
Chapter 2
Law of Asymptotic Linearity

2.1 Definition and Genesis

In this chapter, a new law is proposed that, to the best of my knowledge, has not

yet been discussed as such in the literature. According to the law, all subjective

magnitudes grow linearly with the intensities of the stimuli that evoke them near

their thresholds of detectability. The relationship was first discovered during audi-

tory measurements concerning Stevens’ Power Law and is described here initially

for loudness, then generalized. When sufficiently small stimulus magnitudes were

included, the resulting loudness curves deviated from the power law and, on double-

logarithmic coordinates, bent downward, becoming gradually steeper. A typical

example is shown in Fig. 2.1 where loudness magnitudes of a 1,000-Hz tone are

plotted over sound-intensity abscissas expressed in dB (Hellman and Zwislocki,

1963). The solid curve has been determined by the method of magnitude estimation

based on two reference standards, as described in the preceding chapter (Hellman

and Zwislocki, 1961). The slanted crosses show averages of 12 studies computed

by Robinson (1957), in which various methods were used. Filled circles indicate the

data of Stevens (1956) obtained by magnitude estimation with the reference stan-

dards chosen by the observers themselves; open symbols and filled triangles, the

data of Scharf and Stevens (1961) obtained by magnitude estimation with a desig-

nated reference standard and by halving and doubling; the vertical crosses, the data

determined by Feldtkeller et al. (1959) with the help of the same method. The excel-

lent agreement between the various sets of data and the curve suggests that the curve

accurately represents the loudness of a 1,000-Hz tone as a function of its intensity.

Of particular interest is the asymptotic convergence of the curve on a linear rela-

tionship between loudness and sound intensity near the threshold of audibility, as

indicated by the straight line having the coordinates of 0.01 at zero SL (threshold of

audibility) and 1 at 20 dB.

The linear relationship between the loudness of a 1,000-Hz tone and its sound

intensity near the threshold of audibility may have been first noticed by Zwicker

and Feldtkeller (1956). Their graphical representation of the relationship is shown
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Fig. 2.1 A typical binaural loudness function (solid line) determined with two reference standards
and compared to the results of five other studies performed with different methods. The intermit-
tent straight line shows a linear relationship between loudness and sound intensity. Modified from
Hellman and Zwislocki (1963), reproduced with permission from the American Institute of Physics

in Fig. 2.2, where it is denoted symbolically as N ∼ p2 with N standing for loudness

and p for sound pressure. Of course, sound intensity is directly proportional to the

square of the latter.

Is the linear relationship between loudness and sound intensity near the thresh-

old of audibility an exclusive property of the 1,000-Hz tone, or does it extend to

other sound frequencies? An experiment in which loudness was determined by the

method of numerical magnitude balance at 100 Hz, 250 Hz and 1,000 Hz proved

the latter to be true (Hellman and Zwislocki, 1968). As an example, geometric-

mean data obtained on nine observers at 100 Hz are shown in Fig. 2.3 on double-

logarithmic coordinates. The filled circles resulted from magnitude estimation, the

crosses, from magnitude production. The solid line joins the geometric means of

their interpolated values. The straight line with the coordinates 40 dB, 0.001 dB

and 60 dB, 0.1 indicates a linear relationship between loudness and sound pressure

squared. It parallels the mean loudness curve at its lowest values. Interestingly, the
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Fig. 2.2 Loudness as a function of SPL (L) determined on eight listeners by the method of halv-
ing and doubling. Loudness is indicated by N and sound pressure by p. The intermittent tangent
lines indicate the slope of the function at three locations. The lowest parallels a linear relationship
between loudness and sound pressure squared. Reproduced from Zwicker and Feldtkeller (1956)
with permission from S. Hirzel Verlag

curve becomes somewhat steeper above these values before flattening. Geometric-

mean curves obtained at all three sound frequencies are shown in Fig. 2.4. Slanted

crosses indicate the respective thresholds of detectability. As a reference, straight

lines with a slope of one with respect to the sound pressure squared and originating

at 0 dB, 20 dB and 40 dB, respectively, are included in the graph. They are paral-

leled by all the loudness functions, irrespective of sound frequency. Consequently,

the linearity of loudness functions near the threshold of detectability appears to hold

for all sound frequencies at and below 1,000 Hz.

The slope constancy of the near-threshold loudness curves between 100 Hz and

1,000 Hz can be verified by direct inter-frequency loudness matching. Many studies

were performed in which the loudness magnitudes of tones at various sound fre-

quencies were matched to those at 1,000 Hz. The procedure consisted essentially

of finding sound intensity levels referred to those at 1,000 Hz, which produced the

same loudness magnitudes. Data obtained in this way at 100 Hz and 250 Hz in some
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Fig. 2.3 Loudness of a 100-
Hz tone determined by mag-
nitude balance as a function
of SPL. Filled circles indi-
cate geometric means of data
obtained by absolute magni-
tude estimation, crosses, those
obtained by absolute mag-
nitude production, the solid
curve indicates their interpo-
lated geometric means. The
solid straight line indicates a
linear relationship between
loudness and sound intensity.
Modified from Hellman and
Zwislocki (1968), reproduced
with permission from the
American Institute of Physics

