Marginal maximum likelihood (MML) estimation is probably the most used tech-
nique for item calibration. For the 1PL, 2PL, and 3PL models, the theory was
developed by such authors as Bock and Aitkin (1981), Thissen (1982), Rigdon and
Tsutakawa (1983), and Mislevy (1984, 1986), and computations can be made us-
ing the software package Bilog-MG (Zimowski, Muraki, Mislevy & Bock, 1996).
MML estimation procedures are also available for IRT models with a multidimen-
sional ability structure (see, for instance, Segall, this volume, chap. 3). Under the
label “Full Information Factor Analysis”, a multidimensional version of the 2PL
and 3PL normal-ogive models was developed by Bock, Gibbons, and Muraki (1988)
and implemented in TESTFACT (Wilson, Wood & Gibbons, 1991). A comparable
model using a logistic rather than a normal-ogive representation was studied by
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Reckase (1985, 1997) and Ackerman (1996a and 1996b). In this section, a general
MML framework will be sketched, and then illustrated by its application to the 3PL
model.

Let un be the response pattern of respondent n, n D 1; : : : ; N , and let U be
the data matrix. In the MML approach, it is assumed that the possibly multidimen-
sional ability parameters �n are independent and identically distributed with density
g.� I �/. Usually, it is assumed that ability is normally distributed with population
parameters � (which are the mean � and the variance �2 for the unidimensional
case, or the mean vector � and the covariance matrix ˆ for the multidimensional
case). Item parameters ˇ consist of discrimination parameters (ai or ai for the uni-
dimensional and the multidimensional cases, respectively), item difficulties bi , and
guessing parameters ci .

In applications of IRT to CAT, students seldom respond to all available items.
In the calibration stage, a calibration design is used where samples of students re-
spond to subsets of items, which are often called booklets . In the online stage, every
student is administered a virtually unique test by the very nature of the item selec-
tion mechanism of CAT. Both of these test administration designs are captured by
introducing a test administration vector dn, which has elements din, i D 1; : : : ; I ,
where I is the number of items in the item pool. The item administration variable
din is equal to one if student n responded to item i , and zero otherwise. The design
for all students is represented by an m 	 I design matrix D. The definition of the
response variable is extended: the vector un has I elements, which are equal to one
if a correct response is observed, equal to zero if an incorrect response is observed,
and equal to an arbitrary constant if no response is observed. In this context, it is an
interesting question whether estimates can be calculated treating the design as fixed
and maximizing the likelihood of the parameters conditional on D. If so, the design
is called ignorable (Rubin, 1976). Using Rubin’s theory on ignorability of designs,
this question is extensively studied by Mislevy and Wu (1996). They conclude that
for the estimation of � , in adaptive testing the administration design is ignorable.
The consequences for item calibration using MML will be returned to in the next
section.

MML estimation derives its name from maximizing the log-likelihood that is
marginalized with respect to � , rather than maximizing the joint log-likelihood of
all person parameters � and item parameters ˇ. Let � be a vector of all item and
population parameters. Then the marginal likelihood of � is given by

log L.�I U; D/ D
X

n

log
Z

: : :

Z
p.un j dn; �n; ˇi /g.�nI �/d�n: (14.1)

The reason for maximizing the marginal rather than the joint likelihood is that
maximizing the latter does not lead to consistent estimates. This is related
to the fact that the number of person parameters grows proportional with the
number of observations, and, in general, this leads to inconsistency (Neyman
& Scott, 1948). Simulation studies by Wright and Panchapakesan (1969) and
Fischer and Scheiblechner (1970) show that these inconsistencies can indeed occur
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in IRT models. Kiefer and Wolfowitz (1956) have shown that marginal maximum
likelihood estimates of structural parameters, say the item and population parame-
ters of an IRT model, are consistent under fairly reasonable regularity conditions,
which motivates the general use of MML in IRT models.

The marginal likelihood equations for � can be easily derived using Fisher’s iden-
tity (Efron, 1977; Louis 1982; also see, Glas, 1992, 1998). The first-order derivatives
with respect to � can be written as

h.�/ D @

@�
log L.�I U; D/ D

X

n

E.!n.�/ j un; dn; �/ ; (14.2)

with

!n.�/ D @

@�
log p.un; �n j dn; �/; (14.3)

where the expectation is with respect to the posterior distribution p.�n j
un; dnI �/. The identity in ( 14.2) is closely related to the EM algorithm
(Dempster, Laird & Rubin, 1977), which is an algorithm for finding the maxi-
mum of a likelihood marginalized over unobserved data. The present application
fits this framework when the response patterns are viewed as observed data and the
ability parameters as unobserved data. Together they are referred to as the complete
data. The EM algorithm is applicable in situations where direct inference based on
the marginal likelihood is complicated, and the complete data likelihood equations,
i.e., equations based on !n.�/, are easily solved. Given some estimate of �, say
��, the estimate can be improved by solving

P
n E.!n.�/ j un; dn; ��/ D 0 with

respect to �. Then this new estimate becomes �� and the process is iterated until
convergence.

