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CHAPTER 10 

EPR INVESTIGATION OF [NIFE] HYDROGENASES

Maurice van Gastel and Wolfgang Lubitz 
Max-Planck-Institut für Bioanorganische Chemie, 
Mülheim an der Ruhr, Germany 

EPR studies of the [NiFe] hydrogenases are reviewed. These enzymes 
contain a heterobimetallic [NiFe] center as the active site. The nickel is 
ligated to four cysteine residues, two of which form a bridge to the iron. 
The iron carries additionally 3 small inorganic diatomic ligands (2CN ,
CO). A third small ligand X is situated in the bridge between Ni and Fe. 
In the catalytic cycle the enzyme passes through a number of redox 
states, several of which are paramagnetic. The iron remains in the diva-
lent low-spin (FeII, S = 0) state, whereas the nickel changes its valence 
and spin state during this cycle. Nickel is believed to bind the hydrogen 
and to be directly involved in the catalytic process. The available EPR 
data are interpreted in terms of a simple model, based on ligand field 
theory. The model indicates that the paramagnetic Ni–A, Ni–B, and Ni–
C states are best described as formal NiIII low-spin species with a spin of 
S = 1/2 and a 2z

d  ground state. The 2z
d  orbital is oriented along the mo-

lecular z axis (gz axis, gz ge) and points to the open coordination site of 
the Ni. The “EPR-silent” states are all NiII species. XAS spectroscopy 
provides evidence that these states are high-spin (S = 1) states; however, 
supporting EPR spectra have not yet been reported. The light-induced 
Ni–L states are characterized by a nickel 2z

d  ground state with an ad-
mixture of the 2 2x yd  orbital. The identity of the third bridging ligand X 
between nickel and iron changes upon going from Ni–A to Ni–B to Ni–
C and to Ni–L. ENDOR and HYSCORE data indicate that a μ-OH
bridge is present in Ni–B, for Ni–C a formal μ-H  has been identified, 
while for Ni–L the bridge is empty. The bridging ligand of the Ni–A 
state is still under debate. The identification of the electronic and geo-
metric structure of the reaction intermediates employing spectroscopy 
and quantum chemical calculations form the basis for setting up a reac-
tion mechanism for the [NiFe] hydrogenase. 
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1. CLASSIFICATION, COMPOSITION AND STRUCTURE 
OF HYDROGENASES 

Hydrogenases catalyze the reversible heterolytic splitting of molecular hydro-
gen: 

 H2  H  + H+  2 H+ + 2 e . (1) 

These enzymes are found in many archae, bacteria, and even a few eukaryotes [1]. 
One of the most common groups are the sulfate-reducing bacteria of the Desulfovi-
brio (D.) species. Because of their ability not only to utilize hydrogen as an energy 
source but also to produce molecular hydrogen from protons, they have been the 
subject of many investigations with the aim to better understand the catalytic activ-
ity. Hydrogenases are commonly divided into classes according to the metal con-
tent of the active site, where the catalytic activity takes place. Presently, three 
classes of hydrogenases have been identified: the [Fe], the [FeFe], and the [NiFe] 
hydrogenases [1]. For the [NiFe] hydrogenases, x-ray structures exist for the en-
zymes of the organisms of D. gigas [2–5], D. vulgaris Miyazaki F [6–9], 
D. fructosovorans [5,10], D. baculatum [4], and D. desulfuricans [11]. Other 
[NiFe] hydrogenases that have been extensively studied are from Allochromatium
(A.) vinosum [12–20] and Ralstonia (R.) eutropha [21–28]. In R. eutropha a mem-
brane-bound standard hydrogenase, a soluble (NADP-reducing) hydrogenase and a 
regulatory hydrogenase (RH) have been found. The latter (RH) acts as a hydrogen 
sensor and has an active site similar to the catalytic hydrogenase [29]. 

The [NiFe] hydrogenases consist of two subunits with molecular weights of 
about 30 and 60 kDa (Fig. 1). For the membrane-bound enzymes a small mem-
brane anchor is present as well, which is cleaved during the purification process. 
The large subunit contains the active site. The geometry of the active site is highly 
conserved throughout all [NiFe] hydrogenases (Fig. 1). The nickel and iron atoms 
are separated by a distance of about 2.5 to 2.9 Å and are bridged by the sulfur at-
oms of two cysteines. The nickel is coordinated by two more cysteines bound in a 
terminal position. For some hydrogenases one of the latter cysteines is replaced by 
a selenocysteine, and these enzymes form the subclass of [NiFeSe] hydrogenases. 
The iron atom carries three inorganic diatomic ligands that have been identified by 
infrared spectroscopy as two CN  and one CO [30]. In the oxidized state (in gen-
eral a mixture of the so-called “unready” Ni–A and the “ready” Ni–B states), addi-
tional density is visible between nickel and iron that stems from a third bridging 
ligand “X” [3,6]. In the reduced Ni–C state this density is absent [4,7]. However, 
from the x-ray data it cannot be concluded if position X is empty or occupied by an 
atom or molecule with low electron density. Recent spectroscopic results will be 
discussed that point to the presence of a bridging hydride H in this state. 

The small subunit contains three [FeS] clusters that are involved in the elec-
tron transport to/from the active [NiFe] center (Fig. 1). In the catalytically active 
hydrogenases, a [4Fe4S] “proximal” cluster is located near the [NiFe] center, 
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Figure 1. Schematic view of an [NiFe] hydrogenase and the active site. Shown are the 2 sub-
units with the active site (NiFe center), the proton channel, and the hydrogen access channel 
in the large subunit and the electron transport chain (3 FeS centers) in the small subunit. The 
structure of the catalytic site is shown on the right, which is based on the x-ray crystallo-
graphic analysis of D. vulgaris Miyazaki F [6]. Note that Fe is six-coordinate, while Ni is 
only five-coordinate; the free coordination site at Ni is marked by an arrow. For further de-
tails see text. 

flanked by a [3Fe4S] cluster. Near the protein surface another [4Fe4S] “distal” 
cluster is present. Also indicated in Figure 1 is a magnesium ion found in the crys-
tal structure, which is probably located in the proton transfer channel. A possible 
pathway for molecular hydrogen to travel between the protein surface and the ac-
tive site has been found in crystallographic studies using high-pressure Xe gas 
[31,32]. 