Fig. 2.4 Loudness func-
tions determined at three
sound frequencies, 100, 250
and 1,000 Hz, by numerical
magnitude balance. Crosses
indicate the corresponding
thresholds of audibility, and
the slanted straight lines, a
linear relationship between
loudness and sound intensity.
Modified from Hellman and
Zwislocki (1968), reproduced
with permission from the
American Institute of Physics
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Fig. 2.5 Loudness-level
curves at 100 and 250 Hz
referred to the loudness at
1,000 Hz and obtained by
horizontal cuts through the
family of curves of Fig. 2.4.
The various symbols indicate
the results of correspond-
ing direct loudness matches
obtained in several studies.
The slanted lines parallel the
reference diagonal line and
show that, at near-threshold
intensities, all loudness func-
tions are parallel to each other

classical studies spanning a period of 40 years are shown in Fig. 2.5. They are com-

pared to the results derived from Fig. 2.4 by sectioning horizontally the family of

the curves of that figure (Hellman and Zwislocki, 1968). Note that, at near threshold

levels, the curves with all the data points clustered around them parallel the diago-

nal line indicating the reference slope at 1,000 Hz. Similar, although less detailed,

results were obtained at higher sound frequencies (e.g. Scharf, 1978). The conclu-

sion seems warranted that, at least for pure tones, loudness is related linearly to

sound intensity near the threshold of audibility.

What happens when the test tone is not presented in quiet but in the presence

of masking noise that increases the slope of the loudness function, or the slope is

increased by an auditory defect?

Results of a masking experiment performed on a 1,000-Hz tone are shown graph-

ically in Fig. 2.6 (Hellman and Zwislocki, 1964). The masking stimulus consisted of

an octave band of random noise centered on the test-tone frequency. It was presented

at two intensity levels, so as to produce threshold shifts of 40 dB and 60 dB, respec-

tively. The loudness levels of the partially masked tone were measured directly by

comparing them to the loudness of the same tone in the absence of the masking

noise. The corresponding results are shown in Fig. 2.6 by the filled circles. The

abscissa axis refers to the threshold of audibility in the masked ear in the absence of

the masker, the ordinate axis, to the threshold of audibility in the unmasked ear. The

diagonal line corresponds to the loudness level of the unmasked tone. The curves

indicate loudness levels derived from loudness measurements by the method of mag-

nitude production. The results of these measurements agreed better with direct loud-

ness matches than did the results of numerical loudness balance. The straight lines

drawn through the threshold points parallel to the diagonal line are linearly related

to sound intensity. The loudness-level curves appear to converge on them near the

thresholds but the paucity of the data points leaves some uncertainty in this respect.
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Fig. 2.6 Loudness-level curves obtained by comparing the loudness of a partially masked
1,000-Hz tone to that of an unmasked 1,000-Hz tone at two masking levels. Corresponding data
derived from absolute magnitude production are indicated by filled circles. Slanted lines parallel
to the diagonal indicate that masking did not alter the slope of the loudness functions near the
threshold of audibility. Modified from Hellman and Zwislocki (1964), reproduced with permission
from the American Institute of Physics

More convincing results were presented by B.C.J. Moore (2004) who performed

experiments on four observers with sensorineural hearing loss, most likely of

cochlear origin. In three observers, the hearing loss was bilaterally asymmetrical,

in the fourth, it was symmetrical but affected exclusively sound frequencies above

1,000 Hz. The experiments aimed specifically at loudness growth near the threshold

of audibility. They consisted of both threshold measurements and heterofrequency

loudness matching. For the latter, a frequency associated with a substantial hearing

loss was paired with a frequency associated with a minimal hearing loss. The experi-

ments were performed by means of modern adaptive procedures with respect to both

threshold measurements and loudness matching, assuring maximal accuracy of the

results. In all four observers, when the threshold was approached, loudness grew at

a rate independent of hearing loss and the slope of the loudness curve at higher sen-

sation levels. Two examples of Moore’s graphs are reproduced in Figs. 2.7 and 2.8.

In both, the sensation levels corresponding to the greater hearing loss are given by

the abscissas, those corresponding to the smaller hearing loss, by the ordinates. The

dashed diagonal line indicates parallel loudness growth in both instances. Clearly, at

near-threshold levels, all the experimental points converge on the diagonal line, indi-

cating the same rate of loudness growth independent of hearing loss. Since the latter
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Fig. 2.7 Sensation level of a 1-kHz tone in the presence of a small hearing loss as a function of
the sensation level of a 6 kHz tone in the presence of a greater hearing loss, both tones presented to
the same ear at equal loudness. The slope of the resulting implied curve converges on the slope of
the diagonal, indicating that the difference in hearing loss did not affect the slope of the loudness
function near the threshold of audibility. Reproduced from Moore (2004) with permission from the
American Institute of Physics

was negligible in one ear, the growth had to be linearly related to sound intensity, as

was shown in older experiments (e.g. Hellman and Zwislocki, 1963).

The experimental evidence cited above is consistent throughout with a constant

loudness growth, linearly related to sound intensity, at near threshold sensation lev-

els, independent of sound frequency, hearing loss, or the rate of loudness growth

at higher levels. The putative biophysical process responsible for the constancy is

described in the following section. It is directly associated with the basic tenants of

the theory of signal detectability (Green and Swets, 1966) and, in this way, provides

a bridge between this theory and loudness scaling.

