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Preface

Digital forensics deals with the acquisition, preservation, examination,
analysis and presentation of electronic evidence. Networked computing,
wireless communications and portable electronic devices have expanded
the role of digital forensics beyond traditional computer crime investiga-
tions. Practically every type of crime now involves some aspect of digital
evidence; digital forensics provides the techniques and tools to articu-
late this evidence in legal proceedings. Digital forensics also has myriad
intelligence applications. Furthermore, it has a vital role in information
assurance – investigations of security breaches yield valuable information
that can be used to design more secure and resilient systems.

This book, Advances in Digital Forensics IV, is the fourth volume in
the annual series produced by the IFIP Working Group 11.9 on Dig-
ital Forensics, an international community of scientists, engineers and
practitioners dedicated to advancing the state of the art of research and
practice in the emerging discipline of digital forensics. The book presents
original research results and innovative applications in digital forensics.
Also, it highlights some of the major technical and legal issues related
to digital evidence and electronic crime investigations.

This volume contains twenty-eight edited papers from the Fourth An-
nual IFIP WG 11.9 Conference on Digital Forensics, held at Kyoto Uni-
versity, Kyoto, Japan, January 28–30, 2008. The papers were selected
from forty-two submissions, which were refereed by members of IFIP
Working Group 11.9 and other internationally-recognized experts in dig-
ital forensics.

The chapters are organized into ten sections: themes and issues, evi-
dence recovery, evidence integrity, evidence management, forensic tech-
niques, network forensics, portable electronic device forensics, event data
recorder forensics, novel investigative techniques and forensic tools. The
coverage of topics highlights the richness and vitality of the discipline,
and offers promising avenues for future research in digital forensics.

This book is the result of the combined efforts of several individuals.
In particular, we thank Rodrigo Chandia and Anita Presley for their tire-
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less work on behalf of IFIP Working Group 11.9. We also acknowledge
the support provided by Kyoto University, Kyoto, Japan, the Japan So-
ciety for the Promotion of Science, the Federal Bureau of Investigation,
National Security Agency and U.S. Secret Service.
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THEMES AND ISSUES



Chapter 1

WHEN IS DIGITAL EVIDENCE
FORENSICALLY SOUND?

Rodney McKemmish

Abstract “Forensically sound” is a term used extensively in the digital forensics
community to qualify and, in some cases, to justify the use of a particu-
lar forensic technology or methodology. Indeed, many practitioners use
the term when describing the capabilities of a particular piece of soft-
ware or when describing a particular forensic analysis approach. Such a
wide application of the term can only lead to confusion. This paper ex-
amines the various definitions of forensic computing (also called digital
forensics) and identifies the common role that admissibility and eviden-
tiary weight play. Using this common theme, the paper explores how
the term “forensically sound” has been used and examines the drivers
for using such a term. Finally, a definition of “forensically sound” is
proposed and four criteria are provided for determining whether or not
a digital forensic process may be considered to be “forensically sound.”

Keywords: Digital evidence, forensically sound evidence

1. Introduction

Emerging from the needs of law enforcement in the 1980s, forensic
computing (also referred to as digital forensics) has evolved to become
an integral part of most criminal investigations. The digital forensic spe-
cialist plays a fundamental role in the investigative process – whether
it is the forensic analysis of personal computers, cell phones and PDAs
belonging to suspects and witnesses, or the acquisition and analysis of
network traffic in response to computer security incidents. Forensic com-
puting also plays an increasingly important role in civil litigation, espe-
cially in electronic discovery, intellectual property disputes, employment
law disputes and IT security incidents.

Please use the following format when citing this chapter: 

McKemmish, R., 2008, in IFIP International Federation for Information Processing, Volume 285; Advances in Digital 
Forensics IV; Indrajit Ray, Sujeet Shenoi; (Boston: Springer), pp. 3–15.
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In the context of law enforcement, it has been argued that the emer-
gence of forensic computing as a discipline was due to the need to provide
technical solutions to legal problems [6]. The technical solution involves
the extraction of electronic data by processes that ensure that the re-
sulting product is legally acceptable as evidence. Some scholars argue
that legal drivers are the principal force behind shaping the growth and
evolution of forensic computing [19]. As in the case of criminal investiga-
tions, the need to meet evidentiary requirements also provides a strong
stimulus for forensic computing in civil litigation. Not surprisingly, a
common element that emerges from forensic computing in criminal and
civil matters is the need to produce electronic evidence in a manner that
does not detract from its admissibility.

The growing emphasis on admissibility in recent years has caused
the focus of the forensic computing discipline to shift to the domain of
forensic science. With this shift comes the need to formalize many of
the forensic processes and procedures that have been developed in an
unstructured or ad hoc manner. Evidence of the shift is apparent in
NIST’s Computer Forensic Tools Testing Program [15] as well as in the
work of the Scientific Working Group on Digital Evidence (SWGDE) [20]
and the Electronic Evidence Technical Advisory Group of the Australian
National Institute of Forensic Science, which is helping integrate the
forensic computing function into the forensic science domain [14].

The need to ensure that electronic evidence produced by a forensic
process is admissible has given rise to the term “forensically sound”
when seeking to describe the reliability of the forensic process. Before
exploring what “forensically sound” means, we briefly examine current
thinking about the discipline of forensic computing.

2. What is Forensic Computing?

Numerous digital forensics experts have attempted to define the term
“forensic computing.” As expected, their definitions are influenced by
their perspectives and experience.

In 1999, based on an examination of digital forensic activities by
law enforcement agencies from eight countries, McKemmish [12] defined
forensic computing as a process encompassing the identification, preser-
vation, analysis and presentation of digital evidence in a legally accept-
able manner. Anderson, et al. [1] emphasize the scientific nature of
forensic computing by defining it as the science of using and analyzing
information in order to “reason post hoc about the validity of hypothe-
ses which attempt to explain the circumstances or cause of an activity
under investigation.” On the other hand, Hannan, et al. [9] adopt an
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investigative focus and define forensic computing as a set of processes or
procedures focusing on the investigation of computer misuse.

Some definitions of forensic computing focus solely on the underlying
legal scope. For example, Casey [5], a computer security and computer
crime consultant, postulates a criminal basis for forensic computing by
emphasizing that it focuses on establishing how an offense has occurred.
On the other hand, Carrier [3], a research scientist and author of several
forensic tools, provides a more detailed definition of forensic computing
that encompasses the investigative and scientific elements:

“The use of scientifically derived and proven methods toward the preser-
vation, collection, validation, identification, analysis, interpretation, do-
cumentation and presentation of digital evidence derived from digital
sources for the purpose of facilitating or furthering the reconstruction
of events found to be criminal, or helping to anticipate unauthorized
actions shown to be disruptive to planned operations.”

Despite the comprehensive nature of his definition of forensic comput-
ing, Carrier still restricts its scope to criminal-related activity.

Defining forensic computing is a difficult proposition. After examining
various definitions of forensic computing, Hannan [8] concludes that “no
single definition can adequately define the current meaning of forensic
computing.” McCombie and Warren [11] emphasize that digital forensics
is fundamentally different from other types of investigations and that
major differences exist in the basic definition of forensic computing.

Despite their differences, all the definitions share one common element
– the need to maintain the evidentiary weight of the forensic computing
product. McKemmish [12] uses the term “legally acceptable,” Ander-
son, et al. [1] stipulate the need to meet “evidentiary requirements,”
and Casey [5] and Carrier [3] refer to digital evidence in the context of
legal weight. All these authors highlight the need for a forensic process
to maximize the evidentiary weight of the resulting electronic evidence.
Indeed, when the evidentiary weight is maximized, the digital foren-
sics community would generally concur that the evidence is forensically
sound.

3. Forensically Sound Evidence

To better understand what the term “forensically sound” might actu-
ally mean, we first examine the usage of the term. An Internet search
quickly shows that the term is used to characterize everything from disk
imaging software to a particular approach for extracting computer data.
In the context of disk imaging, digital forensics professionals qualify the
term by stating that, to be forensically sound, the disk image must be a
bit-for-bit copy of the original (i.e., an exact copy). Some go further by
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adding that the disk imaging process must not only produce an exact
copy, but must also include a means for verifying the authenticity of the
copy and the reliability of the copying process. Authenticity is typically
ensured by using some form of mathematical fingerprinting or hashing
that provides a signature for a given block of data. To ensure reliability,
it is often advocated that the disk imaging process include an audit trail
that clearly records the success or failure of all or part of the copying
process. Therefore, one might argue that, in order to be forensically
sound, a disk imaging process must satisfy the following requirements:

The disk imaging process must produce an exact representation
(copy) of the original.

The duplicated data must be independently authenticated as being
a true copy.

The disk imaging process must produce an audit trail.

A more authoritative overview of the disk imaging process is found
in NIST’s Disk Imaging Tool Specification (Version 3.1.6) [16]. The
document specifies a number of mandatory and optional requirements
for disk imaging tools. The principal requirements are:

The tool shall make a bit-stream duplicate or an image of an orig-
inal disk or partition.

The tool shall not alter the original disk.

The tool shall be able to verify the integrity of a disk image file.

The tool shall log I/O errors.

The documentation of the tool shall be correct.

When the term “forensically sound” is used to describe the forensic
process as a whole, it is done so with two clear objectives:

1. The acquisition and subsequent analysis of electronic data has been
undertaken with all due regard to preserving the data in the state
in which it was first discovered.

2. The forensic process does not in any way diminish the evidentiary
value of the electronic data through technical, procedural or inter-
pretive errors.

It is often the case that to meet these objectives, the concept of “foren-
sically sound” is expressed in terms of a series of steps or procedures to
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be followed. While this approach is logical and is certainly the most mea-
surable, in reality, it is the lack of uniformity that diminishes its value.
Specifically, the steps or procedures often vary from one author to the
next and may contain more or less detail. Additionally, the forensic per-
spective and experience of an author can have a significant bearing on
the construction of the forensic process.

For example, consider the difference in the acquisition of data in com-
puter forensics and intrusion forensics cases. In computer forensics, the
focus is on obtaining a snapshot of the system at a given point in time
(typically using a disk imaging process). In the case of intrusion foren-
sics, the focus is more likely to be on monitoring and collecting data
from a network over time. It is, therefore, difficult to advocate taking
a disk image of a live system whose state changes over time and where
the evidence (network traffic and log files) is in a dynamic state.

Compounding the uncertainty surrounding the meaning and use of
the term “forensically sound” is the lack of a clear definition or concise
discussion in the digital forensics literature. For example, “Guidelines for
the Management of IT Evidence” [7] published by Standards Australia
uses the term “forensically sound” in the context of evidence collection,
but does not clarify its meaning.

An alternate approach used to qualify forensic processes centers on
the adoption of several principles rather than the application of clearly
defined steps or processes. The “Good Practice Guide for Computer
Based Electronic Evidence” published by the Association of Chief Police
Officers (United Kingdom) [13] lists four important principles related to
the recovery of digital evidence:

1. No action taken by law enforcement agencies or their agents should
change data held on a computer or storage media which may sub-
sequently be relied upon in court.

2. In exceptional circumstances, where a person finds it necessary to
access original data held on a computer or on storage media, that
person must be competent to do so and be able to give evidence
explaining the relevance and the implications of their actions.

3. An audit trail or other record of all processes applied to computer
based electronic evidence should be created and preserved. An
independent third party should be able to examine those processes
and achieve the same result.

4. The person in charge of the investigation (the case officer) has
overall responsibility for ensuring that the law and these principles
are adhered to.
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Similarly, the International Organization on Computer Evidence [10]
has specified the following six principles:

1. When dealing with digital evidence, all of the general forensic and
procedural principles must be applied.

2. Upon seizing digital evidence, actions taken should not change that
evidence.

3. When it is necessary for a person to access original digital evidence,
that person should be trained for the purpose.

4. All activity relating to the seizure, access, storage or transfer of
digital evidence must be fully documented, preserved and available
for review.

5. An individual is responsible for all actions taken with respect to
digital evidence while the digital evidence is in his/her possession.

6. Any agency, which is responsible for seizing, accessing, storing or
transferring digital evidence, is responsible for compliance with
these principles.

The well-known U.S. Department of Justice publication, “Searching
and Seizing Computers and Obtaining Electronic Evidence in Criminal
Investigations” [22], does not list any principles per se. However, the
publication does address many of the points discussed above and pro-
vides a comprehensive explanation of the forensic process and the related
U.S. legal issues.

In a 1999 paper titled “What is Forensic Computing?” McKem-
mish [12] specified four rules aimed at maximizing the admissibility of
digital forensic processes. These rules, which are similar to the principles
described above, are:

1. Minimal handling of the original: The application of digital foren-
sic processes during the examination of original data shall be kept
to an absolute minimum.

2. Account for any change: Where changes occur during a forensic
examination, the nature, extent and reason for such changes should
be properly documented.

3. Comply with the rules of evidence: The application or development
of forensic tools and techniques should be undertaken with regard
to the relevant rules of evidence.
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4. Do not exceed your knowledge: A digital forensics specialist should
not undertake an examination that is beyond his/her current level
of knowledge and skill.

4. Why Define “Forensically Sound?”

Despite the variations in the use of “forensically sound,” there remains
one universally consistent objective for a digital forensic process – the
need to ensure that the end product does not lose its evidentiary weight
and, therefore, its admissibility as evidence. Given this overriding con-
sideration, it is not surprising to see an ever increasing number of digital
forensics professionals referring to their work product as being derived
from a “forensically sound” methodology and/or technology. Indeed,
this term is commonly used in affidavits and expert reports, especially
when justifying the use of a specific methodology or technology.

The greatest driver to defining the term “forensically sound” may, in
fact, come from the legal community. In 2005, the Australian Law Re-
form Commission (ALRC) released a review of the various Australian
uniform evidence acts [2]. The section titled “Reliability and Accuracy
of Computer-Produced Evidence” examines the Australian legislative
framework that facilitates the proof of electronic evidence. The ALRC
analysis identifies several viewpoints. One viewpoint, which relies heav-
ily on the work of Spenceley [21], emphasizes that “a higher threshold
for the admission of computer-produced output into evidence [should be]
established.” Citing Spenceley’s research, the ALRC review notes that
a question could be raised about the reliability of computer-generated
output because “it is impossible to test for either the inaccuracy or ac-
curacy of computer operations, and impossible to give a statistical rate
of failure, and that there is therefore no rational basis for assuming a
high rate of reliability.”

To negate the impact of questions about reliability, the ALRC review
notes that “Spenceley builds a case for adopting an approach that relies
on implementing a ‘redundant mechanism’ in the environment in which
the computer is used to address the problem of reliability of computer
output.” The purpose of the redundant mechanism is to prevent or
mitigate unreliability by helping “provide some level of verification that
a failure in the computer has not occurred.” To achieve this goal, the
ALRC review cites Spenceley’s test of admissibility:

“It should be demonstrated that: (a) Some mechanism(s) of redundancy
(however formulated and implemented) was or were utilized in connec-
tion with the production of particular material in the setting in which
it was produced; and that (b) It is reasonably likely that any error(s)
in the operation of that computer that affected the accuracy of infor-
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mation contained in that material would have been detected by such
mechanism(s).”

Not surprisingly, when government entities such as ALRC begin to
probe the evidentiary value of computer-generated output and, in par-
ticular, raise questions about the current reliance on computer-generated
output, greater attention is automatically placed on the digital forensic
process. Given the variation in the usage of the term “forensically sound”
and the focus on the reliability of computer-generated output from an
evidentiary perspective, two key questions arise:

What does “forensically sound” mean?

How does one know if something is “forensically sound?”

The answer to these questions is important when one considers that
the term “forensically sound” is used to not only substantiate a particu-
lar forensic technology or methodology, but also to substantiate it in the
context of proving the admissibility of the digital forensic output in legal
proceedings. This last point makes it all the more critical that there be
a clear understanding of what makes something forensically sound.

5. What Does “Forensically Sound” Mean?

The Compact Oxford English Dictionary [17] defines the word “foren-
sic” as meaning:

“(1) relating to or denoting the application of scientific methods to the
investigation of crime. (2) of or relating to courts of law.”

The same dictionary defines the word “sound” – in the context of
“something is said to be sound” – as meaning:

(1) in good condition. (2) based on reason or judgement. (3) financially
secure. (4) competent or reliable. (5) (of sleep) deep and unbroken. (6)
severe or thorough.”

Utilizing these individual definitions it may be argued that the term
“forensically sound” means “the production of reliable electronic evi-
dence before a court of law.” In the context of digital evidence, however,
the question of reliability is perhaps the key element. Consequently (and
given the variations in the use of the term as detailed above), a more
concise definition of “forensically sound” is:

“The application of a transparent digital forensic process that preserves
the original meaning of the data for production in a court of law.”

The word “transparent” in this definition implies that the reliability
and accuracy of the forensic process is capable of being tested and/or
verified. The phrase “preserves the original meaning” intimates that the
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data derived from the forensic process must be capable of being correctly
interpreted. In addition to these points, it is worth noting that the term
“digital forensic process” covers not only the methodology employed,
but also the underlying technology.

5.1 Evaluation Criteria

Reliability and completeness are the two most critical properties of
evidence with respect to digital forensic processes. If the reliability
and/or completeness of any potential evidence are questionable, its evi-
dentiary value is greatly diminished. Obviously, the question of eviden-
tiary weight and, in particular, admissibility is a legal question that is
ultimately determined by the court. Therefore, it is imperative that a
digital forensic process be undertaken in manner that does not diminish
the authenticity and/or veracity of the evidence.

So what makes a process forensically sound? More specifically, how
can a court or lawyer determine if a claim of forensic soundness is legit-
imate? Given that digital forensic processes comprise many variables, it
is difficult to adopt a prescriptive approach that would apply in every
circumstance. The solution is to subject the forensic process to several
criteria that determine if forensic soundness is an inherent property or
merely an unfounded claim. Once a claim of forensic soundness is shown
to be appropriate, it becomes a matter of ascertaining the reliability of
the electronic evidence.

We propose four criteria for ascertaining the forensic soundness of
a digital forensic process. If all four criteria are satisfied, the forensic
process possesses the key properties associated with the concept of being
forensically sound.

Criterion 1: Meaning

Has the meaning and, therefore, the interpretation of the
electronic evidence been unaffected by the digital forensic pro-
cess?

When potential electronic evidence is acquired and analyzed, it is im-
portant that it be preserved in the state in which it was found and that
it not be changed by a digital forensic process unless absolutely unavoid-
able. While the preservation of the data and its associated properties
are critical aspects of this concept, they tend to be used in the context
of the acquisition of data as opposed to its analysis. Indeed, some dig-
ital forensic technologies may result in subtle changes in the way data
is presented (e.g., dates and times may be shown in different formats).
However, in this case, the raw binary data has not been directly altered;
rather, it differs from the original only in the way it is presented. The
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meaning of the data is unchanged, although its representation may be
modified. Thus, the value of the data is not of itself diminished.

Criterion 2: Errors
Have all errors been reasonably identified and satisfactorily
explained so as to remove any doubt over the reliability of the
evidence?

It is imperative that all software and hardware errors encountered
during a digital forensic process be identified and that their impact be
clearly identified and explained. Merely saying that there was an error
in copying a file is insufficient. The nature of the error, its impact on the
accuracy and reliability of the evidence, and any potential interference
on the forensic process are all issues that must be discussed. Therefore,
a digital forensic process should be designed to avoid undetectable errors
wherever possible. Undetectable errors usually arise when a new piece of
software is being used during the evidence acquisition or analysis phases.
In such circumstances, it is imperative that all the software tools used
in the forensic process be properly tested and assessed prior to their use.
When an error is identified, it is in the interest of the digital forensic
process to ensure that the nature of the error and its impact if any
are clearly identified. Failure to do so can affect the reliability of the
evidence. Indeed, Casey [4] notes that “forensic examiners who do not
account for error, uncertainty and loss during their analysis may reach
incorrect conclusions in the investigative stage and may find it harder
to justify their assertions when cross-examined.”

Criterion 3: Transparency
Is the digital forensic process capable of being independently
examined and verified in its entirety?

Given that the results of a digital forensic process are used to substan-
tiate a particular event or activity, it is critical in the interests of natural
justice that the entire forensic process be accurate and reliable. To en-
able such an assessment, it is of paramount importance that the forensic
process be transparent and capable of being independently verified. A
key element of verification is the ability to reproduce the forensic pro-
cess under the same conditions with a consistent level of quality being
observed each time the process is run [18].

Transparency can be achieved by documenting all the steps, iden-
tifying the forensic software and hardware used, detailing the analysis
environment and noting any problems, errors and inconsistencies. A key
exception occurs when a part of the forensic process is not disclosed for
legitimate legal reasons (e.g., public interest immunity); obviously, de-
termining the validity of any exception is at the discretion of the court.
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The level of detail required to ensure transparency will, of course, reside
in the overall scope and objectives of the forensic process.

Criterion 4: Experience

Has the digital forensic analysis been undertaken by an indi-
vidual with sufficient and relevant experience?

Fundamental differences exist between how a digital forensics profes-
sional undertakes the examination of computer data and how a per-
son unfamiliar with the forensic process performs the same task. For a
forensic process to possess the property of forensic soundness, it must
have been designed and implemented with due regard to forensic is-
sues. In digital forensics, such a quality is directly derived from the
knowledge and skill of the individual performing the forensic analysis.
Consequently, if the individual has inadequate experience, it is question-
able how he/she could satisfy the court that the meaning of the resulting
data has not been affected, or that any errors encountered do not impact
the reliability of the resulting evidence.

6. Conclusions

Electronic data is very susceptible to alteration or deletion. Whether
it is an intentional change resulting from the application of some com-
puter process or an unintentional change arising from system failure
or human error, the meaning of electronic data can be altered rapidly
and easily. Indeed, just as electronic data is created, changed and/or
deleted through the normal operations of a computer system, there is
the possibility of change arising from the application of an incorrect or
inappropriate digital forensic process. Given that the results of such a
process may be tendered as evidence, it is critical that every measure
be taken to ensure their reliability and accuracy. To this end, a digital
forensic process must be designed and applied with due regard to evi-
dentiary issues. Furthermore, it is important that the forensic process
be capable of being examined to determine its reasonableness and relia-
bility. It is only when the forensic process is judged to be reliable and
appropriate, that a claim of forensic soundness can truly be made.
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Chapter 2

APPLYING TRADITIONAL FORENSIC
TAXONOMY TO DIGITAL FORENSICS

Mark Pollitt

Abstract Early digital forensic examinations were conducted in toto – every file
on the storage media was examined along with the entire file system
structure. However, this is no longer practical as operating systems
have become extremely complex and storage capacities are growing ge-
ometrically. Examiners now perform targeted examinations using foren-
sic tools and databases of known files, selecting specific files and data
types for review while ignoring files of irrelevant type and content. De-
spite the application of sophisticated tools, the forensic process still
relies on the examiner’s knowledge of the technical aspects of the spec-
imen and understanding of the case and the law. Indeed, the success
of a forensic examination is strongly dependent on how it is designed.
This paper discusses the application of traditional forensic taxonomy
to digital forensics. The forensic processes of identification, classifica-
tion/individualization, association and reconstruction are used to de-
velop “forensic questions,” which are applied to objectively design dig-
ital forensic examinations.

Keywords: Digital evidence process, forensic taxonomy, forensic examination

1. Introduction

Early forensic practitioners from a variety of jurisdictions and back-
grounds recognized that evidence stored in electronic form is easily
changed with improper handling. In the early 1990s, the International
Association of Computer Investigative Specialists (IACIS) promulgated
what was, perhaps, the first set of guidelines for digital forensics. The
Association of Chief Police Officers (United Kingdom) followed with a
good practice guide. Subsequently, the International Organization on
Computer Evidence (IOCE) and the G-8 developed a set of principles
for computer-based evidence. All these documents stipulate that digital
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evidence be acquired in its totality and that it not be altered during any
subsequent examination [8].

These guidelines and principles are reinforced in virtually every digital
forensic model. Despite their differences, most forensic models [1–4, 14,
16] follow evidence acquisition with evidence preservation, typically by
creating a digital image of the media. Interested readers are referred to
[13] for a review of the principal forensic models.

As a result, virtually all forensic examinations start with the totality
of the evidence. The examiner is then required to locate, extract and
present the material of forensic value. The two fundamental approaches
are selection and reduction, and they are often used in combination. Se-
lection involves searching the data (e.g., using string searches) to locate
information of probative value. Reduction involves the removal of infor-
mation that is not of forensic value. This process often uses “negative
hashing,” where the hash values of known “good” files are used to elimi-
nate unknown files. Negative hashing is facilitated by repositories of file
signatures such as those available at the National Software Reference
Library [11].

The selection and reduction approaches are both less than optimal.
When applying selection, forensic examiners must know, with some de-
gree of specificity, what they are looking for and where it might be
located. The irony of this approach is that the more deterministic the
approach, the less complete the answer. In the case of reduction, the
evidentiary material that remains is often so voluminous as to be unman-
ageable. To refine their approach to examinations, forensic examiners
carefully consider the facts of the case, the elements of the violation
and the behavior of computer users. Experiential knowledge is vital to
conducting examinations that are efficient and effective, but efforts to
objectively identify and articulate this knowledge have not been very
successful.

2. Traditional Forensic Science

Science has provided a foundation for legal proceedings for more than
100 years. During this time, the science practiced in the legal system has
differed from traditional scientific endeavors in its form and application,
not in its content. Moreover, while traditional science engages the “scien-
tific method” to drive methods of proof, the legal system has demanded
additional approaches to ensure the reliability of the evidence, the scien-
tific methods applied and the resulting testimony. These requirements
are the result of judicial decisions rather than scientific research and
discourse [17].
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Edmond Locard, an early 20th century French criminologist, is con-
sidered to be the pioneer of modern forensic science. His celebrated
“Exchange Principle” postulated that when objects contact one another,
there is an exchange of material [5, 9]. A long list of distinguished foren-
sic scientists have added a number of principles to the corpus of forensic
scientific knowledge. Nevertheless, there have been surprisingly few at-
tempts to develop ontologies for these principles. This paper draws on
two important approaches, Inman and Rudin’s Unifying Paradigm of
Forensic Science [5] and Lee and Harris’ General Concepts in Forensic
Science, to further develop a model for digital forensics [7].

3. Need for Structure

Thomas Kuhn’s seminal work, The Structure of Scientific Revolutions
[6], discussed the importance of paradigms:

“The study of paradigms is what mainly prepares the student for mem-
bership in the particular scientific community with which he will later
practice. Because he here joins men who learned the bases of their
field from the same concrete models, the subsequent practice will sel-
dom evoke overt disagreement over fundamentals. Men whose research
is based on the shared paradigms are committed to the same rules and
standards for scientific practice.”

The adoption of a paradigm certainly facilitates the instruction of stu-
dents, but it also allows for the formulation of an accepted practice that
adds to the efficiency, effectiveness and reliability of the practitioner’s
work. The question then becomes: What paradigm?

4. Application of Traditional Forensic Science

Inscribed on one of four large statues in front of the U.S. National
Archives is the quotation: “What is Past is Prologue.” Many credit
Shakespeare for this quotation, but it was, in fact, modified from the
original (Act II of The Tempest) by John Russell Pope, the architect of
the building [10]. It is appropriate that an idea from several hundred
years ago that was adapted to modern usage lights the way for the
newest forensic science. Traditional forensic science has been developing
its paradigm for decades and some of its concepts can be adapted to
digital forensics.

Locard’s Exchange Principle influenced a number of forensic scien-
tists to develop new ways for looking at evidence. Inman and Rudin
[5] have analyzed six of these approaches, categorizing two of them as
“principles” and four as “processes.”

The two principles are “transfer” and “the divisibility of matter.” The
first is recognized as Locard’s observation; the second was proposed by
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Inman and Rudin as a way of explaining the ability to impute charac-
teristics to the whole from a separated piece. It is easy to see how these
principles underlie many of the biological, physical and chemical exam-
inations conducted by traditional forensic scientists. The two principles
also apply to digital forensics – digital evidence exhibits transference in
its interactions and electronic duplicates are representative of the origi-
nal evidentiary items. But these principles do not have a great deal to
offer in terms of developing examination strategies.

On the other hand, the four processes of “identification,” “classifi-
cation/individualization,” “association” and “reconstruction” have the
potential to be very useful from the perspective of planning digital foren-
sic examinations. The following sections analyze these four processes and
discuss how they might be adapted to digital forensics.

4.1 Identification

Inman and Rudin credit Saferstein [15] with defining the concept of
identification as the physiochemical nature of the evidence. They note
that being able to accurately describe an item or its composition may
be sufficient for a given forensic purpose. For example, when the mere
presence of illicit drugs is an important element of a crime being in-
vestigated, the identification of a white powder as containing cocaine,
dextrose and talc may be all that is required.

In the discipline of digital forensics, identification helps describe dig-
ital evidence in terms of its context – physically (a particular brand of
hard drive), structurally (the number of cylinders, heads and sectors),
logically (a FAT32 partition), location (directory and file) or content (a
memo, spreadsheet, email or photograph). The presence of metadata or
the existence of a particular letter (not necessarily their content) may
be probative in an investigation. In other situations, as in child pornog-
raphy cases, the nature of the content is dispositive. On the other hand,
the mere presence of connections between certain computers may demon-
strate a key fact in an intrusion case.

Examiners are routinely asked to find evidence on computer storage
media, but the tasking is usually done in an investigative context as
opposed to a digital context. This places the burden on the examiner to
translate the task into an examination plan or strategy. By focusing on
the characteristics of the potential evidence, it is possible to search for
it in the same way that one looks for cocaine in a drug investigation –
by conducting specific examinations.

This process is done best by working backwards. First, we ask, What
information is desired? The next logical question is: In what form might
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this kind of information be stored? Finally, Where might this informa-
tion be located? Selecting a tool and query that searches in specific
locations for limited types of data that have particular characteristics
significantly reduces the forensic burden. Simultaneously, it produces
“rich” information that may be sufficient for the investigation.

4.2 Classification/Individualization

Inman and Rudin draw on the work of several forensic scientists to
explain the concepts of classification and individualization. Classifica-
tion is an attempt to determine a common origin; individualization uses
a set of characteristics to uniquely identify a specimen. The notions are
clarified using an example.

A video surveillance camera captures the shooting death of a victim.
The perpetrator cannot be identified from the video, but the image is
clear enough to identify the type of firearm. A bullet is recovered from
the victim and submitted for examination. Based on the bullet’s weight
and composition, and the size and twist of the rifling marks, the exam-
iner may be able to identify an ammunition manufacturer, the caliber of
the weapon and, potentially, its manufacturer. These are all class char-
acteristics, which, on their own, do not link the suspect to the weapon
or the weapon to the bullet.

After a suspect is identified, a search reveals a box of unused ammu-
nition and a weapon consistent with the one in the surveillance video.
The characteristics of the seized ammunition are identical to the bullet
obtained from the victim. As a result, it can be determined that the
bullets have a common origin and are therefore “class evidence.” The
recovered weapon is test-fired and the resulting bullet and the bullet
recovered from the victim are microscopically examined. Matching the
micro-striations on the bullets allows the examiner to identify the two
bullets as coming from the recovered weapon, to the exclusion of all oth-
ers. This is the process of identification, which yields what is referred to
as “individual evidence.”

The application of these concepts to digital evidence is relatively
straightforward. File systems, partitions and individual files have char-
acteristics that allow for their classification. The location and structure
of data on storage media can determine the partition type and the file
system. Objects such as file allocation tables, master file tables and
inodes define certain file systems. Individual files may have naming con-
ventions as well as internal data structures (headers, footers, metadata,
etc.) that determine their origin (common source). An example is a
Microsoft Word file, which has a well-documented internal structure. It
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would be accurate to describe the origin of such a file as being produced
by Microsoft Word. All of these are class characteristics. Conversely,
a file may be positively identified based on its mathematical signature
(i.e., hash value), which corresponds to the process of identification.

4.3 Association

Inman and Rudin bemoan the lack of an accepted definition of the
term “association” in the forensic context. They proceed to define it
as “an inference of contact between the source of the evidence and a
target.”

Inman and Rudin use an example where reference fibers are compared
with the fibers actually found on a body. When considered in the context
of all the facts in the case and all other sources of the same fibers, the
examiner may be able to justify a conclusion that the victim had been
in contact with a particular source of the fibers.

The physical transfer of evidence is uncommon in digital evidence
cases, but it does occur. An item of digital media may be linked to a
computer by Windows Registry entries [12]. In malware and intrusion
cases, it is often necessary to link the presence of specific files or code
to the perpetrator and victim computers. The association of files is also
important in intellectual property investigations.

In digital forensics, it is necessary to identify the items (files, data
structures and code) that need to be associated and to determine where
they might be located and the tools that could be used to locate the
items. The required information is then extracted and the associations
are presented.

Lee and Harris [7] observe that forensic evidence may demonstrate the
commission of a crime (corpus delecti) or document the methodology of
the crime (modus operandi). They identify other modalities, but most
of them overlap with the Inman and Rudin taxonomy and are not ad-
dressed here. However, Lee and Harris describe one additional area that
must be discussed in the context of digital forensics – that of providing
investigative leads.

Computers and digital media are potentially valuable sources of lead
material. The problem, from the time management and efficacy per-
spectives, is that it is difficult to define specific goals and objectives for
many categories of lead material. Some will be discovered in the normal
course of identifying material on known targets. Much will not and will
only be linked based on a thorough knowledge of the case, the crime or
both. This situation has often been used to justify the assignment of
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sworn officers to forensic duties. However, the discussion of this issue is
beyond the scope of this paper.

4.4 Reconstruction

Inman and Rudin define reconstruction as the “ordering of associ-
ations in space and time.” Reconstructing a series of events is more
common in the engineering fields than in the physical and biological
sciences. It is, perhaps, more common in digital forensics than other
fields because of the dates and times stamped on metadata pertaining
to data, files, file systems and network communications. It is important
to recognize, as Inman and Rudin do, that time is often a relative value
or ordering rather than a definitive value.

In cases involving the creation and/or alteration of documents or im-
ages, the files and file systems may provide information about sequences
of events if not the exact dates and times of the events. Comparing
file or e-mail metadata may permit the “normalization” of dates and
times from multiple computers within a margin of error. Using monitor
software, it is possible to observe and document changes to files and file
systems that result from the execution of computer code. Generally, the
more data points considered and the more consistent the metadata, the
more probable that the specific event sequence is correct.

5. From Principle to Question

Inman and Rudin state:

“Before the criminalist ever picks up a magnifying glass, pipette or
chemical reagent, he must have an idea of where he is headed; he must
define a question that science can answer.”

This seemingly simple statement in many ways defines the forensic
case management problem. It is important to understand how to de-
fine an examination as one or a series of investigative or legal ques-
tions, which are translated into scientific questions (to use Inman and
Rudin’s terminology). This suggests a two-part process: defining the
legal/investigative questions and then – and only then – defining the
digital forensic (scientific) questions.

While this seems obvious, it is not how many examinations are devel-
oped. Often, the investigator provides a case synopsis to the examiner
and asks the examiner to study the evidence and provide any and all
information that might be useful. Sometimes, the examiner will think,
even before the investigator has finished speaking, about what could be
done. This results in an examination being designed based on what could
be done instead of on the specific information that should be located.
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The alternative proposed here is to begin by defining the legal or
investigative questions that the investigator thinks could be answered
from the information contained in the evidence. The examiner may well
need to discuss the questions with the investigator, continuously refining
the requirements and providing feedback on what is possible, likely and
remote. Time spent developing the investigative questions pays off in
the ability of the examiner to translate them accurately into an efficient
examination plan that is responsive to the legal/investigative questions
and that is supported by science. An important part of this discussion
is for the examiner and investigator to mutually understand the tasking
and the limitations on the potential results. The latter is important for
several reasons. Over-reliance on low probability results is misleading,
and it may become the weak link in a courtroom presentation. Expend-
ing a great deal of examiner effort to produce information of limited
value is a poor use of resources. Experience has demonstrated that the
process also helps manage investigative expectations.

Once the legal/investigative questions are finalized, the examiner can
begin to develop the scientific questions. It is here that the forensic pro-
cesses discussed above become relevant. Most investigative/legal ques-
tions can be translated directly into one or more of the four processes.

For example, several forensic questions can be created to answer
whether or not information concerning a particular person is present
in a specimen. What name(s) should be searched? Where will informa-
tion about the person(s) be located? Are there any temporal constraints
on when this information might appear? Having answered these ques-
tions, the next step is to select a technique or tool that can locate the
information.

The above is an example of the identification process. A classifica-
tion question would involve locating all the images relevant to a certain
investigation. Matching an image located online or on another com-
puter to an image found on the specimen computer is an example of
individualization.

Investigators could benefit by connecting cameras to images, users to
accounts and activities, computers to network connections, and devices
to computers. Each of these involves the specification of an association
question. Malware, intellectual property and intrusion investigations
often rely on the presentation of a sequence of events and the demon-
stration of cause and effect; these would require the framing of recon-
struction questions. When investigative questions are translated into
questions based on forensic processes, examiners can develop efficient
and objective tests that yield definitive conclusions.
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Perhaps the most valuable aspect of this process is that it provides a
definitive end to an examination. Many forensic examinations languish
because the examiner does not know when the case is finished. If an
examination is designed based on what is possible, the examination will
never be completed because it is always possible to do more. However,
if the questions are defined at the outset, the examination is done when
all the questions have been answered. Note that it does not matter what
answers are obtained, just that they are accurate.

6. Conclusions

Traditional forensic science has developed an effective and relatively
efficient process that has stood the tests of time and the courts. Digital
forensics practitioners can learn much from this process. Incorporat-
ing the development of forensic questions into the examination process
ensures scientific objectivity while simultaneously assisting in case man-
agement. Managers can use this approach to leverage their limited re-
sources. Educators can also utilize the approach to ensure compete and
consistent results from training programs.
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Chapter 3

RECOVERING DATA FROM
FAILING FLOPPY DISKS

Frederick Cohen and Charles Preston

Abstract As floppy disks and other similar media age, they may lose data due to
a reduction in the retention of electromagnetic fields over time, mainly
due to environmental factors. However, the coding techniques used to
write data can be exploited along with the fault mechanisms themselves
to successfully read data from failing floppy disks. This paper discusses
the problem of recovering data from failing floppy disks and describes a
practical example involving a case of substantial legal value.

Keywords: Floppy disks, field density loss, weak bits, data recovery

1. Introduction

This paper discusses a method for recovering data from floppy disks
that are failing due to “weak bits.” It describes a repetitive read tech-
nique that has successfully recovered data in forensic cases and dis-
cusses the analysis of the results of repetitive reads in terms of yielding
forensically-sound data. This technique is not new; however, neither the
technique nor the analysis necessary to support its use in legal matters
have been published.

The case discussed in this paper involved a fifteen-year-old floppy disk,
which contained the only copy of the binary version of a software pro-
gram that was subject to intellectual property claims of sufficient value
to warrant recovery beyond the means normally used by commercial re-
covery firms. After attempts to read the disk by these firms had failed,
the disk was given to the authors to use more rigorous and possibly
destructive data recovery methods, subject to court approval.

Several techniques for recovering data from hard-to-read floppy disks
are in common use, including reading only relevant sectors from a disk
where other sectors fail to read properly, and altering the drive alignment

Please use the following format when citing this chapter: 

Cohen, F. and Preston, C., 2008, in IFIP International Federation for Information Processing, Volume 285; Advances in 
Digital Forensics IV; Indrajit Ray, Sujeet Shenoi; (Boston: Springer), pp. 29–41.



30 ADVANCES IN DIGITAL FORENSICS IV

to better align the heads with the tracks as originally written. In the case
of interest, important data was contained in hard-to-read sectors of the
disk, and custom head alignment only marginally altered the recovery
characteristics of the disk.

A floppy disk can also be modified to read analog signals and allow
the detection thresholds to be altered. Additionally, signals from the
read heads can be amplified, rates of rotation can be increased to boost
induced currents, and other similar methods can be attempted. But
they introduce various problems, including increased time requirements
and cost. Furthermore, it is difficult to prove that the methods recover
valid data instead of merely turning noise into data.

Other exotic techniques involve analog reads using digital storage
scopes, the use of epoxies with suspended fine ferrous material that
attach to the media and are visible under a microscope, and the use
of magnetic force scanning tunneling microscopy. Some of these tech-
niques are destructive; all are expensive and may result in data loss.

2. Data Recovery Methodology

The obvious data recovery method is to attempt repeated sector-by-
sector reads of a disk; failed sectors are repeated until valid reads are
completed. Data from the sectors is then assembled to create a complete
image of the disk. This technique has several advantages: (i) it only uses
the designed features of the floppy disk drive and, thus, requires very
little in the way of explanation or analysis to be considered credible; (ii)
it is relatively low cost and takes relatively little time to perform; and
(iii) it uses the built-in coding analysis methods and phased lock loops of
the floppy drive to decode changes resulting from orientations of charges
in areas on the disk. This eliminates the problems involved in explaining
coding errors, side band signals, additional introduced errors and other
issues associated with building special-purpose hardware.

The specific program used in the case was executed from a bootable
White Glove Linux CD, which was kept with the evidence after pro-
cessing to ensure that the process could be repeated if necessary. The
following shell script code was executed:

for i in ‘count 0 1439’; do

dd conv$=$noerror bs$=$512 count=1 skip=\$i if=/dev/fd0$>$

noerr/\$i.out

done

The count command counts from the first value (0) to the second
value (1,439) in increments of one. For each count value, the noerr

command is executed with the conversion option that, in the event of
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errors, retries are to be attempted an unlimited number of times. The
block size is set to 512 (normal block size for such a floppy disk) and
a count of one block per execution is used. This is done after skipping
count number of blocks from the beginning of the media (in this case
the floppy disk /dev/fd0). The output is stored in a file whose name
includes the block number (noerr/[count].out, where [count] is the
block number and noerr is the directory used to store all the blocks).
On each read attempt, a file is created, but unless the file read succeeds
with a valid checksum, the file is overwritten on the next attempt.

Reading one sector at a time is beneficial because a single error in a
read produces a failure for the entire read. If a single sector takes twenty
attempts on average to succeed, reading two sectors would require an
average of 400 attempts. Since reading less than one sector does not
involve any special execution, this approach minimizes the number of
reads and reduces unnecessary wear and tear on the disk while reading
it repeatedly until the CRC code and the data match.

When applied to the evidence disk, this process produced different
numbers of retry cycles on different sectors. There were no retry cycles
on sectors that could be consistently read without errors. For the pre-
viously unreadable sectors, the number of retry cycles required ranged
from one to more than 70, most of them in the 20 to 30 range. Each
sector was stored individually in a file of 512 bytes on a hard disk as it
was read, and stored with a filename associated with the sector num-
ber as described above. The total number of blocks was 1,440 with 512
bytes each (737,260 bytes of data), corresponding to the entire readable
contents of the 720K floppy disk.

The individual files representing the blocks on the evidence disk are
independently examinable. Alternatively, they may be assembled in a
single file and mounted using a loopback mounting interface or written to
a fresh floppy, which can then be read as if it were the original evidence
disk. For the case being discussed, the assembly was done using the
following program:

for i in ‘count 0 1439’; do

dd seek=\$i if=noerr/\$i.out of=noerrdd.out

done

The blocks were written to the file at the appropriate locations in the
same way as they were read from the evidence disk. Multiple copies were
made of the recovered disk for use by all parties. Having read the disk
and created forensic duplicates, it is necessary to show that the method
is forensically sound.
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Figure 1. Digital signal encoding on floppy disks.

3. Weak Bits and Floppy Disk Failure Modes

Floppy disks tend to degrade over time and under various environ-
mental conditions such as temperature and humidity. This sometimes
results in the presence of so-called “weak bits.” Weak bits are caused by
degraded electromagnetic orientation alignments or charge densities that
reduce voltage and current swings to levels that are too low to reliably
trigger transitions in the hardware detectors. Weak bits may also be
caused by the physical shifting of magnetic materials under temperature
changes, by the growth of organisms on the media, or by friction that
abrades portions of the coatings used to retain charges.

Floppy disks typically use the modified frequency modulation (MFM)
hardware-level coding [5], in which timed flux density transitions are
used to encode bits. Figure 1 illustrates how floppy disks store data.
The write head causes magnetic particles to align in one of two orienta-
tions along cylinders (concentric circles) at different distances from the
center of the platter. Because the circles have different radii, the tim-
ings of transitions from one orientation to the other vary with radius.
Consequently, lead-in transitions are required to set up an oscillator to
synchronize this change detection.

Figure 2 (adapted from [3]) illustrates the mechanisms used to read
data from floppy disks. These include a read head, amplifier, pulse gen-
erator, phased lock loop, demodulator and additional hardware needed
to produce a controller that is usable by a computer at the bus level.

Figure 3 (adapted from [3]) shows the signals that appear at different
locations in Figure 2 [3]; it helps clarify the effects of reduced signal
levels in the media. As the analog signal (A) degrades, peak pulses
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(B) disappear, causing the loss of MFM transitions, which result in
demodulated data (D) and phased lock loop desynchronization.

When a floppy disk is being read, changes in field density produce
induced currents in the head, which, regardless of the field direction, is
seen as a transition (T); the lack of a change at a timing signal produces
“no transition” (N). The MFM coding uses a “no transition–transition”
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Table 1. Code space changes from flux density reductions.

Data Original Possible Result

[11] NTNT NNNT 1[01]
NTNT NTNN [10]
NTNT NNNN invalid

0[00] TNTN NNTN 1[00]
TNTN TNNN invalid
TNTN NNNN invalid

1[00] NNTN NNNN invalid
[10] NTNN NNNN invalid

0[01] TNNT NNNT 1[01]
TNNT TNNN invalid

1[01] NNNT NNNN invalid

(NT) sequence to indicate a 1, a “transition–no-transition” (TN) to in-
dicate a 0 preceded by a 0, and a “no transition–no-transition” (NN) to
indicate a 0 preceded by a 1. If a transition is not detected because of
a loss in electromagnetic flux density, an NT can turn into an NN or a
TN can turn into an NN, but an NN cannot turn into an NT or a TN.

Pairs of bits always involve a transition. In particular, a 11 will pro-
duce NTNT, a 00 will produce either TNTN (if a 0 preceded it) or
NNTN (if a 1 preceded it), a 10 will always produce NTNN, and a 01
will produce either TNNT (if a 0 preceded it) or NNNT (if a 1 preceded
it). If no transitions are detected, the controller normally indicates an
error condition and the CRC code at the end of every 512-bit block of
data is irrelevant. Thus, weak bits produce controller errors due to the
inability to observe transitions, or weak transitions change a T to an N.
They cannot turn the lack of a transition into a transition. As a result,
seven out of eleven possible field reductions turn into invalid codings
that should be detected by the drive controller as invalid data. Of the
remaining four errors that could produce valid data, three require that
the previous bit be a 1 or they too produce invalid data in the controller.

Table 1 shows all the possible changes. In the table, data values
represented by T and NT sequences are enclosed in brackets (e.g., [11])
and the required preceding bits are indicated prior to the bracketed pairs
(e.g., 1[00]).

None of these errors can produce a transition of the coded data from
a 0 to a 1. Thus, a weak bit error can never turn a 0 into a 1; it can only
turn a 1 into a 0 or produce an invalid code space output. Additional
consistency checks could potentially detect errors such as the transition
of 0[00] to 1[00], but the previous 1 bit could not be the result of a
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Figure 4. Finite state machine for floppy disk reads.

weak bit (or its coding would be a 0 to 1 transition that a weak bit
cannot produce in that position). Therefore, this eliminates the other
possible errors that turn 0[01] into 1[01] and 0[00] into 1[00], leaving
only the transitions of 1[11] to 1[01] and [11] to [10] due to reduced
electromagnetic flux density. If the previous bit was not a 1[NT] or the
reduction in flux density reduced the T to an N, then the 1[01] error is
also impossible.

Unfortunately, depending on their design, floppy controllers do not al-
ways produce error outputs for non-existent transitions. Figure 4 shows
the finite state machine for producing output bits based on the current
state [5]. Note the lack of state transitions for the 0/11 and 0/01 cases
and the 1/10 and 1/11 cases. They are typically designated as “Don’t
Care” (DC) values, which leaves the designer free to optimize the elec-
tronics by ignoring outputs that in theory cannot happen. In practice, a
weak transition could produce a change from 0/10 to 0/11; however, the
controller would be in State A and this is only identified as a transition
for State B. The incomplete specification of error states produces arbi-
trary behavior depending on the design choice. Fortunately, the CRC
code used in floppy disks can compensate for most errors.

Our analysis is based on the assumption that a weakened field density
in the locality of a bit cannot trigger a transition; this is worth discussing
further. Normally, for a transition to be detected by a floppy disk con-
troller, the electromagnetic field density in one region has to be oriented
in one direction while that in the adjacent region has to be oriented in
the opposite direction. Which direction is 01 and which direction is 10
coupled with the direction of movement of the disk in the drive dictate
whether the drive head gets a positive or negative impulse; but these
are not differentiated by the controller – both are considered to be tran-
sitions. If a transition from the maximum field density to a zero field
density were to trigger a transition, floppy disks would be very unre-
liable because regions near the tracks are commonly not used and any
minor movement in the head could cause such a transition. In addition,
the devices are designed so that positive and negative field densities can
ensure sound triggering. A half-level density change should not trigger a
transition on most floppy disk drives. For this reason, even a maximum
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field density area adjacent to a zero field density area should not trigger
a transition; thus, the weakening of the electromagnetic field strength
on the disk should not create transitions where none existed. Of course,
the physical phenomena associated with weak bits are analog in nature
at this level of granularity. The size of a region of storage on a 720K
floppy disk is on the order of 1/8000” in circumference. Because of this
relatively high density, most common physical phenomena are unlikely
to reduce the field density of one region to near zero while preserving
the density of the area next to it at full strength. A scratch could cause
this to happen, but then the damage would be permanent and would
likely produce the same level of transition on each use.

An electromagnetic field such as that produced by a magnet passing
near the disk, a temperature condition or a biological phenomenon is
highly unlikely to produce such a dramatic edge condition. There is a
strong tendency for these phenomena to produce regions with decreasing
effects as a function of distance. This produces a slow transition in field
density resulting in a change in field strength with distance that will not
normally produce a transition in the floppy disk controller. As a result,
it reasonable to assume that no transitions will be created by reductions
in electromagnetic field density associated with weak bits, and only the
loss of transitions is likely to occur from these physical phenomena.

4. Code Analysis and Error Rates

In addition to the MFM coding, floppy disks also use a CRC code
at the end of each sector after it is written. This is highly likely to be
inconsistent when certain classes of errors occur in portions of the sector.
It is easy to detect single bit flips, multiple bit flips in close proximity
and several other combinations of bit flips. According to Freeman [1]:

“Any bit error term E(x) which is an exact multiple of P(x) will not
be detected. This is the case for the two-bit error 10000001, where the
two bad bits are 7 bits apart. Note that 10000001 = (1011) (1101)(11).
The allowable separation between two bad bits is related to the choice of
P(x). In general, bit errors and bursts up to N bits long will be detected
for a prime P(x) of order N. For arbitrary bit errors longer than N bits,
the odds are 1 in 2N than a totally false bit pattern will nonetheless lead
to a zero remainder. In essence, 100% detection is assured for all errors
E(x) not an exact multiple of P(x). For a 16-bit CRC, this means:

100% detection of single-bit errors

100% detection of all adjacent double-bit errors

100% detection of any errors spanning up to 16 bits

100% detection of all two-bit errors not separated by exactly 216–1
bits (this means all two-bit errors in practice!)
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For arbitrary multiple errors spanning more than 16 bits, at worst
1 in 216 failures, which is nonetheless over the 99.995% detection
rate.”

If we assume that the CRC is intact, the available error modes from
weak bits are such that the degradation mechanism would have to pro-
duce reduced flux densities exactly 32 transition distances from each
other for the CRC code to fail to detect pairs of errors. Reductions
in flux density producing lost transitions in adjacent bits or other se-
quences of less than 32 transition areas (representing 16 bits of data)
are detected by CRC codes with 100% accuracy unless they range over
large areas, in which case they would produce invalid codes in the MFM
decoding mechanism. Thus, the physical phenomena that produce weak
bits are very unlikely to create conditions under which data from a sector
correctly matches the CRC code and no MFM coding error is produced,
but an alteration from the loss of a transition occurs.

This implies that if weak bits cause errors and a successful read of
the data with matching CRC code is completed, it is highly likely that
the data recovered accurately reflects the data written to that sector.
While it is difficult to calculate the probability, it is certainly less than
the probability of errors associated with MFM or CRC alone. In other
words, there is no known synergistic effect that can cause one of them
to correct an error produced by the other.

The method used tends to support the contention that disk failures
are caused by weak bits. Specifically, if another mechanism was in play
(e.g., alignment errors or mechanical defects in the original writer), then
the realignment process would have yielded better or worse data instead
of nearly identical error behavior. If bits were not written at all or if
a typical contemporaneous weak bit writing mechanism were used, the
levels would be unlikely to vary across such a wide range of re-reads.
The fact that different numbers of re-reads are needed at different loca-
tions on the disk indicates that the failure mechanism produces errors
distributed over a range of electromagnetic field losses, e.g., as a result of
overheating due to improper storage, contamination by fungi or the loss
of data with age, all of which take place over time rather than instanta-
neously. These are precisely the sorts of errors that the CRC codes were
designed to detect.

One issue that must be addressed is the potential that repeated reads
could eventually lead to a valid CRC code and no MFM errors, which
would result in false sector data being accepted as legitimate. This par-
ticular scenario, because it involves weak bits, is less complicated to ana-
lyze than a scenario in which random changes are made. Specifically, the
changes associated with weak bits tend to be all in one direction, which
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eliminates transitions and, thus, changes of 1’s to 0’s. The probability
of lost transitions causing detections is at least 17/22 for each transi-
tion based on Table 1 (number of invalid transitions versus number of
rows). Because of the nature of the CRC coding, errors that go unde-
tected must be in quantities larger than 16 bits and distributed across
the sector data area, or as combinations of the sector data area and the
CRC area with a probability no higher than 1 in 216. Since the CRC
and MFM methods are not correlated in any way as far as we are aware,
a reasonable assumption is that the probability of both methods failing
to detect a change due to reduced electromagnetic density is no greater
than 1 in 216 × (5/22)16, which is less than 1 in 1,015. The probability
of encountering an erroneous data recovery is low enough that even for
hundreds of retries, there is almost no chance that false recovery would
occur.

The above analysis ignores retries during actual recovery. Many read
errors were corrected after a relatively small number of re-reads, ranging
from 1 to 15 retries, with a few samples having more retries. Several
sectors could be read only after about 80 retries; none took significantly
more than 80 retries. Since the floppy drive does three retries per re-
ported retry, the actual number of attempts was about 240. Exact figures
are unavailable because of court orders and the examination cannot be
repeated because there is no way to create another equivalent disk. It
is somewhat disturbing that many sectors had on the order of 80 retries
and the individuals who received the disk indicated that certain portions
of the recovered blocks were corrupted. Future research should attempt
to understand this problem.

The well-known birthday paradox [2] appears to be relevant to the
case at hand. According to the paradox, if a group of 23 people has
randomly distributed birthdays, the probability is about 1

2 that two
of them have the same birthday. Furthermore, the 50% probability of
matching birthdays occurs when the number of samples is approximately
1.1 times the square root of the sample size (for large sample sizes).
For a 16-bit CRC (65,536 possible values), the value 1.1 × √

65536 is
281.6. Therefore, as the number of reads approaches 282, the probability
of a collision is about 50%. However, the CRC situation is slightly
different from the birthday paradox because the CRC values are not
selected without replacement in the sample. Furthermore, plots of the
birthday paradox, which has no known closed-form solution, show that
the probability changes more or less linearly around the square root;
thus, it would be unexpected to have a peak near the square root.

Some other mechanism is possibly at work, but we do not know what
it is. The birthday paradox does not explain the uneven distribution of
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recoveries. Moreover, the CRC results are not necessarily generalizable
to weak bit failures that produce less than random results. If a floppy
drive is unable to detect coding errors at the level of transitions and the
“Don’t Care” (DC) states of the finite state machine that decodes the
content do not produce errors, other sources of error likely exist, which
is a potential weakness of the technique.

5. Correcting Errors

As discussed above, some blocks that are read successfully after about
80 retries are suspect. However, the errors produced by weak bits are
still limited, which is very helpful.

Two approaches for error correction may be considered. One is to
perform the re-read process repeatedly and match the results from mul-
tiple runs to determine if there is consistency in some portion of the
bits decoded across multiple runs. The other is to determine which bits
could have been altered. Unfortunately, repeated reads cause a floppy
disk to degrade further because of mechanical wear. This is especially
problematic when only one evidence sample exists.

At this time, we have not analyzed the errors produced by weak bits
with consistent CRC codes. However, we have investigated the reconsti-
tution of the original content, albeit to a limited extent.

Note that only 1-0 transitions can occur and only in particular loca-
tions within bit sequences. In particular, a 1-0 transition can only occur
when a 11 turns into a 10 or 01, which is denoted as 11-[10/01]. More-
over, patterns appearing on decoded disk content cannot all result from
lost transitions. Therefore, the candidates for lost transition changes are
very limited and specific bits can be definitively determined not to have
resulted from a flux density loss.

One approach for revealing the bits that could and could not have been
altered by such faults is to examine all possible 11-[10/01] transitions in
each re-read block and identify those that form valid parts of the code
space both before and after transitions are lost. An observed 11 or
00 cannot come from such a change, so all pairs of 1’s and 0’s can be
eliminated from the analysis, reducing the number of possible faults on
a random content block by 50%.

Substantial improvements are possible when the language is known
and the language has redundancy. The typical content of English, for
example, is on the order of 2.3 bits per byte [4]. This means that if four
bits per byte are potentially corrupted and each of the two remaining
pairs could only have been produced by one of two codings, all of the
original text should be recoverable. For example if the original text is
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This8 = 124 150 151 163 (Initial 0 bit stops intra-word effects)

1248 = 01 010 1002 (No valid weak bit errors)

1508 = 01 101 0002 → 00 101 0002 = 508 = ‘(’ = T(is

1518 = 01 101 0012 (No valid weak bit errors)

1638 = 01 110 0112 → 00 110 0112 = 638 = ‘3’ = Thi3

1638 = 01 110 0112 → 01 010 0112 = 1238 = ‘S’ = ThiS

1638 = 01 110 0112 → 01 100 0112 = 1438 = ‘c’ = Thic

1638 = 01 110 0112 → 01 110 0102 = 1628 = ‘r’ = Thir

1638 = 01 110 0112 → 01 110 0012 = 1618 = ‘q’ = Thiq

Figure 5. Procedure for inverting faults.

“This” in ASCII, only a few outputs can arise from missing transitions.
Note that all intra-byte pairings include a 0 because ASCII is a seven-bit
code and, thus, the initial 0 bit stops any 1-0 transitions from crossing
the byte boundaries.

Double bit errors can be produced by weak bits in this situation, and
they produce new valid codes, resulting in additional codes for “s” in
“This” only. There are also other valid codes that can produce these
same values from different lost transactions. For example, 1618 (01 110
0012) can be produced by 11 110 001 and a wide range of other values
that involve turning 0’s into 1’s. The procedure for inverting these faults
involves generating the set of all possible source bytes and eliminating
those that do not make sense in the language.

The procedure for inverting faults is illustrated in Figure 5. For ex-
ample, several different characters can replace the “q” in “Thiq,” but
the only valid ones in English would be “n” and “s,” corresponding to
“Thin” and “This,” respectively. The code for “n” is 1108 or 01 001
0002, which cannot produce 1618 through any combination of missed
transitions. Similarly, “Thir,” “Thic,” “ThiS,” and “Thi3” cannot be
generated from “Thin,” but can be generated from “This” with only 1-0
transitions. Extending this to the word as a whole, “T” and “i” cannot
be altered by 1-0 failures from missed transitions, and other sources of
“(” (508) that fit in the English word “T?i?,” where the second “?” must
be transformable into any one of the identified values are again limited.

6. Conclusions

The multiple read technique is effective at recovering data from failing
floppy disks. It produces accurate results with a high probability in a
reasonable amount of time with relatively low damage to the original
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evidence. Because the technique relies on normal floppy disk reads using
standard unmodified equipment, it is easier to implement than exotic
methods and less likely to be challenged in court.

The principal disadvantage of the technique is that repeated reads
cause wear and tear. Another disadvantage is that the technique does
not reveal the specific mechanism of failure even if it produces reasonable
results. Also, large numbers of reads may not produce valid results for a
sector, requiring the technique to be terminated manually and restarted
at the next sector. Furthermore, the possibility exists that repeated
reads could produce invalid data that matches the CRC codes without
creating invalid MFM codes in the controller. Fortunately, in cases where
the numbers of re-reads are on the order of hundreds or where reads can
be completed with questioned data, the limits on 11-[10/01] transitions
and language redundancy can be used to correct errors.

Avenues for future work involve automating the decoding and analysis
processes and conducting a detailed investigation of multiple errors in
CRC codes. While the data recovery technique is applicable to all MFM-
coded media, it does not apply directly to other storage media (e.g., hard
drives and CD-ROMs). Our future research will attempt to develop
reliable data recovery techniques for modern storage media.
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Chapter 4

EXTRACTING EVIDENCE USING
GOOGLE DESKTOP SEARCH

Timothy Pavlic, Jill Slay and Benjamin Turnbull

Abstract Desktop search applications have improved dramatically over the last
three years, evolving from time-consuming search applications to in-
stantaneous search tools that rely extensively on pre-cached data. This
paper investigates the extraction of pre-cached data for forensic pur-
poses, drawing on earlier work to automate the process. The result is
a proof-of-concept application called Google Desktop Search Evidence
Collector (GDSEC), which interfaces with Google Desktop Search to
convert data from Google’s proprietary format to one that is amenable
to offline analysis.

Keywords: Google Desktop Search, evidence extraction

1. Introduction

Current desktop search utilities such as Windows Desktop Search,
Google Desktop Search and Yahoo! Desktop Search differ from earlier
tools in that user data is replicated and stored independently [1, 10].
Unlike the older systems that searched mounted volumes on-the-fly, the
newer systems search pre-built databases, accelerating the search for
user data with only a nominal increase in hard disk storage [5]. The
replication of data in a search application has potential forensic appli-
cations – data stored independently within a desktop search application
database often remains after the original file is deleted.

In previous work [9], we examined the forensic possibilities of data
stored within Google Desktop Search; in particular, we discussed the
extraction of text from deleted word processing documents, thumbnails
from deleted image files and the cache for HTTPS sessions. However, the
format of the extracted data files does not allow for simple interpretation
and analysis; therefore, the only sure method of extracting data was via
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the search application interface. We also showed that it was possible to
maintain the forensic integrity of the extracted data by disabling certain
components of the Google Desktop Search application. But this data
could only be accessed using manual keyword searches submitted via
the application interface.