The [NiFe] center is rich in redox states. The oxidized states (Ni–A, Ni–B) are 
catalytically inactive and can be activated by reduction with molecular hydrogen. 
They differ in their activation kinetics: Ni–A takes hours to be activated under hy-
drogen, while Ni–B takes only minutes [33]. For this reason the Ni–A state is also 
called the “unready” state and the Ni–B state the “ready” state. Both states are 
paramagnetic and are characterized by different g-values (Table 1). Upon one-
electron reduction of Ni–A and Ni–B, the EPR-silent states Ni–SU and Ni–SIr are 
formed. For A. vinosum hydrogenase it has been shown that the Ni–A  Ni–SU 
reduction is reversible, but the Ni–B  Ni–SIr reduction strongly depends on pH 
and temperature. At pH 6.0 and 2ºC the reduction was completely irreversible, at 
pH 8 and 30ºC both reductions were reversible [16]. For A. vinosum hydrogenase 
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Table 1. Summary of g Values of the EPR Active States in  
Standard [NiFe] Hydrogenases

g
x
 (g

1
) g

y
 (g

2
) g

z
 (g

3
)

Ni–A 2.32 2.24 2.01 
Ni–B 2.33 2.16 2.01 
Ni–C 2.20 2.15 2.01 
Ni–L1 2.30 2.12 2.05 
Ni–L2 2.26 2.11 2.05 
Ni–L3 2.41 2.16 n.d. 
Ni–CO 2.12 2.07 2.02 

All values taken from D. vulgaris Miyazaki F [51] except for Ni–CO (A. vinosum) [36] and Ni–L3 (D. 
gigas) [35]. For the orientation of axes see Figure 7. n.d. = not determined. 

Figure 2. Overview of the redox states of [NiFe] hydrogenases, from the most oxidized (top) to the 
most reduced (bottom) form. Indicated are the IR frequencies (IR) of the CO ligand and the two 
CN  ligands to Fe for D. vulgaris Miyazaki F hydrogenase and the midpoint potentials (Em) for the 
redox transitions at pH = 6 (Ni–A/NiSU) and at pH = 7.4 (all others). The paramagnetic states are 
given in bold face, the EPR-silent states in italics. The two states Ni–SIr and Ni–SIa are in an acid–
base equilibrium. The states involved directly in the catalytic cycle are highlighted by a shaded box. 
The paramagnetic Ni–CO state (not shown) is probably derived from the Ni–L state. 

under reducing conditions and at temperatures greater than or equal to 30ºC, the 
Ni–SIr is converted into another EPR-silent state, Ni–SIa, which can be quickly 
reduced to give another EPR active state Ni–C [15]. The Ni–C state exhibits a 
characteristic rhombic g tensor, and this state is found in all enzymes studied so far 
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(Table 1). The Ni–C state is light sensitive. Upon illumination with white light, the 
characteristic EPR signal disappears and a new signal appears [34], which is called 
Ni–L. At least two subforms have been identified with different g values, Ni–L1 
and Ni–L2, depending on the temperature and the duration of light exposure [35]. 
Upon further reduction in the presence of H2, the most reduced state, Ni–R, is 
formed. Ni–R is EPR silent. Three subforms of Ni–R have been identified for 
A. vinosum hydrogenase [14]; however, the presence of all these substates has not 
yet been experimentally confirmed in hydrogenases from other sources. The [NiFe] 
hydrogenase can be inhibited by the addition of CO. It has been shown by x-ray 
crystallography of single crystals treated with CO [8] that the CO binds at the sixth 
free coordination site of the nickel (see Fig. 1). A paramagnetic Ni–CO state has 
been described and characterized [19,34,36,37]. This Ni–CO is also photosensitive, 
and upon illumination at low temperatures, CO photodissociates, resulting in the 
same Ni–L state as Ni–C. The different EPR active and EPR-silent redox states of 
the [NiFe] hydrogenase are depicted in the scheme shown in Figure 2. 

In this contribution, an overview is given of the EPR studies performed so far 
on the EPR active states Ni–A, Ni–B, Ni–C, Ni–L, and Ni–CO. The emphasis here 
lies on the identification of the structure of the active site in all these intermediate 
states, including the assignment of the bridging ligand “X.” Knowledge of the ex-
act structures of all intermediates is an essential prerequisite for quantum chemical 
studies, from which a reaction mechanism can be proposed. Especially, advanced 
EPR methods like ENDOR, ESEEM, and HYSCORE have played a crucial role in 
determining the hyperfine coupling constants (HFCs) of the metal nuclei and iden-
tifying protons or nitrogens from nearby amino acids or non-protein ligands, and in 
this way have helped to characterize both the electronic and the geometric structure 
of the site. The EPR-silent states have been investigated by other spectroscopic 
methods like XAS [38–41] and FTIR spectroscopy [14,42,43]. 

2.  BASIC DESCRIPTION OF THE ELECTRONIC STRUCTURE 
Many of the spectroscopic observables, especially those related to EPR spec-

troscopy, can be rationalized, when considering the crystal field of the metal ions. 
The x-ray structure shows [5,9] that the iron is hexacoordinate in all states. 
ENDOR data (vide infra) indicate that this atom remains in the non-paramagnetic 
(S = 0) low-spin FeII state in all EPR active redox states. This is probably caused by 
the tightly bound CO and CN  ligands. The nickel ion is coordinated by five 
ligands in the Ni–A and Ni–B states [2], four of which (three sulfurs of cysteines 
and the bridging ligand “X”) form the base plane of a square pyramid. The fifth 
ligand (the sulfur of the fourth cysteine) occupies an axial position, and the other 
axial ligation position is unoccupied (see Fig. 1). The square pyramidal crystal 
field gives rise to a characteristic energy splitting of the five 3d orbitals at nickel. 

The effect of the ligand field on a five-coordinate metal has been described by 
Solomon et al. [44]. The results presented in [44] were obtained for an FeII with 
four equatorial oxygen ligands and a unique axial ligand. The symmetry of this 
crystal field also applies to a five-coordinate nickel. A schematic overview of a  
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Figure 3. Schematic representation of the ligand field splitting of the 3d orbitals of a five-
coordinate transition metal. The diagrams are reproduced and modified from [44]. Shown are 
a square pyramidal ligand field with a weak axial ligand (a); a strong axial ligand (b); C2v dis-
tortion (c). In (c) a mixture of 2z

d  and 2 2x y
d  occurs (c1

2 + c2
2 = 1). 

square pyramidal crystal field environment with a weak axial ligand, in which the 
metal is only slightly lifted out of the equatorial plane, gives rise to a splitting of 
the d orbitals, as indicated in Figure 3a. The d orbitals of lowest energy are the 
degenerate dxz and dyz orbitals. For a formal NiIII ion, seven electrons are present in 
the 3d shell. For this d7 case the dxz, dyz and dxy orbitals are doubly occupied, and the 
unpaired electron resides in the 2z

d  orbital, with the z axis defined as being parallel 
to the axis that connects the nickel and the atom of the axially coordinated ligand. 