2.2 Underlying Biophysical Process

In all systems that are not at a temperature of absolute zero, heat is associated with

molecular motion. Sensory receptors are no exception, and molecular noise was

included explicitly or implicitly for many decades in the analyses of the detection

of sensory signals. For example, Miller (1947) suggested that the masking effect
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Fig. 2.8 Similar to Fig. 2.7, except that the tones were presented to different ears. Reproduced
from Moore (2004) with permission from the American Institute of Physics

exerted by an extrinsic auditory noise on a pure-tone signal departed from a con-

stant signal-to-noise ratio near the absolute threshold as a result of intrinsic noise. In

vision, an analogous phenomenon is attributed to internal noise called “dark light”

(e.g. Barlow, 1972). Later on, the internal noise became a fundamental postulate of

the theory of signal detectability, and sensory thresholds became defined as percent-

ages of successful discriminations between signal-plus-noise and noise-alone events

(e.g. Green and Swets, 1966).

Internal noise is difficult to detect in the electrical potentials of sensory recep-

tors because of the interfering noise of recording electrodes but its effect is clearly

visible in the spontaneous activity of neurons innervating the receptors, where it

appears in a digital form. The activity has been particularly thoroughly studied in

afferent neurons of the auditory nerve. An example of a corresponding input/output

characteristic of an auditory neuron is shown in Fig. 2.9 on double-logarithmic coor-

dinates. The crosses indicate recorded firing rates and the star the average sponta-

neous activity according to Kiang (1968). The solid line through the crosses shows a

theoretical approximation of the data with the inclusion of the spontaneous activity,

the intermittent line, after its subtraction (Zwislocki, 1974). The lowest straight line

indicates an asymptote of the intermittent line with the slope of one, in other words,

a linear relationship to sound intensity.



2.2 Underlying Biophysical Process 89

Fig. 2.9 A typical intensity characteristic of an auditory-nerve fiber. The crosses show the empiri-
cal data, the curves, their theoretical approximations. The spontaneous activity (SP. A.) is indicated
by the star. The intermittent line shows the total neuronal firing rate less the spontaneous activity.
It converges at low intensities on a tangent linearly related to sound intensity. Reproduced from
Zwislocki (1974), with permission from copyright holder

The asymptote has been obtained analytically on the assumption that the spon-

taneous activity expresses the internal noise intensity that is added to the signal

intensity (Zwislocki, 1973, 1974). Accordingly, the total stimulus intensity is

ST = (S +NI) (2.1)

where S means the signal intensity and NI, the internal noise intensity. At medium

signal levels, the firing rate follows a slope of 0.5, in other words, the stimulus

amplitude. This can be expressed mathematically by taking the square root of the

expression in the parenthesis, so that

R(ST) = A(S +NI)0.5 (2.2)

where R(ST) means the total firing rate and A is a dimensional constant. The latter

equation can be written in the form

R(ST) = Ro(1+S/NI)0.5 (2.3)
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with Ro = AN0.5
I standing for the spontaneous activity. For S/NI � 1, Eq. 2.3 can

be approximated by the first two terms of its Taylor expansion, leading to

R(ST) ∼= Ro(1+0.5 S/NI) (2.4)

By subtracting Ro, we obtain the driven neural firing rate,

RD(S) ∼= 0.5 RoS/NI (2.5)

Note that it is directly proportional to the stimulus intensity, not amplitude. Equally

important, the direct proportionality is independent of the exponent, 0.5 and would

not be affected if the exponent were different or even the exponential function

replaced by another ascending, monotonic function. This is so because of the prop-

erties of the Taylor expansion. As a consequence, all the sensory neurons exhibiting

spontaneous activity should have near-threshold firing rates that are directly propor-

tional to the stimulus intensity.

What happens when there is no spontaneous neural activity or the activity is so

small that it cannot be used as a measure of the internal noise. Under such condi-

tions, we can write for the receptor potential with the continuous use of the power-

function approximation

E = B(Es +EI)β. (2.6)

where E means the total receptor potential, ES and EI, the receptor potentials gen-

erated by the signal and internal noise, respectively, β, a generalized power expo-

nent, and B, a dimensional constant. For the neural firing rate, we can write on the

assumption that it is linearly related to the receptor potential (e.g. Fuortes, 1971)

R(ST) = C(ES +EI)β −T (2.7)

where R(ST) signifies the total firing rate, C, a dimensional constant and T , the firing

threshold. When ES � EI, we can again use the Taylor approximation, so that

R(ST = CEβ
I (1+βES/EI)−T

T � CEβ
I (2.8)

or

R(ST) = CβEβ−1
I ES +(CEβ

I −T ) (2.9)

Accordingly, the driven firing rate remains linearly related to the signal intensity.

The above analysis shows that, for signal intensities smaller than the intensity

of the internal noise, the neuronal firing rate must be approximately linearly related

to the intensity of the stimulating signal. But does such linearity hold for psycho-

logical responses that are not controlled by single neurons but, rather, aggregates of

neurons? One necessary condition is satisfied – the sum of linear functions is a lin-

ear function. More specifically, if the firing rates of neurons in an aggregate follow

linear functions, the same must be true for the whole aggregate.
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Fig. 2.10 A typi-
cal loudness function
(Hellman and Zwislocki,
1961) is compared to a nor-
malized driven firing rate
of an auditory-nerve fiber
(crosses; Zwislocki, 1973),
integrated response of the
auditory nerve (filled circles;
Teas et al., 1962) and the
strength of the stapedius-
muscle reflex (unfilled circles;
Zwislocki and Shepherd,
1972). All the characteristics
tend to parallel each other.
The loudness function and
driven neural activity con-
verge on a linear relationship
to sound intensity at low
sound intensities (intermit-
tent straight line). Modified
from Zwislocki (1974), with
permission from copyright
holder

The above analysis has been applied to sensory receptors and peripheral neurons

but psychological responses involve higher stages of the nervous system. Does the

linearity hold there for small signals? Probably yes, for the same reasons that it holds

for the periphery, but we cannot be sure. Direct empirical evidence is necessary.