This paper presents a more efficient technique for extracting data
from desktop search utilities. The discussion focuses on Google Desk-
top Search, but the concepts are applicable to other desktop search ap-
plications. The resulting proof-of-concept application, Google Desktop
Search Evidence Collector (GDSEC), automates the data extraction pro-
cess and enables investigators to copy data from Google Desktop Search
files in a forensically-sound manner without having to conduct manually
searches using the interface.

2. Google Desktop Search

Google Desktop Search was released in 2004. The original version
was designed only for Windows XP. Currently, versions are available for
Windows Vista, Linux and Mac OS X.

The Windows version of Google Desktop Search was designed for sin-
gle users. However, when Google Desktop Search was installed and run
by an administrator in a multi-user environment, the program would
index and search all files regardless of their ownership. This potential
security flaw received widespread media coverage [6, 8].

Security concerns have been raised about the integration of Google
Desktop Search with Google’s Internet search engine, but these vulner-
abilities have not been exploited [3]. Attention has also focused on the
privacy issues related to Google Desktop Search’s approach of copying
local data to external machines for faster search [2].

This work focuses exclusively on the Windows-based implementation
of Google Desktop Search, the most widely used application. The Mac-
intosh and Linux versions of Google Desktop Search operate very dif-
ferently. Note that Google Desktop Search is executed under Windows
NT/2000 and later versions because it uses libraries that are available
only in more recent platforms.

Google Desktop Search has three executables, GoogleDesktopIndex
.exe, GoogleDesktopSearch.exe and GoogleDesktopCrawl.exe. The
GoogleDesktopSearch.exe executable is the main program of the search
suite; it operates by setting up an HTTP server on local port 4664
and controls all user interactions. The GoogleDesktopCrawl.exe pro-
gram traverses the file structure on the hard disk and reports changes to
GoogleDesktopIndex.exe. GoogleDesktopIndex.exe interfaces with
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persistent storage files, GoogleDesktopCrawl.exe and the Microsoft In-
dexing Service. The Indexing Service sends notifications when files are
changed; this information is used by GoogleDesktopCrawl.exe to de-
termine the files that may require updating. Note that Google Desk-
top Search creates a registry key at HKEY USERS\SID\Software\Google
\Google Desktop where SID is the unique user SID. Several options are
provided, including locations for file storage.

The Google desktop searching utility allows third-party additions to
its software, which facilitates the customization of search parameters.
However, third-party additions must use the Google API to customize
all settings via the Google program, meaning that direct communication
with the database that stores files is not permitted. Google provides a
software development kit (SDK) for Google Desktop Search that con-
tains five APIs. The SDK is based on the COM model, allowing any
programming language supporting COM to be used to develop plug-ins
that utilize the APIs.

Google Desktop Search supports the ability to encrypt the data store
that contains cached items. However, further examination has revealed
that the application merely invokes Windows NTFS encryption for the
folder containing user data. Since the computer is being examined for
forensic purposes, we assume that some measure of access is guaranteed.

3. Google Desktop Search Evidence Collector

This section describes the Google Desktop Search Evidence Collector
(GDSEC) tool. It highlights the methods developed for accessing and
extracting data, and for storing results. Also, it discusses how evidence
collection can be conducted in a forensically-sound manner.

3.1 Accessing Data

Several methods are available for accessing data from desktop search
applications. The ordering of access methods from a forensic integrity
perspective (best to worst) are:

Accessing files directly.

Accessing files using an interpreter.

Extracting data using API mechanisms provided by the original
application.

Extracting data using the API.

Searching for data using the API.
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Directly accessing and interpreting any files created by a desktop
search utility is the preferred method from a forensic perspective because
it ensures that all the stored information is available without using an
intermediate system. In addition, the data is much more easily extracted
using existing digital forensic tools.

The issue with accessing files directly or using an interpreter is that
it is difficult to determine the format of the files, which is required to
ensure that all the data can be extracted in its original form. Of course,
the format can be reverse engineered, but unless the software developer
is involved, reverse engineering may have to be performed repeatedly
because the format often changes between releases.

Extracting data via an API is less preferable than accessing the data
directly. Using an API requires the original Desktop Search program to
execute in a forensically-sound manner. The primary advantage is that
it permits more thorough extraction of data from the given file format
than screen scraping or manual searching.

Our previous research [9] was unsuccessful at determining the file
structure to an adequate level of detail. We were, therefore, unable to
access the data directly from within Google Desktop Search. However,
the following method can be used to access file data in a forensically-
sound manner:

Data Access Method

1 Copy the Google Desktop Search storage folder (default is c:\Documents and

Settings\username\Local Settings\Application Data\Google\Google De-

sktop Search) from the source machine to the Google Desktop Search folder
on the analysis machine.

2 Rename the file GoogleDesktopCrawl.exe to GoogleDesktopCrawl.exe2 on
the analysis machine; this prevents the file from loading.

3 Open the Google Desktop Search program and ensure that no email programs
are loaded on the analysis machine.

4 After the Google Desktop Search program has loaded on the analysis machine,

navigate to the storage folder and change the file attributes of the files to read-

only; this allows the Google Desktop Search program to close without editing

any files.

This data access method is time consuming; the only options are to
manually search for keywords using the user interface or to screen scrape
the information to another search tool. In either case, there is no means
to ensure that all the data has been extracted. The problem is acerbated
by the fact that Google Desktop Search performs a strict search, i.e., the
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entire word being searched must be present for a hit to occur (searching
for “bana” does not return results with “banana”).

As mentioned earlier, Google Desktop Search provides several APIs to
enable third-party applications to be used for data search and collection.
Also of interest is Google Desktop’s interface mechanism, which uses a
web interface on a local host web server; this web server receives all user
queries and functions as the main user interface to the application. Since
a web server is a common service with a standardized access method, it
provides another method for accessing data maintained within Google
Desktop’s storage mechanism. Thus, an HTTP-based extraction appli-
cation can be used to submit queries to Google Desktop Search and
retrieve results.

Extracting information from Google Desktop Search via an HTTP
server was deemed to be the most effective method. Several APIs are
available that enable data to be retrieved in raw HTML or XML formats.
Our GDSEC prototype uses GDAPI, a Java-based API for querying the
Google Desktop Search web server.

3.2 Analyzing Output Data

Google Desktop Search was used on a test database containing a va-
riety of file types. Our analysis revealed that Google Desktop Search
records file-type-specific metadata (e.g., movie lengths and bit rates,
and image resolutions) in a common set of fields, which means that the
value of the fields are ambiguous.

The SDK documentation supplied by Google [4] describes an option
for viewing search results in an XML format. Specifically, by appending
the string &format=xml to the end of a search result page, the results
can be viewed as a formatted XML page; this helped us to understand
the data that is retrieved for each filetype. Every search result has a
standard set of XML elements. File-specific metadata is stored in the
snippet element as a single string, which could be parsed if required.

Google Desktop Search (version 2) enables items to be viewed in a
timeline format, which lists the files indexed on each day. Implementing
this feature requires metadata (e.g., timestamps) to be stored. A time
element (with date and time information) was discovered in the XML
search results. Examination of the SDK revealed it to be the date/time
that the item was indexed and cached by Google Desktop Search, rather
than a timestamp extracted from the computer’s file system metadata
(e.g., file creation time or time of last modification).
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3.3 Extracting Data

Google Desktop Search does not offer a wildcard search feature. A
linear search requires an identifier for the indexed entries. However, al-
though Google Desktop Search has identifiers, we were unable to format
search requests based on item identifiers. In any case, item identifiers
would have to be discovered by issuing queries before they could be used
in queries; this doubles the computational requirements.

Consequently, our experiments used brute force search with a dic-
tionary containing a small set of words designed to test the ability of
the application to handle query results that contained references to files
discovered by previous queries. The keywords in the dictionary were
chosen to correspond to the test files used to evaluate the application
and validate the extraction process.

3.4 Storing and Querying Extracted Data

GDSEC was developed as a proof-of-concept application for extracting
data. Consequently, the results are simply stored in text files. The
search application initially stores the retrieved results in memory as
result objects before writing them to files. Each result object is simply
an encapsulated collection of strings and integers used to represent every
XML element available from a Google Desktop Search query result. A
red-black binary tree is used to manage all the result objects with the url
XML element (which points to a file on the file system or the Internet)
of the search result used as the unique identifier. After a query is issued,
result objects are created for each result and an attempt is made to add
them to the tree based on their URLs. A file that has already been
discovered in a previous query is not added to the tree.

The text files generated as output contain a list of all the elements
extracted from the XML results along with the information related to
the elements. Cached content is also appended to the end of the text
output. The file names of output files are based on the last component
of the URL (usually the file name and extension). For cached files with
the same name that reside in different directories, an extra numerical
character is appended to the file extensions of the output files to make
them unique. Illegal file name characters such as “?” that appear in
a URL (due to web pages with parameters) are replaced with the “ ”
character. The text files are generated in a separate folder on the file
system. Each folder is given a unique name by using its creation time;
this ensures that all subsequent output requests are written to different
folders.
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Table 1. Google Desktop Search data.

Filename Match Filename Match

dbc2e.ht1 Yes Dbdam Yes
Dbdao Yes Dbeam Yes
Dbeao Yes Dbm Yes
dbu2d.ht1 Yes dbvm.cf1 Yes
dbvmh.ht1 Yes fii.cf1 Yes
Fiid Yes fiih.ht1 Yes
Hp Yes hpt2i.ht1 Yes
rpm.cf1 Yes rpm1m.cf1 Yes
rpm1mh.ht1 Yes rpmh.ht1 Yes
uinfo data No

3.5 Verifying Forensic Soundness

It is important to verify that the GDSEC application is forensically
sound and that the extracted data can be used as evidence. The verifica-
tion process used a controlled indexing test and a hash value comparison.

The first test used a controlled indexing environment to verify that
GDSEC retrieved data without modifying it. A partition was created
on a test system with multiple files named EVIDENCE.txt containing the
text string “criminal activity.” Google Desktop Search was configured to
only index this partition. After the indexing was completed, GDSEC was
launched with instructions to perform the dictionary search and to write
all the retrieved items to a text file. This text file contained all the XML
search results and the cached content retrieved from the cache URL.
The cached content that was recovered contained the strings “criminal
activity,” which proved that no data was modified during extraction.

Next, it was necessary to verify that no other data was modified during
the extraction process. As part of the controlled indexing test, when
the file was indexed, Google Desktop Search was terminated and MD5
hash values [7] were generated for all the data files used by the search
application. The application was then re-executed and the remainder of
the controlled indexing test was performed. When this was completed,
Google Desktop Search was once again terminated and a second set of
MD5 hash values was generated for the data files.

Table 1 shows the results of the hash value matching test. Only file
uinfo data was altered; all the other files had the same hash values
before and after extraction and were, therefore, unaffected. The file
uinfo data stores user information about the search application and
no actual cached content. Therefore, although this file was altered by
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Google Desktop Search, the loss of integrity is known and explained, and
does not impact the extraction of cached content.

4. Conclusions

Google Desktop Search Evidence Collector (GDSEC) is a prototype
tool designed to collect data from the files used by Google Desktop
Search in a forensically-sound manner. The current version of GDSEC
interacts with Google Desktop Search to extract information. How-
ever, the preferred extraction technique from a forensic point of view is
for the application to directly access files; future research will investi-
gate this issue with the goal of implementing the capability in GDSEC.
Other avenues for improvement include interfacing GDSEC with an SQL
database to provide the ability to conduct additional searches of the re-
trieved information and implementing routines to retrieve cached con-
tent for items that have multiple cached versions (e.g., websites that are
visited frequently).
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Chapter 5

EVALUATION OF REGISTRY DATA
REMOVAL BY SHREDDER PROGRAMS

Harry Velupillai and Pontjho Mokhonoana

Abstract Shredder programs attempt to overcome Window’s inherent inability to
erase data completely. A shredder is useful when one needs to trans-
fer ownership or dispose of a computer, but it can be exploited by a
suspect for the purpose of wiping incriminating evidence. Most shred-
der programs claim to remove all traces of data. This paper examines
these claims by conducting forensic examinations of computers on which
shredder programs were used.

Keywords: Shredder tools, Windows Registry, data removal

1. Introduction

It is difficult to completely remove all traces of data from a computer
system [9]. In the case of Microsoft Windows, for example, much of the
“erased” data is recoverable, even when it is not visible from the Win-
dows Explorer interface. For example, traces of a program remain after
deleting it using Window’s Add/Remove Programs function. Generally,
the residual data takes little space and users are not concerned about
this data unless it affects system performance.

The situation has changed with the release of digital forensic tools [10],
which enable users to locate, recover and interpret deleted data. Initially,
forensic tools were only available to law enforcement personnel; now,
high performance tools are available to all at relatively low cost. The
implications are obvious – data must not simply be removed, it must
be removed securely. Also, data should be removed from locations that
may not be quite so obvious.

Shredder programs were developed to address Window’s inherent in-
ability to erase data completely. These programs claim to wipe all traces
of sensitive data, including data residing in locations that normal users

Please use the following format when citing this chapter: 

Velupillai, H. and Mokhonoana, P., 2008, in IFIP International Federation for Information Processing, Volume 285; 
Advances in Digital Forensics IV; Indrajit Ray, Sujeet Shenoi; (Boston: Springer), pp. 51–58. 



52 ADVANCES IN DIGITAL FORENSICS IV

would not access (e.g., the Windows Registry). This paper examines the
effectiveness of shredder programs available on the market. In partic-
ular, it evaluates their ability to completely remove Windows Registry
entries. Several digital forensic tools, including a hex editor, are used to
determine if deleted entries are still visible after shredder programs are
executed.

2. Windows Registry

The Windows Registry is a directory that stores settings and options
for all the hardware, software and users of a Windows system. Changes
to control panel settings, file associations and installed software and
applications are maintained in the registry. The registry files are in
continuous use when the machine is running; changes to the registry
are made in real time and timestamps are changed only at shutdown.
Registry data is stored in multiple files whose names and locations differ
according to the specific Windows edition [2, 6].

Windows 3.11: The registry is stored in only one file Reg.dat,
which is located in the directory C:\Windows.
Windows 95/98: The registry consists of two files, User.dat

and System.dat, which are stored in the directory C:\Windows.
Windows ME: The registry consists of three files, User.dat,
System.dat and Classes.dat, which are stored in the directory
C:\Windows.
Other Windows Versions: The registry of Windows versions re-
leased after Windows ME (excluding Vista) have six files, Default,
Sam, Security, Software, System and Userdiff, which are stored
in the directory %SystemRoot%\System32\Config. Note that these
files do not have extensions. In addition, each user has two files,
Ntuser.dat and Usrclass.dat, stored in the corresponding user
profile directory.

The problem with registry data is that the user knows where the files
are located, but he cannot wipe them because they are vital to Windows
– he might as well re-install the operating system. This is why shredder
programs are required.

3. Shredder Programs and Forensic Tools

This section describes the shredder programs and digital forensic tools
used in our experiments.
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3.1 Shredder Programs

Numerous shredder programs are available from commercial sources
or are downloadable from the Internet. We selected two representative
programs, CCleaner [13], which is available as freeware; and Registry
Washer [14], a commercial product.

3.2 Forensic Analysis Tools

Several digital forensic tools [8] were used to evaluate the ability of
the shredder programs to delete registry data.

Ultimate Toolkit: This popular toolkit from Accessdata [4] con-
sists of the FTK Imager, Registry Viewer, Password Recovery
Toolkit (PRTK), Distributed Network Attack (DNA) and Forensic
Toolkit (FTK). Only the FTK Imager and Registry Viewer were
used in our tests.

FTK Imager: FTK Imager is a forensic tool for recovering evi-
dence from a target machine [1]. The tool can create physical and
logical images of drives in a number of formats. In addition, it can
extract registry files from a running machine. Because FTK Im-
ager accesses the drive directly instead of via the operating system
interface, it is able to acquire the locked system files used by the
registry.

Registry Viewer: The Registry Viewer is a forensic tool for view-
ing all Windows Registry files [3]. It provides access to user data,
hardware and software information, URL/MRU lists and the Pro-
tected System Storage Provider.

Regedit: This Windows Registry editor is a built-in utility for
viewing and editing registry entries [12]. Regedit permits the ad-
dition, modification and deletion of registry entries.

4. Experimental Setup and Results

The experiments involved installing and then uninstalling eMule [7], a
popular peer-to-peer program. While peer-to-peer programs can be used
for illegal activities, our focus was on determining whether or not the
shredder programs could remove all traces of eMule from the Windows
Registry.
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Figure 1. eMule key in the registry.

4.1 Installation

When installed, eMule creates eight entries in file Ntuser.dat in
the Windows Registry. Note that Windows Registry folders are called
“keys.”

Entry 1 (Key): The eMule key is located at Software\Emule
(Figure 1). Entries 2, 3 and 4 are located inside this key.
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Figure 2. Entries 2, 3 and 4 in the Registry

Entry 2 (String Value): This entry is found in Software\Emule
\Install Path (Figure 2). The first entry Default is ignored
because it is created by the Windows Registry, not by eMule; also,
it does not contain any data. Of the three entries created under
the eMule key, only Entry 2 holds sensitive data.

Entry 3 (StringValue): This entry is found in Software\Emule
\Installer Language.

Entry 4 (Dword Value): This entry is found in Software\Emule
\UsePublicUserDirectories.
Entry 5 (Key): This entry is at Software\Microsoft\Windows
\CurrentVersion\Explorer\MenuOrder\StartMenu\Programs\E
mule.

Figure 3. Entry 6 in the registry.

Entry 6 (Binary Value) This entry, created under Entry 5,
is at Software\Microsoft\Windows\CurrentVersion\Explorer
\MenuOrder\StartMenu\Programs\Emule\Order. Figure 3 shows
the entry; note that the default entry is ignored.

Entry 7 (String Value): This entry is at Software\Microsoft\
Windows\ShellNoRoam\MuiCache\C:\Program Files\eMule\emu
le.exe. This entry points to the location of the eMule executable
and it is added only if eMule is executed.

Entry 8 (String Value): This entry is at Software\Microsoft\
Windows\ShellNoRoam\MuiCache\O:\LocalDriveC\downloads\e
Mule0.48a-Installer.exe. It points to the location of the eMule
installation file.
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Table 1. Comparison of shredder programs.

Entry Windows CCleaner Registry Washer

1 Removed
2 Removed
3 Removed
4 Removed
5 Not Removed Not Removed
6 Not Removed Not Removed
7 Removed Removed
8 Conditional Removal Conditional Removal

4.2 Uninstallation

Several entries are removed after Windows is used to uninstall eMule.
However, Entries 5,6,7 and 8 remain.

4.3 Evaluation of Shredder Programs

Both the shredder programs removed Entry 7. Entry 8 was removed
only when the eMule installer had been deleted or moved to a different
directory. However, both programs did not remove Entries 5 and 6. The
results are summarized in Table 1.

Analysis of the results sheds light on how shredder programs work and
why they fail to remove all traces of a program. Shredders attempt to
find data that should be removed mainly by searching for broken links.
This is why Entry 8 was removed only when the installation file had
been deleted or moved. Entries 5 and 6 were not removed because they
did not contain links to programs, just data used by programs.

4.4 Forensic Acquisition

The final step in the experiments was to use forensic tools to see if
the deleted portions of the registry could be reconstructed. Our tests
showed that it was not possible to recover any data deleted by the two
shredders or manually using Regedit. The fact that the data deleted
using Regedit was also not recoverable indicates some other mechanism
is at work – perhaps the way Windows stores and changes registry files.
We intend to investigate this issue in future work.

5. Advantages and Limitations

Using shredder programs has several advantages. CCleaner was very
effective at wiping the detailed history maintained by Windows. Also,
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CCleaner’s secure deletion facility enables users to delete data as well as
to overwrite the sectors that held the data to prevent any recovery [5, 9].
Moreover, it allows users to choose the number of overwrites based on
the sensitivity of the data being erased [11].

Windows stores the search terms used by most applications. There-
fore, when Regedit is used to delete registry entries, search data pertain-
ing to these entries is saved – and is easily recovered. Unlike Regedit,
the shredder programs do not leave any such traces.

The shredder programs examined in this work have certain limita-
tions. The most serious limitation is the lack of user input. In particular,
users cannot submit program names or terms that should be located and
removed. For example, Entries 5 and 6 could easily have been deleted
if the shredder programs allowed users to enter the specific entries they
want erased from the registry

Regedit addresses this issue by permitting manual deletion. But this
is problematic because, as described above, Windows stores the search
terms used to locate the registry entries. Ironically, attempting to delete
entries creates additional entries that must be deleted.

Finally, the shredder programs do not wipe all the data. As verified by
our experiments, traces of eMule remained even after it was uninstalled
and the shredder programs were executed.

6. Conclusions

Shredder programs are useful tools, but they are unable to erase all
traces of potentially sensitive Windows Registry data. The manual dele-
tion of data is an option, but the process of searching for the data to
delete leaves traces. The burden, therefore, falls on the user to under-
stand the nature and locations of the data that remain on a computer
system. Short of wiping the entire hard drive, there is no way to remove
all the sensitive data and references to its existence.

Acknowledgements

This research was supported by the Council for Scientific and Indus-
trial Research of the Republic of South Africa.

References

[1] AccessData, FTK Imager, Lindon, Utah (www.accessdata.com).

[2] AccessData, Registry quick find chart, Lindon, Utah (www.access
data.com).



58 ADVANCES IN DIGITAL FORENSICS IV

[3] AccessData, Registry Viewer, Lindon, Utah (www.accessdata
.com).

[4] AccessData, Ultimate Toolkit, Lindon, Utah (www.accessdata
.com).

[5] H. Berghel, and D. Hoelzer, Digital village: Disk wiping by any
other name, Communications of the ACM, vol. 49(8), pp. 17–21,
2006.

[6] H. Carvey, Windows Forensics and Incident Recovery, Addison-
Wesley, Boston, Massachusetts, 2004.

[7] eMule.org, eMule (www.emule-project.net).

[8] G. Francia and K. Clinton, Computer forensics laboratory and tools,
Journal of Computing Sciences in Colleges, vol. 20(6), pp. 143–150,
2005.

[9] S. Garfinkel and A. Shelat, Remembrance of data passed: A study
of disk sanitization practices, IEEE Security and Privacy, vol. 1(1),
pp. 17–27, 2003.

[10] W. Harrison, D. Aucsmith, G. Heuston, S. Mocas, M. Morrissey
and S. Russelle, A lessons learned repository for computer forensics,
International Journal of Digital Evidence, vol. 1(3), 2002.

[11] N. Joukov, H. Papaxenopoulos and E. Zadok, Secure deletion
myths, issues and solutions, Proceedings of the Second ACM Work-
shop on Storage Security and Survivability, pp. 61–66, 2006.

[12] Microsoft Help and Support, Windows Registry information for ad-
vanced users, Microsoft Corporation, Redmond, Washington (sup-
port.microsoft.com/kb/256986).

[13] Piriform, CCleaner (www.ccleaner.com).

[14] Right Utilities, Registry Washer (www.rightutilities.com).



III

EVIDENCE INTEGRITY



Chapter 6

USING BOOT CONTROL TO PRESERVE
THE INTEGRITY OF EVIDENCE

Keisuke Fujita, Yuki Ashino, Tetsutaro Uehara and Ryoichi Sasaki

Abstract This paper describes Dig-Force2, a system that securely logs and stores
evidentiary data about the operation of a personal computer. The in-
tegrity of the logged data is guaranteed by using chained hysteresis
signatures and a trusted platform module (TPM) that prevents unau-
thorized programs or tampered programs from executing. Experiments
indicate that the Dig-Force2 system is both efficient and reliable.

Keywords: Evidence integrity, hysteresis signatures, boot control

1. Introduction

Personal computers are often used as instruments of electronic crime.
This makes it important to securely log and store evidentiary data per-
taining to computer operations for use in legal proceedings [8].

To address this issue, we have previously developed Dig-Force [3], a
system that reliably records data about personal computer use on the
computer itself. Dig-Force uses chained signatures to maintain the in-
tegrity of evidentiary data. Dig-Force is effective even when it is installed
on a standalone computer located outside a protected network.

One problem with Dig-Force is that it is difficult to ensure that the
personal computer user cannot alter programs and data on the computer.
In particular, it is necessary to detect program or data tampering and to
guarantee that only authorized programs are executed. This paper de-
scribes an enhanced version of the Dig-Force system (Dig-Force2) that
securely logs and stores evidentiary data pertaining to computer use.
The integrity of the logged data is preserved using chained hysteresis
signatures and a trusted platform module (TPM) that prevents unau-
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Figure 1. Dig-Force architecture.

thorized programs or tampered programs from executing. Experiments
indicate that the new system is both efficient and reliable.

2. Dig-Force

This section describes the operating assumptions, architecture and
processing flow of the Dig-Force system.

2.1 Operating Assumptions

The primary functions of Dig-Force are to log data about personal
computer operations without any failure, and to detect tampering of the
logged data even when it is done by the personal computer operator.

Dig-Force was designed to operate under three principal assumptions:
(i) no programs or data on the personal computer should be modified by
its operator, (ii) although the computer operator may perform unautho-
rized operations, neither the administrator nor the verifier ever perform
unauthorized operations, and (iii) the computer operator never passes
the security device (described below) to a third party.

2.2 Architecture

The Dig-Force architecture is presented in Figure 1. It consists of
three principal subsystems:
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Security Device: The security device contains a tamper-resistant
area to prevent the chained hysteresis signatures from being mod-
ified. The device also performs hysteresis signature operations.

Logging System: The logging system collects operational infor-
mation, which is preserved in a log storage system. The logging
system also records that the security device is always installed on
the personal computer. Note that the computer cannot be oper-
ated without the security device.

Log Storage System: The log storage system communicates
with the security device and stores the hysteresis signatures with
the logged data. The logged data is intended to serve as evidence in
legal proceedings. However, since the data is easily coped, erased
or modified, chained hysteresis signatures are used instead of inde-
pendent digital signatures to ensure the security and integrity of
the logged data.

A hysteresis signature is a digital signature with a chained structure
[6], i.e., each signature is dependent on the preceding signatures. A
successful attack involving the alteration of data would require all the
hysteresis signatures preceding and following the data to be adjusted.
Thus, a hysteresis signature is more secure and reliable than a traditional
digital signature.

The security device enables Dig-Force to defend against “restoration
attacks,” which are effective against hysteresis signatures [3]. Such an
attack occurs when an intruder deletes the suffixes of log file data and
performs a series of operations to update the log file.

2.3 Processing Flow

Dig-Force’s processing flow has three phases: configuration, operation
and verification. Three entities are involved: the system administrator
who makes the initial settings, the personal computer operator, and the
verifier who checks the logs stored on the computer.

Configuration Phase: During this phase, the system adminis-
trator uses the security device to create public/private key pairs
and stores the private keys in the tamper-resistant area of the se-
curity device. The administrator also determines the initial values
of the chain data and stores them in the tamper-resistant area.
Next, the administrator sends the public keys and the initial val-
ues of the chain data to the verifier. Finally, the administrator
delivers the personal computer installed with the logging system,
log storage system and security device to the operator.
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Operation Phase: The operator uses the personal computer re-
ceived from the system administrator. The logging system con-
firms that the security device is installed, after which it collects
operational data and passes it to the log storage system.

The log storage system accumulates the logged data, communi-
cates with the security device, applies the hysteresis signatures to
the logged data, writes the chain values, signatures and logged data
to the log file, and stores the chained hash values in the security
device.

Upon completing a session, the personal computer operator saves
his documents and the log file on storage media, and submits the
storage media and security device to the verifier.

Verification Phase: The verifier applies the hash function to the
final chain data contained in the submitted log file and computes
the hash values. The verifier then compares these hash values with
those contained in the security device. Next, the verifier checks the
signatures using the initial values from the configuration phase and
the chain values, signatures and logged data stored in the log file.

3. Implementation Issues

It is difficult to guarantee that users cannot modify programs or data
on a personal computer. A malicious user with sufficient expertise could
alter the Dig-Force program itself so that it does not detect tampering.
To address this threat, Dig-Force should be tamperproof and computer
operations should be monitored to ensure that only the “correct” ver-
sions of authorized programs execute. This can be implemented using a
white list containing the digital signatures of approved programs, which
are provided by a trusted third party.

Another important requirement is to implement boot control func-
tionality that prevents unauthorized programs from executing. To ac-
complish this, we use features provided by Microsoft Windows XP, which
is used as the development and operational environment. In particular,
we leverage the multiple hierarchies that Windows XP provides from the
hardware layer all the way up to the application layer (Figure 2).

In general, there are three ways to implement the reliable monitoring
of programs on a personal computer. These involve using: (i) the op-
erating system, (ii) a device driver located within the operating system
kernel (Figure 2), and (iii) APIHook, a service program that hooks the
Windows API, changes the processing and monitors application program
start-up.
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Figure 2. Windows XP hierarchy.

Although the operating system is the most desirable option for moni-
toring unauthorized programs, Windows XP does not offer the required
functionality. Therefore, we considered the device driver and APIHook
solutions. Ultimately, we selected APIHook because it was easier to
implement.

APIHook is a service program that executes in the application layer;
therefore, there is always the risk that it can be tampered with. It is
difficult to tamper with or delete the APIHook program on a computer
because APIHook is automatically set to execute first. However, if the
hard drive is transferred to another computer, the APIHook program
on the drive can be modified or deleted. To address this issue, we have
developed an enhanced version of Dig-Force, called Dig-Force2, which
engages a trusted platform module (TPM) as an additional safeguard.

TPMs are integrated circuit chips with security hardware that protect
certain areas of the chips from being tampered with. A TPM mounted
on the motherboard of a personal computer can function as a coprocessor
accessible from the CPU via the low pin count bus. The Trusted Com-
puting Group (TCG) [10] defines several functions for a TPM. These
include: (i) creating, storing and conducting encryption/decryption and
signature operations with RSA keys, (ii) performing hashing operations,
(iii) generating random numbers, (iv) maintaining information on plat-
form state, and (v) providing adequate non-volatile and volatile memory
for storing data.

A TPM that is mounted in a personal computer is machine specific.
Therefore, if a TPM in a computer is removed and replaced with another
TPM, an authentication error results and the computer will not start up.
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Thus, the TPM can be used to uniquely identify a particular computer.
The encryption key in a TPM is also machine specific. Therefore, the
hard drive data, which is enciphered using the TPM’s encryption key,
cannot be deciphered by another machine. Thus, even if the hard drive
is moved to another personal computer, it is not possible to delete or
otherwise tamper with the APIHook program.

There are two additional reasons for using a TPM. First, apart from
the TPM, there is no need to incorporate a special device in the personal
computer. Second, an auxiliary device (e.g., USB device) can be removed
by mistake, which terminates data collection and storage.

4. Dig-Force2

We have designed the Dig-Force2 system to address the limitations
of Dig-Force. Dig-Force2 employs a TPM as its security device rather
than eToken [2], which is used by Dig-Force. This section describes the
operating assumptions, architecture and processing flow of Dig-Force2.

4.1 Operating Assumptions

Dig-Force2 is designed to operate under two primary assumptions:
(i) since the monitoring program is a service that operates under the
administrator’s authority, it cannot be halted by a computer user whose
authority is lower than that of the administrator, and (ii) the BIOS,
operating system and monitoring program software are reliable; since
the monitoring program starts up right after the operating system, it is
difficult for an unauthorized individual to alter the monitoring program,
which features APIHook functions.

4.2 Architecture

Dig-Force2 has five main components (Figure 3):

Logging System: The logging system collects operational infor-
mation, which is maintained in a log storage system. The logging
system also records that the auxiliary device is always installed on
the personal computer.

Log Storage System: The log storage system adds timestamps
and formats the operational data received from the logging system.
Then, it interacts with the TPM to apply hysteresis signatures to
the formatted data and writes the data to a log file.

Auxiliary Device: The auxiliary device must be inserted into
the personal computer in order for the computer to operate. The
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Figure 3. Dig-Force2 architecture.

auxiliary device stores the hash values (“white list”) of authorized
programs and IDs that identify users along with the digital signa-
tures of the hash values and IDs (signed by the administrator).

Trusted Platform Module: The TPM performs the hysteresis
signature operations. It has a tamper-resistant area that protects
the chain data that forms the signature keys and signature history.

Monitoring Program: The monitoring program is started as
a service at the uppermost authority of the operating system,
which prevents the computer operator from terminating the pro-
gram. The monitoring program checks that the auxiliary device is
mounted on the computer; the computer cannot be operated with-
out this device. The program then computes the hash values of
the .exe files of the logging and log storage systems and compares
them with the values in the white list; the computer is permitted
to start only if the values match. Note that before the white list
is used, the digital signature provided by the administrator or a
trusted third party is verified. The monitoring program also reads
the ID from the auxiliary device that identifies the computer op-
erator and compares it with its pre-set value; the computer can be
operated only if the IDs match.
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After the computer has booted, the logging system and log stor-
age system processes are monitored for unauthorized termination.
Also, whenever the user attempts to start a new program, the
monitoring program computes the hash value of the corresponding
.exe file and compares it with the corresponding value in the white
list; this ensures that only authorized programs are executed.

4.3 Processing Flow

Dig-Force2’s processing flow has three phases: configuration, opera-
tion and verification.

Configuration Phase: During this phase, the administrator con-
figures the personal computer before passing it along with the aux-
iliary device to the operator. The following steps are involved in
the configuration phase:

– The administrator creates a storage root key (SRK) in the
TPM; this root key secures the other TPM keys.

– The administrator creates a secret key (S) in the TPM that is
used for the hysteresis signatures and a public key (P) used for
signature verification. These keys are encrypted using SRK
and stored on the computer’s hard drive.

– The administrator specifies an arbitrary initial value (R1) for
the chain data and stores it in the TPM’s non-volatile mem-
ory.

– The administrator sends the initial values that become the
chain data to the verifier.

– The administrator stores in the auxiliary device the white
list and the IDs used by the monitoring program to identify
individuals.

– The administrator sets up the public key used for verifying
the white list and the IDs that identify individuals in the
monitoring program.

– Finally, the administrator installs the monitoring system and
the logging and log storage systems on the personal computer.

Operation Phase: During this phase, the auxiliary device is
mounted on the personal computer, and the monitoring program
and the logging and log storage systems are started. Figure 4
illustrates the processing flow of the monitoring program. The
following steps are involved:
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Figure 4. Monitoring flow diagram.

– The operator mounts the auxiliary device on the computer.

– The monitoring program is started as a service program after
the operating system has started.

– The monitoring program checks that the auxiliary device is
mounted; if the device is not mounted, the monitoring pro-
gram locks the computer.

– The monitoring program reads the IDs that identify individ-
uals and their digital signatures from the auxiliary device.
The monitoring program verifies the digital signatures; the
computer works only if this verification is successful.
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Figure 5. Hysteresis signatures using the TPM.

– The monitoring program reads the white list and the digi-
tal signatures from the auxiliary device; the signatures are
verified using the public key.

– The monitoring program computes the hash values of the log-
ging and log storage programs and compares them with those
in the white list. If the hash values match, the monitoring
program starts the programs and applies the hysteresis sig-
natures to the logged data (Figure 5). The processing flow
is the same as that of Dig-Force except that the TPM key
(SRK(S)) is used for signature operations in the TPM and
the chain data is stored in the TPM’s non-volatile memory.

– The monitoring program checks the other programs (.exe
files) to ensure that unauthorized programs do not start.
Also, whenever the operator attempts to start a program, the
monitoring program hooks the API and computes the hash
value of the program; the program is permitted to execute
only if this hash value matches its white list value.

Verification Phase: The verifier receives the personal computer
with the TPM and the auxiliary device from the operator. The
verification of digital signatures in the TPM is similar to that for
Dig-Force, except that the chain data stored in the TPM’s non-
volatile memory is used along with the TPM keys. This confirms
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Figure 6. Boot control flow diagram.

that the monitoring program is operating in a reliable manner,
ensuring that only authorized programs are executed.

5. Functional Experiments

Functional tests of the monitoring program and TPM were conducted
to verify the effectiveness and practicality of Dig-Force2.

5.1 Monitoring Program

An experiment was conducted to test the program start-up control
function provided by APIHook. APIMonitor [4] was used to identify the
APIs invoked during program start up (we discovered that more than
ten APIs are called when a program is started). We hooked some of
these APIs and changed their processing flow. One of these APIs is
RtlCreateProcessParameters, which is defined in ntdll.dll. Figure
6 illustrates how this particular API is hooked to control booting.

We wrote a prototype program that implemented the processing flow
in Figure 6 based on information provided in [1]. The program was used
to experiment with boot control. It was able to prevent unauthorized
programs from starting up. However, it was unable to exert boot con-
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trol on programs launched via a command prompt (cmd.exe). This is
because hooking an API is not available with a command prompt, which
is a DOS program. The problem was addressed by disabling program
start-up using command prompts, which caused all DOS programs to be
unavailable. Our future research will attempt to develop a boot control
technique for DOS programs.

5.2 Trusted Platform Module

Experiments were conducted to evaluate the performance of the TPM
for signature operations and its use of non-volatile memory. The devel-
opment effort used the C++ programming language under Microsoft
Visual Studio.NET 2003 and Infineon TPM Integration SDK; Windows
XP Professional was used as the evaluation environment.

Experiments were conducted to measure the time taken for hysteresis
signature processing and verification. The average times were 0.0764
seconds and 0.0295 seconds, respectively; these were deemed to be ac-
ceptable in operational environments.

Sufficient non-volatile memory is required in the TPM to store the
chain data for the hysteresis signatures. Our experiments confirmed
that 20 bytes of non-volatile memory were available in the TPM.

5.3 Possible Attacks

This section describes five attacks that can impact Dig-Force2 along
with the corresponding countermeasures.

Attack 1: This attack launches a malicious program that modi-
fies the logged data and/or signatures. The attack is defeated by
ensuring that the monitoring program checks every program and
only permits authorized programs to execute.

Attack 2: This attack tampers with or deletes the monitoring
program after transferring the hard drive on which it resides to
another computer. The hard drive is then returned to the original
computer. Thus, the monitoring program is unable to prevent
unauthorized programs from executing. The attack is defeated by
enciphering the monitoring program using the TPM’s encryption
function and public key so that it cannot be decrypted on another
computer.

Attack 3: This attack halts the logging program and/or log stor-
age program, preventing Dig-Force2 from collecting evidentiary
data. The attack is defeated by having the monitoring program
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check the programs’ execution status and automatically restart the
programs if they are terminated.

Attack 4: This attack modifies the white list so that the moni-
toring program permits an unauthorized program to execute. The
attack is defeated by using digital signatures that employ the ad-
ministrator’s private key; the monitoring program uses the corre-
sponding public key to verify the signatures and detect alterations.

Attack 5: This attack alters the chain data stored in the non-
volatile memory of the TPM. It is defeated by ensuring that the
monitoring program prevents unauthorized programs (that access
the non-volatile memory) from executing.

6. Conclusions

Dig-Force2 is an efficient and reliable system for collecting data about
computer operations for use in legal proceedings. The integrity of the
evidentiary data is ensured by using chained hysteresis signatures and a
TPM that prevents unauthorized programs from executing.

Our future research will focus on enhancing the Dig-Force2 system.
One issue is that the white list contains only the names of authorized
programs and their hash values. However, it is also necessary to consider
DLLs and plug-ins because tampering with these components can cause
unauthorized programs to execute. We will attempt to augment the
white list by incorporating the hash values of approved DLLs and plug-
ins [9]. Another important issue is to harden the monitoring program
against attacks. A promising approach is to use BitLocker in Windows
Vista [5] to encrypt the hard drive that contains the monitoring program.
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Chapter 7

HYPOTHESIS-BASED INVESTIGATION
OF DIGITAL TIMESTAMPS

Svein Willassen

Abstract Timestamps stored on digital media play an important role in digital
investigations. However, the evidentiary value of timestamps is ques-
tionable because timestamps can be manipulated or they could refer to
a clock that is erroneous or improperly adjusted. This paper presents a
formalism for defining clock hypotheses based on historical adjustments
to clocks, and for testing the consistency of the hypotheses with respect
to stored timestamps. Two consistency tests are proposed for justifying
clock hypotheses without having to rely on timestamps from external
sources.

Keywords: Digital investigations, timestamps, causality, clock hypothesis testing

1. Introduction

A timestamp is a recorded representation of a specific moment in
time. In digital computing, a timestamp is a recorded representation
of a specific moment in time in a digital format. This representation is
either stored on digital media or is transmitted on a network designed
to convey digital data.

Timestamps play an important role in digital investigations. They are
traditionally used to place the timestamped event at a specific moment in
time, thereby facilitating event reconstruction. The identification that
a certain event on a computer took place at a specific time makes it
possible to correlate the event with other events occurring outside the
computer system. These external events may have occurred in another
digital system or in the physical world. A Windows system hard drive in
a typical digital investigation can contain tens or hundreds of thousands
of timestamps.
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Stored timestamps may not accurately reflect the times that the events
occurred. A timestamp is always relative to the setting of the clock that
generates it. Unfortunately, clocks are not completely reliable. They
may drift, generating timestamps that are increasingly different from
those generated by other clocks. Clocks may also fail or may produce
incorrect timestamps. Furthermore, clocks on most systems can be ad-
justed by users intentionally or accidentally. Consequently, timestamps
generated by the same clock cannot be reliably compared unless it can
be shown that the clock was not adjusted during the time period be-
tween the creation of the timestamps. Timestamps generated by differ-
ent clocks are reliably compared by computing the difference between
the clocks and verifying that the clocks were not adjusted.

Timestamps are vital to reconstructing events in digital forensic in-
vestigations. But they cannot be relied upon as evidence without con-
sidering all the factors that may lead to errors. This paper describes
a formalism for defining and testing the consistency of clock hypothe-
ses. Carrier’s hypothesis-based investigation model [2] is used to test
the evidentiary value of timestamps. In this model, the history of the
medium under investigation is the complete set of configurations, states
and events that have occurred during the lifetime of the medium. The
data directly observable by the investigator is the final state of the
medium, and it includes observations of all timestamps stored on the
medium and the clock. The ability to test clock hypotheses increases
the evidentiary value of timestamps even when clocks are erroneous,
improperly adjusted or are known to have failed.

2. Related Work

The problem of timestamp interpretation has been studied by several
researchers. Schatz and colleagues [6] have analyzed clock synchroniza-
tion in enterprise computer networks. They suggest that clock drift can
be mitigated by correlating timestamps stored in the web cache with
records obtained from web servers. Other researchers [1, 7] also ad-
vocate the use of correlation methods for timestamps stored on target
computers that were created by other clocks (e.g., timestamps in dy-
namically generated web pages). These methods provide correlations
for the periods during which the cached data exists on the target com-
puters. They are able to confirm or refute hypotheses about a clock in
the period for which correlation data exists, but they may be unable to
provide reasonable evidence to refute certain hypotheses (e.g., that the
timestamps have been changed or that the clock has been adjusted dur-
ing the period for which no correlation data exists). Correlation with
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server records is only possible when such data exists and the forensic
investigator has legal access to this data.

Gladyshev [4] studied the use of causality properties to establish a
time period during which an event may have occurred. In his approach,
time boundaries can be established when an event that occurred at an
unknown or uncertain time is causally preceded and succeeded by events
whose times of occurrence are known. When investigating a target com-
puter, the events whose occurrence times are known must come from
external sources. Our approach also uses the notion of causality, but it
does not require time references from external sources.

3. Hypothesis-Based Timestamp Investigation

This section discusses the main concepts underlying hypothesis-based
timestamp investigation.

3.1 Causality

Causality – the relationship between cause and effect – can be for-
mally expressed as a mathematical relation between events. Lamport [5]
was the first to use the happened-before relation (→) for ordering events
pertaining to executing processes and message passing. Lamport’s def-
inition was generalized by Fidge [3] to encompass process creation and
termination as well as synchronous and asynchronous message passing.

Gladyshev [4] proposed an extended definition of happened-before for
digital investigations. According to Gladyshev, e1 → e2 if e2 uses the
result of e1 or e1 precedes e2 in the usual course of business of some
organization or during the normal operation of a machine. This defini-
tion is useful because digital investigations require the reconstruction of
events both within and external to computer systems.

Gladyshev’s definition of the happened-before relation uses the terms,
“usual course of business” and “normal operation,” which are open to in-
terpretation. In contrast, our definition of the relation directly captures
the notion of causality.

Definition. Let e1 and e2 denote events and let → represent the
happened-before relation. If e1 → e2, then the occurrence of e1 is neces-
sary for e2 to occur because e2 depends on the effects of e1.

Examples of causality captured by the happened-before relation are:

“e1 produces an item that is a necessary input for e2.”
This is equivalent to Gladyshev’s definition “e2 uses the result of
e1.” The definitions of Lamport and Fidge are also covered by this
example.
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“e1 and e2 are events in a computer program where e2 uses data
produced by e1.”
Since events that occur when computer programs execute use items
produced by other events in the same program (e.g., variables,
data stored in memory, registers and stack pointers), many events
that occur during program execution can be expressed using the
happened-before relation. This is a special case of “e1 produces an
item that is a necessary input for e2.” The definition of happened-
before also captures events related to processes modeled by Lam-
port and Fidge with the exception of events that do not use results
from each other. This exception makes the definition suitable for
modern computer systems in which the execution order of program
statements can be modified by compilers and processors when the
instructions do not depend on the results of each other.

3.2 Time

Time is considered to be a fundamental quantity because it is not
defined in terms of other quantities. However, it is measurable via com-
parisons with periodic events such as those occurring in clocks. Exam-
ples of periodic events are the swings of a pendulum (pendulum clock),
movement of the earth (sundial) and microwave emission (atomic clock).
We assume that every event has a moment in time associated with it
and these moments in time can be ordered using the < and = relations.

Definition. Let e be an instantaneous event in the domain of events
E, and let T be the domain of time. The function t(e) : E �→ T provides
the moment in time at which event e occurred.

We assume that causality is preserved in time, i.e., no event can
causally depend on an event occurring at the same time or at a later
time than itself. This notion is expressed explicitly using the happened-
before relation (→):

t(ei) ≤ t(ej) ⇒ ej �→ ei. (1)

This assumption captures the intuitive relationship that exists be-
tween causality and time. If such causal relationships were allowed,
then events in the future would affect events in the past, which has not
been shown to occur in the real world.

For two events that satisfy the happened-before relation (→), Equation
1 implies that:

ei → ej ⇒ t(ei) < t(ej). (2)
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This equation imposes an ordering in time on events related via the →
relation. However, it does not imply any ordering in time for events not
related by →. Also, t(ei) < t(ej) does not imply that ei → ej . Events
may occur at different moments in time without being related by →. On
the other hand, if two moments in time, t(e1) and t(e2), are ordered such
that t(e1) < t(e2), events occurring at those moments in time cannot be
causally connected in reverse such that e2 → e1.

3.3 Clocks

A clock is a device designed to provide its owner with an approxima-
tion of time that is sufficiently coherent to allow the owner to measure
and compare time periods. Also, a clock is sufficiently consistent with
other clocks to allow its owner to perform actions concurrent with other
clock owners without continuous coordination. The definition of a clock
should reflect the possibility of clock drift and adjustment discussed in
Section 1.

Definition. Let V be the domain of time values produced by a clock.
A clock function is defined as c(t) : T �→ V .

The definition of a clock function does not impose any restrictions
on clock values as a function of time. For example, even if t1 < t2, it
may well be the case that c(t1) > c(t2). Also, even if t1 < t2 < t3, the
relationship c(t1) = c(t2) = c(t3) may hold. The latter situation could
occur if the events at t1, t2, t3 are so close together in time that the
clock is unable to differentiate between them.

3.4 Timestamped Events

A timestamped event is an event for which there exists a timestamp
value in domain V of time values. The timestamp value can be repre-
sented as a function of the event. A timestamp is created when an event
makes a copy of the value provided by a clock. The timestamps in a set
of timestamped events are not necessarily related to the same clock.

Definition. Let E be a set of timestamped events and let V be the
domain of time values. The function τc(e) : E �→ V is defined such that
τc(ei) = c(t(ei)), where τc(ei) is the timestamp associated with the event
ei relative to clock c.

A timestamp in the above definition is the value of the producing
clock at the time of the event. The timestamp thus reflects the clock’s
representation of time at that particular moment. The definition of
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timestamps as a function of events and clocks makes it possible to reason
about timestamps and clocks.

3.5 Ideal and Non-Ideal Clocks

An ideal clock is one that can only go forward. A non-ideal clock is a
clock that is not ideal.

Definition. Let I be the set of ideal clocks. An ideal clock c(t) ∈ I
satisfies the properties:

∀i∀j(t(ei) < t(ej) ⇒ c(t(ei)) ≤ c(t(ej)))

∀i∀j(t(ei) = t(ej) ⇒ c(t(ei)) = c(t(ej))).

An ideal clock has a monotonically increasing clock function. How-
ever, note that the values, c(t(ei)) and c(t(ej)), produced for two dif-
ferent moments in time, t(ei) and t(ej) (where t(ei) < t(ej)), may be
equal. Many clocks express moments in time as discrete values. A dis-
crete clock with limited resolution may represent two moments that are
close in time using the same clock value.

Theorem 1. Timestamps produced by all ideal clocks c ∈ I satisfy
the property:

ei → ej ⇒ τc(ei) ≤ τc(ej).

Proof: An ideal clock satisfies the property:

∀i∀j(t(ei) < t(ej) ⇒ c(t(ei)) ≤ c(t(ej))).

That is, for events ei and ej occurring at times t(ei) and t(ej):

t(ei) < t(ej) ⇔ c(t(ei)) ≤ c(t(ej)).

Upon replacment, we obtain:

ei → ej ⇒ c(t(ei)) ≤ c(t(ej)).

Since τc(ei) = c(t(ei)), we obtain the result:

ei → ej ⇒ τc(ei) ≤ τc(ej).

�

The monotonicity property of ideal clocks ensures that two causally
connected events timestamped by the same ideal clock have timestamps
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such that the timestamp of the latter event is never less than the times-
tamp of the former event.

3.6 Clock Hypothesis Formulation

In order to test if a certain theory holds for a clock, it is necessary to
formulate a hypothesis about the clock function. The clock hypothesis,
denoted by ch(t), is then tested against the set of observed timestamps.

Definition. A clock function c(t) has two components, an ideal clock
function b(t) and a function d(t) that represents the deviation from the
ideal clock:

c(t) = b(t) + d(t).

The ideal clock b(t) is called the base clock; d(t) is the difference
between the base clock and the clock of interest. Two clocks with a
common base clock can be compared by examining their deviations. It
is sometimes useful to express the time of an event in terms of the base
clock. This is done by subtracting d(t) as follows:

b(t) = c(t) − d(t). (3)

3.7 Observed Event Sets and Correctness

During a digital investigation of a computer system, the investigator
may observe a number of timestamped events that are based on the
same clock. Some of these events will be causally connected. The set of
observed timestamped events is called the “observation set.”

Definition. An observation set O is a set of timestamped events that
are related to one clock co(t).

An observation set typically has a large number of timestamped events
with a large number of causal connections. The data in an observation
set is used to determine whether or not a clock hypothesis holds.

Definition. A clock hypothesis ch(t) for an observation set O is
correct if co(t) = ch(t) for all t, i.e.,

co(t) = ch(t) ⇒ ∀ei(τco(ei) = ch(t(ei))).

If a clock hypothesis is correct, then all occurrences of timestamps
must match the values predicted by the hypothesis. The correctness
property can, therefore, be used to devise techniques for testing whether
or not a clock hypothesis is correct.
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Theorem 2. In a correct clock hypothesis ch(t) the timestamps of
all causally connected events ei → ej in an observation set O must be
such that the timestamp of the first event minus the deviation from a
common base is not greater than the timestamp of the latter event minus
the deviation from a common base, i.e.,

ei → ej ⇒ τco(ei) − dh(t(ei)) ≤ τco(ej) − dh(t(ej)).

Proof: Let ch(t) be a correct clock hypothesis. Let b(t) be a common
base for ch(t) and co(t). Then,

b(t) = ch(t) − dh(t)

b(t) = co(t) − do(t).

Thus,
ch(t) − dh(t) = co(t) − do(t).

Also, since ch(t) is correct, we have ch(t) = co(t). Therefore,

dh(t) = do(t)

b(t) = co(t) − dh(t).

Upon inserting the definition, we obtain:

b(t(e)) = τco(e) − dh(t(e)).

Note that b(t) is an ideal clock. According to Theorem 1, ideal clocks
satisfy the property:

ei → ej ⇒ c(t(ei)) ≤ c(t(ej)).

Inserting the expression for b(t) yields the result:

ei → ej ⇒ b(t(ei)) ≤ b(t(ej))

ei → ej ⇒ τco(ei) − dh(t(ei)) ≤ τco(ej) − dh(t(ej)).

�

Conversely, if the property examined in Theorem 2 does not hold, the
hypothesis is incorrect.

Theorem 3 (Test-A). If a pair of causally connected events ei → ej

exist in an observation set O for which the timestamp of ei minus the
hypothesis deviation from a common base is larger than the timestamp
of ej minus the hypothesis deviation from a common base, then the clock
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hypothesis is incorrect, i.e.,

∃ei∃ej((ei → ej) ∧ (τco(ei) − dh(t(ei)) > τco(ej) − dh(t(ej))))

⇒ co(t) �= ch(t).

Proof: Let ch(t) be a clock hypothesis and O be an observation set
with clock co(t). Let (ea, eb) be a pair of events in O such that ea → eb

and τco(ea)−dh(t(ea)) > τco(eb)−dh(t(eb)). Assume that ch(t) is correct,
then ch(t) = co(t). Since ch(t) is correct, according to Theorem 3 we
have:

ei → ej ⇒ τco(ei) − dh(t(ei)) ≤ τco(ej) − dh(t(ej)).

But for i = a and j = b, we have assumed that:

(ea → eb) ∧ (τco(ea) − dh(t(ea)) > τco(eb) − dh(t(eb))). (4)

This contradicts the result from Theorem 2. Therefore, if Equation
4 holds, ch(t) cannot be correct. No assumptions or restrictions are
imposed on events a and b; a and b could, therefore, be any event in the
observation set O. For any event ei and ej , if Equation 4 holds, ch(t)
cannot be correct. Consequently,

∃ei∃ej((ei → ej) ∧ (τco(ei) − dh(t(ei)) > τco(ej) − dh(t(ej))))

⇒ co(t) �= ch(t).

�

Example 1. Consider the default clock hypothesis, which assumes
that the clock of the target computer has always been equal to civil time,
say UTC. Then ch(t) = bh(t) and dh(t) = 0. Let the observed set consist
of timestamps for four events e1 through e4 where e1 → e2 and e3 → e4:

τco(e1) = Jan 12, 2003, 12:46:34

τco(e2) = Apr 21, 2004, 10:22:38

τco(e3) = Feb 9, 2003, 22:16:04

τco(e4) = Dec 12, 2002, 02:46:32

If Test-A is applied for i = 3 and j = 4, we obtain:

(e3 → e4) ∧ (τco(e3) > τco(e4)).

Since dh(t) = 0, the test fails. Thus, the default hypothesis is incorrect
for this observation set.
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The result can be explained informally as follows: Since e4 must have
happened after e3 and the timestamp of e4 represents an earlier time
than the timestamp of e3, it cannot be the case that the clock was not
adjusted between these two events.

Theorem 4 (Test-B). In a clock hypothesis ch(t), for values c′ of
ch(t) for which ch(t) = c′ has no solution, the existence of any times-
tamps in the observation set O with value τco(ei) = c′ implies that ch(t)
is incorrect.

Proof: Let ch(t) be a clock hypothesis and O an observation set
with clock co(t). Let ea be an event in O and let τco(ea) = c′ be the
timestamp of ea. Furthermore, let c′ have a value such that ch(t) = c′

has no solution. If ch(t) is correct, ch(t) = co(t). Also,

∀ei(τco(ei) = ch(t(ei))).

This means that for i = a:

τco(ea) = ch(t(ea)).

This is a contradiction because τco(ea) = c′ and ch(t) = c′ has no solu-
tion. Therefore, if τco(ea) = c′ and ch(t) = c′ has no solution, then ch(t)
cannot be correct.

�

3.8 Clock Hypothesis Consistency

Theorems 3 and 4 can be used to refute a clock hypothesis for an ob-
servation set O based on the timestamps of events in O. In the case of
Test-A (Theorem 3), a clock hypothesis is incorrect when observations of
timestamps for two causally connected events are not ordered correctly
by the clock hypothesis being tested. On the other hand, Test-B (The-
orem 4) stipulates that a clock hypothesis is incorrect when timestamps
are observed that cannot be produced by the clock hypothesis because
it is a discontinuous function. By iterating over all events and event
pairs, every timestamp can be checked for consistency using Test-A and
Test-B.

The tests can refute a clock hypothesis, but they cannot prove that
it is correct. This leads to the following definition of a consistent clock
hypothesis.

Definition. Given a set of tests Z, a clock hypothesis is consistent
under Z with an observation set O if no test z ∈ Z shows that the
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hypothesis is incorrect for O. A clock hypothesis is inconsistent under
Z with an observation set O if it is not consistent under Z with O.

The distinction between the definitions of a correct hypothesis and a
consistent hypothesis is useful in the context of digital investigations. In
a correct clock hypothesis, all possible time values are always based on
the clock of interest. Such a hypothesis can only be verified if the clock
has been observed at every moment in its history. This is inconceivable
for the clock on a target machine in a digital investigation. Therefore,
at best, the investigator can attempt to establish a consistent clock hy-
pothesis. In such a hypothesis, none of the timestamps of the events
in O used in the tests in Z are able to show that the hypothesis is in-
correct. Nevertheless, the presence of large numbers of timestamps and
causally connected events in O impose strict constraints on a consis-
tent hypothesis, which can be used to justify the hypothesis. The more
data available in O that is supplied to the tests in Z, the greater the
justification provided to the consistent clock hypothesis.

3.9 Clock Hypothesis as a Scientific Hypothesis

In Carrier’s hypothesis based investigation model [2], a digital inves-
tigation is a process that formulates and tests hypotheses to answer
questions about digital events and/or the state of digital data. Accord-
ing to Carrier, an investigative process is scientific if the hypothesis is
scientific and is tested by conducting experiments. Carrier cites Popper
in that the “criterion of the scientific status of a theory is its falsifiability
or refutability or testability.”

The question here is whether or not the methods for clock hypothesis
formulation and testing adhere to these criteria. From the previous
discussion, a clock hypothesis is a theory that is falsifiable and therefore
testable. The clock hypothesis theory thus meets the requirements of a
scientific theory. The hypothesis forbids certain things from happening,
i.e., the occurrence of timestamp configurations described in Test-A and
Test-B. The two tests examine the evidence to refute hypotheses. They
do not look for confirmation; instead, they seek to detect inconsistencies.
Even when a test does not refute a hypothesis, the testing has value as
a serious but unsuccessful attempt to falsify the hypothesis, which can
be viewed as offering a certain amount of confirming evidence.

4. Conclusions

Timestamps of computer and network events are routinely used for
incident reconstruction in digital forensic investigations. However, their
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evidentiary value can be questioned because they are easily manipu-
lated and the clocks used to create them could have been erroneous or
improperly adjusted. The proposed formalism enables digital forensic
investigators to define clock hypotheses based on historical adjustments
to clocks and to test the consistency of the hypotheses with respect to
stored timestamps. When the number of timestamps is large and many
of the timestamped events are causally related, the consistency tests
place clock hypotheses under close scrutiny. Even when a test does not
refute a hypothesis, its mere application provides important confirming
evidence. Clock hypothesis specification and testing is readily imple-
mented in a software tool. Such a tool would enable investigators to
verify the evidentiary value of timestamped data. Also, it could be used
to investigate alternative hypotheses related to incident reconstruction,
such as those postulated by prosecutors and defense attorneys.
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Chapter 8

IMPROVING DISK SECTOR INTEGRITY
USING K-DIMENSION HASHING

Zoe Jiang, Lucas Hui and Siu-Ming Yiu

Abstract The integrity of data stored on a hard disk is typically verified by com-
puting the chained hash value of disk sector data in a specific order.
However, this technique fails when one or more sectors turn bad during
storage, making it impossible to compute their hash values. This pa-
per presents a k-dimension hashing scheme, which computes and stores
multiple hash values for each hard disk sector. The hash values for each
sector are computed in different ways; thus, when a hard disk develops
bad sectors, it is still possible to verify the integrity of the data in the
unaffected sectors. The paper also discusses how hashing parameters
may be tuned to achieve desirable properties, including minimizing the
probability that the integrity of a sector cannot be verified because other
sectors have gone bad.

Keywords: Evidence integrity, hard disks, hash values, k-dimension hashing

1. Introduction

This paper focuses on a common, but important, problem in digital
forensic investigations: Suppose certain data was written to a hard disk
when it was created for evidentiary purposes; after a period of time –
say one month – how could one prove that the hard disk contents are
the same as before?

The straightforward scheme is to calculate a chained hash value of
all the data in all the sectors in a specific sequence. This hash value
is digitally signed and stored in a secure location. At some point in
the future, when the integrity of the hard disk must be evaluated, the
chained hash value is recomputed and compared with the previous value.
If the two hash values match, the hard disk content is assumed not to
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have been modified; if the values do not match, data in one or more disk
sectors is somehow different from the original data.

The chained hashing scheme fails when the stored hard disk develops
one or more bad sectors. A hash value cannot be computed for a bad
sector and, consequently, the chained hash value for the entire hard
disk cannot be calculated. Moreover, as disk capacity increases, the
number of sectors increases, which makes the chained hashing scheme
less attractive.

This paper describes an improved hashing scheme, which computes
and stores multiple hash values for hard disk sectors. Specifically, hash
values computed in different ways are available for verifying the integrity
of a sector. Thus, when a hard disk develops one or more bad sectors,
it is still possible to verify the integrity of the data in the unaffected
sectors.

2. Background

This section describes the physical structure of hard disks and dis-
cusses hashing techniques for verifying the integrity of stored data.

2.1 Hard Disk Structure

A hard disk has one or more platters for storing data. Each platter
has two read/write heads, one for the top face of the platter and the
other for the bottom face. A platter is divided into tens of thousands of
tightly-packed concentric circles called tracks. A cylinder is the set of
tracks at which the heads are currently located.

Since tracks hold far too much information to be suitable as the small-
est individually-addressable units of storage on a disk, each track is fur-
ther divided into sectors that typically hold 512 bytes of data. Modern
hard disks may have several thousand sectors in a single track.

An individual sector is traditionally addressed using an ordered CHS
triple containing the cylinder, head and sector numbers (Figure 1). Due
to the 8.4 GB limit of the Int 13h interface, modern drives are no longer
specified using the CHS mode. Instead, they are addressed at the logical
level using logical block addressing (LBA). At the physical level, how-
ever, most modern hard disks still use the CHS mode. Therefore, by
accessing the integrated disk controller, which automatically translates
LBA to the physical geometry, it is possible to match CHS triples to the
physical hard disk characteristics [7].