In this ligand field, the g-tensor is characterized by one small principal g-value 
(gz ~ ge) and two larger g-values gi (i = x, y). The g tensor components of the 2z

d
state can be expressed in terms of the spin-orbit-coupling parameter  at Ni (note 
that Ni < 0 [45]), and the energies of the d orbitals: 

2 2

6 6, ,x e y e z e
yz xzz z

g g g g g g
E E E E

. (2) 

The gx and gy values are degenerate (axial symmetry) in a ligand field with 
C4v symmetry but are expected to become unequal in the [NiFe] hydrogenase, 
due to the asymmetric protein environment. A rhombic g tensor is observed for all 
hydrogenases. 
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Figure 4. The g-tensor components of Ni–A, Ni–B, Ni–C, and Ni–L as a function of d or-
bital mixing ( 2z

d and 2 2x y
d ) for four cases with different perturbation parameters 

k = Ni/ Edd, which were chosen to be: k(Ni–A) = 0.053 (solid line), k(Ni–B) = 0.045 (dotted 
line), k(Ni–C) = 0.030 (dashed line), and k(Ni–L) = 0.038 (dashed/dotted line). The experi-
mental values of the four states are indicated by  (g1),  (g2), and  (g3). In the model the Ni 
character of the singly occupied molecular orbital is described by 2 2 2Ni 1 2x y z

c d c d , the 
energy of the other molecular orbitals with Ni(3d) character being lower by Edd. The ex-
pression derived for the g tensor is given at the top of the figure. For further details, see [46]. 

We now briefly summarize the effect of distortions to the ligand field [44] that 
are relevant for [NiFe] hydrogenases. When the axial ligand is strongly coordinated, 
the dxy orbital becomes lowest in energy and the energy of the 2z

d  orbital ap-
proaches that of the 2 2x y

d  orbital (the z direction is along the four-fold symmetry 
axis of the system) (see Fig. 3b). A distortion along one of the two equatorial axes 
causes a slight mixing of the 2 2x y

d  and 2z
d  orbitals (indicated in Fig. 3c). The 

effect of such a distortion on the g values has been discussed previously [46], 
where it was shown that a small admixture of 2 2x y

d  orbital causes an increase of 
the gz value and an increase in rhombicity without significantly changing the orien-
tation of the gz axis of the g tensor (see Fig. 4). 

The above-described ligand field also holds for the NiII (d8) and NiI (d9) va-
lence states. NiI is paramagnetic (S = 1/2), and has a 2 2x y

d  ground state, for which 
the g tensor components are 
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2 2

2 2 8, ,x e y e z e
xy xz xy yz xy x y

g g g g g g
E E E E E E

. (3) 

In this case the z principal axis is associated with the largest g value, whereas for a 
2z

d  ground state the principal z axis is associated with the smallest g value. For 
NiII the low-spin form is diamagnetic, and the high-spin state has S = 1. In case of 
the Ni–L state, in which one equatorial ligand is removed (vide infra), the 2 2x y

d
and 2z

d orbitals come very close in energy and orbital mixing and the order of the 
two orbitals may change. 

Although a description in terms of pure d orbitals gives insight into the elec-
tronic structure, the binding of polarizable (“soft”) ligands (cysteine sulfurs) may 
lead to a significant spin delocalization, leaving only a fraction of the spin at the 
metal. This delocalization also has consequences for the hyperfine coupling con-
stants (HFCs) of magnetic nuclei near the [NiFe] center. Particularly large HFCs 
(33S, 1H) are expected for the cysteine residue bound in the axial position along the 
symmetry axis of the spin carrying 2z

d  orbital (see Fig. 1). 

3. EPR CHARACTERIZATION OF [NiFe] HYDROGENASES: 
THE G TENSORS 

In this section the EPR spectra of the EPR active redox states are discussed. 
An overview of the spectra for D. vulgaris Miyazaki F is given in Figure 5, and a 
summary of g values can be found in Table 1. 

3.1.  The Oxidized States Ni–A and Ni–B 

The first EPR spectrum of the Ni–A state was reported in 1982 [47] for the en-
zyme of D. gigas. In this work, the Ni–B state was also observed and appeared as a 
minority species. In other species like D. vulgaris Miyazaki F [48], the two states 
exist as mixtures with a more equal ratio in the aerobic “as-isolated” form of the 
enzyme. Different methods of preparation have been used to separate the Ni–A and 
Ni–B redox states, such that they appear as pure redox states in the EPR spectrum 
and can be therefore studied individually [13]. The Ni–A and Ni–B states have the 
same oxidation level, yet they differ in their g values, as observed by EPR (see 
Fig. 5 and Table 1). The activation times are different [33] and the FTIR spectra 
show differences with respect to the stretching frequencies of the CN  and CO 
ligands attached to iron [14]. The midpoint potential for the Ni–A/Ni–SU couple in 
D. gigas hydrogenase has been investigated by EPR and redox titrations [49], and 
was found to depend on pH. By using electrochemistry combined with FTIR spec-
troscopy, the midpoint potentials of other redox states, including Ni–B, have also 
been investigated [42]. Both states are inactive and do not take part in the catalytic 
cycle. However, in order to understand the activation (deactivation) of the enzyme  
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Figure 5. Overview of the EPR spectra of a standard [NiFe] hydrogenase. The spectra were 
obtained from D. vulgaris Miyazaki F in the Ni–A, Ni–B, Ni–C, and Ni–L2 redox states (see 
text for details). In the spectrum of Ni–A, lines from an additional redox state are observed 
that are marked with an asterisk. Experimental conditions: mw = 9.43 GHz, mod. 
freq. = 100 kHz, mod. depth = 5 G, recording time for each spectrum = approx. 15 min. For 
details, see [58]. 

and the aerobic inhibition, the spectroscopic and chemical differences of the Ni–A 
and Ni–B states have been the topic of many recent investigations that aim to elu-
cidate the origin of these differences. 

Until the mid-1990s, all EPR investigations of hydrogenases have been per-
formed on frozen solutions and the g values have mainly been used as “finger-
prints” for the identification of redox states (Table 1). With the advent of [NiFe] 
hydrogenase crystals of sufficient size, the first single-crystal EPR studies became 
possible and were performed on the enzyme from D. vulgaris Miyazaki F 
[48,50,51]. This opened the possibility to determine, in addition to the g tensor 
principal values, also the tensor axes and their orientations in the molecular frame. 
With this information the g values could be assigned to the geometrical structure  
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Figure 6. Schematic overview of single-crystal EPR experiments. EPR spectra are taken for differ-
ent orientations of the crystal with respect to the magnetic field. The orientational dependence of 
the resonances can be analyzed to elucidate the directions of the principal axes of the g tensor with 
respect to the crystallographic axes. When the crystal structure is known, the information can be 
combined to obtain the directions of the principal axes with respect to bond directions and the ge-
ometry of the active site. The data shown are taken for the Ni–A and Ni–B redox states of D. vul-
garis Miyazaki F hydrogenase. For details, see [48,50]. (A) Single crystal mounted in an EPR sam-
ple tube; shown are the laboratory reference frame (u, v, w), the crystal axes (a, b, c) of the ortho-
rhombic single crystal with four sites in the unit cell (space group P212121), and the molecular/g
tensor axes (x, y, z). (B) Top: Frozen solution EPR spectrum (X-band) of an “as-isolated” [NiFe] 
hydrogenase sample containing Ni–A: Ni–B ~ 2:3. Bottom: Angular variation of the EPR spectra of 
a single crystal (T  = 10 K) in an arbitrary orientation showing lines from both Ni–A and Ni–B (and 
some smaller disoriented crystallites). Note that a maximum of 4 lines (4 sites) is expected for each 
species. (C) Angular dependence of the g2 tensors of Ni–A (grey) and Ni–B (black). The analysis 
yields the g tensor principal values and the g tensor axes in the crystallographic axes system that 
can be converted to the molecular axes via the known crystallographic structure.