Several examples of such evidence have been given for the auditory system in the

first section. A more explicit one is shown graphically in Fig. 2.10. The loudness

curve of Fig. 2.1 (solid line) is compared to the normalized driven firing rates of

a single neuron in the auditory nerve (crosses) as well as to the electrical whole-

nerve response (filled circles) and the contraction strength of the stapedius muscle,

as reflected in the acoustic-impedance change at the tympanic membrane (unfilled

circles) (Zwislocki, 1974, 2002). Note that all the characteristics tend to parallel

each other, except for the saturation section of the single-neuron characteristic. Note

in particular that the single-neuron characteristic parallels the loudness curve at low

signal levels. Additional evidence can be found in the next section concerning the

generality of the asymptotic-linearity law.
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2.3 Generality

Because of the postulated linear summation evident in Fig. 2.10, the analysis con-

cerning single neurons can be extended to neuronal aggregates and psychophysical

experiments. Auditory masking experiments in which a pure tone is masked by ran-

dom noise are of particular interest. The analysis can be applied to them by simply

adding the external noise intensity, NM, to the internal noise intensity, NI, produc-

ing the total noise intensity, NT = NI + NM. One caveat must be observed, how-

ever. Only the portion of the extrinsic noise intensity that contributes to the masking

effect should be included. Frequency bands sufficiently removed from the test-tone

frequency not having such an effect must be excluded. Under these conditions, the

total loudness of the tone and noise together obeys the equation (Zwislocki, 1965)

LT = a(S +NI +NM)θ (2.10)

where LT means the total loudness, a, a dimensional constant, and θ, a power expo-

nent on the order of 0.3 for tone frequencies that are not very low. The equation can

be rewritten in the form

LT = a(NI +NM)θ (1+θS/(NI +NM))θ. (2.11)

and, for S � (NI +NM), approximated by

LT = a(NI +NM)θ(1+θS/(NI +NM)) (2.12)

For listening to the tone alone, the loudness near the threshold of detectability

becomes

Ls = aθ(NI +NM)θ−1S (2.13)

and, according to the theory, should be directly proportional to the tone intensity.

This is confirmed by the monaural loudness curves of Fig. 2.11 determined by the

method of numerical magnitude balance in the absence (NM = 0) and the presence of

masking noise at two levels, respectively. The uppermost curve was obtained in the

absence of noise, the next curve, in the presence of noise that was presented intermit-

tently in the time gaps between tone bursts and did not produce any direct masking,

for the next two curves, the noise was continuous and produced partial masking of

the tone bursts. At near-threshold tone intensities, all the curves approach a linear

relationship to tone intensity, as is shown by the extrapolating intermittent lines.

This is in agreement with the loudness-level curves of Fig. 2.6 obtained in the same

experiment and having slopes independent of the masking level near the threshold

of detectability. The curves of Fig. 2.11 can be approximated over their entire range

by Eq. 2.10 when the loudness of the noise is subtracted (Zwislocki, 1965).

L = a(S +NI +NM)θ −a(NI +NM)θ (2.14)
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Fig. 2.11 Loudness curves at 1,000 Hz determined by numerical magnitude balance in the absence
and presence of masking noise. Uppermost curve–no noise; next curve – nonmasking noise in the
gaps between tone bursts; lowest two curves – masking noise at two levels presented continu-
ously. Intermittent extrapolating lines show a linear relationship to sound intensity. Modified from
Hellman and Zwislocki (1964), reproduced by permission of the American Institute of Physics

Similar subjective intensity characteristics can be obtained for the sense of touch by

using vibrotactile stimuli. The similarity is only superficial, however, because the

characteristics result from an entirely different mechano-receptive system, actually

consisting of four systems based on four different kinds of receptors (Bolanowski

et al., 1988). An example for sinusoidal vibration at a frequency of 250 Hz is shown

in Fig. 2.12 with reference to sensation level (Verrillo et al., 1969). The stimulus

was delivered to the thenar eminence of the right hand by a solid vibrator with a flat,

circular contact surface that was pressed against the skin surface so that it produced

an indentation of 0.5 mm. The surface had an area of 2.9cm2, and the stimuli con-

sisted of 600 ms bursts separated by 1,400-ms time intervals. To avoid detectable

transients, the stimuli were turned on and off with 10-ms ramps. The vibration



94 2 Law of Asymptotic Linearity

Fig. 2.12 Subjective magnitude of vibration as a function of vibration intensity. A cylindrical
vibrator with a contactor area of 2.9cm2 was placed on the thenar eminence of the right hand
and vibrated perpendicularly to the skin surface with a frequency of 250 Hz. The six observers
participating in the experiment responded according to numerical magnitude balance. The resulting
curve has been extrapolated downwards linearly with respect to vibration intensity. Modified from
Verrillo et al. (1969), reproduced with permission from the Psychonomic Society

amplitude was measured directly with the help of an accelerometer. The subjective

intensity of vibration was determined on six observers with the method of numerical

magnitude balance described in Chap. 1. The filled circles of Fig. 2.12 indicate the

results of magnitude estimation, the crosses, those of magnitude production. The

solid line approximates their interpolated geometric means. Its extrapolation by the

intermittent line obeys a linear relationship between the subjective magnitudes and

the vibration amplitudes squared, proportional to intensity, in conformity with the

law of asymptotic linearity.