Jiang, Hui & Yiu 89

Figure 1. Hard disk structure.

2.2 Verifying Hard Disk Integrity

Most digital forensic tools (e.g, EnCase [3] and DESK [1]) use the
chained hashing scheme to verify the integrity of data on hard disks. A
change to just one bit in a sector, file or hard disk causes the hash value
to be different [2].

Kornblum [5] recently proposed the context triggered piecewise hash-
ing (CTPH) scheme to identify modified versions of known files (where
data may have been inserted, modified or deleted). Although the CTPH
scheme was designed for files, it can be applied to hard disks – a bad
sector is considered to correspond to the portion of a file that has been
modified. However, the CTPH scheme has high computational time re-
quirements of O(n log n) where n is the size of the data being hashed.
It is, therefore, not feasible to apply CTPH to large capacity hard disks
(e.g., those exceeding 120 GB).

Jiang, et al. [4] have proposed a 3-dimension hashing scheme with
better performance than the CTPH technique. This scheme computes
multiple hash values to reduce the impact of bad sectors on disk integrity
verification while requiring only a linear (O(n)) increase in computa-
tional time. The 3-dimension hashing scheme calculates hash values for:
(i) all sectors with the same cylinder and head numbers (As in Figure 1)
for all cylinder and head numbers; (ii) all sectors with the same cylinder
and sector numbers (Ah in Figure 1) for all cylinder and sector numbers;
and (iii) all sectors with the same head and sector numbers (Ac in Figure
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1) for all head and sector numbers. Thus, every hash value that is stored
has a physical meaning.

3. k-Dimension Hashing Scheme

The 3-dimension hashing scheme significantly reduces the probability
that one or more bad sectors will affect the integrity verification of a hard
disk. However, it has some limitations. A major drawback is that it is
not always possible to obtain information about the physical structure of
the hard disk; this is mainly due to the large capacities of modern hard
disks and the diversity of technologies they employ [7]. For example, a
USB thumb drive that uses solid state technology requires an integrity
checking scheme that does not involve physical drive characteristics.

The k-dimension scheme described in this section extends 3-dimension
hashing by using an arbitratry k (k > 0). This provides more freedom
to design hashing schemes, including schemes that do not rely on the
physical characteristics of hard disks. The only requirement is that the
sectors in a hard disk being verified form a sequence.

Let N be the total number of disk sectors in a hard disk, and let p be
the probability that any one disk sector becomes a bad sector after some
period of time. We investigate the fail probability (Pf ) of an integrity
proof of a disk sector. This occurs when all the hash values involving
the disk sector cannot be computed because other sectors involved in
the hash computations have gone bad.

A 1-dimension hashing scheme is the trivial case that computes one
hash value for all N sectors. The integrity proof of a disk sector is viable
only when all the sectors are good sectors, which occurs with probability
(1 − p)(N−1). Consequently, the fail probability Pf is 1 − (1 − p)(N−1).

For a 2-dimension scheme, the N sectors give rise to an N1 × N2 (2-
dimensional) array where N1 and N2 are integers such that N1×N2 = N .
The minimum value of Pf occurs when N1 = N2 = N1/2. In this case,

the probability Pf is equal to 1 − {(1 − p)[N
( 1
2 )−1]}2.

Similarly, for a k-dimension hashing scheme, where the sectors form
a k-dimensional array, the minimum value of Pf occurs when the size

of each dimension Nk is equal to N1/k. Therefore, for a k-dimension

scheme with k ≥ 1, Pf = {1 − (1 − p)[N
( 1
k

)−1]}k .
Note that extra hash values must be stored when implementing the

k-dimension hashing scheme. In general, the total number of hash values

(Num) stored is equal to k · N (k−1
k

) .
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Increasing the number of dimensions k decreases the fail probability
Pf , but the number of hash values Num also increases. It is, therefore,
necessary to examine how Pf may be reduced while Num is also reduced.

One strategy is to divide the N disk sectors into j blocks (j ≥ 1) and
apply the k-dimension hashing scheme to each individual block. This
strategy is simple and effective. Even in the 1-dimension case, by setting
j to N , the probability Pf can be reduced to 0 with Num set equal to
N ! This is the absolute minimum value of Pf ; therefore, it is necessary
to consider the combined effect of the dimension size k and the number
of blocks j.

Upon substituting the number of blocks j in place of the number of
disk sectors N , the fail probability for the k-dimension hashing scheme
is given by:

Pf = {1 − (1 − p)
[(N

j
)
( 1

k
)
−1]}k. (1)

The corresponding number of hash values to be stored is given by:

Num = j · k · (N
j

)
(k−1

k
)

. (2)

4. Analysis of k-Dimension Hashing

Tables 1–4 present the fail probabilities and the numbers of hash val-
ues required to be stored for various values of N (number of sectors) and
p (probability that a sector becomes bad).

To simplify the presentation and related discussion, the data in Tables
1–4 is plotted to create the graphs in Figures 2 through 7. Figures 2
and 3 present the data in Table 1. Figures 2 and 4 present the data in
Table 2. Figures 5 and 6 present the data in Table 3. Figures 5 and 7
present the data in Table 4. Note that Figures 2, 3 and 4 correspond to
N = 1.152e8 while Figures 5, 6 and 7 correspond to N = 3.6e8.

As expected, increasing the number of dimensions k while keeping the
number of blocks j fixed yields a lower fail probability Pf . However, the
data also reveals that, when k is increased by 1, Pf drops by a value of
approximately p. This anomaly can be partially explained by simplifying
Equation 1 above. Given that (1− e)m can be approximated by 1− em
when e is very small and integer m > 1, the equation for Pf simplifies
to:

{p · [(N/j)(1/k) − 1]}k.

Upon further simplification and ignoring the −1 term, Pf is given by:

pk · (N/j).
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Table 1. Pf and Num for N = 1.152e8, p = 1e − 5.

j/k 1-D 2-D 3-D 4-D

1e0
Pf 1 1.04e−2 1.10e−7 1.11e−12

Num 1 2.15e4 7.10e5 4.45e6

1e1
Pf 1 1.10e−3 1.10e−8 1.07e−13

Num 1.00e1 6.79e4 1.53e6 7.91e6

1e2
Pf 1 1.00e−4 1.10e−9 1.02e−14

Num 1.00e2 2.15e5 3.30e6 1.41e7

1e3
Pf 6.84e−1 1.00e−5 1.10e−10 9.21e−16

Num 1.00e3 6.79e5 7.10e6 2.50e7

1e4
Pf 1.09e−1 1.00e−6 1.00e−11 7.67e−17

Num 1.00e4 2.15e6 1.53e7 4.45e7

1e5
Pf 1.14e−2 1.08e−7 8.50e−13 5.42e−18

Num 1.00e5 6.79e6 3.30e7 7.91e7

1e6
Pf 1.14e−3 9.47e−9 5.80e−14 2.68e−19

Num 1.00e6 2.15e7 7.10e7 1.41e8

1e7
Pf 1.05e−4 5.73e−10 2.00e−15 5.03e−21

Num 1.00e7 6.73e7 1.50e8 2.50e8

1e8
Pf 1.52e−6 5.37e−13 1.10e−19 1.68e−26

Num 1.00e8 2.15e8 3.30e8 4.45e8

N
Pf 0 0 0 0

Num 1.15e8 2.30e8 3.50e8 4.61e8

Table 2. Pf and Num for N = 1.152e8, p = 1e − 10.

j/k 1-D 2-D 3-D 4-D

1e0
Pf 1.15e−2 1.15e−12 1.14e−22 1.11e−32

Num 1 2.14e4 7.10e5 4.45e6

1e1
Pf 1.15e−3 1.15e−13 1.14e−23 1.10e−33

Num 1.00e1 6.79e4 1.53e6 7.91e6

1e2
Pf 1.15e−4 1.15e−14 1.12e−24 1.02e−34

Num 1.00e2 2.15e5 3.30e6 1.41e7

1e3
Pf 1.15e−5 1.15e−15 1.08e−25 9.22e−36

Num 1.00e3 6.79e5 7.10e6 2.50e7

1e4
Pf 1.15e−6 1.13e−16 1.01e−26 7.68e−37

Num 1.00e4 2.15e6 1.53e7 4.45e7

1e5
Pf 1.15e−7 1.09e−17 8.53e−28 5.42e−38

Num 1.00e5 6.79e5 3.30e7 7.91e7

1e6
Pf 1.14e−8 9.47e−19 5.78e−29 2.68e−39

Num 1.00e6 2.15e7 7.10e7 1.41e8

1e7
Pf 1.05e9 5.73e−20 1.99e−30 5.03e−41

Num 1.00e7 6.79e7 1.53e8 2.50e8

1e8
Pf 1.52e−11 5.37e−23 1.13e−34 1.68e−46

Num 1.00e8 2.45e8 3.30e8 4.45e8

N
Pf 0 0 0 0

Num 1.15e8 2.30e8 3.50e8 4.61e8
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Table 3. Pf and Num for N = 3.6e8, p = 1e − 10.

j/k 1-D 2-D 3-D 4-D

1e0
Pf 1 3.00e−2 3.50e−7 3.50e−12

Num 1 3.79e4 1.52e6 1.05e7

1e1
Pf 1 3.40e−3 3.50e−8 3.41e−13

Num 1.00e1 1.20e5 3.27e6 1.86e7

1e2
Pf 1 3.53e−4 3.50e−9 3.28e−14

Num 1.00e2 3.79e5 7.04e6 3.30e7

1e3
Pf 9.73e−1 3.56e−5 3.40e−10 3.05e−15

Num 1.00e3 1.20e6 1.50e7 5.88e8

1e4
Pf 3.02e−1 3.56e−6 3.30e−11 2.66e−16

Num 1.00e4 3.79e6 3.30e7 1.05e8

1e5
Pf 3.50e−2 3.48e−7 2.90e−12 2.07e−17

Num 1.00e5 1.20e7 7.00e7 1.86e8

1e6
Pf 3.60e−3 3.23e−8 2.30e−13 1.27e−18

Num 1.00e6 8.79e7 1.50e8 3.32e8

1e7
Pf 3.00e−4 2.50e−9 1.20e−14 4.41e−20

Num 1.00e7 1.20e8 3.30e8 5.88e8

1e8
Pf 3.00e−5 8.05e−11 1.50e−16 2.03e−22

Num 1.00e8 3.79e8 7.99e8 1.05e9

N
Pf 0 0 0 0

Num 4.00e8 7.20e8 1.10e9 1.44e9

Table 4. Pf and Num for N = 3.6e8, p = 1e − 10.

j/k 1-D 2-D 3-D 4-D

1e0
Pf 3.54e−2 3.60e−12 3.60e−22 3.50e−32

Num 1 3.79e4 1.52e6 1.05e7

1e1
Pf 3.60e−3 3.60e−1 3.60e−23 3.42e−33

Num 1.00e1 1.20e5 3.27e6 1.86e7

1e2
Pf 4.00e04 3.60e−14 3.50e−24 3.28e−34

Num 1.00e2 3.79e5 7.04e6 3.30e7

1e3
Pf 4.00e−5 3.59e−15 3.50e−25 3.05e−35

Num 1.00e3 1.20e6 1.50e7 5.88e8

1e4
Pf 4.00e−6 3.56e−16 3.30e−26 2.66e−36

Num 1.00e4 3.79e6 3.30e7 1.05e8

1e5
Pf 4.00e−7 3.48e−17 2.90e−27 2.07e−37

Num 1.00e5 1.20e7 7.00e7 1.86e8

1e6
Pf 4.00e−8 3.23e−18 2.30e−28 1.27e−38

Num 1.00e6 8.79e7 1.50e8 3.32e8

1e7
Pf 4.00e−9 2.50e−19 1.20e−29 4.41e−40

Num 1.00e7 1.20e8 3.30e8 5.88e8

1e8
Pf 3.00e−10 8.05e−21 1.50e−31 2.03e−42

Num 1.00e8 3.79e8 7.99e8 1.05e9

N
Pf 0 0 0 0

Num 4.00e8 7.20e8 1.10e9 1.44e9
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Figure 2. Num versus j for N = 1.152e8.

Figure 3. Pf versus j for N = 1.152e8, p = 1e − 5.

Figure 4. Pf versus j for N = 1.152e8, p = 1e − 10.
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Figure 5. Num versus j for N = 3.6e8.

Figure 6. Pf versus j for N = 3.6e8, p = 1e − 5.

Figure 7. Pf versus j for N = 3.6e8, p = 1e − 10.
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Therefore, for fixed N and j, every increment in k reduces Pf by a factor
of p.

This leads to the observation that even if j is changed (but not by too
much), it is beneficial to use a higher dimension to reduce the probability
Pf . The reduction in Pf due to higher k is parameterized by p. Specifi-
cally, it is advantageous to use a higher dimension when probability p is
low.

Note that in practice the expected number of bad sectors in a hard disk
is low and the probability p is very low. For example, when N = 1.152e8
and p = 1e− 5, the expected number of bad sectors is more than 1,000,
which is not realistic. Our studies indicate that p = 1e − 10 is a more
realistic value. Nevertheless, the data corresponding to p = 10e − 5 is
presented to show the behavior of the hashing scheme for a p value that
is not very small.

Another observation from the graphs is that although Pf is expected
to drop to zero for j = N , this does not occur even when j is close to N
(see Figures 4 and 7).

Figures 2–4 can be used to determine the appropriate number of di-
mensions to be used given a fixed Num (number of hash values to be
stored). First, Figure 2 is used to determine the number of blocks (j)
for each dimension value (k) that will require Num hash values. Next,
Figure 3 or 4 is used to determine the probabilities Pf corresponding to
the j values for each value of k. Finally, the value of k that yields the
lowest fail probability Pf is selected.

To illustrate the methodology, consider a fixed Num value of 1e7. The
four squares in Figure 2 identify the points with this Num value and k
= 4, 3, 2 and 1. The j values of these four points are recorded. Next,
the four points in Figure 3 with these j values and k = 4, 3, 2, 1 are
identified (these are marked as squares in Figure 3). The Pf values
corresponding to these four points can then be read from Figure 3. The
lowest fail probability Pf occurs for k = 4. Similar analysis can be
performed using Figures 5–7.

Upon investigating several different Num values, we have observed
that it is better to use a higher dimension value k provided that Num
is at least the minimum number of hash values needed by dimension
k. Two examples in Figures 2–4 and Figures 5–7 illustrate the effect of
increasing the dimension. The squares and circles in the figures corre-
spond to Num values of 1e7 and 1e6, respectively. In both cases, it is
clear that for the given Num value, a higher dimension value k yields
a lower fail probability Pf . Upon comparing the two groups of points
(squares and circles), it is apparent that a higher j value produces a
lower fail probability Pf for the same dimension k.
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5. Observations

Our analysis indicates that k-dimension hashing is very effective at
reducing the fail probability Pf . For example, the fail probability for 10
blocks (with p = 1e − 10 and N = 1.152e8) reduces from 1.15e − 2 in
the straightforward scheme of using one hash value for the entire hard
disk to 1.10e − 33 when 4-dimension hashing is used. This is a drastic
decrease in fail probability. Similar reductions occur for other parameter
settings.

Our findings can be summarized in the following recommendations. If
the minimization of the fail probability Pf is the principal goal and Num
hash values can be stored, where Num < N (number of disk sectors),
then it is best to use the highest possible k-dimension hashing scheme.
On the other hand, if Num is close to or larger than N , then the 1-
dimension hashing scheme with Pf = 0 is the best choice.

Note that these recommendations ignore the overhead involved in han-
dling large numbers of hash values, especially when the hash values have
to be digitally signed (as in many digital forensic tools [1, 3]). The Merkle
hash tree [6] is a low overhead approach for signing multiple hash values
[8]. Nevertheless, it is important to investigate the effect of the overhead
involved in digital signing on the choice of dimension.

6. Conclusions

The k-dimension hashing scheme is a robust technique for verifying
the integrity of data stored on hard disks. The scheme computes the
hash values for each sector in multiple ways; thus, when one or more
sectors go bad, it is still possible to verify the integrity of the data in the
unaffected sectors. Our future research will investigate applications of
k-dimension hashing to enhancing evidence preservation and detecting
evidence tampering with high probability.
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Chapter 9

CLASS-AWARE SIMILARITY HASHING
FOR DATA CLASSIFICATION

Vassil Roussev, Golden Richard III and Lodovico Marziale

Abstract This paper introduces “class-aware similarity hashes” or “classprints,”
which are an outgrowth of recent work on similarity hashing. The ap-
proach builds on the notion of context-based hashing to create a frame-
work for identifying data types based on content and for building char-
acteristic similarity hashes for individual data items that can be used
for correlation. The principal benefits are that data classification can
be fully automated and that a priori knowledge of the underlying data
is not necessary beyond the availability of a suitable training set.

Keywords: Similarity hashing, class-aware similarity hashing, classprints

1. Introduction

The problem of identifying the type of data inside a container (e.g., file
or disk image) has been studied for several years with few positive results.
Indeed, the ability to identify the underlying type of the data without
the help of file system metadata is very useful in data recovery operations
(file carving), especially as a means for validating the attempted data
recovery. For example, if a tool runs into text data while attempting to
carve a JPEG file, it is clear that the process is not on the right track.
This is important because data carving is routinely applied to target
images to recover (fragments of) deleted data and is often a valuable
source of information.

Another related problem is automated data correlation. Targets often
contain several terabytes of data, making it necessary to quickly separate
potentially relevant data from irrelevant data. The best strategy is to
use prior accumulated data to make the separation. Traditional forensic
investigations use large, sophisticated databases (e.g., for fingerprints
and DNA) to quickly zero in on relevant data. In digital forensics,
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success has come from using databases of hash values of known system
and application files, such as those maintained by NIST [6]. But it is
debatable if this approach will work when the databases contain billions
of hash values – would it be necessary to compute clusters just to perform
hash searches?

Traditional, file-based (cryptographic) hashing is useful but fragile;
it needs the exact binary representation of all versions of the objects
of interest. Several schemes have been proposed to address this issue.
Kornblum [5] has proposed a context-based approach that dynamically
splits a file into individually hashable chunks from which a composite
hash is produced. While the use of a hash-based context – which can be
traced to early research in information retrieval [1, 3] and is derived from
Rabin’s original work [8] – is a proven technique, the rest of the scheme
lacks robustness. Recently, we proposed a more robust approach [9]
based on Bloom filters [2], but it lacks an elegant mechanism for splitting
up arbitrary targets.

In [10] we refined the approach to create the multi-resolution similarity
(MRS) hashing scheme that can be applied to arbitrary targets. The
scheme clearly identifies similarities in data files that would be classified
by a human as being related (e.g., different drafts of the same document).
Also, the MRS hashing scheme can identify the presence of a contained
file (e.g., JPEG) inside a larger target (e.g., raw drive image) without
metadata or any other assistance from the file system.

An MRS hashing tool has significant performance advantages stem-
ming from the fact that it requires only a single sequential pass over an
image. In contrast, other file-based tools require access to file metadata,
which results in non-sequential disk access patterns.

Figure 1 illustrates the effects of non-sequential access on the through-
put of a modern hard drive, as measured by Intel’s IOMeter tool. As
little as 2% randomness in the workload can produce a 30% performance
penalty; 5% randomness can cut performance in half. With hard drive
capacities outpacing bandwidth and latency improvements [7], forensic
targets are increasing in size faster than the ability of forensic tools to
process them in a timely manner.

This paper discusses the use of class-aware similarity hashing to ad-
dress these issues. Empirical results using a custom tool show that
class-defining features can be automatically extracted for several classes
of commonly-used file types. In other words, it is practical to define
common file types solely based on syntactic features of their binary rep-
resentations.
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Figure 1. Hard drive throughput for WDC WD5000KS (500 GB).

2. Similarity Hashing

This section briefly summarizes recent work on similarity hashing.
Interested readers are referred to [10] for additional details.

Block-level hashing is the most basic scheme for determining the sim-
ilarity of binary data. The technique generates and stores cryptographic
hashes for blocks of a chosen fixed size (e.g., 512 bytes). Block hashes
from two different sources can then be compared and, by counting the
number of blocks in common, a measure of similarity may be deter-
mined. The principal advantages of this scheme are that it is supported
by existing hashing tools and that it is computationally efficient; in fact,
the hash computations are faster than disk I/O.

However, block-level hashing has certain limitations when applied to
discover file similarity. The success of the technique depends heavily on
the physical layout of the files being similar. However, the insertion,
deletion or modification of just one character at the beginning of a file
could render all the block hashes different. Also, block hashes do not
help identify if an object (e.g., JPEG image) is embedded in a file (e.g.,
Microsoft Word document). In short, block hashing is too fragile and
negative results do not reveal any useful information.

Kornblum [5] proposed context-triggered piecewise hashing to address
the limitations of block-level hashing. The idea is to identify content
markers, called “contexts,” within (binary data) objects and to store
the sequence of hashes for each of the pieces (or chunks) in between
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Figure 2. Context-based hashing or “shingling.”

contexts (Figure 2). In other words, the boundaries of the chunk hashes
are not determined by an arbitrary fixed block size but are based on
object content. The hash of the object is simply a concatenation of the
individual chunk hashes. Thus, if a new version of the object is created
by localized insertions and deletions, some of the original chunk hashes
will be modified, reordered or deleted, but enough will remain in the
new composite hash to identify the similarity.

To identify a context, Kornblum’s ssdeep implementation uses a
rolling hash over a window of c bytes that slides over the target. If
the t lowest bits of the hash (the trigger) are all equal to one, a context
is detected, the hash computation of the preceding chunk is completed
and a new chunk hash is started. The value of t depends on the size
of the target because ssdeep generates a fixed-size result. Intuitively,
a larger t value produces less frequent context matches and reduces the
granularity of the hash.

We recently proposed Bloom filter similarity hashing [9], a scheme
utilizing Bloom filters to derive object similarity. This scheme uses the
(known) structure of an object to break it into components, which are in-
dividually hashed and placed in a Bloom filter. Using the mathematical
properties of filters, we demonstrated analytically and empirically that
the bitwise comparison of filters yields a useful measure of the similarity
between the binary representations of two or more objects.

In subsequent work [10], we combined Bloom filter similarity hash-
ing with context-based object decomposition (“shingling” [3]) to handle
arbitrary binary data. We also devised a standardized multi-resolution
scheme called MRS hashing that allows objects of arbitrary size to be
hashed without loss of resolution. Moreover, the scheme allows different-
sized objects to be compared; for example, it is possible to search for
the remnants of a 1 MB file inside a 100 GB target.

MRS hashing is very memory efficient due to the use of Bloom filters;
hash values are no more than 0.5% of target size. Thus, the complete
MRS hash of a 500 GB hard drive can fit in the main memory of a mod-



Roussev, Richard & Marziale 105

ern workstation. From the point of view of performance, MRS hashing
is no more expensive than block-level MD5 hashing, even when the un-
optimized version of MD5 is used. The comparison step is very efficient
and can be sped up by using lower resolution for large targets and/or
delegating comparisons to a graphics processor (e.g., NVidia G80); this
can speed up the process twenty times.

3. Class-Aware Similarity Hashing

As discussed in the preceding section, MRS hashes provide a sensitive
and tunable means for finding similarities among binary data objects.
But why are these objects similar? From our previous work, it appears
that MRS hashing works reasonably well for user-generated artifacts
(e.g., .jpg, .doc and .pdf files) in that the objects identified as being
similar stand out from other objects in their class.

However, this is not the case for other classes of objects such as ap-
plications and system libraries. When applied in its original form, MRS
hashing finds too many applications/libraries to be similar, which limits
its usefulness. Note that these matches are not false positives; the binary
representations of the objects are indeed similar. The observed syntactic
similarities are generally artifacts of the particular file format (common
headers, etc.) used by the compiler and statically-linked libraries. For
example, we discovered (to our surprise) that most of the libraries sam-
pled had repetitive functions. In other words, the same function code
was present multiple times. These functions tend to be small and are
likely compiler artifacts. Nonetheless, they increase the binary similar-
ity, but are not necessarily indicative of semantic similarity.

Therefore, the fundamental problem is: Is it possible to effectively
separate the class-common features (hashes) of an object from its char-
acteristic individual features? Solving this problem would permit the
definition of an object class (e.g., Microsoft Word documents) as a set
of context-based hashes that are commonly found in such objects. Fur-
thermore, it would lead to at least three important applications:

The data recovery process is enhanced by eliminating at least some
of the false positive results that plague virtually all file carving
tools.

The similarity hashing scheme is enhanced by separating the class-
common hashes from object-specific hashes; this would yield more
focused similarity results.

An unstructured target can be searched to estimate the number of
objects of different types without reading the file system. Informa-
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tion can be obtained after a single sequential pass over the target;
partial results could be presented while the operation is underway.
This would help in a triage process, which is often faced with a
large volume of data.

In addition to aiding regular digital forensic investigations, the latter
two applications could help in tricky legal situations where search and
seizure must be balanced against privacy concerns. The judicial system
has not as yet directly addressed the bounds of what is a reasonable
search in the digital world. Nevertheless, the capabilities listed above
could provide cause for search, e.g., a disk contains a file that is similar to
something relevant or the drive contains a large number of pictures. Just
as important, the capabilities could help rule out unlikely candidates.

This paper focuses on the validation of the concept of class-aware
similarity hashing. In particular, it attempts to verify the existence of
class-specific features that can be captured via hashing, to quantify the
number and coverage of these features, and to cross-validate the features
by comparing their performance for other classes of objects.

4. Empirical Study

The empirical study used a custom tool that implemented a counting
Bloom filter with a single hash function. This is equivalent to using a
hash table whose values correspond to the number of data chunks that
hash to the particular hash key. The procedure used is a variant of the
original MRS hashing scheme.

For each file, given parameters c and t:

1. Hash a sliding window of size c with the djb2 hash function.

2. If the t rightmost bits are all set to 1, declare a new context match and compute
an MD5 hash of the data chunk between the previous context and the current
one, and place it in the counting Bloom filter; advance the window by the
minimum chunk size (2t−2) and go to Step 1.
Otherwise, slide the window by one position.

3. If the end of file is reached, exit.
Otherwise, go to Step 1.

In the case of low-entropy data, a single file often contributes the
same hash value multiple times. To address this problem, a local filter
is created for each file and the number of hash value contributions is
limited to one per key (this is added to the total in the master table).
Note that this problem is not due to MRS hashing because it does not
use a counting filter.
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The next step is to build a histogram which, for a given number k,
gives the number of filter locations that have a count k (i.e., k files
contain that hash). Based on the histogram, a notion of “coverage” is
defined for threshold r – the number of files that contain a hash that
has a count of at least r in the master table. Intuitively, it is desirable
to obtain maximum coverage with the fewest number of features, so the
search starts at the highest frequency and goes down in order. This
approach does not guarantee minimal coverage in terms of the number
of hashes, but it works fairly well in practice. Two other terms, “relative
coverage” and “coverage size,” are defined. The “relative coverage” is
the fraction of objects covered by hashes with count of at least r. The
“size” of a coverage is the number of hashes participating in the coverage.

Seven file sets were used in the empirical study. The first three file
sets, whose contents were obtained at random from the Internet, were
also used in our previous work [10]. The remaining four file sets contain
standard system files as described below.

doc: This set contains 355 files varying in size from 64 KB to
10 MB (total 298 MB).

xls: This set contains 415 files varying in size from 64 KB to 7 MB
(total 257 MB).

jpg: This set contains 737 files varying in size from 64 KB to 5 MB
(total 121 MB).

win-dll: This set contains 1,243 files (total 141 MB) from a fully-
patched WindowsXP system32 directory varying in size from 3 KB
to 640 KB.

win-exe: This set contains 343 files (total 46 MB) from the Win-
dowsXP system32 directory varying in size from 1 KB to 17 MB.

cyg-bin: This set contains 1,272 files (total 192 MB) from the bin

directory of Cygwin 2.4 (including all executable files) varying in
size from 3 KB to 7.6 MB.

ubu-bin: This set contains 445 files (total 63 MB) from the /usr/

bin directory of a fully-patched Ubuntu 6.06; the files varied in
size from 16 KB to 3.85 MB.

4.1 First-Order Analysis

The first task was to verify the hypothesis that data from different file
types exhibits common features that can be captured via context-based
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Table 1. First-order analysis of user data.

hashing. One feature is a hash value that is common to a set of data
objects of a specific class. The coverage of this feature includes all the
objects that contain the feature at least once. Ideally, a relatively small
set of features should cover as much as possible of the reference set.

First, we ran our custom tool against a set of 600 files (256 KB each)
of random data. The results showed that only two features were common
to five different files; all the other features were common to no more than
two files. This result is expected – random data should not exhibit any
features. High-entropy data objects (e.g., compressed and/or encrypted
objects) should exhibit similar results.

Table 1 summarizes the results for three common types of user-created
data: Microsoft Word documents (doc), Microsoft Excel spreadsheets
(xls) and JPEG images (jpg). All the hash values were generated using
similarity hashing as described in Section 4 with the parameters c = 8
and t = 5. The first column presents the number of hashes in the
cover, the second provides the relative coverage (percentage of the file
set covered) and the third gives the absolute number of files covered.
Thus, the row {5, 91, 335} means that the top five (“most popular”)
hashes cover 335 files, which constitute 91% of the files in the reference
set. Note that several intermediate rows are not shown for reasons of
space; only data that represents important trends is presented. Also,
the rows presented in boldface represent the coverage chosen for the
cross-analysis study in the next section.
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Table 2. First-order analysis of system executables.

The results show that doc and xls files have compact and easily iden-
tifiable feature hash sets or “classprints” that represent the types. In
the case of doc files, only 20 feature hashes are required to provide 99%
coverage. The top four give 91% coverage, so choosing the cut-off point
can be somewhat subjective. The results are not as good for jpg files,
where a substantially larger feature set is required to cover the reference
files. Intuitively, the larger the feature set, the more instance-specific
the features it includes.

In all cases, the feature set was kept relatively small and the inflection
point was chosen so that the rate at which features need to be added
was greater than the rate at which coverage was increased. For example,
in the jpg case, the increase from 10 to 38 hash values yields an increase
in coverage from 59% to 72%; the next step, from 38 to 42 is relatively
small and yields a correspondingly modest improvement from 72% to
75%. However, the increase from 42 to 65 only yields an improvement
of 75% to 78%. Therefore, 42 was chosen as the cut-off point for the
experiments in the next section.

The analysis of system executables shows some interesting results (Ta-
ble 2). The sets were chosen so they had various degrees of commonality.
Specifically, all the sets primarily contain executable code for the Intel
x86 architecture. Although other resources could be bundled into an
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Table 3. Feature set intersection.

executable, these are relatively small system utilities that are unlikely
to contain much beyond code. The win-dll, win-exe and cyg-bin file sets
all contain Microsoft Windows code. The cyg-bin files correspond to the
Windows portion of the utilities under Unix/Linux, which are contained
in the ubu-bin file set. Both these types of files are compiled using gcc.

The main observation is that it is easy to identify the inflection points
for the win-dll, win-exe and ubu-bin file sets, but not for the cyg-bin set.
Part of the reason could be that cyg-bin contains more files than two of
the other sets; however, win-dll has about the same number of files and
does not have the same problem. The reference cover that was picked
has substantially more hash values (654) than for any of the other sets,
still the coverage is much lower – only 2/3 of the reference set.

In summary, the observed data shows that it is possible to define a
class-common feature set based on similarity hashes. The next task is
to establish whether or not these features are “class-defining,” i.e., they
are generally not present among the features of other classes.

4.2 Second-Order Analysis

Clearly, if the class-common features that are discovered are shared
by multiple classes, their analytical value is significantly diminished.
A second-order analysis was undertaken because there were reasons to
believe that some of the chosen sets may share features.

For completeness, all 21 possible (unordered) pairs of feature sets
were compared, and their intersections were computed in relative and
absolute terms. The results are presented in Table 3, which only shows
the non-zero elements. The table is symmetric in terms of the absolute
numbers; the figures in parentheses correspond to the intersections as
a fraction of the total number of features for the associated set (row).
For example, the xls and doc sets have three features in common, which
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represents 43% of all features for the xls files and 17% of the features
for the doc files.

The results indicate that the {doc, xls} and {win-dll, win-exe} file
set pairs cannot be considered independent, which is not entirely unex-
pected. Nevertheless, just one feature from the intersection can provide
a useful hint about the content of a target because it helps eliminate a
large number of possibilities.

4.3 Estimating Drive Content

The next test involved the application of the doc feature set to esti-
mate the number of .doc files in a 7.2 GB Windows partition residing
on a personal laptop. First, the reference set was examined and the
average number of features matched by each file was computed. Next,
the number of matches against the unknown target was used to estimate
the number of .doc files in the Windows partition.

As it turned out, the original reference set was not ideal for this pur-
pose – it contained many files that had a very large number of feature
matches (the “top” file had 547 matches). Upon closer review, it was
discovered that this file contained a huge amount of repetitive informa-
tion. Clearly, a more systematic approach for selecting reference sets
would help avoid problems in such pathological cases.

Nonetheless, the median of nine feature matches per file was taken
and applied to the target Windows partition that had yielded 298 feature
matches. Thus, it was estimated that there were 298/9 = 33 Microsoft
Word documents on the partition. The actual count was 68, so the
estimate was off by a factor of two.

The approach has some potential, but more research is needed to im-
prove and validate this technique. Still, it is notable that features from a
training set were applied to a completely unknown and unrelated target;
this is evidence that the identified features are generic class features.

Another interesting point pertains to the throughput of the opera-
tion. The single-threaded, unoptimized version of the code was able to
perform the search in 2 hours and 44 minutes, corresponding to a rate
of 45 MB/s. This is significant because the code is parallelizable so 2-4
threads on a dual- or quad-core processor should keep up with the sus-
tained 80-100 MB/s transfer rate of current large-capacity HDDs. In
other words, valuable information could be obtained during the initial
cloning of a target without incurring any latency overhead. Furthermore,
the operation is constrained by hash value generation, so estimates for
multiple types of data could easily be performed in a single run with
virtually no impact on performance.
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5. Conclusions

Class-aware similarity hashing is an attractive technique for automat-
ically extracting class-defining feature sets (classprints) and for identi-
fying data types based on content. Our empirical study demonstrates
that classprints can be generated for several common file types; in other
words, the file types can be defined solely in terms of syntactic fea-
tures of their binary representation. The overall scheme requires a
modest amount of storage during the extraction phase and a negligi-
ble amount for the classprints. Experiments indicate that hashing rates
above 1 Gbit/s can be sustained; this exceeds the transfer rates of current
generation high-capacity (500 GB+) hard drives. The hashing scheme
also enables investigators to ask very generic questions about targets
without violating privacy concerns. In fact, it is possible to discover
whether or not a drive contains documents (or document remnants) of
a particular type without examining file names or metadata.
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Chapter 10

APPLYING TOPIC MODELING TO
FORENSIC DATA

Alta de Waal, Jacobus Venter and Etienne Barnard

Abstract Most actionable evidence is identified during the analysis phase of digital
forensic investigations. Currently, the analysis phase uses expression-
based searches, which assume a good understanding of the evidence; but
latent evidence cannot be found using such methods. Knowledge dis-
covery and data mining (KDD) techniques can significantly enhance the
analysis process. A promising KDD technique is topic modeling, which
infers the underlying semantic context of text and summarizes the text
using topics described by words. This paper investigates the applica-
tion of topic modeling to forensic data and its ability to contribute to
the analysis phase. Also, it highlights the challenges that forensic data
poses to topic modeling algorithms and reports on the lessons learned
from a case study.

Keywords: Digital investigation, analysis phase, evidence mining, topic modeling

1. Introduction

The four major phases in digital investigation are acquisition, ex-
amination, analysis and reporting [14]. The value of the information
obtained in digital investigations has been questioned by several re-
searchers [1, 11]. In particular, they argue that the analysis phase, where
most of the actionable evidence is gathered, lacks sufficient definition
and support in terms of principles, methods and tools [14, 17]. Knowl-
edge discovery and data mining (KDD) has the potential to enhance the
analysis phase [14, 17]. The use of KDD principles and tools in digital
investigations is referred to as “evidence mining” [17].

Textual artifacts are important in many digital investigations [1, 11].
These “documents” include e-mails, reports, letters, notes, text mes-
sages, etc. In a typical case, the evidence set may contain thousands
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Figure 1. CRISP-EM process.

of documents. Often, a very small proportion of these documents are
relevant and an even smaller proportion of the relevant documents may
contain actionable evidence. Manually processing thousands of text doc-
uments to discover evidence is a difficult and time-consuming task.

Expression-based searches are often used to analyze digital data. Such
searches require a good understanding of the evidence being sought. Fur-
thermore, the retrieved information is not ranked (e.g., based on rele-
vance to the case). Thus, latent evidence – evidence that exists but is
not directly accessible to the investigator – will not be found. Evidence
mining, on the other hand, uses KDD principles and techniques to un-
cover electronic artifacts that assist in developing crime scenarios [17].
These artifacts include known evidence as well as latent evidence.

CRISP-EM, a specialization of the CRISP-DM process [5], is intended
to support evidence mining [17]. The work described in this paper falls
within the scope of the data preparation phase of CRISP-EM (Figure
1). Data preparation covers all the activities involved in constructing
a data set used for event reconstruction and modeling. Data set con-
struction is a challenging task that involves a trade-off between selecting
relevant data and losing vital information used for event reconstruction.
A summary of the data would be extremely useful to an investigator; it
would facilitate better understanding of the data content and assist in
focusing the data preparation task on gathering relevant data.

Topic modeling is a powerful latent variable analysis technique that
can help associate relevant documents by modeling the underlying (la-
tent) topics in a collection of text documents. Additionally, it suggests
prevalent themes within the text, thereby providing a useful summary of
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the document collection. As a KDD technique, topic modeling has the
potential to discover latent evidence that is often missed by expression-
based searches. However, digital evidence is non-homogeneous in terms
of format and content, which poses unique challenges to KDD tech-
niques. This paper investigates the primary issues involved in applying
topic modeling to forensic data. Also, it examines the utility of topic
modeling in a real investigation.

2. Topic Modeling

Large collections of digital data are widely available and are growing
at an incredible pace. Attempting to understand the meaning of the
data is a difficult task and, in general, the first option is to perform
expression (keyword) searches. However, the results of these searches do
not adequately describe the meaning of the data collection, especially
when the user has limited insight into the collection. A summary of
the collection that encapsulates the main topics within the data would
be very useful [12]. An example of a data collection is a text corpus
of newspaper articles. For this corpus, a list of topics might include
politics, sport, finance, culture and local news.

A text corpus is a collection of documents, each with an underlying
semantic context. The semantic context refers to the intended meaning
of a document and develops as the document is generated. For example,
a newspaper article reports on a news event and, as the article is read,
the reader becomes aware of the ideas the reporter intended to commu-
nicate. The “hidden” semantic context is represented by the words of
a document. Topic modeling, which addresses the retrieval of semantic
context from a text corpus, can be formalized as a statistical inference
problem. Given a set of data (words), the latent semantic context from
which it was generated can be inferred [7]. A topic is defined as a prob-
ability distribution over words. In statistical terms, a topic model is a
latent variable model where the latent variables describe the topics [2].

Figure 2 presents an example involving two topics from a subset of
the TREC AP corpus [8]. The ten words with the highest probabilities
for each topic are presented along with their probabilities. These top-10
words describe the two topics. Topic A clearly has to do with financial
markets whereas Topic B deals with a naval incident in Saudi Arabia.

The fundamental assumption in topic modeling is that the semantic
context of a document is a mixture of topics [7]. A “bag-of-words”
approach is commonly adopted for topic modeling, which means that a
document is treated as a collection of words while ignoring the structure
of the document. The output of the bag-of-words approach is a Word
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Figure 2. Word probability distributions for two topics (top 10 words).

× Document frequency matrix where cellij represents the frequency of
wordi in documentj .

3. Topic Modeling Applied to Forensic Data

When applied to text data, topic modeling provides a summary of the
documents by describing the latent topics in the data as illustrated in
Figure 2. This leads to two useful outputs: a verbal summary of the
topics and a visual representation of the document space.

3.1 Topic Modeling Process

Figure 3 illustrates the six-level process involved in applying topic
modeling to the analysis of real forensic data. Each level represents
a different data set. Level 1 represents the original forensic data set.
Levels 2 through 4 represent data sets generated during data filtering.
Data pre-processing produces a Word × Document matrix (Level 5),
which is the input for topic modeling. The Level 6 data set represents
the results of topic modeling.

3.2 Data Sets

The data sets produced during the topic modeling process can be
described in parallel with the levels in the process graph in Figure 3.
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Figure 3. Topic modeling output and interpretation scheme.

The text corpus (Level 1) was taken from a real investigation. It
contained more than 100,000 entities such as documents, operating
system files, deleted entities and page files.

The data set and data type were selected according to CRISP-EM
Task 3.1-A (Select Sites/Equipment/Device) and CRISP-EM Task
3.1-B (Select Types of Data to be Included). All the document files
(.doc, .txt, .pdf, .html and .rtf) in the evidence set were ex-
tracted using FTK. The files were restricted to allocated or logical
files. This data set (Level 2) contained 12,483 documents.

The data set was reduced to documents with natural language
content according to CRISP-EM Task 3.2-A (Reduce Data). Af-
ter converting the documents to text files (CRISP-EM Task 3.5-A
(Convert Data Formats)), the data set (Level 3) contained 1,661
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Figure 4. Topic comparison with and without stemming.

documents. Removing files such as keystroke logs, software docu-
mentation, multiple versions of the same documents and files with
no text (CRISP-EM Task 3.2-A: (Reduce Data)) produced a data
set of 837 files (Level 4).

3.3 Data Pre-Processing

Data pre-processing, which corresponds to CRISP-EM Task 3.3-D
(Perform Text Processing), was programmed in Python. In this step,
stop words (common words appearing frequently in the text), words
occurring only once in the corpus, and numbers, special characters and
words with two characters or less were removed. The result was a Word
× Document matrix with approximately 11,000 words × 837 documents
(Level 5). This matrix was the input for the topic modeling step.

3.4 Experimental Setup

Early in experiments it became clear that forensic data poses unique
challenges for topic modeling. A major challenge is the use of stemming,
i.e., reducing derived words to their stems. For example, the words,
“waiting,” “waits” and “‘waited,” are reduced to their stem, “wait.”
The Porter stemming algorithm [15] in the Natural Language Toolkit
of Python was used to perform stemming. Stemming was planned as
a standard pre-processing task, but the stemmed words hampered the
intelligibility and interpretation of topic distributions.

We ran two experiments. The first applied stemming to words. The
second used inflections and derived versions of words without stemming.

Figure 4 presents the results obtained with and without stemming. It
is important to understand the influence that stemming has on the inter-
pretation of results. If stemming hampers an investigator from grasping
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Figure 5. Sample topics modeled from forensic data.

the gist of a topic because he/she is unable to see the original unstemmed
word, then it is more appropriate to develop topics without stemming.
This is despite the fact that not using stemming increases the dimen-
sionality of the problem.

Several topic models are available, each with different assumptions
about the distribution of topics [7]. The Latent Dirichlet Allocation
(LDA) model assumes that the set of topics has a Dirichlet distribution.
It produces a more reasonable mixture of topics compared with earlier
approaches that do not use explicit models [2].

Our experiments used LDA as the topic model. For simplicity, the
number of topics was fixed at 20. In the future, the LDA model will
be extended by defining the number of topics as a random variable; this
will permit the model to infer the natural number of topics inherent in
the text corpus. The Matlab Topic Modeling Toolbox [6] was used to
perform LDA topic modeling.

3.5 Experimental Results

The output of topic modeling is a Word × Topic matrix and a Topic
× Document matrix, which correspond to the data set at Level 6 (Figure
3).

Word × Topic Matrix: Each column of this matrix represents
a topic as a probability distribution over words. The top-10 words
(words with the highest probabilities) provide a good description
of a topic. Listing the top-10 words for each topic provides a sum-
mary of the document collection. Figure 5 presents sample topics
modeled from forensic data. Topic 17 deals with computer use and
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Figure 6. Visualization of documents in a 2D map.

Internet access/search. Topic 5 relates to company meetings that
were attended by a specific individual.

Topic × Document Matrix: Each column of this matrix rep-
resents a mixture of topics for a document. The mixture of topics
describes the semantic context or gist of the document [7]. Docu-
ments with similar topic distributions are closely related in terms
of semantic context. This “relatedness” of documents can be vi-
sualized in a 2D map, which presents the symmetrized Kullback-
Leibler divergence [10] between each pair of topic distributions.
(The Kullback-Leibler divergence measures the difference between
two probability distributions.) Classical multidimensional scaling
is used to visualize all pairwise document distances in the 2D map.
Figure 6 shows a 2D visualization of the forensic document collec-
tion, where each block represents a document. Documents A and
B are closely related based on their mixtures of topics (semantic
context). On the other hand, Documents A and C differ signifi-
cantly in terms of their semantic context. Thus, if Document A
is relevant to the case at hand, the investigation should focus on
Document B rather than Document C. A similar 2D map can be
generated for topics to convey the relatedness between topics. In
general, if a topic is identified as being relevant to a case, other
topics can be prioritized for investigative purposes based on their
proximity to the original topic in the 2D map.

4. Forensic Benefits

Topic modeling can assist digital forensic analysts and investigators
in several ways. In large cases, with multiple data sets from multiple
sites, performing topic modeling on natural language data can provide
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analysts and investigators with valuable information about the semantic
context of the data. A summary of the natural language data also en-
ables investigators to prioritize the data to be analyzed. A 2D map helps
identify closely related documents that would not typically be identified
via keyword searches. The map also assists in expanding the set of
relevant documents. Moreover, the topics can be used to augment the
existing keyword set. When an existing keyword is a top-10 word for a
topic, the other words defining the topic can be included in the keyword
set. Note that such an expansion of the keyword set is based on the
actual characteristics of the forensic data, not on prior knowledge of the
case.

5. Lessons Learned

Topic modeling is a promising technique because it reduces the quan-
tity of data to be reviewed by human analysts and suggests prevalent
themes within a set of documents to be analyzed. Although much re-
search remains to be done on algorithm development and performance
evaluation, our work has shown that even off-the-shelf algorithms can
function very well. One issue that deserves attention is the design of
performance metrics that reflect modeling goals. This is a significant
challenge for standard applications of topic models [16], more so for dig-
ital forensic applications. The metrics should reflect the requirements
of the forensic environment (e.g., intelligibility to human analysts and
salience of detected topics).

Our study identified several other practical matters.

Many documents have multiple versions. Treating these versions as
independent documents increases the computational overhead and
skews the results (topics). On the other hand, attempting to detect
the different versions of each document is a difficult problem. For
example, it is not clear how to deal with two documents that have
a small overlap or how to merge different versions of documents
without losing relevant information.

Named entities (e.g., person names, locations and organizations)
have high evidence potential, but need to be treated with care.
We recommend that named entities be recognized [9] and removed
from documents temporarily (to exclude them from data pre-pro-
cessing tasks such as stemming and removal of stop words). New-
man, et al. [13] have combined topic models and named entity
recognizers to jointly analyze named entities and topics. This en-
ables topics to be used to relate entities, which provides a wealth
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of information on people, organizations and locations mentioned
in the text corpus.

Documents written in different languages may be present in a cor-
pus. Such documents should be treated separately for several rea-
sons, e.g., investigators may not be proficient in all the languages,
data pre-processing tasks such as stemming and spell checking are
language-dependent, and existing algorithms cannot perform topic
modeling across languages. An automated system (see, e.g., [3])
may be used to separate documents written in different languages.

Stemming reduces the number of parameters in a corpus and con-
solidates semantically-related words. Also, it increases the number
of occurrences of individual words in a corpus, which leads to better
modeling. However, as discussed earlier, using stemming on foren-
sic data may hamper the understanding of topic distributions. It
may, therefore, be advisable to revert to the original words when
presenting topics to an investigator.

“Known files” (e.g., readme.txt and other help files, license agree-
ments, etc.) must be removed from a corpus to reduce the amount
of spurious data presented to the analyst. This can be done very
efficiently by screening known documents using hash values.

Spelling mistakes add parameters to the model and give rise to
incorrect word statistics (the count for one word is assigned to
multiple variants). However, it is difficult to automate spell check-
ing in a reliable manner, especially in an informal context where
important neologisms and jargon could be transcribed incorrectly.
It may be preferable to have low precision as opposed to correct-
ing spelling mistakes in an incorrect manner. This matter deserves
further investigation.

It is standard practice in topic modeling to remove words that oc-
cur only once in a corpus. This usually leads to the removal of
approximately 5% of the vocabulary of a corpus. However, when
this practice was applied to the forensic data set, approximately
50% of the vocabulary was removed, suggesting that valuable in-
formation was discarded in the process. A better way for dealing
with unique words is needed for topic modeling to be successfully
applied to forensic corpora.

Text corpora used for topic modeling are typically homogeneous
(e.g., news articles, conference proceedings and book chapters).
Forensic corpora, on the other hand, are generally mixtures of
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documents, reports, letters, email bodies and faxes. It is im-
portant to modify topic modeling approaches to better handle
non-homogeneous data, e.g., by avoiding the bias towards longer
documents inherent in the statistical models used by current ap-
proaches.

6. Conclusions

This paper has reported on a case study of topic modeling applied
to forensic data very early in an actual investigation. No evidence was
discovered in this investigation, but the analysis indicates that, with
certain refinements, topic modeling can be very useful for discovering
the semantic context of text documents in a forensic corpus and for
summarizing document content. Future research will investigate the role
of metadata in forensic corpora and the application of topic modeling on
corpora from different types of cases. Also, topic modeling algorithms
will be augmented to address the temporal characteristics of data and
the evolution of topics and changes in their importance [12, 18].

References

[1] N. Beebe and J. Clark, Digital forensic text string searching: Im-
proving information retrieval effectiveness by thematically cluster-
ing search results, Digital Investigation, vol. 4S, pp. S49–S54, 2007.

[2] D. Blei, A. Ng and M. Jordan, Latent Dirichlet allocation, Journal
of Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[3] G. Botha, V. Zimu and E. Barnard, Text-based language identifica-
tion for the South African languages, Proceedings of the Seventeenth
Annual Symposium of the Pattern Recognition Association of South
Africa, 2006.

[4] E. Casey, Digital Evidence and Computer Crime, Academic Press,
London, United Kingdom, 2000.

[5] P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartzrysler,
C. Shearer and R. Wirth, CRISP-DM 1.0: Step-by-Step Data Min-
ing Guide, The CRISP-DM Consortium, SPSS, Chicago, Illinois
(www.crisp-dm.org/CRISPWP-0800.pdf), 1999.

[6] T. Griffiths and M. Steyvers, Finding scientific topics, Proceedings
of the National Academy of Sciences, vol. 101(1), pp 5228–5235,
2004.

[7] T. Griffiths, M. Steyvers and J. Tenenbaum, Topics in semantic
representation, Psychological Review, vol. 114(2), pp. 211–244, 2007.



126 ADVANCES IN DIGITAL FORENSICS IV

[8] D. Harman, Overview of the first text retrieval conference, Proceed-
ings of the First Text Retrieval Conference, pp. 1–20, 1992.

[9] A. Louis, A. de Waal and J. Venter, Named entity recognition in
a South African context, Proceedings of the Annual Conference of
the South African Institute of Computer Scientists and Information
Technologists, pp. 170–179, 2006.

[10] D. Mackay, Information Theory, Inference and Learning Algo-
rithms, Cambridge University Press, Cambridge, United Kingdom,
2003.

[11] C. McCue, Data Mining and Predictive Analysis: Intelligence Gath-
ering and Crime Analysis, Butterworth-Heinemann, Burlington,
Massachusetts, 2007.

[12] Q. Mei and C. Zhai, Discovering evolutionary theme patterns from
text: An exploration of temporal text mining, Proceedings of the
Eleventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 198–207, 2005.

[13] D. Newman, C. Chemudugunta, P. Smyth and M. Steyvers, Analyz-
ing entities and topics in news articles using statistical topic models,
Proceedings of the Intelligence and Security Informatics Conference,
pp. 93–104, 2006.

[14] M. Pollitt and A. Whitledge, Exploring big haystacks: Data mining
and knowledge management, in Advances in Digital Forensics II,
M. Olivier and S. Shenoi (Eds.), Springer, New York, pp. 67–76,
2006.

[15] M. Porter, An algorithm for suffix stripping, Program, vol. 13(3),
pp. 130–137, 1980.

[16] L. Rigouste, O. Cappe and F. Yvon, Inference and evaluation of the
multinomial mixture model for text clustering, Information Process-
ing and Management, vol. 43(5), pp 1260–1280, 2007.

[17] J. Venter, A. de Waal and N. Willers, Specializing CRISP-DM for
evidence mining, in Advances in Digital Forensics III, P. Craiger
and S. Shenoi (Eds.), Springer, New York, pp. 303–315, 2007.

[18] X. Wang and A. McCallum, Topics over time: A non-Markov con-
tinuous-time model of topical trends, Proceedings of the Twelfth
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 424–433, 2006.



V

FORENSIC TECHNIQUES



Chapter 11

FORENSIC ANALYSIS OF VOLATILE
INSTANT MESSAGING

Matthew Kiley, Shira Dankner and Marcus Rogers

Abstract Older instant messaging programs typically require some form of in-
stallation on the client machine, enabling forensic investigators to find
a wealth of evidentiary artifacts. However, this paradigm is shifting
as web-based instant messaging becomes more popular. Many tradi-
tional messaging clients (e.g., AOL Messenger, Yahoo! and MSN), can
now be accessed using only a web browser. This presents new chal-
lenges for forensic examiners due to the volatile nature of the data and
artifacts created by web-based instant messaging programs. These web-
based programs do not write to registry keys or leave configuration files
on the client machine. Investigators are, therefore, required to look for
remnants of whole or partial conversations that may be dumped to page
files and unallocated space on the hard disk. This paper examines the
artifacts that can be recovered from web-based instant messaging pro-
grams and the challenges faced by forensic examiners during evidence
recovery. An investigative framework for dealing with volatile instant
messaging is also presented.

Keywords: Instant messaging, forensic analysis, volatile information, artifacts

1. Introduction

The popularity of instant messaging has exploded during the last
decade. From a humble beginning as a UNIX command line applica-
tion, instant messaging has become one of the most popular forms of
communication. During the period of growth, traditional client-based
messaging programs such as AOL Instant Messenger (AIM) have dom-
inated. In fact, active AIM subscribers currently number more than
50 million [15]. However, newer web-based programs are becoming in-
creasingly popular. E-Buddy, a web-based messaging program, has 35
million desktop subscribers and more than five million mobile users [1].
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Due to its popularity and purported privacy, instant messaging is being
exploited by criminals, especially online predators.

Web-based and mobile messaging services are valuable sources of evi-
dence. However, dealing with volatile instant messaging requires entirely
different investigative procedures. Forensic analysis no longer involves
merely locating archived or deleted messages, and stored “buddy” lists.

This paper presents a brief overview of volatile instant messaging and
discusses approaches for conducting an investigation involving a web-
based messaging program. Artifacts and other forensically-significant
information that can be obtained from four popular web-based instant
messaging programs are examined in detail. Finally, an investigative
framework for dealing with volatile instant messaging is outlined.

2. Volatile Messaging

Techweb [12] defines instant messaging as the process of “exchang-
ing text messages in real-time between two or more people logged into
a particular instant messaging service.” Volatile instant messaging, on
the other hand, is a relatively new concept, which has not been formally
defined. We adopt an operational definition for the concept: “real-time
messaging between two or more people using a web interface.” This
means that a user with access to a public terminal or web browser can
engage in instant messaging without having to access a traditional client
like AOL Instant Messenger or MSN. Implied in the definition is the con-
cept of volatility. After the web browser is closed or the machine is shut
down, no records of user activity or chat log archives are (conceivably)
retained. This is the primary difference between volatile instant messag-
ing and its traditional counterpart.

Traditional instant messaging relies on the existence of an installed
client program (e.g., Yahoo Messenger or MSN). Most programs require
the user to enter an online handle and password from a previously cre-
ated account. However, this information can be falsified as little, if any,
verification is performed [7]. The one benefit of user authentication (i.e.,
“logging in”) is that the messaging server can archive the IP address of
the user [15]. This makes it possible to pinpoint a user to a specific
computer or geographical location.

The messaging server typically marks the user as online upon suc-
cessful authentication and sign on. The program then displays a list of
currently logged on “buddies” from the user’s contact list. Although
the first message is sent through the main servers, subsequent messages
originate directly from the client machine, reducing traffic to the messag-
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ing servers [5]. This poses a potential problem in forensic investigations
because conversations are not logged by messaging servers.

The upside of client-based messaging is that information can be re-
covered from a suspect’s machine. Recent studies [2, 4, 10] report that
the forensic analysis of instant messaging programs provides a variety of
evidence, including chat logs, file transfers and registry artifacts.

Web-based only or volatile messaging programs require a different
investigative approach from client-based messaging programs. This is
because there are no installed programs and very little data may remain
after a browser is closed. The next section examines four popular web-
based only messaging programs and discusses what, if any, evidence may
be retained and recovered.

3. Methodology

This paper reports on the results of tests conducted on four web-based
instant messaging programs: (i) AIM Express, (ii) Google Talk, (iii)
Meebo, and (iv) E-Buddy. The four web-based programs were chosen
because of the popularity of their service and instant messaging client.
The tests used a Dell Latitude 600 laptop with 1 GB RAM, Windows XP
Professional Service Pack 2 and a 60 GB hard disk formatted with NTFS.
Internet Explorer version 6.0.2900.2180 was used as the web browser for
chat communications.

AIM Express and Google Talk are web-based clients that run their
own protocol [13]. Meebo and E-Buddy, on the other hand, are browser-
based clients that rely on other instant messaging services (e.g., Yahoo,
MSN or AOL) [3].

The machine settings were verified prior to conducting the tests. The
default virtual memory size was set at 768 MB to 1,536 MB, and the
registry was checked to ensure that the page file is not erased during
shut down [9]. Test data was created by conducting three different con-
versations for each messaging program. The conversations were limited
to two participants and lasted three to four minutes. The frequency of
the conversations closely imitated real-life scenarios; suspects generally
engage in multiple, short conversations with their victims. The conver-
sations were initiated by another machine, after which the laptop user
replied to the message with unique phrases that would help identify the
conversation.

The first step in the forensic examination was to acquire a bit-stream
image of the laptop. Access Data’s Forensic Toolkit (FTK) Imager ver-
sion 2.5.1 and a Tableau T5 IDE write blocker with a 2.5 inch adapter
were used for image acquisition. After acquiring and verifying the im-
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Table 1. Unique phrases used as keywords.

AOL Google Talk Meebo E-Buddy

bannnnanas fuzzie logyck meebomeebo functionza
weirdtheme spaces spled wrong thisfoodisok documnt this consrvation
this is a space toomany generastso 999-222-2222

age of the laptop hard drive under FTK Imager, the file was indexed
using FTK version 1.7.1 build 07.06.22. Prior to reviewing the image,
a keyword list containing distinct phrases used during the conversations
was created (Table 1). Keyword searches based on the list were run on
the indexed drive, resulting in a relatively fast sweep of the hard drive
image. Unfortunately, this yielded fewer results than expected, making
it necessary to perform a live (un-indexed) search with FTK.

Runtime DiskExplorer for NTFS version 3.03 was then used to exam-
ine the hard drive image at a lower level. Sector-by-sector searches were
conducted to find the distinct phrases used during the conversations.
This method was necessary due to the nature of volatile messaging. Af-
ter the browser is closed and the page file contents are erased, data often
resides in unallocated space until the operating system re-allocates the
cluster. Performing a cursory search using an indexed image typically
yields limited results in the case of volatile messaging.

Table 2. Artifacts from volatile messaging clients.

Program Time Conversation Screen Buddy List
Estimate Details Names Details

AIM Express X X X X
Google Talk X X X X
Meebo X
E-Buddy X X

4. Results

Table 2 lists the artifacts discovered in the four volatile messaging
clients. Evidence of forensic value was retrieved from every volatile mes-
saging client; however, complete chat logs were not recoverable.

Artifacts were found in various Internet file caches used by Internet
Explorer. Each cache holds a different piece of data. The History.IE5

directory contains an Index.dat file, which maintains a log of the user’s
Internet history without caching the content. This file is crucial to re-
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constructing a suspect’s browsing history because the file contains the
URL of the site visited, the last time the page was visited, and the num-
ber of times the page was viewed [6]. Also, several sub-directories within
History.IE5 show the date ranges for the logged entries.

The Temporary Internet Files\Content.IE5 sub-directory stores
cached web pages and images that the user has viewed, and makes them
readily accessible should the site be visited again. This was implemented
to reduce the time needed to load web pages; however, it also provides
the forensic examiner with valuable information about user activity. In
addition, the Cookies sub-directory contains files that web pages place
on the user’s computer. These “cookies” are used by web sites to track
user behavior and maintain personalized settings.

Many of the remaining artifacts were found in the drive free space
(i.e., unallocated space on the drive). They consisted of screen names
and, in the case of AIM Express, fragments of the buddy list. Snippets
of AIM Express and Google Talk conversations were also found in the
same location. Windows XP is known to use this space to store data
that does not have to remain in memory or be saved on the hard drive.
Note that this data is eventually overwritten.

Screen names were found in the pagefile.sys set of files. The op-
erating system uses a page file to store information that should be in
physical memory, but is not because it is used infrequently. The size
of the page file is variable, but within a specified range; by default, the
Windows XP range is 756 MB to 1,512 MB [14]. The forensic implica-
tions of modifying this range were not investigated in this study.

4.1 AIM Express

AIM Express left behind several artifacts, including snippets of con-
versations, details of the buddy list and approximate times when the
conversations took place. The buddy list is extremely helpful in forensic
investigations; this list can be used as a reference point to establish a so-
cial network. The approximate times of conversations can be estimated
based on Index.dat entries made by AIM Express; these times can be
used to construct timelines and sequences of key events.

Snippets of the other user’s conversations and the buddy list were also
found in the file slack and pagefile.sys file (Figure 1). This seems to
agree with the observations of Dickson [2], except that this data was
found on the hard disk rather than in RAM. In traditional instant mes-
saging programs, such as AIM, chat logs are stored in files under loca-
tions specified by the user or in default locations such as the Program

Files directory. Web-based conversations, unless specifically logged by
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Figure 1. Conversation snippet from slack space.

Figure 2. Screen name and profile message in fetchBuddyInfo.htm file.

the user, are stored in temporary Internet directories that may or may
not remain after the browser is closed. If these directories have been
deleted or overwritten, more powerful forensic tools are required to view
conversations in drive free space or file slack.