and be related to the d orbitals of the metal. Furthermore, single-crystal EPR ex-
periments can be performed over a wide range of temperatures (from ambient to 
liquid helium), which allows to follow the structural changes of the enzyme [50]. A 
schematic overview of the single-crystal experiments performed on Ni–A and Ni–
B for D. vulgaris Miyazaki F [50] is given in Figure 6. An additional stereoview of 
the principal axes of the g tensor in the Ni–A and Ni–B states is depicted in Fig-
ure 7. It was found that the principal gz axis, corresponding to the smallest g value  
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Figure 7. Stereoviews of the directions of the principal axes of the g tensors with 
respect to the geometry of the active site in the Ni–A, Ni–B, Ni–C, and Ni–L2 re-
dox states of [NiFe] hydrogenase from D. vulgaris Miyazaki F. Reproduced with 
permission from [51]. Copyright © 2003, American Chemical Society. 
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(2.01), is approximately parallel to the bond direction of nickel toward the sulfur of 
the axial cysteine. This defines the direction of the C  symmetry axis of the 23

z
d

orbital, which contains the bulk spin density. The gz axis also points from nickel 
toward the free coordination position of the square pyramid. This is compatible 
with a nickel that is either in a square pyramidal or in an octahedral ligand field 
with a weak axial ligation in both Ni–A and Ni–B forms. The temperature depend-
ence of the EPR spectra between 295 and 10 K exhibited no structural changes of 
the active site. This is of general importance for the investigation of this enzyme, 
since it shows that the same g values are obtained both under physiological condi-
tions at ambient temperature as well as at cryogenic temperatures. It should also be 
noted that the principal g tensor values are the same within experimental error in 
frozen solution and in single crystals. Thus, crystallization does not change the 
electronic structure of the active site.

3.2.  The Reduced Active State Ni–C 

The Ni–C intermediate state is the only EPR active state that takes part in the 
catalytic cycle. It is two electrons more reduced than the Ni–A and Ni–B states 
(Fig. 2), and the density of the bridging ligand “X”, present in the A and B states, 
has disappeared in the electron density map of the x-ray data of reduced crystals 
[4,7]. The Ni–C state is characterized by g values of 2.01, 2.15, and 2.20 (see, e.g., 
for D. vulgaris Miyazaki F hydrogenase [51]). Similar to the Ni–A and Ni–B states, 
such a set of g values, with one being close to the free electron g value, ge, and two 
shifted from ge, indicate that the unpaired electron occupies the 23

z
d  orbital of 

nickel and that the nickel is most probably five-coordinated. The single crystal 
EPR studies [51] indeed showed that the direction of the principal z axis of the g
tensor is oriented similar to Ni–A and Ni–B, i.e., parallel to the bond direction 
from nickel to the sulfur of the axial cysteine, and pointing from nickel to the va-
cant axial coordination position (see Fig. 7). This also indicates that the bridging 
position “X,” one of the equatorial ligation positions of nickel, is still occupied (see 
Fig. 1). Since no significant electron density was observed in x-ray crystallography, 
this ligand must therefore be a light atom (or atoms). 

In relation to the formal oxidation state, the Ni–C state was first expected to be 
an NiI (d9) species. This is, however, not in line with XAS studies that show no 
significant change of the valence state [38], upon comparing Ni–A/Ni–B to Ni–C. 
The EPR parameters indicate the presence of a 2z

d  ground state as found for Ni–
A/Ni–B. A careful analysis of the single-crystal EPR data together with DFT calcu-
lations on various models of Ni–C incorporating different bridging ligands, indeed 
showed that this state is best described by a formal NiIII

2z
d ground state, accom-

modating a hydride (H ) in the bridge between Ni and Fe [51]. 

3.3.  The Split Ni–C Signal 

In general it is difficult to study the Ni–C state by EPR at low temperatures 
(<40 K). The reason for this is that the proximal [4Fe4S] cluster is usually also  
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Figure 8. EPR spectra of (a) “unsplit” and (b) “split” Ni–C signal for D. gigas [NiFe] hy-
drogenase. The redox potential for (a) was set to –354 mV, for (b) to –376 mV. Experimen-
tal conditions: temperature, 4.2 K; microwave frequency, 9.378 GHz; microwave power, 
0.01 mW (a) and 1 mW (b); modulation frequency, 100 kHz; modulation amplitude, 1 mT. 
Reproduced with permission from [53]. Copyright © 1995, American Chemical Society. 

reduced and paramagnetic (S = 1/2). The spin–spin interaction between the [NiFe] 
center and the proximal [4Fe4S]+ cluster splits and broadens the EPR spectrum 
[35,52,53]. Above this temperature, the electronic relaxation time of the [4Fe4S]+

cluster is so fast that the spin–spin interaction is averaged out. An exception is the 
regulatory hydrogenase of R. eutropha, which has midpoint potentials such that the 
proximal [4Fe4S] cluster remains oxidized (S = 0), when the [NiFe] center is in the 
Ni–C state, and no spin–spin interaction is observed at low temperatures. 

The midpoint potentials for D. gigas hydrogenase, at pH 7.0, 270 mV for the 
appearance and 390 mV for the disappearance of the Ni–C signal, are strongly pH 
dependent [34]. From the amount of “split” and “unsplit” Ni–C state present in the 
EPR spectrum at low temperature, the midpoint potential of the [4Fe4S] cluster 
was estimated to be 350 mV ( 60 mV/pH unit) [34]. It is therefore possible to 
carefully set the potential to obtain a maximum amount of “unsplit” Ni–C signal at 
low temperatures, so that pulsed ENDOR and ESEEM experiments on Ni–C can be 
recorded [54]. Since these potentials are close together and vary between species, it 
may not always be possible to obtain unsplit Ni–C signals. 

The splitting of the EPR spectrum at low temperature can advantageously be 
used to measure the spin–spin interaction between the [NiFe] center and the re-
duced proximal [4Fe4S]+ cluster. This has been done by Guigliarelli et al. using 
multifrequency EPR [52] (see Fig. 8). It was found that the spin–spin interaction 
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observed in EPR is restricted to that between the [NiFe] center and the proximal 
[4Fe4S]+ cluster; the J coupling constant that leads to the best simultaneous fit of 
the multifrequency EPR spectra is 40  10 4 cm 1 [52,53]. In addition, the relative 
orientations of the g tensors of the [NiFe] center and the [4Fe4S] cluster in terms of 
three Euler angles have been elucidated from simulations. 