Results obtained by the same method for several additional vibration frequen-

cies are summarized in Fig. 2.13 by means of magnitude-balance curves. They are

plotted with reference to absolute vibration amplitudes in microns rather than to

sensation levels. In this way, the sensitivity differences among the various vibration
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Fig. 2.13 Subjective magnitudes of vibration at four frequencies. The experimental method was
the same as in Fig. 2.12. The intermittent lines extrapolate the experimental curves linearly with
respect to vibration intensity. Modified from Verrillo et al. (1969), reproduced with permission
from the Psychonomic Society

frequencies can be seen. Again, the extrapolating intermittent lines obey the law of

asymptotic linearity with respect to vibration amplitudes squared.

The conservation of the law at all the vibration frequencies involved is of particu-

lar interest because, according to Verrillo (1966) and also Bolanowski et al. (1988),

the tactile sensation at 25 Hz is mediated by different sensory receptors than that at

the higher frequencies, which is mediated by Pacinian corpuscles. The preponder-

ance of neurons ending on Pacinian corpuscles does not exhibit any spontaneous

activity but the most sensitive do (Bolanowski and Zwislocki, 1984). The latter are

likely the ones that determine the threshold of detectability and the shape of the

subjective intensity function at near-threshold stimulus intensities. Firing-rate char-

acteristics of one such unit are shown in Fig. 2.14 for several frequencies of vibra-

tion. Of particular interest are the curves indicating the patterns of emergence of

driven firing rate from the spontaneous firing rate. They conform approximately to

Eq. 2.4, thus, to the law of asymptotic linearity. A typical characteristic of a unit
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Fig. 2.14 Firing-rate characteristics of a Pacinian-corpuscle unit showing spontaneous activity.
The firing rate was measured at several vibration frequencies. In the transition sections between the
spontaneous and driven firing rates, the experimental curves are consistent with a linear relationship
between the driven firing rate and stimulus intensity. Reproduced from Bolanowski and Zwislocki
(1984), with permission from the American Physiological Society

without spontaneous activity is shown in Fig. 2.15. Its axon seems to have a high

firing threshold, so that its firing pattern is not appreciably affected by the physi-

ological noise. As a result, its action potentials tend to be synchronized with the

stimulus periodicity. Such units probably control the overall response characteris-

tics at higher vibration intensities.

Auditory and tactile receptors respond to mechanical stimuli. The input to visual

receptors, the rods and cons, consists of electromagnetic waves. Does the law of

asymptotic linearity still apply to vision in spite of the fundamental difference

in the physical nature of the stimuli? The brightness characteristics of Figs. 2.16

and 2.17 indicate that it does (Barlow and Verrillo, 1976). The solid lines in both

figures are the same and approximate the medians of absolute magnitude estimates

(AMEs; Chap. 1) made by six observers at nine light intensities ranging from
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Fig. 2.15 Firing-rate characteristics of a Pacinian-corpuscle unit without spontaneous activity at
250 Hz. Reproduced from Bolanowski and Zwislocki (1984), with permission from the American
Physiological Society

−9 to 0 log units (0log ∼= 100mLamberts) in a ganzfeld illumination. The latter

was obtained by diffusing the light beam of a tungsten-filament 750 W bulb (color

temperature = 2,800 ◦K) with half a ping-pong ball attached at the end of a black-

ened cone. The light intensity was controlled by means of neutral density filters. No

artificial pupil was used. The observers were dark adapted before the experiment

and after every light presentation that consisted of a 1-s flash. They made three

brightness estimates at every intensity. The first was made for training purposes and

was not included in the data averaging to minimize the response bias known to be

inherent in magnitude estimation. The median brightness estimates made by the six

observers are indicated in Fig. 2.16 by the crosses. The remaining symbols show the

individual data obtained by taking the geometric means of two brightness estimates.
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Fig. 2.16 Brightness of 1-s flashes of light produced by a 750-W tungsten-filament bulb in a
ganzfeld. The brightness was measured by absolute magnitude estimation as a function of light
intensity on six observers. The individual data are shown by the various symbols. The crosses
indicate their medians. The solid curve is fitted to them by eye and extrapolated linearly by the
intermittent line. Modified from Barlow and Verrillo (1976), with permission from Elsevier

The ganzfeld illumination was used to avoid contrast effects. To determine the

effect produced by visual contrast, the light field was restricted to 2◦ of solid angle

and presented on a black background. The median results obtained with such a field

on six observers are illustrated in Fig. 2.17. In agreement with other studies, the con-

trast effect and the size of the illuminated field had only a small effect on brightness

judgments, as indicated by the unfilled circles.