Application of this framework to deriving the likelihood equations of the struc-
tural parameters of the 3PL model proceeds as follows. The likelihood equations are
obtained upon equating (14.2) to zero, so explicit expressions are needed for (14.3).
Given the design vector dn , the ability parameter �n, and the item parameters of the
3PL model, the probability of response pattern un is given by

p.un j dn; �n; ai ; bi ; ci / D
Y

i

Pi .�n/dinuin.1 � Pi .�n//din.1�uin/ ;

where Pi .�n/ is the probability of a correct response to item i , as defined in van
der Linden and Pashley (this volume, chap. 2, formula 1.1). Define Pin and Sin by
Pin D ci C .1 � ci /Sin, so Sin is the logistic part of the probability Pin. By taking
first-order derivatives of the logarithm of this expression, the expressions for (14.3)
are found as

!n.ai / D . uin � Pin /.1 � ci /Sin.1 � Sin/.�n � bi /

Pin.1 � Pin/
; (14.4)

!n.bi / D . Pin � uin /.1 � ci /Sin.1 � Sin/ai

Pin.1 � Pin/
; (14.5)
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and

!n.ci / D . uin � Pin /.1 � Sin/

Pin.1 � Pin/
: (14.6)

The likelihood equations for the item parameters are found upon inserting these ex-
pressions into (14.2) and equating the resulting expressions to zero. To derive the
likelihood equations for the population parameters, the first-order derivatives of the
log of the density of the ability parameters g.� I �; �/ are needed. In the present
case, g.� I �; �/ is the well-known expression for the normal distribution with
mean � and standard deviation � , so it is easily verified that these derivatives are
given by

!n.�/ D .�n � �/

�2

and

!n.�/ D .�n � �/2 � �2

�3
:

The likelihood equations are again found upon inserting these expressions in (14.2)
and equating the resulting expressions to zero.

Also, the standard errors are easily derived in this framework: Mislevy (1986)
points out that the information matrix can be approximated as

H.�; �/ 

X

n

E.!n.�/ j un; dn; �/E. !n.�/ j un; dn; �/0; (14.7)

and the standard errors are the diagonal elements of the inverse of this matrix.
The basic approach presented so far can be generalized in two ways. First, the

assumption that all respondents are drawn from one population can be replaced by
the assumption that there are multiple populations of respondents. Usually, it is as-
sumed that each population has a normal ability distribution indexed by a unique
mean and variance parameter. Bock and Zimowski (1997) point out that this gener-
alization together with the possibility of analyzing incomplete item administration
designs provides a unified approach to such problems as differential item func-
tioning, item parameter drift, nonequivalent groups equating, vertical equating, and
matrix-sampled educational assessment. Item calibration for CAT also fits within
this framework.

A second extension of this basic approach is Bayes modal estimation (the term
“modal” refers to the mode of the posterior distribution). This approach is moti-
vated by the fact that item parameter estimates in the 3PL model are sometimes
hard to obtain because the parameters are poorly determined by the available data.
In these instances, item-characteristic curves can be appropriately described by a
large number of different item parameter values over the ability scale region where
the respondents are located. As a result, the estimates of the three item parame-
ters in the 3PL model are often highly correlated. To obtain “reasonable” and finite
estimates, Mislevy (1986) considers a number of Bayesian approaches. Each of
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them entails the introduction of prior distributions on item parameters. Parameter
estimates are then computed by maximizing the log-posterior density of �, which is
proportional to log L.�I U/ C log p.� j �/ C log p.�/, where p.� j �/ is the prior
density of the �, characterized by parameters �, which in turn follow a density p.�/.
In one approach, the prior distribution is fixed; in another approach, often labeled
empirical Bayes, the parameters of the prior distribution are estimated along with
the other parameters. In the first case, the likelihood equations in (14.1) change to
@ log L.�I U/=@� C @ log p.� j �/=@� D 0. In the second case, in addition to these
modified likelihood equations, the additional equations @ log p.�/=@� D 0 must
also be solved. For details refer to Mislevy (1986). In the following sections, two
methods for parameter drift in the framework of the 3PL model and MML estima-
tion will be presented.

14.2.2 Impact of Violations of Ignorability on Item
Parameter Estimation

In applications of IRT to CAT, students seldom respond to all available items. Every
student is administered a virtually unique test by the very nature of the item selec-
tion mechanism of CAT. In the context of CAT, it is an interesting question whether
estimates of item parameters can be calculated treating the design matrix D as fixed
by maximizing the likelihood of the parameters conditional on D. If so, the design is
called ignorable (Rubin, 1976). In the present section, we assess a number of situa-
tions where ignorability is violated. Therefore, first the ignorability principle will be
outlined in some detail. Let the potential responses be partitioned into the actually
observed responses uobs and the unobserved responses umis. As above, the parame-
ter of interest is denoted by �, and it is assumed that the probability model for umis

depends on parameters �. The key concept in the theory of ignorability is “missing
at random” (MAR). MAR holds if

p.Djuobs; umis; �; X/ D p.Djuobs; �; X/;

where X are covariates that might play a role. So MAR holds, if the missing data
indicators D do not depend on the missing data umis, in fact, they only depend on
the observed data uobs, and possibly on covariates X. Then, there is a technical
condition. In a frequentist framework, the condition is that � and � are distinct; that
is, the space of � and � factorizes into a �-space and a �-space and the two sets
of parameters have no mutual functional restrictions. In a Bayesian framework �

and � are distinct if p.�j�; X/ D p.�jX/, that is, if they have independent priors.
Rubin (1976) proved the following:

Theorem
If � and � are distinct, and MAR holds,
then
in a frequentist framework p.uobs; D j �; �; X/ / p.uobs; j �; X/,
and in a Bayesian framework p.� j uobs; D; X/ / p.� j uobs; X/:
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The frequentist version implies that inferences such as maximum likelihood estima-
tion can be based on the likelihood of the observed data, p.uobs; j �; X/, and the
process causing the missingness does not have to be taken into account. In the same
manner, the Bayesian version implies that inferences can be based on a posterior
p.�juobs; X/ that ignores the probability model for D. It should be noted that condi-
tioning on D may produce an overestimate of the sample variability of the data, and
consequently an underestimate of the standard error of the estimate of � . Unbiased
inferences on standard errors might be obtained if the data are also “observed at ran-
dom”, that is, if p.Djuobs; umis; �; X/ D p.Djumis; �; X/, so uobs does not depend
on D.

Ignorability in CAT directly follows from the theorem: In CAT the item selection
process completely depends on the observed responses and is completely indepen-
dent of the unobserved responses. Further, ignorability also holds when CAT data
are used to calibrate the item and population parameters using maximum marginal
likelihood (MML; see Bock and Aitkin, 1981, the impact of targeted designs on
MML estimation was studied by Glas, 1988, and Mislevy and Chang, 2000).

In the present chapter, two cases are investigated where the observed data no
longer determine the design D: the case where auxiliary information on the students’
proficiency is used to select items and the case of item review where the original
responses are no longer available. The impact of these violations on the estimates of
the item parameters using CAT data in the calibration phase will be assessed using
a simulation study.

Consider the response pattern of one student; the index i is dropped for conve-
nience. In a situation of item review, the contribution to the log-likelihood given the
original data uobs and the reviewed data umis can be written as

log p.uobs; umis; DI �/

D log
Z

p.uobs j D; �; ˇ/p.umis; DI �; ˇ/g.� I �/d�

D log
Z

p.uobs j D; �; ˇ/p.� jumis; DI ˇ; �/p.umis; DI ˇ; �/d�

D log p.umis; DI ˇ; �/

C log
Z

p.uobs j D; �; ˇ/p.� jumis; DI ˇ; �/d�:

Note that this contribution now consists of a term log p.umis; DI ˇ; �/ and a term
log

R
p.uobs j D; �; ˇ/p.� jumis; DI ˇ; �/. The former gives rise to a log-likelihood

associated with a CAT design and if umis were observed, these data could be used to
obtain consistent estimates of �. The latter term is the expectation of the probabil-
ity of uobs with respect to the posterior distribution p.� jumis; DI ˇ; �/. However,
if the missing data process is ignored, the expectation of p.uobs j D; �; ˇ/ is
considered with respect to g.� I �/; that is, the log-likelihood then becomes a sum of
terms
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log
Z

p.uobs j D; �; ˇ/g.� I �/d�: (14.8)

The effect is that p.uobs j D; �; ˇ/ is averaged over the wrong proficiency distri-
bution, that is, a distribution with a wrong location parameter and a wrong scale
parameter. To assess the effect, consider two students, one with a high �-value and
one with a low �-value. The first student is administered difficult items, and the sec-
ond student is administered easy items. However, in (14.8) both their �-values are
assumed to be drawn from the same distribution, and as a result, the easy items are
overestimated and the difficult items are underestimated. The effect is due to ignor-
ing the covariates umis and D. When the design is governed by auxiliary information
about � , say �0, the situation is essentially the same: when the covariate �0 is ig-
nored, the proper posterior p.� j�0I ˇ; �/ is replaced with g.� I �/, and the result is
bias in the estimates of �.

14.2.3 Simulated Examples

To assess the magnitude of the bias caused by ignoring covariates, simulation studies
were conducted. A number of simulation studies were conducted to elucidate the
two cases discussed above. The following eight conditions were introduced.

1. Random item selection. In this condition, for every simulee a new set of item
parameters was randomly drawn from the standard normal distribution and re-
sponses to this randomly assembled test were generated. So this condition did
not entail CAT; it was used as a baseline for reference.

2. Computerized adaptive testing.
3. Computerized adaptive testing with item review. In this condition, new responses

were generated for all the selected items. So the condition is far more extreme
than what can be expected in real-life testing situations.

4. Computerized adaptive testing with item review only for proficiency levels
� > 0:0. In this first set of simulations, the results will just be a combination
of the two previous conditions; the purpose of this condition will become appar-
ent in the simulation studies pertaining to item calibration.

5. Computerized adaptive testing where the first half of the test items were chosen
to be optimal at the true proficiency value.