From such measurements information about the identity, coupling strength, 
distance, and even relative orientation of other paramagnetic centers in the enzyme 
can, in principle, be obtained. This is of utmost importance for understanding the 
electron transfer between the metal centers in the enzyme. In this respect, more 
information is still required for understanding the exact electron transfer pathway 
in the hydrogenases. 

3.4.   The Light-Induced State Ni–L 

In contrast to the Ni–A and Ni–B redox states, the EPR spectrum of the Ni–C 
state changes when the sample is illuminated with white light at low temperatures 
(<180 K) [34,55]. Up to three light-induced states have been identified for [NiFe] 
hydrogenases [35,56], depending on the temperature at which the illumination was 
performed, the duration of the illumination, and the source of the enzyme. The 
light-induced states are commonly referred to as Ni–L1, Ni–L2, and Ni–L3, all of 
which have different g values. The Ni–L states can be annealed back to Ni–C when 
the temperature is raised, which shows that the photoprocess is fully reversible. For 
T. roseopersicina hydrogenase, the temperature dependence was investigated by 
EPR spectroscopy, and a recovery to Ni–C upon annealing was observed at tem-
peratures above ~180 K [57]. The g values of the Ni–L states vary slightly depend-
ing on the origin of the enzyme. For D. gigas hydrogenase, they are 2.264, 2.113, 
and 2.044 for Ni–L1, 2.293, 2.124, and 2.045 for Ni–L2, and 2.41 and 2.16 for Ni–
L3 (the lowest g value could not be determined for Ni–L3). The values are very 
similar for D. vulgaris Miyazaki F, for which only 2 states were observed (see Ta-
ble 1) [58]. Compared to Ni–C, the largest g value of the Ni–L states is increased, 
and also the smallest g value has become larger (typically 2.05). The latter change 
suggests that the Ni–L states can no longer be described as pure 23

z
d  ground states 

[46], since for such states ligand field theory indicates that the smallest g value is 
equal or very close to ge  = 2.0023.

The observation of a gz value significantly larger than ge has prompted re-
searchers to suggest that the Ni–L states are formal NiI 3d9 states, in which the un-
paired electron resides in the 2 23

x y
d  orbital [59,60]. XAS data, however, indicate 

that the nickel in Ni–L is slightly more reduced than in Ni–C, but the observed 
edge shift is too small to justify a description as an NiI state [41]. The single-crystal 
EPR data of Ni–L show that the orientation of the gz principal axis is still parallel to 
the bond direction from nickel to the axial cysteine (or to the free coordination po-
sition) [51], indicating that the wavefunction of the unpaired electron is still domi-
nated by the 23

z
d  orbital on nickel. Indeed, ligand field considerations show that 

only a small admixture of the 2 23
x y

d  to the 23
z

d  orbital is sufficient to shift the gz

value from 2.01 to 2.05 [46]. This situation may be compared to the admixture of 
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some 23
z

d  orbital to the 2 23
x y

d  ground state in blue copper proteins [61], which 
introduces a large rhombictiy in the g values. Whether the Ni–L states can formally 
be described as NiI or NiIII

2z
d  states is not clear at present. This depends critically 

on the relative energies of 2 2x y
d and 2z

d , and on the ligand orbitals. 

Figure 9. Conversion of Ni–C to Ni–L as derived from EPR decay curves (Ni–C signal de-
cay at gx = 2.20) at different wavelengths of the excitation light (dashed line). Also included 
is the UV/VIS spectrum of the reduced enzyme (500–800 nm). For further details see [62]. 
Reproduced with permission [62]. Copyright © 2003, Royal Society of Chemistry. 

The action spectrum associated with Ni–C  Ni–L2 conversion has recently 
been investigated by EPR spectroscopy for D. vulgaris Miyazaki F [62], and it is 
illustrated in Figure 9. It turned out that the action spectrum is broad and spans the 
complete visible range. Nevertheless, some structure was observed with local 
maxima at 590, 700, and 850 nm. The wavelengths of the first two maxima corre-
spond to those observed in the UV/VIS spectrum of the reduced enzyme, indicating 
that the conversion process may be a direct process in which the light is absorbed 
by the [NiFe] center itself. However, based on the available data [62], an additional 
mechanism according to which the light is absorbed by the nearby [4Fe4S] cluster 
and the energy is transferred to the [NiFe] center cannot be excluded. 

3.5.  The Ni–CO State 
The [NiFe] hydrogenases are inhibited by CO. Recent x-ray data show that the 

CO binds at the 6th coordination position (opposite to the axial sulfur) and that it is 
photolabile [8]. Binding of CO causes a change in the electronic structure and the 
EPR g-values (2.12, 2.07, 2.02). Addition of 13CO [36] results in a large, almost 
isotropic 13C HFC of 85 MHz. Initially, it was proposed that Ni–C binds the CO. 
Later work [19] suggested that Ni–L might attach the CO. Best agreement between 
experimental data and DFT calculations was obtained when the CO is bound to Ni 
as a  electron acceptor, for which the calculations yield g values of 2.11, 2.06, and 
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2.00 and a 13C HFC of 72 MHz [63]. So far, a single-crystal EPR study of the Ni–
CO state has not been reported. 

4. ENDOR AND ESEEM STUDIES OF [NIFE] HYDROGENASE: 
       HYPERFINE STRUCTURE 

In this section, hyperfine coupling constants (HFCs) observed by hyperfine re-
solving techniques such as ENDOR or ESEEM/HYSCORE are discussed. The 
advantage of these techniques lies in direct determination of the hyperfine coupling 
parameters, which give information about the spin density distribution over the 
metal centers and the ligand sphere. Additionally, when applied to single crystals, 
the techniques also allow elucidation of the principal axes of the hyperfine tensor, 
which can advantageously be used to determine bond directions or orientations of 
small molecules bound to or near the active site. 

Several specific problems have been addressed using hyperfine spectroscopy 
on the [NiFe] hydrogenases: 

1. Measurement of the HFCs of the metal nuclei by the use of iso-
topically labeled (61Ni, 57Fe) hydrogenase. 

2. Magnitudes of HFCs of ligand nuclei to estimate the spin density 
distribution. 

3. Identification of bridging ligand X by determination of the re-
spective hyperfine data using labeling and exchange procedures. 

4. Light sensitivity of Ni–C. 
5. Interaction with the protein surrounding. 

4.1.  Hyperfine Couplings of Metal Nuclei 
A question of major importance for the electronic structure of the active center 

is the spin density distribution over the heterobimetallic [NiFe] center. A direct 
approach is provided by measuring the spin density at the nickel and at the iron in 
the paramagnetic states of the enzyme. This has become possible by labeling the 
enzyme with 61Ni (I = 3/2) and 57Fe (I = 1/2), respectively. 57Fe ENDOR experi-
ments have shown that the Fe contains a negligible amount of electron spin density 
in both oxidized states [64]. Similar experiments on the Ni–C state also showed a 
very small 57Fe HFC (<1 MHz) [64]. These experiments are in line with iron being 
in the low-spin FeII state (S = 0) in all redox states of the enzyme. The small 
amount of spin density at the iron is caused by spin polarization. 