In both Figs. 2.16 and 2.17, the intermittent straight lines extrapolating the exper-

imental data have a slope of one, indicating that the corresponding brightness func-

tions converge on a linear relationship between the estimated brightness and light

intensity. Thus, the law of asymptotic linearity applies to vision under both condi-

tions, ganzfeld and a small target displayed on a black background.
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Fig. 2.17 The same as Fig. 2.16 but for a target subtending a 2◦ solid angle on a black background.
The results, indicated by the unfilled circles, are compared to the ganzfeld results of Fig. 2.16. The
intermittent lines parallel a linear function of light intensity. Modified from Barlow and Verrillo
(1976), with permission from Elsevier

The results described above were obtained with dark-adapted eyes, but does

asymptotic linearity hold when the eyes are light-adapted? The answer is provided

by the right-hand set of data points in Fig. 2.18. They have been obtained monocu-

larly with a circular target subtending a solid angle of 5◦ and displayed on a black

background after the eye had been adapted for three minutes to the brightness of

106 dB re 10−10 Lamberts produced by illuminating a white cardboard with a flood

light (J.C. Stevens and Stevens, 1963). Only the right eye was light adapted. The

left eye remained dark adapted. The stimuli were presented alternately to both eyes

for 2 s each, and the ten observers participating in the experiment estimated the

experienced brightness magnitudes with reference to a 74-dB stimulus presented

to the dark-adapted eye, to which the number 10 was assigned by the experimenter.

Every stimulus was presented twice in a random order. The geometric means and the

inter quartile ranges of the observers’ estimates are displayed in Fig. 2.18 by means

of the unfilled circles and the vertical bars, respectively. All the data points were

shifted upward by a constant distance so as to bring the dark-adaptation data into

coincidence with the Brill scale. They were approximated by a straight line. This
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Fig. 2.18 The effect of monocular light adaptation on brightness. The right eye was adapted to
106 dB light intensity relative to 10−10 Lamberts (right set of data points), the left eye was dark
adapted (left set of points). An illuminated target subtending a solid angle of 5◦ with a black sur-
round was presented alternately to the two eyes, and ten observers estimated its brightness relative
to a standard of 74 dB presented to the dark-adapted eye and called 10. The results were normal-
ized to make the data obtained under dark adaptation coincide with the Brill scale. These data were
fitted with a power function. The data obtained under light adaptation were fitted, probably erro-
neously, with a curve obeying Eq. 2.15. The intermittent line shows that they are linearly related
to light intensity at low light intensities. The data obtained under dark adaptation do not seem to
have reached sufficiently low light intensities to show the linearity effect. Modified from Stevens
and Stevens (1963), with permission from copyright holder

was possible because no light intensities near the threshold of detectability were

included. The data obtained for the light-adapted eyes were fitted by a line obeying

Eq. 2.15

ψ = k(L−Lo)β (2.15)

where ψ means the brightness in assigned numbers, k, a dimensional constant, L,

light intensity, Lo, the threshold light intensity, and β, an exponent on the order of

0.33. Clearly, the fit is not very good because the line misses 4 out of 6 points.

On the other hand, the three lowest points fall on the intermittent line that follows

direct proportionality with light intensity, in agreement with the law of asymptotic

linearity.

The validity of the law of asymptotic linearity can also be tested by means of a

visual experiment of an entirely different kind. It concerns visual estimation of line

length. Substantial literature indicates that subjective line length is a power function

of physical line length with an exponent approximating unity (e.g. Zwislocki, 1983).
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A recent experiment has shown, however, that this is not true for very short, thin

lines for which the exponent approaches asymptotically a value of 2 (Sanpetrino,

2005). This power exponent corresponds to the dimension of intensity and is con-

sistent with the law of asymptotic linearity, which does refer to intensity. The

experiment was not performed to test the prospective law of asymptotic linearity

but, rather, to calibrate individual observers with cochlear implants for loudness

measurements. The convergence of the subjective line lengths on the slope of two

at very short line lengths was obtained incidentally. Thin lines, 1-mm thick, were

projected horizontally on a smooth white wall of a width substantially greater than

the longest line used, so that boundary effects were minimized. No marks were

present on the wall from which the length of the lines could be inferred. The lines

were projected with the help of a power-point set up, and their length was varied

practically continuously by means of a digital controller connected to a computer.

Both methods, absolute magnitude estimation and absolute magnitude production,

were applied. In the first, lines of various lengths were presented 3 times in a ran-

dom order; in the second, numbers were given within the range previously used by

the observers. Like the lines, every number was given 3 times in a random order.

The responses associated with the first set of trials for the line lengths or numbers

were discarded, the responses associated with the second and third trials were pair-

wise geometrically averaged. Because of small differences between the magnitude-

estimation and production results, both sets have been combined to form a common

scatter plot shown by the circles on double-logarithmic coordinates of Fig. 2.19. To

bring the trend of the data more clearly in evidence, the scatter plot has been divided

into sections along the abscissa axis, and median values of the sections have been

determined. They are marked by solid triangles in the figure. Finally, the medians

have been approximated by two straight lines according to the least-squares method.

The line extending beyond the abscissa of 3 cm has a slope of 0.95, practically 1;

the line holding for smaller lengths, a slope of 2.1, practically 2. The correspond-

ing product moment coefficients amount to 0.92 and 0.62, respectively. The modest

value of the latter is due to a substantial scatter of the individual data.

Other averaging schemes were attempted, among them, polynomial curve fitting

of the entire scatter plot. Although the curve slope depended on the order of the

polynomial for very short lines, it remained greater than 1 for all polynomials of

orders higher than 1 and hovered around 2 for polynomials between the orders of

2 and 5. In view of this finding and the evidence presented in Fig. 2.19, there can

be little doubt that the law of asymptotic linearity holds for apparent length, pro-

vided the line is sufficiently thin. Thicker lines cannot be shortened enough for the

phenomenon of accelerated apparent shortness to appear. They become thicker than

they are long.