6. Computerized adaptive testing where all items were chosen to be optimal at the
true proficiency value.

7. Computerized adaptive testing where the first half of the test items were chosen
to be optimal at �0, where �0 was drawn from a normal distribution with a mean
equal to the true proficiency parameter, and a standard deviation equal to 1.0.

8. Computerized adaptive testing where the first half of the test items were chosen
to be optimal at �0, where �0 was drawn from a normal distribution with a mean
equal to the true proficiency parameter, and a standard deviation equal to 2.0.



14 Item Parameter Estimation and Item Fit Analysis 277

Adaptive test data were generated for 1,000 simulees with parameters drawn
from the standard normal distribution. The item bank consisted of 200 items equally
spaced between �2.0 and 2.0, and the test length was 20 items. The one-parameter
logistic model (1PLM) was used to avoid contamination of the results by the
possibly poor identification of the two-parameter logistic model (2PLM) and the
three-parameter logistic model (3PLM). Unless indicated otherwise, the starting
value of the proficiency estimate was equal to zero. The proficiency parameter
was estimated by maximum likelihood and maximum information was used as a
selection criterium. Using these adaptive test data, MML estimates of the item
parameters were computed under the assumption that � had a standard normal
distribution.

In every condition reported below, 100 replications were made. In the condition
of random item selection, the test of 20 items was resampled from the item bank for
every simulee.

The results are shown in Table 14.1. For five items from the item bank, the last
three columns give the bias, standard error, and mean of the estimates over the repli-
cations, respectively. The following conclusions can be drawn.

1. Comparing random item selection and CAT, it can be seen that the latter greatly
reduced the standard error. In both cases, the bias was relatively small.

2. In all other conditions, the bias was substantial.
3. In CAT with item review, there is inward bias; that is, easy items are overesti-

mated and difficult items are underestimated.
4. If only simulees with � > 0 review the items, the bias in the easy items vanishes.
5. Choosing the complete test to be optimal at the true � completely contaminates

the calibration in the sense that all item parameters shrink to zero.

14.3 Item Fit Analysis

14.3.1 Lagrange Multiplier Tests

The idea behind the Lagrange multiplier (LM) test (Aitchison & Silvey, (1958), and
the equivalent efficient score test (Rao, 1947), can be summarized as follows. Con-
sider some general parameterized model and a special case of the general model,
the so-called restricted model. The restricted model is derived from the general
model by imposing constraints on the parameter space. In many instances, this is
accomplished by setting one or more parameters of the general model to constants.
The LM test is based on evaluating a quadratic function of the partial derivatives
of the log-likelihood function of the general model evaluated at the ML estimates
of the restricted model. The LM test is evaluated using the ML estimates of the
parameters of the restricted model. The unrestricted elements of the vector of the
first-order derivatives are equal to zero because their values originate from solving
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Table 14.1 Squared bias and standard errors for calibration of ˇ

Item Selection Mode ˇ Bias S.E. Mean

Random selection �2:0 0:01 0:32 �1:96

�1:0 0:05 0:20 �0:94

0:0 0:01 0:23 �0:01

1:0 0:01 0:29 1:01

2:0 0:08 0:29 2:08

CAT �2:0 0:02 0:19 �2:00

�1:0 0:03 0:26 �1:03

0:0 0:01 0:08 �0:01

1:0 0:00 0:21 0:99

2:0 0:00 0:19 2:00

CAT with item review �2:0 0:64 0:22 �1:33

�1:0 0:34 0:29 �0:65

0:0 0:01 0:07 �0:01

1:0 0:28 0:22 0:71

2:0 0:60 0:18 1:39

CAT with item review �2:0 0:07 0:21 �1:90

if � > 0:0 �1:0 0:15 0:29 �0:84

0:0 0:01 0:07 0:01

1:0 0:20 0:19 0:79

2:0 0:52 0:22 1:47

50% optimal �2:0 0:43 0:23 �1:54

at true � �1:0 0:38 0:25 �0:61

0:0 0:00 0:17 �0:00

1:0 0:33 0:22 0:66

2:0 0:40 0:22 1:59

100% optimal �2:0 1:92 0:39 �0:05

at true � �1:0 0:92 0:21 �0:07

0:0 0:04 0:18 0:04

1:0 0:93 0:22 0:06

2:0 1:84 0:38 0:15

50% initial responses at �2:0 0:21 0:20 �1:76

b� with s.d..b�/ D 1:0 �1:0 0:17 0:19 �0:82

0:0 0:00 0:17 0:00

1:0 0:08 0:21 0:91

2:0 0:24 0:20 1:75

the likelihood equations. The magnitude of the elements of the vector of first-order
derivatives corresponding with restricted parameters determines the value of the
statistic: the closer they are to zero, the better the model fits.