61Ni labeling was already employed in early investigations to unambiguously 
identify the presence of nickel in this class of enzymes [65,66]. For the unready 
(Ni–A) state of Methanobacterium thermoautotrophicum hyperfine coupling con-
stants of Ax = 21.0, Ay = 42.0, and Az = 75.9 MHz have been elucidated from simu-
lations of cw-EPR experiments [65]. More recently 61Ni labeling of D. vulgaris
Miyazaki F has been performed and the EPR analysis led to a set of 61Ni HFCs for 
all paramagnetic states in this hydrogenase [58]. 

Calculation of the 61Ni HFCs is difficult, in particular for the isotropic 
part [67]. The data reported recently using DFT [68] are, however, in satisfy-
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ing agreement with the available experimental data. This is further evidence that 
the recent improvements in property calculations of DFT methods [67,69] al-
lows one to reliably predict the observables related to electronic structure of the 
[NiFe] hydrogenase for small geometry optimized structural models (for details, 
see [49,63,68,70–81]). 

Figure 10. Contour plot of the unpaired spin density distribution (0.005 3
0/e a ), DFT 

(BLYP/DZVP) of a truncated model of the active site in the Ni–C state (NiIII, FeII, hydride 
bridge). The Mulliken atomic spin densities are given [76]. In the oxidized ready Ni–B state 
(OH  bridge), the spin density at the Ni is almost the same (0.52), at the sulfurs (0.34 and 
0.06, axial and equatorial) it is somewhat changed; at Fe and at the bridge it is vanishingly 
small. For other theoretical results, see [71,78] . 

The data analysis shows that in the oxidized and the reduced states negligible 
spin density is found at the Fe. The nickel carries more than 50% of the spin. The 
remaining spin density is distributed over the (sulfur) ligands of the active site. 
This is supported by detection of a large 33S HFC in the [NiFe] hydrogenase of 
A. vinosum [82] and also by the 1H HFCs of the cysteines (see below). A model of 
the active site used in DFT calculations [76] is shown in Figure 10, depicting the 
calculated spin density distribution of the Ni–C state (X = H ).

4.2.  HFCs of Ligand Nuclei 

Single-crystal ENDOR studies of the Ni–B state [83] showed two large non-
exchangeable 1H HFCs that could be assigned to the methylene (CH2) protons of 
the bridging cysteine axially coordinated to the nickel (Fig. 1). This is in agreement 
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with earlier ENDOR studies of Ni–B in frozen solutions of A. vinosum [84]. The 
two signals associated with the couplings (A1 = [17.0, 11.4, 10.9] MHz, A2 = 
[13.4, 10.1, 10.1] MHz) are shown in Figure 11. This finding is in line with the 
presence of significant spin density at the axial cysteine sulfur. Couplings of simi-
lar magnitude are found for Ni–A, [85], and Ni–C [86]. This strongly supports the 
model of a NiIII

2z
d  ground state with the spin-carrying orbital oriented along an 

axis pointing toward this sulfur atom. DFT calculations indicate a spin density of 
up to ~30% at the respective sulfur (Fig. 10); a small amount of spin density is also 
found at one of the equatorial cysteine sulfur atoms. 

Figure 11. Left: Pulse ENDOR spectra for one site of Ni–B in a single crystal of [NiFe] hy-
drogenase of D. vulgaris Miyazaki F (selected traces). The 3 major hyperfine splittings (A1, 
A2, A3) are indicated by dots. Right: angular dependence of the HFC of the exchangeable 
proton A3 for the four sites in the single crystal (cf. Fig. 6). In the lower panel the orientation 
dependence of the respective proton HFC obtained from a DFT calculation is shown. Al-
though the absolute magnitude of the HFC is somewhat smaller, the angular dependence is 
in perfect agreement with the experiment. Based on this comparison, the 1H HFC has been 
assigned to the OH  ligand bridging the Ni and the Fe. The respective proton is located close 
to the plane of the Ni 2z

d  orbital. For further details, see [83]. 

4.3.  The Bridging Ligand X 

Since it is known that the identity of the 3rd bridging ligand is changed 
upon activation of the enzyme and also in the catalytic cycle, its clear identifica-
tion in the different states is of utmost importance. This can be achieved by 
EPR/ENDOR techniques.

4.3.1.  Ni–A/Ni–B 

Isotope labeling experiments, using molecular 17O2 for both Ni–A and Ni–B 
[36], and also H2

17O for Ni–A (A(17O) = [5, 7, 20] MHz) [87] showed that the 



EPR INVESTIGATION OF [NiFe] HYDROGENASES 459 

bridging ligand in both states contains an oxygen atom. In the latter study, it was 
shown that exchange of the bridge to a 17O-labeled one is only possible if a reduc-
tion–oxidation cycle is performed, demonstrating the relative inaccessibility of the 
[NiFe] center in the Ni–A state as compared to the Ni–B state. 

The presence of a sulfur species (S2 , SH , H2S) in the bridge between Ni and 
Fe has been discussed by various authors [6,7,9,21,88]. For the Ni–A and Ni–B 
states (Fig. 5) this can, however, be excluded based on the 17O data. It is expected 
that a sulfur-based ligand would lead to an EPR spectrum with different g values. 
Such minority species with different g values have recently been reported for the 
oxidized states of D. vulgaris Miyazaki F (see, e.g., Fig. 5 and [9,88]). However, 
up to now the identity of these species remains unclear. 

For Ni–A, ENDOR experiments by Fan et al. in combination with deuterium 
exchange indicated that no exchangeable proton near the [NiFe] center is present 
[89]. Also with ESEEM, no exchangeable proton has been observed [90]. For Ni–B, 
the [NiFe] center does have an exchangeable proton, as was found for the enzyme 
of A. vinosum by careful measurement of the gz signal and examination of the su-
perhyperfine structure [91]. Recently it has been shown that for Ni–A it is also 
possible to exchange a proton near the active site, by first exchanging the solvent to 
D2O, followed by reduction with D2 gas to remove the bridging ligand and reoxida-
tion to restore an isotopically labeled bridge. With this reduction–reoxidation 
treatment, a deuterium signal could be observed in ESEEM and HYSCORE spec-
troscopy for Ni–A [80] and an HFC could be estimated. This was fully corrobo-
rated by recent single-crystal ENDOR experiments of Ni–A (Ogata et al., unpub-
lished data). 