Available empirical data allow a test of the law of asymptotic linearity in yet

another sense modality, this one concerning the sensation of warmth. The sensation

is of particular interest because its threshold lies well above the null of physical

heat energy. The situation is somewhat similar to that of partial auditory mask-

ing by random noise that can shift the threshold of audibility of a pure tone by a

comparable amount. As shown in Fig. 1.4, the slope of the loudness function then
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Fig. 2.19 Subjective length of thin lines measured by numerical magnitude balance on six
observers as a function of the physical line length. Every observer made three estimates of every
length and produced three lengths. The first response was discarded and the remaining two were
averaged geometrically. The unfilled circles show the individual geometric means. Because of a
small difference between the magnitude estimations and productions, the means have been com-
bined to a common scatterplot. The scatterplot has been divided along the abscissa axis into narrow
sections, and medians of the data within the sections have been determined. They are indicated by
filled triangles. The medians have been fitted by two straight lines according to the least-squares
method, one for the physical lengths smaller than 3 cm, the other, for greater lengths. The slope
of the former obeys approximately the square of the physical length, the slope of the latter, the
physical length (Sanpetrino-Anzalone, unpublished data, 2005)

becomes steeper than in the absence of the noise and the steepness increases with

the threshold shift. One example of the growth of subjective warmth magnitude with

heat intensity is shown in Fig. 1.20 (data from J.C. Stevens and Marks, 1971; graph

modified from Marks, 1974). The stimulus consisted of a heat flux generated by a

1 kW projection lamp aimed at the forehead. The forehead was painted with India

ink to facilitate heat absorption. The variable area of exposure was controlled by

aluminum masks, and the exposure time, by a shutter that was opened every 30 s

for 3 s. The radiant intensity was measured with a Hardy radiometer. The resulting

data shown in Fig. 1.20 are based on magnitude estimates produced by 15 observers

relative to reference standards they chose themselves. The heat intensity and the
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Fig. 2.20 Magnitude of warmth sensation produced by radiant heat on the forehead as a function of
heat intensity and irradiated area. The heat was produced by a 1 kW projection lamp, and the fore-
head was painted with India ink to facilitate heat absorption. The area of exposure was controlled
with aluminum masks, and the exposure duration with a shatter that was opened for 3 s every 30 s.
A group of 15 observers made magnitude estimates of warmth sensation relative to standards they
chose themselves. The heat intensity and the irradiated area were varied at random within the same
sequence of presentations. The data points indicate geometric means of the group responses, and
the points belonging to the same irradiated area are connected by straight lines. The intermittent
lines are their linear extrapolations. Modified from Marks (1974)

irradiated area were varied at random in the same sequence of presentations. The

data points indicate that the heat sensation grew with both heat intensity and the

exposed area and grew faster with the intensity as the area was decreased. They

were originally fitted by a family of smooth curves following the form of Eq. 2.15

and converging at high heat intensities on one point (J.C. Stevens and Marks, 1971).

However, this fit was not very satisfactory, and other schemes were attempted, all

showing one or another deficiency and running into the fundamental objection of

implying a zero sensation at the threshold of detectability. This is only possible

on the unrealistic assumption of the absence of internal noise. For these reasons,

the data points of Fig. 2.20 have been simply joint by straight lines within each set

(Marks, 1974). In addition, intermittent lines have been drawn to extrapolate the sets

parallel to the slope of one indicated by the intermittent line that extends between

the abscissas of 20 and 200 mW per cm2. With the exception of one idiosyncratic

point, the extrapolating lines seem to be consistent with the point sets and to form

a curve pattern similar to that of partial auditory masking in Fig. 2.11, in agreement

with the law of asymptotic linearity.

The inference that warmth sensation increases in direct proportion to heat inten-

sity near its threshold of detectability is supported by the finding that the threshold

decreases nearly in inverse proportion to exposure duration (Stevens et al., 1973).
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This means that the magnitude of warmth sensation is nearly directly proportional

to linear temporal summation of heat intensity.

In the preceding examples, the law of asymptotic linearity has been applied to

sensory systems responding to physical stimuli, such as mechanical pressure or dis-

placement, light or heat. Does the law apply to chemoreceptive systems of gusta-

tion and olfaction? The available experimental data suggest that it does but they

are insufficient for a definitive answer. Suprathreshold responses have attracted the

main attention and only a few experiments have included near-threshold stimuli.

The overall results may be summarized as follows. For clearly suprathreshold stim-

uli, the subjective magnitudes grow according to power functions of concentrations

of the chemical substances. Only a few exceptions are encountered, two prominent

ones concerning sucrose (Fig. 1.39) and fructose in gustation (Moskowitz, 1970).

Whereas sugars tend to produce power-function exponents for sweetness slightly

greater than 1 with a mean of 1.33 (Moskowitz, 1970), acids tend to produce expo-

nents smaller than 1 for sourness (Moskowitz, 1971). In olfaction, all the odor-

ants seem to generate power functions with exponents smaller than unity (Cain and

Moskowitz, 1974).