The fetchbuddyInfo.htm file, which is found under the Temporary

Internet Files\Content.IE5 directory within the profile’s local set-
tings, contained expanded buddy list information for the screen names
obtained from the laptop (Figure 2). This information is valuable in



Kiley, Dankner & Rogers 135

cases where additional profile evidence is necessary. A profile often lists
personal interests and hobbies, possibly even a home address. In addi-
tion, the expanded profile can provide investigative clues about the sus-
pect’s behavior and potential contacts, and help determine geographic
areas of activity.

The Index.dat entries in Temporary Internet Files\Content.IE5
show the screen name of the user as well as the time of the conversation.
This allows an investigator to make an estimate of when the conversation
took place. Finally, the user’s screen name can be found in the following
files: $Logfiles, $MFT records, username@aimexpress.aol[1].txt

and aimtoday.aim[1].txt. Although these files may not provide cru-
cial evidence, they can be used to corroborate other events.

4.2 Google Talk

Google Talk left several artifacts in the Temporary Internet Files\
Content.IE5 directory, e.g., the accountinfo.htm file, which displays
the screen name used to sign on to Google. More importantly, the data
gathered from slack space showed portions of all three conversations
from both parties. These conversations were found by running keyword
searches on the unique phrases used to distinguish the conversations. It
is important to note that un-indexed searches were used to obtain these
results; a normal indexed search yielded no results. Entries made in the
Index.dat file within the History.IE5 directory were also discovered.
These entries can be used to correlate the time the user logged into gmail
and the interface through which Google Talk was accessed.

4.3 Meebo and E-Buddy

Details about Meebo and E-Buddy conversations could not be found.
The two programs function as true volatile messaging clients – virtually
all the information about a conversation disappears after it ends. This
is partly due to the heavy use of JavaScript on both websites. By main-
taining a constant server-side connection via JavaScript, the site is able
to maintain the appearance of a desktop application [8]. However, this
has the effect of limiting the amount of information that can be gathered
from the hard drive. Ultimately, the most useful artifacts found were the
Index.dat entries, which showed when the E-Buddy and Meebo web-
sites were accessed. In addition, the ebuddy.htm file in the Temporary

Internet Files folder retains the screen name that the user used to
sign on to the service.
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5. Investigative Framework

Having discussed the artifacts that can be recovered from web-based
instant messaging programs, we present a preliminary framework for
investigators. This framework has three phases: recognition, formulation
and search.

Recognition: The first step in searching for evidence of volatile
messaging is to identify if and when a web-based instant mes-
saging conversation took place using the suspect machine. This
is accomplished by searching for the existence of temporary In-
ternet files or Index.dat entries that indicate the suspect signed
on to a messaging service. For example, AIM conversations are
indicated in temporary Internet files (e.g., fetchBuddyInfo.htm)
while Google Talk conversations are identified by the presence of
the AccountInfo.htm file. In situations where the Internet his-
tory or cache have been erased or are unavailable, manual indexed
and non-indexed searches using the files mentioned above or search
terms such as .Ebuddy may also yield results. Note that E-Buddy
uses named servers (e.g.,“Kentucky”) for logging in clients.

Formulation: The formulation phase uses data gathered from
the recognition phase to populate the list of possible screen names
and other keywords used as input in the search phase. Snippets
of previous instant messaging conversations may also be used to
populate the list. In addition, any unique or misspelled words
known by the investigator should be included in the list of search
terms as they are likely to be found in chat conversations [11].

Search: The search phase uses indexed and un-indexed searches to
locate volatile messaging artifacts. Fast indexed searches that use
the list created during the formulation phase should be performed
first. If the results are inconclusive or incomplete, “live” or un-
indexed searching is necessary. This is especially true for items
found in slack or unallocated space because text residing in these
locations may not be properly indexed by the forensic tool. The
results from this phase can be used in subsequent searches.

The most challenging aspect of an examination is finding proof that a
volatile messaging conversation ever took place. However, once evidence
of this activity is found, search terms may be compiled and executed.
Complete conversations may never be uncovered. Nevertheless, exten-
sive live and un-indexed searches often yield successful results.
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6. Conclusions

Web-based instant messaging presents challenges for forensic examin-
ers due to the volatile nature of the data and artifacts created by the
messaging programs. Forensic evidence is recoverable after these pro-
grams have been used, but investigators must know certain elements of
the conversations in order to perform string searches. Even so, time-
consuming sector-by-sector searches are required to uncover all the po-
tential evidence.

Our research has revealed that several useful items of information
can be recovered; these include the list of user contacts, snippets of
conversations and the approximate time of the last conversation. In
most cases, multiple instances of these items are found; they can be
used to help corroborate other pieces of evidence found on the target
system. The investigative framework proposed for the four web-based
instant messaging programs considered in our study formalizes the task
of evidence recovery. However, additional research is required to test
the validity of this framework on other browsers and instant messaging
clients.
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Chapter 12

TIMELY ROOTKIT DETECTION
DURING LIVE RESPONSE

Daniel Molina, Matthew Zimmerman, Gregory Roberts, Marnita Eaddie
and Gilbert Peterson

Abstract This paper describes a non-intrusive rootkit detection tool designed to
support forensic investigations that involve the live analysis of com-
puter systems. The tool, which does not require pre-installation, corre-
lates outputs from multiple system data gathering utilities. Test results
indicate that the tool successfully detects several well-known rootkits,
including Hacker Defender, AFX, Vanquish, FU and FUto.

Keywords: Rootkit detection, live response

1. Introduction

Rootkits enable attackers to have undetected access to computer sys-
tems; they hide an attacker’s presence by manipulating system data
and/or operating system code. These malicious programs hamper digi-
tal forensic investigations – evidence that is collected carefully may still
be compromised by active rootkits. In particular, rootkits may prevent
forensic tools from gathering accurate information. Addressing this is-
sue requires investigators to run more intrusive tools that can alter the
system state.

This paper describes a rootkit detection tool designed for live analysis
that minimizes system modification. The tool, which does not require
pre-installation, correlates outputs from multiple system data gather-
ing utilities. The detection tool has proved to be effective against five
rootkits: Hacker Defender [8], AFX [14], Vanquish [17], FU [15] and
FUto [16]. In the tests, these rootkits were hiding a backdoor (Back
Orifice 2000 [19]) and a folder containing four files.

Please use the following format when citing this chapter: 

Information Processing, Volume 285; Advances in Digital Forensics IV; Indrajit Ray, Sujeet Shenoi; (Boston: Springer), 
pp. 139–148. 

Molina, D., Zimmerman, M., Roberts, G., Eaddie, M. and Peterson, G., 2008, in IFIP International Federation for



140 ADVANCES IN DIGITAL FORENSICS IV

2. Rootkits

Rootkits are programs that enable attackers to have undetected access
to computer systems. The term “root” comes from the UNIX world
where “root” is the highest level of privilege afforded to a user. Originally
written for UNIX, rootkits now target a variety of operating systems.

A rootkit typically incorporates Trojaned system processes and scripts
that automate the actions involved in compromising systems [12]. Root-
kits often attempt to be untraceable by hiding files, network connections,
memory addresses and registry entries. Some rootkits are embedded in
other programs or media as in the case of the rootkit found in Sony CDs
in 2005 [4].

Windows rootkits – like those that target UNIX systems – seek the
highest possible privilege level. Windows runs on the Intel x86 archi-
tecture, which employs a memory protection scheme using four rings
(Rings 0–3). Ring 0, which has the highest level of privilege, represents
the memory space where the operating system kernel and drivers reside.
Ring 3 has the lowest privilege level and represents the memory space
where user applications reside.

Stealthy rootkits tend to operate at a lower ring than Ring 3 where
rootkit detection and prevention software typically operates. Hoglund [7]
and Rutkowska [18] note that placing a rootkit detector in a lower ring
increases the detection rate. On the other hand, a rootkit that executes
in a lower ring than a detector can control or fabricate the information
gathered by the detector, which enables the rootkit to remain hidden.

The rootkit detection technique described in this paper correlates out-
puts from multiple system data gathering utilities. These utilities are
executed from user space (Ring 3) without prior installation.

2.1 Rootkit Categories

Rootkits are categorized as kernel, library, user-level, hardware-level
and virtual machine based rootkits. Some rootkits fall in multiple cate-
gories, e.g., those with kernel and user-level components.

Kernel Rootkits: These rootkits add additional kernel code and/or
replace a portion of kernel code to enable them to obtain stealthy
control of computer systems.

Library Rootkits: These rootkits achieve stealth by modifying sys-
tem libraries used by user and/or kernel applications [2].

User-Level Rootkits: These rootkits, also called application-level
rootkits, are programs that modify system files or binaries on
disk [11].



Molina, et al. 141

Hardware-Level Rootkits: These rootkits attempt to subvert com-
puter systems at the lowest level. They are extremely difficult to
implement, but Heasman [6] has demonstrated that such rootkits
are possible. We do not attempt to detect hardware-level rootkits
because of their complexity and lack of availability.

Virtual Machine Based Rootkits (VMBRs): These rootkits at-
tempt to take control of the virtual machine monitor (VMM),
which lies between the hardware and operating system. Thus,
VMBRs are able to control requests to the hardware that origi-
nate from the upper levels. A VMBR typically modifies the boot
sequence and loads itself instead of the chosen VMM or operating
system. After it is loaded, the rootkit loads the host operating sys-
tem as a virtual machine. An example of a VMBR is SubVirt [9].

A VMBR is difficult to detect during live analysis because rootkit
detection software is executed within the virtual machine. Soft-
ware running on the target machine cannot access the state of a
VMBR [9]. From the user’s perspective, a VMBR is in a hidden
VMM where malware can operate without interference. A VMBR
thus has the ability to access all keystrokes, network packets, mem-
ory allocations, system events, etc. We do not attempt to detect
VMBRs because of their complexity and lack of availability.

2.2 Rootkit Hiding Techniques

Kernel and user-level rootkits apply various hiding techniques, either
individually or in combination. The principal hiding techniques are:

Patching: This technique involves static or dynamic modification
of binaries. Static patching is also used by software crackers to
bypass software protection and registration methods.

Hooking: This technique redirects or alters the normal flow of
execution of a program by modifying one or more function calls
in memory. Hacker Defender is an example of a rootkit that uses
hooking.

Direct Kernel Object Manipulation: This technique exploits the
way the Windows OS schedules processes. Malicious processes are
hidden by removing their entries from the doubly linked list used
by the Windows Object Manager [7]. FU and FUto are examples
of rootkits that use this hiding technique.



142 ADVANCES IN DIGITAL FORENSICS IV

2.3 Rootkit Detection Techniques

Rootkit detectors fall in one or more of the following categories [21]:

Signature Based Detectors: These detectors scan system files for
rootkit fingerprints.

Heuristic/Behavioral Based Detectors: These detectors check for
deviations from normal system behavior.

Cross-View Based Detectors: These detectors compare system pa-
rameters obtained in two or more different ways to detect incon-
sistencies or anomalies.

Integrity Based Detectors: These detectors compare the current
snapshot of a system to a known trusted snapshot.

Hardware-Based Detectors: These detectors employ direct mem-
ory access to retrieve data, which is scrutinized for rootkit finger-
prints.

At the time of writing this paper, software-based rootkit detectors
have components that execute from user space, kernel space or both. A
detector is much more effective when it runs at a level below the rootkit.
For example, if a rootkit only executes in user space then the detector
has a better chance of detecting the rootkit from kernel space.

Kernel-level rootkits can be identified by a detector that coexists with
the rootkit in kernel space or by a hardware-based detector. However,
such detectors cannot be used during a live response because they affect
evidence integrity.

Some anti-virus programs include rootkit detection features. For ex-
ample, F-Secure Internet Security 2005 offers “manipulation control,”
a behavior-blocking mechanism that prevents malicious processes from
manipulating other processes [5].

Some of the well-known rootkit detectors are:

BlackLight: This Windows rootkit detector identifies rootkit files,
folders and processes, but not hidden registry keys [20]. It offers
a removal option for detected rootkits; however, this feature must
be used with care to avoid problems with the computer system.

RootkitRevealer: This Windows tool detects rootkits by perform-
ing a high level scan from user space and a raw disk scan; the
results of the two scans are compared for anomalies. The tool re-
ports differences in the Windows registry and file system. However,
it does not have any rootkit removal capabilities [20].
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IceSword: This Windows tool suite includes a process viewer,
startup analyzer, port enumerator and other utilities. The tool
only provides data, leaving rootkit identification to the user [20].

Chkrootkit: This UNIX shell script checks specific system binaries
to determine if a rootkit has been installed [10].

Rootkit Hunter: This UNIX rootkit detector performs MD5 com-
parisons of critical system files and searches for known rootkit files,
hidden files and suspicious information in loadable kernel modules.
Also, it checks file permissions and scans plain text and binary files
for strings that indicate the presence of rootkits [1].

3. Live Response Analysis

Digital forensic investigators typically employ live analysis tools (e.g.,
FRED or Helix) to collect evidence from running systems. However,
even if the evidence is collected carefully and documented diligently, it
may be compromised by active rootkits.

Forensic investigators must be cognizant of how user-level and kernel-
level rootkits affect the integrity of computer systems. User-level rootkits
alter the security subsystem and display inaccurate information; they in-
tercept system calls and filter output APIs to hide processes, files, system
drivers, network ports, registry keys and paths, and system services [3].
Kernel-level rootkits usurp system calls, hide processes, registry keys
and files, and redirect calls to Trojan functions [13].

Due to the increasing threat of rootkits and their impact on computer
systems, digital forensic investigators must strive to detect rootkits in
a timely manner. Rootkit detection tools can aid investigators in de-
termining if rootkits are present and which data may have been com-
promised. Some of these tools have to be installed before a system is
exposed to a hostile environment. Installing a rootkit detector during
live analysis can dramatically alter the state of the system.

Once a computer system is turned off, a rootkit cannot actively hide
itself or other information that could indicate its presence. A forensic
investigator may, therefore, conduct an off-line analysis of the computer
image and search for signatures that reveal the presence of rootkits.
However, even if a rootkit is detected, the investigator may have difficulty
determining whether or not the rootkit was active.

4. Rootkit Detection System

The Windows rootkit detection system described in this section uses
open source utilities that perform a system scan from user space. These
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utilities, which do not have to be pre-installed, are executed via a batch
script that runs each utility and sends its output to a separate file. After
the batch script completes, data from the output files is correlated by
an automated analysis program to identify discrepancies. A Java-based
GUI with a file parser is used to generate a report of the discrepancies.
Because the utilities are executed from trusted media, it is important
that the GUI and parser utility also run from trusted media. This is
accomplished by using a Java Runtime Environment (JRE) located on
the trusted media source.

The rootkit detector provides investigators with the ability to initiate
a batch job that invokes all the command line utilities and scans the
output files for potential threats. The outputs of the utilities are ana-
lyzed for (i) differences between output files that should display identical
information, and (ii) combinations of discrepancies that could indicate
possible threats. While it is simple to classify all of the differences be-
tween the outputs, it is difficult to categorize and assess all possible
combinations of discrepancies. Therefore, the detector focuses on cer-
tain key differences and combinations of these differences.

Figure 1 illustrates the identification of discrepancies. The scenario
involves identifying the presence of a hidden file called secret.hide by
examining directory listings produced by two different tools (dir and
ls). This method is effective at discovering files hidden by the Vanquish
rootkit.

Having identified the discrepancies in the output files, predefined de-
tection rules are applied to determine if the discrepancies indicate the
presence of a rootkit. Figure 2 presents a scenario where three discrep-
ancies have been identified: Discrepancy A comes from comparing the
outputs of dir and ls.exe, Discrepancy B comes from comparing the
outputs of pslist.exe and handle.exe, and Discrepancy C comes from
comparing the outputs of dir and handle.exe. Information about the
discrepancies is passed to the detection rules (as in Figure 2), which
determine if a rootkit is present or not.

5. Results

The Windows-based rootkit detection tool was tested on a system
running Windows XP with Service Pack 2. To make the testing pro-
cess consistent, the victim system was run on VMWare, which enables
malicious code (e.g., rootkits) to be executed without infecting the host
operating system. In addition, it enables the user to start or stop a test
image quickly and reliably, and to go back to previous snapshots.
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Figure 1. Identification of discrepancies.

Initial tests involved running the batch script and analyzing each out-
put file for evidence of a rootkit. The output file of handle.exe clearly
indicated the presence of the Hacker Defender rootkit via a non-existent
process with a PID and an object named Hacker Defender. The AFX
and Vanquish rootkits were also detected during initial testing.

The next step was to perform tests against rootkits that employed
more sophisticated hiding techniques (i.e., kernel-level subversion). The
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Figure 2. Discrepancy combinations used for detecting rootkits.

rootkits tested were FU and FUto, both hiding the Back Orifice PID.
The tool identified the Back Orifice PID, but was unable to identify the
FU and FUto PIDs. However, upon performing a directory listing of
the folder C:\Windows\Prefetch, it was determined that bo2K.exe and
FU.exe had prefetch files that indicated that the two programs had been
executed.

Table 1. Experimental results.

Rootkit Rootkit PID Bo2k PID Bo2k Port Hidden Data

Hacker Defender Found Found Not Found Found
AFX Found Found Not Found Found
Vanquish N/A N/A N/A Found
FU Not Found Found Not Found N/A
FUto Not Found Found Not Found N/A

Table 1 summarizes the experimental results. The principal result
is that Back Orifice was detected for all the user-level and kernel-level
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rootkits tested. However, the rootkit detection tool was unable to locate
Back Orifice’s open ports.

6. Conclusions

Evidence collected during live analysis of systems can be compromised
by active rootkits. Digital forensic investigators need automated tools
that can detect rootkits during live response investigations of computer
systems. The rootkit detection tool described in this paper has proved
to be relatively effective in tests. Specifically, the tool was able to iden-
tify the PIDs of the Hacker Defender, AFX, and Vanquish rootkits, the
PIDs of their backdoors and the folders they were attempting to hide.
Tests against the FU and FUto rootkits were not as successful; the only
evidence obtained was the name of the executable FU.exe in the prefetch
folder. On the other hand, the PID and file name of Back Orifice were
easily detected although FU and FUto were attempting to hide this
information.

Topics for future research include performing experiments with other
rootkits and backdoors, conducting an exhaustive examination of the
Windows API to identify all the alternative ways for obtaining system
information, and investigating rootkit detection in UNIX environments.

Acknowledgements

This research was supported by the Anti-Tamper Software Protec-
tion Initiative Technology Office, Sensors Directorate, U.S. Air Force
Research Laboratory. The views expressed in this paper are those of the
authors and do not reflect the official policy or position of the U.S. Air
Force, U.S. Department of Defense or the U.S. Government.

References

[1] M. Boelen, Rootkit Hunter (www.rootkit.nl/projects/rootkit hunt
er.html).

[2] A. Chuvakin, An Overview of Unix Rootkits, iALERT White Paper,
iDefense Labs, Chantilly, Virginia, 2003.

[3] K. Dillard, What are user-mode vs. kernel-mode rootkits? (search
windowssecurity.techtarget.com/originalContent/0,289142,sid45 gc
i1086469,00.html), 2005.

[4] J. Evers, Microsoft will wipe Sony’s rootkit, CNET News.com,
November 13, 2005.

[5] F-Secure, The Threat – Rootkits, Helsinki, Finland (www.virus.fi
/blacklight/rootkit.shtml).



148 ADVANCES IN DIGITAL FORENSICS IV

[6] J. Heasman, Implementing and Detecting a PCI Rootkit, Next Gen-
eration Security Software, Sutton, United Kingdom, 2006.

[7] G. Hoglund and J. Butler, Rootkits: Subverting the Windows Kernel,
Addison-Wesley, Boston, Massachusetts, 2005.

[8] Holy Father, Hacker Defender (hxdef), 2005.

[9] S. King, P. Chen, Y. Wang, C. Verbowski, H. Wang and J. Lorch,
SubVirt: Implementing malware with virtual machines, Proceedings
of the IEEE Symposium on Security and Privacy, pp. 314–327, 2006.

[10] J. Levine, B. Culver and H. Owen, A methodology for detecting
new binary rootkit exploits, presented at the IEEE SouthEastCon
Technical Conference, 2003.

[11] J. Levine, J. Grizzard and H. Owen, Detecting and categorizing
kernel-level rootkits to aid future detection, IEEE Security & Pri-
vacy, vol. 4(1), pp. 24–32, 2006.

[12] K. Mandia, C. Prosise and M. Pepe, Incident Response and Com-
puter Forensics, McGraw-Hill/Osborne, Berkeley, California, 2003.

[13] S. McClure, J. Scambray and G. Kurtz, Hacking Exposed: Net-
work Security Secrets and Solutions, Osborne/McGraw-Hill, Berke-
ley, California, 2001.

[14] Rootkit.com, AFX Rootkit (www.rootkit.com).

[15] Rootkit.com, FU Rootkit (www.rootkit.com).

[16] Rootkit.com, FUto Rootkit (www.rootkit.com).

[17] Rootkit.com, Vanquish Rootkit (www.rootkit.com).

[18] J. Rutkowska, Introducing Stealth Malware Taxonomy, Techni-
cal Report, COSEINC Advanced Malware Labs (invisiblethings.org
/papers/malware-taxonomy.pdf), 2006.

[19] Sourceforge.net, Back Orifice 2000 (www.bo2k.com).

[20] Tech Support Alert, Rootkit Detection and Removal (www.pcsupp
ortadvisor.com/rootkits.htm), 2006.

[21] A. Todd, J. Benson, G. Peterson, T. Franz, M. Stevens and R.
Raines, Analysis of tools for detecting rootkits and hidden pro-
cesses, in Advances in Digital Forensics III, P. Craiger and S. Shenoi
(Eds.), Springer, Boston, Massachusetts, pp. 89–105, 2007.



VI

NETWORK FORENSICS



Chapter 13

IDENTIFYING AND ANALYZING
WEB SERVER ATTACKS

Christian Seifert, Barbara Endicott-Popovsky, Deborah Frincke,
Peter Komisarczuk, Radu Muschevici and Ian Welch

Abstract Client honeypots can be used to identify malicious web servers that at-
tack web browsers and push malware to client machines. Merely record-
ing network traffic is insufficient to perform comprehensive forensic anal-
yses of such attacks. Custom tools are required to access and analyze
network protocol data. Moreover, specialized methods are required to
perform a behavioral analysis of an attack, which helps determine ex-
actly what transpired on the attacked system. This paper proposes a
record/replay mechanism that enables forensic investigators to extract
application data from recorded network streams and allows applications
to interact with this data in order to conduct behavioral analyses. Im-
plementations for the HTTP and DNS protocols are presented and their
utility in network forensic investigations is demonstrated.

Keywords: Network forensics, malicious web servers, client honeypots

1. Introduction

Network forensic readiness involves “maximizing the ability of an en-
vironment to collect credible digital evidence while minimizing the cost
of incident response” [11]. The goal is to simplify network forensic tasks
without sacrificing the quality of digital evidence. This can be achieved
using specialized techniques and tools as well as by embedding forensic
capabilities in networks, thus “operationalizing” network forensic readi-
ness [1].

This paper examines network forensic readiness in the context of ma-
licious web servers. Malicious web servers push malware to client ma-
chines – so called “drive-by-downloads” – by exploiting web browsers.
A previous study [10] used client honeypots to find malicious servers on
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the Internet. However, once identified, the attack origin and mechanism,
and the actions performed by the malware could not be explained.

A major challenge is to extract and interact with application data from
recorded network streams. In particular, it is difficult to demonstrate
and analyze attacks because the streams have to be piped via network
channels through the client application to execute the identical code
path that made an attack possible. Since the attack source code is not
readily available, analyzing system behavior (referred to as “behavioral
analysis”) is the primary means to infer the inner workings of an attack.

Network and application protocols do not support the replay of net-
work data to analyze how an attack impacted an application or system.
This inability has contributed to inadequate network forensic readiness
in the context of client-side attacks.

This paper presents a custom solution using web and DNS proxies and
demonstrates its utility in network forensic investigations. The solution,
however, is specific to the HTTP and DNS protocols [3, 7] and is not
easily generalizable. This is why the paper also calls for the support
and implementation of a record/replay mechanism in these protocols to
provide a generic network forensic solution.

2. Background

This section discusses the problems posed by malicious web servers
and the overall lack of forensic readiness to cope with attacks.

2.1 Malicious Web Servers

Our previous study [10] concerned itself with identifying “drive-by-
downloads,” an emerging type of attack executed by malicious servers
on client machines. These attacks target vulnerabilities in client appli-
cations and usually alter the state of the client machine without user
consent. Typically, the malicious server installs malware on the client
machine without the user’s knowledge.

Our work concentrated on identifying malicious web servers that at-
tack web browsers. The mere retrieval of a malicious web page with
a vulnerable browser results in a successful compromise of the client
machine. The web environment was chosen because these attacks are
currently the most common type of drive-by-downloads.

We identified malicious web servers using high-interaction client hon-
eypots. Such a honeypot uses a dedicated operating system to drive a
vulnerable browser to interact with a potentially malicious web server.
After each interaction, the operating system is checked for unauthorized
state changes, e.g., new executable files in the startup folder. If any
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Figure 1. Client honeypot.

unauthorized state changes are detected, the server is classified as mali-
cious (Figure 1).

Twelve instances of a high-interaction client honeypot were used to
inspect about 300,000 web pages over a three-week period. A total of
306 malicious URLs were identified that successfully attacked a standard
installation of Microsoft Windows XP SP2 with Internet Explorer 6.0
SP2. The malicious servers took control of the machine and primarily
installed malware that attempted to defraud the user.

Unauthorized state changes to the client machines were recorded when
the client honeypots identified malicious web servers. In addition, net-
work data was collected using the tcpdump tool [6] and stored in libpcap

data files. This data contained all the network traffic sent to and from
a client honeypot, including HTTP and DNS requests and responses.
Interested readers are referred to [10] for more details about the use of
high-interaction client honeypots.

2.2 Forensic Analysis

Analysis of network and application data (DNS records, HTML pages
and IP source addresses) helps identify the servers involved in attacks
and their role in the attacks. Also, the inspection of HTML pages reveals
embedded source code, which could provide information about attack
mechanisms.
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In general, an attack incorporates an exploit that targets a vulnera-
bility and a payload that is executed after the vulnerability is exploited.
Usually, the embedded source code only implements the initial exploit.
The payload, which is typically in the form of a binary, requires behav-
ioral analysis to determine how it operates. Behavioral analysis requires
the attack code to be executed again on the client machine, but this
is difficult to accomplish for several reasons, including server location,
server domain name and security context. Opening a web page from a
web server is quite different from opening it as a file. A page that is
opened from a previously-saved file might not trigger. In fact, to trigger
successfully, the attack code has to be sent to the client application via
the network as if it originated from the malicious server.

Recorded network data does not lend itself to straightforward forensic
analysis. Application data embedded in libpcap files has to be extracted
using custom tools; but, even then, the data may not directly support
behavioral analysis. For example, HTML pages extracted with these
tools cannot be fed to a browser to provide information about if and
how the attack occurred.

Note that it is difficult to develop an application that interacts with
a malicious server in order to analyze an attack. This is because the
dynamic nature of the network makes malicious web servers appear
different over time. Also, it is often the case that hackers implement
fluctuations to hide attack sources and hinder forensic investigations of
attacks. As a result, forensic analyses of attacks must be based on the
data recorded during the initial identification of malicious web servers.

2.2.1 Replaying Network Data. In order to replay network
traffic at the transport layer, recorded packets must be placed back on
the wire. The technique involves splitting the network flow into server
traffic and client traffic. After one side of the flow, say client traffic,
is selectively placed on the wire, the server would have to recognize a
request as if it originated from a client and provide the normal response.

Separating the network flow into client and server packets is an easy
task. It is done by filtering the network flow by client source or server IP
address. However, having the client or server interactively respond to the
replayed network traffic is not a capability that is normally supported
by the transport layer of a network protocol such as TCP [5] (regardless
of whether IPv4 [4] or IPv6 [2] is employed).

Several mechanisms of the TCP protocol are responsible for this. TCP
is a stateful protocol that uses a three-way handshake to establish a
connection between a client and server. First, the client sends a TCP
packet to the server with the ACK flag set. The server acknowledges
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Figure 2. Ephemeral port assignment.

this connection request by sending a TCP packet with the ACK and
SYN flags set. The connection is established when the client sends a
TCP packet with the ACK flag set. Sequence numbers are exchanged
during the handshake to identify the other party in each communication.
Thus, connections cannot be established when TCP traffic is replayed
by placing only one side of the network flow on the wire.

Another difficulty is posed by ephemeral ports that are created by
the client to accept response packets from the server during the pro-
cess of establishing a connection. In other words, the client applica-
tion temporarily becomes a server. An ephemeral port is dynamically
assigned in the high port range with each connection as shown in Fig-
ure 2. This port remains closed when no connection is being estab-
lished. Replaying network traffic against the client requires matching
the temporarily-opened ephemeral port with the destination port speci-
fied in TCP packets. Without this matching, the traffic would not reach
the client application.
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The tcpreplay tool [14] can place recorded packets back on the wire,
but it does so in a passive manner without modifying the recorded pack-
ets to address the TCP handshake and ephemeral port assignment con-
straints. It places packets on the wire in their original form mainly for
the purpose of testing network performance and inline security devices
(e.g., firewalls and intrusion detection systems).

2.2.2 Network Fluctuations. The dynamic nature of net-
works prevents forensic investigators from retrieving the original content
from malicious web servers. Having identified a malicious web server,
subsequent attempts to interact with the server and retrieve informa-
tion to support attack analysis are hindered by network fluctuations. In
particular, the server may exhibit non-deterministic behavior, provid-
ing content that is different from what was originally sent to the client
application.

The simplest technique used by hackers to implement network fluc-
tuations is to remove the malicious content from the server. A second
mechanism is to manipulate DNS (the service that maps host names
to IP addresses of physical machines) to resolve to different physical
machines whenever a host name lookup is performed. Such network
structures are referred to as fast-flux networks [12]. This makes the
attack infrastructure more resilient to failure and also hinders forensic
investigations.

A third network fluctuation technique uses a mechanism known as
“IP tracking.” Exploitation kits deployed on web servers, such as Mpack
v0.94 [9], can be configured to trigger only during the initial contact with
a malicious web server. Subsequent interactions with the web server from
the same IP address provide the identical, albeit benign, web pages.
Thus, the malicious web server that launched an attack on the client
honeypot appears to be benign to the forensic investigator.

3. Proposed Solution

Our solution engages a record/replay mechanism in which recorded
data is played back through the client application (Figure 3). This makes
it much easier to extract relevant information from the data. Instead of
writing a custom forensic analysis application, the existing functionality
of the client application can be used to extract information from network
data. Moreover, replaying recorded data through the client application
supports behavioral analysis.

As mentioned above, implementing a record/replay mechanism at the
network transport layer poses several challenges. Therefore, our solution
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Figure 3. Record/replay mechanism.

uses the application layer to implement record/replay. Specifically, all
client application and malicious web server communications are routed
through a proxy that records all the application data. The proxy, if
instructed to replay the stored data instead of fetching it from the actual
server, can repeatedly replay the server responses to the client.

Figure 4. Proxy architecture.

The top portion of Figure 4 presents the proxy architecture. The ar-
chitecture supports forensic analysis because the proxy server stores all
the data during the initial operation of the client honeypot. In particu-
lar, it is possible to perform a behavioral analysis of the attack code using
a browser. The browser makes the HTTP request, which is routed via the
proxy. Since the proxy already knows the response, it returns the server
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Figure 5. Squid configuration options.

response it has already saved without passing another request to the
malicious server. Furthermore, the application data is easily retrieved
even though it might have been stored by the proxy in a proprietary for-
mat. Browsers and DNS clients can obtain and decode the proxy data.
For example, WGET could obtain the HTTP response, and the HOST
tool could translate DNS responses stored on the proxy server. Thus,
our solution reuses the code of existing tools, eliminating the need to
procure custom tools for extracting and analyzing application data.

3.1 Proxy Solution

Web browsing uses two application protocols (HTTP and DNS). Con-
sequently, two proxy solutions are implemented: a web proxy that routes
and stores HTTP data and a DNS proxy that performs the same oper-
ations on DNS data.

The web proxy relays HTTP data and stores this data in its cache.
The caching functionality, which is part of the HTTP/1.1 specification
[3], improves response performance and availability, and permits discon-
nected operation (to some extent). The caching functionality was not
designed for forensic purposes, rather to enhance performance and avail-
ability. Because of this focus, it is also concerned with data staleness
and, therefore, defines a mechanism that checks whether a newer re-
source is available or whether the resource itself should never be cached.
A proxy utilizes constraints on freshness and security/privacy as well as
cache correctness.

If a web proxy adheres to these functional requirements strictly, a
saved malicious web page might be invalidated by the freshness con-
straint and fetched again from the server upon a subsequent request. In
contrast, our solution attempts to use the web proxy for storage rather
than caching without applying the mechanisms defined in the HTTP/1.1
specification. In particular, it uses Squid [15], an open source web proxy
implementation. Squid is highly configurable and permits deviations
from the HTTP/1.1 specification. In fact, the forensic requirements for
the web proxy can be achieved using the Squid configuration settings
shown in Figure 5.
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DNS proxies, similarly to web proxies, are designed to store DNS re-
sponses in their caches for a predefined period of time. Once the validity
of a DNS response has expired, the DNS proxy must perform another
DNS lookup on the actual DNS server. Again, an implementation is
needed that can override this behavior. This can be done using pdnsd

[8], a simple DNS daemon with permanent caching designed to deal
with unreachable or down DNS servers (e.g., in dial-up networking).
The purging of older cache entries can be prevented by setting the max-
imum cache size to a high value (e.g., using the configuration option
perm cache=204800).

3.2 Limitations

The proposed solution has some limitations. First and foremost, it
is not easily applicable to other network data. The HTTP and DNS
protocols are based on a simple request/response model. Since the pro-
tocols were designed at a time when dial-up networks dominated, caching
proxies were incorporated to conserve resources and increase reliability.
Proxy storage capabilities facilitate forensic data collection and analysis;
however, they are unlikely to be provided by modern protocols. For ex-
ample, peer-to-peer protocols and other popular protocols such as SSH
do not have a simple request/replay structure, which makes it difficult
to offer proxy record/replay capabilities.

Second, the proxy solution does not provide the same interactivity as
a real server. State information (e.g., for authentication) is held by the
client and is usually conveyed back to the server in the form of a cookie.
While a proxy is able to store this information, a client would have to
adhere to the same request sequence to solicit the same responses. For
example, if a client accesses a web page after authentication, it would
have to be re-authenticated before it could access the same web page
from the server at a later time; this is because the required authenti-
cation information is missing from the request. Furthermore, the proxy
solution will not work when encryption is used by the two communicat-
ing parties.

Finally, interacting with a server via a proxy might solicit different
server responses. This is not a concern in a forensic setting. However,
because the data sent to the client is recorded by the proxy, this might
pose a problem when searches are performed using a client honeypot.
Specifically, a server might check for the existence of a proxy and not
behave maliciously if such a proxy is encountered as a precautionary
measure. Figure 4 illustrates this situation. The top flow shows a client
application interacting with a server via a proxy. The server detects the
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proxy set-up and, therefore, delivers a benign web page. The bottom
flow shows a client interacting directly with the server. The server does
not detect a proxy that potentially records data and believes it is free
to launch the attack.

4. Conclusions

Identifying and analyzing web server attacks are difficult tasks due to
the lack of forensic readiness of network protocols. Our custom proxy-
server-based record/replay solution adds network forensic readiness ca-
pabilities to client honeypots. The solution supports the examination of
application data by reusing the capabilities of the clients that consume
the data. It also permits the data to be sent interactively to client appli-
cations to perform behavioral analyses of attacks, which provide a more
complete picture of attack mechanisms and impact.

While forensic capabilities have been implemented at the application
layer using existing proxy solutions, we believe a generic solution could
be implemented at the network transport layer. The difficulty in imple-
menting such a solution is primarily due to the fact that existing pro-
tocols were not designed with network forensic readiness in mind. We
believe that incorporating forensic requirements during protocol design
is instrumental to achieving network forensic readiness.
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Chapter 14

FORENSIC WEB SERVICES

Murat Gunestas, Duminda Wijesekera and Anoop Singhal

Abstract Choreography, orchestration and dynamic invocation allow new web ser-
vices to be composed from existing ones. However, these compositions
create service interdependencies that can be misused for financial fraud
and other illegal purposes. When a misuse is reported, investigators
have to navigate through collections of logs to recreate the invocation
scenario in order to evaluate the misuse claims. We propose the cre-
ation of forensic web services that can securely maintain transaction
records between web services. An independent entity could use the
stored records to reproduce the complete transaction history when in-
vestigating a misuse claim.

Keywords: Web services, service oriented architecture, transaction forensics

1. Introduction

Web services are being used for many commercial, government and
military purposes. New web services can be created by seamlessly inte-
grating existing web services using techniques such as choreography, or-
chestration, dynamic invocation and brokering. These service-level com-
positional techniques create complex dependencies between web services
of different organizations. When they are exploited, multiple servers
and organizations are affected, resulting in considerable financial loss
and infrastructure damage.

Investigating web service incidents requires that the dependencies be-
tween service invocations be retained in a neutral and secure manner
so that the alleged activity can be recreated while preserving evidence
that could lead to and support prosecution. Evidence extracted from
web servers, such as XML firewall alerts from endpoint services and web
server log records, have limited forensic value. Defendants can claim
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that they did not send the messages in question or that the plaintiffs
altered the logs to make their cases.

To address these issues, we propose Forensic Web Services (FWSs),
which preserve the evidence needed to recreate composed web service
invocations independent of the parties with vested interests. Note that
a simple non-repudiation argument with multiple log records has no
forensic value. Also, web service forensics cannot be treated as a bilateral
problem between two web services because of dynamic compositions.
Consequently, FWSs provide web-service-based forensic capabilities to
web services. This requires FWSs to be integrated with web services
that require them; these web services are referred to as customer web
services. In order to do so, FWSs provide a centralized service access
point to customer services. The information retained by FWSs as a
trusted third party can be provided to forensic examiners. Previous
proposals for monitoring web services [6] and generating evidence [10,
16, 26] are primarily for business purposes. We are not aware of similar
applications that support forensic investigations.

Organizations that are tightly integrated through web transactions
and processes can benefit from FWSs in many ways. They can hold their
partner services accountable when their vulnerabilities affect transaction
confidentiality, availability, etc. Also, the details of malicious activity
can impact punitive measures and damage claims. We show that non-
repudiable logging of critical information exchanges is an effective way to
meet these needs. Some logging and processing approaches already exist
for web services [5, 6, 28]. Also, Sremack [30] has proposed an approach
for conducting online investigations. However, these approaches do not
employ a trusted third party to generate and preserve evidence or offer
conclusive evidence as provided by the FWS framework.

2. Web Service Attacks

Numerous web service attacks, such as WSDL/UDDI scanning, pa-
rameter tampering, replays, XML rewriting, man-in-the-middle attacks,
eavesdropping and routing detours have been identified [7–9, 17, 18,
20, 27] and characterized (see, e.g., [31, 33]). To motivate the need
for FWSs, we discuss the cross-site scripting (CSS) attack [9], which is
presented in Figure 1. An attacker with stolen credentials injects ma-
licious data, invoking an update operation on a weather service that
stores a script (including instructions to steal cookies) in web browsers.
Next, a web application, say Portal Web Application in Figure 1, re-
trieves this malicious data when invoking a get operation and publishes
weather information to its subscribers in HTML, thereby making the
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Figure 1. Cross-site scripting attack.

subscribers send their personal information (stored in cookies) to the
attacker’s Fishing Net Application.

3. Forensic Web Services Framework

The Forensic Web Services (FWSs) framework consists of two services.
One generates pairwise evidence when transactions occur between pairs
of web services. The other composes evidence generated from pairwise
transactions and creates complex transaction scenarios on demand.

The FWSs framework uses trusted third parties that sit in between
transactions. To obtain forensic services, all web services must sign up
with a FWS (Figure 2), and all FWSs agents must cooperate by pro-
viding relevant pairwise transactional evidence that they have stored.
Four roles are involved in the process: sender, receiver, operator FWS
and non-operator FWS. The operator FWS refers to a FWS selected by
either party to manage the steps listed below; the non-operator FWS
belongs to the other party. A FWSs registry is available to locate all
registered FWSs servers. FWSs systems must satisfy the following re-
quirements:
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Figure 2. Forensic Web Services framework.

The web service call stack must be enriched with a WS-Forensics
layer.

A message format is required to communicate with WS-Forensics
layer messages and store them in FWSs servers.

All web services must use a client agent that re-routes their trans-
actional messages through FWSs servers.

The underlying system must provide a trust base and crypto-
graphic services.

The web service stack has three layers: the bottom layer consists of
SOAP messages, the middle layer WS-SecureConversations and the top
layer WSDL specifications (Figure 3). A forensic layer is added between
the middle and top layers to re-route transactions through FWSs servers.
The sender web service and receiver web service communicate using their
WSDLs independently of the underlying WS-Forensics layer.

WS-Forensics uses the following message format:

〈#session|#message|#signatureK(#session|#message/sequence
|#message/envelope)〉

where # refers to the points in XML format, | denotes concatenation
and / points to the subparts of elements. Also, “session” identifies a
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Figure 3. WS-Forensics stack.

WS-Forensics conversation and “message” is the upper layer content
and its sequence number in the conversation. Both endpoints (sender
and receiver) sign a session.

FWSs store messages in two formats: LogRecordIndex (LRI) and Lo-
gRecord (LR) without signatures, where LRI records a single fwsMes-
sage, LR stores entire WS-Forensics sessions, including all fwsMessages
delivered to and/or generated by FWSs. LRIs are stored at both end-
points while LRs are stored only at the operator FWS. FWSs also
timestamp all messages. LR contains a record index with the final
timestamp, status and the last sequence value of the conversation. All
transaction information is reliably intercepted and re-routed through
FWSs servers using sender and receiver processes positioned in front
of each web service endpoint. The sender process uses the FWSs han-
dler exposed by the forensics layer, adds the extra routing information
to conform with the WS-Forensics message format and passes it to the
WS-SecureConversation or WS-Trust handler exposed by the WS-Trust
layer. Similarly, the receiver process verifies the signatures, extracts the
SOAP message and passes it to the intended service or port type.

WS-Forensics is designed to run over a secure layer with the fol-
lowing services (that are already satisfied by WS-Trust [21] and WS-
SecureConversation [22]):

Authentication: Senders, receivers and FWSs nodes.

Delegated Authentication: As a trusted third party, FWSs
nodes authenticate themselves to the receiver on behalf of the
sender.

Channel Confidentiality and Integrity: FWSs nodes must
ensure the confidentiality and integrity of channels between senders
and receivers.

Reliability: Messages in channels between FWSs nodes and cus-
tomer nodes must be reliable.
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Figure 4. Operator FWS managing SELP.

4. Collecting Pairwise Evidence

FWSs collect pairwise transactional evidence using the Simple Evi-
dence Layer Protocol (SELP) [10]. Four roles are employed: sender,
receiver, operator FWS and non-operator FWS. The following steps are
performed by the operator FWS (see Figures 4 and 5):

1. The operator FWS receives MsgSeq.1, which contains 〈#session|
#message|#signatureSender-K(#session|“1”|#env)〉.

2. It validates and stores the message, creates an LR and LRI for
MsgSeq.1 and notifies the non-operator FWS.

3. It forwards MsgSeq.1 to the receiver and starts a timer.

4. If the response MsgSeq.2 does not reach in time, the operator FWS
signs MsgSeq.-1(〈#session|#message|#signatureFWS-K(#session
|“-1”|#env)〉), stores the message and sends it back to the sender;
also, it creates an LRI, which is sent to the non-operator FWS.
However, if MsgSeq.2 (〈#session|#message|#signatureReceiver-K
(#session|“2”|#env)〉) arrives on time then, it stores the message
and forwards it to the sender; also, it creates an LRI, which is sent
to the non-operator FWS.

5. It creates, signs and sends MsgSeq.3 (〈#session|#message|#signa
tureFWS-K(#session|“3”|#env)〉) to the receiver. It also stores
the message in the LR and sends the LRI to the non-operator FWS.
Dependencies between stored data are maintained using LRIs.

The SELP protocol and FWSs event logs retain the evidence required
to verify the sender’s claims of timely transmission, the receiver’s claims
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Figure 5. Operator FWS storing pairs.

not to have received messages in a timely manner, either party’s claims
of non-availability of the other party, and any contractual violations.

5. Creating Evidence for Scenarios

This section describes the main data types and algorithms used to
collect and preserve evidence of pairwise transactions involving web ser-
vices.

FWSs store information exchanged between pairs of services in LRI
tables that are used to generate service dependencies expressed as a
dependency graph. Dependency graph nodes have the complex type
WebServiceNode, where each WebServiceNode has a unique ID and field
NodeLevel, which expresses the degree of adjacency of the node to the
root of the graph. The field NodeThreshold expresses the maximum de-
gree of adjacency from the root. The edges of the graph are represented
using the complex data type LogRecordEdge with SenderID and Re-
ceiverID attributes. An authorized requestor generates evidence bags by
providing the required arguments using generateEvidenceBagPortType,
a port that calls other FWSs to collect dependent evidence residing in
its log records. FWSs use StorageService, MembershipQueryService, Se-
curityService, EvidenceBagService and other auxiliary internal services.
The FWSs Registry manages the member registration processes. The
operation getFWSPortType called by the FWSs nodes retrieves the ID
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1. partnerLinks: SecurityService; VirusScannerService;
SignatureDetectionSrv; RootFWS; Requestor; FWSRegistry

2. variables: EvidenceBagIn; EvidenceBagOut; LogRecordEdges;
DependentsBagIn; DependentsBag;
LogRecordEdgesForEvidenceGraph;

3. begin
4. receive EvidenceBagIn from Requestor
5. invoke getFWSs(RootWS) in FWSRegistry
6. assign RootFWS partnerLink
7. assign EvidenceBagIn to DependentsBagIn
8. invoke collectDependents(DependentsBagIn) in RootFWS
9. assign DependentsBag to LogRecordEdges
10. assign distinct ArrayOfFWSTTP from LogRecordEdges

←!– Invokes a set of FWSTTPs to get actual LREs by their LRIs →
←!– using flowN loop structure →

11. flowN N=‘countNodes(’ ArrayOfFWSTTP ‘...)’ indexVariable=’index’
12. partnerLink: OwnerFWSOfLogRecords
13. variables: LogRecordEdgesOutput
14. assign OwnerFWSOfLogRecords partnerLink
15. invoke getLogRecordsByValue in OwnerFWSOfLogRecords
16. receive LogRecordEdgesOutput as getLogRecordsByValue callback

←!—————– Stores the result ———————→
17. append LogRecordEdgesForEvidenceGraph

from LogRecordEdgesOutput
18. end of flowN
19. assign LogRecordEdgesForEvidenceGraph to EvidenceBagOut
20. invoke scan(EvidenceBagOut) in VirusScannerService
21. invoke detect(EvidenceBagOut) in SignatureDetectionSrv
22. invoke signAndEncrypt(EvidenceBagOut) in SecurityService
23. reply EvidenceBagOut to Requestor
24. end

Figure 6. Building evidence bags.

of the registered FWS of any web service. The operation registryInfo-
PortType is used for member registration and de-registration.

FWS build digital evidence bags [11] using the pseudo BPEL algo-
rithm presented in Figure 6 [14]. First, a requestor starts building digi-
tal evidence bags (Line 4) by invoking the generateEvidenceBag process
with the suspected root WebServiceNode, StartTime (defines the start
time), TimeThreshold (defines the time range) and NodeThreshold (de-
fines the node range), which are included in the EvidenceBagIn message.
In Lines 5–8, the FWS gets the FWS that controls the root node, which
is the start point for the collection process. The FWS assigns the address
of the rootFWS partner link and continues by invoking the collectDe-
pendents process, which runs recursively over many FWSs with the De-
pendentsBagIn message as parameter (see Figure 7 for details). Depen-
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←!– Starts extracting values (timeThreshold, nodeThreshold, etc.) →
←!– from DependentsBagIn and initializes creating the →
←!– WebServiceNodes and LogRecordEdges instances of GRAPH →

1. baseTime = startTime - timeThreshold
2. for each logRecordIndex LRI in FWS {
3. timeThreshold=timeTreshold - (startTime - LRI.timeStamp)
4. startTime=LRI.timestamp
5. for each webServiceNode WS in GRAPH {
6. if (SenderWS | ReceiverWS ∈ LRI & LRI �∈ GRAPH

& R.timestamp ≥ baseTime & WS.nodeLevel
≤ WS.nodeThreshold) {

7. Add LRI as edge into GRAPH
8. if (LRI’s partner web service PWS �∈ GRAPH) {
9. PWS.nodeLevel=WS.nodeLevel+1
10. PWS.nodeThreshold=nodeThreshold
11. Add the PWS into GRAPH }
12. if (LRI’s PWS �∈ this.FWS & LRI’s PWS �∈ GRAPH) {
13. NeighbourFWS = getFWS(PWS)
14. NeighbourFWS.collectRecords(DependentsBagIn)
15. Merge DependentsBagOut into GRAPH}}}}
16. return GRAPH in DependentsBagOut format

Figure 7. Collecting dependent processes.

dentsBagIn is assigned the values in the EvidenceBagIn message in Line
7. The FWS is returned a final DependentsBag message by the children
of the recursive call and the returned message contains LogRecordEdges
only with index information (LRI). In order to convert LogRecordEdges
with LRIs into LogRecordEdges containing LRs (actual contents of mes-
sages), the generateEvidenceBag process first extracts distinct fwsttps
from LogRecordEdges into an array in Line 10. In Lines 11–8, the flowN
structure in BPEL is used to create dynamic parallel execution scopes
for each fwsttp.location. For each fwsttp.location, dynamic partner links
OwnerFWSOfLogRecords are also created. Then, getLogRecordsByValue
operations in these partner links are invoked for each parallel scope and
the results are combined in the LogRecordEdgesForEvidenceGraph. Lo-
gRecordEdgesForEvidenceGraph is assigned to EvidenceBagOut, which
constitutes the actual EvidenceGraph document. Other bookkeeping
procedures such as scanning and signature verification are applied be-
tween Lines 20 and 22. Finally, a response is sent to the requestor in
Line 23.

The generateEvidenceBag process in Figure 6 is a wrapper of the col-
lectDependents process inspired by King and Chen’s dependency graph
algorithm [15] and Wang and Daniels’ evidence graph generation algo-
rithm [32]. The algorithm in Figure 6 first creates instances of WebSer-
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viceNodes and LogRecordEdges and loads the DependentsBagIn message
into these objects setting the WebServiceNode part as a root node for
the execution of the algorithm. All the other values in the input mes-
sage are loaded into the corresponding variables (e.g., timeThreshold and
nodeThreshold). After the initialization phase, the algorithm listed in
Figure 7 is used. The created objects WebServiceNodes and LogRecord-
Edges are the nodes and edges of the dependency graph (GRAPH). The
GRAPH is constructed based on two facts. First, the algorithm tra-
verses the LRIs in decreasing order of time to search for dependent web
service nodes among the sender/receiver fields of the log records; these
are inserted into LogRecordEdges, which sets the SenderID, ReceiverID
and DependencyDirection attributes provided their timestamp is within
the time threshold. Second, when a new partner web service is found in
the LRIs, it is added to the WebServiceNodes object only if the current
web service node’s nodeLevel is less or equal to nodeThreshold.

6. Related Work

To the best of our knowledge, no distributed forensic framework exists
for investigating interrelated web services. However, the research efforts
discussed in this section share some common features with our objectives
and/or methods.

The FWSs design is influenced by WS-NRExchange [26], especially
its implementation of fair non-repudiation using the Coeffey-Saidha pro-
tocol [4]. However, unlike FWSs, WS-NRExchange does not address
choreography and service compositions.

Herzberg and Yoffe [10] proposed the use of an evidence layer for e-
commerce transactions located on top of the transport layer. The FWSs
framework incorporates their SELP specification, which was designed
for the evidence layer.

FWSs use trusted third parties for pairwise evidence generation as do
Coffey and Saidha [4]. Certified e-mail protocols [19] have also been used
without trusted third parties [16]. Onieva and co-workers [23] proposed
the use of inline trusted third parties for e-commerce transactions with
multi-recipient cases through these intermediaries, but not for forensic
applications. Bilal and colleagues [3] have used BPEL to implement a
non-repudiation protocol for web services; however, their solution does
not use trusted third parties and, therefore, lacks message content han-
dling capabilities.

FWSs use handlers in an existing web service architecture [1, 2, 12,
24]. Axis2 [25] also implements web service standards such as Rampart
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for WS-SecureConversation, Rahas for WS-Trust, Sandesha2 for WS-
RM, and Kandula for WS-Coordination [13].

WSLogA [5] tracks web service invocations by logging them using
SOAP intermediaries. However, unlike FWSs, it does not have a dis-
tributed collection mechanism for gathering comprehensive forensic evi-
dence from services sharing multiple servers.

Research in the area of network forensics has also inspired the design of
the FWSs framework. These include Wang and Daniels’ use of intrusion
detection system alerts to generate evidence graphs for network forensic
analysis [32] and ForNet’s use of router logs in its distributed network
forensics framework [29].

7. Conclusions

Composed, choreographed and stand-alone web services span many
applications. Consequently, the exploitation of a vulnerability in one
service can impact many other services. The Forensic Web Services
framework supports the investigation of attacks and the assignment of
blame. This capability is provided as a service to other web services by
logging service invocations. All the logged data is preserved in a digital
evidence bag, which can be used to recreate attacks in a forensically-
sound manner.
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Chapter 15

DETECTING REMOTE EXPLOITS
USING DATA MINING

Mohammad Masud, Latifur Khan, Bhavani Thuraisingham,
Xinran Wang, Peng Liu and Sencun Zhu

Abstract This paper describes the design and implementation of DExtor, a data-
mining-based exploit code detector that protects network services. DEx-
tor operates under the assumption that normal traffic to network ser-
vices contains only data whereas exploits contain code. The system is
first trained with real data containing exploit code and normal traffic.
Once it is trained, DExtor is deployed between a web service and its
gateway or firewall, where it operates at the application layer to detect
and block exploit code in real time. Tests using large volumes of normal
and attack traffic demonstrate that DExtor can detect almost all the
exploit code with negligible false alarm rates.

Keywords: Server attacks, exploit code, data mining, attack detection

1. Introduction

Remote exploits are often used by attackers to gain control of hosts
that run vulnerable services or software. Typically, an exploit is sent
as an input to a remote vulnerable service to hijack the control flow of
machine instruction execution. Attackers sometimes inject executable
code in the exploit that is run after a successful hijacking attempt. We
refer to such remote code-carrying exploits as “exploit code.”

Several approaches have been proposed for analyzing network flows
to detect exploit code [1, 4, 8–11]. An attack can be prevented if an
exploit is detected and intercepted while it is in transit to a server. This
approach is compatible with legacy code and does not require changes to
the underlying computing infrastructure. Our solution, DExtor, follows
this strategy. In particular, it uses data mining to address the general
problem of exploit code detection.

Please use the following format when citing this chapter: 

Masud, M., Khan, L., Thuraisingham, B., Wang, X., Liu, P. and Zhu, S., 2008, in IFIP International Federation for 
Information Processing, Volume 285; Advances in Digital Forensics IV; Indrajit Ray, Sujeet Shenoi; (Boston: Springer), 
pp. 177–189. 



178 ADVANCES IN DIGITAL FORENSICS IV

Exploit code usually consists of three parts: (i) a NOP sled at the
beginning of the exploit, (ii) a payload in the middle, and (iii) return
addresses at the end. The NOP sled is a sequence of NOP instructions;
the payload contains the attack code; the return addresses point to the
code to be executed. Thus, exploit code always carries some valid exe-
cutables in the NOP sled and payload. It is considered to be an “attack
input” to the corresponding vulnerable service; inputs that do not ex-
ploit a vulnerability are referred to as “normal inputs.” For example, in
the case of a vulnerable HTTP server, benign HTTP requests are nor-
mal inputs while requests that exploit a vulnerability are attack inputs.
If we assume that normal inputs only contain data, then exploit code
detection reduces to a code detection problem.

Chinchani and Berg [1] justify this assumption by maintaining that
“the nature of communication to and from network services is predom-
inantly or exclusively data and not executable code.” However, certain
exploits do not contain code (e.g., integer overflow exploits and return-
to-libc exploits); we do not consider such exploits in this work. It is
also worth mentioning that exploit code detection is fundamentally dif-
ferent from malware detection, which attempts to identify the presence
of malicious content in an executable.

Our data mining approach uses three types of features to differenti-
ate between attack inputs and normal inputs. They are: (i) useful in-
struction count, (ii) instruction usage frequency, and (iii) code vs. data
length. The process has several steps. First, training data consisting
of attack inputs and normal inputs is collected. Next, the training ex-
amples are disassembled. Following this, the three types of features are
extracted from the disassembled data. Several classifiers (Support Vec-
tor Machine (SVM), Bayes Net, Decision Tree (J48) and Boosted J48)
are then trained and the best classifier is selected as the classification
model. When DExtor is deployed in a networking environment, it inter-
cepts inputs destined to the network service and tests them against the
classification model; attack inputs are blocked in real time.

DExtor has several advantages over existing exploit code detection
techniques. DExtor is compatible with legacy code and transparent to
the services it protects. The current version operates on Windows plat-
forms with the Intel 32-bit architecture, but can be adapted to any oper-
ating system and hardware simply by modifying the disassembler. Also,
DExtor does not require any signature generation and matching. Finally,
DExtor is robust against most attack-side obfuscation techniques.

DExtor also has forensic applications. For example, it can be used to
analyze network traffic sent to a server before a crash or compromise.
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This helps determine whether the incident was caused by a code-carrying
exploit and also assists in identifying the source of the attack.

2. Related Work

Several techniques have been proposed for detecting exploits in net-
work traffic and protecting network services. The three main categories
of techniques are signature matching, anomaly detection and machine-
code analysis.

Signature matching is used in intrusion detection systems such as
Snort [8] and Bro [4]. These systems maintain a signature database of
known exploits; an alert is raised when traffic matches a signature in the
database. Signature-based systems are easy to implement, but they are
defeated by new exploits as well as by polymorphism and metamorphism.
DExtor does not use signature matching to detect exploit code.

Anomaly detection techniques identify deviations in traffic patterns
and raise alerts. Wang and co-workers [11] have designed PAYL, a
payload-based system that detects exploit code by computing several
byte-level statistical measures. Other anomaly-based detection systems
are an enhanced version of PAYL [10] and FLIPS [5]. DExtor differs from
anomaly-based systems in two respects. First, anomaly-based systems
are trained using normal traffic characteristics and detect deviations
from these characteristics; DExtor considers both normal and attack
traffic in building its classification model. Second, DExtor uses instruc-
tion patterns instead of raw byte patterns to construct its classification
model.

Machine code analysis techniques apply binary disassembly and static
analysis of network traffic to detect the presence of executables. DExtor
falls in this category. Toth and Kruegel [9] have used binary disas-
sembly to find long sequences of executable instructions and identify
the presence of a NOP sled. DExtor also applies binary disassembly,
but it does not need to identify a NOP sled. Like DExtor, Chinchani
and Berg [1] detect exploit code based on the assumption that nor-
mal traffic should contain no code. They apply disassembly and static
analysis, and identify several structural patterns and characteristics of
code-carrying traffic. However, unlike DExtor, their detection approach
is rule based. SigFree [12] also disassembles inputs to server processes
and applies static analysis to detect the presence of code. It applies a
code abstraction technique to locate useful instructions in the disassem-
bled byte stream and raises an alert when the useful instruction count
exceeds a predetermined threshold. DExtor applies the same disassem-
bly technique as SigFree, but does not use a fixed threshold. Instead,
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Figure 1. DExtor architecture.

it applies data mining to extract features and uses them to distinguish
between normal traffic and exploits.

3. DExtor

This section describes the DExtor architecture and its main compo-
nents.

3.1 DExtor Architecture

DExtor is deployed in a network between a network service and its
gateway or firewall (Figure 1). It is first trained offline with real instances
of attacks (e.g., exploits) and normal inputs (e.g., HTTP requests), and
a classification model is constructed. Training consists of three steps:
disassembly, feature extraction and classification. When it is deployed
in a network, DExtor intercepts and analyzes all inputs to the service in
real time; inputs that are identified as attacks are blocked.

3.2 Data Disassembly

The disassembly algorithm is similar to that used by SigFree [12].
Each input to the server is considered to be a byte sequence. There may
be more than one valid assembly instruction sequences corresponding to
a given byte sequence. The disassembler uses an “instruction sequence
distiller” to filter redundant and illegal instruction sequences. The main
steps of this process are:

Step 1: Generate instruction sequences

Step 2: Prune subsequences

Step 3: Discard smaller sequences
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Figure 2. Three zones of an input instance.

Step 4: Remove illegal sequences

Step 5: Identify useful instructions

3.3 Feature Extraction

Feature extraction is the heart of DExtor’s data mining approach.
Three important features are used: (i) useful instruction count, (ii) in-
struction usage frequency, and (iii) code vs. data length.

Useful Instruction Count: The useful instruction count (UIC)
is the number of useful instructions found in Step 5 of the disassem-
bly process. This feature is important because a real executable
should have a large number of useful instructions; on the other
hand, pure data should have no useful instructions.

Instruction Usage Frequency: The instruction usage frequency
(IUF) is the frequency of an instruction in a normal or attack
sample. Intuitively, normal data should not have any bias toward
any specific instruction or set of instructions. Thus, normal data
should have a random IUF distribution. On the other hand, since
exploit code performs specific (malicious) activities, it must have
a bias toward a set of instructions and its IUF distribution should
have some pattern.

Code vs. Data Length: Exploit code has a NOP sled, payload
and return addresses. Consequently, each input instance is divided
into three zones: beginning zone (bzone), code zone (czone) and re-
mainder zone (rzone) (Figure 2). Typically, the bzone corresponds
to the first few bytes of an input that could not be disassembled
and contains only data. The czone follows the bzone and contains
the bytes that were successfully disassembled; it probably contains
some code. The rzone contains the remaining bytes in the input
that cannot be disassembled; it generally contains only data.

The normalized lengths (in bytes) of the three zones should have
different distributions for normal inputs and attack inputs. Intu-
itively, normal inputs should have the czone at any location with
equal probability, implying that the bzone and rzone distributions
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should be random. Also, since normal inputs have little to no
code, the length of the czone should be near zero. On the other
hand, exploit code begins with a NOP sled, which implies that the
length of bzone is zero. Also, the length of the czone for exploit
code should be greater than that for normal inputs. Thus, the dif-
ferences in the distributions of zone lengths for normal and attack
inputs can be used to identify the type of input.

3.4 Feature Combination

The features computed for each input sample are: (i) UIC – a single
integer, (ii) IUF – k integers denoting the instruction frequencies (k is
the number of different instructions in the training data), and (iii) CDL
– three real numbers corresponding to the lengths of bzone, czone and
rzone. Thus, k + 4 features are considered: the first k + 1 feature values
are integers and the last three are real numbers. These k + 4 features
constitute the combined feature vector for an input instance.