More formally, the principle can be described as follows. Consider a null hypoth-
esis about a model with parameters �0. This model is a special case of a general
model with parameters �. In the case discussed here, the special model is derived
from the general model by setting one or more parameters to zero. So if the parame-
ter vector �0 is partitioned as �0 D .�01; �02/, the null hypothesis entails �02 D 0.
Let h.�/ be the partial derivatives of the log-likelihood of the general model, so
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h.�/ D @ log L.�/=@�. This vector of partial derivatives gauges the change of the
log-likelihood as a function of local changes in �. The test will be based on the
statistic

LM D h.�02/t†�1h.�02/; (14.9)

where
† D †11 � †10†�1

00 †01

and
†pq D

X

n

hn.�0p/hn.�0q/t :

The statistic has an asymptotic �2-distribution with degrees of freedom equal to the
number of parameters in �02 (Aitchison & Silvey, 1958; Rao, 1947).

Recently, the LM principle has been applied in the framework of IRT for evaluat-
ing differential item functioning (Glas, 1998) and the axioms of unidimensionality
and local stochastic independence (Glas, 1999). Though originally presented in the
framework of a fixed item administration design, these tests can also be applied in
the framework of the stochastic design characteristics for CAT. However, the result
with respect to the asymptotic distribution of the statistics does not automatically
apply to the case of a stochastic design. The ignorability principle ensures consis-
tency of estimators in a CAT design, but it does not apply to sample inferences, such
as confidence intervals and the distributions of statistics for evaluation of model fit
(Mislevy & Chang, 1998). Therefore, for the applications presented here, a power
study under the null model will be part of the example to be presented. The results
will show that the asymptotic distribution of the LM statistics is hardly affected
by CAT.

14.3.2 An LM Test for the Fit of Item-Characteristic Curves

The idea of the LM test and modification index presented here will be to partition
the latent ability continuum into a number of segments, and to evaluate whether
an item’s ICC conforms to the form predicted by the null model in each of these
segments. However, the actual partitioning will take place on the observed number-
correct scale rather than on the � scale. Usually, the unweighted sum score and the
associated estimate of � will highly correlate. Let the item of interest be labeled
k, and let the other items be labeled i D 1; 2; : : : ; k � 1; k C 1; : : : ; K . Let r

.k/
n be

the unweighted sum score on the response pattern of student n without item k. The
possible scores r

.k/
n will be partitioned into S disjoint subsets using boundary scores

r0 < r1 < r2 : : : < rs < : : : < rS , with r0 D 0 and rS D K � 1. Further, define

ws

�
r .k/

n

�
D
(

1 if rs�1 < r
.k/
n < rs;

0 otherwise;
(14.10)
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so ws

�
r

.k/
n

�
is an indicator function that assumes a value equal to one if the number-

correct score without item k is in score range s. As an alternative model to the
2PLM and 3PLM, consider a model where the item discrimination and difficulty

parameters are redefined as an CP
s ws

�
r

.k/
n

�
ı1s and bn CP

s ws

�
r

.k/
n

�
ı2s . The

simultaneous hypothesis ı1s D 0 and ı2s D 0 (s D 2; : : : ; S ; that is, s D 1 is used
as a baseline) can be evaluated using an LM test. For respondents with a number-
correct score in category s, it holds that

!n.ı1s/ D �n.uin � Pi .�n// (14.11)

and
!n.ı2s/ D Pi .�n/ � uin; (14.12)

where !n.ı1s/ and !n.ı2s/ are defined as in (14.3). Using (14.2) it can be inferred
that the elements of the vectors of first-order derivatives h.ı1/ and h.ı1/ are given
by

X

n

ws

�
r .k/

n

�
E.!n.ı1s/ j un; dn; �/

D
X

n

ws

�
r .k/

n

�
E.�i .uin � Pi .�n// j un; dn; �/ (14.13)

and

X

n

ws

�
r .k/

n

�
E.!n.ı2s/ j un; dn; �/

D
X

n

ws

�
r .k/

n

�
E.Pi .�n/ j un; dn; �/ �

X

n

ws

�
r .k/

n

�
uin: (14.14)

Notice that (14.14) is the difference between the observed number of persons of
sub-sample s with a correct score on item i , and its expected value. So (14.14) can
be seen as a residual. A test for the simultaneous hypothesis ı1s D 0 and ı2s D 0,
for s D 1; : : : ; S � 1, can be based on a statistic with an asymptotic �2 distribution
with 2.S � 1/ degrees of freedom, where the statistic defined by (14.9) is evaluated
using MML estimates of the null model, that is, the 2PL model or 3PL model. It is
also possible to define separate tests for ı1s D 0 or ı2s D 0 (s D 1; : : : ; S � 1/.
These tests are based on LM statistics with S � 1 degrees of freedom.

14.3.3 An LM Test for Parameter Drift

We noted earlier that parameter drift can be evaluated by checking whether pretest
and online data can be properly described by the same IRT model. Consider G
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groups labeled g D 1; : : : ; G. It is assumed that the first group partakes in the pretest-
ing stage, and the following groups partake in the online stage. The application of
the LM tests to monitoring parameter drift is derived from the LM test for differen-
tial item functioning proposed by Glas (1998) for the 2PL model. This is a test of
the hypothesis that the item parameters are constant over groups, that is, the hypoth-
esis aig D ai and big D bi , for all g. To see the relation with the LM framework,
consider two groups, and define a variable yn that is equal to one if n belongs to
the first group and zero if n belongs to the second group. Defining aiy D ai C ynı1

and biy D bi C ynı2, the hypothesis given by ı1 D 0 and ı2 D 0 can be evalu-
ated using the LM test. For more than two groups, more dummy variables yn are
needed to code group membership. This approach can of course also be used to
monitor parameter drift in CAT. Further, generalization to the 3PL model entails
adding ı3 D 0, with ciy D ci C ynı3, to the null hypothesis.