Single-crystal ENDOR experiments of the Ni–B state have been used to eluci-
date the complete HFC tensor of the proton of the bridging ligand (principal values 
are [ 8.2, 7.0, +3.6] MHz) [83] (see Fig. 11). Early DFT calculations suggested 
the presence of an OH  bridge for Ni–B [63,77,92]. By comparison with DFT cal-
culations of the hyperfine tensors in a model of the active site, it was found that 
Ni–B contains an OH  bridge and that two possible binding modes for an OH  ex-
ist, and one of them could be favored based on a comparison between experimental 
and DFT data [83] (see Fig. 11). For the Ni–A state an experimental verification of 
the identity of the bridging ligand is not yet available. Possible candidates are OH ,
bound in a different conformation, H2O, or OOH [83]. 

4.3.2.  Ni–C 

In the Ni–C state, pioneering ENDOR experiments in the groups of Hoffman 
and Moura have shown for D. gigas hydrogenase that a proton with a very large 
hyperfine coupling constant (aeff = 16.8 MHz) is present, which seems to interact 
directly with the nickel [89]. This proton was found to be exchangeable, and one of 
the proposed assignments was that it could belong to an in-plane (i.e., equatorial) 
hydrogen directly bonded to nickel (e.g., a hydride). This would favor a formal 
NiIII redox state for Ni–C [89]. A second exchangeable proton with aeff  4.4 MHz 
was also observed in this work. 
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Figure 12. 2H HYSCORE spectra taken along gx, gy, and gz of the Ni–C and Ni–L1 states of 
the regulatory hydrogenase of R. eutropha in D2O buffer. The large deuterium coupling of 
the exchangeable proton (deuteron) observed for Ni–C collapses to a structureless band at 
the 2H Larmor frequency (close to 2 MHz), demonstrating the photodissociation of the hy-
dride upon illumination at T = 77 K in the Ni–C  Ni–L1 transition [93]. The process is 
fully reversible. 

In a recent study of the Ni–C state in the RH of R. eutropha [23] and in 
D. vulgaris Miyazaki F [86] using orientational selection ENDOR and HYSCORE 
in combination with H/D exchange, the complete HFC tensor of the exchangeable 
proton could be determined (principal values are [+21.9, 7.3, 14.5] MHz). The 
data are only compatible with the presence of a hydrogen in the bridge between Ni 
and Fe, bound in the equatorial plane of the metal. The obtained tensor is in good 
agreement with DFT calculations. Illumination of Ni–C removes the signals related 
to this proton from the spectrum (see Fig. 12). By using the results from the 
g tensor analysis in Ni–C [51], this proton is assigned to the hydride in the bridging 
position, which is derived from the heterolytic splitting of the substrate hydrogen. 
In these contributions [51,86] a key intermediate in the hydrogenase catalytic cycle 
has been structurally characterized. 

4.4.  Light Sensitivity of the Active Intermediate 

Illumination of the Ni–C state of all hydrogenases at low temperatures creates 
a light-induced state (Ni–L) with a significantly different EPR spectrum. Different 
forms of these species have been reported (Table 1). 
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In the Ni–L state the large 1H HFC of the H  bridge in Ni–C observed by 
ENDOR and HYSCORE spectroscopy vanishes [23,57,86,89] (see Fig. 12). After 
annealing of the sample, the Ni–C EPR signal and the large hyperfine interaction is 
recovered. This observation strongly indicates that the photoconversion of Ni–C to 
the Ni–L states involves a photodissociation of the bound hydride. With deuterium 
exchange experiments it was shown that the rich structure in the 2H region of the 
HYSCORE spectrum of Ni–C (see Fig. 12) collapses into an unstructured band at 
the 2H Larmor frequency [23] for Ni–L. However, signals could still be observed, 
indicating that upon photodissociation the proton remains in the close vicinity of 
the center. Since up to three different Ni–L states are observed that are very similar 
with respect to their spectroscopic properties, it is tempting to speculate that the 
three equatorial cysteine residues may act as bases and take up the proton. How-
ever, at present no experimental data exist to validate this hypothesis. A detailed 
ENDOR study of the Ni–L states is still lacking [93].

4.5.  Interaction of the Active Site with the Protein Surrounding 

The [NiFe] center of the hydrogenase is bound to the protein via 4 cysteines, 
as shown in Figure 1. However, further non-covalent interactions have been identi-
fied for this site [3]. The latter include hydrogen bonds to the sulfur and CN
groups and also hydrophilic and electrostatic interactions. In all catalytic [NiFe] 
hydrogenases a highly conserved histidine residue is present, which is in a position 
to form an H-bond to the axial cysteine sulfur with respect to Ni (Fig. 1). 

It is interesting to note that 3-pulse ESEEM and HYSCORE spectra of both 
Ni–A [90] and Ni–B [81] indicated the presence of a nitrogen atom. Since nitrogen 
is not found in the first ligand sphere of the [NiFe] center, it can only belong to a 
more remote amino acid ligand, which still interacts with the paramagnetic site. By 
inspection of the x-ray structure, and determination of the complete hyperfine and 
quadrupole tensor for 14N (I = 1), the nitrogen could be identified as an imidazole 
(N–H) nitrogen. Moreover, the N–H fragment of the imidazole forms a hydrogen 
bond to the axial sulfur, which carries a significant amount of electron spin density 
[81]. The respective histidine ligand is highly conserved in all catalytically active 
[NiFe] hydrogenases. It is, however, absent in the regulatory hydrogenase of 
R. eutropha [22], where indeed no nitrogen modulations were observed in the 
ESEEM spectra. It has been discussed that the hydrogen-bonded histidine plays a 
role in fine tuning the electronic properties of the active site and might therefore 
have a functional role [81]. The latter point became clear in the Q67H mutant of 
R. eutropha hydrogenase, in which a histidine was introduced in the homologous 
position of the standard hydrogenases [22]. This mutant showed very similar 
ESEEM spectra to the standard hydrogenase, indicating that the hydrogen bond 
had been established in the mutant. 
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5.  DISTANCE STUDIES OF [NIFE] HYDROGENASES 
The size of the spin–spin interaction of the [NiFe] center and the [3Fe4S] clus-

ter (S = ½) is within the range that can be studied by pulse ELDOR spectroscopy. 
This PELDOR technique allows measurement of the spin–spin interaction and a 
determination of the effective distance between the two electron spins. Measure-
ments have so far only been performed for D. vulgaris Miyazaki F hydrogenase 
[94] on the as-isolated enzyme (30% Ni–A and 70% Ni–B). The spin delocaliza-
tion over the [3Fe4S] cluster had to be included for correct data analysis. Spin pro-
jection coefficients have been determined that indicate that the largest amount of 
electron spin density is located on the iron closest to the [NiFe] center. 

6.  EPR-SILENT STATES 
The intermediate states Ni–SU, Ni–SIr, Ni–SIa, and Ni–R, where the number 

of electrons in the [NiFe] center is even, are commonly denoted as EPR-silent 
states. X-ray absorption spectroscopy (XAS) experiments are compatible with a 
formal NiII in the EPR-silent states (Ni–SU; Ni–SI; Ni–R) [38,41]. With Ni L-edge 
XAS it was found that the NiII is most likely in a high-spin state (S = 1) [95]. This 
has so far not been corroborated by EPR spectroscopy, possibly because of the 
presence of a large zero-field splitting that makes it impossible to detect the signal 
at X-band frequencies (9 GHz).