3.5 Classification

The Support Vector Machine (SVM), Bayes Net, Decision Tree (J48)
and Boosted J48 are used for classification. The SVM classifier is robust
to noise and high dimensionality; also, it can be fine-tuned to perform
efficiently in a problem domain. The Bayes Net classifier is capable of
finding the interdependencies existing between different attributes. The
Decision Tree (J48) classifier has an excellent feature selection capability,
and requires much less training and testing time than other classifiers.
The Boosted J48 classifier is useful because of its ensemble methods.

4. Experimental Setup and Results

This section describes the experimental setup and results.

4.1 Data Set

The data set contained real exploit code as well as normal traffic to
web servers. Strong efforts were undertaken to ensure that the data set
was as diverse, unbiased and realistic as possible.

The exploit code was obtained by generating twenty unencrypted ex-
ploits using the Metasploit framework [7]. Next, nine polymorphic en-
gines (ADMmutate [6], clet [2], Alpha2, CountDown, JumpCallAdditive,
Jumpiscodes, Pex, PexFnstenvMov and PexFnstenvSub) were applied to
the unencrypted exploits. Each polymorphic engine was used to generate
1,000 exploits, yielding a collection of 9,000 exploits.
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The normal inputs were traces of HTTP requests/responses to/from
a web server. The traces were collected by installing a client-side proxy
that monitored and captured all incoming and outgoing messages. More
than 12,000 messages containing HTTP requests and responses were
collected. The responses comprised text (.javascript, .html, .xml),
applications (x-javascript, .pdf, .xml), images (.gif, .jpeg, .png),
audio (.wav), and flash content.

Two types of evaluation were performed on the data. First, five-
fold cross validation was conducted to measure the accuracy and the
false positive and false negative rates. Second, the performance of the
classifiers was tested on new exploits. This was done by training a
classifier using the exploits generated by eight of the nine polymorphic
engines and testing it using the exploits generated by the ninth engine.
The test was performed nine times by rotating the polymorphic engine
that was tested. Normal examples were distributed in the training set
and test set in equal proportions.

4.2 Experiments

The experiments were run on a 2 GHz Windows XP machine with
1 GB RAM. The algorithms were written in Java and compiled with
JDK version 1.5.0 06. The Weka ML Toolbox [13] was used for the clas-
sification tasks. SVM classification used the C-Support Vector Classifier
(C-SVC) with a polynomial kernel and γ = 0.01. Bayes Net used a sim-
ple estimator with α = 0.5 and a hill-climbing search for the network
learning. J48 used tree pruning with C = 0.25. Ten iterations of the
AdaBoost algorithm were performed to generate ten models. Each of the
three features was tested alone on a classifier (with the classifier being
trained and tested with the same feature).

4.3 Results

Three metrics were used to evaluate the performance of DExtor: ac-
curacy (ACC) and the false positive (FP) and false negative (FN) rates.
ACC is the percentage of correctly classified instances, FP is the per-
centage of negative instances incorrectly classified as positive instances,
and FN is the percentage of positive instances incorrectly classified as
negative instances.

Table 1 presents the performance of the classifiers for various fea-
tures. The highest accuracy (99.96%) was obtained for DExtor’s com-
bined feature (Comb) with the Boosted J48 classifier. The other features
have lower accuracies than the combined feature for all the classification
techniques. Also, the combined feature has the lowest false positive
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Table 1. Performance of classifiers for different features.

Feature IUC IUF CDL Comb

Metric ACC/FP/FN ACC/FP/FN ACC/FP/FN ACC/FP/FN

SVM 75.0/3.3/53.9 99.7/0.2/0.1 92.7/12.4/0.6 99.8/0.1/0.2
Bayes Net 89.8/7.9/13.4 99.6/0.4/0.4 99.6/0.2/0.6 99.6/0.1/0.9
J48 89.8/7.9/13.4 99.5/0.3/0.2 99.7/0.3/0.3 99.9/0.2/0.1
Boosted J48 89.7/7.8/13.7 99.8/0.1/0.1 99.7/0.3/0.5 99.96/0.0/0.1

SigFree 38.5/0.2/88.5

rate (0.0%) obtained with Boosted J48. The lowest false negative rate
was also obtained for the combined feature (0.1%). In summary, the
combined feature with Boosted J48 classifier produced near perfect de-
tection.

The last row of Table 1 shows the accuracy and false alarm rates of
SigFree with the same data set. SigFree used UIC with a fixed threshold
of 15. It has a low false positive rate (0.2%), a high false negative rate
(88.5%) and an overall accuracy of only 38.5%.
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Figure 3. ROC curves for different features with BoostedJ48.

Figure 3 shows the receiver operating characteristic (ROC) curves for
different features with the BoostedJ48 classifier. The area under the
curve (AUC) is the highest for the combined feature (which is 0.999).
The ROC curves for the other classifiers have similar characteristics;
they are not presented due to space limitations.
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Table 2. Effectiveness at detecting new exploits.

Classifier SVM BNet J48 BJ48

Metric ACC/FP/FN ACC/FP/FN ACC/FP/FN ACC/FP/FN

Admutate 86.4/0.2/31.7 57.4/0.0/100 98.2/0.0/4.3 99.7/0.0/0.6
Alpha2 99.9/0.07/ 0.0 56.4/0.0/100 56.4/0.0/100 56.4/0.0/100
Clet 100/0.0/0.0 99.6/0.07/0.8 99.9/0.1/0.0 99.9/0.07/0.0
CountDown 99.8/0.4/0.0 100/0.0/0.0 100/0.0/0.0 99.8/0.3/0.0
JmpCallAdditive 100/0.0/0.0 98.1/0.0/4.6 99.9/0.1/0.0 100/0.0/0.0
JumpisCode 99.4/0.08/1.4 96.2/0.08/8.8 99.9/0.07/0.0 99.9/0.07/0.1
Pex 99.7/0.2/0.4 99.4/0.0/1.4 99.8/0.2/0.2 99.8/0.1/0.3
PexFnStenvMov 99.9/0.0/0.0 99.1/0.0/2.1 99.9/0.07/0.1 99.9/0.0/0.2
PexFnStenvSub 99.7/0.2/0.3 99.3/0.0/1.7 99.8/0.08/0.1 99.9/0.08/0.0

Table 2 shows DExtor’s ability to detect new kinds of exploits. Each
row reports the detection accuracies and false alarm rates for one par-
ticular engine-generated exploit. As described earlier, each classifier was
trained using the exploits generated by the eight other engines and tested
using exploits from the ninth engine. For each engine, the training set
contained 8,000 exploits and about 10,500 randomly selected normal
samples, and the test set contained 1,000 exploits and about 1,500 ran-
domly chosen normal samples. The results in Table 2 show that all the
classifiers successfully detected the new exploits with an accuracy of 99%
or higher.

The total training time was less than 30 minutes, including disas-
sembly time, feature extraction time and classifier training time. This
amounts to about 37 ms per kilobyte of input. The average testing time
for the combined feature set was 23 ms per kilobyte of input, including
disassembly time, feature value computation time and classifier predic-
tion time. SigFree, on the other hand, required 18.5 ms for testing each
kilobyte of input. Since training is performed offline, DExtor requires
only 24% more running time than SigFree. Thus, the price-performance
trade-off is in favor of DExtor.

4.4 Analysis of Results

Figure 4 (left-hand side) shows the IUF distributions of the 30 most
frequently used instructions in normal inputs and attack inputs. Clear
differences are seen in the two distributions. The first five instructions
have high frequencies (> 11) for attack inputs, but have zero frequencies
for normal inputs. The next sixteen instructions in attack inputs have
frequencies close to two while the corresponding frequencies for normal
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Figure 4. Instruction usage frequencies and zone length distributions.

inputs are again near zero. An attacker who intends to write exploit code
that mimics normal inputs should avoid using these 21 instructions, but
it is difficult to create exploits without using these instructions.

Figure 4 also presents the distributions of the CDL feature values. The
histograms show the numbers of input samples having specific lengths
(as a fraction of total input size) for bzone (center) and czone (right-
hand side). The histograms are generated by dividing the entire range
of normalized bzone and czone lengths ([0, 1]) into 50 equal-sized bins,
and counting the number of input instances that fall in each bin. Note
that most of the attack samples in the bzone histogram have values in
the first bin (i.e., [0, 0.02)); on the other hand, the bzone values for
normal samples are spread over all the bins. Therefore, an attacker
wishing to mimic normal traffic should craft exploits that do not have
any code in the first 10% of the exploit; but this is difficult to accomplish
because exploits begin with a NOP sled. Similarly, the czone histogram
shows that most of the normal samples have czone values in the range
[0, 0.05] whereas attack samples mostly have czone values greater than
0.05. Therefore, in order to mimic normal traffic, an attacker should
keep his code length within 5% of the exploit’s length. For a 200-byte
exploit, this leaves only 10 bytes for the attack code – including the NOP
sled, making it extremely difficult to write the exploit.

5. DExtor Characteristics

This section discusses the robustness of DExtor’s exploit code detec-
tion methodology along with its limitations.

5.1 Robustness

DExtor is immune to instruction re-ordering because instruction order
is not considered in exploit code detection. Also, detection is unaffected
by the insertion of junk instructions as this only serves to increase the
frequencies of the junk instructions. Likewise, DExtor is immune to
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instruction replacement as long as all the most frequently used instruc-
tions are not replaced. DExtor is also robust against register renaming
and memory re-ordering because registers and memory locations are not
considered in exploit detection. Obfuscation by inserting junk bytes can
affect the disassembler, especially when junk bytes are inserted at lo-
cations that are not reachable at run-time. However, this problem is
addressed by the recursive traversal strategy employed by the disassem-
bly algorithm [3].

5.2 Limitations

DExtor is partially affected by branch function obfuscation, which
obscures the control flow of an executable so that disassembly cannot
proceed. Currently, there is no general solution to this problem. When
branch function obfuscation is present, DExtor is likely to produce frag-
mented code blocks, missing some of the original code. This does not
impact detection unless the missed blocks contain large numbers of in-
structions.

DExtor is certainly limited by its processing speed. Currently, DEx-
tor has a throughput of 42 KB/sec in a real environment. Such a low
throughput is unacceptable for an intrusion detection system that must
handle several gigabits per second. Fortunately, DExtor is intended to
protect just one network service, which requires much less throughput.

Nevertheless, the throughput issue can be addressed using faster hard-
ware and optimizing all the software components (disassembler, feature
extractor and classifier). Also, certain incoming traffic can be excluded
from analysis. For example, because exploit code is typically a few kilo-
bytes in length, bulk inputs to the server with size greater than a few
hundred kilobytes are unlikely to be exploit code. Both these solutions
should increase DExtor’s throughput sufficiently to enable it to operate
effectively in real-time environments.

6. Conclusions

DExtor uses data mining very effectively to detect and block exploit
code. Designed to operate at the application layer, DExtor is positioned
between the server and its gateway or firewall. It is completely trans-
parent to the service it protects, and can be deployed as a stand-alone
component or coupled with a proxy server. DExtor is robust against
most attack-side obfuscation techniques. Tests using large volumes of
normal and attack traffic demonstrate that DExtor can detect exploit
code with very high accuracy and negligible false alarm rates. Further-
more, DExtor is able to detect new types of exploits with high accuracy.
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DExtor is also useful in forensic investigations, especially in determining
whether a crash or compromise was caused by a code-carrying exploit.
In addition, it can assist in identifying the source of the exploit.
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Chapter 16

USING SENSOR DIRT FOR TOOLMARK
ANALYSIS OF DIGITAL PHOTOGRAPHS

Martin Olivier

Abstract Dust particles that collect on the image sensors of digital cameras of-
ten leave marks on the pictures taken with these cameras. The question
therefore arises whether these marks may be used for forensic identifica-
tion of the camera used to take a specific picture. This paper considers
the question by investigating the impact of various camera and lens fac-
tors, such as focal length and recording format. A matching technique
involving grid overlay is proposed and the probability of false positive
matches is quantified. Initial results indicate that toolmark analysis
based on sensor dirt has potential as a forensic technique for camera
identification.

Keywords: Digital cameras, sensor dirt, toolmark analysis

1. Introduction

The occurrence of dirt on the optical sensors of digital single lens
reflex (DSLR) cameras is a problem that is well known to professional
and amateur photographers [6]. These cameras have interchangeable
lenses; when a lens is removed, the potential exists for dust to enter the
film chamber of the camera. In addition, dust may stick to the rear of
a newly-attached lens. Dust particles introduced into a DSLR camera
often make their way to the camera sensor, an electrically-charged device
that attracts particulate matter.

Dirt typically consists of silica, quartz, metallic, fiber and/or organic
particles [4]. The term “dust” is commonly used to refer to these parti-
cles, but “dirt” or “contaminants” is arguably a more descriptive term.
In the case of photocopier identification, marks left by such particles are
referred to as “trash” marks [9]. We prefer to use the term “dirt,” but
use it interchangeably with the term “dust” in this paper.

Please use the following format when citing this chapter: 
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While dirt marks are a nuisance to photographers, they are potentially
useful to forensic investigators. Since the marks appear on more or less
any picture taken from the time particles stick to the image sensor to
the time they are removed, they can help identify the specific camera
that was used to take a picture of interest.

It is necessary to consider a number of provisos. Dirt may have been
washed from a sensor after a picture was taken – just like fingerprints can
be wiped from a murder weapon. Alternatively, the sensor could have
been cleaned before a picture was taken, causing the picture to have no
distinguishing marks – just like using gloves may prevent fingerprints
from being left on a murder weapon. It is possible that the image could
have been edited before it was “published,” and such editing may have
(purposefully or inadvertently) removed the distinguishing marks. De-
spite these shortcomings, we contend that sensor dirt has the potential
to be useful in digital forensic investigations. The fact that it is com-
mon knowledge how to avoid leaving fingerprints at crime scenes has not
made fingerprint evidence any less useful in criminal investigations.

Some modern cameras have mechanisms that prevent dirt from col-
lecting on image sensors. However, as will be argued below, the problem
(or opportunity) persists. In fact, some cameras are delivered with dirt
on their sensors. Since removing dirt requires some skill, these cameras
may carry the distinguishing marks for the rest of their lives.

This paper is intended as an early analysis of the extent to which
sensor dirt may be used to associate a picture with a given camera. Two
aspects are considered. The first is the impact of aperture, focal length
and related factors on the appearance of sensor dirt in a picture. The
second is how artifacts in a picture may be matched with a camera based
on the dirt currently present on its image sensor.

2. Background

Toolmark analysis is a well-established branch of forensic science [7].
In the physical world, a tool may impress its form on another object
or leave scratch marks as it rubs against the other object [9, 12]. In
ballistics, for example, the firing pin impresses a mark on the cartridge
that may be used to identify the firearm. As the round travels through
the barrel, “striations” are scratched on it by imperfections in the barrel.

It is also important to distinguish between class and individual char-
acteristics [9, 12]. The grooves in the barrel of a firearm produce marks
on a round that travels through it; these marks may be shared by other
firearms in the class (e.g., firearms of the same caliber or firearms made
by the same manufacturer). On the other hand, striations on a round
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are caused by random imperfections in the barrel of the firearm that
fired the round and are, therefore, unique to that firearm.

Digital cameras also leave marks on the images they produce. One
example is image resolution (more specifically, image dimensions), which
is determined by the sensor. Digital cameras also add metadata about
images using EXIF tags [2] that typically include the camera make and
model. Another example of a class characteristic is the image file for-
mat (usually JPEG). Also, some of the compression parameters may be
specific to a class of cameras [10]. In the case of DSLR cameras (and
some high-end compact cameras), the image may alternatively (or in
addition) be recorded in the proprietary format of the vendor [6]. The
term “RAW” is often used to refer to these formats. Since most RAW
formats are specific to camera manufacturers, they may also be used to
identify the class of camera that took a RAW-format picture.

The focus of this paper is on individual characteristics. Sensor dirt –
like metal particles in the barrel of a firearm – are positioned by chance
and should, therefore, be unique to a particular camera.

The identification of imaging equipment from the marks left by par-
ticles is not new. The photocopier used to make a specific copy may
be identified by the “trash” marks on the copy [9]. However, a DSLR
camera, unlike most other imaging systems, has large variations in the
manner in which it may be used – in particular, the ability to be used
with different lenses at various settings. The impact of a small aperture
setting on the visibility of dirt marks is well known. We are not aware of
any other work that has considered the impact of other settings in the
forensic context.

Our strategy is to empirically determine the impact of various DSLR
camera settings on the manner in which dirt marks are recorded. Once
the variations are known, it becomes possible to state accurately whether
a mark on an image could have been caused by a particle on a sensor
or whether it is possible that two marks on two images could have been
caused by the same particle. During this second phase, it becomes nec-
essary to locate marks on images, and the work done to locate and
eliminate such marks becomes useful. Zhou and Lin [14], for example,
have conducted a detailed investigation of the formation and subsequent
removal of artifacts caused by sensor dust.

Dirik, et al. [5] have proposed an approach for camera identification
based on sensor dust. Their approach is to identify possible marks on
pictures and then compare the marks on different pictures.

Our approach is closer to that of Zamfir, et al. [13], although their
primary intention is to correct blemishes rather than to match a photo-
graph to a camera. They have derived a theoretical model that predicts
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the position and size of artifacts on an image depending on the aper-
ture and focal length. The calculations depend on calibration images to
determine certain camera and lens properties. In contrast, we approach
these measurements in an empirical manner, which enables us to con-
sider more dimensions, such as image encoding. Our work also does not
assume that the suspect lens is available for calibration. Unfortunately,
for reasons of space, it is not possible to present a detailed comparison of
the theoretical results of Zamfir, et al. with our empirical results. Such
a comparison, which is clearly important, is left for future work.

Interested readers are referred to the books by Collins [6] and Hedge-
coe [8] for additional information about photography, and to the Pentax
K10D DSLR manual [11] for details about the camera used in this work.

3. Artifacts

A spot caused by sensor dirt is referred to as a mark or “artifact.”
The appearance of an artifact may be influenced by various factors.
Photographers are well aware that artifacts are more noticeable at small
apertures. However, the largest aperture at which an artifact may be
useful for forensic purposes is not yet known. This section presents
an empirical study of the effect of aperture size and other factors on
artifacts. Key factors that may impact the usefulness of an artifact
include lens focal length, sensor sensitivity (or film speed), lens nature
(zoom as opposed to fixed focal length), dirt on the rear lens element
and the degree of “busyness” of the image in the area of an expected
artifact.

It is probable that all these factors are to some extent dependent
on one another. For example, the usability of an artifact at a given
aperture may depend on sensor sensitivity. This gives rise to a multi-
dimensional problem where a huge number of combinations have to be
tested. However, since this is a preliminary study, the factors are consid-
ered independently instead of in combination. Also, the results reported
in this paper are based on a single camera. Nevertheless, we believe that
our study provides some useful insights while containing the complexity.

3.1 Experimental Setup

Our experiments used a Pentax K10D DSLR camera with an SMC
Pentax-D FA Macro 50mm F2.8 set at F32 that was manually focused on
a sheet of white paper 50cm away. Image quality was set to “best” and
shake reduction was turned off. Filtered daylight in a simple light tent
was used and the white balance set to daylight. Sensor sensitivity was
set to ISO 100. We refer to the camera used in the experiments as the
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“experimental camera” and the picture of the white sheet as a “sensor
shot.” In the experiments described below, the base setup was used with
all settings kept constant, except for the factor being considered, which
was varied over a range of values.

A 20” LCD screen with 1,400 × 1,050 resolution was used to view the
images. The resolution of the image sensor in the experimental camera
was 3,872 × 2,592; this means that effectively 1,400 × 937 pixels (about
1.3 megapixels) were used to view the approximately 10 megapixels pro-
duced by the image sensor. Since each pixel on the screen represented
approximately eight sensor pixels, small marks (in the region of eight or
fewer pixels) would not have been observed.

To reduce the reliance on human observation, Adobe Premiere’s fill
tool was used to fill the backgrounds of the images with a pure white
color. This made it possible to isolate artifacts precisely at the pixel
level; the first non pure white pixel after background filling was taken to
represent the edge of the artifact. Only artifacts that were visible on the
LCD screen when it was initially viewed were considered after filling.

3.2 Dirt Configuration

The dust on the camera sensor was another constant; no dirt was
added and no dirt was removed during the experiments. In fact, the
camera’s dust removal system was switched on for a significant period
before the experiments were conducted and it was left on for the duration
of the experiments. This meant that the observed dirt was probably
stuck to the sensor; any new loose dirt that may have been introduced
would, in all likelihood, have been shaken off.

One important issue was how to represent the dirt. A number of
options were considered; dividing the sensor into a grid and identify-
ing particles based on their grid positions seemed the most promising.
One aspect that was not fully known before the work was started was
the accuracy with which particle positions may be determined (this de-
serves attention in future work). The use of a grid makes it possible
to determine the space (in pixels) between grid lines to a degree that
is coarse enough to deal with possible imprecision in measurements but
fine enough to yield reliable forensic conclusions.

The forensic use of particle positions requires a finely spaced grid;
this issue is discussed in more detail in Section 4. However, the focus
of this work was to evaluate the utility of the technique, not to make
exact measurements. Consequently, a coarse grid of 15 × 10 pixels was
employed in the experiments.
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Figure 1. Comparison of three sensors.

Figure 1(c) uses such a grid to show the positions of dust particles in
the experimental camera. A dot in a cell position indicates that some
dust was observed on the corresponding portion of the sensor. To the
right of the grid, individual dust particles are depicted in row-major
order. We refer to such a diagram as a “sensor map.”

Two scales are used to deal with different sized particles: smaller
particles are doubled in size both horizontally and vertically. A double
square frame around a particle indicates that doubling has been used.
The second particle in Figure 1(c) starts at Row 301 from the top of
the sensor and stretches over 54 pixel rows down to Row 355. (The
middle row of this range corresponds to Row 2 of the grid.) 54 rows on
the sensor correspond to a physical height for the dust particle of about
327µm. In contrast, the fourth particle in Figure 1(c) is much smaller; it
occupies only six rows (about 36µm high), and is magnified in the figure
to be visible at all.

Figure 1 shows the dirt on the experimental camera as well as dirt
on two other sensors for comparison. Figure 1(a) is based on a sensor
shot of the experimental camera that was taken some time before the
experiments were conducted. The camera sensor was cleaned after this
shot was taken and dirt was allowed to build up until the experiments
were performed. Figure 1(b) is based on a sensor shot of a Pentax *ist DS
also taken some time before the experiments. The sensor of the Pentax
*ist DS only contained 6 megapixels; the figure has been adjusted so
that similar sized particles are represented using similar sized images
even though they cover fewer (but physically larger) pixels.

Figure 1 clearly illustrates that sensor dirt forms characteristic pat-
terns. Even though a very low resolution grid is used, the patterns
formed are very different. Moreover, the size and shape of the individ-
ual particles demonstrate unique characteristics.
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Figure 2. Spot occurrence in pictures.

On the negative side, the fact that two diagrams in the figure origi-
nated from the same camera clearly demonstrates that sensor patterns
are temporary. Sensors may be cleaned and may accumulate additional
dirt over time. Hence, such an analysis will only be useful if the camera
was seized soon after the picture of interest was taken. This limitation
may not be quite as serious as it seems. Cleaning a sensor requires some
dexterity and somewhat specialized tools. Hence, many people will allow
sensor dirt to accumulate until the effect becomes unbearable. Moreover,
some cameras are shipped with dirt on their sensors [3].

In fact, it is probable that the experimental camera was shipped with
dirt on its sensor. One spot, in particular, was visible from almost the
first picture taken. The sensor shot in Figure 1(a) was taken when the
camera was a few weeks old. Figure 2 repeats the sensor shot of Figure
1(a) and adds the corresponding regions from two early pictures taken
with the camera. A region consists of the pixels corresponding to the
observed particle and some additional bits around it. In the case of the
larger particles, ten additional bits were added on each side and, if space
permitted, ten more bits were added at the top and bottom. For smaller
particles, five bits were included at the sides, top and bottom. They were
then enlarged with the smaller picture, as was the case for the smaller
particles discussed earlier. The question is whether the sensor pattern in
Figure 2(a) and the corresponding areas from the pictures (contained in
Figures 2(b) and 2(c)) prove that they were taken with the same camera.

Figure 2 demonstrates the difficulty of using sensor dirt for camera
identification. The first four areas of the picture in Figure 2(b) are
simply too dark to observe any spots. The fifth spot is clearly present
and has a similar shape. However, it seems to be shifted to the left and is,
perhaps, a little higher and a little smaller. Is this enough to declare that
the picture matches the sensor? The remainder of this paper attempts
to address this question.
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Figure 2(c) illustrates additional challenges involved in camera iden-
tification. Some of the areas are lighter and may have shown some spots
if particles were present at the time the picture was taken. Note that
since dirt particles may have collected later, the absence of a spot does
not prove that the camera was not used. The area in the extreme right
of Figure 2(c) does indeed contain a spot, but it is enlarged to the ex-
tent that it almost fills the displayed area. Furthermore, the differences
between the tone of the spot and the surrounding area are so subtle that
the spot disappears in the printed version. When displayed on a screen
(and with some imagination) the spot is discernible. However, it be-
comes clearer when a larger area is considered and when it is displayed
more densely. This suggests that our choice to use a border of five or ten
pixels may be too conservative. Nevertheless, it is not clear that a larger
area would be sufficient to link the picture positively to the sensor.

Some details about the camera settings appear to the right of the
sensor maps in Figure 2. Clearly, there are several differences between
the various cases, e.g., different focal lengths (50mm, an 18–200mm zoom
lens at 200mm and a 28–70mm zoom lens at 43mm), different sensor
speeds (ISO 200 and ISO 400) and different apertures (f/32, f/22 and
f/6.7). The impact of these factors on sensor shots is discussed below.

3.3 Encoding

The first issue to consider is the encoding format used to record an
image. Most high-end digital cameras offer a lossy compression encoding
(typically JPEG abbreviated as JPG), and a format in which all the
pixels (and some other information) are recorded without loss. While
TIFF was used in the past, most current cameras use a proprietary
RAW format. The experimental camera offers a RAW format known as
PEF. It also supports Adobe’s DNG format, which may be used without
paying royalties and could lead the drive towards standardization [1].

The recording format must be considered because a lossy compression
technique (e.g., that used by JPG) may lose information about sensor
dirt, which may not be desirable. We say “may” because it is not clear if
it is best to use the same compression technique that was used to create
the suspect picture.

In fact, the situation is even more complex – cameras offer differ-
ent compression levels, with higher compression levels typically yielding
lower quality images and vice versa. Our experiments did not test the
effect of different compression levels, but simply used the highest quality
level offered by the camera. Any differences seen between the JPG and
RAW images should be significantly more pronounced when lower qual-
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Figure 3. Comparison of JPG and DNG images.

ity levels are used. Since it did not seem to matter which RAW format
was used (all RAW formats record all pixels), we decided to use DNG
in our experiments.

Figure 3 shows the results of an experiment performed in this regard.
As expected, JPG compression smoothed the transition between the
blank sensor and the dark dirt, resulting in smaller – albeit apparently
darker – marks on the image (Figure 3(b)). JPG compression removed
between two and six pixels from the height or width of the mark. This
is rather significant given the fact that the marks (in JPG) ranged in
length dimension from four pixels to 51 pixels. Given the fact that the
JPG encoding modifies the observed particles, we decided to use DNG
in the remainder of our work.

3.4 Focus Distance

The second experiment with encoding in the previous section suggests
another issue that needs to be considered: Does focus distance have an
impact on how marks are rendered? In fact, focus distance had a minor
effect on the rendering of the artifacts. However, space limitations do
not permit a full discussion in this paper.

A more important observation was that the positions of the marks
were affected by focus distance. This observation is predicted by the
model of Zamfir, et al. [13]. The observation suggests that the sensor
shot should ideally be taken with focus distance set to the same range
as that for the suspect picture. Further study is required to determine
whether marks recorded at different focus distances can be matched
reliably. This could determine the finest grid resolution that may be
used to match mark positions.

3.5 Lighting

Lighting was considered as a possible reason for mark size variations
in the previous section. Artificial lighting can be better controlled than
natural light that was used in that particular case. Hence, that part
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Figure 4. Comparison of flash and daylight photography.

of the experiment was repeated using an electronic flash. The results
are presented in Figure 4. Note that the differences appear to be more
pronounced than they were in reality. The sizes of most marks differed
by zero, one or two pixels; one differed by three pixels. These variations
did not seem to be significant enough to warrant further investigation.
We assumed natural light suffices, which is useful when longer lenses are
tested (as discussed below).

3.6 Aperture

As suggested earlier in the paper, focal length may affect the rendering
of marks. Many of the lenses available for the experiments could not be
set to an aperture of f/32 – as was used in the testing procedure up
to this point. Hence, the smallest common aperture setting of f/22 was
used. Before discussing the impact of focal length, we examine the effect
of aperture on the experimental observations.

It is well known that sensor dirt causes the most problems at small
apertures, primarily because dirt is most visible at small apertures. Con-
sequently, small apertures were chosen in the experimental study (f/32,
in general, and f/22 for the tests involving focal lengths). Experience has
shown that sensor marks quickly become less defined at larger apertures,
but they remain observable and their positions are clearly marked. Fill-
ing the background with white helped us to conduct the experiments in
a repeatable manner and enabled precise measurements of the position,
size and shape of dirt marks down to the pixel level.

Since it was known that larger apertures would not provide such preci-
sion, aperture testing was scheduled as the last test in the current series.
However, we were surprised at the rate at which precision was lost.

The 50mm lens focused at infinity was still used in the aperture tests;
it was set to apertures of f/32, f/22, f/16, f/11, f/5.6, f/4 and f/2.8. As
expected, the dirt marks became “softer.”

At the f/22 setting, all five sensor marks were visible in the original
image; however, filling the background with white erased the two smaller
marks and drastically reduced the size of the three remaining marks. At



Olivier 203

aperture settings larger than f/22, filling the background erased all the
marks, which rendered exact comparative testing impossible.

The three larger marks remained visible up to f/5.6, and some at f/4.
Even at f/5.6, the color variation between mark and background was so
subtle that observability depended on specific screen settings. At f/4,
it was only possible to observe the marks after “tweaking,” which, of
course, touches on the fundamental premises of experimentation. Ob-
viously, a specialized tool that could identify marks more objectively
would be very useful in future experiments.

The shape of the most distinctive mark was still recognizable at f/16
and, perhaps, even f/11; the other marks lost their distinctive shapes at
f/22. The sizes of the marks were (according to a subjective assessment)
significantly affected by aperture. Consequently, it appears that mark
position is the most useful attribute. Size may have to be adjusted
depending on various factors in order for it to be useful. Shape offers,
perhaps, the most convincing proof, when it is observable, especially
when smaller apertures are used.

In summary, larger apertures cause a loss of shape and an increase
in the size of marks, and may cause some marks to disappear. Many
marks remain discernible up to fairly large apertures (even f/4). More-
over, the marks that remain visible do not change their position. These
observations are interesting, but their quantification requires a tool that
can objectively isolate marks.

3.7 Focal Lengths

The following focal lengths were tested: 500mm, 170mm, 100mm,
50mm, 40mm, 17mm and 10mm. The first two and last two used zoom
lenses at their extreme settings; the others used fixed focal length lenses.
The fisheye zoom lens was used for the 17mm and 10mm settings.

Observations were harder to make than expected. One difficulty
stemmed from the fact that an aperture of f/22 was used. In all cases
this eliminated the smaller two marks once the background was filled
with white. (Subjectively, all marks were initially present.) Another
problem arose because the white plane used in the experiments proved
to be too small at the shorter focal lengths. This was easily remedied
in the case of the 40mm lens However, for the 10mm lens, the field of
view across the diagonal was 180◦ and it was not possible to obtain an
evenly lit white background. The same problem occurred for the 17mm
setting. While the marks were clearly visible, the edges introduced by
the borders of the light tent and the fact that all the sides of the light
tent were not evenly lit caused the background filling to fail.
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For some reason, only one mark remained for the 500mm lens after
filling. Its position moved 16 pixels horizontally and 13 pixels vertically
between the 500mm and 50mm settings, with most of the movement (12
and 12 pixels, respectively) occurring from 500mm to 170mm. The other
marks that were present from 170mm down, showed very little movement
(up to four pixels horizontally and six pixels vertically) until the point
where measurement became an issue given the background edge marks.
Size remained virtually unchanged (with a four pixel change in one case).
However, as mentioned above, comparing these results with others in the
paper is questionable given the impact of the f/22 aperture used.

4. Camera Identification

It was argued earlier in the paper that matching an image to a sensor
may be based on the position, shape and size of dirt marks. We have
pointed out that particle shape requires a suitable aperture and further
investigation of the effects of particle size is required. Consequently, the
primary attribute for matching at this point is particle position.

As discussed above, a grid is very useful for comparing the positions
of dirt particles. We propose that the grid be placed so that a mark does
not move from one grid cell to another due to the focal length or focus
distance or other factors. Having assumed that an m × n grid has been
overlaid in such a manner, the question is: Given some marks on the
image and given some marks on the sensor, what is the probability that
the image has been produced by the sensor? To quantify the probability,
we assume that a dirt particle will stick to any part of the sensor with
equal probability.

In the following calculations, for k, j ∈ IN , the term k!j denotes k ×
(k−1)×(k−2)×(k−j +1), i.e., the product of the j successive integers
ranging from k to k − j + 1. Note that k!j = k!

(k−j)! .

Assume that the picture displays p marks and that there are s (visible)
particles on the sensor. Further, assume that c of these marks are in
corresponding cells of the overlaid grid.

The probability of a Type I (false positive) error is given by:

P (c) =

(
s

c

)
(mn − p)!(s−c) · p!c

(mn)!s
.

The derivation of this probability expression is not provided due to
a shortage of space. Interested readers may contact the author for the
derivation.

Type II errors (false negatives) are expected to occur frequently. A
dust particle may be deposited on the sensor, appear in a single picture
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and then fall from the sensor. Alternatively, the sensor may be cleaned
between pictures. Also, camera settings, such as aperture, may cause
some particles not to appear in the picture.

Given these considerations, what do the formulas in this section mean
in practice? The marks observed in this study suggest that a 300 × 200
(or finer) grid may be practical. A match of exactly one cell on such a
grid implies false positives for 0.0017% of such cases based on position
alone. A false positive match of exactly two cells (s = p = c) occurs with
a frequency of 2.7 × 10−8%. Partial matches may not be as convincing,
but may be perfectly adequate. In fact, our experiments indicate that a
sensor with two marks that matches the position of one mark correctly
links a picture to a camera in more than 99.996% of test cases.

5. Conclusions

Dirt particles on a camera sensor can be used as toolmarks to link
a picture to the camera. Several factors, including focus distance and
aperture, affect the rendering of dirt marks on camera images. A match-
ing technique involving grid overlay was proposed and the probability
of false positive matches was quantified. The results indicate that tool-
mark analysis based on sensor dirt is a promising technique for camera
identification.

More work needs to be done to fully understand the effects of individ-
ual factors and combinations of factors on image rendering. Experiments
should also be conducted on multiple cameras and dirt configurations.
Additionally, some of the assumptions used in this preliminary work,
e.g., the random distribution of dirt particles, should be verified empir-
ically.

Camera dust removal systems are being continuously improved. How-
ever, because a few isolated marks appear to be more useful than myriad
marks, sensor cleaning may, in fact, have a positive impact on the po-
tential of the technique, as long as dust removal systems are not 100%
effective.
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Chapter 17

A NEW FEATURE-BASED METHOD FOR
SOURCE CAMERA IDENTIFICATION

Fanjie Meng, Xiangwei Kong and Xingang You

Abstract The identification of image acquisition sources is an important problem
in digital image forensics. This paper introduces a new feature-based
method for digital camera identification. The method, which is based on
an analysis of the imaging pipeline and digital camera processing oper-
ations, employs bi-coherence and wavelet coefficient features extracted
from digital images. The sequential forward feature selection algorithm
is used to select features, and a support vector machine is used as the
classifier for source camera identification. Experiments indicate that the
source camera identification method based on bi-coherence and wavelet
coefficient features is both efficient and reliable.

Keywords: Source camera identification, bi-coherence, wavelet coefficients

1. Introduction

The improving performance and the falling cost of digital cameras
have led to their widespread use. Compared with their analog counter-
parts, digital cameras provide photographers with immediate visual feed-
back and the pictures can be shared conveniently by electronic means.
Because of these advantages, the general public as well as law enforce-
ment agencies are rapidly replacing analog cameras with digital ver-
sions [14]. On the other hand, it is easy even for amateurs to manipulate
the content of digital images without leaving any obvious traces. Thus,
a digital image may not be an accurate record of reality and its authen-
ticity can be questioned, especially in legal proceedings [15]. Reliable
techniques for identifying digital cameras are, therefore, important to
establishing the origin of images presented as evidence.

The simplest method for source camera identification is to inspect
the header file of an image. The EXIF header of an image, for example,
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provides information about the camera make and model, and details
about image capture (e.g., exposure and time). However, this method
has limited credibility because header data is easily modified and may
not be available after the image is recompressed or saved in a new format.

Source cameras can also be identified based on digital watermarks.
Some cameras (e.g., Kodak DC290) embed visible watermarks while
others (e.g., Epson PhotoPC 700/750Z) embed invisible watermarks.
However, the use of watermarks for camera identification is limited to
special situations (e.g., “secure digital cameras” [3]). In any case, few
digital cameras embed watermarks in their images, so watermark-based
identification is not a general solution to the source camera problem.

Several researchers have investigated passive methods such as identi-
fication based on camera pixel defects. Geradts, et al. [12] note that
manufacturing defects in CCD sensor arrays can be used to construct
unique patterns for digital cameras. However, this approach fails when
strong light is incident on a CCD array, when there are not enough dark
frames, or when there is camera movement.

CCD noise is another camera characteristic that can be used in pas-
sive identification. Operating under the assumption that CCD noise
is unique to cameras, Lukas and co-workers [17–19] have developed an
identification method that uses photo-response non-uniformity (PRNU)
noise caused by pixel non-uniformities. In their approach, the noise com-
ponent of images is extracted using a wavelet-based denoising filter and
the denoising residual from several sample images is averaged to produce
a PRNU pattern that represents the camera signature. This signature
acts as a high frequency spread spectrum watermark whose presence in
the image is established using a correlation detector. While the method
is robust to JPEG compression, the authors note that geometrical oper-
ations and noise attacks may prevent correct camera classification [19].

Kharrazi, et al. [15] have proposed a feature-based technique in which
a classifier is used to identify the source camera based on pattern recogni-
tion principles. The feature vector used for classification contains image
color characteristics, image quality metrics and the mean of wavelet co-
efficients. Although the method has been shown to achieve nearly 92%
average classification accuracy for six different cameras, it fails to iden-
tify cameras of the same make but different models (these experimental
results are presented later in this paper).

Choi and co-workers [5, 6] have augmented the feature-based approach
by incorporating the lens radial distortion coefficients of digital cameras.
The classification accuracy is improved. However, it is necessary to
extract distorted line segments in Devernay’s straight line method [7] in
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Figure 1. Imaging pipeline.

order to estimate the distortion coefficients. Thus, the image samples
are limited to those containing distorted line segments.

This paper proposes a new passive feature-based method for source
camera identification. It considers the influence of non-linear distor-
tions caused by the imaging pipeline on higher-order image statistics
and the impact of image processing operations on the wavelet domain.
The method uses bi-coherence and wavelet coefficient statistics as distin-
guishing features and a support vector machine (SVM) as the classifier
for source camera identification. Experimental results demonstrate that
the method is both efficient and reliable. Also, it has better accuracy
than the methods of Kharrazi, et al. [15] and Choi, et al. [5, 6] without
placing constraints on the sample images.

2. Imaging Pipeline

The imaging pipeline of a digital camera is presented in Figure 1 [22].

Figure 2. Color filter array.

Light entering the camera through the lens is captured by a sensor
(usually a CCD detector). Most cameras employ one CCD detector at
each pixel; however, each pixel has a different RGB color filter based on
the color filter array (CFA) used by the camera (Figure 2). The indi-
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vidual color planes are then filled by interpolation using a process called
“demosaicing.” Following this, several operations are performed, includ-
ing color processing, enhancement, gamma correction and compression.
Finally, the digital image is stored in memory in a user-defined format
(e.g., RAW, TIFF or JPEG).

Differences in the image capture and processing operations of camera
models produce distinguishing features in digital images. We attempt
to quantify these image features using statistical techniques and use the
results for source camera identification.

3. Identification Based on Image Features

In order to identify the source camera of a particular digital image, it
is necessary to extract statistical features that can be used to discrim-
inate between cameras. Kharrazi, et al. [15] use image color statistics
to quantify the impact of interpolation and color processing. They also
use image quality metrics to quantify differences arising from image pro-
cessing operations.

Most cameras also introduce certain geometric and luminance non-
linearities (e.g., due to lens distortion and gamma correction). These
non-linearities introduce higher-order correlations in the frequency do-
main, which can be detected using polyspectral analysis tools [10]. Farid
and colleagues [9–11] have used bi-coherence statistics to estimate ge-
ometric and luminance non-linearities and to calibrate digital images.
We employ polyspectral analysis and higher-order statistics as discrim-
inating features primarily because of their sensitivity to the non-linear
distortions produced by digital cameras.

Digital images can be represented in additional detail using features in
a transformation domain. For example, photographic images have been
modeled using multiscale wavelet decomposition. Image capture and
image processing operations in digital cameras have different influences
on the regularities that are inherent to natural scenes; these differences
can be captured using first- and higher-order statistics of wavelet coef-
ficients. Our use of wavelet coefficient statistics is motivated by their
effectiveness in steganalysis [20] and image origin identification [21].

3.1 Feature Extraction

Our identification method uses the magnitude and phase statistics
of bi-coherence along with wavelet coefficient statistics to capture the
unique non-linear distortions in images produced by different cameras.
This section discusses the methods used to extract these statistical fea-
tures.
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Figure 3. Extraction of bi-coherence features.

3.1.1 Bi-Coherence Features. Non-linear distortions pro-
duced by digital cameras are characterized using statistical features of
image bi-coherence. Consider, for example, a one-dimensional signal
f(x). The bi-spectrum of the signal is estimated by dividing the signal
into N (possibly overlapping) segments, computing the Fourier trans-
form of each segment, and averaging the individual estimates. This is
given by:

B̂(ω1, ω2) =
1

N

N∑
k=1

Fk(ω1)Fk(ω2)F
∗
k (ω1 + ω2) (1)

where Fk(·) is the Fourier transform of the kth segment. In order to
make the variance at each bi-frequency (ω1, ω2) independent of P (ω1),
P (ω2) and P (ω1 + ω2), we employ the bi-coherence (i.e., normalized
bi-spectrum) [16]:

b̂(ω1 + ω2) =
1
N

∑
k Fk(ω1)Fk(ω2)F

∗
k (ω1 + ω2)√

1
N

∑
k |Fk(ω1)Fk(ω2)|2 1

N

∑
k |Fk(ω1 + ω2|2)

= |̂b(ω1 + ω2)|ejφ(bb(ω1+ω2)). (2)

Next, we compute the mean of the magnitude and the negative phase
entropy [23] of the bi-coherence as statistic features.

The extraction of bi-coherence features is illustrated in Figure 3. To
reduce memory and the computational overhead involved in calculating
the full four-dimensional bi-coherence of images, we restrict our analysis
to one-dimensional row, column and radial slices through the center of
images. For each slice, we use segments of 64 pixels in length with an
overlap of 32 pixels with adjacent segments. To reduce the frequency
leakage and obtain better frequency resolution, each segment is mul-
tiplied with a Hamming window and padded with zeros from the end
before computing the 128-point discrete Fourier transform. Then, the
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Figure 4. Extraction of wavelet coefficient features.

estimates of bi-coherence statistics (mean of the magnitude and negative
phase entropy) for a slice are calculated. The statistics for the entire im-
age are computed by averaging the estimates for a subset of row, column
and radial slices for each RGB color component.

Note that it is not necessary to extract the information associated with
image content (e.g., line segments) when applying bi-coherence statistics
to quantify the non-linear distortions produced by cameras. Therefore,
no rigorous constraint is placed on image sample selection.

3.1.2 Wavelet Coefficient Features. Wavelet coefficients are
used to characterize the impact of image processing on digital camera
images. Four-scale wavelet decomposition is employed (Figure 4). This
splits the frequency space into four scales and the orientations (HH, HL,
LH). Next, four statistics (mean, variance, skewness and kurtosis) of the
sub-band coefficients and the linear prediction errors at each orientation,
scale and color channel are computed. These statistics form the second
group of statistical feature vectors used for source camera identification.

Note that the method of Kharrazi, et al. [15] uses only the first-order
statistic (mean) of the sub-band coefficients; also, it does consider linear
prediction errors. Therefore, the prediction of wavelet coefficients can be
regarded as a filtering operation in the wavelet domain and the predic-
tion errors are basically independent of image content. As a result, the
dependence between the prediction error features and image content is
lower, producing more stable performance for arbitrary image samples.

3.2 Source Camera Identification Framework

The sequential forward feature selection algorithm [24] is used to re-
duce the correlation among features and improve the accuracy of source
camera identification. The algorithm provides reliable results with rea-
sonable computational cost.



Meng, Kong & You 213

Figure 5. Source camera identification framework.

The algorithm analyzes all the features and constructs the most sig-
nificant feature set by adding or removing features until no further im-
provement is obtained. The steps in the algorithm are as follows:

1. Initialize the current feature vector with the pair of features that
produce the best classification results.

2. Add the most significant feature from the remaining features to
the current feature set.

3. Remove the least significant feature from the current feature set.
(The least significant feature is the feature whose removal improves
the classification result the most.)

4. Check if the removal of the feature improves the classification re-
sult. If the classification result is improved, remove the feature
and return to Step 3. Otherwise, do not remove the feature and
return to Step 2.

A support vector machine (SVM) is used as the classifier. In our
experiments, we used the SVM implementation provided by the LIBSVM
toolbox [4].

The source camera identification framework is shown in Figure 5.
First, the bi-coherence and wavelet coefficient features are extracted from
the training samples for use in feature selection and classifier design.
When using SVM classification, a certain amount of pre-processing of the
feature data can increase the accuracy of classification; in our scheme,
this is accomplished by linearly scaling feature values to the range [0,1].

Our experiments used C-support vector classification with the non-
linear RBF kernel and the tunable parameters, C and γ. The two pa-
rameters are obtained by performing a grid search using υ-fold cross
validation [13]. In the cross validation procedure, all the training sam-
ples are randomly divided into υ subsets of equal size. Each subset is
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Table 1. Camera and sample image properties.

Camera Camera Parameters Sample Image Parms.

Sensor Max. Image Image
Resolution Resolution Format

Kodak DC290 Unspecified CCD 2240 × 1500 2240 × 1500 JPEG
Nikon 5700 2/3-inch CCD 2560 × 1920 1600 × 1200 JPEG
Sony DSC-F828 2/3-inch CCD 3264 × 2448 1280 × 960 JPEG
Canon Pro1 2/3-inch CCD 3264 × 2448 1600 × 1200 JPEG
Canon G2 1/1.8-inch CCD 2272 × 1704 2272 × 1704

1600 × 1200
1024 × 768

JPEG

Canon G3 1/1.8-inch CCD 2272 × 1704 2272 × 1704 JPEG

tested using the classifier trained with the remaining υ−1 subsets. Thus,
every sample in the entire training set is predicted once so that the cross
validation accuracy is the percentage of data that is correctly classified.
In our experiments, a 5-fold cross validation was performed for each (C,
γ) pair with values in the set {2−5, 2−4, . . . , 25}. The parameter value
pair with the highest cross validation accuracy was selected.

4. Experimental Setup and Results

This section describes the experimental setup for testing the source
camera identification method and the results that were obtained.

4.1 Experimental Setup

Six different cameras were used in the experiments (Table 1). Three
resolutions were used for the Canon G2 images in order to eliminate
the influence of the properties of the sample images on the experimental
results. The JPEG format was used for all the images because of its
popularity and concerns about degradation in image quality caused by
image compression in other formats. Furthermore, upon estimating the
JPEG tables of all the image samples, no regularities were found within
every class; this implies that JPEG compression has no impact on the
experimental results.

A total of 2,100 image samples were used (350 images for each cam-
era). The images were captured using the auto-focus mode and stored
in the JPEG format. The images were typical shots varying from nature
scenes to close-ups of people. The training set contained 1,200 images
and the classifier was tested using the remaining 900 images. Images
were randomly assigned to the training and testing sets. Camera identi-
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Table 2. Experimental results.

Camera Kodak Nikon Sony Canon Canon Canon Accy.
Pro1 G2 G3

Kodak 150 0 0 0 0 0 100%
Nikon 0 148 0 2 0 0 98.7%
Sony 0 2 148 0 0 0 98.7%
Canon Pro1 0 1 1 148 0 1 98.7%
Canon G2 0 0 0 5 139 6 92.7%
Canon G3 0 0 0 0 2 148 98.7%

fication features were extracted for all the images and fed to a support
vector machine for training and testing.

4.2 Experimental Results

Table 2 presents the results obtained after computing the image fea-
tures and applying the feature selection method discussed in Section 3.2.
The confusion matrix shows that the average identification accuracy for
all the cameras exceeds 97% and that for the three Canon cameras is at
least 96%. Note that the Canon G2 camera has the lowest identification
accuracy, most likely because its images had three resolutions; using mul-
tiple resolutions negatively affects classifier training and, consequently,
the accuracy of identification.

Figure 6. Comparison of results.

Figure 6 compares the results obtained using our method with those
obtained using the method of Kharrazi, et al. [15] for the same im-
age samples. Note that the average accuracy obtained with Kharrazi’s
method is 92%, but the accuracy for the Canon G2 camera is only about
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80%. We can, therefore, conclude that bi-coherence and wavelet do-
main statistical features improve the identification accuracy, especially
for cameras of the same brand but different models.

5. Conclusions

The source camera identification method, which engages statistical
characteristics of bi-coherence and wavelet coefficients as distinguishing
features, the sequential forward feature selection algorithm for feature
selection and a support vector machine for classification, is both efficient
and reliable. The accuracy of identification is also much better than that
obtained using the method of Kharrazi, et al. [15], especially for cameras
of the same brand but different models. Furthermore, no constraints are
imposed on image samples as in the case of the method proposed by
Choi, et al. [5, 6].

Our future research will attempt to enhance the identification method
by incorporating features from other techniques (e.g., PRNU [19], which
is more effective at distinguishing between cameras of the same model
but less robust for geometrical transformations). We will also attempt
to expand the feature vector to accommodate camera images of varying
content and texture.
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Chapter 18

DATA RECOVERY FROM WINDOWS CE
BASED HANDHELD DEVICES

Antonio Savoldi and Paolo Gubian

Abstract Data hiding creates serious problems for digital forensic practitioners
attempting to recover evidence. It is possible to conceal large amounts
of sensitive data in handheld devices in a manner that prevents their
recovery using standard forensic tools. This paper describes a technique
for recovering data stored in the slack memory of Windows CE based
devices. A case study involving data hiding in a Toshiba E740 PDA is
discussed.

Keywords: Data recovery, handheld devices, Windows CE, Toshiba E740 PDA

1. Introduction

Personal digital assistants (PDAs) and cell phones are the most per-
vasive pieces of electronic equipment in modern society. These devices
contain a wealth of information of evidentiary value – subscriber data,
call data, contact lists, SMS and email messages, images, audio and video
files, as well as sensitive data concealed by exploiting weaknesses in the
operating system and/or hardware. Data can be hidden in a variety of
ways, usually for illicit purposes. Two common techniques involve hiding
data in images, audio or video files using steganography and allocating
sensitive data in the slack memory of electronic devices [11, 12].

Covert channels [14] are frequently used for the surreptitious trans-
fer of sensitive data in a manner that violates the security policy of a
computer system. In the case of a storage channel, data is transferred
from one party to another by writing to shared storage; a timing channel
signals sensitive data by modulating temporal system resources. Due to
their popularity and functionality, PDAs and cell phones are attractive
devices for implementing storage channels. It is common to find such
communications devices with 256 MB RAM and 128 MB flash ROM, var-
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ious built-in wireless capabilities (Wi-Fi, Bluetooth, IrDa, GSM, UMTS,
HSDPA) along with a high resolution camera and a GPS receiver. Large
amounts of data can be hidden in these handheld devices in a manner
that prevents their recovery using standard forensic tools.

This paper describes techniques for data concealment and recovery
from devices running Windows CE (WinCE) [9], one of the most pop-
ular operating systems for handheld devices. A case study involving
data hidden in the slack memory of a Toshiba E740 PDA is presented.
Also, guidelines are provided to assist digital forensic practitioners in
identifying and recovering hidden data in WinCE devices.

2. Background

This section describes Windows CE and the Toshiba E740 PDA used
in our case study.

2.1 Windows CE Operating System

Windows CE [9], often referred to as WinCE, is a modular operating
system, which serves as the foundation for several classes of embedded
devices. It is supported by Intel Xscale processors and compatibles, and
MIPS, ARM and Hitachi SH processors. WinCE is optimized for de-
vices with minimal storage and small scale factors (small-scale digital
devices); its kernel requires less than 1 MB of memory. WinCE devices
are often configured without any disk storage and may be configured
as closed systems, with the operating system burned on a flash ROM.
WinCE is compliant with the definition of a real-time operating system
with deterministic interrupt latency. It supports 256 priority levels and
uses priority inheritance to deal with priority inversion. Furthermore,
WinCE is a multitasking operating system, where the fundamental unit
of execution is a “thread.” Since the first edition of WinCE (called Pe-
gasus) was released in 1996, the operating system has evolved to support
platforms other than handheld devices. The basic WinCE core is used
in AutoPC, PocketPC 2000/2002, Mobile 2003, Mobile 2003 SE, Mobile
5.0/6.0, Smartphone 2002/2003 and many other embedded systems and
industrial devices.

The WinCE kernel uses a paged virtual memory system to manage
and allocate program memory. The virtual memory system provides
contiguous blocks of memory, between 1 KB and 4 KB within 64 KB
regions, so that applications do not have to deal with memory allocation.
In a WinCE device, the operating system and the applications bundled
with the operating system are stored in ROM. The entire operating sys-
tem is mapped to a binary ROM image divided logically into two types
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of modules. The first type corresponds to executable in place (XIP)
modules; these modules save RAM space and reduce the time needed to
start applications. The second type includes compressed modules, which
are decompressed by the operating system and paged into RAM before
execution.

In WinCE devices, the RAM is divided into two regions, “object store”
and “program memory.” The object store resembles a permanent, vir-
tual RAM disk. Data in the object store is retained when the system
is suspended or when a soft reset operation is performed. Normally, de-
vices have a backup power supply for the RAM to preserve data when
the main power supply is interrupted. When operations resume, the sys-
tem searches for a previously-created object store in RAM and uses it (if
one is found). Devices without battery-backed RAM may use a special
flag in the registry to preserve data during multiple boot processes.

The remaining portion of the RAM on a WinCE device is designated
for program memory. This space holds various stacks and heaps belong-
ing to executing applications.

WinCE has a virtual memory address space of 4 GB. The operating
system is able to manage at most 32 processes by assigning a “slot”
corresponding to 32 MB of virtual address space to each process. This
is partly due to the fact that Windows CE keeps the address spaces of all
processes available at all times, even when the processes are not running.
Thus, the lower portion of the address space is split into 32 MB slots.
The address space is divided as follows (note that 32 MB corresponds
to 0x02000000 in hexadecimal code):

Slot 0 is assigned the memory locations in the range 0x00000000

to 0x01FFFFFF.

Slot 1 is assigned the memory locations in the range 0x02000000

to 0x03FFFFFF.

Slot 31 (last slot) ends at memory location 0x41FFFFFF.

Memory locations in the range 0x42000000 to 0x7FFFFFFF mostly
correspond to the “shared area” used for VirtualAlloc functions
and memory-mapped files.

Memory locations above 0x80000000 are reserved for the kernel.
The kernel and the DLLs that load into the kernel (e.g., installable
interrupt service routine (ISR) DLLs) execute from this memory
space.
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Kernel
Space

User
Space

0xFFFF FFFF

0xE000 0000

0xC400 0000

0xC200 0000

0xC000 0000

0xA000 0000

0x8000 0000

0x7FFF FFFF

0x7E00 0000

0x4200 0000

0x0400 0000

0x0200 0000

0x0000 0000

Kernel address: KPAGE,
Trap area, others

Statically mapped virtual
addresses: OEM additional

Slot 97: Nk.exe (Secure slot)

Unused

Statically mapped virtual
addresses: UNCACHED

Statically mapped virtual
addresses: CACHED

Slot 63: Resource mappings

Slots 33−62: Object store and
memory mapped files

Slots 2−32: Processes

Slot 1: XIP dlls

Slot 0: Current process

Figure 1. Virtual address space managed by WinCE.

Figure 1 shows the layout of the virtual memory managed by WinCE.
Note that the kernel and user space each have 2 GB of addressable
memory.

The Remote Application Program Interface (RAPI) protocol [8] is
often used by tools to extract the ROM and RAM contents of WinCE
devices. The RAPI library enables applications running on a desktop
computer to perform actions on a remote WinCE device; these include
manipulating the file system on the remote device (e.g., creating and
deleting files and directories). RAPI interfaces can be used to create
and modify databases, either in the object store or in mounted database
volumes. RAPI applications can also query and modify registry keys as
well as launch applications and invoke methods on the remote device.

2.2 WinCE Test Device

A Toshiba E740 PDA equipped with the PocketPC 2002 OS (a WinCE
derivative) was used in our investigation of data hiding and recovery at
the firmware level. It has an Intel PXA240 (400 Hz) processor, 64 MB
of SDRAM (main memory) and 32 MB of CMOS flash memory (ROM),
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which holds the operating system. The device also has built-in Wi-Fi
and IrDa transceivers. Two slots for secure digital and compact flash
cards are available for memory expansion. Later in this paper we will
demonstrate the ease with which data can be hidden in the ROM and
RAM in a manner that precludes its recovery using commercial digital
forensic tools.

2.3 Data Extraction Techniques

The two main classes of data extraction techniques are logical extrac-
tion and physical extraction. A logical extraction technique focuses only
on the visible content at the file system level, i.e., data pertaining to
files, databases and registry along with other file system data. Device
Seizure [10] is a popular logical data extraction tool for PDAs and cell
phones (although it can access some physical data from certain devices).

A physical extraction technique, on the other hand, is attractive be-
cause it can recover all the data stored in an electronic device. In most
cases, however, only the flash ROM and the RAM content are recovered
using a special operating mode of the device (e.g., Palm OS debugger
mode) or by communicating with the operating system (e.g. using the
RAPI protocol [8]).

According to Breeuwsma and co-workers [2], three techniques may be
used to obtain a complete copy of flash memory: (i) using “flasher” tools,
(ii) using JTAG test access ports, and (iii) using forensic de-soldering.

Flasher tools are designed to copy the memory of certain families of
electronic devices. They employ APIs that interact with the addressable
memory. Generally, these tools originate from manufacturers, who use
them for debugging purposes, or they come from the hacker community,
which creates the tools to modify the functionality of handheld devices.
An important advantage of this technique is that flash memory can be
imaged without de-soldering the chip. However, many flasher tools do
not make complete forensic copies of flash memory, mostly because of
the limited functionality of the API provided by the embedded device.
Furthermore, it is important to acknowledge Locard’s Exchange Prin-
ciple [3] in that a data extraction process executing in device memory
can potentially affect the integrity of the memory. Gershteyn and co-
workers [4] have used flasher tools to recover hidden data from BIOS
chips. Savoldi and Gubian [11] have used similar tools to extract data
from SIM/USIM cards.

The second physical extraction method involves the use of JTAG test
access ports of embedded devices. JTAG ports in most devices are de-
signed for debugging purposes, but they can also be used to access the
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flash memory [1]. The JTAG extraction technique is complex and time
consuming; however, it is possible to guarantee that no data is written
to memory during the data recovery phase.

The third physical extraction technique is to de-solder the memory
chip and use a chip programmer or reader to extract the data. This
method is expensive, time consuming and the most invasive; however, it
can be used to recover data from damaged devices.

3. Data Extraction Methodology

This section discusses the use of open source tools based on the RAPI
protocol [8] for acquiring the binary ROM image and major portions
of the RAM of a WinCE device. The software-based approach falls in
the category of using flasher tools. It can be used to extract data in a
non-invasive manner from a variety of WinCE devices.

Our experiments employed a set of open source tools [6] based on the
RAPI and ActiveSync protocols. Two tools, pmemdump and pmemmap, are
particularly useful.

The pmemdump tool is very effective at extracting ROM and RAM
data. To use the tool, it is necessary to copy a DLL library to the device
file system. The following options are provided by pmemdump:

Usage: pmemdump [ -m | -p procname | -h prochandle] start length

[ filename ]

numbers can be specified as 0x1234abcd

-1 -2 -4 : dump as bytes/words/dwords

-w NUM : specify number of words per line

-s SIZE : step with SIZE through memory

-a : ascdump iso hexdump

-f : full -- do not summarize identical lines

-c : print raw memory to stdout

-x : print only hex

-xx : print only fixed length ascii dumps

-v : verbose

-n NAME : view memory in the context of process NAME

-h NUM : view memory in the context of process with handle NUM

-m : directly access memory -- not using ReadProcessMemory

-p : access physical memory instead of virtual memory

if -p, -h and -m are not specified, memory is read from the

context of rapisrv.exe

By specifying the virtual starting address (in hexadecimal notation)
with the length of the memory block, it is possible to obtain, for example,
the entire ROM image (32 MB). This is saved in the file rom pda.bin

as follows:

pmemdump.exe 0x80000000 0x02000000 rom_pda.bin
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Table 1. Complete dump of the system pagetable.