For actual implementation of this approach using adaptive testing data, the high
correlation of estimates of the three item parameters discussed in the previous
section must be taken into account. Another parameter estimation problem arises
specifically in the context of adaptive testing. Guessing (which may be prominent in
the calibration stage) may rarely occur in the online stage because items are tailored
to the ability level of the respondents. Therefore, a test focused on all three param-
eters simultaneously often proves computationally unstable. In the present chapter,
three approaches will be studied. In the first, the LM test will be focused on simul-
taneous parameter drift in ai and bi ; in the second approach, the LM test will be
focused on parameter drift in ci . These two tests will be labeled LM.ai ; bi / and
LM.ci /, respectively. In the third approach, the guessing parameter will be fixed at
some plausible constant, say, the reciprocal of the number of response alternatives
of the items, and the LM statistic will be used to test whether this fixed guessing pa-
rameter is appropriate in the initial stage and remains so when the adaptive testing
data are introduced. So the hypothesis considered is that cig D ci for all g. Using
simulation studies, it will be shown that the outcomes of these three approaches are
quite comparable.

14.3.4 A CUSUM Test for Parameter Drift

The CUSUM chart is an instrument of statistical quality control used for detecting
small changes in product features during the production process (see, for instance,
Wetherill, 1977). The CUSUM chart is used in a sequential statistical test, where the
null hypothesis of no change is never accepted. In the present application, loss of
production quality means that the item is becoming easier and less discriminating.

Contrary to the case of the LM test, the CUSUM test needs estimation of the
item parameters for every group of students g D 1; : : : ; G. As above, the first group
partakes in the pretesting stage, and the following groups take an adaptive test.
However, estimation of the guessing parameter is problematic in a CAT situation
because, as already mentioned, guessing may be prominent in the calibration stage,
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while it may rarely occur in the online stage, where the items are tailored to the
ability level of the respondents. Two possible solutions include fixing the guess-
ing parameter to some plausible constant such as the reciprocal of the number of
response options, or concurrent estimation of the item guessing parameter using
all available data. In either approach, the null hypothesis is aig � ai1 � 0 and
big � bi1 � 0, for the respondent groups g D 1; : : : ; G. Therefore, a one-sided
CUSUM chart will be based on the quantity

Si .g/ D max

�
Si .g � 1/ C ai1 � aig

Se.aig � ai1/

C bi1 � big

Se.bi1 � big j ai1 � aig/
� k; 0

�
; (14.15)

where Se.aig � ai1/ D �a and Se.bi1 � big j ai1 � aig/ D
q

�2
b

� �2
ab

=�2
a , with

�2
a , �2

b
, and �ab the appropriate elements of the covariance matrix of the parameter

estimates given by (14.7). Further, k is a reference value determining the size of the
effects one aims to detect. The CUSUM chart starts with Si .1/ D 0 and the null
hypothesis is rejected as soon as Si .g/ > h, where h is some constant threshold
value. The choice of the constants k and h determines the power of the procedure.
In the case of the Rasch model, where the null hypothesis is big � bi1 � 0, and the
term involving the discrimination indices is lacking from (14.15), Veerkamp (1996)
successfully uses k D 1=2 and h D 5. This choice was motivated by the consid-
eration that the resulting test has good power against the alternative hypothesis of
a normalized shift in item difficulty of approximately half a standard deviation. In
the present case, one extra normalized decision variable is employed, namely, the
variable involving the discrimination indices. So, for instance, a value k D 1 can be
used to have power against a shift of one standard deviation of both normalized de-
cision variables in the direction of the alternative hypothesis. However, there are no
compelling reasons for this choice; the attractive feature of the CUSUM procedure
is that the practitioner can choose the effect size k to meet the specific characteristics
of the problem. Also, the choice of a value for h is determined by the targeted de-
tection rate, especially by the trade-off between Type I and II errors. In practice, the
values of h and k can be set using simulation studies. Examples will be given below.

14.4 Examples

In this section, the power of the procedures suggested above will be investigated
using a number of simulation studies. Since all statistics involve an approximation
of the standard error of the parameter estimates using (14.7), first the precision of
the approximation will be studied by assessing the power of the statistics under the
null model, that is, by studying the Type I error rate. Then the power of the tests will
be studied under various model violations. These two topics will first be studied for
the LM tests, then for the CUSUM test.
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Table 14.2 Type I error rate of LM test

K L Ng

Percentage at
10% LM.ci /

Significant
LM.ai ; bi )

50 20 500 8 9

1000 10 10

40 500 9 10

1000 11 8

100 20 500 12 10

1000 8 9

40 500 10 12

1000 10 10

In all simulations, the ability parameters � were drawn from a standard normal
distribution. The item difficulties bi were uniformly distributed on Œ�1:5; 1:5�, the
discrimination indices ai were drawn from a log-normal distribution with a zero
mean and a standard deviation equal to 0:25, and the guessing parameters were
fixed at 0:20, unless indicated otherwise. In the online stage, item selection was done
using the maximum information principle. The ability parameter was estimated by
its expected a posteriori value (EAP); the initial prior was standard normal.