The high-spin or low-spin character of the “EPR-silent” NiII states depends on 
the energy splitting of the 2 2x y

d  and 2z
d  orbitals (as shown in Fig. 3). When these 

orbitals are sufficiently close in energy, the high-spin ground state is favored in 
which each orbital carries one electron. The distortion, which most efficiently 
brings the 2 2x y

d  orbital down in energy, is one toward a trigonal (bi)pyramid [44]. 
Whether or not the orbitals come close enough to yield the high spin state as the 
ground state is a question that may have to be addressed by high-field EPR, by 
which paramagnetic states with a large zero-field splitting can be observed. The 
possibility to observe the NiII high-spin states will depend on the magnitude of the 
zero-field splitting. For a typical value of 3 cm 1

, an instrument working at 90 GHz 
or higher is required. 

7.  CONCLUSIONS AND OUTLOOK
Based on the single-crystal EPR data collected for the paramagnetic states of 

the [NiFe] hydrogenase it can be concluded that Ni–A, Ni–B, Ni–C are formally 
NiIII d7 species with a 2

1
z

d  ground state (S = 1/2). The nickel ion has a square py-
ramidal coordination geometry, and it is believed that the substrate hydrogen (ini-
tially) binds to the sixth (free) coordination position at the Ni. The light-induced 
Ni–L states have a mixed 2z

d / 2 2x y
d  ground state. According to crystal field the-

ory, the Ni in Ni–L is in a formal d9 NiI state. However, the sulfur ligands may lead 
to strong delocalization of the electrons and a more positive charge at Ni. The iron 
in the [NiFe] hydrogenase has an octahedral coordination geometry; it is in a d6 FeII

low-spin state and thus diamagnetic (S = 0). This is probably caused by the strong 
inorganic CO and CN  ligands attached to the iron site. 
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The additional third bridging ligand X between Ni and Fe seems to play an 
important role for the hydrogenase since it changes its identity in the func-
tional cycle. In the oxidized states this bridging position is occupied by an oxy-
genic species. For the ready state Ni–B this is a μ-hydroxo (OH ) [83], while in the 
unready state Ni–A a final identification has not been achieved. In the activation 
process of the enzyme the bridging ligand (e.g., OH  in Ni–B) must be removed. A 
possible mechanism involves protonation of the OH  (Ni–B) and subsequent re-
lease as water [68], leading to a highly active species (Ni–SIa) that is EPR silent 
(cf. Fig. 2) [14]. 

A key intermediate in the reaction cycle is Ni–C, for which it was shown by 
EPR, ENDOR, and HYSCORE spectroscopy that it carries a μ-hydrido (H ) bridge 
between Ni and Fe [23,51,86]. This is most probably directly derived from the sub-
strate hydrogen. In a last reduction step the Ni–R state is reached, which is again 
EPR silent. The enzyme shuttles between the NiIII (EPR-active) and NiII (EPR-
silent) states in the catalytic cycle (Fig. 2). 

Heterolytic H2 dissociation must occur before the formation of Ni–C 
in the EPR-silent NiSI states. Mechanistic models for this process have re-
cently been discussed [14,68,79,96]. The paramagnetic light-induced Ni–L states 
derived from Ni–C have lost the hydride bridge [23,86]. The released proton is 
attached to a nearby base, possibly one of the sulfurs of the cysteine ligands. The 
Ni–C to Ni–L conversion process is reversible. The CO-inhibited paramagnetic 
state Ni–CO is probably derived from the Ni–L state. The CO ligand is attached to 
the nickel and blocks hydrogen access [8,19]. A similar situation is likely to oc-
cur when the enzyme is inhibited by O2 [9,96]. However, in the case of oxygen 
additional structural and electronic changes at the cysteines of the enzyme seem to 
occur as well [5,9]. 

The EPR studies on the paramagnetic states [98]—together with other investi-
gations using, for example, FTIR and XAS studies that can be applied to the EPR-
silent states—have delivered important insight into the catalytic cycle of [NiFe] 
hydrogenase as well as in activation/deactivation and inhibition of this important 
enzyme. However, the picture is still far from being complete. 

Open questions remain concerning the identity of the bridging ligand in Ni–A. 
This is important for understanding oxygen sensitivity and inhibition of this en-
zyme. With the information that the bridging ligand contains oxygen and a proton 
for both the Ni–A and Ni–B states, likely candidates for the bridge are OH  and 
H2O. However, recent x-ray crystallographic studies on single crystals in the Ni–A 
state indicate the presence of a bridging ligand, which could be OOH  [5,9]. The 
two structures, available for the hydrogenases of D. fructosovorans and D. vulgaris
Miyazaki F, also contain modified cysteines (modeled as oxidized cysteines with 
an additional oxygen attached to sulfur). Different cysteines were found to be 
modified in the two structures. Furthermore, it has been discussed that sulfur spe-
cies (HS , S2 , H2S) might occupy the bridging position in these bacteria [6,7,9,21]. 
However, a sulfur bridge would probably lead to an [NiFe] center with different 
EPR characteristics (g values). 



464 MAURICE VAN GASTEL AND WOLFGANG LUBITZ 

It is also unclear what exactly happens to the hydride after it is photodissoci-
ated from the [NiFe] center and which amino acid is used as a base in the light-
induced Ni–L states. Further studies on Ni–CO structures will provide insight into 
the mechanism of the catalytic cycle, as CO can inhibit the enzyme only after it has 
been reduced. The valence of the Ni–CO state is ambiguous, and investigation of 
the photolability of CO resulting in the same Ni–L structure as that obtained from 
Ni–C will contribute to understanding the electronic structure of the Ni–L states. 
Furthermore, the spin multiplicity of the “EPR silent” states is still not known. 
Though an EPR signal has not been reported, XAS measurements seem to favor a 
high-spin ground state [95]. 

The solution of these problems is crucial for formulation of a detailed reliable 
reaction mechanism that is based on experimental data. More information is also 
required concerning the H+ and e  transfer to the active site of the enzyme and also 
the H2 channel (cf. Fig. 1). The influence of the protein surrounding on the struc-
ture, function, and dynamics of the hydrogenase has so far been little investigated. 
Very interesting would also be a comparison of the similarities and differences 
between the different classes of hydrogenases that use different active sites to con-
vert hydrogen and show substantial differences in enzymatic activity [97,98]. 
Knowledge of the reaction intermediates is an essential prerequisite for understand-
ing hydrogenase function and for efficiently using this enzyme in future biotechno-
logical processes or as blueprints for designing bioinspired artificial hydrogen cata-
lysts for the production of hydrogen [97]. 
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