The dichotomy between the exponents greater and smaller than 1 is of inter-

est for the law of asymptotic linearity. For the law to be satisfied, power functions

with exponents greater than 1 must become concave upwards near the threshold of

detectability, those with exponents smaller than 1, concave downwards. Unfortu-

nately, the scarce near-threshold data reveal these trends only occasionally. They

can be seen in Figs. 2.21 and 2.22, the former for the sweetness of six hexose

Fig. 2.21 Sweetness magnitudes of several hexose sugars as functions of concentration. The solu-
tions involved were made of reagent-grade chemicals in Cambridge (Mass.) tap water and pre-
sented to the observers in paper cups at a temperature of 19◦. The sweetness magnitudes were
numerically estimated by observers selected from a group of 83 relative to standards they chose
themselves. With the exception of rhamnose, the sweetness of every sugar was judged twice. The
results are indicated by the various symbols and approximated by power functions (except man-
nose). The intermittent lines show a linear relationship to the sugar concentration. Modified from
Moskowitz (1970), reproduced with permission from the Psychonomic Society
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Fig. 2.22 Odorants, n-propanol (C3) and n-pentanol (C5) diluted in odorless air were presented
to the observers through two tubes of an olfactometer at a flow rate of 4 l/min for C3 and 6 l/min
for C5. One tube served for the adapting stimulus, the other, for the test stimulus, both containing
the same odorant. The timing of the stimuli was controlled by electromechanical relays. A group
of 19 observers made numerical magnitude estimates of odor intensity after adaptation to the same
odor, which was achieved by taking three or eight breaths of the diluted odorant. Every observer
made two estimates relative to a standard they chose themselves. Subsequently the standards were
normalized to the number 10, and the individual responses were geometrically averaged. The data
points show the medians of these geometric means, the unfilled circles for the three-breaths adap-
tation, the filled squares, for the eight-breaths one. The solid and intermittent curves were fitted to
the data according to Eq. 2.15. The straight lines indicated by the long-dashes parallel the linear
relationship between the subjective odor intensity and odorant concentration. Modified from Cain
and Engen (1969), reproduced with permission from the Psychonomic Society

sugars (Moskowitz, 1970), the latter, for the odors of two odorants, n-propanol

and n-pentanol (Cain and Engen, 1969). The data of Fig. 2.21 were obtained by

the method of magnitude estimation referred to standards chosen by the observers

themselves. The solutions involved were prepared of various quantities of reagent-

grade chemicals and Cambridge (Massachusetts) tap water. They were presented

to the observers in paper cups containing 5–10 ml of the solution to be sampled

at a temperature of 19◦. The different concentrations were presented in irregular

order, and the observers rinsed their mouths after every presentation. Various sub-

groups of observers chosen from a total group of 83 participated in the experiments.

The subjective sweetness of every sugar, except rhamnose, was measured in two

sessions. With the exception of the results for mannose, the obtained data points

followed approximately power functions. However, for small concentrations of sor-

bose and glucose, they partially deviated from such functions upwards, in agreement

with the law of asymptotic linearity, as is evident in Fig. 2.21, where the intermit-

tent lines indicate the slope of 1. Similar deviations occurred for some other sugars

not included in the figure. That the effect was always small and did not occur in

connection with all sugars was probably due to two causes – the exponents of the

power functions deviated only modestly from unity, and the data were spars near the

thresholds of detectability. Nevertheless, all the deviations from the power functions

were consistent with the law of asymptotic linearity.
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The olfactory data of Fig. 2.22 were also obtained by means of magnitude estima-

tion relative to the number chosen by each observer for the first stimulus presented.

Subsequently, all the individual data were normalized by assigning to the first stim-

ulus the number 10, so that the data do not express absolute values. A group of

19 observers participated in the experiment, and every one of them judged the sub-

jective intensity of every stimulus twice. The data points of Fig. 2.22 indicate the

group medians of the geometric means of these pairs of judgments. The stimuli

consisted of odorants diluted in odorless air in various proportions and were pre-

sented to the observers through two tubes of an olfactometer, one serving for the

test odorant the other for an adapting odorant. In Fig. 2.22, both odorants consisted

of the same chemicals. The flow rate amounted to 4 l/min for propanol (C3) and

to 6 l/min for pentanol (C5). The timing of the flow was controlled by electrome-

chanical relays. In the adapting condition, the observers were allowed to take three

(unfilled circles) or eight (filled squares) breaths at a rate controlled by a metronome.

In the following test condition, they took one breath. At sufficiently high concen-

trations, the data points followed approximately power functions with exponents

smaller than unity; at lower concentrations, the slope of the curves approximated by

the data points increased in apparent agreement with the law of asymptotic linearity.

The data points were originally approximated, probably incorrectly, by theoretical

curves obeying Eq. 2.15 and having a vertical asymptote at vanishingly small con-

centrations. In fact, the lowest three points for n-pentanol (C5) obtained with weak

adaptation (three breaths) are consistent with a slope of 1 indicated by the intermit-

tent line with the longer dashes. Stronger adaptation (eight breaths) increased the

slope above 1 within the experimental range of concentrations but the slope at lower

concentrations remained unknown. The experiments with n-propanol (C3) produced

a similar pattern of results, except that all the slopes implied by the data points were

greater. Still, the locations of the lowest two points obtained for weaker adaptation

appear to be consistent with a slope of 1 (intermittent line with the long dashes)

within the experimental error. Of course, the adaptation probably contributed some-

what to the steepness of the curve implied by the points.

Although the available experimental data on chemoreception do not conclusively

support the law of asymptotic linearity, they are not in conflict with it.

A definitive decision will have to await further experimentation.

Multisensory examples of empirical results given above, together with its bio-

physical basis, suggest that the proposed law of asymptotic linearity may have uni-

versal validity in psychophysics. Of course, the universality of an empirical law can

never be definitely established and must be continually tested in quest of possible

exceptions.
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