The results of eight simulation studies with respect to the Type I error rate of the
LM test are shown in Table 14.2. The design of the study can be inferred from the
first three columns of the table. It can be seen that the number of items K in the
item bank was fixed at 50 for the first four studies and at 100 for the next four
studies. In both the pretest stage and the online stages, test lengths L of 20 and 40
were chosen. Finally, as can be seen in the third column, the number of respondents
per stage, Ng , was fixed at 500 and 1000 respondents. So summed over the pretest
and online stage, the sample sizes were 1000 and 2000 respondents, respectively.
For the pretest stage, a spiraled test administration design was used. For instance,
for the K D 50 studies, for the pretest stage, five subgroups were used; the first
subgroup was administered items 1 – 20, the second items 11 – 30, the third items
21 – 40 the fourth items 31 – 50, and the last group received the items 1 – 10 and
41 – 50. In this manner, all items drew the same number of responses in the pretest
stage. For the K D 100 studies, for the pretest stage four subgroups administered
50 items were formed, so here the design was 1 – 50, 26 – 75, 51 – 100 and 1
– 25 and 76 – 100. For each study, 100 replications were run. The results of the
study are shown in the last two columns of Table 14.2. These columns contain the
percentages of LM.ci / and LM.ai ; bi / tests that were significant at the 10% level. It
can be seen that the Type I error rates of the tests conform to the nominal value of
10%. These results support the adequacy of the standard error approximations for
providing accurate Type I error rates.

The second series of simulations pertained to the power of the LM statistics un-
der various model violations. The setup was the same as in the above study with
K D 100 items in the item bank, a test length L D 50, N1 D 1000 simulees in the
pretest stage and N2 D 1000 simulees in the online stages. Two model violations
were simulated. In the first, the guessing parameter ci went up in the online stage; in
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Table 14.3 Power of LM test

Percentage Significant
Model at 10%
Violation LM.ai ; bi / LM.ci /

ci D 0:25 Hits 25 15
False alarm 08 10

ci D 0:30 Hits 45 35
False alarm 13 11

ci D 0:40 Hits 95 85
False alarm 17 20

bi D �0:20 Hits 25 30
False alarm 13 12

bi D �0:40 Hits 55 70
False alarm 15 20

bi D �0:60 Hits 80 95
False alarm 13 27

the second, the item difficulty bi went down in the online stage. Six conditions were
investigated: ci rose from 0:20 to 0:25; 0:30, and 0:40, respectively, and bi changed
from the initial value by �0:20, �0:40 and �0:60, respectively. These model vio-
lations were imposed on the items 5, 10, 15, etc. So 20 out of the 100 items were
affected by this form of parameter drift. 100 replications were made for each con-
dition. Both the LM.ci / and LM.ai ; bi / tests were used. The results are shown in
Table 14.3. This table displays both the percentage of “hits” (correctly identified
items with parameter drift) and “false alarms” (items without parameter drift erro-
neously identified as drifting). Three conclusions can be drawn. Firstly, it can be
seen that the power of the tests increases as the magnitude of the model violation
grows. Secondly, the power of the test specifically aimed at a model violation is
always a little larger than the power of the other test, but the differences are quite
small. For instance, in the case bi D �0:60, the power of LM.ai ; bi / is 0.95, while
the power of LM.ci / is 0.85. The third conclusion that can be drawn from the table
is that the percentage of “false alarms” is clearly higher than the nominal 10% er-
ror rate. A plausible explanation might be that the improper parameter estimates of
the 20% items with parameter drift influence the estimates of the 80% non-affected
items. Finally, it can be noted that the agreement between the two tests with respect
to the flagged items was high; agreement between the two tests was always higher
than 0.84.

As mentioned above, the power of the CUSUM procedure is governed by choos-
ing an effect size k and a critical value h. A good way to proceed in a practical
situation is to calibrate the procedure when the pretest data have become available.
First, the practitioner must set an effect size k of interest. Then, assuming no pa-
rameter drift, online data can be simulated using the parameter estimates of the
pretest stage. Finally, CUSUM statistics can be computed to find a value for h such
that an acceptable Type I error rate is obtained. An example will be given using
the same set-up as above: there were K D 100 items in the item bank, test length
was L D 50, and the pretest data consisted of the responses of N1 D 1000 simulees.
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Table 14.4 Type I error rate of CUSUM test

Effect Size h D 2:5 h D 5:0 h D 7:5 h D 10:0

k D 0:50 17 04 01 00
k D 1:00 09 06 01 00
k D 2:00 01 00 00 00

Then, four batches of responses of Ng D 1000 .g D 2; : : : ; 5/ simulees were gener-
ated as online data, and CUSUM statistics Si .g/ were computed for the iterations
g D 2; : : : ; 5. This procedure was carried out for three effect sizes k and four thresh-
olds h; the values are shown in Table 14.4.