Virtual Address Physical Address Size KB

v160f9000-160fa000 pa3f77000-a3f78000 100016 4

v1649f000-164a0000 pa3f60000-a3f61000 100016 4

v1686f000-16870000 pa3d1f000-a3d20000 100016 4

v17f66000-17f67000 pa3d54000-a3d55000 100016 4

v80000000-80400000 pa0100000-a0500000 40000016 4096

v80400000-82000000 p00400000-02000000 1c0000016 28672

v88200000-88300000 p48000000-48100000 10000016 1024

v88300000-88400000 p44000000-44100000 10000016 1024

v88400000-89800000 p40000000-41400000 140000016 20480

v8b400000-8b500000 p28000000-28100000 10000016 1024

v8b500000-8b600000 p20000000-20100000 10000016 1024

v8b600000-8b700000 p38000000-38100000 10000016 1024

v8b700000-8b800000 p30000000-30100000 10000016 1024

v8c000000-8d000000 p0c000000-0d000000 100000016 16384

v90000000-90100000 pa0000000-a0100000 10000016 1024

v90100000-90500000 p00000000-00400000 40000016 4096

v90500000-94000000 pa0500000-a4000000 3b0000016 61440

v98000000-9c000000 p2c000000-30000000 400000016 65536

v9c000000-a0000000 p3c000000-40000000 400000016 65536

va0000000-a0400000 pa0100000-a0500000 40000016 4096

va0400000-a2000000 p00400000-02000000 1c0000016 29696

va8200000-a8300000 p48000000-48100000 10000016 1024

va8300000-a8400000 p44000000-44100000 10000016 1024

va8400000-a9800000 p40000000-41400000 140000016 20480

vab400000-ab500000 p28000000-28100000 10000016 1024

vab500000-ab600000 p20000000-20100000 10000016 1024

vab600000-ab700000 p38000000-38100000 10000016 1024

vab700000-ab800000 p30000000-30100000 10000016 1024

vac000000-ad000000 p0c000000-0d000000 100000016 16384

vb0000000-b0100000 pa0000000-a0100000 10000016 1024

vb0100000-b0500000 p00000000-00400000 40000016 4096

vb0500000-b4000000 pa0500000-a4000000 3b0000016 61440

vb8000000-bc000000 p2c000000-30000000 400000016 65536

vbc000000-c0000000 p3c000000-40000000 400000016 65536

vfffd0000-fffd1000 pa05a0000-a05a1000 100016 4

vfffd1000-fffd2000 pa05a0000-a05a1000 100016 4

vfffd2000-fffd3000 pa05a0000-a05a1000 100016 4

vfffd3000-fffd4000 pa05a0000-a05a1000 100016 4

vfffd4000-fffd5000 pa05a0000-a05a1000 100016 4

vfffd5000-fffd6000 pa05a0000-a05a1000 100016 4

vfffd6000-fffd7000 pa05a0000-a05a1000 100016 4

vfffd7000-fffd8000 pa05a0000-a05a1000 100016 4

vffff0000-ffff1000 pa05a8000-a05a9000 100016 4

vffff2000-ffff3000 pa05a8000-a05a9000 100016 4

vffff4000-ffff5000 pa05a8000-a05a9000 100016 4

vffff6000-ffff7000 pa05a8000-a05a9000 100016 4

vffffc000-ffffd000 pa05a9000-a05aa000 100016 4

The pmemmap tool can be used to sample the entire 4 GB of virtual
memory as follows (each step of 16 MB takes 16 bytes):

pmemmap.exe -s 0x01000000 0 0xfff00000

An important task is to locate the starting and ending addresses of
the ROM and RAM memory blocks. These addresses can be identified
by analyzing the content of the system pagetable (Table 1), which was
obtained using the pmemmap tool.
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The entire binary ROM image is obtained by starting with the virtual
address 0x80000000 and specifying a length of 32 MB (0x02000000).
This can be verified by summing up the two physical block sizes identified
with the virtual and physical addresses as shown below. Note that only
one virtual memory block is present, which is mapped to two physical
ROM blocks; the two physical blocks together constitute the 32 MB
ROM block.

v80000000-80400000 -- pa0100000-a0500000 4096 KB

v80400000-82000000 -- p00400000-02000000 28672 KB

Extracting the RAM contents is important, especially as the RAM
contains all the installed programs along with sensitive user data. Un-
fortunately, as will be explained below, it is not possible to obtain a
complete forensically-sound copy of the RAM. Also, according to Lo-
card’s Exchange Principle, the integrity of the RAM memory image
cannot be guaranteed because the acquisition process executes in the
same memory from where data is being extracted. The pagetable shows
a 60 MB block, which contains the object file store (32 MB) along with a
substantial portion of the program memory (except for the kernel area).
The portion of the pagetable presented below shows six virtual blocks
that refer to three physical blocks.

v90500000-94000000 -- pa0500000-a4000000 60 MB

v98000000-9c000000 -- p2c000000-30000000 64 MB

v9c000000-a0000000 -- p3c000000-40000000 64 MB

vb0500000-b4000000 -- pa0500000-a4000000 60 MB

vb8000000-bc000000 -- p2c000000-30000000 64 MB

vbc000000-c0000000 -- p3c000000-40000000 64 MB

Our experiments indicate that only the 60 MB block is related to the
main RAM. Therefore, it is possible to carve the signatures of all the
known programs that are present in memory to verify the correctness of
the extracted RAM block.

The main drawback of this data recovery technique is the possible
lack of integrity of the extracted program memory. This is because
the stack and heap portions of the memory are modified as the data
extraction process executes. However, the memory portion related to
the object store should not change because it is not influenced by the
extraction process. Thus, the most important portions of the RAM can
be successfully extracted if some integrity loss is acceptable. In any case,
the integrity of the extracted data can be verified by analyzing the RAM
contents and carving all the signatures related to user objects (programs,
sensitive data, etc.).
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An important point worth noting is that it is not necessary to scan
the entire 4 GB virtual address space, which can take more than two
hours. It is much more efficient to analyze the pagetable and focus on
the memory blocks that have forensic value; this requires no more than
20 minutes to obtain the entire ROM and RAM contents. We believe
that this methodology is applicable to the full range of WinCE devices.

4. Experimental Results

This section presents the results of the case study involving data hid-
ing in WinCE devices. It shows how data can be hidden in the slack
portion of the binary ROM of a Toshiba E740 PDA in a manner that
prevents its recovery using standard digital forensic tools.

4.1 Binary ROM Image

The Toshiba E740 PDA has a regular binary ROM image of 32 MB.
The ROM has a section allocated to the boot loader; the remaining
portion of the memory holds the operating system kernel. Inspection
of the ROM image released by Toshiba reveals that about 40% of the
binary image is empty – this corresponds to about 12 MB of slack space.

Two principal techniques may be used to hide data in the slack portion
of the binary ROM image. One approach is to use a flasher tool that has
been modified using reverse engineering techniques. The second, simpler
approach is use a compact flash card.

Generally, tools for upgrading the operating system are released by
the manufacturer. They incorporate a checksum mechanism to verify the
integrity of the official binary ROM image and, consequently, to permit
its upload. In order to upload a modified version of the binary ROM
image, it is necessary to remove this control in the original executable
file using reverse engineering techniques. Other checksum tests may be
implemented at the boot loader level to verify that a trusted ROM image
is loaded into the PDA. It is also necessary to defeat these protection
schemes in order to upload arbitrary ROM images.

In the case of the Toshiba E740 PDA, we have developed a technique
for re-flashing the device without modifying the executable file or the
boot loader. Specifically, it is possible to initiate the re-flashing process
by uploading a ROM image on a compact flash card and performing
a soft reset with the card inserted in the PDA. This bypasses all the
integrity controls, enabling a modified ROM image to be installed in the
device.

The binary ROM image is a sequence of contiguous blocks, some of
which may be empty; these empty blocks can be used to hide sensitive
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data. To simplify memory allocation, we used only the empty blocks
with size greater than 1 KB to hide data. Since about 40% of the ROM
image is empty, approximately 12 MB is available to hide data. Of
course, it is necessary to first identify all the empty and usable blocks
and locate their starting and ending addresses.

4.2 Hiding Data

Standard strategies used for allocating pages in main memory (e.g.,
first fit, best fit and worst fit techniques [5, 13]) may be used to hide
data within the slack portion of the ROM. We recommend the following
data hiding strategy to accommodate the fact that empty blocks in the
ROM are of varying size.

A script (e.g., written in Perl) is used to identify all the empty
blocks with size above a certain threshold (e.g., 1 KB). Each block
has a starting and an ending address. In addition, a unique number
is assigned to each block in order to apply a steganographic scheme.
The total slack space, Stot, is represented as:

Stot = {(n1, s1, e1), (n2, s2, e2), ..., (nK , sK , eK)} (1)

where nk is the number assigned to the kth empty block for stegano-
graphic purposes, and sk and ek are its starting and ending ad-
dresses, respectively.

A file, F , is created with size less than or equal to Dim(Stot)
(F | Dim(F ) ≤ Dim(Stot)), where Dim() is the space occupied by
a specific block of data. Next, an allocation policy is chosen based
on a block sequence specified according to Equation 1. Thus, the
file F is mapped as follows:

F 1 = {(n1, s1, e1), ..., (np, sp, ep)} (2)

where
(K

p

)
= K!

p!(K−p)! possibilities exist for selecting the p blocks

from the K possible blocks. The F 1 file is the result of allocation
using an arbitrary sequence of blocks in the set {1, ...,K}:

Dim(F 1) =

p∑
i=1

b(i) | Dim(F 1) ≥ Dim(F ). (3)
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Note that F 1 differs from F in the last block used, which can be
greater than the last chunk of the file. The sequence of used blocks
forms the steganographic key for recovering the original file.

4.3 Recovering Hidden Data

Every certified binary ROM image has a unique MD5/SHA1 signature
that may be used to verify its integrity. An image with a different
signature potentially contains hidden data.

The first step in recovering hidden data is to analyze the differences
between the two images. Next, data carving techniques and a steganal-
ysis approach are used to recover the hidden data. The procedure for
recovering hidden data can be summarized as follows:

Having verified that the extracted binary image is not original,
analyze the differences between the certified ROM image and the
extracted image.

Apply data carving techniques [7] to obtain headers and fragments
that might indicate the type of the data and the techniques used
to hide it.

If it is evident that scrambling techniques have been applied, at-
tempt to identify the correct sequence of blocks used for data hid-
ing.

Standard commercial tools such as Device Seizure [10] can be be used
for logical data extraction. However, logical data extraction does not
recover hidden data allocated within the slack portion of the ROM; only
standard objects present at the file system level (e.g., user files, reg-
istry and installed programs) are visible and, consequently, recoverable.
Unfortunately, Device Seizure was not very effective at physcial data
extraction – it was unable to reveal any hidden data.

5. Conclusions

Large amounts of illicit data may be concealed in handheld devices
in a manner that prevents their recovery using standard forensic tools.
Due to the ubiquity of WinCE devices, digital forensic practitioners
must be aware of techniques used for hiding data and for recovering this
data. As verified in the case study involving a Toshiba E740 PDA, the
methodology proposed for discovering and extracting hidden data from
the slack portion of flash ROM and RAM is both sound and efficient.
Moreover, the guidelines proposed for identifying and recovering hidden
data hold for WinCE devices in general. Our future work will investigate
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data hiding and recovery techniques for embedded devices using other
operating systems (e.g., Symbian OS and iPhone OS X).
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Chapter 19

LEGAL ISSUES PERTAINING TO
THE USE OF CELL PHONE DATA

Charles Adams, Anthony Whitledge and Sujeet Shenoi

Abstract This paper examines the principal legal issues related to the use of cell
phone data as evidence at trial and to establish a basis for obtaining
wiretap orders or call detail records from service providers. Four scenar-
ios are considered. The first three scenarios explore evidentiary issues
related to data extracted from damaged SIM cards, partial data re-
covered from memory chips and deleted data obtained from handsets.
The fourth scenario, which focuses on the so-called “Trojan defense,”
clarifies the important distinction between evidence admissibility and
evidence sufficiency.

Keywords: Cell phone forensics, evidence, admissibility, sufficiency

1. Introduction

Cell phones contain large amounts of information – subscriber data,
call logs, address books, text and email messages, images, and audio
and video recordings [1, 3]. Due to the ubiquity of cell phones and the
nature of their use, information recovered from cell phones can be vital
in criminal investigations [2, 4]. Law enforcement agencies may use this
information to establish a basis for obtaining wiretap orders or call detail
records from service providers, and, of course, as evidence at trial.

Obtaining a search warrant or wiretap order requires a factual showing
of “probable cause.” Such a showing only requires the presentation of
enough information to support a conclusion by a judge that there is a fair
probability of finding evidence of criminal activity. On the other hand,
the admissibility of cell phone data as evidence in a trial requires some
verification that the data extracted from the cell phone was obtained by
reliable scientific methods and is relevant to the material issues in the
case.

Please use the following format when citing this chapter: 

Adams, C., Whitledge, A. and Shenoi, S., 2008, in IFIP International Federation for Information Processing, Volume 
285; Advances in Digital Forensics IV; Indrajit Ray, Sujeet Shenoi; (Boston: Springer), pp. 231–243. 
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This paper uses four scenarios to explore the principal legal issues
related to the use of cell phone data to obtain wiretap orders and call
records, and as evidence at trial. The first three scenarios examine
evidentiary issues related to data extracted from damaged SIM cards,
partial data recovered from memory chips, and deleted data obtained
from handsets. The fourth scenario, which involves a “Trojan defense,”
clarifies the difference between admissibility and sufficiency of evidence.

2. Data from a Damaged SIM Card

Consider the following scenario involving the use of data extracted
from a damaged Subscriber Identity Module (SIM) card in a cell phone.

Before FBI agents arrest him, a suspect in a kidnapping case throws
his cell phone into a fireplace. The agents recover some melted plastic,
burned electronic components and a damaged SIM card, which cannot be
read by conventional means. Using a classified technique, the FBI is able
to recover the International Mobile Subscriber Identifier (IMSI) and the
name of the service provider from the SIM card. These facts form the
basis of an application for a Section 2703(d) order to obtain from the
provider the name and address of the subscriber and information about
all calls made during the last thirty days. Phone company records show
that a call was made to the kidnap victim’s parents from a cell phone with
that SIM card at the very same time they received a ransom call. Does
the defendant have any basis to move to suppress the phone company
records at his trial because they were the fruit of an unconventional and
possibly improper forensic examination?

The defendant would not have any basis for a motion to suppress the
phone company records if they were offered against him at trial.

This scenario demonstrates the use of SIM card data for investigative
leads, but not as direct evidence at a trial. Forensic data must meet
evidentiary standards for authenticity and reliability before it may be
introduced at trial. However, information used to develop leads or fur-
ther an investigation does not have to meet these standards. Thus, the
phone company records would have to satisfy the standards for admis-
sibility in court, but the SIM card data used to obtain a search warrant
or court order does not.

Section 2703(d) of Title 18 of the United States Code authorizes a
court to issue an order to a phone company to disclose call records if law
enforcement “offers specific and articulable facts showing that there are
reasonable grounds to believe that ... the records ... are relevant and ma-
terial to an ongoing criminal investigation” [16]. The House report that
accompanied the legislation described the standard for Section 2703(d)
as higher than that required for a subpoena in order to guard against
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“fishing expeditions” by law enforcement, but less than that required for
a search warrant based on probable cause [17].

The IMSI and service provider information recovered from the dam-
aged SIM card are certainly “specific and articulable facts.” Moreover,
the circumstances under which the cell phone was retrieved would pro-
vide reasonable grounds for a judicial officer to believe that the phone
company records would be relevant to the kidnapping investigation.

Even if the Section 2703(d) order was improperly issued, the defen-
dant’s only remedy would be a civil suit for damages, not the suppression
of evidence in his criminal case. Under traditional Fourth Amendment
principles, an individual does not have a sufficient expectation of privacy
in a third party’s records to challenge the use of the records against him
at a trial, no matter how they were obtained [22–24].

In addition, there is an impediment to the defendant raising a Fourth
Amendment challenge to the use of information obtained from the SIM
card. Since the defendant abandoned his cell phone when he threw it
into the fireplace, he does not retain an expectation of privacy regarding
the abandoned property [9, 27]. Thus, the defendant can look only to
the statute for any remedy for its violation. However, Section 2708 of
Title 18 states that the only remedies are a civil action for damages and
disciplinary actions against federal agencies or departments for willful or
intentional violations [11]. Consequently, there would be no basis for the
suspect to move to suppress the phone company records on the grounds
that the forensic examination of the damaged SIM card was improper.

In addition, the defendant could not force the government to dis-
close the classified technique used to recover SIM card data. The U.S.
Supreme Court has recognized a state secrecy privilege. Also, it has
noted that, in certain circumstances, the government may have to drop
a criminal case in order to protect the privilege. In United States v.
Reynolds, the court explained that “since the Government which pros-
ecutes an accused also has the duty to see that justice is done, it is
unconscionable to allow it to undertake prosecution and then invoke its
governmental privileges to deprive the accused of anything which might
be material to his defense” [18].

The data from the damaged SIM card would not be material to the
suspect’s defense, if the data was used only to obtain the Section 2703(d)
order, rather than being admitted at trial as evidence against the sus-
pect. The disclosure of a classified technique is analogous to the dis-
closure of the identity of an informant where there is a public interest
in law enforcement maintaining the secrecy of the identity. The U.S.
Supreme Court has ruled that the government is not required to disclose
the identity of an informant if it relied on information from the infor-
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mant to provide a basis for the issuance of a search or arrest warrant
[21]. In contrast, disclosure would be required if the informant is to
provide testimony relevant to the guilt or innocence of the accused [19].

Thus, the government could prosecute the suspect without having to
reveal the means it used to extract the SIM card data, if these means
were a valid state secret. If the government sought to introduce the
SIM card data at trial, the judicial officer might require some informa-
tion about the classified technique to verify its relevance and reliability.
However, any disclosure could be made under seal in order to protect
the classified recovery technique [12, 15].

3. Partial Data from Cell Phone Memory

Consider the following scenario involving the extrapolation of partial
data recovered from cell phone memory.

After an explosion at a Metro station, law enforcement personnel re-
cover a memory chip from a cell phone that they reasonably believe was
used to detonate the bomb. A forensic examiner uses a chip programmer
to recover data from the memory chip, including fragments of the call
log. Many of the calls in the log were made to or received from known
members of radical groups. More importantly, the last call was made to
the phone from the number 789-012-XXXX immediately before the bomb
exploded. Unfortunately, the last four digits of the phone number, indi-
cated by XXXX, were unrecoverable. Further investigation reveals that
Jane Roe, an individual with links to radical groups, has a cell phone
number of 789-012-3456. Law enforcement agents use this information
to obtain a wiretap order for Jane Roe’s phone. The indictment charg-
ing her with participating in the bombing is based on the partial phone
number in the call log as well as on the conversations recorded during
the wiretap. Jane Roe moves to suppress all the evidence because the
numbers recovered from the memory chip were obtained using uncon-
ventional and unreliable means and did not provide probable cause for
the wiretap. How should the court rule on the motion to suppress?

Unlike the previous scenario, law enforcement agents used the data
recovered from the cell phone as a basis for a wiretap order and also as
evidence at trial.

Only evidence that can be shown to have been derived from reliable
scientific processes is admissible under the rules of evidence. Thus, if
the court decided that the unconventional forensic technique used by the
examiner was not scientifically sound and could not be shown to produce
reliable results, the court would not allow the partial data recovered
from the memory chip to be admitted into evidence. In contrast, the
conversations were the product of a valid wiretap order and would not be
suppressed, even though the information that identified the defendant
came from the examination of the chip.



Adams, Whitledge and Shenoi 235

A court may issue a wiretap order under Section 2518 of Title 18 if the
judge concludes that there is probable cause to believe that an individual
has committed one of the crimes specified in the wiretap statute and
that particular communications concerning the crime will be obtained
from the wiretap. The U.S. Supreme Court has held that “probable
cause does not demand the certainty we associate with formal trials”
and that the probable cause requirement is satisfied if there is a “fair
probability” based on the totality of the circumstances presented to the
judge that evidence of a crime will be found [26]. The information
that the judge may consider in issuing a wiretap order does not have
to comply with the Federal Rules of Evidence because these rules are
not applicable to the issuance of search warrants, and the requirements
for wiretap orders are similar to those for search warrants [14]. Hearsay,
for example, may furnish a basis for a wiretap order, even though, as a
general rule, hearsay is not admissible at trial [7, 20]. The reliability of
the information presented to the judge factors into the decision whether
probable cause exists. The assessment of reliability is made on the basis
of all the information presented, rather than on the basis of each item
of information, so that the various items of information can corroborate
each other to enhance their reliability [26].

Once a wiretap order has been issued, the determination of proba-
ble cause should be given great deference at a hearing on a motion to
suppress the evidence obtained from the wiretap [26]. As long as there
was a substantial basis for the conclusion that probable cause existed, a
motion to suppress the evidence would be denied.

It is clear that there was a plausible basis for a determination of
probable cause for the issuance of a wiretap order. The technique the
forensic examiner used to recover data from the chip was outside the
norm and, therefore, its reliability may be challenged. Nevertheless, the
forensic examiner was able to recover the partial number of the phone
that “called” the cell phone detonator along with phone numbers of
members of radical groups. This information, coupled with the fact that
the interpolated phone number belonged to a person affiliated with rad-
ical groups, furnish a plausible basis to believe that a wiretap on that
phone number would capture communications concerning the bombing.
Consequently, the court would reject the challenge to suppress the con-
versations recorded during the wiretap.

The court must apply a different standard to determine whether to
admit the data from the memory chip into evidence. In the scenario, the
defendant is challenging the scientific basis of the extraction technique
upon which the examiner’s testimony about the partial phone number
and the other calls will be based. As a general rule, the results of a
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forensic examination done using standard tools are considered to be
reliable and are admissible because the tools have been tested, show
consistent results, and are generally accepted by the forensic community.

As we discuss in the next scenario, in order to be admissible, ex-
pert testimony based on scientific evidence must meet the standards of
Federal Rule of Evidence 702 and the Supreme Court’s Daubert [25]
and Kumho Tire [28] cases. These authorities permit the admission of
testimony based on scientific evidence that can be demonstrated to be
reliable, while denying litigants the use as evidence of the results of non-
scientific tests or procedures of dubious reliability. That is, the results
of scientific tests or forensic procedures are admissible only when the
proponent can show such evidence comes from the application of sound
science, and tools and techniques that can be demonstrated to produce
accurate and reliable information.

The technique used in this case lies somewhere between an accepted
digital forensic technique and a wholly untested approach that was devel-
oped for another purpose. Engineers and software developers routinely
use chip programmers to read and write data to memory chips. Their
use in cell phone forensics to extract data from memory chips is becom-
ing more common [1, 3, 4], and the prosecution will rely on this fact.
Nevertheless, the resolution of the issue will probably require a “Daubert
hearing” in which experts testify regarding the soundness and reliability
of the data extraction technique.

4. Deleted Data from Cell Phone Memory

Consider the following scenario where a programming interface that
directly interacts with cell phone memory is used to recover deleted data.

Law enforcement agents have identified several members of a drug gang,
but not the kingpin. During the execution of a search warrant on a night-
club frequented by crime bosses, law enforcement agents seize several cell
phones. A forensic examiner uses a programming interface to recover
deleted data from the seized phones. Deleted data from one of the phones
indicates that it belongs to the kingpin. At his trial, the kingpin objects
to the introduction of the data taken from his phone as evidence because
the process that was used to recover deleted data is not reliable.

Forensic examiners use many tools to extract data from electronic
devices. In the early days of digital forensics, hex editors and utilities
designed for administrators and software analysts were routinely used
to recover data. Over the years, numerous tools and scripts written for
other purposes have proved useful to forensic examiners. The main con-
cern about unconventional tools and methods is their reliability. Does
the tool or method do what the examiner expects and intends for it to



Adams, Whitledge and Shenoi 237

do? More importantly, does it do anything unintended – such as change
data on the target system? The rules of evidence condition admissibil-
ity of evidence on a showing that it is reliable. Data recovered using
unreliable tools or methods cannot be admitted into evidence.

Rule 702 of the Federal Rules of Evidence, which govern trials in U.S.
federal courts, requires scientific evidence to be based on reliable princi-
ples and methods for it to be admissible at trial. The main factors used to
determine reliability are: (i) whether the technique has been tested and
was subjected to peer review and evaluation, (ii) the known or potential
rate of error for the technique, (iii) whether standards and controls exist
and have been maintained for the technique, and (iv) whether the tech-
nique is generally accepted by the scientific community. These factors
were refined and articulated by the U.S. Supreme Court in Daubert v.
Merrell Dow Pharmaceuticals, Inc. [25]. The Daubert notion of relia-
bility was incorporated into Federal Rule of Evidence 702 in 2000. It
requires the trial judge to serve as a gatekeeper in order to keep the jury
from considering unreliable expert testimony and scientific evidence that
is misleading or not helpful.

The programming interface technique would not satisfy the Daubert
factors unless it has been extensively tested. The technique must be
subjected to peer review and evaluation, and the rate of error should be
known. Also, standards and controls must be enforced on its proper use,
and it should be generally accepted by the scientific community.

Nevertheless, the Supreme Court emphasized in a later case, Kumho
Tire Co. v. Carmichael [28], that the Daubert factors were never intended
to be a definitive checklist. Instead, the trial court’s inquiry into the
reliability of scientific evidence should be flexible, and recognize that
the Daubert factors are not the only tests of reliability. Thus, it may
be possible for the government to make a case for the reliability of the
programming interface technique even though it has not been subjected
to peer review and evaluation and may not be generally accepted by the
scientific community.

Repeated tests with consistent results may be necessary to convince a
trial judge that the programming interface technique is reliable. Also, it
would be desirable to provide as much information about the technique
as possible, e.g., whether it had been used in other cases and whether
other forensic examiners had used or tested it. If the source code of
the software were available, testimony about what it does and how it
was used would be important to asserting that it produces reliable and
consistent results.
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Even if the trial court was inclined to admit the data taken from the
cell phone over the kingpin’s objections, the kingpin could argue that
the data should not be believed – or given “weight” – by the jury.

5. Trojan Defense

The following scenario clarifies the important distinction between ad-
missibility and sufficiency of evidence:

An executive of a high-tech company has been indicted for securities
fraud. The centerpiece of the prosecution’s case is a document discussing
improper changes to accounting records to improve the company’s quar-
terly reports. The document was recovered from the executive’s smart
phone, which was seized during a search warrant executed on his cor-
porate office. The executive objects to the introduction of the document
on the ground that it was placed on his phone by a rival. To support his
argument, the executive points out that many company employees have
the technical skills and equipment to hack his phone. Would the docu-
ment recovered from the smart phone be admissible as evidence against
the executive? May the executive raise the “hacker did it” defense if the
document is introduced in evidence?

The document recovered from the executive’s smart phone would be
admissible as evidence and the executive could claim that someone else
put it on his phone. However, the jury would be free to believe or reject
his defense as it chooses. As noted above, the threshold for admissibility
is relatively low and the admissibility of an item of evidence depends
on its relevance to the material issues in the case. Under Federal Rule
of Evidence 401, an item of evidence is relevant if it has “any tendency
to make the existence of any fact that is of consequence to the deter-
mination of the action more probable or less probable than it would be
without the evidence” [13].

The facts that the document was found on the executive’s cell phone
and the phone was in the executive’s possession are probably sufficient
to connect the document to the executive and meet the admissibility
standard. Proof that the document was recovered from the executive’s
smart phone would be relevant to establishing that the executive was
the author or recipient of the document, because it would have some
tendency to make it more probable that the executive had knowledge of
the document. Even though there is no direct evidence to connect the
executive to the document, the fact that the document was recovered
from his smart phone is circumstantial evidence that he was aware of
its contents. It is up to the jury to decide whether the executive was
connected to the document because of its presence on his smart phone.

An inference may be used to connect an item of evidence to a material
issue in a case only if the inference is reasonable and consistent with
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experience, science and logic. If a case is tried by a jury, both the judge
and jury have a role in deciding whether an item of evidence is admissible
and relevant. First, the judge must decide whether the inferences on
which the relevance of the item of evidence is based are reasonable and
consistent with experience, science and logic so that it would be possible
for a reasonable juror to conclude that there is a tendency to make a
material issue in the case more probable or less probable. If the judge
decides that this requirement is satisfied, the item may be admitted as
evidence. It is then up to the jury to determine whether to believe the
evidence, what weight to give to it and what inferences to draw from it.
Thus, the jury has the ultimate responsibility for deciding factual issues,
such as whether the executive was the author or intended recipient of
the document, but the judge has authority to keep the jury from seeing a
particular item of evidence if there is no reasonable connection between
the evidence and the material issues in the case.

Two cases involving a “Trojan defense” illustrate these evidentiary
principles. In the first case, Aaron Caffrey, a hacker from the United
Kingdom, was charged with launching a distributed denial of service at-
tack that brought down the navigation system at the Port of Houston,
Texas on September 20, 2001. Law enforcement agents traced the at-
tack to a computer in Caffrey’s home. A forensic examination of the
computer uncovered a denial of service script and a file containing the
IP addresses of more than 11,000 servers that were vulnerable to the
attack. When the denial of service software was executed in a controlled
environment, it displayed the message: “IIS Unicode exploiter coded
by Aaron.” Law enforcement agents also recovered chatroom logs from
Caffrey’s computer stating that a chatroom user named “Aaron” had
launched the attack at another user in South Africa in retaliation for
insults against his girlfriend.

At his trial, Caffrey denied responsibility for the attacks, and claimed
that two other hackers had installed a Trojan program on his computer
so that they could remotely control his computer, and that they used
it to launch the attack without his knowledge. The prosecution coun-
tered with expert testimony that there was no indication of a Trojan on
the computer and no known software that could install such a Trojan
without leaving a trace. The jury returned a not guilty verdict.

Although there was sufficient evidence to allow the jury to conclude
that Caffrey initiated the attack and find him guilty beyond a reasonable
doubt, the jury was not required to do so. It is wholly within the province
of the jury to decide what weight to give to evidence, to decide what the
facts really are, and to decide guilt or innocence based on these facts.
The members of the Caffrey jury may have believed Caffrey’s claim
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rather than the prosecution’s expert testimony. On the other hand,
the jurors may have voted to acquit Caffrey for other reasons without
resolving the Trojan defense issue [5, 6].

A jury reached a different conclusion in United States v. Ray [8].
Thomas Ray was accused of attempting to extort $2.5 million from
Best Buy by sending email messages that threatened to exploit a com-
puter vulnerability. After tracing the emails to three AOL accounts, one
of which belonged to Ray, the FBI obtained search warrants and con-
ducted forensic examinations of the computers associated with the AOL
accounts. The forensic examiner found portions of three of the sixteen
extortion emails sent to Best Buy on Ray’s computer. Ray raised the
Trojan defense at his trial. An expert witness for the defense testified
that Ray’s computer had no firewall and an outdated anti-virus program,
that the Internet Explorer 5.5 browser on Ray’s computer had various
security problems, and that traces of a Trojan were found on the hard
drive. Despite this evidence, the jury convicted Ray on two counts of
extortion, and the conviction was affirmed on appeal.

The appellate court ruled that the following evidence supported the
jury’s decision: (i) Ray admitted he used the computer to connect to the
Internet several times a day, (ii) three of the emails sent to Best Buy were
traced to the IP address he was using when the emails were sent, (iii)
portions of three of the extortion letters were found on Ray’s hard drive,
(iv) the emails were created by someone typing on Ray’s computer who
connected to the Internet using Ray’s screen name and password to send
the emails, (v) no evidence of remote access or hacking was found on
Ray’s computer, and (vi) Ray had the knowledge and ability to process
the monetary transactions that the extortion emails demanded. On the
other hand, the decision whether to convict Ray was a matter for the
jury, and the jury would not have been compelled to return a conviction.

These two cases and a recent “somebody else used my computer to
do it” case (United States v. Shea [10]) demonstrate that, even in cases
involving sophisticated technical issues, the jury is free to choose which
evidence to believe and which evidence to reject. Where the prosecution
can prove the defendant had access to the computer or device at the
proper time, the technical ability to do what was done and the motive,
the jury is free to infer guilt and reject defense claims that a hacker did
it. Conversely, the jury is also free to believe the defense claims and
acquit if the prosecution has not proved the negative.

In the case of the high-tech executive, the document would be relevant
and admissible into evidence because its recovery from his smart phone
would make it more probable that he knew about the document. The
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executive would likewise be able to present evidence about the hacking
skills of his associates and anything else relevant to his defense.

To overcome this defense, the prosecution might attempt to show
that there was no evidence the phone had been hacked. It might also
analyze the call log to show that the phone was always in the executive’s
possession and that it was unlikely that someone else had access to the
phone to place the incriminating document.

6. Conclusions

The widespread use of cell phones provides new sources of evidence for
criminal investigations. Law enforcement agencies may use this evidence
at trial as well as to establish a basis for obtaining wiretap orders or call
detail records from service providers. The legal standards for the admis-
sibility of evidence at trial differ substantially from those for obtaining
wiretaps or call detail records. The showing required for a wiretap order
is essentially probable cause, which means that there is a fair probability
based on the totality of the circumstances that the wiretap will produce
evidence of a crime. The showing required for a Section 2703(d) order
to obtain call detail records consists of specific and articulable facts that
there are reasonable grounds to believe that the records are relevant and
material to an ongoing criminal investigation. In contrast, admissibility
at trial requires proof that the evidence offered has been obtained by
reliable scientific methods and is relevant to the issues in the case. It
is, therefore, extremely important that law enforcement agencies employ
scientifically sound and reliable forensic tools and techniques to ensure
that cell phone data recovered using new and evolving technologies will
be admissible and useful in judicial proceedings.
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Chapter 20

PROTECTION AND RECOVERY OF
RAILROAD EVENT RECORDER DATA

Mark Hartong, Rajni Goel and Duminda Wijesekera

Abstract Passenger and freight locomotives in the United States are required
to carry event recorders for collecting data that can be used in post-
accident investigations. There are, however, shared management, labor
and government concerns about maintaining the integrity, confidential-
ity and non-repudiation properties of the collected data. This paper
proposes a cryptographic technique based on secret sharing that pro-
tects event recorder data while supporting data recovery by authorized
parties.

Keywords: Event data recorders, railroad accident investigations, secret shares

1. Introduction

Railroad accidents are relatively rare events in the United States.
In 2006, the total incident rate was 16.25 per million train miles [13].
This rate is very low, but it still equates to more than 13,100 separate
incidents. Train accidents (collisions or derailments) and highway grade
crossing incidents accounted for 22.2% of the incidents; the remaining
55.6% involved trespassers on railroad property or railroad personnel
performing their job-related activities.

Locomotive event data recorders are used by railroad companies, the
Federal Railroad Administration (FRA) and the National Transporta-
tion Safety Board (NTSB) to determine the root cause of incidents. In
fact, the lead locomotive of any train operating faster than 30 mph is
required to be equipped with an event recorder [34]. But the regulations
only require event data recorders to capture information about a limited
number of parameters; they do not mandate the recording of onboard
communications or the crash hardening of all recorders until 2009.
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The lack of evidence pertaining to crew actions was highlighted in
the aftermath of the February 1996 collision of MARC and AMTRAK
trains in Silver Spring, Maryland. In particular, the NTSB/FRA inves-
tigation was hampered by the lack of voice records of the train crew in
the moments leading up to the accident. Indeed, the NTSB subsequently
recommended that voice communications of crew members be recorded
for exclusive use in accident investigations [27].

Railroad management, labor organizations and the government have
strong interests in using event data recorders to collect forensic data
about railroad incidents and to maintain the integrity and confidentiality
of the data. This paper discusses the current requirements for locomotive
event recorders and proposes cryptographic mechanisms for protecting
the recorded data from unauthorized release, tampering and misuse.

2. Railroad Event Recorder Requirements

The use of event data recorders to assist in accident investigations
goes back almost 50 years. Aircraft flight data recorders capture critical
flight parameters while cockpit voice recorders record all flight deck com-
munications. Without information from these devices, the sequences of
events that resulted in several major aviation incidents (e.g., the Val-
ueJet Flight 592 crash in Miami, Florida on May 11, 1996) would have
remained unknown.

The use of event data recorders in railroads is a more recent develop-
ment. The Rail Safety Improvement Act of 1988 [35] provides statutory
authority for the use of event recorders in the United States. Based on
this statutory authority, Section 229.135 of Title 49 of the Code of Fed-
eral Regulations [34] defines the minimum requirements for locomotive
event recorders. It differs from the original regulations by adding the
requirement for a certified survivable version and phasing out magnetic
tape recordings by 2010. The federal technical performance standards
generally mirror the IEEE standard for event recorders [15]. The recov-
ery of data from locomotive event recorders is governed by Association
of American Railroads (AAR) standards [5]. These mandatory industry
standards define manufacturer-independent physical and logical down-
load interfaces, download methods and the serial protocol used to recover
data from event recorders.

There are six original equipment manufacturers (OEMs) for locomo-
tive event recorders in the United States (Table 1). While the data stor-
age formats used by the manufacturers may differ, the primary method
of data download is a serial DB-9 RS232 (19,200 bps) interface to a per-
sonal computer using the Xmodem 1K CRC file transfer protocol [9].
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Table 1. Event recorder manufacturers.

Manufacturer URL

Bach Simpson www.bach-simpson.com
Electromotive Diesel www.emdiesels.com
GE Transportation Systems www.getransportation.com
Q-tron – A WABTEC Company www.wabtec.com
Quantum Engineering www.qei.biz
WABTEC Railway Electronics www.wabtec.com

This simple file transfer protocol, which does not distinguish between
text and binary files, uses a 16-bit cyclic redundancy check for error de-
tection. Other approved downloading mechanisms include a PCMCIA
interface using the ANSI AT Attachment (ATA) protocol and a serial
download data port connected to a radio for wireless download using the
Xmodem protocol.

3. Cryptographic Protection of Data

This paper proposes the use of cryptographic techniques to achieve
data integrity, authentication and non-repudiation. Currently, all event
recorder manufacturers utilize checksums to provide integrity protection
against accidental and non-malicious errors, but not against malicious
attacks. Also, checksums (on their own) do not provide for data non-
repudiation and confidentiality. Event recorder data is not random and
is interpreted within a particular context; consequently, the surreptitious
modification of checksums is extremely difficult. Nevertheless, certain
bit manipulations are possible [21].

Table 2 presents the minimum requirements for data collection by
event recorders for the purposes of accident reconstruction, disciplinary
actions or locomotive health monitoring. In all cases, it is critical that
data integrity and confidentiality be maintained and that the data be at-
tributed to particular entities without non-repudiation. Unfortunately,
tampering with event recorder data has been observed. In a 1982 col-
lision, the crew reported that the event recorder was working properly
prior to the accident. However, several hours after the accident, a rail-
road official discovered that the case had been broken open and the tape
was missing (the locomotive cab itself was not damaged) [26]. In another
collision [25], certain attributes of the recorded data were found to have
been modified. The union that represents railroad engineers has agreed,
in principle, to the use of event recorders, but it is concerned about the
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Table 2. Minimum data required to be collected by event recorders.

Train Speed
Direction of Motion
Time
Distance
Throttle Position
Application and Operation of Automatic Air Brakes by Engineer
Application and Operation of Automatic Air Brakes by On-Board Computer
Application and Operation of Independent Brakes
Application and Operation of Dynamic Brakes (if equipped)
Cab Signal Aspects (if equipped)
Loss of End of Train (EOT) Communications
Electronic Controlled Pneumatic (ECP) Braking Messages (if equipped)
EOT Armed Emergency Brake Command and Emergency Brake Application
Indication of EOT Valve Failure
EOT Brake Pipe Pressure
EOT Marker Light Status
EOT “Low Battery” Status
Status of Lead Locomotive Headlights
Status of Lead Locomotive Auxiliary Lights (Ditch Lights)
Horn Control Activation
Locomotive Number
Locomotive Position in the Consist
Tractive Effort (Pulling Capability)
Cruise Control Status
Safety Critical Train Control Information Routed to Engineer’s Display

misuse, improper interpretation, public disclosure, tampering and use of
the data beyond the purposes of accident investigation [8].

Most of these concerns can be addressed by having at least two enti-
ties actively participate in the recovery of event recorder data. Railroad
management and labor, for example, could jointly obtain data to eval-
uate locomotive performance and determine maintenance requirements,
an activity in which the government has no regulatory interest. Labor
and government could retrieve locomotive operating parameters (e.g.,
speed and horn settings) to support or refute labor claims during a fed-
eral locomotive engineer review board hearing. Likewise, railroad man-
agement and government could obtain locomotive operating parameters
to support or refute the validity of railroad violations identified by the
government.

The secret sharing technique [7, 30] – also known as secret splitting or
split knowledge – enables cryptographic keys to be distributed between
the various stakeholders. In secret sharing, N secrets (e.g., pieces of the
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Figure 1. Secret shares.

key used to encrypt data) are shared among M entities where M < N
such that all M entities can collaborate to recover the original data, but
no group with M − 1 or fewer entities can do so.

Multiple mathematical results are available to support the creation
and reconstruction of secret shares [32]. In the case of event recorder
data, any two of the three stakeholders (management, labor and gov-
ernment) should be able to recover the data by combining their secret
shares. This situation is modeled using three distributed secrets (S1, S2,
S3). Each stakeholder is given two of the three secrets, (S1, S2), (S1,
S3) or (S2, S3), and agreement by any two of the three stakeholders is
sufficient to recover all three distributed secrets, enabling the key to be
reconstituted and the data to be recovered.

4. Secret Sharing and the Primary Use Case

The critical use case in the forensic analysis of a railroad incident is the
recovery of encrypted event recorder data. We use an implementation
of Shamir’s N of M secret sharing scheme to ensure that no single party
can unilaterally recover the cryptographic key and modify or release
the data. Three parties are involved, railroad management, railroad
labor and government (M = 3). Any pair of the secret shares held
by management, labor and government is sufficient to reconstruct the
cryptographic key (i.e., N = 2).

The secret sharing technique is illustrated in Figure 1. First, the point
(0, S) on the y-axis corresponding to the cryptographic key S is located.
A line containing the point (0, S) is then drawn, and three points, (x1,
y1), (x2, y2) and (x3, y3), on the line are selected. These three points
represent the shares that are distributed to railroad management, labor
and government.
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Table 3. Recovery of event recorder data use case.

Number Description

1 Summary: Railroad management, labor or government recovers
cryptographically-protected data from a locomotive event recorder for
forensic analysis of a locomotive accident (collision/derailment), loco-
motive health monitoring or crew disciplinary actions.

2 Basic Path: The event recorder captures forensic data. After a loco-
motive collision or derailment, government accident investigators com-
bine their secret share with the secret share held by railroad manage-
ment or labor to generate the cryptographic key. Cryptographically-
protected data is downloaded from the event recorder. Using the cryp-
tographic key, the government decrypts the downloaded data and veri-
fies its authenticity and integrity; the data is then forensically analyzed.

3 Alternate Paths: (1) Health Analysis – The event recorder captures
forensic data. Railroad management combines its secret share with
the secret share held by railroad labor to generate the cryptographic
key. Cryptographically-protected data is downloaded from the event
recorder. Using the cryptographic key, railroad management decrypts
the downloaded data and verifies its authenticity and integrity. Rail-
road management conducts locomotive health analysis using the de-
crypted data. (2) Engineer Discipline – The event recorder captures
forensic data. Railroad management combines its secret share with
the secret share held by the government to generate the cryptographic
key. Cryptographically-protected data is downloaded from the event
recorder. Using the cryptographic key, railroad management and gov-
ernment decrypt the downloaded data and verify its authenticity and
integrity. Railroad management and government review the data to
determine if engineer decertification is warranted.

4 Capture Points: The event recorder captures recorder attributes.
Management, labor and government analyze the downloaded and de-
crypted forensic data.

At least two of the three shares must be known in order to recover
the key S. Knowing two shares means that two points on the line are
available, enabling the specification of the equation of the line. The
cryptographic key S is then obtained by determining the intersection of
the line with the y-axis. One share (or point) is insufficient to determine
S. An infinite number of lines go through this point, corresponding to
an infinite number of intersections with the y-axis (possible key values).
The key is secure because, regardless of the computing power available,
the key cannot be reconstructed without at least two shares (points).

The secret sharing technique enables the use case described in Tables 3
and 4. However, it does not protect against data corruption due to
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Table 4. Recovery of event recorder data use case (continued).

Number Description

5 Triggers: (1) Management and labor determine the need for forensic
analysis of the event recorder data. (2) Management and government
determine the need for forensic analysis of the event recorder data. (3)
Labor and government determine the need for forensic analysis of the
event recorder data.

6 Attacker Profile: Not applicable.
7 Preconditions: (1) Railroad management, labor and government each

have a secret share. (2) Event recorder attributes have been successfully
captured in the event recorder.

8 Post Conditions (Worst Case): (1) Event recorder is damaged and
data cannot be recovered. (2) Data confidentiality, integrity and non-
repudiation are lost. (3) Event recorder is not damaged, but data has
been manipulated to preclude data recovery.

9 Post Conditions (Best Case): (1) Data is recovered from the event
recorder. (2) Data confidentiality, integrity and non-repudiation are
maintained.

10 Business Rules: (1) Management, labor and government place their
secret shares in escrow. (2) Secret shares held in escrow must be re-
leased if ordered by a court. (3) In the case of an accident, data that is
recovered may not be used in civil suits by the affected parties (man-
agement, labor, government or the public).

event recorder damage or the deliberate manipulation of data. Storing
event recorder data in a crash-hardened memory module reduces the
probability of data loss, but does not completely address data corruption
and malicious data modification. Data loss can be mitigated using a
fault tolerant storage mechanism such as Rabin’s Information Dispersal
Algorithm (IDA) [28]. This algorithm is conceptually similar to the
secret sharing technique in that it breaks a file or block of data into M
pieces and permits complete data recovery using any N pieces. This
requires that event recorder designs implement multiple independent
storage mechanisms, each of which holds one of the M pieces. Note,
however, that IDA does not protect against malicious data modification.

Protection against unauthorized data alteration can be achieved by
storing a hash value of each of the M pieces. The hash value of each
piece is validated prior to using the piece to recover the complete file
or block. If a hash value is determined to be invalid, it is assumed
that the corresponding piece has been altered and that piece is not used
to reconstruct the original file or block. Only subsets of the M pieces
that have not been corrupted are used in reconstruction. The original
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Algorithm 1 Data collection.
while event recorder is enabled do

for required event attributes do
Read(required event attribute)
Store(required event attribute)

end for
end while

data can be reconstructed as long as the cardinality of the subset of
uncorrupted pieces is no less than N .

5. Implementation Issues

This section discusses the principal implementation issues related to
data collection and recovery. These include modifications to the event
recorder as well as trust management and key escrow.

5.1 Data Collection

Event recorders capture continuous streams of data. Algorithm 1
specifies the steps involved in data collection.

Algorithm 2 Secure data collection.
Process command line options

while event recorder is enabled do
for all required event attributes do

Read(required event attribute)
encrypted required event attribute ←

Encrypt(required event attribute, common key)
Store(encrypted required event attribute)

end for
end while

Algorithm 2 incorporates an additional encryption step to protect
event recorder data. Encryption would be implemented using a crypto-
graphic module that is resistant to reverse engineering. The device would
have to be programmed after mass production so that the key and key
escrow information are entered once and maintained without external
electrical power. Data written to the EEPROM must be prevented from
being erased, altered or cleared by service personnel or crash investiga-
tors. Detailed technical standards for cryptographic modules have been
specified [23] along with compliant implementations [22]. Using such
a cryptographic module with an appropriate trust management system
can ensure that event recorder data is adequately protected.
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A major technical issue arises because IDA operates on blocks of data.
This precludes its use with analog data and also limits its application
to digital data. Digital event recorders capture their information as
continuous streams of closely-spaced “snapshots” in time. Therefore,
the cryptographic module must encrypt each snapshot and write the
encrypted information to the EEPROM before the next snapshot arrives.
Consequently, the sampling rate of event recorder inputs is limited by
the cycle time for encryption and storage. But reducing the sampling
rate decreases the fidelity of the collected data. Specifying the required
fidelity of event recorder data is, therefore, an important issue.

The worst-case scenario occurs when an event recorder captures crew
conversations. The sampling rate must be high enough for the recorded
conversations to be intelligible on replay. According to the Shannon-
Nyquist theory [31], the sampling rate should be twice the frequency of
the highest frequency that is sampled. A frequency range of 0-4 kHz
is required for most phonemes, which corresponds to a sampling rate
of 8 kHz or a cycle time of 125 microseconds. Assuming that 8-bit
pulse coded modulation (PCM) is used, the required system throughput
is 64 kbps. FPGA-based encryption engines can support throughputs
that are two magnitudes higher [11]. Therefore, an FPGA coupled with
EEPROM technology with fast write times [36] would satisfy the 125
microsecond cycle time requirement.

5.2 Data Recovery

Several standards have been established for trust management in op-
erational environments [2–4, 16–20]. While a detailed discussion of trust
management is beyond the scope of this paper, an examination of the use
cases for normal and abnormal data recovery provides valuable insights
into the requirements of a trust management system.

Algorithm 3 presents the steps involved in normal event recorder data
recovery for the purposes of monitoring locomotive health and engineer
discipline. The data recovery process uses a non-secure network con-
nection or a direct connection to the event recorder. A non-secure con-
nection can be used because the AAR data transfer protocol, which is
data-format neutral, allows data to be transferred in encrypted form.
Likewise, when a direct connection is employed, data can be recovered
in an encrypted format and is decrypted only in a secure environment
during an investigation.

In the case of data recovery for the purpose of evaluating locomotive
health, the recovered common key in Algorithm 3 is reconstructed from
the key shares held by railroad management and labor. The recovered
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Algorithm 3 Normal data recovery.
if locomotive healh recovery then

recovered common key ←
Recover key(railroad management share, railroad labor share)

for all encrypted required event attributes do
Read(encrypted required event attribute)
required event attribute ←

Decrypt(encrypted required event attribute, shared key)
end for

else if engineer discipline then
recovered common key ←

Recover key(railroad management share, government share)
for all encrypted required event attributes do

Read(encrypted required event attribute)
required event attribute ←

Decrypt(encrypted required event attribute, recovered key)
end for

end if

data enables management to proactively determine degradations in lo-
comotive behavior that may have an adverse impact on the capability
of a crew to operate a train safely, which would, of course, be of great
interest to labor. However, in the unlikely event that labor refuses to
participate and provide its key shares (e.g., during a strike), data recov-
ery could still proceed by management obtaining key shares from the
government.

In scenarios involving engineer discipline, the recovered common key
is reconstructed using the key shares held by labor and government or
by management and government. The government serves as the neutral
party in these scenarios, which involve the certification, recertification
or decertification of locomotive engineers [33]. Both management and
labor have a vested interest in these proceedings and would, therefore,
provide their key shares to government upon request.

The steps involved in accident data recovery (Algorithm 4) are similar
to those performed during normal data recovery. However, there are two
primary differences. First, data recovery is conducted in a controlled
environment (i.e., the event recorder is moved from the accident site to
a laboratory). Second, because the determination of the cause of an
accident is in the interest of all three stakeholders, there would be few
objections to providing key shares. Damage to the event recorder may
complicate the task of data recovery. Possible solutions are to implement
data distribution schemes or to perform off-board recording of data [14].

Management and labor could collude to prevent the recovery of acci-
dent data, but this is unlikely because of the mutual distrust that exists
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Algorithm 4 Accident data recovery.
if key shares held by government and labor then

recovered common key ← Recover key(railroad labor share,
government share)

else if key shares held by government and management then
recovered common key ← Recover key(railroad management share,

government share)
for all encrypted required event attributes do

Read(encrypted required event attribute)
required event attribute ← Decrypt(encrypted required event attribute,

recovered common key)
end for

end if

between labor and management. Collusion could be mitigated by having
a trusted third party hold all the key shares and release them to an au-
thorized entity only upon receiving a court order. However, this escrow
approach has several problems that would have to be resolved [1].

6. Conclusions

Evidence recovered from locomotive event data recorders is extremely
important in accident investigations. Secret sharing provides an ele-
gant cryptographic mechanism for preserving the integrity, confidential-
ity and non-repudiability of accident data. Indeed, it is expected that
cryptography will be broadly adopted in devices that store potentially
valuable data [10, 24, 29]. However, secret sharing introduces additional
costs. These include adapting event data recorders to support encryp-
tion, securing the secret shares and operating the required infrastructure.
Nevertheless, secret sharing is an attractive solution to the problem of
securing critical shared data [6, 12].

Note that the views and opinions expressed in this paper are those
of the authors. They do not reflect any official policy or position of the
Federal Railroad Administration, U.S. Department of Transportation or
the U.S. Government, and shall not be used for advertising or product
endorsement purposes.
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Chapter 21

AUTOMOBILE EVENT DATA
RECORDER FORENSICS

Nathan Singleton, Jeremy Daily and Gavin Manes

Abstract Automobile event data recorders (EDRs) provide vital information for
reconstructing traffic crashes. This paper examines the primary issues
related to evidence recovery from EDRs and its use in crash recon-
struction. Recommendations related to the use of EDR data in court
proceedings are also presented.

Keywords: Automobile event data recorders, evidence extraction

1. Introduction

Vehicle collisions cause significant personal injuries and financial losses
on a daily basis. Several techniques and tools have been developed for
traffic crash reconstruction, which involves the scientific interpretation
of physical evidence to determine the events that precipitated a crash [3].
Event data recorders (EDRs) in passenger vehicles provide detailed data
about vehicular operation and state. EDR data, which varies accord-
ing to the make, model and year of vehicles, can augment the physical
evidence used in crash investigations.

Methods for retrieving data stored in EDRs are generally proprietary
in nature. The Bosch crash data retrieval (CDR) system is used for
automobiles from General Motors, Ford, Chrysler and partner compa-
nies. Data contained in EDRs of other vehicles is usually recovered using
manufacturer-specific hexadecimal translation tools (HTTs).

This paper focuses on the recovery of digital evidence from EDRs.
A case study involving a 2001 Chevrolet 1500 pickup is used to clarify
recovery techniques and digital forensic practices.
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2. Automobile Event Data Recorders

Modern automobile event data recorders (EDRs) record pre-crash ve-
hicle performance data and system status, accelerations during a crash,
safety restraint system data, driver control inputs and post-crash infor-
mation such as automatic crash notification. The development of EDRs
can be traced back to 1990, when General Motors introduced the di-
agnostic energy reserve module (DERM) to record data about airbag
systems. Evidence from DERMs has been used in litigation related to
the design and operation of airbag systems [8].

The next generation of EDRs, called sensing and diagnostic modules
(SDMs), were introduced in 1994. These modules were designed to per-
form three main functions in the following prioritized order: (i) deploy
airbags in the event of a crash, (ii) perform airbag system diagnostics,
and (iii) monitor and record system and event data during an “event.”
An “event,” in this context, is a sudden change in vehicle acceleration
that initiates an algorithm in the airbag module. Depending on the
decision logic, the event may or may not cause the airbags to deploy.

Early SDMs also recorded system status data related to seat belt use
and accelerations during a crash. In 1999, SDMs began to record pre-
crash data such as vehicle speed, engine rpm, brake light switch status,
throttle position, warning indications and seat belt use. The data is
measured external to the SDM and is transferred to the module via a
vehicle system bus.

In 2006, the U.S. National Highway Traffic Safety Administration
(NHTSA) estimated that about 64% of new passenger vehicles were
equipped with EDRs [9]. EDR use is rising due its voluntary inclusion
in vehicles by manufacturers. Indeed, it is rare for automobiles manu-
factured in 2008 not to have some form of EDR. There is no standard
location for positioning an EDR; however, it is usually located inside the
vehicle cabin, near the centerline of the vehicle or under/in one of the
front seats. Physical removal of an EDR typically requires the disassem-
bly of a vehicle’s interior.

In a typical EDR, vehicle system data and crash information are con-
tinuously stored in a volatile data buffer during normal operation. De-
pending on the module and the type of event, the volatile data may
be flashed to an EEPROM. In the event of an airbag deployment in a
General Motors vehicle, this data is permanently written to the EEP-
ROM (and the module has to be replaced). However, if the airbag is
not deployed, EEPROM data is cleared after the SDM is turned on 250
times. These characteristics vary for modules from different manufac-
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turers; interested readers are referred to [1] for additional information
about SDMs used in General Motors automobiles.

Driven by the need to ensure the accuracy, reliability and privacy of
automobile event data, the Society of Automotive Engineers (SAE) and
the Institute for Electrical and Electronics Engineers (IEEE) joined with
NHSTA to form working groups to address policy issues and standard-
ization [6]. Interested readers are referred to the NHTSA website [7] for
information about these working groups and their activities.

Historically, the primary concern has been the reliability of automobile
event data as it pertains to supporting physical evidence in crash inves-
tigations [10]. Consequently, the majority of studies related to EDRs
have focused on using data after it has been recovered and decoded [2,
4, 11]. However, it is just as important to ensure that event data used in
legal proceedings accurately reflects the data captured by the EDR. This
paper is motivated by the need to develop sound forensic techniques for
evidence recovery from EDRs.

3. Crash Data Retrieval System

General Motors initiated the development of the crash data retrieval
(CDR) system; this system is now also licensed to Ford and Chrysler. At
this time, a CDR can only download data from EDRs in select General
Motors automobiles manufactured after 1994, Ford vehicles built in 2001
or later, and Chrysler automobiles from 2004 onwards.

3.1 System Connections

The system connections for data recovery are presented in Figure 1.
A standard nine-pin RS-232 cable is used to connect a CDR interface
module to a computer. However, a special 15-wire cable is required to
connect the interface module to the EDR. The interface module end has
a modified 15-pin serial connector with only the pins required to make
the EDR connection, typically two for power and one for the signal.
The other end of the cable has a specialized connector that mates to the
EDR or directly connects to the OBD-II or DLC diagnostic ports of an
automobile.

EDR connections may be established in two ways. In the field, the
primary method is to connect through the OBD-II or DLC diagnostic
ports located under the driver side dashboard. However, this requires
the EDR to have electrical power. The second method requires direct
access to the EDR; this is used performed when the electrical system is
non-functional.
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Figure 1. Data recovery system connections.

Having established the CDR-EDR connections, the CDR interface
module is connected to a computer with CDR software via an RS-232
cable. Power is applied to the EDR through a lead attached to the CDR
interface module (Figure 1).

3.2 Data Recovery

After the CDR software (version 2.8) is initialized, it communicates
with the serial communications port using the standard 41 54 0D (AT)
command. The software then checks for the presence of the CDR in-
terface module by sending the data: D3 56 00 D7. Upon receiving a
satisfactory response, the software opens an existing file or starts a new
case depending on the investigator’s selection.

When a new case is started, the investigator is required to enter case-
specific information such as the vehicle identification number (VIN),
investigator name, case number, investigation date, crash date and com-
ments (e.g., accident location and details). The investigator may save
the report as a file; the default file name is the VIN.

After the case-related information has been entered, the CDR soft-
ware sends an initial polling signal, 53 56 47 10, which retrieves EDR
variant identifier code from the EDR register. For example, a 2001
GMC Sierra 1500 EDR returns the code 88 59 91 17 00 00 77; the
91 17 sequence corresponds to the specific SDMG2000 EDR, which is a
GM product (G2000 refers to the version). On the other hand, a 2001
Oldsmobile Alero EDR returns the sequence 88 59 08 23 00 00 F4,
where the 08 23 corresponds to an SDMG2001 EDR. The EDR variant
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identifier code specifies the type of EDR installed, which dictates the
cabling and CDR setup requirements and the specific commands that
can be used.

Next, the CDR sends a dump command corresponding to the EDR
model. For example, the SDMG2000 dump command is 47 56 01 62

while the SDMG2001 dump command is 47 56 06 5D. The dump com-
mand downloads the non-volatile memory from the EDR to the CDR
interface module; the sequence D0 56 47 93 is sent to the CDR when
the process is completed. At this point, the recovered data is stored in
volatile memory on the CDR interface module. The CDR then sends
a command to transfer approximately half of the downloaded data for
processing. In the case of the SDMG2000 EDR, this command is EF 5A

01 1F 00 80 00 17. The EF 5A 01 1F portion is the download com-
mand; 00 marks the starting location and 80 is the ending location. This
command returns the following hexadecimal data:

EF D6 01 91 17 00 00 A7 18 41 53 30 33 34 30 4B 46 33 42 39 32

00 15 76 31 80 A3 A5 A4 F8 AC 00 03 A4 34 80 83 81 85 70 FF 00

FA FA FA FA FA FA FA FA FA FA FA FA FA FA FF 02 00 00 00 FF FF

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FF FF FF FF FF 81

Data at the beginning of the file (EF D6 01) and at the end of file
(81) is not downloaded by the CDR; however, it is appended to the data
in the CDR interface module. The code 91 17 following the beginning
of the file marker corresponds to the EDR type. The rest of the data
is downloaded with sequence EF 5A 01 1F 80 5E 00 B9. Note that 80
and 5E mark the starting and ending locations, respectively.

The CDR interface module then transmits the following data:

EF B4 01 FF FF FF FF FF FF 80 00 00 FF 80 FE FF BF FF FF FF FF

FF FF FF FF FF FF 7C 04 03 01 01 02 00 00 00 00 00 00 00 00 FF

FF FF FF FF 0A 10 00 61 70 70 6E 6C 6A 00 80 00 00 73 73 73 73

00 20 20 20 20 20 00 F8 25 FE 00 00 00 04 00 FF FF FF FF FF FF

FF FF FF FF FF FF FF FF FF FF FF FF FF 98

The sequences EF B4 01 and 98 are the beginning of file and end of
file markers, respectively; the two markers are appended to the data by
the CDR interface module. The entire retrieval process, which begins
with the CDR sending the EDR a dump command, is repeated two more
times for a total of three passes.
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3.3 Retrieved Data

After the CDR software completes the retrieval process, it analyzes the
EDR data and generates a report. The report is placed in a temporary
file, which is deleted unless it is explicitly saved prior to exiting the
program. A saved report is stored in a proprietary format (*.CDR) or
as a *.pdf file. In addition to the data in the report, the *.CDR file
contains formatting data and error checking data (hash value and field
size counts).

Analysis of the CDR file reveals that the data is stored in a simple file
format. A common element in the hex data is the sequence 0D 0A, which
is used as a delimiter to separate fields and as the carriage return/line
feed. Additionally, hex 20 is used as the space character and to fill
fixed-size fields.

Three sources of data are contained in the dump: user-entered data,
CDR-supplied data and hash values. The user-entered data includes the
VIN, investigator’s name, case number, comments, etc. The user-entered
fields, “Investigator,” “Case Number,” “Investigation Date” and “Crash
Date” have a maximum of 64 characters. The “Comments” field can
have a variable amount of data; preceding the actual data is a data-size
marker of two bytes that indicates its length.

The CDR-supplied data is also variable in size and incorporates a
data-size marker at the beginning of each field. This is most likely due
to the fact that the “Interface Used to Collect Data” field has carriage
returns inserted in the data, which have the same hex code as delimiters.
When the size of the field is calculated, all carriage returns/line feeds in
the entered data are counted as two bytes and ignored as field delimiters.

Two hash values are included in the hex dump. The hash value that
appears toward the middle of the hex is used to ensure the data has
not been altered. The last hex code value corresponds to the Reporting
Program Verification Number and the Collecting Program Verification
Number, both of which are displayed in the CDR report.