In the table, the percentages items flagged in the fifth iteration (g D 5) of the
procedure are shown for the various combinations of k and h. Since no parameter
drift was induced, the percentages shown can be interpreted as Type I error rates. For
an effect size k D 0:50, it can be seen that a value h D 2:5 results in 17% flagged
items, which is too high. A value h D 5:0 results in 4% flagged items, which might
be considered an acceptable Type I error rate. Also, for an effect size k D 1:00 a
critical value h D 5:0 seems a good candidate. Finally, for k D 2:00, all four values
of h produce low Type I error rates. So it must be concluded that, given the design
and the sample size, detection of parameter drift with an effect size of two standard
deviations may be quite difficult.

This result was further studied in a set of simulations where model violations
were introduced. These studies used the setup K D 100, L D 50, and Ng D 1000;

for g D 1; : : : ; 5. The model violations were similar to the ones imposed above. So
in six conditions, the guessing parameter ci rose from 0:20 to 0:25; 0:30, and 0:40,
respectively, and bi changed from the initial value by �0:20, �0:40, and �0:60,
respectively. Again, for each condition, 20 of the 100 items were affected by the
model violation. The results are shown in Table 14.5. For the simulation studies
with effect sizes k D 0:50 and k D 1:00, a critical value h D 5:0 was chosen; for
the studies with effect size k D 2:00, the critical value was h D 2:5.

For every combination of effect size and model violation, 20 replications were
made. The last four columns of Table 14.5 give the percentages of “hits” (flagged
items with parameter drift) and “false alarms” (erroneously flagged items per con-
dition) for the iterations g D 2; : : : ; 5. The percentages are aggregated over the 20
replications per condition. As expected, the highest percentages of “hits” were ob-
tained for the smaller effect sizes k D 0:50 and k D 1:00, and the larger model
violations. The top is the combination k D 1:00 and bi D �0:60, which, for g D 5,
has an almost perfect record of 99% “hits”. In this condition, the percentage of “false
alarms” remained at a 10% level. The worst performances were obtained for com-
binations of k D 0:50 and k D 2:00 with small violations as ci D 0:25, ci D 0:30,
and bi D � 0:20. These conditions both show a low “hit” rate and a “false alarm”
rate of approximately the same magnitude, which is relatively high for a “false
alarm” rate.
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Table 14.5 Power of CUSUM test

Effect Model Iteration
Size Violation g D 2 g D 3 g D 4 g D 5

k D 0:50 ci D 0:25 Hits 00 00 05 15
False alarm 00 04 05 13

ci D 0:30 Hits 00 05 10 20
False alarm 00 03 05 06

ci D 0:40 Hits 00 30 75 85
False alarm 00 00 01 03

k D 1:00 ci D 0:25 Hits 15 25 30 45
False alarm 05 13 17 21

ci D 0:30 Hits 15 35 55 50
False alarm 03 03 03 06

ci D 0:40 Hits 30 75 90 85
False alarm 03 04 06 09

k D 2:00 ci D 0:25 Hits 00 05 15 15
False alarm 00 00 03 00

ci D 0:30 Hits 05 15 15 20
False alarm 03 01 04 04

ci D 0:40 Hits 15 30 55 60
False alarm 00 01 01 01

k D 0:50 bi D �0:20 Hits 00 00 10 15
False alarm 00 00 06 05

bi D �0:40 Hits 00 15 45 60
False alarm 01 06 09 15

bi D �0:60 Hits 05 35 65 80
False alarm 00 00 04 04

k D 1:00 bi D �0:20 Hits 00 20 40 35
False alarm 00 01 03 05

bi D �0:40 Hits 25 50 55 65
False alarm 01 04 06 09

bi D �0:60 Hits 20 75 95 99
False alarm 03 06 10 10

k D 2:00 bi D �0:20 Hits 00 00 05 05
False alarm 00 01 03 03

bi D �0:40 Hits 05 10 30 35
False alarm 00 00 03 01

bi D �0:60 Hits 00 25 75 75
False alarm 01 03 04 03

14.5 Discussion

This chapter showed how to evaluate whether the IRT model of the pretest stage
also fits the online stage. Two approaches were presented. The first was based on
LM statistics. It was shown that the approach supports the detection of specific
model violations and has the advantage of known asymptotic distributions of the
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statistics on which it is based. Two specific model violations were considered here,
but the approach also applies to other model violations, such as violation of local
independence and multidimensionality (see Glas, 1999). The second approach is
based on CUSUM statistics. The distribution of these statistics is not known, but
an appropriate critical value h can be found via simulation. An advantage, however,
is that the practitioner can tune the procedure to the needs of the specific situation.
When choosing h, the subjective importance of making “hits” and avoiding “false
alarms” can be taken into account, and the effect size k can be chosen to reflect the
magnitude of parameter drift judged relevant in a particular situation. Summing up,
both approaches provide practical tools for monitoring parameter drift.
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