The first 17 bytes of data recovered from a 2001 GMC Sierra 1500 con-
tain the VIN. Once the program is running, this is the first information
requested as user input by the CDR software:

32 47 54 45 43 31 39 54 35 31 31 32 34 34 39 38 39

2 G T E C 1 9 T 5 1 1 2 4 4 9 8 9

Following the VIN is the delimiter 0D 0A, which is used to separate
fields. The next field is inserted by the CDR software and contains
information about the EDR type and model. Note that hex code 20 is
used to fill the field:

53 44 4D 47 32 30 30 30 20 20 20 20 20 20 20 20
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S D M G 2 0 0 0

39 31 31 37 20 20 20 20 20 20 20 20 20 20 20 20

9 1 1 7

This data is followed by the investigators’s name and other user-
entered data such as the investigation date. The actual EDR data ap-
pears later and is preceded by a size field in big endian. Note that A7

below computes to 167 bytes, which is the number of bytes stored on
the EDR including the initial padding of six sets of zeros. The reason
for the padding is unknown.

00 00 00 00 00 00 91 17 00 00 A7 18 41 53 30 33 34 30 4B 46 33

42 39 32 00 15 76 31 80 A4 A6 A5 F8 AD 00 03 A4 34 80 84 81 85

70 FF 00 FA FA FA FA FA FA FA FA FA FA FA FA FA FA FF 02 00 00

00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

FF FF FF FF FF FF FF FF FF FF FF FF FF FF 80 00 00 FF 80 FE FF

BF FF FF FF FF FF FF FF FF FF FF 7C 04 03 01 01 02 00 00 00 00

00 00 00 00 FF FF FF FF FF 0A 10 00 61 70 70 6E 6C 6A 00 80 00

00 73 73 73 73 00 20 20 20 20 20 00 F8 25 FE 00 00 00 04 00 FF

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

The file have two hash values that are used to verify the integrity
of the data. The exact hash functions are unknown. Based on exper-
imentation, including trial-and-error attempts at determining the hash
functions used by manipulating the data, it appears that the data is
rehashed every time the CDR software is asked to open the document.
The new hash value is then compared with the old value; if the hash
comparison fails, an error is reported and the program exits.

Although this file format appears to be simple, no public description
of the format exists and there is no method to review many of these fields
using the CDR software. Furthermore, the human-readable reports do
not contain hash values or any file verification data that a digital forensic
examiner would come to expect.

4. Digital Forensic Issues

EDR evidence must be introduced in court by an expert witness.
The expert must provide testimony that relates to knowledge or experi-
ence beyond that possessed by lay persons. Furthermore, the individual
must have specialized knowledge, skill, training or education regarding
the subject matter of the testimony, which must be based on reliable
scientific, technical or other specialized information.

EDR data introduced in court must pass the well-known Daubert
and Frye tests of scientific evidence. The first criminal case to introduce
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EDR data as evidence was Colorado v. Cain in 2002; since then, numer-
ous criminal and civil cases have employed EDR evidence [5]. Due to
the increased use of EDR data, many jurisdictions have create statutes
regarding EDRs. This section examines some of the major issues per-
taining to EDR data and data collection that may impact the quality of
the recovered evidence.

4.1 Missing and Uninterpreted Data

The CDR report includes downloaded hex data with the presumed
register numbers from where the data was pulled. The registers for the
2001 GMC Sierra 1500 system contain six bytes of data, but those for
other automobile EDRs have fewer bytes. Also, certain segments of these
registers are missing. The system documentation does not explain this
anomaly.

The CDR report also displays uninterpreted data, possibly propri-
etary information such as deployment thresholds. However, when the
data transfer is monitored with a sniffer, discrepancies appear between
different passes. The method used by the system to select and insert data
is unknown, making it difficult to verify the repeatability of extraction
process and the results.

Despite these somewhat disturbing findings, the information provided
in a CDR report appears to be complete. Without additional techniques
and translation tools, it must be assumed that all data that is available is
being translated. However, it would be very useful to have an alternative
HTT to compare the results.

4.2 Data Collection Discrepancies

Discrepancies were observed in the bytes obtained during the three
data dump passes. The number of discrepancies increased when multiple
downloads were performed in short order (each download takes three to
five minutes). The changed bytes were found in the first portion of the
download from the CDR interface module.

Analysis revealed that the values were random and not due to a clock
or counter. For example, the CDR interface module sent the same data
during the first two of six runs. However, there were discrepancies when
comparing the three passes in each run. The remaining four runs also
contained discrepancies. These discrepancies were discovered by com-
paring the hex values in the final CDR report to those collected by a
sniffer.

Additionally, the *.CDR file does not contain the original data collected
during the three passes. This implies that the data read from the EDR
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is transformed by the CDR software (possibly by performing certain
calculations on the data) before being displayed in the CDR report.

4.3 Unexplained Methods

The final data in a CDR report is processed by an algorithm before it
is displayed. In fact, the following statement is provided at the beginning
of a CDR report:

Once the crash data is downloaded, the CDR tool mathematically ad-
justs the recorded algorithm forward velocity data to generate an ad-
justed algorithm forward velocity change that may more closely ap-
proximate the forward velocity change the sensing system experienced
during the recorded portion of the event. The adjustment takes place
within the downloading tool and does not affect the crash data, which
remains stored in the SDM. The SDM Adjusted Algorithm Forward
Velocity Change may not closely approximate what the sensing system
experienced in all types of events.

It is important to note that the description of the algorithm is not
provided by the manufacturer. Also, terms such as “more closely ap-
proximate” are undefined. Furthermore, the original data stored in the
SDM is not displayed in a human-readable format and it may not be
possible to verify the data.

4.4 Evidence Identifiers

Initially, it was believed that the CDR software employed VIN data
(“World Manufacturer Identifier,” “Vehicle Attributes,” “Model Year”)
to determine the type and version of the EDR being read. However, we
discovered that any data may be entered as long as the “World Man-
ufacturer Identifier” corresponds to a manufacturer supported by the
CDR and follows the VIN formatting requirements. Thus, it is possible
to spoof a CDR system in an attempt to download data from a different
module than intended.

4.5 Unwiped Media

There are indications that the CDR interface module memory is not
wiped between downloads. We attempted to verify this fact by exper-
imentation. Power was applied to the CDR interface module and the
data in CDR memory was requested prior to performing a download of
the EDR.

When the following data was sent by the CDR interface module to
the SDMG2000 EDR (see Section 3.2):

EF 5A 01 1F 00 80 00 17
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the following block of data was returned:

EF D6 01 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11

12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26

27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B

3C 3D 3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50

51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65

66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A

7B 7C 7D 7E 7F 7A

When the following data was sent by the CDR interface module:

EF 5A 01 1F 80 5E 00 B9

the following block of data was returned:

EF B4 01 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 90 91

92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F A0 A1 A2 A3 A4 A5 A6

A7 A8 A9 AA AB AC AD AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB

BC BD BE BF C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF D0

D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD 49

This suggests that the memory in the CDR interface module is not
reset and unknown data is available for download as authentic data.

5. Recommendations

EDRs provide vital data for reconstructing traffic crashes. However,
during a crash reconstruction, it is important to also consider the phys-
ical evidence that is always present instead of relying solely on digital
evidence.

Digital forensic professionals should be cognizant of the following rec-
ommendations related to EDRs and EDR data:

Maintain a detailed record of the chain of custody of an EDR. This
specifically includes documenting all physical extractions from the
module because there are no unique identification marks on the
EDR that tie it to the vehicle.

Preserve and maintain the original human-readable report as this
document becomes the evidence used in the legal context. Note
that the original data in the EDR device could be erased, over-
written or corrupted. For example, an SDM does not write its
memory to a permanent record for a non-deployment event and
the memory is erased after the unit is turned on a certain number
of times.

Understand when and how the data is erased, overwritten or cor-
rupted. For example, some powertrain control modules on Ford
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vehicles retain 25 seconds of data (including vehicular speed) in a
circular buffer. However, the data is not “locked” in the event of a
crash and the reapplication of power to the module causes the data
to be overwriten. Note that modules from different manufacturers
vary considerably in terms of their operational characteristics.

Learn how current vehicular technology is used to generate data
for the EDR. Many EDRs rely on external sensors and advanced
vehicular systems for data. For example, the speed sensor actually
measures the rotation of the driveshaft, not the true speed. This
means that the speed of a vehicle that is sliding sideways on ice is
not reported correctly in the EDR.

6. Conclusions

EDR data is extremely valuable in reconstructing the physical events
leading to automoble crashes. However, the case study involving the ex-
traction of data from a 2001 Chevrolet 1500 pickup EDR using the Bosch
CDR system has revealed several problems that may impact evidentiary
quality. The problems include missing data and uninterpreted data, data
collection discrepancies, unexplained methods, and issues with evidence
identifiers and unwiped media. Investigators should be aware of these
problems and should use sound forensic procedures and tools to ensure
that EDR evidence is not excluded in legal proceedings.
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Chapter 22

REASONING ABOUT EVIDENCE
USING BAYESIAN NETWORKS

Michael Kwan, Kam-Pui Chow, Frank Law and Pierre Lai

Abstract There is an escalating perception in some quarters that the conclusions
drawn from digital evidence are the subjective views of individuals and
have limited scientific justification. This paper attempts to address this
problem by presenting a formal model for reasoning about digital evi-
dence. A Bayesian network is used to quantify the evidential strengths
of hypotheses and, thus, enhance the reliability and traceability of the
results produced by digital forensic investigations. The validity of the
model is tested using a real court case. The test uses objective proba-
bility assignments obtained by aggregating the responses of experienced
law enforcement agents and analysts. The results confirmed the guilty
verdict in the court case with a probability value of 92.7%.

Keywords: Digital evidence, hypotheses, probability, Bayesian networks

1. Introduction

Like other forensic disciplines, digital forensics involves the formula-
tion of hypotheses based on the available evidence and facts, and the
assessment of the likelihood that they support or refute the hypotheses.
Although substantial research has focused on principles and tools for
retrieving digital evidence [7, 8, 10], little, if any, work has examined the
accuracy of hypotheses based on the evidence.

Without reliable and scientific models, the conclusions made by dig-
ital forensic analysts can be challenged on the grounds that they are
mere speculation. The problem is acerbated by the fact that forensic
conclusions derived from the same digital evidence can vary from ana-
lyst to analyst. This can severely impact the reliability of digital forensic
findings as well as the credibility of analysts. Speculation and subjective
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views offered by forensic analysts under the guise of expert opinion have
little (if any) value in legal proceedings [6].

This paper presents a formal model for reasoning about digital ev-
idence. The model, which is based on probability distributions of hy-
potheses in a Bayesian network, quantifies the evidential strengths of
the hypotheses and, thereby, enhances the reliability and traceability of
the analytical results produced by digital forensic investigations. The
validity of the model is investigated using a real court case involving
the illegal dissemination of a movie using the BitTorrent peer-to-peer
network.

2. Background

Forensics is the process of analyzing and interpreting evidence to de-
termine the likelihood that a crime occurred. Many researchers (see, e.g.,
[4, 12, 15, 19, 20]) argue that that this process should cover the formu-
lation of hypotheses from evidence and the evaluation of the likelihood
of the hypotheses for the purpose of legal proceedings.

Aitken and Taroni [1] state that likelihood is an exercise in hypotheti-
cal reasoning. It denotes the degree of belief in the truth of a hypothesis.
In the scientific community, belief is often expressed in terms of probabil-
ity. Probability theories provide mechanisms for deducing the likelihood
of hypotheses from assumptions. Although probabilistic methods may
be useful for proving or refuting the hypotheses involved in a criminal
investigation, Jones and co-workers [9] argue that obtaining all the prob-
ability distributions for the entailing evidence is impractical. Given the
large volume of evidence involved, it is not feasible to obtain the joint
probability distributions for all possible evidential variables. Moreover,
simple probabilistic methods do not capture the complex dependencies
that exist between items of evidence; therefore, the methods have limited
value from an analytical point of view [5]. Indeed, many researchers [5,
11, 16] emphasize that comprehensive probabilistic models should ac-
curately model the conditional dependencies existing between items of
evidence.

A criminal investigation is an abductive diagnosis problem [16]. How-
ever, it is difficult to design a model that can deterministically de-
scribe all the assumptions involved in an investigation. Poole [18] has
attempted to address this issue by proposing a model that describes
crime scenarios non-deterministically using symbolic logic and proba-
bilistic Bayesian methods. Unfortunately, Poole’s model is too abstract
to be applied in real scenarios.
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It is important to observe that digital events are discrete computer
events that are deterministic in nature and have a temporal causal se-
quence. Therefore, it is common practice for digital forensic analysts
to establish their abductive reasoning based on the existence or validity
of the causal events that entail their hypotheses. However, it is diffi-
cult to have consistent models that determine the supporting events for
hypotheses. Different analysts may attach different events to the same
hypothesis. Even if they agree on the same set of events, they usually
assign different (subjective) probabilities to the events.

Analysts also must reason about hypotheses in the face of missing
and/or uncertain information about events. The events for which evi-
dence is available may not prove the complete truth of the hypotheses;
however, they can be used very effectively to compute degrees of likeli-
hood for the hypotheses. Consequently, probabilistic approaches are well
suited to developing formal models for reasoning about digital evidence
in criminal investigations.

3. Bayesian Networks

Before we discuss Bayesian networks, it is important to emphasize that
digital evidence deals with “past” events that were caused by some other
hypothetical events that have to be verified. For example, if a suspect
had child pornography on his computer, he may have downloaded it
from a pornographic web site, which could be verified by the presence
of the URL in the history file of his browser.

A Bayesian network uses probability theory and graph theory to con-
struct probabilistic inference and reasoning models. It is defined as a
directed acyclic graph with nodes and arcs. Nodes represent variables,
events or evidence. An arc between two nodes represents a conditional
dependency between the nodes. Arcs are unidirectional and feedback
loops are not permitted. Because of this feature, it is easy to identify
the parent-child relationship or the probability dependency between two
nodes.

A Bayesian network operates on conditional probability. For example,
if the occurrence of some evidence E is dependent on a hypothesis H,
the probability that both H and E occurred, P (H,E), is given by:

P(H ,E ) = P(H )P(E |H ). (1)

According to the multiplication law of probability, which expresses
commutativity, if H is relevant for E, then E must also be relevant for
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Figure 1. Bayesian network connections: (a) Serial; (b) Diverging; (c) Converging.

H. The corresponding joint probability expression is:

P (H,E) = P (H)P (E|H) = P (E)P (H|E), (2)

and, hence,

P(E |H ) =
P(E )P(H |E )

P(H )
. (3)

Equation (3) is the celebrated Bayes’ Theorem. From a statistical
point of view, it denotes the conditional probability of E caused by H.
This is also referred as the likelihood ratio of H given E. It denotes the
degree of belief that E will occur given a situation where H is true.

P (H|E) is the posterior probability, i.e., the probability that when E
is detected H has actually occurred. P(H) denotes the prior probability
of H at a stage where the evidence is not yet presented. P(E) is the
prior probability of E, which is sometimes referred to as a normalizing
constant. Therefore, the above expression can be formalized as:

likelihood ratio =
posterior probability × normalizing constant

hypothesis prior probability
. (4)

Since the likelihood ratio is proportional to the posterior probability, a
larger posterior probability denotes a higher likelihood ratio. In the evi-
dentiary context, it also means that the greater the evidence supporting
the hypothesis, the more likely that the hypothesis is true.

A Bayesian network has three elementary connections between its
nodes that represent three different types of probability distributions
(Figure 1). For a serial connection, if B ’s evidential state is unknown,
then A and C are dependent on each other. In other words, there is
an evidential influence between A and C if the evidential state of B is
unknown. However, if B ’s state is known, then A and C are independent
of each other; this means that A and C are conditionally independent
of each other given B. In a diverging connection, the same conditional
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independence is observed for A and C, i.e., if B ’s state is known, then
A and C are independent. In a converging connection, if B ’s state is
unknown, then A and C are independent. In other words, unless the
state of B is known, A and C can influence each other.

4. Proposed Model

A real case involving the distribution of a pirated movie via the Bit-
Torrent peer-to-peer network is used to demonstrate the utility of the
Bayesian network model. The digital evidence discussed in this paper
was presented in court during the criminal trial.

4.1 The BitTorrent Case

The defendant in the case was alleged to have used his computer to
distribute a pirated movie on the Internet using BitTorrent [13]. The
defendant had the optical disk of the movie in his possession. He copied
the movie from the optical disk to his computer and then used BitTorrent
to create a “torrent file” from the movie file. The torrent file contained
metadata of the source file (movie file) and the URL of the BitTorrent
tracker server.

To distribute the movie, the defendant sent the torrent file to several
newsgroups. He then activated the torrent file on his computer, which
caused his computer to connect to the tracker server. The tracker server
queried the defendant’s computer about the metadata of the torrent
file. The tracker server then returned a list with the IP addresses of
peer machines on the network and the percentages of the target file that
existed on the peer machines.

Since the defendant’s computer had a complete copy of the movie,
the tracker server labeled it as a “seeder computer.” The defendant
maintained the connection between the tracker server and his computer
so that other peers could download the movie from his computer.

4.2 Building the Model

The construction of a Bayesian network model begins with the main
hypothesis that the analyst intends to determine. In order to prove the
illegal act in the BitTorrent case, we use the following hypothesis:

H : The seized computer was used as the initial seeder to share the
pirated file on a BitTorrent network.

Next, we express the possible states of the hypothesis (Yes, No and
Uncertain) and assign probability values to these states. The values are
also called the prior probabilities of the hypothesis.
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Hypothesis H is the root node in the Bayesian network. Since it has
no parent nodes, its prior probabilities are unconditional. To begin with,
the probabilities of H are evenly distributed among its three states, i.e.,
P(H) = (0.333, 0.333, 0.333) (Table 1).

Table 1. Prior probability of the root node.

Node State P(H)

H
Yes 0.333
No 0.333

Uncertain 0.333

Having established the root node, we proceed to explore evidence or
events that are causally dependent on H. These are usually observable
variables. However, note that sub-hypotheses may also be added under
the root node. Although these sub-hypotheses do not have observable
states, they are useful because they refine the model by producing a
graph with more structure and increased clarity. Five sub-hypotheses
are created to support the root hypothesis:

H1: The pirated file was copied from the seized optical disk (found
at the crime scene) to the seized computer.

H2: A torrent file was created from the copied file.

H3: The torrent file was sent to newsgroups for publishing.

H4: The torrent file was activated, which caused the seized com-
puter to connect to the tracker server.

H5: The connection between the seized computer and the tracker
server was maintained.

Table 2. Conditional probabilities of H1.

State Yes No Uncertain

H = Yes 0.6 0.35 0.05
H = No 0.35 0.6 0.05
H = Uncertain 0.05 0.05 0.9

Since the sub-hypotheses are dependent on H, they are assigned con-
ditional probability values. Table 2 presents the conditional probability
values of Hypothesis H1 given the state of H. Initial or prior probability
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values are assigned to the possible states of H1 for different states of H.
For example, an initial value of 0.6 is assigned for the situation when
H and H1 are both Yes. This means that when the seized computer
has been used as an initial seeder, the probability that the pirated file
found on the computer had been copied from the optical disk seized at
the crime scene is 0.6. However, it is also possible that, although the
seized computer was the initial seeder, the pirated file was downloaded
from the Internet or copied from another computer in a local network;
a probability value of 0.35 is assigned to these scenarios.

Finally, there is the possibility that, even though the seized computer
was the initial seeder, the evidence may not be able to confirm a Yes or
No state for H1. Therefore, there is a chance that the seized computer
was the initial seeder, but the source from where the pirated movie was
copied is Uncertain.

Table 3. Conditional probabilities of H2, H3, H4 and H5.

State Yes No Uncertain

H = Yes 0.6 0.35 0.05
H = No 0.35 0.6 0.05
H = Uncertain 0.05 0.05 0.9

Table 3 presents the conditional probabilities of Hypotheses H2, H3,
H4 and H5 given the state of H.

Following the assignment of conditional probabilities to the five sub-
hypotheses, we proceed to develop the entailing casual events or evidence
for the sub-hypotheses. This is because a Bayesian network propagates
probabilities for linked hypotheses based on the states of events or evi-
dence.

Hypothesis H and the five sub-hypotheses have a diverging connec-
tion. The nodes in a diverging connection influence each other when
the state of their parent node is still unknown. Therefore, the five sub-
hypotheses are related to each other in a probabilistic manner. Also,
their probabilities are affected by all the child events or evidence under
them.

To illustrate the Bayesian network methodology, we focus on Hypoth-
esis H1: The pirated file was copied from the seized optical disk (found
at the crime scene) to the seized computer.

5. Assigning Prior Probabilities

Items of digital evidence correspond to past digital events (or posterior
evidence) that can be used to support or refute the five sub-hypotheses,
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Figure 2. Partial Bayesian network for H1.

which, in turn, support or refute H. One of the main challenges in ap-
plying a Bayesian network to evaluate evidence is assigning probability
values to posterior evidence. This is because the assignments are usu-
ally based on subjective personal beliefs. Although the personal beliefs
(regarding a case) of a digital forensic analyst are assumed to arise from
professional knowledge and experience, there is no means to determine
whether they truly represent the accepted views of the digital forensic
discipline, let alone whether or not the probability values assigned to
posterior evidence are, in fact, accurate.

To enhance the reliability and accuracy of the probability assign-
ments for posterior evidence, we attempted to use objective probabil-
ity assignments obtained by aggregating the responses of experienced
law enforcement agents and analysts. A questionnaire (available at
www.cs.hku.hk/kylai/qr.pdf) was created to obtain the required infor-
mation from personnel with the Technical Crime Bureau of the Hong
Kong Police and the Computer Forensic Laboratory of Hong Kong Cus-
toms. The questionnaire solicited the following information from the
respondents: (i) digital forensics training and experience, (ii) degree of
belief in digital evidence resulting from general computer operations,
and (iii) degree of belief in the digital evidence related to the operation
of the BitTorrent protocol.

Responses were received from 31 law enforcement personnel. The
weighted average approach was used to aggregate the probability values.
For example, Item 7 of the questionnaire required respondents to gauge
the probability range that the URLs and access times of web sites would
be stored in the file named index.dat in the folder History.IE5. The
answers received were: 20-40%: 1 respondent, 40-60%: 1 respondent,
60-80%: 6 respondents, 80-100%: 22 respondents, and Uncertain: 1
respondent. The weighted average of the probability of the Yes state
was computed as: (1×0.3) + (1×0.5) + (6×0.7) + (22×0.9) = 24.8,
which yielded a probability value 24.8/31 = 0.8. The probability of the
Uncertain state was computed as 1/31 = 0.03. Therefore, the probability
of the No state was 1 – 0.8 – 0.03 = 0.17.
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Figure 3. Probability values: (a) Initial; (b) Updated.

6. Analyzing Hypothesis H1

The partial Bayesian network for Hypothesis H1 is presented in Figure
2. The arguments describing events or evidence that would be caused
by copying a file from an optical disk to a local hard disk are : (i) E1:
Modification time of the destination file equals that of the source file
(states: Yes, No, Uncertain), (ii) E2: Creation time of the destination
file is after its own modification time (states: Yes, No, Uncertain) and
(iii) E3: Hash value of the destination file matches that of the source file
(states: Yes, No, Uncertain).

Table 4. Conditional probabilities of E1, E2 and E3

.

E1 E2 E3

State Y N U Y N U Y N U

H = Y 0.85 0.15 0 0.85 0.15 0 0.85 0.12 1.03
H = N 0.15 0.85 0 0.85 0.15 0 0.12 0.85 0.03
H = U 0 0 1 0 0 1 0.03 0.03 0.94

The next task is to assign conditional probability values to the events
or evidence. Table 4 lists the conditional probabilities of E1, E2 and E3,
given the state of H1.

Next, the probability of H1 based on the observed probabilities of E1,
E2 and E3 is calculated. The MSBNx Bayesian Network Editor and
Tool Kit [14] was used to calculate this probability and to propagate
probability values within the Bayesian network.

The probability values for the network nodes are presented in Figure 3.
Figure 3(a) presents the initial probability values in the network without
any observed evidence. Figure 3(b) shows the updated probabilities
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Figure 4. Propagated probability values.

assuming that evidence E1 is observed to be Yes while E2 and E3 are
still unobservable.

Hypothesis H1 is in a diverging connection with E1, E2 and E3.
Therefore, if the state of H1 is unobserved, any change in the proba-
bility of E1 will change the probability of H1. When H1 changes, the
likelihood ratios of E2 and E3 also change. Similarly, since H, H1 and
E1 are in a serial connection, a change in the probability of E1 will
propagate to H if H1 remains unobservable.

The Bayesian network has two more serial connections, H −→ H1 −→
E2 and H −→ H1 −→ E3. Therefore, any changes in the states of E2

and E3 will also affect the probabilities of H and H1.
Suppose we examine the state of the posterior evidence E2 and find

it to be Yes. The corresponding propagated probabilities in the network
are shown in Figure 4(a). If the final posterior evidence E3 is also ob-
served to be Yes, the probabilities that result are shown in Figure 4(b).
Note that when all the evidence states are Yes, the propagated prob-
ability for H1 = Yes is 99.6% and the corresponding probability for H
= Yes is 59.9%. In other words, if the states of E1, E2 and E3 are all
Yes, then the digital forensic analyst can confirm that there is a 99.6%
probability that H1 (the pirated file was copied from the seized optical
disk to the seized computer) is true. Furthermore, based on the 99.6%
probability value for H1, the forensic analyst can conclude that H (the
seized computer was used as the initial seeder to share the pirated file
on a BitTorrent network) is true with probability 59.9%.

Figure 4(c) shows the resulting probabilities for the case where all the
evidence states are No. The probability that H1 is true drops to 0.4%
and the probability that H1 is false rises to 99.6%. Unless a posterior
event or evidence exists, the probability that H is true drops to 35.1%
and the probability that H is false rises to 59.9%.
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Figure 5. Bayesian network diagram.
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7. Analyzing the BitTorrent Case

The overall Bayesian network diagram for the BitTorrent case is shown
in Figure 5. When no observations are made on any entailing evidence,
the initial probabilities of H1, H2, H3, H4 and H5 and, therefore, H are
Yes = 33.33%, No = 33.33% and Uncertain = 33.33%.

Table 5. Probabilities of various hypotheses.

(a) (b)

Hypothesis Y(%) N(%) U(%) Y(%) N(%) U(%)

H 92.54 7.45 0.01 92.27 7.72 0.01
H1 99.71 0.29 0.00 99.70 0.30 0.00
H2 99.98 0.0015 0.0185 99.92 0.07 0.01
H3 99.98 0.02 0.00 99.80 2.20 0.00
H4 99.93 0.07 0.00 99.51 0.49 0.00
H5 89.31 10.47 0.22 99.45 10.33 0.22

When all the entailing evidence is switched to the state Yes, the prop-
agated probabilities for the various hypotheses are as presented in Table
5(a).

Media reports about the BitTorrent trial mentioned that there was
no indication that the torrent file was present on the seized computer.
Also, there was no mention of cookies that are required to publish the
torrent file in newsgroups. Therefore, the corresponding observations
about the existence of the created torrent file (node E8 in Figure 5) and
cookies of newsgroups (node E14) should be amended from Yes to No in
order to reveal their impact on the hypotheses.

It is worth mentioning that the “torrent file node” (E8) is a com-
mon node for H2, H3 and H4. In other words, there is a converging
connection to E8 from these three hypotheses. According to the rules
of probability propagation for a converging connection, when the state
of E8 is known, the probabilities of H2, H3 and H4 will influence each
other. Therefore, a change in the state of E8 changes the probabilities
of these three hypotheses.

Furthermore, since H1, H2, H3, H4 and H5 are in a diverging con-
nection with the parent hypothesis H, changes to the probabilities of
H2, H3 and H4 influence the probabilities of H1 and H5. Table 5(b)
shows the probability values obtained after the states of E8 and E14

are changed from Yes to No. The propagated probability for H from
the available evidence is 92.27%. In other words, based on the observed
evidence, there is a probability of 92.27% that the seized computer was
used as the initial seeder to distribute the pirated movie on a BitTorrent
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network. This is the most that a digital forensic analyst can provide.
It is up to the court to decide whether or not this probability value is
sufficient to support the Hypothesis H.

Note that other evidence exists in the BitTorrent case. This includes
email exchanges, detailed comparisons of the torrent file metadata with
computer trails, and timeline analysis. However, as the focus of this pa-
per is to demonstrate the utility of Bayesian networks in digital forensic
investigations, only the most important pieces of digital evidence were
considered in the discussion.

8. Conclusions

A Bayesian network is a useful formalism for quantifying and propa-
gating the strengths of investigative hypotheses and supporting evidence.
The Internet piracy trial provides an excellent case study for validating
the approach. The hypotheses in the case and their supporting events
and evidence are clearly specified, along with their causal relationships
and probability values. Thus, the Bayesian network model is not only
an analytical tool for evaluating evidence, but also a tracking tool that
enables digital forensic practitioners to review and analyze the original
findings.

The subjectivity involved in assigning probabilities can be alleviated
to some extent by using a survey instrument and aggregating the re-
sponses obtained from expert investigators. However, it is difficult to
completely eliminate the subjective aspects, especially with regard to
the assignment of prior probabilities to posterior evidence. Our future
research will investigate this aspect in more detail with the goal of en-
hancing the accuracy, precision and reliability of the Bayesian network
model for reasoning about digital evidence.
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Chapter 23

INFERRING SOURCES OF LEAKS IN
DOCUMENT MANAGEMENT SYSTEMS

Madhusudhanan Chandrasekaran, Vidyaraman Sankaranarayanan and
Shambhu Upadhyaya

Abstract A document management system (DMS) provides for secure operations
on a distributed repository of digital documents. This paper presents
a two-phase approach to address the problem of locating the sources of
information leaks in a DMS. The initial monitoring phase treats user
interactions in a DMS as a series of transactions, each involving content
manipulation by a user; in addition to standard audit logging, rele-
vant contextual information and user-related metrics for transactions
are recorded. In the detection phase, leaked information is correlated
with the existing document repository and context information to iden-
tify the sources of leaks. The monitoring and detecting phases are in-
corporated in a forensic extension module (FEM) to a DMS to combat
the insider threat.

Keywords: Document management system, insider threat, information leaks

1. Introduction

Digital documents have become the principal vehicle through which
organizational information such as email, public memos and propri-
etary information are created and shared. Initially, digital documents
were shared using portable media (floppy disks). Eventually, loosely-
structured networked collaborations were created where documents were
emailed in order to share information. However, as the value of the ex-
changed information grew, so did the security threats. Prompted by
the increasing threat level and the importance of document content,
sophisticated document management systems (DMSs) were developed
to automate and secure document creation, check-in and check-out pro-
cesses. Authentica [4] and Microsoft Information Rights Management [9]
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are examples of DMSs. These systems protect the documents from ex-
ternal threats, e.g., by automatically encrypting every document. Thus,
even if the file server containing the documents is compromised, infor-
mation in the documents is not compromised. While numerous security
mechanisms have been designed to safeguard documents from external
intruders, DMSs and the documents they contain remain vulnerable to
insider attacks.

This paper describes a two-phase extension to an existing DMS, called
the forensic extension module (FEM), that identifies the sources of in-
formation leaks – a common form of insider abuse. During the first
phase, every user action is logged by a monitoring component. In the
second phase, when an information leak is discovered, audit data along
with data gathered during the monitoring phase are used to attribute
the sources of the leak. As a proof of concept, the FEM is implemented
as an add-on to Word 2003, where it is seamlessly integrated into the
process flow and conducts evaluations in a virtual environment.

2. Related Work

Incidents of information leaks involving Microsoft Word documents
have led to the development of several add-ons for document editors
to combat the threat. For example, Microsoft’s Remove Hidden Data
tool [8] removes all meta tags, field codes and revision information from
Word documents. Microsoft’s Word Redaction tool [7] is an add-on
that redacts information from Word 2003 documents. Note that these
add-ons were not created for forensic purposes; they are merely filters
that prevent unintentional information leaks from documents that have
been declared fit for public consumption. In the context of our work,
these tools are important for two reasons: (i) they expose and cleanse
information in documents that is not immediately visible to end users,
and (ii) they may leak information and, therefore, should be considered
when performing forensic analysis.

Recent efforts in document forensics have focused on several issues,
including document reconstruction from deleted fragments [15], retrieval
of hidden documents via file system analysis [3], detection of masquer-
ades for the purpose of document access [13], and mitigation of illicit
system and log file tampering [14]. Although these techniques can en-
hance the overall detection capabilities in a DMS, they do not specially
address the problem of information leaks, which is the crux of our re-
search. In fact, our focus is on “information leak forensics” in a DMS
rather than traditional “document forensics.”
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3. Document Management Systems

A document management system (DMS) is a repository of digital doc-
uments that provides the functionality for shared editing, collaboration,
check-in and check-out, and various security features. The predominant
security features are document encryption and custom security policy
settings. Note that the DMS security features are document-format-
specific and viewer-specific as opposed to file-system-specific. In a typ-
ical DMS, users interact with a secure document editor like Microsoft
Word 2003 or Adobe Acrobat. The editor is responsible for authenti-
cating users, communicating with the file server, retrieving documents
and enforcing custom security policies on the documents. The security
policies are mostly static policies that dictate user rights to documents.
Read, edit and print permissions may be assigned for documents. Addi-
tional fine-grained policies may be set for specialized document formats.

Each document in a DMS is assigned a type and classification. The
document type usually indicates the nature of the information content
(e.g., Financial, News, Technology). The classification, on the other
hand, indicates the sensitivity of the document (e.g., Top Secret, Secret,
Classified, Unclassified, Declassified, Public). In addition, user roles
(e.g., Secretary, Software Developer, Project Manager, Board Member,
Chief Executive Officer) are usually defined based on the organization’s
functions. Security policies are defined based on user roles and docu-
ment classifications and types. In some DMS architectures, documents
may also be watermarked or digitally signed to establish the authentic-
ity of their content, proof of ownership and non-repudiable statements
pertaining to access histories.

3.1 Characterizing Information Leaks

Modern document formats, most notably the format used by Mi-
crosoft Word, have provisions for storing data in various sections that
may not be immediately visible to users:

Actual Document Content: This section, which contains text,
pictures, embedded objects and comments, is usually what the
author and the readers view.

Document Metadata: This information, e.g., document author,
time of last edit and time of last printing, is not immediately vis-
ible to users. However, the metadata can unintentionally reveal
confidential information such as author name and document clas-
sification.
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Content Change/Revision Information: Modern document
editors have a provision for tracking changes to documents. This
is usually the starting point for shared document editing, where
a document is marked with “Track Changes.” All changes are
recorded, but the final document may not present the earlier ver-
sions. However, the original content and all the revisions are em-
bedded in the document unless they are explicitly removed.

Content Versions: This feature enables a single document to
store multiple versions of the same document over time.

Information leaks involve the release of these different types of infor-
mation contained in documents. Depending on the nature of the leak,
the revealed information can cause considerable damage to the concerned
organization.

3.2 Protection from Inadvertent Leaks

Document management systems are designed to enable collaborative
document editing by ensuring workflow integration and incorporating
security mechanisms where necessary. The dual goals of workflow inte-
gration and security control are at the root of any information leak.

Consider a scenario where a document D1 has type Financial and is
classified as Secret. A user with the role of Accountant is authorized to
work on the document with read and edit permissions. At the end of
the financial year, the user transfers some summary information from
D1 to a public document D2 for a press release. Since the user has read
and edit permissions on D1, he can perform this information transfer,
which involves the use of copy and paste commands using the document
editor. This scenario illustrates two important characteristics of a DMS:

The DMS must permit information transfer from document D1 to
a public document. This is in accordance with the organization’s
workflow requirements (i.e., non-interference).

The DMS must protect D1 by ensuring that only authorized users
are allowed to access it. In accordance with the prevailing security
policies, it must prevent the Accountant from executing a print
operation on document D1.

Many commercial entities tout tight integration with workflow (and
non-interference) as a feature of their DMS products. However, it is triv-
ial to observe that the Accountant is in a position to transfer information
from document D1. While security policies can be implemented to pre-
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Table 1. Notation used for modeling leaks.

U Set of DMS users: ui ∈ U
D Set of DMS documents: di ∈ D
C Set of DMS document classifications: ci ∈ C
SD Set of DMS document security identifiers (DSIDs): sd ∈ SD such that

∀d ∈ D, ∃sd ∈ SD specifying the corresponding security level
SU Set of DMS user security identifiers (SIDs): su ∈ SU such that

∀u ∈ U,∃su ∈ SU specifying the corresponding security level
ui → dj User ui accesses document dj

dopen Leaked document is found in the open

vent this information transfer [11], it is, nevertheless, possible for a mali-
cious insider to leak information within the purview of normal workflow
processes. On the other hand, a security policy that completely prevents
such information flow would interfere with normal workflow processes.

An information leak occurs when information at a higher classifica-
tion level becomes available at a lower level. Information leaks may
be categorized as inadvertent or premeditated. Any undesirable infor-
mation transfer occurring as part of a legitimate workflow process is
termed as inadvertent. For example, if the Accountant wishes to create
a new public document D2 with the same formatting as D1, he may
initiate a file copy of D1 to D2, which replaces the original content of
D2. Then, he proceeds to edit the content and create the public doc-
ument D2. However, documents D1 and D2 have the same metadata
(author information, original creation time, last printed time, etc.). Ab-
sent DMS detection and mitigation functionality, this metadata is leaked
when document D2 is published on the corporate website.

4. Modeling Information Leaks

This section formally characterizes information leaks. Table 1 presents
the notation used for modeling leaks.

Definition 1 Information Potential (IP ): The information potential
of a document di ∈ D is defined by:

IP (di) = (sdi

∑
suj

)/
∑

uj ∀uj ∈ U : uj → di.

The information potential of a document expresses the importance of
the information it contains. Note that the information potential of a
document can be trivially defined to be its DSID. The SID of a docu-
ment is generally assigned a value in the range [0,1] depending on its
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criticality; Public documents are assigned a value of zero while Top Se-
cret documents are assigned a value of one. The relative importance of
a document is expressed by including a weighting for the levels of the
users who access the document. Thus, a document is accorded impor-
tance based on its SID as well as on the levels of the users who access it
[5].

Definition 2 Document Similarity Set (Dsim): The document similar-
ity set Dsim, corresponding to a document dopen found in the open, is a
set of documents that have contributed to dopen along with their respective
similarity scores. Thus, Dsim is a set of tuples of the form <document,
score> defined by:

Dsim(dopen) = < d1, sc1 >,< d2, sc2 >, . . . , < dk, sck >

where dk ∈ D and sc1 ≥ sc2 ≥ . . . ≥ sck.

Definition 3 Information Leakage Value (ILval): The value of the in-
formation leaked in dopen is defined by:

ILval(dopen) =

|Dsim|∑
i=1

IP (di) × sci.

ILval represents the information similarity measure for the document
dopen with respect to the documents contained in Dsim. This definition
depends only on the information potential of documents, not on the
quantity of information transferred. Thus, a single word transferred
from d1 to d2 is equivalent to the transfer of a sentence or paragraph
or section. Since we do not have a mechanism to detect the importance
of the content of a document, this definition is the best we can use to
quantify information transfer in a DMS.

4.1 Problem Definition

Given a document dopen, constructed by the complete or partial com-
position of one or more documents in D = d1, d2, . . . , dn, that consti-
tutes an information leak, return a list of suspects, i.e., users Ususpects

= u1, . . . , uk : ui ∈ U . Thus, the goal is to deduce the list of suspects,
possibly a single user, whose actions resulted in the information leak.

The document dopen could be a confidential piece of information leaked
intentionally and discovered by a network trace or by examining log files.
The insider could create dopen as a composition of the documents to
which he has access. Thus, dopen may contain some confidential infor-
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mation and mostly public information; the idea being to mix information
so that the leak is not detected and traced to the insider.

It is also possible that an information leak could be inadvertent, i.e.,
the information transfer was intended for legitimate purposes but was
later found to be in violation of the security policy. Generally, we as-
sume that dopen = d1 ◦d2 ◦ . . . ◦dk, where d1, d2, . . . , dk ∈ D, i.e., dopen is
the composition of documents d1 through dk. For simplicity, we assume
that dopen only contains information from d1, d2, . . . , dk ∈ D, although
the insider might add other commonly available information to create
document dopen. However, as discussed below, adding spurious informa-
tion does not impact the detection of information leaks.

4.2 FEM Algorithm Preliminaries

To attribute the source of an information leak, it is essential to capture
all the changes made to documents in a DMS, preferably in a succinct
way. We use rooted, labeled trees to model the transmutations that
documents undergo in their lifetime. We denote the tree as T = (D,E, ε)
where D is a set of nodes representing different versions of the documents
after edit sessions. Node r ∈ D is a special node that forms the root of
the tree.

All the documents contained in a DMS at any point in time correspond
to nodes that are connected directly to the root r. E ⊆ D×D is the set
of edges in the tree. An edge (dij , dik) ∈ E denotes the transition that a
document di undergoes as a result of edit operations. In other words, dik
is a version of the document that has evolved from its previous version
dij . The sequence ε = e1, e2, e3, . . . , ek is the edit script that transforms
the document from one version dij to another dik . In turn, each ei

represents an edit operation that is applied as a part of an edit script ε.
L is a set of version labels. Each version of the document di ∈ D after a
successful edit operation is uniquely identified with a different name dil
corresponding to its label l (version).

Any sensitive information that could have leaked from a document
with a higher classification to a document with a lower classification is
encapsulated by the edit script. We define the set of edit operations [2]
that can be applied in an edit script ε1 to transform document version
di to document version dj (i.e., di →ε1 dj).

Insertion: Each DMS document is considered to be a flat file
represented as a p×q rectangular grid where p is the column width
of the document and q is the number of lines in the document. Each
p× q point in the grid is mapped to a single ASCII character. The
insert operation INS(p1, q1, content) inserts the ASCII characters
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dictated by the content beginning at (p1, q1) in the grid. The
content previously located at (p1, q1) and beyond is shifted and
concatenated with the inserted content.

Deletion: Deletion is the inverse of insertion. DEL(p1, q1, p2, q2)
truncates the content located between (p1, q1) and (p2, q2).

Update: The UPD(p1, q1, p2, q2, content) operation replaces the
content between (p1, q1) and (p2, q2) with the specified content.
An update operation is equivalent to successively applying the
DEL(p1, q1, p2, q2) and INS(p1, q1, content) operations.

Copy: CPY (p, q, ds) is a special operation that does not change
the content of document ds. It is used to capture “content high-
lighting” and “copy to clipboard” events, which occur when infor-
mation is transferred within a document or between documents.

Glue: GLU(p1, q1, p2, q2, content, ds) is similar to the update op-
eration. The only difference is that the content between (p1, q1)
and (p2, q2) is replaced with the content copied from the clip-
board taken from document ds using the CPY operation. If (p1,
q1) is equal to (p2, q2), the GLU operation becomes equivalent to
INS(p1, q1, content). It is possible that content is manually trans-
ferred from document du to dv . Such an information transfer is
recorded as an INS operation instead of the CPY and GLU op-
erations.

4.3 FEM Trace-Back Algorithm

This section describes the algorithm for tracing the sources (Ususpects)
of an information leak.

First, the leaked information is correlated with a set of documents
Dsim in the DMS. Next, it is determined if the leak is caused by CPY
and GLU operations in an edit script ε that transfer information from a
document dk with a higher classification to a document di with a lower
classification to produce a new version dj . In such an instance, the
content pasted from the clipboard by the GLU operation is checked to
see if it matches the leaked content.

An information leak can also take place across multiple edit sessions
spanning multiple documents. This is similar to a “slow poisoning”
attack where Dsim only matches the final version of the document, say
dj , even though the information leak could have occurred in part during
previous editing sessions.
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Algorithm 1 Malicious Insider Detection Algorithm

Require: ILtsh and audit logs as specified in the monitoring phase
Ensure: Output of Ususpects

1: Evaluate Dsim(dopen) = < d1, sc1 >,< d2, sc2 >, . . . , < dk, sck >
2: Calculate Dhigh = di ∈ Dsim : ILval > ILtsh

Calculate Dlow = di ∈ Dsim : ILval ≤ ILtsh

3: Calculate Uhigh = ui ∈ U : ∀dj ∈ Dhigh, ui → dj

Calculate Ulow = ui ∈ U : ∀dj ∈ Dlow, ui → dj

4: for all di in Dsim do
5: < di1, di2, . . . , dik > = Greedy-Collate(GLU/CPY )
6: Ususpects += u : ul → dij where dij →ε dik, ∀ul ∈ U,∀dik ∈ Dsim

7: end for

The algorithm collates the contents of GLU operations from edit
scripts from previous sessions in a greedy manner to check if the col-
lated content matches the leaked content. All the users who initiated
the edit script are deemed as suspects. However, not all information
leaks occur due to CPY and GLU operations. For example, a user
might try to reproduce a document by reading it and typing its content
(“content jacking”). The algorithm only considers the content involved
in the INS and UPD operations and generates an information graph
[11] to determine the documents in Dsim that were opened concurrently
with the public document dj that contains the leaked information.

Algorithm 1 presents the steps involved when only GLU operations
are considered. The sub-procedure Greedy-Collate is self explanatory.

The algorithm is easily extended to incorporate content collation im-
plemented by the INS and UPD operations. The algorithm also (op-
tionally) takes as input an information leak threshold value (ILtsh) be-
yond which any information transfer is considered to be a leak. If ILtsh

is specified, then Dsim in Step 4 can be replaced by Dhigh and U in Step
6 can be replaced by Uhigh.

5. Forensic Extension Module

The forensic extension module (FEM) has two phases, monitoring and
analysis. The monitoring phase is an online process, i.e., it takes place
whenever there is user activity. The components used in this phase aug-
ment standard DMS auditing procedures. Each user action/interaction
with the documents in the repository is recorded and relevant context
information is collected. Along with each activity, information about
the document classification, time of transfer, etc. is also logged. Various
metrics are computed from the logs to understand the specific actions



300 ADVANCES IN DIGITAL FORENSICS IV

Figure 1. Incorporation of a FEM in a DMS.

taken by users and their intent. For example, a flurry of document
accesses (reads and searches) may indicate exploratory activities that
are not part of the workflow process. A simple query submitted to the
logs can provide all the instances of these document accesses. Simi-
larly, transaction time and transaction origin (within the organizational
perimeter or external access via a VPN connection) are indicators of
surreptitious activity.

The second FEM phase, which involves offline analysis, is initiated
whenever a leaked document is found in the open. The leaked document
is first correlated with the document repository. Based on the correla-
tion, the set Dsim is constructed (as in Definition 3). Finally, the DMS
audit logs and the metrics computed during the monitoring phase are
used to obtain the list of suspects Ususpects.

5.1 Integration Issues

Microsoft Word 2003 was chosen as the DMS hosting platform. It (i.e.,
Office 2003) comes with a digital rights management feature (Informa-
tion Rights Management), which enables document protection, including
the specification and enforcement of custom policies. Most of the Word
Object Model interfaces are exposed as standard SDKs, which facilitate
the addition of custom plug-ins (called “add-ins” in Microsoft’s docu-
mentation). Thus, the FEM was implemented as an add-in to Word
2003 and integrated with the DMS process flow as shown in Figure 1.
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5.2 Implementation Issues

During the monitoring phase, the FEM is supposed to log informa-
tion on all user transactions involving DMS documents. However, this is
difficult to implement because document editors such as Microsoft Word
and OpenOffice were designed primarily as document editing tools rather
than inhibition tools. Over the years, they have evolved from using sim-
ple text documents with formatting tags to supporting complex docu-
ments with embedded software that provides advanced features. Thus, a
Microsoft Word document is specified as an XML schema with tags and
binary-encoded streams for various portions of the document. A side
effect of these tags is that, from a document editing viewpoint, they do
not form part of the content, but can conveniently be used to transfer
critical information. The interface exposed by the Word Object Model
enables notification for certain document operations (e.g., opening and
printing) but does not provide a hook for logging information transfer.
For example, if a user were to copy and paste information from one
document to another, no API is available to hook the copy and paste
events. To overcome this limitation, information required during the
monitoring phase is obtained by enabling the “Track Changes” feature
for every document edited by a user and creating a log of all the files
modified in a session.

6. Evaluation

The following components were used to emulate a DMS in order to
evaluate the effectiveness of the FEM trace-back algorithm.

Document Corpus: The corpus contained Microsoft Word 2003
documents created using the 20 newsgroup data set [12]. The
documents were classified into five categories: Top Secret, Se-
cret, Confidential, Classified and Public. The twenty newsgroups
in the data set were uniformly distributed among the five docu-
ment classifications. For example, the posts (in plain text format)
in talk.politics.guns were converted to Microsoft Word docu-
ments and were uniformly distributed under the five classifications.
Note that converting the posts to Word document format is slightly
more involved than merely renaming the files with a .doc exten-
sion. A simple helper tool that instantiates a Word Application
Object and seamlessly converts plain text files in a given direc-
tory to Microsoft Word 2003 documents was used for this purpose.
This tool performs the equivalent of manually renaming the news-
group post with a .doc extension, opening the renamed document
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Table 2. Access control matrix.

Admin Manager Pgmmr Intern Contr Secy

Top Secret r, w, p r, w, p - - - -
Secret r, w, p r, w, p r - - -
Confidential r, w, p r, w, p r, w r - -
Classified r, w, p r, w, p r, w, p r, w r, w -
Public r, w, p r, w, p r, w, p r, w, p r, w r, w, p

in Word, accepting the default encoding, and saving the file in the
latest Word format.

User Set: Five classes of users were defined: Administrator �
Manager � Programmer � Intern � Contractor � Secretary. Note
that these roles do not naturally produce a linear hierarchy; this
hierarchy was chosen only for the proof-of-concept implementation.
A fixed access control matrix was used to specify the rights (r:
read, w: write and p: print) possessed by the five classes of users
to the five document categories (Table 2).

FEM: The FEM add-in for Microsoft Word 2003 provides au-
dit logging and forensic capabilities. It was implemented in C#
using Visual Studio 2005 under .NET Framework 2.0 and Win-
dows Vista. When installed, the add-in places a “FEM toolbar”
in Word.

The FEM toolbar has three controls:

– A drop-down combo box titled “Role Choice,” which enables
the user to choose a role (e.g., Intern) for the particular ses-
sion. Based on the role, access control policies are applied
that allow a test subject to open documents with the classi-
fications dictated by the access control matrix in Table 2.

– A button titled “Start FEM Logging,” which is used to initi-
ate logging after a role is chosen. Note that the logging is not
performed by a third-party process, but by Microsoft Word,
whose functionality is extended by the FEM add-in. Thus,
the FEM add-in is truly an extension to the DMS (where Mi-
crosoft Word serves as the document viewer and editor). The
FEM add-in can be extended to dump the logs to a remote
database or a server (e.g., Windows 2003 Server).
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– A “Send Logs” button is available to (optionally) send the
log by email upon completion of a session. This feature can
be eliminated if a trusted DMS platform is used.

The FEM evaluation experiment gathered data from thirteen virtual
users, each with an assigned role. The users were asked to transfer in-
formation from the highest classification level to which they had access
(based on the access control matrix in Table 2) to a Public document.
They were allowed to browse the Internet and copy and paste infor-
mation from the Internet to obfuscate detection attempts. Note that
because the users only performed the operations defined by the access
control matrix, a simplified version of the detection algorithm was ap-
plied where the content derived from the “Track Changes” feature was
merged with the log file to infer the actions performed by users that led
to information leaks.

Document similarity was tested using a simplified “diff” algorithm
[10] (other algorithms such as the Term Frequency Inverse Document
Frequency (TF-IDF) algorithm [6] can also be used). Detection would
have been much easier if the documents had been structured (e.g., using
XML [1]).

Two of the thirteen users chose to not initiate any information leaks.
Nine users who leaked a significant amount of information were detected
by the FEM. Using the check-in and check-out feature of the DMS and
the difference between the two versions of the documents, it was rela-
tively straightforward to identify the nine users as final suspects. Two
users who leaked information were not detected at all. One user trans-
ferred a single number from a Top Secret document. As this change was
minute, the transfer did not score a high enough similarity score for the
algorithm to investigate the user. The other user changed the content of
a Public document without actually copying information directly from
a Secret document. Furthermore, the content of the destination Public
document was scattered throughout the document making it difficult for
the FEM (or any computer program) to analyze the content.

The performance of the FEM was very reasonable; however, it has
inherent limitations that stem from the nature of the problem and the
myriad possibilities that exist for information leaks. Users cannot have
their workflow affected. In a DMS, this translates to unhindered in-
formation flow subject to static and context-specific security policies.
If an information leak occurs, the FEM can narrow the list of suspects
and, in favorable circumstances, can identify the single malicious insider.
The FEM relies on the similarity between the leaked document and the
document repository; this is correlated with the information transfer ini-
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tiated by users. However, a major limitation arises from the fact that
the similarity score is computed for raw text while information trans-
fer may (also) be in terms of pictures, WordArt, AutoShapes, or even
custom embedded objects. These types of information transfer can be
regarded as steganographic in nature; they are simple for a human to
perform but very difficult for a computing system to recognize or cat-
egorize. Although this problem has some resemblance to the (reverse)
Turing test [16], its scope is much larger. Indeed, the lack of computing
approaches (possibly based on artificial intelligence) for recognizing such
“information” significantly impacts the efficacy of a FEM-like approach
for detecting steganographic forms of information transfer.

7. Conclusions

Information leaks in DMSs are a major security threat, but little work
has been done on detecting and mitigating them. Current approaches,
which are effective at detecting infractions when information is trans-
ferred between documents of different classifications, are impractical for
two reasons. First, defense mechanisms are intrusive and can signifi-
cantly hinder workflow processes. Second, loosely-framed DMS policies
may permit actions that result in information leaks. Our FEM solution
addresses these two issues using an information leak metric and coupling
it with audit data collected during the monitoring phase. Its proof-of-
concept implementation as an add-in to Microsoft Word 2003 is likely
the first time that forensic functionality is integrated in an environment
where a threat vector (malicious insider) is not addressed. Our future
research will investigate extensions to the FEM framework for detecting
and mitigating information leaks propagated through other mechanisms
such as printed materials, steganography and human channels.
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Chapter 24

IMAGE BACKGROUND MATCHING
FOR IDENTIFYING SUSPECTS

Paul Fogg, Gilbert Peterson and Michael Veth

Abstract Thousands of digital images may exist of a given location, some of which
may show a crime in progress. One technique for identifying suspects
and witnesses is to collect images of specific crime scenes from com-
puters, cell phones, cameras and other electronic devices, and perform
image matching based on image backgrounds. This paper describes an
image matching technique that is used in conjunction with feature gen-
eration methodologies, such as the Scale Invariant Feature Transform
(SIFT) and the Speeded Up Robust Features (SURF) algorithms. The
technique identifies keypoints in images of a given location with minor
differences in viewpoint and content. After calculating keypoints for the
images, the technique stores only the “good” features for each image to
minimize space and matching requirements. Test results indicate that
matching accuracy exceeding 80% is obtained with the SIFT and SURF
algorithms.

Keywords: Image background matching, SIFT, SURF, keypoint reduction

1. Introduction

Electronic matching is commonly performed for fingerprints [5], shoe
imprints [1] and facial features [13]. Image feature generation techniques,
such as the scale invariant feature transform (SIFT) [7] and speeded
up robust features (SURF) [2] algorithms can be used to automate the
process of digital image matching. Persons of interest can be identified
by grouping and matching multiple images of a crime scene, even when
the images are taken from different viewpoints. For example, crime
scene images can be used to identify and place suspects and victims
at the scene. Alternatively, background details from child pornography
images can be used to establish where the pictures were taken.

Please use the following format when citing this chapter: 

Fogg, P., Peterson, G. and Veth, M., 2008, in IFIP International Federation for Information Processing, Volume 285; 
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This paper describes a technique for image matching that is used
in conjunction with the scale invariant feature transform (SIFT) and
speeded up robust features (SURF) algorithms. The first step involves
the generation of keypoints for each algorithm. The next step reduces
the number of keypoints to minimize storage requirements and improve
matching speeds. The third step performs match comparison, which
removes poor quality keypoint matches. The final step analyzes images
taken of the same location to identify features and/or persons of interest.
Testing indicates that better than 80% matching accuracy is achieved
using the SIFT and SURF algorithms.

2. Image Matching Algorithms

This section provides an overview of several image matching algo-
rithms, including the Scale Invariant Feature Transform (SIFT) [7, 8]
and Speeded Up Robust Features (SURF) [2] algorithms.

2.1 SIFT Algorithm

The SIFT algorithm [7] performs image recognition by calculating
a local image feature vector. The feature vector is used for matching
scaled, translated and/or rotated images under low illumination and
affine transformations. This technique is inspired by neuronal activi-
ties in the inferior temporal cortex of primates, which implement object
recognition.

The SIFT algorithm uses four steps to extract image keypoints: scale-
space extrema detection, keypoint localization, orientation assignment
and keypoint descriptor generation [8].

1. Scale-Space Extrema Detection: In this step, Gaussian kernels of
increasing variance are convolved with the image. A total of s + 3
images are produced (s is the number of scales); each image has
an increased amount of blur. Next, the difference of Gaussians
is computed for each pair of blurred images by subtracting each
image from the next most blurred image; this produces s+2 differ-
ences of Gaussians. Each difference of Gaussians is then bilinearly
interpolated to generate the next reduced scale for the total of s
scales.

2. Keypoint Localization: Each pixel in a difference of Gaussians is
compared with its eight neighbors. A pixel is designated as a key-
point if it is a maximum or minimum at this level and the related
pixels at all other scales are also maxima or minima. An improve-
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ment to this technique proposed by Lowe [8] fits a 3D quadratic
function to the pixels and their neighbors across scales.

3. Orientation Assignment: For each keypoint, the Gaussian blurred
image with a value closest to the scale of the keypoint is selected.
In this image, the gradient magnitude and orientation of the image
are calculated over 36 bins around the keypoint pixel. These 36
vectors, which are weighted by the keypoint scale, identify the
orientation of the keypoint.

4. Keypoint Descriptor Generation: The keypoint descriptor is de-
termined by calculating the gradient magnitude and orientation
of each pixel in a 16×16 pixel patch around the keypoint. These
vectors are weighted by a Gaussian distribution centered at the
keypoint and are combined in 4×4 pixel patches. The 16 combined
gradients are reduced to eight vectors in each of the cardinal di-
rections. The magnitudes of these vectors become the 128-element
keypoint descriptor.

Lowe [8] identified a marked decrease in matching performance for 112
images as the number of keypoints approaches 100,000 per image. How-
ever, the effect of a reduction in the number of keypoints per image on
matching performance has not been investigated. This is an important
issue because a child pornography case, for example, may have tens of
thousands of images; an average of 3,000 keypoints per image results in
more than 30,000,000 keypoints. Our strategy is to reduce the number
of keypoints per image (which saves time and memory) while achieving
satisfactory image matching percentages.

2.2 SURF Algorithm

The SURF algorithm incorporates enhancements to the SIFT algo-
rithm that increase the overall speed [2]. The enhancements are de-
scribed below in the context of the four steps of the SIFT algorithm.

1. Scale-Space Extrema Detection: SURF uses a 2×2 Hessian matrix,
whose components are the convolution of the second-order Gaus-
sian derivative with an area of the image centered at each pixel. To
speed this process, a box filter approximation of the second-order
Gaussian derivatives is used. The reduction in the scale of the im-
ages (to generate multiple scales) is then performed by increasing
the size of the box filter approximation [2].

2. Keypoint Localization: SURF uses SIFT’s 3D quadratic function
to extract localized keypoints [2].
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3. Orientation Assignment: Haar wavelet responses in the x and y
directions are calculated over a circular neighborhood of radius
6s around each keypoint (s is the scale of the image). The Haar
responses are weighted with a Gaussian distribution centered at the
keypoint and are summed to generate the orientation vector [2].

4. Keypoint Descriptor Generation: The keypoint descriptor is calcu-
lated over a 20s pixel area around the keypoint oriented according
to the orientation assignment. The area is divided into 16 square
patches that are evenly spaced over the keypoint descriptor area.
In each patch, the Haar wavelet responses in the x and y directions
are calculated over a 4×4 pixel square for each pixel in the patch.
The response vectors from each pixel in a patch are then combined.
The four component vectors from each of the 16 patches give rise
to the 64-element keypoint descriptor [2].

The SURF descriptor has similar properties to the SIFT descriptor
but is less complex and is, therefore, faster to compute. The times
required for keypoint descriptor generation are 354 ms, 391 ms and
1,036 ms for SURF (with a 64-element descriptor), SURF-128 (128-
element descriptor) and SIFT, respectively [2]. The average recognition
rates or accuracy of detecting repeat locations for SURF, SURF-128 and
SIFT are 82.6%, 85.7% and 78.1%, respectively [2].

2.3 Other Image Matching Algorithms

An alternative image matching algorithm is PCA-SIFT [12], which
incorporates principal components analysis. PCA-SIFT applies a nor-
malized gradient patch instead of smoothed weighted histograms to gen-
erate the keypoint feature vector. This provides users with the ability to
specify the size of the feature vector. The default feature vector size in
PCA-SIFT is 20 [12]. Experiments show that SIFT runs slightly faster
during keypoint generation, 1.59 sec vs. 1.64 sec [12]. However, the ex-
periments also show that PCA-SIFT has a large performance advantage
during image matching, 0.58 sec vs. 2.20 sec [12]. This improvement is
due to a significant reduction in keypoint feature size (20 vs. 128).

The Shi-Tomasi algorithm [10] selects features that are suitable for
tracking between image frames. Keypoints are generated over 7×7
blocks of pixels. The second-order partial derivatives of the intensity
of the pixels are calculated for each pixel block. The eigenvalues of
the derivatives are identified as an interest point if their minimum ex-
ceeds a user-specified threshold. The algorithm is most suitable for small
camera position changes, but is not robust enough to handle the large
displacements found in our application domain.
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3. Keypoint Reduction and Matching

This section presents the methods used to reduce the number of key-
points and to identify a location match given variations in the viewpoint
and content.

3.1 Keypoint Reduction

The SIFT and SURF algorithms generate an average of 3,000 key-
points per image. Reducing the number of keypoints significantly re-
duces memory requirements and image matching times but negatively
impacts the matching accuracy. This problem can be addressed by
choosing “stronger” keypoints that are well distributed in the image. A
distance function helps ensure a good keypoint spread, which prevents
keypoint clustering and subsequent image occlusion.

Keypoints are selected using an iterative approach. The SIFT al-
gorithm selects the first two points based on the scale of the detected
keypoints. For the SURF algorithm, the first two points are selected
based on the log of the cardinality of the non zero (Nz) elements of the

second moment matrix log

(
1√
|Nz|2

)
. Consequent keypoints are selected

based on a weighted sum of the scale (SIFT) or second moment (SURF)
of the keypoint and of the Mahalanobis distance between the keypoint
and all previously chosen keypoints [11]. Keypoints are obtained by
evaluating each available point (xi, yi) using W1DM (xi, yi)+W2σ(xi, yi)
to obtain the largest value. Note that σ(xi, yi) is the scale/second mo-
ment, DM (xi, yi) is the Mahalanobis distance at point (xi, yi), W1 is the
weighting on the Mahalanobis distance function, and W2 is the weight-
ing on the scale/second moment of the keypoint. This process continues
until the desired number of keypoints is selected.

The best settings for the distance weighting (W1) and scale/second
moment weighting (W2) were determined by tests using distance weight-
ings from 0.5 to 100 and a constant scale weighting of 1. The goal was
to ensure that the selected keypoints are spread uniformly to prevent
partial occlusion but still provide a strong probability of matching. Key-
points tend to cluster when the distance weighting is much greater than
the scale/second moment weighting; equal weights generally result in a
better distribution of keypoints.

This trend is seen in Figure 1, where the settings of the distance
weighting and the scale/second moment weighting of 0:1 (Figure 1(a))
produce a larger spread of keypoints than settings of 5:1 (Figure 1(b)).
The figures show feature distributions of 102 keypoints; the figure axes
are the x and y coordinates of pixels. The best settings for the distance
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(a) Distance to scale ratio: 0:1.
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(b) Distance to scale ratio: 5:1.

Figure 1. Feature distributions of 102 keypoints.

weighting and the scale/second moment weighting were determined sub-
jectively by overlaying the keypoint distributions and observing the levels
of spread and clustering. The setting that results in the greatest spread
of keypoints occurs when W1 and W2 are both equal to 1.
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(a) Image with 52 keypoints.
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(b) Image with 102 keypoints.

Figure 2. Example keypoint distributions.

Limited testing was conducted to identify the best number of key-
points to select from an image. The tests compared the image keypoint
distribution between selecting 52 keypoints (Figure 2(a)) versus 102 key-
points (Figure 2(b)). Both distributions were generated using distance
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(W1) and scale (W2) weights of 1. The larger number of keypoints (102)
provides a more uniform distribution along both axes.

The more uniform the distribution of points, the better the match-
ing opportunities. Using a large number of keypoints was considered
to address background occlusion. However, the computational cost of
keypoint reduction is high, so a decision was made to limit the number
of keypoints in subsequent tests to 102. More research is required to
identify the optimal number of keypoints.

3.2 Background Matching Using SIFT

Image background matching with the SIFT algorithm involves an ex-
tension of Hess’ SIFT implementation [6]. Each image is processed using
the SIFT keypoint generation algorithm to produce 102 keypoints as de-
scribed in Section 3.1. The image keypoints are stored in a database
that is used for match comparisons. Next, the keypoints corresponding
to each pair of images are compared. The best candidate match is found
by calculating the nearest neighbor using a minimum Euclidean distance
for the descriptor vector. The distance from the second-closest neighbor
is used to define the distance ratio such that 90% of the bad matches
are pruned with a distance ratio greater than 0.8 [8]. The Best Bin First
algorithm is used to implement the nearest neighbor search; the Hough
transform is used to identify clusters of features that help enhance the
recognition of small or occluded objects [8].

Two quality checks are performed to eliminate poor matches; both
checks use the same initial framework. First, each pair of match points
are converted into lines calculated as if the two images are stacked on top
of each other (see Figure 3 in Section 4.1). The intersection points for
each line are then computed; these intersection points are used to identify
poor matches. The first quality check removes a match if it produces
intersection points within the frame of the match image. The second
check calculates the mean and standard deviation of the intersection
points; a line is a poor match when 90% or more of its intersection
points lie outside one standard deviation from the mean.

3.3 Background Matching Using SURF

SURF image background matching is similar to that of SIFT with the
exception that the Matlab

R© keypoint generation software created by
Alvaro and Guerrero [3] is employed. However, the quality checks devel-
oped for SIFT do not perform as well as those for SURF. The reason is
that SIFT generates a significantly larger number of false matches; most
matches are accepted because the standard deviation of the intersection
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points is quite large. An additional check is incorporated prior to match
filtering to improve the quality of matching. This check tests the slopes
of the match lines against a threshold of 0.4; a match line is eliminated
when its slope exceeds the threshold.

4. Experimental Results

A Fuji FinePix E550 was used to acquire the 125 images used to test
the image background matching algorithms. The images were taken at
six locations (home office, guest bedroom office, stairwell, living room,
home exterior and computer laboratory). 119 images were taken at
1,600×1,200 resolution and six were taken at 640×480 resolution.

The images were taken from various vantage points with different
points of view (POV). The camera distance for the indoor images varied
between 2.75 feet and 11 feet; the rotation varied approximately ±15
degrees and the camera angle variation was more than ±50 degrees.
The home office was the only location where images were taken at two
resolutions (1,600×1,200 and 640×480). The outdoor images had much
larger variations; the distance varied 50 feet and the rotation and camera
angle varied ±10 degrees and more than ±180 degrees, respectively.

The images were divided into seven groups for testing. Images taken
at each of the six locations were placed in a separate group, except
for those taken at the home office, which were placed into two groups
because the camera viewpoint for these images differed by 180 degrees.

The 125 images were converted to gray scale prior to matching. This
is because the two matching algorithms use the intensity of each pixel
I(x, y) in keypoint calculations. It is possible to create keypoints in
color images using each of the three color channels (red, green, blue)
as separate intensity values, but the matching performance for both
algorithms degrades.

The first step in the matching technique involved the extraction of
the keypoints for each image using the SIFT and SURF algorithms.
Next, keypoint reduction was performed using the method described in
Section 3.1; the reduced keypoints were stored in a data file to facilitate
matching. After matching, the keypoint comparison technique presented
in Section 3.2 was performed on the matched keypoint lines in an effort
to prune “bad” matches.

To verify the accuracy of the technique, each of 125 images was com-
pared with every other image, resulting in a total of image 7,750 com-
parisons for each of the algorithms. However, before the algorithms were
applied, a human who had not seen any of the image locations was asked
to group the images based on location. The individual placed the images
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into 24 groups using prominent reference points to distinguish image lo-
cations. Six of the 24 groups contained just one image. The accuracy of
identification was 55% mainly due to the creation of extra groups.

The performance of the human could not be compared with that of
SIFT and SURF because he grouped images individually instead of per-
forming 7,750 comparisons (like the algorithms). Nevertheless, the ex-
periment demonstrates the difficulty involved in matching images.

Reducing the number of the keypoints saved for each image conserves
storage space. We demonstrate that this technique reduces storage as
well as the time required for matching image locations. Specifically,
we compare the storage and time requirements for our image matching
technique with those for the SIFT and SURF algorithms. The tests were
conducted using a dual core Xeon 3 GHz workstation with 3 GB RAM.

Table 1. Storage required by the SIFT and SURF algorithms.

Algorithm Size On Disk Percent Reduction

SIFT Files 197 MB
Reduced SIFT Files 4.88 MB 97.5%

SURF Files 290 MB
Reduced SURF Files 16.1 MB 94.4%

Table 1 shows the storage required by the SIFT and SURF algorithms
before and after keypoint reduction. The storage requirements are for
the 125 SIFT/SURF keypoint files generated from the 125 images used
in the experiment. Keypoint reduction yields a 97.5% reduction in the
storage requirements for SIFT. Similar results are obtained for the SURF
algorithm (94.4% reduction).

Table 2. Execution time for the SIFT algorithm.

SIFT Algorithm Approximate Percent
Execution Time Reduction

Match 24 hours 39 minutes N/A
Reduced Match 6 hours 23 minutes 74.1%
Keypoint Reduction 3 hours 27 minutes 86.0%
Reduced Match and Keypoint Reduction 9 hours 50 minutes 60.1%

Using 102 well-selected keypoints per image instead of several thou-
sand keypoints (which would otherwise be used) significantly reduces
the time required to perform image matching. Table 2 presents the time
required to run a complete matching experiment for the SIFT algorithm.
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SIFT matching of the 125 images takes more than 24 hours whereas the
time required for keypoint reduction and subsequent matching requires
just 9 hours and 50 minutes, a 60.1% reduction.

Table 3. Execution time for the SURF algorithm.

SURF Algorithm Approximate Percent
Execution Time Reduction

Match 12 hours 19 minutes N/A
Reduced Match 2 hours 16 minutes 81.6%
Keypoint Reduction 1 hours 39 minutes 86.6%
Reduced Match and Keypoint Reduction 3 hours 55 minutes 68.2%

Table 3 shows that similar reductions in computational time are ob-
tained for the SURF algorithm. SURF requires 12 hours and 19 minutes
to perform a full match on the 125 test images. On the other hand,
keypoint reduction and match requires only 3 hours and 55 minutes, a
68.2% reduction. Below we show that the storage and time savings come
without significant loss of image matching accuracy.

4.1 SIFT Algorithm Results

Figure 3 shows that the SIFT match algorithm deals well with occlu-
sion. A total of six matches were found in the two images in Figure 3.
One of them – the one on the individual’s arm – is an incorrect match.
This incorrect match is pruned by both SIFT quality check methods.

Figures 4 and 5 indicate that relatively few images are incorrectly
matched – this occurs when images of different locations are identified
as being of the same location. Figure 4 shows that the Type I error (false
positives) drops dramatically until a threshold of 4. As shown in Figure
5, 81.0% accuracy is obtained using a threshold (η) of 5. However, lower
resolution images matched poorly with an accuracy of 72.5%.

The highest accuracy (81.1%) for the SIFT algorithm is obtained using
a threshold of 6. In fact, correct matches were obtained even for a large
threshold of 98 (not shown in Figure 5). However, using a threshold of
102 incorrectly drops some image matches; this is because the matching
algorithm uses a nearest neighbor algorithm to identify keypoint matches
and some of the neighbors are pruned during keypoint reduction [8].

There was no difference in the maximum accuracy obtained for the
two quality checks. Note that the data in Figures 4 and 5 were computed
using only the intersection standard deviation quality check.
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Figure 3. SIFT image showing reduced keypoint matches with occlusion.

Figure 4. SIFT error with reduced keypoints.

The matching performance obtained with the keypoint reduction tech-
nique compares well against that obtained when using the full unreduced



318 ADVANCES IN DIGITAL FORENSICS IV

Figure 5. SIFT accuracy with reduced keypoints.

Figure 6. SIFT accuracy with unreduced features.

set of SIFT keypoints. Figure 6 shows that the maximum accuracy of
81.6% is achieved at thresholds of 139 and 140 for the SIFT algorithm
without keypoint reduction. This accuracy (81.6%) is marginally better
than that obtained for SIFT matching using keypoint reduction (81.1%).

4.2 SURF Algorithm Results

The SURF algorithm produces a larger number of matches than the
SIFT algorithm, but the percentage of incorrect matches is much higher.

Figure 7 shows the SURF match image, which has a total of 44
matches. This image has many more incorrect matches than the cor-
responding SIFT image (Figure 3).

Figure 8 shows that the Type I error (false positives) and Type II
error (false negatives) for the SURF algorithm with reduced keypoints
are comparable to those for SIFT (Figure 4).

Figure 9 shows that the maximum accuracy of 79.6% for the SURF
algorithm occurs at a threshold of 57, where the unreduced SURF ac-
curacy is 78.3%. However, by adding the slope threshold of 0.4, the
accuracy is improved to 80.7%.
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Figure 7. SURF image showing reduced keypoint matches with occlusion.

Figure 8. SURF error with reduced keypoints.

Figure 9. SURF accuracy with reduced keypoints.

5. Conclusions

Automating image background matching for the task of grouping im-
ages based on location is, indeed, feasible. Good results are obtained us-
ing the SIFT algorithm augmented with keypoint reduction. Specifically,
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the SIFT algorithm provides a maximum accuracy of 81.1% whereas the
SURF algorithm has a maximum accuracy is 79.6%. Significant space
and time savings are obtained using keypoint reduction. The storage
reduction for the SIFT and SURF algorithms are 97.5% and 94.4%, re-
spectively. The corresponding savings in computational time for SIFT
and SURF are 60.1% and 68.2%, respectively.

Additional work is needed to enhance image background matching
with reduced keypoints. This includes analyzing match points to im-
prove matching accuracy and identifying optimal threshold values for
the SIFT and SURF quality check methods. Furthermore, tests need
to be run on large databases of images with varying content, size and
quality.
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AN EVIDENCE ACQUISITION TOOL
FOR LIVE SYSTEMS

Renico Koen and Martin Olivier

Abstract Evidence acquisition is concerned with the collection of evidence from
digital devices for subsequent analysis and presentation. It is extremely
important that the digital evidence is collected in a forensically-sound
manner using acquisition tools that do not affect the integrity of the
evidence. This paper describes a forensic acquisition tool that may be
used to access files on a live system without compromising the state of
the files in question. This is done in the context of the Reco Platform, an
open source forensic framework that was used to develop the prototype
evidence acquisition tool both quickly and efficiently. The paper also
discusses the implementation of the prototype and the results obtained.

Keywords: Live systems, evidence acquisition, Reco Platform

1. Introduction

Traditional or “dead” forensics involves the recovery of evidence from
computer systems that have been powered down [1, 3]. Unfortunately,
shutting down a system results in the loss of important volatile data.
Also, it may not be possible to shut down vital enterprise systems to
conduct forensic investigations.

Live forensics [1, 3] is an attractive alternative to dead analysis, en-
abling an investigator to recover and analyze data while a computer
system is running. However, this technique does have limitations due to
the possible presence of an intermediary, such as a rootkit, which may
modify data before it is presented to the investigator. Even if a rootkit
is not present, the mere fact that an untrusted piece of code, in the form
of a normal operating system service, was used to retrieve the forensic
data may cast doubt on the validity of the data.
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Operating system services execute in various layers. Depending on its
location and functionality, a rootkit may hijack services in any of these
layers. In particular, a rootkit hides its presence by modifying system
services. For example it may exclude itself from the list of processes
displayed to users or it may remove the names of its own files from file
lists. In order to do this effectively, a rootkit ideally operates at the
lowest possible layer (kernel layer); if it knows what information has
been requested, it is easier to remove traces of itself.

Given this fact, the reliability of digital evidence retrieved from a
lower layer is potentially higher than that retrieved from a higher layer.
Obtaining information from a lower layer not only bypasses rootkits in
the higher layers, but also shortens the chain of services used to answer
a query. If fewer services are involved, the probability that one of them
has been modified is lower than in the case of a longer chain of services.
However, if data is to be retrieved from a lower layer, it is necessary to
reconstruct the higher-level information structures – ideally using code
that is known to be reliable.

This paper describes a prototype forensic acquisition tool that accesses
low level information from a disk during live analysis. The tool uses its
own code to reconstruct the logical files that exist above the low level
information on disk. The implementation is based on the Reco Platform
[7], which was designed to allow rapid prototyping of forensic tools,
including tools that emerge from academic research and one-of-a-kind
tools needed for special investigations. The platform ensures that as
much code as possible is reused; this increases the reliability of evidence
and its potential admissibility in legal proceedings. The Reco Platform
also enables investigators to utilize other tools built using the platform,
thereby increasing the range of collection and analysis possibilities.

2. Live Evidence Acquisition

It is important to ensure that digital evidence is not modified dur-
ing a live acquisition process. Walker [17] observes that even a single
file timestamp found to be later than the date of acquisition may cause
digital evidence to be declared inadmissible in court. Any file accessed
from a logical partition, which is mounted in standard read/write mode,
may have some of its attributes (e.g., access time) modified by the oper-
ating system when it is accessed. The ability of the operating system to
update the file access time is useful for system administrators, but it is
highly undesirable for digital forensic investigators. The use of standard
file access routines supplied by the operating system should, therefore,
be avoided during live evidence acquisition.
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Casey [5] notes that standard operating system copy routines should
also be avoided due to presence of rootkits. Live acquisition software
should, therefore, have the capability to perform low-level file access
without the help of the operating system. Moreover, all files should be
accessed in read-only mode to preserve the integrity of file data and
metadata [5]. This is because the state of a file system mounted in
read/write mode is implicitly modified whenever a file is accessed.

Another, more technical, requirement for a live acquisition tool is
static compilation and storage of binaries used to perform acquisitions.
According to Adelstein [1], an investigator should never trust binaries
stored on the system in question; rather, the investigator should employ
statically-compiled binaries that do not use external libraries. The bina-
ries should, therefore, be stored on CD-ROM to ensure that they cannot
be altered.

3. Reco Platform

The Reco Platform was designed to provide the low-level functional-
ity required by digital forensic tools, thereby decreasing the time and
expertise required to develop prototypes. The platform is written in
C++ and compiles under Linux and Windows. It is published under
the popular GNU license [6], which enables the code to be used freely
in open source projects. Like other open source software [12], the Reco
source code can be inspected by programmers, helping create a stable,
forensically-sound platform that will compare favorably with expensive
commercial toolkits in terms of quality.

The Reco Platform provides multiple layers of software abstraction to
support forensic applications development and rapid prototyping. The
lower layers offer core functionality, giving developers limited abstraction
but more control; the upper layers supply a higher degree of abstraction,
but little control. Developers may choose the software layer that strikes
the right balance between abstraction and control. This section provides
an abbreviated discussion of the Reco architecture; interested readers are
referred to [8] for additional details.

The Reco Platform currently consists of five layers: (i) physical, (ii)
interpretation, (iii) abstraction, (iv) access, and (v) logging (Figure 1).
The physical layer, which offers the lowest degree of abstraction, em-
ulates the hardware devices from where digital evidence is collected.
Digital evidence in a popular forensic format (e.g., disk image or TCP-
Dump trace) is supplied to the physical layer. The physical layer uses
this digital evidence to emulate the functionality expected by the device
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Figure 1. Reco Platform layers.

drivers that provide access to the evidence. This simplifies the task of
modifying third-party software drivers for use with the Reco Platform.

The interpretation layer is the second layer in the Reco hierarchy. This
layer typically models device drivers. The purpose of the interpretation
layer is to read low-level data supplied by the physical layer in block or
stream formats and convert it to a higher level of abstraction such as
file-based information (for block devices) and temporal information (for
stream-based devices).

The third layer is the abstraction layer. Its purpose is to supply
functionality that is not specific to any operating system or computing
platform. This is done in order to hide unnecessary details that may ob-
scure an investigator’s perception of the information conveyed by digital
evidence. Another purpose is to enable investigators to identify relation-
ships that may exist among different pieces of digital evidence. Tallard
and Levitt [16] note that this functionality is crucial to filtering data that
is not relevant and to creating abstract objects that can be interpreted
in a relational manner with other objects.

The fourth Reco layer, the access layer, provides access to information
generated by the lower layers. Searching, indexing and access control
functionality are implemented at this layer. Visual abstraction may also
be implemented at this layer to display digital information in a human-
oriented format. Wang [18] has observed that digital evidence is not well
perceived by the human senses. The access layer enables investigators
to view digital evidence in an organized and understandable manner,
helping increase their efficiency.

The uppermost logging layer provides the logging facilities needed
in digital forensic environments. Logging is an important part of any
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Figure 2. Dependence of the prototype on the Reco Platform.

digital forensics tool. According to NIST [11], tools used for backing-up
disk data should log all errors and resolve the errors. The logging layer
is used at every level of abstraction in the Reco hierarchy to document
the actions applied to digital evidence.

4. Prototype Development

This section describes the prototype used for live analysis based on
the Reco Platform. The prototype relies on the Reco physical layer to
provide access to file system images and on the interpretation layer to
supply file access routines for accessing files in read-only mode (Figure
2).

The Reco Platform is designed to work with Linux and Windows.
In keeping with the Reco philosophy, the prototype was developed to
permit source code to compile and run under both operating systems.
The Reco Platform supports the FAT12, FAT16, FAT 32, EXT2 and
EXT3 file systems, which were more than adequate for developing the
prototype.

The next two subsections discuss issues related to the Linux and Win-
dows prototypes. Note that the low-level implementation details are
different for the two prototypes, but the higher-level algorithms are the
same.

4.1 Linux-Based Prototype

A device that contains a Linux file system is referred to as a block
device [15]. Block devices may be opened like any other file in the Linux
environment except that administrative privileges are required. Since
a block device can be opened as a file, it is possible to read data from
the device; this process is similar to reading data from an acquired hard
drive image.

The partition in which a file of interest exists is first located and
opened in read-only mode. The Reco Platform is then instructed to
use the opened file as the target for analysis. The easiest way to de-
termine which block device represents the logical partition in question
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is to inspect the contents of the file /etc/mtab [2]. This file contains
information about mounted partition types, their mount points and the
locations of the block devices containing the partitions. Unfortunately,
this technique has certain disadvantages. In particular, administrator
(root) privileges are required when a device is opened as a file and ac-
cess to the /etc/mtab file changes the state of the file system. One way
to access the /etc/mtab file without altering its access time is to open
the device on which the file is located via the Reco Platform, access the
file in read-only mode and then close the device. This method allows file
access without compromising the integrity of the file system, but prior
knowledge of the block device that maps to the mounted root partition
is required.

4.2 Windows-Based Prototype

In the case of a Windows environment, a logical device is opened as
a file and the Reco Platform is instructed to mount the open file as the
forensic target. Specifically, the logical device is opened as a file using the
CreateFile() API call with the filename “\\.\N” where N is the drive
letter representing the logical partition [13]. Note that administrator
privileges are required to perform this operation.

Next, the GetLogicalDrives() API call is used to determine which
logical drives are mounted [14]. The call returns a bitmap representing
the drive letters of the mounted logical partitions. Using this information
in combination with the CreateFile() method, it is possible to obtain
access to a logical partition as in the case of the Linux prototype. Having
determined the partition containing the file of interest, the file is located
and opened. The Reco Platform is then instructed to use the opened
file as the source of analysis, after which the files stored on the partition
become accessible to applications using the Reco framework.

4.3 Implementation

The prototype was written in the C++ programming language; its
graphical user interface was implemented using the wxWidgets frame-
work [19]. The prototype involves very little code (not including the
Reco code) and was developed in a very short time.

Source files were designed to compile in both Linux and Windows
without requiring a special makefile or changing the project source
code. Platform-specific sections of code were marked for compilation
using preprocessor flags specific to the operating system in question. The
combination of the two approaches allowed for the development of code
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Figure 3. Screenshot of the prototype.

that runs under Linux and Windows without any major compatibility
issues.

5. Results

The tool was tested on Linux Fedora Core 4 and Windows XP. Exe-
cutables were generated that statically linked to the Reco library; this
was done to minimize dependence on external libraries.

The results obtained with the two operating systems were similar:
regular files could be accessed without modifying them or their meta-
data. A mounted logical partition could be opened by the prototype, the
directories in the partition in question could be browsed and files could
be copied to another partition to allow forensic examiners to inspect
their contents. Figure 3 shows a screenshot of the prototype.

A comparison was conducted of the access times required by the file
system drivers used by the prototype. An application was developed
that created images of different sizes on the logical partitions targeted
by the file system drivers. The created files were then read, and the time
taken to read each consecutive file was recorded for each distinct logical
partition.

The graph in Figure 4 shows the efficiency of the drivers used by the
Reco Platform. The EXT file system driver shows a linear increase in



332 ADVANCES IN DIGITAL FORENSICS IV

1 MB 25 MB 50 MB 100 MB 150 MB

C
o

m
p

le
ti

o
n

 T
im

e
 (

s
e
c
o

n
d

s
) 100

90

80

70

60

50

40

30

20

10

0

EXT FAT

Figure 4. Access times for Reco file system drivers.

access time as the file size increases. This result is expected because
more work is performed when more data is accessed.

The FAT file system driver yielded less desirable results. Signs of
an exponential increase are seen when the amount of data accessed in-
creases. This is unfortunate because it shows that the Reco Platform is
unable to provide fast access to large files stored in a FAT partition.

Because the higher-level operating system layers were bypassed when
the acquisitions were performed, it can be assumed that the results ob-
tained would be immune to most rootkits. Note that although rootkits
are bypassed using this method, it is by no means a comprehensive way
to neutralize rootkits in general. This is largely due to the limited in-
volvement that an operating system has in controlling logical devices.

When access is required to a logical device, the prototype sends a
request to the underlying operating system for permission to open a
logical drive as a file. When data needs to be read from the logical
drive, a read request is sent to the operating system to perform the
task. A sophisticated kernel rootkit that has the same file processing
capabilities as the Reco Platform could, in theory, return blocks of code
that were maliciously engineered to hide traces of data, or it could inject
falsified information. Although such a rootkit would be rare due to its
complexity, it might be possible for a malicious programmer to develop
one using enabling tools like the Reco Platform.

6. Conclusions

The live evidence acquisition tool described in this paper can be used
to access files on a live target without compromising the state of the
files. The evidence acquisition tool leverages the Reco Platform, an open



Koen & Olivier 333

source framework designed for the rapid prototyping of forensic tools.
With only a few lines of code, it was possible to quickly and efficiently
develop Linux and Windows prototypes that provide true read-only ac-
cess to FAT12/16/36 and EXT2/3 partitions without modifying files and
their metadata.

However, two principal limitations exist, both of which should be
considered in the context of live analysis. First, access to files stored
in a logical partition requires administrator privileges. Second, access
to file system data is by no means absolute – the low-level data access
mechanisms can be bypassed by sophisticated kernel rootkits.
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Chapter 26

TIME ANALYSIS OF HARD DRIVE
IMAGING TOOLS

Jack Riley, David Dampier and Rayford Vaughn

Abstract Computer hard drives often contain evidence that is vital to digital
forensic investigations. However, an authenticated working copy or
“forensic image” of a suspect hard drive must be created before any
data can be analyzed. As the capacities of modern hard drives increase,
the time taken to create a forensic image, let alone analyze the data,
increases significantly. This paper investigates two popular hard drive
imaging tools, ICS ImageMASSter SOLO III and Logicube Talon. The
results of the imaging experiments and timing analysis provide valuable
guidance on selecting the appropriate imaging tool for digital forensic
investigations.

Keywords: Imaging tools, hard drives, time analysis

1. Introduction

Digital forensic activities, at the highest level of abstraction, can be
grouped into three basic tasks: acquisition, authentication and analy-
sis. Acquisition involves seizing media and equipment that might con-
tain digital evidence and processing the items to recover the evidence.
During this process, at least two copies of all source media are made
for purposes of analysis; the original evidentiary items are then cata-
logued and stored securely. Authentication is necessary to prove that
the working copy of the digital evidence used for analysis is identical to
the original. This is generally done by computing cryptographic hash
values of the original and copy; the integrity of the copy is verified when
its hash value matches that of the original. The final process, analysis,
explores the copies of the original media to identify potential evidence
and provide corroborating support for non-digital evidence. This pa-
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per focuses primarily on acquisition and secondarily on the process of
authentication.

Hard disk imaging devices create exact (bit-for-bit) duplicates of an
original hard drive and, at the same time, calculate a cryptographic hash
value of the original and copy. The time requirements for imaging hard
drives is a serious issue, especially as cases frequently involve massive
volumes of digital evidence and hard drive capacities are increasing sig-
nificantly. Meanwhile, new demands on evidence acquisition are imposed
by legislation such as the Sarbanes-Oxley Act, which requires manda-
tory document retention [3]. Since the analysis of digital forensic data
is time intensive, time saved during the evidence acquisition phase can
be leveraged during the analysis phase.

Several hardware and software tools have been designed for imag-
ing hard drives, but they have greatly varying capabilities. Few, if
any, researchers have analyzed the time requirements for these tools us-
ing rigorous experimental methods. This paper investigates two of the
most commonly used hardware-based imaging tools, ICS ImageMASSter
SOLO III and Logicube Talon. In particular, it describes the results of
imaging experiments and timing analysis. The comparative study pro-
vides valuable insights into the performance of hard drive imaging tools
and offers guidance for tool selection in digital forensic investigations.

2. Background

Hard disk storage capacities have increased significantly over the past
ten years. Currently, two terabytes of storage can be purchased for under
$1,000 [4], and the cost per terabyte of storage continues to drop rapidly.
The availability of massive volumes of inexpensive storage is a boon to
all types of computer users, but it also serves to increase the amount
of electronic evidence that the digital forensic investigator has to sort
through in civil and criminal cases.

Digital forensic investigators need efficient methods for acquiring and
analyzing data. Roussev and Richard [4] report that one of the most
widely accepted forensic examination systems took more than four days
to organize case data on an 80 GB hard drive. Their results indicate
that this was mainly due to I/O limitations of large capacity drives.
Only after a case is opened and the data is indexed can investigation
and analysis proceed. These steps also take a considerable amount of
time, especially for cases involving data in the order of terabytes.

Several researchers have focused on making forensic analysis more
efficient. Dandass [2] has used field programmable gate arrays (FPGAs)
to implement pipelined pattern matching algorithms for speeding up the
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search for image files on hard drives at line speed. In laboratory tests,
the FPGA implementation required a little over 600 seconds to locate 24
image files placed in random clusters on a 40 GB hard drive; in contrast,
state-of-the-art software-based methods running on a Pentium 4 2.8 GHz
computer under Windows XP took more than 4,700 seconds [2]. The
FPGA implementation also supports sector-by-sector copying of hard
drives at speeds approaching 6 GB per minute.

Roussev and Richard [4] have sought to reduce the time needed for
forensic analysis, especially in the face of the slow linear growth of I/O
systems compared with the exponential growth of CPU performance
and data storage capacity. Their research has shown that it is more
efficient to access a hard drive once and perform analysis from a cached
copy in memory. Unfortunately, the standard practice of using a single
forensic workstation does not allow for a cached copy of any significant
size to be analyzed due to constraints on the memory capacity of a single
system. Roussev and Richard obtained good results using a specialized,
distributed approach to forensic analysis. In particular, their approach
produced significant reductions in data preprocessing and search times.

Unfortunately, these research results, while promising, have not yet
transitioned to forensic practice. A need still exists for a practical tech-
nique to efficiently copy vast amounts of data in the least amount of
time. Our work evaluates the time requirements of two leading hard-
ware drive imagers, with the goal of assisting practitioners in choosing
the right tool for an imaging task.

3. Experimental Design

Our experiments on hard drive imaging tools were designed to eval-
uate the base times required to create exact authenticated copies of
hard drives. Two imaging tools, the ICS ImageMASSter Solo Foren-
sics III and the Logicube Talon, were used in this study. Non-imaging
functions provided by the tools, including hash value checks, were dis-
abled or disregarded when the timing data was collected. Since timing
display capabilities were an unknown variable in the study, a software
stopwatch [1] was used for timing purposes. Using a stopwatch intro-
duces human reaction time error, however, the error was assumed to be
consistent and was minimized to the extent possible. In any case, the
time measurements made in the experiments were much larger than the
fractions of a second introduced by human error.

The timing analysis was conducted using ImageMASSter and Talon
for one-to-one drive transfers. The experiments were carried out in two
stages: (i) one-to-one IDE trials, and (ii) one-to-one SATA trials. The
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IDE and SATA trials were both conducted using 80, 120 and 250 GB
drives. These sizes were chosen because they are representative of the
drives used in digital forensic investigations. Each trial involved ten
iterations per drive, and both the tools were tested on the same drives.

3.1 IDE Hard Drive Trials

This section presents the results obtained using the Talon and Image-
MASSter tools on 80, 120 and 250 GB IDE hard drives.

Figure 1. 80 GB IDE trial results.

Figure 1 presents the results obtained for the 80 GB IDE hard drives.
Note that the experiment used two Western Digital WD800BB hard
drives as the source and destination drives. The data shows that Talon
outperforms ImageMASSter by about 30%, with an average time over
ten iterations of 30 minutes, 7 seconds as opposed to 42 minutes, 22
seconds.

Figure 2 shows the results for the 120 GB IDE drives; 120 GB Seagate
Barracuda 7200.9 drives were used as the source and destination drives.
Once again, Talon was faster than ImageMASSter, with an average time
over ten iterations of 45 minutes, 24 seconds compared with 54 minutes,
32 seconds. These results show a difference of 9 minutes, 8 seconds,
which is less than the difference achieved for the 80 GB IDE trials; this
indicates a possible scaling factor.

Figure 3 presents the results for the 250 GB IDE pair of hard drives
(the source drive was a Seagate Barracuda 7200.9 and the destination
drive was a Western Digital WD2500). As before, Talon is faster than
ImageMASSter; however, the difference in performance is significantly
less than that observed in the 120 GB IDE trials. The average times
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Figure 2. 120 GB IDE trial results.

Figure 3. 250 GB IDE trial results.

over ten interations for Talon and ImageMASSter were 101 minutes, 32
seconds and 110 minutes, 8 seconds, respectively.

3.2 SATA Hard Drive Trials

This section presents the results obtained using the Talon and Image-
MASSter tools on 80, 120 and 250 GB Serial ATA hard drives.

Figure 4 shows the results obtained for a pair of 80 GB Western Digital
WD800JD SATA drives. Talon proved to be faster than ImageMASSter,
with an average time over ten iterations of 31 minutes 18 seconds as
opposed to 34 minutes, 39 seconds.
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Figure 4. 80 GB SATA trial results.

Figure 5. 120 GB SATA trial results.

Figure 5 presents the results for a pair of 120 GB Western Digital
WD1200JS SATA drives. The difference between the average times over
ten iterations in this experiment was 7 minutes, 13 seconds, once again
in Talon’s favor. The actual recorded average times were 44 minutes, 11
seconds for Talon and 51 minutes, 24 seconds for ImageMASSter.

Figure 6 shows the results obtained for a pair of 250 GB Western
Digital WD2500KS SATA drives. The difference in average times over
ten iterations between the two imaging tools was nearly 13 minutes, with
Talon averaging 93 minutes, 45 seconds and ImageMASSter averaging
106 minutes, 39 seconds.
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Figure 6. 250 GB SATA trial results.

Figure 7. Average IDE drive imaging times.

4. Analysis of Results

The analysis of experimental data reveals three important observa-
tions. First, Talon performs better than ImageMASSter on IDE and
SATA drives. Figures 7 and 8 show the average times for Talon and
ImageMASSter; it is clear that Talon performed better on the drives
used in the experiments.

Second, as seen in Figure 7, as IDE drive capacity increases, the differ-
ence in the imaging times for Talon and ImageMASSter decreases. The
potential exists that, for very large drives, ImageMASSter may exhibit
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Figure 8. Average SATA drive imaging times.

better performance than Talon. However, Figure 8 reveals the opposite
trend for SATA drives, i.e., the performance difference between Talon
and ImageMASSter increases for larger hard drives.

Figure 9. Average times for ImageMASSter (SATA) versus Talon (IDE).

The third observation is that not only does Talon exhibit better per-
formance than ImageMASSter for IDE and SATA drives, but Talon ac-
tually performs better on IDE drives than ImageMASSter performs on
SATA drives. This result, shown in Figure 9, is unexpected because
SATA drives are supposed to be much faster than IDE drives.
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Table 1. Computed t-values for test groups.

Test Group Computed t-value

250 GB IDE 64.28
120 GB IDE 124.30
80 GB IDE 410.29
250 GB SATA 124.84
120 GB SATA 153.49
80 GB SATA 113.69

5. Statistical Analysis

A t-test was conducted to determine whether or not the difference in
the results observed is statistically significant. The null hypothesis was
that there is no significant difference between the data from the Image-
MASSter and Talon trials. The respective means, standard deviations
and variances were calculated for each data group. The variance for
both groups of data was less than 6%.

Ten iterations were performed for each group (n1 = n2 = 10), yield-
ing a degrees of freedom value of 18 (= n1 + n2 – 2) with p = 0.001.
The proposed t-value for each group of data, referenced from the afore-
mentioned degrees of freedom and p-value, was 3.92. The t-value was
computed for each paired group of data using Microsoft Excel 2003; the
results are reported in Table 1. If the computed t-value is larger than the
proposed t-value, it can be concluded that there is a 99.9% probability
of that the two groups of data are statistically different. Table 1 shows
that the computed t-value for each test group exceeds the proposed t-
value for the given p-value (0.001) and degrees of freedom. From these
results, the null hypothesis can be rejected and the observed values are,
in fact, statistically different.

6. Conclusions

Imaging speed is important to digital forensic investigators because
of the large volumes of electronic evidence that are involved in civil and
criminal cases. With storage capacities certain to increase in the future,
the ability of imaging tools to quickly make authentic copies of hard
drives will become even more critical. The experiments demonstrate a
marked difference in the speeds of two popular hardware-based imaging
tools, with the Logicube Talon outperforming the ICS ImageMASSter.
While the difference in speeds might appear small, it is important to
note that the time savings achieved when using a faster imaging tool
can be significant for large capacity hard drives.
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Chapter 27

FUSION OF STEGANALYSIS SYSTEMS
USING BAYESIAN MODEL AVERAGING

Benjamin Rodriguez, Gilbert Peterson and Kenneth Bauer

Abstract The increasing use of steganography requires digital forensic examiners
to consider the extraction of hidden information from digital images
encountered during investigations. The first step in extraction is to
identify the embedding method. Several steganalysis systems have been
developed for this purpose, but each system only identifies a subset of
the available embedding methods and with varying degrees of accuracy.
This paper applies Bayesian model averaging to fuse multiple steganal-
ysis systems and identify the embedding used to create a stego JPEG
image. Experimental results indicate that the steganalysis fusion system
has an accuracy of 90% compared with 80% accuracy for the individual
steganalysis systems.

Keywords: Steganalysis, multi-class fusion, Bayesian model averaging

1. Introduction

The problem of steganalysis has moved from simply determining if
an image contains hidden information to extracting the hidden message.
However, it is not possible to extract the hidden information without first
identifying the method used to create the steganographic image. With
more 250 steganography tools available on the Internet it is important to
develop multi-class steganalysis systems that can label a suspect image
as containing a specific type of steganography.

Several steganography detection systems are available, including re-
search prototypes [4, 9, 11, 14, 18, 21] and commercially-available tools
(e.g., ILook Investigator, Inforenz Forager, SecureStego, StegDetect [12]
and WetStone Stego Suite). Each system has its own advantages and
disadvantages. But with so many detection systems available to the ste-
ganalyst, a problem arises in deciding which system is best to use. A
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Figure 1. Multi-class detection system.

solution to this problem is to fuse the results from the various detection
systems to more accurately identify the embedding method.

This paper focuses on the detection of six steganography methods:
F5 [22], JP Hide and Seek [8], JSteg [20], Model Based [16], OutGuess
[13] and StegHide [5]. Bayesian model averaging [6] is used to combine
four multi-class steganalysis detection systems. The first steganalysis
system is StegDetect [12], which is capable of detecting F5, JP Hide and
Seek, JSteg and OutGuess. The remaining three systems are one-vs-
one multi-class classifiers [4, 9, 15] that use a two-class support vector
machine (SVM) for classification. Test results show that the steganalysis
fusion system has an accuracy of 90% compared with 80% accuracy for
the individual multi-class steganalysis systems.

2. Related Work

Commercially available steganography detection tools are designed to
give the analyst an initial indication if a set of images contains hidden
information. These tools include ILook Investigator, Inforenz Forager,
SecureStego, StegDetect [12] and WetStone Stego Suite. However, no
tool targets all the common embedding methods. For example, StegDe-
tect detects four (F5, JP Hide and Seek, JSteg and OutGuess) of the six
common embedding methods.

The steps involved in multi-class steganalysis detection are illustrated
in Figure 1. A data set containing clean and stego images is used to
train a multi-class detection system.

The first step involves the generation of features from the input im-
ages; feature generation significantly reduces the amount of information
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sent to the classifier. The feature generation techniques used in our work
are the wavelet-based method of Lyu and Farid [9], a DCT-based fea-
ture generation method [11], and a method that generates features from
DCT decomposed coefficients [15].

The next step, feature pre-processing, employs two procedures. The
first procedure normalizes the set of input features; this reduces the like-
lihood that features with large values would have a greater influence on
the cost function than features with small values. The second procedure
eliminates the less important features while retaining satisfactory class
discrimination capability.

Many multi-class classifiers for steganalysis [11, 14] use a two-class
SVM classification method in conjunction with a one-vs-one approach
to combine individual classifiers. Multiple SVM classifiers are trained
to distinguish clean images and images created with specific embedding
methods. The overall multi-class classification system counts the votes
from each SVM classifier; the final classification (identification of the
embedding method used) is determined as the classification with the
most number of votes.

The next section describes our steganalysis fusion system. It incor-
porates four systems discussed in this section: StegDetect [12], wavelet
feature generation [9], DCT-based feature generation [11], and DCT de-
composition feature generation [15].

3. Steganalysis Fusion System

The fused multi-class steganalysis detection system uses multi-class
classifiers with Bayesian model averaging. The steganography tech-
niques targeted by the detection system include F5 [22], JP Hide and
Seek [8], JSteg [20], Model Based [16], OutGuess [13] and StegHide[5].
All these embedding methods hide data by manipulating the quantized
discrete cosine transform (DCT) values generated during the JPEG im-
age compression process. This section provides details of the feature
generation, classification and labeling steps involved in multi-class de-
tection (Figure 1).

3.1 Feature Generation

Three feature generation methods – wavelet feature generation [9],
DCT based feature generation [11] and DCT decomposition feature gen-
eration [15] – are used to create a multi-class steganalysis classification
system.

Wavelet feature generation first performs a multi-scale Haar wavelet
decomposition of an image [9]. Next, higher-order statistics are calcu-
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lated over each pixel in the wavelet and the pixel’s relationship to its
neighbors in the current and higher scales. 36 coefficient statistics and
36 error statistics are computed to yield a total of 72 statistics. These
statistics form the feature vectors used to discriminate between clean
and stego images.

DCT based feature generation calculates first- and second-order fea-
tures over the DCT values and pixel values (spatial domain) of an image
[11]. The features in the DCT and spatial domains are calculated us-
ing several functions applied to the stego JPEG image. These functions
include the global DCT coefficient histogram, co-occurrence matrix, spa-
tial blockiness and others [11]. The stego image is decompressed to the
spatial domain, cropped by four pixels in each direction and recom-
pressed with the same quantization table used in decompression. An
approximation of the hidden information is generated by applying the
same functions to the cropped image. This feature generation technique
produces 274 features.

DCT decomposition feature generation divides a processed DCT block
into directional and frequency bands [15]. The DCT coefficients are sep-
arated into low, medium and high frequencies as well as in the vertical,
diagonal and horizontal directions. This is referred to as DCT decom-
position. In addition, the coefficients are categorized into raw, shifted
and predicted coefficients. The shifted coefficients are used to identify
embedding blockiness between neighboring 8×8 blocks. The predicted
coefficients estimate the coefficients altered by an embedding method.
The features are generated by calculating several higher-order statistics
(first, second, third and fourth moments; second, third and fourth cen-
tral moments; and entropy) for the sets of selected coefficients. This
produces 234 total features consisting of 72 shifted coefficients, 72 raw
coefficients, 72 predictors and 18 histogramming features.

3.2 Support Vector Machine

The support vector machine (SVM) is a classification algorithm that
provides state-of-the-art performance in a variety of application domains
[1, 17]. In particular, the SVM produces a model that predicts the class
of data instances in a testing set given only the attributes. SVM performs
pattern recognition for two-class problems by determining the separating
hyperplane that has maximum distance between the closest points of
each class in the training set; the closest points to the hyperplane are
called support vectors. This is accomplished by performing a nonlinear
separation of the input space using a nonlinear transformation φ(·) that
maps data instances x (with features xi) from the input space into a
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higher-dimensional space called kernel space. The mapping, φ(·) →
φ(xi), is performed by the SVM classifier using a kernel function K(·, ·).
The SVM decision function is linear in the kernel space, albeit not in the
feature space. We use LibSVM [2] in our work. This implementation
employs sequential minimal optimization for a binary SVM with an L1-
soft margin [3].

3.3 One-vs-One Methodology

Two-class classifiers are combined using a one-vs-one methodology
[19]. This technique trains several classifiers; each individual classifier
compares one class against one of the other classes. For k classes, this
produces k(k−1)/2 classifiers that each vote on the class assignment for
a data instance. The algorithm then identifies the final classification as
the class with the highest vote. The goal is to train the multi-class rule
based on the majority vote strategy. The method is fairly reliable when
the feature space is separable for the various classes.

Seven classes (6 stego + 1 clean, i.e., k = 7) are targeted by the
steganalysis fusion system; this requires 21 classifiers to be trained. The
output of each SVM is a vote that is tallied. The classification with the
majority of votes for a class wins.

3.4 Multi-Class Detection System

Multi-class detection requires a training set for which the number of
classes have been assigned. In our work, we attempt to detect stego im-
ages created using six embedding methods (F5, JP Hide and Seek, JSteg,
Model Based, OutGuess and StegHide). Consequently, the training set
consisted of seven classes of images (6 stego and 1 clean). Multi-class
detection based on the training set involves the following steps:

1. Feature Generation: This step generates features from each
JPEG test image. Three feature generation methods [9, 11,
15] are used to develop three distinct multi-class systems.

2. Feature Pre-Processing: This step normalizes the feature val-
ues and selects a subset of features based on the Fisher’s dis-
criminant ratio ranking. Other pre-processing methods could
be applied for outlier removal, data normalization, feature
selection and feature extraction [7].

3. Classification: This step uses an SVM to train each one-vs-
one classifier based on the training data set.
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Figure 2. Bayesian model averaging structure.

4. Majority Vote Assignment: This step assigns a class label
based on a majority vote from each classifier.

3.5 Bayesian Model Averaging

Bayesian model averaging merges several multi-class classifiers by
combining the probability density estimation of each classifier’s clas-
sification accuracy as a mixture of Gaussians [6, 10]. The Bayes Net
Toolbox for Mathlab [10] was used to perform the model averaging com-
putations. The probability density estimation specifies the local con-
ditional probability distribution (CPD) for a classification model, Mk,
where k is one of K classifiers and M is the set of all classifiers. The
CPD of each model Mk is p(Mk|T ), which represents the probability
that a classification model will classify a target instance T . For exam-
ple, given a target image that contains data hidden using JP Hide and
Seek, p(Mk|T =JP Hide and Seek) represents the probability distribu-
tion over all of the possible classifications Mk could make, i.e., F5, JP
Hide and Seek, etc. In our implementation, the confusion matrix, which
represents the correct and incorrect classifications for a multi-class clas-
sifier, provides the probability density estimation for each classifier.

The fusion process uses the classifications from the classification mod-
els, M , to compute the joint probability distribution over each target
classification T = c:

p(T = c|M) = η

K∏
k=1

p(Mk|T = c)p(T = c).

The final classification is designated as the target classification T = c
with the highest probability. The prior probabilities p(T ) are calculated
based on the number of clean images and the number of images of each
type of embedding used in the testing.
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Figure 2 illustrates an example Bayesian model averaging system. The
four nodes at the top represent the classifiers and CPDs for each Mk.
The Bayesian model averaging node contains the p(T ) CPD that merges
the results of the four models and makes the final classification.

The following seven steps are involved in using Bayesian model aver-
aging for steganalysis:

1. Generate features.

2. Select relevant features.

3. Create the classification model based on one-vs-one training.

4. Use the majority vote strategy to populate the confusion ma-
trix containing actual and predicted classified values for the
clean, F5, JP Hide and Seek, JSteg, Model Based, OutGuess
and StegHide training sets.

5. Repeat Steps 1 through 4 for each of the three feature gen-
eration methods [9, 11, 15].

6. Create a confusion matrix for StegDetect [12].

7. Use the four confusion matrices as classifier models for the
Bayesian averaging technique.

This seven-step procedure produces a multi-class model that receives
four inputs (three from each of the trained detection systems and one
from StegDetect) in order to classify a suspect image. The resulting
steganalysis fusion system is shown in Figure 2.

4. Results

The results presented in this section are based on a data set containing
1,000 512×512 RGB JPEG (stego and clean) images. The training set
consisted of 200 clean images and 100 images for each of the six embed-
ding methods (F5, JP Hide and Seek, JSteg, Model Based, OutGuess
and StegHide). The test set contained 50 clean images and 25 images for
each embedding method. The clean images in the test set did not over-
lap with the stego images, nor did any of the images from one stego type
overlap with another; for example, none of the F5 images were the same
as the JSteg images. Approximately one page of text (4,000 characters)
was hidden in each stego image.

The following were the percentages of altered coefficients for the six
embedding methods:
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Table 1. Test set classification accuracy for individual detection systems.

Image Wavelet DCT StegDetect Combined
Type Features Features DCT Features

Clean 45.4 ± 1.1 42.6 ± 2.1 40.6 ± 1.1 42.8 ± 0.8
F5 21.4 ± 0.8 24.2 ± 1.8 25.0 ± 0.0 18.0 ± 0.7
JP Hide (JP) 22.2 ± 0.5 21.8 ± 0.8 17.4 ± 1.1 20.0 ± 1.0
JSteg (JS) 20.8 ± 0.8 22.0 ± 1.6 20.0 ± 2.1 22.8 ± 0.8
Model Based (MB) 13.2 ± 1.3 16.4 ± 0.5 0.0 ± 0.0 17.8 ± 0.5
Outguess (OG) 17.0 ± 0.7 13.8 ± 0.5 17.4 ± 2.1 18.4 ± 0.5
StegHide (SH) 17.6 ± 1.1 16.4 ± 0.5 0.0 ± 0.0 18.0 ± 0.7

F5 had an average of 0.3% of the coefficients altered.

JP Hide and Seek had an average of 2.8% of the coefficients altered.

JSteg had an average of 6.7% of the coefficients altered.

Model Based had an average of 7.8% of the coefficients altered.

OutGuess and StegHide had an average of 1% of the coefficients
altered.

The testing was performed using five-fold cross validation. Note that
the results are not intended to benchmark one system against the others.
Rather, they are used to show that the steganalysis fusion system takes
advantage of the strengths of the individual systems and improves the
overall accuracy.

Table 1 presents the results for the individual steganalysis systems.
The results reveal that no multi-class classification algorithm outper-
forms the others. For example, StegDetect detects all the F5 images;
wavelet feature generation (Wavelet) labels the fewest clean images as
stego; DCT based feature generation (DCT) identifies the largest num-
ber of JP Hide and Seek images; and DCT decomposition feature gener-
ation (Combined DCT) identifies the most Model Based and OutGuess
images.

Table 2 presents the results obtained for the steganalysis fusion sys-
tem. It is clear that the fusion system consistently outperforms the
individual systems. The only exception is for the F5 embedding, where
the fusion system and StegDetect detect all the images.

5. Conclusions

The steganalysis fusion system uses Bayesian model averaging to com-
bine three multi-class SVM classifiers, each of which uses a different
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Table 2. Confusion matrix obtained by Bayesian model averaging.

Actual Predicted

Clean F5 JP JS MB OG SH

Clean Ave. 46.8± 0.8± 0.2± 0.2± 0.2± 1.6± 0.2±
σ2 0.8 0.5 0.5 0.5 0.5 0.9 0.5

F5 Ave. 0.0± 25.0± 0.0± 0.0± 0.0± 0.0± 0.0±
σ2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

JP Ave. 0.0± 0.0± 23.6± 1.4± 0.0± 0.0± 0.0±
σ2 0.0 0.0 0.6 0.6 0.0 0.0 0.0

JS Ave. 0.0± 0.0± 1.4± 23.2± 0.0± 0.4± 0.0±
σ2 0.0 0.0 0.6 0.8 0.0 0.6 0.0

MB Ave. 4.6± 1.6± 0.0± 0.0± 18.0± 0.2± 0.6±
σ2 0.6 0.6 0.0 0.0 0.7 0.5 0.6

OG Ave. 1.8± 0.4± 0.0± 0.0± 0.0± 18.8± 4.0±
σ2 0.5 0.6 0.0 0.0 0.0 0.5 0.7

SH Ave. 1.2± 0.0± 0.0± 0.0± 0.0± 2.6± 21.2±
σ2 0.5 0.0 0.0 0.0 0.0 0.6 0.8

feature extraction method. This strategy improves the overall accuracy
with which steganography embedding algorithms are identified.

Future research will involve the addition of new steganalysis systems
to the fused multi-class system, and the creation of richer JPEG data
sets with images of various sizes and compression ratios. This work,
which will utilize embedding signatures based on image size and com-
pression changes, will further enhance the detection and identification
of steganography embedding methods.
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Chapter 28

A VIRTUAL DIGITAL FORENSICS
LABORATORY

Philip Craiger, Paul Burke, Christopher Marberry and Mark Pollitt

Abstract This paper discusses the concept of a virtual digital forensic labora-
tory, which incorporates networked examination and storage machines,
secure communications, multi-factor authentication, role-based access
control, and case management and digital asset management systems.
Laboratory activities such as the examination, storage and presentation
of digital evidence can be geographically distributed and accessed over
a network by users with the appropriate credentials. The advantages of
such a facility include reduced costs through shared resources and the
availability of advanced expertise for specialized cases.

Keywords: Virtual laboratory, virtualization, storage area network

1. Introduction

The collection, storage, examination and presentation of digital evi-
dence typically occur in centralized laboratories. This is an inefficient
model in that law enforcement agencies duplicate resources that are
available elsewhere. A modest laboratory can cost tens of thousands of
dollars, even more when the costs of computers, storage, forensic tools
and training are considered.

The validation of forensic tools also poses problems. Proper forensic
procedures require that the tools used in examinations be continually
validated. Unfortunately, most examiners may not have the expertise
to perform hardware and software validation. Additionally, there is a
tremendous amount of duplication if every examiner has to validate the
same tools.

Digital forensics laboratories of the future will be “virtual” in na-
ture – they will not be limited by geographic boundaries. This paper
proposes the concept of a virtual digital forensics laboratory (VDFL).
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Figure 1. Virtual digital forensics laboratory.

The proposal builds on previous work (e.g., [1]) by decentralizing foren-
sic functionality while providing security and quality management pro-
cesses. The virtual laboratory incorporates storage area network (SAN)
[7, 10] and virtualization [3, 4, 8, 9] technologies, forensic tools and secu-
rity mechanisms to create a robust alternative to a physical laboratory.
Such a laboratory will reduce the duplication of resources and tasks,
provide law enforcement agents with cutting-edge tools, resources and
expertise, and lower the cost of forensic examinations.

2. Virtual Laboratory Overview

The virtual digital forensics laboratory architecture attempts to lever-
age state-of-the-art networking and digital forensics technologies to sup-
port the acquisition, transportation, examination and storage of elec-
tronic evidence. This has resulted in somewhat unique problems that,
in turn, require unique solutions.

Figure 1 presents a schematic diagram of the virtual laboratory. The
laboratory provides facilities for examining, storing and presenting elec-
tronic evidence. The forensic examination component includes hard-
ware, software and processes associated with the extraction, identifica-
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tion and interpretation of evidence. The storage component incorpo-
rates large-scale, redundant magnetic storage that is logically separable
by case. The presentation component includes extracted evidence, re-
ports and other relevant information that may be accessed at various
levels of detail by authorized parties (investigators, prosecutors, defense
attorneys, judges and jury members).

The virtual laboratory employs a distributed model, which allows the
complete functional separation of components. Each component is tied
to the other components via a high-speed network. This approach is
used very effectively in data centers, where physical and/or logical com-
ponents are spread across multiple geographic locations.

The first step in defining system requirements is to identify the poten-
tial users. The user groups are law enforcement personnel, prosecution
and defense attorneys, judges and jury members. Role-based access con-
trol allows each user to have the appropriate degree and type of access.
For example, a law enforcement agent (examiner) might be granted full
read/write access to each subsystem to perform imaging, upload images
to long-term storage, conduct examinations of the evidence, and output
intermediate results and final reports. Attorneys would not need access
to the raw data or to examination tools, only to the intermediate results
and final reports. Judges and jury members would only be able to view
the final reports containing evidence prepared for trial.

Several other issues must be considered when specifying the system
requirements. System performance is important in a distributed system
because data has to travel over greater distances and on slower links
than in a centralized facility. Security is equally important. Imaging,
examination, storage and presentation involve machines in multiple lo-
cations, but the level of assurance provided must be just as high as that
in a physical laboratory. Another issue is system management – every
system component in every location must be maintained by an admin-
istrator who has the appropriate technical expertise and qualifications.
The final issue is to create a system that is transparent to end users. In-
deed, the system should look, feel and react as if it is a local examination
computer.

System Performance A virtual system must provide the responsive-
ness and efficiency of a physical system. Even when high-speed networks
are used, the transfer rates of forensic data to a remote location are much
slower than the data transfer rates within an average computer, i.e., net-
work speed is much slower than computer bus speed. Furthermore, in a
multi-user environment, each data processing component must be capa-
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ble of supporting multiple users reliably and with a satisfactory level of
responsiveness.

Security Security is paramount for a distributed forensic system. The
legal requirements for evidence handling must be met, and there should
be explicit guarantees about the confidentiality, integrity and availability
of all data. The system must incorporate a strong user authentication
mechanism, ideally one that relies on multi-factor authentication. The
system must logically separate users to ensure that forensic data can
only be accessed by authorized individuals. A logging system must be
in place to provide accountability for user actions and to track system
use because of the sensitive nature of the data and the applicable legal
requirements (e.g., evidence handling and chain of custody).

System Management System management is not a major concern
for the typical forensics examiner. A distributed, multi-user system,
however, requires a system administrator with demonstrable technical
skills to create users, set access controls, maintain performance require-
ments, troubleshoot network problems and ensure system integrity.

Usability Ease-of-use is also important. A distributed architecture
leads to increased complexity for users; this must be addressed by mak-
ing the system appear cohesive and familiar to all types of users, and
by providing adequate documentation and support to ease the transi-
tion to a virtual laboratory. Additionally, the system should facilitate
information sharing and collaboration.

3. Virtual Laboratory Architecture

We have developed a prototype virtual laboratory that meets the re-
quirements described above. However, it is only the laboratory users who
are distributed; all the hardware and software components are currently
situated in one geographic location. We chose to use a single location
initially in order to evaluate the interactions between the hardware and
software components, which would be more difficult to accomplish in a
distributed environment. After the components are tested individually
and as a complete system, the components will be distributed and the
virtual laboratory will subsequently be tested.

Figure 2 presents the architecture of the virtual laboratory. The ex-
amination system uses a virtual machine pool with a variety of operating
systems and complete user separation. SAN technology is used for lo-
cal data storage because it can reliably store case data and is designed
to support multiple users simultaneously. Authentication and security
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Figure 2. Virtual digital forensics laboratory architecture.

are implemented via a virtual private network (VPN) bound to a multi-
factor authentication system. The next few sections discuss the design
themes pertaining to the prototype laboratory.

3.1 Internal Network

A hardware-based firewall is used to control and filter inbound and
outbound traffic. A gigabit Ethernet switch is used for internal network
traffic. Multiple virtual LANs (VLANs) are employed on the switch to
logically and securely segment management and user traffic. The switch
also provides access control. Specifically, every port is configured to only
accept connections from predefined hardware; this prevents a rogue user
with physical access from connecting to the internal network.

3.2 Authentication and Access Control

The virtual laboratory uses multi-factor authentication and multiple
access control techniques. Remote access to the network is controlled via
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two methods. One is a hardware-based VPN appliance that uses two-
factor authentication (username/password and hardware token). The
other is IP-based authentication that allows access to users from a pre-
determined list of static IP addresses. Using these two methods in com-
bination reduces the potential for system compromise [5].

Users connected to the internal network access their personalized
workspace (e.g., user preferences, software and casework) using the same
two-factor authentication mechanism. User authentication and access
control are handled by a central management (LDAP) directory run-
ning on a non-virtualized system.

3.3 Virtualization

The VDFL has a pool of physical servers that host a number of vir-
tual machines (Figure 2). These virtual machines are used by examiners
to operate on the data stored in the SAN. Virtualization software was
chosen instead of separate physical machines for several reasons. Vir-
tualization allows for the logical separation of users. It reduces costs
by consolidating hardware; also, deployment time is decreased because
the virtual machine hardware is standardized. Moreover, virtualization
allows administrators to move active virtual machines in the pool of host
servers in real time to improve system performance and reliability.

3.4 Forensic Tools

Examiners using the virtual laboratory would have access to a vari-
ety of commercial and open source forensic tools running under virtual
machines. Access would be available to multiple operating systems and
related tools based on examination needs. Note that access control is
role-based and determined by user credentials, not by the particular op-
erating system or tool used. Costs would be reduced because forensic
tools would be shared.

3.5 Storage

One of the principal issues is to provide an adequate storage pool
for users. Another is to maintain satisfactory throughput for multiple
simultaneous users. SAN technology was selected for its speed and re-
liability. Throughput is provided by a fibre channel connection running
at 2 Gbps, which offers dedicated bandwidth for multiple users working
with large data sets.

The SAN is partitioned into various logical storage roles to include
virtual machine storage and case data (raw data, intermediate results
and presentation data). Logical separation of storage allows access con-



Craiger, Burke, Marberry & Pollitt 363

trols to be applied through the management directory. Law enforcement
agencies are often required to retain case evidence for decades. Provid-
ing long-term storage is a goal for the virtual laboratory. However, using
the SAN for this purpose should be considered carefully along with the
possibility of using other archiving technologies.

3.6 Internal Network Security

Security is an integral part of the virtual laboratory architecture be-
cause of the sensitivity of the data and the requirements imposed by
federal and state laws. Every component must be secured using appli-
cable procedures and best practices [6]. Also, extensive logs must be
maintained of user access and resource utilization. The current design
uses segmented logging channels (separate from those used by the main
network traffic) to send data to a central logging server.

4. Challenges

Several challenges were encountered while designing and implement-
ing the virtual laboratory. A major challenge was the inability of the
current configuration to support the uploading of large data sets. This
was largely due to the limited bandwidth available for consumer-level In-
ternet connections. A promising solution is to use a high-speed network
(e.g., Internet 2 Abilene/Florida LambdaRail [2]).

Another challenge is posed by popular forensic examination suites
that rely on physical hardware locks (typically a USB key or “dongle”).
Mapping and managing these dongles to individual virtual machines
are problematic due to various physical and logical constraints (e.g.,
mapping identically-named devices to their virtual machines and coping
with physical limitations of the available ports to connect these devices).
A promising solution is to use special connectivity software that would
allow a dongle to be remotely connected to a local virtual machine. This
software would also enable users to use their own dongles and the virtual
laboratory to host dongles.

Ultimately, however, the principal challenge is to address cultural and
political barriers to the use of hardware and software resources located
outside the local law enforcement agency jurisdiction. Furthermore, even
if state-of-the-art technologies and best practices are employed to main-
tain the confidentiality, integrity and availability of digital evidence in
the virtual laboratory environment, questions will persist. All the stake-
holders – law enforcement agents, attorneys, judges and juries – will
have to be educated about the benefits of the laboratory and the proper
use of its facilities.
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5. Conclusions

A virtual digital forensics laboratory is not limited by geographic
boundaries – it decentralizes forensic functionality while providing se-
curity and quality management processes. As such, it would reduce the
duplication of resources and tasks, provide law enforcement agents with
cutting-edge tools, resources and expertise, and lower the cost of foren-
sic examinations. Practically every crime now involves some aspect of
digital evidence and the volume of digital evidence is growing faster than
the ability of law enforcement to process it. Several challenges remain
to be addressed before virtual digital forensics laboratories can become
operational, let alone thrive. Nevertheless, these facilities may be the
single best hope for law enforcement agencies to cope with the deluge of
digital evidence.
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